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The localisation of sound sources by humans can be accomplished by the use of acoustical cues
only. The Head-Related Transfer Functions (HRTFs) represent the linear, directional
transformations of sound signals in free-field, detected in the eardrum of a listener or an artificial
head. These functions have a complex structure, especially at frequencies above 3 kHz, due to
diffraction, reflection and scattering from the head, torso, and especially the external ear.
Traditionally, these functions are measured by using a time consuming and difficult procedure.
with expensive apparatus found in well-equipped acoustic laboratories only. As a result, current
virtual auditory display systems make use of non-individualised HRTFs, which produce
unsatisfactory performance, especially when high fidelity sound quality and localisation of virtual
sources in elevation are required.

This thesis investigates various aspects of numerically modelled individualised HRTFs. The
computer simulations (undertaken on both a parallel computer and a PC) are based on the exact
solution of the wave equation, with the main emphasis on the Boundary Element Method (BEM).
The basic features of the HRTF are investigated first with simple geometrical models such as a
sphere and an ellipsoid that represent the human head, and a baffled cylinder that represents the
concha. Accurate geometric models of two heads and six pinnae are captured by using state-of-
the-art 3-D laser scanners and digitisers. These computer models are converted to valid BEM
models and their frequency response is simulated. With current hardware technology. and vigilant
optimisation of the manipulated mesh models and the solving procedures, baffled pinnae can be
investigated up to 20 kHz, and heads with pinnae (but without torso) can be investigated up to 10-
15 kHz. High accuracy is obtained when the results of the simulation at the blocked ear canal are
compared with measurements made with especially designed and built apparatus in an anechoic
chamber, using the same physical head and pinnae used in the simulations.

Once the results of the simulations are validated against measurements. further acoustic features of
the external ear are investigated with an emphasis on the 'mode shapes' of the human pinna. Using
the Singular Value Decomposition (SVD), the matrix of Green functions relating the acoustic
pressure at 'field' points and 'source' points in space is analysed at discrete frequencies. When the
field points and the source points are positioned on uniformly sampled spheres. a connection is
found between the matrices of the singular vectors and the sampled spherical harmonics. When the
method is investigated numerically. and the 'field' points are positioned on different pinnae. their
'mode shapes' are presented, and compared to the classical experiments made by E.A.G. Shaw in
the 1970s. The method is investigated further in order to produce 'reduced order’ transfer functions
by taking into account only the most dominant features of the singular vectors.

Finally. a few examples of numerically modelled sound fields of virtual acoustic imaging systems
with various loudspeaker arrangements are given in the frequency and time domains.
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Chapter 1: Introduction

CHAPTER 1

INTRODUCTION

11 MOTIVATION

Most current spatial sound reproduction systems are based on the concept of binaural
technology. These systems are referred to in the literature as ‘3-D audio’ (Begault, 1994).
virtual auditory display (Wenzel, 1993), virtual auditory space (Carlile, 1996), virtual
acoustic imaging (Nelson, 1997), and similar variations. The goal of the system designer is
to ensure that the reproduced signals at the ears of a listener, through either headphones or
loudspeakers, are equivalent to those detected under real listening conditions. In order to
manipulate the signals arriving in the eardrum of the listener in a binaural synthesis
process, it is required to know the directional characteristics of the physically filtered

signals that are encoded in the Head-Related Transfer Function.

It should be noted that there are other approaches to the production of spatial sound. which
are not based on the HRTF. For example, ‘wave field synthesis’ (Berkhout et al, 1993)
reconstructs the propagating waves in a restricted area using a discrete approximation to the
exact Helmholtz-Kirchoff equation, or the ‘loudspeakers-walls’ system (Ono er al. 1998)
which recreates an approximation of a desired impulse response of a room. Both methods

require a large number of loudspeakers.

In recent years the number of scientific papers, products and applications associated with
the HRTF has grown rapidly for two main reasons: (1) the advances in computing power

and the possibilities of implementing digital filters with low-cost DSP chips. and
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(2) advances in research on the physical, physiological, and psychoacoustical aspects of

spatial hearing and the interaction between them.

One of the main limitations of binaural technology is the generalisation of the HRTF of a
particular listener or an artificial head for the entire population. When individualised
HRTFs are used (i.e. either the recording is done with microphones positioned in the ears of
the listener, or monophonic signals are synthesised with the listener’s HRTF) and we
assume no errors are introduced in any part of the reproduction chain (transducers, acoustic
medium, head movements, etc...) we may not need to deal with the complexity of the
perception of sound by the auditory system. In practice, errors are inevitable, and exact
reproduction cannot be achieved. Therefore, psychoacoustical studies must be carried out in
order to investigate the physical cues encoded in the HRTF and the perceptual importance

of these in the auditory system.

It appears from many psychoacoustical studies published in the last 50 years that the task of
localisation of sound is more complex than assumed originally in Lord Rayleigh’s duplex
theory (Rayleigh, 1907). Although the significance of the external ear is now well
recognised as a complex acoustical antenna, it is still not understood how the different cues
are combined in the auditory system, and from the neurophysiological view, if all the

information detected by the pinna can be encoded by the nervous system.

High fidelity HRTFs are currently required by both the research community and the
designers of virtual auditory displays. Traditionally, these databases are acquired by
measurements. The procedure of measuring HRTFs is very time consuming, and expensive.
These are currently limited to well-equipped acoustic laboratories only, and as a result.
most HRTFs are either confidential or restricted to research purposes. There are also many
problems encountered when these functions are measured, analysed and compared between

different studies. For example it is difficult to define the point at which the microphone

12



Chapter 1: Introduction

should be positioned in the ear canal, the type of transducers and equalisation techniques
that should be used, and methods for dealing with signal to noise ratio problems, etc. In
addition, HRTFs are generally measured only at discrete points with a low directional
resolution. As a result, any real-time virtual auditory display would need to make use of

interpolated functions.

In this study, we suggest an alternative approach to acquiring individualised HRTFs, by
using computer simulation techniques rather than by using measurements. Geometrical data
derived from an optical image can be converted into its acoustical response, in principle. by
solving the wave equation. The idea is not new, as this was stated by Weinrich (1984) who
first investigated the response of the human head (without pinnae) using numerical

techniques:

“The rather complicated geometric shape of the pinna makes a rigorous

mathematical treatment very difficult — perhaps impossible”
and recently also by Shinn-Cunningham and Kulkarni (1996):

“Theoretically, it is possible to specify the pressure at the eardrum for a
source from any location simply by solving the wave equation.... Needless to

say, this is analytically and computationally an intractable problem”
In this research, we attempt to investigate the feasibility of obtaining accurate HRTFs using
computer simulation, and to develop a tool that can be used to investigate the acoustical

characteristics of the external ear.

1.2 OBJECTIVES

The focal point of this thesis is to investigate whether it is viable to predict high frequency
components in the frequency response of the external ear using simulation tools. The
objectives of the work and some of the questions addressed throughout the research are

given below:

(98]
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Investigate the feasibility of using various numerical techniques to compute HRTFs
at low to medium frequencies using simple geometrical models. Can we simulate
the response of these simple models so that these can be used, for example, in a

structural model, such as that proposed by Genuit (1986, 1987)?

Simulate the HRTFs of accurate geometric models. Can we validate the results with

measurements carried out in an anechoic chamber?

Develop a tool to investigate the acoustical characteristics of the human ear. Can
we reduce our problem by substitution of the head with an infinite baffle, and
concentrate on the contribution of the external ear alone, independently of the other

parts of the human body?

Identify common characteristics of the external ear by visualising the response at
high spatial resolution at different azimuthal and elevation planes. By simulating
and measuring a few pinnae under exactly the same controlled conditions.
continuous maps of the variation of peaks and notches in the frequency response

can be obtained. Are these results comparable with those found in the literature?

Investigate the acoustical features of the external ear that can be used
mathematically to reconstruct individualised HRTFs. In the area of HRTF
modelling, low-order parametric functions are required mainly for the
implementation of real time virtual auditory displays. Can we find. using

simulation tools, common physical patterns that can be used for this purpose?

Validate the normal mode shapes measured by E.A.G Shaw and published over a
period of three decades. To the author's best knowledge, his work summarising the
mode shapes of the pinna has not yet been validated nor continued. Can we obtain

the same patterns with our simulated pinnae models?
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1.3

Visualise sound fields of virtual acoustic imaging systems using loudspeakers. The
equalisation zone (‘'sweet spot) is primarily affected by the loudspeaker
arrangement. Can we predict the sound field around the head, while designing an
ideal cross-talk cancellation network with the individualised HRTFs modelled at

the first step?

ORIGINAL CONTRIBUTION

The feasibility of using various numerical techniques to simulate the response of HRTFs

has been investigated throughout the thesis for the following components of HRTFs: head.

torso and shoulders, pinnae, ear canal and eardrum. The following contributions in detail.

are summarised below:

It was found in the research that it is already possible to obtain individualised
HRTFs that can be used in the auralisation process. High accuracy HRTFs of the
head and pinnae (but without the torso) can be obtained up to 15 kHz for the

ipsilateral ear, and up to 10 kHz for the contralateral ear (Chapters 5 and 6).

If a structural modelling approach is used or specific features of HRTFs are
required to be adjusted (such as ITD values), numerical techniques can produce.
fairly rapidly, data-bases of simple geometrical models with different sizes and
shapes, such as the ellipsoid to represent the human head, or cylinders to represent

the shoulders and neck, or the pinnae (Chapter 4).

Using the principle of reciprocity, it 1s shown that the problem of interpolating
HRTFs is alleviated with the proposed numerical technique. This feature can be
used for implementation of real time applications, as well as being used as an ideal
tool to investigate the accuracy of interpolation techniques at high frequencies

(Chapters 4, 5, and 6).
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The frequency response of six pinnae was simulated and validated with high
accuracy against measurements. The simulations of baffled pinnae show high level
of agreement with the spectral features found in HRTFs, in the ipsilateral

hemisphere (Chapters 5 and 6).

An automated HRTF measurement apparatus was developed and built to control
the accuracy of measurements to a resolution much less than 1°. The efficiency is at
its best when artificial ears or heads are investigated and the fine structure of the

response is visualised (Chapter 6).

In the investigation of the 'mode shapes' of arbitrary radiating bodies, a number of
numerical and analytical simulations have been carried out, and showed the link
between the basis functions provided by the Singular Value Decomposition of
matrices of acoustic transfer functions, and the basis functions provided by
classical acoustical analysis, with particular emphasis on the case of radiation from

a sphere using a series of spherical harmonics (Chapter 7).

The basis functions of a shallow cylinder and accurate pinnae are investigated
based on the theory described in Chapter 7. A few examples are given to show how
this novel way of predicting the spatial patterns of the pinna can be used in the
future for reduced order HRTF modelling based on its physical characteristics

(Chapter 8).

The total sound pressure of sound fields of virtual acoustic imaging systems due to
different loudspeaker arrangements is investigated. Once the individualised HRTFs
are modelled, it is possible to investigate the effect of scattering around the listcner.

Multi-channel inversion strategies are used to illustrate the effect of a 2x2 and 4 x4

6



Chapter 1: Introduction

cross-talk cancellation networks. The efficiency of the Stereo Dipole system is

demonstrated in the frequency and time domains (Chapter 9).

In addition to the above contributions, further tools and formulations have been developed.

some of which are given below:

e Mesh manipulation tools were developed and implemented in order to optimise any
arbitrary complex shapes to be used with the BEM. It was found that this was
crucial to the successful modelling at high frequencies, when the mesh models are
very large, and typically have the order of tens of thousands of vertices and

elements on the surface mesh (Chapter 5 and Appendix 1).

e The simulated BEM responses of an ellipsoid were arranged in an interface
software that can be used, for example, to repair the response of HRTF
measurement at low frequencies due to a poor signal to noise ratio. In addition, the
Interaural Time Difference (ITD) 1s extracted using the interaural group delay
differences at low frequencies. The results for the ellipsoid can be advantageous

when compared to the classical rigid sphere model (Chapter 4).

e The frequency response of a rigid sphere is derived using the series of spherical
harmonics, such that in spherical co-ordinates the response can be calculated
anywhere on the sphere from sources positioned at any arbitrary direction

(Chapter 7).

1.4 OVERVIEW OF THE THESIS

The research presented in this thesis links two different disciplines: physical cues for sound

localisation, and numerical modelling of sound fields of exterior problems.

Chapter 2 introduces the reader to the relevant background of the acoustical characteristics

of the external ear. The chapter highlights briefly the relevant aspects that are related to this

7
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work. Some psychoacoustical studies are mentioned to emphasise the significance of
analysing the high frequency characteristics of the external ear, and the advantages of

binaural synthesis using individualised HRTFs.

Chapter 3 provides the basic formulation of the numerical techniques used in the
succeeding chapters. Since our computational problems are very expensive, it is of utmost
importance to optimise every aspect of the model. Special formulations are included with a

summary of the properties of the different methods employed.

Chapter 4 covers a few basic investigations using the numerical techniques introduced in
Chapter 3, in order to explore the feasibility of each technique. The classical sphere, which
is used extensively in the literature, is investigated using four different approaches: the
Direct Boundary Element Method (DBEM), the Indirect Boundary Element Method
(IBEM), the axisymmetric IBEM, and the Infinite-Finite Element Method (IFEM). A
Computer Aided Design (CAD) model of the CORTEX artificial head is used to investigate
the effects of the torso and shoulders, and these frequency response results are compared to
those of a sphere, an ellipsoid, and a head without the torso. At higher frequencies, the
pinna plays an important role, and a shallow cylinder can be used to investigate the first
quarter wavelength depth mode and its first transverse mode. These basic shapes produce
acoustical features that can be found (although with greater complexity) in a full model of

the HRTF.

In chapter 5, accurate models are investigated. Two different cases are presented: in the
first case, two heads with accurate pinnae (of the KEMAR artificial head and that of the
author), and in the second case, six pinnae (five of artificial heads and one of the author)
are investigated under baffled conditions. The chapter includes a brief description of the
mesh manipulation techniques that were required to convert the original scanned models to
BEM models (details on the algorithms are given in Appendix 1). The frequency and time

8
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domain responses are presented, and the main spectral features of the 'blocked meatus'
pinnae are analysed and compared with the literature. In addition, the inclusion of an ear
canal is briefly investigated, both with a rigid eardrum and with average eardrum

admittance values.

The validation of the simulation is given in Chapter 6. A computer controlled rotating arc
for HRTF measurements was designed and built. The measurement procedure 1s described.
and a comparison of the response of six baffled pinnae and the HRTFs of KEMAR (without

the torso) between simulation and measurement is illustrated and discussed.

Chapters 7 and 8 deal with the mode shapes of arbitrary, complex radiating bodies (or
scatterers). In Chapter 7 a theory for finding a set of orthogonal basis functions describing
sound radiation and scattering from irregular shaped bodies is presented. It is shown how
the basis functions (‘'mode shapes') of a radiating sphere, described by the complex
spherical harmonics, are related to those extracted using the Singular Value Decomposition.

The method is also used to investigate numerically the case of an ellipsoid.

In Chapter 8, the theory described above is used to analyse the spatial mode shapes of
simple models of the concha (a Helmholtz resonator and a baffled shallow cylinder), and
six accurate pinnae using the BEM. It is shown how these patterns can be used to
reconstruct a reduced order transfer function. In addition, using the principle of reciprocity.
the 'mode shapes' of the pinna are simulated using the same technique used by E.A.G Shaw

in his measurements of ‘'mode shapes'.

In chapter 9, we demonstrate the potential of predicting the sound fields for various
loudspeaker arrangements under free-field conditions. The figures include frequency and
time domain snapshots of the pressure on the head and the sound field around it, when the
inputs to the loudspeakers are filtered with a cross-talk cancellation matrix based on the

numerically modelled HRTFs.

9
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In the final chapter (Chapter 10) a discussion and the conclusions of the work are presented
with a summary of the computational cost involved in this research. The chapter ends with

a proposal for future work.

In Appendix 1, we include a description of the mesh manipulation techniques used in this
research. These were an important stage in the process of optimisation of speed,
geometrical and acoustical accuracy. The geometrical properties and statistical values of all

mesh models are presented.

In Appendix 2, we present the main 'mode shapes' of the pinnae investigated in Chapter 8.

1.5 SOFTWARE TOOLS

This research was based mainly on the vibro-acoustic software package SYSNOISE (LMS
international), with all its special formulation modules. Programming was undertaken using
the SYSNOISE command language (SCL), and the ‘user-defined' subroutines were
programmed in Fortran. Mesh manipulation algorithms were developed using C/C++ and
included OpenGL modules developed in Carngie Mellon University. Unfortunately. the
process of obtaining a valid BEM mesh from the original scanned model is not automatic
and requires an iterative process. In addition to the development of mesh decimation tools
(that controlled the homogeneous distribution of the vertices), other existing commercial
tools were used to optimise the mesh models: CYBERWARE (Cyberware, Inc.) software
packages (mainly CYEAT, CYSCULPT), ANSYS pre-processor (Ansys. Inc.). IDEAS
(Structural Dynamics Research Corporation, SDRC), HYPERMESH (Altair Engineering.
Inc.), PRE-SYSNOISE (LMS and MSC/ Nastran) and AUTOCAD (AutoDesk. Inc.). File
formats conversion tools were developed in C/C++. These include two-way conversion of
VRML 1.0, WAVEFRONT Obj, ANSYS (ascii cdb format), SYSNOISE free-format.

SYSNOISE user-defined format, and SGI inventor. In the measurement set-up. the MLSSA

10
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(DRA Labs) system was used with its macro commands, linked to a PARKER (Parker
Hannifin, plc.) automated rotor language to control HRTF measurements and the rotation of

the rotating arc.

All analytical simulations involving a rigid sphere (Chapters 4 and 7) were carried out
using  MATHEMATICA (Wolfram research, Inc.), and all the post-processing.
visualisation, and matrix manipulation of the numerically modelled and measurement

results were performed with MATLAB (MathWorks, Inc.)

1.6 CO-ORDINATE SYSTEMS AND ANGLE CONVENTIONS

Figure 1-la presents the co-ordinate systems used when the response of an artificial or a
human head was modelled or measured. The Azimuthal angles’ are defined as
0° < ¢ < 360°. At ¢ = 0°, the source is in front of the listener, at ¢ = 90° the source is

to the right ear, ¢ = 180° the source is at the rear, and at ¢ = 270°the source is on the

left. The same convention is used with the baffled pinna, and in this case 0° < ¢ < 180°.

The elevation angles are defined as —90° < § < 90° where ¢ = 0° is the horizontal

plane, § = 90° is above, and 6 = —90° is below. The same convention is used in the case

of the baffle.

The centre of the co-ordinate system in Figure 1-1a is in the centre of the interaural axis.
which connects the two ears, and the centre of the co-ordinate system in Figure 1-1b is at

the blocked entrance to the ear canal.

The results of the simulations and measurements are given in three planes:

" Note that azimuthal angles are defined with ¢ and not 8 . This is mainly for consistency with the spherical co-ordinate
system used in Chapter 7.
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e Median Vertical Plane. When the full head is investigated, the elevation angles that

are symmetrical to both ears are defined as 0° < 6 < 360°, ¢ = 0°. When the
baffled pinna is investigated, the equivalent plane is 'grazing incidence”, with the
same angle definitions as above.

e Horizontal (azimuthal) Plane. For the head 0° < ¢ < 360°, 6 = 0°, and for the

baffled pinna 0° < ¢ < 180°, 6 = 0°.

e Lateral Vertical (frontal) Plane. For the head —90° < 6 < 270°, ¢ = 0°, and for

the baffled pinna —90° < 6 <90°, ¢ = 0°.

¥ Note that 'grazing incidence' was defined at a normal distance of 5 cm from the baffle, for compatibility with

measurements since this was the minimal distance between the centre of the loudspeakers' cones. and the baftle at

6 =190°.
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Figure 1-1: Co-ordinate systems for simulation and measurement of (a) HRTFs (b) the response of
baffled pinnae.
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13



Chapter 2: Background - the external ear and the HRTF

CHAPTER 2

BACKGROUND: THE ACOUSTICAL CHARACTERISTICS
OF THE EXTERNAL EAR AND THE HEAD-RELATED
TRANSFER FUNCTION

2.1 INTRODUCTION

In the discussion of auditory space perception, questions of sound localisation are tackled
from mainly two approaches: physical and psychophysical. It is clear that from the physical
point of view, the variation of the eardrum response as a function of source position in
space provides the basis for sound localisation. However, in psychophysical studies, despite
improved experimental methods in the last few decades, we still have a limited
understanding of how the different sound localisation cues are combined in the auditory

system.

One of the main difficulties in research into sound localisation and sound reproduction is
the high variation in the anatomical shapes and sizes between individuals and in particular
the external ear. In our research, we concentrate on the physical cues imposed by the
external ear, and attempt to provide a simulation tool that can be used for the investigation

of different pinnae under controlled parameters.

In this chapter, we summarise briefly the background that is related to our research. For a
detailed review of the physics and psychophysics of spatial hearing the reader is referred to

the books by Blauert (1997), Gilkey (1996), Carlile (1996) and Begault (1994).
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2.2 THE HUMAN EAR

The anatomy of the human ear is generally analysed in three sections: the external ear, the
middle ear and the inner ear. The external ear (outer ear) is composed of the pinna and the
auditory canal (meatus). The middle ear consists of the eardrum (tympanic membrane), the
tympanic cavity, and three small bones, the ossicles, within the cavity. The inner ear
includes the organ of Corti, which lies within the cochlea and contains the receptors for the
sense of hearing, and the vestibular organs, which contain the receptors for the sense of

balance (Blauert, 1997).

When sound travels in air, it is first modified by the shape of the pinna, especially at high
frequencies. The pinna acts as a complex acoustical antenna and codes spatial
characteristics of the sound field into temporal and spectral attributes. After filtering by the
pinna, the sound waves propagate down the ear canal and cause the eardrum to vibrate.

These vibrations are transmitted through the middle ear by the ossicles to the cochlea.

In our study, we concentrate mainly on the shape and response of the external ear, with an
emphasis on the pinna (the ear canal and the ear drum do not contribute significantly to the

localisation of sound, as will be discussed later).

The recognition of the acoustical significance of the external ear is relatively new, and have
been appreciated for only a few decades. Its complex effect is summarised by Blauert

(1997):

“The acoustical effect of the pinna is based upon reflection, shadowing,

dispersion, diffraction, interference and resonance.”

A schematic diagram of the external ear is presented in Figure 2-1. The largest hollow in
the pinna, the concha, is a broad shallow cavity that is partially divided by the crus helias.
The lower part, the cavum, is tightly coupled to the canal whereas the upper part, the

cymba, is connected to the fossa of helix (Shaw, 1997). It was found (Teranishi and Shaw.
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1968) that these parts have acoustical attributes, whereas the structures extending from the

concha, such as the helix, anti-helix and lobule seem to function collectively as a flange.

Different geometrical parameters have been defined to describe the pinna in anthropometric
surveys. The work of Burkhard and Sachs (1975) produced the design of an average
artificial head (KEMAR) and an average pinna (DB60). The dimensions of this pinna are
smaller than the average size of the male pinna. It is designed as an average of the
dimensions and response of 24 subjects. These are typical of American and European
females as well as Japanese males and females. The ear length and ear breadth (See Figure
2-1 for geometrical definitions) of DB60 are 58.9 mm and 34 mm, respectively, whereas in
the work of Alexander and Laubach (1968), where more than 2000 USAF male flying
personnel with average age of 28 were investigated, the average length of 67.1 mm with a
range of 53.8 mm to 79.7 mm. The average ear breadth was 34.5 mm with a range was 27.4
mm to 42.8 mm (values within these ranges were measured also on individuals by Kuhn,
1983). Later, the DB65 was developed for KEMAR (Maxwell and Burkhard, 1979) with
larger dimensions of length and breadth of 66 mm and 37 mm, respectively. It is typical of

American and European male pinna sizes.

Note also that the relative rotation of the pinna affects its response. Thus the angle between
the pinna and the side of the head, which is between 25° and 45° (Blauert, 1997), and tilt
angle with the vertical position of the head, which is between approximately 3° and §°
(Dryfus, 1967) can both influence the acoustical response. However, in our investigation of
different pinnae (Chapter 5), all entrances to the ear canal were aligned to be at the origins
of the co-ordinate systems, and all rotational angles were aligned to average values (as will

be shown later in Figure 5-5).

In the work of Shaw (see the references between 1968 and 1997), the pinna is investigated
as a resonator in the frequency domain. It is found that that when the ear canal is blocked.
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the cavum concha is responsible for a quarter wavelength resonance. This is of course a
function of both the dimensions and the volume of the concha. In the study of Burkhard and
Sachs (1975) the volume of the concha of 24 people was in the range of 3.2 cm’ to 5.8 cm”.
These variations can shift, for example, the first anti-resonance frequency as high as from

8 kHz to 11 kHz (KEMAR, 1978, Chapter 3).

The ear canal is a slightly curved tube with varying cross section (see Stinson and Lawton,
1989, for accurate measured data). It is generally simplified in models to a cylinder with a
diameter of 7.5 mm, and length of 22.5 mm and an average volume of | cm’ (Zwislocki,
1970). Average values of the impedance of the eardrum are given by Shaw and Teranishi

(1968) and Shaw (1974).

As will be investigated in Chapters 5, 6 and 8, the response of the pinna is very complex at

high frequencies and it is very sensitive to the geometric shapes, size and orientation.

2.3 THE BINAURAL TECHNIQUE AND THE HEAD-RELATED
TRANSFER FUNCTION

The binaural technique is based on binaural hearing. The technique can be implemented in
two closely related approaches: binaural recording and binaural synthesis. Assume that a
listener perceives an auditory event in a free-field environment. In addition, his head is
fixed, and the source is stationary. The sound pressure received in both his ears includes the
full information of the transformation of sound (it was shown in Blauert, 1997, that bone
conducted sound is negligible in the perception of spatial sound). If the two signals, the
sound pressure detected at each of the eardrums, are recorded and reproduced exactly
(either with headphones or loudspeakers, with the appropriate equalisation), then it is
assumed that the complete auditory experience is replicated, including timbre and spatial

aspects (Mgller, 1992). Generally, the recordings are made with an artificial head (also
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termed 'dummy-head' or acoustical mannequin), and as a result, the reproduction is

approximated and therefore conflicting cues might occur in a listener.

A more commonly used method is binaural synthesis. In this case, an artificial head is not
required, and the monophonic signals can be filtered with the already measured sound
transformation, which is now commonly termed the Head-Related Transfer Function
(HRTF). The HRTF 1is a directionally dependent complex valued transfer function
(frequency response) that describes the transformations of sound from a stationary source in
free space to a point in the ear canal. The source is generally positioned in a three
dimensional space, at a constant radius, originating at the centre of the interaural axis (the
line that connects the entrances of the two ear canals). The detection point in the ear varies
among studies, from a position at an occluded ear canal ('meatus' blocked) and even a few
millimetres outside it, and anywhere along the ear canal (Hammershgi and Mgller, 1996).
In the application of binaural synthesis, HRTF data is generally arranged in the time
domain format and is called Head-Related Impulse Response (HRIR). Comprehensive
reviews of various studies on the transfer functions of individual anatomical features have

been given by Shaw (1975), Kuhn (1983) and Blauert (1997).

The main limitation of binaural recording is that it is based on a recording with a fixed
head, and therefore the dynamic cues are missing. In addition, the differences in matching
the artificial head pinnae and those of the listener will cause colouration and poor
performance in localisation of elevation sources. However, a new trend has appeared in
recent years, where binaural synthesis incorporates dynamic cues by using a head tracker.
which can compensate for head rotations by updating the filters in real-time (Sandvad.

1996, Wenzel et al, 2000, Begault et al, 2000 and Mackensen et al, 2000).
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2.4 SOUND LOCALISATION AND SPACE PERCEPTION

There are clearly different mechanisms in the localisation of real acoustical events, and of
virtual sounds when using headphones. Shaw (1982) proposed that headphone studies of
spatial imagery be referred to as 'space perception’, since the collection of perceptual data.
such as segregation of sound, where a single acoustical event may give rise to more than
one auditory event, or ambiguity with respect to whether the sound is externalised (and
'localisation' becomes 'lateralisation'). Most psychoacoustical studies are carried out with
headphones, and assume that sound localisation and space perception can be regarded as

equivalent.

2.4.1 Binaural cues

Lord Rayleigh's duplex theory (Rayleigh, 1907) was the first to explain how we localise
sound: localisation is based on the fact that path lengths are different for the two ears, hence
the Interaural Time Difference (ITD), and the head acts as acoustic shadows at higher
frequencies producing Interaural Level Difference (ILD). At angles on the median plane or
on the 'cone of confusion', additional complex cues are required, and therefore either head
movement can resolve ambiguity (Wallach, 1940), or these can be resolved by the filtering

of the pinna.

By neglecting the transmission paths within the auditory nervous system, we can assume
that binaural cues could be derived by the ratio of the ipsilateral and the contralateral
HRTFs in the frequency domain. This ratio produces the ITD and ILD mentioned above.
Wightman and Kistler (1997) found that the fact that ITD is frequency dependant and is
larger at low frequencies than at high frequencies (Kuhn, 1977) 1s perccptually irrelevant.
Whenever HRTFs are implemented using a minimum phase model (see below), a single

value is assigned to the ITD. However, although ITD values are roughly similar among
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subjects, the auditory nervous system is very sensitive to changes of the interaural phase or
timing. The minimum noticeable difference can be as low as 6 usec (see Carlile, 1996,

section 2.2.1).

The dominance of the ITD cue at low frequencies (below 1.5 kHz) was demonstrated when
it was conflicted in a subjective experiment against other localisation cues (Wightman and
Kistler, 1992). It was also claimed that the auditory system is sensitive to ITD in the

envelopes of high frequency carriers, but this is a less dominant cue.

[LD presentations are very complex, since at high frequencies their dependence with the
change of angle is high, and the response varies rapidly between peaks and notches. Their
visualisation in different planes reveals some systematic variations, but variations among
individuals are high, especially above approximately 8 kHz. It was shown that when ILD
are presented in different frequency bands they have similar patterns (Wightman and
Kistler, 1997). In addition, similar patterns are noticed for a specific frequency with a
change of the elevation angle (Duda, 1997). In the horizontal plane, Middlebrooks and
Green (1991) observed that localisation is mainly based on ITD and ILD without pinna
cues. However, Musicant and Butler (1984) found that pinna cues indeed helped in
resolving front and back confusion, and increased the localisation accuracy when localising

sounds within the same quadrant of the horizontal plane.

Another possible binaural cue was suggested by Searle et al (1975), as 'binaural pinna
disparity'. These authors proposed that the asymmetry between pinnae geometry and
acoustical response aids in median localisation performance. This cue is still regarded as of

a second order of significance.
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2.4.2 Monaural cues: time domain interpretation

Many psychoacoustical studies demonstrated that it is possible to localise reasonably well
with one ear plugged, in both horizontal and elevation angles (see Blauert, 1997.
Section 4.4, Carlile, 1996, Section 2.2). However, localisation accuracy is dependent on the
spectral contents, the frequency bandwidth of the stimuli, and other factors related to

practice and context effects.

As the external ear is a linear system, time domain and frequency domain behaviours are
related through the Fourier transform. It is assumed that the processing of directional
information takes place in one of the two domains. Does the external ear encode the source

direction through modulation of time delays or modulation of spectral shape?

Batteau (1962, 1967) was a pioneer in relating localisation in elevation, and the physical
cues provided by the external ear. He hypothesised that a simple time domain model, which
includes the original signal and two echoes, can give rise to the necessary spectral cues.
One echo having a latency of 0-80 psec varies with the azimuthal position of the source.
and a second echo, having a latency of 100-300 psec varies with the elevation. Some
agreement was found by Watkins (1978) and Wright et al (1974) when the method was
compared with measurements in the lateral vertical plane. Hebrank and Wright (1974)
showed that the notches appearing in the frequency domain are matched with the
interference of a variable path-length reflection that occurs on the posterior wall of the
concha. Hiranaka and Yamasaki (1983) confirmed that major reflections occur within
350 ps after the first arriving sound, and that the delay increases as the source is lowered. In
an extensive search for physical cues made with KEMAR, it was shown by Han (1991) that
if localisation at high frequencies were based on time delays, it would work only in a very
limited region. Since the model of Batteau is based on the physical geometry of the external

ear but is said to be too simplistic, a further development was formulated by Chen et a/
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(1992) with the addition of reflected paths. The pinna was modelled using a beam-forming
approach. Although this model does not rely on physical principles, it is based on the

general geometrical properties of the pinna.

Wightman and Kistler (1997) argued that monaural temporal cues are not likely to be
relevant for human sound localisation. Firstly because the HRTF impulse responses are too
short to be processed in the auditory system (they are of the order of about 2 msec.), and
secondly their previous results (Kistler and Wightman, 1992) suggest that changes in the
temporal fine structure of the HRIR do not produce subsequent changes in the apparent

positions of sound sources (see also Section 2.7).

2.4.3 Monaural cues: frequency domain interpretation

Although it is accepted now that the pinna acts as a 'frequency domain filter', it is not clear
which cues are relevant and necessary for the perception of elevation. Two approaches exist
when the spectra of HRTFs are analysed: elevation is perceived through the peaks (the

resonance of the pinna), or alternatively, as the notches (the anti-resonance).

It was claimed that for narrow band stimulus, the apparent location is directly related to
spectral peaks in the subjects HRTFs (Blauert, 1997, Butler, 1997 and Musicant, 1995).
However, with regards to vertical localisation, Hebrank and Wright (1974), Butler and
Belendiuk (1977), Watkins (1978) and Bloom (1977) have provided strong evidence that
with narrow band stimuli, spectral notches are responsible for the sensation of source
elevation. Shaw (1982) found that in eight out of ten subjects the spectral minima
systematically moved along the frequency axis as source elevation varied from high to low.

For two subjects the minimum varied in level but not in frequency.

In their work, Hebrank and Wright (1974) used band-pass filters to investigate the

frequency range in which the pinna affects localisation. It was concluded that elevation

R
(8]
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cues are embedded in a frequency range of 4 kHz to 16 kHz. This conclusion might explain
why a large number of reversals occur whenever non-individualised HRTFs are used

(Wenzel et al, 1993, Mgller et al, 1996).

The significance of the cues provided by the pinna was demonstrated clearly when its shape
was disrupted. Gardner and Gardner (1973) showed that when the pinna is altered by filling
its cavities with putty the localisation in the median plane is reduced. Subsequently, more
localisation and search for physical cues studies appeared with pinna occlusions (e.g.
Oldfield and Parker, 1984, Han, 1991) that supported the significance of the contribution
from all parts of the pinna to sound localisation in elevation and also to some extent in the

horizontal plane.

2.5 NORMAL MODES

Shaw (1974, 1997) identified six different modes of the human concha. His patterns (1997,
pp. 38, also shown in Figure 2-2) were the average among ten subjects. Although the
excitation angle, the magnitude at the base of the concha and the resonance frequencies
varied between individuals, his identification of monopole, horizontal and vertical dipole
patterns provides a very important insight into understanding the physics of the external

ear.

These common features have not been used in the construction of individualised response.
since it is not straightforward to transform the patterns into HRTFs. To the author's best
knowledge his work has not been validated or continued, except the support offered by the
work of Middlebrooks (1989), who observed a change in the directional response at 8 kHz
and 12 kHz, suggesting correlation with the change of pinna modes from 'vertical' dipoles

to 'horizontal' dipoles claimed by Shaw.

12
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In Chapters 7 and 8, we attempt to repeat Shaw's experiment by computer simulation, and
to derive a mathematical formulation that can extract the modal characteristics of an

individual pinna into its frequency response.

2.6 INDIVIDUALISED AND NON-INDIVIDUALISED HRTFS

Although it has been recognised for a long time that anatomical differences of the head,
torso and pinnae exist among individuals and these affect localisation, it was not clear
whether these differences require spatial sound reproduction systems to incorporate
individualised HRTFs, and in the case of reproduction with headphones, also individualised

Headphone Transfer-Functions (HpTFs).

Wenzel et al (1993) investigated and compared the localisation of subjects when signals
were synthesised using their own HRTFs, and with other subjects’' HRTFs. When virtual
sources in the horizontal plane were investigated, it was concluded that subjects could
perform well with non-individualised HRTFs, albeit with the problem of front-back
reversals. More errors appeared for 'cone of confusion' elevation angles. It was also
suggested that localisation using a non-individualised, but the HRTFs of a 'good localiser’,
can produce better performance. This idea (of using HRTFs of another person to produce
better performance) was investigated also by Morimoto and Ando (1982). They found that
subjects could sometimes hear directions in the median plane better using other pinnae.

than by localising with their own.

When binaural recordings were investigated by Mgller et al (1996), it was concluded that
when localisation of individual recordings (at the blocked entrance of the ear canal) were
compared to real life, the performance accuracy was preserved. In a similar manner to the
conclusions of Wenzel er al (1993), they stated that non-individualised recordings resulted

in an increased number of errors for sound in the median plane, and an increased number of
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front back reversals. However, the claim that that listeners might localise better with
recordings from other individuals then with their own recordings was not supported by their

data.

In a recent study, Mgller er al (1999) investigated non-individualised localisation with
various artificial heads. It was concluded that all artificial heads produced poorer
localisation in listeners, when compared to localisation of real sources. The deterioration
was most significant at median plane angles. In addition, it was found that localisation with
artificial head HRTFs is comparable to, or poorer than a random human subject. However,
they concluded that the design of artificial heads could be improved, since it was found that
the number of localisation errors produced by listeners who used non-individualised

HRTFs of one of the participating subjects was better than all artificial heads investigated.

Begault et al (2000) studied the impact of head tracking, reverberation, and individualised
HRTFs on the spatial perception of speech signals. It was concluded that the inclusion of
head tracking significantly reduced reversal rates (the cone of confusion is resolved by head
motion, see Wallach, 1940). For the horizontal plane, the use of individualised HRTFs did
not improve localisation accuracy, or externalisation rates. However it is important to
emphasise that speech signals do not include the peaks or notches found in HRTFs due to

pinna resonance, so ITD is the primary factor in this study.

2.7 REDUCED ORDER HRTF - MODELLING TECHNIQUES

There are currently a growing number of publications that investigate the performance of
reduced cost HRTFs for real-time virtual acoustic systems (for example Wightman and
Kistler, 1992, Chen et al. 1995, Huopaniemi and Karjalainen, 1997, Evans et al, 1998.
Gardner, 1999 and Larcher et al, 2000). The requirement for efficient coding of HRTFs is

for current low-cost real-time applications and cases where multiple virtual sources are
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generated simultaneously. In addition, continuous, interpolated HRTFs are required for the
generation of moving sources. These interpolations can be achieved in various ways (see

for example Christensen et al, 1999).

It is suggested that not all the information included in a measured HRIR is required for
accurate localisation. For example, as stated in Section 2.4.2 it is well accepted now that
modelling the generally non-minimum phase HRTF as a minimum phase transfer function,
while preserving the ITD (the interaural group delay at low frequency) results in similar
localisation accuracy (Wightman and Kistler, 1989, Middlebrooks and Green, 1990, Kistler
and Wightman, 1991, Kulkarni, 1999, Plogsties et al, 2000). This result is mainly because
the phase information lost in the minimum phase representation is in the high-frequency
part of the phase spectrum (a few kHz). This property is very important in the interpolation
process in eliminating the comb filtering effect obtained with the original HRTFs. Other
simplifications of the magnitude of the spectra generally result in increased errors in

elevation and reversals.

The types of HRTF modelling can be classified in two groups: physical models and
mathematical models. Most models are currently concentrated on finding a mathematical
'best fit' to empirical HRTF data. These do not attempt to produce individualised HRTF. but

to represent the original data in a more compact form.

Shinn-Cunningham and Kulkarni (1996) reviewed the following strategies for HRTF
mathematical modelling: eignfunction (Principal Component Analysis), neural-network.

Rational function, Pole-Zero (ARMA), and all zero (MA) models.

Recently more mathematical techniques have been suggested. With the inclusion of
auditory models, the performances of various models have been investigated subjectively
and objectively (Huopaniemi er al, 1999). For example, it was suggested that the filters

could be described compactly by taking into account the non-uniform resolution of the
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auditory system with auditory smoothing and auditory weighting and using frequency
warping.

For physical models, only Genuit's structural model (Genuit, 1986, 1987) is a true
parametric description that can be used mathematically to construct individualised HRTFs.
In his model, an individualised HRTF is constructed from a combination of 16 filter
channels and delay elements. Recently, more structural models have been suggested
(Brown and Duda, 1998, and Avendano et al, 1999). These suggest that elevation cues can

be added synthetically based on simplified empirical data (see also Duda, 1997).

In this thesis, we propose an exact physical modelling technique that uses mathematical
formulation to extract individualised HRTFs based on individualised basis functions, or
spatial patterns of pinna mode shapes (See Chapters 7 and 8). Although the proposed
reduced order model is based on physical criteria, its efficiency in the computational cost

has not yet been investigated.

2.8 HRTF MEASUREMENT TECHNIQUES

A large body of research has been carried out on HRTF measurement (see Hebrank and
Wright, 1974, Mehrgardt and Mellert, 1977, Butler and Belendiuk, 1977, Shaw and
Teranishi, 1968, Shaw, 1974, Shaw, 1975, Shaw and Vaillancourt, 1985, Gardner and
Martin, 1994, 1995, Mgller er al, 1995, Hammershgi and Mgller, 1996, Carlile and Pralong.

1994, Pralong and Carlile, 1994 and Blauert, 1997).

The external ear transfer functions are measured in the above publications at various places
along the ear canal, which gives rise to different responses. However, since up to
12-14 kHz only the longitudinal mode is present in the ear canal, the variation of the

position of the microphone does not distort the directionally dependent HRTFs.
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Blauert (1997) defines three types of transfer functions: the monaural, the interaural and the
free-field transfer function. The monaural transfer function is defined as the measured
sound pressure in the ear canal divided by a measurement in the same place, but with the
sound source at a reference angle and distance; usually at 0° azimuth and 0° elevation. The
interaural transfer function relates sound pressures at equivalent measurements in the two
ear canals. The full information of the transformation of sound due to the external ear is
preserved when the free-field response is equalised, i.e. the measured response in the ear
canal is divided by the measured free field response when the microphone is positioned at

the centre of the head, and with the head absent.

2.9 HRTF SIMULATION TECHNIQUES

In the last two decades, various computer simulation techniques have been suggested to
model the modification of sound impinging on the human head or parts of the external ear.
The growing popularity of the BEM resulted in many papers that studied the steady-state
response of simple models (for a review of state-of-the-art papers on the BEM up to 1995.
see Ciskowski and Brebbia, Appendix, pp. 261, 1995). However, only recently, problems
that are more complex can now be investigated using the BEM (mainly with the IBEM) due

to advances in computing power and advanced formulation.

Weinrich (1984) was the first to attempt modelling the response around an 'accurate’
geometry of the head. He used analytical and numerical techniques in analysing the
response of various parts of the head. He suggested a very simple geometric model of the
pinna with a mesh of only 20 elements resembling the shape of the concha. His solution
was based on a finite difference approximation method, and the results approximated only
roughly the dependence of the first notch with elevation. He also approximated the sound
field around an artificial head using the BEM (using a simplified formulation). In this case.

the mesh included 212 elements. With a low resolution of elements and without the pinna.

2l
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the results were valid only up to approximately 2 kHz. Despite the limited success of his
work in modelling realistic HRTFs, Weinrich paved the way for more advanced modelling

using the BEM.

Fourteen years later, the work of Katz (1998) is another milestone on the way to acquiring
individualised HRTFs using the BEM. Although the idea was similar to the work of
Weinrich, the use of BEM models converted from accurate laser-scanned models suggested
that although the BEM is associated with 'lTow-frequency' modelling, we can now solve tens
of thousands of simultaneous equations, to predict the response for complex shapes such as
the human head. Due to limited computing power, his work was restricted to frequencies
below 5 kHz (and this by assuming only four elements per wavelength); as a result, his
simulations could not be validated in the high frequency range where pinna resonance and
anti-resonance affect the pressure variations (for a discussion about possible geometrical
errors see Chapter 5). In addition, the results could not be validated against measurements
under the same conditions. His work inspired our research, and especially motivated the
question: Can high frequency peaks and notches due to the complexity of the external ear

be predicted accurately with the BEM?

Ciskowski and Royster (see the work in Ciskowski and Brebbia, 1995) developed a coupled
BEM-FEM formulation and investigated the effectiveness of different earplug design
configurations. In this work, the ear canal geometry together with the eardrum impedance
and the impedance of the earplug were modelled. The results of the response of an open ear
canal were compared successfully with measurements, and the attenuation of different
earplugs was investigated. This model does not include the concha or the pinna. but
suggests the possibilities of investigating the coupling between various earphones and the

external ear.
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Other numerical approaches were suggested, less computationally demanding. These,
however, make use of simplified models and therefore can predict only part of the response
of 'real' HRTFs. These are important in the study of the physical origins of the main
characteristics of the external ear, found in HRTF measurements. The work of Genuit
(1986, 1987) mentioned earlier was based on a structural model. The calculation is based
on Kirchoff's diffraction integral. It is reported that this approximate approach yielded

results within the tolerance of HRTF measurement of a subject.

Another two examples of such models are given below. Lopez-Poveda and Meddis (1996)
presented an approximate physical model of the transfer function of the human concha
based on Kirchoff's scalar diffraction theory. They used a simplified model of the concha as
a two-dimensional aperture in an infinitely large sound-opaque screen. This model
replicated some of the notches (mainly the first one, and partly the third) and its accuracy is
limited in the analysis and comparison with the response of an accurate external ear. Speyer
(1999) modelled the external ear as three concatenated ducts incorporating the appropriate
formulation for the coupling between them. The solution is based on the boundary integral
equation, and is proved efficient in replicating the general trends of the first resonance and
anti-resonance. As with the work of Lopez-Poveda and Meddis, the simplification of the
geometry limits the exact match with real HRTFs, but since the formulation was developed
for multiple ducts, it might be possible to improve the accuracy of the prediction with a
higher number of ducts (although it has been demonstrated by Shaw (1974, 1975, 1997)
that modelling the crus helias is required in matching all the resonance and anti-resonance

found in real pinnae).
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2.10 ADVANTAGES AND FUTURE APPLICATION OF
NUMERICAL MODELLING OF THE HRTF

In recent years, a few HRTF databases have been made available to the research

community:

e Average measured responses over 40 years by Shaw and Vaillancourt (1985)

e KEMAR database measured by Gardner and Martin (1994, 1995)

e Human and artificial head measurements in the AUDIS HRTF catalogue (1998)

e Human measurements by Kistler and Wightman (1989)

However, high fidelity HRTFs are still a valuable database that is confined to only well
equipped acoustics laboratories. The measurement of individualised HRTF at a high spatial
resolution is a very difficult and time-consuming task. Numerical modelling of HRTF
might produce cheaper, faster and more accurate HRTFs with a PC in the future. Here we

summarise the main advantages:

e There is no need for an anechoic chamber, or any acoustical transducer or

apparatus.

e In the simulation, both microphones and sources are ideal with flat and

omnidirectional response. 'Real' empirical response could be simulated if required.

e The model and transducers could be accurately positioned anywhere in space, thus
alleviating the problem of comparing HRTFs between studies, and highlighting the
results which differ only due to anatomical geometry or different boundary

conditions.

e The source could be positioned at any distance in the near field or far field.
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The 'microphone' could be positioned at any point along the ear canal (such as
directly on the eardrum). It is also advantageous to position a large number of
'microphones’ anywhere on the pinna to investigate pressure variation or 'mode

shapes'.

The principle of reciprocity can be used to obtain continuous HRTF anywhere in
space with no need to interpolate between discrete data sampled at a low spatial

rate of sampling.

The problem associated with low accuracy of measurement of both magnitude and
phase at very low (< 300 Hz), and high (> 15kHz) frequency due to both

transducers' performance and due to poor SNR are both alleviated.

The exact free-field or diffuse fields can be calculated and visualised in the
frequency or time domains. This is possible for both loudspeaker and headphone

reproduction.

It is possible to control the characteristics of air to facilitate higher or lower

temperature, humidity and thus characteristic impedance.

It is possible to control any boundary conditions such as clothing, hair or eardrum

impedance and investigate their individual contribution.

It is possible to generate a 'bank' of HRTFs by modifying and altering the shape of

pinnae, head shape and size, neck, torso, etc.

It might be possible in the future to use a digital camera, already part of a PC, to
extract the 3-D geometry of the pinna, and the dimensions of the head, neck and
shoulders. This information could be used to generate a reduced order HRTF based
on the physical attributes of each component (either with structural modelling or

HRTF decomposition based on spatial mode shapes).
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e It might be possible in the future to work backwards (through genetic algorithm
techniques for example) and to design a specific shape of the pinna, head, torso.

etc. for the 'best set' of HRTFs.

2.11 CONCLUSIONS

In this chapter, we reviewed briefly the basic aspects of the physics of the external ear and
its relation to sound localisation. The significance of the external ear is now recognised, but
it is not clear yet, what information encoded in the HRTF is essential for the auditory
system. If individualised HRTFs are used in binaural synthesis, virtual sources are
perceived with similar accuracy and authenticity when compared to real sources. However,
if non-individualised HRTFs are used, or even reduced-order individualised HRTFs are
implemented, not all localisation cues will be present, and therefore the performance of the
implemented virtual source will depend on the application, type of stimulus, source position
in space, etc. A simulation too]l based on the BEM can be used either to obtain
individualised HRTFs or to investigate the characteristics of the pinna. The success of this
approach depends greatly on its accuracy when compared with measurements. Only when
the individual resonance and anti-resonance can be predicted, will the simulation be offered

as an alternative to measurement techniques.
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Figure 2-1: The external ear. On the left, the different parts of the pinna, and on the right a
schematic cross section with the ear canal and eardrum. After Shaw (1997).
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Figure 2-2: Average normal mode shapes of the concha. The taxonomy of the modes for three
cases: 'monopole' (mode 1), vertical 'dipoles' (mode 2 and mode 3), and horizontal 'dipoles’
(modes 4 to 6). After Shaw (1997).
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CHAPTER 3

BACKGROUND - NUMERICAL METHODS FOR EXTERIOR
PROBLEMS IN ACOUSTICS

31 INTRODUCTION

Among the exact numerical prediction techniques for solving vibro-acoustic problems, the
Finite Element Method (FEM) and the Boundary Element Method (BEM) are the most
commonly used. They are different from analytical, geometrical, and statistical energy
methods in acoustics in that they provide a tool for accurately solving detailed, arbitrary.

and complex models.

Both methods are based on the discretisation of the acoustic field and can solve the wave
equation, either in the time or frequency domains. As the acoustic domain becomes larger.
the number of elements increases rapidly, and therefore these methods are mainly
associated with 'low" frequency modelling. FEM is mostly used in structural engineering.
and its main limitation in acoustics is the ability to deal only with finite elements (i.e.
interior problems). However, in recent years, a new development of FEM has appeared: the
Infinite Finite Elements Method (IFEM). The infinite elements alleviate the problem of
infinite domains. It is predicted that the popularity of the method will increase in the near
future, with significant reduction in the computational effort that is currently required for

solving large problems.

However, the main tool for predicting radiation and scattering for exterior problems is still

based on Boundary Integral Equations (BIEs), which were already used by the 1800s by
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Helmholtz and Rayleigh, but developed only in the 1960s into the BEM, at the same time

as computers appeared and proliferated.

In this research, emphasis has been placed on the investigation of 'real' problems that
include both large and arbitrary complex models. The main tool was the BEM, although
some preliminary investigation of the suitability of the IFEM was also carried out. This
chapter summarises briefly only the relevant theory of the numerical methods used in this
research. For a thorough summary and mathematical derivation, the reader is referred to the
following references: Ciskowsky and Brebbia (1995), which include also a list of state-of-
the-art papers in the BEM up to 1995, SYSNOISE (1999) and Desmet (1997), or as

otherwise indicated throughout this chapter.

3.2 BASIC THEORY

3.2.1 Governing equations

In a homogeneous, inviscid, compressible fluid, the acoustic pressure field due to radiation

or scattering from a rigid body, is governed by the classical scalar wave equation

A 1 0%p(r,t
V2p(r,t) ——.Zp—(.)’):O rev (3.1)
¢t Ot°
where p(r,t) denotes the instantaneous variation of pressure from the equilibrium that is
termed the acoustic pressure, and the spatial vector r is defined inside the volume V. The

speed of sound ¢ is given by ¢ = \/(vpy/p,), Where p, is the gas static pressure, p, is

the static density, and -y is the ratio of specific heats.

When time harmonic steady state conditions are considered, the wave equation (3.1) is

reduced to the Helmholtz equation

Vip(r) + k*p(r) = 0 reV (3.2)
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where the wavenumber & is defined as k = w/c, w is the angular frequency, w = 27f and f

is the frequency.
3.2.2 Boundary conditions
Three types of boundary conditions are associated with the Helmholtz equation: fixed

pressure, normal velocity, or acoustic impedance on the surface of the body. These are

called Dirichlet, Neumann, and mixed (or Robin) boundary conditions, respectively.

The prescribed normal velocity u,, on the vibrating body is given by

Uy, = LVp(r).n rcs, (3.3)
wp,

where n 1s the unit normal on the surface So )

An additional boundary condition is needed for radiation problems; the pressure field at

infinity must satisfy the Sommerfeld condition

lim ra(% + jkpy) =0 (3.4)

where o« =1/2, or a« =1 for two or three-dimensional domains, respectively. This

condition ensures that energy disappears at infinity and only outgoing travelling waves

propagate.

3.2.3 Green function

The solution of the wave equation (3.1) is simplified by introducing the acoustic monopole

(point) source. The Green function satisfies the inhomogeneous Helmholtz equation

(V2 + k*)g(r | 1,) = =8(r — 1) (3.5)

with§(r — r,) the 3-D Dirac function.

The Sommerfeld radiation condition is also applied and this can be written as
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lim T(—ag(r [ 7)

=00 57"

+ Jhy(r | ) = 0 (36
The free space Green function™ represents the free-field pressure in point r due to an

acoustic point source in location r, with source strength of a unity

e—jk|r—ru\

g(r | rp) I ror (3.7)
0

with| r — r, | the distance between points rand .

3.3 DIRECT COLLOCATIONAL BOUNDARY ELEMENT
METHOD

The direct collocation BEM can be used for solving exterior or interior problems. In our
case, we will concentrate on exterior problems in general and on acoustic scattering in
particular. The goal of the method is to calculate the pressure and particle velocity in the
exterior domain of a body. Once the above acoustic variables have been found, the field
variables at any point in the continuum domain can be obtained by using the Boundary
Integral Equation (BIE). The three types of boundary conditions described above (Section
3.2.1) can be applied, and the set of equations can be constructed using the direct
collocation scheme. The term 'direct' indicates that the pressure and normal velocity
distribution on the boundary surface have a direct physical meaning. The method's main
advantage is in solving small to medium size problems in which the models have a closed

boundary surface (see Chapter 4 and Chapter 5 Section 5.5).

" The notation of the free space Green function is given by g(r | I‘O) since a general Green function G(I‘ | I‘O) 15

defined and used in Chapter 7.
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3.3.1 Direct boundary integral formulation
The direct boundary integral formulation (Schenk, 1968) relates the pressure at any point of

an acoustic field to the pressure and normal velocity distribution on the closed boundary

surface of the acoustic domain.

For the case of scattering, consider a body with a surface S embedded in an infinite
acoustic medium exposed to impinging incident waves with pressure p.. The total field p,
is a superposition of the incident field p, and the scattered field p,. (For the case of
radiation, the pressure p, vanishes). The volume V is the space bounded by S and the

surface % at infinity, which can be represented by a sphere with an infinite radius (see
Figure 3-1). The small sphere o with aradius ¢ — 0 is defined to deal with the singularity

in the Green function when r = r;.

Based on Green's third identity that relates the surface integral over S to the volume
integral over V' bounded by S, it can be shown that the integral formulation for the

scattered sound field is given by

Cwne) = [n ) 220 o 1) 2 o

S

where the coefficient C(r) represents the solid angle, expressed as a fraction of 47 . This
coefficient is 1 for positions inside V', O for positions in the interior domain enclosed by the
boundary surface S and %2 for positions on the surface where the normal direction is

uniquely defined.

For other cases the solid angle can be calculated (see Seybert et al, 1985 for the full

derivation) for any surface position r from

1 0 1
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where v is the normal to the closed boundary surface S with a positive orientation into the

unbounded domain V (v = —n ).

The total sound field can then be calculated from

Clr)p,(r) = f[pt(ro)ag—%yir—o) —g(r | ro)apégo)]ds(ro) + p,(r) (3.10)
S
or
)= [Intx e | ) 4 Jpownn (5ol | 1)dS(,) + pi(r) G
S

where p,(r,) and u,(r,) are the pressure and normal velocity distribution on the closed

boundary surface S . (For radiation problems the term p, should be omitted).

3.3.2 Numerical implementation

In order to evaluate the integral of Equation (3.11) on the surface S, the body needs to be
discretised into E elements that approximate the surface shape and the acoustical variables
on the surface. The most commonly used elements are the linear triangular and
quadrilateral surface elements.

For the case of linear triangular elements, the global Cartesian co-ordinates z, (i = 1,2,3).

are related to the nodal co-ordinates z,  of each element,

=> N.(©z, o=123 (3.12)

and the first order shape functions of the local co-ordinates (§) = (¢, &,, &) and are
N,(§) =& (i =1,2,3). Each shape function is defined such that it has a unit value at

the location of node ¢ and that it is zero at all other node locations (see Figure 3-2).
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In each element m, the values of the pressure p and its derivative are approximated by

P (€) and %ﬂ(g) using the shape functions.
n

&) =Y No(&)Pma

and

(&) 5pma(€)
an }Z:Af(g) (3.13)

where p,,,(£) an

d % are the values of the pressure and its gradient on the element
n

m , respectively.

Hence, after rearranging, the discretised formulation of Equation (3.8) is given by

Opm
prm rO g(r i o >dS(r0)— Zf p@n (r|r,)dS(r,) (3.14)

where S, is the area of the m" element. Substitution of Equations (3.12) and (3.13) into

this equation gives

5 S Ve @pne L5 (e — Crppte) =

m Sﬂl @ (3 15)
OPma '
> f SoNa(E) e | 1) (e

where J(&) the Jacobian of the transformation given in Equation (3.12). Equation (3.15)
can be rewritten as
|%> e~ C =
223 e f A J(§)dE — Clrp(r) =

(3.16)

Opma
o f No(€)olr | 1) (€)dg
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Now consider one dedicated point r, that is a node on the surface identified by the global
number ;.
Assume now the following notations:

p,_p(r;) is the pressure at node j, R = R(r;r,) is the distance from node ; to any point
r, on the surface, g, = g(r, | r,) is the free space Green function between node j and any

point r, on the surface.

Equation (3.16) can be rewritten as

(a3 8 mo Cl’
;;pma-amj—pj[w;% ZZ e b (3.17)

where

= [ Va ol rO)J(é)dﬁ (3.18)
S

f (E)g(r | o) (£)dg (3.19)
S

C(r) is defined in Equation (3.9) and

Cpy = 5= | 55 7€) (3.20)

Each m,a combination corresponds to a global node /. However, the global node [ may

have its origin in different m,« combinations.

By adopting the global scheme we may write

Zzany " Oma = ZAJ/QZ (3.21)

m Q
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O d¢
bav . mo = ) ___1 .
220 T = B, (3-22)
Using Equations (3.21) and (3.22) in Equation (3.17) gives
S A -1+3C, =58, 00 (3.23
P miP = 2.0 gy, =-49)

The pressure p, atnode j, canbe expressed as 6 p, with 6ﬂ the Kronecker symbol which

1

equals 1 only when j = [, therefore we can define

Ay =A4,-0+)C 08, (3.24)

J

Therefore Equation (3.23) becomes

Aﬂpl ZB][ 5 (3.25)

At each node [, the pressure and the pressure gradient are related to the same quantites at
all other nodes on the surface. For a total number of N nodes , a system of A

simultaneous linear algebric equations is created. This can be written in a matrix form as

(Al{p} = [B]{g_g} (3.26)

where the NxN matrices A and B are made up of combinations of Equations (3.18) to
(3.20) . These matrices are fully populated since the pressure and normal velocity at a
certain node are related to the values at all other nodes on the surface. The number of
simultaneous equations that are solved is the same as the number of nodes on the

discretised surface plus the number of source points.

Once the pressure and the normal velocity at each node have been found. the pressure at

any point r in the acoustic domain 1" (which is not located on § due to singularity) can

be obtained from Equation (3.11), which in a matrix form is given by
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p(r) = [C{p} + [D]{u, } (3.27)
where the coefficients C,D are integrals evaluated at each node (with a similar procedure to
that described in Equation (3.17). These are also given in detail in SYSNOISE, 1999 and

Desmet, 1997).

3.3.3 The non-uniqueness problem

A common problem associated with exterior problems solved with the DBEM is that the
solution breaks down at certain characteristic frequencies. As proved by Schenck (1968),
these frequencies are the eignfrequencies of the corresponding interior problem with
modified boundary conditions, i.e. for an exterior Dirichlet problem the frequencies are the
eignfrequencies of the interior Neumann problem and vice versa. These frequencies appear

purely for mathematical and not physical reasons.

These 'irregular frequencies' are removed using the Combined Helmholtz Integral Equation
Formulation (CHIEF), proposed by Schenck (1968). This method 1s based on adding a few
equations that collocate the solution at points where C(r) = 0, where it is known that the
pressure is zero. These points are also called 'over-determination’ points and the over-
determined set of equations is solved using the Lagrange multiplier technique. It is required
that these points will not be positioned inside the interior cavity on nodal surfaces since
they will not add 'real’ constraints. As the frequency increases, these nodal surfaces become

closely spaced and a careful positioning of these points is required.

Other methods (such as the 'Burton Miller' method which includes additional constraints for

the normal derivation of the pressure) exist but are not investigated in the current research.
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3.4 INDIRECT VARIATIONAL BOUNDARY ELEMENT
METHOD

3.4.1 Indirect boundary integral equation

As stated in the previous section, the DBEM can be used only when the boundary surface
S is closed, thus the sound field can be calculated either inside or outside the boundary
surface. For cases where the domain is open, or includes both closed and open boundary

surfaces, the Indirect Boundary Element Method (IBEM) is used (see Fillip1, 1977).

The indirect method uses layer potentials that are the differences between the outside and

inside values of the pressure and its normal gradient. Along the positive side of the

boundary surface these are denoted p™(r,) and dp™(r,)/On, respectively, and along the
negative side of the boundary are denoted p~(r,) and Op~(r,)/On, respectively (See
Figure 3-3a).

The layer potentials are defined as

/u(ro) = p+(r0) - p_(ro) (3.28)

where p is generally called the jump of pressure or the double layer potential. It represents

a distribution of dipole sources on the surface, and

_OpT(r)  Op (xy)
oln) =%, an

(3.29)

where o is generally called the jump of normal derivative of pressure or single laver

potential, and it represents a distribution of monopole sources on the surface.

For open bodies (see Figure 3-3b), it can be shown (Coyette and Lecomte, 1997.

SYSNOISE, 1999) that the indirect boundary integral formulation is given by
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pt) = [ |5 225 L200 OB sy

A on, an,
S Oolr | 1) 0p7(xy) o
_ g(r | r, p(r,
- — as
[ 25 Bt i) (< )
or, in a general form, for open or closed boundary surfaces
. dg(r | ro)
p(r) = [ lulrg) =5~ o(r)alr | 1)ldSu(r,)  (x € V) (3.31)

S

The term 'indirect’ indicates that the boundary variables, i.e. the monopole and dipole
distributions on the boundary surface, do not represent any direct physical quantities

associated directly with the pressure field.

342 Variational formulation

The variational formulation is used with the IBEM because it is difficult to apply the
collocation method due to the problems of singularities in Equation (3.31).

The single and double layer potentials ¢ and p are sought on the three different parts of
according to the boundary conditions: imposed pressure on S (1 =0 and o = 0).
imposed normal velocity on S, (¢ =0, p = 0 and dp/0n = —jp,wu, ), and imposed
normal impedance on S, (0 = —jsfu,pu = 0 and Op/0On = —jkBp where 3 is the
specific admittance function).

Therefore the following boundary conditions (derived in Desmet, 1997) can be

reformulated as

fa( )g(r | ,)dS, (x f “)dS( )

(3.32)

+ [l g< >+ B e | RS, (5,) (r € 5,
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B By AL &o(r | 1,
]p(,wu,,(r) - !U(I‘(J) on(r o )+ f o)an(r 071(1‘ )dS (I‘ )
Pigte | ) (3.33)
(r . )
+ f 148) Gt )+ jk/3(ro)m—]d53(ro) (res,)
o:—fa(r) (|“)dS +fu ﬁd:}*(r)
o7 9n(r) & t) on(r)on(r,)  2°
029( Og(r|r) o Og(r|T,
+ ! [1lxo) On (r)0n(r,) + kB O)W]ds (x,)
: 5 (3.34)
- [ otoateste mjasn) + [ ) G L a5, )
e o) 5~ 50030 ot | 518, ) (€ S,
Equations (3.32) to (3.34) can be written in a compact form as follows
fom) = p Vres,
Lopw) = —jpuu, VreS, (3.35)
filo,pn) =0 Vreld,

These integral equations have to be solved for o on S, and p on S, and S,. An

equivalent variational formulation is given by

ffl (0, 1)bodS, +ff)(0 14)6pdS, +ff3 (o, 11)6udSy =

S 5y

fpéadS f]u)ll Suds, Y(60,6u)

1

(3.36)

The left hand side is a bilinear symmetric form so that the solution (o, ) leads to the
stationarity of a functional J so that 6/ = 0 for all possible variations (do.6és). The full

mathematical derivation of the solution of the variational formulation is shown in detail in

Desmet (1997) and SYSNOISE (1999).
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3.4.3 Formulation in a discretised form

In a similar way to the discretisation of S in the DBEM, the geometric shape functions are

defined and the unknowns ¢ and p are expressed in term of their nodal values:

= > o,N(8)
= Z ,LLl-Ni(f)

It can be shown (see Pierce and Wu, 1983) that the unknown layer potentials are given by

(3.37)

o B CT'[f,
_ 338
M ¢’ D fu} o

where the detailed integral equations of B,C,D,f, £, are given in SYSNOISE (1999) and
Desmet (1997).

Once both the single and the double layers are known, the BIE can be used to post process

the pressure at any field point in the volume which is then given by

() = 3 [ W) W N (ol | S ) (39

where the surface S of the body is discretised with e elements such that S =~ ZS" . and

S* is the surface of each element.

3.4.4 The non-uniqueness problem

When the indirect method is used to solve exterior problems with closed domains, the
integral evaluation fails at critical frequencies of the interior problem, in a similar way to
that which appears with the DBEM. The solution in this case is based on adding interior

elements with additional boundary conditions. These are defined as
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op™ .
S It =0
(3.40)
op~ . _
S~ dpwh.p” =0

The absorption, applied as positive real parts of admittance (to increase absorption) can be
applied also on the inside layer of the existing closed surface. Further information and
practical consideration of implementing these 'singular admittance' elements are given in

SYSNOISE (1999).

3.5 SPECIAL FORMULATION OF THE BEM

3.5.1 Symmetry

Baffled structures (Figure 3-4) or structures with symmetry in both geometric and material
properties can benefit from a modified formulation which does not require discretisation of

the infinite plane. The modified equations are given by

[ {22100 g 2B ) —

[{pte) P g, 20 s ) = eyt

S T

where the vibrating body s' lies in the vicinity of an infinite reflecting baffle s#. The

Green function of a rigid infinite baffle (with zero normal velocity) is

gy = (€)Y /R + (¢7*) /R, and the Green function of a soft infinite baffle (with zero

pressure) is gy = (e Y/ R — (e_JkR’)/Rl :

3.5.2 Axisymmetric IBEM

In the case of an axisymmtric model, with non-axisymmetric boundary conditions, a

reduction in both calculation time and computational storage may be achieved. The 3-D
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surface integral of the Helmholtz integral equation can be reduced to a combination of a
line integral, and an integral over the angle of revolution, around the z axis (Coyette and

Lecomte, 1997). The reference plane for the meridian surface is (r,z) of a cylindrical

co-ordinate system (Figure 3-5).

The acoustic pressure can be decomposed into Fourier series along the circumferential

direction using

+ro
P(7,20,0:) = Y Dl 2 )e7™ (3.42)
m=—o
and
1 T -~ jmé.
pm<rz’zr) = 2—7_(_ _p<rxezm:9z)e J Tdeg- (3.43)

After substitution to the Helmholtz equation and following the same mathematical steps

that were applied in the 3-D case, the integral representation becomes

Ognm(r | T,
p(6) = [ | ntrin 1 1) = 1) 220 oy,

L

where L is the boundary surface generator. The non axisymmetric boundary conditions are
handled by their decomposition into Fourier series. For each harmonic m the integral

equations are solved with the variational technique described in Section 3.4.2.

3.5.3 Acoustic transparency in the IBEM

The following formulation of the IBEM is a special case of the integral Equation (3.31). Its
main use is in problems where the transmissibility of sound by vibro-acoustic interactions

can be analysed on both sides of an infinite baffle.

The pressure can be analysed as a superposition of the contribution by the single and
double potentials on the three parts of S:S', the partof S in V=, S™, the part of S in the
infinite plane, and S”, the part of S in I"* (see Figure 3-6).
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It is shown in detail by Coyette et al (1999), that the total pressure is given by

r) = 8;1)(0) r|r S(r
p(r) Sf{+ o <|0>}d<0>

o)
n { M(ro).ag(;(LO)) o(r,).g(r | ro)}dS(rO) Vrev- (3.44)

S

! {* Zﬁﬁj;g 9(r | ro)}dS(rO)

+

and

pie) = [[1- 0 ot st
S 0

+!{M(I‘g)-%l|;;) — U(ro).g(r { ro)}dS(rO) VreVt (3.45)
Op(ry)
+f{ 8n(r0) 9 |I‘0)}d5(r0)

and the variational solution is undertaken by using similar steps to those used with the

formulation for the regular 3-D bodies.

3.6 WAVE ENVELOPE INFINITE ELEMENTS

Traditionally the finite element method is used to solve interior acoustic problems, since the
numerical implementation requires a finite number of finite elements. However, it is
possible to alleviate the problem of infinite domains with various methods (see Givoli.
1992, SYSNOISE, 1999) by modelling the acoustic near field of the radiating body by
dividing the unbounded region into an inner region, formed by a mesh of conventional
finite elements and an outer region with a single layer of special elements stretching out to
infinity. These are used to model the acoustic far field (Figure 3-7). Several approximation
methods have been developed, and in our case we use the mapped infinite wave envelope
method (Astley er al, 1994, 1998 and Cremers et al, 1994). The infinite wave envelope

element is based on an infinite geometry mapping, extending the element to infinity, and
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special shape functions with built-in amplitude decay and a wave-like variation, as shown

below.

The formulation of the variable-order, infinite wave envelope element involves the
following aspects: the infinite geometry mapping, the shape functions and the weighting
functions in a modified Galerkin residual scheme. The first two aspects are discussed

below.

3.6.1 Infinite geometry mapping

The infinite geometry mapping consists of the mapping of a unit parent element on to a real
element extending to infinity. The mapping is defined by the location of four 'geometric’
nodes (in the case of two dimensional element). Figure 3-8 presents an example of the
‘parent’ and ‘mapped’ topologies of a two-dimensional wave envelope element.. The
corner of the parent element at (1, 1) is mapped to infinity in the mapped element. The
first two geometric nodes 1 and 2 are defined to lie on the envelope (infinite) layer. Nodes 3

and 4 are defined at distances a,, and a, from nodes 1 and 2, respectively along the infinite
sides. Mirror nodes 3' and 4' are used as 'virtual sources' and defined at distances a,,and a,
from nodes 1 and 2 on the side of the conventional mesh.

This type of geometrical mapping is obtained by introducing a singularity in the radial

direction (at {=1 or r=es), yielding an inverse mapping of the form

(=1-2-2 (i =1,2) (3.46)
In this equation, r is a radial co-ordinate along the infinite element which is the distance
along the 1-3 or 2-4 sides measured from source point 3' or 4'. A detailed description and

the formulation in three dimensions can be found in Astley et al (1994, 1998) and Cremers

et al (1994).
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3.6.2 Shape functions

The development of the shape functions used within the infinite wave envelope elements is
derived from the observation that in spherical co-ordinates, a three-dimensional radiation
function p(r) for the exterior region outside a sphere with a radius R can be written in the

form of a multipole expansion with an infinite series

=i e

p(?“)zer >

n=0

F.(0,9,k) (3.47)
" -

when 7.6, are the spherical co-ordinates relative to the origin 7, and the functions

F,(0,p,k) represent the radiation functions corresponding to acoustic multipoles of

increasing order. It has been shown that the series converges absolutely and uniformly
when the elements lie outside the smallest sphere circumscribing the structure. Therefore
this co-ordinate system is not efficient for long or flat objects. The current variable order
infinite wave envelope elements are also formulated in the ellipsoidal co-ordinate system. It
is shown that only a finite number of terms (generally less than six) are required to model
the amplitude decay of the outgoing propagating waves. The order of the series is thus

defined by the number of terms in the (1/r) expansion.

3.7 SUMMARY OF PROPERTIES

e Both the DBEM and the IBEM follow a two-step procedure. In the first step an
approximation of the boundary surface variables is determined, which is based on
the expansion of the surface geometry and the boundary conditions on the surface
in terms of a set of prescribed shape functions which are locally defined on each
element. In the second step, a post-processing procedure is undertaken where the
field variables at any point are obtained from the boundary integral formulation.

The calculation time of the second step is generally much faster than the first step.

n
S
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Exterior problems can be solved with either the boundary element method or the
infinite element method. The DBEM can be used to solve only for closed bodies

where the indirect method can solve the acoustic field on both sides.

If the boundary surface is closed, the problem can be solved with both methods.
The set of equations needed to be solved with the DBEM produces non-symmetric
matrices, whereas the IBEM produces symmetric matrices. The total computational

effort, however, is determined by the size of the problem (see Chapter 10).

With the BEM, only the surface is discretised, thus the dimensionality of the
problem is reduced from three to two. However, computationally, this property
does not result in faster solution times than the FEM, since the matrices are
complex, fully populated, frequency dependant, and may be singular. Although the
number of nodes and elements in the BEM is much smaller than in the FEM, in
large problems, this, again, does not imply greater efficiency in the solution

process.

The non-uniqueness problem appears in both the DBEM and the IBEM. It is a
mathematical problem and not a physical one. It occurs only when the body has an
enclosed volume. As the size of the model gets larger and the frequency range of
interest increases, the higher the number of 'irregular frequencies' that are needed to

be removed.

The advantages of the IFEM are the ability to solve exterior problems both in the
frequency domain and the time domain and to alleviate the non-uniqueness
problem. Currently, the main limitation is the generation of the complex volume
mesh that produces 3-D elements between the discretised 2-D surface elements.

and the ellipsoid, or the spheroid infinite layer.
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3.8 CONCLUSIONS

This chapter summarised briefly the theory behind the numerical methods used in the
research. The formulations of the BEM, currently the main tool for the prediction of
acoustic radiation and scattering, have been presented. Since different aspects of HRTFs are
investigated numerically, it was required to evaluate different schemes where different
methods with different versions of software and hardware produced varying performance.
Since a great emphasis of the research was put on high frequency analysis, it was of utmost
importance to optimise all the various aspects of modelling, where practical aspects of the
implementation and examples of the various methods presented here are given in the

following chapters.
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Figure 3-1: Domain definition for an exterior point r in the Direct Boundary Element Method
(DBEM).
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Figure 3-3: IBEM domain definition: (a) closed body (b) thin open body.
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Figure 3-4: Symmetry condition. An Infinite plane (baffle) produces a mirror image and a modified
Green function.

7 =32

Figure 3-5: Axisymmetric cylindrical co-ordinate system.

S"l‘

S’Hl¢

Figure 3-6: Acoustic transparency: a sound wave can propagate from both sides of the baffle (V™
and V1) through ‘transparent’ elements (at points T) defined at z=0. 5™ denotes the points on the
infinite baffle, and S and S' the points on surface of the body attached to the baffle, on the
positive and negative sides of the baffle, respectively.
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Wave envelope interface

\

Conventional finite
element

Figure 3-7: Schematic drawing of the IFEM - conventional FEM and infinite layer. The infinite wave
envelope element is based on an infinite geometry mapping, extending the element to infinity, and
special shape functions with a built-in amplitude decay and a wave-like variation.

£
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> [ ] Geometric node
@ Pressure node
1 3 X (O Source node
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Figure 3-8: Infinite geometry mapping from a two dimensional unit parent element to a real infinite
wave envelope element: (a) parent and (b) mapped topologies. The mapping is defined by the
location of four nodes:1, 2, 3 and 4. The corners of the parent element at (1, £1) map to infinity in
the mapped element. Nodes 3 and 4, and their mirrors 3' and 4' are defined at distances a, and a,
from nodes 1 and 2. The mapping is given in Equation (3.47).
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Chapter 4: The HRTF of simple geometrical models

CHAPTER 4

NUMERICAL COMPUTATION OF THE HRTF USING
SIMPLE GEOMETRICAL MODELS

The motivation for investigating the equivalent 'HRTFs' of simple geometrical models is
two-fold: (2) to investigate the suitability of different formulations of numerical techniques
in simulating the response of small-to-medium size models, and (b) to investigate the
effects of the different components in HRTFs which include simplified geometries of the

head, torso and the concha.

The investigation of simple geometrical models is important in the analysis of structural
modelling of HRTFs, as well as in binaural and monaural physical and psychophysical
studies of general attributes of HRTFs. An outline of this chapter is as follows: first, the
response of a rigid sphere is investigated analytically and compared to results obtained with
various numerical techniques. Subsequently, the responses of an ellipsoid and an artificial
head with a torso (but without pinnae) are modelled and compared. Finally, the normal
modes of a simplified concha modelled as a baffled cylinder are simulated and analysed.
The modelling principles that were investigated and presented in this chapter were

implemented throughout the thesis with larger and more complex models.

41 THE FREQUENCY RESPONSE OF A RIGID SPHERE

The rigid sphere has been investigated and implemented extensively in research into spatial
hearing with various expressions of its magnitude response and effective ITD (e.g.

Rayleigh, 1907, Blauert, 1997, Kuhn, 1977, Kahana, [997a).

59



Chapter 4. The HRTF of simple geometrical models

4.1.1 Analytical solution

The total complex pressure in the sound field around a rigid sphere due to excitation of a

plane wave is given by

Dioy = Do €XP(Jwt) Z mH 2m + )P, (cos ) -

Jm (kT (ka) — 0y, (kr)j (ka)
Im(ka) = jnm (ka)

(4.1)

where p, is the amplitude of the pressure of the incident wave, w is the angular frequency,

k is the wave number, a is the sphere radius, 7 is the distance from the centre of the
sphere, F,(cos¢) are the Legendre Polynomials, ¢ is the angle of incidence in the
horizontal plane’, 7, is the spherical Neumann function and finally, j,, is the spherical

Bessel function.

On the surface of the sphere this equation reduces to

~ (m+1)(2m + 1) (ka) Pm(COS ¢)

Dioy = Pp exp(jwi
for A0 ,,; Im(ka) — gy, (ka)

(4.2)

The full derivation of the above expressions is given in Kahana (1997a). Both Equations
(4.1) and (4.2) are derived for the horizontal plane only. A general formulation of Equation

(4.1), which includes also dependency on elevation angles, will be presented in Chapter 7.

" Note that azimuthal angles are defined with ¢ and not 6 . This is mainly for consistency of the spherical co-ordinate

system used in Chapter 7.
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4.1.2 Numerical solution

In principle, numerical modelling of sound scattering by a sphere should not impose great
difficulties. In practice the sphere 'emphasises’ the problem of singularities in both the
DBEM and the IBEM. Due to its symmetry in every plane, it is found that removing
‘irregular frequencies', especially at high frequencies, is a difficult task. The following
worked-out examples of modelling the response of a sphere and the total sound field around
it are investigated using four approaches: the DBEM, the IBEM, the IFEM, and the
axisymmetric IBEM.

4.1.2.1 The non-uniqueness problem

The response of a rigid sphere was investigated at two points on its surface: one in the front
(¢ = 0°) opposite the source, and one at the rear (¢ = 180°), in the shadow zone. A mesh
of a sphere with a radius of 0.1 m including 1266 nodes and 1264 quadrilateral linear
elements was used (see Figure 4-1). A plane wave source was positioned in the far field, at

a distance of 1 mand ¢ = 0°.

As stated in Chapter 3, only in the DBEM and the IBEM does the problem of the non-
uniqueness of the solution exist. In the DBEM, over-determination points have been
applied. Since these points 'regularise' the solution of the set of equations using the
Lagrange multiplier technique, the higher the ratio between over-determination points and
real nodes of the elements, the larger the error. At high frequencies, 'irregular frequencies’
will be removed with many over-determination points, and for improved accuracy.
increased mesh resolution is required. Practically, the solution procedure starts with no
over-determination points at all. Then, when the first 'irregular frequency' is found’ (around

1.7 kHz for a sphere with a radius of 0.1 m, which corresponds to the characteristic
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frequency k = ma) more points are added. Figure 4-2 demonstrates that a single point will
not entirely remove the 'irregular frequency' but four points are necessary (note that as a
result the results in the frequency range of 1.6 kHz to 2 kHz are distorted). For large
models, the addition of 15-30 over-determination points was found to give no deterjoration
in the results and also to remove severe peaks when the size of the elements corresponds to

six elements per wavelength.

For the case of the IBEM (Figure 4-3), 25 'singular admittance' elements (arranged in a
plane with 5x5 elements) are added inside the cavity of the sphere, and the inside of the
elements (with negative normal vector) are applied with absorption boundary conditions.
As frequency increases it is difficult to remove the singularity. A higher frequency range
was investigated in this case and it is demonstrated that as frequency increases, larger errors
were obtained with higher amplitude and increased affected frequency bandwidth. Note that
a smoother result was obtained although a residual effect remained.

4.1.2.2 The principle of reciprocity

In both simulation and measurement, the HRTF database is obtained by changing the
angular position of the source on an imaginary sphere, generally with a radius of 1.4 m to
2 m. The disadvantage of this method is that it is time consuming, and also the database is
limited to the discrete positions of the measured/simulated sources. An alternative method
1s suggested by using the principle of reciprocity (Kinsler er al, 1982, pp. 165-168, see

Figure 4-4): the acoustic pressure p, produced at point B in a fluid by a source at another
point A in the fluid where u, 1s the velocity of the radiating element of the source, is the

same as the pressure p, produced at point A by the same source located at point B where

" Irregular frequencies’ are the eignfrequencies of the corresponding interior problem with modified boundary conditions.
i.e. for an exterior Dirichlet problem the frequencies are the eignfrequencies of the interior Neumann problem.
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u, is the velocity of the radiating element of the source, irrespective of the presence of

boundaries of normal impedance.

It is shown by Kinsler et al (1982) that

fp.zul ‘n dS = fplu2 -n dS (4.3)
S S

A B

If the sources are small with respect to the wavelength and several wavelengths apart then

the pressure is uniform over each source so that

i ulcndS:ifuz-ndS (4.4)
plgA pQSB

It therefore follows that

(4.5)

where Q is the volume velocity of each of the monopole sources, and p(r) is the pressure at

a distance r from the source. If we model @, = ), = const., then the pressure simulated

anywhere in space, when a monopole source is positioned close to the point of interest (e.g.
at the entrance to the ear canal), is equivalent to the pressure produced at this point due to a

source with the same volume velocity anywhere in space.

In practice, a few approaches for numerical implementation of the principle of reciprocity

exist, as follows:

e Positioning the source on a specific node of the surface and compensating for the
loss of energy, radiated into the interior cavity. This method results in 'irregular
frequencies' with severe peaks which are very difficult to remove (see a worked-out

example below).
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¢ Positioning the source in the exterior domain, very close to the surface. This will
ensure radiation will occur only in the exterior domain. The proximity of the source
to the surface requires a local refinement of the mesh (Figure 4-1). Note that some
excitation of the interior might still exist, but this is not as severe as in the previous

case.

® Simulating the source using a vibrating piston with an equivalent volume velocity
by applying a velocity boundary condition to one side of the element. This method

will be inaccurate if the resolution of the mesh is low with large elements.

Figures 4-5a to 4-5f summarise the difference in simulating the principle of reciprocity
using the first two approaches. The sphere presented in Figure 4-1 (but with a reduced
radius to r=6.85 c¢m in order to shift the 'irregular frequencies' upwards, thus eliminating
errors of this kind in this investigation) is excited by a monopole source with a source
strength of unity, positioned at 1.4 m away. The pressure was calculated on the surface of
the sphere, at two points: the front (¢ = 0°), and at the rear (¢ = 180°). The responses
shown in Figures 4-5a and 4-5b were calculated using the DBEM. As can be seen in the
figures, the direct response and the response calculated using the principle of reciprocity
agree to within a tolerance of 0.5 dB. It should be noted that at higher frequencies the
expected ‘irregular frequencies' appear and needs to be removed using CHIEF over-

determination points.

When the IBEM is investigated, Figure 4-5¢ and Figure 4-5d demonstrate the effects of
positioning the source on the surface of the sphere. Since the source i1s now radiating in
both directions, the energy should be increased proportionally to the local solid angle (see
Equation 3.9 in Chapter 3). If the local point was positioned on an infinite plane. then the

solid angle is Y2 (see Equation 3.8), and the radiation will be distributed evenly for both
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sides of the plane. The local solid angle for the node on which the source was positioned
was calculated to be 2.47, hence the source strength needs to be multiplied by a factor of

4m /2.4m = 1.67.

It can be seen that the results are in good agreement, except for a severe peak — an
‘irregular frequency’ at around 1.7 kHz. This is mainly because of the real ‘physical’
excitation of the interior cavity. Note that when the source is positioned in the far field no

‘irregular frequencies' appear, as expected.

The results of the simulation based on the second approach are presented in Figures 4-5e
and 4-5f. As before, the IBEM was used for the modelling. However, in this case the source
was positioned in the exterior domain. As a ‘rule of thumb’ the position of the source close
to the surface should not exceed one normal edge length (this is due to the integration
sensitivity as r — 0). So in order to position the source very close to the surface, a local
refinement is required (see typical refinements in Figure 4-1 and in Figure 4-11). As shown
in the figures, hardly any numerical excitation is observed, and in principle these can be
minimised by applying absorption to the inside elements of the mesh. The accuracy at the
rear could be improved even further by using quadratic elements instead of the linear

elements used in this case.

This method was used throughout the research with both the DBEM and the IBEM and
found to be reliable, efficient and accurate.
4.1.2.3 The BEM with symmetric models
The formulation of the boundary integral equation (Equation 3.11 and 3.23 for the DBEM
and the IBEM, respectively) can be used to solve arbitrary, complex geometries. As
demonstrated in Section 3.4.1 it is possible to reduce the computational CPU time when the

acoustic field and the model are symmetric with respect to one, two or three axes.
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The procedure to solve symmetric models comprises two stages (see Figure 4-6):

The problem is run with the symmetric boundary conditions. In the case of a single
source in the original problem (as shown in the figure), this will result in
duplication of the geometry and also any boundary conditions, including the
acoustic source. The duplication is for both the amplitude and the phase of the

source. Note that rigid boundary conditions (v, = 0) should also be applied to

elements that lie on the plane of symmetry.

The problem is run again, this time with antisymmetric boundary conditions. In this
case the duplicated source has a similar amplitude but negative phase. Note also

that pressure release boundary condition ( p = 0 ) should be applied to the elements

that lie on the plane of asymmetry.

The results are superposed and divided by a factor of two. This is clearly illustrated
in Figure 4-6. The contributions from the mirror sources are cancelled since these
have opposite signs, whereas the real sources are superposed, which is equivalent

to a single monopole source with double the volume velocity.

This property is used together with the principle of reciprocity to optimise the CPU time

whenever the DBEM and the IBEM are used (as will be shown later in Figure 4-15 to

Figure 4-17). These properties will be further investigated in Chapter 5, Section 5.4.2 for

the case of modelling HRTF of accurate representation of real heads, and also in Chapter 9.

Section 9.5 where the sound field is modelled around two KEMAR artificial heads arranged

with four sources in a symmetrical arrangement.

Using the principle of reciprocity, the overall CPU time is reduced by a factor of 4:

doubling the number of nodes ( m — 2n) increases the running time by a factor of 8
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((2n)* /n* ), but the process has to be repeated twice (see a summary of the computational

cost in Chapter 10, Section 10.2.8).

4.1.2.4 The IBEM with Axisymmetric models

The formulation of the axisymmetric IBEM is given in Section 3.5.2. For the case of a
sphere, or an ellipsoid, this method is far superior to other methods as a result of the

following factors:
e Only a very simple mesh is required with a single curve consisting of line elements.
e The solution 1s very fast compared to the 3-D BEM.

e Severe ‘irregular frequencies’ do not appear in this case (although they still do
exist), due to the different mathematical formulation of the problem (as presented

in Chapter 3, Section 3.5.2).

In the following example, the mesh consists of 50 line elements (Figure 4-7a). When a
harmonic order of 7 was used (i.e. 2’ elements are generated for each element in the
revolving line mesh), this resulted in a 3-D mesh presented in Figure 4-7b (which can be
investigated up to approximately 10 kHz, or ka ~ 20 based on a = 0.1). In practice it
was found that this formulation requires more Gaussian points used in the integration, when
compared to the DBEM and the IBEM, especially for points at high frequencies in the far
field*. The results obtained using this technique are discussed in Section 4.1.2.6.

4.1.2.5 IFEM modelling

The response of a sphere can be modelled very efficiently also with the wave envelope

method (IFEM) . Figure 4-8 shows 1/8 of an IFEM mesh model of a sphere. It includes

* In current version of SYSNOISE 5.4, this formulation suffers from errors due to singularities on the surface. and
theretore only the scattered sound field was used in the analysis.

" Currently, in SYSNOISE 5.4, two methods for solving infinite element models exist: the wave envelope method (Astley.
1994, 1998. Cremers er al, 1994) and the prolate and oblate formulation given by Burnett (1994, 1998a, 1998b).
However, the latter formulation still suffers from implementation problems, and therefore the results are not included
here.
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1638 nodes and 1522 linear hexahedron elements. It was found that the solution is
optimised when hexahedron elements are used and not tetrahedron elements (these affect
the bandwidth of the matrices). The number of layers of the conventional FEM mesh is

frequency dependent, and three layers were sufficient for accurate modelling.

As shown in Section 3.6, the pressure is composed of a multipole expansion with an infinite
series. The response in the front and at the rear of the sphere are presented in Figures 4-9a
and 4-9b, respectively, when only a few terms are used. It is demonstrated that three terms
of the series are sufficient for accurate modelling. At the rear, no improvement was
obtained when the number of terms was increased to 10. The deviation from the analytical
solution is a result of the lower resolution mesh than required, and probably the use of
linear elements and not quadratic elements.

4.1.2.6 Sound field simulation

All the above methods were investigated with the modelling of the sound field around a
sphere. The excitation was a plane wave (from the right side), the area around the sphere
was 0.5 m x 0.5 m (with a grid of 400 x 400 points), and the frequency was 2 kHz

(ka =~ 4).

Errors of less than 2% were obtained when the results are compared with the analytical
solution in the front, and an increase of the error up to 7%, in the shadow zone. A higher
mesh resolution (in the order of 20 elements per wavelength), a higher quadrature and

quadratic elements will minimise the errors even further.

It was concluded that under these conditions the axisymmetric IBEM and the IFEM are
superior to conventional DBEM and IBEM both from the computational speed and from
the fact that ‘irregular frequencies' do not exist (in IFEM) or have little effect (in
axisymmetric IBEM ). According to Burnett (1994) the relative efficiency of the IFEM is at

its greatest when large models are investigated at high frequencies. Comparison at higher
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frequencies imposes great difficulties with the use of conventional BEM models, both due

to many 'irregular frequencies' and the large size.

4.2 THE FREQUENCY RESPONSE OF A RIGID ELLIPSOID

Different formulations of the frequency response of prolate spheroids have been previously
derived (Spence and Granger, 1951, Sugiyama et al, 1991, Novy, 1998). These are much
more complex than those of the sphere and also do not address the ITD. As a result they are

rarely used in binaural synthesis.

Recently, Duda er al (1999) developed a simple approximate solution for calculating the
ITD of an ellipsoid that is based on the path lengths to the two 'ears'. His results confirmed

a better match to an I'TD of a listener than the sphere at elevation angles.

In the following example, the response of an ellipsoid was modelled using the DBEM.
using the symmetric properties. Figure 4-11a shows the geometry of a sphere which is the
average of the CORTEX head, with a radius of 8.75 cm, and Figure 4-11b shows the
geometry of a stretched sphere (in three directions) to match the size of the head with
r=9.6 cm, r,=7.9 cm and r.=11.6 cm. Both the sphere and the ellipsoid models included
5493 nodes and 10824 elements. The 'ears’ were positioned as close as possible to the
original positions of the ears of the CORTEX head. The position found for the right ear

(that was used in the simulation) was: ¢ = 100° and 6 = 260° (in the y-axis 0.86 cm

below the origin of the ellipsoid).

Examples of the variation of the magnitude of the right ‘ear’ of the ellipsoid are presented
in Figure 4-12. The 3-D surface plot in Figure 4-12a shows the response in the horizontal
plane. The angle varies from ¢ = 0° (front), through ¢ = 90° (right) to ¢ = 355° in

steps of 5°. The ipsilateral response is characterised with gradual increases up to almost a

factor of 2 at high frequency (5 kHz) when the source is positioned at 90°. The 2-D plot in
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Figure 4-12b shows the same data: at ¢ = 90° an increase of almost 6 dB is noticed, and
the contralateral response is characterised with sharp notches. They are profound at high
frequencies, at ¢ =~ 265° and ¢ =~ 295° (Note the asymmetry of angles along the
'interaural axis' due to the lower and rear position of the 'ear' detection point on the
ellipsoid). These notches are clearly seen in Figure 4-12b on a logarithmic scale, and
increase the dynamic range up to 40 dB in this frequency range. Figure 4-12c presents the
response at the right ‘ear’ due to sources positioned in elevation (6 = 45°). ¢ varies again
from 0° to 355° in step of 5°. The gain at the ipsilateral ear is now slightly less than 6 dB,
and the minima are less dramatic with changing the angular position of the source in the

contralateral side. These characteristics are demonstrated also in the 2-D plot in Figure

4-12d.

Recently, Minnaar et a/ (2000) used this data to compare the ITD of a sphere (with a radius
of 82 mm and the ears diametrically disposed on the sides of the head), the ellipsoid

presented above and average ITD values of 70 people.

He concluded that the sphere produces satisfactory results for the horizontal plane, but a
better match by the ellipsoid is produced, for example in the lateral vertical plane (see
Figure 4-13). A better fit could have been obtained with further adjustments of the positions
to the 'ears'. The ITD was calculated by comparing the gradient of the phase (the group

delay) of the two ears, at low frequencies.

The magnitude of the response of the ellipsoid in the horizontal plane and in elevation is

compared to the sphere in Figure 4-15, 4-17 and 4-18.

4.3 THE EFFECT OF THE SHOULDERS AND TORSO

Previous measurements of the effect of the torso (Shaw, 1974, Burkhard and Sachs, 1975.

Kuhn, 1983) revealed that the main contribution was in the frequency region up to 3 kHz
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depending on the angle of incidence (although the reflections from the torso result in a
'‘comb’ filtering which affect higher frequencies as well). Recently Avendano er al (1999)
investigated a head and torso model for the evaluation of the localisation of elevated
sources at frequencies below 3 kHz. In their psychophysical test of the structural model,
they concluded that elevation could be synthesized at low frequencies, where the pinna has

very little effect.

A CAD model of the CORTEX artificial head (Figure 4-14a) was provided by NCI
(CORTEX, 1996). The original model includes the artificial head C1 and the torso TOI.
This model was designed according to IEC959 (1990). It was converted to a valid BEM
model by operating mesh decimation techniques, which are described in Chapter 5 and in
Appendix 1. The decimated BEM model is shown in Figure 4-14b. Its half model includes
5596 nodes and 10926 linear triangular elements. Assuming six elements per wavelength
this model could be investigated only up to 2.5 kHz. This large model highlights the
difficulties associated with the 'non-uniqueness' problem: it was found that removing
‘irregular frequencies’ at high frequencies was very difficult. The larger the model. the
higher number of modes that exist in the cavity as frequency increases. The number of
irregular frequencies' was significantly reduced (but still remained problematic) when the

model was divided into two identical parts and the symmetric formulation was used.

It was concluded that modelling the torso with the BEM should be limited to the frequency

range where it contributes the most (up to 3 kHz).

The results of the response of the sphere, ellipsoid, the C1 artificial head (without pinnae)

and the C1+TOl artificial head and torso are presented in Figure 4-15 to 4-18.

Figures 4-15a to 4-15d show the response in the horizontal plane, and Figures 4-15¢e to

4-15h show the response 1n elevation.
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The modulation of the response of the torso observed in the figures is mainly due to a
delayed path in addition to the direct path (with different path lengths in the order of
approximately 14-18 cm). The modulation is angularly dependent with the maximum
variation noticed between 800 Hz and 2 kHz. The same trend is noticed for elevation
angles. The figures also show the similarity between the ellipsoid and the CORTEX head

without pinnae.

Another way of comparing the responses is by comparing the Interaural Transfer Function
(ITF) of these models. Figure 4-16 shows the ILD of the ellipsoid for an arbitrarily chosen

angle of elevation (¢ = 135° 6 = 45°). Between 500 Hz and 2 kHz the sphere produces an

underestimated ILD. The ellipsoid produces a very similar response when compared to the

CORTEX Cl1, and C1+TO1 up to 1.5 kHz.

Figure 4-17 shows the phase difference of the ITF for the source excitation from the same
direction, which can be used to calculate the ITD. The errors of the phase are calculated
with respect to the C1 head. The ellipsoid shows very small errors up to 2 kHz and the torso
is characterised by the modulation of the phase. The sphere shows larger errors. This is also
supported when the ITD of the sphere and the ellipsoid were compared by Minnaar et a/
(2000), and also by Duda et al (1999) who compared the ITD of an ellipsoid with the ITD

of a single subject.

4.4 A CYLINDER IN A BAFFLE AS A SIMPLIFIED CONCHA

In the previous sections we investigated the effect of HRTFs of simple head models. In a
similar manner to the case of a sphere and ellipsoid where the response can demonstrate the
basic physical effect of the head as a ‘shadowing obstacle’, it is possible to investigate the
basic features of the pinna. Teranishi and Shaw (1968) investigated the response of a

baffled cylinder to reveal the fundamental resonance frequencies.
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In this section we simulate the response at the bottom of a baffled cylinder (at a point which
is 3 mm offset to the centre of the base of the cylinder). A plane wave source was
positioned at grazing incidence (the plane of the baffle). This problem was solved with the
DBEM where the surrounding of the cylinder has been smoothly raised from the baffle
plane. A more efficient method is implemented in Chapter 8 with the introduction of the

'IBEM transparency' formulation.

The variation of the amplitude of the response is presented in Figure 4-18 on a linear scale.
Two resonance frequencies are detected: the first at 4.2 kHz is excited almost uniformly
from every angle (the slight offset of the detection point at the bottom does not affect
significantly this resonance mode). However, the second resonance, a transverse mode
appearing at 10.4 kHz is angularly dependent, as at certain angles an interference causes the

pressure to be cancelled, and at others to be superposed.

The variation of pressure at the bottom of the cylinder and its surrounding is shown in
Figure 4-19 with the source being positioned on the right side. The two resonance
frequencies detected in Figure 4-18 are investigated, and the first quarter wavelength at
4.2 kHz is presented in Figure 4-19a. The amplification of the pressure is almost uniformly
distributed, and with very little variation of the phase (Figure 4-19b). The first transverse
mode is found at 10.4 kHz. In this case a zero pressure nodal line occurs at the centre of the
bottom cylinder and maxima at both sides. The phase variation reveals a negative phase on
the right side and a positive phase on the left side. These mode shapes will be investigated
further in Chapter 8 as they are fundamental in the analysis of the characteristics of the

external ear with a blocked ear canal.
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4.5 CONCLUSIONS

Different formulations of the DBEM, the IBEM and the TFEM have been used in the
investigation of simple geometrical models. It is clear that the efficiency of each numerical
technique depends of the type of problem. For the case of a sphere four methods which are
based on different formulations have been used and the results have been computed with
high accuracy compared with the analytical solutions. With the closed models investigated
in this chapter, it was found that better control of accuracy and eliminating the problem of
'rregular frequencies’ was achieved with the DBEM. However the method is inefficient
when the models become large (see a discussion in Chapter 10). The investigation with the
[FEM demonstrated its efficiency. The results do not suffer from 'irregular frequencies' and
in this relatively small problem the computational speed was equivalent to the
axisymmetric IBEM. The latter is advantageous compared to all other methods if the model
is axisymmetric, due to a simple mesh, faster calculation time, and avoiding the problems
of 'irregular frequencies'. The investigation of the torso is limited to frequencies below
2.5 kHz mainly because of the large number of 'irregular frequencies' in the large cavity.
The main advantages of computing the response of the ellipsoid and the torso are the ability
to produce the most important features of HRTFs at low frequencies that can be used in the

synthesis of virtual sources in azimuth or elevation.

The analysis of the baffled cylinder showed two basic features: (1) the frequency response
at ~4.2kHz 1s excited almost unidirectionally from any angle of incidence, and it
corresponds to a quarter of a wavelength resonance. (2) The first transverse mode appeared
around 10.4 kHz. These results are in agreement with the measurements by Shaw and
Teranishi (1968) and Teranishi and Shaw (1968) and motivated further investigation of the

cylinder and pinna mode shapes, that will be presented in Chapter 8.
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Figure 4-1: A sphere with a radius of r=0.7 m was used for modelling the scattered sound field. The
local refinement is used in Section 4.1.2.2, when the principle of reciprocity is implemented. The
mesh comprises 1266 nodes and 1264 quadrilateral linear elements. Assuming six elements per

wavelength, the maximum frequency is 5.8 kHz.
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Figure 4-2: The frequency response of a rigid sphere (with a radius of r=0.7 m) modelied with the
DBEM. The point on the sphere is positioned at the rear, at @ = 130°. The effects of adding over-
determination points is presented and compared with the analytical solution.
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Figure 4-3: The frequency response of a rigid sphere (with a radius of r=0.7 m) modelled with the

IBEM. The point on the sphere is positioned at the rear, at ¢ = 180°. 'Irregular frequencies' are

smoothed by adding 25 (5 x 5) special 'singular admittance' elements with large, real admittance
values inside the cavity.
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Figure 4-4: The principle of reciprocity: the acoustic pressure p, produced at point Biin a fluid by a
source at another point A in the fluid is the same as the pressure p, produced at point A by the
same source located at point B (after Kinsler et al, 1982).
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Figure 4-5: Three approaches for numerical implementation of the principle of reciprocity. The
DBEM with the source positioned on the surface of the sphere (a) frontal angle ® = 0°.6 = 0°
(b) rear angle ¢ = 180°,8 = 0°. In these cases a smaller radius was used (r=6.85 cm) in order to
avoid the treatment of over-determination points.
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Figure 4-5 (cont.): The IBEM with the source positioned on the surface of the sphere
(c) frontal angle ¢ = 0°,8 = 0° (d) rear angle ¢ = 180°,6 = 0°.
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Figure 4-5 (cont.): The IBEM is used with a mesh which is refined locally and the source is
positioned close to the surface in the exterior domain. (e) frontal angle © = 0°.6 = 0° (f) rear

angle ¢ = 180°,6 = 0°.
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Figure 4-6: For symmetric models, the total sound pressure is the superposition of symmetric and
asymmetric models (and division by a factor of two).
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Figure 4-7: Mesh models of a rigid sphere, r=0.1 m using the IBEM axisymmetric formulation
(a) 2-D rotated arc with 50 line elements, and (b) The resulting IBEM mesh with harmonic of
order 7, equivalent to a 3-D mesh with 6450 elements.

Figure 4-8: 1/8 of a sphere IFEM mesh. This mesh model comprises 1522 nodes and 1638 linear
hexahedron elements.
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Figure 4-9; The effect of the order of the series implemented with the IFEM for scattering around a

rigid sphere. The results (a) in the front (¢ = 0°) (b) at the rear, @ = 180°, are compared to the
analytical solution.
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Figure 4-10: The magnitude (in dB, not equalised) of the total sound pressure at 0.5 x 0.5 m around a
sphere with a radius of r=0.7 m excited with a plane wave source on the right at 2 kHz (~ka=4) (a) with
the IFEM (b) with the IBEM (c) with the DBEM (d) with the axisymmetric IBEM.
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Figure 4-11: Two simplified half mesh models: The head of the CORTEX artificial head (without pinnae)
converted from CAD model, fitted with (a) a sphere with r=8.75 cm and (b) an ellipsoid with:
r=9.6, n=7.9, r=11.6 cm
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Figure 4-12: Plots of the amplitude and magnitude of the HRTFs of an ellipsoid (a) 3-D plot of the
linear normalised amplitude in the horizontal plane (b) 2-D plot of the same data in [dB]. Simulation
was undertaken using the principle of reciprocity and the points, in resolution of 5° are at a distance

of 10 m.



Chapter 4: The HRTF of simple geometrical models

-
- o

bl
o

Normalised amplitude

l/O

315
T80 205 270
135

a5 90
Angle [Deg.]

(c)

Normalised magnitude[ dB]

_8 1 1 ! | 1
0 0.5 1 1.5 2 25 3 a5 4 45 5
Frequency [kHz)

(d)

Figure 4-12 (cont.): (c) as in (a) but the plane is defined at 45° of elevation (d) as in (b) the
plane is defined at 45° of elevation.
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90
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Figure 4-13: A comparison of ITD in the lateral vertical plane: with a sphere (solid line), an ellipsoid
(dash line, data from above), and average of 70 people (After Minnaar et al, 2000). The polar axis
shows the angles in degrees, and the vertical axis shows the ITD in usec.

(a) (b)

Figure 4-14: The models of CORTEX artificial head (a) original CAD model (b) Decimated BEM
model for head without pinna (a half model was used with 56596 nodes and 10926 linear triangular
elements).
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Figure 4-15: The magnitude of the transfer functions of a sphere, an approximation of an ellipsoid,
the head of the CORTEX (C1), and the head with a torso (C1 and TO1), at various angles of
incidence. The source is positioned at a radius of 1.4 m from the centre of the models, and the
‘ears' of the models are positioned as close as possible to the original positions at the entrance to
the ear canal.
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Figure 4-16: The Interaural Level Difference (ILD) for an arbitrarily chosen elevation angle (at
¢ = 135° 6 = 45°) for the above models.
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