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The localisation of sound sources by humans can be accomplished by the use of acoustical cues 

only. The Head-Related Transfer Functions (HRTFs) represent the linear, directional 

transformations of sound signals in free-field, detected in the eardrum of a listener or an artificial 
head. These functions have a complex structure, especially at frequencies above 5 kHz, due to 

diffraction, reflection and scattering from the head, torso, and especially the external ear. 

Traditionally, these functions are measured by using a time consuming and difficult procedure. 

with expensive apparatus found in well-equipped acoustic laboratories only. As a result current 

virtual auditory display systems make use of non-individualised HRTFs, which produce 
unsatisfactory performance, especially when high fidelity sound quality and localisation of virtual 
sources in elevation are required. 

This thesis investigates various aspects of numerically modelled individualised HRTFs. The 
computer simulations (undertaken on both a parallel computer and a PC) are based on the exact 

solution of the wave equation, with the main emphasis on the Boundary Element Method (BEM). 

The basic features of the HRTF are investigated first with simple geometrical models such as a 
sphere and an ellipsoid that represent the human head, and a baffled cylinder that represents the 

concha. Accurate geometric models of two heads and six pinnae are captured by using state-of­

the-art 3-D laser scanners and digitisers. These computer models are converted to valid BEM 
models and their frequency response is simulated. With current hardware technology, and vigilant 

optimisation of the manipulated mesh models and the solving procedures, baffled pinnae can be 

investigated up to 20 kHz, and heads with pinnae (but without torso) can be investigated up to lO-
15 kHz. High accuracy is obtained when the results of the simulation at the blocked ear canal are 

compared with measurements made with especially designed and built apparatus in an anechoic 
chamber, using the same physical head and pinnae used in the simulations. 

Once the results of the simulations are validated against measurements. further acoustic features of 
the external ear are investigated with an emphasis on the 'mode shapes' of the human pinna. Using 
the Singular Value Decomposition (SVD), the matrix of Green functions relating the acoustic 

pressure at 'field' points and 'source' points in space is analysed at discrete frequencies. When the 

field points and the source points are positioned on uniformly sampled spheres. a connection is 
found between the matrices of the singular vectors and the sampled spherical harmonics. \Vhen the 

method is investigated numerically. and the 'field' points are positioned on different pinnae. their 

'mode shapes' are presented, and compared to the classical experiments made by E.A.G. Shaw in 
the 1970s. The method is investigated further in order to produce 'reduced order' transfer functions 
by taking into account only the most dominant features of the singular vectors. 

Finally. a few examples of numerically modelled sound fields of virtual acoustic imaging systems 
with various loudspeaker arrangements are given in the frequency and time domains. 
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Chapter 1: Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

Most current spatial sound reproduction systems are based on the concept of binaural 

technology. These systems are referred to in the literature as '3-D audio' (BegauIt, 1994). 

virtual auditory display (Wenzel, 1993), virtual auditory space (Carlile, 1996), virtual 

acoustic imaging (Nelson, 1997), and similar variations. The goal of the system designer is 

to ensure that the reproduced signals at the ears of a listener, through either headphones or 

loudspeakers, are equivalent to those detected under real listening conditions. In order to 

manipulate the signals arriving in the eardrum of the listener in a binaural synthesis 

process, it is required to know the directional characteristics of the physically filtered 

signals that are encoded in the Head-Related Transfer Function. 

It should be noted that there are other approaches to the production of spatial sound, which 

are not based on the HRTF. For example, 'wave field synthesis' (Berkhout et aI, 1993) 

reconstructs the propagating waves in a restricted area using a discrete approximation to the 

exact Helmholtz-Kirchoff equation, or the 'loudspeakers-walls' system (Ono et al. 1998) 

which recreates an approximation of a desired impulse response of a room. Both methods 

require a large number of loudspeakers. 

In recent years the number of scientific papers, products and applications associated with 

the HRTF has grown rapidly for two main reasons: (1) the advances in computing power 

and the possibilities of implementing digital filters with low-cost DSP chips, and 
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(2) advances in research on the physical, physiological, and psychoacoustical aspects of 

spatial hearing and the interaction between them. 

One of the main limitations of binaural technology is the generalisation of the HRTF of a 

particular listener or an artificial head for the entire population. When individualised 

HRTFs are used (i.e. either the recording is done with microphones positioned in the ears of 

the listener, or monophonic signals are synthesised with the listener's HRTF) and we 

assume no errors are introduced in any part of the reproduction chain (transducers, acoustic 

medium, head movements, etc ... ) we may not need to deal with the complexity of the 

perception of sound by the auditory system. In practice, errors are inevitable, and exact 

reproduction cannot be achieved. Therefore, psychoacoustical studies must be carried out in 

order to investigate the physical cues encoded in the HRTF and the perceptual importance 

of these in the auditory system. 

It appears from many psychoacoustical studies published in the last 50 years that the task of 

localisation of sound is more complex than assumed originally in Lord Rayleigh's duplex 

theory (Rayleigh, 1907). Although the significance of the external ear is now well 

recognised as a complex acoustical antenna, it is still not understood how the different cues 

are combined in the auditory system, and from the neurophysiological view, if all the 

information detected by the pinna can be encoded by the nervous system. 

High fidelity HRTFs are currently required by both the research community and the 

designers of virtual auditory displays. Traditionally, these databases are acquired by 

measurements. The procedure of measuring HRTFs is very time consuming, and expensive. 

These are currently limited to well-equipped acoustic laboratories only, and as a result. 

most HRTFs are either confidential or restricted to research purposes. There are also many 

problems encountered when these functions are measured, analysed and compared between 

different studies. For example it is difficult to define the point at which the microphone 
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should be positioned in the ear canal, the type of transducers and equalisation techniques 

that should be used, and methods for dealing with signal to noise ratio problems, etc. In 

addition, HRTFs are generally measured only at discrete points with a low directional 

resolution. As a result, any real-time virtual auditory display would need to make use of 

interpolated functions. 

In this study, we suggest an alternative approach to acquiring individualised HRTFs, by 

using computer simulation techniques rather than by using measurements. Geometrical data 

derived from an optical image can be converted into its acoustical response, in principle, by 

solving the wave equation. The idea is not new, as this was stated by Weinrich (1984) who 

first investigated the response of the human head (without pinnae) using numerical 

techniques: 

"The rather complicated geometric shape of the pinna makes a rzgorous 

mathematical treatment very difficult - perhaps impossible" 

and recently also by Shinn-Cunningham and Kulkarni (1996): 

"Theoretically, it is possible to specify the pressure at the eardrum for a 

source from any location simply by solving the wave equation .... Needless to 

say, this is analytically and computationally an intractable problem" 

In this research, we attempt to investigate the feasibility of obtaining accurate HRTFs using 

computer simulation, and to develop a tool that can be used to investigate the acoustical 

characteristics of the external ear. 

1.2 OBJECTIVES 

The focal point of this thesis is to investigate whether it is viable to predict high frequency 

components in the frequency response of the external ear using simulation tools. The 

objectives of the work and some of the questions addressed throughout the research are 

given below: 
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• Investigate the feasibility of using various numerical techniques to compute HRTFs 

at low to medium frequencies using simple geometrical models. Can we simulate 

the response of these simple models so that these can be used, for example, in a 

structural model, such as that proposed by Genuit (I986, 1987)? 

• Simulate the HRTFs of accurate geometric models. Can we validate the results with 

measurements carried out in an anechoic chamber? 

• Develop a tool to investigate the acoustical characteristics of the human ear. Can 

we reduce our problem by substitution of the head with an infinite baffle, and 

concentrate on the contribution of the external ear alone, independently of the other 

parts of the human body? 

• Identify common characteristics of the external ear by visualising the response at 

high spatial resolution at different azimuthal and elevation planes. By simulating 

and measuring a few pinnae under exactly the same controlled conditions, 

continuous maps of the variation of peaks and notches in the frequency response 

can be obtained. Are these results comparable with those found in the literature? 

• Investigate the acoustical features of the external ear that can be used 

mathematically to reconstruct individualised HRTFs. In the area of HRTF 

modelling, low-order parametric functions are required mainly for the 

implementation of real time virtual auditory displays. Can we find. using 

simulation tools, common physical patterns that can be used for this purpose? 

• Validate the normal mode shapes measured by E.A.G Shaw and published over a 

period of three decades. To the author's best knowledge, his work summarising the 

mode shapes of the pinna has not yet been validated nor continued. Can we obtain 

the same patterns with our simulated pinnae models? 



Chapter 1: Introduction 

• Visualise sound fields of virtual acoustic imaging systems using loudspeakers. The 

equalisation zone ('sweet spot') is primarily affected by the loudspeaker 

arrangement. Can we predict the sound field around the head, while designing an 

ideal cross-talk cancellation network with the individualised HRTFs modelled at 

the first step? 

1.3 ORIGINAL CONTRIBUTION 

The feasibility of using various numerical techniques to simulate the response of HRTFs 

has been investigated throughout the thesis for the following components of HRTFs: head, 

torso and shoulders, pinnae, ear canal and eardrum. The following contributions in detail. 

are summarised below: 

• It was found in the research that it is already possible to obtain individualised 

HRTFs that can be used in the auralisation process. High accuracy HRTFs of the 

head and pinnae (but without the torso) can be obtained up to 15kHz for the 

ipsilateral ear, and up to 10 kHz for the contralateral ear (Chapters 5 and 6). 

• If a structural modelling approach is used or specific features of HRTFs are 

required to be adjusted (such as ITD values), numerical techniques can produce, 

fairly rapidly, data-bases of simple geometrical models with different sizes and 

shapes, such as the ellipsoid to represent the human head, or cylinders to represent 

the shoulders and neck, or the pinnae (Chapter 4). 

• Using the principle of reciprocity, it is shown that the problem of interpolating 

HRTFs is alleviated with the proposed numerical technique. This feature can be 

used for implementation of real time applications, as well as being used as an ideal 

tool to investigate the accuracy of interpolation techniques at high frequencies 

(Chapters 4, 5, and 6). 
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• The frequency response of six pmnae was simulated and validated with high 

accuracy against measurements. The simulations of baffled pinnae show high level 

of agreement with the spectral features found in HRTFs, in the ipsilateral 

hemisphere (Chapters 5 and 6). 

• An automated HRTF measurement apparatus was developed and built to control 

the accuracy of measurements to a resolution much less than 10. The efficiency is at 

its best when artificial ears or heads are investigated and the fine structure of the 

response is visualised (Chapter 6). 

• In the investigation of the 'mode shapes' of arbitrary radiating bodies, a number of 

numerical and analytical simulations have been carried out, and showed the link 

between the basis functions provided by the Singular Value Decomposition of 

matrices of acoustic transfer functions, and the basis functions provided by 

classical acoustical analysis, with particular emphasis on the case of radiation from 

a sphere using a series of spherical hannonics (Chapter 7). 

• The basis functions of a shallow cylinder and accurate pmnae are investigated 

based on the theory described in Chapter 7. A few examples are given to show how 

this novel way of predicting the spatial patterns of the pinna can be used in the 

future for reduced order HRTF modelling based on its physical characteristics 

(Chapter 8). 

• The total sound pressure of sound fields of virtual acoustic imaging systems due to 

different loudspeaker arrangements is investigated. Once the individualised HRTFs 

are modelled, it is possible to investigate the effect of scattering around thc Iistcner. 

Multi-channel inversion strategies are used to illustrate the effect of a 2x2 and 4x-J. 
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cross-talk cancellation networks. The efficiency of the Stereo Dipole system is 

demonstrated in the frequency and time domains (Chapter 9). 

In addition to the above contributions, further tools and formulations have been developed, 

some of which are given below: 

• Mesh manipulation tools were developed and implemented in order to optimise any 

arbitrary complex shapes to be used with the BEM. It was found that this was 

crucial to the successful modelling at high frequencies, when the mesh models are 

very large, and typically have the order of tens of thousands of vertices and 

elements on the surface mesh (Chapter 5 and Appendix 1). 

• The simulated BEM responses of an ellipsoid were arranged In an interface 

software that can be used, for example, to repaIr the response of HRTF 

measurement at low frequencies due to a poor signal to noise ratio. In addition, the 

Interaural Time Difference (ITD) is extracted using the interaural group delay 

differences at low frequencies. The results for the ellipsoid can be advantageous 

when compared to the classical rigid sphere model (Chapter 4). 

• The frequency response of a rigid sphere is derived using the series of spherical 

harmonics, such that in spherical co-ordinates the response can be calculated 

anywhere on the sphere from sources positioned at any arbitrary direction 

(Chapter 7). 

1.4 OVERVIEW OF THE THESIS 

The research presented in this thesis links two different disciplines: physical cues for sound 

localisation, and numerical modelling of sound fields of exterior problems. 

Chapter 2 introduces the reader to the relevant background of the acoustical characteristics 

of the external ear. The chapter highlights briefly the relevant aspects that are related to this 
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work. Some psychoacoustical studies are mentioned to emphasise the significance of 

analysing the high frequency characteristics of the external ear, and the advantages of 

binaural synthesis using individualised HRTFs. 

Chapter 3 provides the basic formulation of the numerical techniques used in the 

succeeding chapters. Since our computational problems are very expensive, it is of utmost 

importance to optimise every aspect of the model. Special formulations are included with a 

summary of the properties of the different methods employed. 

Chapter 4 covers a few basic investigations using the numerical techniques introduced in 

Chapter 3, in order to explore the feasibility of each technique. The classical sphere, which 

is used extensively in the literature, is investigated using four different approaches: the 

Direct Boundary Element Method (DBEM), the Indirect Boundary Element Method 

(IBEM), the axisymmetric IBEM, and the Infinite-Finite Element Method (IFEM). A 

Computer Aided Design (CAD) model of the CORTEX artificial head is used to investigate 

the effects of the torso and shoulders, and these frequency response results are compared to 

those of a sphere, an ellipsoid, and a head without the torso. At higher frequencies, the 

pinna plays an important role, and a shallow cylinder can be used to investigate the first 

quarter wavelength depth mode and its first transverse mode. These basic shapes produce 

acoustical features that can be found (although with greater complexity) in a full model of 

the HRTF. 

In chapter 5, accurate models are investigated. Two different cases are presented: in the 

first case, two heads with accurate pinnae (of the KEMAR artificial head and that of the 

author), and in the second case, six pinnae (five of artificial heads and one of the author) 

are investigated under baffled conditions. The chapter includes a brief description of the 

mesh manipulation techniques that were required to convert the original scanned models to 

BEM models (details on the algorithms are given in Appendix 1). The frequency and time 
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domain responses are presented, and the main spectral features of the 'blocked meatus' 

pinnae are analysed and compared with the literature. In addition, the inclusion of an ear 

canal is briefly investigated, both with a rigid eardrum and with average eardrum 

admittance values. 

The validation of the simulation is given in Chapter 6. A computer controlled rotating arc 

for HRTF measurements was designed and built. The measurement procedure is described, 

and a comparison of the response of six baffled pinnae and the HRTFs of KEMAR (without 

the torso) between simulation and measurement is illustrated and discussed. 

Chapters 7 and 8 deal with the mode shapes of arbitrary, complex radiating bodies (or 

scatterers). In Chapter 7 a theory for finding a set of orthogonal basis functions describing 

sound radiation and scattering from irregular shaped bodies is presented. It is shown how 

the basis functions ('mode shapes') of a radiating sphere, described by the complex 

spherical harmonics, are related to those extracted using the Singular Value Decomposition. 

The method is also used to investigate numerically the case of an ellipsoid. 

In Chapter 8, the theory described above is used to analyse the spatial mode shapes of 

simple models of the concha (a Helmholtz resonator and a baffled shallow cylinder), and 

six accurate pinnae using the BEM. It is shown how these patterns can be used to 

reconstruct a reduced order transfer function. In addition, using the principle of reciprocity, 

the 'mode shapes' of the pinna are simulated using the same technique used by E.A.G Shaw 

in his measurements of 'mode shapes'. 

In chapter 9, we demonstrate the potential of predicting the sound fields for variOUS 

loudspeaker arrangements under free-field conditions. The figures include frequency and 

time domain snapshots of the pressure on the head and the sound field around it, when the 

inputs to the loudspeakers are filtered with a cross-talk cancellation matrix based on the 

numerically modelled HRTFs. 
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In the final chapter (Chapter 10) a discussion and the conclusions of the work are presented 

with a summary of the computational cost involved in this research. The chapter ends with 

a proposal for future work. 

In Appendix I, we include a description of the mesh manipulation techniques used in this 

research. These were an important stage in the process of optimisation of speed, 

geometrical and acoustical accuracy. The geometrical properties and statistical values of all 

mesh models are presented. 

In Appendix 2, we present the main 'mode shapes' of the pinnae investigated in Chapter 8. 

1.5 SOFTWARE TOOLS 

This research was based mainly on the vibro-acoustic software package SYSNOISE eLMS 

international), with all its special formulation modules. Programming was undertaken using 

the SYSNOISE command language (SCL), and the 'user-defined' subroutines were 

programmed in Fortran. Mesh manipulation algorithms were developed using C/C++ and 

included OpenOL modules developed in Carngie Mellon University. Unfortunately, the 

process of obtaining a valid BEM mesh from the original scanned model is not automatic 

and requires an iterative process. In addition to the development of mesh decimation tools 

(that controlled the homogeneous distribution of the vertices), other existing commercial 

tools were used to optimise the mesh models: CYBERW ARE (Cyberware, Inc.) software 

packages (mainly CYEAT, CYSCULPT), ANSYS pre-processor (Ansys, Inc.). IDEAS 

(Structural Dynamics Research Corporation, SDRC), HYPERMESH (Altair Engineering. 

Inc.), PRE-SYSNOISE (LMS and MSC/ Nastran) and AUTOCAD (AutoDesk. Inc.). File 

formats conversion tools were developed in C/C++. These include two-way conversion of 

VRML 1.0, WAVEFRONT Obj, ANSYS (ascii cdb format), SYSNOISE free-format. 

SYSNOISE user-defined format, and SOl inventor. In the measurement set-up. the MLSSA 
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(DRA Labs) system was used with its macro commands, linked to a PARKER (Parker 

Hannifin, pic.) automated rotor language to control HRTF measurements and the rotation of 

the rotating arc. 

All analytical simulations involving a rigid sphere (Chapters 4 and 7) were carried out 

using MATHEMA TICA (Wolfram research, Inc.), and all the post-processing. 

visualisation, and matrix manipulation of the numerically modelled and measurement 

results were performed with MATLAB (MathWorks, Inc.) 

1.6 CO-ORDINATE SYSTEMS AND ANGLE CONVENTIONS 

Figure 1-1 a presents the co-ordinate systems used when the response of an artificial or a 

human head was modelled or measured. The Azimuthal angles * are defined as 

0° :S ¢ < 360° . At ¢ = 0° , the source is in front of the listener, at ¢ = 90° the source is 

to the right ear, ¢ = 180° the source is at the rear, and at ¢ = 270° the source is on the 

left. The same convention is used with the baffled pinna, and in this case 0° :S 0 :S 180° . 

The elevation angles are defined as -900:s e :S 90° where e = 0° is the horizontal 

plane, e = 90° is above, and e = -90° is below. The same convention is used in the case 

of the baffle. 

The centre of the co-ordinate system in Figure 1-1 a is in the centre of the interaural axis. 

which connects the two ears, and the centre of the co-ordinate system in Figure 1-1 b is at 

the blocked entrance to the ear canal. 

The results of the simulations and measurements are given in three planes: 

. Note that azimuthal angles are defined with ¢ and not e. This is mainly for consistency with the spherical co-ordinate 

system used in Chapter 7. 
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• Median Vertical Plane. When the full head is investigated, the elevation angles that 

are symmetrical to both ears are defined as 0° :::; e < 360°, ¢ = 0°. When the 

baffled pinna is investigated, the equivalent plane is 'grazing incidence", with the 

same angle definitions as above. 

• Horizontal (azimuthal) Plane. For the head 0° :::; ¢ < 360°, e = 0° , and for the 

• Lateral Vertical (frontal) Plane. For the head _90° :::; e < 270°, ¢ = 0° , and for 

the baffled pinna _90° :::; e :::; 90°, ¢ = 0° . 

t Note that 'grazing incidence' was defined at a nonnal distance of 5 cm from the baffle. for compatibility with 
measurements since this was the minimal distance between the centre of the loudspeakers' cones. and the baffle at 

e == ±90°. 
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Figure 1-1: Co-ordinate systems for simulation and measurement of (a) HRTFs (b) the response of 
baffled pinnae. 

13 



Chapter 2: Background - the external ear and the HRTF 

CHAPTER 2 

BACKGROUND: THE ACOUSTICAL CHARACTERISTICS 

OFTHE EXTERNAL EAR AND THE HEAD-RELATED 

TRANSFER FUNCTION 

2.1 INTRODUCTION 

In the discussion of auditory space perception, questions of sound localisation are tackled 

from mainly two approaches: physical and psychophysical. It is clear that from the physical 

point of view, the variation of the eardrum response as a function of source position in 

space provides the basis for sound localisation. However, in psychophysical studies, despite 

improved experimental methods in the last few decades, we still have a limited 

understanding of how the different sound localisation cues are combined in the auditory 

system. 

One of the main difficulties in research into sound localisation and sound reproduction is 

the high variation in the anatomical shapes and sizes between individuals and in particular 

the external ear. In our research, we concentrate on the physical cues imposed by the 

external ear, and attempt to provide a simulation tool that can be used for the investigation 

of different pinnae under controlled parameters. 

In this chapter, we summarise briefly the background that is related to our research. For a 

detailed review of the physics and psychophysics of spatial hearing the reader is referred to 

the books by B1auert (1997), Gilkey (1996), Carlile (1996) and Begault (1994). 
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2.2 THE HUMAN EAR 

The anatomy of the human ear is generally analysed in three sections: the external ear, the 

middle ear and the inner ear. The external ear (outer ear) is composed of the pinna and the 

auditory canal (meatus). The middle ear consists of the eardrum (tympanic membrane), the 

tympanic cavity, and three small bones, the ossicles, within the cavity. The inner ear 

includes the organ of Corti, which lies within the cochlea and contains the receptors for the 

sense of hearing, and the vestibular organs, which contain the receptors for the sense of 

balance (Blauert, 1997). 

When sound travels in air, it is first modified by the shape of the pinna, especially at high 

frequencies. The pinna acts as a complex acoustical antenna and codes spatial 

characteristics of the sound field into temporal and spectral attributes. After filtering by the 

pinna, the sound waves propagate down the ear canal and cause the eardrum to vibrate. 

These vibrations are transmitted through the middle ear by the ossicles to the cochlea. 

In our study, we concentrate mainly on the shape and response of the external ear, with an 

emphasis on the pinna (the ear canal and the ear drum do not contribute significantly to the 

localisation of sound, as will be discussed later). 

The recognition of the acoustical significance of the external ear is relatively new, and have 

been appreciated for only a few decades. Its complex effect is summarised by Blauert 

( 1997): 

"The acoustical effect of the pinna is based upon reflection, s/zadmving, 

dispersion, diffraction, inteJierence and resonance. " 

A schematic diagram of the external ear is presented in Figure 2-1. The largest hollow in 

the pinna, the concha, is a broad shallow cavity that is partially divided by the crus helias. 

The lower part, the cavum, is tightly coupled to the canal whereas the upper part, the 

cymba, is connected to the fossa of helix (Shaw, 1997). It was found (Teranishi and Shaw. 

l.'i 



Chapter 2: Background - the external ear and the HRTF 

1968) that these parts have acoustical attributes, whereas the structures extending from the 

concha, such as the helix, anti-helix and lobule seem to function collectively as a flange. 

Different geometrical parameters have been defined to describe the pinna in anthropometric 

surveys. The work of Burkhard and Sachs (1975) produced the design of an average 

artificial head (KEMAR) and an average pinna (DB60). The dimensions of this pinna are 

smaller than the average size of the male pinna. It is designed as an average of the 

dimensions and response of 24 subjects. These are typical of American and European 

females as well as Japanese males and females. The ear length and ear breadth (See Figure 

2-1 for geometrical definitions) of DB60 are 58.9 mm and 34 mm, respectively, whereas in 

the work of Alexander and Laubach (1968), where more than 2000 USAF male flying 

personnel with average age of 28 were investigated, the average length of 67.1 mm with a 

range of 53.8 mm to 79.7 mm. The average ear breadth was 34.5 mm with a range was 27.4 

mm to 42.8 mm (values within these ranges were measured also on individuals by Kuhn, 

1983). Later, the DB65 was developed for KEMAR (Maxwell and Burkhard, 1979) with 

larger dimensions of length and breadth of 66 mm and 37 mm, respectively. It is typical of 

American and European male pinna sizes. 

Note also that the relative rotation of the pinna affects its response. Thus the angle between 

the pinna and the side of the head, which is between 25° and 4SO (Blauert, 1997), and tilt 

angle with the vertical position of the head, which is between approximately 3° and 8° 

(Dryfus, 1967) can both influence the acoustical response. However, in our investigation of 

different pinnae (Chapter 5), all entrances to the ear canal were aligned to be at the origins 

of the co-ordinate systems, and all rotational angles were aligned to average values (as will 

be shown later in Figure 5-5). 

In the work of Shaw (see the references between 1968 and 1997), the pinna is investigated 

as a resonator in the frequency domain. It is found that that when the ear canal is blocked. 
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the cavum concha is responsible for a quarter wavelength resonance. This is of course a 

function of both the dimensions and the volume of the concha. In the study of Burkhard and 

Sachs (1975) the volume of the concha of 24 people was in the range of 3.2 cm3 to 5.8 cm3
. 

These variations can shift, for example, the first anti-resonance frequency as high as from 

8 kHz to II kHz (KEMAR, 1978, Chapter 3). 

The ear canal is a slightly curved tube with varying cross section (see Stinson and Lawton, 

1989, for accurate measured data). It is generally simplified in models to a cylinder with a 

diameter of 7.5 mm, and length of 22.5 mm and an average volume of I cm3 (Zwislocki. 

1970). Average values of the impedance of the eardrum are given by Shaw and Teranishi 

(1968) and Shaw (1974). 

As will be investigated in Chapters 5, 6 and 8, the response of the pinna is very complex at 

high frequencies and it is very sensitive to the geometric shapes, size and orientation. 

2.3 THE BINAURAL TECHNIQUE AND THE HEAD-RELATED 

TRANSFER FUNCTION 

The binaural technique is based on binaural hearing. The technique can be implemented in 

two closely related approaches: binaural recording and binaural synthesis. Assume that a 

listener perceives an auditory event in a free-field environment. In addition, his head is 

fixed, and the source is stationary. The sound pressure received in both his ears includes the 

full information of the transformation of sound (it was shown in Blauert, 1997, that bone 

conducted sound is negligible in the perception of spatial sound). If the two signals, the 

sound pressure detected at each of the eardrums, are recorded and reproduced exactly 

(either with headphones or loudspeakers, with the appropriate equalisation), then it is 

assumed that the complete auditory experience is replicated, including timbre and spatial 

aspects (M0ller, 1992). Generally, the recordings are made with an artificial head (also 
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termed 'dummy-head' or acoustical mannequin), and as a result, the reproduction is 

approximated and therefore conflicting cues might occur in a listener. 

A more commonly used method is binaural synthesis. In this case, an artificial head is not 

required, and the monophonic signals can be filtered with the already measured sound 

transformation, which is now commonly termed the Head-Related Transfer Function 

(HRTF). The HRTF is a directionally dependent complex valued transfer function 

(frequency response) that describes the transformations of sound from a stationary source in 

free space to a point in the ear canal. The source is generally positioned in a three 

dimensional space, at a constant radius, originating at the centre of the interaural axis (the 

line that connects the entrances of the two ear canals). The detection point in the ear varies 

among studies, from a position at an occluded ear canal (,meatus' blocked) and even a few 

millimetres outside it, and anywhere along the ear canal (Hammersh£li and M£lller. 1996). 

In the application of binaural synthesis, HRTF data is generally arranged in the time 

domain format and is called Head-Related Impulse Response (HRIR). Comprehensive 

reviews of various studies on the transfer functions of individual anatomical features have 

been given by Shaw (1975), Kuhn (1983) and Blauert (1997). 

The main limitation of binaural recording is that it is based on a recording with a fixed 

head, and therefore the dynamic cues are missing. In addition, the differences in matching 

the artificial head pinnae and those of the listener will cause colouration and poor 

performance in localisation of elevation sources. However, a new trend has appeared in 

recent years, where binaural synthesis incorporates dynamic cues by using a head tracker. 

which can compensate for head rotations by updating the filters in real-time (Sandvad. 

1996, Wenzel et al, 2000, Begault et al, 2000 and Mackensen et al, 2000). 
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2.4 SOUND LOCALISATION AND SPACE PERCEPTION 

There are clearly different mechanisms in the localisation of real acoustical events, and of 

virtual sounds when using headphones. Shaw (1982) proposed that headphone studies of 

spatial imagery be referred to as 'space perception', since the collection of perceptual data, 

such as segregation of sound, where a single acoustical event may give rise to more than 

one auditory event, or ambiguity with respect to whether the sound is externalised (and 

'localisation' becomes 'lateralisation'). Most psychoacoustical studies are carried out with 

headphones, and assume that sound localisation and space perception can be regarded as 

equi valent. 

2.4.1 Binaural cues 

Lord Rayleigh's duplex theory (Rayleigh, 1907) was the first to explain how we localise 

sound: localisation is based on the fact that path lengths are different for the two ears, hence 

the Interaural Time Difference (ITD), and the head acts as acoustic shadows at higher 

frequencies producing Interaural Level Difference (ILD). At angles on the median plane or 

on the 'cone of confusion', additional complex cues are required, and therefore either head 

movement can resolve ambiguity (Wallach, 1940), or these can be resolved by the filtering 

of the pinna. 

By neglecting the transmission paths within the auditory nervous system, we can assume 

that binaural cues could be derived by the ratio of the ipsilateral and the contralateral 

HRTFs in the frequency domain. This ratio produces the ITD and ILD mentioned above. 

Wightman and Kistler (1997) found that the fact that ITD is frequency dependant and is 

larger at low frequencies than at high frequencies (Kuhn, 1977) is perceptually irrelevant. 

Whenever HRTFs are implemented using a minimum phase model (see below), a single 

value is assigned to the ITD. However, although ITD values are roughly similar among 
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subjects, the auditory nervous system is very sensitive to changes of the interaural phase or 

timing. The minimum noticeable difference can be as low as 6 ).lsec (see Carlile, 1996, 

section 2.2.1). 

The dominance of the ITD cue at low frequencies (below 1.5 kHz) was demonstrated when 

it was conflicted in a subjective experiment against other localisation cues (Wightman and 

Kistler, 1992). It was also claimed that the auditory system is sensitive to ITD in the 

envelopes of high frequency carriers, but this is a less dominant cue. 

ILD presentations are very complex, since at high frequencies their dependence with the 

change of angle is high, and the response varies rapidly between peaks and notches. Their 

visualisation in different planes reveals some systematic variations, but variations among 

individuals are high, especially above approximately 8 kHz. It was shown that when ILD 

are presented in different frequency bands they have similar patterns (Wightman and 

Kistler, 1997). In addition, similar patterns are noticed for a specific frequency with a 

change of the elevation angle (Duda, 1997). In the horizontal plane, Middlebrooks and 

Green (1991) observed that localisation is mainly based on ITD and ILD without pinna 

cues. However, Musicant and Butler (1984) found that pinna cues indeed helped in 

resolving front and back confusion, and increased the localisation accuracy when localising 

sounds within the same quadrant of the horizontal plane. 

Another possible binaural cue was suggested by Searle et al (1975), as 'binaural pIIma 

disparity'. These authors proposed that the asymmetry between pInnae geometry and 

acoustical response aids in median localisation performance. This cue is still regarded as of 

a second order of significance. 
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2.4.2 Monaural cues: time domain interpretation 

Many psychoacoustical studies demonstrated that it is possible to localise reasonably well 

with one ear plugged, in both horizontal and elevation angles (see Blauert, 1997, 

Section 4.4, Carlile, 1996, Section 2.2). However, localisation accuracy is dependent on the 

spectral contents, the frequency bandwidth of the stimuli, and other factors related to 

practice and context effects. 

As the external ear is a linear system, time domain and frequency domain behaviours are 

related through the Fourier transform. It is assumed that the processing of directional 

information takes place in one of the two domains. Does the external ear encode the source 

direction through modulation of time delays or modulation of spectral shape? 

Batteau (1962, 1967) was a pioneer in relating localisation in elevation, and the physical 

cues provided by the external ear. He hypothesised that a simple time domain model, which 

includes the original signal and two echoes, can give rise to the necessary spectral cues. 

One echo having a latency of 0-80 )..lsec varies with the azimuthal position of the source, 

and a second echo, having a latency of 100-300 )..lsec varies with the elevation. Some 

agreement was found by Watkins (1978) and Wright et al (1974) when the method was 

compared with measurements in the lateral vertical plane. Hebrank and Wright (1974) 

showed that the notches appearing in the frequency domain are matched with the 

interference of a variable path-length reflection that occurs on the posterior wall of the 

concha. Hiranaka and Yamasaki (1983) confirmed that major reflections occur within 

350 f-lS after the first arriving sound, and that the delay increases as the source is lowered. In 

an extensive search for physical cues made with KEMAR, it was shown by Han ( 1991 ) that 

if localisation at high frequencies were based on time delays, it would work only in a very 

limited region. Since the model of Batteau is based on the physical geometry of the external 

ear but is said to be too simplistic, a further development was formulated by Chen et 01 
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(1992) with the addition of reflected paths. The pinna was modelled using a beam-forming 

approach. Although this model does not rely on physical principles, it is based on the 

general geometrical properties of the pinna. 

Wightman and Kistler (1997) argued that monaural temporal cues are not likely to be 

relevant for human sound localisation. Firstly because the HRTF impulse responses are too 

short to be processed in the auditory system (they are of the order of about 2 msec.), and 

secondly their previous results (Kistler and Wightman, 1992) suggest that changes in the 

temporal fine structure of the HRIR do not produce subsequent changes in the apparent 

positions of sound sources (see also Section 2.7). 

2.4.3 Monaural cues: frequency domain interpretation 

Although it is accepted now that the pinna acts as a 'frequency domain filter', it is not clear 

which cues are relevant and necessary for the perception of elevation. Two approaches exist 

when the spectra of HRTFs are analysed: elevation is perceived through the peaks (the 

resonance of the pinna), or alternatively, as the notches (the anti-resonance). 

It was claimed that for narrow band stimulus, the apparent location is directly related to 

spectral peaks in the subjects HRTFs (Blauert, 1997, Butler, 1997 and Musicant, 1995). 

However, with regards to vertical localisation, Hebrank and Wright (1974), Butler and 

Belendiuk (1977), Watkins (1978) and Bloom (1977) have provided strong evidence that 

with narrow band stimuli, spectral notches are responsible for the sensation of source 

elevation. Shaw (1982) found that in eight out of ten subjects the spectral minima 

systematically moved along the frequency axis as source elevation varied from high to low. 

For two subjects the minimum varied in level but not in frequency. 

In their work, Hebrank and Wright (I 974) used band-pass filters to investigate the 

frequency range II1 which the pinna affects localisation. It was concluded that elevation 
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cues are embedded in a frequency range of 4 kHz to 16 kHz. This conclusion might explain 

why a large number of reversals occur whenever non-individualised HRTFs are used 

(Wenzel et ai, 1993, M¢ller et ai, 1996). 

The significance of the cues provided by the pinna was demonstrated clearly when its shape 

was disrupted. Gardner and Gardner (1973) showed that when the pinna is altered by filling 

its cavities with putty the localisation in the median plane is reduced. Subsequently, more 

localisation and search for physical cues studies appeared with pinna occlusions (e.g. 

Oldfield and Parker, 1984, Han, 1991) that supported the significance of the contribution 

from all parts of the pinna to sound localisation in elevation and also to some extent in the 

horizontal plane. 

2.5 NORMAL MODES 

Shaw (1974, 1997) identified six different modes of the human concha. His patterns (1997. 

pp. 38, also shown in Figure 2-2) were the average among ten subjects. Although the 

excitation angle, the magnitude at the base of the concha and the resonance frequencies 

varied between individuals, his identification of monopole, horizontal and vertical dipole 

patterns provides a very important insight into understanding the physics of the external 

ear. 

These common features have not been used in the construction of individualised response. 

since it is not straightforward to transform the patterns into HRTFs. To the author's best 

knowledge his work has not been validated or continued, except the support offered by the 

work of Middlebrooks (1989), who observed a change in the directional response at 8 kHz 

and 12 kHz, suggesting correlation with the change of pinna modes from 'vertical' dipoles 

to 'horizontal' dipoles claimed by Shaw. 
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In Chapters 7 and 8, we attempt to repeat Shaw's experiment by computer simulation, and 

to derive a mathematical formulation that can extract the modal characteristics of an 

individual pinna into its frequency response. 

2.6 INDIVIDUALISED AND NON-INDIVIDUALISED HRTFS 

Although it has been recognised for a long time that anatomical differences of the head, 

torso and pinnae exist among individuals and these affect localisation, it was not clear 

whether these differences require spatial sound reproduction systems to incorporate 

individualised HRTFs, and in the case of reproduction with headphones, also individualised 

Headphone Transfer-Functions CHpTFs). 

Wenzel et al (1993) investigated and compared the localisation of subjects when signals 

were synthesised using their own HRTFs, and with other subjects' HRTFs. When virtual 

sources in the horizontal plane were investigated, it was concluded that subjects could 

perform well with non-individualised HRTFs, albeit with the problem of front-back 

reversals. More errors appeared for 'cone of confusion' elevation angles. It was also 

suggested that localisation using a non-individualised, but the HRTFs of a 'good localiser'. 

can produce better performance. This idea (of using HRTFs of another person to produce 

better performance) was investigated also by Morimoto and Ando (1982). They found that 

subjects could sometimes hear directions in the median plane better using other pinnae. 

than by localising with their own. 

When binaural recordings were investigated by M0Iler et al (1996), it was concluded that 

when localisation of individual recordings (at the blocked entrance of the ear canal) were 

compared to real life, the performance accuracy was preserved. In a similar manner to the 

conclusions of Wenzel et al (1993), they stated that non-individualised recordings resulted 

in an increased number of errors for sound in the median plane, and an increased number of 

24 



Chapter 2: Background - the external ear and the HRTF 

front back reversals. However, the claim that that listeners might localise better with 

recordings from other individuals then with their own recordings was not supported by their 

data. 

In a recent study, M¢ller et al (1999) investigated non-individualised localisation with 

various artificial heads. It was concluded that all artificial heads produced poorer 

localisation in listeners, when compared to localisation of real sources. The deterioration 

was most significant at median plane angles. In addition, it was found that localisation with 

artificial head HRTFs is comparable to, or poorer than a random human subject. However, 

they concluded that the design of artificial heads could be improved, since it was found that 

the number of localisation errors produced by listeners who used non-individualised 

HRTFs of one of the participating subjects was better than all artificial heads investigated. 

Begault et al (2000) studied the impact of head tracking, reverberation, and individualised 

HRTFs on the spatial perception of speech signals. It was concluded that the inclusion of 

head tracking significantly reduced reversal rates (the cone of confusion is resolved by head 

motion, see Wallach, 1940). For the horizontal plane, the use of individualised HRTFs did 

not improve localisation accuracy, or externalisation rates. However it is important to 

emphasise that speech signals do not include the peaks or notches found in HRTFs due to 

pinna resonance, so ITD is the primary factor in this study. 

2.7 REDUCED ORDER HRTF - MODELLING TECHNIQUES 

There are currently a growing number of publications that investigate the perfom1ance of 

reduced cost HRTFs for real-time virtual acoustic systems (for example Wightman and 

Kistler, 1992, Chen et al. 1995, Huopaniemi and Karjalainen, 1997, Evans et al. 1998. 

Gardner, 1999 and Larcher et aI, 2000). The requirement for efficient coding of HRTFs is 

for current low-cost real-time applications and cases where multiple virtual sources are 
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generated simultaneously. In addition, continuous, interpolated HRTFs are required for the 

generation of moving sources. These interpolations can be achieved in various ways (see 

for example Christensen et ai, 1999). 

It is suggested that not all the information included in a measured HRIR is required for 

accurate localisation. For example, as stated in Section 2.4.2 it is well accepted now that 

modelling the generally non-minimum phase HRTF as a minimum phase transfer function, 

while preserving the ITD (the interaural group delay at low frequency) results in similar 

localisation accuracy (Wightman and Kistler, 1989, Middlebrooks and Green, 1990, Kistler 

and Wightman, 1991, Kulkarni, 1999, Plogsties et af, 2000). This result is mainly because 

the phase information lost in the minimum phase representation is in the high-frequency 

part of the phase spectrum (a few kHz). This property is very important in the interpolation 

process in eliminating the comb filtering effect obtained with the original HRTFs. Other 

simplifications of the magnitude of the spectra generally result in increased errors in 

elevation and reversals. 

The types of HRTF modelling can be classified in two groups: physical models and 

mathematical models. Most models are currently concentrated on finding a mathematical 

'best fit' to empirical HRTF data. These do not attempt to produce individualised HRTF. but 

to represent the original data in a more compact form. 

Shinn-Cunningham and Kulkarni (1996) reviewed the following strategies for HRTF 

mathematical modelling: eignfunction (Principal Component Analysis), neural-network. 

Rational function, Pole-Zero (ARMA), and all zero (MA) models. 

Recently more mathematical techniques have been suggested. With the inclusion of 

auditory models, the performances of various models have been investigated subjectively 

and objectively (Huopaniemi et al, 1999). For example, it was suggested that the filters 

could be described compactly by taking into account the non-uniform resolution of the 
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auditory system with auditory smoothing and auditory weighting and using frequency 

warpmg. 

For physical models, only Genuit's structural model (Genuit, 1986, 1987) is a true 

parametric description that can be used mathematically to construct individualised HRTFs. 

In his model, an individualised HRTF is constructed from a combination of 16 filter 

channels and delay elements. Recently, more structural models have been suggested 

(Brown and Duda, 1998, and Avendano et at, 1999). These suggest that elevation cues can 

be added synthetically based on simplified empirical data (see also Duda, 1997). 

In this thesis, we propose an exact physical modelling technique that uses mathematical 

formulation to extract individualised HRTFs based on individualised basis functions, or 

spatial patterns of pinna mode shapes (See Chapters 7 and 8). Although the proposed 

reduced order model is based on physical criteria, its efficiency in the computational cost 

has not yet been investigated. 

2.8 HRTF MEASUREMENT TECHNIQUES 

A large body of research has been carried out on HRTF measurement (see Hebrank and 

Wright, 1974, Mehrgardt and Mellert, 1977, Butler and Belendiuk, 1977, Shaw and 

Teranishi, 1968, Shaw, 1974, Shaw, 1975, Shaw and Vaillancourt, 1985, Gardner and 

Martin, 1994, 1995, M¢lIer et aI, 1995, Hammersh¢i and M¢lIer, 1996, Carlile and Pralong. 

1994, Pralong and Carlile, 1994 and Blauert, 1997). 

The external ear transfer functions are measured in the above publications at various places 

along the ear canal, which gives rise to different responses. However, since up to 

12-14 kHz only the longitudinal mode is present in the ear canal, the variation of the 

position of the microphone does not distort the directionally dependent HRTFs. 

27 



Chapter 2: Background - the external ear and the HRTF 

Blauert (1997) defines three types of transfer functions: the monaural, the interaural and the 

free-field transfer function. The monaural transfer function is defined as the measured 

sound pressure in the ear canal divided by a measurement in the same place, but with the 

sound source at a reference angle and distance; usually at 0° azimuth and 0° elevation. The 

interaural transfer function relates sound pressures at equivalent measurements in the two 

ear canals. The full information of the transformation of sound due to the external ear is 

preserved when the free-field response is equalised, i.e. the measured response in the ear 

canal is divided by the measured free field response when the microphone is positioned at 

the centre of the head, and with the head absent. 

2.9 HRTF SIMULATION TECHNIQUES 

In the last two decades, various computer simulation techniques have been suggested to 

model the modification of sound impinging on the human head or parts of the external ear. 

The growing popularity of the BEM resulted in many papers that studied the steady-state 

response of simple models (for a review of state-of-the-art papers on the BEM up to 1995. 

see Ciskowski and Brebbia, Appendix, pp. 261, 1995). However, only recently, problems 

that are more complex can now be investigated using the BEM (mainly with the IBEM) due 

to advances in computing power and advanced formulation. 

Weinrich (1984) was the first to attempt modelling the response around an 'accurate' 

geometry of the head. He used analytical and numerical techniques in analysing the 

response of various parts of the head. He suggested a very simple geometric model of the 

pinna with a mesh of only 20 elements resembling the shape of the concha. His solution 

was based on a finite difference approximation method, and the results approximated only 

roughly the dependence of the first notch with elevation. He also approximated the sound 

field around an artificial head using the BEM (using a simplified formulation). In this case. 

the mesh included 212 elements. With a low resolution of elements and without the pinna. 
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the results were valid only up to approximately 2 kHz. Despite the limited success of his 

work in modelling realistic HRTFs, Weinrich paved the way for more advanced modelling 

using the BEM. 

Fourteen years later, the work of Katz (1998) is another milestone on the way to acquiring 

individualised HRTFs using the BEM. Although the idea was similar to the work of 

Weinrich, the use of BEM models converted from accurate laser-scanned models suggested 

that although the BEM is associated with 'low-frequency' modelling, we can now solve tens 

of thousands of simultaneous equations, to predict the response for complex shapes such as 

the human head. Due to limited computing power, his work was restricted to frequencies 

below 5 kHz (and this by assuming only four elements per wavelength); as a result, his 

simulations could not be validated in the high frequency range where pinna resonance and 

anti-resonance affect the pressure variations (for a discussion about possible geometrical 

errors see Chapter 5). In addition, the results could not be validated against measurements 

under the same conditions. His work inspired our research, and especially motivated the 

question: Can high frequency peaks and notches due to the complexity of the external ear 

be predicted accurately with the BEM? 

Ciskowski and Royster (see the work in Ciskowski and Brebbia, 1995) developed a coupled 

BEM-FEM formulation and investigated the effectiveness of different earplug design 

configurations. In this work, the ear canal geometry together with the eardrum impedance 

and the impedance of the earplug were modelled. The results of the response of an open ear 

canal were compared successfully with measurements, and the attenuation of different 

earplugs was investigated. This model does not include the concha or the pinna, but 

suggests the possibilities of investigating the coupling between various earphones and the 

external ear. 

29 



Chapter 2: Background - the external ear and the HRTF 

Other numerical approaches were suggested, less computationally demanding. These, 

however, make use of simplified models and therefore can predict only part of the response 

of 'real' HRTFs. These are important in the study of the physical origins of the main 

characteristics of the external ear, found in HRTF measurements. The work of Genuit 

(1986, 1987) mentioned earlier was based on a structural model. The calculation is based 

on Kirchoffs diffraction integral. It is reported that this approximate approach yielded 

results within the tolerance of HRTF measurement of a subject. 

Another two examples of such models are given below. Lopez-Poveda and Meddis (1996) 

presented an approximate physical model of the transfer function of the human concha 

based on Kirchoffs scalar diffraction theory. They used a simplified model of the concha as 

a two-dimensional aperture in an infinitely large sound-opaque screen. This model 

replicated some of the notches (mainly the first one, and partly the third) and its accuracy is 

limited in the analysis and comparison with the response of an accurate external ear. Speyer 

(1999) modelled the external ear as three concatenated ducts incorporating the appropriate 

formulation for the coupling between them. The solution is based on the boundary integral 

equation, and is proved efficient in replicating the general trends of the first resonance and 

anti-resonance. As with the work of Lopez-Poveda and Meddis, the simplification of the 

geometry limits the exact match with real HRTFs, but since the formulation was developed 

for multiple ducts, it might be possible to improve the accuracy of the prediction with a 

higher number of ducts (although it has been demonstrated by Shaw (1974, 1975, 1997) 

that modelling the crus helias is required in matching all the resonance and anti-resonance 

found in real pinnae). 
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2.10 ADVANTAGES AND FUTURE APPLICATION OF 

NUMERICAL MODELLING OF THE HRTF 

In recent years, a few HRTF databases have been made available to the research 

community: 

• A verage measured responses over 40 years by Shaw and Vaillancourt (1985) 

• KEMAR database measured by Gardner and Martin (1994, 1995) 

• Human and artificial head measurements in the ADDIS HRTF catalogue (1998) 

• Human measurements by Kistler and Wightman (1989) 

However, high fidelity HRTFs are still a valuable database that is confined to only well 

equipped acoustics laboratories. The measurement of individualised HRTF at a high spatial 

resolution is a very difficult and time-consuming task. Numerical modelling of HRTF 

might produce cheaper, faster and more accurate HRTFs with a PC in the future. Here we 

summarise the main advantages: 

• There is no need for an anechoic chamber, or any acoustical transducer or 

apparatus. 

• In the simulation, both microphones and sources are ideal with flat and 

omnidirectional response. 'Real' empirical response could be simulated if required. 

• The model and transducers could be accurately positioned anywhere in space, thus 

alleviating the problem of comparing HRTFs between studies, and highlighting the 

results which differ only due to anatomical geometry or different boundary 

conditions. 

• The source could be positioned at any distance in the near field or far field. 
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• The 'microphone' could be positioned at any point along the ear canal (such as 

directly on the eardrum). It is also advantageous to position a large number of 

'microphones' anywhere on the pinna to investigate pressure variation or 'mode 

shapes'. 

• The principle of reciprocity can be used to obtain continuous HRTF anywhere in 

space with no need to interpolate between discrete data sampled at a low spatial 

rate of sampling. 

• The problem associated with low accuracy of measurement of both magnitude and 

phase at very low « 300 Hz), and high (> 15kHz) frequency due to both 

transducers' performance and due to poor SNR are both alleviated. 

• The exact free-field or diffuse fields can be calculated and visualised m the 

frequency or time domains. This is possible for both loudspeaker and headphone 

reproduction. 

• It is possible to control the characteristics of air to facilitate higher or lower 

temperature, humidity and thus characteristic impedance. 

• It is possible to control any boundary conditions such as clothing, hair or eardrum 

impedance and investigate their individual contribution. 

• It is possible to generate a 'bank' of HRTFs by modifying and altering the shape of 

pinnae, head shape and size, neck, torso, etc. 

• It might be possible in the future to use a digital camera, already part of a PC, to 

extract the 3-D geometry of the pinna, and the dimensions of the head, neck and 

shoulders. This information could be used to generate a reduced order HRTF based 

on the physical attributes of each component (either with structural modelling or 

HRTF decomposition based on spatial mode shapes). 
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• It might be possible in the future to work backwards (through genetic algorithm 

techniques for example) and to design a specific shape of the pinna, head, torso, 

etc. for the 'best set' of HRTFs. 

2.11 CONCLUSIONS 

In this chapter, we reviewed briefly the basic aspects of the physics of the external ear and 

its relation to sound localisation. The significance of the external ear is now recognised, but 

it is not clear yet, what information encoded in the HRTF is essential for the auditory 

system. If individualised HRTFs are used in binaural synthesis, virtual sources are 

perceived with similar accuracy and authenticity when compared to real sources. However, 

if non-individualised HRTFs are used, or even reduced-order individualised HRTFs are 

implemented, not all localisation cues will be present, and therefore the performance of the 

implemented virtual source will depend on the application, type of stimulus, source position 

in space, etc. A simulation tool based on the BEM can be used either to obtain 

individualised HRTFs or to investigate the characteristics of the pinna. The success of this 

approach depends greatly on its accuracy when compared with measurements. Only when 

the individual resonance and anti-resonance can be predicted, will the simulation be offered 

as an alternative to measurement techniques. 
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Figure 2-1: The external ear. On the left, the different parts of the pinna, and on the right a 
schematic cross section with the ear canal and eardrum. After Shaw (1997). 
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Figure 2-2: Average normal mode shapes of the concha. The taxonomy of the modes for three 
cases: 'monopole' (mode 1), vertical 'dipoles' (mode 2 and mode 3), and horizontal 'dipoles' 

(modes 4 to 6). After Shaw (1997). 
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CHAPTER 3 

BACKGROUND - NUMERICAL METHODS FOR EXTERIOR 

PROBLEMS IN ACOUSTICS 

3.1 INTRODUCTION 

Among the exact numerical prediction techniques for solving vibro-acoustic problems, the 

Finite Element Method (FEM) and the Boundary Element Method (BEM) are the most 

commonly used. They are different from analytical, geometrical, and statistical energy 

methods in acoustics in that they provide a tool for accurately solving detailed, arbitrary. 

and complex models. 

Both methods are based on the discretisation of the acoustic field and can solve the wave 

equation, either in the time or frequency domains. As the acoustic domain becomes larger. 

the number of elements increases rapidly, and therefore these methods are mainly 

associated with 'low' frequency modelling. FEM is mostly used in structural engineering. 

and its main limitation in acoustics is the ability to deal only with finite elements (i.e. 

interior problems). However, in recent years, a new development of FEM has appeared: the 

Infinite Finite Elements Method (IFEM). The infinite elements alleviate the problem of 

infinite domains. It is predicted that the popularity of the method will increase in the near 

future, with significant reduction in the computational effort that is currently required for 

solving large problems. 

However, the main tool for predicting radiation and scattering for exterior problems is still 

based on Boundary Integral Equations (BIEs), which were already used by the 1800s by 

35 



Chapter 3: Background - numerical methods in acoustics 

Helmholtz and Rayleigh, but developed only in the 1960s into the BEM, at the same time 

as computers appeared and proliferated. 

In this research, emphasis has been placed on the investigation of 'real' problems that 

include both large and arbitrary complex models. The main tool was the BEM, although 

some preliminary investigation of the suitability of the IFEM was also carried out. This 

chapter summarises briefly only the relevant theory of the numerical methods used in this 

research. For a thorough summary and mathematical derivation, the reader is referred to the 

following references: Ciskowsky and Brebbia (1995), which include also a list of state-of-

the-art papers in the BEM up to 1995, SYSNOISE (1999) and Desmet (1997), or as 

otherwise indicated throughout this chapter. 

3.2 BASIC THEORY 

3.2.1 Governing equations 

In a homogeneous, inviscid, compressible fluid, the acoustic pressure field due to radiation 

or scattering from a rigid body, is governed by the classical scalar wave equation 

\72 ( t) _ ~ (j2p(r, t) =0 
v p r, 2!::l .) 

C ut~ 
rEV (3.1 ) 

where p(r, t) denotes the instantaneous variation of pressure from the equilibrium that is 

termed the acoustic pressure, and the spatial vector r is defined inside the volume V. The 

speed of sound c is given by c = -J (rpo / Po) , where Po is the gas static pressure, Po is 

the static density, and I is the ratio of specific heats. 

When time harmonic steady state conditions are considered, the wave equation (3.1) IS 

reduced to the Helmholtz equation 

rEV (3.2) 
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where the wavenumber k is defined as k = w / c, w is the angular frequency, w = 271 f and f 
is the frequency. 

3.2.2 Boundary conditions 

Three types of boundary conditions are associated with the Helmholtz equation: fixed 

pressure, normal velocity, or acoustic impedance on the surface of the body. These are 

called Dirichlet, Neumann, and mixed (or Robin) boundary conditions, respectively. 

The prescribed normal velocity Un on the vibrating body is given by 

J 
Un = -vp(r).n r E So 

wPo 
(3.3 ) 

where n is the unit normal on the surface So . 

An additional boundary condition is needed for radiation problems; the pressure field at 

infinity must satisfy the Sommerfeld condition 

(3.4) 

where 0: = 1/2, or 0: = 1 for two or three-dimensional domains, respectively. This 

condition ensures that energy disappears at infinity and only outgoing travelling waves 

propagate. 

3.2.3 Green function 

The solution of the wave equation (3.1) is simplified by introducing the acoustic monopole 

(point) source. The Green function satisfies the inhomogeneous Helmholtz equation 

(3.5) 

with b(r - ro) the 3-D Dirac function. 

The Sommerfeld radiation condition is also applied and this can be written as 

37 



Chapter 3: Background - numerical methods in acoustics 

ag(r I r ) 
:~~r( ar 0 + jkg(r I ro) = 0 (3.6) 

The free space Green function * represents the free-field pressure In point r due to an 

acoustic point source in location ro with source strength of a unity 

with I r - ro I the distance between points rand ro' 

3.3 DIRECT COLLOCATIONAL BOUNDARY ELEMENT 

METHOD 

(3.7) 

The direct collocation BEM can be used for solving exterior or interior problems. In our 

case, we will concentrate on exterior problems in general and on acoustic scattering in 

particular. The goal of the method is to calculate the pressure and particle velocity in the 

exterior domain of a body. Once the above acoustic variables have been found, the field 

variables at any point in the continuum domain can be obtained by using the Boundary 

Integral Equation (BIE). The three types of boundary conditions described above (Section 

3.2.1) can be applied, and the set of equations can be constructed using the direct 

collocation scheme. The term 'direct' indicates that the pressure and normal velocity 

distribution on the boundary surface have a direct physical meaning. The method's main 

advantage is in solving small to medium size problems in which the models have a closed 

boundary surface (see Chapter 4 and Chapter 5 Section 5.5) . 

• The notation of the free space Green function is given by g( r I ro) since a general Green function G (r I ro) is 

defined and used in Chapter 7. 
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3.3.1 Direct boundary integral formulation 

The direct boundary integral formulation (Schenk, 1968) relates the pressure at any point of 

an acoustic field to the pressure and normal velocity distribution on the closed boundary 

surface of the acoustic domain. 

For the case of scattering, consider a body with a surface S embedded in an infinite 

acoustic medium exposed to impinging incident waves with pressure p!. The total field PI 

is a superposition of the incident field Pi and the scattered field Ps. (For the case of 

radiation, the pressure Pi vanishes). The volume V is the space bounded by S and the 

surface I; at infinity, which can be represented by a sphere with an infinite radius (see 

Figure 3-1). The small sphere (J with a radius c ---+ 0 is defined to deal with the singularity 

in the Green function when r = rD. 

Based on Green's third identity that relates the surface integral over S to the volume 

integral over V bounded by S, it can be shown that the integral formulation for the 

scattered sound field is given by 

(3.8) 

where the coefficient C(r) represents the solid angle, expressed as a fraction of 411 . This 

coefficient is 1 for positions inside V , 0 for positions in the interior domain enclosed by the 

boundary surface Sand Y2 for positions on the surface where the normal direction is 

uniquely defined. 

For other cases the solid angle can be calculated (see Seybert et aI, 1985 for the full 

derivation) for any surface position r from 

1 J 8 1 C(r) = 1 + - ~(I l)dS(ro) 
411 s U l/ r - ro 

(3.9) 
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where l/ is the normal to the closed boundary surface S with a positive orientation into the 

unbounded domain V (l/ = -n). 

The total sound field can then be calculated from 

(3.10) 

or 

(3.11 ) 

where Pt (ro) and Un (ro) are the pressure and normal velocity distribution on the closed 

boundary surface S. (For radiation problems the term Pi should be omitted). 

3.3.2 Numerical implementation 

In order to evaluate the integral of Equation (3.11) on the surface S, the body needs to be 

discretised into E elements that approximate the surface shape and the acoustical variables 

on the surface. The most commonly used elements are the linear triangular and 

quadrilateral surface elements. 

For the case of linear triangular elements, the global Cartesian co-ordinates Xi (i = 1,2,3). 

are related to the nodal co-ordinates x. of each element, 
1Q 

(3.12) 
Q 

and the first order shape functions of the local co-ordinates (~) - (~l' ~2' ~3) and are 

NQ(~) = ~i (i = 1,2,3). Each shape function is defined such that it has a unit value at 

the location of node i and that it is zero at all other node locations (see Figure 3-2). 
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In each element m, the values of the pressure P and its derivative are approximated by 

Pm(~) and 0;;: (~) using the shape functions. 

and 

(3.13) 

where Pmo: (0 and OP'Et (~) are the values of the pressure and its gradient on the element 
n 

m, respectively. 

Hence, after rearranging, the discretised formulation of Equation (3.8) is given by 

(3.14) 

where Sm is the area of the mth element. Substitution of Equations (3.12) and (3.13) into 

this equation gives 

'Lj'LNo:(OPmQ Og~r~ ra) J(E,)dE, - C(r)p(r) = 
rn Sm Q 

'LJ'LNQ(~)O~~Qg(r I ra)J(OdE, 

(3.15 ) 

n7 Sm a 

where J(~) the Jacobian of the transformation given in Equation (3.12). Equation (3.15) 

can be rewritten as 

'L'LPmo:J NQ(~) Og~l~ ra) J(OdE, - C(r)p(r) = 
m Q 8 m 

'L L D~';~Q J NQ (~)g(r I ra)J(~)d~ 
n1 Q SIll 

(3.16) 
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Now consider one dedicated point r
J 

that is a node on the surface identified by the globaJ 

number j. 

Assume now the following notations: 

PJ=p(rJ) is the pressure at node j, RJ = R(rJ) rf)) is the distance from node j to any point 

~) on the surface, gJ = g(rJ 1 ro) is the free space Green function between node j and any 

point ro on the surface. 

Equation (3.16) can be rewritten as 

(3.17) 

where 

(3.18) 

= J NQ(Og(r 1 ro)J(~)d~ (3.19) 

Sm 

C(r) is defined in Equation (3.9) and 

1 J 8 1 Cmj = -4 -8 -R J(~)d~ 
If II. 

Sm J 

(3.20) 

Each m,O: combination corresponds to a global node 1. However, the global node I may 

have its origin in different m,O: combinations. 

By adopting the global scheme we may write 

LLa~lJ ·0))w = LAj/<P/ (3.21) 
m Q I 
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""""'" """"'" bQ .. fJ¢TnQ = """"'" B. fJ¢/ 
DD Tn) fJn D)/ fJn 

Tn Q I 

(3.22) 

Using Equations (3.21) and (3.22) in Equation (3.17) gives 

"""""'''"""''' AIPI - [1 + """""'clp = """"'" B[ ~PI DD ) D Tn)) D) un 
m Q Tn I 

(3.23) 

The pressure P
J 

at node j, can be expressed as D;lPl with DJl the Kronecker symbol which 

equals 1 only when j = l, therefore we can define 

Ajl - Ajl - (1 + L Cmj)Djl (3.24) 
m 

Therefore Equation (3.23) becomes 

L L fJPI 
A [PI = B 1-;:) 

) J un 
I I 

(3.25) 

At each node l, the pressure and the pressure gradient are related to the same quantites at 

all other nodes on the surface. For a total number of N nodes , a system of A 

simultaneous linear algebric equations is created. This can be written in a matrix form as 

[AJ{p} = [Bl{~~} (3.26) 

where the NxN matrices A and B are made up of combinations of Equations (3.18) to 

(3.20) . These matrices are fully populated since the pressure and normal velocity at a 

certain node are related to the values at all other nodes on the surface. The number of 

simultaneous equations that are solved is the same as the number of nodes on the 

discretised surface plus the number of source points. 

Once the pressure and the normal velocity at each node have been found. the pressure at 

any point r in the acoustic domain F (which is not located on S due to singularity) can 

be obtained from Equation (3.11), which in a matrix form is given by 
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p( r) = [C] { p } + [D]{ un } (3.27 ) 

where the coefficients C, D are integrals evaluated at each node (with a similar procedure to 

that described in Equation (3.17). These are also given in detail in SYSNOISE, 1999 and 

Desmet, 1997). 

3.3.3 The non-uniqueness problem 

A common problem associated with exterior problems solved with the DBEM is that the 

solution breaks down at certain characteristic frequencies. As proved by Schenck (1968), 

these frequencies are the eignfrequencies of the corresponding interior problem with 

modified boundary conditions, i.e. for an exterior Dirichlet problem the frequencies are the 

eignfrequencies of the interior Neumann problem and vice versa. These frequencies appear 

purely for mathematical and not physical reasons. 

These 'irregular frequencies' are removed using the Combined Helmholtz Integral Equation 

Formulation (CHIEF), proposed by Schenck (1968). This method is based on adding a few 

equations that collocate the solution at points where C(r) = 0, where it is known that the 

pressure is zero. These points are also called 'over-determination' points and the over­

determined set of equations is solved using the Lagrange multiplier technique. It is required 

that these points will not be positioned inside the interior cavity on nodal surfaces since 

they will not add 'real' constraints. As the frequency increases, these nodal surfaces become 

closely spaced and a careful positioning of these points is required. 

Other methods (such as the 'Burton Miller' method which includes additional constraints for 

the normal derivation of the pressure) exist but are not investigated in the current research. 
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3.4 INDIRECT VARIATIONAL BOUNDARY ELEMENT 

METHOD 

3.4.1 Indirect boundary integral equation 

As stated in the previous section, the DBEM can be used only when the boundary surface 

S is closed, thus the sound field can be calculated either inside or outside the boundary 

surface. For cases where the domain is open, or includes both closed and open boundary 

surfaces, the Indirect Boundary Element Method (IBEM) is used (see Fillipi, 1977). 

The indirect method uses layer potentials that are the differences between the outside and 

inside values of the pressure and its normal gradient. Along the positive side of the 

boundary surface these are denoted p+(ro) and op+(ro) / an, respectively, and along the 

negative side of the boundary are denoted p-(ro) and op-(ro) / an, respectively (See 

Figure 3-3a). 

The layer potentials are defined as 

(3.28) 

where J-L is generally called the jump of pressure or the double layer potential. It represents 

a distribution of dipole sources on the surface, and 

(3.29) 

where cr is generally called the jump of normal derivative of pressure or single laver 

potential, and it represents a distribution of monopole sources on the surface. 

For open bodies (see Figure 3-3b), it can be shown (Coyette and Lecomte, 1997. 

SYSNOISE, 1999) that the indirect boundary integral formulation is given by 
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(3.30) 

or, in a general form, for open or closed boundary surfaces 

(r E V) (3.31 ) 

The term 'indirect' indicates that the boundary variables, i.e. the monopole and dipole 

distributions on the boundary surface, do not represent any direct physical quantities 

associated directly with the pressure field. 

3.4.2 Variational formulation 

The variational formulation is used with the IBEM because it is difficult to apply the 

collocation method due to the problems of singularities in Equation (3.31). 

The single and double layer potentials (J and fJ are sought on the three different parts of 5 

according to the boundary conditions: imposed pressure on 51 (fJ = 0 and (J 7: 0). 

imposed normal velocity on 52 ((J = 0, fJ 7: 0 and ap / an = - j POwu1l ), and imposed 

normal impedance on 53 ((J = - jKJ3fJ, fJ 7: 0 and ap / an = - jk{3p where ;3 is the 

specific admittance function). 

Therefore the following boundary conditions (derived In Desmet, 1997) can be 

reformulated as 

(3.32) 
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(3.33) 

(3.34 ) 

Equations (3.32) to (3.34) can be written in a compact form as follows 

,h(a,/-L) = -jpwun 'lirE S2 (3.35) 

f3(a,/-L) = 0 VrES3 

These integral equations have to be solved for a on S), and /-L on S2 and 8 1 , An 

equivalent variational formulation is given by 

J ~(a,~l)badSl + J f2(a./-L)b~ldS2 + J f3(a,p)b~ldS3 = 

~ ~ ~ 

J pbadSl - J juJun6pdS2 

(3.36) 

51 52 

The left hand side is a bilinear symmetric form so that the solution (a, /-L) leads to the 

stationarity of a functional J so that bJ = 0 for all possible variations (ba. bp). The full 

mathematical derivation of the solution of the variational formulation is shown in detail in 

Desmet (1997) and SYSNOISE (1999). 
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3.4.3 Formulation in a discretised form 

In a similar way to the discretisation of S in the DBEM, the geometric shape functions are 

defined and the unknowns a and f-L are expressed in term of their nodal values: 

a(r) = ,,£a7Ni(~) 

f-L( r) = "£ f-LiNi (~) 
(3.37) 

It can be shown (see Pierce and Wu, 1983) that the unknown layer potentials are given by 

1 
(J) = B C -1 1 fa ) 

I-L CT D f~ 
(3.38) 

where the detailed integral equations of B, C, D, fa, f~ are given in SYSNOISE (1999) and 

Desmet (1997). 

Once both the single and the double layers are known, the BIE can be used to post process 

the pressure at any field point in the volume which is then given by 

(3.39) 

where the surface S of the body is discretised with e elements such that S "-' "£ S'" , and 

se is the surface of each element. 

3.4.4 The non-uniqueness problem 

When the indirect method is used to solve exterior problems with closed domains, the 

integral evaluation fails at critical frequencies of the interior problem, in a similar way to 

that which appears with the DBEM. The solution in this case is based on adding interior 

elements with additional boundary conditions. These are defined as 
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ap+ . A + 0 an + Jpw nP = 

(3.40) 

ap- . A - 0 an - Jpw nP = 

The absorption, applied as positive real parts of admittance (to increase absorption) can be 

applied also on the inside layer of the existing closed surface. Further information and 

practical consideration of implementing these 'singular admittance' elements are given in 

SYSNOISE (1999). 

3.5 SPECIAL FORMULATION OF THE BEM 

3.5.1 Symmetry 

Baffled structures (Figure 3-4) or structures with symmetry in both geometric and material 

properties can benefit from a modified formulation which does not require discretisation of 

the infinite plane. The modified equations are given by 

(3.41 ) 

where the vibrating body S' lies in the vicinity of an infinite reflecting baffle SH. The 

Green function of a rigid infinite baffle (with zero normal velocity) IS 

gH = (e- JkR ) / R + (e- JkR1 ) / Rr and the Green function of a soft infinite baffle (with zero 

3.5.2 Axisymmetric IBEM 

In the case of an axisymmtric model, with non-axisymmetric boundary conditions, a 

reduction in both calculation time and computational storage may be achieved. The 3-D 
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surface integral of the Helmholtz integral equation can be reduced to a combination of a 

line integral, and an integral over the angle of revolution, around the z axis (Coyette and 

Lecomte, 1997). The reference plane for the meridian surface is (T, z) of a cylindrical 

co-ordinate system (Figure 3-5). 

The acoustic pressure can be decomposed into Fourier series along the circumferential 

direction using 

P (r: z )e jmBx 
m :n x (3.42) 

m=-oo 

and 

(3.43) 

After substitution to the Helmholtz equation and following the same mathematical steps 

that were applied in the 3-D case, the integral representation becomes 

where L is the boundary surface generator. The non axisymmetric boundary conditions are 

handled by their decomposition into Fourier series. For each harmonic 1Il the integral 

equations are solved with the variational technique described in Section 3.4.2. 

3.5.3 Acoustic transparency in the IBEM 

The following formulation of the IBEM is a special case of the integral Equation (3.31). Its 

main use is in problems where the transmissibility of sound by vibro-acoustic interactions 

can be analysed on both sides of an infinite baffle. 

The pressure can be analysed as a superposition of the contribution by the single and 

double potentials on the three parts of 5: 51 , the part of 5 in V-, 5 1ll 
, the part of 5 in the 

infinite plane, and 51' , the part of 5 in V+ (see Figure 3-6). 
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It is shown in detail by Coyette et al (1999), that the total pressure is given by 

'lirE V- (3.44) 

and 

'lirE V+ (3.45) 

and the variational solution is undertaken by using similar steps to those used with the 

formulation for the regular 3-D bodies. 

3.6 WAVE ENVELOPE INFINITE ELEMENTS 

Traditionally the finite element method is used to solve interior acoustic problems, since the 

numerical implementation requires a finite number of finite elements. However, it is 

possible to alleviate the problem of infinite domains with various methods (see Givoli. 

1992, SYSNOISE, 1999) by modelling the acoustic near field of the radiating body by 

dividing the unbounded region into an inner region, formed by a mesh of conventional 

finite elements and an outer region with a single layer of special elements stretching out to 

infinity. These are used to model the acoustic far field (Figure 3-7). Several approximation 

methods have been developed, and in our case we use the mapped infinite wave envelope 

method (Astley et aI, 1994, 1998 and Cremers et aI, 1994). The infinite wave envelope 

element is based on an infinite geometry mapping, extending the element to infinity. and 
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special shape functions with built-in amplitude decay and a wave-like variation, as shown 

below. 

The formulation of the variable-order, infinite wave envelope element involves the 

following aspects: the infinite geometry mapping, the shape functions and the weighting 

functions in a modified Galerkin residual scheme. The first two aspects are discussed 

below. 

3.6.1 Infinite geometry mapping 

The infinite geometry mapping consists of the mapping of a unit parent element on to a real 

element extending to infinity. The mapping is defined by the location of four 'geometric' 

nodes (in the case of two dimensional element). Figure 3-8 presents an example of the 

'parent' and 'mapped' topologies of a two-dimensional wave envelope element.. The 

corner of the parent element at (1, ± 1) is mapped to infinity in the mapped element. The 

first two geometric nodes 1 and 2 are defined to lie on the envelope (infinite) layer. Nodes 3 

and 4 are defined at distances a], and a
2 

from nodes 1 and 2, respectively along the infinite 

sides. Mirror nodes 3' and 4' are used as 'virtual sources' and defined at distances a], and Go. 

from nodes 1 and 2 on the side of the conventional mesh. 

This type of geometrical mappIng is obtained by introducing a singularity In the radial 

direction (at (=1 or 1=00), yielding an inverse mapping of the form 

a 
(= 1- 2~ 

r 
(i = 1,2) (3.46 ) 

In this equation, r is a radial co-ordinate along the infinite element which is the distance 

along the 1-3 or 2-4 sides measured from source point 3' or 4'. A detailed description and 

the formulation in three dimensions can be found in Astley et al (1994, 1998) and Cremers 

etal(1994). 
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3.6.2 Shape functions 

The development of the shape functions used within the infinite wave envelope elements is 

derived from the observation that in spherical co-ordinates, a three-dimensional radiation 

function pCr) for the exterior region outside a sphere with a radius R can be written in the 

form of a multipole expansion with an infinite series 

(3.47) 

when T, g, cp are the spherical co-ordinates relative to the OrIgin TO and the functions 

Fn (g, cp, k) represent the radiation functions corresponding to acoustic multi poles of 

increasing order. It has been shown that the series converges absolutely and uniformly 

when the elements lie outside the smallest sphere circumscribing the structure. Therefore 

this co-ordinate system is not efficient for long or flat objects. The current variable order 

infinite wave envelope elements are also fonnulated in the ellipsoidal co-ordinate system. It 

is shown that only a finite number of tenns (generally less than six) are required to model 

the amplitude decay of the outgoing propagating waves. The order of the series is thus 

defined by the number of terms in the (IIr) expansion. 

3.7 SUMMARY OF PROPERTIES 

• Both the DBEM and the IBEM follow a two-step procedure. In the first step an 

approximation of the boundary surface variables is detennined, which is based on 

the expansion of the surface geometry and the boundary conditions on the surface 

in terms of a set of prescribed shape functions which are locally defined on each 

element. In the second step, a post-processing procedure is undertaken where the 

field variables at any point are obtained from the boundary integral formulation. 

The calculation time of the second step is generally much faster than the first step. 
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• Exterior problems can be solved with either the boundary element method or the 

infinite element method. The DBEM can be used to solve only for closed bodies 

where the indirect method can solve the acoustic field on both sides. 

• If the boundary surface is closed, the problem can be solved with both methods. 

The set of equations needed to be solved with the DB EM produces non-symmetric 

matrices, whereas the IBEM produces symmetric matrices. The total computational 

effort, however, is determined by the size of the problem (see Chapter 10). 

• With the BEM, only the surface is discretised, thus the dimensionality of the 

problem is reduced from three to two. However, computationally, this property 

does not result in faster solution times than the FEM, since the matrices are 

complex, fully populated, frequency dependant, and may be singular. Although the 

number of nodes and elements in the BEM is much smaller than in the FEM, in 

large problems, this, again, does not imply greater efficiency in the solution 

process. 

• The non-uniqueness problem appears In both the DBEM and the IBEM. It is a 

mathematical problem and not a physical one. It occurs only when the body has an 

enclosed volume. As the size of the model gets larger and the frequency range of 

interest increases, the higher the number of 'irregular frequencies' that are needed to 

be removed. 

• The advantages of the IFEM are the ability to solve exterior problems both in the 

frequency domain and the time domain and to alleviate the non-uniqueness 

problem. Currently, the main limitation is the generation of the complex volume 

mesh that produces 3-D elements between the discretised 2-D surface elements. 

and the ellipsoid, or the spheroid infinite layer. 
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3.8 CONCLUSIONS 

This chapter summarised briefly the theory behind the numerical methods used in the 

research. The formulations of the BEM, currently the main tool for the prediction of 

acoustic radiation and scattering, have been presented. Since different aspects of HRTFs are 

investigated numerically, it was required to evaluate different schemes where different 

methods with different versions of software and hardware produced varying performance. 

Since a great emphasis of the research was put on high frequency analysis, it was of utmost 

importance to optimise all the various aspects of modelling, where practical aspects of the 

implementation and examples of the various methods presented here are given in the 

following chapters. 

55 



j 
i 
i 
: 

, , , , , 

./ 
./ 

v 

., 
'. 

'. 
" 

Chapter 3: Background - numerical methods in acoustics 
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Figure 3-1: Domain definition for an exterior point r in the Direct Boundary Element Method 
(DBEM). 
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Figure 3-2: Transformation of a planar linear triangular element (a) mapped and (b) parent. 
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Figure 3-3: IBEM domain definition: (a) closed body (b) thin open body. 
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Figure 3-4: Symmetry condition. An Infinite plane (baffle) produces a mirror image and a modified 
Green function. 

y 

e 

X 6=0 

Z 6=3r02 

Figure 3-5: Axisymmetric cylindrical co-ordinate system. 

v+ 

s' 

Figure 3-6: Acoustic transparency: a sound wave can propagate from both sides of the baffle (11-
and V+) through 'transparent' elements (at points 7) defined at z=O. Sill denotes the points on the 

infinite baffle, and S' and S' the points on surface of the body attached to the baffle, on the 
positive and negative sides of the baffle, respectively. 
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00 

Wave envelope interface 

\ 

element 

Figure 3-7: Schematic drawing of the IFEM - conventional FEM and infinite layer. The infinite wave 
envelope element is based on an infinite geometry mapping, extending the element to infinity, and 

special shape functions with a built-in amplitude decay and a wave-like variation. 

o Geometric node 

• Pressure node 

3 o Source node 

(a) (b) 

Figure 3-8: Infinite geometry mapping from a two dimensional unit parent element to a real infinite 
wave envelope element: (a) parent and (b) mapped topologies. The mapping is defined by the 

location of four nodes:1, 2, 3 and 4. The corners of the parent element at (1, ±1) map to infinity in 
the mapped element. Nodes 3 and 4, and their mirrors 3' and 4' are defined at distances OJ and 02 

from nodes 1 and 2. The mapping is given in Equation (3.47). 
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CHAPTER 4 

NUMERICAL COMPUTATION OFTHE HRTF USING 

SIMPLE GEOMETRICAL MODELS 

The motivation for investigating the equivalent 'HRTFs' of simple geometrical models is 

two-fold: (a) to investigate the suitability of different formulations of numerical techniques 

in simulating the response of small-to-medium size models, and (b) to investigate the 

effects of the different components in HRTFs which include simplified geometries of the 

head, torso and the concha. 

The investigation of simple geometrical models is important in the analysis of structural 

modelling of HRTFs, as well as in binaural and monaural physical and psychophysical 

studies of general attributes of HRTFs. An outline of this chapter is as follows: first, the 

response of a rigid sphere is investigated analytically and compared to results obtained with 

various numerical techniques. Subsequently, the responses of an ellipsoid and an artificial 

head with a torso (but without pinnae) are modelled and compared. Finally, the normal 

modes of a simplified concha modelled as a baffled cylinder are simulated and analysed. 

The modelling principles that were investigated and presented in this chapter were 

implemented throughout the thesis with larger and more complex models. 

4.1 THE FREQUENCY RESPONSE OF A RIGID SPHERE 

The rigid sphere has been investigated and implemented extensively in research into spatial 

hearing with various expressions of its magnitude response and effective ITD (e.g. 

Rayleigh, 1907, Blauert, 1997, Kuhn, 1977, Kahana, 1997a). 
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4.1.1 Analytical solution 

The total complex pressure in the sound field around a rigid sphere due to excitation of a 

plane wave is given by 

P
tot 

= Po exp(jwt) I: (_j)(m+1)(2m + l)Pm(cos¢)· 
m=O 

jm (kr)n'm (ka) - nm(kr)j'm(ka) 
j'm(ka) - jn'm(ka) 

(4.1 ) 

where Po is the amplitude of the pressure of the incident wave, w is the angular frequency, 

k is the wave number, a is the sphere radius, r is the distance from the centre of the 

sphere, Pm (cos ¢) are the Legendre Polynomials, ¢ is the angle of incidence in the 

horizontal plane', nm is the spherical Neumann function and finally, jm is the spherical 

Bessel function. 

On the surface of the sphere this equation reduces to 

_ (.)~ (_j)(m+l)(2m + 1) (kat2Pm(cos ¢) 
Ptot - Po exp Jwt D ./ (k ) _ . / (k ) 

m=O Jm a Jn m a 
(4.2) 

The full derivation of the above expressions is given in Kahana (l997a). Both Equations 

(4.1) and (4.2) are derived for the horizontal plane only. A general formulation of Equation 

(4.1), which includes also dependency on elevation angles, will be presented in Chapter 7 . 

• Note that azimuthal angles are defined with ¢ and not e . This is mainly for consistency of the spherical co-ordinale 

system used in Chapter 7. 
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4.1.2 Numerical solution 

In principle, numerical modelling of sound scattering by a sphere should not impose great 

difficulties. In practice the sphere 'emphasises' the problem of singularities in both the 

DBEM and the IBEM. Due to its symmetry in every plane, it is found that removing 

'irregular frequencies', especially at high frequencies, is a difficult task. The following 

worked-out examples of modelling the response of a sphere and the total sound field around 

it are investigated using four approaches: the DBEM, the IBEM, the IFEM, and the 

axisymmetric IBEM. 

4.1.2.1 The non-uniqueness problem 

The response of a rigid sphere was investigated at two points on its surface: one in the front 

(¢ = 0°) opposite the source, and one at the rear (¢ = 180°), in the shadow zone. A mesh 

of a sphere with a radius of 0.1 m including 1266 nodes and 1264 quadrilateral linear 

elements was used (see Figure 4-1). A plane wave source was positioned in the far field, at 

a distance of 1 m and ¢ = 0° . 

As stated in Chapter 3, only in the DBEM and the IBEM does the problem of the non­

uniqueness of the solution exist. In the DBEM, over-determination points have been 

applied. Since these points 'regularise' the solution of the set of equations using the 

Lagrange multiplier technique, the higher the ratio between over-determination points and 

real nodes of the elements, the larger the error. At high frequencies, 'irregular frequencies' 

will be removed with many over-determination points, and for improved accuracy. 

increased mesh resolution is required. Practically, the solution procedure starts with no 

over-determination points at all. Then, when the first 'irregular frequency' is found f (around 

1.7 kHz for a sphere with a radius of 0.1 m, which corresponds to the characteristic 

61 



Chapter 4: The HRTF of simple geometrical models 

frequency k: = 7ra) more points are added. Figure 4-2 demonstrates that a single point will 

not entirely remove the 'irregular frequency' but four points are necessary (note that as a 

result the results in the frequency range of 1.6 kHz to 2 kHz are distorted). For large 

models, the addition of 15-30 over-determination points was found to give no deterioration 

in the results and also to remove severe peaks when the size of the elements corresponds to 

six elements per wavelength. 

For the case of the IBEM (Figure 4-3), 25 'singular admittance' elements (arranged In a 

plane with 5x5 elements) are added inside the cavity of the sphere, and the inside of the 

elements (with negative normal vector) are applied with absorption boundary conditions. 

As frequency increases it is difficult to remove the singularity. A higher frequency range 

was investigated in this case and it is demonstrated that as frequency increases, larger errors 

were obtained with higher amplitude and increased affected frequency bandwidth. Note that 

a smoother result was obtained although a residual effect remained. 

4.1.2.2 The principle of reciprocity 

In both simulation and measurement, the HRTF database is obtained by changing the 

angular position of the source on an imaginary sphere, generally with a radius of 1.4 m to 

2 m. The disadvantage of this method is that it is time consuming, and also the database is 

limited to the discrete positions of the measured/simulated sources. An alternative method 

is suggested by using the principle of reciprocity (Kinsler et aI, 1982, pp. 165-168. see 

Figure 4-4): the acoustic pressure PI produced at point B in a fluid by a source at another 

point A in the fluid where u l is the velocity of the radiating element of the source, is the 

same as the pressure P2 produced at point A by the same source located at point B where 

, 'Irregular frequencies' are the eignfrequencies of the corresponding interior problem with modilicd boundary conditions. 
i.e. for an exterior Dirichlet problem the frequencies are the eignfrequencies of the interior Neumann problem. 
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U 2 is the velocity of the radiating element of the source, irrespective of the presence of 

boundaries of normal impedance. 

It is shown by Kinsler et al (1982) that 

J P2 u l . n dB = J Pl u 2 . n dB (4.3 ) 

SA SE 

If the sources are small with respect to the wavelength and several wavelengths apart then 

the pressure is uniform over each source so that 

(4.4) 

It therefore follows that 

(4.5) 

where Q is the volume velocity of each of the monopole sources, and per) is the pressure at 

a distance r from the source. If we model Q
1 

= Q2 = const., then the pressure simulated 

anywhere in space, when a monopole source is positioned close to the point of interest (e.g. 

at the entrance to the ear canal), is equivalent to the pressure produced at this point due to a 

source with the same volume velocity anywhere in space. 

In practice, a few approaches for numerical implementation of the principle of reciprocity 

exist, as follows: 

• Positioning the source on a specific node of the surface and compensating for the 

loss of energy, radiated into the interior cavity. This method results in 'irregular 

frequencies' with severe peaks which are very difficult to remove (see a worked-out 

example below). 
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• Positioning the source in the exterior domain, very close to the surface. This will 

ensure radiation will occur only in the exterior domain. The proximity of the source 

to the surface requires a local refinement of the mesh (Figure 4-1). Note that some 

excitation of the interior might still exist, but this is not as severe as in the previous 

case. 

• Simulating the source using a vibrating piston with an equivalent volume velocity 

by applying a velocity boundary condition to one side of the element. This method 

will be inaccurate if the resolution of the mesh is low with large elements. 

Figures 4-Sa to 4-Sf summarise the difference in simulating the principle of reciprocity 

using the first two approaches. The sphere presented in Figure 4-1 (but with a reduced 

radius to r=6.85 em in order to shift the 'irregular frequencies' upwards, thus eliminating 

errors of this kind in this investigation) is excited by a monopole source with a source 

strength of unity, positioned at 1.4 m away. The pressure was calculated on the surface of 

the sphere, at two points: the front (¢ = 0°), and at the rear (¢ = 180°). The responses 

shown in Figures 4-Sa and 4-Sb were calculated using the DBEM. As can be seen in the 

figures, the direct response and the response calculated using the principle of reciprocity 

agree to within a tolerance of 0.5 dB. It should be noted that at higher frequencies the 

expected 'irregular frequencies' appear and needs to be removed using CHIEF over­

determination points. 

When the IBEM is investigated, Figure 4-Sc and Figure 4-sd demonstrate the effects of 

positioning the source on the surface of the sphere. Since the source is now radiating in 

both directions, the energy should be increased proportionally to the local solid angle (see 

Equation 3.9 in Chapter 3). If the local point was positioned on an infinite plane. then the 

solid angle is Y2 (see Equation 3.8), and the radiation will be distributed evenly for both 
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sides of the plane. The local solid angle for the node on which the source was positioned 

was calculated to be 2.47T, hence the source strength needs to be multiplied by a factor of 

47T / 2.47T = 1.67. 

It can be seen that the results are In good agreement, except for a severe peak - an 

'irregular frequency' at around 1.7 kHz. This is mainly because of the real 'physical' 

excitation of the interior cavity. Note that when the source is positioned in the far field no 

'irregular frequencies' appear, as expected. 

The results of the simulation based on the second approach are presented in Figures 4-5e 

and 4-5f. As before, the IBEM was used for the modelling. However, in this case the source 

was positioned in the exterior domain. As a 'rule of thumb' the position of the source close 

to the surface should not exceed one nonnal edge length (this is due to the integration 

sensitivity as r ----+ 0). So in order to position the source very close to the surface, a local 

refinement is required (see typical refinements in Figure 4-1 and in Figure 4-11). As shown 

in the figures, hardly any numerical excitation is observed, and in principle these can be 

minimised by applying absorption to the inside elements of the mesh. The accuracy at the 

rear could be improved even further by using quadratic elements instead of the linear 

elements used in this case. 

This method was used throughout the research with both the DBEM and the IBEM and 

found to be reliable, efficient and accurate. 

4.1.2.3 The REM with symmetric models 

The formulation of the boundary integral equation (Equation 3.11 and 3.23 for the DBEM 

and the IBEM, respectively) can be used to solve arbitrary, complex geometries. As 

demonstrated in Section 3.4.1 it is possible to reduce the computational CPU time when the 

acoustic field and the model are symmetric with respect to one, two or three axes. 
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The procedure to solve symmetric models comprises two stages (see Figure 4-6): 

• The problem is run with the symmetric boundary conditions. In the case of a single 

source in the original problem (as shown in the figure), this will result in 

duplication of the geometry and also any boundary conditions, including the 

acoustic source. The duplication is for both the amplitude and the phase of the 

source. Note that rigid boundary conditions (un = 0) should also be applied to 

elements that lie on the plane of symmetry. 

• The problem is run again, this time with anti symmetric boundary conditions. In this 

case the duplicated source has a similar amplitude but negative phase. Note also 

that pressure release boundary condition (p = 0) should be applied to the elements 

that lie on the plane of asymmetry. 

• The results are superposed and divided by a factor of two. This is clearly illustrated 

in Figure 4-6. The contributions from the mirror sources are cancelled since these 

have opposite signs, whereas the real sources are superposed, which is equivalent 

to a single monopole source with double the volume velocity. 

This property is used together with the principle of reciprocity to optimise the CPU time 

whenever the DBEM and the IBEM are used (as will be shown later in Figure 4- I 5 to 

Figure 4-l7). These properties will be further investigated in Chapter 5, Section 5.4.2 for 

the case of modelling HRTF of accurate representation of real heads, and also in Chapter 9. 

Section 9.5 where the sound field is modelled around two KEMAR artificial heads arranged 

with four sources in a symmetrical arrangement. 

Using the principle of reciprocity, the overall CPU time is reduced by a factor of 4: 

doubling the number of nodes ( n ---+ 2n) increases the running time by a factor of 8 

66 



Chapter 4: The HRTF of simple geometrical models 

((2n)3 / n 3 ), but the process has to be repeated twice (see a summary of the computational 

cost in Chapter 10, Section 10.2.8). 

4.1.2.4 The IBEM with Axisymmetric models 

The formulation of the axisymmetric IBEM is gIven In Section 3.5.2. For the case of a 

sphere, or an ellipsoid, this method IS far superior to other methods as a result of the 

following factors: 

• Only a very simple mesh is required with a single curve consisting of line elements. 

• The solution is very fast compared to the 3-D BEM. 

• Severe 'irregular frequencies' do not appear In this case (although they still do 

exist), due to the different mathematical formulation of the problem (as presented 

in Chapter 3, Section 3.5.2). 

In the following example, the mesh consists of 50 line elements (Figure 4-7a). When a 

harmonic order of 7 was used (i.e. 27 elements are generated for each element in the 

revolving line mesh), this resulted in a 3-D mesh presented in Figure 4-7b (which can be 

investigated up to approximately 10kHz, or ka ;:::::: 20 based on a = 0.1). In practice it 

was found that this formulation requires more Gaussian points used in the integration. when 

compared to the DBEM and the IBEM, especially for points at high frequencies in the far 

field:::. The results obtained using this technique are discussed in Section 4. I .2.6. 

4.1.2.5 IFEM modelling 

The response of a sphere can be modelled very efficiently also with the wave envelope 

method (IFEMt Figure 4-8 shows 118 of an IFEM mesh model of a sphere. It includes 

+ In current version of SYSNOISE 5.4, this formulation suffers from errors due to singularities on the surface. anJ 
therefore only the scattered sound field was used in the analysis . 

• Currently, in SYSNOISE 5.4. two methods for solving infinite element models exist: the wave envelope method (Astley. 
1994, 1998. Cremers cl ai, 1994) and the prolate and oblate formulation given by Burnett (1994. 1998a. 1999b). 
However, the latter formulation still suffers from implementation problems, and therefore the results are not includcJ 
here. 
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1638 nodes and 1522 linear hexahedron elements. It was found that the solution is 

optimised when hexahedron elements are used and not tetrahedron elements (these affect 

the bandwidth of the matrices). The number of layers of the conventional FEM mesh is 

frequency dependent, and three layers were sufficient for accurate modelling. 

As shown in Section 3.6, the pressure is composed of a mUltipole expansion with an infinite 

series. The response in the front and at the rear of the sphere are presented in Figures 4-9a 

and 4-9b, respectively, when only a few terms are used. It is demonstrated that three terms 

of the series are sufficient for accurate modelling. At the rear, no improvement was 

obtained when the number of terms was increased to 10. The deviation from the analytical 

solution is a result of the lower resolution mesh than required, and probably the use of 

linear elements and not quadratic elements. 

4.1.2.6 Soundfield simulation 

All the above methods were investigated with the modelling of the sound field around a 

sphere. The excitation was a plane wave (from the right side), the area around the sphere 

was 0.5 m x 0.5 m (with a grid of 400 x 400 points), and the frequency was 2 kHz 

(ka ~ 4). 

Errors of less than 2% were obtained when the results are compared with the analytical 

solution in the front, and an increase of the error up to 7%, in the shadow zone. A higher 

mesh resolution (in the order of 20 elements per wavelength), a higher quadrature and 

quadratic elements will minimise the errors even further. 

It was concluded that under these conditions the axisymmetric IBEM and the IFEM are 

superior to conventional DBEM and IBEM both from the computational speed and from 

the fact that 'irregular frequencies' do not exist (in IFEM) or have little effect (in 

axisymmetric IBEM ). According to Burnett (1994) the relative efficiency of the IFEM is at 

its greatest when large models are investigated at high frequencies. Comparison at higher 
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frequencies imposes great difficulties with the use of conventional BEM models, both due 

to many 'irregular frequencies' and the large size. 

4.2 THE FREQUENCY RESPONSE OF A RIGID ELLIPSOID 

Different formulations of the frequency response of prolate spheroids have been previously 

derived (Spence and Granger, 195 I, Sugiyama et aI, 199 I, Novy, 1998). These are much 

more complex than those of the sphere and also do not address the ITD. As a result they are 

rarely used in binaural synthesis. 

Recently, Duda et al (1999) developed a simple approximate solution for calculating the 

ITD of an ellipsoid that is based on the path lengths to the two 'ears'. His results confirmed 

a better match to an ITD of a listener than the sphere at elevation angles. 

In the following example, the response of an ellipsoid was modelled using the DBEM. 

using the symmetric properties. Figure 4-11a shows the geometry of a sphere which is the 

average of the CORTEX head, with a radius of 8.75 cm, and Figure 4-11 b shows the 

geometry of a stretched sphere (in three directions) to match the size of the head with 

rr=9.6 cm, r)'=7.9 cm and r7.=1l.6 cm. Both the sphere and the ellipsoid models included 

5493 nodes and 10824 elements. The 'ears' were positioned as close as possible to the 

original positions of the ears of the CORTEX head. The position found for the right ear 

(that was used in the simulation) was: ¢ = 100° and () = 260° (in the .v-axis 0.86 cm 

below the origin of the ellipsoid). 

Examples of the variation of the magnitude of the right 'ear' of the ellipsoid are presented 

in Figure 4- I 2. The 3-D surface plot in Figure 4-12a shows the response in the horizontal 

plane. The angle varies from ¢ = 0° (front), through ¢ = 90° (right) to 0 = 355° in 

steps of 5°. The ipsilateral response is characterised with gradual increases up to almost a 

factor of 2 at high frequency (5 kHz) when the source is positioned at 90°. The 2-D plot in 
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Figure 4-12b shows the same data: at ¢ = 90 0 an increase of almost 6 dB is noticed, and 

the contralateral response is characterised with sharp notches. They are profound at high 

frequencies, at ¢;:::::::; 265 0 and ¢;:::::::; 295 0 (Note the asymmetry of angles along the 

'interaural axis' due to the lower and rear position of the 'ear' detection point on the 

ellipsoid). These notches are clearly seen in Figure 4-12b on a logarithmic scale, and 

increase the dynamic range up to 40 dB in this frequency range. Figure 4-12c presents the 

response at the right 'ear' due to sources positioned in elevation (e = 45 0
). ¢ varies again 

from 0 0 to 355 0 in step of 5°. The gain at the ipsilateral ear is now slightly less than 6 dB, 

and the minima are less dramatic with changing the angular position of the source in the 

contralateral side. These characteristics are demonstrated also in the 2-D plot in Figure 

4-12d. 

Recently, Minnaar et al (2000) used this data to compare the ITD of a sphere (with a radius 

of 82 mm and the ears diametrically disposed on the sides of the head), the ellipsoid 

presented above and average ITD values of 70 people. 

He concluded that the sphere produces satisfactory results for the horizontal plane, but a 

better match by the ellipsoid is produced, for example in the lateral vertical plane (see 

Figure 4-13). A better fit could have been obtained with further adjustments of the positions 

to the 'ears'. The ITD was calculated by comparing the gradient of the phase (the group 

delay) of the two ears, at low frequencies. 

The magnitude of the response of the ellipsoid in the horizontal plane and in elevation is 

compared to the sphere in Figure 4-15,4-17 and 4-18. 

4.3 THE EFFECT OF THE SHOULDERS AND TORSO 

Previous measurements of the effect of the torso (Shaw, 1974, Burkhard and Sachs, 1975. 

Kuhn, 1983) revealed that the main contribution was in the frequency region up to 3 kHz 
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depending on the angle of incidence (although the reflections from the torso result in a 

'comb' filtering which affect higher frequencies as well). Recently Avendano et al (1999) 

investigated a head and torso model for the evaluation of the localisation of elevated 

sources at frequencies below 3 kHz. In their psychophysical test of the structural model, 

they concluded that elevation could be synthesized at low frequencies, where the pinna has 

very little effect. 

A CAD model of the CORTEX artificial head (Figure 4-14a) was provided by NCI 

(CORTEX, 1996). The original model includes the artificial head C 1 and the torso TO 1. 

This model was designed according to IEC959 (1990). It was converted to a valid BEM 

model by operating mesh decimation techniques, which are described in Chapter 5 and in 

Appendix 1. The decimated BEM model is shown in Figure 4-14b. Its half model includes 

5596 nodes and 10926 linear triangular elements. Assuming six elements per wavelength 

this model could be investigated only up to 2.5 kHz. This large model highlights the 

difficulties associated with the 'non-uniqueness' problem: it was found that removing 

'irregular frequencies' at high frequencies was very difficult. The larger the modeL the 

higher number of modes that exist in the cavity as frequency increases. The number of 

'irregular frequencies' was significantly reduced (but still remained problematic) when the 

model was divided into two identical parts and the symmetric formulation was used. 

It was concluded that modelling the torso with the BEM should be limited to the frequency 

range where it contributes the most (up to 3 kHz). 

The results of the response of the sphere, ellipsoid, the Cl artificial head (without pinnae) 

and the C 1 + TO 1 artificial head and torso are presented in Figure 4-15 to 4-18. 

Figures 4-15a to 4-15d show the response in the horizontal plane, and Figures 4-15e to 

4-15h show the response in elevation. 
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The modulation of the response of the torso observed in the figures is mainly due to a 

delayed path in addition to the direct path (with different path lengths in the order of 

approximately 14-18 cm). The modulation is angularly dependent with the maximum 

variation noticed between 800 Hz and 2 kHz. The same trend is noticed for elevation 

angles. The figures also show the similarity between the ellipsoid and the CORTEX head 

without pinnae. 

Another way of comparing the responses is by comparing the Interaural Transfer Function 

(ITF) of these models. Figure 4-16 shows the ll..D of the ellipsoid for an arbitrarily chosen 

angle of elevation (¢ = 135°, e = 45°). Between 500 Hz and 2 kHz the sphere produces an 

underestimated ILD. The ellipsoid produces a very similar response when compared to the 

CORTEX C1, and C1+T01 up to 1.5 kHz. 

Figure 4-17 shows the phase difference of the ITF for the source excitation from the same 

direction, which can be used to calculate the ITD. The errors of the phase are calculated 

with respect to the C 1 head. The ellipsoid shows very small errors up to 2 kHz and the torso 

is characterised by the modulation of the phase. The sphere shows larger errors. This is also 

supported when the ITD of the sphere and the ellipsoid were compared by Minnaar et (II 

(2000), and also by Duda et al (1999) who compared the ITD of an ellipsoid with the ITD 

of a single subject. 

4.4 A CYLINDER IN A BAFFLE AS A SIMPLIFIED CONCHA 

In the previous sections we investigated the effect of HRTFs of simple head models. In a 

similar manner to the case of a sphere and ellipsoid where the response can demonstrate the 

basic physical effect of the head as a 'shadowing obstacle', it is possible to investigate the 

basic features of the pinna. Teranishi and Shaw (1968) investigated the response of a 

baffled cylinder to reveal the fundamental resonance frequencies. 
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In this section we simulate the response at the bottom of a baffled cylinder (at a point which 

is 3 mm offset to the centre of the base of the cylinder). A plane wave source was 

positioned at grazing incidence (the plane of the baffle). This problem was solved with the 

DBEM where the surrounding of the cylinder has been smoothly raised from the baffle 

plane. A more efficient method is implemented in Chapter 8 with the introduction of the 

'IBEM transparency' formulation. 

The variation of the amplitude of the response is presented in Figure 4-18 on a linear scale. 

Two resonance frequencies are detected: the first at 4.2 kHz is excited almost uniformly 

from every angle (the slight offset of the detection point at the bottom does not affect 

significantly this resonance mode). However, the second resonance, a transverse mode 

appearing at 10.4 kHz is angularly dependent, as at certain angles an interference causes the 

pressure to be cancelled, and at others to be superposed. 

The variation of pressure at the bottom of the cylinder and its surrounding is shown in 

Figure 4-19 with the source being positioned on the right side. The two resonance 

frequencies detected in Figure 4-18 are investigated, and the first quarter wavelength at 

4.2 kHz is presented in Figure 4-19a. The amplification of the pressure is almost uniformly 

distributed, and with very little variation of the phase (Figure 4-19b). The first transverse 

mode is found at 10.4 kHz. In this case a zero pressure nodal line occurs at the centre of the 

bottom cylinder and maxima at both sides. The phase variation reveals a negative phase on 

the right side and a positive phase on the left side. These mode shapes will be investigated 

further in Chapter 8 as they are fundamental in the analysis of the characteristics of the 

external ear with a blocked ear canal. 
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4.5 CONCLUSIONS 

Different formulations of the DBEM, the IBEM and the IFEM have been used in the 

investigation of simple geometrical models. It is clear that the efficiency of each numerical 

technique depends of the type of problem. For the case of a sphere four methods which are 

based on different formulations have been used and the results have been computed with 

high accuracy compared with the analytical solutions. With the closed models investigated 

in this chapter, it was found that better control of accuracy and eliminating the problem of 

'irregular frequencies' was achieved with the DBEM. However the method is inefficient 

when the models become large (see a discussion in Chapter 10). The investigation with the 

IFEM demonstrated its efficiency. The results do not suffer from 'irregular frequencies' and 

in this relatively small problem the computational speed was equivalent to the 

axisymmetric IBEM. The latter is advantageous compared to all other methods if the model 

is axisymmetric, due to a simple mesh, faster calculation time, and avoiding the problems 

of 'irregular frequencies'. The investigation of the torso is limited to frequencies below 

2.5 kHz mainly because of the large number of 'irregular frequencies' in the large cavity. 

The main advantages of computing the response of the ellipsoid and the torso are the ability 

to produce the most important features of HRTFs at low frequencies that can be used in the 

synthesis of virtual sources in azimuth or elevation. 

The analysis of the baffled cylinder showed two basic features: (1) the frequency response 

at -4.2 kHz is excited almost unidirectionally from any angle of incidence, and it 

corresponds to a quarter of a wavelength resonance. (2) The first transverse mode appeared 

around 10.4 kHz. These results are in agreement with the measurements by Shaw and 

Teranishi (1968) and Teranishi and Shaw (1968) and motivated further investigation of the 

cylinder and pinna mode shapes, that will be presented in Chapter 8. 
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Figure 4-1: A sphere with a radius of (=0.1 m was used for modelling the scattered sound field. The 
local refinement is used in Section 4.1.2.2, when the principle of rec iprocity is implemented. The 
mesh comprises 1266 nodes and 1264 quadrilateral linear elements. Assuming six elements per 

wavelength , the maximum frequency is 5.8 kHz. 
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Figure 4-2: The frequency response of a rigid sphere (with a rad ius of (=0.1 m) modelled with the 
DBEM. The point on the sphere is positioned at the rear, at ¢ = 1800

. The effects of adding over­
determination points is presented and compared with the analytical solution. 
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Figure 4-3: The frequency response of a rigid sphere (with a radius of r=0.1 m) modelled with the 
IBEM. The point on the sphere is positioned at the rear, at ¢ = 1800

. 'Irregular frequencies ' are 
smoothed by adding 25 (5 x 5) special 'singular admittance' elements with large, real admittance 

values inside the cavity. 
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Figure 4-4: The principle of reciprocity: the acoustic pressure PI produced at point B in a fluid by a 

source at another point A in the fluid is the same as the pressure p.) produced at point A by the 
same source located at point B (after Kinsle r et ai, 1982). 
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Figure 4-5 (conL): The IBEM with the source positioned on the surface of the sphere 
(c) frontal angle c/J = 0°,8 = 0° (d) rear angle ¢ = 180°,8 = 0°. 
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Figure 4-7: Mesh models of a rigid sphere, r=0,1 m using the IBEM axisymmetric formulation 
(a) 2-D rotated arc with 50 line elements, and (b) The resulting IBEM mesh with harmonic of 

order 7, equivalent to a 3-D mesh with 6450 elements, 

Figure 4-8: 1/8 of a sphere lFEM mesh, This mesh model comprises 1522 nodes and 1638 linear 
hexahedron elements, 
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Figure 4-10: The magnitude (in dB, not equalised) of the total sound pressure at 0.5 x 0.5 m around a 
sphere with a radius of r=0.1 m excited with a plane wave source on the right at 2 kHz (-ka=4) (a) with 

the IFEM (b) with the IBEM (c) with the DBEM (d) with the axisymmetric IBEM. 
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Figure 4-11 : Two simplified half mesh models: The head of the CORTEX artific ial head (without pinnae) 
converted from CAD model , fitted with (a) a sphere with r=8.75 cm and (b) an ell ipsoid with: 

rx=9.6, ry=7.9 , rz=11 .6 cm 
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Figure 4-12: Plots of the amplitude and magnitude of the HRTFs of an ellipsoid (a) 3-D plot of the 
linear normalised amplitude in the horizontal plane (b) 2-D plot of the same data in [dB] . Simulation 
was undertaken using the principle of reciprocity and the points , in resolution of 5° are at a distance 
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Figure 4-13: A comparison of ITO in the lateral vertical plane: with a sphere (solid line) , an ellipsoid 
(dash line, data from above) , and average of 70 people (After Minnaar et aI, 2000). The po lar axis 

shows the angles in degrees, and the vertical axis shows the ITO in Ilsec. 
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Figure 4-14: The models of CORTEX artificial head (a) original CAD model (b) Decimated BEM 
model for head without pinna (a half model was used with 5596 nodes and 10926 linear triangular 

elements). 
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Figure 4-15: The magnitude of the transfer functions of a sphere, an approximation of an ellipsoid , 
the head of the CORTEX (C1), and the head with a torso (C1 and T01), at various ang les of 

incidence. The source is positioned at a radius of 1.4 m from the centre of the models, and the 
'ears' of the models are positioned as close as possible to the original positions at the entrance to 

the ear canal. 
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Figure 4-18: Frequency response of a baff led cylinder excited at grazing incidence. The first 
'omnidirectional' mode (at 4.2 kHz) is almost independent of the angle of excitation, whereas the 

first transverse mode pattern (at 10.4 kHz) shifts with angle. The scale is similar to the scale 
presented in Figure 4-19(c) . The simulation point at the base of the cylinder at which the above 

results were computed was offset by 3 mm from the centre . 
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Figure 4-19: The pressu re variation in a baffled cylinder. These normal modes have been excited 
by a plane wave source at grazing incidence. (a) The amplitude of the pressu re at 4.2 kHz (b) the 
phase of the pressure at 4.2 kHz (c) the amplitude of the pressure at 10.4 kHz (d) the phase of the 

pressure at 10.4 kHz. 
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CHAPTER 5 

NUMERICAL MODELLING OFTHE RESPONSE OFTHE 

EXTERNAL EAR AND THE HRTF USING ACCURATE 

MESH MODELS 

5.1 INTRODUCTION 

In the previous chapters we presented simple geometrical models such as a rigid sphere or a 

baffled cylinder which can be validated against analytical solutions, and also we introduced 

more complex models such as the ellipsoid that is more difficult to investigate analytically. 

or the head with torso that cannot be investigated analytically. In this chapter we attempt to 

simulate the response of 'real' and complex shapes such as the human head and pinnae, and 

to extend the frequency range. In practice, many technical hitches make this problem far 

from being trivial. Therefore, a few key questions that have emerged during this part of the 

research are summarised as follows: 

• What method of capturing the geometry should be used? Can we obtain a high 

accuracy geometric model of the head, and especially the pinna? Can the computer 

model include all the folded par1s of the helix, fossa of helix, and antihelix? Can the 

entire volume of the cymba and cavum concha be captured correctly? 

• Is it feasible to obtain a mesh model that includes both the precise representation of 

the pinna, and also has a small size (i.e. small number of triangles/elements). so 

that it can be handled by the computing hardware and the BEM software'? What 

techniques are required to be developed in order to manipulate the mesh model? 
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• Do numerical singularities and other al1efacts of using the BEM distort the results? 

This chapter attempts to answer these question. An outline of this chapter is as follows: 

first, the acquisition of the mesh models and their manipulation for valid BEM models are 

described. Subsequently, procedures of modelling of individualised HRTFs and the 

response of baffled pinnae are described and the results are analysed. Examples of 

modelled impulse response are shown, and the inclusion of an ear canal for the case of a 

baffled pinna is investigated. 

5.2 MESH MODELS 

5.2.1 Acquiring the computer models 

The initial assumption made during this work was that the highest resolution possible is 

required for the mesh models of the head and pinnae. It was not clear at that stage what 

accuracy is required and how sensitive will be the modelling of the acoustical response to 

geometry approximations. There me currently a few techniques available to obtain a 

computer model by scanning a physical model. These include: Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), 3-D ultrasonic imaging, etc. These are 

generally used for internal scanning for medical purposes. The main advantage of the 3-D 

laser scanner technique used in this reseal'ch is that it can produce fairly quickly an accurate 

mesh of the surface made out of triangles *. 

Simpler methods for obtaining 3-D mesh models based on a still image or multiple images 

have been suggested. For example Kyriakis and Holman (1997) proposed that the grey 

levels in the pictures are used to define key features of the structure of the external ear. 

• Note that in principle. the use of quadrilateral elements can produce a higher accuracy of the simulation compared with 
triangular elements. but due to the format of the original data. quarilateral elements were not used for scanned models. 
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Approaches like this might be very useful in obtaining an individualised HRTFs without 

the need for complex and expensive laser scanners, such as those used in this research. 

However, the accuracy and the feasibility of using such simple methods is yet to be 

investigated. 

5.2.1.1 3-D scanned models 

In the initial work, the Cyberware 'Head and Face' colour 3-D scanner suggested by Katz 

(1998), had been used. This scanner includes the 3030/RGB digitising head and the PS 

motion system. It is mainly used for medical applications, anthropometry, human interface. 

and in the film industry. The geometry is captured by means of an optical range-finding 

system that produces around a half of a million interconnected triangles and their vertices in 

approximately 15 seconds. We refer to this scanner as having a 'low-resolution'. Further 

details are given in Appendix 1. 

To begin with, it was found in the scanning stage, that the accuracy of the pinna, which is 

our most important part of the head, was poor, since during the motion of the scanner the 

laser beam detects only unhidden parts. In the initial trials using the KEMAR head. the rear 

part of the pinnae were significantly distorted, and more importantly, the resulting concha 

was much shallower then the original rubber ear of KEMAR, and without the details of the 

cavum and cymba concha, helix, antihelix and fossa of helix. However, only after a set of 

simulations, it was found that another scanning technique was required for high accuracy 

modelling of the pinna. 

Although still based on the technology of laser scanning, the Cyberware 'Mini model' 3-D 

scanner is based on the high-resolution 3030RGB/HIREZ scan head with a mid-size high­

resolution motion system. It moves slowly from side to side in the horizontal plane in a 

straight line, parallel to the object. The principle of operation is similar to the 'head and 

face' scanner, but with software controlled, the data is accumulated through repeated scans 
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at different angles of the pmna. In this way, almost every curvature can be captured 

correctly. Even the ear canal geometry can be obtained, by providing an additional model 

with the original's cross-section. Then, the software matches the 'internal' data with its O\vn 

'external' data by matching overlapping sections. The duration of this scanning procedure is 

much longer, of the order of a few hours; before any post-processing is applied to fix 

connectivity, rough surface, holes, etc. 

A few tools were developed and used to integrate the two scans into a single mesh model 

for both KEMAR head and YK head. Description of the procedure is given in Appendix 1. 

5.2.1.2 CAD models 

The original CAD model of the CORTEX MKI and the decimated BEM model were 

presented in Chapter 4 (see Figure 4-14a and Figure 4-14b). The main difficulty with the 

original format of this model (IGES standard, with slices) is that the elements and the 

vertices are not necessarily connected. Also the CAD model of the CORTEX pinna 

(designed according to IEC 959, 1990) was also provided, but due to the low resolution of 

this format, only the head and torso model have been manipulated. Once the mesh was 

repaired interactively by using various tools, it was decimated in order to produce a 

maximal number of homogeneously distributed vertices that can be solved in-core with the 

IBEM. Due to symmetry properties, a half model was created and used. 

5.2.1.3 Pinna moulding 

The external ear of the author was moulded in the Hearing and Balance Centre of the ISVR. 

The moulding was created in two stages, to make sure that both the internal part of the 

external ear (concha, and 1 cm inside the ear canal) as well as the outside part around the 

pinna is captured (see Figure 5.1). 

Two plaster models were created from the negative mould. With one was cut along the long 

side of the ear and included the cross section of part of the ear canal that was moulded. This 
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cross section was required in the scanning process, to ensure all the curved parts of the 

pinna are captured. The frame of the plaster model was shaped and attached to an 

approximate rectangular frame, in a similar way to which the KEMAR pinnae are 

produced, so that it can be attached to the baffle in the anechoic chamber for measurements 

(see Chapter 6). 

5.2.2 Mesh decimation 

The original scan produced a polygonal mesh that describes the surface geometry of the 

head or the pinna. A polygonal mesh is defined as a collection of edges, ver1ices and 

triangular polygons. Each edge is shared by at most two polygons. An edge connects two 

vertices, and a polygon is a closed sequence of edges (Foley et aI, 1990). 

In the literature, curves and surface mesh simplification algorithms are investigated from 

different perspectives in fields such as cartography, virtual reality, computer vision, 

computer graphics, scientific visualisation, computer-aided geometric design, and finite 

element related methods. Since the CPU time of the BEM increases drastically with the 

number of nodes (see Chapter 10 for a discussion on the computational cost). it is crucial to 

optimise the size of the mesh. It is well known that the maximum frequency in the 

BEMIFEMlIFEM corresponds to the longest edge in the mesh. Any alteration to this global 

limit will distort the overall results. Therefore a homogeneous distribution of the nodes and 

elements is required. Research into this topic has revealed that a commercial package for 

this specific task does not exist. More than 100 algorithms have been developed for 

decimating mesh models (Heckbert and Garland, 1997), mainly concentrating on 

preserving the accuracy of the rendered model but these do not necessarily operate with the 

same restrictions that acoustic BEM would require, i.e. controlling the resolution. 

Preserving the shape while reducing the number of elements in the model are conflicting 

requirements in mesh decimation algorithms. In fact, it is impossible to make the distance 
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between vertices exactly the same for all vertices in the mesh while still describing 

accurately the shape of the object. 

The main algorithm used in this research has been developed by Johnson and Hebert 

(1997). It is described briefly below (with more details given in Appendix 1). Our 

modification to the original algorithm includes the addition of controlling separate areas 

within a model, so that different mesh resolution can be applied to different parts in the 

head (i.e. the pinna). The main advantage of the algorithm is in successfully handling the 

two forces in mesh decimation: preserving the shape by limiting a defined maximum 

'global shape error' and distributing the vertices homogeneously by local operators. 

The goal of this method is to adjust the resolution of the original mesh to a desired value 

while minimising the edge length spread of the model's histogram. The principle of the 

algorithm used here is similar to other mesh simplification algorithms in that it iteratively 

changes the mesh by applying local mesh operators. First, all the edges of the model are 

ordered in a priority queue, with the order being determined by each edge length and a 

shape change measure. Two operations are iteratively applied to the edges to achieve the 

desired resolution: edge-split is used to remove long edges, and edge-collapse is used to 

remove short edges. During edge split an edge is divided in the middle and produces a new 

vertex, two new edges and two elements, without changing the accuracy of the model. 

However, the operation of edge-collapse does change the accuracy. An edge is reduced to a 

point: an edge and two elements are eliminated, and two vertices are replaced by a new 

vertex. In addition to these local operations, a maximum allowable shape change for the 

mesh is defined to prevent the mesh from changing too much. As a result, the Imv priority 

edges are treated first, and the programme is stopped only if the global shape change 

criteria are met. 
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Another approach is based on 'edge collapse' only. In this case the original mesh is used 

where the vertices are already distributed homogeneously (with a resolution of 1 mm for 

the head scans, and 0.35 mm for the pinnae scans). The priority queue and the shape change 

measures are similar to those used in the previous method. In this case all vertices in the 

resulted decimated mesh are found also in the original mesh. 

5.2.3 Additional mesh manipulation techniques 

Although mesh decimation is the most important tool, essential to conve11 scanned models 

to BEM models, more tools are required such as: 

• Closing the volume of the head. The scanner produces two large holes: at the top of 

the head, and around the neck. It is essential to produce a closed volume otherwise 

the DBEM cannot be used at all, and the IBEM will produce erroneous results since 

the double layer potential (see Chapter 3) will take into account pressure inside the 

head and outside it. 

• Mesh refinement. This is the opposite operation of decimation, where more vertices 

and edges are added without changing the topology (such as 'edge split'). This is 

essential when the principle of reciprocity is used, and source is positioned very 

close to the blocked ear canal. The cavum concha must be refined. This is also 

discussed in Section 5.4.2. 

• Slicing the model into half. Assuming the head is symmetric and the variation 

between the ears does not affect the response at only one of them. Slicing the 

model also at other positions is required in order to compare the degradation of 

accuracy with different mesh resolutions. 
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• Reorientation of model. The IBEM and the DBEM symmetry work only with 

respect to x, y, or Z co-ordinates. For the 'IBEM transparency' the infinite baffle 

must be defined at z=O. 

• Substitution of low-resolution pinna with the high resolution one. This involved 

reorientation of the new pinna in six degrees of freedom, and matching specific 

patterns of it with patterns of the pinna on the head. 

All of these techniques are described in Appendix 1. 

5.3 BEM MODELS 

5.3.1 Heads 

Two heads were scanned: the KEMAR artificial head (without the torso) and the head of 

the author (referred to as the 'YK head'). The DB60 rubber pinna and the YK plaster pinna 

were scanned separately, and were integrated to the KEMAR and YK head models. 

respectively, replacing the original 'low-resolution' pinnae. 

Two types of decimated KEMAR models are presented in Figure 5-2. In both cases the 

original data included more than 400000 triangles (around 200000 vertices). The target was 

to obtain a suitable BEM mesh that could be used to modelling at the maximum frequency 

possible with the IBEM in-core sol verT. The mesh on the left (Figures 5-2a, 5-2b and 5-2c 

showing the vertices, elements, and rendered model, respectively) was decimated using our 

proposed algorithm that produces homogeneously distributed vertices, thus optimising its 

size, geometry, and maximum frequency. This resulted in approximately 23000 elements 

that can be used up to 15 kHz if four elements per wavelength are assumed (for the 

t SYSNOISE 5.4 is compiled with a 32-bit compiler. This limits the maximum RAM to be used with the in-core soher to 
approximately 1.2 Gb. Although more memory was available. it could not be used for larger models. 
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ipsilateral ear), and 10 kHz if six elements per wavelength are assumed (for the 

contralateral ear). 

When a conventional mesh decimation algorithm was used (the mesh on the right. 

optimised for computer graphics applications), and the number of elements was limited to 

23000 elements, a mesh with non-uniform distribution of vertices was obtained (Figure 

5-2d), where planar areas were described with less triangles (Figure 5-2e), and complex 

areas retained a higher density of triangles to preserve the geometry. Note that with both 

decimation algorithms the rendered images (Figure 5-2f and 5-2c) are very similar. This 

mesh (on the right column) could be investigated using the BEM reliably only up to 

1 kHz (!). This emphasises the significance of optimising the mesh distribution while 

retaining the accuracy of complex shapes such as the pinna. 

It was found very useful to reorient the head in space so its ears are at the same height (both 

entrances to the ear canal are adjusted to be at y=O). The centre of the line connecting these 

two points was defined as the centre of the head with the origin of the co-ordinate axis. The 

head was then divided into two identical parts through a veltical axis that intersects the 

head along the nose. All the veltices near the slicing plane were snapped to x=O. The new 

model was then decimated to a few mesh resolutions. Figure 5-3 shows four different 

model resolutions of half model of KEMAR+. 

When analysis at low frequencies is required, there is no need to use a very detailed model 

and in principle the frequency range of interest is divided to 'band-pass' regions to optimise 

the size of the model and consequently its maximum frequency. This solving procedure. 

with mesh hierarchies, also reduces significantly the need for treatment of 'irregular 

frequencies'. This issue is discussed in Section 5.4.2. 

t These figures show the decimated KEMAR with the 'low-resolution' pinnae to emphasise the concept of 'mesh 
hierarchies'. In modelling. these pinnae were replaced with decimated high resolution pinnae. 
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Since we are interested eventually in modelling individualised HRTFs, the YK head was 

scanned. The main problem in this case was the elimination of hair, which was achieved 

using a 'shower cap', as seen in Figure 5-4a. The final manipulated BEM model is shown in 

Figure 5-4b, where the shape of the scalp was smoothed, the original 'low-resolution' pinna 

was replaced with the accurate pinna, and the resolution optimised for frequencies in the 

region of 10 kHz§. 

5.3.2 Pinnae 

Seven pinnae were scanned and investigated. Four pinnae of KEMAR (the right pinnae: 

DB60, DB65, DB90 and DB95**), B&K, CORTEX, and YK. Since DB95 is not used to 

represent a typical human ear, and includes a large fitting space in the cavum concha for 

containing hearing aids, it was found that the resulting response was not representative of a 

typical ear, and it was decided not to include it in the following analysis of the results. 

All pinnae were scanned with the 'high-resolution' scanner. The original models included 

approximately 150000 triangles (75000 vertices), and include three-dimensional 

information of the pinna (including its frame and base). Two strategies of model 

manipulation were used as follows: 

• Fitting the pinnae into the head (DB60 and YK pmna only). In this case the 

sUlTounding of the pinna was removed, and only the outside, thin shell surface 

remained. This model was later adjusted further to match the curvature of its 

boundaries and the sUlTounding of the pinna in the head. 

• Smoothing the boundaries to a specific plane (.<:=0). 

§ Due to larger dimensions of this head compared with KEMAR. for a given maximum number of elements that could be 
handled with the IBEM in-core solver. lower resolution with larger elements were obtained. hence slightly reduced 
frequency range compared to KEMAR . 

.. Note that OB90 and OB95 have larger ear canal openings. Their geometry is mainly suited for the use of earmoulds. 
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For the latter case, two methods were used; first, since the upper boundaries of the pinna do 

not lie on a single plane, a gradual slope was added from the higher level to the lowest level 

(approximately a height of 7-10 mm, as in the sides of artificial head pinnae). This resulted 

in relatively large models (see Figure 5-5/DB60 and Figure 5-6). Later, the bottom level of 

the pinna was snapped to a single plane at z=O. The acoustic response was investigated to 

demonstrate that the errors were negligible compared to the previous case (see 

Figure 5-5/YK pinna and the pinnae used in Chapter 8). Six smoothed pinnae are presented 

in Figure 5-5. These were investigated with mesh resolutions corresponding to a maximum 

frequency of more than 20 kHz. All models include a refined area around the blocked 

entrance to the ear canal for using the principle of reciprocity (detailed geometrical 

properties and statistical values of these pinnae are presented in Appendix 1). 

Although we concentrated in our study on the 'blocked meatus' response, the addition of an 

ear canal is not impossible. Stinson and Lawton (1989) showed large variations in ear canal 

shapes and sizes: the ear canal cross section area can vary between 40 mm2 and 90 mm2 

with an average of 65 mm2
, also due to eardrum impedance variations, the calculated 

transformation of the pressure from the ear canal entrance to the innermost point in the ear 

canal vary substantially, where up to 8 kHz the variations can be within a 4 dB from the 

average, and above this frequency range the variations can be of 20 dB and more. 

Therefore, we chose to add a typical cylinder with the dimensions of 22.5 mm length and 

7.5 mm in diameter (as used by Zwislocki, 1970). The difficulty in the process of this mesh 

is the special treatment required with the 'IBEM transparency' module. Since the baffle lies 

above the ear canal and below the pinna, and sound waves are required to propagate 

'through' the entrance to the ear canal, the pinna must be oriented such that the ear canal 

entrance is exactly at z=O. Then the entrance must be closed with a planar surface \vith 

elements at z=O and the edges at the boundary of the circular surface should be connected to 
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edges of the canal below and edges of elements of the pinna above. These added elements 

will be defined as 'transparent' elements in the solving procedure. 

It was found that the formulation of the 'IBEM transparency' is very inflexible to deviation 

of the mesh from these requirements. An example of the cross section of the baffled DB60 

and the simplified ear canal (without the transparent elements) is given in Figure 5-6. Note 

that the addition of the ear canal to the model of the head is a much simpler process, since 

the addition of transparent elements is not required, and the entire mesh model remains a 

closed volume. 

The frequency response of the 'low-resolution' DB60 was investigated as described in 

Section 5.5.1. Figure 5-7a, b shows two views of the original cut-out scan of the pinna, 

before any decimation was applied. Cleary seen are the lack of details, the distortion (in the 

form of extrusion) in the back of the posterior wall of the concha, and the shallow cavity of 

the concha. This model will be investigated in order to study the degradation of the 

acoustical response when compared with the results obtained with the high accuracy mesh 

model of the DB60 pinna. 

5.4 NUMERICAL MODELLING OF INDIVIDUALISED HRTFs 

5.4.1 Limitations of the model 

When HRTFs are measured with subjects III the anechoic chamber the sound 

transformation detected very close to the eardrum includes all the contributions form the 

body, torso, neck, head, pinnae, ear canals and eardrums, as well as the effects of clothing. 

and hair. In our simulations we limited our model to include only a rigid head and pinnae 

that are blocked at the entrance to the ear canals. We therefore expect the following 

discrepancies when our model is compared with an average measurement: 
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• Blocked ear canal. The valuable positions of the 'microphone' at the blocked ear 

canal was suggested initially by Yamaguchi and Sushi (1956), investigated 

extensively by Shaw (1974), and evaluated with the binaural technology by M0ller 

et al (1995) and Hammersh0i and M0ller (1996). It should be born in mind that the 

response detected at this position equalised with the free-field response (without the 

head) is the only directional component in the HRTF since the transformation in the 

ear canal is insensitive to direction up to around 12 kHz (Shaw and Ternaishi. 

1968). The transformation therefore needs to be compensated for the ear canal 

response. 

• Missing torso. The effects of the neck and torso were investigated by Burkhard 

and Sachs (1975), Preves (KEMAR, 1978) and Kuhn (1977). Male and female haw 

on average different neck lengths. These differences can shift the frequency of the 

first pressure minimum (see Figures 4-15e to 4-15h and Burkhard and Sachs. 

1975), detected at the eardrum for sources in the front from l.4 kHz to l.2 kHz. As 

a result KEMAR includes three neck sizes. The torso also contributes mainly up to 

2-3 kHz. At 1.2 kHz a clothed torso can alter the pressure by 3 dB compared with 

the head only. 

• Boundary conditions. The effects of simulating flesh, hair and clothing were also 

investigated by Shaw (1974) and Burkhard and Sachs (1975). Hair in the form of a 

wig makes the pressure minima at the eardrum at around 10 kHz less deep but has 

very little effect at lower frequencies. The effect of neglecting the impedance of the 

skin is found to be negligible (<1 dB difference below 8 kHz). Kuhn (1977) found 

that ITD and ILD of KEMAR are different depending whether or not the torso is 

bare or clothed. Difference of ll.-D can be up to 3-5 dB up to 3 kHz. and ITD can be 

reduced significantly (from ~ 600 IL sec to ~ 500 II sec) below 700 Hz if the 
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torso is clothed. Modelling the impedance values of the hair was carried out by 

Katz (1998). He found that the hair contributes up to 6 dB at frequencies below 

5 kHz. This was higher than the conclusions of Shaw (1974) who stated that the 

contribution of hair is probably less than 3-5 dB (the effect of clothing) at very high 

frequencies. 

5.4.2 Problem optimisation with the IBEM 

The use of the symmetry property described in the previous chapter is investigated here 

with the IBEMtt , for the case of KEMAR. Two cases are compared: a full model with 

30000 elements, and a half model with 15000 elements. The response is compared between 

the two cases at the blocked ear canal due to a monopole source positioned at 

¢ = 90°, e = 0°. It is shown in Figure 5-8 that the errors are less than 0.2 dB up to 

10 kHz++. As shown in Chapter 4, Section 4.1.2.3, the CPU calculation time is four times 

faster than when the full head is modelled. 

The principle of reciprocity (Section 4.1.2.2) is an essential tool in numerical modelling of 

HRTFs. Once the frequency response was calculated when the source is positioned very 

close to the entrance to the ear canal, it is possible to calculate the pressure at any angular 

position and distance in space at greater speeds than the calculation time of the 

conventional method (see Section 10.2.8). Figure 5-9 shows the response at the blocked ear 

canal of a baffled pinna (DB60 with 6887 nodes and 13488 elements). Two cases are 

investigated: 

+t All the simulations undertaken in this research assumed linear elements. the speed of sound is c = 3.+0 m/sec. the tluiu 

density is p = 1.21 m1sJ and the boundary conditions are defined for rigid body (U,II = 0) except othemise 

described. 
ti The models used in this comparison were with the 'low-resolution' pinnae. Therefore the main resonance is shifteu to 

7 kHz. However. the motivation here is to validate the superposition of the pressure with the symmetric properties. 
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• The source is positioned in the far field, and the frequency response is detected 

1 mm away from the surface of the blocked entrance of the ear canal. 

• The source is positioned 1 mm away from the surface, and the pressure is detected 

in the far field at the position that was previously that of the source. 

It is shown that the results are nearly identical providing that enough over-determination 

points (30) are inserted in the cavity between the pinna and the baffle. 

Visualisation of HRTFs could be presented in many ways, since the complex structure at 

high frequency varies significantly in both frequency and time domains, and with angular 

directions. In Figure 5-10, 3-D colour maps show how the magnitude of the pressure in the 

near field (0.5 m) at the reciprocal points, changes with an angular position. The response is 

shown at discrete frequencies. As the frequency increases, the dynamic range obtained 

becomes higher. At 200 Hz the variation is almost omnidirectional, and variations of ±3 dB 

are only due to proximity to the head, and equalisation with respect to its centre. At 1 kHz 

the head still has similar characteristics to a sphere, with equal contours of magnitude in 

both the ipsilateral and contralateral ears. Note that the minimum pressure occurs at angles 

that are not directly opposite the right ear, due to superposition of waves with equal path 

lengths. At 2 kHz, slight variation can be seen between positive and negative elevation 

angles. Also the response at the contralateral becomes direction dependent. The pinna still 

has very little effect at this frequency. At 5 kHz the boost is mainly due to the first 

resonance of the concha (17 dB at this distance), and the attenuation is mainly due to the 

shadowing of the head (-39 dB). We can expect even more complex variations in the 

contralateral ear as frequency increases. 

These figures demonstrate the advantage of obtaining continuous maps of HRTFs. As 

frequency increases the complex patterns show that interpolation of HRTFs based on low-
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resolution sampling of measurements will produce large errors, especially for the 

contralateral ear. In the next sections we investigate the variation of HRTFs with a higher 

frequency range at different planes. 

5.4.3 Results 

The results presented below and also in Section 5.5.3 are analysed and compared with the 

literature, with further simulation results compared with measurements in Chapter 6. 

5.4.3.1 Median vertical plane 

The modelled amplitude and magnitude of the HRTFs of the YK head are presented in 

three different planes (The co-ordinate system is defined in Chapter 1, Section l. 6). In all 

cases the response is detected at the blocked ear canal of the right ear, and the sources are 

positioned on a sphere with a radius of 2 m. Figures 5-11a and 5-11 b present the response 

due to sources in the median vertical plane. Since the torso is absent the angles belmv -400 

and above 2200 are meaningless and therefore are excluded from the figures. The figures 

are presented on both linear and logarithmic scales. The following observations can be 

made and compared with the literature: 

The first resonance is clearly seen around 4 kHz. It almost does not change with the angle 

of elevation, but a maximum amplification is obtained when the sound is in the front and 

above, between e = 0° and e = 40° (see Shaw, 1997 for similar trends although the 

pinna is baffled). A similar pattern was obtained with the baffled cylinder (see Figure 4-18). 

At all angles the first resonance causes an amplification of 10-17 dB (as in Shaw and 

Teranishi, 1968, Mpller et aI, 1995, Hammershoi and Mpller, 1996). 

It was noted by a few researchers that a possible frontal cue could be the low pass notch 

that moves from 6 kHz to 10 kHz as elevation increases from e = -40° below the 

horizontal plane and up to e = +60° above the plane (Shaw 1974, Butler and BelendiuK. 
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1977 and Mehergart and Mellert, 1977). The low pass filter for these angles is clearly seen 

in the figures. This notch can be explained by the fact that for higher elevations, the 

reflected path length is shorter, so that the notch in the spectrum is at an increased 

frequency (Hebrank and Wright, 1974). 

Blauert studied the perception of elevation III three sectors: frontal (-1.5° < e < 45° ), 

above (45° < e < 135° ), rear (13.5° < e < 200° ). A 'boosted band' appears around 8 kHz 

when the source is overhead (Blauert, 1996, pp. 110, Figure 2.47). Hebrank and Wright 

(1974) also noted that sources above are characterised by a 14 octave peak between 7 kHz 

and 9 kHz. In our case, the maximum amplification shown in Figure 5-11 b occurs at an 

angle of e = 80° rv 90° overhead and the frequency is 7.8 kHz. 

5.4.3.2 Lateral vertical plane 

With the simulation of HRTFs in the lateral vertical plane (presented in Figure 5-12) a 

larger dynamic range is noticed due to the shadowing of the head. The structure of the 

notches at contralateral angles is very complex. The general structure of this plane can be 

compared to the data measured on 40 subjects by M¢ller et al (1995) in this plane: the 

frequency of the notch at angle ¢ = 90°, e = -40° starts at 6 kHz and increases with 

angles up to 10 kHz at ¢ = 90°, e = +30°. The same phenomenon appears in their results 

(M¢ller et ai, 1995, Figure 15), and also in Shaw and Teranishi (1968, pp. 248). 

The maximum pressure is obtained at qJ = 90°, e = 0° at 5.5 kHz with a boost of 15 dB. 

The attenuation of angles in the shadow zone reaches levels of -33 dB, and the overall 

dynamic range of HRTFs in this defined plane is almost 50 dB. Therefore the features of 

the HRTFs cannot be characterised under this scale. Also, the reliability of the large 

attenuation in the shadow zone is probably not very high due to lack of mesh resolution, 

and this is investigated against measurements in Chapter 6 (for the case of KEMAR). 
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5.4.3.3 Horizontal plane 

The variation of HRTFs in the horizontal plane (presented in Figure 5-13) is mainly 

characterised by the deep notch whose frequency - 8.5 kHz, is fairly constant. Similar 

features exist in Shaw, 1997, p. 29 (although the minima there occur at 9.5 kHz, see also 

Section 5.5.3.3). In his averages from 12 studies (more than 100 subjects), the measurement 

is close to the eardrum and averaged. However it was shown in Shaw and Teranishi (1968, 

Figures 4 and 10) that the minimum is present in both cases and that it is a result of an 

interference effect. They concluded that the minimum around 8 kHz is relatively 

independent of the angle of incidence in the horizontal plane as is shown in our case. 

although this minimum is not present in the contralateral ear response (as can be seen in 

Figure 5-13). 

5.5 NUMERICAL MODELLING OF THE RESPONSE OF 

BAFFLED PINNAE 

5.5.1 The response of a 'low-resolution' DB60 

In the initial stage of the work, the 'low-resolution' scanner was used. At this stage, the full 

HRTF database (of the head with the pinna) was simulated. Due to the difficulties in 

obtaining reliable results at high frequencies, it was not clear to what extent the accuracy of 

the distorted geometry affects the acoustical response. In order to verify that the resonance 

frequencies are due to the geometry of the pinna, and not due to numerical errors that might 

arise with a large model, the original data of the pinna was 'cut' from the head and 

transformed to a baffled plane. The geometry of this pinna model is depicted in Figure 5-7 a 

and Figure 5-7b. In this case, the original model comprises 5535 nodes and 10844-

elements. Virtually the same acoustical characteristics appeared with the baffle compared 

with the full head for certain angles (see below). The mesh was not decimated to ensure 

that no additional geometrical distortions would occur, but only smoothed at its boundaries 
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to the plane of the baffle. The response of the 'low-resolution' DB60 for grazing incidence 

is presented in Figure 5-14a. The response of the accurate DB60 pinna for the same plane 

under similar conditions is presented in Figure 5-14b. 

It can clearly be seen that the visually distorted parts result in acoustical errors across 

angles and frequencies. The general trend that appears in both pinnae is two main 

resonance frequencies with large amplification at frontal angles, whereas rear and bottom 

angles have very little amplification compared with the front and top angles. However two 

significant errors appear: 

• Due to the shallow concha all resonance frequencies shift upwards. In this case 

6.5 kHz and 11.5 kHz obtained with the 'low-resolution' pinna, compared with 

4.9 kHz and 10.3 kHz obtained with the accurate pinna. 

• Although the magnitude of the response is of the same order the overall change of 

the response with angle and frequency is not as distinctive as with the accurate 

pinna. This is expected since the variation of the folded parts of the pinna is also 

not very detailed. 

It is concluded that the 3-D mesh with accurate geometry is essential for modelling the 

response at high frequencies. 

5.5.2 The effect of the baffle on the response 

The pinna is attached to the side of the head at different positions and angles among 

individuals (see Alexander and Laubach, 1968, and Bukhard and Sachs, 1975). By 

attaching the pinna to a baffle we inevitably change the transformation of sound detected at 

the eardrum, or blocked entrance to the ear canal. However, since we investigate only the 

ipsilateral side, we assume that differences between the baffle and the head. will not be 
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significant, if we limit our expectations to the general structures of peaks and notches, 

varying across frequency and directions. 

In Figures 5-15a to 5-15f, we compare the response of two pinnae (DB60 and YK pinna) 

for the baffled case and when the pinna is attached to the head. The positions of the sources 

in space were aligned approximately with the same angular directions since the co-ordinate 

systems are different in both cases. The plots on the left compare the response at grazing 

incidence angles. These are very similar, and the slight differences can be attributed to the 

fact that the source and microphone arrangement in the two cases is different and therefore 

the angle of excitation is slightly misaligned. However, both the frequencies of the peaks 

and notches as well as the magnitudes represent the response obtained with the full head. 

On the right, three source positions in the horizontal plane have been investigated with 

KEMAR and DB60. As the source moves to the rear, the error increases due to interaction 

with the baffle§§. In this case we can still study the general trend of the variation of the 

response but the accuracy is frequency and direction dependent, in particular if all pinnae 

under investigation have the same baffled conditions. 

5.5.3 Results 

5.5.3.1 The response at grazing incidence 

A few authors emphasised the significance of the notch that varies between 6 kHz and 

10 kHz according to the angle of sound source (Shaw and Teranishi, 1968, Blauert 1972. 

Bloom, 1977 and Butler and Belendiuk, 1977). The results presented in Figure 5-16 can be 

compared with the results obtained by Shaw (1997, pp. 34-35) since he investigated the 

response of baffled pinnae. Only the general trends should be analysed since probably the 

dimensions of the pinnae are different in these studies, and he used a point source 

§§ In the figures on the right the response of KEMAR was 6 dB higher than presented due to free-field equalisation. 
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positioned in the near-field (8 cm from the entrance to the ear canal), whereas, in this case a 

monopole was simulated in the far field using the principle of reciprocity. In his figures, the 

response was presented in a 2-D format: magnitude versus frequency. In this form, the 

trends of the most significance frequencies are highlighted, and also certain features such 

the 'low-pass' observed with parallel sloping lines between 5 and 11 kHz. However, it is 

difficult to observe the variation of magnitude with angle, especially at high frequencies. 

In Figure 5-16 we present, on a linear scale, the response of six pinnae to excitation at 

grazing incidence. The response is normalised with the response detected at the centre of 

the baffle, without the pinna. At DC the amplitude of the response is unity (or 0 dB). In our 

cases, it is found that pinna amplification can be as high as 4.5 (increase of 13 dB). The 

figures show the variation of maxima and minima as a function of frequency and angle. We 

can conclude with the following observations: 

• In a similar way to the case of the median plane angles to the full head (see Section 

5.4.3.1) the notch for all six pinnae star1s at around e = _90 0 at 6 kHz and 

increases up to e = +400 at 10kHz. 

• In general, the peaks in the figures ar'e arnnged in ver1ical lines, i.e. at certain 

resonance frequencies, the pinna is excited with different efficiencies depending on 

the angle of excitation. There are no more than six resonance frequencies, as Shaw 

found, but in some pinnae only five resonance frequencies were found. 

• In the work of Shaw, maximum amplification is always observed at the first quarter 

wavelength (between 4 and 5 kHz). An almost similar' amplification level can be 

found at higher frequencies as well (e.g. subjects A, D, and J, in his figures. Shaw. 

1997, pp. 34-35). This trend is evident in our case, with the exception that, with 

some ear's, higher amplification at high frequencies is noticed compared with the 
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first resonance. This can be explained by the fact that the source is positioned 5 cm 

away from the baffle, and amplification values at high frequencies are very 

sensitive to its position in the vicinity of the baffle. In addition, due to 

approximation made using the principle of reciprocity where the source is not 

positioned on the surface but 1-2 mm away, some variation of amplification can be 

obtained at frequencies above 10kHz. 

• The range of frequencies around 4 kHz, corresponding to one of Blauert's 'v'-bands 

(1997), was found to play an important role in front-back discrimination. This 

frequency is attenuated for rear sources and boosted for frontal sources due to 

destructive and constructive interference respectively between direct and reflected 

sound. In all figures the frontal angles ( -30 0 :s; () :s; +30 0
) are characterised by a 

boost, and angles at the rear (above and below) are characterised by smaller 

amplification values. 

For grazing incidence excitation, a comparison of all resonance frequencies found by Shaw. 

and this work is given in Table 5-1. The first resonance frequency is very similar in all 

cases except for a shift in the first resonance of DB60. This increase is expected due to 

smaller dimensions of this particular pinna (the larger version of KEMAR, the DB65 has a 

high level of agreement with the averages of Shaw). In two cases not all of the six 

resonance frequencies were found. This was investigated further with measurements in 

Chapter 6 and also with mode shape analysis in Chapter 8. The reliability of the last mode 

is doubtful due to the large sensitivity to source position, mesh geometry, and alignment. 

although in general a peak was always found in this range. 
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DB60 DB65 DB90 YK CORTEX B&K Shaw 

4.9 4.2 4.2 4.1 4.2 4.1 4.2 

7.8 7.2 7.2 7.6 7.2 7.7 7.1 

10.3 9.5 9.6 - 9.6 10.5 9.6 

- 1l.6 1l.8 11.2 11.8 12.2 12.2 

14.0 14.8 14.7 14.0 14.1 15.3 14.4 

17.0 18 18.4 17.8 17.4 18.0 16.7 

Table 5-1: Resonance frequencies in kHz of six pinnae modelled with the BEM. The frequency 
corresponds to the frequency at which the maximum amplification is reached in the resonance 

frequency range. The results of Shaw (1997) show the average of 10 pinnae. 

5.5.3.2 The response in the lateral vertical plalle 

The main features appearing in Figure 5-17 can be summarised as follows: two main peaks 

occur at different frequencies: at 4-5 kHz with the strongest excitation at normal direction 

(¢ = 90°, e = 0° ), and around 10kHz at upper angles (¢ = 90°, 400:s; e :s; 80°). Note 

the similarity with the resonance frequencies of the cylinder. The behaviour of the YK 

pinna is slightly different with the second resonance occurring at 8 kHz instead of 10kHz. 

A progressive notch is observed from 6 kHz, down at ¢ = 90°, e = -90°, and increases 

with frequencies up to approximately 12 kHz at approximately ¢ = 90°, e = +-Wo. 

Variations above 10 kHz have no consistent stmcture. 

5.5.3.3 The respollse ill the horizontal plalle 

The most striking feature in the horizontal plane (Figure 5-18) is the simpler variation of 

the first few peaks and notches. The first resonance shifts only slightly from 4 kHz to 6 kHz 

for angular positions of sources that shift from the front to dJ = 130° at the rear. In all 

pinnae, from ¢ = 130° to ¢ = 180° the peak in this frequency range is substituted with a 

notch. In fact this notch starts at frontal angles (from 6 = 20° at around 1 kHz) and 

progress monotonically with frequency up to 0 = 130° at 5 kHz, and then the attenuation 

is noticed at all angles. The deepest notch at around 9 kHz hardly changes as a function of 

the angle. This notch is found problematic in every HRTF database in the horizontal plan~ 
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(see Gardner and Martin, 1994, and AUDIS, 1996) since it requires a large dynamic range 

in the equalisation process and also since it has a narrow bandwidth, equalisation may 

result in a boost at a slightly shifted frequency. As before, other spectral features do not 

repeat systematically among all pinnae above 10 kHz. 

5.5.4 Examples of modelled impulse responses 

An analysis of measured impulse responses for baffled pinnae could not be found in the 

literature. The following impulse responses were calculated by applying the Inverse Fast 

Fourier Transform (IFFT) to frequency responses calculated between 1 kHz and 20 kHz, 

and therefore the sampling frequency is 40 kHz. It should be noted that at the Nyquist 

frequency the imaginary part of the pressure should be zero (or the phase). Therefore, a 

simple linear correction was applied to the complex pressure values at high frequencies 

(between 15 kHz and 20 kHz, with gradual linear decrease of the phase down to 0°), 

without changing the magnitude. 

The impulse response at grazing incidence for DB60 and DB65 are given in Figure 5-19a 

and Figure 5-19b. These responses are characterised by two adjacent peaks for angles from 

¢ = -500 up to ¢ = +300
• The same trend can be seen in Hiranaka and Yamasaki (1983. 

Figs. 3 and 4) although they investigated the impulse response with the effect of the head. 

For the lateral vertical plane, the DB90 is investigated, with a clear trend of a delayed 

secondary reflection as the source is lowered. Hiranaka and Yamasaki (1983) confirmed 

that major reflections occur within 350 Ilsec after the first arriving sound, and that the delay 

increases as the source is lowered. 
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5.5.5 Baffled pinna with a cylindrical ear canal 

M0ller (1992) defined the following variables for sound transmission: PI is the pressure at 

centre position of head, P
2 

is the pressure at entrance to blocked ear canal, P:J is the 

pressure at entrance to the open ear canal, and P
4 

is the pressure at the eardrum. Therefore 

the free-field equalised HRTF can be expressed as 

P4 _ P2 P3 P4 

Pi Pi P2 P3 
(5.1 ) 

It has been shown (M011er, 1992, M0ller et ai, 1995, and Hammersh0i and M0ller, 1996) 

That the ratio P2 / Pi is direction dependent, whereas P3 / P2 and P 4 / P3 are direction 

independent. It has also been shown that measurements at the blocked ear produce a lower 

standard deviation between subjects than measurements undertaken at the open entrance 

and the eardrum and this point is suitable for binaural recordings. The significance of this 

approach is the simplification of measuring HRTFs (see also the SNAPSHOT system used 

by Wenzel et at (2000) that is designed to measure the response at the blocked ear canal of 

subjects). However the quality of the sound will be different due to the variation In 

resonance between blocked and open ear canal (see Shaw and Teranishi, 1968). 

As stated in Section 5.3.2 the motivation of inclusion of a simple cylindrical canal has been 

raised due to variations among individuals for the canal shape, size and eardrum boundary 

conditions. Therefore we include an average ear canal with dimensions based on the 

Zwislocki coupler (Zwislocki, 1970), and the boundary conditions based on average data 

published by Shaw (1974). 

5.5.5.1 Boundary conditions 

Using the 'IBEM transparency' formulation (Chapter 3, Section 3.5.3), the following 

boundary conditions were applied: 
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• 'Transparency' for elements defined on the plane of the entrance to the ear canal, at 

z=O. This is to ensure that waves can propagate through this 'opening', where the 

3-D mesh is attached to an infinite baffle. 

• Monopole source excitation. Using again the principle of reciprocity, the source 

was positioned 1 mm above the bottom of the canal (at -21.5mm). The mesh 

includes 8203 nodes, 16118 elements, of which 85 elements are transparent at z=O. 

and 666 elements comprise the eardrum and are applied with the impedance 

boundary conditions. 

• Frequency dependent admittance values have been assigned to the elements of the 

circular area at the bottom of the cylinder. The values are based on the average 

impedance values (resistance and reactance) given by Shaw (1974). 

In the frequency range of up to 8 kHz these values are similar to the response of the 

Zwislocki ear canal simulator (Zwislocki, 1970). The impedance values, measured in 

acoustic Ohms, were converted to specific impedance by mUltiplying with the area of the 

bottom of the canal and converted to specific admittance values in Rayls. It should be noted 

that this simulation provides only a rough approximation to the response that would have 

been detected by the Zwislocki simulator DB 100. The impedance values were measured by 

Zwislocki at the four branches (see KEMAR, 1978), and not at the bottom. However, it is 

possible in principle to calibrate the response of the canal, by applying admittance values 

obtained from empirical data. 

5.5.5.2 Results 

The results presented in Figure 5-20 include simulation with two models: blocked ear canal 

(See Figure 5-5), and the current model with the inclusion of the ear canal. For the latter 

two cases were investigated: rigid boundary conditions at the eardrum. and frequency 

dependent complex admittance values. The general characteristics of the three curves are in 
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agreement with the results of Shaw and Teranishi (1968). A strong resonance appears at 

3 kHz due to the canal resonance. Amplification is in the order of 25 dB compared to the 

response of the baffle. The admittance values reduce the amplification to 15-17 dB. The 

blocked ear canal creates a peak around 4.5-5.5 kHz depends on the angle of excitation. In 

grazing incidence the amplification is 10-12 dB (see also Shaw, 1997). Notice that the 

sharp minima around 8 kHz is present in both blocked pinnae types as stated by Shaw and 

Teranishi (1968). 

It should be noted that this feasibility study requires further investigation of the properties 

of boundary conditions at high frequencies, and more accurate modelling, for example of 

the four-branch Zwislocki coupler. 

5.6 CONCLUSIONS 

The method of capturing and manipulating scanned surface models has been described. 

Since the BEM is very inefficient when large mesh models are investigated, the 

optimisation of various stages in the simulation is found to be crucial: the vertices of the 

mesh should be distributed homogeneously, but the overall shape should not be distorted. 

the pinna scanned with an accurate laser scanner needs to replace the low-resolution pinna. 

the mesh needs to be cut to half and reoriented in space so that the symmetry option in the 

BEM can be used. Local refinement around the blocked ear canal is required when the 

source is positioned very close for simulation using the principle of reciprocity. This was 

used to demonstrate the spatial variation of the pressure at discrete frequencies. The 

visualisation in three dimensions demonstrated the high variation of the pressure in the 

shadow zone (the contralateral side). 
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The simulation results of individualised HRTF are presented in the median, lateral vertical 

and horizontal planes. The results are compared to previously published observations of 

spectral features of the HRTF. 

Due to the high complexity of the pinna shape, and also its frequency response at high 

frequencies, it was found that high accuracy is required in the original scanned model. In 

order to obtain good agreement at frequencies in the region of the first quat1er wavelength 

resonance, at least the shape, size and volume of the concha should be close to the physical 

model. The simulation of baffled pinnae reveals similar peaks and notches found in the 

simulation of the full head (for the ipsilateral ear only, of course). At high frequencies the 

dominance of the pinna is evident compared with diffraction effects around the head. The 

peaks and notches of six pinnae have been analysed and compared with the literature. 

Continuous maps can reveal the similarities and differences between pinnae. Large 

variations appear above approximately 10 kHz even when all pinnae are baffled and 

oriented to have the same tilt angles with the baffle. It is expected that these high variations 

will occur at lower frequencies, around 6-8 kHz if the HRTFs include also the effect of the 

head. 
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(a) 

(b) 

Figure 5-1: YK plaster pinna model (a) still picture of two identical moulded plaster pinnae. One 
was cut vertically for the detection of the curved surface by the laser scanner (b) the resulting 

computer 3-D mesh model with approximately 112000 vertices and 225000 triangles. 
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(a) 
(d) 

(b) (e) 

(c) (f) 

Figure 5-2: Decimated mesh with vertices (top) , elements (midd le) and rendered models (bottom) 
of KEMAR. In both cases the model comprises 23000 elements and 11500 vertices . (a, b, c) 

homogeneous mesh decimation optimised for the BEM. (d , e, f) conventional mesh decimation 
algorithm optimised for computer graphics. 
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Figure 5-3: Mesh hierarchy of half models of KEMAR with the fol lowing approximate number of 
elements (a) 2500 (b) 5000 (c) 10000 (d) 15000. The pinna of the models is decimated separately 
with a higher resolution to enable the positioning of the source close to the entrance of the blocked 

ear canal, when the simulation is undertaken with the principle of reciprocity. Also shown is the 
plane of symmetry for each model. 

(a) (b) 

Figure 5-4: YK head model (a) Original rendered model with a 'shower cap' used to conceal the 
hair. The model consists of 418000 elements (b) Hybrid model includes decimated head and pinnae 

captured with two types of scanners. 

11 9 



Chapter 5: Numerical modelling of individualised HRTFs 

DB90 DB60 

CORTEX YK 

B&K DB65 

Figure 5-5: BEM pinnae models: decimated, aligned and smoothed into a rectangular frame lying at 
z=O. Distortion of the geometries of the pinnae was kept minimal. 
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Figure 5-6: Decimated BEM model of DB60 with the addition of a cylindrical ear canal. Only the 
cross section is shown, without the 'transparent' elements positioned at the entrance to the canal. 

The entire model consists of 8189 nodes and 16113 elements. 

(a) (b) 

Figu re 5-7: Original 'low resolution' DB60 mesh model with approximately 6000 nodes and 12000 
elements. Two views are shown to demonstrate the coarse representation of the pinna (a) a 'sol id ' 
rear and shallow cavum concha (b) distorted antihelix and the posterior wall of the cavum concha. 
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Figure 5-8: Validation of the use of the property of symmetry. When using a half of a model the 
error is less than 0.1 dB, and the CPU time is improved by a factor of 4. 
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Figure 5-9: Validation of the principle of reciprocity using a baffled DB60 pinna. The model cons ists 
of 6887 nodes and 13488 elements. The curves shown are the frequency response at the entrance 

to the ear canal due to a source at normal angle, ¢ = 900 
. Reciprocity is checked when the 

pressure is investigated on the surface of the pinna due the source in the far fie ld and also at the 
position of the source which is 1 mm away from the surface. 
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200 Hz (red +2.7 dB) 200 Hz (blue -2.3 dB) 

1 kHz (red +7.2 dB) 1 kHz (blue -7 .2 dB) 

2 kHz (red +8. 3 dB) 2 kHz (blue -32.7 dB) 

5 kHz (red +16.5 dB) 5 kHz (blue -39 dB ) 

Figure 5-10: Spatial colour maps of HRTFs of KEMAR using the principle of reciprocity. In this case 
the response was calculated at 0.5 m away from the head . Maximum magnitude variations are 

given at each frequency (b lue corresponds to minimum, and red for maximum) . The colour 
corresponds to the magnitude of the pressure detected at the left ear due to a source at that 

pos ition . 
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YK head - median plane 

6 8 
Frequency [kHz] 

(a) 

10 

YK head - median plane, DB scale 
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Frequency [kHz] 

(b) 

12 14 

12 14 

Figure 5-11: Normalised median vertical plane HRTFs for the YK head (the pressure detected at 
the blocked ear canal and divided by the pressure detected at the centre of the head and the head 
was absent). (a) linear amplitude (b) magnitude in dB. Simulation undertaken at a resolution of 1°, 

and steps of 200 Hz (71 frequencies) . 
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YK head - interauraJ axis - up/down 
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(a) 

10 
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Figure 5-12: Normalised lateral vertical plane HRTFs of the YK head (a) linear amplitude 
(b) magnitude in dB. Parameters as in Figu re 5-11 . 
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YK head - horizontal plane 
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(a) 

YK head - horizontal plane 
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Figure 5-13: Normalised horizontal plane HRTFs of the YK head (a) linear amplitude (b) magnitude 
in dB. Parameters as in Figure 5-11 . 
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'IO'w-res' 
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(a) 
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Frequency [kHz) 
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Figure 5-14: Comparison of the normalised frequency response of (a) 'low resolution' 0860 and 
(b) accurate 0860 at grazing incidence. Contours represent amplification, after the response was 

equalised with the response detected at the centre of the baffle without the pinna. 
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Figure 5-15: Comparison of the simulated normalised frequency response of baff led pinnae, and 
HRTF (head and pinnae) (a) YK median plane: front ¢ = 0°; e = 0° (b) YK median plane: above 

¢ = 0°; e = 90° (c) YK median plane: rear ¢ = 0°; e = 180° (d) KEMAR horizontal plane: 
above ¢ = 45°; e = 0° (e) KEMAR horizontal plane: normal angle ¢ = 90°; e = 0° (f) KEMAR 

horizontal plane: rear ¢ = 135°; e = 0° . 
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Figure 5-16: The normalised response of six baffled pinnae in grazing incidence at a resolution of 
10 and steps of 200 Hz. 
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Figure 5-17: The normalised response of six baffled pinnae in the lateral vertical plane 
(¢ = 90°, - 90° :s; e :s; +90° ). 
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Figure 5-18: The normalised response of six baffled pinnae in the horizontal plane 
(0° ::; ¢ ::; 180°, e = 0° ). 
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Figure 5-19: Simulation of the impulse response of baffled pinnae (a) 0860 - grazing incidence 
(b) 0890 - grazing incidence (c) 0890 - lateral vertical plane. The Nyquist frequency is 20 kHz. 
Impulse responses were obtained by applying Inverse FFT to the responses presented in the 

previous figures, and applying linear phase correction at high frequencies . 
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Figure 5-20: The response of DB60 in three conditions: Blocked ear canal, with rigid eardrum, and 
eardrum with averaged impedance boundary conditions by Shaw (1974). (a) front 

¢ = 0°, e = 0° (b) above ¢ = 0°, e = 90° (c) normal ¢ = 90°, e = 0° (d) rear 
¢ = 180°, e = 0° . 
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CHAPTER 6 

MEASUREMENTS OFTHE RESPONSE OFTHE 

EXTERNAL EAR AND THE HRTF 

6.1 INTRODUCTION 

Many publications have dealt with measurements and analysis of HRTFs in the last 50 

years (For reviews of the most significant publications see Blauert, 1997, M¢ller et aI, 

1995, Hammersh¢i and M¢ller, 1996, and Carlile, 1996). The definitions, methods and 

equalisation techniques vary among the studies, and a technical standard for HRTF 

measurements does not exist. Higher accuracy and better signal-to-noise-ratio (SNR) are 

now obtained with the use of computers and improved stimuli, such as maximum-length 

sequences (Rife and Vanderkooy, 1987) or Golay codes (Zhou et aI, 1992), compared with 

pure tones (used in the early days by Shaw and Teranishi, 1968 and Searle et a1, 1975). In 

addition, the inclusion of video cameras and a turn-table (M¢ller et aI, 1995), or an electro­

magnetic head tracker (Middlebrooks et aI, 1989), enables faster procedure with full control 

of the position of the source relative to the listener. However, the positioning of the 

microphone, either a condenser probe microphone (Shaw and Teranishi 1968, Blauert, 

1997, M¢ller et aI, 1995), or a miniature Electret microphone (Wightman and Kistler. 1989, 

Carlile and Pralong, 1994, and M¢ller et aI, 1995) still remains problematic, as the ideal 

HRTF should be measured at the entrance to the auditory system, i.e. the eardrum. which 

cannot be used in practice for safety reasons. HRTFs described in the literature have been 

measured at four main positions along the ear canal: deep in the canal, in the middle of the 

canal, at the entrance to the canal, and at the blocked entrance of the ear canal. As described 
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in Chapter 5, we choose the latter option since it has been shown (Hammersh¢i and M¢ller, 

1996) that measurements undertaken at the blocked entrance to the ear canal include the 

full spatial information encoded in HRTFs, and also since the geometrical model obtained 

with the laser scanner does not include any internal information such as the ear canal. 

However, the inclusion of average ear canal geometry and average eardrum admittance 

values should not impose great difficulties, as demonstrated in Section 5.5.5, 

The goal of the current set of measurements is mainly to validate the results obtained with 

the simulations. As presented in the previous chapter, we concentrate on two different 

cases: (a) the simulation of HRTFs of the head and pinnae, without the torso, and (b) the 

response of blocked meatus pinnae, attached to an 'infinite' baffle. 

In view of the high sensitivity of the measured and simulated response at high frequencies 

both due to source location and individual geometry of the pinna, it was of utmost 

importance to control parameters such as the geometry of the pinnae and their orientation, 

and the position of the transducers, and make them as similar as possible in both physical 

and simulation environments. Other secondary factors such as the speed of sound, or 'noise' 

generated either electronically or acoustically in the measurement procedure, or 

numerically in the simulation procedure were observed and analysed. 

6.2 METHOD 

Measurements were carried out m the large anechoic chamber of the ISVR. Only an 

artificial head (KEMAR) and artificial pmnae were used, to avoid alignment problems 

encountered with subjects. In addition, non rigid boundary conditions such as hair, clothing, 

eardrum impedance, and contribution to the total pressure due to torso, shoulders and knees 

were avoided in both simulations and measurements. Measurements were repeated four 
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times, on different days (with a time gap up to six months), to ensure high repeatability 

with measurements. 

6.2.1 Motorised rotating arc 

Two arcs were designed and built: a smaller one with a radius of l.15 m and a larger one 

with a radius of 1.6 m. Since generating HRTFs for binaural synthesis is not our main goal 

in this set of measurements, we used the small arc since its assembly is simpler and faster. 

The resulting distance between the cone of the loudspeaker and the microphone positioned 

at the entrance to the blocked ear canal of the pinna is exactly 1 m. 19 loudspeakers are 

mounted at an equal spacing of 100 between each other (see Figure 6-1 and Figure 6-2). It is 

estimated that the positional error due to the radius of the arc and its curvature is less than 

1 cm, and due to the spacing between the speakers is less than 0.5°. 

The rotation of the arc is achieved by a transmission chain between the arc and a step 

motor. When the system was calibrated it was found that every pulse to the step motor 

would rotate the arc by 1110932 of 10. (i.e. in order to rotate the arc by 180°, 1456789 

pulses are required). The rotation of the arc in this case takes only 4 minutes. 

The effect of reflections due to adjacent loudspeakers mounted on the arc was investigated 

by covering all loudspeakers, except the one used for the measurement, with absorbent 

material, and also when the same loudspeaker was used for measurement of baffled pinnae 

in the anechoic chamber without the arc and all the loudspeakers. Differences at 

frequencies below 10 kHz were less than 1 dB, and variations up to 2 dB were noticed at 

higher frequencies. 

6.2.2 The baffle 

A large baffle was constructed out of thick plywood. Its large dimensions (with a maximum 

width of 2.3 m, and a maximum height of 2.4 111, see Figure 6-2) ensured that the 
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measurements of the acoustical response of the pinna are not distorted due to diffraction 

and reflection from the boundaries of the baffle. In the centre of the baffle a circular 

aluminium plate was positioned, able to rotate around its centre, and a rectangular opening 

enables the positioning of the artificial pinnae (see Figure 6-3a). The response of human 

pinnae can also be measured when subjects sit behind the baffle but these are not included 

in this study. An additional circular plate included an opening for the holding Electret 

microphone, flush mounted with the baffle plane (see Figure 6-3b). This was used for 

equalisation of the transducers for each source position in space. 

6.2.3 MLSSA system 

The Maximum Length Sequence System Analyzer (MLSSA) has been used widely in 

recent years in HRTF measurements. The MLS method offers a number of advantages 

compared to traditional frequency and time domain techniques. A detailed review of the 

MLS method is given by Rife and Vanderkooy (1989). With the accurate positioning 

capability of the transducers with respect to the head/pinnae in our measurement set-up, a 

single channel measurement system is sufficient. Consecutive measurements with all 

loudspeakers and two microphones (in the case of KEMAR) were used to generate a matrix 

of impulse responses capturing the space with a dense resolution. 

6.2.4 Transducers and amplifiers 

A miniature microphone, Sennheiser KE 4-211-2 was used. This microphone has been used 

previously for HRTF measurement (M011er et aI, 1995) and its main advantages are the 

cylindrical shape with small dimensions (diameter of 4.75 mm and height of 4.2 mm), and 

fairly flat frequency response (for its typical frequency response see M011er et aI, 1995, 

Figure 4). 
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The loudspeakers (by Fostex, Inc.) are based on a single unit-drive with a diameter of 

70 mm, which are designed to produce a reasonably flat response (±2 dB between 1 kHz 

and 15 kHz). Since the main goal of the measurement was to capture the contributions of 

the pinna at high frequencies, and the pressure changes only slightly below 1 kHz, it was 

not required to pay additional attention to low frequencies in the design of the loudspeaker. 

Nevertheless, reliable responses were obtained down to 300 Hz. 

An Electret microphone amplifier that was built at the ISVR was used and its magnitude 

response is ±0.4 dB over the entire frequency range. The input signals to the loudspeakers 

were amplified by a single channel of a Yamaha P2l60 power amplifier. 

6.2.5 Electronic switching box and software 

The activation of each of the speakers mounted on the arc was undel1aken through an 

electronic multiplexer switching box. The communication with the MLSSA system was 

carried out using a single pulse coding system that is controlled through the macro 

command language of the MLSSA system. The operation of the multiplexer is described as 

follows: the circuit is controlled by 10 msec. pulses from MLSSA. As each pulse is 

received, the circuit steps to the next function. A switch is provided to connect one. t\\'o or 

four microphones to the MLSSA analogue input. The MLSSA analogue output is fed via a 

power amplifier to one of up to 36 loudspeakers. On receipt of a pulse, the circuit advances 

to the next selected microphone. A pulse detector monitors the pulse rate. If it fails to detect 

a pulse for a nominal 5 seconds, it interprets this as the end of the set of measurements at 

that angle. The circuit resets to the first microphone and the first loudspeaker and a pulse is 

sent to the motor controller to adjust the angle of the arc. When the motor controller has 

completed its programmed operation, it sends a pulse back to the circuit and on to MLSSA 

to proceed with the acquisition program. All logic functions are performed by CMOS gates 

and counters. The microphones are switched by an analogue multiplexer integrated circuit. 
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The loudspeakers are switched by optically coupled MOS solid-state relays for silent 

operation and low cross talk. LEDs are connected in series with each drive to indicate 

which loudspeaker is in operation. Level shifting is required between the SV CMOS logic 

circuits and the 24 V logic used by the motor controller. All software commands (Parker 

Hanifin, Inc) were run in parallel to the MLSSA system (version lOW) in the Microsoft 

Windows environment. 

6.3 INDIVIDUALISED HRTF MEASUREMENT 

6.3.1 KEMAR head 

The head of KEMAR with the 'small' pinna - DB60 was used to validate the HRTF of a 

'full head'. The response of YK head was measured, but it is not included here, since the 

contribution of the torso and other errors prevent comparison directly of the response with 

the simulations (which do not include the torso and the model is rigid). 

Since the torso was absent in the simulation process, a special attachment was used (see 

Figure 6-4a) to ensure that the centre of the rotation axis of the head was at the middle of 

the interaural axis. The main discrepancy between the geometry of the head in the 

simulation and measurement was the extension of the neck (see Figure 6-4b). However, \ve 

assume that it does not contribute significantly to the variations between simulation and 

measurements. Two different types of DB60 pinnae were investigated (one 10 years old. 

and the other new) and these produced slight differences in performance at high frequencies 

(it should be noted that the flexibility of the pinnae was very different and fine details were 

also different). The old DB60 pinna that was scanned was used in both simulation and 

measurements. 
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By using a rigid head without a torso, we minimise the causes for deviations between 

simulation and measurements, where the geometry of the pinna plays the most important 

role. 

6.3.2 Measurement set-up and equalisation 

The MLSSA system was set with the following parameters: 

• The sampling frequency was 48.193 kHz. This is the nearest sampling frequency to 

48 kHz the internal clock of MLSSA can provide *. Since the purpose of these 

measurements was not for binaural synthesis, our main consideration here is to 

ensure that the Nyquist frequency is above 20 kHz. 

• The dynamic range of the system was set to 'on' to ensure the approximate 65 dB 

SNR of KEMAR (Gardner and Martin, 1995) is available. The binary file structure 

of MLSSA (*.tim) includes the impulse response data and the amplification used 

for each measurement, thus enabling the obtaining of the absolute response. This is 

crucial, especially when the response is measured in the contralateral ear, and the 

SNR in this case is much lower than for measurements taken in the ipsilateral ear. 

• The free-field sound pressure level was approximately 75 dB(A) at a distance of 

1 m. A higher level was not required to improve SNR, and it might have caused 

non-linear effects in the measurements. 

• The highest order of MLS with MLSSA was used (14) which is sufficient for our 

measurements. This sequence results in 65535 points. A length of 4096 points was 

much more than was required for both measurement arrangements, and the data 

was reduced and windowed in a post -processing procedure . 

• Ideally. HRTF data should be measured using a sampling frequency of 160 kHz: this results in resolution of 6 psec. 
which is the noticeable difference of ITO when localizing low frequency sounds. 
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• To avoid frequency aliasing a 20 kHz Chebyshev low-pass filter in the MLSSA 

hardware was used. 

• The measurements were undertaken using 16 pre-averages that ensured the highest 

SNR. 

• The temperature in the anechoic chamber was recorded and varied between 16.8 °C 

and 19.3 °C throughout the measurements. These result in variation of the speed of 

sound between 340 mlsec and 342 mlsec (all simulations with SYSNOISE were 

undertaken with c = 340 mlsec). 

• The alignment of source positions in space was achieved by the following steps: 

o Alignment with a spirit level that was attached to the arc. The fine-tuning 

was achieved by sending only a few tens of pulses to the step motor. 

o Impulse response measurements were undertaken at the maximum sampling 

frequency, 160 kHz. For example, to ensure that the head was positioned 

exactly between the right and the left loudspeakers (No. 1 and No. 19, 

respectively), the two impulse responses should result in equal delays. In a 

similar way, the loudspeaker on the median plane (No. 10) should produce 

similar delays in both ears of the KEMAR head. 

o The measured response was immediately equalised and compared with the 

simulation results. Variations of angular positions of the measurements up 

to 4° were found better to match simulation results due to slight 

misalignment between the co-ordinate systems of the measurements and 

simulations. 
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6.3.3 Results 

Free-field HRTF measurements reqUIre the equalisation of the transducers and the 

microphone at the centre of the head when the head is absent. A few measurements were 

undertaken for each of the 19 loudspeakers, all positioned in the horizontal plane (cD = 0°). 

Since the microphone is not completely omnidirectional, this method of equalisation still 

results in some errors. 

The results for measurements in the median plane are presented in Figure 6-5a with a 

continuous 3-D map of the simulation in the range of -40° ::; () ::; 220° and in Figures 6-6a 

to 6-6e with 2-D plots of the magnitude at a few angles. All general peaks and notches 

appear in both simulations and measurements. Contours are presented on a linear scale as 

amplification with the reference of the free-field response with no interpolations applied. 

The main characteristic of this figure is a smoother variation in the simulation results 

compared to measurements. The same simulated and measured responses are shown at 

discrete angles in Figure 6-6 at 0 = 0°. () = -40°.0°,40°.90°,130°.180°. Figures 6-6a. 

6-6b and 6-6d show that errors of <1 dB appear up to 15 kHz. At other angles where 

sharper notches are found (Figures 6-6c, 6-6e and 6-6f) errors increase locally at the 

position of the notch. It is not clear if the discrepancies are due to elTors in measurements, 

such as positioning or SNR, or due to a higher accuracy of the simulation techniques. 

However, it is concluded that simulation techniques of HRTFs can be used up to 15 kHz. It 

should be noted that median plane simulation and measurement do not impose great 

difficulty from the SNR point of view, since there are no effects of the shadowing due to 

the head, which have strong attenuation at high frequencies. 

Figure 6-7 compares the simulation and measurement in the worst case from the point of 

view of SNR, since it presents the ILD (the difference between the magnitude of the right 

ear and the left ear in dB). As the frequency increases the sensitivity of the modelling and 
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measurement of the contralateral ear IS shown. The contour maps show the ILD of the 

HRTFs of KEMAR at the lateral vertical plane, at angles of ¢ = 90°, -40° :s: e :s: 90°. At 

e = 90° (above the head) the ILD is 0 dB over the entire frequency range (we did not 

measure in this case the response of the DB61 pinna, which is the left ear of KEMAR and 

produces a different response at high frequencies than the DB60 pinna. In addition we 

assume a complete symmetry, in both the head and the pinna). At low frequency (in the 

region of 1 kHz) the ILD is on average 6 dB and increases with frequency and with angles 

approaching the horizontal plane and below. In this region a boost of approximately 30 dB 

is noticed between 5 and 8 kHz. This is mainly due to the broad peak of concha resonance 

and increasing attenuation with frequency in the contralateral ear. In addition, a sharp notch 

is noticed and increases with frequency (from 7 kHz to 13 kHz) as elevation angle increases 

(in the range of -400:s: e :s: + 20°). Good agreement between simulation and 

measurement is noticed between 90° and 40° up to 15 kHz. Our simulation model seems not 

to produce continuous variation above 10 kHz as expected and found in the measurements. 

The inaccuracy of the model can be explained by the low resolution of the mesh, assuming 

only four elements per wavelength. In all our simulation results presented in Chapter 4 and 

5, at least six elements per wavelength are required for a reasonable accuracy in the shadovi 

zone. However, the improvement of the mesh model and the whole procedure of simulation 

are straightforward, if more memory (RAM) is available for solving the problem with the 

IBEM symmetry, with the in-core solver. 

However, all the peaks to the right of this notch have poor reliability in our simulation. This 

is due to the following reasons. 

• The complex structure of peaks and notches at high frequency is a result of 

shadowing and pinna resonance. A much higher mesh resolution is required for 
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obtaining accurate results (in this case assuming six elements per wavelength the 

maximum frequency that can be investigated reliably is around 10 kHz). 

• Results are very sensitive to source position and geometry. Even the extension of 

the neck can shift or alter the anti-resonance in the contralateral ear. 

6.4 BAFFLED PINNAE MEASUREMENT 

The equalisation of the measurements of baffled pinnae was undertaken by repeating all 

measurements twice: once when the microphone is positioned at the blocked entrance to the 

ear canal, and a second time when the microphone is positioned at the centre of the baffle 

without the pinna. The responses are then divided in the frequency domain. A typical pair 

of measured frequency responses shown in Figure 6-8 (in this case of the YK pinna, with 

excitation from normal direction at cp = 900
). The response in both cases is similar up to 

approximately 2 kHz, the frequency at which the pinna starts to produce its broad 

resonance due to the quarter wavelength of the concha. At higher frequencies the peaks and 

notches are mainly affected by the resonance and anti-resonance of the pinna. All 

measurements presented below are after the equalisation of the transducers' response. The 

same principle applied with simulation results but in this case the transducers' frequency 

response are constant over the frequency range and only the phase changes with frequency 

due to the inherent delay which is a result of the distance between the positions of the 

source and the baffle (1 m). 

In the simulation process the edges of the pinnae were smoothed to the plane of the baffle 

(z-plane). However, both pinnae and the KEMAR head do not have flat edges. Therefore, 

the pinnae were supported in the slot to produce smooth continuation with the baffle. This 

resulted in a very similar (although not exact) geometry to that which was used in the 

simulations. 
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Measurements of six pinnae (four of KEMAR, one of Brliel and Kjcer 4127 Head and Torso 

Simulator (HATS), and a replica of YK pinna) were undertaken and repeated a few times to 

ensure repeatability. First, measurements were carried out before the rotating arc assembly 

was assembled, and only a single loudspeaker was used. The loudspeaker was positioned 

manually on a stand in the horizontal plane on a radius of 1 m, at 19 positions, every 10°. 

The aluminium plate was rotated manually around its axis 18 times, every 10°, to produce 

the full hemisphere response. The main advantage of this method is that it includes only a 

single loudspeaker, and therefore the equalisation is fast and accurate. However, the main 

disadvantage is that the whole process is manual and time consuming. Later, all 

measurements were run automatically where a full scan of the entire sphere in a resolution 

of 2° took approximately one hour. 

A large amount of data was collected for all six pinnae, with frequency response measured 

at high resolution sampling of the hemisphere. The figures shown include only a few 

quantitative comparisons at single angles, and also a single continuous map which provides 

an insight to the trends of the variation of peaks and notches at a resolution of 1 ° in the 

lateral vertical plane. 

6.4.1 Measurement set-up and equalisation 

• The frequency response was measured with a few sampling frequencies: 

48.193 kHz, 60.60 kHz, 75 kHz and 160 kHz. Although the high sampling 

frequencies include a higher resolution of the captured impulse responses, the 

frequency response remained the same since all measurements were undertaken 

with the antialiasing Chebyshev filter at 20 kHz. 

• The response at each location of loudspeaker was equalised with the microphone 

positioned in the centre of the baffle without the pinna. Due to the high accuracy 
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achieved with the positioning of the arc in both measurements, it was possible to 

ensure that most significant imperfections of the rig would be cancelled. 

Results 

Figure 6-9 shows a comparison between the simulated and measured response of DB60. 

The measurements were undertaken with a single loudspeaker (without the arc). A 

systematic error appears at around 2 kHz that is due to a poor response of the specific 

loudspeaker used in this set of measurements. Nevertheless all peaks and notches are 

replicated by simulation. Note especially the high accuracy of the prediction of the notch at 

9.5 kHz for grazing incidence of e = 1200 in Figure 6-9c. At other angles the errors are 

within 2 dB up to 15 kHz with maximum errors appearing at deep notches either due to 

magnitude difference or slight shift of resonance frequency. All the following comparisons 

include measurements undertaken with the aid of the rotating arc. Figure 6-10 shows a 

comparison between the simulated and measured response of DB65. An almost perfect 

match is obtained up to 10 kHz. Accuracy remains high for higher frequencies but it 

depends on the angle of excitation. The highest errors are achieved as before where deep 

notches occur. These are very sensitive to source positions. 

Figure 6-11 shows a comparison between the simulated and measured response of the B&K 

pinna. As before, errors are within a range of 2 dB up to 13-15 kHz. It should be noted that 

the variability in repeated measurements with this frequency range remained low (up to 

2 dB) although variations were as high as 5 dB above 15 kHz. 

Finally we present the response of pinnae in which the identical positioning of the 

microphone in both simulations and measurements is not possible as in the previous cases 

due to irregular curvature of the opening at the entrance to the ear canal. Figure 6-12 shows 

a comparison between the simulated and measured response of DB90, Figure 6-13 shows a 
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comparison between the simulated and measured response of the YK pinna, and Figure 

6-14 shows a comparison between the simulated and measured response of DB95. In all 

cases a good agreement is obtained only up to 7 kHz, but the general trends are followed up 

to a higher frequency. The worst case was for the DB95 with a sharp notch obtained with 

simulation between 7 kHz and 11 kHz. It should be noted that this pinna has a large hole at 

the entrance to the ear canal that is dedicated for ear moulds, and therefore the model is not 

accurate for our purposes of both measurements and simulations. 

Figure 6-15 shows an example of a spatial map of continuous variation of spectral peaks 

and notches of the baffled DB60 pinna in the lateral ve11ical plane. Both simulations and 

measurements were undertaken at a resolution of 10. The contours show amplification in 

steps of 1, 2, 3 and 4 times the response detected at the equalisation point at the centre of 

the baffle (without the pinna). It is interesting to observe how the general trends are 

replicated for all angles and all frequencies albeit with amplitude differences at the higher 

frequency range. 

In particular, discrepancies were found at the amplitude of peaks at frequencies higher than 

the first quarter wavelength. These differences are likely to be as a result of geometry 

differences and sensitivity due to the proximity of the sources to the baffle. These 'boosted' 

peaks were not found, for example, when the pinnae were modelled with the full head. 

6.S CONCLUSIONS 

The numerical modelling of the response of the external ear was validated with a high level 

of accuracy. Two cases were studied: the free-field equalised response of HRTFs and the 

response of baffled pinnae. The accuracy is significantly degraded for modelling the 

response of the contralateral ear where low mesh resolution is available. With all 
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optimisation of numerical techniques and mesh models, reliable results can be achieved up 

to 10 kHz. 

The responses of baffled pinnae show many of the spectral characteristics found in the 

response of the ipsilateral HRTFs. The addition of the baffle does not alter the performance 

at grazing incidence, and in other angles the general trend is preserved. The response is 

very sensitive to the geometry and source positions in space, and high agreement was found 

with pinnae for which the position of the microphone was accurate. In the case of DB90, 

DB95 and YK pinna, the positioning of the microphone was not as accurate as with the 

other pinnae due to irregular shape at the entrance to the ear canal, and as a result a slightly 

higher deviation between simulation and measurement was obtained. 
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Figure 6-1: Apparatus for HRTF measurement (the measurement results presented in this chapter 
are based on KEMAR without torso , as shown on Figure 6-4a) . 

Figure 6-2: Apparatus for the measurement of the response of baff led pinnae. 
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(a) (b) 

Figure 6-3: An aluminium rotating plate at the centre of the baffle used for (a) attach ing replaceable 
rubber and plaster pinnae (b) attaching Electret microphone for its calibration (Sennheiser 

KE 4-212-2) . 

(a) (b) 

Figure 6-4: Special modification and adjustments for measurements (a) attachment for KEMAR 
(without torso) to a turn-table or the bottom frame of the arc (b) head and baffle attachments and 

the various pinnae investigated. 
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Figure 6-5: Comparison of the HRTFs of KEMAR on the median plane (a) simulations (b) 
measurements. In both cases the spatial resolution is 10 and no interpolations are made. 
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KEMAR - ILD - interaural axis - simulation 
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Figure 6-7: Comparison of the ILD of the HRTFs of KEMAR on the lateral vertical plane (a) 
simulat ions (b) measurements. In both cases the spatial resolution is 10 and no interpolations are 

made. 
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Figure 6-8: A typical pair of measurements of baffled pinnae (in this case of the YK pinna). The 
blue curve is the response of the transducers (microphone position as in Figure 6-3b). The red 

curve is the response detected at the blocked ear canal. The response is identical up to 1.5 kHz. 
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Figure 6-9: Comparison of the simulated and measured response of baffled 0860 (a) front 
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Figure 6-11: Comparison of the simulated and measured response of baffled 0865 (a) front 
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Figu re 6-1 5: Spatial map and contour plot of a comparison between (a) the simulated, and (b) the 
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CHAPTER 7 

SPATIAL ACOUSTIC BASIS FUNCTIONS OF A RIGID 

SPHERE ANDTHE SPHERICAL HARMONICS 

7.1 INTRODUCTION 

In the previous chapters, the reliability and efficiency of using the BEM in the prediction of 

the response of the external ear have been demonstrated. Two main properties of the 

simulations are in particular advantageous: 

• The calculation of the variation of the response with angular position is simplified 

using the principle of reciprocity, thus scattering can be replaced with radiation and 

vice versa. 

• It is assumed that if the pressure at the entrance to the ear canal is predicted 

accurately, other points on the surface of the body (head and pinna) should have a 

similar accuracy. These are obtained immediately due to the inter-connectivity of 

the BEM equation where all pressure values on the surface are solved 

simultaneously. 

The main motivation of this chapter and the next one is to analyse the acoustical 

characteristics of the head (simplified as a sphere) and various models of pinnae, using a 

'modal' representation, with a mathematical formulation based on the Singular Value 

Decomposition (SVD). It is hypothesised that the extraction of the 'mode shapes' of the 
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head and pinna, will provide an insight into their physical characteristics, and that the 

decomposition of HRTFs would be possible based on these main features'. 

SVD is a powerful method for analysing complex matrices with a wide variety of 

applications in mathematics and engineering. In acoustics, it has been used over the last 

decade as a mathematical tool in studies of sound radiation and scattering. In estimating the 

strength of acoustic sources using Near Acoustic Holography (NAH), Veronesi and 

Maynard (1989) used SVD on a matrix of transfer functions relating the strengths of 

discrete sources and acoustic pressure at a number of field points. The general formulation 

relating sources and field positions was used subsequently by Borgiotti (1990), who 

showed that at a given frequency, the 'radiation operator' relating the velocity on the surface 

of a vibrating body to the sound pressure produced over a surface in the radiated field can 

be used in analysing the complex singular vectors of the velocity and radiation patterns. 

Photiadis (1990) investigated a Green function matrix relating the pressure in the far field 

and the sources on a body. The relationships between the singular vectors of the 'source 

modes' and the associated 'radiated modes' have been analysed using the SVD. These are 

related at each frequency through the scalar singular values. Using a similar approach. the 

radiation modes of a plate have been investigated by Elliot and Johnson (1993), and Currey 

and Cunefare (1995). These authors concluded that the source 'mode shapes' contribute 

orthogonally to the total sound power over the surface considered. The SVD is also used 

also in acoustic inverse problems of radiation and scattering (see for example Fillipi et aI, 

1988, Kim and Lee, 1990, Grace et aI, 1996, Nelson and Yoon, 2000 and Nelson, 1999) 

since it provides a least square solution when the matrices are underdetermined . 

• It should be noted brietly that the SVD formulation (Gardner. 1999. Larcher el al. 2000) and the use of the series of 
spherical harmonics (Evans el aL 1997. Jot el al. 1999) haye been used independently in the context of efficient coding 
scheme of HRTFs. In all of these cases the dimensions of the matrix analysed was the number of sources in the far field 
and the number of frequencies in the HRTF function. whereas in our case another dimension is added (the number of 
'microphones' on the body). it is used in a different context and therefore the operation of the SVD has a different 

meaning. 
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Orthogonal basis functions have been used for a long time in the analysis of acoustic fields 

(Morse and Feshbach, 1953, Morse and Ingard, 1968 and Arfken, 1970). In his paper, 

Photiadis (1990) compared the radiation from a vibrating sphere using a set of orthonormal 

spherical harmonics with the SVD and stated that the source and radiation modes in both 

cases are similar apart form the phase. He also concluded that the mUltipole expansion 

embodies more information than is contained by the SVD. 

In this chapter, we attempt to investigate the relationship between the basis functions of 

classical acoustics and the SVD through the scattering from a rigid sphere. An outline of 

this chapter is as follows: firstly, the response of a sphere is derived using an infinite series 

of complex spherical harmonics. This formulation is used in the construction of a Green 

function matrix relating a number of field points in the far field (on a large sphere) and a 

number of sources on the surface (of a small sphere). The analogy of the 'mode shapes' and 

the spherical harmonics is described. In addition, the deviation from ideal conditions such 

as non-uniform sampling of either the surface or the far field, as well as stretching the 

sphere to an ellipsoid and using numerical techniques for the solution are discussed. 

Finally, the frequency response reconstruction based on the SVD formulation is presented 

and analysed. 

7.2 THEORY 

7.2.1 Solutions of the wave equation in spherical co-ordinates 

The scalar Helmholtz equation governing the behaviour of the complex acoustic pressure 

p(r) is given in Equation (3.2). In spherical co-ordinates (1', e, ¢) this equation becomes: 

2 
1 a ( 2 ap ) 1 a (. ap ) 1 a p .2_ 

- -- l' - + .) - sm e - + 'J ' --'J + k P - 0 1'2 ar aT T~ sin e ae ae T~ sin:! e a¢~ (7.1 ) 
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As indicated by Morse and Ingard (1968) and Temkin (1981) this equation is separable 

such that the solution is expressed as a functional of the radial, polar and azimuthal 

dependence p(r) = F(r)G(e)H(¢). Therefore three ordinary differential equations are 

derived 

--- sme- + C --- G=O 1 d (. dG) [2 m
2 1 

sin e de de sin 2 e 

d2H 2 
--2 +mH=O 
d¢ 

(7.2) 

(7.3) 

(7.4) 

where k2 , C 2 and m 2 are the separation constants. The solutions of Equation (7.4) are 

given by e±jm</> where j = .J=I, but that 111 must be a positive or negative integer (m = 0, 

± 1, ± 2 . .) if the pressure is to be a single valued function of ¢ (i.e. to ensure that 

p(r,e,¢ + 27r) = p(r,e,¢)). It was shown by Temkin (1981) that for Equation (7.3) to 

have solutions that are finite at e = 0 and e = 7r then C = n(n + 1) where 11 must be a 

positive integer (n = 0, 1,2, ... ). The solutions of Equation (7.3) when lIZ = 0 are given by 

the Legendre polynomials (sometimes called also the Legendre functions of the first kind) 

Pn (cos e). For non-zero m, the solution is given by the associated Legendre polynomials 

• Some care must be taken in identifying the notational convention being used. In this entry. e is taken as the polar 

(colatitudinal) coordinate with e E [0, 7r]. and ¢ as the azimuthal (longitudinal) coordinate with ¢ E [0.271]. 
This is the convention normally used in physics. as described by Artken (1970) and in Mathematica (Wolfram 

Research. Inc.). In the co-ordinate system used for describing HRTFs. e usually denotes the longitudinal coordinate 

and ¢ the colatitudinal coordinate. 
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-n S m S n (7.5 ) 

Note also that the Condon-Shortley phase term (-Om is omitted in this notation t, although it 

was shown by Arfken (1970) that since m can be negative 

(7.6) 

The polar and azimuthal dependences of the pressure are combined in the definition of 

the spherical harmonics, given by Arfken (l970)~ 

(7.7) 

These spherical harmonics satisfy the orthogonality condition 

J J ynm*(B, cp)Yi(B,cp) sin BdBdcp = bnkbml 
(7.8) 

o 0 

where b k is the Kronecker delta with b k = 1 for II = k and b.k = 0 for n 7: k and {; I is n n' n' Tn 

analogously defined. Finally, the functions describing the radial dependence of the acoustic 

pressure that satisfy Equation (7.2) are given by the spherical Hankel functions of order 11 

defined by 

(7.9) 

(7.10) 

t The definitions of the Legendre Polynomials and the Spherical harmonics vary in the literature. It should be mentioned 
that the definitions in Mathematica (Wolfram research. Inc.) are different from the above formulation and the Condon­
Shortley phase is included. Therefore the computational model presented in Section 7.3.1 has been compensated for this 
discrepancy. 

t Note that in some cases the spherical harmonics are defined differently. For example Morse and Ingard ( 1968). defined 
the spherical harmonics as three sets of scalar functions. 
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where jn(kr) and nn(kr) are respectively the spherical Bessel and Neumann functions of 

order n. These are in turn related to the Bessel function of order (n + 0.5) and Neumann 

function of order (n + 0.5) by 

J. (kr) = ~ 7r J (kr) n 2kr n+05 

nn(kr) = ~ 7r N +o.s(kr) 2kr n . 

The spherical Hankel functions can also be deduced from Artken (1970) 

It therefore follows that for 11 = 0 for example 

(7. I I) 

(7.12) 

(7.13) 

(7.14) 

(7.1Sa, b) 

which define either incoming or outgoing waves depending upon the choice of time 

convention. 

7.2.2 Radiation from a point source on a rigid sphere 

In the following sections the formulations derived are for the case of radiation, and not 

scattering as required from the point of view of representing HRTFs. However, the 

radiation problem from a point source on a rigid sphere into a point in the far field is 

analogous to the resultant sound prcssure on the sphere due to a point source in the far field 

due to the principle of reciprocity. 
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The sound field produced by a point source situated at a vector position ro in an unbounded 

medium is described by the free space Green function g(r 1 ro) which is a solution of 

(7.16) 

When a harmonic time dependence of ejwt is assumed, the free space Green function 

describing waves propagating outwards from ro is given by 

(7.17) 

This function can be expressed in terms of a series expansion of the spherical harmonics 

described in Equation (7.7) (see, for example, Arfken, 1970, Chapter 16, p. 768, Morse and 

Feshbach, 1953, Chapter 11, p. 1466, or Morse and Ingard, 1968, Chapter 7, p. 352. This 

series expansion can be written as 

rv n 

g(r 1 ro) = -jk'L jn(k1'o)h~2)(k1') 'L yn
m (0, <;D)Ynm*(Oo, <;Do) (1' > 7'0) (7.18) 

n=O m=-n 

where l' =1 r 1 and 1'0 =1 ro I· This series expansion differs slightly from that given by 

Morse and Ingard (1968) since an eJA time dependence has been assumed and thus 

h~2)(k1') has been used in place of h~l)(kT). As shown by Morse and Ingard (1968, 

Chapter 7, p. 355) this series expansion can be used to construct the Green function 

G(r 1 ro) describing radiation from a point source on the surface of a rigid sphere. It is 

convenient to modify the free space Green function g(r 1 ro) by adding a free standing 

wave x(r) which satisfies the boundary conditions on the surface (that the radial gradient 

of the sum of g(r 1 ro) and A(r) is zero on the surface of the sphere) through the 

166 



Chapter 7: Acoustical modes of a rigid sphere and the spherical harmonics 

homogeneous Helmholtz equation (V2 + k2 )x(r) = O. Based on Morse and Ingard (1968) 

the Green function satisfying these conditions can be written as 

(7.19) 
n 

L yn
m 

( e, ¢ ) yn
m * ( eo ,1)0 ) 

m=-n 

where a is the radius of the sphere and the prime denotes differentiation with respect to the 

argument. 

The general solution of the inhomogeneous Helmholtz equation is given by 

(7.20) 

where Qvol (ro) represents some volume source distribution, and the pressure can be 

expressed as 

p(r) = J QvoP(r I ro)dV + J[G(r I ro)Vop(ro) - p(ro)VoG(r I ro)]·ndS (7.21) 
v 5 

where S is the surface with unit outward normal vector n that bounds the volume V 

containing the field point r, and V 0 is the gradient operator with respect to the co-ordinates 

defined by roo Since G(r I ro) given by Equation (7.19) has been chosen to satisfy 

VoG(r I ro)·n = 0 on the surface of the sphere, and if there are no other sources within V, 

then 

p(r) = J G(r I ro)V op(ro) .ndS 
5 

(7.22) 

where the integration is carried out only over the surface of the sphere. (The other part of S 

is that part of the surface bounding the volume V outside the sphere and thus lies at infinity; 

the contribution to the surface integral from this part of S can be shown to be zero by 

167 



Chapter 7: Acoustical modes of a rigid sphere and the spherical harmonics 

satisfying the Sommerfeld radiation condition. See Chapter 3 and also Morse and Ingard, 

1968). If the sphere is now assumed to have an arbitrary radial velocity distribution 

271" 71" 

p(r) = jwpoa
2 J J G(r I ro)un(80,cPo)sin80d80dcPo 

o 0 

(7.23) 

It therefore follows that the expression for the pressure field generated by an arbitrary 

surface velocity distribution can be written as 

0v [. (" ) (2)' (") . I ( ) (2) ( )] 
( ) _ k,2 2 ~ In ka hn ka - In ka hn ka h(2)(k) 

p r - POCo a ~ ('»)' n r x 
n=O hn- (ka) 

(7.24 ) 
n 

m=-n 

where the factor U;;' accounts for the degree to which a given spherical harmonic is driven 

by a given velocity distribution and is defined by 

271" 71" 

U;;' = J J Un (80 , cPo)Ynm*(80'cPo) Sill 80d80dcPo 
o 0 

(7.25) 

In this case we apply a point source with strength q(f) at (B,¢) instead of the general 

velocity distribution given by 

(
8 ,-1..) _ _ 6(80 - B)6( cPo - ¢) 

Un 0 ' '-Po - q . 8 
SIll 0 

(7.26) 

then U;;' is simply given by _qynm*(B,¢). 

In addition, Arfken, 1970, p. 529, shows that 

(7.27) 
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So it can be shown that, the term in the square brackets in Equation (7.24) reduces to 

- j / k2a 2 and the resulting pressure is given by 

"0 1 (2)(k) n 
() . (~)'\""' In r '\""' ym(e ) m*({} ~) 

pr = JPocoqr ~oh~2)'(ka)m~n n ,tPYn ,tP 0.28) 

It should be noted here that Equation (7.28) shows that the frequency dependence of the 

radiated sound within the terms h~2)(kr) / h~2)(ka) is independent of e and tP. 

7.2.3 The singular value decomposition 

For a given linear acoustic field we can specify a matrix G(r I f) of Green functions 

relating the pressures produced at a number of field points defined by the position vector r 

to the strengths of a number of point sources at positions defined by the position vector f. 

Therefore, the pressure is given by 

p(r) = G(r I f)q(f) 0.29) 

where per) is the vector whose elements define the field pressure values and q(f) is the 

vector whose elements define the source strengths. By using the singular value 

decomposition (SVD) of the matrix G(r I f) the characteristics of radiation and scattering 

problems are investigated. First we start, with the sphere - a 'separable' problem, and then 

we show the effectiveness of the method with 'non-separable' problems. 

By using the SVD, arbitrary complex matrix G(r I f) of order f{ x L to be expressed as 

G(r I f) = UI,VH 0.30) 

where I, is the f{ x L matrix whose entries are zero apart from the diagonal elements (Ji 

which consist of the singular values of G(r If). The superscript H denotes conjugate 

transpose. If R is the rank of G(r I f) then the singular values satisfy 
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CT1 2: CT2 > ... CTR > 0 , CTR +1 = .... = CTp = 0 p = min(K,L) 0.31) 

The matrices V and V are respectively of dimension K x K and Lx L and are unitary 

matrices having the orthogonality properties 

(7.32 a, b) 

The columns u i of the matrix V and the columns Vi of the matrix V respectively define the 

left and right singular vectors of G(r I f). The significance of the singular vectors is that 

they provide sets of orthogonal basis functions for describing the spatial variation in 

radiated pressure and their relationship to spatial variations in source strength. Specifically, 

it follows from Equations (7.29) and (7.30) that 

0.33) 

and since by virtue of Equation (32a), V-I = VB, then this expression may be written as 

0.34) 

Therefore, for all i ::; p, (p = min(K, L)) we may write 

(7.35) 

This demonstrates that a specific spatial pattern in the radiated field defined by u~p( r) is 

linearly related to a specific spatial pattern of source strength distribution defined by 

v~q(f). These two patterns are related by the singular value CT i . 

7.2.4 Alternative forms of the Green function matrix 

There is also a close relationship between the singular value decomposition and the series 

expansions used in the analyses of acoustical problems in separable co-ordinate systems. In 
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particular, this close relationship can be demonstrated for the case of spherical radiation 

expressed in terms of a series of spherical harmonics. The SVD of the Green function 

matrix can be expressed in terms of the left and right singular vectors such that 

p 

G(r I f) = L(JiU!v~ (P = min(K,L)) (7.36) 
i=l 

where the matrix is shown to consist of a linear superposition of P component matrices 

each defined by the outer product u
l 
v~ and weighted in the summation by the singular 

value (Ji' Now note that we may use Equation (7.28) to define the elements of the Green 

function matrix G(r I f) relating the acoustic pressure at K points in the sound field to the 

source strength at L points on the surface of a sphere. This matrix can be written in the form 

11 

L. 1" L. Y;:n(el'¢l)}~;n'(eL"d;L) 
11.=0 111.=-7l 11=0 rn=-1/, 

C'U 1l 

G(r I f) = L. 1" L. y;;n(e2,¢J},~;n*((~1'~1) 
('-.J 71 

L. 1" L. y;;n(e2'¢2)}~;n·(eL.6L) (7.37) 
n=O 17/=-n n=O 111=-11 

C'O n "."V n 

L. 1" L. Y;;n(eJ('¢K)}~:n*(el'¢l) L. 1" L. Y;:n(eK'¢K)}~;n·(eL·9L) 
11=0 rn=-1l, 11=0 17I=-Tl 

where it follows from Equation (7.28) that 

(7.38) 

Since each term in the series comprising each element of the matrix is weighted by the 

same factor in' it is possible to write the matrix as a linear superposition of matrices having 

the form 

N n 

G(r I f) = Lin L y~l(rk)y~lH(fl) (7.39) 
n=O m=-n 

where the following vectors have been defined 
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There are some obvious similarities between the singular value decomposition expressed in 

the form of Equation (7.36) and the matrix series given by Equation (7.39). The vector 

y~(rk) has elements which cOlTespond to the values of the (n, m)'th spherical harmonic at 

each of the points in the radiated field at which we evaluate the pressure. The vector y~ (if) 

has corresponding elements at each of the points on the surface of the sphere at which we 

evaluate the source strength. The vectors y~ (rk ) thus define the basis functions for the 

pressure field in much the same way as the vectors u i . Similarly the vectors y~l (rk ) define 

the basis functions for the source strength distribution in an analogous manner to the 

vectors Vi' One should note however, that one would not necessarily expect an exact 

correspondence between the matrix series given by Equation (7.39) and the SVD in 

Equation (7.36). Most obviously, the weighting factors differ in that the singular values ([I 

are purely real whilst the coefficients in are in general complex. Additionally, the matrix 

series in Equation (7.39) is infinite, while the matrix series representation of the S VD is 

finite and consists of p = min (K, L) terms. 

Nevertheless, there is a connection between the two descriptions of the Green function 

matrix. Note that if we choose to represent the Green functions in Equation (7.37) as a sum 

up to a maximum number of n = N spherical harmonics, then the truncated Green function 

matrix G N (r Ii) can be expressed as the matrix product 

(7.42) 
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where the columns of Y(rk) are given by the vectors y~(rk) and the columns of Y(rl ) are 

given by the vectors y~ (r1). The matrix F is a diagonal matrix consisting of the 

coefficients fn. To make clear the structure of these matrices, in the case N=l, K=5 and 

L=3, the Green function matrix can be expanded as 

YoO(el'¢l) Yl-l(el'¢l) Ylo (ell ¢l) Yll(el , ¢l) 
fo 0 0 0 

Y oO(e2, ¢2) Yl -1 ( e 2 ' ¢2 ) YlO(e21 ¢2) Yll(e2'¢2) 
0 h 0 0 

GN(rlf) = Y oO(e3, ¢3) Yl-l (e 3' ¢3) YlO(e3, ¢3) Yll(e3, ¢3) 
0 0 h 0 

Y oO(e4, ¢4) Yl-l(e4'¢4) YlO(e4, ¢4) Y11(e4'¢4) 
0 0 0 h 

Y oO(e5, ¢5) Yl-1( e.5, ¢.s) yloWJ'¢'S) Yll(e5, ¢5) 

(7.43 ) 

YOo*(8l, ¢l) YOO*(82'¢2) YOO*(83'¢3) 

Y1-1*(8l '¢1) Yl -1 * ( 82 ' ¢2 ) Yl-l*(83'¢3) 
x 

Y1O*(81'¢1) Y1O*(82'¢2) YlO*(82'¢2) 

Yll* (81, ¢l) Yll * (82 ' ¢2 ) Yl1 * (82, ¢2) 

Now note that it may be shown that as K, L -------+ 00, then the matrices Y(r"J and Y(rl ) 

become unitary matrices. For example, the diagonal elements of the matrix yH (rk )Y(rk) 

consists of terms given by 

J( 

mH ( ) m () 1'7111 (B ,.i..) 12 + 1 }T111 (B ') 12 Yn r k Yn r k = in 1,(jJ1 11 2,CP2 .. 1 Y,;1I (BK' ¢K) 12 = 2:=1 Y,;1I (B". (i\.) 12 (7.44 ) 
1.'=1 

The orthogonality property of the spherical harmonics given by Equation (7.8) shows that 

J JIYnnl(e,¢)12 
sineded¢ = 1 (7.45) 

° ° 
The term sin eded¢ can be regarded as an element of area of a sphere of unit radius, and if 

the K points at which the spherical harmonics are sampled are at the centres of segments of 

equal area, the integral in Equation (7.45) can be expressed as the summation 
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K 

LI Yn
m (B,¢)1 2

6Sk = 1 (7.46) 
k=l 

Since 6Sk = 4n / K , then it follows that the summation in Equation (7.44) will tend to a 

value of K / 4n as K ---+ 00. By an exactly analogous argument, it is evident that the 

orthogonality property of the spherical harmonics results in the off-diagonal terms of the 

matrix yH(rk)Y(rk) tending to zero as K ---+ 00. It is thus concluded that 

as K ---+ 00 (7.47) 

and similarly that 

as L ---+ 00 (7.48) 

7.2.5 The singular value decomposition and the spherical harmonics 

It will be demonstrated by the numerical simulations presented below that there is indeed, 

under certain circumstances, a direct connection between the results of the singular value 

decomposition of the Green function matrix and the matrices Y(rk ) and Y(f{) of sampled 

spherical harmonics. Specifically it will be demonstrated that when Y(f{) and Y(rk ) can be 

regarded as unitary matrices, such that Equations (7.47) and (7.48) hold to a good 

approximation, then we may write 

(7.49a, b) 

The matrices UN and V N comprise the left and right singular vectors associated with the 

first N singular values which, if the SVD is taken of the truncated Green function matrix 

GN(r I f), are the only non-zero singular values. The matrices UN and VJ\' are found to 

be linear combinations of the sampled spherical harmonics. The matrices T(rk ) and T(l\) 
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effectively specify the combinations of the columns of Y(rk ) and Y(r{) respectively that 

must be added to produce the columns of UN and V N' In fact the left and right singular 

vectors are found to be linear combinations of sampled spherical harmonics of a ce11ain 

order n, and this results in the matrices T( rk ) and T( r{) having a certain block diagonal 

structure. Furthermore, since UN and VN are unitary, and when Y(rk ) and Y(r{) are 

unitary, then both T(rk ) and T(r[) must be unitary. This follows since from Equations 

(7.49a) and (7.32a) 

(7.50) 

and when yH(rk)Y(rk ) = (K/471')I, then it follows that TH(rk)T(r,J= (471'/K)I. 

Similarly, TH (i[ )T(i[) = (471' / L)I . Thus it follows from Equations (7.49a, b) that the SVD 

of the Green function matrix given by Equation (7.30) can be written as 

(7.51) 

where IN is the diagonal matrix of the N non-zero real singular values. It is also evident 

from Equation (7.43) therefore that the diagonal matrix F of the complex amplitudes of the 

spherical harmonics is given by 

(7.52) 

These findings are confirmed by the results of the numerical simulations presented below. 

It will also be shown that for these results to hold, that it is vital that the points on the 

surface of the sphere and the points on the surrounding spherical surface are san1pled at the 

centres of segments of equal area. This ensures the orthogonality of the columns of the 

matrices Y(r,J and y(r{). 
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7.3 NUMERICAL SIMULATION BASED ON THE ANALYTICAL 

MODEL OF RADIATION FROM A SPHERE 

7.3.1 Computational model 

The Green function given by Equation (7.28) was used in order to construct the matrix of 

Green functions relating sources placed at 32 points on the surface of a rigid sphere 

(forming an Icosahedron) of radius 0.1 m to 32 points on a surrounding far field spherical 

surface of radius 10 m. The number of points chosen enabled both spherical surfaces to be 

divided into 60 segments of equal area as illustrated in Figure 7-1. In Equation 7.28, the 

first 5 terms were used in the series expansion (n=O to n=4). As a result, the first N = 25 

terms were included in the series. It was assumed that the characteristic impedance 

770 = Poco = 411.4 Rayls. The calculation is undertaken at a low frequency (ka=O.l, where 

a=O.1 m). The SVD of this matrix was undertaken using the 'SVD' routine in 

MATHEMATIC A (Wolfram Research, Inc.) and yielded only 25 significant singular 

values (Jj' as expected. The number of singular values found was thus equal exactly to the 

total number of terms in the spherical harmonic expansion (i.e. one term corresponding to II 

= 0, three terms corresponding to II = 1, five terms corresponding to n=2, seven terms 

corresponding to 11 = 3 and so forth). The remaining singular values were smaller than a 

factor of 10-10 times the smallest significant singular value at the given low frequency. A 

plot of the variation of the dominant 16 non-zero singular values as a function of ka is 

shown in Figure 7-2. It is clear that the singular values are grouped in spherical harmonic 

order with the largest singular value corresponding to II = 0, the next three corresponding to 

11 = 1, the next five corresponding to 11 = 2 and the next seven corresponding to II = 3. The 

real parts of the singular vector corresponding to II = 0, 1 and 2 which are given by the 

columns u are shown as surface colour maps in Figure 7-3a. These plots clearly show the 
I 

'monopole-like', 'dipole-like' and 'quadrupole-like' nature of the singular vectors associated 
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respectively with spherical harmonic orders corresponding to II = 0, 1, 2. (Note however, as 

discussed in detail by Morse and Ingard, 1968, Chapter 7, p. 346, that the sound fields 

associated with the multipole expansion are not simply related to the spherical harmonics; 

the quadrupole field for example consisting of a combination of spherical harmonics of 

order n = 2 and a monopole field). For comparison, the real and imaginary parts of the 

spherical harmonics corresponding to n = 0, 1 and 2 are shown in Figures 7-3b and 7-3c 

respectively. It was observed at this point that clearly similar patterns exist, but the rotation 

of the shapes cannot be identified intuitively. 

7.3.2 Calculation of the unitary transformation matrices 

A check was undertaken on the unitary nature of the matrices Y(rk) and Y(fL ) as defined 

in Equation (7.42) at a value of ka = 0.1. These matrices of sampled spherical harmonics 

were found, for the sampling geometry illustrated in Figure 7-1, to be unitary to an 

extremely good approximation. The matrices yH(rk)Y(rk ) and yH(f{)Y(f,) were found to 

be given by (K / 47f)I and (L / 47f)I respectively to a very good accuracy although the 

maximum diagonal term exceeded the theoretical value by 3.7%. The maximum off­

diagonal term was 3% of the theoretical value of the diagonal terms. The elements of the 

matrix yH(Yk)Y(rk) are shown on a grey scale plot in Figure 7-4. It is interesting to note, 

however, that the sum of the diagonal terms in these matrices was exactly equal to the 

theoretical value. Similarly the sum of the off-diagonal terms was a factor 10-.5 smaller than 

the theoretical value of the diagonal terms. 

The matrices T(rk ) and T(fz) were then calculated. Since there were only Tl = 4 terms in 

the spherical harmonic series expansion and thus only 16 non-zero singular values, only the 
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first N = 16 columns of the matrices U and V were used in SVD expansion of the matrix 

GN(r I f). Thus 

(7.53) 

and the unitary transformation matrices are defined usmg Equations (7.49a, b). Pre­

multiplication of these equations respectively by yH (rk ) and yH (f,) then shows that 

(7.54a, b) 

The results of these computations are shown in Figures 7-5 and 7-6 which show both the 

real and imaginary parts of these two matrices and their block diagonal structure. Note that 

the blocks of terms in these matrices are arranged in accordance with spherical harmonic 

order fl, with submatrices of dimension 1 xl, 3 x 3, 5 x 5 and 7 x 7 appearing in diagonal 

blocks. This in turn implies that the first left and right singular vectors are equal to the first 

columns of the matrices y(rk ) and Y(f{) respectively (i.e. corresponding to the 11 = 0 

spherical harmonic) whilst the second, third and fourth singular vectors are linear 

combinations of the second, third and fourth columns of Y(rk ) and Y (f{) corresponding to 

the fl = 1 spherical harmonics, and so forth. A plot of the elements of the matrix 

T(rk)HT(rk) is shown in Figure 7-7 which confirms the unitary structure of the matrix 

Finally, a check was undertaken to ensure that the matrix LN of singular values was 

related to the matrix F of complex spherical harmonic amplitudes through the relationship 

F = T(rk)L N TH(fl ). It was found that this relationship holds to an excellent 

approximation. Figure 7-8 shows on a logarithmic scale the elements of 

Re{T(r"J L N TH (r{)} computed from this expression. The results are in agreement with 
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those deduced from the analytical solution to within the precision of the numerical 

calculation. 

7.3.3 Sensitivity to choice of mesh 

A further set of numerical simulations were undertaken that were based on the above 

analytical model, but with non-uniformly sampled spherical surfaces. The surface mesh 

used is illustrated in Figure 7-9. This form of sampling was applied both to the sUliace of 

the rigid sphere and on the far field surface. In this case, the matrices Y(rk) and Y(r{) were 

no longer found to be unitary. A plot showing the real part of yH(rk)Y(rk) is shown in 

Figure 7-10 which demonstrates that although the diagonal terms are still dominant, the 

diagonal terms are a maximum of 19.1 % above the theoretical value, although their sum is 

again exactly equal to the theoretical value. The off-diagonal terms are a maximum of 

24.7% of the theoretically predicted diagonal terms. However, the sum of the off diagonal 

terms was 0.05% of the theoretically predicted values of the diagonal terms. Similarly, plots 

of the real and imaginary parts of T(rk ) for this case are shown in Figure 7-11 and a plot of 

the real part of T( rk)H T( rk) is shown in Figure 7-12. Also a plot of the real part of the 

matrix product T(rk)LN TH(r{)is shown in Figure 7-l3. In this case the agreement with 

the results for the analytical solution for Re {F} is far less good. 

A plot of the 16 dominant singular values is shown in this case as a function of ka in 

Figure 7-14. Again 5 terms (up to 11=4) were used in the spherical harmonic series and 25 

dominant singular values were yielded by the SVD. The smallest singular values were 

again found to be a factor 10-9 times the smallest dominant singular value. However, it is 

clear that the singular values are no longer grouped in spherical harmonic order as 

convincingly as the case with perfectly uniform sampling of the field. This therefore 
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illustrates the sensitivity of the choice of mesh to the relationship between the 'source 

modes' and 'field modes' comprising the columns of V and U and which is quantified by the 

relevant singular value. 

7.4 Numerical simulation of a sphere and ellipsoid using the BEM 

The numerical simulations undertaken below were undertaken using the DBEM. As an 

initial verification of the software, a numerical solution was computed for the case of a 

sphere whose surface was sampled as illustrated in Figure 7-15 with 152 vertices. The SVD 

of the resulting Green function matrix was then undertaken and calculated using MA TLAB 

(MathWorks, Inc.). The results are illustrated in Figure 7-16. The agreement with the 

results for the sphere sampled as shown in Figure 7-9 was found to be excellent (compare 

Figure 7-14 with Figure 7-16). Although a different number of nodes in each sphere was 

used in the analytical and numerical calculations, the deviation of the curves from the case 

where the nodes are distributed uniformly (Figure 7-2) is similar. 

The singular vectors presented in Figure 7-3 were calculated at low frequencies. Similar 

patterns and scales were obtained for a higher frequency (f-= 1 kHz, ka=1.8). It is not clear at 

this stage if at higher frequencies, the patterns are distorted or not. Due to long 

computational times the calculation was executed for low frequencies only. 

7.4.1 The source and field mode shapes of a rigid ellipsoid 

As a further illustration of the utility of the SVD in analysing numerical solutions, a further 

simulation was undertaken numerically in order to deduce the 'field mode shapes' and 

'source mode shapes' associated with an ellipsoid and a far field spherical surface. The 

ellipsoidal geometry illustrated in Figure 7-17 was used and the far field sphere was 

sampled using the same geometry as that illustrated in Figure 7 -15. 
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The behaviour of the singular values is shown in Figure 7-18, where there were subtle 

departures from the behaviour seen in the case of a sphere (Figure 7-14 and Figure 7-16). 

Most notably, the groups of spherical harmonic orders become more spread as the 

individual singular values depart more from the frequency dependence found with the 

sphere. In view of the evident sensitivity of the results shown above to the choice of mesh, 

it is difficult at this stage to be sure to what extent the basic change of geometry influences 

the results of the SVD. The mode shapes associated with both source and field are 

presented in Figures 7-19 to 7-28. The calculations were undertaken at two frequencies in 

order to investigate the consistency of the patterns and values with increasing frequencies 

and the extent to which the singular vectors associated with lower order singular value are 

changed. Figure 7-19 and 7-20 show the 'monopole-like' real and imaginary parts of the 

singular vectors at 500 Hz (ka=0.9) and 1 kHz (ka=1.8), respectively. No attempt was made 

to fix the scale and variation of colours, so although specific patterns are seen, the 

interpretation should be in accordance to the scale. The real part of the singular vector on 

the surface of the ellipsoid is negative with only a small variation (9.7%). The 

conesponding imaginary value is approximately 500 times smaller, and is in agreement 

with the results obtained in the case of radiation from a sphere (see Figure 7-3. Only the 

real part of the left singular vectors of the analytically derived 32 x 32 Green function 

matrix is shown since the imaginary values are zero). In fact, in all the following figures the 

imaginary part of the singular vectors on the surface of the ellipsoids are smaller by a factor 

of between 50 and 2500 than the real part of the same singular vectors. Also. the real and 

imaginary singular vectors in the far field on the surface of the sphere shown in Figure 7-19 

are almost omnidirectional where in both cases only positive values appear with variation 

in the order of 8% from the maximum values. These variations are a result of the 'distortion' 

of the shape of the sphere. 
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As frequency increases, similar patterns appear but these are not frequency independent 

(the scales have different values). Note also the change of the sign of the imaginary part of 

the singular vectors at 1 kHz compared with the equivalent singular vectors at 500 Hz. This 

is a result of the change of the phase with frequency for a given distance between the 

sources and the points on the surface. 

Figures 7-21 to 7-26 present the three 'dipole' shapes. In all figures the variation of the 

positive to negative values occur at the same direction of the dipole axis as found in Figure 

7-3 for the case of the sphere. Note that all scales are symmetrical with respect to the zero 

values (i.e. in each scale the absolute value of the maximum and minimum is identical). 

The variation in the scale for the real part of the singular vectors for the cases of 500 Hz 

and 100 Hz is in the order 5-10% and is different for each dipole order since the axes of the 

ellipsoid have different lengths (see Figure 7-17). Since the imaginary part of the singular 

vectors have much smaller values, the change of their amplitudes with frequency is higher. 

Finally, the first 'quadrupole' singular vectors are presented in Figures 7-27 and 7-28. Even 

for the fifth singular values, the mode shapes are distorted only slightly with the scales. As 

before the phase changes but all patterns are similar to the quadrupole patterns obtained 

with the SVD operation. 

The main difference between radiation from an ellipsoid and radiation from a sphere is that 

for the ellipsoid, the singular vectors (the 'mode shapes') are frequency dependent. More 

complex cases will be investigated in Chapter 8 which have more distinctive resonance 

frequencies. 
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7.S EXTRACTION OF HRTFs BASED ON THE SVD METHOD 

Note that it is possible using the SVD formulation to reconstruct the frequency response 

from a source in a particular position Pn and a field point in another position qm . Based on 

Equation (7.33), the vector p can be given by the product 

UN1 0"1 

UN2 0"2 

Pn UNn O"n 

UNN O"N 

* * Vln * * Vu V12 V1N % 
V21 * V22 * V2n * V2N * q2 

(7.55) 
x 

V * 
ml V m2 

* vmn * V * qm 
mN 

VM1 
* v M2 

* v MN 
* v MN 

* q}.f 

For the case of an excitation due to a specific source, we assume only qm is non-zero, then 

PI Uu 

P2 U12 

Pn U1n 

PN u 1N 

or, in a compact form 

U21 Un1 UN1 

U22 Un2 UN2 

U2n Unn UNn 

u 2n u nN u NN 

N 

Pn = LO"nunnvnm*qm 
n=l 

183 

* 0"1V1m qm 
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Thus the summation can be limited to a number which is less than N, if the last terms of the 

series of (J n are much smaller than the first terms. 

In figure 7-29a and 7-29b, the frequency responses detected in the front (¢ = 0°, e = 0°) 

and at the rear (¢ = 180°, e = 0°) of a sphere, when the source is positioned at a distance 

of 3 m at ¢ = 0°, e = 0° are presented, respecti vel y. Since the variations between the 

largest and the smallest singular values is decreasing as frequency increases, the 

contributions from low order singular values is not negligible. The first 20 terms in the 

summation are sufficient if a maximum of ka=l (/=,,550 Hz, at a=O.l m ) is required, For 

higher frequencies, up to ka=2, 50 terms are required. 

For this case, the reconstruction of the frequency response when a large frequency range is 

required, using the SVD method, is clearly not efficient. As will be demonstrated in the 

next chapter, the method is efficient when the radiating or scattering body is characterised 

by a strong resonance. 

7.6 Conclusions 

A number of numerical simulations have been undertaken in order to examme the 

connection between the basis functions provided by the singular value decomposition of 

matrices of acoustic transfer functions and the basis functions provided by classical 

acoustical analyses. In particular, it has been found that for radiation from the surface of a 

sphere to a spherical surface in the far field, the left and right singular vectors associated 

with the SVD are related to the sampled spherical harmonics by a unitary transformation. 

This relationship is dependent on the source and field being sampled by dividing the 

spherical surfaces involved into segments of equal area. The relationship is found not to 

hold for non-uniform sampling of the surfaces involved. 
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When the SVD is investigated on a more complex geometry such an ellipsoid, the deviation 

of the results of the singular values from the spherical harmonics is noticeable, and the 

corresponding singular vectors become frequency dependent. 

Since the singular values are not characterised for these two cases with a resonance at a 

particular frequency, the reconstruction of a frequency response for a given source position 

and a point on the sphere is successful only at low frequencies when a limited number of 

singular values are used in the summation. 

In the next chapter the method is implemented numerically on complex geometries (such as 

the human pinna) which are known to have clear resonance. 
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Figure 7-1: A spherical surface sampled at 32 uniformly distributed points (forming an 
Icosahedron) . Each vertex is used to position sources on the surface, and field points in the far field . 
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Figure 7-2: The singu lar values of the analytically generated 32 x 32 Green function matrix relating 
points on the surface of a rigid sphere of radius 0.1 m to points on the surface of a far field surface 

of radius 10 m. Both spherical surfaces are based on the mesh illustrated in Figure 7-1 . 
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(a) 

Figure 7-3: Three dimensional colour maps illustrating (a) the variation over the far field sphere of 
the normalised real part of the left singular vectors of the analytically generated 32 x 32 Green 

function matrix (the plots shown correspond to the nine most dominant singular values). Values in 
red correspond to + 1, and values in blue correspond to -1 . 
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(c) 

Figure 7-3 (cont.) : Three dimensional colour maps illustrating (b) the normalised real pa rt of the 
spherical harmonics evaluated over the same spherical suriace, (c) the correspond ing normalised 

imaginary parts of the spherical harmonics. Values in red correspond to + 1, and values in blue 
correspond to -1. 
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Fwure 7-4: A grey scale plot of the values of the real parts of the elements of the matrix 
Y(rk ) Y (rk ) where the values of rk chosen correspond to 32 uniformly distributed points on the 

sphere. 
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Figure 7-5: A grey scale plot of the (a) real and (b) imaginary parts of the elements of the matrix 
T (rk ) associated with the analytically generated 32 x 32 Green function matrix. 
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Figure 7-6: A grey scale plot of the (a) real and (b) imaginary parts of the elements of the matrix 
T(r/) associated with the analytically generated 32 x 32 Green function matrix. 
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Figure 7-7: A grey scale plot of the real parts of the elements of the matrix T( rk)H T ( r l.J 
associated with the analytically generated 32 x 32 Green function matrix. 
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Figure 7-8: A grey scale plot (on a logarithmic scale) of the real parts of the elements of the matrix 
T(rk ) L N T(fl)H associated with the 32 x 32 analytically generated Green function matrix. 

Figure 7-9: A spherical surface sampled at 56 locations with an approximately uniform distribution 
of points . The points used are at the vertices of the quad rilateral mesh elements . 
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Fi~ure 7-10: A grey scale plot of the values of the real parts of the elements of the matrix 
Y(r

k
) Y(r

k
) where the values of rk chosen correspond to 56 points distributed on the far field of 

a sphere in the manner illustrated in Figure 7-9. 
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Figure 7-11: A grey scale plot of the (a) real and (b) imaginary parts of the elements of the matrix 
T(r

k
) associated with the analytically generated 56 x 56 Green function matrix. 
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Figure 7-12: A grey scale plot of the real parts of the elements of the matrix T(rk)HT(rk) 
associated with the analytically generated 56 x 56 Green function matrix. 
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Figure 7-13: A grey scale plot (on a logarithmic scale) of the real parts of the elements of the matrix 
T(rk) L N T(rl)H associated with the analytically generated 56 x 56 Green function matrix. 
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Figure 7-14: The singular values of the analytically generated 56 x 56 Green function matrix 
relating points on the surface of a rigid sphere of radius a (0.1 m) to points on the surface of a far 

field surface of radius 100 a (10m) . Both spherical surfaces were sampled using the mesh 
illustrated in Figure 7 -9. 
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Figure 7-15: A spherical surface sampled at 152 approximately un iform ly distributed points. The 
points used are at the vertices of the quadrilateral elements. 
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Figure 7-16: The singular values of the numerically generated 152 x 152 Green fu nction matrix 
relating points on the surface of a rigid sphere of radius a (0.1 m) to points on a far field spherical 

surface of radius 100 a (10m) . Both spherical surfaces were sampled using the mesh illustrated in 
Figure 7-15. 

Figure 7-17: An ellipsoidal surface sampled at 152 approximately un iformly distributed points. The 
points used are at the vertices of the quadrilateral elements. The ellipsoid has semi-axes of 

dimensions ax = 9.6 cm, ay = 7.9 cm, az = 11 .6 cm. 
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Figure 7-18: The singular values of numerically generated 152 x 152 Green function matrix relating 
points on the surface of a rigid el lipsoid (distributed as shown in Figure 7-17) to points on the 

surface of a far field sphere (distributed as shown in Figure 7-15) with a rad ius of 104 aT (10 m). 
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Figure 7-19: The real part of the singu lar vectors of the 'source points' on the ellipsoid, and the 
'field points ' on the sphere (with a radius of 3 m). The results shown are associated with the first 

singular value - 0 1 at 500 Hz. 

Figure 7-20: As in Figure 7-20 but the singular vectors are assoc iated with 0 1 at 1 kHz. 
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Figure 7-21: As in Figure 7-20 but the singular vectors are associated with 0 2 at 500 Hz. 

Figure 7-22: As in Figure 7-20 but the singular vectors are associated with 02 at 1 kHz. 
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Figure 7-23: As in Figure 7-20 but the singular vectors are associated with 0 3 at 500 Hz. 

Figure 7-24: As in Figure 7-20 but the singu lar vectors are assoc iated with 0 3 at 1 kHz. 
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Figure 7-25: As in Figure 7-20 but the singular vectors are associated with 04 at 500 Hz. 
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Figure 7-26: As in Figure 7-20 but the singu lar vectors are associated with 0 4 at 1 kHz. 
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Figure 7-27: As in Figure 7-20 but the singular vectors are associated with 0"5 at 500 Hz 

Figure 7-28: As in Figure 7-20 but the singular vectors are associated with 0"5 at 1 kHz. 
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Figure 7-29: Frequency response decomposition of two points on the surface of the sphere (a) in 
the front, ¢ = 0°, e = 0° (b) at the rear, ¢ = 180°, e = 0° . In both cases a monopole source is 

positioned at ¢ = 0°, e = 0° at a distance of 3 m. The response shown with exact calculation 
(using the DBEM) and reconstruction with 15 to 50 terms. 
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CHAPTER 8 

MODELLING THE SPATIAL BASIS FUNCTIONS OFTHE 

PINNA USING THE SINGULAR VALUE DECOMPOSITION 

8.1 INTRODUCTION 

In the previous chapter, the spatial basis functions ('mode shapes') of the sphere have been 

presented using the SVD formulation and a Green function matrix relating a number of 

points on the surface of the sphere to a number of points on a sphere in the far field at 

discrete frequencies. It was also concluded that whenever the space or the sphere is not 

sampled uniformly, or the shape of the sphere is modified, for example, to an ellipsoid, the 

mode shapes are not directly related to the spherical harmonic basis functions and become 

frequency dependent. 

In this chapter, we investigate further the properties of the SVD formulation with the aid of 

numerical modelling of more complex geometries, with an emphasis on the properties of 

the human pinna. We hypothesise that at a specific 'resonance' frequency, the first singular 

value CT1 will have significantly higher amplitude than the others, and the complex singular 

vectors associated with this singular value will have distinctive patterns. Although found by 

using a different approach, Shaw (1974, 1997) identified three types of 'mode shapes': a 

'monopole like' pattern, and horizontal and vertical 'dipole-like' patterns. We demonstrate 

here that these common modes of the pinna, or similar patterns can be extracted by defining 

the appropriate Green function. 
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This chapter is organised as follows: the SVD formulation together with the generation of a 

Green function matrix is investigated for a few cases: first, the characteristics of a simple 

baffled Helmholtz resonator are shown, followed by a shallow baffled cylinder that models 

the concha. Accurate pinna geometries are investigated with two cases of source 

distribution: when the sources are uniformly distributed to give grazing incidence, and also, 

when they are approximately uniformly distributed in the upper hemisphere above the 

infinite baffle. Finally, the mode shapes found by Shaw (1974, 1997) are validated using a 

similar procedure to that used in his measurements. This is, however, undertaken 

numerically here. The relationship between these mode shapes and the basis functions 

found with the SVD is discussed. 

8.2 The Helmholtz resonator 

A Helmholtz resonator is a simple example of a device, which behaves as a harmonic 

oscillator with one degree of freedom (Kinsler et aI, 1982). It consists of a rigid-walled 

cavity of volume V with a neck of area S and length L. The main characteristics of the 

resonator are the strong amplification of pressure at the resonance frequency, and that 

generally the resonance occurs only in a narrow frequency bandwidth. 

The main motivation of analysing the Helmholtz resonator with the SVD formulation is to 

investigate the behaviour of the singular values. This model can be regarded as a very 

simple model of the concha, like the baffled cylinder that was investigated initially by 

Teranishi and Shaw (1968), but when limiting the area size of the opening, only a single 

narrow resonance frequency is expected to appear. 

In our numerical example we model a baffled cylinder with similar dimensions to those 

defined by Teranishi and Shaw (1968): the cylinder depth is 10 mm, and its diameter is 

22 mm. Its top (which coincides with the plane of the infinite baffle) is blocked, except for 
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a small opening, through which sound waves can propagate in both directions. The 

modelling technique is based on the 'IDEM transparency' formulation. 

The mesh includes 190 nodes and 360 elements. (The 'IDEM transparency' formulation 

requires coupling of the acoustic mesh with a structural mesh. Therefore a 'dummy' mesh 

with four elements was added far away from the acoustic model in order to minimise 

errors). Only six elements at the centre, at the top plane of the cylinder have been defined 

as 'transparent' (see Figure 8-1). The total area of these was S =27.9 mm2
, the volume of 

the cavity was V =3800 mm2
. 

In the case of an opening consisting of a hole in a thin wall of a baffled resonator (L = 0 

the effective length of the neck L' = 1.7 a (where a is the radius of a circular opening) is 

affected by its radiation-mass loading. The resonance frequency can be predicted from the 

analytical expression given by Kinsler et aI, 1982, pp. 225-227) 

_ .!:l~ S _ 340 27.9.10
6 

- 2 z 
fo - 271 L 'V - 2 . 71 l. 7 . 2.98 . 3800 - 060 H (8.1 ) 

Since our openmg is not exactly circular we can expect this equation to predict only 

approximately the resonance frequency. 

A Green function matrix was generated relating 336 field points at the bottom 

(z =-10 mm) of the resonator and 121 sources distributed approximately uniformly on a 

hemisphere in the far field, at a radius of 1 m on the upper hemisphere. The calculation is 

undertaken at 301 frequencies (from 1 kHz to 4 kHz in steps of 10 Hz). The normalised 

singular values are presented in Figure 8-2a and 8-2b. When the first 10 singular values are 

plotted on a linear scale, only the curve of the first singular value is noticed with a narrow 

frequency bandwidth resonance. The logarithmic scale reveals the separation between the 

first singular values and the remaining nine with a factor of> 1 03
. 

20S 



Chapter 8: Spatial basis functions of the pinna 

The frequency response at an arbitrary position at the bottom of the resonator due to a 

source positioned arbitrarily in space is calculated using Equation 7.57 and presented in 

Figure 8-3. A 'reduced order' calculation is undertaken with the first three terms and also 

with only the first term in the summation. As expected from Figure 8-2b, due to the high 

significance of the first singular value, the frequency response is reconstructed with high 

precision when only the first term is taken into account. The physical interpretation is that 

the radiation from a Helmholtz resonator can be described by a single monopole 'radiation' 

operator (as described by Borgiotti, 1990). 

8.3 THE CYLINDER IN AN INFINITE BAFFLE 

8.3.1 The singular values 

The cylinder, as a basic model of the concha was investigated by Shaw and Teranishi 

(1968) in their early work. Since the first resonance of a blocked meatus pinna corresponds 

to a quarter wavelength 'depth' mode, it is possible to match the volume of a cylinder to 

produce the desired resonance frequency as well as controlling the amplification in its base. 

In this case we use the same cylinder model used in the previous section but now the entire 

top section of the cylinder is defined as transparent (see Figure 8-4a). A model with similar 

dimensions was investigated by Teranishi and Shaw (1968) who showed that the first 

resonance frequency around 4.5 kHz is determined by the volume of the cylinder. The 

response is substantially independent of the angle of incidence up to about 7 kHz but 

becomes strongly dependent on the angle of excitation at the first transverse mode at 

approximately 11 kHz (see Teranishi and Shaw, Figure 2b, 1968, and also in Chapter 4. 

Figure 4-18). As before the calculation was undertaken using the 'IBEM transparency' 

formulation. 
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Clearly the characteristics of the singular values depend on the geometry of the radiation 

body as well as the source positions defined in the Green function matrix. By defining the 

field points not only at the bottom of the cylinder (as in the case of the Helmholtz 

resonator) but also on the cylinder walls and on a small area on the baffle, the properties of 

the singular values can be investigated where some parts of the 'radiating' body have 

different resonance frequencies. Therefore the field point mesh (see Figure 8Ab) was used 

to calculate the pressure values and includes 336 nodes and 457 elements. As before, the 

sources were positioned for each run at one of the 121 positions defined on a mesh grid 

with 108 elements *. 

Figure 8-5 presents the variation of the normalised singular values with frequency. The 

main difference between this graph and the previous cases of the sphere (Figure 7-2, 7-14 

and 7-16) and of the ellipsoid (Figure 7-18), is that now two resonance frequencies are 

characterised with strong peaks. The 'resonance' frequencies (the frequencies at which the 

curves of the singular values reach a peak) do not need to coincide with resonance 

frequencies for a particular source position and a particular field point. Nevertheless, due to 

the relatively large bandwidth of these 'resonance' frequencies, at each specific case these 

will not shift significantly from the centre frequency (see also Section 8.3.3). 

The first mode, at 4.2 kHz is known to be associated with a quarter wavelength depth 

resonance, with a peak in (T1 only. The second mode appearing at 10.8 kHz is a transverse 

mode (see also Figure 4-19), with peaks in both (T1 and (T2' It is interesting to observe the 

connectivity and intersection between the curves, as the SVD automatically positions (T1 

before (T2 (see Equation (7.31). It was found that when too Iowa resolution sampled mesh 

of source points was used, the same resonance frequency appeared, but the curves \vere not 

• It is estimated that much lower density meshes could have been sufficient. and the high resolution \\as used to 
investigate the effect on the intersection of the cun'es of the singular values as a function of frequency (see below!. 
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intersecting each other, as we shall see in the case of modelling of accurate representation 

of pinnae (Section 8.4). Following the curve of a l (a 'monopole' mode), its radiation 

efficiency is predominant up to 4.2 kHz, and gradually decreasing with increasing 

frequencies. The curves of a2 and a3 ('dipole' modes) start with a similar singular value at 

2 kHz and increase with frequency up to 10.8 kHz, and then have decreasing amplitude. As 

frequency increases the contribution of lower order singular values is increasing, such that 

at 12 kHz alO is almost 50% of a l . Another important conclusion that arises from this 

graph is that certain modes can be associated with more than a single a value. 

8.3.2 The patterns of the singular vectors 

In Figure 8-6a the 'mode shapes' associated with a l at 4.2 kHz are presented'. The non­

dimensional basis function has a uniform distribution in the base of the cylinder (where the 

scale has only positive values), which is related to a uniform distribution in the far field 

(and the scale has only negative values). Note that the sign of the values depends on the 

relative distance between these surfaces. In Figure 8-6b the 'mode shapes' associated with 

a2 at 4.2 kHz are presented. Both 'mode shapes' on the cylinder and on the hemisphere 

show a 'dipole-like' variation. Since at this particular frequency a 2 does not contribute 

significantly in the Green function matrix (as illustrated in Figure 8-5), no particular 

variation is noticed in the cylinder base. It is hypothesised that a resonance mode will 

produce varying values of basis functions on the surface mesh with little variation at other 

positions on the baffle. Figure 8-6c and Figure 8-6d illustrate the 'mode shapes' associated 

with a
l 

and a2 , respectively at 10.8 kHz. This transverse mode results in two basis 

functions, which are out of phase. Note that for both singular values the variation of the 

singular vectors on the baffle are small compared with the variation on the base of the 
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cylinder, and also that the scales of the singular vectors associated with CT
1 

and CT
2 

are 

different. 

8.3.3 Extraction of the frequency response 

Based on Equation 7.57 we can reconstruct a single frequency response from an arbitrary 

position in the far field (in this case at a distance of 1 m, at x=-0.53 m, )'=-0.26 m, 

and z=-0.8 m). We can first obtain directly an exact response by positioning a monopole 

source at the above position and solve for the pressure at the desired position at the base of 

the cylinder (in this case at x=0.05 m, ),=0.003 m, and z=-O.Ol m) with the 'IBEM 

transparency'. As a second stage, we can verify that the same response is obtained, this time 

with the SVD method and the singular vectors and singular values are used with all of their 

terms, and finally, the number of terms in the summation (Equation 7.57) is reduced to only 

the first few terms. Figure 8-7 presents the frequency response between these points. It is 

concluded that if the first five basis functions are used, the error is less than 0.5 dB up to 

12 kHz, and if only the first three basis functions are used, the same accuracy is obtained. 

but the maximum frequency is reduced to 8 kHz. Note that a significant error occurs from 

around 8.5 kHz if only three terms are used. It can be seen in Figure 8-5 that at this 

frequency CT 4 intersects with CT
1 

and its value increases, so although CT cj does not have as 

strong a peak as the first three highest singular values, it is still important in the 

reconstruction of the frequency response (its value is around 50% of CT 2 and CT 3 which is 

clearly not negligible). 

Nevertheless, this solution demonstrates that it might be possible to describe a frequency 

response at any given position in space, based on only few basis functions if these have 

strong peaks at certain frequencies which are significantly higher than the remall1ll1g 

+ Although the basis functions are complex. only the real yalues are presented here to demonstrate the principle. 
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singular values. This will ensure at least an approximate reconstruction of the peaks but not 

the notches, as will be discussed in Section 8.4.2.3. 

8.4 AN ACCURATE MODEL OF A PINNA IN AN INFINITE 

BAFFLE 

The principles used in the previous sections are implemented now with a baffled accurate 

pinna model (DB60). The model includes 6887 nodes and 13488 elements, and has a 

blocked ear canal. For this size of problem, the exterior DBEM formulation was the most 

efficient and 30 over-determination points were used to remove 'irregular frequencies'. 

8.4.1 Source excitation at grazing incidence 

8.4.1.1 The singular values oJtlze DB60 

A Green function matrix was generated that related the 6887 points on the surface of the 

pinna and 36 source positions. These were uniformly distributed on a circle with a radius of 

1 m in grazing incidence, at a resolution of 10°. The purpose is to investigate the 'mode 

shapes' of a similar source and microphone arrangement to that used by Shaw (1974, 1997). 

Figure 8-8 presents the singular values for frequencies between 2 kHz and 20 kHz (the 

response was calculated at 91 frequencies in steps of 200 Hz). 

This plot highlights the behaviour of the first dominant singular value and also shows the 

frequency dependence of the next nine largest singular values. The most significant feature 

of these results is that the dominant singular value has peaks appearing at certain 

frequencies. It has been found that the corresponding left and right singular vectors also 

reveal distinctive spatial patterns at these frequencies. 

In addition, note that the curves do not intersect (as in the case of the baffled cylinder. 

Figure 8-5), although the trend of 'flipping' modes can be seen. For example, the curve of 

0"1 reaches its maximum at 4.5 kHz and its value is declining up to 6 kHz, and then 
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continues (albeit with a gap) with the second curve. 0"2 changes from the second curve to 

the first curve at the same frequency (6 kHz). It was found that the curves do not intersect 

due to a low sampling of the source positions in space (this was investigated with the small 

model of the cylinder). 

The main 'resonance' frequencies associated with 0"1 are (4.5, 7.8, 10.3, 13.8 and 17.3) kHz. 

It is difficult though to specify if peaks occur at 'resonance' frequencies that are associated 

with 0"2' 0"3' etc. due to acoustical behaviour or due to a low sampling resolution of the 

hemisphere. 

8.4.1.2 The singular vectors of the DB60 

In order to investigate the characteristics of the singular vectors in three dimensions in 

space and on the surface of the pinna, a simple example is presented in Figure 8-9 where 

the excitation was at DC (1 Hz). Only the real parts of the left and right singular vectors are 

presented. These vectors show the variation of the basis functions. These are equivalent to 

free-field since the pinna does not contribute to these patterns at this frequency. The 

singular vectors associated with the first singular value are omnidirectional (the x-axis on 

the right figures is the angular position from e = 00 to e = 3500
). For higher modes the 

patterns on the circle and on the surface of the pinna have systematic 2-D and 3-D 

variations of the spherical harmonics, respectively. Note that both real and Imag1l1ary 

patterns are required to describe the 'mode shapes' at each frequency. 

The first peak in the variation of the singular values with frequency (Figure 8-8) appears at 

4.5 kHz. The first three real parts of the left and right singular vectors are presented in 

Figure 8-10. The real part of the singular vector on the surface of the pinna is characterised 

by an omnidirectional variation in the concha. It should be noted that the sign of the values 

is a function of the phase and it is determined by the distance between the sources and the 

211 



Chapter 8: Spatial basis functions of the pinna 

pinna. The real part of the first right singular value at the position of the sources still shows 

only positive values, as shown in Figure 8-9a, but the deviation from a perfect 'monopole' 

directivity pattern is noticed. The following patterns associated with the second and third 

singular values are presented in Figure 8-10b and in Figure 8-10c. These show some 

distortion to the 'dipole-like' patterns shown at DC. The variations also noticed outside the 

pinna that means that these 'modes' are not tuned for pinna resonance. This is also 

supported by the fact that the singular values at this frequency have no certain peaks (in 

Figure 8-8). Therefore, for higher 'resonance' frequencies we will concentrate only on the 

first dominant singular values since these are probably the most dominant in identifying 

'resonance' frequencies, and also since the reliability of lower order singular values is 

poorer due to low resolution of the sampled source positions. 

Figures 8-11 a to 8-11 d show the real part of the singular vectors associated with the first 

singular values at (7.8, 10.3, 13.8 and 17.3) kHz, respectively. It is clear that there is some 

resemblance between the 'modes' on the surface of the pinna, and the 'modes' appearing at 

source positions. However the interpretation of the shapes, especially at source positions 

become more complex as frequency increases. In addition, the interpretation requires the 

visualisation of the real and imaginary values of both singular vectors. 

It is evident that at frequencies of which the singular values reach a peak, a tuned mode 

appears on the surface of the pinna. The variation of the non-dimensional basis function in 

the surrounding of the pinna is close to zero, and the maximum and minimum values appear 

mainly in the cavum concha and cymba concha, and also in the fossa of helix and antihelix. 

Only five peaks are detected in Figure 8-8. Based on the simulation of the frequency 

response of the DB60 in Chapter 5 (Figure 5-16 to Figure 5-18), measurements of the 

response of the DB60 at grazing incidence in the anechoic chamber, and the investigation 

of the normal mode shapes in Chapter 8, Section 8.5, it is evident that the resonance 

212 



Chapter 8: Spatial basis functions of the pinna 

frequencies are shifted upwards due to the relatively small dimensions of the pinna. As 

Shaw found, the first 'mode' has a 'monopole-like' pattern, the next two modes have 

'vertical dipole' modes with variation between the positive values in the cavum concha and 

negative values in the cymba concha and the fossa of helix in the second mode, and 

positive values in the cavum concha and fossa of helix, nodal line on the crus helias, and 

negative value in the cymba concha in the third mode. In the next two patterns the variation 

seems to be in the horizontal direction, with a single nodal line in the cavum concha in 

Figure 8-11c, and two nodal lines in Figure 8-11d. This is in general agreement with the 

results of Shaw. 

8.4.2 Source excitation on the upper hemisphere 

8.4.2.1 The singular values of the DB60 

The SVD method is used in this case in a very similar procedure to that discussed in the 

previous section. The only difference in this case is the distribution of source positions on 

the upper hemisphere. We investigate again the characteristics of the singular values and 

the singular vectors and compare the results with the excitation at grazing incidence. Since 

the computational cost of operating the SVD procedure at many frequencies is expensiye 

(see Chapter 10 for a summary), a smaller mesh is used (with 2825 nodes compared to 

6887 nodes in the previous case). In this case the pinna is not smoothed gradually to the 

baffle plane but is used with its rectangular frame such that its bottom is snapped to the 

baffle plane. It was checked that the fact that the pinna is now physically 7 mm above the 

plane did not change significantly the response extracted with the SVD. The dimensions of 

the matrix of Green functions relating a number of points on the surface of the DB-60 pinna 

mounted on an infinite baffle and a number of points on a far field hemispherical surface 

are now 2825 x 209. The procedure is repeated 91 times for frequencies between 2 kHz and 
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20 kHz in steps of 200 Hz, so overall more than 50 million complex pressure values have 

been calculated. 

The frequency dependence of the resulting singular values is illustrated in Figure 8-12. 

Note the similarities found in the resonance frequencies appearing in this graph and those 

found in Figure 8-8. The only shift in 'resonance' frequency is noticed for the second peak. 

Its relatively low amplitude and broad resonance shifts from 7.8 kHz in the case of 

excitation at grazing incidence to 8.8 kHz in the current case. The other four peaks have 

similar centre frequencies, and similar amplitudes in both cases. In addition, the 

characteristics of the non-intersecting curves appear again, and the trend of 'flipping' CJ at 

certain frequencies is evident, as before, at lower values of CJ • For example, it is not clear 

whether CJ2 at 10 kHz has a peak due to similar physical behaviour of the baffled cylinder 

in this frequency range (see the curve of CJ2 at 10.8 kHz in Figure 8-5), or because of a 

break that appears in the 'flipping' curves of CJ l and CJ2 . 

8.4.2.2 The sillgular vectors of the DB60 

Figure 8-13 shows the real parts of the left and right singular vectors associated with the 

first dominant singular value (CJ l ) appearing in Figure 8-12 at 4.6 kHz. Figure 8-13a 

illustrates the first quarter wavelength depth resonance. The concha has a 'monopole' mode. 

with a similar pattern appearing in the far field. Figure 8-13b and Figure 8-13c shm\' the 

real parts of the singular vectors associated with CJ:2 and CJ 3 . Similar patterns appear on the 

pinna surface when those are compared to Figure 8-10b and Figure 8-10c, and also slight 

distortions of the 'dipole' patterns appear on the hemisphere in a similar way to those that 

appeared when the sources were distributed on a circle (the right column in Figure 8-10b 

and Figure 8-10c). Figure 8-14 shows the imaginary part of the singular vectors with 

similar patterns to those that appeared in Figure 8-13 albeit with changes on the phase. 
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Figure 8-15a and Figure 8-15b show the real and imaginary singular vectors at 8.8 kHz 

associated with CTr . The 'vertical' dipole patterns identified in all four plots support the 

similar patterns obtained in the case of excitation at grazing incidence (Figure 8-11 a). 

These involve oscillatory flow between the cavum concha, cymba concha and the antihelix. 

In addition, the patterns on the pinna are comparable with the first 'vertical' mode identified 

by Shaw at 7.1 kHz. The third pair of real and imaginary singular vectors associated with 

the first singular value that has a peak at 10.8 kHz (in Figure 8-12) is presented in Figure 

8-16. In a similar behaviour to that noticed with excitation at grazing incidence (Figure 

8-11c), another 'vertical' mode is noticed on the surface of the pinna and involves 

oscillatory flow between the cavum concha, cymba concha and the antihelix, as before but 

with different signs in the cymba concha and the antihelix. The variation in the far field is 

more difficult to analyse visually and different patterns appear for the real and imaginary 

singular vectors. 

Figure 8-17 presents the only singular vectors associated with CT
2

• It is probable that these 

vectors are related to the first transverse mode appearing in the case of the baffled cylinder 

(see Figure 8-6c and Figure 8-6d). Although the four plots have a clear 'vertical dipole' in 

the far field and 'horizontal dipole' patterns on the surface of the pinna with oscillatory flow 

between the fossa of helix and the antihelix, the cavum and cymba concha patterns remain 

unchanged. 

The patterns become more complex in Figure 8-18 and Figure 8-19. The patterns on the 

surface of the pinna are in general agreement with the results of Shaw although in this case 

the pattern at 13.8 kHz match the 12.1 kHz average frequency given by Shaw. and the final 

mode here, at 17 kHz is comparable with the 14.4 kHz identified by Shaw. In both figures 

the interpretation of the modes in the far field is not possible, and it is not clear if increasing 
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the resolution of source positions in space will change the patterns or if these are a result of 

the high variation of efficient excitation of the pinna at high frequencies. 

The resolution of the sources was investigated for the 'resonance' frequency of the second 

peak. Figure 8-20 presents four cases where the real parts of the left singular values are 

presented on the surface of the DB60. The source distributions varied from an 

approximately uniform distribution on the upper hemisphere with 17, 57 and 209 sources, 

in Figure 8-20a, Figure 8-20b and Figure 8-20c, respectively, and also 36 sources 

distributed uniformly in grazing incidence (Figure 8-20d). As clearly seen, the oscillatory 

flow between the cavum concha and the cymba concha and antihelix, producing a 'vertical 

dipole', appears in all cases. This suggests that the 'mode shapes' of the pinna do not need a 

high density. However, using more than 209 sources is beyond the capability of the 

available computational resources at this stage (SGI, Origin 2000 with parallel processing). 

8.4.2.3 Frequency response recollstructioll of the DB60 

The procedure, based on Equation (7-57) was investigated for the case of the Helmholtz 

resonator (Figure 8-3) and the baffle cylinder (Figure 8-7). In this case the blocked entrance 

to the ear canal is used, and four source positions are investigated. Figure 8-21 presents the 

efficiency and accuracies of 'reduced order' frequency responses using only three to ten 

terms. It is concluded that the reconstruction produces different accuracies depending on 

the source positions. In all cases the reconstruction of peaks is better than notches mainly 

since the peaks in the singular values are dominant. Whenever the first singular value 

reaches a minimum value, the relative contribution of the low order singular values 

increases and more terms are required in the summation. Nevertheless, for source excitation 

at a grazing angle in the front (at ¢ = 0°. e = 0°) presented in Figure 8-21 a, three terms 

are sufficient to reconstruct the response up to 14 kHz with errors less than :2 dB (except in 

the minimum around 8, and 12 kHz where the error is slightly higher). The results obtained 
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with three to ten terms are compared to the calculation made with the DBEM. When the 

source is at ¢ = 0°,61 = 90° (on the baffle, above the pinna, Figure 8-21b) the curve is 

more complex and three terms are sufficient for accurate reconstruction only up to 7 kHz. 

Above this frequency the number of terms should be between five and ten. Similar 

responses are obtained when the source is below (¢ = 0°,61 = 270°, Figure 8-21c). For 

excitation of the source at the rear (¢ = 180°: 61 = 0°), presented in Figure 8-21d, more 

errors occur (more than 10 dB) if only three terms are used, and high accuracy is achieved 

if ten terms are used in the summation. 

8.4.3 The singular values of additional pinnae 

In the following section the B&K, DB65, CORTEX and YK pinnae are investigated, and 

the Green function matrix relating the points on each pinna and 209 source positions on the 

upper hemisphere. The results are presented in Figure 8-22 to Figure 8-25. As in the 

previous case, the 'resonance' frequencies are found by the peaks of the first singular value. 

The amplitudes vary among pinnae for each centre of 'resonance' frequency. 

Table 8-1 summarises the centre 'resonance frequencies' of all of the pinnae investigated. 

For the DB60 column (a) is related to excitation with 209 sources and (b) for excitation of 

36 sources in grazing incidence. In general, similar frequencies appear when compared with 

the averages given by Shaw, especially for the first three modes. As frequency increases. 

variations in pinnae shapes and size as well as low density of source positions in the Green 

function matrix make the comparison less clear. 
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B&K DB60 DB65 CORTEX YK pinna 

a b 

4.0 4.6 4.5 4.0 4.0 3.9 

7.4 8.8 7.8 6.8 6.8 7.6 

10.3 10.3 10.3 9.5 9.8 10.8 

12.2 - - 12.5 12.7 -

15.4 13.8 13.8 16.2 14.6 14.0 

18.9 17.5 17.3 18.2 - 18.6 

Table 8-1: 'Resonance' frequencies (in kHz) of pinnae obtained with the SVD. In each case the 
Green function matrix is based on 209 sources approximately distributed in the upper hemisphere, 

except the case of DB60(b) where 36 sources were distributed uniformly in grazing incidence (every 
10°). Note the similarities of the resonance frequencies and the average values given by Shaw 

(1997) and summarised in Table 5-1. 

8.5 CONVENTIONAL MODE EXTRACTION OF BAFFLED 

PINNAE 

8.5.1 Method 

In this section we extract with numerical modelling the normal modes of the pmna. 

following the same experimental procedure as that used by Shaw (1974, 1982). He used the 

following procedure. A plate was attached to the head, so that diffraction around the head 

was minimised. A progressive wave source was moved in the grazing incidence plane and 

the pressure was measured with a probe microphone at the blocked entrance to the ear 

canal. The variation of pressure under these conditions resembles the response under free-

field conditions for median plane sources. A mode was found when maxima appeared as 

the frequency and source positions were moved. Then the pressure amplitude and phase 

were recorded at the base of the concha and the fossa of helix as well as the angle at which 

the mode was most excited. 

In numerical modelling of this experiment, the small baffle Shaw attached to his subjects 

around their pinnae is replaced here by an infinite baffle. His 'wave progressive source' is 

218 



Chapter 8: Spatial basis functions of the pi nna 

replaced here first:!: by an ideal monopole source that is placed 1 mm away from the blocked 

entrance to the ear canal. Using the principle of reciprocity, this is used to calculate the 

pressure variations 1 m away (Shaw was limited to the near field only with a distance of 

8 cm from the microphone, due to the size of the baffle and calibration of the transducers). 

With the reciprocity simulation technique, the calculation of the pressure at field points in 

the post-process stage is straightforward and fast. However, we limited these points to be 

on a circle with a radius of 1 m at grazing incidence. The calculation is undertaken at a 

resolution of 1°, and the frequency step was 200 Hz from 1 kHz to 20 kHz. Figure 

5-16(DB60) shows the variations of peaks and notches detected at the blocked entrance to 

the ear canal with the above parameters. In fact, for all pinnae presented in Figure 5-16. 

peaks appear at certain frequencies, regardless of the angle (i.e. the amplitude of these will 

change, but not the frequency). It can be seen that five or six resonance frequencies appear 

which might be explained by the different sizes of the pinnae, where smaller pinnae will 

shift the resonance to a higher frequency. By analysing Shaw's measurement for individuals 

(Shaw, 1997, pp. 34-35), it can be seen, for example, that the averaged 12.1 kHz resonance 

frequency has distinct behaviour with subjects J and H, and a very small change in the 

curvature of the curve around this frequency with subjects A, Band G. Also the averaged 

14.4 kHz resonance frequency is absent in subject H. 

8.5.2 Results 

The resonance frequencies found for DB60 in Figure 5-16 are: (4.5, 7.8, 10.3, 14 and 

17) kHz. The angle, at which the excitation is maximal was found by plotting a 

directivity/vector plot, at each resonance frequency. In the left plots in Figure 8-26, the 

length of the arrows facing the centre of the pinna is corresponding to the magnitude of the 

t This to find the maxima of pressure variation in the far field. Later a plane wave source was used to excite the pinna. to 

eliminate spherical attenuation. 
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pressure at the blocked entrance to the ear canal due to a source at that location. Also the 

colour of the arrow changes with the magnitude: red for maximum response and blue for 

minimum response. The colours assigned to each vertex on the pinna mesh (right hand 

pictures) correspond to the absolute pressure, and negative values indicate negative phase at 

the particular vertex (compared to the phase at the blocked entrance to the ear canal). Note 

that a more accurate way of presenting these results would be with two plots; either of the 

real and imaginary values of the pressure, or the magnitude and phase, but we use this 

format for consistency with Shaw's plots. 

The first resonance, appearing at 4.5 kHz was excited the most from a source positioned at 

21 ° in elevation (at grazing incidence). The directivity plot is almost omnidirectional, i.e. 

the pinna is excited almost with the same efficiency from every direction in grazing 

incidence. The pressure variation at the base of the concha is also almost uniform with 

amplification factor of 5 compared with the response detected at the centre of the baffle 

(which doubles the pressure, compared to free-field equalisation). 

The next two 'vertical' modes, in Figure 8-26b and in Figure 8-26c are excited the most 

effectively from () = 41° and () = 76°, respectively. The patterns in the concha are 

characterised with a single nodal line in the vicinity of the crus helias. The difference 

between these modes is the negative phase in the fossa of helix at 7.8 kHz and positive 

phase at the same position at 10.3 kHz. Note also the similar variation of the pressure 

amplification at 10.3 kHz compared with the results of Shaw, with average factors in the 

range of 8-10). 

The next two modes have more complex patterns. The 'horizontal' mode in Figure 8-26d at 

14 kHz has a very similar pattern to the 12.1 kHz mode identified by Shaw, and is also 

excited from the front. It is not clear, at this point, if this mode is perfectly tuned. and the 

shift in resonance frequency is due to the small dimensions of the pinna. The final mode is 
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believed not to be tuned as maximum efficiency of excitation appears from two directions, 

one from the front as found by Shaw, and one from above. There is clearly a relationship 

between the patterns in the concha and the angle of excitation: source from above will 

create 'vertical' modes, and from the front, 'horizontal' modes. As a result it was decided to 

investigate further, another pinna, the larger DB65. As can be seen in Figure 5-16 and in 

Table 5-1, the resonance frequencies of this 'average male' pinna (Maxwell and Burkhard, 

1979) are similar to the average responses of Shaw. 

Figure 8-27 presents the six modes found for this pinna and the best angle of excitation in a 

similar format used in Figure 8-26. The first resonance, at 4.2 kHz have a similar pattern to 

the 4.6 kHz resonance found in DB60 with almost a uniform distribution of pressure 

amplification in the concha. The next two modes are characterised with efficient excitation 

in elevation (these, at () = 60° and () = 94° are within the range measured by Shaw) and 

also the nodal line appears in the vicinity of the crus helias. 

The next three modes are clearly 'horizontal' with all excitation have maxima at the front 

(again, the angle variations are in agreement with Shaw's results). Also the nodal lines and 

phase changes have similar patterns to his measurements. 

8.6 CONCLUSIONS 

In this chapter the mathematical formulation of the SVD was used to investigate the 'mode 

shapes' of arbitrary geometries. It is shown that the SVD formulation with the aid of exact 

numerical modelling techniques (the DBEM and the IBEM) extend the interpretation and 

use of orthogonal basis functions by relating spatially the 'mode shapes' on the body and the 

mode shapes on the hemisphere or on a particular plane on which the radiated field is 

defined. 
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The numerical results of a baffled Helmholtz resonator, a baffled cylinder and an accurately 

modelled pinna demonstrate that the singular vectors are frequency dependent and at 

particular resonance frequencies these 'modes' radiate more efficiently than at other 

frequencies. Distinctive spatial patterns that are associated with these singular values 

appear both on the surface of the body as well as in the far field. 

The mode shapes of two pinnae (the DB60 and the DB65) were also investigated by the 

excitation by sources positioned at grazing incidence. When compared with the 'modes' 

obtained with the SVD, the resonance frequencies are nearly identical. A high level of 

agreement was also obtained when the mode shapes and the angle of excitation were 

compared with the work of Shaw, especially for the case of the DB65. 

Due to a limited number of source positions used in the SVD, it is difficult to analyse the 

behaviour of lower order singular values and their singular vectors. This was due to 

computing and hardware limitations. 
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Figure 8-1: Baffled Helmholtz resonator. The mesh includes 190 nodes and 360 elements. Six 
elements at the top are 'transparent' so that waves can propagate through this opening. 
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Figure 8-2: The singular values of the 336 x 121 Green function matrix of the Helmholtz resonator 
(a) linear scale (b) logarithm scale. The simulation is undertaken at 301 frequencies in steps of 

10 Hz. 
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Figure 8-3: The frequency response at the bottom of the Helmholtz resonator reconstructed using 
the first three singular values and also with only the firs t singular value. 
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Figure 8-4: The IBEM transparency mesh model (a) A mesh cylinder with a volume of 3.8 cm 3 to 
represent the concha is composed of 376 linear elements and 190 vertices. Its top is aligned with 

the infinite baffle ( z = 0), where all top elements are transparent so waves can propagate through 
both sides of the baffle . (b) 457 elements and 336 vertices of field points are located both on the 

walls of the cylinder and the baffle . 
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Figure 8-5: The singular values of the numerically generated 336 x 121 Green function matrix 
relating points on the cylinder and its surrounding to points on the hemisphere with radius of 1 m. 

The simulation is undertaken at 51 frequencies. 

225 



Chapter 8: Spatial basis functions of the pinna 

(a) 

(b) 

(c) 

(d) 

Figure 8-6: The figures on the left show colour maps of the real part of the left singular vectors of 
the numerically generated 336 x 121 Green function matrix. The figures on the right show the real 
part of the right singular vectors in the far field (a) 4.2 kHz - 0'1 (b) 4.2 kHz - 0'2 (c) 10.8 kHz - 0'1 

(d) 10.8 kHz - 0'2 ' 
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Figure 8-7: Reconstruction of the frequency response detected at the bottom of the cyl inder 
(x=O.005 m, y=O.003 m, and z~0 .01 m) due to a source, arbitrarily chosen at x=-0 .53 m, y~0 . 26 m, 
and z=-0.8 m, based on the basis functions found on the surface of the cylinder mesh and in the far 

field. 
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Figure 8-8: The singular values of the numerically generated 6887 x 36 Green function matrix 
relating 6887 points on the surface of the blocked meatus of the D860 KEMAR pinna mounted on a 

rigid baffle to 36 points distributed uniformly, every 10° on a circle at grazing incidence. The 
calculation is undertaken at 91 frequencies. 
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(a) 

(b) 

(c) . 

(d) 

(e) 

Figure 8-9: The real part of the left and right singular vectors at DC (1 Hz) associated with the 
dominant singular values of the numerically modelled 6887 x 36 Green function for the D860 pinna. 
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Figure 8-11 : The real parts of the left and right singular vectors of the D860 associated with the first 
singular value (0"1) at (a) 7.8 kHz (b) 10.3 kHz (c) 13.8 kHz (d) 17.3 kHz. The Green function matrix 

is as defined in Figure 8-9. 
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Figure 8-12: The singular values of the numerically generated 2825 x 209 Green function matrix 
relating 2825 points on the surface of the blocked meatus of the D860 KEMAR pinna mounted on a 

rigid baffle to 209 points distributed approximately uniformly on the upper hemisphere. The 
calculation is undertaken at 91 frequencies. 
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Figure 8-13: The real parts of the left and right singular vectors associated with the first three 
dominant singular values of the numerically generated 2825 x 209 Green function matrix for the 

OB60 pinna at 4.6 kHz (a) 0"1 (b) 0"2 (c) 0"3 · 
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Figure 8-14: The imaginary parts of the left and right singular vectors associated with the first three 
dominant singular values of the numerically generated 2825 x 209 Green function matrix for the 
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Figure 8-15: The left and right singular vectors associated with the dominant singular value ( a 1 ) of 
the numerically generated 2825 x 209 Green function matrix for the 0860 pinna at 8.8 kHz (a) real 

values and (b) imaginary values . 
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Figure 8-16: The left and right singular vectors associated with the dominant singular value ( 0"1 ) of 
the numerically generated 2825 x 209 Green function matrix for the 0860 pinna at 10.3 kHz (a) real 

values and (b) imaginary values. 
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Figure 8-17: The left and right singular vectors associated with the second dominant singu lar value 
( O'?) of the numerically generated 2825 x 209 Green function matrix for the 0660 pinna at 10.3 kHz 

- (a) real values and (b) imaginary values . 
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Figu re 8-18: The left and right singular vecto rs associated with the dominant singular value ( Cl1 ) of 
the numerically generated 2825 x 209 Green function matrix for the OB60 pinna at 13.8 kHz (a) real 

values and (b) imaginary values . 
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Figure 8-19: The left and right singular vectors associated with the dominant singular value ( (ll ) of 
the numerically generated 2825 x 209 Green function matrix for the 0860 pinna at 17.5 kHz 

(a) real values and (b) imaginary values. 
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Figure 8-20: Comparison of spatial basis function (the real part of the left singular vectors) 
associated with the first dominant singular value (0"1) of the second peak (see Figure 8-8 and 
Figure 8-12). Different number of sources and positions are used (a) 17 sources approximately 

uniformly distributed on the upper hemisphere (at 7.8 kHz) (b) 57 sources approximately uniformly 
distributed on the upper hemisphere (at 7.8 kHz) (c) 209 sources approximately uniformly 

distributed on the upper hemisphere (at 7.8 kHz) (d) 36 sources uniformly distributed at grazing 
incidence (at 8.8 kHz) . 
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Figure 8-21 : Reconstruction of the frequency response detected at the blocked ear canal of baffled 
OB60. The curves show comparisons of the response obtained with direct calculation (using the 
OBEM) and with the SVO with limited number of terms in the series. The source is positioned at 

grazing incidence (a) front (¢ = 0°, e = 0°) (b) above (¢ = 0°, e = 90° ). 
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Figure 8-22: The singular values of the numerically generated 3906 x 209 Green function matrix 
relating 3906 points on the surface of the blocked meatus of B&K pinna mounted on a rigid baffle to 

209 points distributed approximately uniform ly on the upper hemisphere. The calcu lation is 
undertaken at 91 frequencies. 
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Figure 8-23: The singular values of the numerically generated 3389 x 209 Green function matrix 
relating 3389 points on the surface of the blocked meatus of DB65 pinna mounted on a rigid baffle 

to 209 points distributed approximately uniformly on the upper hemisphere. The calculation is 
undertaken at 91 frequencies. 
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Figure 8-24: The singular values of the numerically generated 3392 x 209 Green function matrix 
relating 3392 points on the surface of the blocked meatus of YK pinna mounted on a rig id baffle to 

209 points distributed approximately uniform ly on the upper hemisphere. The calcu lation is 
undertaken at 91 frequencies. 
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Figure 8-25: The singular values of the numerically generated 3390 x 209 Green function matrix 
relating 3390 points on the surface of the CORTEX pinna mounted on a rigid baff le to 209 points 

distributed approximately uniformly on a far field hemisphere of rad ius 3m. The calculation is 
undertaken at 66 frequencies. 
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(a) 
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Figure 8-26: The figures on the left show the level of the response at the blocked meatus of DB-60 
at a specific frequency in a vector/directivity format as a function of the location of the source on the 
circle. The higher the response, the longer the arrow facing the centre of the pinna. On the right, the 

absolute pressure is shown when the pinna is excited with a plane wave source at the angle 
specified on the left. Negative/positive values indicate negative/positive phase, respectively. The 

figures correspond to the following frequencies (a) 4.5 kHz (b) 7.8 kHz (c) 10.3 kHz. 
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Figure 8-26 (cant.): (d) 13.8 kHz (e) 17.0 kHz. 
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Figure 8-27: The modes of the DB65 modes with a similar format presented in Figure 8-26. The 
figures correspond to the following frequencies (a) 4.2 kHz (b) 7.2 kHz (c) 9.6 kHz. 
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Figure 8-27 (cont.): (d) 11 .6 kHz (e) 14.8 kHz (f) 17.8 kHz. 
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CHAPTER 9 

EXAMPLES OF THE SOUND FIELDS OF VIRTUAL 

ACOUSTIC IMAGING SYSTEMS 

9.1 INTRODUCTION 

Currently, one of the main limitations of the production of virtual acoustic images with 

loudspeakers is the equalization zone, also known as the 'sweet spot'. In principle, by using 

appropriate inverse filtering, which eliminates the cross-talk paths (Atal and Schroeder, 

1962), it is possible to transform the 'binaural synthesis' or the 'binaural recording' 

techniques from headphones to loudspeakers. The common feature in both cases is that the 

goal is to reproduce the sound pressure at two points, the eardrums. In the case of 

headphones, the acoustical characteristics of the cavity and the headphones can be 

compensated to a certain degree. When loudspeakers are used, still, the pressure at only two 

points is reconstructed (it is possible however to eliminate this problem and reconstruct the 

wave field with a large number of loudspeakers (Berkhout, 1993». Therefore the designer 

of any virtual acoustic system using loudspeakers does not know or cannot predict the 

variation of the sound field in the vicinity of the head. 

The positions of the loudspeakers seem to playa significant part in the size of the 'sweet­

spot'. The recursive behaviour of the cross talk signals shown in the patent of Atal and 

Schroeder (1962), and by Nelson et af (1997) and Kirkeby et af (1998) causes a 'ringing' 

behaviour (in the time domain) of the interacting waves. This results in 'colouration' 
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whenever the listener is not positioned in the 'sweet-spot' or even when non-individualised 

HRTFs are used. 

In the following sections we demonstrate a very useful feature of the BEM: the inputs to the 

loudspeakers are filtered and the sound field is solved to produce the desired signals at the 

ears of the head model. The visualisation of the total sound pressure can be useful for 

example in the design of virtual acoustic systems using individual HRTFs with adaptive 

systems (either with laser trackers, video cameras, or electromagnetic trackers) where the 

filters used on the input to the loudspeakers are updated in real time in order to compensate 

for head movements. 

An outline of this chapter is as follows: first, the sound field around KEMAR due to a 

single monopole source, both in the frequency and time domains, is calculated with the 

BEM and IFEM. Subsequently, cross-talk cancellation is implemented with a general 

multi-channel formulation. The HRTFs and sound field around KEMAR for the 2x2 

Stereo Dipole is calculated and visualised, and finally the response of the head and the 

sound fields of 4x4 systems (four loudspeakers and four microphones) for a single, or two 

listeners are presented. 

9.2 HEAD SCATTERED ACOUSTIC FIELD DUE TO A 

MONOPOLE SOURCE 

9.2.1 Frequency domain response with the DBEM 

When the human head is simplified to the classical rigid sphere, analytical expressions exist 

for both the frequency response on the sphere surface (Equation (4.1) and also the total 

sound field (Equation (4.2» due to an excitation of a plane wave or a monopole source 

(Equation (7.29». However, it was demonstrated in Chapters 4, 5 and 6 that the pinna can 

produce a much more complex structure of frequency response at high frequencies. An 
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example of the sound field around KEMAR (without a torso) calculated with the DBEM is 

shown in Figure 9-1. In this case the mesh model of KEMAR included 10283 nodes and 

20562 elements (of a full head), and the mesh of the field points around the head comprises 

of 200 x 200 points. The total (incident + scattered) sound pressure in an area of 0.5 m x 

0.5 m is shown on a linear scale. The source is positioned in front of the head at a distance 

of 0.5 m from the centre of the head. In Figure 9-1a and Figure 9-1b the characteristics of 

the sound fields are very similar to the case of a sphere where at 200 Hz the head is almost 

transparent to the propagating waves. At 1 kHz the shadow zones appear at the rear, and an 

increase of pressure occurs in front of the head due to the superposition of the incident and 

reflected waves. As frequency increases (at 2 kHz and 5 kHz, presented in Figures 9-1 c and 

9-1d) the interference between these waves causes more complex patterns in front of the 

head and higher attenuation is noticed at the rear. In addition, the scattered sound field is 

slightly uneven on the left and right sides due probably to slight misalignment and due to 

the asymmetrical shape of KEMAR mesh model with DB60 and DB61 pinnae. 

9.2.2 Frequency domain response with the IFEM 

As indicated in Chapter 4, the IFEM method was implemented successfully for the case of 

a rigid sphere and a feasibility study was undel1aken in order to investigate the success of 

the method when the KEMAR head is modelled. 

Currently, one of the main disadvantages of using the IFEM in practice for 'rear problems 

is the generation of the IFEM mesh. An IFEM mesh was constructed with PRE­

SYSNOISE. Due to the dense resolution of the vertices in the vicinity of the pinna the 

procedure of filling tetrahedral elements to the smallest circumscribing ellipsoid results in a 

very large number of elements. A relatively small mesh was generated which includes 

10800 elements of the original BEM mesh as the inner layer, 41100 tetrahedral elements of 
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the conventional FEM, and 2400 elements of the infinite layer (see Figure 9-2). This mesh 

with its maximum edge length corresponds to a maximum frequency of 2.5 kHz. Two cases 

were compared with the BEM in Figure 9-3: first order approximation (only the first term 

in the IIr expansion, see Equation (3.39)), and with order 4. For the latter, the average error 

of the total pressure due to a source at position (r = 1 m, at ¢ = 45°, e = 45° ) was 1.39c. 

The highest sensitivity appears at the rear due to large attenuation and limited mesh 

resolution. 

No improvement in CPU time was achieved in this case but it is claimed that the efficiency 

increases for larger models. This issue requires more advanced mesh generation tools. 

9.2.3 Time domain response with the DBEM 

The direct simulation of impulse responses using the time domain formulation of the BEM 

is still not recommended due to stability problems in the solutions. The method undertaken 

and described below is based on using the Inverse Fourier transforms of the computed 

responses in the frequency domain. 

It is possible to visualise the propagation of the spherical wave, impinging on the surface of 

the head, by calculating the inverse Fourier transform of the frequency response at each 

field point. To ensure causality of the impulse response of each point, and also for the 

clarity of animation, the response was multiplied with a half Hanning window with the 

Nyquist frequency being at 6.4 kHz. The following steps were followed: 

• The frequency response of each field point around KEMAR is calculated with the 

DBEM around the head up to 6.4 kHz. 

• The frequency is 'mirrored' at the Nyquist frequency by appending the conjugate 

values. 
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• The new frequency response is multiplied by half of the required window in the 

frequency domain. 

• An inverse FFT is applied followed by a cyclic shift to produce a delay at half the 

number of the sampling points. 

Examples of the effect of applying various windows for the generation of the impulse 

response of field points in the case of scattering from a sphere are given in Kahana (l997a). 

Figure 9-4 includes 12 snapshots of the animated sound pressure. When the spherical wave 

impinges on the head, a secondary wave is seen to propagate backwards. When the main 

wave leaves the head, another spherical wave appears. The amplitude of this wave is smalL 

compared with the incident wave, and its effect was emphasised in this simulation by 

positioning the source in the near field at 0.5 m away. The further away the source, the less 

significant this effect. 

9.3 MULTI-CHANNEL CROSS-TALK CANCELLATION 

The calculation of the sound field for virtual acoustic imaging systems is given below for a 

general number and arrangement of loudspeakers and microphones. A diagram describing 

the signal processing problem of the sound reproduction system is shown in Figure 9-5. By 

assuming that the system is working in discrete time, we can adopt the definition of the 

signals in the z-domain. It is assumed that the T microphones which record the sound field 

are restricted to the horizontal plane. The T observed signals are described by the vector 

u(z). The objective is to reproduce these signals as closely as possible at the equivalent 

locations in the listener space. S sources are used to reproduce the field and their input 

signals are described by the vector v(.::). These sources produce signals at R locations in the 

listening space, these signals comprising the vector w(.::). For our purposes, we assume that 

the microphones are positioned at R locations in the listening space, which are equivalent to 
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the T locations of the microphones in the recording space such that T=R. The R desired 

signals are described by the vector d(z), and the R performance error signals are described 

by the vector e(z). 

The goal is to design the matrix HIll,A(Z) which minimises the magnitude of the vector of 

error signals, where A(z) and C(z) are given. From the block diagram shown in Figure 2 

and Equations 1-3, we can derive the following relationships: 

and 

v(z) = Hm,A (z)u(z) 

d(z) = z-mA(z)u(z) 

w(z) = C(z)v(z) 

e(z)=d(z)-w(z) 

(9.1 ) 

(9.2) 

(9.3) 

(9.4 ) 

The calculation of the optimal filters in the least squares sense exposes some of the 

fundamental problems encountered with deconvolution of a multi-channel system; these 

filters are constrained to be stable but not constrained to be either causal or finite duration. 

The goal is to find the signal vector v(dW.1) which operates in discrete time on sampled 

input signals, and minimises the sum of squared errors between the desired and reproduced 

signals. 

The quadratic cost function that is to be minimised is given by 

(9.5) 

The cost function thus consists of the sum of the squared errors eH (eJ,,-'t,. )e( eJ~'t,.) plus the 

sum of squared source input voltages vH (ej~'t,. )v( eje"'t,.) multiplied by a positive real 

number [3, where e( eJu)t,.) and v( ej~'t,.) are vectors containing the Fourier transforms of the 
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error signals and source input signals respectively, and f3 is a regularisation parameter. The 

latter quantifies the relative weighting in the cost function given to the 'effort' used in 

minimising the sum of squared errors. By varying f3 from zero to infinity, the solution 

changes gradually from minimising only the performance error to minimising only the 

effort cost. The optimal vector of source input signals vopt(e'CVL") is given by 

With no modelling delay (m=O) and according to Equation (9.1), the optimal filter matrix 

becomes in the z-domain, 

(9.7) 

The matrix of optimal inverse filters can be represented by ROJ (again, in a special case 

where m=O) which we define as the generalised cross-talk cancellation matrix, given by 

(9.8) 

This term is used whenever the target matrix is an identity matrix regardless of the value of 

m. As mentioned above, it is crucial to include a modeling delay with a sufficient length in 

order to ensure the best performance under the constraint of causality of all the filters. 

The method of calculating the sound field with a numerical solution includes the following 

stages: 

• The pressure at each of the blocked ear-canals is calculated due to a single source at 

a time. The position of the source is equivalent to the position of a real source. 

• A matrix of the 'electro-acoustic' response is obtained (2x2 for two speakers and 

two ears, and 4x4 for four speakers and four ears). e.g. el2 is the response at ear no. 

I due to source no. 2. 
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• A desired signal is determined. Generally "0" pressure is assigned to one of the 

ears, and" 1" to the other ear, i.e. d=[ 1 0] T for a 2x2 system, where d is the vector 

of the desired signals (this is equivalent to attenuation of 00 dB at one ear compared 

with the other). 

• Each source is filtered (via appropriately designed inverse filters) to produce the 

desired signals with a table of complex pressure values at each frequency. The 

regularisation value was chosen for each head and loudspeaker anangement as 

described below. In all cases the regularisation parameter was chosen to be 0.001 to 

remove ill conditioning due to symmetric acoustic paths. 

9.4 TWO CLOSELY SPACED LOUDSPEAKERS: 

THE STEREO DIPOLE SYSTEM 

A closely two spaced loudspeaker anangement, the Stereo Dipole, was developed at the 

ISVR (Nelson et ai, 1997, Kirkeby et aI, 1998) to produce virtual acoustic images \vith a 

larger 'sweet spot'. Not only do the filtering of the signals result in quicker fade of the 

recursive nature of the cross-talk cancellation (see Kirkeby et aI, 1998), and a higher 

frequency of the 'ringing' of the filters, but also the resulting sound field is assumed to have 

a smoother form with minimal interaction between the waves propagating from the t\\'O 

loudspeakers. 

In the current investigation, we visualise the total sound pressure in the frequency domain 

on the surface of the head, around it, and also the time domain animated sound field with a 

few snapshots, by using a similar technique to that used in the previous section. 

Figure 9-6 shows the sound pressure variation on the head. Our goal is to control locally the 

pressure at the entrance to the ear canal only. Our cross-talk cancellation matrix is designed 

to produce zero pressure at the right ear of KEMAR and pressure of unity in its left ear. It is 

255 



Chapter 9: Sound fields of virtual acoustic systems 

seen that the proximity of the speaker divides the pressure zones to the right and left sides 

of the head. As frequency increases the equalisation zone on the head is reduced, and only 

accurate attenuation is obtained at the entrance to the ear canal and within the concha. The 

scale is linear where red is limited to unity and blue to zero pressure. Note that this 

simulation is ideal, and it does not highlight the problem of loudspeaker behaviour due to 

the ill-conditioning at low frequencies. 

Figure 9-7 shows the resulting sound field around the head in the frequency domain for the 

same filtered signals as used in the previous figure. The characteristic common to all 

frequencies is the symmetry with respect to the centre axis between the sources, i.e. the 

separation between the right and left channels is preserved even if the head is not 

positioned in the exact 'sweet-spot' but along this axis. 

Figure 9-8 presents 12 snapshots of the animated sound field around the head with the 

Stereo Dipole loudspeaker arrangement. It is seen that the loudspeakers produce waves 

which are almost out of phase and the interaction between them is minimal. Note that the 

Hanning window attenuates the high frequencies in the signals and therefore pinnae 

resonances do not affect these results. 

9.5 FOUR-CHANNEL CROSS-TALK CANCELLATION 

The signal processing is only briefly introduced here, and more examples of using this 

scheme with objective and subjective studies are given in Kahana (l997a, b, c. and 1999b). 

9.5.1 A "four-ear" listener system 

In this system we do not attempt to reconstruct the sound pressure at the eardrum exactly. It 

has been shown that the main advantage of such an arrangement is that the rate of change 

of the interaural cross-correlation (lACC) function with respect to head rotations in a four 

channel system, with loudspeaker also placed behind the listener, can be reproduced. Our 
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goal in this case is to reconstruct the accurate pair of HRTFs at the blocked ear canal when 

the head is rotated at angles of ±SO . In Figure 9-9 we demonstrate the operation of the cross 

talk cancellation by reproducing" 1" at ear no. 1 and "0" at all the others (this is achieved 

by multiplying the vector [1 0 0 O]T with the cross-talk cancellation matrix H). We can 

notice the effect of the cross talk cancellation on the robustness of head rotations: the zero 

pressure in the right side is maintained when the head is rotated, and on the left side a rapid 

change between "0" and "1" is achieved. Two conclusions can be reached from this 

example: the use of four ears for calculation of filters for a single listener proves very 

robust to head rotations and can provide important cues for front and back discrimination. 

Secondly, the 'sweet spot' is reduced in comparison to the 2x2 system presented in the 

previous example. If the head is moved forward or backward the cross-talk cancellation 

effect disappears. 

In Figure 9-10 the sound field in the vicinity of KEMAR is presented with the same filtered 

signals that were used to calculate the desired signals and the response on the surface of 

KEMAR in Figure 9-9. The plots show the amplitude of the resultant pressure at discrete 

frequencies. Since the desired signals include two points to each ear: one is moved slightly 

towards the frontal hemisphere, and the other towards the rear, the sound pressure varies 

rapidly in the left ear of the dummy-head when it is rotated slightly, whereas the sound 

pressure in the vicinity of its right ear is maintained under the conditions of the cross-talk 

cancellation with zero pressure. The complexity of the sound field and the effects of the 

interference between the waves are clearly shown at high frequencies. 

9.5.2 Virtual acoustic images for two listeners 

The analysis of this virtual acoustic imaging system for two listeners has been investigated 

in Kahana (1998, 1999b). In Figure 9-11 we present the sound field (with the dimensions of 
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1 m X 0.5 m) around two head models of KEMAR. The desired signals in this case were 

d=[l 0 1 O]T so that each head can 'listen' to filtered binaural recordings (the left channel of 

an artificial head recording is calculated to be heard at ears 1 and 3, with the right channel 

at ears 2 and 4). It can be noticed that the 'sweet spot' which appears now is very small (a 

few centimetres in an optimal calculation at 1 kHz, which would be even smaller at higher 

frequencies), and any movement can put the listeners out of the 'sweet spot' zone. It can 

also be noted that even with a symmetric arrangement of loudspeakers and listeners, the 

'sweet spot' for one listener will always be narrower and also the sound quality will be 

better for one listener than for the other. The calculation was unde11aken using the property 

of symmetry with the IBEM, as described in Section 4.1.2.3 since both loudspeakers and 

sources are arranged symmetrically for the left and right sides. 

9.6 CONCLUSIONS 

A few examples of the visualisation of the total pressure on the head and around it haw 

been presented. At low frequencies ( up to 1 kHz) the sound field is not very different for a 

head model of KEMAR and a rigid sphere. As frequency increases, the sound field in free­

field becomes more complex and can be simulated based on the modelled individualised 

HRTF. Time domain representations have been presented for scattered sound field due to a 

monopole, and for the case of the Stereo Dipole system. In this case, the impulse response 

included mainly frequencies below the first resonance of the concha, but in principle high 

frequencies can be visualised albeit with larger models and consequently longer calculation 

times. 

The visualisation of the sound field for multi-channel systems reveals the resultant sound 

field due to the interaction between the waves and the heads(s). These systems create very 

complex sound fields, and their performance can be of good quality only if low frequencies 
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are present. This information can be used in the design of an interactive virtual system, 

when the filters are updated with the movement of the listener. 

259 



Chapter 9: Sound fie lds of virtual acoustic systems 
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Figure 9-1 : Scattered sound field due to a monopole around KEMAR at (a) 200 Hz (b) 1 kHz (c) 3 kHz 
(d) 5 kHz. The mesh includes 10283 nodes and 20562 elements. The mesh of the fie ld points 

consists of 40000 nodes. 

Figure 9-2: An IFEM mesh of KEMAR. The figure shows a cross-section of the original mesh (10800 
elements) , and the outside layer with 2400 infinite elements. The 41100 tetra elements which 
connect the two layers are not shown. The infinite layer was optimised with minimal ell ipsoidal 

dimensions. 

260 



Chapter 9: Sound fields of virtual acoustic systems 

(a) 

(b) 

(c) 

Figure 9-3: The amplitude of the total sound pressure around KEMAR at 2 kHz. The source is 
positioned at 1;1;1 (1) = 45°, e = 45° ) (a) BEM (b) IFEM - order 1 (c) IFEM - order 4. 
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Figure 9-4: Time domain animation of a monopole wave scattered by KEMAR. The mesh model 
and field points are as specified in Figure 9-1 . The calculation was undertaken using the DBEM up 
to 6.4 kHz. The modelled frequency response of each of the field points was multipl ied with a half 

Hanning window before operating the Inverse Fourier Transform (IFFT). The sequence is presented 
with snapshots arranged from to upper left to bottom right. The head is not shown for clarity of the 
visualisation . The source is positioned 0.5 m away from the centre of the head to emphasise the 

secondary wave propagation in the shadow zone. 
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Figure 9-5: A block diagram of the multi-channel sound reproduction system. 
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200Hz 

1 kHz 

3 kHz 

5 kHz 

Figure 9-6: Linear sound pressure values on the surface of KEMAR artificial head with the Stereo 
Dipole system. The desired signals are '1' at the right ear of KEMAR (red) and '0' at his left ear 

(blue). Due to the proximity of the sources to each other efficient cross-talk cancellation is obtained 
for the two sides of the head. 
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Figure 9-7: The total sound pressure of the Stereo Dipole system on a linear scale in the vicinity of 
the head (0.5 m x 0.5 m), presented in discrete frequencies. The source inputs were fi ltered to 
produce the desired signals as described in Figure 9-6. The figures correspond to the following 

frequencies (a) 200 Hz (b) 1 kHz (c) 3 kHz (d) 5 kHz. 
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Figure 9-8: Time domain sound field of the Stereo Dipole system. The order of the snapshots is 
similar to those given in Figure 9-4. The procedure for the conversion of the frequency response of 

the field points presented in Figure 9-7 is similar, and described in Figu re 9-4. 
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200 Hz 

1 kHz 

3 kHz 

5 kHz 

Figure 9-9: Linear sound pressure values on the surface of KEMAR artificial head with the 4x4 
system. Four loudspeakers are used with their inputs are fi ltered to produce the following desired 
signals: '1' at the left ear of KEMAR and '0' at his right ear when the head is rotated 5° to the right. 

When the head is rotated 5° to the left cancellation is obtained at both ears. 
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Figure 9-10: 'The sound field around KEMAR for the 4x4 system. The source inputs are filtered to 
produce the desired signals that are described in Figure 9-9. The figures correspond to the following 

frequencies (a) 200 Hz (b) 1 kHz (c) 3 kHz (d) 5 kHz. 

o o 

o o 
Figure 9-11: A 4x4 multicahnnel virtual acoustic imaging system for two listeners using cross-talk 
cancellation. The desired signals are d=[1 0 1 0] (the left channel of a dummy head recording is 

calculated to be heard at ears 1 and 3, with the right channel at ears 2 and 4, with an ideal cross­
talk cancellation). The total sound field is calculated at 1 kHz in a grid with dimensions of 1 x 0.5 m2 

around two head models of KEMAR. 
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CHAPTER 10 

DISCUSSION AND CONCUSIONS 

10.1 SUMMARY 

In this thesis, the feasibility of modelling the HRTF with numerical techniques has been 

investigated. It has been recognised for a while that in principle, the solution of the wave 

equation could provide the ultimate solution when modelling the frequency response of the 

external ear, since this method relies on the exact solution for arbitrary, complex bodies. 

However, only very recently has the combination of improved integral equation techniques, 

advanced computing hardware, advanced visual capturing devices, and an understanding of 

the significance of HRTFs in psychoacoustic studies enabled us to carry out such research. 

The solution of exterior problems in acoustics can be derived using two approaches: the 

BEM, and recently also the IFEM. Although the latter approach proved to be much more 

efficient for large problems than the BEM (Burnett, 1994), the problem of mesh generation 

is still intricate for complex geometries. Therefore, our study has been focused mainly on 

the use of BEM techniques: the DBEM, the IBEM and their special formulations. 

HRTFs include the transformation of sound due to the contribution of the different parts of 

the human body: the head, torso and shoulders, pinna, ear canal and eardrum. The 

contributions of these have been analysed. Although it is still not possible to include all of 

the above in a single BEM model, the investigation has included the analysis of the 

contribution of separate models. 
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Accurate simulation and measurement of the frequency response at high frequencies 

(above 5 kHz) is a difficult task. Therefore, an emphasis was put on minimising errors as 

much as possible for the comparison between the physical world (measurements apparatus, 

head and pinnae), and the virtual world (computer models of the same head and pinnae 

mentioned above, geometric arrangement, etc). The computer-controlled rotating arc \vas 

designed to help measure the response of baffled pinnae, as well as HRTFs in the anechoic 

chamber, with a high resolution of spatial sampling. Consequently, it was possible to track 

the variations of the frequency and time responses in various planes with both measurement 

and simulation procedures. 

The spatial mode shapes of the human pinna have been investigated. The results have been 

compared with the literature, and the inter-variability among six pinnae has been studied. 

The formulation for obtaining numerically the spatial basis functions of the pinna, based on 

the SVD technique, extended the interpretation of the 'mode shapes' obtained by Shaw 

(1974) with the excitation of the pinna at grazing incidence. These spatial basis functions 

can now be used to extract a 'reduced order' frequency response of the pinna, by selecting 

only the first few singular values, which contribute the most to the total sound pressure. 

A few examples of sound fields for virtual acoustic imaging systems have been presented. 

These demonstrate the possibilities of using this tool to predict the sound field in a free­

field environment, with individualised HRTFs and various loudspeaker arrangements. 

The main results and conclusions of the research presented in this thesis are presented 

below. 
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10.2 DISCUSSION AND CONCLUSIONS 

10.2.1 HRTFs of simple geometrical models 

The simulation of the response of simple geometrical models has served two purposes in 

this study. Firstly, to investigate if numerical techniques are accurate when compared to 

analytical solutions and to examine what attention the numerical implementation requires in 

order to ensure that the results are not degraded. Secondly, to investigate numerically 

models which cannot be modelled analytically and can be used in the study of the basic 

features of the HRTF. 

Good agreement was achieved when the sphere was modelled and compared with analytical 

solutions. Removing 'irregular frequencies' of the sphere is not a trivial task, probably due 

to its symmetry. The effectiveness of treating these singularities is different in the DBEM 

and the IBEM, and there are no exact rules governing the methods to correct these errors 

without a trace, especially at high frequencies. In the DBEM, over-determination points 

should be added but kept to a minimum, especially if the number of nodes in the model is 

not large. They should be added only after the problem was run first, and then the problem 

should be run again only in the 'corrupted' frequency range. In the IBEM, either absorbent 

'singular elements' should be added in the cavity, or the inner side of the elements should be 

assigned with positive admittance values. This does not, however, guarantee to remove the 

severe peaks and notches completely. 

Four different methods were used to investigate the sound field around the sphere (the 

DBEM, the IBEM, the axisymmetric IBEM, and the IFEM). Although different parameters 

could control the accuracy of the modelling, overall, with approximately the same 

accuracy, the high efficiency of the IFEM and the axisymmetric IBEM compared to 3-D 
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BEM was demonstrated. All of these methods can be used very efficiently to model the 

response of any spheroid, just by scaling the model with different factors along its axes. 

The response of an ellipsoid with dimensions matching approximately the shape of an 

artificial head was investigated using the principle of reciprocity. The monaural and 

interaural responses were solved up to 5 kHz with a high spatial resolution. The ITD was 

extracted using the differences in the interaural group delays. 

The implementation of the response of a large volume mesh such as the torso and shoulders 

imposes great difficulties due to many 'irregular frequencies'. Dividing the large model into 

half, using the symmetry property, thus reducing the volume, results in a reduction of the 

number of severe peaks and notches that need to be removed. The response of the torso is 

direction dependent. The modulation of the amplitude, when compared to a sphere or an 

ellipsoid, is a result of the reflection that causes an echo in the time domain, with varying 

delays as a function of the angle of the source. 

10.2.2 Mesh resolution 

The number of elements per acoustic wavelength is a crucial factor in the preparation of the 

mesh, and the reliability and predictability of the results. The general guidelines are that the 

mesh should not include edges in any element that are larger than 1I6th of the wavelength. 

It was found in our cases of scattering problems, that when the pressure on the body is 

required in a position that is on the same side of the source (e.g. the ipsilateral ear) four 

elements per wavelength could be used as a the minimum mesh resolution. Although the 

results with such a low requirement do not 'break up' with unpredicted severe peaks or 

notches, the accuracy is slightly reduced. Six elements per wavelength are sufficient and a 

higher resolution is not required. However, for points in the shadow zone (e.g. the 

contralateral ear) a higher resolution is required. In this case, six elements per wavelength 
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are essentially the minimum, and the accuracy can increase with a higher resolution. The 

exact resolution could not be analysed for the complex shape of the pinna with the large 

model of the head since the response on the contralateral side is very sensitive to the 

geometry of the pinna, and in order to increase the mesh resolution only very large models 

should be used to eliminate geometry changes. This was beyond our computing 

capabilities. 

10.2.3 Mesh accuracy 

In this study, an emphasis was put on the minimal simplification possible in every pa11 of 

the modelling. Is it crucial to use a high accuracy laser scanner? How accurately can the 

acoustic response be modelled, when the various parts of the pinna, and especially the 

concha are roughly approximated? The response of the DB60 pinna was modelled (under 

baffled conditions, to eliminate irrelevant contributions due to diffraction around the head) 

with two mesh models obtained with different type of scanners. The acoustical response 

was significantly degraded with a 'low-resolution scanner', and the resonance peaks and 

notches lost their exact structure with a shift to higher frequencies due to shallower volume 

of the concha and lack of details in the pinna. It is concluded that the use of simpler 

approaches to obtain a mesh (such as extraction of 3-D information from 2-D still pictures) 

must first be compared with the performance achieved with the 'high-resolution' scanner. 

The accurate mesh models of the KEMAR and YK heads were obtained by integrating and 

manipulating the 3-D models, obtained with both types of laser scanners. To the best of the 

author's knowledge a single visual capturing device which can produce such high accuracy 

does not exist. 

273 



Chapter 10: Discussion and conclusions 

10.2.4 Acoustical characteristics of the external ear 

The pinna has a complex shape, and therefore high directivity and variation of the 

frequency response at high frequencies. The response of the external ear was calculated 

when attached to an infinite baffle and to the head. The similarities in the resonance 

frequencies between the two cases enable great improvement in calculation efficiency, the 

ignoring of the variability between head shapes and dimensions, and the orientation of the 

pinnae. Many of the spectral changes reported in the literature have been observed, and the 

variability between the ears has been shown to be high at frequencies above 8-10 kHz. 

The HRTFs of YK and KEMAR heads (both without torso) were simulated. The results of 

the latter compared with measurements with high precision. Since the ipsilateral ear 

produces higher accuracy with only four elements per wavelength than the contralateral ear 

with at least six elements per wavelength, ILD values in the ITF can be used reliably only 

up to 10 kHz. 

10.2.5 Spatial mode shapes of the pinna 

The modes of the human pinna have been simulated using two approaches: by simulating 

the procedure used with the classical measurements carried out by Shaw, and also by using 

the SVD formulation relating the Green function matrix of field and source points. With the 

first case, we observed the following: Shaw identified six resonance frequencies but, by 

looking at his ten pinnae responses, it is clear that some frequencies have a very weak 

excitation. We repeated his approach of finding the resonance frequencies that are excited 

the most. Then by observing the variation of pressure amplitude and phase, we found 

similarities but also deviations from his results. First the DB60 was investigated. In this 

pinna in both simulation and measurements the 12 kHz mode reported by Shaw (and 

mentioned also by Middlebrooks et ai, 1989) could not be observed, and only five 
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resonance frequencies were found. When the larger pinna, the DB65 was investigated, all 

six modes were found with similar centre frequencies to the averages given by Shaw. Exact 

variations of amplitude and phase on the surface of the pinnae were given. Variations 

appeared in the amplitude levels in the concha, fossa of helix and antihelix when compared 

with the results of Shaw, but he presented only average data. In addition, slightly different 

conditions were used in our case (such as far field excitation and using an ideal plane wave 

source). Nevertheless the patterns have a very similar structure. 

These pressure variations reveal the transverse modes of the pinna at high frequencies, but 

cannot be used directly in the construction of the frequency response at the entrance to the 

ear canal. Since the BEM can provide the accurate pressure values at any points on an 

arbitrary body, we hypothesised that by using the SVD method we can observe cel1ain 

common characteristics that appear at the resonance frequencies. The mathematical 

formulation showed that the left and right singular vectors of the SVD yield two sets of 

basis functions which respectively represent a series of mutually orthogonal complex 'field 

mode shapes' and mutually orthogonal complex 'source mode shapes'. The connection 

shown with the spherical harmonics demonstrates that under certain specific conditions. 

such as using only uniformly sampled spheres, the frequency response and the Green 

function matrix can be composed of 'spatial patterns' which are frequency independent, and 

a frequency dependent operator which is spatially independent. 

When the formulation was implemented numerically on the pinnae, spatial patterns of both 

'source mode shapes' and 'field mode shapes' revealed the resonance frequencies that take 

into account excitation from anywhere on the hemisphere. Although clear 'monopole-. 

dipole-, and quadrupole-like' modes appear on the surface of the pinna, and similar patterns 

in the source points, larger variations appear among pinnae for the latter. It is not clear if 
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the relatively low sampling of the space contributes to the variation, especially at high 

frequencies, or the high variation is derived purely from physical reasons. 

The frequency response at the entrance to the ear canal reconstructed with only a few terms 

show promising results for the generation of a reduced order technique. The performance is 

at its best in the reconstruction of peaks rather than notches, since the first singular value of 

the resonance frequency contributes the most. At minima, many low order singular values 

make a contribution of the same order. 

10.2.6 HRTF measurement 

The measurement of the response of baffled pinnae and HRTFs has been carried out in the 

anechoic chamber using a specially designed and built apparatus. Its main objective was 

measuring the response of baffled pinnae. Since it is possible to control the position of the 

arc in a resolution that is much smaller than 1°, it was possible to equalise each 

measurement with the equivalent measurement position, when the head or the pinna was 

absent. The measured dynamic range of KEMAR was more than 50 dB over the entire 

sphere, and 40 dB for the baffled pinnae. 

10.2.7 Sound fields for virtual acoustic imaging systems 

Most psychoacoustical studies are carried out with headphones. This is because there is a 

greater control of the acoustic environment. Recently, the addition of head trackers into 

these studies helped in the study of front-back reversals as well as externalisation. These 

studies are not used with loudspeakers, mainly since the wavelength becomes so short. that 

it is impossible to control high frequencies (at 10 kHz, the wavelength is in the order of 

3 cm). If a head tracker is used in virtual loudspeaker reproduction, it might be beneficial to 

study the characteristics of the sound field for a specific loudspeaker arrangement. 
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A few examples have been presented and have demonstrated the simple sound field 

achieved with two closely spaced loudspeakers in both frequency and time domains. Multi­

channel cross-talk cancellation suffers from a narrow sweet spot, mainly because of the 

sensitivity of the sound field at high frequencies, as well as discrepancies in individualised 

HRTFs, the imperfection of the transducers etc. 

10.2.8 Computational cost 

The main hurdle of modelling HRTFs with the BEM is the very high computational cost. 

Although it is anticipated that the use of the IFEM will alleviate this limitation in the future, 

currently due to the difficulties in mesh generation we are confined to using the BEM . 

At high frequencies, the size of the elements comprising the mesh model needs to be 

refined. As the dimensions of the model become larger and larger, and the requirements for 

accurate modelling at high frequency remains fixed, the efficiency of the BEM is 

dramatically reduced. This is the main reason why the BEM is mainly associated with the 

'low' frequency range. 

The main difficulties in using large models are summarised as follows: 

• Processing speed. Currently the trend of CPU performance of the PC is said to 

double every 18 months. HRTFs can already be modelled on home PCs. The 

improvement of parallel computers and their interface made it possible to mUltiply 

performance depending on the number of processors available. More cost-effective 

parallel PCs have just started to be used. We therefore predict that the improvement 

in computational speed will make simulating HRTFs more accessible in the near 

future. 
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• Physical memory size. The performance of the BEM is optimised for the in-core 

solver. A few Gb are required for each processor (if a parallel computer is used). 

As before, this limitation is already diminishing. 

• Singularities. Inherently part of the formulation, singularities are very difficult to 

remove. This is especially prominent when the cavity is large and many resonance 

exist (such as in the case of a head with torso). 

• Geometric accuracy. Rapid improvement in accuracy and cost effectiveness of 

accurate scanning devices together with advances in computer graphics, make it 

possible to obtain excellent geometric description of the models. It is predicted that 

even simpler capturing techniques such as digital cameras could be used in the 

future. 

• Mesh manipulation. Currently this is a complex and iterative process. It might be 

possible to develop an automatic procedure to convert digital images or scanned 

models directly to the BEM or the IFEM models. 

• Boundary conditions. Approximate boundary conditions of the eardrum impedance, 

hair and clothing could be implemented, based on published average data or 

empirical data. Individualised data of this kind cannot be achieved without 

acoustical measurements. 

Our research started in 1997 with using SYSNOISE 5.2, on a 486-PC with 16 Mb of RAM, 

disk space of 200 Mb, and the Windows 3.1 operating system. This was used to analyse the 

response and sound fields scattered from a rigid sphere at low-medium frequencies only 

(ka=4). The final results have been obtained in 2000 using SYSNOISE 5.4, on a parallel 

SGI/Origin 2000 with 4.5 Gb of RAM and a hard disk of 100 Gb. With this combination of 

hardware and software, it has become possible to investigate our problem with high 
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precision at high frequencies. In addition, the modelling of baffled pinnae was undertaken 

on a Pentium II-400 PC with 256 Mb of RAM using SYSNOISE 5.4 and the Windows NT 

operating system. 

The performance of the DBEM and the IBEM with various configurations of hardware and 

software is summarised and presented in Table 10-1 to 10-4 and in Figures 10.1 to 10.9. 

The bench test results summarise the CPU time and space required to solve our HRTF 

problems with a PC with Windows 95 and Windows NT operating systems (which 

produced large differences in performance), SGI Origin 2000 and HP exampler parallel 

computers. 

Time estimates Memo!)' requirements 
BEM collocation (direct method) BEM variational BEM collocation BEM variational uncoupled 

(indirect method) uncoupled (direct method) (indirect method) 
. . (a + [3.n)n 3l2 . . (aJe' , In-core solver In-core solver 

AssemblIng tIme = Assembhng Ume ~--

M =16~1+0j +01+0)) ma 111" 

M =16(11(11
2
+1) +11) 

S I' . y.n' . . [3.n' Out-of-core solver Out-of-core solver 
o utlOntIme=- SolutlOntlme=-

M = 16.Jb(11 +0+ 1) M = 16(2b + 11 ) In, 11lJ 

With With With 
a ~ 2.3 10-2

• [3 = 8.0 10-6
, Y = 2.2 10-6 a=S 10-2 ,13 =1.15 IO-<i b block size. M memory in bytes. II number of nodes 

o number of over-determination points 

Table 10-1 Theoretical predictions of time and memory requirements for solving the BEM with 
SYSNOISE. The values of ex, ~, y were found in a bench test. The equations and numbers are given 

as approximations only. 

Whenever SYSNOISE is run with the out-of-core solver, the performance is reduced 

significantly. This can be explained by the following: the solver finds the solution to the 

system of equations [A]{x} = {b} by decomposing [AJ in a block-wise manner. The [AJ 

matrix is split into blocks, and each block is decomposed (factored) separately. The size of 

these blocks may be user-defined. Varying block size will vary the performance (execution 

time) of the solver. Certain block size values will provide optimal performance. This 
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optimal block size may vary from machine to machine. Being an out-of-core solver, a 

temporary (scratch) file is written by the solver. This file can be quite large. 

Tables 10-2 to 10-3 summarise the relations between the size of the mesh models (for both 

heads and pinnae), the memory required and the total CPU time. Since the calculation of 

the 'mode shapes' using the SVD is very computationally expensive, Table 10-4 

summarises the CPU time for each pinna model. 

No. of No. of Max. Approx. Memory (Gb) CPU time- HP CPU time- SGI 
nodes elements edge Max. Exampler [min] Origin [min] 

length frequency SYSNOISE 5.3 SYSNOISE 5,4 
[mm] [Hz] DBEM IBEM DBEM IBEM DBEM IBEM 

(6 e/w) 

202000 400000 3.1 18000 640 320 - - - -

27000 50000 6.0 15000 12 6 - - - -

14000 30000 7.2 10000 4 2 2800 4600 - 830 

9900 20000 9.0 6400 1.8 0.9 540 900 - 281 

5060 10000 11.5 5000 0,4 0.2 60 85 45 46 

2600 5000 13.0 4500 0.12 0.06 20 40 18 10 

Table 10-2: The relation between the size of the SEM head models and the maximum frequency, 
memory and CPU time requirements (the running time might be different for different platforms, and 
the maximum frequency assumes six elements per wavelength). All models are the left half of the 

KEMAR head and modelled using the symmetry property in the SEM, and the time presented is the 
overall time calculation. Fields are blank whenever it is not possible to solve the problem with the 

in-core solver. 
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pmna No. of Number of Max. edge Max. freq. [Hz] CPU time-

nodes elements length DBEM/SGI 
6 e/w 4 e/w 

[mm] [min] 

DB60 a 6887 13488 3.64 15560 23340 50 

b 2825 5421 3.75 15100 22700 5 

DB65 a 5199 10216 3.67 15420 23100 24 

b 3389 6656 3.78 14980 22470 8 

YK a 6361 12523 2.96 19120 28600 41 

b 3392 6579 4.31 13160 19740 8 

CORTEX a 5923 11632 2.99 18900 28360 34 

b 3390 6658 3.82 14840 22250 8 

B&K a 5442 10898 3.42 16540 24810 28 

b 3906 7671 3.88 14590 21890 11 

DB90 4799 9409 3.12 18130 27200 20 

DB95 4728 9267 3.20 17680 26520 19 

Table 10-3: The relation between the size of the BEM pinnae models and the maximum frequency, 
memory and CPU time requirements (the running time might be different for different platforms, and 

the maximum frequency assumes six elements per wavelength). 

pmna Max. freq. [Hz] Green function No. of CPU time-

4 e/w matrix frequencies DBEMISGI 

dimensions [hours] 

DB60 22700 2825 x 209 91 21 

DB65 22470 3389 x 209 91 43 

YK 19740 3392 x 209 91 43 

B&K 21890 3906 x 209 91 60 

CORTEX 22250 3390 x 209 66 31 

Table 10-4: The CPU time of the SVD calculation for optimised baffled pinnae. 
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10.3 FUTURE WORK 

In the course of the study, various questions have been raised. As we tried to investigate 

various aspects of both the numerical techniques and the properties of HRTFs, a few 

questions have remained unanswered, and in the following section we summarise the 

possibilities for future research into this topic: 

• Modelling with the IFEM 

The advantages of the IFEM are very important for exterior modelling of large problems. 

The computational speed should be reduced significantly and the problems of singularities 

in the integrals do not exist. In addition, a time domain formulation can be used to obtain 

HRIR directly. Specially designed mesh generators such as PRE-SYSNOISE might be 

improved and developed to produce automatically an optimised IFEM mesh. 

• Reduced order HRTFs 

Any reduced order modelling technique can be investigated and compared to an originally 

modelled HRTF with the BEM, since the simulation results are accurate anywhere in space. 

The spatial patterns obtained with the SVD formulation require further investigation in the 

reconstruction of HRTF, both objectively and subjectively with various pinnae models. 

• Geometric manipUlation 

By using a 'reverse engineering' approach, is it possible to work the problem backwards so 

that by stretching and altering the pinna shape, a close match to a desired set of frequency 

response curves could be achieved, i.e. to a 'good' listener (Wenzel et aI, 1993, Morimoto 

and Ando, 1982) or to a 'super normal' listener (as described by Shinn-Cunningham in 

Carlile, 1996, pp. 220-222). Using existing 'sculpting' mesh tools, it is possible to control 
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the size, shape and orientation of specific parts of the pinna. Will it be possible to solve this 

3-D problem using genetic algorithm approaches? 

Currently, the manipulation process is difficult, interactive and tedious. The development of 

an automatic mesh processing toolbox is essential if an individualised HRTFs is required to 

be modelled. 

• Structural modelling of HRTF 

Generating individualised HRTFs could be obtained by hybrid approaches, such as 

matching the size, shape, orientation of an individualised pinna, based on visual recognition 

by a digital camera. The ITD could be matched by using a look-up table with matched size 

heads and ellipsoids, scaling the first resonance of the concha by calculating the volume of 

the concha, etc. 

In the analysis of interpolation techniques, various strategies have been developed. The 

proposed numerical technique is an ideal tool, to develop further the objective and 

subjective effects of interpolation approaches, especially at high frequencies. 

• Individualised HpTF 

It is demonstrated in this research that Individualised HRTFs can be modelled. However. 

when listening to headphones, it is necessary to obtain the individualised Headphones 

Transfer Functions (HpTF). In this case, the baffled pinna approach can be used, and it will 

be required to include the cavity of the headphones with the appropriate boundary 

conditions, which can be supported by empirical data. 

• Digital filter design for virtual acoustic systems 

In the applications of head tracked systems using loudspeakers, it can be beneficial to 

predict the equalization zones in the vicinity of the listener. The sound pressure, phase, 

283 



Chapter 10: Discussion and conclusions 

intensity and other computed values such as lACC, can be taken into account in the design 

of the filters. 
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Figure 10-1: Assembling time of the matrices as a function of the number of nodes with 
SYSNOISE 5.3. When closed boundary surface meshes are used , the problem can be solved with 
either the IBEM or the DBEM. For 'small' problems (up to 3500 nodes) the DBEM is more efficient 

than the IBEM (in this research all baffled pinnae were modelled using the DBEM). 
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Figure 10-2: Total CPU time comparison with different platforms and versions of SYSNOISE. 
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Figure 1 0-3: The required RAM for efficient modelling with the IBEM. The maximum frequency is 
limited by the physical RAM available. 
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Figure 10-4: The CPU time for SYSNOISE 5.4 with Windows NT using the DB EM and the in-core 
solver. As the model gets larger, the total CPU time is dominated by the solving time. 
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Figure 10-5: The CPU time for SYSNOISE 5.4 with Windows NT using the DBEM and the in-core 
solver. The relation between the number of nodes, the maximum frequency and the total CPU time 

can be found also in Tables 10-1 to 10-4. 
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Figure 10-6: The total CPU time as a function of available RAM. Out-of-core solver with almost the 
same amount of RAM was found to be as twice as slow when compared with the in-core solver. It is 

recommended that large problems should be solved with the IBEM or the DBEM with on ly the 
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Figure 10-7: The CPU time for SYSNOISE 5.3 with Windows 95 using the IBEM with the in-core 
solver. 
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APPENDIX 1 MESH MANIPULATION 

The mesh models that can be handled by the BEM reqUIre that acoustic elements are 

interconnected by their edges, which are connected through the vertices. F0l1unately a 

similar format of geometry is provided by the laser scanner. However, the geometrical 

model cannot be used directly in the BEM for the following reasons: 

• The integration procedures in the BEM requires that certain properties of the mesh 

must be met, such as a minimum edge length, no holes should appear in the mesh 

(for the DBEM), consistency of element normals, additional elements for special 

formulations such as the 'IBEM transparency', baffled and coupled structures, etc. 

• The original mesh resolution is much higher than required by the BEM, and in any 

case cannot be handled with the current computing hardware. Since the BEM is 

very inefficient for solving large problems, the size of the mesh must be reduced. 

A few tools have been developed, but the process is still interactive and difficult. It IS 

doubtful, if with the CUlTent scanning procedures, an automated manipulation tool could be 

devised. The goal of this Appendix is to review the main tools used, and to summarise the 

geometrical properties of the head and pinnae models used in this research. 

Al-l SCANNER PERFORMANCE 

• 'Low-resolution' scanner - Motion platform 3030 

In the case of scanning the head with the 'low-resolution' scanner, the scanner produces an 

incomplete mesh: this is since the geometry is captured 'in one go' and, if some parts 

cannot be viewed, the mesh will include holes. In fact, many holes appear, with some of 
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them easy to fill and some not. The top of the head is a more difficult problem, since 

extrapolation of the curvature is required in three views. Fortunately, the scanner software 

has this capability, although a few iterations are required in order to obtain a smooth filling. 

• 'High-resolution' scanner - HIREZ Imini motion platform 

This scanner accumulates the geometry by tens of scans, and it was used to scan pinnae 

only. The accuracy is much higher, but also in this case a large number of holes exist at the 

end of many scans. The operator of the scanner is required to decide when a sufficient level 

of accuracy is obtained, so that his interactive filling of the holes (especially in the folds of 

the concha and fossa of helix) will not produce too excessive a distortion of the geometry. 

In particular, it was found that although the entrance to the ear canal in all rubber pinnae 

models was parallel to the base of the model, and was circular, in practice this was not 

possible to achieve even with this high resolution of scanner. The final model includes 

details all around the pinna (front, sides and back), although we are interested only in the 

frontal shell. 

The motion platforms are presented in Figure AI-I. Table AI-I summarises the typical 

accuracies of the Cyberware scanners, although it should be noted that the accuracies in 

practice are determined by the curvature and complexity of the object, where with the 'mini 

high-resolution' scanner, this problem is somewhat alleviated. 
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Head and face High resolution 

3030RGB SCANHEAD 3030R GB/HIREZ 

X typically 250 /.lm - 1.0 mm typically 150 /.lm - 1.0 mm 

Y 700/.lm 313 /.lm 

Z minimum 100 /.lm average of 50-200 /.lm 

Table A 1-1: The accuracies of the scanner and motion platforms. Note that the accuracies also 
depend on the complexity of the object. The high-resolution scanner can accumulate data through 

repeated scans at different angles. 

Al-2 STAGE 1- MESH MANIPULATION/ PRE-PROCESSING 

• Data format 

Surface meshes are described by a list of 3-D points and triangular faces between the points 

that create a piecewise linear representation of a surface. All mesh manipulation tools used 

in this research, imported and exported data files using the VRML 1.0 format. Later, each 

file was converted to other formats for further manipulation, and the final format was the 

SYSNOISE 'user-defined', or 'free format'. 

The 3-D position of the vertices (as expressed III the 'Coordinate3 field'), the 

connectivity of the mesh (as expressed by the' IndexedFaceSet field'), and the colour 

of the mesh (as expressed in the 'di ffuse color field') can change from mesh to mesh. 

The rest of the mesh and the order of the fields must remain as presented below. The 

VRML file below represents a red mesh with two triangular faces and four vertices. For 

more information about the VRML format, the 'Open Inventor Mentor' in the online section 

of most SGI's can be consulted. This convention for meshes does not assume that the faces 

in the mesh are oriented; the' ShapeHints field' insures that both sides of the mesh are 

displayed. 
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#VRML V1.0 ascii 
Material { 
DiffuseColor [1 0 0] 
} 
ShapeHints { 
vertexOrdering COUNTERCLOCKWISE 
shape Type UNKNOWN SHAPE TYPE 
} --

Coordinate3 { point [ 
0.0 0.0 0.0, 
2.0 0.0 0.0, 
2.0 2.0 l.0, 
0.0 2.0 1.0 
] 

} 
IndexedFaceSet {coordIndex [ 
0,1,2,-1, 
1,2,3,-1 
] 

} 

• Reorientation of the head 

Appendix 1: Mesh manipulation 

The final mesh of the head is an open volume. The head is not aligned by any means to any 

specific co-ordinate system. The mesh should be reoriented in space and transformed in 

6 DOF such that the following criteria are met: 

• The two entrances to the ear canals should be positioned at constant height at y=O. 

• The centre of the line that connects these two points (the 'interaural axis') is the 

origin of the co-ordinate system (x=y=z=O). 

• When the head is viewed from the top, the entrance to the ear canal of the left ear 

should be at +6.x / 2 and the other ear at -6.x /2. 

• The plane that cuts the head vertically to two identical parts through the centre of 

the nose should be at ¢ = 90° with the horizontal plane that coincides with the 

interaural axis. 

• With KEMAR, the bottom of the head is marked through the neck extensions (see 

Figure 5-2). These should be approximately parallel to the y (height) axis. 
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The three rotation angles and three translation variables are found in a program where the 

input includes five co-ordinates: of the right blocked entrance to the ear canal, the left, the 

tip of the nose, and front and rear points at the level of the neck extension (the bottom of 

the head). 

• Closing the neck 

A large hole is present for any scan of the head, as a result of the open neck. Closing this 

area using conventional techniques results in triangles with high aspect ratio. Since we need 

to add vertices on the 2-D plane of the closed area and to connect them with triangular 

elements, the Delaunay triangulation method can be used. The following stages are 

followed: 

• The mesh resolution of the original model is calculated (see details below). 

• Vertices are added with the distance between them approximately the mesh 

resolution, starting from the boundaries, inwards. 

• Elements are added using Delaunay triangulation. 

• Mesh check procedure 

Using conventional software tools (ANSYS, HYPERMESH, SYSNOISE), the mesh IS 

checked for the following: 

• No holes exist, and a volume can be calculated. 

• All normals are facing the same direction (outside is defined as positive normal). 

• All the elements are legitimate (i.e. no elements with area size of zero, each edge 

shares only two elements, no elements with low aspect ratio exist, no isolated 

nodes, etc.). 
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Al-3 STAGE 2 - MESH MANIPULATION/ CONTROL OF MESH 

RESOLUTION 

In the literature, curves and surface mesh simplification algorithms are investigated from 

different perspectives in the following fields: cartography, geographic information systems 

(GIS), virtual reality, computer vision, computer graphics, scientific visualisation, 

computer-aided geometric design, approximation theory, computational geometry and finite 

and boundary element methods. For a detailed review of more than 100 simplifications for 

the above areas see Heckbert and Garland (1997). In most cases, however, commercial 

packages for mesh decimation are designed to preserve the accuracy of the rendered model 

and do not necessarily operate to the same restrictions that the BEM models would require. 

The algorithm used in this research has been developed and described in detail by Johnson 

and Hebert (1997). Its main advantage is in successfully handling the two forces in mesh 

decimation: preserving the shape by limiting a defined maximum 'global shape error' and 

distributing the vertices homogeneously by local operators. 

At this stage, the head and pinnae models are ready to be converted to the BEM model. The 

size of these models is huge (approximately 150000 elements for the pinnae and 400000 

elements for the head, see below) and is required to be reduced. Since the CPU time of the 

BEM increases drastically with the number of nodes (see Chapter 10), it is crucial to 

optimise the size of the mesh. It is well known that the maximum frequency for which 

accurate results may be obtained in the BEMIFEMIIFEM corresponds to the longest edge 

in the mesh. Any alteration to this global limit will distort the overall results. Therefore, a 

homogeneous distribution of the nodes and elements is required. This is achieved by 

changing the positions of the nodes on the surface while still adequately describing the 

shape of the object. We first define the following terms: 
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• Mesh resolution - the median of the lengths of the edges in the mesh. 

• Edge length spread - the upper quartile of edge lengths minus the lower quartile 

lengths (half widths) in the mesh. 

• Length normalisation - the process of which the resolution of the original mesh is 

adjusted to a desired resolution while minimising the edge length spread. 

• Edge length weight - this is derived from a Gaussian of edge length: 

W = exp [(l- La) /(Ld? 1 where l is the length of the edge is, Lo is the desired 

resolution and Ld is the acceptable edge length spread. 

• Shape change measure - each time an edge is collapsed (see below) the shape of 

the mesh changes slightly. The shape change measure is defined as the maximum 

distance between the mesh before and after the edge was collapsed. 

The principle of the length normalisation algorithm used here is similar to other mesh 

simplification algorithms in that it iteratively changes the mesh by applying local mesh 

operators. The input data required for the length normalisation algorithm includes the upper 

and lower bounds on edge lengths: Lllin = La - Ld /2 and Llllax = La + Ld /2, 

respectively, and also the maximum global shape change measure. 

The general flow of iterative simplification algorithms is as follows: first, a dynamically 

ordered queue is created from all edges in the mesh. The position of an edge in the priority 

queue is determined by the product of an edge length weight and the shape change measure 

of the edge. Next, the first edge in the priority queue is operated on. Two operations are 

iteratively applied to the edges to achieve the desired resolution: 'edge-split' is used to 

remove long edges (if the edge of the length is greater than Llllax ' the edge is split at its mid 

point), and 'edge-collapse' is used to remove short edges (if the edge length is less than 
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L
lllill

, the edge is collapsed. See Figure Al.2). During 'edge-split' an edge is divided in the 

middle and produces a new veltex, two new edges and two elements, without changing the 

accuracy of the model. However, the operation of 'edge-collapse' does change the accuracy. 

Since an edge is reduced to a point (an edge and two elements are eliminated, and two 

vertices are replaced by a new vertex) expansion and shrinkage can be minimised if the 

new point is positioned not in the middle of the eliminated edge, but at the projection of the 

midpoint of the edge on to the planes of the surrounding faces (Figure AI-2b). When an 

edge is collapsed its shape change measure is added to the accumulated shape change of 

the edges in the new neighbourhood of the edge. After that the priority queue is updated 

according to the accumulated shape change for each edge. 

In addition to these local operations, a maximum allowable shape change for the mesh is 

defined to prevent the mesh from changing too much. As a result, the low priority edges are 

treated first, and the program is stopped only if the global shape change criterion is met. 

It was found that the decimation algorithm produced minimal errors noticed visually (with 

errors up to 0.3 mm, see Figure AI-3) as well as acoustically: the deviation of the 

frequency response calculated with the original raw data of the pinna on a baffle when 

compared to a decimated pinna was less than ±l dB. 

Al-4 STAGE 3 - INTEGRATING THE PINNA TO THE HEAD AND 

SLICING THE MODEL 

The integration of the pinna required the 'cut' of the 'low-resolution' pinna from the head 

and identifying key features and record the positions in global co-ordinates. The accurate 

pinna was transformed to these co-ordinates. The process is still iterative, since the shape 

of the low-resolution pinna is not always comparable with the high-resolution, accurate 

.308 



Appendix I: Mesh manipulation 

pinna. The mesh resolution was adjusted around the pinna to remove the long edges used to 

connect the new pinna and the surrounding frame. 

Slicing the models was required in three cases: 

• At an arbitrary position (parallel to one of the three axes). A contour is then 

provided, that connects all the x and y values for a given z plane of intersection. 

Then different decimated mesh models can be compared at positions in which 

complex changes occur in the geometry, such as the face and the pinna (as in 

Figure Al-3). 

• Slicing the bottom of the head, at a constant y value. The 2-D area around the neck 

is closed using a Delaunay triangulation. 

• Dividing the head into two identical parts, when the symmetric formulation is used 

with the DBEM or the IBEM. 

Al-5 GEOMETRICAL PROPERTIES OF THE MODELS 

A summary of the properties of all the original models and the decimated models used in 

BEM modelling are presented in Tables Al-l and Al-2. The variables are defined. The 

bounding box is aligned with the XYZ axes of world co-ordinates. When the spread of 

length is small (in the order of 25%) then the surface described is more or less uniformly 

sampled. 
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YK_head KEMAR YK_pinna DB60 

Original data Original data Original data Original data 

Number of mesh points 209718 202338 112170 72849 

Number of mesh edges 627740 606449 335762 217839 

Number of mesh faces 418023 404112 223592 144988 

Mesh resolution 0.959 0.978 0.360 0.366 

A verage mesh edge length 0.982 0.993 0.359 0.359 

StDev mesh edge length 0.254 0.261 0.114 0.111 

Spread of length 25.92% 26.28% 31:69% 30.85% 
'J. 

¥ax mesh edge length '" 4.076 3.191 2.932 '. 2.994 
-

Min meshedge length 0.066 0.073 0.009 0.01 4 

Bounding X -49.708 -56.191 -30.817 -25.151 

Box Y -121.429 -122.091 -30.265 -30.76 1 
.. 

IlllnImUm Z -104.617 -107.633 -12.856 -5 .876 

Bounding X 32.197 31.688 24.683 24.535 

Box Y 130.981 123.122 42.219 33 .9 14 

Maximum Z 127.124 111.203 21.682 19.079 

DB65 DB90 DB95 BK CORTEX 

117721 115946 120751 130423 97623 

353163 347838 362069 391203 290529 

235444 231892 241319 260781 192802 

0.355 0.355 0.355 0.357 0.371 

0.349 0.351 0.349 0.348 0.385 

0.085 0.088 0.087 0.088 -0.097 

24. 36~~ " 25 .25% 24.974% 25.4929% " ~ 25.25% 

1.084 1.038 1.460 0.953 1.648 

0.018 0.020 0.021 0.021 0.017 

-27.612 -28.580 -28 .330 -33.044 -30.063 

-30.711 -29.129 -29.978 -29.754 -30.971 

-6.965 -7.418 -12.186 -10.369 -28.793 

24.095 23.660 23.799 25.148 30.029 

34.728 35.678 35.489 33 .351 33.158 

23.915 22.903 23.679 20.971 27.258 

Table A 1-2: Original mesh models. Statistical analysis of mesh properties . All lengths are in 
mi ll imetres. 

310 



Appendix 1: Mesh manipulation 

YK_head KEMAR YK_pinna DB60 

Decimated Decimated Decimated Decimated 

data data data data 

Number of mesh points 13518 11634 8417 6505 

Number of mesh edges 40008 34590 24784 19245 

Number of mesh faces 26491 22957 16367 12740 

Mesh resolution 2.510 2.774 1.058 1.058 

A verage mesh edge length 2.542 2.826 1.082 1.087 

StDev mesh edge length 0.712 0.634 0.312 0.306 
. ii' ;. Spread.of length ;, .; "'26.9% 22.43% 28.85% '. 

~ 28.14% 
'" ',' " ;~. ~' Max meshedge lengtli '1~i :,. " 5.634 A .. ·,~2.79884 ~'. 2.94121 ?~ 6.125 .•.. . • cot.. ;c • 

Min mesh edge length 0.236 0.303 0.089 0.047 

DB65 DB90 DB95 BK CORTEX 

7564 7505 7782 7885 8023 

22317 22151 22784 23197 23586 

14753 14647 15214 15312 15562 

1.038 1.035 1.024 1.048 0.988 

1.067 1.067 1.043 1.073 0.996 

0.290 0.322 0.302 0.299 0.293 

27.21% ' 26.9% 28.3% - 27.9% 29.9% 

2.685 ~ 
, 2.690 2.813 2.708 2.736 

0.084 0.124 0.073 0.074 0.083 

Table A 1-3: Decimated BEM models. Statistical analysis of mesh properties. All lengths are in 
millimetres. 
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(a) (b) 

Figure A 1-1: The scanners used in this research (a) the 'low-resolution' and (b) the high resolution 
3030RGB/HIREZlMM is ideal for scanning . 

edge· 

~ 
L.--~--.J 

(a) " <!>., _e_dg_e._sP--.li~ 
V, 

(b) 

expansion 

V 

Figure A 1-2: The homogeneous mesh decimation algorithm is based on two local operations: edge­
split , and edge-collapse. (a) By merging vertices v, and V2 into v, two faces f" f2 and edge e are 

eliminated, and the original topology is slightly changed. A minimal local error is obtained by placing 
the new vertex v off the edge. (b) The operation of edge-split creates a new vertex in the midd le of 
edge e, adding two edges and two faces. This operation does not change the overall accuracy of 

the mesh. (After Johnson and Hebert, 1997). 
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Figure A 1-3: The effect of the algorithm on the accuracy of the decimated model. A cutting plane is 
positioned at an arbitrary part of the pinna, and is slicing a cross-section . Two models are 

overlapped on the left: the original model with 400,000 elements and the minimum model with 4,000 
elements. The two slices are compared on the right thus resu lting in a minimal error margin. 
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APPENDIX 2 SINGULAR VECTORS OF PINNAE 

In this Appendix the real and imaginary singular vectors of various pinnae are presented. 

These are calculated at frequencies at which a maximum peak is obtained in the singular 

values of the Green function matrix relating the points on the pinna and the points in the far 

field. 

For the first 'resonance' frequency, i.e. the quarter wavelength resonance, the first three 

singular vectors are presented. In this case, the 'mode shapes' change only with respect to 

the phase. The real and imaginary values of the left singular vectors seem to have a similar 

pattern (although with different magnitude levels). The real and imaginary parts of the right 

singular values are not identical and clearly more sensitive, i.e. the 'monopole' and 'dipole' 

modes are excited slightly at different locations for each pinna. 

As frequency increases, the second mode shown still has many common features among the 

pinnae investigated. The patterns of the real and imaginary left singular vectors are similar 

to before, but in this case some phase shifts occur although in all case the 'vertical dipole' 

pattern is clearly seen. Also 'dipole' patterns appear in the real and imaginary right singular 

vectors, but with slight distortions. 

Lower order singular values at this frequency and higher frequencies are not presented 

because these do not show significant radiation patterns. For the next, third peak, three 

pinnae are shown with similar patterns on their surface, but with large variations on the 

hemisphere. Similar behaviour is noticed also for the fourth peak. It is believed the 

relatively low resolution of the hemisphere is not sufficient to extract correctly all 'mode 

shapes' as frequency increases. 
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l, 

Figure A2-1 : The real and imaginary left and right singular vectors associated the first singu lar 
value , (J1 at the firs t peak, around 4 kH z. 
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Figure A2-2: The real and imaginary left and right singular vectors associated the second singular 
value, ()" 2 at the fi rst peak, around 4 kHz. 
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Figure A2-3 : The real and imaginary left and right singular vectors associated the second singular 
value, CJ 3 at the first peak, around 4 kHz. 
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l. l. 

Figu re A2-4: The real and imaginary left and right singular vectors associated the first singular 
value, (11 at the second peak, around 7 kHz. 
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Figure A2-5: Caption as before, with CT
1

, at the thrid peak around 10kHz. 

Figure A2-6: Caption as before, with CT1 , at the forth peak around 12-14 kHz. 
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