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The requirements for High Performance Computing (HPC) have increased dramatically over 

the years. Parallelism is the only key technology today which can deliver the required com-

, puting performance for very large scale scientific and commercial applications, although its 

implementation in practice has proved to be a far more difiicult task than originally envisaged. 

Advances in microprocessor and networking technologies in conjunction with the devel-

opment and standardisation of the message-passing model and widespread availability of dis-

tributed software have enabled workstation clusters to have the potential for HPC at an at-

tractive price-performance ratio. This combination of technologies provides several advantages 

for clusters but at the same time their evolution and performance is determined and limited 

by technologies designed for other systems. As a result clusters often fail to deliver at the 

application level their underlying potential performance. 

This thesis investigates the key components of commodity workstation clusters and eval-

uates the performance of these systems as an integrated HPC platform. It demonstrates the 

need for a new performance evaluation tool, and proposes the Specific Cluster Operation and 

Performance Evaluation (SCOPE) benchmark set which has been especially designed to eval-

uate the performance behaviour of cluster characteristics and promote the workstation cluster 

concept by assisting commodity workstation cluster designers to understand and analyse the 

performance behaviour of these systems. 

An initial implementation of the SCOPE benchmark suite has been developed and run on 

a wide variety of workstation clusters and MPP platforms. Results from the SCOPE tests have 

demonstrated the potential to identify and classify the performance evaluation of workstation 

clusters. Moreover the SCOPE evaluation tool methodology can be extended to provide sup-

port for the development of parallel applications and algorithms tailored to a specific parallel 

platform. 
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Chapter 1 

Introduction 

This thesis investigates the performance evaluation of workstation clusters, in particular those 

configured to provide a cost-effective High Performance Computing (HPC) environment. The 

thesis reviews the recent developments in commodity hardware and software which have made 

such clusters possible, introduces a methodology for a comprehensive examination of worksta-

tion cluster performance and proposes a tailored benchmark evaluation tool for clusters called 

Specific Cluster Operation and Performance Evaluation (SCOPE). 

This introductory chapter will first review the present-day requirement for HPC before 

discussing briefly the fundamental difficulties in delivering this requirement. It will then discuss 

the role of workstation clusters in providing HPC and introduce the importance of being able 

to evaluate the intrinsic performance of commodity workstation clusters. 

1.1 The Requirement for High Performance Comput ing 

The information revolution has been described as the third evolution in our civilisation (the first 

two being agricultural and industrial) [177] and one of the most influential innovations of the 

last century. Over the past few decades computers have become an essential part of the mod-

ern world. In science and engineering the classical methodology of design and experimentation 

has been converted into analysis-simulation-optimisation-implementation and now each of these 

steps would be impracticable without the aid of computers. Classical business and commerce 

have adapted to exploit distributed computing, while Internet e-business and e-commerce have 

become an integrated part of everyday life. Entertainment and multimedia over the past few 

years have also increased demands for HPC dramatically. Moreover new application opportu-

nities that require HPC emerge e.g. artificial intelligence (AI), genetic programming, dynamic 

interactive simulation [207]. 

The impact of computing in all of these domains has become a driving force which en-

courages the even greater development of computing [3]. Technological improvements in VLSI 

integrated circuits have been able to follow Moore's law [85, 238] over the last twenty years and 

this trend is expected to continue in the near future [76]. The implication of Moore's law is 

twofold; a linear increase in transistor switching clock rate together with a quadratic increase in 
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Figure 1.1: Moore's Law [149] 

the number of transistors. This additional functionality together with architectural innovation 

and software development (e.g. advances in compiler technology to increase instruction-level 

parallelism) has provided improved computer performance, by a factor of perhaps two every 

year, [107] compared to Grosch's law [98], which postulated that computation cost is related to 

the square root of computational power [68, 121]. 

Despite those impressive achievements there are problems of great importance in science 

and engineering which remain intractable, because their solution inevitably requires an enor-

mous amount of computational power or computing resources. Such problems are known as 

the "Grand Challenge" [115, 239] applications; examples of such applications include Fluid 

Dynamic modeling. Molecular Dynamics, Quantum Chromadynamics, simulations of various 

physical phenomena, weather forecasting, etc. In business the challenging problems include 

database and transaction processing, data mining and warehousing, telecommunication pro-

cessing, network applications and high-performance real-time systems [136]. The availability of 

cost-effective computational power also encourages new classes of applications with no direct 

non-computing equivalent [104, 176]. New applications and demands for computing have in ad-

dition emerged from the computer industry itself known as "market-enabled" and "user-driven" 

such as image processing, computer graphics, animation and virtual reality (with applications 

to the entertainment industry i.e. film-making, film restoration, games), medicine, education 

(multimedia) [12]. Taking all these potential applications into account, the demand for HPC is 

expected to increase very considerably over the next few years. 

1.2 High Performance Comput ing and Parallelism 

A common requirement of most high-performance computing applications is to accomplish their 

tasks as fast as possible. There are three fundamental ways to accomplish a task faster: increase 

the hardware speed (e.g. clock rate), use more intelligent and efficient algorithms, or make use 

of parallel processing [178]. 

For the first alternative, it will be difficult for current CMOS technology to continue to im-

prove at the current rate in the future, because fundamental limits will soon be approached and 
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Table 1.1: The 1998 Semiconductor Industry Association Roadmap update for high-end pro-

cessors [10, 76] 

Specihcation /Year 1997 1999 2001 2003 2006 2009 2012 

Feature size (micron) 0.25 0.18 0.15 0.13 0.1 0.07 0.05 

Supply voltage (V) 1.8-2.5 1.5-1.8 1.2-1.5 1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6 

Transistors/chip IIM 21M 40M 76M 200M 520M 1.4B 

DRAM bits/chip 1 67M 1.07G 1.7G 4.29G 17.2G 68.7G 275G 

Die size (mm^) 300 340 385 430 520 620 750 

Local elk freq. (MHz) 750 1250 1500 2100 3500 6000 10000 

Global elk freq. (MHz) 750 1200 1400 1600 2000 2500 3000 

Max power/chip (W) 70 90 110 130 160 170 175 

there is no obvious follow-on technology. According to the Semiconductor Industry Association 

(SIA) projections, the number of transistors per chip and local clock frequencies will continue 

to grow exponentially in the near future as Table 1.1 shows. However, increased complexity 

(resulting in additional constrains) at that level will limit its usefulness [76]. 

The alternative of algorithmic improvements is not always possible and can be restricted 

(not well mapped) by the underlying hardware architecture. Long before reaching these Umits 

research projects had begun to consider the alternative of parallel processing which theoretically 

can provide a viable solution to limitations in processing power. The term High Performance 

Computing (HPC) has now replaced the older descriptions of "parallel computing" or "super-

computing" as almost all present-day HPC involves the use of parallel computing. 

Prom the second half of the 1980's there has been a trend towards parallel and distributed 

computing as computers have become more available and accessible with a wider range of 

applications at an improved price-performance ratio. Parallel processing, at that time, was 

widely believed to be the key enabling technology which must inevitably be adopted to achieve 

the necessary high performance for grand challenge and other future applications [64]. The 

accepted view was that switching to parallelism was only a matter of time before compilers were 

developed capable of optimising programs automatically to run eGciently on multiprocessor 

systems. Since then much research has been completed, parallelism dilBculties are more fully 

appreciated and (with hindsight) the earlier optimism appears naive. 

As Wilkes [238] quotes "parallelism is not a panacea" and an underlying hardware technol-

ogy on its own is not enough to exploit parallelism. Moreover the nature of parallelism inherent 

in applications has to be Srst understood and then implemented in the programming model. 

The algorithm implementation should also map onto the underlying hardware architecture nat-

urally. This dependence between parallel algorithms and architectures introduces an inherent 

disadvantage, the design space of such systems becomes very wide (hence a di@cult task) and 

provides neither a flexible unified programming model nor portability. 

Although in the past parallel computing was regarded as a theoretical possibility with lim-

ited interest restricted to academia due to its difficulties, parallelism today is now accepted as 
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the only viable solution for HPC. The development and establishment of parallel programming 

models and standards together with performance evaluation studies have accelerated the de-

ployment and use of both parallel systems and parallel applications. In other words, commercial 

hardware and software vendors have gradually started to build parallelism into their products. 

Improvements in availability and cost/performance ratio for these systems are a fundamental 

requirement for the elective use of parallehsm in scientiHc and commercial apphcations. The 

first part of this thesis investigates and reviews the design space of workstation clusters as a 

HPC system. 

1.3 Worksta t ion Clusters as an Alternat ive Pla t form for 

HPC 

Originally the success of Parallel Computers was limited to Grand Challenge applications or 

high-end large-scale commercial applications because the cost of a parallel platform was pro-

hibitively high for other applications [38]. Parallel computers have never achieved the volume 

production necessary to generate "significant economics" of scale in the same way as personal 

computers or workstations [12]. Low-volume manufacturing is clearly a crucial disadvantage 

of large parallel systems, in contrast to the cost-effective manufacturing possible with mass-

produced workstations. At the same time the steady developments in "sequential" proces-

sor technology has eliminated the historical performance gap between traditional mainframe-

processors and commodity workstation processors. This trend has encouraged vendors of Mas-

sively Parallel Processors (MPP) to use "killer micro" components (such as microprocessors and 

low-cost memory) as the building blocks for their new high-performance parallel computing sys-

tems [63, 6, 43]. One side-effect of this strategy is of course the engineering lag time (estimated 

to one or two years) between delivered workstations and delivered MPPs based on the same 

microprocessor components [6, 242], 

MPP systems of this type incorporate commodity workstation parts with dedicated tightly-

coupled high-speed networks. A full version of the Operating System (OS) usually runs on 

each node and coordination among nodes is achieved by the explicit exchange of messages. 

Future technology trends are moving towards microprocessor-based symmetric multiprocessor 

(SMP) clustered schemes [43]. Examples of this class include the IBM SP series, the older 

Intel Paragon, Thinking Machines CMS, Cray T3E, and the machines of the ASCI project 

[42]. This type of computation is usually a Multiple Instruction Multiple Data (MIMD) or 

Single Program Multiple Data (SPMD) type [75], both of which can provide scalability and 

high performance for many application domains. A loosely-coupled version of such a parallel 

platform can be implemented using a network of workstations, in which each node has its own 

stand-alone OS connected by moderate-to-high latency LANs. Typical examples of this class of 

clusters, examined in this thesis, are the NOW project [51] and the Beowulf project [208] both 

of which are brieSy examined in Chapter 3. Another form of clustering is "cycle harvesting" on 

idle workstations which in some circumstances can provide an extremely cost-efficient parallel 

computing environment [54]. 
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Figure 1.2: The evolution of computers towards clusters (networks of workstations) 

Table 1.2: Forthcoming CPUs and OS are built on 64 bit architecture. 

Vendor CPU System Arch. OS Available 

Intel IA-64 64 bit (HP /Windows/Linux) No 

Sun UltraSparcII/IH 64 bit Solaris Yes 

DEC Alpha 64 bit Digital UNIX Yes 

MIPS RIOOOO 64 bit IRIS Yes 

IBM RS6000/ Powers 64 bit AIX No 

Motorola PowerPC 64 bit Mac OS Yes 

Advances in microprocessors, intercommunication networks and distributed software tool 

development are converging in favour of clusters of workstations as Figure 1.2 illustrates. More-

over, forthcoming 64-bit-generation systems (Table 1.2) will provide enhanced features for dis-

tributed clustering system support aa well as extended scalability, availability and interoper-

ability features. As a result clusters of commodity workstations are now accepted as a viable 

platform major HPC applications [6]. The initial motivation for this thesis is based on this tech-

nological convergence that enables low-cost workstation clusters to exploit parallelism. The key 

infrastructure components required for workstation clusters infrastructure will be examined in 

the first chapters of this thesis. 

Despite improvements in accepted standards and interoperability over the past twenty 

years, clusters have inherent potential difRculties resulting from a relatively-high software com-

munication latency and lack of a "single system image" in terms of the software programming 

environment [80], OS support, job allocation, load balcincing and run time support [171]. Recent 

research in this area [38, 182, 151, 236, 39] haa nevertheless demonstrated that clusters of inex-

pensive high-end PCs interconnected with off-the-shelf hardware and a suitable OS can deliver 
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acceptable performance over a wide range of parallel applications [59, 57]. The next chapter 

of this thesis investigates in detail the impact of oE-the-shelf interconnection components on 

various workstation cluster schemes. 

In terms of the underlying programming model, networks of workstations implement a 

form of a multicomputer parallel machine based on the concept of message-passing. In this 

model each processor has its own local memory and processes interact by sending and receiving 

messages over the interconnecting network. In practice this has been recognised as the most 

eScient programming paradigm on clusters of workstations [80, 185] and it is identical to the 

computational model currently used by most large parallel computers. This feature is very 

important aa it automatically implies that workstation clusters can have the same approach 

to computation and an identical problem description model in addition to the same execution 

model as MPPs [201]. Hence networks of workstation can inherit most of the existing software 

techniques and methodologies &om parallel systems (MPPs) which can be applied or adapted 

to clusters relatively easily [104]. Single Program Multiple Data (SPMD) applications can be 

implemented directly using the message-paasing mechanism while a limited number of Multiple 

Program Multiple Data (^'IPMD) programs can also be implemented [3]. 

Many libraries supporting the message-passing model have been developed (e.g. PVM [83], 

Linda P4 [146], Express [174]). The Message Passing Interface (MPI) [77] has now became the 

accepted standard for this model. Chapter 4 of this thesis investigates MPI implementation 

issues on workstation clusters. 

1.4 Per formance Evaluation of Worksta t ion Clusters 

Traditionally the primary target of parallel systems is the delivery of high-performance com-

puting at the application level. Efficient use of resources or a high algorithm e$ciency was 

not always a concern of primary importance in parallelism which sometimes made relatively 

inefRcient use of the resources available. Performance evaluation and benchmarking, which 

historically was developed for assessment and comparisons between diEerent computers, has 

increasingly become important for parallel computer systems where the nature of a particular 

class of applications might map preferably into one particular parallel architecture. In addi-

tion, benchmarking results provide very useful feedback to system designers and application 

developers to assist in the understanding HPC systems behaviour. 

The main motivation for this thesis set out in the previous section is the technology evo-

lution of commodity workstation components that now allows workstation clusters to be used 

as a Aexible cost-effective HPC platform available for a wide range of applications and usable 

by programmers without specialist skills. However, in practice workstation clusters have of-

ten failed to exploit the potential advantages. Further evolution and development of these 

systems requires detailed performance evaluation measurements and results analysis. Perfor-

mance on these systems is greatly dependent on the efficient implementation and integration 

of technologies first developed for other systems such as communication libraries, underlying 

network protocols and network architectures [167]. Any generalisation of performance results 

from networks of workstations becomes hard to qualify because of the Icirge numbers of system 
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variables. 

Existing HPC benchmark suites for message-passing systems are designed primEirily for 

Distributed Memory or Shared Memory MPP systems for several scientific application classes 

such as Computational Fluid Dynamics problems, numerical analysis, etc. 

Most of these benchmarks, in principle, will also run on clusters of workstations but simply 

because clusters support the identical programming model as MPPs. Although theoretically the 

above condition is suHicient for an MPP benchmark to run on a workstation cluster to provide 

quantitative performance evaluation ("how" much), it does not necessarily provide qualitative 

performance evaluation ("why") about specific performance characteristics of clusters of work-

stations. Most of these benchmark suites, when they run on clusters of workstations, are not 

suitable to provide relevant information either because their workload does not take into ac-

count the individual characteristics and configuration issues of workstation clusters (such as 

limitations of the messaging system and its impact on diEerent applications) or they measure 

performance at a higher level which is not suScient for performance evaluation. 

The original contribution of this research presented in this thesis is a performance evalua-

tion tool known as the SpeciEc Cluster Operation and Performance Evaluation (SCOPE) bench-

mark set which will assist further the establishment of workstation clusters concept. SCOPE 

is a benchmark suite that provides a comprehensive and optimised set of tests for workstation 

clusters. This benchmark is designed to achieve the following aims and objectives: 

« Evaluate the potential characteristics of workstation clusters by the provision of a com-

prehensive benchmark set suitable for the design space of these systems. 

« Provide commodity system managers/developers with a tool that will assist them to 

understand, analyse and optimise in the best possible way the performance behaviour of 

their clusters. 

* The SCOPE benchmark methodology will in addition can be expanded to provide ap-

plication developers with a useful tool to understand and program clusters in the most 

effective fashion e.g. provide application cost and scalability prediction. 

1.5 Summary 

This thesis examines the fundamental performance factors inherent in workstation clusters and 

demonstrates that additional analysis is necessary to optimise overall performance. Chapter 2 

discusses workstation cluster intercommunication issues such as networking and communication 

protocols. The next Chapter 3, examines the workstation cluster concept &om the prospective 

of distributing systems and parallel systems. In Chapter 4 the message passing paradigm as 

the main computational model of networks of workstations is reviewed. The next chapters of 

the thesis focus on the key benchmarking issues. Chapter 5 outlines benchmarking issues for 

HPC systems, Chapter 6 describes in detail the proposed SCOPE benchmark suite tailored 

for clusters of workstation and Chapter 7 provides experimental results of benchmark tests on 
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various workstation clusters. Finally the conclusions and proposed future work are discussed 

in Chapter 8 and 9. 



Chapter 2 

Low-level Internode Communication 

2.1 Int roduct ion 

The communication subsystem is a key fundamental component of distributed systems in gen-

eral and networks of workstations in particular. The performance of the intemode communica-

tion subsystem in clusters of workstations is fundamental, because any imbalance in the design 

of this subsystem can cause communication bottlenecks which will have a signihcant impact 

on both the behaviour and the overall performance of the entire system [144]. The task of 

a communication sub-system is to transfer data from one application to another application 

(which resides on another node) transparently. The term communication subsystem includes 

software components such aa interfaces, protocols and communications handlers as well as the 

communication hardware. Some of these software components could be incorporated into the 

Operating System or even form part of the applications software [49]. This chapter provides 

a survey of the fundamental characteristics and semantics of communication subsystems and 

protocols adopted over the last few years for clusters of workstations. 

2.2 Interconnection Issues 

This section presents the main interconnection categories used in computers and clusters of 

workstations. There are three main groups into which computer networks could be divided 

[126]: 

» wide-area networks, 

« local-area networks ( LANs, SANs^), 

« massively parallel processor (MPP) networks (direct and indirect networks) 

The last category includes very fast (traditionally proprietary) networks able to intercon-

nect thousands of nodes in a very small physical distance. They are constructed mainly from 

^ A System Area Network is a communication network which provides low latency, high bandwidth, and very 

low error rate links between nodes [48]. 
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switches and hnks (switches route the messages and hnks carry the messages). The communica-

tion subsystem of MPPs is strongly inSuenced and bound by the underlying network connection 

topology e.g. tree, mesh, switch, etc [142]. Workstation clusters do not often use such networks 

usually because of the relatively-high cost and the lack of standardisation of these networks. 

WANs and LANs differ from direct and indirect proprietary networks because they are 

based on standards which are widely approved. WANs often include thousands of computers 

distributed throughout a region, with an error rate generally signiScantly higher than LANs and 

they usually provide connection-oriented services. LANs on the other hand connect hundreds of 

computers located closely together (e.g. in one or more buildings) with low error rates and they 

usually provide connectionless services. A special category of LANs has emerged over the last 

few years with the advance of network technology known as "System Area Networks" (SANs) 

which use proprietary very-high-speed networks in a physically small area for a hmited number 

of nodes and functionality [48, 85]. 

2.3 Communicat ion Software Layers 

Computer networks are usually designed in a highly-structured way, to simphfy the design, 

development, and operation of the network, and in addition to allow (in theory) a relatively-

smooth network evolution [8]. The basic modules of this structure are layers or protocols. 

Their purpose is to offer certain services to the higher layers while shielding those layers from 

the details of how the oEered services are actually implemented. Each layer has to provide 

services to the layer above it. 

Two main structured-scheme layer models exist: the T C P / I P protocol suite and a refer-

ence model called Open Systems Interconnection (OSI) from the International Organisation for 

Standardisation (ISO). Both models are similar in many aspects: they are both based on the 

concept of a stack of independent protocols, and the functionality of their layers is similar (but 

different). A user-application message must be processed at each layer of the stack in order to 

be sent to and received from the network. 

The TCP/IP reference model is developed from experience with older protocols. It is a 

collection of complying protocols rather than a model. Most of its protocols are very effective 

and widely used. However, the specification was not separated from the implementation which 

can sometimes introduce difficulties with new network technologies [13, 26]. 

In the OSI model, the distinction between interfaces and protocols is clear 

# Service: this states what a layer does 

# Interface: this states how layers above it can access it 

# Protocol: this is used to get a job done within a layer 

In each case no implementation is defined, the number of layers the OSI model involves is 

large (seven) and the functionality of some of its layers is ill-deGned. Implementations tend to 

be slow and often avoided because of the complexity of the protocol. This is mostly because 

when OSI was first specified, the T C P / I P protocols were already widely established [222] and 
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Table 2.1: Protocol stack comparison [155] 

OSI Ref. OSI Layer TCP/IP 

Layer NO Equivalent Application Examples 

7 Application, telnet, rsh, NFS 

6 Session, name services 

5 Presentation 

4 Transport Transport TCP, UDP 

3 Network Internet IP, ARP, ICMP 

2 Data Link Data Link IEEE 802.2 

1 Physical Physical Network Ethernet, etc 

they provide adequate performance for the majority of applications. There was therefore little 

commercial interest in adopting a new more complex protocol and the OSI model is now often 

considered to be of theoretical interest. 

2.3.1 The TCP/IP Stack 

The TCP/IP protocol suite has become the universal network protocol suite standard and as 

such it has been used extensively in workstation clusters both experimental and also production 

platforms. The T C P / I P protocol suite has its origin in the ARPANET project [222]. Most of 

the existing LAN distributed systems and clusters use this protocol suite over a 10/100 Mbit/s 

Ethernet channel. The protocol suite has a four-level layer scheme which does not match the OSI 

layering hierarchy scheme particularly well, but it is nevertheless the most widely-used network 

protocol encountered in both LANs and NOWs. TCP/IP provides both a connectionless and 

a connection-oriented reliable byte stream service [209], because it was originally designed for 

WANs with relatively high-error transmission rate. The original philosophy behind TCP/IP 

was communication among autonomous machines rather than resource commonality [187]. 

In practice the TCP/IP protocol suite is a collection of networking protocols that conform 

to the Internet Protocol scheme. The Application Programming Interface (API) which the 

TCP/IP suite provides is sufHcient to support many network and distributed system applica-

tions as shown in Figure 2.1. The four conceptual layers which are built above the hardware 

layer are: 

The D a t a Link Layer: This layer accepts and delivers Internet Protocol (IP) packets. 

Different protocols are used in this layer depending on the type of physical network. 

The Network Layer: This layer handles communication from one machine to another, 

enabling hosts to inject packets into any network and have them travel independently to their 

destination, (it also handles connection rendezvous, flow control, retransmission of lost data, 

data management, etc). 
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Figure 2.1: The TCP/IP protocol suite 

The Internet Protocol [179] resides in the Network layer and it is the foundation of the 

TCP/IP architecture. It provides the fundamental service of a connectionless unreliable "best 

eEorts" packet delivery system. Its purpose is to standardise the basic unit of data transfer 

(datagram or packet) through the TCP/IP Internet^ . 

T h e T r a n s p o r t Layer : This layer provides reliable or unreliable communication between 

end-to-end application programs. 

The transmission layer protocol [180, 24] can provide either an unreliable connectionless 

delivery service (User Datagram Protocol) or a reliable connection-oriented, stream delivery ser-

vice (Transmission Control Protocol) over the transmission medium regardless of the underlying 

transmission rate, delay, error rate or reordering of packet delivery. 

T h e Appl icat ion Layer : This is the highest level and it contains protocols that implement 

user-level functions and applications software (e.g. telnet, File Transfer Protocol FTP, http, 

e-mail). 

2.4 Analysing Communicat ion Overhead 

Optimisation of the communication subsystem performance can lead to substantial improve-

ments on a workstation cluster overall performance. This section examines in detail the commu-

nication overhead issues encountered in workstation clusters. Traditional ways of eliminating 

communication overhead requires changes either to the Application Programming Interface 

(API), or the communication protocol, or the protocol implementation [187]. The first two 

approaches do not preserve compatibility either with older applications or with older protocols 

and applications require re-implementation e.g. [232, 231, 234]. The third approach requires 

changes to the protocol implementation, but applications preserve compatibility. 

Communication support has traditionally not been considered to be an integrated part of 

an OS simply because the widespread adoption of networks is comparatively recent. The fun-

damental design objectives of traditional OS and protocol stacks at that time were reliability. 

^The "Internet" is the global collection of connected networks and gateways that use the T C P / I P protocol 

suite and funct ion as a single virtual network. 
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Figure 2.2: Relative performance difference between processors and DRAM (Moore's law) [176] 

programmability, process protection and re-usability over relatively expensive and unreliable 

hardware resources. Most of the processing overhead resides in the OS and many implemen-

tations fail to achieve high throughput because they access data several times. Data handling 

requires at leaat one memory copy operation from the user workspace to the network interface. 

Several years ago the bandwidth of the main memory and the disk I/O of a typical work-

station was an order of magnitude faster than the physical network bandwidth. That diEerence 

in magnitude was invariably sufficient for the existing OS and communication protocol stacks to 

saturate network channels such as 10 Mbit/s Ethernet or even 100 Mbit/s LANs [183]. Despite 

hardware improvements, the memory access time and internal I /O bus bandwidth in a modern 

workstation haa not increased significantly during this period (memory performance improve-

ment is around 7% per annum while processor improvement approximates 50% per annum [76]) 

the main improvements in performance have come from caches and a better understanding of 

how compilers can exploit the potential of caches^. Thus the gap between the network band-

width and the internal computer resources has been considerably reduced [183]. At the same 

time processors are running 30-50 times faster than DRAM which makes the task of hiding 

memory latency significantly more difEcult [106]. 

Traditionally communication protocols have been designed on the assumption of an unre-

liable erroneous physical link, a packet sent over the network could be duplicated, lost, dam-

aged, arbitrarily delayed or even dropped. TCP/IP, for example, incorporates features such as 

in-packet end-to-end checksum, packet delay and time-out policies as well as a packet fragmen-

tation and reassembly scheme including out of order delivery and retransmission policies [187]. 

All these features are useful in WANs but in LANs and clusters of workstations they impose 

stages of redundancy and consume uimecessary computational power e.g. contemporary LAN 

network interfaces inevitably perform cyclic redundant check computation (CRC) per packet in 

hardware. As a result the transition of data in a multiple layered structure can be very costly 

full cache miss on an Alpha 21164 can cost u p to 180 n s / 1 . 7 ns = 108 clock cycles x 4 or 432 instruct ions 
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Figure 2.3: Conventional TCP/IP implementation 

in terms of computing power, e.g. poor code locality, multiple memory-to-memory copies, dif-

ferent data abstraction between layers, packet headers and complicated memory management 

mechanisms all increase latency and reduce the effective bandwidth. 

In a conventional implementation of TCP/IP a aend operation involves the following stages 

of moving data: data from the application buffer are copied to the kernel buffer, then packet 

forming and calculation of the headers and the checksum takes place, finally packets are copied 

into the network interface for transmission. At the reception end the network driver copies 

an incoming packet into a kernel buKer where packet headers removed and calculation of the 

checksum takes place, before the reci/ operation copies data from the kernel buffer space to the 

application buffer space [55]. This requires extra context switching between applications and 

the kernel for each system call, additional copies between buEers and address spaces, and result 

in generally increased computational overhead [170]. 

Pasquale et. al. [175] analysed the software communication overhead of a TCP/IP protocol 

stack for a cluster of DECstation 5000/200 workstations used for the Sequoia 2000 project and 

they categorise functions commonly used by TCP/IP (and UDP/IP) protocol stacks as: 

C h e c k s u m : checksum computation 

D a t a M o v e : moving data to different memory locations 

M b u f : message buffering 

ProtSpec: protocol specific operations, e.g. header helds computation 

D a t a S t r u c t : data structure manipulation 

OpSys : OS overhead 
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ErrocChk: user and system error check 

Other: operations too small to measure 

These types of TCP/IP protocol overhead can be divided into data-touching operations, (i.e. 

data move and checksum) and non-data-touching operations. The cost of the first division scales 

linearly to the packet size and becomes the dominant overhead for large packets. The cost of 

non-data-touching operations is comparatively constant and dominates the overhead for small 

packets. Optimisation of the checksum computation on that network improved throughput by 

37% and elimination of the checksum improved throughput by 74% [175]. 

Communication libraries and message-based applications often implement a redundant 

stream protocol on top of TCP/IP in order to become portable and platform independent [219]. 

Implementations of these libraries might be insensitive to the characteristics of a given intercon-

nect, for example client-server applications might wait for an explicit reply-acknowledgement 

message to a request. In many cases it is common for a communication library to insert explic-

itly the message length of the stream, and at the receiving end to loop indefinitely to ensure 

acquisition of the entire message e.g. socket case [47]. 

2.4.1 Opt imis ing t he Communica t i on Process ing Overhead 

Communication processing overhead in parallel systems and workstation clusters is often anal-

ysed into two parts, one per-segment cost and one per-byte cost [63, 186]. The fixed cost per 

segment could include various tasks of the OS such as interrupt mechanisms, buSer alloca-

tion, resetting I/O devices, waking up processes and resetting timers, etc. The per-byte cost 

is variable in handling data, e.g. a conventional TCP/IP implementation can have up to four 

memory operations. Data copied from the application buEer to the kernel buffer through the 

CPU requires two memory operations (read, write), then the calculation of the checksum re-

quires another memory operation (read), and the final copy into the network interface requires 

one memory operation (DMA transfer). 

Various communication models [210, 63, 186] have been developed in order to evaluate 

communication latency among processors in parallel systems. The total latency of a message 

according to [176] is: 

Toto/ Zofenq/ = lender (werAeod 4- Time o / /ZigM -I GgaageyS' ^ J^ecewer (werAead 

Dongarra et. al. [63, 80] follow a linear approach considering latency (n-byte message) as 

a constant start-up time (constant per segment cost), and a variable per-byte time and 

zero per-hop delay The total latency of an n-byte message on A hops is given by equation 

2.1. The message length at which half of the maximum bandwidth is achieved (^1/2) is an 

important indication as well. 

-I- (A - I)!' (2.1) 

where zi is the size of the message. In our case = 0 therefore equation 2.1 is simplified to: 



Zn ==*, +f%/% (2.2) 

Jacobson et. al. [41] suggested prediction and caching techniques that can reduce the fixed 

per-segment cost and hence improve the performance of the protocol stack, e.g. they observed 

that most of the incoming TCP segments arrive in order and they have no out-of-band data, 

while most of the segments exhibit locality. 

Reducing the variable time cost of a protocol requires the reduction of memory operations 

[55]. With the use of additional hardware support there are techniques that can eliminate 

some of the memory operations required e.g. some CPUs provide a capability of calculating 

the checksum while copying, i.e. in the Copy on Write technique the system makes the user 

data read-only during a send operation, hence data bytes are copied directly into the network 

interface. Another technique known as Page Re-mapping requires the maintenance of a buffer 

for the incoming packets. The network interface can split the header and data of incoming 

packets into separate buffers starting at memory page boundaries. The memory manager can 

re-map the corresponding data pages to the application without copying. With reference to [55] 

the Single Copy technique dedicates an area in memory which is shared between the processor 

and the network interface, on send or receive event data are copied into the dedicated area 

with prefixed headers. Moreover, CPU involvement for copying causes pollution of the process 

working set with further cache misses with additional performance degradation. 

Such an implementation of the T C P / I P protocol stack should not limit the communication 

performance and can support very high transition speeds. Optimised implementations of the 

T C P / I P protocol can then move the communication bottleneck down to the network interface. 

Reported T C P / I P performances using these techniques have achieved throughput up to 200 

Mbit /s [55]. Implementations of the IPv6 protocol are expected to take advantage of the 

simplified Internet packet header fields and reduce further computational overhead. In addition 

the new protocol can exploit its "jumbogram" features in order to send packages of larger than 

64Kbyte with a minimum overhead cost. 

2.4.2 High-speed In te rconnec t ion Networks 

Over the past few years many new network technologies have been developed, but only a few 

of them have been adapted successfully for clusters of workstations and distributed computing 

systems. Among the key features a successful high-speed network technology should provide 

are low cost, high reliability, software availability and compatibility with existing standards. In 

order to preserve the integrity and the functionality of the T C P / I P suite, each new standard 

has to provide its own "Network layer" protocol. In this way changes to the underlying inter-

connection network are made transparent for existent applications. If a lightweight proprietary 

network protocol is used instead (to increase the throughput further) additional changes and 

re-compilation of the applications is also required. 

Many current high-speed interconnection technologies in system area networks (SANs) 

provide hardware services with outstanding reliability. Such networks can use "optimistic'"* 

' 'Protocols which speculate and make optimistic assumption about the underlying network reliability [40]. 
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lightweight proprietary communication protocols and introduce new communication modes (e.g. 

multicast, isochronous or asynchronous, etc) which can increase application throughput further. 

The most important new technologies which can be used in workstation clusters are reviewed 

below. 

Network Switch Technology Network technologies that use a single shared medium topol-

ogy suffer network bottlenecks and bandwidth shortages. Switch network technology can 

alleviate such network bottlenecks by providing high aggregated bandwidth, and increased 

throughput transparently. Network switch technology prevents unnecessary traffic crossing 

ports-segments and allow multiple simultaneous communication paths among its port-segments. 

Switches operate at layer 2 of the ISO reference model by forwarding data with low overhead 

cost [173]. Traffic is usually forward in cut-through mode for low latency . 

Fast Ethernet Fast Ethernet is a variation of the IEEE 802.3 specification. The bit rate 

is increased an order of magnitude (to 100 Mbit/s) while retaining the same wiring systems, 

Medium Access Control (MAC) method and frame formats of the old standard. As a conse-

quence the maximum segment distance is reduced down to 100 m. This standard is known 

as jOOjBoaeT [101]. Fast Ethernet is acknowledged to be the simplest way to upgrade an ex-

isting lOBaseT based cluster network. Currently Fast Ethernet interconnections provide an 

acceptable cost performance trade off solution for commodity workstation clusters. 

F D D I Fiber Distributed Data Interface was developed by ANSI and is defined in ISO 9314 

standard. FDDI is based on a lOOMbit/s ring topology and can span over a ring of 500 stations 

up to 100 km which makes it ideal for a backbone network [101]. FDDI has become well-

established for particular applications where it can provide di^erent functionality to Ethernet, 

despite a significantly higher cost. 

Gigabit Ethernet This is an evolution of the Ethernet standard (IEEE 802.3) that scales 

Ethernet technology to the gigabit range (Gbit/s). The standard in full-duplex mode enables 

a 2 Gbit /s throughput on a fibre optic medium (IEEE 802.3x/z or lOOOBASE-SX). The stan-

dard preserves backwards compatibility (with half-duplex mode CSMA/CD) but also provides 

extensions which increase its functionality e.g. routing, quality of service (QoS) [70]. Both 

Fast Ethernet and Gigabit Ethernet technologies use Ethernet switches to alleviate single bus 

congestion problems, increase the aggregate throughput [173] and improve the scalability of the 

network. 

FCS The Fibre Channel industry Standard is an ANSI standard proposed for ISO adoption 

as well. FCS is a switched system that can simultaneously provide high-bandwidth utilization 

with distance insensitivity in both directions from 266 Mbit/s to over 4 Gbit/s transfer rate 

over a 10 Km distance. Both connection-oriented and connectionless classes of services are 

supported as well as broadcasting and multicasting including Internet Protocol (IP), SCSI, IPI, 

HIPPI-FP, and audio/video frames [138]. 
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A T M The Asynchronous Transfer Mode protocol (ATM) is a common transmission protocol 

that haa been internationally deSned and agreed by both the computer and telecommunication 

communities. ATM is a cell-based network which provides transmission and switching support 

independent of the source media (data, images, voice, video). ATM uses a hybrid form of 

c*rc«:^ and pactef of fixed-size blocks, called ceZZs, over virtual circuits as a compro-

mise between data trafBc and audio/video traffic, and QoS. It originated as a way to support 

Broadband Integrated Service Data Network (B-ISDN) with high data transfer rates (SONET', 

OC-1, OC-12, SDH^) [25, 44]. Data rates start at 155Mbit/s and potentially rise to 4.8 Gbit/s. 

The cell switching can handle efEciently both point-to-point and multicasting communi-

cation modes. ATM implementation has three low-level layers. The pAyaicaZ Zayer is almost 

identical to layer 1 in the OSI model. The .ATM (ai/er deals with cells, (routing and transport) 

but does not provide recovery for lost or damaged cells (it covers layer 2 and partially layer 3 

in the OSI layers). The handles assembly/disassembly of packets to cells or 

vice versa [221]. 

The ATM cell size is 53 bytes made up of a 5 byte header plus 48 byte protocol data unit 

(PDU) [101] which is a compromise between payload efBciency (around 90%) and low packeti-

sation delay. Relay switches can process cell packets in parallel and then increase transmission 

speed [43]. ATM technology is widely adopted by all the major telecommunication carriers and 

hence provides WAN services. It has proved to be too expensive for most LAN apphcations, 

except where backbone functionality is required. 

M y r i n e t Myrinet is a switched gigabit-per-second network technology developed by Myricom 

Inc for high-speed LAN to support parallel processing on NOWs. The design of Myrinet was 

based on the Caltech Mosaic and the USC/ISI ATOMIC [199, 198, 46] project which imple-

mented the design of a high-speed LAN using MPP components. 

The network consists of point-to-point links connecting hosts or switches. Each link is ca-

pable of full bi-directional 1.2Gbit/s bandwidth with low latency (of the order of microseconds) 

and very low error rates [117]. The leading byte of a Myrinet packet determines the outgoing 

^Synchronous optical network 

^Synchronous digital hierarchy 
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Figure 2.5: Myrinet NI block diagram. 

port of the switch and is stripped off by the switch en route. At the host end the remaining 

leading header byte identifes the type of packet. Myrinet packets have arbitrary length payload 

and can encapsulate other types of packets, e.g. IP packets, without an adaptation layer. The 

CRC is computed for the entire packet and recomputed on each link (because the packet header 

is modified). The Myrinet network uses multi-port switches (4, 8, 16, 32-way port) of pipelined 

crossbar type with blocking cut-through (wormhole) routing similar to Intel Paragon and Cray 

T3D MPP systems [22, 45]. 

The network provides in-order delivery, error detection is done by hardware-computed CRC 

Geld and erroneous packets are dropped. The flow control mechanism used to block packets 

on busy channels is accomplished with acknowledged byte-control symbols (GO, STOP, etc) 

injected into the opposite-going channel of the link. 

Each host interface card has its own programmable network interface processor (a 32-

bit control processor called LANai), 1Mbyte of fast SRAM used to hold network buEers and 

instruction code for the network processor and three DMA engines, one for the outgoing channel, 

one for the incoming channel and the third one (via PCI or S-Bus bridge) for the host main 

memory. Data transfer between the host memory and the Myrinet interface can be done either 

in DMA mode or using Programmable I/O instructions mode [17]. 

Control and access of the network interface is based on a Eexible scheme with a Myrinet 

Control Program (MCP), the device driver and the OS. In this way the interface is very flexible 

and can easily implement Data Layer (Level 2 of the ISO reference model) services for existing 

higher-level network protocols as well as providing an excellent infrastructure for experimental 

protocol implementations. 

Sca lab le C o h e r e n t I n t e r c o n n e c t (SCI) The SCI (ANSI/IEEE standard 1596-1992) is not 

a traditional network, rather a bus defining an electrical interconnect standard for internal 
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Figure 2.6: 2-D Concurrent Network Architecture source [111] 

processor-memory connections within computers allowing 1 Gbyte/s transfers over distances 

of up to 10m and a Abre-optic serial interface that equals FCS full speed up to one kilometre 

[119]. SCI-based systems provide hardware supported Distributed Shared Memory (DSM) 

support with low-latency remote memory access (remote write of 100 Tis and remote read of 5 

on SMILE PC cluster [112]). 

Serial Express The 'SerialExpress' is a draft standard (IEEE P2100) based on a bus archi-

tecture similar to SCI and Serial Bus. Its aim is to provide a low-cost technology independent 

interconnect for system area networks [119]. The protocol supports peer-to-peer communica-

tion modes as well as isochronous or asynchronous traffic in real-time mode. SerialExpress is 

independent of the transmission media, and can operate with a low-cost serial-link technology 

(e.g. iGbit/s data rate). 

Concurrent Network Architecture and Channel Bonding A technique to improve net-

work bandwidth is the concurrent use of multiple network paths. Hipper et. cil. [I l l ] suggested 

an alternative network architecture for clusters that increases communication performance with 

the introduction of a structured network consisting of several parallel and independent LAN 

communication channels in a flexible topological structure. Communication between two nodes 

can be direct, e.g. sharing of a common communication chcinnel, or via another node acting 

as a router. In this way the aggregated communication network throughput among nodes is 

increased with the number of independent networks. Consequently contention and scalability 

of the system is improved as well. The Beowulf class project [208] (see Chapter 3.6) has used 

a similar multiple Ethernet configuration scheme to increase communication throughput and 

scalability known as "channel bonding", this technique joins multiple low-cost networks into a 

single logical networks with higher bandwidth. Channel bonding and load balancing is imple-

mented at the device queue layer below the IP protocol layer which makes it transparent to the 

application layer. This method was successfully tested with 10 Mbit/s and 100 Mbit/s Ethernet 

channels in many Beowulf clusters. 
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An experiment on a 16 node Beowulf cluster with two and three way lOMbit/s Ethernet 

channels per node configurations achieved respectively throughput of 1.7 Mbyte/s (68% of peak) 

and 2.4 Mbyte/s (64% of peak) for 8Kbyte token exchange [208]. 

In this way the performance of the cluster is improved, especially for application algo-

rithms that exploit the underlying network topology. Sophisticated network topologies such as 

hypercubes, mesh, or toroidal could be easily implemented and accommodate a large number of 

nodes. However, such a parallelism at the network level does not improve latency. In practice 

there is a compromise on processing nodes that serve as networking nodes between computa-

tion overhead of the extra routing and the remaining compute capability of the processor itself. 

Other disadvantages of such architecture are the multiple cost of multiple number of networking 

e.g. extra Network Interface Card (NIC) per workstation, and the limited number of interface 

slots, (e.g. for the PCI bus), available on workstations. 

2.5 Case Study: Internetworking with Ethernet 

The lOMbit/s Ethernet, though relatively slow in comparison with new gigabit networking 

technologies such as Myrinet [22], is still the most-widely used LAN technology to interconnect 

local distributed systems and clusters of workstations in organisations. Additionally most of 

the clusters at the University of Southampton currently use 10 Mbit/s Ethernet for the inter-

connecting network. Thus in order to understand the interconnection of our clusters, a further 

study of the basic characteristics of an Ethernet interconnection network (such as latency and 

bandwidth) is required. The results will be used later as a basis to compare with communication 

libraries, such as MPI. 

Networks can be characterised by two aspects, latency and bandwidth. Communication 

latency is the end-to-end transfer time of a message &om user space to user space (see equation 

2.2). For small messages the protocol computation is the dominant factor rather than the 

actual hardware latency. Throughput denotes the amount of data can be transmitted over a 

time period. In this case study, latency is denoted as the zero-size-message round-trip time 

and bandwidth the throughput achieved in the transmission of large messages. The maximum 

theoretical throughput of the 802.3 Ethernet standard is Rrst calculated and then compared with 

the actual latency and bandwidth on an example network e.g. a cluster of Sun workstations. 

Parameters that can a&ct measurements in our tests are taken into account for each platform 

in order to analyse the results better. 

Communication libraries in parallel systems are usually based on the underlying inter-

connection network (this will be explained in greater detail in chapter 4). A small ping-pong 

program [186] was written to make an estimation of the actual throughput of the OS and the 

network (a 10 Mbit/s Ethernet segment). Measurements were also taken on Sun (ULTRA 

SPARC) and Pentium-Pro workstations and Pentium-Pro workstations on a Fast Ethernet net-

work. The software was designed to measure bandwidth and latency of the Berkeley sockets 

only. Figure 2.7 and Table 2.2 give numerical results for the latency and the bandwidth mea-

sured on various clusters using TCP/IP sockets. For small messages the start-up time can be 

an order of magnitude larger than the actual time required for the transmission (i.e. 
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Figure 2.7: Communication bandwidth and latency measurements over 10 Mbit/s Ethernet, 

together with theoretical estimation 

from tn = ts + tu,n in section 2.4.1). 

Applying a linear regression fitting on the experimental results of Fig. 2.7 using the model 

of equation 2.2 we can find the coefficients of f , and tm as shown in Table 2.2. A simplified 

approximation of the equation 2.2 coefiicients can be derived from the Table A.l in Appendix 

A which gives similar results for lOBaseT networks. 

ts ~ zero length message (2.3) 

tn I per byte transmission cost i 
8{bit/byte) 

10(Mbit/sec) 

From Appendix A the average overhead Ugv for each Ethernet packet is approximately 

bytes for each frame transmitted hence equation 2.2 becomes: 

(2.4) 

% 55 

tfi — 4" tyj{nQi/ 7i) — 5̂ -f- ̂ 771 (5o -f- 7T.) (2.5) 

Applying a linear-fit regression for the Ultra-SPARC cluster measured points yields a zero-

length latency of 200 i^s and t^ % 0.9, thus equation 2.2 becomes: 150 -t- 0.9(55 4- x). The 

transmission cost per byte in our approximation includes buffer handling management so its 

calculated value is bellow the real byte transmission on the channel which for a lOMbit/sec 

Ethernet is 1.25 Mbyte/sec. Figure 2.7 shows the plots of this approximation compared with 

the measured data. 

The non-deterministic nature of the Ethernet channel as well as the way the OS handles 

transmission and reception of network packets, has the potential to cause variations in measure-

ments. In addition, Ethernet packet fragmentation affects the latency for packet sizes above 

the maximum Ethernet packet size (>1460 bytes). 

The results illustrate a detectable difference between the actual performance and the theo-

retical one, this is due to the operating system overhead and the non-deterministic nature of the 

channel. For large size messages most of the clusters approach the maximum theoretical barrier 
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Table 2.2: Latency and bandwidth characteristics for diEerent networks of workstations 

Cluster Latency ÔO ni/2 ts 

Configuration Cua) (Mbyte/s) (bytes) 

Sun (Solaris) UltraSPARC 233 1.084 >256 152 0.987 

PC (Lyon) Pentium Pro 144 1.042 <200 137 0.916 

PC (GEO) Pentium Pro 316 1.041 IK 1074 0.819 

PC (FastEthernet) Pentium Pro 90 5.40 <1.5K 196 0.175 

SGI 0 2 (FastEth.) RIOOOO 368 12.06 <8K 496 0.079 

150-l-0.9(55-l-x) 200 1.10 222 - -

of the Ethernet channel. In terms of latency and half performance bandwidth point there 

are substantial diEerences among clusters. Latency and bandwidth both strongly depend on 

the hardware performance as well as the actual implementation of the network protocols. 

The Solaris cluster for example gives relatively-smooth results which are closer to the 

theoretical hmits than the other cluster configurations most of the time. The reason for this is 

the well-tuned network protocol implementation together with balanced underlying hardware 

achieved by Sun workstations. Conversely unbalanced PC-baaed systems with diSerent software 

implementations can degrade the elective network performance. 

Similar results could be achieved with a Fast Ethernet network cluster. The main difference 

with the lOMbit/s Ethernet is the medium transmission rate which decreases the '^ime of Eight" 

in equation 2.2 but does not change significantly start up processing overheads. Figure 2.8 shows 

the result of the latency and bandwidth measurements for the Fast Ethernet link. The Ethernet 

link of 10/100 Mbit/s. E&ctive bandwidth in tests is limited asymptotically by the Ethernet 

link barrier only for large size messages. 

For short messages the computation overhead dominates the results. Saturation of the 

communication channel within the range of small messages is relatively low despite the use of 

fast processors [151] i.e. the half performance message length for Fast Ethernet configurations 

is relatively large and makes poor utilisation of the eEective bandwidth for short messages. 

Remarkable performance variations can be seen for clusters of PCs due to their difference in 

hardware and software conAgurations. Least square parameter Rtting of equation 2.2 is more 

accurate for short messages than large messages for network interfaces which use advanced 

hardware features i.e. DMA engines. 

2.6 User-space Protocols 

Advances in processor and network technology frequently improve bandwidth but not end-to-

end latency, largely because the communication software overhead is several orders of magnitude 

larger than the hardware overhead [169]. In traditional network architectures the host processor 

'"The #1/2 or half performance point is the message size at which the bandwidth is equal to the half of the 

m a x i m u m assymptot ic bandwidth performance achieved on that system [114]. 
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Figure 2.8: Communication bandwidth and latency measurements over 100 Mbit/s Ethernet, 

theoretical latency of 196 + 0.175 - n approximation 

and the OS control the communications hardware, inevitably introducing a serious bottleneck 

which constrains performance [55]. This results in additional context switching between appli-

cations and the OS for each system call and additional copy operations between address spaces 

and buEer management [170, 9]. 

The actual network traffic over a LAN on which workstations share local resources and 

control usually consists of many small packets. Extensive measurements even on network-

bandwidth-intensive applications [176] demonstrated that 95% of the packets in the trace are 

less than 200 bytes, while the mean packet size is less than 400 bytes. For packets of this 

size the dominant transport cost is not the bandwidth but the set-up overhead. Small packet 

sizes with a latency overhead in the order of millisecond cannot be hidden using conventional 

programming techniques such as overlapping or pipelining. In other words, performance is 

eEectively bounded by the interaction between the kernel and the user-space rather than the 

available communication bandwidth. 

As a result, clusters of powerful workstations still suffer a degradation in performance even 

when a fast intercoimection network is provided. In addition, the network protocols in common 

use are unable to exploit fully all of the hardware capability resulting in low bandwidth and 

high end-to-end latency. Parallel applications running on top of communication libraries (e.g. 

MPI, PVM, etc.) add an extra layer on top of the network communication stack, (see Fig. 2.9) 

[152]. 

Modern improved protocols for workstation clusters and LANs are designed to avoid 

the time-consuming communication path (application-kernel-network device) identified above 

[182, 187, 134, 229]. Additionally these protocols exploit advanced hardware capabihties, 

(e.g. network devices with co-processors and enhanced DMA engines such as Descriptor-Based 

DMA^) by moving as much functionality aa possible into the hardware device. Users can write 

^Descriptors are d a t a blocks typically with 16- and 32-bit fields tha t serve as a simple instruction set for 

implement ing DMA transfers. Hence the DMA engine is enhanced to execute efficiently and autonomously, i.e. 

without in terrupt ing the C P U , sequences of da t a transfers. 

The 3c905 NIC suppor ts both Descriptor-Based DMA and CPU-driven DMA transfer modes. 
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Figure 2.9: MPI on top of the T C P / I P protocol stack 

communication libraries and applications which interact directly with the network interface 

avoiding any system calls or kernel interaction. In this way the processing overhead is consid-

erably reduced providing both reduced latency and higher throughput [21]. Such an approach 

can however introduce a drawback in terms of functionality (i.e. reduced system security and 

integrity together with removal of the protected multiprogramming communication, because the 

network interface is shared now between the OS and network applications) [184, 182, 134, 236]. 

Contemporary OSs can overcome these disadvantages by providing virtual memory protection 

mechanisms or virtual network interfaces, but there is always a compromise between functional-

ity and performance. There are several approaches for user-space protocols (sometimes referred 

as user-level protocols in the literature) which provide low-latency and high bandwidth on fast 

networks [9]. Most of them provide direct user access to the network interface support for 

SPMD models and use commodity workstations (e.g. PCs) together with a standard OS (e.g. 

NetBSD, Linux, NT). The following paragraphs present the current state of the art in fast 

protocols. 

Basic Interface for Parallel ism [183] (BIP) this approach implements a high-speed protocol 

Application Programming Interface (API) run on a Myrinet board. It eliminates all 

system calls by implementing zero-copy protocols at the user-space and provides data 

transfer only (in a FIFO order), while not providing protection or multiprogramming. 

Latencies of the order of a few microseconds are achieved and the network channel can be 

fully filled with data (126 Mbyte/s at user-space throughput). Section 2.7 in this chapter 

examines a BIP system in more detail. 

U - N e t [229] provides a network protocol stack at the user level, enabling applications to ac-

cess high-speed communication devices directly. A virtual Network Interface with memory 

management capabilities provides protection among processes without any kernel inter-

vention. The architecture is very flexible and can adapt traditional protocols such as 

TCP, UDP or even Active Messages efficiently. Implementations of the U-Net protocol 
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achieve performance close to the hardware hmits for Fast Ethernet or ATM communica-

tion channels. 

Act iveMessage5(Gener icAM,AM-II) [139] represent a approach to one aided com-

munications by providing a simple set of communication primitives based upon request 

and reply active messages, which provide a substrate for higher-level communication li-

braries or parallel-language compilers. In this system the header of each message contains 

control information for the user-space routine responsible for extracting the message from 

the network. Messages are delivered in FIFO order and there is an option for multipro-

gramming support. AM-II also provides "put" and "get" remote-memory communication 

primitives. 

FastMessages(FM) [170] is a high-speed Active-Message-like system that delivers low latency 

and high bandwidth for short messages over a Myrinet network. FM provides in-order 

message delivery with flow control and packet retransmission. Each message carries a 

pointer to a function that consumes data at the receiver end. The latest versions of FM 

support the SPARCstation SB us as well as the PCI bus on a PC cluster together with 

support for multiprogramming. 

Fas t_Sockets [187] exports the Berkeley Sockets programming interface using a high-performance 

protocol which collapses and simplifies protocol layers by transferring some of the protocol 

knowledge required into user-space programming. 

VirtualMerrioryMappedComrnuriication(VMMC) [56] model allows an application pro-

cess to access (directly or through user-space transfer operations) the memory of another 

process running on any node in the system within a protection domain, hence it can be 

used for both message-passing as well as shared memory implementations. The VMMC 

model supports protected user-space communication while multiprogramming is possible 

as well. 

Virtual lnterface Architecture (VIA) [48, 67] is an attempt to standardise a user-space spec-

ification protocol for clusters and system-area networks (promoted by Intel, Microsoft and 

Compaq). VIA defines a set of functions and data structures with associated semantics 

for moving data among remote processes memory. Processes open connection-oriented 

Virtual Interfaces (VI) that represent handles into the network, which can be seen as an 

extension to the U-Net end points, on which messages are sent to or received from its 

remote VI. VIA provides direct transfers between local and remote memory similar to 

AM-II "puts" and "gets". Protection in VIA is ensured by each process specifying the 

available memory areas for remote DMA operations. A deAned quality of service (QoS) 

can be supported as well, although reliability of communication is not mandatory. 

There is still no NIC hardware support (end of 1999), since the release of the VIA 1.0 

specification. Experimental kernel-emulated VIA support with improved characteristics 

for Fast Ethernet has been implemented. 
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All protocols discussed above have one common feature, communication interchange is done 

via the I/O programming mode at the host computers. This means that latency can be several 

cycles long because of the 1 / 0 commands needed (e.g. programming the NIC) and the only way 

to improve it is to reduce the number of instructions. For a fast interconnection network such 

as Myrinet latency in the order of 5 microseconds can be achieved. At this level additional func-

tionality can add substantial burden and increase latency. Bilas et. al. [9] in their quantitative 

study of user-space communication discuss the difference between functionality and eSciency 

for fast protocols. 

2.6.1 "Carefu l" P ro toco l s 

According to [158] careful protocols oEer a reliable service which is equivalent to the reliability 

provided by the lower-level protocol service. Many new network technologies provide services 

with "negligible small" probability of lost, damaged, duplicated, or out-of-order packets, While 

the description 'negligible small' is application dependent, the option of enhancing reliability 

could be addressed at the end-to-end level. Under such an assumption the implementation of 

communication protocols is considerably simplified, because no retransmission, or duplicating-

detection, or out-of-order schemes are required and the flow-control issue can be addressed 

with a simple request/response rendezvous scheme. This will provide interconnection with low 

latency features in a similar way to typical MPP interconnection, which is considered rehable 

by design. 

2.6.2 Light Weight Pro toco l s 

Another interesting class of fast protocols is the "eScient OS support" approach sometimes 

known as "light weight protocols". The communication protocol again is carefully simplified and 

supported on a small set of Sexible and efRcient low-level communication primitives by the OS 

kernel [39, 38]. A LAN-span communication protocol can have a simple host naming scheme, 

it should also minimise temporary data movements and apply various pipelining techniques 

between consecutive communication stages. Intervention with the OS should also be minimised 

and use light-weight system calls. The notification policy upon message arrivals has to be 

efficient and adaptive between polling and interrupt based mechanisms [40, 158, 190]. 

High-level communication protocols are built efficiently on top of these communication 

primitives. The advcintages of this kernel-level approach is enhanced Gexibility of the network 

protocol but at the same time protective multi-user and multiprogramming features which can 

be supported on inexpensive commodity hardware (e.g. Fast Ethernet NI) in contrast to a 

restricted user-level approach. Examples of light-weight protocols are the GAMMA project, 

the Beowulf clusters, PARJvIA, etc. 

Genoa Act ive Message MAchine ( G A M M A ) The GAMMA project is an example of a 

light-weight protocol currently running on a lOOBase-T cluster of Pentium PCs running Linux. 

The communication mechanism is based on the concept of Active Ports, each process can 

activate and use up to 256 ports for output, input or input/output to send or receive messages. 
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Figure 2.10; GAMMA throughput taken from [40] 

Active Ports are implemented with light-weight calls, (i.e. system calls with no intervention of 

the scheduler upon return), as well as "fast interrupts" and are effectively between the kernel-

level (at the NIC device driver) and the user-level communication library. 

Message sending is accomplished with a zero copy mechanism that transfers data from the 

user space to the network interface by splitting the message into a sequence of Ethernet frames 

of size 60-1536 bytes. At the receiving end an interrupt handler is launched which copies the 

network interface receive queue to the memory space of the receiver process. Frame headers 

provide the necessary information needed for correct process space buffering [37]. The GAMMA 

protocol mechanism allows multi-user access of the communication path as well as the use and 

existence of GAMMA and IP datagrams. 

Active Ports allow a zero-copy protocol implementation with the very low latency feature 

below 13 fj,s and maximum throughput of 12.2 Mbyte/s with half-bandwidth message size of 

just 192 bytes [39]. The Active Ports communication mechanism does not provide explicit 

acknowledgement and flow control scheme (which is usually not critical as the Ethernet channel 

is the slowest part of the communication path), Ethernet frames with an invalid CRC are 

discarded. However the protocol is allowed to pass error packets to the application layer to deal 

with. 
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Table 2.3: User space protocol characteristics 

AM-II BIP-0.92 FM-2.02 VMMC-2 

Comm. Model RPC Send/Recv Send/Recv Direct Depos. 

Control/Data Combined Data Only Combined Separate 

transfer 

Buf. Overflow Prevented Data Loss Prevented Impossible 

Net Errors Tolerated Catastrophic Catastrophic Tolerated 

Net. Manag. Dynamic Static Static Dynamic 

Send Data PIO DMA-k 

v2p transl. 

PIO DMA+ 

v2p transl. 

Recv Data DMA-P DMA+ DMA+ DMA+ 

copy v2p transl. copy v2p transl. 

Translation DMA user DMA UTLB 

Protection Copy None None PlO-l-copy 

Notification Polling None Polling N/A 

Latency 21 /ig 6 11 flS 11 

Bandwidth 31 Mbyte/s 121 Mbyte/s 78 Mbyte/s 97 Mbyte/s 

2.6.3 Semant ics of User-Space Ne twork Pro toco ls 

Fast commimication protocols are necessary for distributed and clustered systems that can 

deliver the real potential of the hardware performance at the application level. Existing com-

munication protocols provide a level of functionality which is not necessary on LAN and SAN 

systems. At the top end of the application level the communication library services required 

can be summarised to: 

» Message delivery between the sender and the receiver 

« Message ordering (messages should be delivered in the order of transmission) 

# Deadlock and overflow safety 

# Reliable delivery 

At the network side of the communication sub-system the required features are typically: 

® Arbitrary delivery order 

# Finite buffering 

# Fault detection (but not a fault-tolerance mechanism) 

The software messaging layer has to bridge the gap between communication services and hard-

ware features in the most efficient way possible [122]. Hence the software protocol has to 
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sequence and reorder packets, address Aow control and buSer management aa well as acknowl-

edging data, etc. 

A common feature among user-space protocols is the diversion of OS from the critical 

communication path and the avoiding of redundant memory copying. The cost of memory 

copy is regarded as relatively high because memory speed and memory bus bandwidth have not 

improved significantly over the past few years [160, 176]. However, bypassing the OS removes as 

well the responsibility of the communication either towards the application level or towards the 

network interface. User-space protocols hence being simple have to use as much of the network 

interface hardware features balancing functionality and performance. User-space protocols in 

additional have to address several common network protocol design problems eGiciently e.g. 

data transfer, reception of message, flow control, etc. 

Data transfer for zero-copy protocols involves three stages, a host-to-interface transfer, an 

interface-to-interface transfer and an interface-to-host transfer. The host-to-interface transfer to 

the network interface or the I/O subsystem should have direct memory access capabilities [197, 

18] aa well as programmed I/O (copying). DMA techniques have the advantage of decoupling 

the CPU from the data transfer and also prevent pollution of the cache. Furthermore DMA 

transfer can enhance overlapped activities within a node. Host-to-interface transfers via DMA 

require the translation of the process' virtual address to the physical address on NI in a protected 

manner. 

The address translation mechanism is a key requirement for such operation and the NI is 

expected to provide it. In addition coherency with the cache has to be supported without the 

involvement of the CPU [17]. Asynchronous DMA transfers may require locking of memory 

pages in their address space to avoid OS involvement. In order for the system to support mul-

tiple sends and receives the mechanism has to define message segment areas for each process 

to send or receive messages. The address translation mechanism has to be extended to <aeg-

and provide protection among multiple processes network access 

[197] or alternative use a scheme of Translation Look-aside Table (TLB) e.g. the U-Net/MM 

[235]. Many zero-copy protocols compensate the DMA start-up cost by using Programmable 

I/O for short messages (e.g. <256 bytes, and providing an adaptive cut-through message de-

livery mechanism [243]. Programmable I/O transfer does not require translation or protection 

mechanisms. 

Control transfer mechanisms and notification mechanisms can be either by polling or by use 

of interrupts, depending on the network interface. The first method is fast which helps to keep 

resources busy, while although interrupt handling is generally more expensive in terms of time 

it allows multiprogramming. The network channel in fast networks is highly reliable so many 

user-space protocols do not provide retransmission, buffering or acknowledgement mechanisms. 

Erroneous packets are usually dropped or notify the application layer. At an extra cost some 

protocols can also provide reliable communication e.g. AM-II. 

Regardless of the reliability of the system, overflow control is another issue network proto-

cols are required to address. Many protocols rely on the network interface hardware flow control 

mechanism, other on the preallocation of buffers or the of a rendezvous-style communication 

where the receiver posts a receive request for large messages. Multicasting and broadcasting 
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Figure 2.11: The BIP protocol stack approach (left) compared with the classical TCP/IP 

approach (right) 

for these protocols is usually done at the software level. Network management of user-space 

protocol can be either dynamic or static. 

2.7 The BIP Zero-Copy Protocol Approach 

The Basic Interface for Parallelism is an API for System Area Networks, capable of exploiting 

the fast communication links among nodes provided by network technologies such as Myrinet 

[117]. The interface has been designed to deliver to the application layer the maximum perfor-

mance achievable by the hardware. Important features of this protocol include direct interaction 

with the network board at the user-apphcation level, ehmination of system calls, efRcient use 

of memory bandwidth and a zero-copy protocol [183]. 

The protocol takes advantage of the network-board processor, memory and DMA engine 

in order to perform fast pipelined data transfers. BIP messages can be routed through multiple 

Myrinet switches which provide services equivalent to the OSI 3 level. The Myrinet network has 

a very low intrinsic error rate, therefore in order to reduce overheads the BIP protocol itself does 

not provide an error correction mechanism. However a Myrinet error detection mechanism is 

provided and in principle could be used &om the application end or higher protocols to provide 

limited error correction [182]. 

In order for BIP to achieve its maximum performance, the network board management of 

a node has to be dedicated to the application The NI registers and its memory regions have 

to be exposed to user-level access with no protection. Thus other applications cannot share or 

use the BIP protocol on the same node concurrently. However applications running on other 

nodes can share the Myrinet network. Hence the operation mode of the cluster is similar to the 

batch processing mode of MPPs. The NIC DMA engine is capable of addressing any location 

in memory for direct data transfers from and to user space. This capability means that BIP 

requires system support for coherency between DMA memory access and the processor cache, 

hence the OS together with the system bus hcis to be able to translate between physical and 

virtual addresses. 
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Table 2.4: Latency and bandwidth performance on a Myrinet cluster using BIP 

Message Size Latency Bandwidth 

(bytes) Mbyte/s 

0 11 -

128 20 8.5 

236 48 5.7 

512 54 10 

IK 60 18 

8K 142 57 

32K 353 90 

128K 1160 108 

512K 4370 114 

Although the Myrinet network can handle arbitrary long packets the BIP protocol uses an 

adaptive four-staged pipelined transmission mechanism to maximise the eHiciency of its DMA 

engines along the communication path. Messages are fragmented into packets of equal size and 

each packet transmitted in sequence through the pipeline. The host processors at both ends 

are only involved during the transfer initialisation to provide storage information about the 

message. An adaptable transferring policy is used for short and long messages to maximise 

e@ciency (memory copy, PIO, or DMA transfer). 

BIP services are strongly oriented for parallel applications to provide an intermediate 

layer of functionality for higher-level protocols e.g. TCP and MPI. The BIP interface provides 

stand-alone communication primitives for blocking or non-blocking Ccills with "loose" rendezvous 

semantics, hence overlapped computations and communications are possible. 

The current implementation of BIP (v 0.93) runs over a homogeneous cluster of six 

x86/Linux workstations, linked by a Myrinet network with a maximum throughput of 132 

Mbyte/s (using the Myrinet/PCI board). The Myrinet switch is a wormhole switch contribut-

ing less than 100 ns latency overhead in the absence of contention. The BIP cluster test-bed is 

flexible enough (see Fig 2.11) to configure the communication API as: 

1. TCP/IP API over Ethernet (Ethernet configuration) 

2. TCP/BIP API over Myrinet (Myrinet conhguration) 

3. BIP API over Myrinet (BIP configuration) 

User applications for the hrst two API modes run transparently on both configurations i.e. 

no change is required either in the MPI implementation or the MPI executables. In the third 

mode, where MPI runs directly on top of BIP, changes in the Abstract Device Interface are 

necessary hence all MPI programs require re-compilation with the new libraries. The easiest 

way to do this for the BIP protocol was to provide a new Channel Interface without invoking 

the kernel which ensures a zero-copy protocol at the MPI level. 



Table 2.5: Ping-pong test results on various communication libraries 

Configuration min Latency max BW ai/2 
T C P / I P sockets 144 jj,s 1.06 Mbyte/s 300 

T C P / B I P sockets 84 /iS 23 Mbyte/s L 5 ] { 

BIP sockets 6 121 Mbyte/s 3 K 

MPI over TCP/IP 280 fjLS 1 Mbyte/s 300 

MPI over TCP/BIP 171 ps 17.9 Mbyte/s L 5 K 

MPI over BIP 11 fiS 114 Mbyte/s 8 K 

Table 2.5 shows the latency and bandwidth graphs for different protocol stack configura-

tions. A noticeable discontinuity at message sizes of 256 bytes reveals the different semantics 

between short and long messages transmission modes. 

2.7.1 F u t u r e Trends of Ne twork Subsys tems 

Over the past decade the concept of networking has become an increasingly fundamental part 

of computing: in the words of Sun® "the network is the computer". Despite the acceptance 

of the above trend network subsystems have not been perceived as an integrated computing 

subsystem from both the hardware and the software perspective. 

According to Hill et. al. [160] the future of network interface is tightly coupled with memory 

systems and processing units and therefore NICs should be seen as a vital computer subsystem 

and not as an'ordinary'peripheral . Cranoret . al. [50] describe an efficient network architecture 

interface that integrates communication functionality into the processor which can provide fast 

event processing and high performance data transfer. For the existing network architectures, 

the user-space protocols on clusters and distributed systems have demonstrated the potential 

to reduce the communication bottleneck and achieve high throughput. Table 2.3 shows the 

system I /O bus throughput could limit the effective network bandwidth (e.g. the 32bit PCI 

bus is restricted to a throughput of 132Mbyte/s while existing communication links are capable 

to deliver 1.28Gbit/s that is equivalent to 160Mbyte/s point-to-point data transmission rate 

[117, 23]). In addition, the choice for data handling and moving to and from the host memory 

via the PCI I /O bridge is becoming critical and can affect performance of common network 

traffic patterns [243]. As microprocessor and network technology advance towards Gigahertz 

clock rates and tens of Gbit/s bandwidth^®, the I /O bus bottleneck will become the next critical 

communication barrier. Mukherjee et. al. [161] propose that a network interface should be 

attached on the system bus (processor data path, the cache bus, or the memory bus) in a similar 

way to MPPs. 

Access to the NIC will be treated as regular memory access rather using I /O operations 

through the OS. There are many advantages of attaching a device to the system/memory bus, 

^Advertising slogan used by Sun Microsystems. 

Sonet {OC-192) has a throughput of 10 G b i t / s Wave Division Multiplexing (WDM) can deliver aggregate 

th roughputs of 200 G b i t / s [44]. 
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Figure 2.12: Network Interface attachments on a workstation system 

latency and throughput of data transfer is becoming significantly better (latency at the order of 

715 bandwidth greater than 2.6 Gbyte/s are typical values system bus). Network protocols then 

can be simpliAed even more, as the NI will inherit all memory bus virtual-to-physical-address 

translation and protection, existing mechanisms together with cache coherency strategies to 

avoid side-effects [160, 36]. Host applications will then be able to directly access the network 

interface without compromising performance. Among the drawbacks of such a proposal are 

possible changes on the host (system and OS) to adapt the NI and the lack of standardisation 

among system buses. 

One could argue that such a conhguration of clusters and distributed systems is very 

similar to current MPPs. The diSerence is that MPPs will probably continue to be based 

on proprietary components while system area networks are likely to be based on standardised 

commodity COTS (Commodity Off The Shelf) components. 

2.8 Summary 

This chapter has examined the fundamental characteristics and semantics of intercommuni-

cation subsystems that are used in networks of workstation. "Traditional" communication 

protocols written with WANs and LANs features in mind introduce long overheads and fail to 

dehver high throughput on modem high-speed links. Ciaccio [40] points out that communica-

tion software is substcmtially older than network interfaces but relatively young compared with 

the history of operating systems. 

A new generation of network protocols such as user-space, "careful", or light-weight pro-

tocols, built around the concept of system area networks and clusters, demonstrate improved 

communication performance characteristics at both network level and application level. Emerg-

ing network technologies such as Fast Ethernet, ATM and Gigabit Ethernet are now replacing 

the old lOMbit/s based networks in LANs and will offer new communication features (e.g. 
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multicast, QoS, etc). In order to sustain high throughput among the nodes of a distributed 

system, high-speed network technologies require modern implementation of network protocols 

in order to exploit their advanced features. In addition, such protocols need to address any 

unnecessary interaction with the OS (e.g. user space protocols) and reduce the computational 

overhead. The use of fast protocols such as the BIP have demonstrated that substantial per-

formance improvement is possible. Workstation clusters need to adopt these low latency and 

high bandwidth interconnection subsystem in order to perform as a viable competitive parallel 

platform. 



Chapter 3 

Clusters of Workstations 

3.1 In t roduc t ion 

This chapter reviews concepts and issues from Distributed Systems (DS) and parallel systems 

which are directly applicable on workstation clusters. In addition later sections of this chapter 

will classi^ the main attributes and characteristics of the workstation cluster platform compared 

with MPP systems which will assist later in understanding the underlying performance. 

Advances in computer systems and computer network technologies over the last twenty 

years have gradually allowed different computers to share network resources and facilities (a 

concept known as "distributed computing"). A "distributed computing system" (DCS) is a 

collection of autonomous computers linked by a communication network with software that 

provides integrated computing facilities. Tannenbaum [221, 223] defines a distributed system 

as "a collection of independent computers that appear to the users of the system as a single 

computer". 

There ajre several ways in which a distributed system can be claasiRed. Using Flynn's [75] 

taxonomy a distributed system is certainly an MIMD machine, and according to the way nodes 

are coupled a distributed system can be either tightly coupled or loosely coupled [143, 32, 49] 

or according to their programming model client/server or processor pool [224]. 

Workstations clusters (otherwise known as networks of workstations or simply clusters), [6, 

171] are a type of parallel (or distributed) system that consists of a collection of interconnected 

whole computers utilised as a single unified resource [178]. Clusters or Networks of Workstations 

(NOWs) provide a way to build powerful, cost-eSective parallel machines by using standard oE-

the-shelf computers and networking technology [241]. NOWs use the same computational model 

as MPPs (message-passing) so they can provide an alternative test-bed platform for parallel 

applications. 

As a distributed system, clusters have the same difBculties as a DCS has in terms of software 

tools and standards. Administration of a cluster is individual for each machine of the system 

which is neither time-efBcient nor cost-effective. Software applications and tools for clusters 

are limited and require the support of a robust programming model (e.g. message-passing) 

and a run-time system. Essential issues and concepts of distributed systems become directly 

36 
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applicable and could determine the performance of clusters aa well. 

The following section examine issues of distributed systems such as remote procedure calls, 

synchronisation, the client-server paradigm and distributed computing tools which are also 

fundamental for clusters or workstations. 

3.2 Basic Dis t r ibu ted C o m p u t i n g Pr imi t ives and Concepts 

In a non-distributed computing model, all components of a user application (such as user 

interface, computational function and storage) are integrated on the same node. A distributed 

computing model can transparently migrate these parts onto diSerent computational nodes 

[188]. In this way a better resource sharing and usage management can be achieved among the 

users of the system [49]. A DCS is composed of the hardware (which can be heterogeneous 

or homogeneous), the software (the Operating System, distributed or not, tools, utilities, etc.) 

and the network subsystem which interconnects all nodes together. According to Lamport [129] 

a distributed computation is determined by the type and the relative order of efen^a occurring 

at the processes. Events are speciGed as: a event which causes a message to be send, a 

rece*7;e event causes a message to be received and update the local state and an event 

which cause only a change of the local process state. 

Over the laat few years, along with hardware component improvements, most of the ele-

ments of distributed systems software have also became standardised [188]. The key attributes 

of a distributed operating system are defined by Coulouris et. al. as [5, 49]: 

» Transparency 

» Resource sharing, coordination 

* Support of an arbitrary number of systems, scalability (processors and processes) 

» Openness, modular design of physical architecture (homogeneous or heterogeneous) 

» Message passing facility through a shared communication system 

« Concurrency and system control for all distributed hosts 

» Fault tolerance 

Most of these characteristics are also key points for workstation clusters. A fundamental issue 

in any distributed system is transparency as speciGed by the Advanced Networks Systems 

Architecture (ANSA) [7, 49]. The system has to appear to be a single computer to both 

application programs and users. Tasks should be executed consistently and effectively regardless 

of the location of the hardware, the software, or the system's structure. 

A DCS has to cope with any changes made "on the fly" therefore the issue of Sexibility 

is important as well [221, 206]. Scalability imphes that a system should not be restricted to 

a small number of nodes and the potential should exist to extend to a large number of nodes 

without any substantial diSiculties or performance degradation. Scalability should also apply to 
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application software. Increasing the number of nodes should increase the reliability of the system 

(or at least not decrease it). Among the drawbacks of DCS are the additional complexity of the 

software and the absence of an accepted distributed operating system. Sharing resources over 

the network adds extra overhead for applications which could decrease their performance. The 

use of threads and caching is one technique that has the potential to reduce this performance loss 

[188]. Distributed systems in many institutes and companies have now eEectively replaced old-

fashion centralised mainframe computers, as their modular concept provides better availabihty 

and scalability. 

3.2.1 High Level Communica t i on Pr imi t ives and Concepts 

Communication among nodes is a vital part of any distributed system and workstation cluster. 

Chapter 2 discussed the lowest part of the communication subsystem while this chapter will re-

view the highest part of the communication subsystem along with the mechanisms a distributed 

system uses for its interprocess communication. At this higher level communication primitives 

for DS and workstation clusters can be either blocking or non-blocking, buffered or unbuffered 

[11, 49]. 

In blocking communication mode the process which sends a message is blocked (i.e. sus-

pended) until the corresponding receive is executed and only then is data transferred [162, 228]. 

The main advantages of blocking calls are simplicity and determinism as data is transferred 

only when both the source and destination memory addresses are known and there is no need 

for buEering. The exchange of a message represents a synchronisation point for a programming 

model but could also lead to deadlock. Use of light-weight processes or threads CEin enhance 

parallelism e.g. threads can be used as a concurrency mechanism with a low system overhead 

[188]. When a node is blocked because of a send or receive operation, computation on the same 

node can continue on another thread. Context switching within threads provides low-overhead 

synchronisation but concurrency control becomes the explicit responsibility of the application 

programmer [189]. 

In non-blocking mode (asynchronous), none of the processes is blocked during a send or 

a receive process. For a non-blocking send, for example, control is returned ag soon the call 

has been submitted to the underlying system and for a non-blocking receive the call returns 

whether data are available or not. The underlying message layer then takes care of buffering 

and queing the message until a receive accepts the data [228]. A communication scheme that 

involves at least one non-blocking call is known as asynchronous. The implementation of non-

blocking communications is more difficult because issues such as message queue management 

and send/receive bu&r management consistency arise. In an unbuEered primitive mode a 

receive call at the receiver end prepares the kernel where the receiving data will be stored. In 

the case that a send() happens before a receive() call the kernel has not been informed (from 

the receive() call) that there is a process is waiting for a message to arrive so the incoming 

message is discarded as the kernel has no indication of which process to send it. In general 

asynchronous communication can enhance parallelism e.g. latency hiding techniques which can 

separate and overlap computation and communication parts [212]. 
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In buffered primitive communication mode, a process that intends to receive messages 

requests the kernel to create a mailbox for it. The incoming messages are stored in the mailbox 

and the process can use the receive() function to read messages from the mailbox [203, 79]. 

3.2.2 Cl ient-Server Mode l 

The client-server model provides the basis upon which many distributed application are con-

structed. The client-server model is not used often in parallel computations, however worksta-

tion clusters use it indirectly for run-time system support. Clients and servers are relative terms 

and refer to software subsystems rather than hardware components [188], hence they could be 

either in separate machines and communicate over the network or in the same machine using 

the message passing facihties of the OS (e.g. pipes). In general a server maintains data objects 

and deEnes operations on them which typically can be invoked on the server site to manipulate 

data and exported to clients [11]. A server is any program that offers a well-defined service that 

can be accessed over a network and a client is any program that sends a request to a server and 

expects a response. 

In this model the client initiates an activity by passing a message/request to the server, 

then the server processes that request remotely and paases the reply back to the client. Figure 

3.1 depicts the fundamental concept of the client-server model. The client-server model is 

simple and eGicient in concept and can be implemented using a single request/reply protocol 

on a variety of software and hardware platforms [19]. 

3.2.3 R e m o t e P r o c e d u r e Call 

The Remote Procedure Call (RPC) is the (fe /acfo industry-standard communication mecha-

nism used for constructing distributed programs and apphcations. Key features of RPC are 

request-reply protocol behaviour, UDP/TCP transport, standardised data representation via 

the extended Data Representation (XDR) protocol and authentication support. It dehnes a 

well-understood high-level language definition which provides a general-purpose model for in-

terprocess communication (IPC) in a transparent way across a network [19, 237]. The RPC 

paradigm shields the programmer from the details of the communication network applications 
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can thus be portable and more robust, although RFC does not provide explicit error checking 

and recovery mechanisms. 

An RFC facility is built on top of a transport-level service (e.g. UDF). In this way RFC 

solves the problem of heterogeneity between different peers as well as application standardisation 

[15]. At the programming language-level an RFC is an ordinary function call that passes all its 

arguments to the RFC protocol [215]. The RFC mechanism is illustrated in Figure 3.2 which 

shows the How of control, when a local (client) machine invokes an RFC. The calling process is 

suspended and the execution of the call takes place on the remote machine (server) in a different 

address space after which the server returns the result back to the client and the execution of 

the program continues on the local machine [16]. 

The Sun RFC Interface Definition Language enables a programmer to define the functional 

interface to an RFC program and the interface compiler by using the rpcgen tool [217]. An RFC-

based application has the following components: the compi/e time which includes programming 
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language, interface description language client and server stub structure and generation, the 

binding protocol, and the three protocols employed at call-time i.e. transport protocol, control 

protocol and data representation. Parameters can be passed by value but not by reference 

(although some implementations can pass parameters by reference using a more complicated 

mechanism). The implementation of an RPC involves the use of several network protocol layers 

and memory copying accesses hence its performance is often an order of magnitude slower than 

local procedure calls [11, 49]. The RPC mechanism was been widely and successfully adopted 

mainly due to its simplicity and generality which provides transparency in both homogeneous 

and heterogeneous environments. 

Other distributed application communication mechanisms include active objects that can 

migrate autonomously among nodes known as mobile agents. This communication mechanism 

and can be built in a platform independent language such as Java or a script language such 

as TCL and enhance interoperability in heterogeneous networks. The mobile agent paradigm 

is asynchronous and does not block computation on the client site. Hence, the mobile agent 

model can be efficient and provide fault tolerance [71, 123]. 

3.2.4 Coord ina t ion , Synchronisat ion, Concu r r ency control 

All these terms are frequently used in distributed and parallel computing. Synchronisation 

refers to the need for one process to wait until another process has completed an activity [142]. 

Coordination, i.e. synchronisation and concurrency control among nodes, are crucial aspects 

for the functionality of both DCS and parallel systems [128, 131]. Parallel computing and 

distributed systems extend the concept of a sequential coordination further for interprocess 

coordination and concurrency control of resources located in different nodes [3] because parallel 

computation cannot proceed without internode coordination. 

Synchronisation and concurrency control for single processor systems can use classical 

UNIX Inter-Process Communication (IPC) techniques such as signals, pipes, semaphores or 

monitors (e.g. signals as WAIT, SIGNAL, locks, interrupts) or System V IPC mechanisms for 

shared memory and message queues which are adequate to ensure synchronisation and avoid 

deadlocks among processes in a single address space [11, 206, 190]. For distributed memory sys-

tems (e.g. networks of workstations) where there is no basis for sharing memory areas, internode 

coordination typically uses a message-passing mechanism. Basic communication primitives such 

as send and receive are used to synchronise nodes because the transmitting processor knows 

when the message is sent and the receiving process knows when a message arrives. 

Synchronisation methods used in a single CPU system cannot be expected to operate in a 

DCS environment, therefore new techniques have to be developed, e.g. global synchronisation 

or barrier synchronisation. Distributed systems have similar deadlock and synchronisation 

problems as centralised systems in addition to additional potential for deadlocks arising from 

their communication network. Detection and handling of deadlocks can use the same methods 

as single computer deadlock handling methods use (locks, timestamps, global time, virtual 

communication channels) [221, 110]. Methods of mutual exclusion and locks are usually built 

on top of these communication primitives [49, 221, 130]. 
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3.2.5 D i s t r i b u t e d Fi le S y s t e m C o n c e p t s 

Directly analog to a single-processor filing system, a distributed filing system is a basic compo-

nent in any DCS or parallel system and can be seen aa an extension of the classical filing systems. 

Clients, servers and storage devices are all spread among a distributed system [49, 224]. An 

important requirement of the Eling system is that it should provide Eexibility and scalability. 

A distributed hie service (DFS) and a distributed directory service are also required to provide 

additional properties and features such as naming and pathname resolution concurrency control 

transparency, etc. [11, 193, 194]. 

A DFS can be divided into three fundamental services: the 61e service (concerned with 

implementing operations on the contents of hies), the directory service (which provides oper-

ations creating/deleting naming directories or mapping names), and the client module service 

which integrates computer directory and hie services for each client under a single Application 

Programming Interface (API). A common hie system for distributed and parallel systems is im-

portant as it can reduce significantly the replication of resources (hies) and the administration 

cost of the system. For example the user nodes in Figure 3.4 can share the same configuration 

hies using the distributed hie system. 

The Network File System (NFS) is a well known distributed hie sharing standard, initially 

developed by Sun Microsystems [216]. The NFS is based on a client-server model and provides 

transparent access to remote hies, with each computer able to act as both client and server. The 

importance of a shared hie system in a distributed system and workstation clusters is twofold, 

it minimises the need of a hling resource and at the same time minimises administration costs 

providing a flexible and shared conhguration environment among the system nodes. 

3.3 Mul t icomputers 

According to Foster [80] a multicomputer is a Distributed Memory (DM) MPP architecture in 

which interconnected computing elements have their own memory space. Any node can send a 
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message to any other node. Each node-computer executes its own program in the classical "von 

Neumann" model but it can equally access local memory or memory on other nodes remotely via 

message-passing mechanisms over an interconnection network. Distributed-Memory Multiple 

Instruction Multiple Data (MEVID) machines fall into this category^ have workstation clusters 

can implement the same form of multicomputer parallel machine based on the concept of the 

message-passing computational model. 

Multicomputer MPP systems usually have very distinctive structure characteristics. Their 

internode message passing network operates in an intra-computer environment at extremely 

high data rates with a very low error rate. The network topology selected (for example hyper-

cube, 2D mesh) usually avoids cyclic dependencies and deadlocks. Hence simple and aggressive 

communication primitives caji be implemented i.e. cut-through routing, How control, etc. The 

architecture of typicad MPP multicomputers can scale up to potentially thousands of nodes 

while still avoiding potential communications bottlenecks and hence increase the computational 

power of the system in an efficient fashion. 

3.4 Clusters as Parallel Comput ing P la t fo rms 

As pointed out in Chapter 1, clusters provide a way to build powerful, cost-eEective pajrallel 

machines using standard off-the-shelf computers and networking technology [241]. Phster [178] 

deGnes a cluster as a type of parallel or distributed system that consists of a collection of in-

terconnected whole computers utilised as a single unified resource. The main reasons for the 

current interest in clusters are the improved price/performance ratio of workstations, the devel-

opment of high-speed oS-the-shelf interconnection networks and the establishment of software 

tools and programming models (e.g. message-passing). 

In addition the current trend in computing is in favour of workstation clusters [6, 178, 81] 

as in future developments are expected to provide not only improved workstations (VLSI, 

DRAM memory, disk capacity [176, 107]), but also faster networking technologies (such as 

ATM, Myrinet, Gigabit Ethernet [70]), together with better DCS software tools and standards 

(TCP/IP, 081, Distributed Computing Environment DCE, Distributed Management Environ-

ment DME, ISO/Reference Model for Open Distributed Processing [20], etc). Another potential 

advajitage of clusters is the availability of their key components which in addition provides scal-

ability and cycle harvesting capability as well (e.g. a distributed system can be easily conhgured 

as a cluster of workstations to exploit unused cycles which are "free"). The increasing popularity 

of NOWs establishes a parallel processing paradigm known as "network based computing" [171]. 

The availability of clusters can improve as well the response time of applications over a batch 

system (e.g. an MPP scheduler with a long queue of submitted jobs). 

Clusters of workstations in comparison with MPPs have inherent problems and difficulties 

arising from their distributed nature. Very often, clusters have to operate in an "shared" 

environment with heterogeneous machines and an OS, tools and facilities that were originally 

^Shared-Memory MIMD and Rarallel Random Access Machine (PRAM) architectures fall under the multi-

processor category [80]. 
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designed for distributed systems (in comparison MPPs will have their own dedicated and well-

tuned OS and tools). This generality and the heterogeneity of clusters software inevitable affects 

the performance available to application. In order for clusters to be established as a parallel 

platform with MPP-like performance, issues such as internode communication, programming 

models, programming environments, resource management and performance evaluation all need 

to be adequately addressed [171]. 

For example the communication bottleneck is not a matter of a simple replacement of the 

communication links. Design of efficient messaging layers and user space communication pro-

tocols is required as well as architectural and OS support for multiple communication methods 

(e.g. collective communication, multicast, broadcast, network topologies asymmetric bandwidth 

networks, etc.). There is also a need for efficient implementation and support of programming 

models for the distributed memory paradigm (e.g. PVM and MPI) on clusters. The message-

passing paradigm as a concept is straightforward to understand and its implementations are 

efficient on both clusters and MPPs. In contrast the development of message-passing pro-

grams is significantly more difficult compared with the development of shared-memory and 

sequential-computer programs as it requires explicit programmer handling of communication 

and synchronisation between nodes, domain decomposition, etc. Sophisticated programming 

environments and tools (e.g. debuggers, performance monitoring, "graphical languages") with 

high-level abstraction mechanisms are required to simplify the development of parallel applica-

tions. A productive programming environment is necessary to allow programmers to develop 

their parallel applications easily. Software applications and algorithms tailored for clusters (i.e. 

latency tolerance algorithms) are still limited and require the support of a robust programming 

model. 

Clusters as distributed systems have the same characteristics as a DCS has in terms of 

software tools and standards. However, there is lack of a cluster configuration standard, each 

cluster being built using different configurations. The system should provide run-time support 

for the resource management and automate the facilities of load balancing, job scheduling and 

if possible fault tolerance. Prediction and performance evaluation of clusters is necessary as it 

will assist to assess the usefulness of current systems and provide valuable information to design 

better systems in the future. 

3.4.1 Clus te r H a r d w a r e Aspec t s and S t ruc tu re s 

Clusters differ from Symmetrical Multi-Processor (SMP) or other parallel computers, in the 

sense that they are composed of complete computers in contrast to SMPs which replicate parts 

of a computer, (e.g. processors). Massively Parallel Multicomputers such as the IBM SP series 

replicate whole modules of workstations such as processors, memories and I /O systems, making 

distinctions with clusters even more difficult. Despite the similarities between clusters and 

massively parallel systems there are fundamental conceptual differences. 

Parallel systems of SMPs and MPPs may use commodity components (such as CPUs) 

and utilise a "bottom-up" fine-grain performance orientated approach to build a system. The 

performance of these parallel systems is highly optimised both from the hardware perspectives 
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Table 3.1: Parallel Systems, Clusters and Distributed Systems comparison 

C h a r a c t e r i s t i c Para l le l S y s t e m s C l u s t e r s D i s t r i b u t e d 

Number of nodes large medium large 

Performance metric turnaround throughput response time 

time turnaround 

Node none none required 

individualisation: 

Communication proprietary proprietary/ strict 

standard nonstandard standard standards 

Inter-node security nonexistent varies required 

Node OS homogeneous homogeneous/ homogeneous/ 

heterogeneous heterogeneous 

Runtime System Proprietary general general 

non-standard standard standard 

Runtime support vendor granted — -

H/W Availabihty vendor limited open open 

and software issues. An important characteristic of these systems is that they are sometimes 

built to address a speciAc class of applications. Support for these systems usually comes from 

the vendor side and could cover software/hardware or even application/algorithmic issues of 

the system. Despite the potential advantages this approach has several disadvantages includ-

ing high-cost, decreasing number of vendors, variability of architecture types across vendors 

or even between successive generation of a given vendor and sometimes inadequate software 

environments. 

On the other hand clusters of workstations usually use commodity components and have 

to deal with their design generality among various abstraction layers which usually leads to 

a "middle-up" coarse-grain approach to parallelism. Performance targets then become more 

difficult to meet and often depend on the ability and experience of the cluster designer or 

axlministrator. Furthermore, support and development of the system is usually limited to the 

application developer. This is a major point of di%rence between workstation clusters and 

MPPs which is often misunderstood. The "knowledge" and support of an MPP system resides 

mainly on the vendor side while in workstation clusters that knowledge resides in the cluster 

manager and apphcation programmers/users [196]. 

Scalabihty features are available for both workstation clusters and distributed systems 

because they are composed of whole computers. Cluster nodes can be added or replace (up-

grade) existing ones without disturbing the system at a minimal cost, while changes to MPPs 

are usually di&cult and expensive. Portability of parallel applications has now become an 

important issue and parallel applications originally developed for other parallel systems might 

use algorithms which are not performance efficient when ported to cluster of workstations 

architecture (e.g. latency tolerant algorithms). 
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Figure 3.5: Categories of Cluster hardware 

Distinctions between NOWs and distributed systems are also difficult. The key point 

here is the "Single System Image". For example nodes in a distributed system retain their 

own individual identities despite the transparency of the system. On the other hand, clusters 

are viewed from outside as anonymous (e.g. the processors of an SMP system). There is no 

requirement to access node A or B of a cluster, rather the concept is to access and use the cluster 

as a whole integrated system. Table 3.1 summarises important differences among MPPs, NOWs 

and distributed systems. 

A first classification attempt among clusters is the communication network, whether it is 

dedicated or not (i.e. exposed to the outside view or enclosed within the cluster itself [178]). 

Sharing the cluster interconnection network with other public communication facilities is also 

possible. The cluster can make use of all idling workstations over a campus (scavenging), but 

this also implies the use of message-based standardised communication, which usually has a 

high overhead in terms of messages, increased latency and lack of network security. 

A dedicated intra-cluster communication system with low overhead and increased level of 

security can be used as well. The communication medium and the method in which computers 

are attached to it are two other orthogonal characteristics in which the computational model 

classifies clusters (see Figure 3.5) [178]. 

® I / O Attached Communication is performed by using I /O operations usually initiated 

by the OS. Using I /O operations message latency could be relatively high compared to 

memory operations. 

Message Based could use LAN, FDDI, ATM, or any other network technology. Scal-

ability and portability with message-passing is difficult, although heterogeneity is 

possible. 

SharedStorage The shared storage system is a shared disk system. All the nodes in the 

cluster have direct access of the disks on which shared data are placed. The storage 
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The broadcast and multicast one-to-all operations are built on top of single peer-to-peer prim-

itives. The broadcast latency test measures the time from when the root node initiates the 

multicast command until the time the last processor receives the message and completes the 

call. In practice this measurement is not easy and traditional "ping" techniques cannot be used 

because the root node is not guaranteed to participate in all steps of the call, there is no global 

clock and it is not possible to identify the last node [167]. The SCOPE broadcast test uses a 

simplified combination of broadcast and synchronisation calls: 

syiicli_barrier 0 ; 

start := GetTimeO; 

For I:- 1 To N Do 

broadcast(message); 

synch_barrier0; 

End Do; 

end := GetTimeO; 

time ;= (start-end-comp_overhead())/N; 

This test measures the latency of the cluster while performing a combination of broadcast and 

barrier synchronisation calls. The MPICH implementation of the broadcast call is based on 

a recursive subdivision (binary tree) algorithm, such that data Hows top-down from the root 

to the leaves. The root sends to the process a:ze/2 which becomes the root process for that 

subtree and so on, which means that in theory such a call is completed within TlogzPl steps. 

Optimisation of the code attempts to switch the binary tree algorithm into a linear broadcast 

(chain) when the subtree size becomes too small. For long messages a pipelining technique 

which splits the message into smaller blocks can be used along with non blocking operations. 

Figure 6.4 illustrates the order of the individual peer-to-peer calls required for the accom-

plishment of a broadcast call on an 8 node cluster. The logarithmic nature of the call on a 

switched technology network can be approximated by the following equation: 

^6coat(7l,P) = foe + P + ((« 4- f«,n) [loggp] (6.16) 
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system is required to provide an ownership mechanism of segments of the storage. 

Examples of such systems are, DEC Open VMS Cluster, IBM Sysplex^[166, 124], 

etc. The computational model is close to the traditional uniprocessor model and 

load balancing is adequate. 

« M e m o r y Attached Communication is performed by processor-native memory attached 

Zoo j and atore operations. Communication performance is better than the I/O attachment 

but their implementation in both hardware and software is difEcult. 

MessageBased There are no current examples in this category. 

SharedStorage The shared block of storage is the memory, it could either be separate 

from the individual storage provided for nodes, or it could be contained in the in-

dividual nodes. The SCI bus based clusters is an example of this category, e.g. the 

IBM POWER/4 [14] system. 

3.4.2 Communica t i on Requ i r emen t s 

The vast majority of clusters use a bus technology such as Ethernet for the internode connec-

tion. In these cases throughput and especially latency of the network is two or more orders 

of magnitude slower than the internal data busses of the nodes. This diH'erence in magnitude 

can cause a serious bottleneck, especially for applications with intensive I/O among the nodes. 

The usual way to overcome this potential bottleneck is either to separate the computational 

(fcofc) and communication (fcom) part of a calculation tf/,, by rescheduhng the application to 

overlap the communication part with the computation part (or alternatively to reschedule the 

application in some way to minimise the intemode communication requirements) [212, 213]. 

^th — ^calc icom ( 3 . 1 ) 

(com can be analysed further according to equation 2.2 to: 

ĉom — ts ~\~ Tl • tffi (3.2) 

Overlapping commutation and communication parts of equation 3.1 the runtime be-

comes: 

ith — 7noz(tcofc) ^cora) ( 3 - 3 ) 

An ideal intemode communication bandwidth for a cluster with n nodes should be equal 

to the bandwidth of all the I/O sources jVi(f/C)) that the fastest node has, although that 

bandwidth is beyond elective utihsation. 

= (3-4) 
i = l 

^IBM S/390 Sysplex cluster architectures currently support scalable commercial applications such as on-line 

transaction processing (OLTP) and parallel database systems. 
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Table 3.2: ASCI machines summary 

Features 
Intel 

ASCI Red 

IBM 

Blue PaciSc 

SGI 

Blue Mountain 

Processor type 200MHz PentiumPro 500MHz Powers SNl 

Performance/node 200 M8op/s 800 Mflop/s 1 GHop/s 

Peak performance 1.8 TAop/s 3.2 TSop/s >3 THop/s 

Number of nodes 9216 4096(512x8) 3072 

System DM message Cluster of SMPs Cluster of SMP 

architecture -passing with DM with DSM 

Memory 594 Gbyte 2.5 Tbyte 500 Gbyte 

Link Bandwidth 800 Mbyte/s 800 Mbyte/s 1560 Mbyte/s 

3.5 The ASCI Projec t 

The Accelerated Strategic Computing Initiative known as ASCI was launched in 1996 by the 

Department of Energy to build Teraflops supercomputer systems. It is an ambitious plan 

which calls for a threefold increase in computing performance every 18 months over a 10-year 

period [42]. Currently there are three ASCI machines installed in three labs: the ASCI Red in 

Sandia National Laboratory by Intel, with 1.8 TEops peak capabihty, the ASCI Blue PaciGc 

at Lawrence Livermore is an IBM PowerPC system of 512 nodes eight CPU per node with 3 

Tflops and the ASCI Blue Mountain at Los Alamos by SGI/Cray which is a 3000 node. 

Very often the ASCI project machines are referred as MPPs systems but in practice they 

have several similarities with clusters aa well. All machines use o^-the-shelf high-end CPUs to 

scale up to THops level. Technological challenges that an ASCI machines needs to address is 

the high-performance interconnection which has to be scalable to a very large number of nodes, 

software issues e.g. distributed OS parallel programming and high-performance I/O aspects. 

3.6 The Beowulf Class Cluster Computers 

The Beowulf project is an example of high performance cluster which haa emerged as a viable 

path to scalable computing systems for scientific and engineering applications. The Beowulf 

cluster was introduced at NASA Goddard Space Flight Center's Center of Excellence in Space 

Data and Information Sciences (CESDIS) for the need of the Earth and Space Sciences project 

(ESS) in 1994 [208]. The first Beowulf cluster was build around 16 Intel 80486 DX4 proces-

sor systems connected by channel-bonded Ethernet. The Beowulf architecture has no custom 

components and is a fully COTS (Commodity Off The Shelf) configured system. The concept 

of Beowulf clusters was further promoted by the rapid evolution of mass market commodity 

technology i.e. microprocessor price/performance improvement, network technology advances 

such as private system area networking, availability of freely software such as the Linux OS 

as well as GNU software and the "standardization" of message passing libraries such as PVM 
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and MPI. The availability of the software source code is important because it enables custom 

modification to facilitate parallel computation [54]. As a result, Beowulf class cluster computers 

range from several node clusters to several hundred node clusters. 

Communication between processors on Beowulf is achieved through standard Unix network 

protocols over Fast Ethernet networks internal to Beowulf, which proved to be both straight-

forward and cost elective. Beowulf-class cluster computers provide scalability ranging &om 

several-node clusters to several-hundred-node clusters, e.g. a two-level fat-tree-like topology 

comprising 240 nodes of 16-way Fast Ethernet switches [192]. Communication throughput is 

limited by the performance characteristics of the Ethernet and the system software manag-

ing message-passing. Beowulf is capable of increasing communication bandwidth by routing 

packets over multiple Ethernet segments ("horizontal", "vertical"), each node then acting as a 

software router in order to allow not-adjacent nodes to communicate. Hawick et. al. in their 

paper [105] discussing some of the key issues for designing a Beowulf system at the beginning 

of 1999 conclude that PC compute nodes with Intel processors running at 350-400MHz clock 

speed interconnected with Fast Ethernet gives the best price/performance ratio. 

In order to establish and support Beowulf clusters as a viable alternative parallel platform, 

the Beowulf project incorporated research into applications ajid algorithms suitable for clusters 

(i.e. latency tolerant algorithms). In addition the cluster conSguration has to reflect and match 

specific application requirements aa well as to adapt rapid technological advances. Other areas 

that the Beowulf project has focused on are: system software support and tools (debuggers, 

tuning tools, scheduler, etc), load balancing, low-level programming interfaces, scalability, het-

erogeneous computing. A commercial distribution of Beowulf software has been released in 

1998 by RedHat in cooperation with NASA CESDIS known as "Extreme-Linux" [153]. 

Today many Beowulf clusters demonstrate remarkable performance ratings running scien-

tific apphcations, many Gordon Bell Performance Prizes include Beowulf workstation clusters, 

e.g. Goddard Space Flight Center 10.1 sustained GigaFlops with a PPM (Piecewise Parabolic 

Method) code on 199 CPUs (11/17/97), Caltech/JPL collaboration 10.9 GigaFlops with an 

n-body problem on over 120 CPUs (11/18/97) [207]. 

3.7 The N O W project in Berkeley 

The Berkeley Network of Workstations (NOW) project is another example of workstation clus-

ters that demonstrates that it is viable to build inexpensive large scalable parallel computing 

systems [51]. The cluster consists of 105 SUN Ultra 170 workstations with two interconnec-

tion networks. A Myrinet network provides the high-speed communication within the cluster 

while a switched-Ethernet network into an ATM backbone provides scalable external access to 

the cluster. The topology of the Myrinet network is a variant of a fat-tree to create a system 

with uniform bandwidth between nodes using thirteen 8-port 160Mbyte/s bidirectional network 

switches. 

The software architecture of the NOW project is based on a complete version Solaris OS, 

run on each node, with extension to interfaces that support global operations over the cluster 

such as the GLUnix process management layer, memory majiagement and file system support 
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Table 3.3: Important software development areas for Beowulf class clusters 

Software/Tool Area Existing or Under Development 

Apphcation Development Utilities a/i, ca/i, grep, aej, moA;e, etc. 

Languages f77, C, C-t--t-, linker, HPF. f90, etc. 

Debugging/Tuning Tools Debugger 

Profiling tools. Tracing Tools 

Hardware Performance & Monitoring Tools 

Low-level Programming Message Passing MPI, PVM 

Interfaces POSDC Threads 

Math Libraries FFT, BLAS, etc 

Parallel I/O MPI-2 I/O 

OS Services Networking T C P / I P 

Filing System >4Gbyte support 

Job Queuing and Scheduling e.g. EASY 

Accounting, Quotas and Limits Enforcement 

Ensemble Management Common Boot/Install Configuration Package 

Tools System Monitoring 

Parallel raA, WZ, etc. 

Documentation How to build a Beowulf 

(xFS). The basic communication primitives in this project are based on Active Messages which 

provides application-direct, protected user-level access to the network. 

The higher-level communication library of the NOW project is MPI which is based on a 

modified MPICH implementation built with a customised abstraction device interface (ADI) for 

active messages. The NOW project haa successfully shown that a lafge cluster of workstation 

can obtain low-latency and high bandwidth communication over a range of parallel applications. 

Current research challenges of the project is the integration of communication and scheduling 

within a time-shared resource [51]. 

3.8 The Clusters of the University Campus 

Building a cluster of workstation nowadays is relatively straightforward. Several high-performance 

workstations with a fast interconnection network will suffice to implement a minimum system. 

A large number of clusters have been assembled over the past few years in research institutes and 

universities, but in general each of those clusters is diSerent, creating difficulties for standardisa-

tion and the deployment of software products or tools (e.g. administrative and monitoring tools, 

job submission, load balancing, etc.). One of the most well-published clusters of workstations is 

the Farm at T.J. Watson Resecirch Center which consists of 22 high-performance workstations 

[178]. The cluster has one moafer (̂ erTnmoZ) sender which is a gateway to the outside world, 

19 compute ae?i;er3, and two /iZe aemera. A terminal server on the master workstation selects 
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Figure 3.6: The Farm 

the least loaded of the workstations to run a job. 

The Fermi National Accelerator Laboratory runs another of the largest workstation cluster 

with 400 Silicon Graphics and IBM workstations. This system is primarily used to execute 

parallel applications which are individual jobs that simultaneously use several of the clustered 

machines. This type of overt parallelism is known as aeriaZ progrom, poroZkZ suA-system (SPPS). 

This case study examines ajid demonstrates some important characteristics of the clusters 

of workstations used in this university campus. There are two orthogonal axes that university 

clusters of workstations are divided into, according their homogeneity, and according the way 

they are attached on the network (single segment topology or switching). The low speed of the 

Ethernet network restricts the available bandwidth to 1 Mbyte/sec and the latency is high due 

to the layered structure of the standard network protocols. At the same time other users can 

use the nodes of the cluster as workstations, affecting further the performance of the system. 

Under these circumstcinces the campus clusters can be used only for coarse grain parallelism 

computation during oE-peak (non-working) hours. Despite these disadvantages clusters can be 

used on an experimental basis and to provide a test-bed to study the basic characteristics of 

clusters. A promising conGguration of clusters is that of Figure 3.7 (c) in which a second fast 

intercoimection network is used among the nodes. Applications use the fast link for message 

passing and coordination while the interconnection and access to the outside world goes through 

a standard interconnection network network. In this way nodes can use a proprietary network 

protocol which can improve the communication bottleneck by improving signihcajitly latency 

and bandwidth [38]. EfRcient implementation of such protocols requires additional changes to 

the run time system as well. 

A common characteristic of these clusters is the shared file system which is based on NFS. 

The file server can be either directly attached to those clusters or indirectly via the campus 

backbone network. Applications software for homogeneous networks is common for all worksta-

tions. In contrast to heterogeneous networks, separate application executables and configuration 

files must be preserved for each different computer architecture. Application development and 

installation then becomes more difhcult because portability and inter-operability must be pre-

served. In a heterogeneous network there are no restrictions about the node architecture and 

each time the best performing workstations for an application can be chosen. Performance 
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Figure 3.7: Classification of clusters of workstations in the campus 

Table 3.4: Different cluster configurations 

Cluster Type Network Topology Workstations /OS 

Heterogeneous Ethernet Switch SPARC-x/SunOS 

IBM/AIX 

PC/LINUX 

Heterogeneous Single segment SPARC/Solaris 

S G i / m i x 

Homogeneous Single segment SPARC-4/Solaris 

Homogeneous Fast Ethernet S G i / n u x 

Homogeneous Fast Ethernet LINUX 

measureinents or estimation analysis is more diSicult due to the node heterogeneity. 

Single-segment Ethernet topology networks suffer from poor performance because of their 

single bus congestion problems, especially for applications with high intemode traffic [150]. 

Switched Ethernet clusters can reduce signiGcantly congestion problems with a careful schedul-

ing of the application internode traffic. Table 3.4 shows configuration information of the avail-

able clusters at the University of Southampton in 1998. 

3.9 Summary 

This chapter has examined and reviewed the key characteristics of workstation cluster from 

the DS and the MPPs prospective. Such system provide a Hexible parallel platform which can 

incorporate characteristics from both DS cind MPPs at the same time. 

In its simplest form a workstation cluster is a DS. The majority of workstation clusters 

are built around an I/O attached message-passing based communication mechanism which can 
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combine the advantages and simphcity of DS with the message-passing computational model 

of MPPs. Software tools designed for distributed systems are now mature enough to provide 

useful services for clusters but are not suitable to deliver MPP-like performance because these 

tools are primarily designed for functionality and rehability. 

Software requirements for performance on clusters are more strict than distributed system 

requirements. Software support also should not put any limits on the performance and should 

exploit hardware advanced features of new workstations and high-speed networks. The examples 

of the Beowulf and Berkeley NOW projects have shown that properly configured clusters of 

workstation can deliver acceptable HPC services. 



Chapter 4 

Message-Passing and MPI 

4.1 Int roduct ion 

This chapter investigates the role of the message-passing model as the inherent computational 

model of clusters. This is important because it will provide a better understanding and a basis 

for the analysis of cluster performance as it will be examined in later chapters [201]. One of 

the fundamental components of workstation clusters as depicted in Fig. 1.2 in Chapter 1 is the 

establishment of the message-passing computational model which was originally developed for 

parallel systems. 

The mechanism used by nodes to exchange data in the message-passing model is based on 

send and receive primitives. Each process controls access to its own space in memory and the 

only way to move data from one process space to another is via messages [203, 79, 168, 140]. 

Computation is performed through one or more processes, on the same or diEerent nodes, 

which conmiunicate and coordinate via messages. Sharing resources and synchronisation among 

processes is achieved by sending messages. Message passing can be asynchronous (e.g. usually 

non-blocking) or synchronous (blocking). 

The concept of message-passing is straightforward and in principle it is an expansion of the 

existing sequential computational model which run on the same sequential hardware platforms 

(e.g. the von Neumann model). Implementations of the message-passing model on parallel 

machines and clusters can be built with the provision of message-passing library calls to existing 

sequential languages [126] with good scalability and efhciency. 

The Message Passing Interface (MPI) standard was designed to replace a large variety of 

existing message-passing systems which extend on a wide variety of parallel platforms. Im-

plementations of MPI such as MPICH [95], CHIMP [2], LAM [29] run efficiently over both 

MPPs and clusters. As a consequence the portability of MPI has reduced the di&rences be-

tween the various parallel platforms available and established MPI as the de-facto standard for 

message-passing. 

The rest of this chapter is divided into four sections. The first section reviews briefly PVM 

and BSP then examines the concepts and semantics of the MPI message-passing computational 

model. The next section reviews the implementation of these concepts on MPICH. A review of 

54 
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the architectural structure of the implementation reveals the trade-off between portability and 

efficiency, which is essential to understand and analyse the performance behaviour of clusters. 

Finally there is a case study of the MPI (MPICH) computational environment for clusters of 

workstations. An implementation of a matrix multiplication algorithm run on both homoge-

neous and heterogeneous clusters of workstations is used as a test-bed demonstration for further 

study of the clusters parallel platform. 

4.2 The Parallel Vir tual Machine 

The 'Parallel Virtual Machine" (PVM) interface, developed at Oak Ridge National Labora-

tory, was the first message-passing environment to establish a standard model for parallel 

programming on distributed computing systems [82]. PVM was originally developed under the 

assumption of a heterogeneous distributed system in which the underlying network could be 

slow and unreliable e.g. BSD sockets [34]. The PVM system provides an advanced API capable 

of managing processes dynamically and a run time system to provide application management. 

A PVM system is an integrated set of software tools and libraries that enables a collection 

of heterogeneous computer systems to be used cooperatively as a parallel virtual machine for 

concurrent or parallel computation. The basic principles of a PVM system include: 

9 User-configured host pool 

® Translucent access to hardware 

® Process-based computation with an explicit message-passing model (e.g. data and func-

tional parallelism) 

® Heterogeneity and multiprocessor support. 

The PVM system comprises the pvmvirtuald daemon that resides on all the computers/nodes 

making up the virtual machine together with the library of interface routines which provides 

the message-passing functionality together with a facility to spawn processes and coordinate 

tasks. Currently the PVM system has been ported to a wide range or hardware and software 

platforms including MPP systems as well as support and bindings for programming languages 

such as C, C + + and Fortran. 

4.3 Bulk Synchronous Parallelism 

Bulk Synchronous Parallelism (BSP) is an architecture and platform-independent structured 

programming model for general-purpose parallelism. The BSP programming model was intro-

duced by Valiant [225] in 1990. In the BSP model each node of a parallel machine has its 

own local memory space and interconnection network that can route packets of some fixed size 

between nodes. The model reduces an overall computation into a series of supersteps, each 

containing computation and/or communication followed by a global synchronisation among all 

the processors of the parallel system [88]. The concurrency model assumes that no process can 
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proceed to the next superstep unless all processes have completed the current superstep. Each 

superstep is subdivided into three ordered steps: 

« local computation step on each node/process, which uses only variables stored locally. 

* communication step, in which processes exchange data among themselves. 

« a barrier synchronisation step, in which processes are blocked until the communication 

phase is entirely completed. The exchanged data become locally available at this point 

and computation proceeds to the next superstep. 

Values sent through the communication network are not guaranteed to arrive until the end 

of the current superstep. The overall concept of the BSP model is straightforward and it is 

considered as a direct enhancement of the sequential programming model. BSP programs can 

be written in one of two ways: 

1. Direct BSP programming, in which the programmer takes full responsibility for the two-

level memory model to ensure that data to be operated upon reside in local memory at 

the beginning of every superstep. 

2. An automatic style of BSP programming, in which a lower-level entity maintains the 

illusion of a single memory. 

BSP can be eSciently applied to a variety of parallel platforms and the performance of a 

program can be predicted from the text of the program together with a few global parameters 

of the target architecture. These parameters are the number of processors fi, the ratio of 

communication throughput to processor throughput g, the computing speed in Eop/s s and the 

time required to barrier synchronise all processors Z. The cost of a single superstep then is the 

sum of the maximum cost of the local computation on each processor plus the cost of the global 

communication on an h-relation and the cost of the barrier synchronisation at the end of the 

superstep: 

-I- -I- / 

where w denotes the amount of local computation load and A is the number of data elements 

sent or received by a processor. The total execution time of an algorithm is obtained by 

adding the times of each separate superstep .9̂  [225]. Evaluation of the parameter g is not 

straightforward, at BSP network traSic occurs in bursts at the end of each superstep, that, 

it can be approximated by the concept of network "permeability" when all processes send and 

receive messages simultaneously in a random order rather a linear approach. BSP provides 

an effective and usable model, unlike unstructured parallel programs implemented on message-

passing and shared memory models. 
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Figure 4.1; The message passing model 

4.4 The Message Passing Interface, Concepts and Seman-

tics 

At the start of the 1990's many software tools and packages for distributed memory systems 

were available. The need for a standard arose because most of those packages had shortcomings 

either in portability, performance or were incomplete. The basic features of the proposed 

standard were discussed in an workshop held in April 1992 in Virginia and a preliminary draft 

proposal developed [64]. In November 1992 a draft proposal (MPI-1) was pubhshed and the 

MPI Forum was established, the final version of MPI being released in May 94. In a meeting 

in December 1995 MPI 2 extensions ware discussed, a year later (November 96) a draft of MPI 

2 was released, and the final version of the draft was released in June 1997 [33]. 

The Message Passing paradigm is well-understood and can be efficiently applied to parallel 

programming. Before the advent of a standard, a variety of message passing implementations 

and libraries prevented application portability. Code developed for a specific machine using spe-

cific message passing libraries could not run on another platform [108], while portable message 

passing libraries were often not efficient or complete. 

In order to provide language independence MPI runs on top of an underlying commu-

nication protocol, (for example TCP/IP) , providing portability for both heterogeneous and 

homogeneous environments. The standard does not specify explicit memory operations, pro-

gram construction tools, debugging facilities, or any other specific functions that could affect 

portability. The Message Passing Interface is thus a specification for message passing libraries 

designed to be a standard for distributed-memory, message-passing, parallel computing systems. 

MPICH [95], CHIMP [2], LAM [29], Unify [35] are implementations of the MPI standard for a 

variety of systems with binding libraries for programming languages such as C and Fortran or 

even Java [156, 87] together with other tools and facilities. 

For the MPI programming model a computation comprises one or more processes that 

communicate, by calling library routines, to send and receive messages among the processes. 
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Figure 4.2: Distributed IPC functions are similar to IPC functions on a single computer, al-

though networking, naming and location functions have to be included as well [11] 

A fixed set of processes is created at program initialisation, then each process being capable of 

executing different programs. Hence SPMD-style programs can be directly ported using MPI 

and in addition limited porting of MPMD style programs is possible [80]. 

4.4.1 M P I P rocedures and Semant ics 

The notion of MPI is based on the concepts of process, group and communicator. An MPI 

program can have one or more processes running on one or more nodes. Each process is 

autonomous and has its own memory space. The MPI standard does not specify the process 

execution model, hence processes can be sequential or multi-threaded. A group is an ordered 

set of processes with their own unique identifiers (handles). Each process in a group is identified 

by its "rank" integer. Groups are always associated with communicators. In order for MPI to 

ensure safe communication between members of the same group (e.g. to avoid misinterpretation, 

messages being over-written), the concept of the context, in which a message is passed, is 

introduced. A communicator is a mechanism which combines together the concepts of group 

and context. Hence a communicator identifies both the process group and context in which the 

operation is to be performed. MPI also provides amother mechanism to distinguish messages 

used for different purposes known as the tag, which is an integer assigned by the programmer 

to identify a message uniquely. The concept of communicator mechanisms in iVIPI can provide 

sufficient information hiding that is needed to support modular programming (e.g. parallel 

decomposition) as well as application-oriented topologies (virtual topologies). 

The message passing model is by default non-deterministic i.e. the arrival order of two 

messages sent from two different processes to a third one is not defined [80]. However the 

goifrce and (eg specifiers in MPI calls guarantee that two messages sent from the same process 

to another process will arrive in order. MPI messages consist of two basic parts: the actual 

data to be sent/received (its format is: 6?;/, cown(, da^a î/pe), and an envelope of information 

(its format is: communicator) that helps to route the data [79, 168]. 

Heterogeneity is supported through a user-deHned datatype mechanism. 

Communication between processes within a group can be either point-to-point or collective. 

The point-to-point call is the basic communication mechanism between a pair of processes with 
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Figure 4.3: A communicator identiEes the process group and context in which the operation is 

to be performed 
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*buff, count, datatype, dest, tag, comm 

Figure 4.4: MPI calls format: the data part plus the envelope part 

the type of the call being either blocking or non-blocking. Most of the MPI constructs are built 

around this mechanism. Group or collective calls are blocking calls and require the participation 

of all the processes of the group (usually implemented using single peer-to-peer calls). Finally 

communication modes between the sender and the receiver ends can be either synchronous (e.g. 

"hand-shake" mode) or asynchronous (e.g. through a probe mechanism) [77]. 

The first release of the NIPI standard (known as MPI-1) kept the standard as simple as pos-

sible and avoided adding features such as dynamic resource management, programming tools, 

debugging facilities, I / O functions, explicit thread support, or other communication operations 

(e.g. shared-memory like operations, one-sided) [96]. Most of these features are addressed with 

the second release of the standard MPI-2 (July 1997) [78]. 

4.5 MPICH 

MPICH is a current implementation of the MPI standard, which is both a research tool and a 

software development project [95]. MPICH was developed at the same time as the MPI standard 

was proposed, with the objective of providing a test-bed implementation. This enabled problems 

with the specification to be discovered quicker and was beneHcial for the standard, which rapidly 

became more robust and effective. 

In the early stages of MPICH development was based on precursor systems such aa p4 

[30], Chameleon [93] and Zipcode [202]. The actual MPICH implementations are in the public 

domain. 
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Figure 4.5: MPI communication types 

4.5.1 T h e Arch i t ec tu re of M P I C H 

The designers of MPICH tried from the begiiming to separate the interface between the MPI 

hbrary and the underlying message passing hardware. In addition, the comphcated aspects of 

MPI such as communicator management, derived datatypes, or topologies are separated from 

the underlying communications mechanism [96] to hide any peculiarities of a particular system. 

The layer of code that interfaces with the communication device, (i.e. the lower layer) is in-

evitably individual for each specific hardware platform and provides hardware-dependent access 

to communication and synchronisation primitives [154]. This lower layer can be either a native 

communication subsystem (e.g. for parallel systems), or another message-paasing subsystem 

such as p4. Chameleon, etc. This scheme provides efficiency, universality and flexibility for 

future upgrades [94, 99]. New device implementations from third party vendors and others can 

be integrated ecisily aa well as facilitating experimentation with new devices [89, 103]. 

T h e A b s t r a c t Device In t e r f ace (ADI) The central mechanism behind MPICH is a spec-

ification called the Abstract Device Interface (ADI) [95, 92, 90, 91]. ADI is a set of functions 

or macro deHnitions in terms of which MPI standard functions may be expressed, to preserve 

portability. Each hardware platform needs its own ADI to exploit all vendor specific features 

that are provided. 

ADI provides four sets of functions: 

« Speci^ing a message direction (send/receive) 

» Moving data between the API and the message-passing hardware 

« Managing lists of pending messages 

« Providing information about the execution environment 

T h e C h a n n e l I n t e r f a c e (CI) The very low level of the ADI implementation is a thin 

layer known aa the channel interface [90], with the functionality of this layer limited to data 
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Figure 4.6: Upper and lower layers of MPICH 

transfer only. Its basic implementation requires 3 functions to control envelope information 

^MPZD_5'endConfro(, MPZD_JZect;An2/Con(roZ, and 2 other func-

tions to send and receive data to/from the channel (MPZD_ 5'en jCTionne/, MPfD_ ^Zect/fromCTianne/). 

The data exchange mechanisms the channel interface provides are: 

Eager Data is sent to the destination immediately (default choice) 

Rendezvous The data are sent when a receive is posted that matches the message 

Get Data is read directly by the receiver (similar to memcopy) 

4.6 Case S tudy; M a t r i x Mul t ip l ica t ion 

A case study of a matrix multiplication algorithm implementation using MPI in presented 

in Appendix C. The purpose of this case study waa to gain experience with MPI semantics 

and developing a simple application using the MPI programming environment and run it over 

various clusters available on the university campus. 

4.7 M P I - 2 and Para l le l I / O 

Implementations of the MPI standard shortly after its release were used very successfully on a 

variety of platforms by both academic and industrial users. The success of MPI was consider-

able and it became established as a de facto "standard". Together with the success of MPI-1 

there was also a demand for extra features that MPI-1 did not support such as dynamic process 

management, parallel I/O operations and bindings for other languages. These requests eventu-

ally resulted in the MPI-2 standard. The MPI Forum reconvened during 1995 to address new 
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functionality and to develop an MPI-2 standard. MPI-2 is a superset of the MPI standard which 

was released in June 1997. The new standard includes and Fortran-90 bindings, exter-

nal interfaces, extended collective operations (e.g. non-blocking collective calls), and language 

inter-operability (distinct platforms integration). Extensions to the message-passing model in-

clude dynamic process management, one-sided operations, parallel I/O, real-time extensions, 

external interfaces, etc. [78]. 

This section examines and discuss briefly some of the new features MPI-2 introduced 

and which have the potential to affect the computational model of NOWs. For example the 

dynamic process management feature modifies the computational model towards to a multi-

computer model in which each node can start and terminate processes, as well as sending and 

receiving messages [80]. Extensions of the dynamic process potential will enable two separate 

applications to interact in a client/server-like style. Inter-operability among di&rent platforms 

is another important issue MPI-2 addresses. Other features of the new standard are one-sided 

communication which introduces a shared-memory like operation, parallel I/O features (provid-

ing potential for many applications especially for Grand Challenge problems) and the real-time 

support provision (e.g. time-driven, event-driven, priority-driven) which is expected to enable 

and merge a new category of real-time applications into parallel computing. 

Implementations which fully-support the MPI-2 standard so far have not been released, 

although preliminary implementations that partiaily-support MPI-2 are available. Hence real 

estimations and evaluations of MPI-2 is not yet possible. To achieve these requirements MPI-2 

has to remain an interface communication library without managing the runtime environment, it 

should interact transparently with the OS while not assuming any responsibilities from the OS. 

Applications already developed on MPI-1 now are facing the challenge of MPI-2 which should 

balance the trade-off between functionality, portability and performance. Hence application and 

system developers are interested in estimates or predictions of the impact of MPI-2 on their 

products. This section introduces briefly the most important features of the new standard. 

4.7.1 Dynamic Processes 

This is probably the most important feature introduced in the new standard. The MPI-2 process 

model allows the creation and cooperative termination of processes after an MPI application 

has started. An MPI application may now start new processes through an interface to an 

external process manager e.g. CMOST, POE, p4. The MPI SPAWN call starts MPI processes 

and establishes communication with them through a communicator. Applications can require 

a variable number of processes and can use as many processes as required but if necessary 

then some processes can be returned. An important class of MPMD applications, requiring 

process control, are supported directly from the standard. In particular for NOWs this is a very 

important feature as it will enable clusters to use more efficiently overall system resources i.e. 

workstation idle cycles. 

In addition to the direct MPMD programming style support, MPI-2 enables communication 

to be established between two independently started applications. MPI will create an inter-

communicator in which the local and remote groups are the original sets of processes. This 
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Figure 4.7: One sided communication access (put) 

is a collective asymmetric process because processes of one group indicate a willingness to 

accept connections (such as servers do) and the other group of processes connects to the server 

(client), so could be a kind of "server" while could be a "client". MPI-

2 provides the functionality to support this "client/server" mechanism (iVIPI calls for accept, 

listen, connect, etc) therefore client/server apphcations can use an interface for two parts of a 

cooperating application. 

4.7.2 Single-Sided Communica t ions 

Sometimes processes, in applications with irregular dynamic distributed data patterns, have 

all the knowledge for a call on one side from/to a "window" which another process has made 

available for one sided access. These processes on their own should be able to initiate commu-

nication with other processes, which does not require execution of matching calls at both ends. 

MPI-2 provides an extended communication mechanism. Remote Memory Access (RMA), by 

allowing the process to specify all communication parameters, both for the sending side and for 

the receiving side. 

Each process can compute what data it needs to access or update at other processes. 

However processes may not know which data in their own memory needs to be accessed or 

updated by remote processes or perhaps they do not know the identity of these processes. 

RMA operations are initialised by specifying for each process a memory window that is made 

accessible to accesses by remote processes. 

Message-passing communication achieves two e&cts: communication of data from sender 

to receiver; and synchronization of sender with receiver. The RMA design separates these two 

functions and provides three communication calls: remote write (put), remote read (get), and 

remote update using a window managing mechanism to achieve one-sided communication. The 

RJVIA mechcinism can take advantage of fast communication mechanisms providing by various 

hardware platforms such as shared memory, DMA engines, put/get operations, MPPs, etc. 

4.7.3 M P I - 2 and Para l le l I / O 

MPI I/O is not the Rrst specification of parallel I/O system, rather the first portable and 

broadly-accepted parallel I/O specification that has been proposed [78, 74]. MPI specifies 
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how the data should be laid out in a virtual file structure (the view) but does nob specify the 

physical layout within a Ale. Specification of the physical hie structure is avoided because it will 

be system specific and hence it will restrict portability. In order to optimise I/O performance 

and file layout MPI can pass specific control information via m/o objects. MPI I/O is based on 

the UNIX portable file system model interface with extensions for: 

# group, collective data access 

« disk directed I/O 

# asynchronous I/O, accesses with a stride, etc 

Additional features include: 

« Basic 61e inter-operability between systems 

# user directed optimisation via portable 

# non-blocking data access 

I/O is layerable on top of the MPI-2 external interface. Appendix D gives more details about 

the MPI - I /0 concepts and semantics. 

4.8 Summary 

This chapter has examined the fundamental issues of the workstation cluster message-passing 

computational model. This review aims to provide a better understanding of the workstation 

clusters behaviour at the higher application levels. The MPI is the prominent message-passing 

library used in clusters and MPPs. In this model computation is performed by one or more au-

tonomous processes which communicate and coordinate among themselves via message-passing 

mechanisms. 

The MPI standard proposed in November 1992 unifies a large variety of existing message-

passing systems on many diSerent platforms. MPI supports peer-to-peer communication modes 

as well as collective communication. The original MPI standard can be used for both SPMD 

and MPMD (modular programming) programming styles, while the second release (MPI-2) 

includes enhanced functionality features such as dynamic process management, I/O operations, 

etc. 

An experimental case-study of a matrix multiplication application was used in a range of 

experiments over a variety of homogeneous and heterogeneous clusters of workstations using 

MPI. The results demonstrated a high degree of portability and efficiency of the MPI standard, 

although the communication network on clusters was found sometimes to cause potential bot-

tlenecks. The absence of a standard programming environment and programming tools as well 

as runtime support facilities was identiEed as a noticeable disadvantage. 



Chapter 5 

Benchmarks 

5.1 Int roduct ion 

This part of the thesis will examine the performance evaluation issues of workstation clusters 

to be assessed by the proposed SCOPE evaluation tool. In order to understand and evaluate 

the performance behaviour of workstation clusters, it is necessary to review existing benchmark 

suites, examine their basic characteristics and demonstrate the requirement for a benchmark 

suite specifically tailored for clusters. The next two chapters will provide a brief introduc-

tion into HPC benchmark suites and examine the proposed workstation clusters performance 

evaluation benchmark suite. 

5.2 The Requirement for Benchmarks 

The measurement and understanding of computer system performance has been important since 

the Grst computers were built. An accurate measurement of computer system performance will 

enable people to assess computer systems and provide valuable information not only for system 

designers but also system managers, vendors and purchasers. 

The term computer peiyorTnance as it stands is ambiguous because different people can give 

diSerent interpretations of its meaning. System designers want to assess performance of a system 

in order to test and understand its behaviour and possibly improve it or design better systems 

in future. In a similar way, salespeople are keen to know Aow good is the performance of their 

system in order to promote sales, e.g. the price/performance ratio, (e.g. Million Instructions 

Per Second MIPS, Clock cycles Per Instruction CPI). System managers need to have some kind 

of estimated pef/ormance features (e.g. throughput) of computer systems that they plan to 

purchase or use. Furthermore cluster managers need performance evaluation tools in order to 

evaluate and match the best cluster modular components off the shelf. Finally computer users 

need to know how fast their application might run on that system (e.g. response time), or 

which programming style will best take advantage of the system features and lead to optimum 

execution time for their application. 

From the above paragraphs it is clear that expressed only as a single feature 

65 
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of merit will kequently produce misleading results. The complexity and diversity of modern 

general-purpose computer systems in terms of both hardware architecture and software issues 

makes performance assess merit even more challenging. The nature of a single task or pro-

gram made up of a number of programs running sequentially is not adequate to provide a 

rigorous single performance metric for a computer system. A solution to the weakness of a 

single workload task, commonly referred as a benchmark, is the introduction of a set of spe-

ciGc taaks-benchmarks each of which will assess different single performance characteristics of 

a computer system. Such sets of benchmarks are known as knc/imart auifea. Accordingly the 

performance characterisation of a computer system is expressed as a set of individual system 

component performance measurements, e.g. floating point unit, memory subsystem, commu-

nication subsystem, OS, compilers and so on. A common feature on which ail performance 

metrics are based on is the time measurement of a task, e.g. execution time, throughput, etc. 

The performance of a computer is defined as the speed with which performs a well-deRned task 

[176]. The performance of an % computer executing a task B will be then: 

f er /ormoncex ,a = 5'peed(g,%) = — 77—-r (51) 

Consequently we can compare quantitatively two different computers X and Y which execute 

the same task T in zg and i/g time respectively as: 

fer /ormoncey,a 

which means, in other words, that computer % is n times faster than computer K The Grst 

expression of equation 5.1 gives the absolute performance of computer % executing a task B 

while the second one (equation 5.2) is a relative performance between computers X and Y. 

The plethora of benchmarks, workloads and the rapid evolution of computers over the 

paat twenty years has often led to confusion and misinterpretations of benchmarking results 

which has sometimes led to a vigorous debate on the value of benchmarks within the computer 

community. Scientific benchmark suites need to provide essential and clear information for the 

performance evaluation and analysis of computer systems if they are to be useful. 

5.3 Benchmark Objectives 

The objectives of benchmark suites throughout the history of computing from single-computer 

systems to scalable parallel computer systems, remains the same: to evaluate the performance 

of a computer system and if possible to rank computer systems with respect to their suitability 

for a certciin task [114]. Scientific benchmarks should not only provide a single representation 

of computer systems performance, but they should also provide further information about the 

way system components aSect the overall system performance and an understanding of the 

internal behaviour of computer systems. Thus effective computer performance evaluation has 

to be expressed as a function of many interrelated considerations. Accurate characterisation 

of a benchmark is not only a matter of understanding the test program, it considers also 

the size of the problem, the algorithm, the ability of the compiler, the OS and the computer 
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Figure 5.1: Different benchmark levels could have different importance evaluation interest 

architecture. Constrains in hardware eind software which will afFect performance have to be 

taken into account, as well ag the level of software tuning, e.g. compiler flags mainly for kernel 

and application level benchmarks. Van der Steen [227] defines all these considerations as the 

With reference to Dongarra et. al. [61] assessing performance evaluation properly 

will enable: 

» An aid to designers of future and existing architectures 

# An aid in reasonable characterisation of system capabilities 

# Promote software development for eGicient utilisation of existing architectures 

Successful benchmark suites such as PARKBENCH [186] have followed a hierarchical bottom-

up approach towards computer performance. On each stage or level of tests different system 

components are examined and evaluated. Initial stage tests use small programs to measure low-

level machine performance characteristics, further stage tests evaluate larger system component 

performance until a level of loading which approximates to a real workload is reached. On each 

level of tests knowledge gained in previous stages is used to analyse performance. Various 

groups of people are also expected to have a diSerent evaluation interests at each level of the 

benchmark tests as Fig. 5.1 shows. 

According to Hockney [114] the accepted principles of rigorous inquiry for scientific bench-

marks include: 

# Objective experimental measurements and written reports 

# Elective controls employed in experiments to isolate key metrics 

# Carefully documenting environmental factors that might affect experimental results 

» Providing enough detail in written reports to permit reproducibility of results 

^ Van der Stenn defines as a workload as the set of application that is representative for use of a certain 

computer system at a certain time and a certain place (system configuration time and place). 
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* Employing standard unambiguous notation 

» Comparing results with other results in the literature 

* Developing mathematical models that accurately model the behaviour being studied 

# Validating these models with additional experiments and studies 

# Reasoning from these models to explore fundamental underlying principles 

In a similar way scientific benchmarks have to go beyond quantitative system evaluation, (e.g. 

speed, cost/productivity, etc.) and provide qualitative evaluation as well which is also impor-

tant. This means that computer systems have to be evaluated for the context in which they are 

going to be used, e.g. application workload, compatibihty, availability of software, interoper-

ability and so forth. In addition scientihc benchmarks should be "open" and promote innovative 

new hardware systems or software techniques. 

5.4 Typical Benchmarking Metrics 

Benchmarks are programs designed to run on a computer system to produce a relative measure-

ment of their performance which can then be expressed and interpreted in various ways. In the 

past there has been considerable confusion over the definition of certain performance metrics 

which has been misapplied and misused [200]. The speed of a CPU was often rated in terms 

of MIPS (Millions of Instructions Per Second) or CPI (Clock Cycles Per Instruction). The 

high complexity of modern CPUs with pipelining and multiple-instruction issues incorporating 

super-scalar architectures together with modern compiler capabilities^ means that such terms 

are at least ambiguous and elusive. Many benchmarking projects had failed to setup univer-

sally accepted standards, defined methodology or a result reporting scheme. In parallel systems 

performance metrics can be more complicated as many of them require additional parameters 

such as the number of processors p or the algorithm complexity 0{N,p). 

Over the past several years there has been a considerable attempt to standardise and 

establish the computer benchmarking field on a scientific basis. In most cases the proposed 

benchmark metrics are based on a function of time and the workload characterisation type, 

e.g. T(B). The PARKBENCH methodology addressed the problem of benchmarking metrics 

and proposed a well-de6ned set of units and standard symbols for expressing benchmark results 

which comply with the SI standard [114]. 

The most fundamental metric of a benchmark is time, the wall-clock elapsed time which 

can be measured on an external clock has a universal meaning and is supported with more or 

less resolution by all computer platforms. A timing expression of the type ^(W,^) for parallel 

machines will relate the elapsed time of an W size problem running on processors. A typical 

performance metric derived directly from the execution time result is known as the Temporal 

Performance of a problem: 

E T ( N , p ) = r - : ( j V , p ) (5.3) 

^e.g. rearrangement of the instruction stream to avoid stalling processor pipelines, etc. 
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Table 5.1: Units and symbols used in PARKBENCH follow the extension of the SI system 

Symbol/Unit Meaning 

/fop floating point operation 

inatr instruction of any kind 

integer operation 

i;ecop vector operation 

aend message send operation 

i^er iteration of loop 

mref memory references 

barr barrier operation 

b binary digit (bit) 

B Byte 

so/ solution or single execution of benchmark 

w computer word 

McMahon in Livermore Loops [148] normalised the cost of primitive computer operations 

into benchmark Goating-point operation (Hop) count as: 

1 Bop add, subtract, multiply operations 

4 Hop divide, square root operations 

8 Hop exponential, sine, etc operations 

1 flop conditional operations 

The number of operations TV together with the elapsed time required to solve a program f (TV) 

is frequently used as a performance metric to express the rate at which a hardware platform 

performs an operation. Benchmark performance then can be expressed as a function of /fop 

operations and the elapsed time is expressed in units of M8op/s as: 

(5.4) 
T(7V,p) 

For parallel benchmarks speed-up, efficiency and performance per node metrics are fre-

quently used. Speed-up in general is defined as sequential execution time over parallel execu-

tion time. In benchmarks speedup is often expressed as the ratio of the time required for the 

benchmark to run on a uniprocessor implementation and the time required to run the 

parallel implementation on p nodes. 

^peedup( A/', p) 
T ( # , l ) _ Ti 

0.5 

In a similar way e@ciency is defined as the fraction of time that processors spend doing 

useful work, it characterizes the effectiveness at which an algorithm uses the computational 
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resources of a parallel computer. ESciency is de&ied as the ratio of speedup to the number of 

nodes: 

B / / , a = „ c , ( M p ) = 5 : £ ! 5 5 ^ M (5.6) 

The definition of such related metrics is somehow ambiguous, either because the unipro-

cessor implementation of the performed algorithm does not exist or it could be considerable 

different from the parallel algorithm. Sahni et. al [191, 214] explicitly defines five types of 

speed-up: relative, real, absolute, asymptotic and asymptotic relative. Absolute related metrics 

are defined with respect to the uniprocessor time for the best-known algorithm, in practice the 

definition of the best-known algorithm for each problem is a difficult task. In relative speedup 

and efficiency the related metric is defined with respect to the parallel algorithm executing 

on a single processor. Hence relative metrics cannot be used to make comparisons on differ-

ent systems. Despite that, relevant performance metrics can be used to study the individual 

performance characteristics of a parallel system providing that the uniprocessor benchmark of 

T(N) is clearly specified. 

Another term very often used in benchmarking is scalability, according to Gordon Bell 

there are several types of scalability such as generation scalable, reliability scaling as well as 

problem and machine scalability. The ratio of maximum and minimum performance rates of 

different workloads on a system is called speciality ratio, for example if this rate is close to 

unity for a specific platform this means that all problems would be computed at close to the 

advertised rate. A benchmark suite even of a few single tests can produce several results (e.g. 

tests have to run a number of times for different parameters). Presentation of a large number 

of measurements in a concise and meaningful way is not straightforward, it usually requires 

results to be combined, typically with arithmetic and harmonic means and graphs. 

The large number of hardware platforms and different software applications has over-

whelmed the amount of benchmark results over the years and revealed the need for a public 

domain benchmark result database [132]. Netlib is an example of such a Performance Database 

Server (PDS) developed and maintained at the University of Tennessee and Oak Ridge Na-

tional Laboratory. Benchmark data and distributions acquired from industry and academia are 

accumulated, classified and made available for public access [132]. 

5.5 Existing Benchmarks 

A brief description of universally-accepted existing benchmarks is provided below, together with 

a discussion of key characteristics as assessment of potential usability for clusters. This survey 

does not include early work such as the Whetstones and Dhrystones benchmarks [233] (which 

introduced the concept of a synthetic benchmark), or the Gentzsch kernels in 1984 [84]. 

5.5.1 T h e Livermore Loops 

Livermore Loops and kernels introduced the idea of an abstract workload [230, 73]. The bench-

mark introduced the concept of adjusting weight factors for each test to meet the needs of a 
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specific computer system. Results were then presented using the harmonic mean. However to 

assign such weights is problematic and because of this little used in practice. 

5.5.2 T h e L I N P A C K Benchmark . 

This benchmark [62] has started as a class of test programs for the software LINPACK project 

developed in 1979. The original class of problems was to solve linear systems whose matrices are 

general, banded, symmetric indehnite, symmetric positive deAnite, triangular, and tridiagonal 

square with sizes of N = 100, 300, and 1000 using the LINPACK numerically intensive routines 

SGEFA and SGESL. Results are given in Mflop/s 

where the number of operations is given as .Rpga* by: 

= + (3.8) 

and the system conGguration has to be stated precisely, e.g. date, system, compiler, compiler 

options. Later on two other lists of results were added: a hst presented speedup and efficiency 

information (the execution time of problems run on a single-node and multi-node are reported), 

and secondly the results of arbitrarily large size N problems added to enable parallel machines to 

achieve high performance, Emaz and ./Vi/g values are reported. The ratio of the optimised code 

over the original Fortran performance can show the effectiveness of the compiler. LINPACK 

benchmark results are regularly published over the Internet for a wide variety of hardware 

platforms. LINPACK tests tend to measure the peak performance of a system, which is usually 

diSerent to the overall system performance [65]. 

5.5.3 The PARKBENCH Benchmark 

PARKBENCH Benchmark [186] is an attempt to establish an acceptable set of parallel bench-

marks for users and vendors of parallel systems, as well to set standards for benchmarking 

methodology, metrics and result-reporting. PARKBENCH includes codes of other benchmarks 

which suited its methodology, e.g. parts of the Genesis [113] and NAS benchmarks are included. 

The PARKBENCH committee accepted the wall clock time measurement of a program, for this 

reason it introduces tests TICK 1,2 to validate real wall-clock time measurements. PARK-

BENCH tests have a hierarchical structure within three levels. Low-level, Kernel benchmarks 

and Compact applications. 

Low-level tests measure performance parameters that characterise basic architecture and 

compiler software features. Low-level tests can be split into single-node tests and basic interpro-

cessor communication properties of the system. Single-node tests establish the clock resolution, 

node computational intensity, memory bottlenecks, LINPACK and Livermore Loops bench-

mark tests can be used as well to evaluate completely the performance of a logic single node. 

Communication benchmarks test basic communication primitives such as peer-to-peer latency 

and bandwidth, synchronisation speed, etc. 
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Table 3.2: PARKBENCH tests 

Low level 

RINFl do loops for Too and ni/g 

POLYl Computational intensity /1/2 

P0LY2 out of cache comp. intensity 

COMMSl one way point to point comm. Byte/s 

C0MMS2 two way point to point comm. Byte/s 

C0MMS3 All to all communication 

P0LY3 /i/gover the comm. network 

SYNCHl Synchronisation speed barrier/s 

Kernel Benchmarks 

K1 Matrix multiplication 

K2 Matrix transpose 

K3 SCALPACK routines 

K4 QR decomposition 

K5 Matrix tridiagonilisation 

K6 MG from NAS 

K7 3D FFT 

K8 CG from NAS 

K9 IS from NAS 

KIO paper & pencil 1 / 0 test 

Compact Applications 

CAl PSTSWM 

CA2,3,4 LU, SP, BT from NAS 

Kernel benchmarks include a wide range of computation intensive type problems. Some of 

the benchmarks are taken Arom already existing benchmark suites such ag Genesis and NAS. 

Kernel benchmarks include codes from matrix-matrix multiplication, Fourier transforms, par-

tially differential equations, etc. 

Compact applications are "reduced" versions of complete apphcations. Applications for the 

compact application suite are complete applications that produce results of research interest. 

The application codes have been extensively tested and validated on a wide range of parallel 

architectures and well documented. 

5.5.4 T h e N A S Benchmark 

NAS Benchmarks have been developed at NASA Ames Research Centre initially to assess 

various performance aspects of parallel computers for various NASA problems. These programs 

consist of Eve core benchmarks and three pseudo-applications. The programs were derived from 

routines generally used in computational fluid dynamics applications. The 5 core benchmarks 
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are: Embarrassingly parallel (EP), Multigrid (MG), Conjugate gradient (CG), 3-D FFT PDE 

(FT), and Integer sort (IS). The 3 pseudo-applications are: LU solver (LU), Pentadiagonal 

solver (SP), and Block tridiagonal solver (BT). The Benchmarks can run at 5 diEerent problem 

sizes (S,W,A,B,C). 

E P Embarrassingly parallel benchmark performs 2D statistics from a large number of Gaussian 

pseudo-random numbers, there is no communication among nodes (to measure the total 

Eoating point performance of a parallel system). 

M G Simplified Multigrid kernel solving a 3D Poisson PDE, used for communication perfor-

mance measurements 

CG Conjugate Gradient computes the eigenvalue of a large sparse symmetric positive definite 

matrix. 

F T Computes a 3D PDE using FFTs, testing long distance communication. 

IS Integer sort program, integer arithmetic performance and communication systems are stressed. 

LU Compact application performs an SSOR scheme to solve a 5x5 block lower and upper 

triangular system. 

S P Compact apphcation, no-diagonally dominant scalar pentadiagonal equations solved with 

a 5xr block size. 

B T Compact application, contains a block triangular solver, similar to SP but difFerent com-

munication patterns. 

Tests were precisely defined problems in a "paper and pencil" way, but no implementation 

was given. Hence the responsibility of the benchmark implementation was moved to system 

developers. Vendors were free to develop the tests in the best possible way according their 

system capabilities. Source and information about the NAS benchmarks can be found at the 

NASA NAS web site. 

The original "paper-and-pencil" approach had some disadvantages as it could be seen as a 

benchmark of the "bench-markers", some vendors could skip parts of a calculation which were 

not interesting by using lookup tables, etc. The NPB version 2.0 released in 1995 includes a 

model implementation using a message passing model based on the MPI communication library. 

The NPB version contains 5 kernel (core) benchmarks and 3 compact CFD applications (pseudo-

applications). Tests can be executed in three classes, A for small size, B and C for large size. 

Execution time for class A problems are normalised to the time required to run the tests on 

one processor on a Cray Y-MP, and class B equivalent normalised to Cray C-90. 

5.5.5 T h e E u r o B e n Benchmark 

The EuroBen benchmark [227] started in 1990 with the EuroBen Group. The objective of the 

EuroBen is to uncover and express the "performance fingerprint" of high performance computers 
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by developing a benchmark that will yield a good understanding and a performance profile on 

a wide range of different architecture systems. 

The structure of EuroBen benchmark is split into four modules [226]. Contents of module 

"1" include test programs for single node basic operation performance, memory subsystem per-

formance, as well as basic internode communication point to point tests. Module "2" contains 

simple basic algorithms tests such as matrix-vector product, linear system solution, eigenvalue 

and FFT problems. In module "3" there are tests encountered already in the first two mod-

ules which are more representative in scientific applications such as complex FFTs, very large 

very sparse matrix-vector multiplication, block relaxation problems, etc. Finally module "4", 

currently not active, was planned for application programs. 

5.5.6 T h e P e r f e c t Club B e n c h m a r k 

The Perfect Club benchmark suite was primarily targeted for "supercomputers" obtaining met-

rics about CPU time, wall clock time and Mflop/s for compact application-level tests. Compact 

application tests from 13 scientific programs cover application areas such as computational fluid 

dynamics (CFD), chemical and physical modeling, engineering design and signal processing. 

Application tests intended to represent intensive supercomputer scientific workload could run 

in two modes, an application code with no alternation (baseline runs) and vendor-optimised ap-

plication codes. Results report the harmonic mean of the MFLOPS (Millions of FLoating-point 

Operations Per Second) rate for each given program. The number of FLOPS for each program 

was determined by the number of floating point instructions executed in the CRAY X-MP using 

the CRAY X-MP performance monitor. Unfortunately the complexity of the applications and 

lack of application analysis made understanding the measured performance difficult. 

!5.5/r TTtie ESPIDC] Eieiiclirouirlc 

The System Performance Evaluation Cooperative (SPEC) Benchmarks started as a consortium 

of HPC vendors in an attempt to establish a well-accepted and used benchmark set of met-

rics [204]. The SPEC benchmark suite consists of a set of eight integer and ten floating point 

public-domain, non-trivial programs running under real conditions sufficiently large to stress 

computationally any system. Results are normalised to DEC VAX 11/750 and for the new re-

lease SPEC95 results are normalised to Sun SPARCstation 10/40. SPEC results report only the 

geometric mean of the testing programs as the relative performance figure, known as SPECint95 

and SPECfp95. The lack of low-level evaluation indicates that this benchmark does not provide 

clear estimates about the basic hardware characteristics of a system [69]. The commercial im-

portance of the SPEC benchmarks has often motivated vendors to add benchmark-specific flags 

into compilers for specific benchmarks including SPEC tests. Sometimes these transformations 

could result in incorrect code or even slow-down the performance of other applications [177]. 

The SPEC committee introduced a base-line performance measurement in order to eliminate 

such problems. Performance results from these benchmarks are made publicly available. 
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Figure 5.2: The LogP abstract model parameters; source [53]. 

5.5.8 T h e LogP Model 

The LogP model originally was introduced as a reahstic model for parallel algorithm design 

[52]. It describes an abstract machine configuration of key resource performance characteristics 

but does not rely on structured machine dependent details [144]. The cost model for a message 

passing parallel system is characterised by four parameters, three of them describe the time 

to perform an individual point-to-point operation and the other parameter provides a crude 

description of computing capability: 

L: the latency or delay, is deGned as the amount of time, for a small message, to be sent from 

the sender processor to the receiver processor on the network or the time needed to be 

processed by the network hardware. 

o: the overhead, is defined as the time spent by the two CPUs engaged in sending or receiving a 

message. The overhead parameter can be described sometimes as a sender-side overhead 

Og or receiving-side overhead Or-

g: the gap, is defined as the minimum time interval between two consecutive message transmis-

sions or consecutive message receptions at a processor side, the reciprocal 1/g corresponds 

to the available communication bandwidth. 

P: processor is the number of processors/memory modules utilised. 

The LogP model makes the assumption that the underlying network has a Hnite capacity which 

allows at most messages to be transmitted from one processor to any other processor at 

any time. If a processor attempts to transit a message that would exceed that network capacity 

the processor stalls until the message can be sent without exceeding that limit. 

The simplest point-to-point communication operation thus requires a time of Z, -I- 2o or 

o, -I- Z, 4- Of. The round trip time or a request-response operation will require: 2(2, + 2o) [27]. 
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Transferring n sequential small messages rapidly from one processor to another wiU require 

time: o 4- (n — l)g + L + Oy. 

Parameter characterisation requires the use of a series of micro-benchmarks and careful 

analysis of the resulted graphs [53, 27]. Extracting the individual LogP parameters for a 

system is not always straightforward because they represent abstract quantities which might 

not map well into hardware structural characteristics, e.g. timing limitations cannot distinguish 

detailed measured parameters in many aggressive user-space communication protocols used in 

workstation clusters [18]. 

5.5.9 O t h e r Benchmarks 

Other benchmark categories such as proprietary benchmarks exist specifically tuned to evaluate 

the performance of commercial hardware features or applications and therefore cannot be used 

beyond their intended scope as standard benchmarks. The TPC benchmark suite is an example 

of a commercial data processing and database benchmark which primarily gives information 

about the throughput of commercial database transaction systems. 

5.6 Comparison and Assessments 

The benchmarking suites presented briefly in the previous section are classified into various 

groups according to their characteristics, e.g. the way they approach performance evaluation, 

or their internal structure. Historically benchmarks were developed to evaluate performance 

characteristics of supercomputers, where performance characterisation was important. Bench-

marking requirements for architectures with advanced features are demanding because perfor-

mance tuning on such systems is often critical [157]. 

According to the targeting hardware platform benchmark suites can be divided into two 

orthogonal characteristics: uniprocessor versus multiprocessor and vector processors versus 

scalar processors. Parallel processor benchmarks often invoke uniprocessor benchmark suites in 

order to analyse the performance of a single logic processor of their system. Benchmarks written 

for vector processors systems fail to provide a clear estimation of scalar processor systems 

performance because performance characteristics for vector pipelines and scalar systems with 

cache are very different. In a similar way performance characteristics for shared memory and 

distributed memory systems are significantly different [141]. 

The policy by which a benchmark suite approaches performance evaluation is another 

important characteristic of benchmarks. A hierarchical bottom-up approach of a system per-

formance is obtained by splitting down the system components, analysing their performance 

and moving towards the top of the hierarchy. 

Low-level versus high-level and synthetic versus application-level benchmarks terms are 

used frequently in the literature. Low-level tests are synthetic programs designed to measure 

basic architectural features of a computer system, e.g. the memory bandwidth, pipeline speed, 

etc. Tests of this level are simple to construct, port to a platform, or analyse. Results should 

provide the peak hardware performance of the system regardless of higher-level software capa-
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Figure 5.3: Benchmarking classlRcation areas uniprocessor versus, multiprocessor and vector 

processor versus, scalar processor architecture 

bilities. In many benchmarks low-level tests are extended to measure individual components 

and features of a computer system such as communication subsystems, processor performance, 

etc. Analysis of low-level tests will provide valuable information for the analysis of higher level 

tests. 

Kernel-level tests are usually synthetic, although sometimes could be modified parts of 

applications or algorithms, i.e. such as found in a scientiSc subroutine libraries, introducing the 

concept of an abstract workload. Synthetic kernel benchmarks attempt to match the average 

frequency of operations performed for a large set of applications. Software aspects such as 

compiler technology clearly have a signiGcant impact on performance. Results of these tests 

can give an indication of real working conditions or sustained performance but cilso could create 

misconceptions about the overall performance load. 

Application-level tests can be either full scientiSc applications or stripped-down versions of 

real applications. Results from these tests have to avoid genercilisation and can be expected to 

give the most accurate picture of a computing system performance only if low-level benchmarks 

performance is previously understood. Tests of this class have a number of disadvantages such 

as portability, analysis of the results is difficult and the danger of measuring programming style 

instead of performance. 

5.7 Shortcomings of Existing Benchmarks 

The characterisation of workload is probably the most fundamental key aspect of benchmarks. 

The inEuence of the specific underlying hardware features and the software compiler capabilities 

very often can alter signiEcantly the workload. Benchmarks that fail on this characterisation 

will usually fail to meet their stated objectives as well. For higher-level benchmarks such as 

kernel-level and application-level tests, compiler tuning capabilities become a critical issue. 

This was the reason why many benchmarking suites introduced base-line tests, such as the 
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software issues 

SPEC suite where no compiler optimisations are permitted, or an optimised open-line suite of 

tests. Hennessy and Patterson [107] refer to several cases in which Whetstone and Dhrystone 

benchmarks have produced overestimated results because certain compilers detected specific 

patterns and then optimised or simplified specific benchmark codes. Similar misleading results 

can be produced with benchmarks based on MIPS metrics [200] either because the workload 

has a different set of instructions or the size of the workload is different (e.g. it does not fit 

within a specific size inside the memory hierarchy). 

Performance information provided by application level benchmarks is representative only 

for those particular programs. Hence the information obtained is sometimes inadequate to 

provide insight and predict the performance of other applications. Inter-platform comparison 

is also diScult for algorithmic and application level benchmarks as fairness issues concerning 

the underlying hardware architecture might arise. This is a common case in parallel systems 

where specific implementations of algorithms and applications might not adapt very well to the 

underlying system characteristics. The 'Paper-and-pencil' benchmarks introduced by NAS solve 

this problem in a way that allows parallel algorithms to vary between platforms by specifying 

only the numerical algorithm leaving the cost of the required implementation either to the user 

or the vendor. Most of the examined benchmark suites in this review fail to provide a concise 

performance evaluation over the wide range of HPC platforms. 

5.8 Summary 

The measurement and understanding of computer system performance has always been an 

important subject for computer developers and users. The main objective of a computer 

benchmark is to evaluate the performance behaviour of a computer system with respect to 

its suitability for a certain task-workload. However single workload benchmarks are inadequate 

to provide accurate performance evaluation for modem computers. 

A collection of workload benchmarks which target computer performance behaviour at 
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diEerent system levels known as benchmark suite can eliminate the single workload hmitation 

but at the same time they introduce a variety of different performance metrics. In practice, 

existing benchmark suites such as LINPACK or NAS cannot provide a concise performance 

evaluation over the wide range of HPC platforms. The following chapters will examine the need 

for a tailored benchmark suite and its main objectives for workstation cluster platforms. 



Chapter 6 

SCOPE; a Tailored Benchmark 

Suite for Clusters of Workstations 

6.1 The Requirement for a Tailored Release 

The main target of a standard benchmark suite is to obtain general knowledge about the perfor-

mance of a system over an application spectrum as wide as possible. Nevertheless benchmarks 

have certain limitations and drawbacks because all they measure is how fast the specific bench-

mark programs run whereas the performance of other appHcations is inevitably uncertain. More 

importantly, benchmarking requirements for HPC and parEillel systems are higher. Full scale 

evaluation for such systems, to quanti^ and compare objectively, is difHcult because of the wide 

range of their design space and demands for fine tuning performance settings [228]. 

Clusters of workstations have emerged aa a parallel platform which has many similarities 

with MPPs but at the same time strong quantitative and qualitative differences from other 

parallel platforms. Although in the past few years differences between MPPs and clusters of 

workstations have tended to merge, MPPs have several potential advantages over clusters of 

workstations. The size and the quality of available resources per node is in favour of MPPs. For 

example the communication subsystem and the 1/ 0 bandwidth of MPPs have better character-

istics from any distributed network system used for clusters in both terms of peak performance 

and sustained load. The memory hierarchy in MPPs usually is larger and has better per-

formance characteristics than any commodity workstations memory hierarchy system [135]. 

Finally clusters cannot operate efBciently with tight global node synchronisation. 

Another key point which can affect performance dramatically in HPC systems is the un-

derlying software technology and the run-time system support. MPPs have to run usually in 

a batch mode environment while clusters of workstations usually run in multi-user interactive 

environments. Most of MPPs are released with highly-optimised compilers and programming 

libraries mostly written in the Fortran programming language. On the other hand the majority 

of workstation clusters are based on general-purpose software, typically GNU or freeware soft-

ware, Linux, Free-BSD and C programming language with compilers which often do not provide 
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Table 6.1: Differences between MPPs and cluster 

Characteristics Cluster MPP 

cache size 512-lMbyte > 2Mbyte 

memory size < 64Mbyte > 256Mbyte 

interconnection Mbyte/s 

support/tools - exist 

compilers non aggressive aggressive 

specific optimisations or specific hardware feature support^. These differences in programming 

languages and runtime environment make the porting and running of benchmarks for MPPs on 

workstation clusters a cumbrous task. 

Finally the lack of standardisation among the architecture of clusters is another key point 

of performance diversity. Despite the use of Commodity Off The Shelf (COTS) components 

the classification of clusters of workstations is rather loose and virtually every single cluster 

is built with its own individual architecture/configuration reflecting the nature of the targeted 

application. Frequently the behaviour of the underlying interconnection network used in clusters 

is often unpredictable and subjective to long delays and packet loss. Consequently, there is a 

need to examine closer the performance behaviour of the interconnected network for each cluster. 

On the contrary the interconnection network on MPPs is usually regarded by benchmarks as 

an opaque subsystem which is fast, efficient and reliable. 

Existing HPC benchmark suites for message-passing systems are designed primarily for 

Distributed Memory or Shared Memory MPP systems rather than clusters. Most of these 

benchmarks, in principle, run also on clusters of workstations simply because clusters support 

the identical programming model as MPPs. Although theoretically the above condition is 

sufficient for an MPP benchmark to run on a workstation cluster, it does not necessarily provide 

useful information and understanding about specific performance characteristics of clusters of 

workstations. The size of a benchmark workload designed for MPP in general does not fit 

within the limited amount of resources of a commodity workstation cluster node. Therefore 

many of the tests used in existing benchmarks are not suitable for networks of workstations. 

For those reasons existing benchmark suites misinterpret the measured performance of 

clusters and they often fail to provide meaningful performance information. This means that 

conceptual issues in the performance measurement of workstation clusters are confused and 

misunderstood. This chapter proposes a new benchmark suite called Specific Cluster Optimi-

sation and Performance Evaluation (SCOPE) which will address performance evaluation issues 

specifically for workstation cluster characteristics such as interconnection network, message-

passing calls efficiency, heterogeneity and provide cluster administrators and programmers with 

a useful performance evaluation tool. 

^For example the GNU G C C compilers (especially on CISC architectures) have a rather conservative inter-

procedural alias analysis, while specific RISC-architecture commercial compilers such as GEM from D E C for 

Alpha processors could be more aggressive and produce highly-optimised code [159]. 
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6.1.1 S C O P E Requ i remen t s and Object ives 

The initiative of this chapter is to propose and define a benchmark set of performance tests 

suitable for clusters of workstations which is straightforward to understand and use. The 

objectives of the SCOPE benchmark suite is to provide a comprehensive set of benchmarks that 

is generally accepted by both cluster users and cluster managers. The benchmark suite will 

assist cluster designers to understand the behaviour of workstation clusters and hence develop 

better systems out of COTS as well as provide application programmers with a comprehensive 

tool and a methodology to develop and tune parallel applications for clusters of workstations 

more e8iciently[220]. 

The SCOPE benchmark suite will make use of well-established benchmark tests together 

with new tests to address performance evaluation and modeling aspects for workstation clusters 

at the single-node level, internode communication-level and programming model level. The 

SCOPE benchmark introduces a comparison between network-level and communication-library 

level tests, as well as the notion of the performance evaluation of message-passing routines and 

operations within the context of an algorithm execution. The benchmark suite has to be broad 

enough to accommodate variations of clustered systems as well as to stimulate experimentation 

with homogeneous or heterogeneous clusters of multi-node uni-processor or multi-processor 

(SMP) nodes [31]. 

The proposed SCOPE benchmark suite requirements and objectives are summarised as 

follow: 

» Establish a simple and comprehensive set of benchmarks suitable for clusters of worksta-

tion systems that will provide meaningful information to cluster users and administrators. 

— Easy to use by both administrators and programmers 

— Realistic comparisons taking into account system configuration and resource avail-

ability 

— Representable workload for typical algorithms and applications 

# Small in size with a low overhead. This implies that tests will not run for an excessively 

long time 

« To adhere to existing standards for benchmarking, methodology and result-reporting 

» To provide support for heterogeneous clusters 

» To provide support for SMP multiprocessor clusters 

# To run on MPP systems in order and provide comparative results 

« SCOPE benchmark methodology will be expanded to provide support for cluster designers-

administrators and cluster users, application programmers at non-privileged root mode: 

— User: wall-clock turn-around time of application. 



CHAPTEE 6. SCOPE.' A Z4Z10RED BENCHMARK SL/ITE 83 

- Numerical analyst: Speed-up, algorithm complexity, scalability prediction i.e. show 

the scalability of a current algorithm on a current system. 

- Computer management: throughput, average turn-around time, utilisation, eE-

ciency. 

6.2 The St ructure of the SCOPE Benchmark 

The construction of the proposed cluster benchmark suite is consistent with the PARKBENCH 

[186] and Dongarra [61] benchmark recommendations and methodology which has established 

a scientific discipline based on a well-defined measures, units and workload characterisation. 

The philosophy of this benchmark suite is to provide system designers and programmers with 

information about the key characteristics of clusters they need to know: single-node level perfor-

mance, interconnection-level performance, computational-model-level performance. According 

to the EuroBench and the PARKBENCH methodology, tests are classified into: low-level where 

communication primitives are tested, kernel-level in which computational model primitives are 

tested and application-level where compact applications stress the system. In addition the 

SCOPE benchmark introduces primitive network-level tests as well as tests at the algorithmic 

level aJong with kernel-level tests. Hence tests of the SCOPE benchmark are grouped into four 

categories following a hierarchical complexity structure: 

1. Individual single node performance benchmarks i.e. include basic architectural benchmark 

tests. User-specihc or architecture speciSc tests can be used as well to test and evaluate 

individual characteristics of nodes, for example I /O support. Well-established single node 

performance benchmark suites would be acceptable candidates. 

e UNPACK, SPEC95 benchmark suites can be used 

» User/architecture-speciEc individual node benchmarks e.g. STREAM [147], Imbench 

[205] 

2. Low-level tests which include two subcategories: 

(a) Underlying communication network tests (at least two nodes must be involved) which 

examine the raw underlying network performance. The idea of these tests is to eval-

uate the performance at the low-level interconnection network, often called network 

raw performance, on top of which message-passing communication libraries reside. 

« Latency test (ping-pong) 

# Bandwidth (a bi-section bandwidth test may be required according to the net-

work topology) 

Clusters with sophisticated network topologies and routing nodes will require extra 

tests for intermediate node latency and bi-section bandwidth evaluation. Such mea-

surements are easily derived from the basic point-to-point latency and bandwidth 

features. 
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(b) Basic communication library tests (two or more nodes involved). These are classical 

tests of message-passing libraries based on a ping-pong principle. 

# Peer to peer tests 

- Latency 

— Bandwidth 

» Collective tests 

— Synchronise 

- Broadcast 

- Reduce 

— All to all 

3. Kernel-level tests include two subcategories: 

(a) Basic message-passing algorithmic kernel-like level operations and communication 

patterns are tested (two or more nodes involved). Some of these tests are already 

examined as low-level tests, at this level message-passing operations are examined 

more realistically from the context of an algorithm and not the artificial environment 

of a low-level ping-pong test. 

« Shift operation 

» Gather operation 

» Scatter operation 

# Broadcast operation 

(b) Kernel-level tests include common algorithms used in many SPMD and data decom-

position style parallel applications 

» Sorting algorithm 

« Relaxation algorithm 

9 Matrix multiplication 

4. Application-level tests, these tests have not been implemented at this current stage. 

6.3 The S C O P E Benchmark Methodology 

The remainder of this chapter describes the methodology of the SCOPE benchmark in terms 

of methods, procedures, metrics and result presentation. 

6.3.1 B e n c h m a r k Specification 

The lack of standardisation and the diversity of cluster conGgurations has imposed restrictions 

over the provided usability of benchmark codes either on low-level or higher-level tests. To 

increase the portability and future upgrade-ability of SCOPE tests over different OS, supported 
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libraries and network protocols, the benchmark codes and tests will be provided also with a 

"paper and pencil" speciGcation similar to that introduced by NAS. However, in this case there 

is a concern about the difBculty to distinguish between machine and programmer capabihties. 

One of the primary concern of the SCOPE suite is to reveal the real capabilities of a system 

and by covering or hiding system pitfalls (this should be a primary concern of an apphcation 

developer). 

Each test specification will contain an introduction to the objectives of the test and a 

detailed description of it. Specifications describe input parameters, output data format, timing 

procedures and benchmark-specific metrics, e.g. compiler issues. Implementation restrictions 

or other benchmark-specific characteristic tests also have to be described. 

6.3.2 Pe r fo rmance Met r ics 

Based on existing benchmarks, methodology units and symbols for the SCOPE are adopted 

from section 5.4 and Table 5.1 are as follows: 

« Central measure: wall-clock time T'(7V,p) 

- Measurements will use either a timer based on calls and its derivatives 

used in communication libraries for example call or use of hardware 

speciGc assembly routines, with very low overhead. The last case enables new gen-

eration processors to make use of their precise internal timers which can simplify 

benchmarking and extend further benchmark and profiling usability. 

# Tests will be repeated several times to overcome variable clock resolution and avoid other 

independent processor activity or noise of a multiuser-multitasking environment. Results 

will present the minimum time, the average time and the median time. The side effect 

of repeating a test several times is known as the cache warm-'up eSect which provides 

improved results when the test eventually resides in the system cache. Result fluctuation 

in long run tests is relatively small compared to the short run tests, hence there is no 

need to repeat them as many times as short run time tests. Results are stored in a text 

mode during or at the end of the execution of the benchmark. This will make result 

post-processing analysis eaaier for other tools. 

# Derived measures: 

- /fopa = number of operations/time (operation count not known or defined) 

- = (time for 1 processor) / (time for a P number of processors) see equation 

5.5. We refer only to "relative speed-up" which is based on the execution time of 

the parallel algorithm running on a single node/process of the target computer [120]. 

Interpretation and analysis of speed-up and efficiency measurements should be used 

as a performance metric independent of runtime [191, 214]. 

- E^ctenci/=Speed-up/number of processors (see equation 5.6) 

an indication of the utilisation of system resources^. 
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- this is a metric deAned and used, in this thesis, for analysing 

collective calls results. As effective bandwidth is deSned as the ratio of the aggregated 

message size (i.e. payload only) of all data transfers taking place among the 

processors within the period of this collective call, over the execution time of this 

call. 

where is the number of processors participating in this collective call and n is the 

payload involved in the operation. 

Analysis of the results of the SCOPE benchmarks will use the following approach 

— Text mode (tabular presentation) whenever is straightforward to make comparisons 

on certain points 

— Graphs provides a concise representation for performance results 

- Modeling and curve Gtting if possible for machine-specihc features 

6.3.3 Sof tware Requ i r emen t s of S C O P E 

Considering the variety of cluster platforms the use of standard software packages is an essential 

requirement. The wide use of public domain packages will be used for baseline tests as well as 

for some analysis and presentation of results. 

® C compiler (optional FORTRAN compiler) 

» Network libraries e.g. TCP/IP sockets, etc. 

« MPI communication libraries (PVM could also be used) 

# Shell scripts, tools necessary for the analysis and presentation of results e.g. 

PerZ, awt. Analysis and presentation of results is not necessarily performed on the target 

platform. 

6.3.4 Imp lemen ta t i on Rules and Opt imisa t ion 

The role of sophisticated compilers to achieve the maximum performance from advanced proces-

sor features is crucial. The ability of a compiler to exploit hardware features, e.g. the available 

of processor registers, has a strong impact on the performance outcome especially for kernel-

level and application-level tests [159]. It is essential to ensure that compiler optimisations do 

not introduce any code elimination, alter the workload or produce erroneous results. Processors 

that support instruction level parallelism (ILP) have the potential to change the instruction 

order of critical parts of a test program and alter the workload. For this kind of side-effects an 

- B o t h speed-up and efficiency are relative metrics in this context and should be interpreted according to the 

runt ime. 
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anti-warping serialisation can be applied on critical parts of code to preserve the right execution 

order of the workload. 

In order to establish a common performance baseline set, each test has as a default op-

timisation (the level) and any other optimisation or compiler Hags will be stated as an 

optimised performance metric/measurement. The later case will provide developers and pro-

grammers the chance to assess and experiment with the performance of non-standard features 

e.g. in experimental test mode. 

6.3.5 T i m e M e a s u r e m e n t and Considera t ions 

Time is a fundamental metric for every computer benchmark and the basis of many tools for 

code optimisation. The timing of a task can be expressed in terms of user CPU time and system 

CPU time. User time is the amount of CPU time a program itself took to execute while system 

time is the amount of CPU time that OS routines took place to service requests made by the 

program. This time measurement technique in multiprocessing and multitasking systems, such 

as clusters of workstations, is not suitable for benchmarking purposes because it ignores any 

other kind of CPU activity which takes place during the test would yield unrealistic results. 

For the SCOPE benchmark suite time measurement will always refer to the clock time it took 

for a program to load, execute and exit (sometimes this is called wall-clock time, response time 

or elapsed time) which is a universally-accepted time measurement method. 

The accuracy and precision of benchmark results depends directly on the timer accuracy 

used to take the measurements. Standard clock timer calls such as geMimeo/jag/O deGned in 

various system timer libraries return the current time typically with a resolution of the order 

of a few 7713, which is a common figure for UNIX platforms. In practice the poor resolution 

of these calls restricts their usability for timing events that last for seconds or minutes. The 

M/̂ time() communication library routine, used in many benchmarks to implement real-

time stopwatches, has based its portabihty on such timer calls to profile program performance. 

Existing proGling or timing mechanisms based on such routines have several disadvantages 

because measurement techniques are subject to noise and long overheads due to the system 

calls involved. In addition such techniques introduce cache and memory pollution. In a multi-

tasking OS, measurement fluctuations can also occur under heavy-load conditions as well. Fine-

grained measurement is often not possible because of the poor clock resolution. To overcome 

poor resolution problems and time a segment of program that requires little time to run we 

can repeatedly execute that segment of code within a loop many times. The resulting time 

can then be divided by the number of times the segment was executed to obtain a realistic 

average elapsed time. Unfortunately this technique, of enclosing the program segment within a 

loop, can also produce misguiding or unrealistic results because cache warm-up effects can take 

place. Moreover sophisticated preprocessors and compilers are able to detect that no useful 

computation is being performed and eliminate the code entirely. Therefore even for a single 

piece of code, profiling and benchmarking can become tricky and complicated as additional 

loop overhead estimation and subtraction from the final result is required. 

For example, during the measurement of a test the time overhead of the geM:meo/jo^() 
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Table 6.2: Timing Registers of modern processors, for more information see Appendix 

Processor Register width instr. 

Pentium Pro TSC 64 rdtsc 

Pentium II/III TSC 64 rdtsc 

DEC Alpha PCC 32 rpcc 

HP-PA 1.1 CR16 - mfctl 

R10000/R12000 ? ? ? 

Ultra Sparc I-III TICK 32 rdtick 

RS6000/PowerPC MFTB 64 mftb 

call is the time taking to exit the call at the start of the timing interval plus the time to enter 

geM:meo/(fo;/() at the end of the timing interval. Loop overhead calculations in practice requires 

the timing of two separate loops, one loop with a single instance of the expression and the 

second loop with two instances of the expression T& as: 

Ti = A^i(Zoop_oi' + ezpr) 

Tg = 7V2(/oop_cw + 2eipr) 

(6 .2) 

(6.3) 

The loop overhead and the timing estimation of the expression according to the above 

equations 6.3 becomes: 

erpr 

2Ti Tg 

Tz — Ti — Zoop_(w(N2 — A î) 

(6.4) 

(6.5) 
2#2 -

The proposed SCOPE benchmark timing procedure has the following structure: 

1. start timing 

2. perform benchmark computations 

3. end timing 

4. measure overhead 

5. compute benchmark run time 

The above structure implies that computed time is greater than the timer resolution and the 

measured overhead otherwise the benchmark computation execution stage has to be repeated 

over a number of iterations. 

The majority of modern processor architectures, see Table 6.2, provide time stamp counters 

(TSC) built into the processor in order to facilitate hardware performance profiling. These 

registers are incremented at the clock frequency of the CPU or an integer fraction of it. TSCs 

are long enough (64 bit^) to provide a guaranteed monotonically-increasing timestamp which 

^On a 400 MHz processor clock frequency, this would give a t ime between register overflows of: 2®'' cycles ' 

(1 second/400,000,000 cycles) or over 1000 years 
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can be accessed easily with an inline assembly-language statement [118]. On a system reset, the 

Time Stamp Counter (TSC) is set to zero. To access these counters, programmers can use a 

simple 'read timestamp counter' instruction. The number of counts can be easily transformed 

to time given the frequency of the processor clock: 

number of cfoct cuc/eg 
= ;—; (6.6) 

procegaor c/ocA apeed 

The advantage of timera is the very low overhead of their profiling mechanism, 

typically a few clock cycles only and the resolution accuracy is on the order of nono-seconcfa. 

The disadvantage of this mechanism is portability on different hardware platforms, this is be-

cause assembly language calls are involved which are processor dependent. However, portability 

should not be a problem because the development of such inline assembly calls is trivial and the 

number of diEerent processors used for clusters of workstations is small and hmited (see Table 

6.2). Processor clock speed estimation in a similar way is the number of clock ticks divided 

by the number of elapsed time (Appendix B has an example). In superscalar processors with 

instruction level parallelism (ILP) and out-of-order execution support this profiling technique 

might require some need extra serialising instructions (anti-warping) to ensure the right execu-

tion order of the critical timer source code. The following lines of code give an example of how 

to use timer assembly calls on an Intel Pentium processor. 

unsigned long timer_start, timer_end; 

double duration; 

asmC'mftb 7,0" : "=r" (start_t) ; ) ; /* read timestamp counter */ 

. . . /* perform the operation */ 

asm("mftb 7,0" : "=r" (end_t) : ) ; /* read timestamp counter */ 

duration = (end_t-start_t)/MHz; /* in microseconds */ 

6.4 SCOPE Single Node Tests 

The following sections wih present a detailed overview of the SCOPE benchmark suite tests 

following the hierarchical structure presented in section 6.2. Single node tests are intended to 

measure the performance of a single node-workstation of a cluster, such kind of benchmarks 

are known as baai'c arcA;tec(uroZ [114, 227]. Workstation characteristics such as the 

arithmetic unit performance (e.g. pipeline), disk and memory subsystem performaiice should be 

tested at this level (e.g. memcopy, or NCAR [102] memory bandwidth tests, etc). It is essential 

that benchmarks do not exceed resource availabihty. Heterogeneous clusters of workstations 

have to execute these basic architectural benchmarks for every di&rent type of node they 

incorporate. 



Several well-established benchmarks that provide information on the hardware/software 

performance of workstations can be used aa the SCOPE single node tests. RINFl and POLYl/2 

from PARKBENCH, LINPACK, Livermore Loops, SPEC95, STREAM and Imbench are good 

examples of single node hardware performance tests. At this stage the proposed benchmark 

suite does not provide additional single node tests. 

6.5 S C O P E Low-level Tests 

The computational model of distributed memory systems (DM) is based on the ability of system 

nodes to communicate among themselves. Therefore the communication subsystem performance 

on DM systems is an important issue which can affect the overall performance of the system 

substantially. Parallel benchmark suites for DM systems have realised this importance and 

provide various types of low-level benchmarks that load and test the communication subsystem. 

The COMMS benchmark set from PARKBENCH [114] and Genesis [1] benchmark suites are 

classical examples of ping-pong type communication benchmarks (similar type benchmarks are 

included in the EuroBen suite module le). 

Communication tests usually run at the level of computational model, e.g. the message-

passing level and assume that the efficiency of underlying communication subsystem is always 

granted. In clusters of workstations this assumption is not always true, for example the underly-

ing network technologies presented in Chapter 3.1 exhibited large variations in both performance 

and efficiency when used in clusters. Hence classical ping-pong benchmarks at the computa-

tional model level do not provide meaningful information for the communication bottleneck 

or other communication performance tradeoffs in clusters of workstations. For this reason, 

in order to emphasise the importance of the internode communication the SCOPE low-level 

communication tests introduce an additional set of network-level tests to the low-level set: 

9 The network level test stresses the network subsystem and is designed to measure the 

"raw" performance of the network protocol e.g. latency and bandwidth of the underlying 

Ethernet network. 

» Communication library tests will provide information about the communication library 

performance delivered at the application level. Tests in this category will follow a hierar-

chical structure. 

The primary objective of low-level network and communication benchmarks of SCOPE is to 

load and test the communication subsystem. In order to achieve this objective low-level test 

use techniques such as cache warm-up, buffer alignment, preposting receive calls, etc. A per-

formance comparison between network-level and communication-level measurements is possible 

providing that the extra overhead of the message-passing call is taken into account e.g. for 

MPI/LAM this overhead is 32 bytes. 
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6.5.1 T h e Under ly ing Network-level P e r f o r m a n c e Tests 

Network protocol developers do not always have a standard way of testing the performance 

of their protocols. As a result many network benchmarks were presented with contradicting 

metrics that do not clarify exactly the methodology of their tests, e.g. latency and bandwidth 

might refer to round trip time (ping-pong) or alternatively data-hose tests (ping only). Other 

optimisations which can strongly inAuence the outcome of results are memory page size, buffer 

alignment to memory pages, prepending receive calls, etc. One of the key objectives for this 

level of tests is to establish the necessary methodology required for such tests which aim to 

standardise and evaluate point-to-point communication performance at the underlying network 

level. 

Performance results for latency and bandwidth at this level will show clearly the capabilities 

of the underlying network subsystem. A direct performance comparison between the hardware 

specifications, network level tests and the computational model level test is now possible, which 

will provide valuable performance information within the multi-layered structure of the cluster 

subsystems. 

Portability at this level of tests in SCOPE is not always guaranteed because digerent 

network protocols often provide different APIs (for example compare the performance between 

the TCP/IP socket interface with the Active Messages interface). However, tests at this level are 

relatively simple as they test communication primitives between two nodes and do not involve 

complex blocking or non-blocking communication modes. A ping-jpong loop which measures 

one-way round-trip time (RTT) between two adjacent nodes will sufBce to provide latency and 

bandwidth information for the underlying network subsystem. In their simplest way a node 

(master) sends a variable length M message to another node (slave) and the slave immediately 

returns that message back to the master. The following pseudocode illustrates this ping-pong 

principle: 

MASTER-NODE SLAVE-NODE 

Initialise Initialise 

start := GetTimeO; 

for I := 1 To N Do for I := 1 To N Do 

Send(message); > Recv(message); 

Recv(message); < Send(message); 

end Do end Do 

stop := GetTimeO; 

print (stop - start) / N; 

After a number of repetitions time can be collected outside the repetition loop. The minimum 

send-receive time divided by two for zero-length message is reported as latency. Data rate or 

bandwidth is calculated from the number of bytes sent divided by half the round-trip time [63]. 

Z,atenc!/(#) = fRTr/Z (6.7) 

gandw%dtk(jV) = (6.8) 
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Various communication models [63, 186] have been developed in order to evaluate commu-

nication among processors in parallel systems. Applying the linear approach of [63, 186] with a 

start-up time a (constant per segment cost) and a variable per-byte cost /3. the time required 

for the underlying network to send/receive a message is given by^: 

tn = G 4- (6.9) 

In analogy to Hockney's model for point-to-point communication operations = 1/)^^ and 

a = where is the asymptotic underlying network bandwidth which is measured for 

aa infinite message length and is the half performance length that is the message length 

required to achieve half of the asymptotic bandwidth equation 6.9 will become: 

(6 10) 

The message length at which half the maximum bandwidth is achieved (ni/z) is an important 

indication because it demonstrates the capability of the system to exchange short messages 

effectively. Parameters that can inGuence tests and measurements have to be considered for 

each platform in order to analyse the results better, i.e. measurements on non-dedicated clusters 

have to assess the egect of interference with other workload realistically. 

6.5.2 Low-level Communica t ion L ibra ry Tests 

This level of tests targets communication performance measured at the programming model 

or at th application level. Results in this level are equivalent to the COMMS benchmark set 

of PARKBENCH and Genesis benchmark suites. Tests at this level can be divided into two 

groups, peer-to-peer tests which involve two adjacent nodes and measure latency and bandwidth 

and collective communication tests which require participation of more than two nodes. 

Low-level communication library tests stress (in the case of NOWs) the network sub-system 

as well as other individual system characteristics e.g. CPU, memory, etc. Use of low-level tests, 

together with network-level counterpart tests, will provide a clear picture of the underlying 

system which can be useful to understand the behaviour of the system &om the administrators 

and programmers point of view. Low-level communication library tests are portable and can 

also run in MPPs, e.g. IBM SP2, which also provides some useful results for better assessment 

and analysis of the performance of clusters of workstations. 

6.5.3 Pee r - to -Pee r Tests 

These tests are almost identical to network-level latency and bandwidth test. The main differ-

ence is the level at which they measure performance, in the former case it is at the network 

subsystem end and in the later one performance is measured at the communication library level. 

The peer-to-peer latency test measures the time a node takes to send a sequence of messages 

to another node and receive back the echo, while the bandwidth test measures the time of 

a sequence of back-to-back messages sent kom one node to another. In both tests receive 

'^Sometimes a is refered as start-up time t, and is refered as per byte cost 
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cost/byte t 

start-up cost t 

Message length 

Figure 6.1: A simpliRed communication cost model ^ 

operations were posted before the send ones [134,133). and functions are 

used for the latency test and .9en AfP/_ free;; and Watfaff used for the bandwidth 

test. Latency and bandwidth performance can be expressed as a function of the message size, 

Hockney's parameters Too and ni/2 are directly applicable here. 

/ = (n + ni /2) /ro 

where the communication rate is: 

and the startup time is: 

1 + M-l/z/Tl 

0̂ — ^^1/2/^00 

(6.11) 

(6.12) 

(6.13) 

In SCOPE tests, the message size always refers to the payload. Each test is repeated many 

times in order to avoid any clock jitter, first-time and warm-up effects. 

L a t e n c y a n d B a n d w i d t h Tes t 

This benchmark is a straightforward ping-pong loop with a SEND - RECEIVE and RECEIVE -

SEND MPI functions between two peers [186, 167]. The test can run for both blocking and 

non-blocking MPI communication modes. For the non-blocking tests there is no computational 

locid overlapping on the nodes, so the results between blocking and non-blocking modes are not 

significantly different [165, 145, 66). 

Initialise 

start := GetTimeO ; 

for I:= 1 to N Do 

if(rank == root) 

Send(message); 

Receive(message); 
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Figure 6.2: Latency of blocking and non-blocking MPI communication modes 

else 

Receive(message); 

Send(message); 

end if; 

end Do; 

end := GetTimeO; 

Elapsed time is measured either with the system function or the Mf7_ 

An example of the test run over two Sun SPARC II workstations connected with 10 Mbit/s 

Ethernet follows. The results for both blocking and non-blocking MPI communication modes 

are iUustrated in Figure 6.2. The absolute values of these results are not so important as the 

difference between the two communication mode primitives (blocking and non-blocking). Ready 

and standard modes are faster than bu&red and synchronous modes for both the non-blocking 

and blocking modes. Non-blocking communication tests are faster than the correspondent 

blocking mode calls (except the synchronous mode). 

6.5.4 Collective Calls Test 

Collective communication routines differ from point-to-point communication routines in sev-

eral ways. They require coordinated communication within a group of processes which usually 

involves more than two nodes. MPI-1 collective calls are blocking, thus their implementation 

requires a lock mechanism usually implemented inside a protective communicator at the ini-

tialisation phase of each collective call which results in long initialisation overheads. Another 

common feature of these calls is their implementation on top of single peer-to-peer calls, there-

fore their performance is based on the efficiency of the algorithm implemented (e.g. binomial 

tree), the peer-to-peer call performance, the group size (j;) and the underlying network architec-

ture. For instance binomial tree-like algorithms require [loggp] steps for a collective all-to-one 

or one-to-all calls. In practice the current implementation of MPICH [95] uses a combination 

of binomial and sequential trees known as a Woct-boaed binomiaZ tree. The structure of the tree 

is defined for the MPICH implementation by the MP1R_BCAST_BL0CK_S1ZE variable which 



is 1 for clusters of workstations and 3 for the SP2 systems. 

The time for each collective operation routine is expressed in general as a function of the 

message size and the group size, i.e. the number of nodes participating in that call T{n,p). 

Proposed collective routine tests for SCOPE are also suitable for Collective Communication Li-

brary implementations such as (MPI-CCL) [28] which utilise explicitly the native LAN broad-

cast mechanism for collective operations. Analysis of the results on these implementations 

differs according to the implementation routine mechanism. Collective calls can provide a good 

scalability measurement of the systems capability to sustain positive speedup in proportion to 

the number of nodes. Collective routines can be divided into three sub-classes: 

» synchronisation (i.e. barrier call) 

® data movement-I (i.e. broadcast call) 

» global computation (i.e. reduce operation call) 

« data movement-II (i.e. all-to-all call) 

The barrier call tests only the synchronisation primitives of a system (there is no data movement 

among nodes). The other collective calls require data movement. 

Synchronisat ion Call Test 

The barrier call is a collective synchronisation routine, each node is blocked until all the nodes 

within the group have reached this barrier call. The SCOPE synchronisation call test mea-

sures the latency of the MPI_Barrier call har ip) for groups of different number of nodes. The 

MPICH implementation of the call is based on a butterfly communication structure algorithm 

with log p steps often represented as a hypercube. Practical issues require the implementation 

of a locking mechanism for each process with the initialisation of a protective communicator 

in which synchronisation with zero payload peer-to-peer calls will take place. Figure 6.3 illus-

trates the complexity of the underlying communication pattern which takes place for a barrier 

synchronisation call of a 9-node communicator using the MPICH implementation. The number 

of peer-to-peer calls required from nodes to exchange for this call is given by: 

2(|_log2pJ . - 2l"'«'PJ) (6.14) 

A simplified model approximation for a multiple channel communication network of the barrier 

synchronisation call can be given by 6.15: 

ibarip) — {^oc ^init ' P) "t~ 3̂ [10g2 (6.15) 

where tbarip) is the barrier synchronisation call latency for p nodes, toe is a constant startup 

cost and tmit is the variable initialisation overhead cost per process, the last term of the above 

equation represents the logarithmic part of the communication cost. 
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Figure 6.4: MPICH Broadcast call communication pattern involved on an 8 node communicator 

(where ia the required time for the broadcast of a message size n on p nodes). The 

protective communicator initialisation phase is represented by the toe + tinit • P term. Each 

single message-transfer step takes 4- t ^n although in practice these steps are not clearly 

distinguished for short messages where noise and the start-up time dominates the latency of 

the broadcast call. 

Global Computat ion Test 

In a global computation test the latency of a reduce routine is measured as a function of the 

group size and the message size. A reduce operation call is a global computation (or combine 

operation) collective call in which data flows from bottom-up, from the leaves to the root of 

the tree. In addition, nodes have to access locally the transferred data in order to calculate 

the partial results of the combine operation. For this reason the cost of a reduce operation is 

relatively higher than a broadcast call. In practice a latency measurement test for a reduce call 

is straight-forward. The implementation of any reduce operation involves the root process in all 

of its execution steps, so a single ping test is sufficient to provide the necessary measurements 

for this collective call. The combine operation for the SCOPE reduce test is a single-clock-cycle 

logical operation (MPI_LOR). 

The MPICH algorithm for the reduce operation is relative to the binary pattern of the 

rank of each process, i.e. if the least significant bit is 1 send to the node with that bit zero, 

if the bit is 0 then do a receive and combine. During the reduce test the cost of the combine 

operation remains constant, while the communication cost of the call depends on the network 

configuration. The reduce operation compared with the broadcast operation has an increased 

cost because of the extra cost toU of the combine operation: 

tredij^^ p) — ̂ oc 4" ' P (^s tyjTl 4- topTlJ (6.17) 

(where tredin^p) is the time required for the reduce operation on p nodes, each step takes 

ts + for a single message transfer plus the time required for the combine operation topTi). 
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Figure 6.5: MPICH Reduce call communication pattern on azi 8 node communicator 

Figure 6.6: MPICH All-to-all Ccdl communication pattern on 5 node communicator 

D a t a Movement-II Test 

The complexity of this test is equivalent to C0MMS3 benchmark of the low-level PARKBENCH 

suite. Its purpose is to measure the communication system performance under total saturation 

conditions and provide useful information of how the communication subsystem scales up with 

an increasing number of nodes. An all-to-all call, used for this test, is a data movement 

demanding routine because it requires each process (node) to send distinct data to every other 

process (node) and receive data from every other process accordingly. Figure 6.6 shows an 

example of the communication pattern involved with a 5 node communicator MPI AZffocfZ call. 

6.6 S C O P E Kernel-level Tests 

Traditionally kernel-level tests use algorithms or simplified factions of real applications. Results 

of these tests are not sufRcient to access completely the performance potential of a parallel 

machine on full scientific apphcations [114, 240]. However kernel-level performance tests can 

be biased in favour of particular parallel architecture features, for example NUMA or SM 

architectures. Information gained at this level of tests can provide a more realistic performance 

guidance for programmers and application developers. 

The proposed SCOPE kernel-level benchmarks comprise algorithmic and operation tests. 

Kernel-level algorithmic tests include implementations of message-passing algorithms for matrix 
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Figure 6.7: The data parallelism model with a domain decomposition phase 

to matrix, sorting and multi-grid relaxation routines. Results of these tests can be used either 

to express the total elapsed time of the whole algorithm or partial performance on specUic 

operation tests. Kernel-level operation tests provide information of the dehvered performance 

of fundamental message passing operations such as broadcast, gather and scatter operations. 

Algorithms used in kernel level tests do not use optimisations at the programming level, 

such as loop unrolling or blocking segmentation. The compiler optimisation used throughout 

the SCOPE tests is at level - 0 2 which is widely accepted for benchmarking. The following 

paragraphs describe brieSy the implementation of the algorithms used as kernel-level bench-

marks. 

6.6.1 Kernel- level Message Pass ing Opera t ion Tests 

The single program multiple data (SPMD) model is an example of data parallelism used in 

MIMD and SIMD machines and clusters of workstations [185, 125]. In contrast to functional 

parallelism, data parallelism depends on the size of the problem because the entire data domain 

is partitioned among individual processes. This directory contains tests such as broadcast, scat-

ter, gather and shift which are used in applications with data parallelism as Fig. 6.7 illustrates. 

Although some of these calls have been examined previously in low-level tests there is a 

performance gap between low-level tests and real applications. Kernel-level message-pagsing op-

eration tests are designed to examine the performance of these calls from a diEerent level within 

the context of an application or an algorithm at the kernel-level. Results from kernel-level mea-

surements are more realistic and closer to the effective performance delivered at the application 

level. Tests at this level measure the actual overhead of an operation at the programming 

level. In addition, some of these operations are often encountered as a combination of single 

peer-to-peer calls (e.g. shift operation or vector and stride scatter and gather operations) or 

even associated during application initiEilisation phases with preliminary communication data 
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exchange and datatype definitions, etc. Hence examination and benchmarking the performance 

of these tests will be very useful for application developers and system designers which can be 

combined to predict other application with data parallelism execution cost or scalability. 

There are significant prospective differences between kernel-level tests and low-level tests. 

The construction of kernel-level tests does not always guarantee a pending receive call for each 

send call, something which undoubtedly improves performance in low-level such as ping-pong 

tests [97]. All kernel-level operation tests are stripped-down versions of kernel-level tests with 

the computational part omitted. The core of a kernel-level operation test does not have a loop 

within which the operation under test is executed for a number of times to overcome poor timer 

resolution. Instead the whole core of the test including initialisation phases, buffer allocation, 

is repeated together with the operation under test. The timer has to run only for the targeting 

routine or any other functions directly bound to that operation, e.g. buffer allocation, datatype 

definition, displacements, etc. The amount of data each call has to transfer to and from other 

nodes is relatively large, hence the disadvantage of poor timer resolution is not a primary issue. 

The use of register timers as a profiling method, presented in section 6.3.5, will provide more 

accurate results and shorten the length of tests. 

The operations which are measured via the SCOPE kernel-level tests are; 

» broadcast data 

® scatter data 

« gather data 

» shift data among nodes 

6.6.2 Kerne l - leve l B r o a d c a s t Tes t 

This test emulates an application which has to broadcast an array of size N X N among a 

number of p processes. The structure of this test is based on the allocation of a matrix which 

will be initialised randomly on the root process. Then the root process has to broadcast the 

matrix into all other processes within its communicator. Accordingly each node in advance has 

to allocate a buffer area in order to run a beast call. The structure of this test is similar to the 

low-level counterpart broadcast test. The matrix sizes for broadcasting varies N between 30 

and 1080. 

6.6.3 Kerne l - leve l Scat ter /Gather Ope ra t i ons 

Scatter and gather are fundamental operations used in message-passing model to implement do-

main decomposition and composition phases. These two tests perform two almost-complementary 

operations. The first operation scatters a buffer in parts to all tasks within a group and the 

second one gathers together into the root node values from processes within that group. For 

kernel-level operation tests the vectorised versions of these routines are tested. The initialisation 

phase and explicit calculation of displacements are not timed during the tests. 
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Figure 6.8: Gather/Scatter operations 
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Figure 6.9: A shift right operation within all processors of a communicator 

The scatter function has to decompose an array of size % W of the range 120-1680 and 

distribute the sub-arrays among the nodes of its group. The gather operation on the other hand 

has to transfer an array of size W of the range 120-1680 back into the root node. 

6.6.4 Kernel-level Shift Opera t ion Test 

The need for a shift operation is frequently encountered in many parallel algorithms. The 

current shift operation test is a circular shift operation among p processors of the same processor 

array taken from the core of Cannon's matrix multiplication algorithm implementation. This 

test exchanges data between local nodes so it will provide a good indication about the scalability 

of a cluster for this particular form of local communication pattern. The actual shift operation 

starts with the identiGcation of the processes that will participate in this call. For the successful 

implementation of the operation each node has to allocate an extra memory buffer for the 

receiving data. The exchange of data is completed within two peer-to-peer calls. Then locally 

each node has to swap its bu&rs at the end of the operation and return back the allocated 

extra buffer. Implementation of the call is tested for array size TV ranging between 30 and 1080. 

6.7 S C O P E Kernel-level Algorithmic Tests 

This section of the benchmark suite includes a small set of kernel-level algorithmic tests which 

are included in a wide range of real parallel application algorithms. Kernel-level algorith-
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mic tests will measure the overall performance of a cluster at a higher programming level. 

Kernel-level algorithms covered at this stage in SCOPE are two matrix-matrix multiplication 

algorithms, a sorting and a 2D relaxation algorithm. A particular attribute of these tests is 

the degree in which they can be analysed to provide performance details at an elementary level 

which can be applied to interpret more complicated algorithms later. Nonetheless algorithms 

in this module should be kept simple and must avoid becoming a benchmarking of the available 

software e^ort as happened in PerfectClub and other benchmark suites [120). The following 

sections provide more detailed description about the proposed kernel-level algorithmic tests. 

6.7.1 M a t r i x - m a t r i x Benchmarks 

Matrix multiplication is a fundamental component of many numerical and non numerical al-

gorithms in various scientiGc applications. Matrix-matrix algorithms are highly parallehsed by 

several algorithms and can assess the computational and communicational parts of a system. 

The naive algorithm of matrix multiplication has 0(7V^) complexity. 

m—1 
^ ' bkj (6.18) 
k=0 

The sequential algorithm involves three nested loops and requires operations: 

for i := 0 to N 

for j := 0 to N 

for k := 0 to N 

c ( i , j ) := c ( i , j ) + a ( i , k ) b ( k , j ) 

end k loop 

end j loop 

end i loop 

There are many ways to parallelise this algorithm, in this study we consider the Row/Column 

striped oriented algorithm and the Cannon's algorithm respectively. Both algorithms consider 

a two-dimensional decomposition of the original matrices A and B over processors (nodes). 

Each process has to accomplish a task of complexity. The difference among the 

two algorithms is the amount of partial memory required on each node and the number of 

interprocess communication steps required among nodes during the execution phase as well 

as the flexibility of the algorithms to make use of the available cluster resources. A modified 

version of the matrix multiplication algorithms that transposed the second matrix during the 

initial partitioning showed significant speed-up relative to the original code (2-4 times) for small 

numbers of nodes (results are presented in Appendix 203). 

6.7.2 R o w / C o l u m n St r iped A l g o r i t h m Test 

The Row/Column striped algorithm parallelises the outmost /or loop of the naive sequential 

algorithm and requires a striped partitioning of the A matrix into row number of row blocks and 

a partitioning of matrix B into co/ number of column blocks. Then it involves dot products 
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which is the operation between a row of the A matrix and the column of the B matrix. After 

the dot product calculation each node has a sub-matrix of the C product matrix. Although the 

algorithm implementation is straightforward as soon as sub-matrices are distributed to nodes, 

the initialisation phase is complex because it requires the deGnition of several user datatypes 

and the use of different sub-groups of nodes or communicators in MPI terminology. 

According to Foster [80]. the execution time of a parallel program is the time that elapses 

from when the first processor starts executing on the problem to when the last processor com-

pletes execution. During execution, each processor is computing, communicating, or idling: 

Ttot — Ti-omp + Tcomm 4" (6.19) 

Adopting this formulae to our algorithm we have to add the extra time of new datatypes 

and communicators at the initialisation phase , which may be expected to depend on the 

amount of datatype definition and the number of nodes p. In many caaes the initialisation of 

new datatypes is done dynamically "on the Hy" within the algorithmic phases, therefore the 

extra time overhead has to be credited to that operation. 

Hence the equation 6.19 will become: 

= Tinif -t- Tcomp + ?comm + Tidfg (6.20) 

A more detailed analysis of this algorithm is presented in Appendix F. 

6.7.3 Cannon ' s Algor i thm Test 

Cannon's algorithm follows a checkerboard partitioning for each matrix and requires less 

memory on each node than the Row-Column striped algorithm. In order for a node to calculate 

a partial product it requires all blocks of its row and column to be systematically rotated 

among the processors, therefore the computation step requires 1 steps with computation 

and communication rotation. The execution time of the algorithm is summarised in a similar 

way to Foster's analysis [80] as: 

Ttot = Tinit 4- (6-21) 

A more detailed analysis for both matrix multiplication algorithms is provided in Appendix 

F. 

6.7.4 Sor t ing Rou t ine Test 

Sorting is a fundamental interesting problem in computing with numerous applications. Se-

quential comparison sorting algorithms have time complexity of O(nlogn) (where n is the size 

of the array), but in general these are not easily paralleliseable and in addition do not scale 

very well. Tests of such algorithms can provide a good indication of a cluster performance as 

they include several all-to-all routines of random sizes. The SCOPE sorting algorithm test is an 

implementation of the "parallel sorting by regular sampling algorithm" (PSRS) introduced by 

Li et. al. [137] which has been eEectively implemented on many MIMD architectures [185]. The 
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PSRS algorithm is a combination of characteristically important parallel operations cimong its 

nodes. The implementation of the algorithm is split into four stages. During the first phase the 

array is equally divided and distributed to all processes, each processor is assigned a continuous 

block of [n/pl elements. Elements of these sub-arrays are sorted-out with sequential quick-sort 

algorithm locally. In phase two the root processor gathers and sorts samples from all locally 

sorted sub-arrays (nodes) and broadcasts pivot values to every processor again. Each pro-

cessor now haa to pcirtition the sub-sorted lists into sections according the pivot values. In the 

third phase processors exchange partitions among them and rearrange again sub-arrays. In 

the Anal stage, each node merges its p partitions into a single list, the root processor is gathering 

(concatenate) all the lists in the final sorted list. The communication cost of the algorithm for 

an MljVID architecture implementation with p number of processors and an afray size of n is: 

in the first phase messages of C)(p) size, in phase two p pivots of size 0(p) while in phase 

three there are p processor sending fi-./ messages of size 0(n/p) . The overall computational 

complexity of the algorithm is approximated to: 0( (n/p) logn 4- logp + n/plogp) which is 

asymptotic to C)(n/plogn) when n > [137, 185]. See Appendix F for more details on the 

analysis of this algorithm. 

6.7.5 Mul t i -gr id Relaxa t ion R o u t i n e Test 

This routine is an example of a linear second-order partial differential equation (PDE) using 

a multi-grid iterative method to deAne an approximate solution. This is a rather simplified 

approximation of a two-dimensional Laplace equation on a rectangular domain using Gauss-

Seidel-Relaxation: 

where a; and y represent coordinates in space, and / is the function that compute the values. 

This benchmark addresses the problem of processes exchanging and processing data locally. 

The current multi-grid routine is based on a sample problem that acts on a two-dimensional 

grid of data values. The boundary values of the grid have fixed values (halo) while interior values 

are set to the average of all their neighbours: 

j — f x , y - l + f x + l,y + fx,y+l 23^ 

The initial array of points is uniformly checkerboard distributed among processors into blocks 

of (n /y^) X (n/\/p) grid size. Each processor uses these values for boundary conditions and 

applying a normal sequential Gauss-Seidel averaging calculation on its own data. The next 

step of the algorithm is to check whether the convergence is "close enough" to a solution or 

to repeat another iteration. If a further iteration is required each processor exchanges its 

"boundary" values with its four neighbours (above, below, left, right) and repeats the above 

computationeil steps. The current test implementation on every iteration performs a global 

checking for the maximum change but does not abandon the loop unless a certain number 

of iterations is performed which guarantees a fixed workload each time the test runs. The 
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parallel implementation of the message-passing test is a mixture of Gauss-Jacobi and Gauss-

Seidel methods known as a "chaotic" rubric [178]. A Gauss-Seidel iteration method is used for 

the data of each process, while data from neighbouring processes are "fixed old values" which 

resembles the Gauss-Jacobi method. Appendix F provides a detailed analysis of this relaxation 

algorithm. 

6.8 Summary 

This chapter has proposed and examined the Specihc Cluster Operation and Performance Eval-

uation (SCOPE) benchmark suite. The main objective of the SCOPE benchmark suite is to 

contribute to the scientiSc benchmark methodology for a comprehensive examination of work-

station cluster characteristics. The structure of the SCOPE benchmark suite is consistent with 

the hierarchical abstraction levels of well-known benchmark suites. 

Single-node-level includes basic architectural benchmark tests to evcduate individual node 

characteristics. Low-level tests examine thoroughly performance at the communication level, 

there is a special emphasis on underlying network performance tests, e.g. TCP/IP sockets and 

on collective operations. Benchmarks at kernel-level provide performance evaluation closer to 

the user level. Kernel-level operation tests examine delivered performance of fundamental data 

parallehsm operations such as shift, etc. Kernel-level algorithmic tests include implementations 

of message-passing algorithms, such as for matrix to matrix, sorting and multi-grid relaxation, 

used in a wide range of parallel applications and measure the overall performance of a cluster 

at a higher programming level. 

At the current stage the SCOPE benchmark suite does not have any application-level tests 

because the implementation of such tests is beyond the scope of this thesis. 



Chapter 7 

Experimental Results and Analysis 

of SCOPE Benchmarks 

This chapter demonstrates and analyses the SCOPE benchmark results obtained with the 

experimental implementation on a variety of workstation clusters. Computer architectures 

included in the clusters tested include SPARC workstations running Solaris, clusters of Pentium 

workstations running Linux or NT, a cluster of DEC Alpha workstations running NT and a 

cluster of SGI 0 2 workstations. Table 7.1 summarises the architectural characteristics and 

configuration issues for these clusters. Several benchmark tests also run on MPP systems 

(SP2, CS2) to provide reference points and assist in the analysis, evaluation and comparison of 

performcince results in clusters of workstations although the benchmark suite does not target 

MPPs. 

AH the clusters presented in Table 7.1 can use the TCP/IP communication protocol suite 

and either the MPICH message-passing communication hbrary or implementations based on it. 

Individual cluster characteristics such as a dedicated intercoimection network, or dual network 

interfaces, were taken into account and tests of these characteristics are also considered wherever 

Table 7.1: Cluster configurations used for testing with SCOPE benchmarks 

Cluster Node arch. OS Network conhg. Dedicated Nodes 

Linux Pentium PC Linux/2.034 TCP/IP Ethernet No 3 

NT Pentium PC NT/4.0 TCP/IP Ethernet No 8 

Alpha Alpha NT/4.0 TCP/IP Faat Eth. Yes 8 

Solaris SPARC-4 Solaris/2.6 TCP/IP Ethernet No 12 

Ultra-SP. ULTRA Solaris/2.6 TCP/IP Ethernet No 12 

Lyon/Eth. PentiumP PC Linux2.0.34 TCP/IP Ethernet No 6 

Lyon/Myr. >> >> TCP/IP Myrinet Yes 6 

Lyon/BIP >> >> BIP Myrinet Yes 6 

IRJX 0 2 IRJX/6.3 TCP/IP Fast Eth. No 32 

106 
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Table 7.2: Individual processor SPECint95 SPECfp95 Agures [204] 

System Processor MHz SPECint95 SPECfp95 

SP2 Power2 66 3.23 9.33 

SP2 Power2 133 6.17 17.6 

CS2 SuperSPARC 40 >1 -

NT DEC 21164 500 13.9 15.2 

Linux Pentium 200 8.09 6.75 

0 2 RIOOOO 192 9.66 8.77 

Ultra 1 UltraSPARC 143 5.87 8.38 

SPARC-4 microSPARC II 110 1.59 1.99 

possible. Measurements on "open" clusters (i.e. a non-dedicated intercommunication network) 

were obtained when there was no other user activity, if possible, on the network to avoid 

any interference and disturbance with the results and also affect the throughput of other user 

jobs [172]. Parameters that can influence tests and measurements are taken into account for 

each platform in order to analyse the results better, i.e. to assess the eSect of other workload 

interference with some of our tests. The presence of background administrative workload "noise" 

is considered invariant, small and negligible for the purposes of the test results. The message 

size refers to payload. Each test is repeated several times in order to avoid any clock jitter, 

Grst-time and warm-up effects. The best time from each measurement test is presented in the 

results. 

Before starting measurements on clusters it is useful to assess the SPEC benchmark per-

formance levels for the individual nodes used in our workstation cluster platforms. As shown 

in Table 7.2 the equivalent SPEC performance marks [204] among these processors varies by 

almost an order of magnitude. 

7.1 Tests on M P P s 

This section presents the latency and bandwidth test results run on the SP2 and CS2 at the 

University of Southampton 6ind on the SP2 at Argonne National Laboratory. Results of the 

low-level SCOPE benchmark tests on MPPs are used as a guideline to analyse and compare 

the performance of clusters. Higher-level SCOPE benchmark tests can also run on MPPs but 

the interpretation and analysis of the SCOPE test results on MPPs is beyond the scope of this 

thesis. 

In both SP2 machines the native IBM MPI implementation was used while on the CS2 

system the MPICH 1.0.12 version was used. The processors of the SP2 are Power2 Super 

Chip (P2SC) RS/6000 architecture which are superscalar pipelined chips capable of executing 

four floating point calculations per cycle. The SP2 communication architecture is based on 

a low-latency high-bandwidth two-level cross-bar switch (TB2 or TBS) with peak bandwidth 

for the TBS DMA engine of 150 Mbyte/s [116]. Similarly the CS2 is an MPP machine with 
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Figure 7.1: Latency and bandwidth of SP2 and CS2 Southampton and SP2 at Argonne. 

superscalar SPARC processor nodes (microSPARC 110) while its communication cross-point 

switch is capable of providing 50 Mbyte/s link communication in each direction [218]. 

Figure 7.1 illustrates the SCOPE benchmark latency and bandwidth results on these MPP 

machines as a function of message size. The diSerence in performance between the two SP2 

machines is due to the different type of high-performance switch (TB2/TB3). All three systems 

are batch systems and job allocation to nodes is done through a scAednkr. The interconnection 

network is dedicated and graphs in Figure 7.1 illustrate smooth plots without fluctuations 

or anomahes. A closer examination of the SP2 graphs demonstrates a breakpoint for message 

sizes at 4 Kbyte, this is due to the different protocol policy used for sending/receiving small and 

large messages from the MPI implementation (which is speciGed by the MP_EAGER_LIMIT 

variable). 

7.2 Low-level Communica t ion Tests Resu l t s 

This section presents the low-level network and low-level communication library test results. 

Low-level network tests targeting the underlying network API level performance directly. The 

TCP/IP latency and bandwidth performance has been measured in most of the target plat-

forms. Minor modifications to these tests allow benchmarks to run on non-standard network 

protocol APIs such as the BIP protocol to meet platform portability requirements. Tests at 

the communication library level (i.e. the MPI level) did not require any modification across the 

range of the platforms tested. 

Low-level communication benchmarks test for peer-to-peer and collective operations such 

as one-to-all broadcast, single-node accumulation (reduce) and barrier synchronisation among 

all processes within their communicator/group [134]. 

7.2.1 T C P / I P and Berkeley Sockets In te r face Tests 

Berkeley Sockets provide the main network UNIX API via which TCP and UDP services are 

made available at the application level. In API the initial objective was to present the network 

interface as a UNIX-like standard character device, in which sockets are file descriptors related to 
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the network device. In this way sockets are network communication endpoints, once connection 

is established (STREAM) caji be used by standard reod(), wn^e(), cZo3e() OS functions. 

The proposed SCOPE Berkeley socket-based benchmark has been designed around the 

classical client-server model and the ping-pong principles presented in section 3.2.2, with no 

computational steps. During the initiahsation phase the establishment of the connection be-

tween the two nodes and exchange of control parameters takes place. When timers on both 

ends are setup, both nodes enter the main communication-intensive ping-pong loop. 

7.2.2 The Linux Clus ter 

This cluster is composed of Pentium PC nodes (at 166 MHz and 200MHz) running Linux 2.0.x. 

The interconnection network is configurable, either as an open lOMbit/s Ethernet subnet or 

a dedicated lOOMbit/s Ethernet segment. The MPI version used throughout the tests was 

MPICH 1.1. The ability of this cluster to reconfigure its network channel either as lOMbit/s or 

lOOMbit/s and the fact that one of the nodes uses a dual processor, resulted in the running of 

three separate tests. One test is for the lOMbit/s Ethernet chaimel (between two PentiumPro 

nodes), another test is for the 100 Mbit/s Ethernet channel (between a PentiumPro and a 

Pentium 166), and the third test uses the loopback interface of the dual processor node (Pentium 

166). 

Network Performance. The following Table and Fig 7.2 illustrate latency and bandwidth 

performance characteristics at the network level for the Linux cluster. The system could saturate 

the Ethernet channel just above 1 Mbyte/s only for message sizes larger than 64 Kbyte. The 

latency feature is moderate and rather high around 316 the half bandwidth performance 

point is delayed as well at message sizes of 1 Kbyte or larger. Running the network test over 

the Fast Ethernet path we notice a significant improvement in latency which drops down to 90 

but the effective bandwidth for larger messages is restricted below 5.5 Mbyte/s. Detectable 

breakpoints in the graphs occur between 1 and 2 Kbyte messages (Ethernet maximum packet 

of 1.5 Kbyte) and around 4 Kbyte because of the OS memory page length size. Applying the 

approximation model equation 6.10 and 6.11 for the Fast Ethernet channel yields a startup 

time of 195 and asymptotic bandwidth around 5.7 Mbyte/s. 

Network performance of Linux cluster min Lat. max BW ^1/2 

Berkeley Sockets TCP/IP over Ethernet 316 /is 1.02 Mbyte/s 1 Kbyte 

Berkeley Sockets TCP/IP over 

Fast Ethernet 

90 //a 5.47 Mbyte/s 1.5 Kbyte 

Communicat ion library performance test . Latency and bandwidth test results at the 

communication library level (MPI) are illustrated in the following table and Fig. 7.3. Perfor-

mance of these tests is degraded for both latency and bandwidth results compared to the raw 

network performance because of the MPI communication library overhead. For the Ethernet 

channel communication latency is increased to 638 while the bandwidth drops dramatically 
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Figure 7.2: Network latency and bandwidth performance on the Linux cluster 
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Figure 7.3: Latency and bandwidth of the Linux cluster 

to 265 Kbyte/s with further unpredicted performance degradation in several points. Figure 

7.3 illustrates a break point around 16 Kbyte, which is the default MPICH message protocol 

switching point, for all tested configurations. This is a feature of the MPI implementation 

which uses a different policy for short and long messages on MPI send/recv calls. 

Performance results for the Fast Ethernet subnet, in comparison with the network-level 

performance test counterparts, are smoother and the MPI overhead does not degrade perfor-

mance dramatically compared to the measured network level test performance. The overhead 

of the MPI library is around 200 fj.s, latency is 293 fj,s and bandwidth for large messages is 4.3 

Mbyte/s. The half-bandwidth performance point ni/2 is at about 1.5 Kbyte which indicates 

poor network performance for short-to-medium size messages. Further investigation of the OS 

and the T C P / I P implementation is required, see [127]. 

Configuration of a Linux cluster min Lat. max BW 

MPI over T C P / I P and Ethernet 587 265 Kbyte/s 1-1.5 Kbyte 

MPI over T C P / I P and FastEthernet 293 fj,s 4.3 Mbyte/s ~1.5 Kbyte 

MPI over T C P / I P using loopback 638 /US 624 Kbyte/s 1-1.5 Kbyte 
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Figure 7.4: Latency and bandwidth of the NT cluster 

7.2.3 T h e N T cluster 

The NT cluster is composed of 8 Alpha based DEC workstations and uses a dedicated intercon-

nection network with a lOOMbit/s Ethernet switch. According to Table 7.2 this cluster has the 

most powerful processors/nodes among the clusters available in our tests. Several programming 

environment differences with the rest of the systems tested, together with access restrictions 

prevented network-level performance tests been run on this cluster. On the other hand, the 

communication library tests were proved to be portable enough on this platform to run without 

difficulties. The MPI version used in these measurements was rather an early experimental ver-

sion based on the MPICH one. The Abstract Device Interface (ADI) makes use of the TCP/IP 

protocol stack provided by NT. The dedicated interconnection network of the cluster ensures 

"smooth" undisturbed results. 

Communicat ion library performance test . As we can see from Figure 7.4 results for 

latency and bandwidth on the NT cluster are not impressive, the main reason for this is the 

premature experimental version of that MPI implementation. An unnecessarily large number 

of context switches seems to degrade performance significantly. The system was unable to use 

the communication channel efficiently even for large messages and the latency is high even for 

small messages. Further investigation of the T C P / I P implementation performance is necessary 

because the overall performance of this cluster compared to its hardware capabilities is especially 

poor. 

Configuration of the NT cluster min Lat. max BW ni/2 

MPI over TCP/IP 673 pa 120 Kbyte/s 100 byte 

7.2.4 The S P A R C cluster 

The SPARC cluster uses an open, non-dedicated, lOMbit/s Ethernet subnet running Solaris 

(SunOS 5.5.1) with a communication library based on MPICH 1.0.12. Cluster nodes are either 

SPARC-4 or UltraSPARC workstations (see Table 7.2). The following table shows the low-level 

latency and bandwidth tests results for this cluster. 
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Figure 7.5: Latency and bandwidth on SPARC workstation clusters 

Network Performance Tests. The network-level latency for a pair of Ultral nodes is 212 

and 526 /ig for a pair of SPARC-4 nodes. Bandwidth features for both systems are similar 

above 1 Mbyte/s. However, the half-bandwidth performance point provides some interesting 

results, for the Ultral which is faster at 256 bytes while for the SPARC-4 the half-performance 

point is delayed until a message size of 600 bytes. This is because Ultral nodes are computa-

tionally more powerful than SPARC-4 nodes thus start up time is considerable shorter and these 

nodes can therefore make more eSicient use of the network channel when handling short mes-

sages. The approximate model equation 6.10 yields 160 start-up latency and 1.05 Mbyte/s 

asymptotic bandwidth. 

Network performance of SPARC clusters min Lat. max BW ni/2 

Berkeley Sockets T C P / I P over Ethernet 

Ultral workstation 

a + b*x approximation 

212 /fg 

160 /̂ g 

1.082 Mbyte/s 

1.052 Mbyte/s 

256 byte 

170 byte 

Berkeley Sockets TCP/IP over Ethernet 

SPARC-4 workstation 

526 jjLS 1.047 Mbyte/s 600 byte 

Communicat ion library performance test . Plots in Figure 7.6 illustrate communication-

level latency and bandwidth-performance tests run on a pair of SPARC-4 and a pair of Ultra-

SPARC nodes respectively. Once again here the communication library latency figure is 2 to 2.5 

times longer for small messages as was expected due to MPI communication library overhead 

but bandwidth and the half-bandwidth performance point ni/g are not degraded significantly. 

Configuration of a Sun cluster min Lat. max BW ^1/2 

ULTRA SPARC 660 /ig 1.03 Mbyte/s 280 byte 

SPARC-4 1.37 ms 1.01 Mbyte/s 750 byte 

ULTRA SPARC (loopback) 1.5 ms 840 Kbyte/s 700 byte 

Although theoretically this cluster has some of the least powerful nodes of our tested clus-

ters (SPARC-4), it gives some of the best performance results among the 10 Mbit/s Ethernet 

configured clusters. Both SPARC-4 and ULTRA SPARC use the network channel very e@-
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Figure 7.6: Latency and bandwidth of the Solaris cluster 

ciently and communication bottleneck is therefore close to the Ethernet channel hmits. The 

non-dedicated intercommunication network had almost no effect on the results. Keeping the 

test conhguration essentially the same, (the same software and intercommunication network) we 

can switch between SPARC-4 and ULTRA SPARC nodes. As we expected the more powerful 

node improves latency and bandwidth performance figures especially for short-size messages. 

7.2.5 The SGI Clus te r 

The SGI cluster is composed of Silicon Graphics 0 2 workstations interconnected with a switched 

Fast Ethernet network. The communication library used throughout our tests waa the MPICH 

1.1.1. Network level latency characteristics for this cluster are regarded rather high at 368 

with the half-bandwidth performance point ni/2 is at 1.5 Kbyte, while bandwidth for large 

messages approaches the theoretical absolute just above 12 Mbyte/s. The approximate latency 

and bandwidth (from equation 6.10) for this cluster are 480 /iS and 12.4 Mbyte/s respectively. 

Figure 7.8 illustrates communication library level test results for this cluster. The MPI overhead 

is around 546 /iS and the half performance point is affected very little. Large message 

bandwidth is degraded to 8.9 Mbyte/s. Results from the SGI cluster improve the overall 

latency performance but the half bandwidth performance point is delayed to about 1.5 Kbyte. 

This is due to the bandwidth improvement of the Fast Ethernet channel while the rest of the 

communication mechanism is not likely to have any improvement over a 10 Mbit/s Ethernet 

network. 

Network performance of 0 2 cluster min Lat. max BW "1/2 

Berkeley Sockets TCP/IP 

over Fast Ethernet 

o -1- 6 * z approximation 

368 

480 /la 

12.06 Mbyte/s 

12.40 Mbyte/s 

1.5 Kbyte 

1.5 Kbyte 

Communication performance of 0 2 cluster min Lat. max BW ni/2 

MPI over T C P / I P over Fast Ethernet 546 8.9 Mbyte/s '-'1.5 Kbyte 
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Figure 7.7: Latency and bandwidth on 0 2 cluster 

Figure 7.8; Communication level latency and bandwidth on 02 cluster 



(TffAJSGTEJt 7. S(7CtPj3; JRiSSLflJlS JuND yL̂ LULYTSKS 115 

BmmhndA benchmark 

B IP over MjrineJ —*— 
£ihcrna * -

^ wK 

rjieor, TCP/IP over Eihcnica 

tilr over Myniio 

31 Mb̂  

Figure 7.9: Latency and bandwidth on the BIP cluster for bare network protocols 

7.2.6 The BIP Cluster 

In previous sections we saw the impact in the performance of a general purpose communication 

protocols such as T C P / I P in various clusters of workstations. A mismatch between hardware 

and software evolution could essentially negate any advantages provided by high-performance 

hardware. 

The BIP cluster is built around Pentium-Pro machines running Linux 2.0.1, with an inter-

connection based on a Myrinet network. This network interface has been designed to deliver to 

the application layer the maximum performance achievable by the hardware [183]. An attempt 

to compromise between new hardware features and software compatibility such as BIP could 

provide some very interesting results [183, 22]. The BIP cluster of workstations, presented in 

section 2.7, provides a very flexible communication APIs because each node has two NIC (Eth-

ernet and Myrinet) and two flexible network protocol stacks T C P / I P or BIP (see Figure 2.11). 

Benchmarking tests have been run using an API configured either as typical T C P / I P stack over 

an Ethernet channel or T C P / I P over Myrinet or directly on top of the BIP network protocol 

over Myrinet. In the first case the T C P / I P protocol stack on top of the Ethernet network was 

selected. 

Network performance of the BIP cluster min Lat. max BW ni/2 

Berkeley Sockets T C P / I P over Ethernet 144 jjLS 1.04 Mbyte/s 150 byte 

Berkeley Sockets T C P / I P over Myrinet 83 lis 24.6 Mbyte/s 2.5 Kbyte 

BIP API over Myrinet 6 /iS 121 Mbyte/s 4 tCbyte 

Configuration of BIP cluster min Lat. max BW ni/2 

MPI over T C P / I P and Ethernet 280 1 Mbyte/s 300 byte 

MPI over T C P / I P and Myrinet 171 17.9 Mbyte/s 

MPI over BIP and Myrinet 11 114 Mbyte/s 8Kbyte 

The performance of the T C P / I P Ethernet configuration gives latency for zero-size message 

length 290 and a bandwidth close to 1 Mbyte/s for messages larger than 1 Kbyte. Changing 

the physical network from Ethernet to Myrinet, via the same T C P / I P protocol stack (TCP/IP 



CHvlPTJSR 7% S(:CXPj& 116 

Latencv benchmari TtmD* II i z a 0 5 l 9 9 7 Bandwidth benchmark 

Over Elhemet -*— 
OverMyrineJ -*— 

Over Myrine!-BIP -9--

iwM #»* 

0*«f 
Owf MyAw-BP 

Figure 7.10: Latency and bandwidth on a Myrinet cluster with page alignment 

over Myrinet) provides a significant performance improvement. Zero-size message latency is 

171 fis and the bandwidth reaches 18 Mbyte/s, with an ni/2 figure below 1.5 Kbyte. In 

the final API configuration (BIP over Myrinet) the application (benchmark) interacts directly 

with the network interface through the BIP stack. The performance improvement in this 

case is impressive, testing the network board performance to the network design limits. Zero 

length message latency is 11 /tis and the bandwidth exceeds 114 Mbyte/s with half-bandwidth 

performance point nx/2 at 8 Kbyte. 

Figure 7.10 shows the latency and bandwidth graphs over those protocol stack configu-

rations, while Figure 7.9 and Table 7.3 illustrates the peer-to-peer performance measurements 

of the underlying network protocols, without the use of communication libraries i.e. MPI. 

Analysing results from the Ethernet configuration we observe that latency drops down to 144/is 

but there is not any noticeable improvement in bandwidth because the current bottleneck is 

still in the low bandwidth of the Ethernet channel. Using BSD sockets over the Myrinet con-

figuration we notice a further improvement in latency (84 /is) and bandwidth (23 Mbyte/s). 

Finally the BIP configuration as a user-space API gives the best results with latency of 6 ps 

and bandwidth above 120 Mbyte/s. Results from the last test show a noticeable discontinu-

ity at message sizes of 256 bytes, on the BIP curve, that reveals the point at which different 

semantics, between short and long messages transmission modes, take place for that protocol 

(the PIO/DMA switch-over specified by BIPSMALLSIZE [182]). From the above latency and 

bandwidth graphs the impact of Ethernet and T C P / I P protocols on system performance is 

clear. Figures 7.10, 7.9 and Table 7.3 show the impact of the MPI communication library and 

the network protocols on the latency and the bandwidth. The Ethernet channel imposes a 

bandwidth barrier at 1 Mbyte/s while the T C P / I P protocol stack imposes a bandwidth barrier 

around 23 Mbyte/s. In terms of latency the time required by the OS to control the network 

interface (e.g. the Ethernet board) is apparent as is the time required to proceed through the 

network protocols according to equation 6.9. 

The impact of the communication library (MPI) is related to the performance of the net-

work protocols. Therefore, as Figures 7.10 and 7.9 illustrate, the cost of the communication 

library for a slow communication channel is very high (start time overhead <K t ^n per byte 

cost), but as we move to faster communication channels this cost becomes higher and then rep-
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Table 7.3: Ping-pong test results on various communication libraries 

Configuration min Latency max BW % l / 2 

T C P / I P sockets vs. 144/280^s 

NIPI over TCP/IP 

a-l-b*x approximation 137/- /ia 

T C P / B I P sockets vs. 84/171^s 

MPI over TCP/BIP 

a+b*x approximation 74/ - /js 

6/11 /̂ 3 

1.06/1.0 Mbyte/s 0.3/0.3 Kbyte 

1.09/- Mbyte/s 

23/17.9Mbyte/s 1.5/1.5 Kbyte 

24.7/- Mbyte/s 

121/114 Mbyte/s 3/8 Kbyte BIP sockets vs. 

MPI over BIP 

a+b*x approximation 26/ - us 120.1/- Mbyte/s 

Latency benchniait 12 Il:l7j2 1997 Bandwidth baichmart 

Argoi>e SP2 
SokMSPZ 
&*o#C32 

ScZsPZ hum CM Lyon BIP 

Figure 7.11: Comparing latency and bandwidth between a Myrinet cluster and MPPs 

resents a significant fraction of the communication overhead e.g. TCP/IP/Myrinet ((, ~ tyju). 

Interfacing the MPI communication library directly onto the BIP without involving the OS 

can minimise that overhead considerably and take advantage of the hardware capabilities. The 

approximation modeling equation 6.10 provides results close to the measured ones as Table 7.3 

shows. 

7.2.7 Analysis of Peer - to -Peer Test Resu l t s 

Traditional network protocols used with high-speed network technologies on NOWs often impose 

a communication bottleneck which Hmits performance. The 10 Mbit/s Ethernet interconnection 

in NOWs imposes a slow-speed barrier (IMbyte/s) in network operations. Throughout our 

tests the Ethernet channel was saturated. Using a faster communication channel (such as a 

Myrinet network) we would move the bottleneck to the higher communication protocols such 

as TCP/IP . The communication bandwidth is now around 18 Mbyte/s for user applications 

but the network usage remains very low (13%). The use of a network switch increases the 
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Figure 7.12: Comparing Latency and bandwidth of our clusters 

aggregated bandwidth and improves performance by eliminating collisions and retransmissions. 

A faster implementation of TCP/ IP has the potential to move the communication bottleneck 

higher but at the same time other OS restrictions are likely to limit performance. 

An aggressive zero-copy user-space network protocol (such as BIP) can eliminate protocol 

bottlenecks, exploit more fully the network bandwidth (>83% at the application level) and in 

addition reduce latency for short messages as well. The very low end-to-end latency of 6 fj,s 

achieved by the BIP cluster is an important result for parallel applications which use small-size 

messages to coordinate program execution and for this size of message, latency overhead domi-

nates the transmission time. As mentioned earlier for such small messages the communication 

cost cannot be hidden by any programming model or programming techniques. Other impor-

tant features of the cluster are the high bandwidth of the network channel (121 Mbyte/s usable 

bandwidth) and the use of the Myrinet switch which reduces potential contention problems. 

Low-level results from the BIP cluster show that the BIP interface exploits the network 

interface raw performance extremely well and delivers it to the application level. The MPI-BIP 

performance is directly comparable with MPP systems such as the SP2, T3D, and the CS2. As 

we can see from Figure 7.11 the BIP cluster has better latency features within the whole range 

of the measurement compared with the MPP systems of Fig 7.11. In bandwidth terms for short 

messages up to 256 bytes the BIP configuration outperforms all the other MPPs. Then for 

messages up to 4Kbyte, which is the breakpoint of the SP2 at Argonne, the SP2 has a better 

bandwidth, but then the BIP cluster performance is better again. 

7.3 Low-level Collective Call Tests Results 

This section will present results from collective call tests, which were discussed in section 6.5.4 of 

the previous chapter. An important feature of the MPI collective calls is that they are built on 

top of primitive peer-to-peer calls based usually on a tree-like algorithm. Barrier synchronisation, 

broadcast, reduce and all-to-all tests were run on clusters that have more than 8 nodes available 

unless the cluster had a specific characteristic e.g. the BIP cluster was tested in some tests with 

6 nodes available only. In practice collective call testing proved more difficult than the peer-

to-peer testing because of the higher requirements in both resources and time duration. For 
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Table 7.4: Latency and Bandwidth results 

Configuration Cluster H^W min Lat. max BW 

MPI &:TCP/IP NT/Alpha FastEth. 673 fj,s 120 KB/s 100 

MPI & TCP/IP Linux/P.Pro Ethernet 587 /js 265 KB/s 1.5 K 

MPI &TCP/IP Linux/P.Pro FastEth. 637 fis 652 KB/s L 5 K 

MPI &: TCP/IP SPARC-4 Ethernet 660 iJ,s 1.03 MB/s 280 

MPI &: TCP/IP ULTRA Ethernet 1.37 ms 1.01 fdlS/s 750 

MPI &: TCP/IP Linux/P.Pro Ethernet 280 fis 1 MB/s 300 

MPI &: TCP/BIP Linux/P.Pro Myrinet 171 17.9 MB/s L 5 K 

MPI &: BIP Linux/P.Pro Myrinet 11 /US 114 MB/s 8 K 

example it was difficult to book or pre-arrange clusters with a certain number of homogeneous 

performance nodes for a certain amount of time. Another practical problem we have to address 

was the large amount of information results for each of the test results. 

7.3.1 Collective Call Tests on t h e S P A R C Clus te r 

The SPARC-4 workstation cluster used for collective call tests is a typical cluster configuration 

with a shared bus network topology. The barrier synchronisation test measures the time re-

quired for up to 10 SPARC-4 nodes to synchronise. Figure 7.13 illustrates the results of this 

benchmark along with the fitting approximation of equation 6.15. These results point out a 

number of facts: the graph is not linear as could be expected for a shared bus network. The 

reason for this is the non-linear number of individual peer-to-peer calls required by the MPICH 

synchronisation algorithm (see Fig. 6.3 and equation 6.14). Another fact is that individual 

peer-to-peer calls do not include any payload and a small number of nodes are unlikely to cause 

congestion problems on a shared bus network channel. A larger number of nodes however might 

be expected to encounter congestion problems. According to equation 6.15 the approximated 

logarithmic step of that model is estimated at 1.34 ms for this cluster which is very similar 

to the single peer-to-peer latency time of 1.37 ms measured previously for this cluster. Con-

sequently according to equation 6.15 a two node synchronisation latency is around 2 ms and 

involves only one "duplex" Send/Recv peer-to-peer call and so forth. 

A broadcast collective operation is a data movement collective call with performance af-

fected by both the number of nodes participating and the message size. The broadcast algo-

rithm is based on a binary tree algorithm (described in section 6.5.4) and the actual number of 

messages which nodes have to exchange is p-1 which cannot be overlapped in the shared bus 

technology network cluster. Figure 7.14 illustrates the results of the broadcast call on various 

number of nodes and different message sizes. In all graphs, time is proportional to the number 

of nodes or the message size. The initial broadcast latency (for very small messages) is 1.35 ms 

which is better than any barrier synchronisation call latency measured because the broadcast 

algorithm is considerably less complicated than the synchronisation one. Hence the broadcast 
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Figure 7.13: Barrier Synchronisation test for the SPARC cluster 

Bnsadcasl tesi on B63 chister 

B65 1 node -
B65 2 node • 
8 6 3 3 node • 
B65 4 node -
B65 5 node -
B65 6 node -
B65 7 node -
B6S 3 node -

. J . 

w ^ WW # i« ** am m 

Brotdosl (est on B65 cjaster 

Size of 4KB — 9 — 

Figure 7.14: Broadcast test on a SPARC cluster 

algorithm is expected to have less overhead than the barrier call. For larger messages the time 

required for transmission through the narrow channel bandwidth for each pair of nodes in-

creases and becomes the dominant part of the call. The "effective bandwidth" of the broadcast, 

which is the aggregated message size sent to all nodes over the period of the call improves as 

the number of nodes increases for small to medium-size messages and for large-size message 

is approaching 1.09 Mbyte/s. This is because in both cases startup time is improved with 

warm cache effects or long message transmissions. The point at which the MP I implementation 

changes the send/receive protocol policy at 16 Kbyte is just distinguishable. 

The result of the reduce operation is shown in Fig. 7.15. The overhead of the reduce call 

is very similar to the broadcast call, the essential difference being the extra overhead of the 

operation involved in the reduce call. The global computation of the logical OR operation used 

for the reduce operation benchmark is completed within a single clock cycle. The first plot of 

these results shows the cost of a single node reduction operation which is purely computational 

as there is no communication part involved. Here once more the latency of small messages (1.4 

ms) is no better than the broadcast call but is still shorter than the synchronisation call. 
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Figure 7.15: Reduce test on a SPARC cluster 

Broadcast and reduce operation results are very similar because their algorithms have 

similar complexity. Figure 7.14b and 7.15b show characteristically how an increase in the 

number of nodes increases the broadcast and the reduce operation latency linearly on a shared 

bus network. The cost of the combined operation does not aEect the results signiAcantly because 

it represents a very small fraction of the call. A model approximation for broadcast and reduce 

call based on equation 6.16 and 6.17 yields the following equations for this cluster: 

and 

1764 + [log2Pl - 0.91 - n 

2073 + ["logjp] • 1.02 • n 

where 1764 and 2073 are the startup time cost in microseconds and 0.9095 and 1.0225 is the 

cost per byte respectively. 

7.3.2 Collective Call Tests on t h e SGI Clus te r 

The SGI cluster represents a cluster of fast workstations with a Fast Ethernet switched in-

terconnection network. This cluster has two main characteristics node availability, nodes are 

connected via a number of cascaded network switches, and an opaque allocation node scheduler 

which does not provide direct control over the selection of the nodes. 

The barrier synchronisation test run on a set of 18 nodes. The initial synchronisation 

latency for two nodes is 0.65 ma and the cost for each extra step of the algorithm is approximated 

by equation 6.15 at 0.6 ma which is very close to the 0.55 ma latency measured for a single 

peer-to-peer caU in section 7.2.5. Indeed the approximation model of equation 6.15 in practice 

was proved correct. Comparing the results with the synchronisation test on the SPARC cluster 

there are several conclusions. Fast nodes and a fast network channel such as those of the 

SGI cluster provide signiGcant latency improvement. Initialisation overhead is reduced and the 

synchronisation call iteration steps are evenly distributed (around 0.65 ms) which can simplify 

the modeling approximation towards a logarithmic step function: 
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Figure 7.17: Broadcast test on a SGI cluster 

Figures 7.17 and 7.18 show results of the broadcast and reduce operation test for the SGI 

cluster. The left hand side graphs show latency results as a function of the message size for 

different number of nodes. It is interested to notice that plots tend to group in three distinct 

areas representing different logarithmic iterations of the broadcast algorithm. The same result 

is illustrated on the right hand side plots where latency is shown as a function of the number 

of nodes for different message sizes. These logarithmic iterations are presented as distinct 

Eat areas on the graph. Both broadcast and reduce operation tests have considerable reduced 

latency Egures over the SPARC cluster results. As the communication part of the calls becomes 

smaller, due to improved node hardware, the cost of the reduce call slightly increases compared 

with the cost of a broadcast call especially for large messages. The effective bandwidth for 

broadcast cedl large messages is 8 Mbyte/s, for small-to medium-size messages and improves as 

the number of nodes is increasing (because of a caching effect). 

Figure 7.19 illustrates the results of an all-to-all call on the SGI cluster. The number of 

peer-to-peer calls required for the implementation of this call is exponential to the number 

of nodes participating. Hence as the number of the message size or the number of nodes is 
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Figure 7.19: All-to-all test on an SGI cluster 

increasing the latency of the call increases exponentially. An important characteristic of the 

MPI all-to-all caU implementation is that each node has also to exchange a peer-to-peer call 

with itself, the left hand side figure shows the cost of this call when we run the test on a single 

node. 

Throughout the tests on the SGI cluster it has been shown that the use of a switched 

interconnection network increases the overall elEciency of the cluster because the existence of 

multiple communication paths avoids potential congestion problems experienced on a single 

shared bus network previously. The bandwidth breakpoints at 16 Kbyte message size in Fig-

ures 7.17 and 7.19 are due to the MPI implementation transmission pohcy for long and short 

messages. 

7.3.3 Collective Call Tests on t h e B I P Clus ter 

Collective call benchmarks run on the BIP cluster run on the same communication API configu-

rations presented earlier for the peer-to-peer tests. The barrier test measures the time required 

for 2, 4 azid 6 nodes to synchronise. The MPI implementation of the call is based on a butterfly 

mechanism, using a tree-like algorithm with logp steps (where p is the number of processors). 

Figure 7.20 illustrates the barrier synchronisation latency as a function of the number of nodes. 

From that figure we can see the discrete steps of the logarithmic implementation of the call. 
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Figure 7.20: Barrier Synchronisation tests for the BIP cluster and MPPs 

For the BIP configuration this step is estimated around 19 //s (equation model 6.15 fit approx-

imation) while for the SP2 system similar tests show a start-up time close to 46 fis which again 

gives for the BIP cluster better synchronisation figures than the SP2 system. 

Similar discrete steps are visible on with the T C P / I P over Myrinet configuration curve as 

well. The start-up time of this configuration is considerably longer (>250 /JS). The existence 

of the Myrinet switch in both the BIP and the T C P / I P over Myrinet configurations allows 

concurrent use of multiple paths and therefore efficient implementation of the call. On a bus 

channel, (e.g. the T C P / I P over Ethernet configuration) latency start-up time is measured 

around 400 fj.s and becomes larger as the number of nodes increases. It is important to note 

that a barrier synchronisation call theoretically does not depend on the channel bandwidth, 

although network latency often has a significant impact on the performance of an application. 

Communication protocols that make significant use of OS calls (such as TCP/ IP) are penaltised 

with high overheads leading to long latency times. 

The Broadcast Operation Test. Each step takes ts + tyj-m for a single message transfer, 

although in practice these steps are not very discrete for very small messages where noise and 

the start-up time dominates the latency of the broadcast call. 

For a bus-connected cluster (Ethernet configuration) the broadcast algorithm is imple-

mented in a sequential way. Frame collisions and retransmissions can affect bus performance 

as the number of nodes ready to transmit and the size of the transmitting frame increases. 

Table 7.5 illustrates the results of the broadcast test over the 10 Mbit/s Ethernet channel. 

The bottleneck in the network layer is caused by the Ethernet channel saturating. Therefore, 

characteristics from higher-level network protocols are not seeing and the graphs are linear (the 

16Kbyte breakpoint is clear). 

Moving to a faster network protocol (Myrinet configuration) the bottleneck is focused now 

on the implementation of the TCP protocol. For broadcasting messages up to 2KB the start-up 

time tg of the TCP protocol dominates the broadcast time, so the graph up to that message 

size is almost flat (200-350 fis). Another breakpoint is visible for message sizes close to 64KB, 
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Figure 7.21: BIP cluster broadcast tests 

which is the maximum size for an IP datagram. 

The results of broadcasting, using the BIP configuration, are similar to the previous ping-

pong ones. For messages close to 256 bytes there is a breakpoint because of the change of the 

transmission protocol (short/long messages). Finally the effective bandwidth stays invariant of 

the number of nodes and for Izirge messages is close to 90% of send/receive peer-to-peer calls. 

The last column of Table 7.5 illustrates the results of the same broadcast test on two SP2 

machines. The first machine uses the native IBM MPI implementation while the second one 

uses the MPICH implementation. The binomial tree implementation of the broadcast call is 

obvious for the later graph. In comparison with the SP2, broadcasting in the BIP cluster is 

faster for short message (<256 bytes), then for message sizes up to 4KB the SP2 is faster, but 

after this point the BPI cluster is faster again. 

The Reduce Operation Test. A reduce operation call as a global computation (or combine 

operation) collective call not only transfers data among the nodes, but nodes have to access 

locally the transferred data in order to calculate the partial results of the combine operation as 

well. For this reason the cost of a reduce operation is relatively higher, i.e. see Table 7.6 for 

the plot for a single node. 

Reduce operation tests run successfully for a combine MPI_LOR operation in all the 

BIP cluster network protocol configurations. During the reduce operation test the cost of the 

combine operation, MPI_LOR, remains constant while the communication cost depends on the 
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Table 7.5: Broadcast operation test measurements (time in //g) 

Size Nodes Ethernet Myrinet BIP SP2 

2 281 217 15 52 

4 4 690 314 24 72 

6 1217 334 25 100 

2 480 227 51 59 

256 4 1365 402 97 90 

6 2493 371 123 124 

2 3.8 ms 386 96 150 

4K 4 12.3ms 789 190 286 

6 24 ms 911 292 360 

2 270 ms 19 ms 2226 3445 

256K 4 837 ms 41 ms 4446 6857 

6 1.43 s 61 ms 8533 10.2ms 
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Figure 7.22: BIP cluster reduce tests 
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Table 7.6: Reduce operation test measurements (time in fis) 

Size Nodes Ethernet Myrinet BIP SP2 

2 227 232 16 82 

4 4 736 435 20 104 

6 1561 1555 24 117 

2 432 248 61 93 

256 4 1484 466 114 129 

6 3 ms 1413 142 150 

2 3807 439 16 256 

4K 4 13 ms 876 299 476 

6 27 ms 1638 453 588 

2 274 ms 30 ms 13 ms 11 ms 

256K 4 0.96 s 61 ms 32 ms 13 ms 

6 1.63 s 95 ms 49 ms 15 ms 

protocol configuration. The reduce operation compared with the broadcast operation has an 

increased cost topm because of the extra cost of the combine operation: 

= (t, + fiom + fopm) [foggpl (7.1) 

(where Ued-p is the time required for the reduce operation on p nodes, each step takes f , + 

for a single message transfer plus the time required for the combine operation topTn). 

Table 7.6 illustrates the performance of the lOMbit/s Ethernet bus, which apparently is 

very similar to the corresponding broadcast test graph. The reason for this is the high cost of 

the communication in the Ethernet bus. The cost of the combine operation remains a relatively 

small fraction of the communication cost and does not have a significant impact on performance 

i.e. to {ts + tyjTn). As the communication cost decreases the computation cost of the combine 

operation (which is constant) becomes a significant fraction of the reduce operation. 

Comparing the results between the SP2 and the BIP cluster for the reduce test, we can 

see that for short-message-size reduce operations the BIP system is faster, but slower for longer 

messages (>8KB). The reason for this turned out to be a bug in the virtual-physical address 

space management of the BIP protocol which reset the address space. 

7.3.4 Analysis of Collective Cal l Test Resul t s 

This section presents a brief analysis of the collective results presented in section 7.3 together 

with some general observations and comparisons. For all platforms the performance of collective 

calls is lower than their counterpart peer-to-peer calls. The startup time of collective calls is 

longer than for peer-to-peer calls, and in addition their implementation is based on algorithms 

with a logarithmic nature which can dominate performance when the payload is small, either 

on a shared bus or a switched network architecture. The barrier synchronisation test behaviour 



is an example of such a call with zero pay load. As the payload is increasing then the 10 Mbit/s 

and to a lesser extent the 100 Mbit/s Ethernet channel imposes a communication bottleneck 

which becomes noticeable on clusters with fast nodes. Network switches with multiple commu-

nication paths have the potential to alleviate congestion problems and thus improve the overall 

bandwidth performance. 

Another paradox of collective call tests, on SPARC and SGI clusters, is the effective per-

formance for small and medium size payload which increases slightly with the number or nodes. 

The reason for this is the cache effect on repeated iterations of the basic peer-to-peer call in-

side the core of the collective routine algorithm. For the SGI cluster the effective performance 

approaches 8 Mbyte/s (67% of the peer-to-peer call bandwidth) which does not deliver the 

full potential of the network channel. The BIP cluster based on a simplified communication 

protocol has the potential to deliver performance at higher levels. The effective bandwidth 

performance approaches 70 Mbyte/s (more than 90% of the peer-to-peer call bandwidth which 

was <80 Mbyte/s for that 8-node BIP cluster). 

7.4 Kernel-level Tests 

This section presents kernel-level benchmark results, most of which run on the SPARC, the SGI 

and the BIP clusters. A practical difference among low-level and kernel-level communication 

benchmarks is the ratio between computation/communication parts of the workload involved 

in tests. While for lower level benchmarks this ratio is in favour of the communication part, 

for kernel-level benchmarks the ratio is in favour of the computation part. Hence clusters with 

powerful workstations may be expected to provide improved results. In practice, application 

scaling to large number of nodes in workstation clusters can be severely restricted. This hap-

pens firstly by the sequential part of the algorithm according to Amdahl's law [4] and secondly 

by the corresponding increase in communication and synchronisation which increases the in-

efficiency [114, 191] (this cost includes initialisation overheads such as buffer allocation and 

synchronisation). Equation 7.2 gives the modified Amdahl's law with a simplified communica-

tion overhead cost a which increases with the number of nodes linearly. Figure 7.23 illustrates 

various speed-up curves according to equation 7.2 for an algorithm with a 10% of the original 

algorithm non-paralleliseable and for different values of communication overhead cost a: 

The first part of kernel-level benchmarks comprises of kernel-level message passing oper-

ations, used for domain decomposition in applications with data parallelism, such as scatter, 

gather, etc. These operations are examined within the context of more^ realistic conditions 

compared to the idealised isolated core of the low-level tests. The second part of kernel-level 

tests presents results from matrix operations, sorting and relaxation algorithms which run on 

various network of workstation platforms. The size of problem/data used in kernel-level tests 

is larger than its counterpart used for low-level tests. 

^In real applications performance of the calls is expected to decrease as the burden on each node will be 

usually larger. 
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Figure 7.23: Speed-up curves, Amdahl's law and communication overhead 

7.5 Kernel-level Operat ion Tests Results 

Kernel-level operation tests can be divided into two groups, according to the total amount of 

data that has to be transmitted and as a function of the number of nodes. In the first case 

broadcast and shift operations increase hnearly the amount of data need to be transmitted over 

the network. Performance of these calls depends on the network architecture, e.g. on a p node 

system the broadcast operation on a crossbar switch network can be implemented in log; p steps 

while a shift operation is implemented in one or two steps. A shared bus network on the other 

hand will need p sequential steps for the same data transmission. 

The second group includes operations such as scatter and gather, data transmission re-

quirements do not change as the number of nodes is increasing. In principle implementation of 

these operations is sequential and their performance does not depend on the underlying network 

architecture. Of course the underlying network speed in both of the above cases is expected to 

affect directly the performance characteristics for these operations. 

7.5.1 T h e Broadcas t Opera t ion Test 

This section presents the results of the kernel-level broadcast operation run on a 12-node SPARC 

cluster and a 6-node Pentium-Pro BIP cluster. The "root" process of the broadcast test has 

to distribute an array of size N X N over j? processes within its communicator. The array 

sizes for broadcasting range N between 30 and 1080. Results below show the time for the 

broadcast operation which does not include initialisation phases or bu%r allocation. Figure 

7.24 illustrates results of the broadcast operation test measured as a function of the array size 

and as a function of the number of nodes. 

As Fig. 7.24 illustrates, moving to a larger number of nodes while the array size is fbced 

the broadcast call results show a monotonically increased elapsed time. In comparison with the 

counterpart low-level broadcast test results presented earlier in section 7 the SPARC cluster 

results are neither clearly logarithmic nor linear as a function of the node number. The reason for 
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Figure 7.24: Kernel-level broadcast operation tests on the SPARC cluster (top) and the BIP 

cluster (bottom) 
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this is the linear (sequential at the best) non-deterministic nature of the Ethernet channel which 

overwhelms the logarithmic nature of the broadcast algorithm and represents a substantial 

fraction of the broadcasting call for large size arrays. On the other hand the BIP cluster 

is using a crossbar switch technology network which scales logarithmically according to the 

number of nodes (at least for the number of nodes we have tested). The bottom left graph of 

Fig. 7.24 shows clearly three "lines" only, the bottom line is for a 2-node test results, the middle 

line is the collapse of 3-node and 4-node plot results and the top line is the collapse of 3-node 

and 6-node plot results. 

The SPARC cluster effective bandwidth is measured around 1.1 Mbyte/s for a small number 

of nodes but as the number of nodes increases the probability of collisions and congestion within 

the network channel is increasing also hence the elective bandwidth is reduced progressively 

to 0.8 Mbyte/s on a 12-node communicator. The size of the array also decreases slightly the 

effective bandwidth. The first two measurements for array size N of 30-60 are subject to noise 

and poor timer resolution. 

The broadcast operation test on the BIP cluster gives some different results, with the 

elective bandwidth for array sizes of N larger than 120 around 26-29 Mbyte/s for all node 

conGgurations. This means that the network scales almost perfectly for the number of nodes 

we used. For an array size of N—.f&O or less e&ctive bandwidth is almost double at 46 Mbyte/s, 

the reason for this being the mechanism used by the OS to allocate space and memory pages 

into buffers when the process needs them i.e. the Linux demand-paging memory management 

policy [190]. This is an effect which is hidden and eventually cached when the actual routine is 

repeated within a loop as the low-level tests do. Hence for large arrays the e&ctive bandwidth is 

actually decreased by the system memory bandwidth limitation. In an absolute comparison the 

kernel-level broadcast operation on the BIP cluster is 26-30 times faster than the SPARC cluster. 

In the former one buffer allocation bottlenecks or limitations are masked by the relatively slow 

transmission medium rate. Results in the BIP broadcast test were verified by both timing 

methods, the conventional one using MP/_ and the use of the register timers such aa 

rdtsc(). 

7.5.2 T h e S c a t t e r / G a t h e r Ope ra t i on Tests 

This section examines the results of the scatter and gather operations presented previously in 

6.6.3. The size of the arrays tested ranges N between N=120 and N=1680 with the node grid 

is ranging between 2-12 nodes (and 2-6 nodes for the BIP cluster). Figure 7.25 illustrates the 

results of the AfP/_5^caMen;() call run on the SPARC and BIP clusters. The left hand side 

plots of this figure show the elapsed time of the operation as a function of the number of nodes 

while plots on the right hand side of that figure show the same elapsed time as a function of 

the array size. The amount of data disseminating from the root node to the rest of the nodes 

for each array size is constant and sequential for each size of N, but independent of the number 

of nodes. Multiple path networks such as switched networks caimot benefit substantially from 

these operations. 

The SPARC cluster results give an effective bandwidth around 1.1 Mbyte/s. Elapsed time 
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Figure 7.25: Kernel-level scatter operation tests on the SPARC cluster and the BIP cluster 

steadily increases as the number of nodes becomes larger because of the extra overhead of the 

additional number of communication calls required and the possible congestion of the medium 

channel. Operating on a small number of nodes there is an anomaly in results for array sizes 

larger than 840 X 840 (a knee and a crossing overlap on the top left figure) which seems that 

elapsed time is decreasing as the number of nodes is getting larger. This is happening because 

the array sizes now approach the critical size of the system available memory and some memory 

swapping activity will be taking place. 

Results from the BIP cluster scale very well with the number of nodes, mainly because the 

communication operation overhead is relatively low, thus results are practically independent of 

the node number. The effective scatter operation bandwidth of the BIP system for small size 

of arrays is 46-38 Mbyte/s but as the array size increases the effective bandwidth is stabilised 

down to 20 Mbyte/s. Once again here we suspect that the effective bandwidth performance 

drop is due to the system memory bandwidth limitations. 

Results from the gather operation on the SPARC cluster are presented in Fig. 7.26. The 

performance of the gather operation is marginally slower than the scatter operation e.g. less 

than 5%. This means that receiving messages and writing to a buffer area is more costly than 

reading and sending data. Graphs of the gather operation results are very similar to the scatter 

operation observing also similar anomalies. An attempt to run the test over the BIP cluster 

failed due to a bug in the MPI implementation which did not allow different datatypes of the 

same data signature to be sent and received within the MPI_Gatherv() call. 
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Figure 7.26: Kernel-level gather operation tests on the SPARC cluster 

Performance difference between the scatter/gather functions and the broadcast call for the 

BIP cluster is rather related to diSerent read data patterns. In gather/scatter operations data 

are accessed once usually with a stride which apparently is more costly than re-transmitting 

the same data as the broadcast call does [86]. 

7.5.3 T h e Shift Opera t ion Test 

The shift operation is often used as a compound operation in many message-passing parallel 

algorithms. MPI does not provide a single call for such an operation thus its implementation 

requires several single peer-to-peer calls. Unlike the kernel-level operations previous examined 

the shift operation is not a "strictly collective" call because performance is based on local 

calls among neighbouring processes. Scalability of this operation depends on the abihty of 

the communication network to provide multiple overlapping conmiunication paths. As the 

number of nodes increases the amount of transferred data is increasing also, i.e. 

Implementation of this operation was tested for matrix size between 30 to 1080 square elements. 

The shift operation benchmark was run on the SPARC and the BIP clusters for various 

number of nodes and array sizes as Fig. 7.27 illustrates. The SPARC cluster scales well only for 

a small number of nodes when the size of the shifted array is relatively small. As the number 

of nodes increases or the size of the array becomes larger then elapsed time increases rapidly 

without following a specific pattern. In contrary the BIP cluster scales well with the number 

of nodes and the size of the array. The cost of the shift operation, for the BIP cluster, depends 

on the array size but not the number of nodes. The bottom right figure shows this attribute 

very characteristically where all the plots of different nodes collapse into a single line. A small 

anomaly in the results was noticed on a 6-node-grid of the shift operation with large array 

sizes which is due to an uncontrolled background job on that sixth node during the test period. 

The effective bandwidth of the shift operation for the SPARC cluster is close to 1 Mbyte/sec, 

while on the BIP cluster once again the effective bandwidth for small messages is close to 42 

Mbyte/sec but from medium to large size arrays it drops down to 30 Mbyte/sec. 
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Figure 7.27: Kernel-level shift operation tests on the BIP cluster 

7.5.4 Analysis of Kernel-level Opera t ion Tests 

Low-level tests targeting the absolute performance of a call, obtaining the raw performance by 

isolating the measured call with many iterations within the cache of the system. This level of 

performance is often unrealistic and hardly achievable from an application program irrespective 

of programming transformations and compiler optimisations. In kernel-level operation tests, 

routines and operations are examined from the context of communication within computation 

and from the point of view of the OS. Hence performance depends now on more realistic 

parameters such aa communication protocol, OS handling, runtime programming techniques, 

algorithms. The two clusters of workstations used for kernel-level operation tests (the SPARC 

and the BIP cluster) represent two extreme ends of the current cluster intercommunication 

spectrum. 

The 10 Mbit/s bus technology Ethernet network imposes a communication bottleneck that 

filters out any other activity of the node. Elective performance through the tests waa limited 

below the 1 Mbyte/sec transmission barrier. Moving on to a Myrinet network with a user-

space network protocol (such as the BIP) kernel-level operation tests performance becomes 

considerably better. The PCI communication barrier at 132 Mbyte/sec of the BIP cluster 

is not an issue here as other potential bottlenecks from the OS and hardware subsystems 

impose restrictions which limit performance to below 50 Mbyte/sec. The kernel-level operation 

performance of the BIP cluster ranges between 29% - 63% of the counterpart peer-to-peer 

send/receive communication low-level tests. 
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Figure 7.28: Matrix Row/Column Striped and Canon algorithm on the SGI cluster 

Tests on the BIP cluster were run twice using different timing methods, the conventional one 

with calls and the register timer, e.g. the rdtsc(), via assembly calls (presented 

in section 6.3.5). Results did not show substantial differences because test measuring times 

were comparatively long (of the order of seconds). 

7.6 Kernel-level Algor i thmic Tests Resu l t s 

This section presents kernel-level algorithmic benchmark results from a 12-node SPARC cluster 

and a 25-node SGI cluster configurations. The limited node number availability of the BIP 

cluster prevent the execution of the full scale of tests on this platform. Performance analysis 

and comparisons of kernel-level application tests will make use of information gained in previous 

low-level and kernel-level benchmarks. However performance on the tests is expected to be 

a%cted by the nature and the use of resources that each particular algorithm requires. 

7.6.1 M a t r i x - m a t r i x B e n c h m a r k Resul t s 

The matrix-matrix benchmarks consist of two different multiplication algorithms, the Erst al-

gorithm is the Matrix Row/Column Striped and the other one is Cannon's algorithm. Both 

algorithms, described in previous chapters, have similar computational and communicational 

complexity on their nodes but their communication patterns zind memory resource requirements 

are diSerent. 

Figure 7.28 illustrates the results of this benchmark for the SGI cluster. For a small number 

of nodes the two algorithms provide similar results, then as the number of nodes increases 

Cannon's algorithm starts giving better results. Finally for large number of nodes (and for 

smaller matrix sizes) the Row/Column Striped algorithm gives better results than Cannon's 

algorithm. There is a critical point at which further increase of the number of nodes generates 

a communication traffic overflow that overwhelms any computational part improvement 

of the algorithm and thus beyond that point there is no real benefit (see equation 7.2 

and Fig. 7.23). 

^^comp ^ ^^comm (7.3) 
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Figure 7.29: Communication versus computation part between matrix algorithms for the SGI 

cluster 

This is more clear in Fig. 7.29 where the total cost of the algorithm is depicted along with its 

partial computational and communicational cost. For large number of nodes the Row/Column 

Striped algorithm uses fewer communication calls with larger messages than Cannon's algo-

rithm. For a matrix size of 840 X 840 the critical point at which the number of nodes does 

not provide further improvement is beyond 16 nodes. On the other hand, for the Row/Column 

Striped algorithm that critical number of nodes is close to 24 nodes. Increasing the matrix 

size computation requirements increase exponentially and faster (complexity of C)(W^/p)) than 

communication requirements (complexity of 0(7V + p)) on a p number of nodes. Hence the 

critical saturation point is moving towards a higher number of nodes, for both algorithms in 

the tests for matrix sizes greater than 1000 X 1000 there was positive speedup for all the first 

25 available nodes. 

The SPARC cluster has a limited number of nodes (12 nodes which provides only 3 possi-

ble configurations for the Cannon's algorithm). Throughout the tests the Row/Column Striped 

algorithm implementation yields relatively better results for any number of nodes or matrix 

size than Cannon's algorithm does on this cluster. Apparently the bus network architecture of 

the SPARC cluster cannot tolerate the extra amount of communication calls i.e. shift opera-

tions, Cannon's algorithm requires in comparison to the SGI cluster with a switched network 

infrastructure. Figure 7.30 shows in detail the cost of the communication and the computation 

part of both algorithms for 600 X 600 and 1080 X 1080 matrix sizes respectively. In compar-
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Ŝ W) ^ 1060 -

M»*i% nmWpBcmdo* Cmnn# « ^Igonthm. SPARC cku* 

Sizm 600 -

Number of node: Nmrnkruf ooiW: 

Figure 7.30: Matrix Row/Column Striped and Cannon's algorithm on the SPARC cluster. 

ison with the SGI cluster results the slower computational and communication performance 

of these nodes it is noticeable as well their limited number. The computational part of the 

algorithm remains high even for small size matrices while the communication part remains high 

and unpredictable. 

A modified version of the matrix multiplication algorithm was tested as well on these 

platforms. The modiGcation attempts to increase the access locality of the inner-most loop 

of the computational part of the algorithm by transposing the second matrix B during its 

distribution among processes. This change in practice increases the communication cost of 

matrix B distribution for Ethernet and Fast Ethernet networked clusters only marginally but 

the computational part of the algorithm gains a substantial speedup. Results of those modified 

tests are presented in Appendix G. Figure 7.32 illustrates the relative speedup achieved amongst 

all the algorithms used for the SGI cluster for the matrix size of 1080 X 1080. The speedup for 

the SGI cluster is super-linear for the Grst 25 nodes. The computational part of the algorithm is 

clearly super-linear and in this case the communicational overhead is relatively small and does 

not overwhelm the computational speedup. In contrary the communication overhead of the 

SPARC cluster overwhelms quickly any computational part benefit and approaches at its best 

a linear curve for a 9-node conGguration. Beyond that point speedup is increasing marginally 

without any clear benefit. 

7.6.2 Sort ing Algor i thm Resu l t s 

The PSRS algorithm test (presented earlier in section 6.7.4) run on the SGI and the SPARC 

cluster for sorting Hoating point vectors of size 1,2,4 and 8 million^ cells. Figure 7.33 shows 

the results of the PSRS tests. Both the SGI and the SPARC system have similar behaviour on 

a different scaling, that is for a small number of nodes the qsort algorithm dominates elapsed 

time but as the number of nodes is increasing the communication part of the algorithm becomes 

the dominant part. The implementation of this algorithm requires a rather complicated set of 

communication structures which require many initialisation phases (e.g. vectorised calls for 

gather, scatter and all-to-all routines do not scale well with the number of nodes). This implies 

'•^1024*1024 elements 
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Figure 7.31: Communication versus computation part between matrix algorithms for the 

SPARC cluster 
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Figure 7.32: Relative speedup results of the multiplication algorithms 
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a high communication cost even for a small number of nodes (see Fig. 7.33 e, 7.33f). 

The cost optimal complexity of the PSRS algorithm is 0( (n/p) logn) [185] where n is the 

size of the vector and p is the number of processors. Performance speedup for a small number 

of nodes is poor and saturates fast when scaling to larger number of nodes because of the 

excessive communication overhead. Despite the parallelisation algorithm, relative speedup is 

low <3.5 for the SGI cluster. An 8-node configuration for both clusters proved to provide the 

most elective configuration with a speedup between 1.8-3.3 for the SGI cluster, while speedup 

for the SPARC cluster ranges between 2-4.7 for large size vectors. Paradoxically the relative 

speedup of the SPARC cluster appears to be better than the SGI one simply because the 

computational performance of these nodes is relatively low. 

7.6.3 Mul t i -gr id Relaxat ion Test Resu l t s 

The multi-grid relaxation test presented in section 6.7.5 is a mixture of Gauss-Jacobi and Gauss-

Seidel iteration methods. Tests were run successfully on both the SGI and the SPARC network 

of workstations platforms for array sizes N % ./V ranging between 720 - 1500 for a fixed number 

(1000) of iterations on a 16-node SGI and a 12-node SPARC cluster configurations respectively. 

Figure 7.34 illustrates the results of the relaxation tests run on these platforms. 

Communication requirements for the domain decomposition phases are smaller and have 

a simpler complexity than the ones used for the matrix-matrix tests previously. The boundary 

condition data exchange cost between neighbouring nodes is also low because the amount of data 

each node has to exchange with its neighbouring nodes (halo of 4 elements) is limited and 

uniformly distributed within a four peer-to-peer calls cycle. This is the same operation which 

was studied previously with the shift operation test and it is proved scalable on a cluster with 

switched network such as the SGI cluster. Hence the aggregate cost of the repeating exchange 

operation remains relatively low and increases almost linearly with the halo size and the number 

of iterations. Speedup is almost linear but as the number of nodes increases the computational 

pcirt becomes smaller and at the same time the communication cost gradually represents a 

signiGcant fraction of the overall cost (e.g. the calculated speedup of the computation part for 

an array size of 1500 X 1500 running on 16 nodes is 14 and the overall speedup of the algorithm 

is 12.25). 

7.6.4 Analysis of Kernel-level Algor i thmic Tests 

The scalability of the SCOPE kernel-level tests and other algorithms can be predicted in prin-

ciple by analysing the algorithm complexity combined with information obtained at lower-level 

SCOPE tests. Such scalability prediction for data parallelism algorithms and applications is 

straight-forward by separating the computation and communication part of the algorithm. 

Appendix F provides an example estimation about the cost of the SCOPE kernel-level algo-

rithms. For the Matrix Row/Column Striped algorithm the communication cost is determined 

by the the sum of the three major communication operations for the sub-matrices distribu-

tion TgcoHer, broadcast of sub-matrices along rows and columns communicators and the 

gather operation at the end of the Enal stage of the algorithm Tgaf/ier- The combination of 
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Figure 7.33: Sorting algorithm results 
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Figure 7.34: SGI cluster multi-grid relaxation test results 

Tcomm > Tl,ca#er 4- Tbcnat 4- with equation 7.3 and 5.5 can provide information about 

the scalabihty of the algorithm. Results from kernel-level operation tests &om section 7.5 and 

elapsed time of the algorithm running on a number of nodes aje required too. 

The objective of the SCOPE kernel-level algorithmic benchmarks is to measure perfor-

mance of a workstation cluster closer to the programmer perspective. Cluster performance is 

examined within the context of a parallel task (computation and communication) amid other 

OS activities. Performance at this level is a combination of both the individucil performances of 

the computation and the communication subsystems. Moreover kernel algorithmic tests mea-

sure the performance of the entire system and investigate how the system scales with a number 

of nodes and a large problem size. For example, the communication part of the algorithmic tests 

on the BIP cluster were on average 3-6 times faster than the SGI counterparts for the matrix 

multiplication algorithm, but the overall performance on a 4-node SGI cluster is overwhelm-

ing higher than the 4-node BIP system cluster because the SGI node computational power is 

significantly greater. 

This is because performance at the higher levels depends on the nature of the algorithm 

and not only the raw performance of the hardware, e.g. communication hardware. Therefore 

for example the sorting algorithm scales rather poorly with the number of nodes. Problems 

with regular domain decomposition such as the Row/Colunm Striped multiplication algorithm 

gives a positive speed-up even on a 12-node shared bus network architecture cluster. For this 

kind of problem the computation part usually decreases (e.g. exponentially) with the number 
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Table 7.7: Comparisons with other benchmarks 

Low-level network performance tests 

System 
SCOPE Other Benchmark Hardware 

spe^ 
System 

Lat BW Lat BW Test Name 

Hardware 

spe^ 

SPARC 

SGI 

BIP 

212 

368 

6 

L082 

12.06 

121 5 /US 

I.13 

II.92 

126 

netperf 

netperf 

custom BIP 

1.25 Mbyte/s Ethernet 

12.5 Mbyte/s Fast Eth. 

132 Mbyte/s Myrinet 

Low-level message-passing tests 

SP2 

CS2 

50 

107 

31 

35 

52 

113 

32 

38.6 

PARKBENCH 

PARKBENCH 

40 Mbyte/s 

50 Mbyte/s 

Low-level synchronisation tests on two nodes 

SP2 91 IJ.S 100 /js PARKBENCH — 

of nodes but at the same time the communication part of the problem increases mainly due 

to the extra communication overhead rather than the actual payload (which is usually reduced 

for each call as the number of nodes increases). Thus algorithms with a higher computation 

to communication ratio will usually obtain an improved speedup figure. The positive speed-up 

of a system will stop at the time when the computation part improvement is balanced by the 

increasing communication part time. The problem size also affects that point because it mostly 

changes the computation part of the algorithm (usually exponential). This is also known as 

Gordon Bell's Law of Massive Parallelism based on application scaling® and Gustafson [100]. 

Hence as the problem size increases then speed-up improves as well with the number of nodes. 

In practice the optimal number of nodes for a specific problem of a certain size could be chosen 

well below that theoretical optimum when the economic cost of the extra nodes is taken into 

account. 

7.7 S C O P E Overview 

A comprehensive test and evaluation program for the SCOPE benchmark suite is a complex and 

difficult task which is beyond the scope of the thesis. This is because the various benchmarks 

have different workloads for each test. However, a brief examination and comparison of the 

results obtained with other well-known benchmarks can provide additional information about 

the reliability of the current SCOPE implementation. 

The SCOPE low-level benchmarks detected correctly communication protocol changes on 

every platform, as well as other performance anomalies and bottlenecks such as memory bot-

tlenecks. For example during the reduce test on the BIP cluster a performance anomaly was 

observed which was caused by a poor buffer allocation in the BIP implementation. The hier-

^According to Gordon Bell: "there exists a problem tha t can be made sufficient large such tha t any network 

of computers can run efficiently given enough memory, searching and work - but this problem may be unrelated 

to no other" 
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archical structure of the SCOPE benchmarks is evenly reflected on the results obtained from 

low-level to higher-level tests. 

Sensible comparisons with other benchmark results is only feasible for a few of the SCOPE 

low-level tests. The underlying network level tests can be compared with other benchmarks such 

as netperf. In a similar way the communication library low-level tests can be compared with 

some of the Genesis or PARKBENCH tests such as COMMS-Pingpongl or COMMS-Synch. 

In contrast, for kernel-level tests the workload among different benchmarks varies significantly 

and there is no common way of making comparisons. Table 7.7 illustrates results obtained from 

similar low-level benchmark tests run on common platforms, which gave almost identical results 

especially for some of the lower-level Genesis/PARKBENCH COMMS tests run on MPPs. This 

brief benchmark comparison confirm that the SCOPE benchmark suite implementation results 

are reliable and hence the benchmark suite has achieved its initial objectives. 

7.8 Summary 

This chapter has examined and analysed benchmark results obtained with the experimental 

SCOPE implementation on a variety of workstation cluster and MPP platforms. SCOPE tests 

on different abstraction layers were able to demonstrate accurately performance characteristics 

on every tested platform. Analysis and comparison of SCOPE tests has provided valuable inside 

information and understanding about potential performance bottlenecks on cluster sub-systems 

such as the communication network and the message-passing library. 

Performance comparisons between SCOPE tests and other benchmarks on the same plat-

forms, although not directly comparable, has shown that SCOPE results can provide a reliable 

performance guideline for workstation clusters. 



Chapter 8 

Future Work 

The SCOPE benchmark suite presented in earlier chapters provides a tool for evaluation and 

research into the key performance issues of workstation clusters, rather than a development 

of a user-orientated software package. The work discussed in this chapter presents topics of 

user-orientated software development which are beyond the scope of this thesis and assume 

the availability of a well-defined user-friendly package which in turn creates an opportunity 

for novel research into the workstation cluster area. In addition this chapter discusses other 

research work on issues identified elsewhere in this thesis. 

8.1 S tandard Module and Baseline Tests 

The SCOPE benchmark suite, as presented earlier in this thesis, is intended to address perfor-

mance evaluation issues for workstation clusters and provide an overall performance character-

isation for these parallel platforms. It is essential for the SCOPE benchmark suite to have an 

established baseline and standard modules of tests in order to become a useful and comprehen-

sive performance evaluation tool for cluster administrators and application developers. 

For these reasons the SCOPE benchmark suite will need to define a module of baseline tests 

and a minimum set of resource requirements for workstation clusters. The resource requirements 

are important because they will ensure that SCOPE baseline tests will run on cluster platforms 

which will provide sensible results and allow comparisons with other parallel systems. Typical 

minimum requirements will be, for example, the number of nodes, the underlying network 

configuration, the node memory size/hierarchy, the type/speed of the CPU, type of the OS and 

installed software tools. For example minimum hardware requirements could include features 

such as those included in Table 8.1. 

The baseline module of tests will need to define which tests will be used together with their 

workload characterisation in a way that will provide a common basis for tests and workload 

configuration over a wide range of workstation platforms. The tests and results presented in 

Chapters 6 and 7 respectively, provide a useful starting point for the baseline module of tests. 

As the baseline tests will provide results only on the minimum required resources, users will 

be also interested in having tests running up to the limits of their current workstation cluster 
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Table 8.1: Minimum hardware system requirements for the SCOPE baseline tests 

Cluster Features 

System size number of nodes > 4 

RAM size 32 Mbyte 

Node size 
Cache size 

CPU Performance 

512 Kbyte 

> 8.6 SPECint95 ^ 

> 6.5 SPECfp95 ^ 

Message-passing system 
Network bandwidth 

Network latency 

10 Mbit/s or better 

<250 microsecond 

Minimum resource req. 

Base-l ine m o d u l e 

System resources 

^ S tandard m o d u l e tests 

Figure 8.1: Baaeline and standard module tests 

These tests will be known as "standard module tests" and they represent an expansion of the 

baseline tests. 

There is a subtle difference between baseline and standard module tests. Baseline test 

results will provide a common base for direct comparisons between clusters, while standard 

module tests will provide information about the maximum capabilities of each system. The 

establishment of both a baseline test module and a minimum configuration requirement for 

a workstation cluster will facilitate the automatic installation procedure of the benchmark 

software as well as simphfying the actual test procedure. 

8.2 Results: Analysis and Presenta t ion 

The data output resulting from each benchmark execution is large and essentially meaningless 

without using appropriate analysis and presentation utilities. The SCOPE benchmark will 

need such utilities to analyse and present results in a concise and comprehensive way. Result 

acquisition and analysis for each cluster can be automated by the use of scripts and configuration 

tools. The deGnition and establishment of a baseline and a standard module of tests will assist 

to standardise the way results are analysed and presented. 

The presentation of the results in Chapter 7 of this thesis used several custom scripts and 

tools in order to automate the data analysis procedure e.g. to enable the automatic creation of 

result reports. Further improvement, for example, will be the use of a visualisation tool or a 3-D 

^SPEC rates are taken from a Pentium Pro 200MHz system equivalent to 200 Mflop/s 
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presentation of collective routine results [163]. Baseline test results will be compared directly 

with similar results taken from other clusters using a common benchmark result depository 

database or a public web site [132]. 

The non-deterministic nature of the underlying intercommunication networks used in work-

station clusters together with the asynchronous mode of the message-passing model and other 

runtime system activities often causes unpredictable delays when sending or receiving mes-

sages. These delays frequently result in substantial measurement fluctuation which can provide 

additional information with statistical analysis. 

A quantitative analysis of benchmark results is often useful to determine a particular 

behaviour of a cluster. Chapters 6 and 7 introduced simple analytic models to explain and 

understand system behaviour on various SCOPE tests. Most of the models discussed are rela-

tively straightforward and in some cases do not accurately explain the complicated underlying 

hardware and software mechanisms. Further research in this area will improve the analysis 

of workstation clusters and will facilitate the reliable performance optimisation of complicated 

algorithms on clusters. 

8.3 Advanced and Exper imental Module Tests 

Benchmarks in general should not disbar or discourage innovative hardware technologies or 

software techniques. The SCOPE benchmark should encourage and help cluster designers and 

programmers to experiment and use novel enhancements either in hardware configuration ar-

chitecture of clusters or in experimental software techniques and algorithms tailored for clusters 

of workstations, e.g. development and evaluation of latency-tolerant algorithms. 

The SCOPE benchmark will introduce an advanced model of test which will assist exper-

imenting with new hardware and software features over possible improvements on workstation 

clusters. Tests in this module will run in a non-standard mode in which the workload can 

change. For this reason advanced module tests will be described as "paper and pencil" tests or 

modified existing tests according the needs of the experimental conditions. For example spe-

cific cluster optimisations can be applied to compiler parameters or algorithms i.e. dependence 

analysis and various algorithm transformations and optimisations. 

Tests in advanced and experimental mode usually have to be carried out individually and 

are difiicult to automate. In the later case the user needs to accept the responsibility for any 

benchmark changes as well for the correct interpretation of the results. Comparisons with 

standard mode test results should be cautious and usually carried out after a normalisation 

procedure has taken place. 

8.4 Benchmark Expansion and Future Tests 

The rapid evolution in both hardware and software technology will inevitable bring changes in 

workstation clusters as well. The SCOPE benchmark suite will need constantly to re-define and 

re-establish its benchmarks according to the current needs and trends at each time. The main 
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directions in which future tests of the SCOPE benchmark suite will focus on should include: 

# Tests with non-blocking communication calls have to be added especially for those tests 

that include communication and computation parts which can be overlapped such as 

algorithmic and kernel-level tests. 

# The new features introduced in MPI-2 such as single-sided function i.e. tests for put 

and get calls and dynamic process management (see Chapter 4). Progress in this area 

is not possible at present because of the inadequate MPI-2 implementations available for 

workstation clusters. 

» Parallel I/O tests, Appendix D presents some preliminary work in this direction with tests 

on the proposed MPI-2 parallel I/O standard using the ROMIO implementation included 

in the latest MPICH distribution. 

» SpeciAc tests for clusters of symmetrical multiprocessors (SMP). COTS technology oEers 

both the hardware and software infrastructure (e.g. 64-bit hardware multiprocessor archi-

tectures and real SMP mode support OS). The SCOPE benchmark suite will be extended 

to include tests such as multi-threading synchronisation/communication and other tests 

for shared memory mechanisms adapted by the message-passing model appropriate for 

clusters of SMP nodes e.g. put and get. 

« Heterogeneity; there are two main types of heterogeneity that can be deGned for clusters 

of workstations. The first type is a heterogeneous cluster which has modes with diSerent 

heirdware and software architectures (i.e. different data format and computational speed). 

The second type of heterogeneous cluster includes nodes that have identical software 

architecture i.e. the same OS and data format, but they diEer in the hardware architecture 

i.e. computational speed^. 

The first type of heterogeneity is more difficult to analyse and its performance estimation 

is more di&cult. The second type of heterogeneity can be easily found aa a gradual 

upgrading process of existing homogeneous clusters. In either case the most straight-

forward approach is to split cluster into sub-clusters with equivalent performance nodes 

and the SCOPE benchmark run individually for each of these sub-clusters. 

8.5 S C O P E and Other Benchmarks 

Interoperability aspects between the SCOPE benchmark suite and other benchmarks need to be 

integrated. Data results &om the SCOPE tests could be converted to a format that can be used 

and processed with existing well-known benchmark data analysis tools (such as the Graphical 

Benchmark Information Service and the PARKBENCH Interactive Curve-fitting Tool). Kernel-

level tests from known benchmarks such as NAS kernel tests can also be integrated within the 

SCOPE kernel-level test methodology. 

mainly implies different processor speed and size of hardware resources e.g. compare for example com-

put ing p la t forms based on SPARC and UltraSPARC. 
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Table 8.3: Workstation (w/s) architectures and OS SCOPE distribution will support 

Node Hardware Operating 

Architecture system 

PC-based w/s NT 

PC-based w/s Linux 

Sun SPARC w/s Solaris 

SGI w/s IRIX 

IBM w/s AIX 

This will increase the usability of the SCOPE benchmark and at the same time will enhance 

performance evaluation comparisons between workstation clusters and other parallel platforms. 

In a similar way tests from the SCOPE benchmarks suite could be used on MPP or SMP 

systems. 

8.6 Other Issues 

Other issues that the SCOPE benchmark suite needs to address are improved documentation 

and the usual software package distribution issues necessary to facilitate e&cient installation 

on a wide platform of workstation architectures (Table 8.3). 

The use of register timers aa the primary timing mechanism can be expanded to all the 

platforms presented in Table 8.3. This will improve measurement accuracy and can also en-

able detailed functionality tests. Furthermore application programmers will be able to adapt 

the high-accuracy timing mechanism used in the SCOPE benchmark suite to instrument and 

monitor their own application code. 

Batch scheduler management issues and other runtime system utilities for workstation 

clusters are not widely used or standardised. Currently the SCOPE benchmark tests use small 

script programs to launch tests on clusters. The introduction of a standardised job scheduler for 

workstation clusters will improve significantly the SCOPE benchmark test running procedure 

although it is not directly relevant to the SCOPE benchmark suit interests. 



Chapter 9 

Conclusions 

9.1 The Requirement for H P C and Worksta t ion Clusters 

The requirement for HPC is constantly increasing as application demands for significant com-

puting power are continuously increasing. A new generation of commercial applications such as 

e-commerce and e-business, along with "traditional" scientific Grand Challenge Applications, 

are generally increasing requirements for HPC. Parallelism is the key enabling technology which 

can deliver the required computing performance for these large and very large scale scientific 

and commercial applications. Although in principle the concept of aggregated computational 

power available by means of parallelism is straightforward, implementation in practice has 

proved to be a far more di&cult task than originally envisaged. For this reason, most of the 

parallel systems built in the past were complicated (proprietary) and because they were rela-

tively expensive they were used only in few large organisations for "traditional" scientific Grand 

Challenge Applications. 

Workstation clusters using commodity components (sometimes referred as COTS) have the 

potential to provide, at low cost, an alternative parallel platform suitable for many HPC apphca-

tions. Although in practice workstation clusters cannot replace completely MPPs or mainframe 

systems, they can provide an entry-level HPC solution with excellent scalability, availability, 

maintainability and performance/price characteristics for many large-scale applications. 

The first part of this thesis investigates and establishes the current status of the worksta-

tion cluster concept. Chapters 2 and 3 have discussed and examined how over the past few 

years the key hardware and software components of the workstation cluster infrastructure such 

as node architecture, interconnection and OS functionality have improved their performance 

dramatically. In additional the inherent programming model of clusters, which is a multicom-

puter message-passing parallel model, has become well estabhshed with the advent of MPI and 

PVM. 

Chapter 4 has examined the fundamental concepts of the message-passing model which is 

straightforward and can provide efGcient SPMD and MPMD programming styles on distributed 

memory (DM) platforms. This is important because all these parallel platforms currently adopt 

the same computation model. Hence the potential advantage of this is that the techniques and 
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methodology developed for parallel systems as well as parallel applications can be directly 

adapted and used for clusters of workstations. 

9.2 Evaluation of Worksta t ion Clusters with S C O P E 

Having established the workstation cluster concept in the first part of this thesis, the second 

part then investigates the provision of a novel performajice evaluation tool that will assist to 

understand and analyse the performance behaviour of these systems. 

In the past, workstation clusters were often wrongly classified either as distributed systems 

or as loosely-coupled MPPs. This is because workstation clusters borrow many components, 

techniques and research which were primarily designed for other platforms. In practice this 

combination of technologies provides several advantages for clusters but at the same time the 

evolution and performance of clusters is determined and limited by technologies designed for 

other systems. Clusters still suffer from inherent drawbacks such as long latencies, low band-

width, lack of a "single system image" In terms of software programming environment and 

inadequate administration tools. Recent research in communication protocols presented in 

Chapter 9 has shown that improvements in the inherent limitations of clusters are feasible. 

Research in this thesis has been focused around the concept of workstation cluster as a 

HFC platform. In particular a tailored benchmark suite for clusters called Specific Cluster 

Optimisation and Performance Evaluation (SCOPE) has been proposed and an initial imple-

mentation investigated in Chapter 6. The SCOPE benchmark suite, as proposed in this thesis, 

contributes to the scientific benchmark methodology for the comprehensive examination of 

workstation cluster performance characteristics. Among the objectives of this benchmark suite 

is the promotion of the workstation cluster concept by e^^uating potential characteristics and 

performance. This will assist commodity workstation cluster designers to understand and anal-

yse the performance behaviour of these systems better. Moreover, the SCOPE benchmark 

methodology is flexible and provides application developers with a useful tool to understand 

and program clusters more eGiciently. 

In order to achieve these objectives the SCOPE methodology in chapter 6 proposes a rela-

tively small number of additional tests, in comparison to well-known parallel benchmark suites, 

which enable users to evaluate in greater detail performance measurements inside the multi-

layered structure of workstation clusters. Low-level tests examine thoroughly the underlying 

network performance as weU as the performance of primitive and commonly used message-

passing communication library routines. Kernel-level and algorithmic-level benchmarks exam-

ine in detail the realistic performance of the system delivered at the application level. Workloads 

and tests at these levels consist mainly of common operations used in typical parallel algorithms 

such as domain decomposition problems. Hence performance comparisons at different stages 

and levels within the cluster structure become meaningful and provide a comprehensive pic-

ture of any cluster performance disparity between projected and delivered performance under 

different workload levels. 

An initial implementation of the SCOPE benchmark suite was tested on a variety of work-

station clusters with different internetworking technologies such as Ethernet, Fast Ethernet 
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and Myrinet networks. The results of these tests presented in chapter 7 demonstrate that the 

SCOPE benchmark suite is suHicient flexible to adapt and run useful tests on several di^erent 

cluster configurations. The results also demonstrate potential performance characteristics on 

various cluster sub-systems and provided valuable information about the overall cluster per-

formance behaviour and the run-time environment. Analytic performance models for low-level 

tests developed in Chapter 6 were also verified by the actual test measurements in Chapter 

7. Many of the low-level benchmarks were also tested on parallel MPP systems. Results from 

these tests establish a clear and direct comparison performance guidelines between workstation 

clusters and MPP parallel platforms but at the same time the tests on MPPs also verify and 

validate the SCOPE test suite as well. 

The potential infrastructure for workstation clusters is available to take full advantage of 

existing hardware and software to provide a viable inexpensive parallel systems. Technological 

advances in commodity computing components performance is expected to continue in the 

foreseeable future. Additionally, the increased need for HPC and the availability of this parallel 

platform will expand the usage of parallel programming, advancing further the overall field 

of high performance computing. The SCOPE performance evaluation tool proposed in this 

thesis has demonstrated the potential to identify and classify the performance evaluation of all 

workstation clusters. Moreover the SCOPE evaluation tool methodology can be expanded and 

provide support for the development of parallel applications and algorithms tailored to a specific 

parallel platform. The combination of these features denotes that the SCOPE benchmark has 

the potential to play a major role in developing clustered machines and applications together 

in a way that can exploit the full computational capacity of the underlying systems. 
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Appendix A 

The 802.3 MAC Sublayer 

The calculation of the maximum theoretical bandwidth of the Ethernet channel requires an 

analysis of the data format field. Each frame of the 10 Mbit/s baseband standard starts with 

a 7 byte preamble field followed by a start of frame byte (see Figure A.l). Then the fields of 

destination and source address follow with 6 bytes each. Then the length of data field follows 

and the variable data field with 0-1500 bytes. The pad field has a variable length 0-46 bytes 

in order to guarantee the minimum frame length of 64 bytes. The last field of the frame is the 

field of 4 bytes [222]. The minimum inter-packet gap required is 9.6 microseconds 

which corresponds to 12 bytes at 10 Mbit/s [209]. 

Thus the minimum Ethernet raw packet overhead from Figure A.l and Table A.l is 38 

bytes with a payload up to 1500 bytes. For a lOMbit/s channel the maximum theoretical 

throughput is: 

1500 ^ = 1.219MB2/fe/gec (A.l) 
1500 + 38 

For an Ethernet frame that carries a TCP/IP packet there is an extra overhead of 40 bytes 

due to TCP and IP headers (IP fragmentation is excluded [195, 209]), consequently the payload 

is reduced to 1460 bytes. The maximum theoretical throughput of a TCP/IP packet over a 

lOMbit/s Ethernet without the corresponding ACK is: 

1460 ^ lO'W/g ^ i. isGMBi/te/sec (A.2) 
1500 + 38 

If the acknowledgment packet (ACK), which the receiver has to send back to the sender, 

is included the throughput drops slightly down to 1.125 Mb)4)e/s. In practice this will be the 

PreamWc DcM Addnas Length Daia Pad Checksum 

0-*6 4 96 UKC 

Source Addra: 

T h e 802 .3 f r a m e fo rma l 

Figure A.l: The 802.3 frame format 
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Field D a t a (bytes) ACK (bytes) 

Preamble Geld 8 8 

Destination addr. 6 6 

Source address 6 6 

Length of data 2 2 

IP header 20 20 

TCP header 20 20 

User data 0-1460 0 

PAD field 0-6 6 

CAC 6eld 4 4 

Inter-packet gap 12 12 

1538/84 84 

Table A.l: Ethernet frame field sizes 

Configuration ni/2 

raw Ethernet 36 

Ethernet/TCP/IP 70 

Ethernet/TCP/IP, ACK . 132 

Experimental result (lOBase) >170 

Experimental result (lOOBase) 

Table A.2: size for each protocol layer 

worst case aa the TCP/IP at the receiver end could acknowledge more than one frame within 

a single ACK reply. 

Similarly the performance of a Fast-Ethernet network according to equations A.l and A.2 

is 12.19Mbyte/sec and 11.86Mbyte/sec respectively. 

= ( (A.4) 
2-jx 

1 8 6 + 2 1 
1/ 7 < z < 1460 

T h e H e a d e r of t h e I P and t h e T C P Layer O v e r h e a d s Figure A.2 illustrates graphically 

the impact of the extra overhead on the throughput (performance equation A.3). A simple 

calculation of the y2 (half throughput performance) gives a 36 byte message size for the raw 

Ethernet, a 70 byte message size for TCP/IP over an Ethernet frame, and a 132 byte message 

size for TCP/IP over an Ethernet frame including an ACK. 
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TtcoMkml 9013 dwwi'm Uwm;bp 

El&cniiri a* pafommar* -
HcIkhiU wtDi TCP/IP headers -Ktlicnict wiliiTO'/IPheadefs mid ACK • 

M)I99? Theomicm] M02_3 rhmmnfr* k 

-tdwaiT r̂ parHTiri.irr: 
LiliimM milhTCiWhmdin -Ed««*a*iaiTC?Wh«»dcn«mlArK 

MO 1000 nOO 1400 

Figure A.2: Theoretical performance of an Ethernet pa^jcet 

Ethernet header 
22 Bytes 

IP header 
20 byies 

TCP header 
20 bytes 

CRC chcksum 
8 bytes 

Stnicture of an Ethernet packet with TCP/IP 

Data (48) 

ROUK T L 

Data 4-20 

C 

CM-5 packet 

Figure A.3: The structure of azi Ethernet packet with TCP/IP header overhead, an ATM cell 

and a proprietary network packet of CM-5 

Prom plots of Fig A.2 we can see that for large messages the TCP/IP overhead and the 

ACK tend to merge and improve the throughput performance as the overhead and the ACK 

become a smaller fraction of the payload. 



Appendix B 

Processor Timing Mechanisms 

B. l Pen t ium Time S tamp Counter 

The following code fragment has been written to measure the time take to perform a floating-

point division: 

/* read Pentium time stamp counter, 64 bits */ 

void rdtsc(val) 

int val [] ; 

{ 

asmC'rdtsc"); /* read time stamp to EAX */ 

asmC'movl 8(%ebp),%ecx"); /* move eax = val */ 

asmC'movl %eax,0(%ecx)"); /* move low 32 bits */ 

asmC'movl %edx,4(%ecx)"); /* move hi 32 bits */ 

} 

B.2 D E C Alpha t imer 

DEC Alpha processors provide time stamp counters similar to Intel Pentium. The process 

cycle counter (PCC) is an unsigned 32-bit integer that increments once per N CPU cycles, 

where N is an implementation specific integer in the range 1..16. The high-order 32 bits of the 

process cycles counter are an offset that when added to the low-order 32 bits gives the cycles 

count for this process. The process cycle counter is suitable for timing intervals on the order 

of nanoseconds and may be used for detailed performance characterization. Special-Purpose 

Instructions (rpcc d_reg) are used to read the content of this counter. 

static inline u32 rpcc (vo id ) / * */ 

{ 

u32 result; 

asm volatile ("rpcc 7.0" : "r=" (result)) ; 
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return result; 

} 

B.3 Ultra-SPARC TICK Register 

Ultra-Sparc I-III architecture provides several processor performance monitoring registers such 

as the Performance Control Register(PCR), Performance Instrumentation Counters(PICs) as 

well as a TICK register which is incremented once per machine cycle. ( SPARC-V9) 

rd %%tick, %0 

B.4 RS6000 Tick Register 

The RS6000 architecture provides 64-bit time-stamp registers. 

long long ReadtimerO 

register long hi; 

register long lo; 

asm volatile("mftb %l\n" "mftbu 7.0"; 

"=r(hi )" , " = r " ( l o ) : ) ; 

return ((((long long)hi)«32) I lo) ; 

} 

unsigned tstart, tend; 

double duration; 

asmC'mftb %0": "=r" (tstart): ); /* perform the operation */ 

asm ("mftb 7.0": "=r" (tend): ); 

duration^ (tend-tstart)*(BUS_PERI0D*4.0) 

B.5 CPU Speed 

A simple timer and a machine cycle counter are sufficient to calculate the speed of a processor. 

The following code is an example which calculates the speed of a Pentium processor. 

#include <stdio.h> 

#include <time.h> 

void main () 

{ 

volatile unsigned long long int x, xl; 

int dt=5; 

time_t t; 



f'ROCZESjSOJR. jVnSCIHVlffKHVfg 176 

printf("This program runs only on Pentium CPU\n"); 

printf("Please wait, this program takes about 6 sec 

to run...\n") ; 

time(&t); 

while( t==time(NULL) ); 

t = time(NULL); 

asm v o l a t i l e ( " r d t s c " : "=A" (x)); 

while( dt+t>time(NULL) ); 

asm v o l a t i l e ( " r d t s c " : "=A" (xl)); 

printf( "Your Pentium/PentiumPro's clock 

rate is %g Mhz\n", 

((double)(xl-x))/((double)1000000)/((double)dt)); 

} 



Appendix C 

Case Study: Matrix Multiplication 

In scientific applications matrix-matrix multiplication is often the most power-demanding part 

of an application code. This implementation of the Strassen matrix multiplication algorithm 

[211, 181] does not claim to be the fastest one possible or to introduce a new parallel program-

ming style, because the objective was restricted to use it as a test-bed for MPI performance 

evaluation on heterogeneous and homogeneous clusters. Its implementation can combine point-

to-point communications and collective communications at the same time aa well as a possibility 

for partial overlapping between communication and computation. 

Strassen's Algor i thm 

A single multiplication of two n x n, matrices requires multiplications and — 1) additions 

resulting in complexity [109]. 

N 

A',;) — ^ X J (C.l) 
k=l 

Strassen's algorithm can be applied to any n x n matrix where 7% = 2m. The original 

matrices (A, B) can be partitioned into four m x m sub-matrices, so the algorithm proceeds as 

follows: 

OOO (loi 

dlO Oil 

6oo 

6io 

Coo Coi 

ClO Cii 
(C.2) 

then the calculation of the partial sub-matrices is: 

-Fb = ((^0 + Oil) X (('oo + bii) (C.3) 

= (<IlO + Oil) X b, 00 

f z = Ooo x (601 — 611 ^ 

fa = an X (—600 + 610) 

(C.4) 

(C.5) 

(C.6) 

177 
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1-4 = (ooo + <ioi) X 611 (C.7) 

P5 = (—Oil + oio) X (600 + 601) (C.8j 

Pe 5 (oio — Gil) X (610 + 611) (C.9) 

The hnal matrix C can be obtained as a single sum of Ps: 

c o o = - F b + ' F ^ - ^ + I ^ (C.IO) 

Coi = P; + Pj (C.ll) 

c i o = P i + P 3 ( C . 1 2 ) 

cii = PQ + P2 — Pi + P5 (C.13) 

The algorithm uses 7 multiplications instead of 8 which the classical algorithm requires, 

and 14 extra summations. The number of multiplications of Strassen's algorithm is For 

large n, there is a net saving of time because more time is saved with the smaller number of 

multiplications than required for the extra additions. For example if n=1024 the complexity 

ratio between the classical algorithm and this algorithm is around .̂,9 (for n=:2048 the ratio is 

4.4). 

C. l The Implementat ion 

The MPI program runs on 7 processes and each process calculates a partial sub-matrix of the 

product. The size of the matrices is variable with matrix sizes up to 1024 X 1024 used for the 

tests. In the beginning, the two matrices which have to be multiplied are generated on processes 

0 and 2. In the next stage sub-matrices Agut aJid Pgui, are distributed to other processes. In the 

first MPI-session processes use MPI aemcf and rece*?;e functions to distribute the sub-matrices, 

as shown in Figure C.l. 

The next step calculates the partial product for each process. The partial product of each 

process has now to be exchanged among 4 processes which finally calculate the 4 sub-matrices 

of the product matrix (the second MPI-session). 

N o t e The sequential and the MPI implementation make use of the same matrix or sub-matrix 

multiplication function. This function haa undergone minor optimisations for speed. 
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Processes distribution in Strassen's algorithm 

Figure C.l: Data How among processes 

C.2 The Environment 

The application runs on both homogeneous and heterogeneous clusters (see Table C.l). During 

the tests there was no need to modi^ its code at all demonstrating the portability of the MPI 

implementations. The network used was an open one and the (uncontrolled) workload of other 

users on the nodes is taken as constant throughout the tests. The results were measured during 

off-peak hours to minimise the interference of other users. 

The MPICH version used was; 

MPI model implementation 1.00.12., ADI version 1.30-transport p4 

Configured with -arch=solaris -device=ch_p4 -mpe -nof77 

As can be seen from Table C.l and Figure C.2 the network of workstations used is not homo-

geneous. Some clusters are located in di&rent buildings and some clusters use either hubs or 

Ethernet switches as well. The Solaris and IRIX workstations clusters are based on standard 

Ethernet segments, while the departmental network is based on Ethernet hubs and Ethernet 

switches. In this last network configuration, careful consideration of the process distribution 

among the workstations could avoid potential network bottlenecks. 

C.3 Results, Analysis and Comparisons 

The sequential matrix multiplication program was run on different nodes to provide some mea-

surements in order to compare and evaluate the parallel implementation. Because the cluster 

is heterogeneous results are aSected mostly by the node architecture e.g. CPU architecture. 
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Figure C.2: The heterogeneous network architecture used 

Table C.l: The heterogeneity of the cluster 

WORKSTATION CPU MHz RAM SYSTEM OS Location 

caesar SPARC 25 56 Sun 300 SunOS B 16 

daedalus Pentium 75 16 PC Linux B 16 

ringwood SPARC 20 32 Sun 4/60 SunOS B 16 

taranaki SPARC 80 48 Sun SPARC2 SunOS B 16 

euclid SPARC 25 56 Sun 300 SunOS B 16 

b25d-xx R4000 100 48 SGI IRIX B 23 

b25d-xx SPARC 70 32 Sun SPARC5 SOLARIS B 25 
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Figure C.3: Elapsed time between sequential and parallel code 
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Figure C.4: The two MPI sessions 

cache and RAM size^, clock speed, etc. The sequential code was tested over many different 

hardware platforms with a wide range of results (from 465 sec to 4200 sec). The parallel MPI 

implementation does not have such wide variations (144 sec to 420 sec). Size scalability of the 

problem was tested as well. For example a test multiphcation of two 2048 X 2048 size matrices 

run under 37 minutes for the parallel implementation while the sequential one failed on most 

of the available computers because of lack of resources. Slow workstations usually slow down 

the whole application, this means that faster workstations have to wait for the slow ones before 

they can carry on computation. The MPI start-up overhead is relatively large which means 

that there is no speed improvement for matrix sizes less than 512 X 512. 

Figure C.4 shows the Grst MPI session (C.l) of the code, where processes "0" and "2" have 

created the two matrices and initial distribution of the sub-matrices to the other processes. 

In the second MPI-session of the program, processes start sending sub-matrices for the final 

calculation of the product matrix (equations. C.10-C.13). 

^In all caaes the RAM size was large enough to avoid any disk swapping. 
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Table C.2: Sub-matrices exchange among processes before optimisation 

m m Proc. 0 Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5 Proc. 6 

S - > 6 S - > 3 S - > 4 S - > 6 S - > 6 S - > 0 R < - 0 

R < - 1 S - > 0 S - > 0 R < - 1 R < - 2 - R < - 3 

R < - 2 - - — - R < - 4 

R < - 5 - - - - - -

9.78 3.79 89 3.68 4.74 2.26 7.53 

C.4 Solutions and Suggestions 

The main objective for this case study was to demonstrate that MPI is suitable and can be 

used successfully either in a homogeneous or heterogeneous cluster environment, without any 

modifications or special user privileges (aa other similar message-passing packages require). An 

e@cient utilisation in a heterogeneous environment has been demonstrated with actual results 

indicating that the existing heterogeneous cluster of workstations has a better performance than 

an expensive centralised computer system (e.g. compare the existing SGI and Solaris cluster 

and the HP9000 (1,5 GRAM, 4 nodes PA7020) in Figure C.3). 

The underlying network has a significant effect on the performance of MPI in a cluster. 

Slow network interconnect and network congestion can severely aSect node scalability and 

overall performance of the application. An SPMD program can cause a bottleneck when all 

the processes try to update or access the same resource simultaneously. Some overlap with 

the computation has to be introduced to avoid the extra cost of collisions and retransmissions. 

Potential bottlenecks in such environments can be caused by the underlying network and the 

node computational load. The role of the sustaining OS and the communication protocols 

should be considered as well in order to avoid superfluous underlying network layers overhead. 

Reschedul ing Communicat ion A way to improve the MPI communication performance 

is to identify which MPI communication mode suits the specific application and the specific 

environment better, e.g. knowing the sequential nature of the Ethernet layer we can avoid con-

gesting the Ethernet layer [150]. Initially the communication order among the modes for the 

second MPI section of the application is represented on Table C.2. Rearranging the communi-

cation order among processors we can minimise the amount of communication and consequently 

reduce the congestion problem on the Ethernet bus (e.g. by use of an Ethernet switch). As 

shown in Table C.3 there can be a significant reduction of the elapsed time in this phase. 

An alternative to avoid network congestion can be the use of parallelism at the commu-

nication subsystem e.g. parallel communication architectures such as the Computer Network 

Architecture (CNA) [111, 208]. Switched networked clusters in a similar way can also alleviate 

most of the network congestion problems encountered during MPI session I and MPI session 

II of the algorithm by overlapping communication links among different pairs of nodes. Fig-

ures 8-9 illustrate the performance of those sessions on a switched Fast Ethernet cluster of fast 
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Table C.3: Optimised sub-matrices exchange 

m m Proc. 0 Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5 Proc. 6 

S - > 3 S - > 3 — R < - 1 S - > 6 R < - 0 R < - 4 

- S - > 5 S - > 6 — R < - 2 R < - 3 

s - > 6 S - > •5 S - > 4 — R < - 2 R < - 1 R < - 0 

2.5 2,5 2.37 2.2 2.28 3.21 2.86 

4 a " - — — r - - "C l a r . . .. 
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Figure C.5: Matrix multiplication: a total view upshot of the program (top), total view up-

shot of the optimised program (middle), detailed upshot of the optimised part of the program 

(bottom) 
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Figure C.6: Sequential algorithm versus, parallel Strassen's algorithm, and speed-up plots for 

the SGI 0 2 cluster 
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Figure C.7: MPI sessions I and II of the SGI 0 2 switched Fast Ethernet cluster 

workstations (SGI 02). Although quantitative comparison with previous results is not possi-

ble, because both node and network performance of this cluster is signiGcantly different, it is 

clear that the e%ct of multiple communication paths via the network switch provides a worth-

while improvement. Communication times are smaller and more evenly distributed among the 

processes. 

Sometimes the non-deterministic network behaviour can cause problems especially for a 

heterogeneous environment spread among several LANs and buildings e.g. delays in transmis-

sion, performance degradation due to another network activities, or even worse workstations 

can go down at any time. A non-responding node haa to be identified and isolated (or replaced) 

from the MPI environment. An S-MPI environment [60, 58] with a job scheduler and a task 

management could avoid many of these di&culties. Heterogeneous clusters require a different 

copy of MPICH installation for each different platform as well as different executables and MPI 

libraries. Any changes to the program source code require recompiling and updating of those 
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executables and other conhguration Gles. The avaiiabihty of distributed software tools for clus-

ters could help considerably [60, 58]. The following list shows a possible directory structure for 

an MPI apphcation to run in a heterogeneous environment of SGI and SUN machines: 

~/mpi_prog/-+-program.c 

I-header.h 

I-Makefile 

I-IRIX-+-program.sgi 

I I-program.sgi .0 

I ' - M a k e f i l e . s g i 

' - so lar is -+-program.sun 

I-program.sun.o 

' -Makef i l e . sun 
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MPI-2 and Parallel I /O 

Disk I/O is the slowest level of the memory hierarchy, excluding serial-access magnetic media 

e.g. tape drivers. Technological advances in storage devices have not improved the disk transfer 

I/O performance in the same way that disk capacity or CPU performance has improved over 

recent years. This disparity between CPU and I/O performance is a potential bottleneck, 

especially in HPC and parallel systems. More applications are now demanding enhanced I/O 

performance, i.e. database systems with large number of transactions, scientific applications 

with bulk data transfer, video apphcations, or real time interaction between computers and 

between computers and users [164]. 

Existing Distributed File Systems, such as NFS [193,194] or APS, are not adequate for HPC 

because they have been designed to run on Distributed systems and do not cope successfully 

with parallel applications or MPPs. 

Internal parallel I/O subsystems were used successfully in MPPs such as Intel iPSC hyper-

cubes, nCube Paragon XP/S CM-5 Meiko CS-2 SPl SP2 Cray T3D, etc. Use of internal high 

performance switching networks is possible for parallel data transfer on multiple 1 / 0 nodes. Un-

fortunately for such operations there are no standards and hence portability was not preserved 

[72]. 

The semantics of a parallel hie system are not the same as of a sequential one, however 

compatibility must frequently be preserved for many reasons. Concepts of parallel access modes, 

locally partitioning of subfiles, etc must be speciAed. The API's semantics have to change as 

well in order to adapt and exploit parallel I/O. 

D . l M P I I / O Concepts and Semantics 

The approach of defining I/O access modes to express chosen common patterns of shared files 

such as collective data access is limited in its applicability. For this reason another radical way 

was chosen to access files in which data partitioning and data accessing among processes is 

expressed by derived datatypes. Selecting a datatype as the basis of partitioning a 61e among 

processes also provides additional advantages of Sexibility and expressiveness. 

An MPI file is an ordered collection of typed data items. Random or sequential access 

186 
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etype 

1 I filetype 

• holes— 
view of a file for a procees 

tiling a file 

• accesible data 

Figure D.l: An etype, a Gletype, and a view of 61e for a process 

to any integral set of these items is possible. Files are created, oj)ened, cZoaed and 

collectively by a group of processes. 

The e type or elementary datatype is the unit of data access and partitioning. can 

be any predefined or derived MPI datatype. Data access operations are performed in ê ype 

units, ojBfsets are expressed as a count of etypea. P:Ze poinfera point to the beginning of 

The absolute byte position from the beginning of a 61e is called jispfacement, it defines the 

location where a wew begins, see Figure D.l. 

Accordingly to the datatype, a Bletype defines a template for accessing a Rle and is the 

basis for partitioning a file among processes. A /ZZefi/pe can be either a single etype or a derived 

MPI datatype constructed from multiple instances of the same Any extend of a Aok in a 

datatype must be a multiple of the efi/fe 'a extend. Files are created by tiling of while 

file size is measured in bytes from the beginning of the Ale. 

A v iew defines the current set of data visible and accessible from an open file as an ordered 

set of etypea. The Mew of a file is deGned by three quantities: a diapfacement, an efype and a 

Each process has its own wew of the 61e according to its each wew is tiling 

from the jiapJacemenf. The default uiew of a file is linear byte stream and can be changed by 

the user during program execution. 

A position in the file relative to the current view is called the offset, it is expressed as a 

count of ea. DiapZacemen( and Aoka of the /i/eti/pe are skipped. The end of the file is 

the of the first etype accessible in the current view starting after the last byte in the file 

(see Figure D.2) . File pointers are implicit local OjgFaeta to each process maintained by &/IPI. 

A a/iarej /i/e pointer is shared among all the group of processes that opened the file. Finally a 

/i/e AandZe is an opaque object, which is used by all routines to operate on the file, it is created 

by MPI_FILE_OPEN and freed by MPI_FILE_CLOSE. 

Sometimes it is useful if a user can provide information on the access patterns for a file 

and file streams which optimise I /O performance. MPI provides the FILE INFO mechanism 

in which information can be passed to an in/o object. 

There are a limited number of MPI I/O implementations that have been developed to 

date. An example is ROMIO Version 1.0.0, released in October 1997. It is a high-performance, 

portable implementation of MPI-IO that supports a wide range of hardware platforms and filing 

systems (NFS, PIOFS, UFS, etc). This implementation based its portability on an internal 
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Figure D.2: Tiling a Gle with Retypes of three processes 

abstract I/O device layer called ADIO. This version of ROMIO includes everything defined in 

the MPI-2 I/O chapter except file info, shared Hie pointer functions, split collective data access 

routines, support for file inter-operability, I /O error handling. 

PMPIO is a preliminary implementation of MPI I/O from NAS. It supports MPICH imple-

mentations providing full support for arbitrary hletypes, collective I/O operations, and support 

for info objects cb_nodes and cb_buEer_8ize. This beta release does not include asynchronous 

I/O, shared file pointers or support for files stored on NFS hie systems. 

File Inter-operabil ity 

File inter-operability is the ability to read the information previously written to a data file, 

not just the bits of the Gle but the actual information the bits represent in a data Ale. File 

inter-operability is speciRed in the MPI_FILE_OPEN call. MPI supports the conversion of 

transferring the bits of a file into and out of the MPI environment between different machine 

representations, using three data representations: 

native No data type conversions are performed during read or write operations. 

internal The implementation will perform type conversions if necessary and thus supports 

heterogeneous environments. 

external32 Each read or write operation converts all data from and to the "external32" rep-

resentation which is defined by MPI-2 and based in big-endian IEEE format. 

A problem may arise when handling data representations that are unknown for the implementa-

tion, therefore a user defined data representation is introduced that inserts a third party Hlter 

into the I/O stream to do data representation conversion. 

In general, using the same data representation name when writing and reading a file does 

not guarantee that the representation is compatible between two different implementations. 

Instead representation guarantees compatibility. 

D.2 M P I - I / O Da ta Par t i t ioning 

As we can see MPI I/O attempts to maintain similar semantics for accessing data in Ales as the 

MPI communication functions. Hence in MPI_FILE calls the format of data part argument has 
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the known order of 6w/, cownt, jotatyfie. Restrictions of the type signature matching, number 

of continuation copies, overlapping regions etc, are similarly preserved in I/O as well. 

MPI derived types are used to describe how data is laid out in the user buffer. The same 

aspect is extended to describe how the data is laid out in the file as well. 

Thus we distinguish two derived datatypes in MPI-2: 

f i letype describing the layout in a file 

buf type describing the layout in the user buffer. 

and are derived by a third MPI datatype referred to, as the efemenfan/ datatype 

or etype. 

for accessing data are expressed as an integral number of etype items. 

The _̂ Zetype defines a data pattern that is replicated through the file to tile the Rle with 

data. MPI derived datatypes consist of Gelds of data that are located at specified onsets, (use 

of displacement and offsets can leave "holes" between the datatype Gelds, which do 

not contain any data^). A process can access the Gle data that matched items are in its access 

Gletype (but not data that falls under holes, see Figure D.2). 

Data which reside in holes can be accessed by other processes which use complementary 

filetypes. MPI-I/0 provides Gletype constructors to help the user to create complementary 

Gletypes. 

The use of Gletypes allows a certain access pattern to be established NIPI-I/0 deGnes a 

displacement from the beginning of the Gle emd the access pattern starts from that displacement 

(header information can be stored there). 

D.3 M P I - I / O Da ta Access Functions 

MPI-I/0 deGnes three orthogonal mechanisms of data access: 

posit ioning: explicit offset vs. implicit file pointer 

synchronisation: blocking vs. nonblocking 

coordination: independent vs. collective 

MPI provides all combinations of these data access functions, including two types of Gle pointers, 

individual and shared. 

D.4 Positioning 

Unlike UNIX Gle systems, a parallel environment must decide whether a Gle pointer is shared 

by multiple processes or alternative each process is to maintain its own individual Gle pointer. 

Parallel programs do not generally exhibit locality to the reference within a Gle often move 

da ta type of{(double,0),(char,8)} would rounded to 16 with a hole of 7 bytes 
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between distinct non-contiguous regions of a 61e. Thus for each read or write operation a seek 

operation is almost always necessary. Multi-threaded or asynchronous I/O extend that need 

even further. Therefore MPI-I/0 provides functions for positioning : 

Explicit offset operation: the user specifies the offset (act as atomic seek-read/write opera-

tions) 

Individualandshared file pointer operations use the implicit system maintained offsets for 

positioning. 

The different positioning methods are ort/iogonaZ, in the sense that they can be mixed in the 

same program without affecting each other. 

Explicit Offsets 

MPI-I/0 uses two "keys" to describe locations in a file: an MPI jofatype and an the 

first one is used as a template, and an which determines an initial position for transfers. 

Offsets are expressed as an integral number of items relative to the Any holes a 

Gletype has are ignored and do not count as etype items for the oEset. 

File Pointers 

When a file is opened in iVIPI-I/O the system creates a set of file pointers to keep track of the 

current Gle position. There is a global 61e pointer shared by aU processes in the communicator 

group (processes should use the same filetype) and there are individual file pointers local to 

each process. 

Each I /O operation leaves the file pointer pointing to the next data item after the last one 

that was accessed: 

new J lie position = oldposition H :—; : (U.l) 
stze(et3/pe) 

where cownt is the number of elements of type to be accessed and where size(datatype) 

gives the number of bytes of actual data that composes the MPI datatype For both 

performance and thread safety reasons MPI always updates the file pointer at the outset of an 

operation by the amount of data requested. 

D.5 Synchronisation 

The MI-2 standard supports exphcit overlap of computation with I/O, through the use of 

nonblocking I/O functions. 

* A blocking I/O will block until the I/O request is completed. 

G A non-blocking I/O call initiates an I/O operation, but does not wait for it to complete. 

A separate request complete call (MPI WAIT, MPI_TEST) is needed to complete the 

I/O request. 
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D.5.1 Coord ina t ion 

Global data accesses have significant potential for automatic optimisation. Every non-collective 

data access routine has a collective counterpart. Independent calls do not imply any coordina-

tion among processes, and may be executed individually by any process within a communicator 

group. 

Collective I/O requests are executed by all processes within a communicator group. A 

process can return &om a collective call as soon as its participation in the collective operation 

is completed. Note that this return does not indicate that other processes have completed or 

even started the I/O operation. 

End of File 

Unlike Unix Gles, the end of 61e is not absolute and identical for all processes accessing the Hie. 

When a Gle grows, because of more data being written to it or the 61e being resized, the end 

of the file of all processes accessing the 61e may change, data now are accessible, but not yet 

written to the hie, win be read as zeroes. 

D.6 Collective Operations 

Collective operations in order to access a hie use the shared file pointer in the order deter-

mined by the ranks of the processes within the group. Calls return only after all the processes 

within the group have initiated their accesses. Implementation of collective calls can be used 

independently for each process hence it can be carried in parallel if possible. 

D.6.1 Consis tency Semantics 

They deGne the outcome of multiple access to single Gle, all Gle accesses being are related to a 

speciGc Gle handle created from a collective open. MPI-2 provides three levels of consistency: 

« Sequential among all accesses with a use of a single file handle 

» Sequential among all accesses using file handles created from a single collective open 

# Weak consistency among all accesses not handled with a use of synchronisation mechanism 

The default semantics for overlapping accesses does not guarantee sequential consistency (non-

atomic mode). In this mode all data in regions of the Gle which had overlapping accesses is 

undeGned, unless weak consistency is enabled. Atomic access can be guaranteed for overlap-

ping accesses by enabling atomic mode routines. Overlapping accesses are not by deGnition 

consistent. 
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Parallel I /O Tests 

Technological advances in disk capacity and the improvement in CPU performajice achieved 

over the last few years have not been matched by similar increases in disk bandwidth. This 

disparity inevitably will become a potential bottleneck for HPC applications. The use of parallel 

I/O provides a straightforward solution, although the implementation is still not easy. The 

proposed MPI-2 standard addresses this problem using existing 61e systems without major 

changes, thus preserving portability while still providing usable performance. Measurements 

of performance end evaluation of HPC I/O systems can be undertaken using the parallel I/O 

benchmark mechanisms reported in this paper. 

This benchmark was originally based on the bonnie benchmark written by Tim Bray and 

subsequently extended at the University of Southampton. It consists of a suite of three bench-

mark programs: The write benchmark tests and measures the MPI_write performance, while 

the reofi benchmark tests and measures the performance of MPI read, and the rewnfe bench-

mark tests and measures the I/O performance of MPI. 

E . l Test Conditions 

The tests were run on an Ethernet network cluster of 12 SUN SPARC-4 workstations running 

Solaris 2.5.1. During the experiments the network had no additional traSc, apart the overhead 

of the Operating System, and the NFS file system. 

The tests were run for different file sizes and diEerent block sizes. The size of file is restricted 

to 32 Mbyte maximum because of an internally imposed disk quota. Some of the tests create 

a file on the master's node temporary directory 

The tests ware run for different sizes of file and different block sizes. The size of the file is 

restricted to 32 Mbyte maximum because there is a disk quota hmit. 

E.2 Wri t ing to the file test 

The objective of this program is to measure the function bandwidth. The test 

creates a test file and writes to it repeatedly a buffer of known block size. The use of blocking 
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lOBascT E[heme[ 

Figure E. l : The interconnection of the cluster 

non-collective Ale operations ensures that all the outstanding requests associated with the file 

have completed before the process closes the 61e. 

open a file 

get wall time 

for the number of sizeof(file)/sizeof(block) 

dirty the buffer 

calculate the offset 

write the buffer to the file 

close the file 

get wall time 

E.3 Reading from the file test 

This test is the opposite of the write program, it measures the MPI_Read() function bandwidth, 

by opening the already-written test file and reading it, in blocks of known size. The test is timed 

until it closes the 61e MPI_ C/oae^. 

open a file 

get wall time 

for the number of sizeof(file)/sizeof(block) 

calculate the offset 

read from the file a block 

buffer[random]++ (fool the compiler) 

close the file 

get wall time 

E.4 Rewrit ing a file 

This test reads a block from the test Ale, modifies the block and then writes it back to the hie. 

The purpose of the test is to measure the eSectiveness of the filesystem, the cache, and the data 

transfer rate. The main loop has additional commands in order to ensure that the compiler 

does not optimize the operation specified. 

open a file 
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Figure E.2: Parallel I /O for one node, writing to a Gle 

get' wall time 

set the offset 

read the first block 

while the file is not read 

dirty the buffer 

write the buffer back to the file 

calculate the nest offset 

read the next block from the file 

close the file 

get wall time 

E.5 Experimental results, tes ts 

R u n n i n g tes t s in practice: There is a crucial test file size that is just larger than the 

maximum size of I / O cache the system can allocate. Usually this size is estimated to be around 

10 Mbyte less than the system's RAM size. For sizes less than this crucial size the system 

appears to respond faster than its real I /O thus producing a misleading response. 

E.5.1 R u n n i n g t he benchmark for one node 

The parallel I /O benchmark was run on one node for a single process. The local attached hie 

system was used (/(mp) for the test file. 

The results 6ire consistent with the bonnie benchmark, although there is a slight degradation 

of the throughput due to the extra overhead of the MPI calls. Increasing the buffer size provide 

a considerable speed-up in all I /O operations. 

E.5.2 R u n n i n g parallel I / O b e n c h m a r k for two nodes 

This test runs on two nodes with two processes. The shared Ele system is NFS with a theoretical 

maximum throughput of less than 1.28 Mbyte/sec. The impact of the interconnection network, 
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Figure E.S; Parallel I/O node reading a file for one 

Wheichm#Am*nu«|mliWi«a 

bkckiii#4096 -Mock iiz« 1192 -Wock Mzm I63M 
block file 63336 -

Figure E.4: Parallel I/O for one node, rewriting a file (throughput) 
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Figure E.5: Writing a file test on two nodes 

d̂i»# ̂  nk mi ti*o modwi 
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Figure E.6: Reading a Sle test on two nodes 

Ethernet, afFects the disk buffer cache and is responsible for the unpredictable behavior of the 

system aa well. 

E.5.3 R u n n i n g paral lel I / O b e n c h m a r k for four nodes 

The communication overhead, of the test nodes introduces congestion into the communication 

channel, alfecting the shared I/O subsystem and decreasing performance slightly. 

E.6 Summary 

Internode connections and the I/O subsystem attachment are major factors in determining the 

performance characteristics of a parallel system. The parallel I/O benchmark described in this 

note provides useful information on the I/O performance that can be expected for applications 

software. Future work will include measurements on alternative parallel systems (e.g. SMP 

and MPP) and also incorporate additional tests. 
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Figure E.7: Rewriting a 61e on two nodes 
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Figure E.8: Writing to a Rle over 4 nodes 
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Figure E.9: Reading from a Gle over 4 nodes 
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Figure E.IO: Rewriting to a file over 4 nodes 



Appendix F 

Kernel-level Algorithmic Tests 

F . l Row/Co lumn Striped Algorithm 

The implementation of the Row-column-Oriented algorithm involves the following phases: 

Initialisation phase: During this phase matrices A and B of size N x N are initialised and 

filled with random numbers. A virtual two-dimension topology of nodes is de6ned and 

groups of communicators for the number of rows and columns are initialised together with 

user-specified block vectors needed in later stages of the algorithm. 

Phase one: A block-striped partitioning of A and B matrices takes place. Matrix A is parti-

tioned horizontally and distributed over the first logical column of processors, then each 

processor of that column broadcasts its sub-matrix along its own logical row. In a sim-

ilar way matrix B is partitioned vertically and distributed over the first logical row of 

processors, followed by a broadcast operation along the columns of that row. 

Tscatter = Col{ts + r) + rOW^tg + tyj ) = {col + row){ts + t^N") 
coZ row 

where is the startup time and the cost per byte transmission. In a similar way the 

cost of the broadcast call will be: 

Tbcast = riog2 col] {ts + itu -) + [log; row] {ts 4- tu! ) 
col row 

Phase two: The computation cost for each process with an 7V/p x matrix-size problem 

is given bv: 

T - f ^ 
p 

where is the averaged cost for each iteration of the multiplication operation. 

P h a s e three: During the last phase processes have to use an Mf7_(7a(Aer() call to gather 

the product result matrix to a master node. The cost of this operation will be: 

^gather — p{^s 4- ^ ) — P^s "f" i'W^" 
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Accordingly the total communication time will be the sum of the three major communication 

operations: scatter for the sub-matrix distribution, broadcast of sub-matrices along rows and 

columns and finally the local computation takes place to gather all the product sub-matrices 

to the master node: 

Tcomm — ^scatter 4- Tjycast ^gather 

For the shake of simplicity when the processor grid is y p the total execution time becomes: 

Ttot = T(nj( + 1- -|- riog, -1=) + 4" ) 
P \/P P 

2Ar̂  1 
Ttof = Tinif + 1- + riog2 + P ) + —^("V^ + VFI ^ 7:)) 

P VP yP 

F.2 Cannon 's Algorithm 

The implementation of algorithm has the following phases: 

Ini t ia l i sat ion phase: This phase is very similar to the previous algorithm. 

Pheise one: The checkerboard partitioning of matrices A and B among p processors into blocks 

of (W/\/^) X (W/.\/^) size takes place here as well as the initial alignment of blocks at the 

same time. The two MPI calls for this operation are for the MP7_ Scaler() routine: 

^scatter — 2 X (p ' {tg + ^ )) 

P h a s e two: In this phase there is a loop of ^ — 1 iterations, in each iteration there is a 

computation part of an accumulated sub-matrix multiphcation as well as a shift operation 

among matrices of the same row/column. The computation time is given accordingly: 

comp — Ec 
P 

During the shift operation sub-matrices of the four neighboring processors are exchanged 

so the total cost of the "shift" operation is given by: 

jy2 
Tshift = 4 X ( \ /p • {ts + 

P h a s e three: At the end of phase two processes have sub-matrices of the product result ma-

trix. A gather operation again is used in this phase to congregate the product matrix on 

a master node. 
j\r2 

^gather — P{^s ) 

The total communication cost is the sum of the partial times required for the initial matrix 

decomposition (the scatter operation), the shifting and gathering of the final sub-matrices: 

Tcomm — ^scatter i^/P ^)^shift 4" Tgather 
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At the root node the idling time is regarded as zero therefore the overall time is given by: 

# 3 ^ 2 

Tto( = —I- ^a(7p — 4-\/p) + — 4^% 

The two diEerent algorithms of matrix multiplication are implemented and compared using 

MPI and run over a cluster of SGI (02) workstations. 

F.3 Sorting Rout ine 

The implementation of the PSRS algorithm involves the following steps throughout its phases: 

^tot — T^init 4- TcQTjip + Tcoram ^ ^idle 

Initialisation phase; A list of n elements is created and filled with pseudo-random integers 

by the master process. The values are evenly distributed in the range 0 through 2̂ ^ - 1. 

Initialisation of various vectors, user-deGned datatypes and space allocation takes place 

35 well during this phage for use later in the algorithm. 

P h a s e one; The root node distributes data (n/p) evenly among nodes via an MPI_Scatter{) 

call. Then each node is running a qsortQ algorithm to sort its local list of data 0{n/plogn). 

N 
^scatter — is 

P 
= 0 (n /p logn) 

P h a s e two: An MPI_Gather() operation selects and sends p samples from each process to 

the maater process. The master process then has to sort the sample list and to broadcast 

values to all nodes 

'^gather — p{is ^wP) 

T^hcast — is iw{P 1) 

Tgaort = lOgp) 

Phase three; All processes have to partition their sub-lists according to the broadcasted pivot 

values. The exchange of list partitions amongst all nodes is dynamic and based on an 

call, the implementation of this step is more complex and requires the 

deGnition of various displacements and extra memory space allocations on the Hy. The 

main call is expecting to exchange at its worst case n element messages 

in total among its nodes simultaneously. 

Tall — P''{is 4" iw) 

Tallv — P^its "t" t w ~ ) 
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Phase four: Each node uses a gaort() function to sort-out the re-arranged hsts and an MPI_-

Gatherv() collective function to restore the complete sorted hst on the master node. 

^gather — P{^s i-w) 

N 
Tgatherv ~ P{^s ^w~) 

F.4 Mult igrid Relaxation Rout ine 

The implementation of the multigrid routine follows a conservative approach including the 

following phases: 

Initialisation phzise: In this phase various declaration of user-de6ned MPI datatypes take 

place as well as a virtual processor grid ( n / ^ ) x ( n / ^ ) to map the problem. 

Phase one: Checkerboard partitioning of the two-dimensional grid amongst the processor grid 

is performed. An MPI_Scatter() call with the appropriate vectors is used: 

^scatter — P ' (^s ) 
P 

Phase two: This phase incorporates the main loop of the algorithm. Each iteration scans each 

point of the local grid and calculates its new value and the maximum deviation. 

T comp — 
p 

After that a combination of MP7_Ae(fuce() and operation informs all pro-

cesses about the maadmum deviation change. If that change is not small enough neigh-

bouring processes exchange boundary values and repeat the iteration all over again. 

For benchmarking purposes the number of iterations is fixed in number controlled by 

a COUNTER variable. The cost of the reduce and the broadcast operation is relatively 

small as they operate on a single value only and can be simplified to: 

^red+bcast ~ p{ired 4" ^6c) 

During the exchange of neighbouring process boundary values a combination of Send-

Receive MPI calls can be used, the cost of these exchanges can be approximated by: 

N 
Texch — 4 X {tg + tyj ) 

P 

Phase three: At the end of phase two processes already have sub-matrices of the approximated 

solution array. A gather operation is used again in this phase to congregate the hnal 

multigrid solution on a master node. 

Tgather — P{^s ^ ) 

The total communication cost is the sum of the partial times required for the initial matrix 

decomposition (the scatter operation), the shifting and gathering of the Anal sub-matrices: 

^scatter "i" '^red+bcast ~t~ T^exch 4" Tgather 



Appendix G 

Modified Algorithmic-level Test 

Results 

This appendix illustrates test results from the matrix-to-matrix algorithmic test which has been 

modified. 

The modification transposes the second matrix which takes place during the decomposition 

phase of the algorithm using a modiHed memory access pattern. The result is a complete 

transparent matrix transpose in terms of both time and resources (e.g. extra memory). The 

complexity of the new algorithm main loop is still the same and the real benefit derives 

&om the improved access locality. 

i,j — ^ ] 0,i,k ' ^j,k (G.l) 
m—1 

k=0 

This modihcation can be equally applied to both matrix-to-matrix algorithms used, the 

Row/Column striped algorithm and Cannon's algorithm. The following Ggures show the results 

from tests run on the SGI cluster. Performance improvements over the original algorithm for the 

SGI cluster varies according to the matrix size between 100%-50%. These results demonstrate 

the importance of a tailored algorithm for a specific platform. 
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Figure G.l: Modified striped algorithm (first part) 
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Figure G.2: Modified striped algorithm (second part) 
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Figure G.3: Modified Cannon algorithm 
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Table G.l: Performance improvement for matrix-to-matrix algorithms using a transpose mod-

iHcation 

Matrix Free. S/C Mod. Impro- Cannon Mod. Impro-

size grid S/C vement Cannon vement 

1x1 344 157 2.19 346 160 2.17 

2x2 64.1 40.9 1.56 71.1 44.6 1.59 

840 3x3 24.8 20.1 1.23 31.1 18.5 1.74 

4x4 17.8 16.7 1.06 19.5 13.0 1.50 

5x5 19 18.5 1.02 17.0 7.67 2.22 

1x1 805 330 2.43 805 340 2.37 

2x2 155 87.4 1.77 162 93.2 1.74 

1080 3x3 56.2 39.9 1.41 68.7 38.1 1.80 

4x4 31.5 28.2 1.12 40.4 24.0 1.68 

5x5 25.5 26.4 0.96 31.1 19.0 1.64 

1x1 1494 599 2.49 1503 626 2.39 

2x2 303 157 1.92 319 170 1.88 

1320 3x3 123 79 1.56 129 67.8 1.91 

4x4 59.2 47.5 1.25 74.9 42.9 1.74 

5x5 44.2 37.9 1.16 50.9 31.6 1.61 

1x1 3185 1238 2.57 3429 1315 2.61 

2x2 704 324 2.17 716 349 2.05 

1680 3x3 274 155 1.77 284 138 2.06 

4x4 142 96.6 1.47 160 81.9 1.96 

5x5 90.6 64.9 1.39 104 58.5 1.78 


