
The Performance Evaluation

of Workstation Clusters

A thesis submitted for the degree of

PhD in Computer Science

b y

Panagiotis Melas

Department of Electronics and Computer Science

University of Southampton

May 2000

University of Southampton

ABSTRACT

Faculty of Engineering

Electronics and Computer Science

Doctor of Philosophy

T h e P e r f o r m a n c e Eva lua t ion of Works t a t i on Clus ters

by Panagio t i s Melas

The requirements for High Performance Computing (HPC) have increased dramatically over

the years. Parallelism is the only key technology today which can deliver the required com-

, puting performance for very large scale scientific and commercial applications, although its

implementation in practice has proved to be a far more difiicult task than originally envisaged.

Advances in microprocessor and networking technologies in conjunction with the devel-

opment and standardisation of the message-passing model and widespread availability of dis-

tributed software have enabled workstation clusters to have the potential for HPC at an at-

tractive price-performance ratio. This combination of technologies provides several advantages

for clusters but at the same time their evolution and performance is determined and limited

by technologies designed for other systems. As a result clusters often fail to deliver at the

application level their underlying potential performance.

This thesis investigates the key components of commodity workstation clusters and eval-

uates the performance of these systems as an integrated HPC platform. It demonstrates the

need for a new performance evaluation tool, and proposes the Specific Cluster Operation and

Performance Evaluation (SCOPE) benchmark set which has been especially designed to eval-

uate the performance behaviour of cluster characteristics and promote the workstation cluster

concept by assisting commodity workstation cluster designers to understand and analyse the

performance behaviour of these systems.

An initial implementation of the SCOPE benchmark suite has been developed and run on

a wide variety of workstation clusters and MPP platforms. Results from the SCOPE tests have

demonstrated the potential to identify and classify the performance evaluation of workstation

clusters. Moreover the SCOPE evaluation tool methodology can be extended to provide sup-

port for the development of parallel applications and algorithms tailored to a specific parallel

platform.

Contents

I n t r o d u c t i o n 1

1.1 The Requirement for High Performance Computing 1

1.2 High Performance Computing and ParaJlehsm 2

1.3 Workstation Clusters as an Alternative Platform for HPC 4

1.4 Performance Evaluation of Workstation Clusters 6

1.5 Summary 7

Low-level I n t e r n o d e C o m m u n i c a t i o n 9

2.1 Introduction 9

2.2 Interconnection Issues 9

2.3 Communication Software Layers 10

2.3.1 The TCP/IP Stack 11

2.4 Analysing Communication Overhead 12

2.4.1 Optimising the Communication Processing Overhead 15

2.4.2 High-speed Interconnection Networks 16

2.5 Case Study: Internetworking with Ethernet 21

2.6 User-space Protocols 23

2.6.1 "Careful" Protocols 27

2.6.2 Light Weight Protocols 27

2.6.3 Semantics of User-Space Network Protocols 29

2.7 The BIP Zero-Copy Protocol Approach 31

2.7.1 Future Trends of Network Subsystems 33

2.8 Summary 34

C l u s t e r s of W o r k s t a t i o n s 36

3.1 Introduction 36

3.2 Basic Distributed Computing Primitives and Concepts 37

3.2.1 High Level Communication Primitives and Concepts 38

3.2.2 Client-Server Model 39

3.2.3 Remote Procedure Call 39

3.2.4 Coordination, Synchronisation, Concurrency control 41

3.2.5 Distributed File System Concepts 42

CONTENTS

3.3 Multicomputers 42

3.4 Clusters as Parallel Computing Platforms 43

3.4.1 Cluster Hardware Aspects and Structures 44

3.4.2 Communication Requirements 47

3.5 The ASCI Project 48

3.6 The Beowulf Class Cluster Computers 48

3.7 The NOW project in Berkeley 49

3.8 The Clusters of the University Campus 50

3.9 Summary 52

M e s s a g e - P a s s i n g a n d M P I 54

4.1 Introduction 54

4.2 The Parallel Virtual Machine 55

4.3 Bulk Synchronous Parallelism 55

4.4 The Message Passing Interface, Concepts and Semantics 57

4.4.1 MPI Procedures and Semantics 58

4.5 MPICH 59

4.5.1 The Architecture of MPICH 60

4.6 Case Study: Matrix Multiplication 61

4.7 MPI-2 and Parallel I /O 61

4.7.1 Dynamic Processes 62

4.7.2 Single-Sided Communications 63

4.7.3 MPI-2 and Parallel I/O 63

4.8 Summary 64

B e n c h m a r k s 65

5.1 Introduction 65

5.2 The Requirement for Benchmarks 65

5.3 Benchmark Objectives 66

5.4 Typical Benchmarking Metrics 68

5.5 Existing Benchmarks 70

5.5.1 The Livermore Loops 70

5.5.2 The LINPACK Benchmark 71

5.5.3 The PARKBENCH Benchmark 71

5.5.4 The NAS Benchmark 72

5.5.5 The EuroBen Benchmark 73

5.5.6 The Perfect Club Benchmark 74

5.5.7 The SPEC Benchmark 74

5.5.8 The LogP Model "5

5.5.9 Other Benchmarks 76

5.6 Comparison and Assessments 76

5.7 Shortcomings of Existing Benchmarks 77

COATTENTS iii

5.8 Summary 78

6 S C O P E : a Tai lored B e n c h m a r k Sui te 80

6.1 The Requirement for a Tailored Release 80

6.1.1 SCOPE Requirements and Objectives 82

6.2 The Structure of the SCOPE Benchmark 83

6.3 The SCOPE Benchmark Methodology 84

6.3.1 Benchmark Specification 84

6.3.2 Performance Metrics 85

6.3.3 Software Requirements of SCOPE 86

6.3.4 Implementation Rules and Optimisation 86

6.3.5 Time Measurement and Considerations 87

6.4 SCOPE Single Node Tests 89

6.5 SCOPE Low-level Tests 90

6.5.1 The Underlying Network-level Performance Tests 91

6.5.2 Low-level Communication Library Tests 92

6.5.3 Peer-to-Peer Tests 92

6.5.4 Collective Calls Test 94

6.6 SCOPE Kernel-level Tests 98

6.6.1 Kernel-level Message Passing Operation Tests 99

6.6.2 Kernel-level Broadcast Test 100

6.6.3 Kernel-level Scatter/Gather Operations 100

6.6.4 Kernel-level Shift Operation Test 101

6.7 SCOPE Kernel-level Algorithmic Tests 101

6.7.1 Matrix-matrix Benchmarks 102

6.7.2 Row/Column Striped Algorithm Test 102

6.7.3 Cannon's Algorithm Test 103

6.7.4 Sorting Routine Test 103

6.7.5 Multi-grid Relaxation Routine Test 104

6.8 Summary 105

7 S C O P E : E x p e r i m e n t a l R e s u l t s and Ana lys i s 106

7.1 Tests on MPPs 107

7.2 Low-level Communication Tests Results 108

7.2.1 TCP/IP and Berkeley Sockets Interface Tests 108

7.2.2 The Linux Cluster 109

7.2.3 The NT cluster I l l

7.2.4 The SPARC cluster I l l

7.2.5 The SGI Cluster 113

7.2.6 The BIP Cluster 115

7.2.7 Analysis of Peer-to-Peer Test Results 117

7.3 Low-level Collective Call Tests Results 118

CONTENTS iv

7.3.1 Collective Call Tests on the SPARC Cluster 119

7.3.2 Collective Call Tests on the SGI Cluster 121

7.3.3 Collective Call Tests on the BIP Cluster 123

7.3.4 Analysis of Collective Call Test Results 127

7.4 Kernel-level Tests 128

7.5 Kernel-level Operation Tests Results 129

7.5.1 The Broadcast Operation Test 129

7.5.2 The Scatter/Gather Operation Tests 131

7.5.3 The Shift Operation Test 133

7.5.4 Analysis of Kernel-level Operation Tests 134

7.6 Kernel-level Algorithmic Tests Results 135

7.6.1 Matrix-matrix Benchmark Results 135

7.6.2 Sorting Algorithm Results 137

7.6.3 Multi-grid Relaxation Test Results 139

7.6.4 Analysis of Kernel-level Algorithmic Tests 139

7.7 SCOPE Overview 142

7.8 Summary 143

8 F u t u r e W o r k 144

8.1 Standard Module and Baseline Tests 144

8.2 Results: Analysis and Presentation 145

8.3 Advanced and Experimental Module Tests 146

8.4 Benchmark Expansion and Future Tests 146

8.5 SCOPE and Other Benchmarks 147

8.6 Other Issues 148

9 Conc lus ions 149

9.1 The Requirement for HPC and Workstation Clusters 149

9.2 Evaluation of Workstation Clusters with SCOPE 150

A T h e 802.3 M A C Sublayer 171

B P r o c e s s o r T i m i n g M e c h a n i s m s 174

B.l Pentium Time Stamp Counter 174

B.2 DEC Alpha timer 174

B.3 Ultra-SPARC TICK Register 175

B.4 RS6000 Tick Register 175

B.5 CPU Speed 175

C C a s e S t u d y : M a t r i x M u l t i p l i c a t i o n 177

C.l The Implementation 178

C.2 The Environment 179

C.3 Results, Analysis and Comparisons 179

CONTENTS

C.4 Solutions ajid Suggestions 182

D M P I - 2 and Para l le l I / O 186

D.l MPI I/O Concepts and Semantics 186

D.2 MPI-I/0 Data Partitioning 188

D.3 MPI-I/0 Data Access Functions 189

D.4 Positioning 189

D.5 Synchronisation 190

D.o.l Coordination 191

D.6 Collective Operations 191

D.6.1 Consistency Semantics 191

E Parallel I / O Tests 192

E.l Test Conditions 192

E.2 Writing to the Gle test 192

E.3 Reading from the hie test 193

E.4 Rewriting a file 193

E.5 Experimental results, tests 194

E.5.1 Running the benchmark for one node 194

E.5.2 Running parallel I/O benchmark for two nodes 194

E.5.3 Running parallel I/O benchmark for four nodes 196

E.6 Summary 196

F Kerne l - l eve l A l g o r i t h m i c Tes t s 199

F . l Row/Column Striped Algorithm 199

F.2 Cannon's Algorithm 200

F.3 Sorting Routine 201

F.4 Multigrid Relaxation Routine 202

G M o d i f i e d Algor i thmic- leve l Tes t R e s u l t s 203

List of Figures

1.1 Moore's Law [149] 2

1.2 The evolution of computers towards clusters (networks of workstations) 3

2.1 The TCP/IP protocol suite 12

2.2 Relative performance difference between processors and DRAM 13

2.3 Conventional TCP/IP implementation 14

2.4 A typical Myrinet packet structure 18

2.5 Myrinet NI block diagram 19

2.6 2-D Concurrent Network Architecture source [111] 20

2.7 Communication bandwidth and latency measurements over Ethernet 22

2.8 Communication bandwidth and latency measurements over FastEthernet 24

2.9 MPI on top of the TCP/IP protocol stack 25

2.10 GAMMA throughput taken from [40] 28

2.11 The BIP protocol stack compared with TCP/IP 31

2.12 Network Interface attachments on a workstation system 34

3.1 Client Server model 39

3.2 The RPC mechanism 40

3.3 Network communication with RPC calls [217] 40

3.4 Components of a distributed Sle system 42

3.5 Categories of Cluster hardware 46

3.6 The Farm 51

3.7 Classification of clusters of workstations in the campus 52

4.1 The message passing model 57

4.2 Distributed IPC functions 58

4.3 A communicator identifies the process group and context 59

4.4 MPI calls format: the data part plus the envelope part 59

4.5 MPI communication types 60

4.6 Upper and lower layers of MPICH 61

4.7 One sided communication access (put) 63

5.1 DiSerent benchmark levels could have different importance evaluation interest . . 67

3.2 The LogP abstract model parameters; source [53] 73

VI

M S T 0 F F I G [/ R E 5 vii

5.3 Benchmarking classification areas uniprocessor vs. multiprocessor 77

5.4 The importance of efficiency from low-level to higher-level tests 78

6.1 A simplified communication cost model t -t- 93

6.2 Latency of blocking and non-blocking MPI communication modes 94

6.3 The underlying M f i .S'en ĵZecf calls of an M f / Barner routine 96

6.4 MPICH Broadcast call communication pattern 97

6.5 MPICH Reduce call communication pattern on an 8 node communicator 98

6.6 MPICH All-to-all call communication pattern on 5 node communicator 98

6.7 The data parallelism model with a domain decomposition phase 99

6.8 Gather/Scatter operations 101

6.9 A shift right operation within all processors of a communicator 101

7.1 Latency and bandwidth of SP2 and CS2 Southampton and SP2 at Argonne. . . . 108

7.2 Network latency and bandwidth performance on the Linux cluster 110

7.3 Latency and bandwidth of the Linux cluster 110

7.4 Latency and bandwidth of the NT cluster I l l

7.5 Latency and bandwidth on SPARC workstation clusters 112

7.6 Latency and bandwidth of the Solaris cluster 113

7.7 Latency and bandwidth on 0 2 cluster 114

7.8 Communication level latency and bandwidth on 0 2 cluster 114

7.9 Latency and bandwidth on the BIP cluster for bare network protocols 115

7.10 Latency and bandwidth on a Myrinet cluster with page alignment 116

7.11 Comparing latency and bandwidth between a Myrinet cluster and MPPs 117

7.12 Comparing Latency and bandwidth of our clusters 118

7.13 Barrier Synchronisation test for the SPARC cluster 120

7.14 Broadcast test on a SPARC cluster 120

7.15 Reduce test on a SPARC cluster 121

7.16 Barrier Synchronisation test for the SGI cluster 122

7.17 Broadcast test on a SGI cluster 122

7.18 Reduce test on an SGI cluster 123

7.19 All-to-all test on an SGI cluster 123

7.20 Barrier Synchronisation tests for the BIP cluster and MPPs 124

7.21 BIP cluster broadcast tests 125

7.22 BIP cluster reduce tests 126

7.23 Speed-up curves, Amdahl's law and communication overhead 129

7.24 Kernel-level broadcast operation tests 130

7.25 Kernel-level scatter operation tests on the SPARC cluster and the BIP cluster . . 132

7.26 Kernel-level gather operation tests on the SPARC cluster 133

7.27 Kernel-level shift operation tests on the BIP cluster 134

7.28 Matrix Row/Column Striped and Canon algorithm on the SGI cluster 135

7.29 Communication vs computation part between matrix algorithms 136

M5T OF FIGURES viii

7.30 Matrix Row/Column Striped and Cannon's algorithm on the SPARC cluster. . . 137

7.31 Communication vs computation part between matrix algorithms 138

7.32 Relative speedup results of the multiphcation algorithms 138

7.33 Sorting algorithm results 140

7.34 SGI cluster multi-grid relaxation test results 141

8.1 Baseline and standard module tests 145

A.l The 802.3 frame format 171

A.2 Theoretical performance of an Ethernet packet 173

A.3 The structure of an Ethernet packet with TCP/IP header overhead 173

C.l Data How among processes 179

C.2 The heterogeneous network architecture used 180

C.3 Elapsed time between sequential and parallel code 181

C.4 The two MPI sessions 181

C.5 Matrix multiplication: a total view upshot of the program 183

C.6 Sequential algorithm vs. parallel Strassen's algorithm 184

C.7 MPI sessions I and II of the SGI 0 2 switched Fast Ethernet cluster 184

D.l An etype, a Gletype, and a view of Hie for a process 187

D.2 Tiling a file with filetypes of three processes 188

E.l The interconnection of the cluster 193

E.2 Parallel I/O for one node, writing to a file 194

E.3 Parallel I/O node reading a Gle for one 195

E.4 Parallel I/O for one node, rewriting a 61e (throughput) 195

E.5 Writing a 61e test on two nodes 196

E.6 Reading a file test on two nodes 196

E.7 Rewriting a Ale on two nodes 197

E.8 Writing to a file over 4 nodes 197

E.9 Reading from a file over 4 nodes 197

E.IO Rewriting to a file over 4 nodes 198

G.l Modified striped algorithm (first part) 204

G.2 Modified striped algorithm (second part) 204

G.3 Modified Cannon algorithm 205

List of Tables

1.1 The 1998 Semiconductor Industry Association Roadmap 3

1.2 Forthcoming CPUs and OS are built on 64 bit architecture 5

2.1 Protocol stack comparison [155] 11

2.2 Latency gmd bandwidth characteristics for different networks of workstations . . 23

2.3 User space protocol characteristics 29

2.4 Latency and bandwidth performance on a Myrinet cluster using BIP 32

2.5 Ping-pong test results on various communication libraries 33

3.1 Parallel Systems, Clusters and Distributed Systems comparison 45

3.2 ASCI machines summary 48

3.3 Important software development areaa for Beowulf claas clusters 50

3.4 DiSerent cluster conGgurations 52

5.1 Units and symbols used in PARKBENCH follow the extension of the SI system . 69

5.2 PARKBENCH tests 72

6.1 Differences between MPPs and cluster 81

6.2 Timing Registers of modern processors, for more information see Appendix B . . 88

7.1 Cluster configurations used for testing with SCOPE benchmarks 106

7.2 Individual processor SPECint95 SPECfp95 Ggures [204] 107

7.3 Ping-pong test results on vcirious communication libraries 117

7.4 Latency and Bandwidth results 119

7.5 Broadcast operation test measurements (time in ps) 126

7.6 Reduce operation test measurements (time in 127

7.7 Comparisons with other benchmarks 142

8.1 Minimum hardware system requirements for the SCOPE baseline tests 145

8.3 Workstation (w/s) architectures and OS SCOPE distribution will support 148

A.l Ethernet frame field sizes 172

A.2 size for each protocol layer 172

C.l The heterogeneity of the cluster 180

OF ZABLES

C.2 Sub-matrices exchange among processes before optimisation 182

C.3 Optimised sub-matrices exchange 183

G.l Performance improvement for matrix-to-matrix algorithms 206

MST OF TABI/ES

Acknowledgements

First and foremost I would like to thank my supervisor Ed Zaluska for his inspiration, guidance

and support throughout the period of this research.

Invaluable support and feedback was received from Parallel and Distributed Computing

(former Concurrent Computation Group) group members, in particular I would like to thank Jeff

Reeve, David Lancaster and Vladimir Getov together with my fellow postgraduate students. In

particular I am grateful to Duncan Simpson, Antonio Barragan, Emilio Hernandez, and Mario

Dantaa who have been an Invaluable source of encouragement.

I am grateful for all the support I received from computing services staff in PDC, SUCS,

Lyon and Argonne who have assisted with my research. I would like to thank Andrew Perkins,

Stephan Mechnig, Antje NeuhoS, Costas Koufopoulos and Mirjana Andric for their valuable

friendship and support.

I would also like to thank the Greek State Scholarships Foundation for the support I

received during the first period of this research.

Finally I am indebted to my family for their understanding and their invaluable support

throughout my life without which I could not have completed this thesis.

Chapter 1

Introduction

This thesis investigates the performance evaluation of workstation clusters, in particular those

configured to provide a cost-effective High Performance Computing (HPC) environment. The

thesis reviews the recent developments in commodity hardware and software which have made

such clusters possible, introduces a methodology for a comprehensive examination of worksta-

tion cluster performance and proposes a tailored benchmark evaluation tool for clusters called

Specific Cluster Operation and Performance Evaluation (SCOPE).

This introductory chapter will first review the present-day requirement for HPC before

discussing briefly the fundamental difficulties in delivering this requirement. It will then discuss

the role of workstation clusters in providing HPC and introduce the importance of being able

to evaluate the intrinsic performance of commodity workstation clusters.

1.1 The Requirement for High Performance Comput ing

The information revolution has been described as the third evolution in our civilisation (the first

two being agricultural and industrial) [177] and one of the most influential innovations of the

last century. Over the past few decades computers have become an essential part of the mod-

ern world. In science and engineering the classical methodology of design and experimentation

has been converted into analysis-simulation-optimisation-implementation and now each of these

steps would be impracticable without the aid of computers. Classical business and commerce

have adapted to exploit distributed computing, while Internet e-business and e-commerce have

become an integrated part of everyday life. Entertainment and multimedia over the past few

years have also increased demands for HPC dramatically. Moreover new application opportu-

nities that require HPC emerge e.g. artificial intelligence (AI), genetic programming, dynamic

interactive simulation [207].

The impact of computing in all of these domains has become a driving force which en-

courages the even greater development of computing [3]. Technological improvements in VLSI

integrated circuits have been able to follow Moore's law [85, 238] over the last twenty years and

this trend is expected to continue in the near future [76]. The implication of Moore's law is

twofold; a linear increase in transistor switching clock rate together with a quadratic increase in

CHAPTER j. ZNTRODUCTK%Y

o

U

1 0 ' - -

1960 1965 1975 1970 1980 1985 1990 1995 2000

Year

Figure 1.1: Moore's Law [149]

the number of transistors. This additional functionality together with architectural innovation

and software development (e.g. advances in compiler technology to increase instruction-level

parallelism) has provided improved computer performance, by a factor of perhaps two every

year, [107] compared to Grosch's law [98], which postulated that computation cost is related to

the square root of computational power [68, 121].

Despite those impressive achievements there are problems of great importance in science

and engineering which remain intractable, because their solution inevitably requires an enor-

mous amount of computational power or computing resources. Such problems are known as

the "Grand Challenge" [115, 239] applications; examples of such applications include Fluid

Dynamic modeling. Molecular Dynamics, Quantum Chromadynamics, simulations of various

physical phenomena, weather forecasting, etc. In business the challenging problems include

database and transaction processing, data mining and warehousing, telecommunication pro-

cessing, network applications and high-performance real-time systems [136]. The availability of

cost-effective computational power also encourages new classes of applications with no direct

non-computing equivalent [104, 176]. New applications and demands for computing have in ad-

dition emerged from the computer industry itself known as "market-enabled" and "user-driven"

such as image processing, computer graphics, animation and virtual reality (with applications

to the entertainment industry i.e. film-making, film restoration, games), medicine, education

(multimedia) [12]. Taking all these potential applications into account, the demand for HPC is

expected to increase very considerably over the next few years.

1.2 High Performance Comput ing and Parallelism

A common requirement of most high-performance computing applications is to accomplish their

tasks as fast as possible. There are three fundamental ways to accomplish a task faster: increase

the hardware speed (e.g. clock rate), use more intelligent and efficient algorithms, or make use

of parallel processing [178].

For the first alternative, it will be difficult for current CMOS technology to continue to im-

prove at the current rate in the future, because fundamental limits will soon be approached and

CHAPTER 1 MTEODL/CTJON

Table 1.1: The 1998 Semiconductor Industry Association Roadmap update for high-end pro-

cessors [10, 76]

Specihcation /Year 1997 1999 2001 2003 2006 2009 2012

Feature size (micron) 0.25 0.18 0.15 0.13 0.1 0.07 0.05

Supply voltage (V) 1.8-2.5 1.5-1.8 1.2-1.5 1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6

Transistors/chip IIM 21M 40M 76M 200M 520M 1.4B

DRAM bits/chip 1 67M 1.07G 1.7G 4.29G 17.2G 68.7G 275G

Die size (mm^) 300 340 385 430 520 620 750

Local elk freq. (MHz) 750 1250 1500 2100 3500 6000 10000

Global elk freq. (MHz) 750 1200 1400 1600 2000 2500 3000

Max power/chip (W) 70 90 110 130 160 170 175

there is no obvious follow-on technology. According to the Semiconductor Industry Association

(SIA) projections, the number of transistors per chip and local clock frequencies will continue

to grow exponentially in the near future as Table 1.1 shows. However, increased complexity

(resulting in additional constrains) at that level will limit its usefulness [76].

The alternative of algorithmic improvements is not always possible and can be restricted

(not well mapped) by the underlying hardware architecture. Long before reaching these Umits

research projects had begun to consider the alternative of parallel processing which theoretically

can provide a viable solution to limitations in processing power. The term High Performance

Computing (HPC) has now replaced the older descriptions of "parallel computing" or "super-

computing" as almost all present-day HPC involves the use of parallel computing.

Prom the second half of the 1980's there has been a trend towards parallel and distributed

computing as computers have become more available and accessible with a wider range of

applications at an improved price-performance ratio. Parallel processing, at that time, was

widely believed to be the key enabling technology which must inevitably be adopted to achieve

the necessary high performance for grand challenge and other future applications [64]. The

accepted view was that switching to parallelism was only a matter of time before compilers were

developed capable of optimising programs automatically to run eGciently on multiprocessor

systems. Since then much research has been completed, parallelism dilBculties are more fully

appreciated and (with hindsight) the earlier optimism appears naive.

As Wilkes [238] quotes "parallelism is not a panacea" and an underlying hardware technol-

ogy on its own is not enough to exploit parallelism. Moreover the nature of parallelism inherent

in applications has to be Srst understood and then implemented in the programming model.

The algorithm implementation should also map onto the underlying hardware architecture nat-

urally. This dependence between parallel algorithms and architectures introduces an inherent

disadvantage, the design space of such systems becomes very wide (hence a di@cult task) and

provides neither a flexible unified programming model nor portability.

Although in the past parallel computing was regarded as a theoretical possibility with lim-

ited interest restricted to academia due to its difficulties, parallelism today is now accepted as

CHAPTER]. JNTRODLrCTION

the only viable solution for HPC. The development and establishment of parallel programming

models and standards together with performance evaluation studies have accelerated the de-

ployment and use of both parallel systems and parallel applications. In other words, commercial

hardware and software vendors have gradually started to build parallelism into their products.

Improvements in availability and cost/performance ratio for these systems are a fundamental

requirement for the elective use of parallehsm in scientiHc and commercial apphcations. The

first part of this thesis investigates and reviews the design space of workstation clusters as a

HPC system.

1.3 Worksta t ion Clusters as an Alternat ive Pla t form for

HPC

Originally the success of Parallel Computers was limited to Grand Challenge applications or

high-end large-scale commercial applications because the cost of a parallel platform was pro-

hibitively high for other applications [38]. Parallel computers have never achieved the volume

production necessary to generate "significant economics" of scale in the same way as personal

computers or workstations [12]. Low-volume manufacturing is clearly a crucial disadvantage

of large parallel systems, in contrast to the cost-effective manufacturing possible with mass-

produced workstations. At the same time the steady developments in "sequential" proces-

sor technology has eliminated the historical performance gap between traditional mainframe-

processors and commodity workstation processors. This trend has encouraged vendors of Mas-

sively Parallel Processors (MPP) to use "killer micro" components (such as microprocessors and

low-cost memory) as the building blocks for their new high-performance parallel computing sys-

tems [63, 6, 43]. One side-effect of this strategy is of course the engineering lag time (estimated

to one or two years) between delivered workstations and delivered MPPs based on the same

microprocessor components [6, 242],

MPP systems of this type incorporate commodity workstation parts with dedicated tightly-

coupled high-speed networks. A full version of the Operating System (OS) usually runs on

each node and coordination among nodes is achieved by the explicit exchange of messages.

Future technology trends are moving towards microprocessor-based symmetric multiprocessor

(SMP) clustered schemes [43]. Examples of this class include the IBM SP series, the older

Intel Paragon, Thinking Machines CMS, Cray T3E, and the machines of the ASCI project

[42]. This type of computation is usually a Multiple Instruction Multiple Data (MIMD) or

Single Program Multiple Data (SPMD) type [75], both of which can provide scalability and

high performance for many application domains. A loosely-coupled version of such a parallel

platform can be implemented using a network of workstations, in which each node has its own

stand-alone OS connected by moderate-to-high latency LANs. Typical examples of this class of

clusters, examined in this thesis, are the NOW project [51] and the Beowulf project [208] both

of which are brieSy examined in Chapter 3. Another form of clustering is "cycle harvesting" on

idle workstations which in some circumstances can provide an extremely cost-efficient parallel

computing environment [54].

CHAPTER 1 INTRODLTCTION

Software Component Hardware Component

network
Paraile! Systems tecbology

}\ctwork protoco
X^^Ne^ork tools

killer micro

Dismbuted SystetmZ) high-speed
networks

Messaze-r'assine

//Tast network
protoco

CLUSTERS

Figure 1.2: The evolution of computers towards clusters (networks of workstations)

Table 1.2: Forthcoming CPUs and OS are built on 64 bit architecture.

Vendor CPU System Arch. OS Available

Intel IA-64 64 bit (HP /Windows/Linux) No

Sun UltraSparcII/IH 64 bit Solaris Yes

DEC Alpha 64 bit Digital UNIX Yes

MIPS RIOOOO 64 bit IRIS Yes

IBM RS6000/ Powers 64 bit AIX No

Motorola PowerPC 64 bit Mac OS Yes

Advances in microprocessors, intercommunication networks and distributed software tool

development are converging in favour of clusters of workstations as Figure 1.2 illustrates. More-

over, forthcoming 64-bit-generation systems (Table 1.2) will provide enhanced features for dis-

tributed clustering system support aa well as extended scalability, availability and interoper-

ability features. As a result clusters of commodity workstations are now accepted as a viable

platform major HPC applications [6]. The initial motivation for this thesis is based on this tech-

nological convergence that enables low-cost workstation clusters to exploit parallelism. The key

infrastructure components required for workstation clusters infrastructure will be examined in

the first chapters of this thesis.

Despite improvements in accepted standards and interoperability over the past twenty

years, clusters have inherent potential difRculties resulting from a relatively-high software com-

munication latency and lack of a "single system image" in terms of the software programming

environment [80], OS support, job allocation, load balcincing and run time support [171]. Recent

research in this area [38, 182, 151, 236, 39] haa nevertheless demonstrated that clusters of inex-

pensive high-end PCs interconnected with off-the-shelf hardware and a suitable OS can deliver

CEAPTER 1 INTRODL/CTJON

acceptable performance over a wide range of parallel applications [59, 57]. The next chapter

of this thesis investigates in detail the impact of oE-the-shelf interconnection components on

various workstation cluster schemes.

In terms of the underlying programming model, networks of workstations implement a

form of a multicomputer parallel machine based on the concept of message-passing. In this

model each processor has its own local memory and processes interact by sending and receiving

messages over the interconnecting network. In practice this has been recognised as the most

eScient programming paradigm on clusters of workstations [80, 185] and it is identical to the

computational model currently used by most large parallel computers. This feature is very

important aa it automatically implies that workstation clusters can have the same approach

to computation and an identical problem description model in addition to the same execution

model as MPPs [201]. Hence networks of workstation can inherit most of the existing software

techniques and methodologies &om parallel systems (MPPs) which can be applied or adapted

to clusters relatively easily [104]. Single Program Multiple Data (SPMD) applications can be

implemented directly using the message-paasing mechanism while a limited number of Multiple

Program Multiple Data (^'IPMD) programs can also be implemented [3].

Many libraries supporting the message-passing model have been developed (e.g. PVM [83],

Linda P4 [146], Express [174]). The Message Passing Interface (MPI) [77] has now became the

accepted standard for this model. Chapter 4 of this thesis investigates MPI implementation

issues on workstation clusters.

1.4 Per formance Evaluation of Worksta t ion Clusters

Traditionally the primary target of parallel systems is the delivery of high-performance com-

puting at the application level. Efficient use of resources or a high algorithm e$ciency was

not always a concern of primary importance in parallelism which sometimes made relatively

inefRcient use of the resources available. Performance evaluation and benchmarking, which

historically was developed for assessment and comparisons between diEerent computers, has

increasingly become important for parallel computer systems where the nature of a particular

class of applications might map preferably into one particular parallel architecture. In addi-

tion, benchmarking results provide very useful feedback to system designers and application

developers to assist in the understanding HPC systems behaviour.

The main motivation for this thesis set out in the previous section is the technology evo-

lution of commodity workstation components that now allows workstation clusters to be used

as a Aexible cost-effective HPC platform available for a wide range of applications and usable

by programmers without specialist skills. However, in practice workstation clusters have of-

ten failed to exploit the potential advantages. Further evolution and development of these

systems requires detailed performance evaluation measurements and results analysis. Perfor-

mance on these systems is greatly dependent on the efficient implementation and integration

of technologies first developed for other systems such as communication libraries, underlying

network protocols and network architectures [167]. Any generalisation of performance results

from networks of workstations becomes hard to qualify because of the Icirge numbers of system

CEAPTER 1 fNTEODL/CTION

variables.

Existing HPC benchmark suites for message-passing systems are designed primEirily for

Distributed Memory or Shared Memory MPP systems for several scientific application classes

such as Computational Fluid Dynamics problems, numerical analysis, etc.

Most of these benchmarks, in principle, will also run on clusters of workstations but simply

because clusters support the identical programming model as MPPs. Although theoretically the

above condition is suHicient for an MPP benchmark to run on a workstation cluster to provide

quantitative performance evaluation ("how" much), it does not necessarily provide qualitative

performance evaluation ("why") about specific performance characteristics of clusters of work-

stations. Most of these benchmark suites, when they run on clusters of workstations, are not

suitable to provide relevant information either because their workload does not take into ac-

count the individual characteristics and configuration issues of workstation clusters (such as

limitations of the messaging system and its impact on diEerent applications) or they measure

performance at a higher level which is not suScient for performance evaluation.

The original contribution of this research presented in this thesis is a performance evalua-

tion tool known as the SpeciEc Cluster Operation and Performance Evaluation (SCOPE) bench-

mark set which will assist further the establishment of workstation clusters concept. SCOPE

is a benchmark suite that provides a comprehensive and optimised set of tests for workstation

clusters. This benchmark is designed to achieve the following aims and objectives:

« Evaluate the potential characteristics of workstation clusters by the provision of a com-

prehensive benchmark set suitable for the design space of these systems.

« Provide commodity system managers/developers with a tool that will assist them to

understand, analyse and optimise in the best possible way the performance behaviour of

their clusters.

* The SCOPE benchmark methodology will in addition can be expanded to provide ap-

plication developers with a useful tool to understand and program clusters in the most

effective fashion e.g. provide application cost and scalability prediction.

1.5 Summary

This thesis examines the fundamental performance factors inherent in workstation clusters and

demonstrates that additional analysis is necessary to optimise overall performance. Chapter 2

discusses workstation cluster intercommunication issues such as networking and communication

protocols. The next Chapter 3, examines the workstation cluster concept &om the prospective

of distributing systems and parallel systems. In Chapter 4 the message passing paradigm as

the main computational model of networks of workstations is reviewed. The next chapters of

the thesis focus on the key benchmarking issues. Chapter 5 outlines benchmarking issues for

HPC systems, Chapter 6 describes in detail the proposed SCOPE benchmark suite tailored

for clusters of workstation and Chapter 7 provides experimental results of benchmark tests on

CHAPTER]. INTRODiyCTfON

various workstation clusters. Finally the conclusions and proposed future work are discussed

in Chapter 8 and 9.

Chapter 2

Low-level Internode Communication

2.1 Int roduct ion

The communication subsystem is a key fundamental component of distributed systems in gen-

eral and networks of workstations in particular. The performance of the intemode communica-

tion subsystem in clusters of workstations is fundamental, because any imbalance in the design

of this subsystem can cause communication bottlenecks which will have a signihcant impact

on both the behaviour and the overall performance of the entire system [144]. The task of

a communication sub-system is to transfer data from one application to another application

(which resides on another node) transparently. The term communication subsystem includes

software components such aa interfaces, protocols and communications handlers as well as the

communication hardware. Some of these software components could be incorporated into the

Operating System or even form part of the applications software [49]. This chapter provides

a survey of the fundamental characteristics and semantics of communication subsystems and

protocols adopted over the last few years for clusters of workstations.

2.2 Interconnection Issues

This section presents the main interconnection categories used in computers and clusters of

workstations. There are three main groups into which computer networks could be divided

[126]:

» wide-area networks,

« local-area networks (LANs, SANs^),

« massively parallel processor (MPP) networks (direct and indirect networks)

The last category includes very fast (traditionally proprietary) networks able to intercon-

nect thousands of nodes in a very small physical distance. They are constructed mainly from

^ A System Area Network is a communication network which provides low latency, high bandwidth, and very

low error rate links between nodes [48].

CHAPTER 2. LOW-IEyEI fiVTERJVODE COMM[/NICATfON 10

switches and hnks (switches route the messages and hnks carry the messages). The communica-

tion subsystem of MPPs is strongly inSuenced and bound by the underlying network connection

topology e.g. tree, mesh, switch, etc [142]. Workstation clusters do not often use such networks

usually because of the relatively-high cost and the lack of standardisation of these networks.

WANs and LANs differ from direct and indirect proprietary networks because they are

based on standards which are widely approved. WANs often include thousands of computers

distributed throughout a region, with an error rate generally signiScantly higher than LANs and

they usually provide connection-oriented services. LANs on the other hand connect hundreds of

computers located closely together (e.g. in one or more buildings) with low error rates and they

usually provide connectionless services. A special category of LANs has emerged over the last

few years with the advance of network technology known as "System Area Networks" (SANs)

which use proprietary very-high-speed networks in a physically small area for a hmited number

of nodes and functionality [48, 85].

2.3 Communicat ion Software Layers

Computer networks are usually designed in a highly-structured way, to simphfy the design,

development, and operation of the network, and in addition to allow (in theory) a relatively-

smooth network evolution [8]. The basic modules of this structure are layers or protocols.

Their purpose is to offer certain services to the higher layers while shielding those layers from

the details of how the oEered services are actually implemented. Each layer has to provide

services to the layer above it.

Two main structured-scheme layer models exist: the T C P / I P protocol suite and a refer-

ence model called Open Systems Interconnection (OSI) from the International Organisation for

Standardisation (ISO). Both models are similar in many aspects: they are both based on the

concept of a stack of independent protocols, and the functionality of their layers is similar (but

different). A user-application message must be processed at each layer of the stack in order to

be sent to and received from the network.

The TCP/IP reference model is developed from experience with older protocols. It is a

collection of complying protocols rather than a model. Most of its protocols are very effective

and widely used. However, the specification was not separated from the implementation which

can sometimes introduce difficulties with new network technologies [13, 26].

In the OSI model, the distinction between interfaces and protocols is clear

Service: this states what a layer does

Interface: this states how layers above it can access it

Protocol: this is used to get a job done within a layer

In each case no implementation is defined, the number of layers the OSI model involves is

large (seven) and the functionality of some of its layers is ill-deGned. Implementations tend to

be slow and often avoided because of the complexity of the protocol. This is mostly because

when OSI was first specified, the T C P / I P protocols were already widely established [222] and

CEAPTEE 2. lOW-LEVEL JjVTERjVODE COMMI/MCATJON 11

Table 2.1: Protocol stack comparison [155]

OSI Ref. OSI Layer TCP/IP

Layer NO Equivalent Application Examples

7 Application, telnet, rsh, NFS

6 Session, name services

5 Presentation

4 Transport Transport TCP, UDP

3 Network Internet IP, ARP, ICMP

2 Data Link Data Link IEEE 802.2

1 Physical Physical Network Ethernet, etc

they provide adequate performance for the majority of applications. There was therefore little

commercial interest in adopting a new more complex protocol and the OSI model is now often

considered to be of theoretical interest.

2.3.1 The TCP/IP Stack

The TCP/IP protocol suite has become the universal network protocol suite standard and as

such it has been used extensively in workstation clusters both experimental and also production

platforms. The T C P / I P protocol suite has its origin in the ARPANET project [222]. Most of

the existing LAN distributed systems and clusters use this protocol suite over a 10/100 Mbit/s

Ethernet channel. The protocol suite has a four-level layer scheme which does not match the OSI

layering hierarchy scheme particularly well, but it is nevertheless the most widely-used network

protocol encountered in both LANs and NOWs. TCP/IP provides both a connectionless and

a connection-oriented reliable byte stream service [209], because it was originally designed for

WANs with relatively high-error transmission rate. The original philosophy behind TCP/IP

was communication among autonomous machines rather than resource commonality [187].

In practice the TCP/IP protocol suite is a collection of networking protocols that conform

to the Internet Protocol scheme. The Application Programming Interface (API) which the

TCP/IP suite provides is sufHcient to support many network and distributed system applica-

tions as shown in Figure 2.1. The four conceptual layers which are built above the hardware

layer are:

The D a t a Link Layer: This layer accepts and delivers Internet Protocol (IP) packets.

Different protocols are used in this layer depending on the type of physical network.

The Network Layer: This layer handles communication from one machine to another,

enabling hosts to inject packets into any network and have them travel independently to their

destination, (it also handles connection rendezvous, flow control, retransmission of lost data,

data management, etc).

CHAPTER 2. lOW-lEVET INTER;VODE COMMLTNJCATION 12

Applicahon layer

Transport layer

Network layer

Data Link layer

Applicalkm Program

TFTP BOOTP

IP. ICMP. IGMP
ARP I RARP

Hardwmrc link IcYcl

Figure 2.1: The TCP/IP protocol suite

The Internet Protocol [179] resides in the Network layer and it is the foundation of the

TCP/IP architecture. It provides the fundamental service of a connectionless unreliable "best

eEorts" packet delivery system. Its purpose is to standardise the basic unit of data transfer

(datagram or packet) through the TCP/IP Internet^ .

T h e T r a n s p o r t Layer : This layer provides reliable or unreliable communication between

end-to-end application programs.

The transmission layer protocol [180, 24] can provide either an unreliable connectionless

delivery service (User Datagram Protocol) or a reliable connection-oriented, stream delivery ser-

vice (Transmission Control Protocol) over the transmission medium regardless of the underlying

transmission rate, delay, error rate or reordering of packet delivery.

T h e Appl icat ion Layer : This is the highest level and it contains protocols that implement

user-level functions and applications software (e.g. telnet, File Transfer Protocol FTP, http,

e-mail).

2.4 Analysing Communicat ion Overhead

Optimisation of the communication subsystem performance can lead to substantial improve-

ments on a workstation cluster overall performance. This section examines in detail the commu-

nication overhead issues encountered in workstation clusters. Traditional ways of eliminating

communication overhead requires changes either to the Application Programming Interface

(API), or the communication protocol, or the protocol implementation [187]. The first two

approaches do not preserve compatibility either with older applications or with older protocols

and applications require re-implementation e.g. [232, 231, 234]. The third approach requires

changes to the protocol implementation, but applications preserve compatibility.

Communication support has traditionally not been considered to be an integrated part of

an OS simply because the widespread adoption of networks is comparatively recent. The fun-

damental design objectives of traditional OS and protocol stacks at that time were reliability.

^The "Internet" is the global collection of connected networks and gateways that use the T C P / I P protocol

suite and funct ion as a single virtual network.

CHAPTER 2. lOW-lEVTSI MTERNODE COMMUNICATION 13

1000

100

10

Processor

DRAM

1980 '82 '84 '86 '88 '90 '92 '94 '96 '98 2000

Source: D. Patterson, Univ. of Califwnia, Berkeley

Figure 2.2: Relative performance difference between processors and DRAM (Moore's law) [176]

programmability, process protection and re-usability over relatively expensive and unreliable

hardware resources. Most of the processing overhead resides in the OS and many implemen-

tations fail to achieve high throughput because they access data several times. Data handling

requires at leaat one memory copy operation from the user workspace to the network interface.

Several years ago the bandwidth of the main memory and the disk I/O of a typical work-

station was an order of magnitude faster than the physical network bandwidth. That diEerence

in magnitude was invariably sufficient for the existing OS and communication protocol stacks to

saturate network channels such as 10 Mbit/s Ethernet or even 100 Mbit/s LANs [183]. Despite

hardware improvements, the memory access time and internal I /O bus bandwidth in a modern

workstation haa not increased significantly during this period (memory performance improve-

ment is around 7% per annum while processor improvement approximates 50% per annum [76])

the main improvements in performance have come from caches and a better understanding of

how compilers can exploit the potential of caches^. Thus the gap between the network band-

width and the internal computer resources has been considerably reduced [183]. At the same

time processors are running 30-50 times faster than DRAM which makes the task of hiding

memory latency significantly more difEcult [106].

Traditionally communication protocols have been designed on the assumption of an unre-

liable erroneous physical link, a packet sent over the network could be duplicated, lost, dam-

aged, arbitrarily delayed or even dropped. TCP/IP, for example, incorporates features such as

in-packet end-to-end checksum, packet delay and time-out policies as well as a packet fragmen-

tation and reassembly scheme including out of order delivery and retransmission policies [187].

All these features are useful in WANs but in LANs and clusters of workstations they impose

stages of redundancy and consume uimecessary computational power e.g. contemporary LAN

network interfaces inevitably perform cyclic redundant check computation (CRC) per packet in

hardware. As a result the transition of data in a multiple layered structure can be very costly

full cache miss on an Alpha 21164 can cost u p to 180 n s / 1 . 7 ns = 108 clock cycles x 4 or 432 instruct ions

CHAPTER 2. l O W - l E V E l MTERiVODE COMML/NfCATfON 14

wntc()

socket Q

soacoiK) McccivcO

APPLICATION

sendO

KERNEL

tcp_uMTcq()
lcp_oalpul()

M A C

koatpu(()
cthcr_oa!pal()

TCP/IP
mnHe icp_inpm()

\

Nelwork Queue

Application layer

Socket layer

Protocol layer

Network laver

jo_proU)col()

;comir()

Figure 2.3: Conventional TCP/IP implementation

in terms of computing power, e.g. poor code locality, multiple memory-to-memory copies, dif-

ferent data abstraction between layers, packet headers and complicated memory management

mechanisms all increase latency and reduce the effective bandwidth.

In a conventional implementation of TCP/IP a aend operation involves the following stages

of moving data: data from the application buffer are copied to the kernel buffer, then packet

forming and calculation of the headers and the checksum takes place, finally packets are copied

into the network interface for transmission. At the reception end the network driver copies

an incoming packet into a kernel buKer where packet headers removed and calculation of the

checksum takes place, before the reci/ operation copies data from the kernel buffer space to the

application buffer space [55]. This requires extra context switching between applications and

the kernel for each system call, additional copies between buEers and address spaces, and result

in generally increased computational overhead [170].

Pasquale et. al. [175] analysed the software communication overhead of a TCP/IP protocol

stack for a cluster of DECstation 5000/200 workstations used for the Sequoia 2000 project and

they categorise functions commonly used by TCP/IP (and UDP/IP) protocol stacks as:

C h e c k s u m : checksum computation

D a t a M o v e : moving data to different memory locations

M b u f : message buffering

ProtSpec: protocol specific operations, e.g. header helds computation

D a t a S t r u c t : data structure manipulation

OpSys : OS overhead

CHAPTEE 2. lOW-I/EV'EI MTERjVODE COMMLTMCATION 15

ErrocChk: user and system error check

Other: operations too small to measure

These types of TCP/IP protocol overhead can be divided into data-touching operations, (i.e.

data move and checksum) and non-data-touching operations. The cost of the first division scales

linearly to the packet size and becomes the dominant overhead for large packets. The cost of

non-data-touching operations is comparatively constant and dominates the overhead for small

packets. Optimisation of the checksum computation on that network improved throughput by

37% and elimination of the checksum improved throughput by 74% [175].

Communication libraries and message-based applications often implement a redundant

stream protocol on top of TCP/IP in order to become portable and platform independent [219].

Implementations of these libraries might be insensitive to the characteristics of a given intercon-

nect, for example client-server applications might wait for an explicit reply-acknowledgement

message to a request. In many cases it is common for a communication library to insert explic-

itly the message length of the stream, and at the receiving end to loop indefinitely to ensure

acquisition of the entire message e.g. socket case [47].

2.4.1 Opt imis ing t he Communica t i on Process ing Overhead

Communication processing overhead in parallel systems and workstation clusters is often anal-

ysed into two parts, one per-segment cost and one per-byte cost [63, 186]. The fixed cost per

segment could include various tasks of the OS such as interrupt mechanisms, buSer alloca-

tion, resetting I/O devices, waking up processes and resetting timers, etc. The per-byte cost

is variable in handling data, e.g. a conventional TCP/IP implementation can have up to four

memory operations. Data copied from the application buEer to the kernel buffer through the

CPU requires two memory operations (read, write), then the calculation of the checksum re-

quires another memory operation (read), and the final copy into the network interface requires

one memory operation (DMA transfer).

Various communication models [210, 63, 186] have been developed in order to evaluate

communication latency among processors in parallel systems. The total latency of a message

according to [176] is:

Toto/ Zofenq/ = lender (werAeod 4- Time o / /ZigM -I GgaageyS' ^ J^ecewer (werAead

Dongarra et. al. [63, 80] follow a linear approach considering latency (n-byte message) as

a constant start-up time (constant per segment cost), and a variable per-byte time and

zero per-hop delay The total latency of an n-byte message on A hops is given by equation

2.1. The message length at which half of the maximum bandwidth is achieved (^1/2) is an

important indication as well.

-I- (A - I)!' (2.1)

where zi is the size of the message. In our case = 0 therefore equation 2.1 is simplified to:

Zn ==*, +f%/% (2.2)

Jacobson et. al. [41] suggested prediction and caching techniques that can reduce the fixed

per-segment cost and hence improve the performance of the protocol stack, e.g. they observed

that most of the incoming TCP segments arrive in order and they have no out-of-band data,

while most of the segments exhibit locality.

Reducing the variable time cost of a protocol requires the reduction of memory operations

[55]. With the use of additional hardware support there are techniques that can eliminate

some of the memory operations required e.g. some CPUs provide a capability of calculating

the checksum while copying, i.e. in the Copy on Write technique the system makes the user

data read-only during a send operation, hence data bytes are copied directly into the network

interface. Another technique known as Page Re-mapping requires the maintenance of a buffer

for the incoming packets. The network interface can split the header and data of incoming

packets into separate buffers starting at memory page boundaries. The memory manager can

re-map the corresponding data pages to the application without copying. With reference to [55]

the Single Copy technique dedicates an area in memory which is shared between the processor

and the network interface, on send or receive event data are copied into the dedicated area

with prefixed headers. Moreover, CPU involvement for copying causes pollution of the process

working set with further cache misses with additional performance degradation.

Such an implementation of the T C P / I P protocol stack should not limit the communication

performance and can support very high transition speeds. Optimised implementations of the

T C P / I P protocol can then move the communication bottleneck down to the network interface.

Reported T C P / I P performances using these techniques have achieved throughput up to 200

Mbit /s [55]. Implementations of the IPv6 protocol are expected to take advantage of the

simplified Internet packet header fields and reduce further computational overhead. In addition

the new protocol can exploit its "jumbogram" features in order to send packages of larger than

64Kbyte with a minimum overhead cost.

2.4.2 High-speed In te rconnec t ion Networks

Over the past few years many new network technologies have been developed, but only a few

of them have been adapted successfully for clusters of workstations and distributed computing

systems. Among the key features a successful high-speed network technology should provide

are low cost, high reliability, software availability and compatibility with existing standards. In

order to preserve the integrity and the functionality of the T C P / I P suite, each new standard

has to provide its own "Network layer" protocol. In this way changes to the underlying inter-

connection network are made transparent for existent applications. If a lightweight proprietary

network protocol is used instead (to increase the throughput further) additional changes and

re-compilation of the applications is also required.

Many current high-speed interconnection technologies in system area networks (SANs)

provide hardware services with outstanding reliability. Such networks can use "optimistic'"*

' 'Protocols which speculate and make optimistic assumption about the underlying network reliability [40].

CHAPTER 2 l O W - I E V E l INTEmrODE COMMt/NICATJON 17

lightweight proprietary communication protocols and introduce new communication modes (e.g.

multicast, isochronous or asynchronous, etc) which can increase application throughput further.

The most important new technologies which can be used in workstation clusters are reviewed

below.

Network Switch Technology Network technologies that use a single shared medium topol-

ogy suffer network bottlenecks and bandwidth shortages. Switch network technology can

alleviate such network bottlenecks by providing high aggregated bandwidth, and increased

throughput transparently. Network switch technology prevents unnecessary traffic crossing

ports-segments and allow multiple simultaneous communication paths among its port-segments.

Switches operate at layer 2 of the ISO reference model by forwarding data with low overhead

cost [173]. Traffic is usually forward in cut-through mode for low latency .

Fast Ethernet Fast Ethernet is a variation of the IEEE 802.3 specification. The bit rate

is increased an order of magnitude (to 100 Mbit/s) while retaining the same wiring systems,

Medium Access Control (MAC) method and frame formats of the old standard. As a conse-

quence the maximum segment distance is reduced down to 100 m. This standard is known

as jOOjBoaeT [101]. Fast Ethernet is acknowledged to be the simplest way to upgrade an ex-

isting lOBaseT based cluster network. Currently Fast Ethernet interconnections provide an

acceptable cost performance trade off solution for commodity workstation clusters.

F D D I Fiber Distributed Data Interface was developed by ANSI and is defined in ISO 9314

standard. FDDI is based on a lOOMbit/s ring topology and can span over a ring of 500 stations

up to 100 km which makes it ideal for a backbone network [101]. FDDI has become well-

established for particular applications where it can provide di^erent functionality to Ethernet,

despite a significantly higher cost.

Gigabit Ethernet This is an evolution of the Ethernet standard (IEEE 802.3) that scales

Ethernet technology to the gigabit range (Gbit/s). The standard in full-duplex mode enables

a 2 Gbit /s throughput on a fibre optic medium (IEEE 802.3x/z or lOOOBASE-SX). The stan-

dard preserves backwards compatibility (with half-duplex mode CSMA/CD) but also provides

extensions which increase its functionality e.g. routing, quality of service (QoS) [70]. Both

Fast Ethernet and Gigabit Ethernet technologies use Ethernet switches to alleviate single bus

congestion problems, increase the aggregate throughput [173] and improve the scalability of the

network.

FCS The Fibre Channel industry Standard is an ANSI standard proposed for ISO adoption

as well. FCS is a switched system that can simultaneously provide high-bandwidth utilization

with distance insensitivity in both directions from 266 Mbit/s to over 4 Gbit/s transfer rate

over a 10 Km distance. Both connection-oriented and connectionless classes of services are

supported as well as broadcasting and multicasting including Internet Protocol (IP), SCSI, IPI,

HIPPI-FP, and audio/video frames [138].

CHAPTER 2. Z/OM^-IEVEI, INTERiVODE COMMLTMCATJON 18

Delivered
m Host

l(to-swi(ch). pon #

l(to-switch). port #

0 (to-hos[), type

CRC
GAP

Header
(var. lenght)

Payload
(arbitary length)

Switch) I Switch

Figure 2.4: A typical Myrinet packet structure, leading header source bytes are interpreted as

routing code of one byte with the most signiBcant bit (MSB) set to 1

A T M The Asynchronous Transfer Mode protocol (ATM) is a common transmission protocol

that haa been internationally deSned and agreed by both the computer and telecommunication

communities. ATM is a cell-based network which provides transmission and switching support

independent of the source media (data, images, voice, video). ATM uses a hybrid form of

c*rc«:^ and pactef of fixed-size blocks, called ceZZs, over virtual circuits as a compro-

mise between data trafBc and audio/video traffic, and QoS. It originated as a way to support

Broadband Integrated Service Data Network (B-ISDN) with high data transfer rates (SONET',

OC-1, OC-12, SDH^) [25, 44]. Data rates start at 155Mbit/s and potentially rise to 4.8 Gbit/s.

The cell switching can handle efEciently both point-to-point and multicasting communi-

cation modes. ATM implementation has three low-level layers. The pAyaicaZ Zayer is almost

identical to layer 1 in the OSI model. The .ATM (ai/er deals with cells, (routing and transport)

but does not provide recovery for lost or damaged cells (it covers layer 2 and partially layer 3

in the OSI layers). The handles assembly/disassembly of packets to cells or

vice versa [221].

The ATM cell size is 53 bytes made up of a 5 byte header plus 48 byte protocol data unit

(PDU) [101] which is a compromise between payload efBciency (around 90%) and low packeti-

sation delay. Relay switches can process cell packets in parallel and then increase transmission

speed [43]. ATM technology is widely adopted by all the major telecommunication carriers and

hence provides WAN services. It has proved to be too expensive for most LAN apphcations,

except where backbone functionality is required.

M y r i n e t Myrinet is a switched gigabit-per-second network technology developed by Myricom

Inc for high-speed LAN to support parallel processing on NOWs. The design of Myrinet was

based on the Caltech Mosaic and the USC/ISI ATOMIC [199, 198, 46] project which imple-

mented the design of a high-speed LAN using MPP components.

The network consists of point-to-point links connecting hosts or switches. Each link is ca-

pable of full bi-directional 1.2Gbit/s bandwidth with low latency (of the order of microseconds)

and very low error rates [117]. The leading byte of a Myrinet packet determines the outgoing

^Synchronous optical network

^Synchronous digital hierarchy

CHAPTER 2. l O W - L E y E l MTERiVODE COMMLTNICATfON 19

Host Bus

Bridge (PCl/SBus) |

I/O Bus

NI Bus

DMA
In/Out Channels NI cpu

DMA

DMA

Figure 2.5: Myrinet NI block diagram.

port of the switch and is stripped off by the switch en route. At the host end the remaining

leading header byte identifes the type of packet. Myrinet packets have arbitrary length payload

and can encapsulate other types of packets, e.g. IP packets, without an adaptation layer. The

CRC is computed for the entire packet and recomputed on each link (because the packet header

is modified). The Myrinet network uses multi-port switches (4, 8, 16, 32-way port) of pipelined

crossbar type with blocking cut-through (wormhole) routing similar to Intel Paragon and Cray

T3D MPP systems [22, 45].

The network provides in-order delivery, error detection is done by hardware-computed CRC

Geld and erroneous packets are dropped. The flow control mechanism used to block packets

on busy channels is accomplished with acknowledged byte-control symbols (GO, STOP, etc)

injected into the opposite-going channel of the link.

Each host interface card has its own programmable network interface processor (a 32-

bit control processor called LANai), 1Mbyte of fast SRAM used to hold network buEers and

instruction code for the network processor and three DMA engines, one for the outgoing channel,

one for the incoming channel and the third one (via PCI or S-Bus bridge) for the host main

memory. Data transfer between the host memory and the Myrinet interface can be done either

in DMA mode or using Programmable I/O instructions mode [17].

Control and access of the network interface is based on a Eexible scheme with a Myrinet

Control Program (MCP), the device driver and the OS. In this way the interface is very flexible

and can easily implement Data Layer (Level 2 of the ISO reference model) services for existing

higher-level network protocols as well as providing an excellent infrastructure for experimental

protocol implementations.

Sca lab le C o h e r e n t I n t e r c o n n e c t (SCI) The SCI (ANSI/IEEE standard 1596-1992) is not

a traditional network, rather a bus defining an electrical interconnect standard for internal

CBAPTER 2. l O W - I E V E l fNTERiVODE COMMUNICATION 20

XI X2 X3

Two dimensional CNA

Y1

WS WS

Y2

Y3

WS WS WS

WS

ws

ws
4.2

WS WS WS WS

X4

Figure 2.6: 2-D Concurrent Network Architecture source [111]

processor-memory connections within computers allowing 1 Gbyte/s transfers over distances

of up to 10m and a Abre-optic serial interface that equals FCS full speed up to one kilometre

[119]. SCI-based systems provide hardware supported Distributed Shared Memory (DSM)

support with low-latency remote memory access (remote write of 100 Tis and remote read of 5

on SMILE PC cluster [112]).

Serial Express The 'SerialExpress' is a draft standard (IEEE P2100) based on a bus archi-

tecture similar to SCI and Serial Bus. Its aim is to provide a low-cost technology independent

interconnect for system area networks [119]. The protocol supports peer-to-peer communica-

tion modes as well as isochronous or asynchronous traffic in real-time mode. SerialExpress is

independent of the transmission media, and can operate with a low-cost serial-link technology

(e.g. iGbit/s data rate).

Concurrent Network Architecture and Channel Bonding A technique to improve net-

work bandwidth is the concurrent use of multiple network paths. Hipper et. cil. [I l l] suggested

an alternative network architecture for clusters that increases communication performance with

the introduction of a structured network consisting of several parallel and independent LAN

communication channels in a flexible topological structure. Communication between two nodes

can be direct, e.g. sharing of a common communication chcinnel, or via another node acting

as a router. In this way the aggregated communication network throughput among nodes is

increased with the number of independent networks. Consequently contention and scalability

of the system is improved as well. The Beowulf class project [208] (see Chapter 3.6) has used

a similar multiple Ethernet configuration scheme to increase communication throughput and

scalability known as "channel bonding", this technique joins multiple low-cost networks into a

single logical networks with higher bandwidth. Channel bonding and load balancing is imple-

mented at the device queue layer below the IP protocol layer which makes it transparent to the

application layer. This method was successfully tested with 10 Mbit/s and 100 Mbit/s Ethernet

channels in many Beowulf clusters.

CHAPTER 2. Z/OW-IEVEl MTEENODE COMMt/NICATZON 21

An experiment on a 16 node Beowulf cluster with two and three way lOMbit/s Ethernet

channels per node configurations achieved respectively throughput of 1.7 Mbyte/s (68% of peak)

and 2.4 Mbyte/s (64% of peak) for 8Kbyte token exchange [208].

In this way the performance of the cluster is improved, especially for application algo-

rithms that exploit the underlying network topology. Sophisticated network topologies such as

hypercubes, mesh, or toroidal could be easily implemented and accommodate a large number of

nodes. However, such a parallelism at the network level does not improve latency. In practice

there is a compromise on processing nodes that serve as networking nodes between computa-

tion overhead of the extra routing and the remaining compute capability of the processor itself.

Other disadvantages of such architecture are the multiple cost of multiple number of networking

e.g. extra Network Interface Card (NIC) per workstation, and the limited number of interface

slots, (e.g. for the PCI bus), available on workstations.

2.5 Case Study: Internetworking with Ethernet

The lOMbit/s Ethernet, though relatively slow in comparison with new gigabit networking

technologies such as Myrinet [22], is still the most-widely used LAN technology to interconnect

local distributed systems and clusters of workstations in organisations. Additionally most of

the clusters at the University of Southampton currently use 10 Mbit/s Ethernet for the inter-

connecting network. Thus in order to understand the interconnection of our clusters, a further

study of the basic characteristics of an Ethernet interconnection network (such as latency and

bandwidth) is required. The results will be used later as a basis to compare with communication

libraries, such as MPI.

Networks can be characterised by two aspects, latency and bandwidth. Communication

latency is the end-to-end transfer time of a message &om user space to user space (see equation

2.2). For small messages the protocol computation is the dominant factor rather than the

actual hardware latency. Throughput denotes the amount of data can be transmitted over a

time period. In this case study, latency is denoted as the zero-size-message round-trip time

and bandwidth the throughput achieved in the transmission of large messages. The maximum

theoretical throughput of the 802.3 Ethernet standard is Rrst calculated and then compared with

the actual latency and bandwidth on an example network e.g. a cluster of Sun workstations.

Parameters that can a&ct measurements in our tests are taken into account for each platform

in order to analyse the results better.

Communication libraries in parallel systems are usually based on the underlying inter-

connection network (this will be explained in greater detail in chapter 4). A small ping-pong

program [186] was written to make an estimation of the actual throughput of the OS and the

network (a 10 Mbit/s Ethernet segment). Measurements were also taken on Sun (ULTRA

SPARC) and Pentium-Pro workstations and Pentium-Pro workstations on a Fast Ethernet net-

work. The software was designed to measure bandwidth and latency of the Berkeley sockets

only. Figure 2.7 and Table 2.2 give numerical results for the latency and the bandwidth mea-

sured on various clusters using TCP/IP sockets. For small messages the start-up time can be

an order of magnitude larger than the actual time required for the transmission (i.e.

22

Uicncy benchfwrk MomJWZ? UiOWlWI BuvJwkhh benchmtrk

iOMb/s Elbemel LymxiLym Unux at GEO Approxinialioii plol

lOMh/j Elbemet M»A. TlKofaicaJ TCP/IP over Eibenjct pk*
LywiLyom Unox at GEO -̂ppftwimalioo pkl

^ ^ WW KW

Figure 2.7: Communication bandwidth and latency measurements over 10 Mbit/s Ethernet,

together with theoretical estimation

from tn = ts + tu,n in section 2.4.1).

Applying a linear regression fitting on the experimental results of Fig. 2.7 using the model

of equation 2.2 we can find the coefficients of f , and tm as shown in Table 2.2. A simplified

approximation of the equation 2.2 coefiicients can be derived from the Table A.l in Appendix

A which gives similar results for lOBaseT networks.

ts ~ zero length message (2.3)

tn I per byte transmission cost i
8{bit/byte)

10(Mbit/sec)

From Appendix A the average overhead Ugv for each Ethernet packet is approximately

bytes for each frame transmitted hence equation 2.2 becomes:

(2.4)

% 55

tfi — 4" tyj{nQi/ 7i) — 5̂ -f- ̂ 771 (5o -f- 7T.) (2.5)

Applying a linear-fit regression for the Ultra-SPARC cluster measured points yields a zero-

length latency of 200 i^s and t^ % 0.9, thus equation 2.2 becomes: 150 -t- 0.9(55 4- x). The

transmission cost per byte in our approximation includes buffer handling management so its

calculated value is bellow the real byte transmission on the channel which for a lOMbit/sec

Ethernet is 1.25 Mbyte/sec. Figure 2.7 shows the plots of this approximation compared with

the measured data.

The non-deterministic nature of the Ethernet channel as well as the way the OS handles

transmission and reception of network packets, has the potential to cause variations in measure-

ments. In addition, Ethernet packet fragmentation affects the latency for packet sizes above

the maximum Ethernet packet size (>1460 bytes).

The results illustrate a detectable difference between the actual performance and the theo-

retical one, this is due to the operating system overhead and the non-deterministic nature of the

channel. For large size messages most of the clusters approach the maximum theoretical barrier

CfL4JP]lEj% 2. jCĈ Vŷ IJSn̂ EjLjKVGTELRjVCXCIE (:C%tfAJLrN7(%j/rfC)Ar 23

Table 2.2: Latency and bandwidth characteristics for diEerent networks of workstations

Cluster Latency ÔO ni/2 ts

Configuration Cua) (Mbyte/s) (bytes)

Sun (Solaris) UltraSPARC 233 1.084 >256 152 0.987

PC (Lyon) Pentium Pro 144 1.042 <200 137 0.916

PC (GEO) Pentium Pro 316 1.041 IK 1074 0.819

PC (FastEthernet) Pentium Pro 90 5.40 <1.5K 196 0.175

SGI 0 2 (FastEth.) RIOOOO 368 12.06 <8K 496 0.079

150-l-0.9(55-l-x) 200 1.10 222 - -

of the Ethernet channel. In terms of latency and half performance bandwidth point there

are substantial diEerences among clusters. Latency and bandwidth both strongly depend on

the hardware performance as well as the actual implementation of the network protocols.

The Solaris cluster for example gives relatively-smooth results which are closer to the

theoretical hmits than the other cluster configurations most of the time. The reason for this is

the well-tuned network protocol implementation together with balanced underlying hardware

achieved by Sun workstations. Conversely unbalanced PC-baaed systems with diSerent software

implementations can degrade the elective network performance.

Similar results could be achieved with a Fast Ethernet network cluster. The main difference

with the lOMbit/s Ethernet is the medium transmission rate which decreases the '^ime of Eight"

in equation 2.2 but does not change significantly start up processing overheads. Figure 2.8 shows

the result of the latency and bandwidth measurements for the Fast Ethernet link. The Ethernet

link of 10/100 Mbit/s. E&ctive bandwidth in tests is limited asymptotically by the Ethernet

link barrier only for large size messages.

For short messages the computation overhead dominates the results. Saturation of the

communication channel within the range of small messages is relatively low despite the use of

fast processors [151] i.e. the half performance message length for Fast Ethernet configurations

is relatively large and makes poor utilisation of the eEective bandwidth for short messages.

Remarkable performance variations can be seen for clusters of PCs due to their difference in

hardware and software conAgurations. Least square parameter Rtting of equation 2.2 is more

accurate for short messages than large messages for network interfaces which use advanced

hardware features i.e. DMA engines.

2.6 User-space Protocols

Advances in processor and network technology frequently improve bandwidth but not end-to-

end latency, largely because the communication software overhead is several orders of magnitude

larger than the hardware overhead [169]. In traditional network architectures the host processor

'"The #1/2 or half performance point is the message size at which the bandwidth is equal to the half of the

m a x i m u m assymptot ic bandwidth performance achieved on that system [114].

CHAPTER 2. LOW-lEVEl MTEJLVODE COMML^MCATION 24

00\#AEih
5*0 173* pk*

Edwiw Bwikkkhbmdmwt

M)36 %2I4

Figure 2.8: Communication bandwidth and latency measurements over 100 Mbit/s Ethernet,

theoretical latency of 196 + 0.175 - n approximation

and the OS control the communications hardware, inevitably introducing a serious bottleneck

which constrains performance [55]. This results in additional context switching between appli-

cations and the OS for each system call and additional copy operations between address spaces

and buEer management [170, 9].

The actual network traffic over a LAN on which workstations share local resources and

control usually consists of many small packets. Extensive measurements even on network-

bandwidth-intensive applications [176] demonstrated that 95% of the packets in the trace are

less than 200 bytes, while the mean packet size is less than 400 bytes. For packets of this

size the dominant transport cost is not the bandwidth but the set-up overhead. Small packet

sizes with a latency overhead in the order of millisecond cannot be hidden using conventional

programming techniques such as overlapping or pipelining. In other words, performance is

eEectively bounded by the interaction between the kernel and the user-space rather than the

available communication bandwidth.

As a result, clusters of powerful workstations still suffer a degradation in performance even

when a fast intercoimection network is provided. In addition, the network protocols in common

use are unable to exploit fully all of the hardware capability resulting in low bandwidth and

high end-to-end latency. Parallel applications running on top of communication libraries (e.g.

MPI, PVM, etc.) add an extra layer on top of the network communication stack, (see Fig. 2.9)

[152].

Modern improved protocols for workstation clusters and LANs are designed to avoid

the time-consuming communication path (application-kernel-network device) identified above

[182, 187, 134, 229]. Additionally these protocols exploit advanced hardware capabihties,

(e.g. network devices with co-processors and enhanced DMA engines such as Descriptor-Based

DMA^) by moving as much functionality aa possible into the hardware device. Users can write

^Descriptors are d a t a blocks typically with 16- and 32-bit fields tha t serve as a simple instruction set for

implement ing DMA transfers. Hence the DMA engine is enhanced to execute efficiently and autonomously, i.e.

without in terrupt ing the C P U , sequences of da t a transfers.

The 3c905 NIC suppor ts both Descriptor-Based DMA and CPU-driven DMA transfer modes.

(TfLAjOGrEJR 2. jCC)ty:iJ51{E%LjOV:rELRJVC)I%S CZOiVOVfOTVICZAirfCUV 25

MPI
MPLSendO MPLRecvQ

ADI

TCP/IP

Network

~

Figure 2.9: MPI on top of the T C P / I P protocol stack

communication libraries and applications which interact directly with the network interface

avoiding any system calls or kernel interaction. In this way the processing overhead is consid-

erably reduced providing both reduced latency and higher throughput [21]. Such an approach

can however introduce a drawback in terms of functionality (i.e. reduced system security and

integrity together with removal of the protected multiprogramming communication, because the

network interface is shared now between the OS and network applications) [184, 182, 134, 236].

Contemporary OSs can overcome these disadvantages by providing virtual memory protection

mechanisms or virtual network interfaces, but there is always a compromise between functional-

ity and performance. There are several approaches for user-space protocols (sometimes referred

as user-level protocols in the literature) which provide low-latency and high bandwidth on fast

networks [9]. Most of them provide direct user access to the network interface support for

SPMD models and use commodity workstations (e.g. PCs) together with a standard OS (e.g.

NetBSD, Linux, NT). The following paragraphs present the current state of the art in fast

protocols.

Basic Interface for Parallel ism [183] (BIP) this approach implements a high-speed protocol

Application Programming Interface (API) run on a Myrinet board. It eliminates all

system calls by implementing zero-copy protocols at the user-space and provides data

transfer only (in a FIFO order), while not providing protection or multiprogramming.

Latencies of the order of a few microseconds are achieved and the network channel can be

fully filled with data (126 Mbyte/s at user-space throughput). Section 2.7 in this chapter

examines a BIP system in more detail.

U - N e t [229] provides a network protocol stack at the user level, enabling applications to ac-

cess high-speed communication devices directly. A virtual Network Interface with memory

management capabilities provides protection among processes without any kernel inter-

vention. The architecture is very flexible and can adapt traditional protocols such as

TCP, UDP or even Active Messages efficiently. Implementations of the U-Net protocol

CEAfTEE 2. lOW-I/EVEI MTEEiVODE COMMUMCATfON 26

achieve performance close to the hardware hmits for Fast Ethernet or ATM communica-

tion channels.

Act iveMessage5(Gener icAM,AM-II) [139] represent a approach to one aided com-

munications by providing a simple set of communication primitives based upon request

and reply active messages, which provide a substrate for higher-level communication li-

braries or parallel-language compilers. In this system the header of each message contains

control information for the user-space routine responsible for extracting the message from

the network. Messages are delivered in FIFO order and there is an option for multipro-

gramming support. AM-II also provides "put" and "get" remote-memory communication

primitives.

FastMessages(FM) [170] is a high-speed Active-Message-like system that delivers low latency

and high bandwidth for short messages over a Myrinet network. FM provides in-order

message delivery with flow control and packet retransmission. Each message carries a

pointer to a function that consumes data at the receiver end. The latest versions of FM

support the SPARCstation SB us as well as the PCI bus on a PC cluster together with

support for multiprogramming.

Fas t_Sockets [187] exports the Berkeley Sockets programming interface using a high-performance

protocol which collapses and simplifies protocol layers by transferring some of the protocol

knowledge required into user-space programming.

VirtualMerrioryMappedComrnuriication(VMMC) [56] model allows an application pro-

cess to access (directly or through user-space transfer operations) the memory of another

process running on any node in the system within a protection domain, hence it can be

used for both message-passing as well as shared memory implementations. The VMMC

model supports protected user-space communication while multiprogramming is possible

as well.

Virtual lnterface Architecture (VIA) [48, 67] is an attempt to standardise a user-space spec-

ification protocol for clusters and system-area networks (promoted by Intel, Microsoft and

Compaq). VIA defines a set of functions and data structures with associated semantics

for moving data among remote processes memory. Processes open connection-oriented

Virtual Interfaces (VI) that represent handles into the network, which can be seen as an

extension to the U-Net end points, on which messages are sent to or received from its

remote VI. VIA provides direct transfers between local and remote memory similar to

AM-II "puts" and "gets". Protection in VIA is ensured by each process specifying the

available memory areas for remote DMA operations. A deAned quality of service (QoS)

can be supported as well, although reliability of communication is not mandatory.

There is still no NIC hardware support (end of 1999), since the release of the VIA 1.0

specification. Experimental kernel-emulated VIA support with improved characteristics

for Fast Ethernet has been implemented.

CHAPTER 2. IOW-f,EVEI INTERNODE COMMI/NICATJON

All protocols discussed above have one common feature, communication interchange is done

via the I/O programming mode at the host computers. This means that latency can be several

cycles long because of the 1 / 0 commands needed (e.g. programming the NIC) and the only way

to improve it is to reduce the number of instructions. For a fast interconnection network such

as Myrinet latency in the order of 5 microseconds can be achieved. At this level additional func-

tionality can add substantial burden and increase latency. Bilas et. al. [9] in their quantitative

study of user-space communication discuss the difference between functionality and eSciency

for fast protocols.

2.6.1 "Carefu l" P ro toco l s

According to [158] careful protocols oEer a reliable service which is equivalent to the reliability

provided by the lower-level protocol service. Many new network technologies provide services

with "negligible small" probability of lost, damaged, duplicated, or out-of-order packets, While

the description 'negligible small' is application dependent, the option of enhancing reliability

could be addressed at the end-to-end level. Under such an assumption the implementation of

communication protocols is considerably simplified, because no retransmission, or duplicating-

detection, or out-of-order schemes are required and the flow-control issue can be addressed

with a simple request/response rendezvous scheme. This will provide interconnection with low

latency features in a similar way to typical MPP interconnection, which is considered rehable

by design.

2.6.2 Light Weight Pro toco l s

Another interesting class of fast protocols is the "eScient OS support" approach sometimes

known as "light weight protocols". The communication protocol again is carefully simplified and

supported on a small set of Sexible and efRcient low-level communication primitives by the OS

kernel [39, 38]. A LAN-span communication protocol can have a simple host naming scheme,

it should also minimise temporary data movements and apply various pipelining techniques

between consecutive communication stages. Intervention with the OS should also be minimised

and use light-weight system calls. The notification policy upon message arrivals has to be

efficient and adaptive between polling and interrupt based mechanisms [40, 158, 190].

High-level communication protocols are built efficiently on top of these communication

primitives. The advcintages of this kernel-level approach is enhanced Gexibility of the network

protocol but at the same time protective multi-user and multiprogramming features which can

be supported on inexpensive commodity hardware (e.g. Fast Ethernet NI) in contrast to a

restricted user-level approach. Examples of light-weight protocols are the GAMMA project,

the Beowulf clusters, PARJvIA, etc.

Genoa Act ive Message MAchine (G A M M A) The GAMMA project is an example of a

light-weight protocol currently running on a lOOBase-T cluster of Pentium PCs running Linux.

The communication mechanism is based on the concept of Active Ports, each process can

activate and use up to 256 ports for output, input or input/output to send or receive messages.

(:fL4jPGrE%% 2. jLOty.ZJSl/E;JL (TCUV&VfUTVICIAGriCliV 28

ip Fa %
GAMMA

Li rux 2 . 0 . 2 9 TCP/IP, Nagie d i s a b l e d {v0.99F d r i v e r) , P I I 300
on Linux 2 . 0 . 2 9 TCP/I? ;vO. :9F d r i v e r) , P I I 300

I
I
I

512 150030006000 24K 48K 192K

Message S i z e (by te)

Figure 2.10; GAMMA throughput taken from [40]

Active Ports are implemented with light-weight calls, (i.e. system calls with no intervention of

the scheduler upon return), as well as "fast interrupts" and are effectively between the kernel-

level (at the NIC device driver) and the user-level communication library.

Message sending is accomplished with a zero copy mechanism that transfers data from the

user space to the network interface by splitting the message into a sequence of Ethernet frames

of size 60-1536 bytes. At the receiving end an interrupt handler is launched which copies the

network interface receive queue to the memory space of the receiver process. Frame headers

provide the necessary information needed for correct process space buffering [37]. The GAMMA

protocol mechanism allows multi-user access of the communication path as well as the use and

existence of GAMMA and IP datagrams.

Active Ports allow a zero-copy protocol implementation with the very low latency feature

below 13 fj,s and maximum throughput of 12.2 Mbyte/s with half-bandwidth message size of

just 192 bytes [39]. The Active Ports communication mechanism does not provide explicit

acknowledgement and flow control scheme (which is usually not critical as the Ethernet channel

is the slowest part of the communication path), Ethernet frames with an invalid CRC are

discarded. However the protocol is allowed to pass error packets to the application layer to deal

with.

CHAPTER 2. JLOW-IEVEi liVTERNODE COMMt/NJCATfON 29

Table 2.3: User space protocol characteristics

AM-II BIP-0.92 FM-2.02 VMMC-2

Comm. Model RPC Send/Recv Send/Recv Direct Depos.

Control/Data Combined Data Only Combined Separate

transfer

Buf. Overflow Prevented Data Loss Prevented Impossible

Net Errors Tolerated Catastrophic Catastrophic Tolerated

Net. Manag. Dynamic Static Static Dynamic

Send Data PIO DMA-k

v2p transl.

PIO DMA+

v2p transl.

Recv Data DMA-P DMA+ DMA+ DMA+

copy v2p transl. copy v2p transl.

Translation DMA user DMA UTLB

Protection Copy None None PlO-l-copy

Notification Polling None Polling N/A

Latency 21 /ig 6 11 flS 11

Bandwidth 31 Mbyte/s 121 Mbyte/s 78 Mbyte/s 97 Mbyte/s

2.6.3 Semant ics of User-Space Ne twork Pro toco ls

Fast commimication protocols are necessary for distributed and clustered systems that can

deliver the real potential of the hardware performance at the application level. Existing com-

munication protocols provide a level of functionality which is not necessary on LAN and SAN

systems. At the top end of the application level the communication library services required

can be summarised to:

» Message delivery between the sender and the receiver

« Message ordering (messages should be delivered in the order of transmission)

Deadlock and overflow safety

Reliable delivery

At the network side of the communication sub-system the required features are typically:

® Arbitrary delivery order

Finite buffering

Fault detection (but not a fault-tolerance mechanism)

The software messaging layer has to bridge the gap between communication services and hard-

ware features in the most efficient way possible [122]. Hence the software protocol has to

CHAP TEE 2. lOW-LEVEl INTER^'ODE COAfMLTNICATfON 30

sequence and reorder packets, address Aow control and buSer management aa well as acknowl-

edging data, etc.

A common feature among user-space protocols is the diversion of OS from the critical

communication path and the avoiding of redundant memory copying. The cost of memory

copy is regarded as relatively high because memory speed and memory bus bandwidth have not

improved significantly over the past few years [160, 176]. However, bypassing the OS removes as

well the responsibility of the communication either towards the application level or towards the

network interface. User-space protocols hence being simple have to use as much of the network

interface hardware features balancing functionality and performance. User-space protocols in

additional have to address several common network protocol design problems eGiciently e.g.

data transfer, reception of message, flow control, etc.

Data transfer for zero-copy protocols involves three stages, a host-to-interface transfer, an

interface-to-interface transfer and an interface-to-host transfer. The host-to-interface transfer to

the network interface or the I/O subsystem should have direct memory access capabilities [197,

18] aa well as programmed I/O (copying). DMA techniques have the advantage of decoupling

the CPU from the data transfer and also prevent pollution of the cache. Furthermore DMA

transfer can enhance overlapped activities within a node. Host-to-interface transfers via DMA

require the translation of the process' virtual address to the physical address on NI in a protected

manner.

The address translation mechanism is a key requirement for such operation and the NI is

expected to provide it. In addition coherency with the cache has to be supported without the

involvement of the CPU [17]. Asynchronous DMA transfers may require locking of memory

pages in their address space to avoid OS involvement. In order for the system to support mul-

tiple sends and receives the mechanism has to define message segment areas for each process

to send or receive messages. The address translation mechanism has to be extended to <aeg-

and provide protection among multiple processes network access

[197] or alternative use a scheme of Translation Look-aside Table (TLB) e.g. the U-Net/MM

[235]. Many zero-copy protocols compensate the DMA start-up cost by using Programmable

I/O for short messages (e.g. <256 bytes, and providing an adaptive cut-through message de-

livery mechanism [243]. Programmable I/O transfer does not require translation or protection

mechanisms.

Control transfer mechanisms and notification mechanisms can be either by polling or by use

of interrupts, depending on the network interface. The first method is fast which helps to keep

resources busy, while although interrupt handling is generally more expensive in terms of time

it allows multiprogramming. The network channel in fast networks is highly reliable so many

user-space protocols do not provide retransmission, buffering or acknowledgement mechanisms.

Erroneous packets are usually dropped or notify the application layer. At an extra cost some

protocols can also provide reliable communication e.g. AM-II.

Regardless of the reliability of the system, overflow control is another issue network proto-

cols are required to address. Many protocols rely on the network interface hardware flow control

mechanism, other on the preallocation of buffers or the of a rendezvous-style communication

where the receiver posts a receive request for large messages. Multicasting and broadcasting

CHAPTEE 2. LOW-IEVEi ZNTERNODE COMMt/NfCATfON 31

Application

MPI

BIP
TCP/UDP

IP-BIP IP

Myrinet Ethernet

Application

MPI

TCP/UDP

IP

Ethernet

Figure 2.11: The BIP protocol stack approach (left) compared with the classical TCP/IP

approach (right)

for these protocols is usually done at the software level. Network management of user-space

protocol can be either dynamic or static.

2.7 The BIP Zero-Copy Protocol Approach

The Basic Interface for Parallelism is an API for System Area Networks, capable of exploiting

the fast communication links among nodes provided by network technologies such as Myrinet

[117]. The interface has been designed to deliver to the application layer the maximum perfor-

mance achievable by the hardware. Important features of this protocol include direct interaction

with the network board at the user-apphcation level, ehmination of system calls, efRcient use

of memory bandwidth and a zero-copy protocol [183].

The protocol takes advantage of the network-board processor, memory and DMA engine

in order to perform fast pipelined data transfers. BIP messages can be routed through multiple

Myrinet switches which provide services equivalent to the OSI 3 level. The Myrinet network has

a very low intrinsic error rate, therefore in order to reduce overheads the BIP protocol itself does

not provide an error correction mechanism. However a Myrinet error detection mechanism is

provided and in principle could be used &om the application end or higher protocols to provide

limited error correction [182].

In order for BIP to achieve its maximum performance, the network board management of

a node has to be dedicated to the application The NI registers and its memory regions have

to be exposed to user-level access with no protection. Thus other applications cannot share or

use the BIP protocol on the same node concurrently. However applications running on other

nodes can share the Myrinet network. Hence the operation mode of the cluster is similar to the

batch processing mode of MPPs. The NIC DMA engine is capable of addressing any location

in memory for direct data transfers from and to user space. This capability means that BIP

requires system support for coherency between DMA memory access and the processor cache,

hence the OS together with the system bus hcis to be able to translate between physical and

virtual addresses.

C^APTEJt 2. fiVTERJ\'ODE COMMt/NICATfON 32

Table 2.4: Latency and bandwidth performance on a Myrinet cluster using BIP

Message Size Latency Bandwidth

(bytes) Mbyte/s

0 11 -

128 20 8.5

236 48 5.7

512 54 10

IK 60 18

8K 142 57

32K 353 90

128K 1160 108

512K 4370 114

Although the Myrinet network can handle arbitrary long packets the BIP protocol uses an

adaptive four-staged pipelined transmission mechanism to maximise the eHiciency of its DMA

engines along the communication path. Messages are fragmented into packets of equal size and

each packet transmitted in sequence through the pipeline. The host processors at both ends

are only involved during the transfer initialisation to provide storage information about the

message. An adaptable transferring policy is used for short and long messages to maximise

e@ciency (memory copy, PIO, or DMA transfer).

BIP services are strongly oriented for parallel applications to provide an intermediate

layer of functionality for higher-level protocols e.g. TCP and MPI. The BIP interface provides

stand-alone communication primitives for blocking or non-blocking Ccills with "loose" rendezvous

semantics, hence overlapped computations and communications are possible.

The current implementation of BIP (v 0.93) runs over a homogeneous cluster of six

x86/Linux workstations, linked by a Myrinet network with a maximum throughput of 132

Mbyte/s (using the Myrinet/PCI board). The Myrinet switch is a wormhole switch contribut-

ing less than 100 ns latency overhead in the absence of contention. The BIP cluster test-bed is

flexible enough (see Fig 2.11) to configure the communication API as:

1. TCP/IP API over Ethernet (Ethernet configuration)

2. TCP/BIP API over Myrinet (Myrinet conhguration)

3. BIP API over Myrinet (BIP configuration)

User applications for the hrst two API modes run transparently on both configurations i.e.

no change is required either in the MPI implementation or the MPI executables. In the third

mode, where MPI runs directly on top of BIP, changes in the Abstract Device Interface are

necessary hence all MPI programs require re-compilation with the new libraries. The easiest

way to do this for the BIP protocol was to provide a new Channel Interface without invoking

the kernel which ensures a zero-copy protocol at the MPI level.

Table 2.5: Ping-pong test results on various communication libraries

Configuration min Latency max BW ai/2
T C P / I P sockets 144 jj,s 1.06 Mbyte/s 300

T C P / B I P sockets 84 /iS 23 Mbyte/s L 5] {

BIP sockets 6 121 Mbyte/s 3 K

MPI over TCP/IP 280 fjLS 1 Mbyte/s 300

MPI over TCP/BIP 171 ps 17.9 Mbyte/s L 5 K

MPI over BIP 11 fiS 114 Mbyte/s 8 K

Table 2.5 shows the latency and bandwidth graphs for different protocol stack configura-

tions. A noticeable discontinuity at message sizes of 256 bytes reveals the different semantics

between short and long messages transmission modes.

2.7.1 F u t u r e Trends of Ne twork Subsys tems

Over the past decade the concept of networking has become an increasingly fundamental part

of computing: in the words of Sun® "the network is the computer". Despite the acceptance

of the above trend network subsystems have not been perceived as an integrated computing

subsystem from both the hardware and the software perspective.

According to Hill et. al. [160] the future of network interface is tightly coupled with memory

systems and processing units and therefore NICs should be seen as a vital computer subsystem

and not as an'ordinary'peripheral . Cranoret . al. [50] describe an efficient network architecture

interface that integrates communication functionality into the processor which can provide fast

event processing and high performance data transfer. For the existing network architectures,

the user-space protocols on clusters and distributed systems have demonstrated the potential

to reduce the communication bottleneck and achieve high throughput. Table 2.3 shows the

system I /O bus throughput could limit the effective network bandwidth (e.g. the 32bit PCI

bus is restricted to a throughput of 132Mbyte/s while existing communication links are capable

to deliver 1.28Gbit/s that is equivalent to 160Mbyte/s point-to-point data transmission rate

[117, 23]). In addition, the choice for data handling and moving to and from the host memory

via the PCI I /O bridge is becoming critical and can affect performance of common network

traffic patterns [243]. As microprocessor and network technology advance towards Gigahertz

clock rates and tens of Gbit/s bandwidth^®, the I /O bus bottleneck will become the next critical

communication barrier. Mukherjee et. al. [161] propose that a network interface should be

attached on the system bus (processor data path, the cache bus, or the memory bus) in a similar

way to MPPs.

Access to the NIC will be treated as regular memory access rather using I /O operations

through the OS. There are many advantages of attaching a device to the system/memory bus,

^Advertising slogan used by Sun Microsystems.

Sonet {OC-192) has a throughput of 10 G b i t / s Wave Division Multiplexing (WDM) can deliver aggregate

th roughputs of 200 G b i t / s [44].

CEAf TEE 2. lOW-I/EVEI, fNTERNODE COMMUNICATION 34

f CPU j
Memory

r c a c h e 1

Memory bus
5 -

Disk

cache

Memory

Memory bus

1/0 bus
I/O bridge

Network

I/O bridge

Network

Interface

I/O bus

Disk
Network

Interface

Network

Figure 2.12: Network Interface attachments on a workstation system

latency and throughput of data transfer is becoming significantly better (latency at the order of

715 bandwidth greater than 2.6 Gbyte/s are typical values system bus). Network protocols then

can be simpliAed even more, as the NI will inherit all memory bus virtual-to-physical-address

translation and protection, existing mechanisms together with cache coherency strategies to

avoid side-effects [160, 36]. Host applications will then be able to directly access the network

interface without compromising performance. Among the drawbacks of such a proposal are

possible changes on the host (system and OS) to adapt the NI and the lack of standardisation

among system buses.

One could argue that such a conhguration of clusters and distributed systems is very

similar to current MPPs. The diSerence is that MPPs will probably continue to be based

on proprietary components while system area networks are likely to be based on standardised

commodity COTS (Commodity Off The Shelf) components.

2.8 Summary

This chapter has examined the fundamental characteristics and semantics of intercommuni-

cation subsystems that are used in networks of workstation. "Traditional" communication

protocols written with WANs and LANs features in mind introduce long overheads and fail to

dehver high throughput on modem high-speed links. Ciaccio [40] points out that communica-

tion software is substcmtially older than network interfaces but relatively young compared with

the history of operating systems.

A new generation of network protocols such as user-space, "careful", or light-weight pro-

tocols, built around the concept of system area networks and clusters, demonstrate improved

communication performance characteristics at both network level and application level. Emerg-

ing network technologies such as Fast Ethernet, ATM and Gigabit Ethernet are now replacing

the old lOMbit/s based networks in LANs and will offer new communication features (e.g.

CHAPTER 2. l O W - I E V E l INTERNODE COMMI/NfCATfON 35

multicast, QoS, etc). In order to sustain high throughput among the nodes of a distributed

system, high-speed network technologies require modern implementation of network protocols

in order to exploit their advanced features. In addition, such protocols need to address any

unnecessary interaction with the OS (e.g. user space protocols) and reduce the computational

overhead. The use of fast protocols such as the BIP have demonstrated that substantial per-

formance improvement is possible. Workstation clusters need to adopt these low latency and

high bandwidth interconnection subsystem in order to perform as a viable competitive parallel

platform.

Chapter 3

Clusters of Workstations

3.1 In t roduc t ion

This chapter reviews concepts and issues from Distributed Systems (DS) and parallel systems

which are directly applicable on workstation clusters. In addition later sections of this chapter

will classi^ the main attributes and characteristics of the workstation cluster platform compared

with MPP systems which will assist later in understanding the underlying performance.

Advances in computer systems and computer network technologies over the last twenty

years have gradually allowed different computers to share network resources and facilities (a

concept known as "distributed computing"). A "distributed computing system" (DCS) is a

collection of autonomous computers linked by a communication network with software that

provides integrated computing facilities. Tannenbaum [221, 223] defines a distributed system

as "a collection of independent computers that appear to the users of the system as a single

computer".

There ajre several ways in which a distributed system can be claasiRed. Using Flynn's [75]

taxonomy a distributed system is certainly an MIMD machine, and according to the way nodes

are coupled a distributed system can be either tightly coupled or loosely coupled [143, 32, 49]

or according to their programming model client/server or processor pool [224].

Workstations clusters (otherwise known as networks of workstations or simply clusters), [6,

171] are a type of parallel (or distributed) system that consists of a collection of interconnected

whole computers utilised as a single unified resource [178]. Clusters or Networks of Workstations

(NOWs) provide a way to build powerful, cost-eSective parallel machines by using standard oE-

the-shelf computers and networking technology [241]. NOWs use the same computational model

as MPPs (message-passing) so they can provide an alternative test-bed platform for parallel

applications.

As a distributed system, clusters have the same difBculties as a DCS has in terms of software

tools and standards. Administration of a cluster is individual for each machine of the system

which is neither time-efBcient nor cost-effective. Software applications and tools for clusters

are limited and require the support of a robust programming model (e.g. message-passing)

and a run-time system. Essential issues and concepts of distributed systems become directly

36

CHAPTER 3. CLUSTERS OF WOm:ST4TfONS 37

applicable and could determine the performance of clusters aa well.

The following section examine issues of distributed systems such as remote procedure calls,

synchronisation, the client-server paradigm and distributed computing tools which are also

fundamental for clusters or workstations.

3.2 Basic Dis t r ibu ted C o m p u t i n g Pr imi t ives and Concepts

In a non-distributed computing model, all components of a user application (such as user

interface, computational function and storage) are integrated on the same node. A distributed

computing model can transparently migrate these parts onto diSerent computational nodes

[188]. In this way a better resource sharing and usage management can be achieved among the

users of the system [49]. A DCS is composed of the hardware (which can be heterogeneous

or homogeneous), the software (the Operating System, distributed or not, tools, utilities, etc.)

and the network subsystem which interconnects all nodes together. According to Lamport [129]

a distributed computation is determined by the type and the relative order of efen^a occurring

at the processes. Events are speciGed as: a event which causes a message to be send, a

rece*7;e event causes a message to be received and update the local state and an event

which cause only a change of the local process state.

Over the laat few years, along with hardware component improvements, most of the ele-

ments of distributed systems software have also became standardised [188]. The key attributes

of a distributed operating system are defined by Coulouris et. al. as [5, 49]:

» Transparency

» Resource sharing, coordination

* Support of an arbitrary number of systems, scalability (processors and processes)

» Openness, modular design of physical architecture (homogeneous or heterogeneous)

» Message passing facility through a shared communication system

« Concurrency and system control for all distributed hosts

» Fault tolerance

Most of these characteristics are also key points for workstation clusters. A fundamental issue

in any distributed system is transparency as speciGed by the Advanced Networks Systems

Architecture (ANSA) [7, 49]. The system has to appear to be a single computer to both

application programs and users. Tasks should be executed consistently and effectively regardless

of the location of the hardware, the software, or the system's structure.

A DCS has to cope with any changes made "on the fly" therefore the issue of Sexibility

is important as well [221, 206]. Scalability imphes that a system should not be restricted to

a small number of nodes and the potential should exist to extend to a large number of nodes

without any substantial diSiculties or performance degradation. Scalability should also apply to

CHAPTER 3. CILTSTERS OF WOmTSTATIONS 38

application software. Increasing the number of nodes should increase the reliability of the system

(or at least not decrease it). Among the drawbacks of DCS are the additional complexity of the

software and the absence of an accepted distributed operating system. Sharing resources over

the network adds extra overhead for applications which could decrease their performance. The

use of threads and caching is one technique that has the potential to reduce this performance loss

[188]. Distributed systems in many institutes and companies have now eEectively replaced old-

fashion centralised mainframe computers, as their modular concept provides better availabihty

and scalability.

3.2.1 High Level Communica t i on Pr imi t ives and Concepts

Communication among nodes is a vital part of any distributed system and workstation cluster.

Chapter 2 discussed the lowest part of the communication subsystem while this chapter will re-

view the highest part of the communication subsystem along with the mechanisms a distributed

system uses for its interprocess communication. At this higher level communication primitives

for DS and workstation clusters can be either blocking or non-blocking, buffered or unbuffered

[11, 49].

In blocking communication mode the process which sends a message is blocked (i.e. sus-

pended) until the corresponding receive is executed and only then is data transferred [162, 228].

The main advantages of blocking calls are simplicity and determinism as data is transferred

only when both the source and destination memory addresses are known and there is no need

for buEering. The exchange of a message represents a synchronisation point for a programming

model but could also lead to deadlock. Use of light-weight processes or threads CEin enhance

parallelism e.g. threads can be used as a concurrency mechanism with a low system overhead

[188]. When a node is blocked because of a send or receive operation, computation on the same

node can continue on another thread. Context switching within threads provides low-overhead

synchronisation but concurrency control becomes the explicit responsibility of the application

programmer [189].

In non-blocking mode (asynchronous), none of the processes is blocked during a send or

a receive process. For a non-blocking send, for example, control is returned ag soon the call

has been submitted to the underlying system and for a non-blocking receive the call returns

whether data are available or not. The underlying message layer then takes care of buffering

and queing the message until a receive accepts the data [228]. A communication scheme that

involves at least one non-blocking call is known as asynchronous. The implementation of non-

blocking communications is more difficult because issues such as message queue management

and send/receive bu&r management consistency arise. In an unbuEered primitive mode a

receive call at the receiver end prepares the kernel where the receiving data will be stored. In

the case that a send() happens before a receive() call the kernel has not been informed (from

the receive() call) that there is a process is waiting for a message to arrive so the incoming

message is discarded as the kernel has no indication of which process to send it. In general

asynchronous communication can enhance parallelism e.g. latency hiding techniques which can

separate and overlap computation and communication parts [212].

CHAfTER 3. Clt/STERS OF WOEKS'DITIONS 39

Request | t

Client
Server j Request

Request

Directory

File Server

Figure 3.1: Client Server model

In buffered primitive communication mode, a process that intends to receive messages

requests the kernel to create a mailbox for it. The incoming messages are stored in the mailbox

and the process can use the receive() function to read messages from the mailbox [203, 79].

3.2.2 Cl ient-Server Mode l

The client-server model provides the basis upon which many distributed application are con-

structed. The client-server model is not used often in parallel computations, however worksta-

tion clusters use it indirectly for run-time system support. Clients and servers are relative terms

and refer to software subsystems rather than hardware components [188], hence they could be

either in separate machines and communicate over the network or in the same machine using

the message passing facihties of the OS (e.g. pipes). In general a server maintains data objects

and deEnes operations on them which typically can be invoked on the server site to manipulate

data and exported to clients [11]. A server is any program that offers a well-defined service that

can be accessed over a network and a client is any program that sends a request to a server and

expects a response.

In this model the client initiates an activity by passing a message/request to the server,

then the server processes that request remotely and paases the reply back to the client. Figure

3.1 depicts the fundamental concept of the client-server model. The client-server model is

simple and eGicient in concept and can be implemented using a single request/reply protocol

on a variety of software and hardware platforms [19].

3.2.3 R e m o t e P r o c e d u r e Call

The Remote Procedure Call (RPC) is the (fe /acfo industry-standard communication mecha-

nism used for constructing distributed programs and apphcations. Key features of RPC are

request-reply protocol behaviour, UDP/TCP transport, standardised data representation via

the extended Data Representation (XDR) protocol and authentication support. It dehnes a

well-understood high-level language definition which provides a general-purpose model for in-

terprocess communication (IPC) in a transparent way across a network [19, 237]. The RPC

paradigm shields the programmer from the details of the communication network applications

CHAPTEE 3. CIL/STERS OF WORKSTATIONS 40

Client Server

User Program

client

R a m C.U

S tub

Recepiion

1

ftcepuum

Trammiixinm Scrvk

Network Serv ices

Figure 3.2: The RFC mechanism

Cl ien t S e r v e r

client program

client
continues

server deamon

RPC call

invoke
service call service

service
execution

request
completed

return answer

return reply

Figure 3.3: Network communication with RFC calls [217]

can thus be portable and more robust, although RFC does not provide explicit error checking

and recovery mechanisms.

An RFC facility is built on top of a transport-level service (e.g. UDF). In this way RFC

solves the problem of heterogeneity between different peers as well as application standardisation

[15]. At the programming language-level an RFC is an ordinary function call that passes all its

arguments to the RFC protocol [215]. The RFC mechanism is illustrated in Figure 3.2 which

shows the How of control, when a local (client) machine invokes an RFC. The calling process is

suspended and the execution of the call takes place on the remote machine (server) in a different

address space after which the server returns the result back to the client and the execution of

the program continues on the local machine [16].

The Sun RFC Interface Definition Language enables a programmer to define the functional

interface to an RFC program and the interface compiler by using the rpcgen tool [217]. An RFC-

based application has the following components: the compi/e time which includes programming

Ca/LPCn&R 3. CyLLKSnSRS OF 41

language, interface description language client and server stub structure and generation, the

binding protocol, and the three protocols employed at call-time i.e. transport protocol, control

protocol and data representation. Parameters can be passed by value but not by reference

(although some implementations can pass parameters by reference using a more complicated

mechanism). The implementation of an RPC involves the use of several network protocol layers

and memory copying accesses hence its performance is often an order of magnitude slower than

local procedure calls [11, 49]. The RPC mechanism was been widely and successfully adopted

mainly due to its simplicity and generality which provides transparency in both homogeneous

and heterogeneous environments.

Other distributed application communication mechanisms include active objects that can

migrate autonomously among nodes known as mobile agents. This communication mechanism

and can be built in a platform independent language such as Java or a script language such

as TCL and enhance interoperability in heterogeneous networks. The mobile agent paradigm

is asynchronous and does not block computation on the client site. Hence, the mobile agent

model can be efficient and provide fault tolerance [71, 123].

3.2.4 Coord ina t ion , Synchronisat ion, Concu r r ency control

All these terms are frequently used in distributed and parallel computing. Synchronisation

refers to the need for one process to wait until another process has completed an activity [142].

Coordination, i.e. synchronisation and concurrency control among nodes, are crucial aspects

for the functionality of both DCS and parallel systems [128, 131]. Parallel computing and

distributed systems extend the concept of a sequential coordination further for interprocess

coordination and concurrency control of resources located in different nodes [3] because parallel

computation cannot proceed without internode coordination.

Synchronisation and concurrency control for single processor systems can use classical

UNIX Inter-Process Communication (IPC) techniques such as signals, pipes, semaphores or

monitors (e.g. signals as WAIT, SIGNAL, locks, interrupts) or System V IPC mechanisms for

shared memory and message queues which are adequate to ensure synchronisation and avoid

deadlocks among processes in a single address space [11, 206, 190]. For distributed memory sys-

tems (e.g. networks of workstations) where there is no basis for sharing memory areas, internode

coordination typically uses a message-passing mechanism. Basic communication primitives such

as send and receive are used to synchronise nodes because the transmitting processor knows

when the message is sent and the receiving process knows when a message arrives.

Synchronisation methods used in a single CPU system cannot be expected to operate in a

DCS environment, therefore new techniques have to be developed, e.g. global synchronisation

or barrier synchronisation. Distributed systems have similar deadlock and synchronisation

problems as centralised systems in addition to additional potential for deadlocks arising from

their communication network. Detection and handling of deadlocks can use the same methods

as single computer deadlock handling methods use (locks, timestamps, global time, virtual

communication channels) [221, 110]. Methods of mutual exclusion and locks are usually built

on top of these communication primitives [49, 221, 130].

CHAPTER 3. CZ, [/STERS OF VVORKSTATfONS 42

API Client Module

N e t w o r k

Directory Service

rue Service

Figure 3.4: Components of a distributed Gle system

3.2.5 D i s t r i b u t e d Fi le S y s t e m C o n c e p t s

Directly analog to a single-processor filing system, a distributed filing system is a basic compo-

nent in any DCS or parallel system and can be seen aa an extension of the classical filing systems.

Clients, servers and storage devices are all spread among a distributed system [49, 224]. An

important requirement of the Eling system is that it should provide Eexibility and scalability.

A distributed hie service (DFS) and a distributed directory service are also required to provide

additional properties and features such as naming and pathname resolution concurrency control

transparency, etc. [11, 193, 194].

A DFS can be divided into three fundamental services: the 61e service (concerned with

implementing operations on the contents of hies), the directory service (which provides oper-

ations creating/deleting naming directories or mapping names), and the client module service

which integrates computer directory and hie services for each client under a single Application

Programming Interface (API). A common hie system for distributed and parallel systems is im-

portant as it can reduce significantly the replication of resources (hies) and the administration

cost of the system. For example the user nodes in Figure 3.4 can share the same configuration

hies using the distributed hie system.

The Network File System (NFS) is a well known distributed hie sharing standard, initially

developed by Sun Microsystems [216]. The NFS is based on a client-server model and provides

transparent access to remote hies, with each computer able to act as both client and server. The

importance of a shared hie system in a distributed system and workstation clusters is twofold,

it minimises the need of a hling resource and at the same time minimises administration costs

providing a flexible and shared conhguration environment among the system nodes.

3.3 Mul t icomputers

According to Foster [80] a multicomputer is a Distributed Memory (DM) MPP architecture in

which interconnected computing elements have their own memory space. Any node can send a

CHAPTER 3. CID'STERS OF WORKSTATIONS 43

message to any other node. Each node-computer executes its own program in the classical "von

Neumann" model but it can equally access local memory or memory on other nodes remotely via

message-passing mechanisms over an interconnection network. Distributed-Memory Multiple

Instruction Multiple Data (MEVID) machines fall into this category^ have workstation clusters

can implement the same form of multicomputer parallel machine based on the concept of the

message-passing computational model.

Multicomputer MPP systems usually have very distinctive structure characteristics. Their

internode message passing network operates in an intra-computer environment at extremely

high data rates with a very low error rate. The network topology selected (for example hyper-

cube, 2D mesh) usually avoids cyclic dependencies and deadlocks. Hence simple and aggressive

communication primitives caji be implemented i.e. cut-through routing, How control, etc. The

architecture of typicad MPP multicomputers can scale up to potentially thousands of nodes

while still avoiding potential communications bottlenecks and hence increase the computational

power of the system in an efficient fashion.

3.4 Clusters as Parallel Comput ing P la t fo rms

As pointed out in Chapter 1, clusters provide a way to build powerful, cost-eEective pajrallel

machines using standard off-the-shelf computers and networking technology [241]. Phster [178]

deGnes a cluster as a type of parallel or distributed system that consists of a collection of in-

terconnected whole computers utilised as a single unified resource. The main reasons for the

current interest in clusters are the improved price/performance ratio of workstations, the devel-

opment of high-speed oS-the-shelf interconnection networks and the establishment of software

tools and programming models (e.g. message-passing).

In addition the current trend in computing is in favour of workstation clusters [6, 178, 81]

as in future developments are expected to provide not only improved workstations (VLSI,

DRAM memory, disk capacity [176, 107]), but also faster networking technologies (such as

ATM, Myrinet, Gigabit Ethernet [70]), together with better DCS software tools and standards

(TCP/IP, 081, Distributed Computing Environment DCE, Distributed Management Environ-

ment DME, ISO/Reference Model for Open Distributed Processing [20], etc). Another potential

advajitage of clusters is the availability of their key components which in addition provides scal-

ability and cycle harvesting capability as well (e.g. a distributed system can be easily conhgured

as a cluster of workstations to exploit unused cycles which are "free"). The increasing popularity

of NOWs establishes a parallel processing paradigm known as "network based computing" [171].

The availability of clusters can improve as well the response time of applications over a batch

system (e.g. an MPP scheduler with a long queue of submitted jobs).

Clusters of workstations in comparison with MPPs have inherent problems and difficulties

arising from their distributed nature. Very often, clusters have to operate in an "shared"

environment with heterogeneous machines and an OS, tools and facilities that were originally

^Shared-Memory MIMD and Rarallel Random Access Machine (PRAM) architectures fall under the multi-

processor category [80].

J. (ZLi/scnaRj? OjF tvofucscrw/rroAK; 44

designed for distributed systems (in comparison MPPs will have their own dedicated and well-

tuned OS and tools). This generality and the heterogeneity of clusters software inevitable affects

the performance available to application. In order for clusters to be established as a parallel

platform with MPP-like performance, issues such as internode communication, programming

models, programming environments, resource management and performance evaluation all need

to be adequately addressed [171].

For example the communication bottleneck is not a matter of a simple replacement of the

communication links. Design of efficient messaging layers and user space communication pro-

tocols is required as well as architectural and OS support for multiple communication methods

(e.g. collective communication, multicast, broadcast, network topologies asymmetric bandwidth

networks, etc.). There is also a need for efficient implementation and support of programming

models for the distributed memory paradigm (e.g. PVM and MPI) on clusters. The message-

passing paradigm as a concept is straightforward to understand and its implementations are

efficient on both clusters and MPPs. In contrast the development of message-passing pro-

grams is significantly more difficult compared with the development of shared-memory and

sequential-computer programs as it requires explicit programmer handling of communication

and synchronisation between nodes, domain decomposition, etc. Sophisticated programming

environments and tools (e.g. debuggers, performance monitoring, "graphical languages") with

high-level abstraction mechanisms are required to simplify the development of parallel applica-

tions. A productive programming environment is necessary to allow programmers to develop

their parallel applications easily. Software applications and algorithms tailored for clusters (i.e.

latency tolerance algorithms) are still limited and require the support of a robust programming

model.

Clusters as distributed systems have the same characteristics as a DCS has in terms of

software tools and standards. However, there is lack of a cluster configuration standard, each

cluster being built using different configurations. The system should provide run-time support

for the resource management and automate the facilities of load balancing, job scheduling and

if possible fault tolerance. Prediction and performance evaluation of clusters is necessary as it

will assist to assess the usefulness of current systems and provide valuable information to design

better systems in the future.

3.4.1 Clus te r H a r d w a r e Aspec t s and S t ruc tu re s

Clusters differ from Symmetrical Multi-Processor (SMP) or other parallel computers, in the

sense that they are composed of complete computers in contrast to SMPs which replicate parts

of a computer, (e.g. processors). Massively Parallel Multicomputers such as the IBM SP series

replicate whole modules of workstations such as processors, memories and I /O systems, making

distinctions with clusters even more difficult. Despite the similarities between clusters and

massively parallel systems there are fundamental conceptual differences.

Parallel systems of SMPs and MPPs may use commodity components (such as CPUs)

and utilise a "bottom-up" fine-grain performance orientated approach to build a system. The

performance of these parallel systems is highly optimised both from the hardware perspectives

CHAPTEE 3. CIUSTEES OF WORJCSTATJONS 45

Table 3.1: Parallel Systems, Clusters and Distributed Systems comparison

C h a r a c t e r i s t i c Para l le l S y s t e m s C l u s t e r s D i s t r i b u t e d

Number of nodes large medium large

Performance metric turnaround throughput response time

time turnaround

Node none none required

individualisation:

Communication proprietary proprietary/ strict

standard nonstandard standard standards

Inter-node security nonexistent varies required

Node OS homogeneous homogeneous/ homogeneous/

heterogeneous heterogeneous

Runtime System Proprietary general general

non-standard standard standard

Runtime support vendor granted — -

H/W Availabihty vendor limited open open

and software issues. An important characteristic of these systems is that they are sometimes

built to address a speciAc class of applications. Support for these systems usually comes from

the vendor side and could cover software/hardware or even application/algorithmic issues of

the system. Despite the potential advantages this approach has several disadvantages includ-

ing high-cost, decreasing number of vendors, variability of architecture types across vendors

or even between successive generation of a given vendor and sometimes inadequate software

environments.

On the other hand clusters of workstations usually use commodity components and have

to deal with their design generality among various abstraction layers which usually leads to

a "middle-up" coarse-grain approach to parallelism. Performance targets then become more

difficult to meet and often depend on the ability and experience of the cluster designer or

axlministrator. Furthermore, support and development of the system is usually limited to the

application developer. This is a major point of di%rence between workstation clusters and

MPPs which is often misunderstood. The "knowledge" and support of an MPP system resides

mainly on the vendor side while in workstation clusters that knowledge resides in the cluster

manager and apphcation programmers/users [196].

Scalabihty features are available for both workstation clusters and distributed systems

because they are composed of whole computers. Cluster nodes can be added or replace (up-

grade) existing ones without disturbing the system at a minimal cost, while changes to MPPs

are usually di&cult and expensive. Portability of parallel applications has now become an

important issue and parallel applications originally developed for other parallel systems might

use algorithms which are not performance efficient when ported to cluster of workstations

architecture (e.g. latency tolerant algorithms).

46

M e s s a g e Based S h a r e d S to rage

Ĉ U

M E M I / O -

cpu

M E M I /O-

' U

M E M I / O ^

u

M E M I/O /

Shared Duk

Shared memory

1 c ^ u

1 1 \ / I 1
M E M %0 ^

M E M I/O

SCI-cooneoediyMem:

Figure 3.5: Categories of Cluster hardware

Distinctions between NOWs and distributed systems are also difficult. The key point

here is the "Single System Image". For example nodes in a distributed system retain their

own individual identities despite the transparency of the system. On the other hand, clusters

are viewed from outside as anonymous (e.g. the processors of an SMP system). There is no

requirement to access node A or B of a cluster, rather the concept is to access and use the cluster

as a whole integrated system. Table 3.1 summarises important differences among MPPs, NOWs

and distributed systems.

A first classification attempt among clusters is the communication network, whether it is

dedicated or not (i.e. exposed to the outside view or enclosed within the cluster itself [178]).

Sharing the cluster interconnection network with other public communication facilities is also

possible. The cluster can make use of all idling workstations over a campus (scavenging), but

this also implies the use of message-based standardised communication, which usually has a

high overhead in terms of messages, increased latency and lack of network security.

A dedicated intra-cluster communication system with low overhead and increased level of

security can be used as well. The communication medium and the method in which computers

are attached to it are two other orthogonal characteristics in which the computational model

classifies clusters (see Figure 3.5) [178].

® I / O Attached Communication is performed by using I /O operations usually initiated

by the OS. Using I /O operations message latency could be relatively high compared to

memory operations.

Message Based could use LAN, FDDI, ATM, or any other network technology. Scal-

ability and portability with message-passing is difficult, although heterogeneity is

possible.

SharedStorage The shared storage system is a shared disk system. All the nodes in the

cluster have direct access of the disks on which shared data are placed. The storage

C m P T E R 6. SCOPE; A TAJIORED BENCHMARK SL/ITE 96

Nodes

Figure 6.3: The underlying MPJ_5'en^.Rec?; calls of a butterfly communication pattern of a

9-node communicator MPfCff MP7_ Barrier routine

D a t a M o v e m e n t - I Tes t

The broadcast and multicast one-to-all operations are built on top of single peer-to-peer prim-

itives. The broadcast latency test measures the time from when the root node initiates the

multicast command until the time the last processor receives the message and completes the

call. In practice this measurement is not easy and traditional "ping" techniques cannot be used

because the root node is not guaranteed to participate in all steps of the call, there is no global

clock and it is not possible to identify the last node [167]. The SCOPE broadcast test uses a

simplified combination of broadcast and synchronisation calls:

syiicli_barrier 0 ;

start := GetTimeO;

For I:- 1 To N Do

broadcast(message);

synch_barrier0;

End Do;

end := GetTimeO;

time ;= (start-end-comp_overhead())/N;

This test measures the latency of the cluster while performing a combination of broadcast and

barrier synchronisation calls. The MPICH implementation of the broadcast call is based on

a recursive subdivision (binary tree) algorithm, such that data Hows top-down from the root

to the leaves. The root sends to the process a:ze/2 which becomes the root process for that

subtree and so on, which means that in theory such a call is completed within TlogzPl steps.

Optimisation of the code attempts to switch the binary tree algorithm into a linear broadcast

(chain) when the subtree size becomes too small. For long messages a pipelining technique

which splits the message into smaller blocks can be used along with non blocking operations.

Figure 6.4 illustrates the order of the individual peer-to-peer calls required for the accom-

plishment of a broadcast call on an 8 node cluster. The logarithmic nature of the call on a

switched technology network can be approximated by the following equation:

^6coat(7l,P) = foe + P + ((« 4- f«,n) [loggp] (6.16)

CHAPTER 3. CIC/STERS OF 47

system is required to provide an ownership mechanism of segments of the storage.

Examples of such systems are, DEC Open VMS Cluster, IBM Sysplex^[166, 124],

etc. The computational model is close to the traditional uniprocessor model and

load balancing is adequate.

« M e m o r y Attached Communication is performed by processor-native memory attached

Zoo j and atore operations. Communication performance is better than the I/O attachment

but their implementation in both hardware and software is difEcult.

MessageBased There are no current examples in this category.

SharedStorage The shared block of storage is the memory, it could either be separate

from the individual storage provided for nodes, or it could be contained in the in-

dividual nodes. The SCI bus based clusters is an example of this category, e.g. the

IBM POWER/4 [14] system.

3.4.2 Communica t i on Requ i r emen t s

The vast majority of clusters use a bus technology such as Ethernet for the internode connec-

tion. In these cases throughput and especially latency of the network is two or more orders

of magnitude slower than the internal data busses of the nodes. This diH'erence in magnitude

can cause a serious bottleneck, especially for applications with intensive I/O among the nodes.

The usual way to overcome this potential bottleneck is either to separate the computational

(fcofc) and communication (fcom) part of a calculation tf/,, by rescheduhng the application to

overlap the communication part with the computation part (or alternatively to reschedule the

application in some way to minimise the intemode communication requirements) [212, 213].

^th — ^calc icom (3 . 1)

(com can be analysed further according to equation 2.2 to:

ĉom — ts ~\~ Tl • tffi (3.2)

Overlapping commutation and communication parts of equation 3.1 the runtime be-

comes:

ith — 7noz(tcofc) ^cora) (3 - 3)

An ideal intemode communication bandwidth for a cluster with n nodes should be equal

to the bandwidth of all the I/O sources jVi(f/C)) that the fastest node has, although that

bandwidth is beyond elective utihsation.

= (3-4)
i = l

^IBM S/390 Sysplex cluster architectures currently support scalable commercial applications such as on-line

transaction processing (OLTP) and parallel database systems.

CHAPTER 3. Cir/STERS OF W0RK5Z4TI0N5 48

Table 3.2: ASCI machines summary

Features
Intel

ASCI Red

IBM

Blue PaciSc

SGI

Blue Mountain

Processor type 200MHz PentiumPro 500MHz Powers SNl

Performance/node 200 M8op/s 800 Mflop/s 1 GHop/s

Peak performance 1.8 TAop/s 3.2 TSop/s >3 THop/s

Number of nodes 9216 4096(512x8) 3072

System DM message Cluster of SMPs Cluster of SMP

architecture -passing with DM with DSM

Memory 594 Gbyte 2.5 Tbyte 500 Gbyte

Link Bandwidth 800 Mbyte/s 800 Mbyte/s 1560 Mbyte/s

3.5 The ASCI Projec t

The Accelerated Strategic Computing Initiative known as ASCI was launched in 1996 by the

Department of Energy to build Teraflops supercomputer systems. It is an ambitious plan

which calls for a threefold increase in computing performance every 18 months over a 10-year

period [42]. Currently there are three ASCI machines installed in three labs: the ASCI Red in

Sandia National Laboratory by Intel, with 1.8 TEops peak capabihty, the ASCI Blue PaciGc

at Lawrence Livermore is an IBM PowerPC system of 512 nodes eight CPU per node with 3

Tflops and the ASCI Blue Mountain at Los Alamos by SGI/Cray which is a 3000 node.

Very often the ASCI project machines are referred as MPPs systems but in practice they

have several similarities with clusters aa well. All machines use o^-the-shelf high-end CPUs to

scale up to THops level. Technological challenges that an ASCI machines needs to address is

the high-performance interconnection which has to be scalable to a very large number of nodes,

software issues e.g. distributed OS parallel programming and high-performance I/O aspects.

3.6 The Beowulf Class Cluster Computers

The Beowulf project is an example of high performance cluster which haa emerged as a viable

path to scalable computing systems for scientific and engineering applications. The Beowulf

cluster was introduced at NASA Goddard Space Flight Center's Center of Excellence in Space

Data and Information Sciences (CESDIS) for the need of the Earth and Space Sciences project

(ESS) in 1994 [208]. The first Beowulf cluster was build around 16 Intel 80486 DX4 proces-

sor systems connected by channel-bonded Ethernet. The Beowulf architecture has no custom

components and is a fully COTS (Commodity Off The Shelf) configured system. The concept

of Beowulf clusters was further promoted by the rapid evolution of mass market commodity

technology i.e. microprocessor price/performance improvement, network technology advances

such as private system area networking, availability of freely software such as the Linux OS

as well as GNU software and the "standardization" of message passing libraries such as PVM

CHAPTER 3. CLC/STERg OF W0m:5T.4TI0iVS 49

and MPI. The availability of the software source code is important because it enables custom

modification to facilitate parallel computation [54]. As a result, Beowulf class cluster computers

range from several node clusters to several hundred node clusters.

Communication between processors on Beowulf is achieved through standard Unix network

protocols over Fast Ethernet networks internal to Beowulf, which proved to be both straight-

forward and cost elective. Beowulf-class cluster computers provide scalability ranging &om

several-node clusters to several-hundred-node clusters, e.g. a two-level fat-tree-like topology

comprising 240 nodes of 16-way Fast Ethernet switches [192]. Communication throughput is

limited by the performance characteristics of the Ethernet and the system software manag-

ing message-passing. Beowulf is capable of increasing communication bandwidth by routing

packets over multiple Ethernet segments ("horizontal", "vertical"), each node then acting as a

software router in order to allow not-adjacent nodes to communicate. Hawick et. al. in their

paper [105] discussing some of the key issues for designing a Beowulf system at the beginning

of 1999 conclude that PC compute nodes with Intel processors running at 350-400MHz clock

speed interconnected with Fast Ethernet gives the best price/performance ratio.

In order to establish and support Beowulf clusters as a viable alternative parallel platform,

the Beowulf project incorporated research into applications ajid algorithms suitable for clusters

(i.e. latency tolerant algorithms). In addition the cluster conSguration has to reflect and match

specific application requirements aa well as to adapt rapid technological advances. Other areas

that the Beowulf project has focused on are: system software support and tools (debuggers,

tuning tools, scheduler, etc), load balancing, low-level programming interfaces, scalability, het-

erogeneous computing. A commercial distribution of Beowulf software has been released in

1998 by RedHat in cooperation with NASA CESDIS known as "Extreme-Linux" [153].

Today many Beowulf clusters demonstrate remarkable performance ratings running scien-

tific apphcations, many Gordon Bell Performance Prizes include Beowulf workstation clusters,

e.g. Goddard Space Flight Center 10.1 sustained GigaFlops with a PPM (Piecewise Parabolic

Method) code on 199 CPUs (11/17/97), Caltech/JPL collaboration 10.9 GigaFlops with an

n-body problem on over 120 CPUs (11/18/97) [207].

3.7 The N O W project in Berkeley

The Berkeley Network of Workstations (NOW) project is another example of workstation clus-

ters that demonstrates that it is viable to build inexpensive large scalable parallel computing

systems [51]. The cluster consists of 105 SUN Ultra 170 workstations with two interconnec-

tion networks. A Myrinet network provides the high-speed communication within the cluster

while a switched-Ethernet network into an ATM backbone provides scalable external access to

the cluster. The topology of the Myrinet network is a variant of a fat-tree to create a system

with uniform bandwidth between nodes using thirteen 8-port 160Mbyte/s bidirectional network

switches.

The software architecture of the NOW project is based on a complete version Solaris OS,

run on each node, with extension to interfaces that support global operations over the cluster

such as the GLUnix process management layer, memory majiagement and file system support

C B A f T E E 3. CLiySTERS OF VmRKSTATJONS 50

Table 3.3: Important software development areas for Beowulf class clusters

Software/Tool Area Existing or Under Development

Apphcation Development Utilities a/i, ca/i, grep, aej, moA;e, etc.

Languages f77, C, C-t--t-, linker, HPF. f90, etc.

Debugging/Tuning Tools Debugger

Profiling tools. Tracing Tools

Hardware Performance & Monitoring Tools

Low-level Programming Message Passing MPI, PVM

Interfaces POSDC Threads

Math Libraries FFT, BLAS, etc

Parallel I/O MPI-2 I/O

OS Services Networking T C P / I P

Filing System >4Gbyte support

Job Queuing and Scheduling e.g. EASY

Accounting, Quotas and Limits Enforcement

Ensemble Management Common Boot/Install Configuration Package

Tools System Monitoring

Parallel raA, WZ, etc.

Documentation How to build a Beowulf

(xFS). The basic communication primitives in this project are based on Active Messages which

provides application-direct, protected user-level access to the network.

The higher-level communication library of the NOW project is MPI which is based on a

modified MPICH implementation built with a customised abstraction device interface (ADI) for

active messages. The NOW project haa successfully shown that a lafge cluster of workstation

can obtain low-latency and high bandwidth communication over a range of parallel applications.

Current research challenges of the project is the integration of communication and scheduling

within a time-shared resource [51].

3.8 The Clusters of the University Campus

Building a cluster of workstation nowadays is relatively straightforward. Several high-performance

workstations with a fast interconnection network will suffice to implement a minimum system.

A large number of clusters have been assembled over the past few years in research institutes and

universities, but in general each of those clusters is diSerent, creating difficulties for standardisa-

tion and the deployment of software products or tools (e.g. administrative and monitoring tools,

job submission, load balancing, etc.). One of the most well-published clusters of workstations is

the Farm at T.J. Watson Resecirch Center which consists of 22 high-performance workstations

[178]. The cluster has one moafer (̂ erTnmoZ) sender which is a gateway to the outside world,

19 compute ae?i;er3, and two /iZe aemera. A terminal server on the master workstation selects

CHAPTER 3. Clt/STERS OF lyORKSTATIONS 51

Compute Servers

Compute Servers Private Farm LAN

f

— - - Li
1

Muster Server

i
Campus LAN

Figure 3.6: The Farm

the least loaded of the workstations to run a job.

The Fermi National Accelerator Laboratory runs another of the largest workstation cluster

with 400 Silicon Graphics and IBM workstations. This system is primarily used to execute

parallel applications which are individual jobs that simultaneously use several of the clustered

machines. This type of overt parallelism is known as aeriaZ progrom, poroZkZ suA-system (SPPS).

This case study examines ajid demonstrates some important characteristics of the clusters

of workstations used in this university campus. There are two orthogonal axes that university

clusters of workstations are divided into, according their homogeneity, and according the way

they are attached on the network (single segment topology or switching). The low speed of the

Ethernet network restricts the available bandwidth to 1 Mbyte/sec and the latency is high due

to the layered structure of the standard network protocols. At the same time other users can

use the nodes of the cluster as workstations, affecting further the performance of the system.

Under these circumstcinces the campus clusters can be used only for coarse grain parallelism

computation during oE-peak (non-working) hours. Despite these disadvantages clusters can be

used on an experimental basis and to provide a test-bed to study the basic characteristics of

clusters. A promising conGguration of clusters is that of Figure 3.7 (c) in which a second fast

intercoimection network is used among the nodes. Applications use the fast link for message

passing and coordination while the interconnection and access to the outside world goes through

a standard interconnection network network. In this way nodes can use a proprietary network

protocol which can improve the communication bottleneck by improving signihcajitly latency

and bandwidth [38]. EfRcient implementation of such protocols requires additional changes to

the run time system as well.

A common characteristic of these clusters is the shared file system which is based on NFS.

The file server can be either directly attached to those clusters or indirectly via the campus

backbone network. Applications software for homogeneous networks is common for all worksta-

tions. In contrast to heterogeneous networks, separate application executables and configuration

files must be preserved for each different computer architecture. Application development and

installation then becomes more difhcult because portability and inter-operability must be pre-

served. In a heterogeneous network there are no restrictions about the node architecture and

each time the best performing workstations for an application can be chosen. Performance

CHAPTER 3. CID'STERS OF WORKSTATIONS 52

W/S I I W/S I I W/S I I W/S

File

v\

(a)

Eihemci Switch
(b)

W/S workaimion

G/W gaieway
rial Elhcrnel

Rk
W/S I I W/S I I W/S I I W/S

Inlemei

Figure 3.7: Classification of clusters of workstations in the campus

Table 3.4: Different cluster configurations

Cluster Type Network Topology Workstations /OS

Heterogeneous Ethernet Switch SPARC-x/SunOS

IBM/AIX

PC/LINUX

Heterogeneous Single segment SPARC/Solaris

S G i / m i x

Homogeneous Single segment SPARC-4/Solaris

Homogeneous Fast Ethernet S G i / n u x

Homogeneous Fast Ethernet LINUX

measureinents or estimation analysis is more diSicult due to the node heterogeneity.

Single-segment Ethernet topology networks suffer from poor performance because of their

single bus congestion problems, especially for applications with high intemode traffic [150].

Switched Ethernet clusters can reduce signiGcantly congestion problems with a careful schedul-

ing of the application internode traffic. Table 3.4 shows configuration information of the avail-

able clusters at the University of Southampton in 1998.

3.9 Summary

This chapter has examined and reviewed the key characteristics of workstation cluster from

the DS and the MPPs prospective. Such system provide a Hexible parallel platform which can

incorporate characteristics from both DS cind MPPs at the same time.

In its simplest form a workstation cluster is a DS. The majority of workstation clusters

are built around an I/O attached message-passing based communication mechanism which can

CHAPTER 3. CLUSTERS OF WORKSTATIONS 53

combine the advantages and simphcity of DS with the message-passing computational model

of MPPs. Software tools designed for distributed systems are now mature enough to provide

useful services for clusters but are not suitable to deliver MPP-like performance because these

tools are primarily designed for functionality and rehability.

Software requirements for performance on clusters are more strict than distributed system

requirements. Software support also should not put any limits on the performance and should

exploit hardware advanced features of new workstations and high-speed networks. The examples

of the Beowulf and Berkeley NOW projects have shown that properly configured clusters of

workstation can deliver acceptable HPC services.

Chapter 4

Message-Passing and MPI

4.1 Int roduct ion

This chapter investigates the role of the message-passing model as the inherent computational

model of clusters. This is important because it will provide a better understanding and a basis

for the analysis of cluster performance as it will be examined in later chapters [201]. One of

the fundamental components of workstation clusters as depicted in Fig. 1.2 in Chapter 1 is the

establishment of the message-passing computational model which was originally developed for

parallel systems.

The mechanism used by nodes to exchange data in the message-passing model is based on

send and receive primitives. Each process controls access to its own space in memory and the

only way to move data from one process space to another is via messages [203, 79, 168, 140].

Computation is performed through one or more processes, on the same or diEerent nodes,

which conmiunicate and coordinate via messages. Sharing resources and synchronisation among

processes is achieved by sending messages. Message passing can be asynchronous (e.g. usually

non-blocking) or synchronous (blocking).

The concept of message-passing is straightforward and in principle it is an expansion of the

existing sequential computational model which run on the same sequential hardware platforms

(e.g. the von Neumann model). Implementations of the message-passing model on parallel

machines and clusters can be built with the provision of message-passing library calls to existing

sequential languages [126] with good scalability and efhciency.

The Message Passing Interface (MPI) standard was designed to replace a large variety of

existing message-passing systems which extend on a wide variety of parallel platforms. Im-

plementations of MPI such as MPICH [95], CHIMP [2], LAM [29] run efficiently over both

MPPs and clusters. As a consequence the portability of MPI has reduced the di&rences be-

tween the various parallel platforms available and established MPI as the de-facto standard for

message-passing.

The rest of this chapter is divided into four sections. The first section reviews briefly PVM

and BSP then examines the concepts and semantics of the MPI message-passing computational

model. The next section reviews the implementation of these concepts on MPICH. A review of

54

Cjl/LPQTEJt 4. 55

the architectural structure of the implementation reveals the trade-off between portability and

efficiency, which is essential to understand and analyse the performance behaviour of clusters.

Finally there is a case study of the MPI (MPICH) computational environment for clusters of

workstations. An implementation of a matrix multiplication algorithm run on both homoge-

neous and heterogeneous clusters of workstations is used as a test-bed demonstration for further

study of the clusters parallel platform.

4.2 The Parallel Vir tual Machine

The 'Parallel Virtual Machine" (PVM) interface, developed at Oak Ridge National Labora-

tory, was the first message-passing environment to establish a standard model for parallel

programming on distributed computing systems [82]. PVM was originally developed under the

assumption of a heterogeneous distributed system in which the underlying network could be

slow and unreliable e.g. BSD sockets [34]. The PVM system provides an advanced API capable

of managing processes dynamically and a run time system to provide application management.

A PVM system is an integrated set of software tools and libraries that enables a collection

of heterogeneous computer systems to be used cooperatively as a parallel virtual machine for

concurrent or parallel computation. The basic principles of a PVM system include:

9 User-configured host pool

® Translucent access to hardware

® Process-based computation with an explicit message-passing model (e.g. data and func-

tional parallelism)

® Heterogeneity and multiprocessor support.

The PVM system comprises the pvmvirtuald daemon that resides on all the computers/nodes

making up the virtual machine together with the library of interface routines which provides

the message-passing functionality together with a facility to spawn processes and coordinate

tasks. Currently the PVM system has been ported to a wide range or hardware and software

platforms including MPP systems as well as support and bindings for programming languages

such as C, C + + and Fortran.

4.3 Bulk Synchronous Parallelism

Bulk Synchronous Parallelism (BSP) is an architecture and platform-independent structured

programming model for general-purpose parallelism. The BSP programming model was intro-

duced by Valiant [225] in 1990. In the BSP model each node of a parallel machine has its

own local memory space and interconnection network that can route packets of some fixed size

between nodes. The model reduces an overall computation into a series of supersteps, each

containing computation and/or communication followed by a global synchronisation among all

the processors of the parallel system [88]. The concurrency model assumes that no process can

CEAPTEE4. MESSAGE-PASSMGANDMPf 06

proceed to the next superstep unless all processes have completed the current superstep. Each

superstep is subdivided into three ordered steps:

« local computation step on each node/process, which uses only variables stored locally.

* communication step, in which processes exchange data among themselves.

« a barrier synchronisation step, in which processes are blocked until the communication

phase is entirely completed. The exchanged data become locally available at this point

and computation proceeds to the next superstep.

Values sent through the communication network are not guaranteed to arrive until the end

of the current superstep. The overall concept of the BSP model is straightforward and it is

considered as a direct enhancement of the sequential programming model. BSP programs can

be written in one of two ways:

1. Direct BSP programming, in which the programmer takes full responsibility for the two-

level memory model to ensure that data to be operated upon reside in local memory at

the beginning of every superstep.

2. An automatic style of BSP programming, in which a lower-level entity maintains the

illusion of a single memory.

BSP can be eSciently applied to a variety of parallel platforms and the performance of a

program can be predicted from the text of the program together with a few global parameters

of the target architecture. These parameters are the number of processors fi, the ratio of

communication throughput to processor throughput g, the computing speed in Eop/s s and the

time required to barrier synchronise all processors Z. The cost of a single superstep then is the

sum of the maximum cost of the local computation on each processor plus the cost of the global

communication on an h-relation and the cost of the barrier synchronisation at the end of the

superstep:

-I- -I- /

where w denotes the amount of local computation load and A is the number of data elements

sent or received by a processor. The total execution time of an algorithm is obtained by

adding the times of each separate superstep .9̂ [225]. Evaluation of the parameter g is not

straightforward, at BSP network traSic occurs in bursts at the end of each superstep, that,

it can be approximated by the concept of network "permeability" when all processes send and

receive messages simultaneously in a random order rather a linear approach. BSP provides

an effective and usable model, unlike unstructured parallel programs implemented on message-

passing and shared memory models.

Network
node

node

node

Process

Address Space

Figure 4.1; The message passing model

4.4 The Message Passing Interface, Concepts and Seman-

tics

At the start of the 1990's many software tools and packages for distributed memory systems

were available. The need for a standard arose because most of those packages had shortcomings

either in portability, performance or were incomplete. The basic features of the proposed

standard were discussed in an workshop held in April 1992 in Virginia and a preliminary draft

proposal developed [64]. In November 1992 a draft proposal (MPI-1) was pubhshed and the

MPI Forum was established, the final version of MPI being released in May 94. In a meeting

in December 1995 MPI 2 extensions ware discussed, a year later (November 96) a draft of MPI

2 was released, and the final version of the draft was released in June 1997 [33].

The Message Passing paradigm is well-understood and can be efficiently applied to parallel

programming. Before the advent of a standard, a variety of message passing implementations

and libraries prevented application portability. Code developed for a specific machine using spe-

cific message passing libraries could not run on another platform [108], while portable message

passing libraries were often not efficient or complete.

In order to provide language independence MPI runs on top of an underlying commu-

nication protocol, (for example TCP/IP) , providing portability for both heterogeneous and

homogeneous environments. The standard does not specify explicit memory operations, pro-

gram construction tools, debugging facilities, or any other specific functions that could affect

portability. The Message Passing Interface is thus a specification for message passing libraries

designed to be a standard for distributed-memory, message-passing, parallel computing systems.

MPICH [95], CHIMP [2], LAM [29], Unify [35] are implementations of the MPI standard for a

variety of systems with binding libraries for programming languages such as C and Fortran or

even Java [156, 87] together with other tools and facilities.

For the MPI programming model a computation comprises one or more processes that

communicate, by calling library routines, to send and receive messages among the processes.

CHAPTER 4. jVIESSAGE-PASSMG AND MPf 58

Figure 4.2: Distributed IPC functions are similar to IPC functions on a single computer, al-

though networking, naming and location functions have to be included as well [11]

A fixed set of processes is created at program initialisation, then each process being capable of

executing different programs. Hence SPMD-style programs can be directly ported using MPI

and in addition limited porting of MPMD style programs is possible [80].

4.4.1 M P I P rocedures and Semant ics

The notion of MPI is based on the concepts of process, group and communicator. An MPI

program can have one or more processes running on one or more nodes. Each process is

autonomous and has its own memory space. The MPI standard does not specify the process

execution model, hence processes can be sequential or multi-threaded. A group is an ordered

set of processes with their own unique identifiers (handles). Each process in a group is identified

by its "rank" integer. Groups are always associated with communicators. In order for MPI to

ensure safe communication between members of the same group (e.g. to avoid misinterpretation,

messages being over-written), the concept of the context, in which a message is passed, is

introduced. A communicator is a mechanism which combines together the concepts of group

and context. Hence a communicator identifies both the process group and context in which the

operation is to be performed. MPI also provides amother mechanism to distinguish messages

used for different purposes known as the tag, which is an integer assigned by the programmer

to identify a message uniquely. The concept of communicator mechanisms in iVIPI can provide

sufficient information hiding that is needed to support modular programming (e.g. parallel

decomposition) as well as application-oriented topologies (virtual topologies).

The message passing model is by default non-deterministic i.e. the arrival order of two

messages sent from two different processes to a third one is not defined [80]. However the

goifrce and (eg specifiers in MPI calls guarantee that two messages sent from the same process

to another process will arrive in order. MPI messages consist of two basic parts: the actual

data to be sent/received (its format is: 6?;/, cown(, da^a î/pe), and an envelope of information

(its format is: communicator) that helps to route the data [79, 168].

Heterogeneity is supported through a user-deHned datatype mechanism.

Communication between processes within a group can be either point-to-point or collective.

The point-to-point call is the basic communication mechanism between a pair of processes with

CHAPTER 4. AIESSAGE-PASSING .4,VD MPJ 39

Default communicaior
Default Group .

A C o m m u n i c a t o r - ^

B Communicator - '

Figure 4.3: A communicator identiEes the process group and context in which the operation is

to be performed

data envelope

*buff, count, datatype, dest, tag, comm

*buff, count, datatype, dest, tag, comm

Figure 4.4: MPI calls format: the data part plus the envelope part

the type of the call being either blocking or non-blocking. Most of the MPI constructs are built

around this mechanism. Group or collective calls are blocking calls and require the participation

of all the processes of the group (usually implemented using single peer-to-peer calls). Finally

communication modes between the sender and the receiver ends can be either synchronous (e.g.

"hand-shake" mode) or asynchronous (e.g. through a probe mechanism) [77].

The first release of the NIPI standard (known as MPI-1) kept the standard as simple as pos-

sible and avoided adding features such as dynamic resource management, programming tools,

debugging facilities, I / O functions, explicit thread support, or other communication operations

(e.g. shared-memory like operations, one-sided) [96]. Most of these features are addressed with

the second release of the standard MPI-2 (July 1997) [78].

4.5 MPICH

MPICH is a current implementation of the MPI standard, which is both a research tool and a

software development project [95]. MPICH was developed at the same time as the MPI standard

was proposed, with the objective of providing a test-bed implementation. This enabled problems

with the specification to be discovered quicker and was beneHcial for the standard, which rapidly

became more robust and effective.

In the early stages of MPICH development was based on precursor systems such aa p4

[30], Chameleon [93] and Zipcode [202]. The actual MPICH implementations are in the public

domain.

CHAPTER 4. MESSAGE-R4S57NG AND M f l 60

f Send ' Recv

(Recv

Synchmnom (Send ^ Recv

b (Recv)

Figure 4.5: MPI communication types

4.5.1 T h e Arch i t ec tu re of M P I C H

The designers of MPICH tried from the begiiming to separate the interface between the MPI

hbrary and the underlying message passing hardware. In addition, the comphcated aspects of

MPI such as communicator management, derived datatypes, or topologies are separated from

the underlying communications mechanism [96] to hide any peculiarities of a particular system.

The layer of code that interfaces with the communication device, (i.e. the lower layer) is in-

evitably individual for each specific hardware platform and provides hardware-dependent access

to communication and synchronisation primitives [154]. This lower layer can be either a native

communication subsystem (e.g. for parallel systems), or another message-paasing subsystem

such as p4. Chameleon, etc. This scheme provides efficiency, universality and flexibility for

future upgrades [94, 99]. New device implementations from third party vendors and others can

be integrated ecisily aa well as facilitating experimentation with new devices [89, 103].

T h e A b s t r a c t Device In t e r f ace (ADI) The central mechanism behind MPICH is a spec-

ification called the Abstract Device Interface (ADI) [95, 92, 90, 91]. ADI is a set of functions

or macro deHnitions in terms of which MPI standard functions may be expressed, to preserve

portability. Each hardware platform needs its own ADI to exploit all vendor specific features

that are provided.

ADI provides four sets of functions:

« Speci^ing a message direction (send/receive)

» Moving data between the API and the message-passing hardware

« Managing lists of pending messages

« Providing information about the execution environment

T h e C h a n n e l I n t e r f a c e (CI) The very low level of the ADI implementation is a thin

layer known aa the channel interface [90], with the functionality of this layer limited to data

CHAPTER 4. AfESSAGE-PASSfNG AiVD MPI 61

MP!_Reduce

MPI Isend

MPID_Post_Send

MPID_SendControl

PIsend

p4_send

wnte

p o m t - t o - p o i n t

Lhanncl Inlertacei

Chameleon

p 4 nx tcp SGI Conve?

Figure 4.6: Upper and lower layers of MPICH

transfer only. Its basic implementation requires 3 functions to control envelope information

^MPZD_5'endConfro(, MPZD_JZect;An2/Con(roZ, and 2 other func-

tions to send and receive data to/from the channel (MPZD_ 5'en jCTionne/, MPfD_ ^Zect/fromCTianne/).

The data exchange mechanisms the channel interface provides are:

Eager Data is sent to the destination immediately (default choice)

Rendezvous The data are sent when a receive is posted that matches the message

Get Data is read directly by the receiver (similar to memcopy)

4.6 Case S tudy; M a t r i x Mul t ip l ica t ion

A case study of a matrix multiplication algorithm implementation using MPI in presented

in Appendix C. The purpose of this case study waa to gain experience with MPI semantics

and developing a simple application using the MPI programming environment and run it over

various clusters available on the university campus.

4.7 M P I - 2 and Para l le l I / O

Implementations of the MPI standard shortly after its release were used very successfully on a

variety of platforms by both academic and industrial users. The success of MPI was consider-

able and it became established as a de facto "standard". Together with the success of MPI-1

there was also a demand for extra features that MPI-1 did not support such as dynamic process

management, parallel I/O operations and bindings for other languages. These requests eventu-

ally resulted in the MPI-2 standard. The MPI Forum reconvened during 1995 to address new

CHAPTERS. MESSAGE-PASSfiVGAiVDMPJ 62

functionality and to develop an MPI-2 standard. MPI-2 is a superset of the MPI standard which

was released in June 1997. The new standard includes and Fortran-90 bindings, exter-

nal interfaces, extended collective operations (e.g. non-blocking collective calls), and language

inter-operability (distinct platforms integration). Extensions to the message-passing model in-

clude dynamic process management, one-sided operations, parallel I/O, real-time extensions,

external interfaces, etc. [78].

This section examines and discuss briefly some of the new features MPI-2 introduced

and which have the potential to affect the computational model of NOWs. For example the

dynamic process management feature modifies the computational model towards to a multi-

computer model in which each node can start and terminate processes, as well as sending and

receiving messages [80]. Extensions of the dynamic process potential will enable two separate

applications to interact in a client/server-like style. Inter-operability among di&rent platforms

is another important issue MPI-2 addresses. Other features of the new standard are one-sided

communication which introduces a shared-memory like operation, parallel I/O features (provid-

ing potential for many applications especially for Grand Challenge problems) and the real-time

support provision (e.g. time-driven, event-driven, priority-driven) which is expected to enable

and merge a new category of real-time applications into parallel computing.

Implementations which fully-support the MPI-2 standard so far have not been released,

although preliminary implementations that partiaily-support MPI-2 are available. Hence real

estimations and evaluations of MPI-2 is not yet possible. To achieve these requirements MPI-2

has to remain an interface communication library without managing the runtime environment, it

should interact transparently with the OS while not assuming any responsibilities from the OS.

Applications already developed on MPI-1 now are facing the challenge of MPI-2 which should

balance the trade-off between functionality, portability and performance. Hence application and

system developers are interested in estimates or predictions of the impact of MPI-2 on their

products. This section introduces briefly the most important features of the new standard.

4.7.1 Dynamic Processes

This is probably the most important feature introduced in the new standard. The MPI-2 process

model allows the creation and cooperative termination of processes after an MPI application

has started. An MPI application may now start new processes through an interface to an

external process manager e.g. CMOST, POE, p4. The MPI SPAWN call starts MPI processes

and establishes communication with them through a communicator. Applications can require

a variable number of processes and can use as many processes as required but if necessary

then some processes can be returned. An important class of MPMD applications, requiring

process control, are supported directly from the standard. In particular for NOWs this is a very

important feature as it will enable clusters to use more efficiently overall system resources i.e.

workstation idle cycles.

In addition to the direct MPMD programming style support, MPI-2 enables communication

to be established between two independently started applications. MPI will create an inter-

communicator in which the local and remote groups are the original sets of processes. This

CHAPTER 4. MESSAGf^PASSIjVG AjVD MPI 63

node 0

sync

puc

put

put

sync

node 1

Figure 4.7: One sided communication access (put)

is a collective asymmetric process because processes of one group indicate a willingness to

accept connections (such as servers do) and the other group of processes connects to the server

(client), so could be a kind of "server" while could be a "client". MPI-

2 provides the functionality to support this "client/server" mechanism (iVIPI calls for accept,

listen, connect, etc) therefore client/server apphcations can use an interface for two parts of a

cooperating application.

4.7.2 Single-Sided Communica t ions

Sometimes processes, in applications with irregular dynamic distributed data patterns, have

all the knowledge for a call on one side from/to a "window" which another process has made

available for one sided access. These processes on their own should be able to initiate commu-

nication with other processes, which does not require execution of matching calls at both ends.

MPI-2 provides an extended communication mechanism. Remote Memory Access (RMA), by

allowing the process to specify all communication parameters, both for the sending side and for

the receiving side.

Each process can compute what data it needs to access or update at other processes.

However processes may not know which data in their own memory needs to be accessed or

updated by remote processes or perhaps they do not know the identity of these processes.

RMA operations are initialised by specifying for each process a memory window that is made

accessible to accesses by remote processes.

Message-passing communication achieves two e&cts: communication of data from sender

to receiver; and synchronization of sender with receiver. The RMA design separates these two

functions and provides three communication calls: remote write (put), remote read (get), and

remote update using a window managing mechanism to achieve one-sided communication. The

RJVIA mechcinism can take advantage of fast communication mechanisms providing by various

hardware platforms such as shared memory, DMA engines, put/get operations, MPPs, etc.

4.7.3 M P I - 2 and Para l le l I / O

MPI I/O is not the Rrst specification of parallel I/O system, rather the first portable and

broadly-accepted parallel I/O specification that has been proposed [78, 74]. MPI specifies

CHAPTER 4. MESSAGE-PASSING AND MPI 64

how the data should be laid out in a virtual file structure (the view) but does nob specify the

physical layout within a Ale. Specification of the physical hie structure is avoided because it will

be system specific and hence it will restrict portability. In order to optimise I/O performance

and file layout MPI can pass specific control information via m/o objects. MPI I/O is based on

the UNIX portable file system model interface with extensions for:

group, collective data access

« disk directed I/O

asynchronous I/O, accesses with a stride, etc

Additional features include:

« Basic 61e inter-operability between systems

user directed optimisation via portable

non-blocking data access

I/O is layerable on top of the MPI-2 external interface. Appendix D gives more details about

the MPI - I /0 concepts and semantics.

4.8 Summary

This chapter has examined the fundamental issues of the workstation cluster message-passing

computational model. This review aims to provide a better understanding of the workstation

clusters behaviour at the higher application levels. The MPI is the prominent message-passing

library used in clusters and MPPs. In this model computation is performed by one or more au-

tonomous processes which communicate and coordinate among themselves via message-passing

mechanisms.

The MPI standard proposed in November 1992 unifies a large variety of existing message-

passing systems on many diSerent platforms. MPI supports peer-to-peer communication modes

as well as collective communication. The original MPI standard can be used for both SPMD

and MPMD (modular programming) programming styles, while the second release (MPI-2)

includes enhanced functionality features such as dynamic process management, I/O operations,

etc.

An experimental case-study of a matrix multiplication application was used in a range of

experiments over a variety of homogeneous and heterogeneous clusters of workstations using

MPI. The results demonstrated a high degree of portability and efficiency of the MPI standard,

although the communication network on clusters was found sometimes to cause potential bot-

tlenecks. The absence of a standard programming environment and programming tools as well

as runtime support facilities was identiEed as a noticeable disadvantage.

Chapter 5

Benchmarks

5.1 Int roduct ion

This part of the thesis will examine the performance evaluation issues of workstation clusters

to be assessed by the proposed SCOPE evaluation tool. In order to understand and evaluate

the performance behaviour of workstation clusters, it is necessary to review existing benchmark

suites, examine their basic characteristics and demonstrate the requirement for a benchmark

suite specifically tailored for clusters. The next two chapters will provide a brief introduc-

tion into HPC benchmark suites and examine the proposed workstation clusters performance

evaluation benchmark suite.

5.2 The Requirement for Benchmarks

The measurement and understanding of computer system performance has been important since

the Grst computers were built. An accurate measurement of computer system performance will

enable people to assess computer systems and provide valuable information not only for system

designers but also system managers, vendors and purchasers.

The term computer peiyorTnance as it stands is ambiguous because different people can give

diSerent interpretations of its meaning. System designers want to assess performance of a system

in order to test and understand its behaviour and possibly improve it or design better systems

in future. In a similar way, salespeople are keen to know Aow good is the performance of their

system in order to promote sales, e.g. the price/performance ratio, (e.g. Million Instructions

Per Second MIPS, Clock cycles Per Instruction CPI). System managers need to have some kind

of estimated pef/ormance features (e.g. throughput) of computer systems that they plan to

purchase or use. Furthermore cluster managers need performance evaluation tools in order to

evaluate and match the best cluster modular components off the shelf. Finally computer users

need to know how fast their application might run on that system (e.g. response time), or

which programming style will best take advantage of the system features and lead to optimum

execution time for their application.

From the above paragraphs it is clear that expressed only as a single feature

65

CHAPTER 5. BENCnMAAR:S 66

of merit will kequently produce misleading results. The complexity and diversity of modern

general-purpose computer systems in terms of both hardware architecture and software issues

makes performance assess merit even more challenging. The nature of a single task or pro-

gram made up of a number of programs running sequentially is not adequate to provide a

rigorous single performance metric for a computer system. A solution to the weakness of a

single workload task, commonly referred as a benchmark, is the introduction of a set of spe-

ciGc taaks-benchmarks each of which will assess different single performance characteristics of

a computer system. Such sets of benchmarks are known as knc/imart auifea. Accordingly the

performance characterisation of a computer system is expressed as a set of individual system

component performance measurements, e.g. floating point unit, memory subsystem, commu-

nication subsystem, OS, compilers and so on. A common feature on which ail performance

metrics are based on is the time measurement of a task, e.g. execution time, throughput, etc.

The performance of a computer is defined as the speed with which performs a well-deRned task

[176]. The performance of an % computer executing a task B will be then:

f er /ormoncex ,a = 5'peed(g,%) = — 77—-r (51)

Consequently we can compare quantitatively two different computers X and Y which execute

the same task T in zg and i/g time respectively as:

fer /ormoncey,a

which means, in other words, that computer % is n times faster than computer K The Grst

expression of equation 5.1 gives the absolute performance of computer % executing a task B

while the second one (equation 5.2) is a relative performance between computers X and Y.

The plethora of benchmarks, workloads and the rapid evolution of computers over the

paat twenty years has often led to confusion and misinterpretations of benchmarking results

which has sometimes led to a vigorous debate on the value of benchmarks within the computer

community. Scientific benchmark suites need to provide essential and clear information for the

performance evaluation and analysis of computer systems if they are to be useful.

5.3 Benchmark Objectives

The objectives of benchmark suites throughout the history of computing from single-computer

systems to scalable parallel computer systems, remains the same: to evaluate the performance

of a computer system and if possible to rank computer systems with respect to their suitability

for a certciin task [114]. Scientific benchmarks should not only provide a single representation

of computer systems performance, but they should also provide further information about the

way system components aSect the overall system performance and an understanding of the

internal behaviour of computer systems. Thus effective computer performance evaluation has

to be expressed as a function of many interrelated considerations. Accurate characterisation

of a benchmark is not only a matter of understanding the test program, it considers also

the size of the problem, the algorithm, the ability of the compiler, the OS and the computer

CHAPTEJto. BENCHMAmrS 67

>

Hardware designer

Software designer

Low Level Kernel Level Application Level T e s t Leve l

Figure 5.1: Different benchmark levels could have different importance evaluation interest

architecture. Constrains in hardware eind software which will afFect performance have to be

taken into account, as well ag the level of software tuning, e.g. compiler flags mainly for kernel

and application level benchmarks. Van der Steen [227] defines all these considerations as the

With reference to Dongarra et. al. [61] assessing performance evaluation properly

will enable:

» An aid to designers of future and existing architectures

An aid in reasonable characterisation of system capabilities

Promote software development for eGicient utilisation of existing architectures

Successful benchmark suites such as PARKBENCH [186] have followed a hierarchical bottom-

up approach towards computer performance. On each stage or level of tests different system

components are examined and evaluated. Initial stage tests use small programs to measure low-

level machine performance characteristics, further stage tests evaluate larger system component

performance until a level of loading which approximates to a real workload is reached. On each

level of tests knowledge gained in previous stages is used to analyse performance. Various

groups of people are also expected to have a diSerent evaluation interests at each level of the

benchmark tests as Fig. 5.1 shows.

According to Hockney [114] the accepted principles of rigorous inquiry for scientific bench-

marks include:

Objective experimental measurements and written reports

Elective controls employed in experiments to isolate key metrics

Carefully documenting environmental factors that might affect experimental results

» Providing enough detail in written reports to permit reproducibility of results

^ Van der Stenn defines as a workload as the set of application that is representative for use of a certain

computer system at a certain time and a certain place (system configuration time and place).

CHAPTER 5. BENCHMARKS 68

* Employing standard unambiguous notation

» Comparing results with other results in the literature

* Developing mathematical models that accurately model the behaviour being studied

Validating these models with additional experiments and studies

Reasoning from these models to explore fundamental underlying principles

In a similar way scientific benchmarks have to go beyond quantitative system evaluation, (e.g.

speed, cost/productivity, etc.) and provide qualitative evaluation as well which is also impor-

tant. This means that computer systems have to be evaluated for the context in which they are

going to be used, e.g. application workload, compatibihty, availability of software, interoper-

ability and so forth. In addition scientihc benchmarks should be "open" and promote innovative

new hardware systems or software techniques.

5.4 Typical Benchmarking Metrics

Benchmarks are programs designed to run on a computer system to produce a relative measure-

ment of their performance which can then be expressed and interpreted in various ways. In the

past there has been considerable confusion over the definition of certain performance metrics

which has been misapplied and misused [200]. The speed of a CPU was often rated in terms

of MIPS (Millions of Instructions Per Second) or CPI (Clock Cycles Per Instruction). The

high complexity of modern CPUs with pipelining and multiple-instruction issues incorporating

super-scalar architectures together with modern compiler capabilities^ means that such terms

are at least ambiguous and elusive. Many benchmarking projects had failed to setup univer-

sally accepted standards, defined methodology or a result reporting scheme. In parallel systems

performance metrics can be more complicated as many of them require additional parameters

such as the number of processors p or the algorithm complexity 0{N,p).

Over the past several years there has been a considerable attempt to standardise and

establish the computer benchmarking field on a scientific basis. In most cases the proposed

benchmark metrics are based on a function of time and the workload characterisation type,

e.g. T(B). The PARKBENCH methodology addressed the problem of benchmarking metrics

and proposed a well-de6ned set of units and standard symbols for expressing benchmark results

which comply with the SI standard [114].

The most fundamental metric of a benchmark is time, the wall-clock elapsed time which

can be measured on an external clock has a universal meaning and is supported with more or

less resolution by all computer platforms. A timing expression of the type ^(W,^) for parallel

machines will relate the elapsed time of an W size problem running on processors. A typical

performance metric derived directly from the execution time result is known as the Temporal

Performance of a problem:

E T (N , p) = r - : (j V , p) (5.3)

^e.g. rearrangement of the instruction stream to avoid stalling processor pipelines, etc.

CffAPTEE 5. BEiVCHMAmrS 69

Table 5.1: Units and symbols used in PARKBENCH follow the extension of the SI system

Symbol/Unit Meaning

/fop floating point operation

inatr instruction of any kind

integer operation

i;ecop vector operation

aend message send operation

i^er iteration of loop

mref memory references

barr barrier operation

b binary digit (bit)

B Byte

so/ solution or single execution of benchmark

w computer word

McMahon in Livermore Loops [148] normalised the cost of primitive computer operations

into benchmark Goating-point operation (Hop) count as:

1 Bop add, subtract, multiply operations

4 Hop divide, square root operations

8 Hop exponential, sine, etc operations

1 flop conditional operations

The number of operations TV together with the elapsed time required to solve a program f (TV)

is frequently used as a performance metric to express the rate at which a hardware platform

performs an operation. Benchmark performance then can be expressed as a function of /fop

operations and the elapsed time is expressed in units of M8op/s as:

(5.4)
T(7V,p)

For parallel benchmarks speed-up, efficiency and performance per node metrics are fre-

quently used. Speed-up in general is defined as sequential execution time over parallel execu-

tion time. In benchmarks speedup is often expressed as the ratio of the time required for the

benchmark to run on a uniprocessor implementation and the time required to run the

parallel implementation on p nodes.

^peedup(A/', p)
T (# , l) _ Ti

0.5

In a similar way e@ciency is defined as the fraction of time that processors spend doing

useful work, it characterizes the effectiveness at which an algorithm uses the computational

5. BJGrfCBDVfAjRjff) 70

resources of a parallel computer. ESciency is de&ied as the ratio of speedup to the number of

nodes:

B / / , a = „ c , (M p) = 5 : £ ! 5 5 ^ M (5.6)

The definition of such related metrics is somehow ambiguous, either because the unipro-

cessor implementation of the performed algorithm does not exist or it could be considerable

different from the parallel algorithm. Sahni et. al [191, 214] explicitly defines five types of

speed-up: relative, real, absolute, asymptotic and asymptotic relative. Absolute related metrics

are defined with respect to the uniprocessor time for the best-known algorithm, in practice the

definition of the best-known algorithm for each problem is a difficult task. In relative speedup

and efficiency the related metric is defined with respect to the parallel algorithm executing

on a single processor. Hence relative metrics cannot be used to make comparisons on differ-

ent systems. Despite that, relevant performance metrics can be used to study the individual

performance characteristics of a parallel system providing that the uniprocessor benchmark of

T(N) is clearly specified.

Another term very often used in benchmarking is scalability, according to Gordon Bell

there are several types of scalability such as generation scalable, reliability scaling as well as

problem and machine scalability. The ratio of maximum and minimum performance rates of

different workloads on a system is called speciality ratio, for example if this rate is close to

unity for a specific platform this means that all problems would be computed at close to the

advertised rate. A benchmark suite even of a few single tests can produce several results (e.g.

tests have to run a number of times for different parameters). Presentation of a large number

of measurements in a concise and meaningful way is not straightforward, it usually requires

results to be combined, typically with arithmetic and harmonic means and graphs.

The large number of hardware platforms and different software applications has over-

whelmed the amount of benchmark results over the years and revealed the need for a public

domain benchmark result database [132]. Netlib is an example of such a Performance Database

Server (PDS) developed and maintained at the University of Tennessee and Oak Ridge Na-

tional Laboratory. Benchmark data and distributions acquired from industry and academia are

accumulated, classified and made available for public access [132].

5.5 Existing Benchmarks

A brief description of universally-accepted existing benchmarks is provided below, together with

a discussion of key characteristics as assessment of potential usability for clusters. This survey

does not include early work such as the Whetstones and Dhrystones benchmarks [233] (which

introduced the concept of a synthetic benchmark), or the Gentzsch kernels in 1984 [84].

5.5.1 T h e Livermore Loops

Livermore Loops and kernels introduced the idea of an abstract workload [230, 73]. The bench-

mark introduced the concept of adjusting weight factors for each test to meet the needs of a

CHAPTEE 5. BENCHMARKS 71

specific computer system. Results were then presented using the harmonic mean. However to

assign such weights is problematic and because of this little used in practice.

5.5.2 T h e L I N P A C K Benchmark .

This benchmark [62] has started as a class of test programs for the software LINPACK project

developed in 1979. The original class of problems was to solve linear systems whose matrices are

general, banded, symmetric indehnite, symmetric positive deAnite, triangular, and tridiagonal

square with sizes of N = 100, 300, and 1000 using the LINPACK numerically intensive routines

SGEFA and SGESL. Results are given in Mflop/s

where the number of operations is given as .Rpga* by:

= + (3.8)

and the system conGguration has to be stated precisely, e.g. date, system, compiler, compiler

options. Later on two other lists of results were added: a hst presented speedup and efficiency

information (the execution time of problems run on a single-node and multi-node are reported),

and secondly the results of arbitrarily large size N problems added to enable parallel machines to

achieve high performance, Emaz and ./Vi/g values are reported. The ratio of the optimised code

over the original Fortran performance can show the effectiveness of the compiler. LINPACK

benchmark results are regularly published over the Internet for a wide variety of hardware

platforms. LINPACK tests tend to measure the peak performance of a system, which is usually

diSerent to the overall system performance [65].

5.5.3 The PARKBENCH Benchmark

PARKBENCH Benchmark [186] is an attempt to establish an acceptable set of parallel bench-

marks for users and vendors of parallel systems, as well to set standards for benchmarking

methodology, metrics and result-reporting. PARKBENCH includes codes of other benchmarks

which suited its methodology, e.g. parts of the Genesis [113] and NAS benchmarks are included.

The PARKBENCH committee accepted the wall clock time measurement of a program, for this

reason it introduces tests TICK 1,2 to validate real wall-clock time measurements. PARK-

BENCH tests have a hierarchical structure within three levels. Low-level, Kernel benchmarks

and Compact applications.

Low-level tests measure performance parameters that characterise basic architecture and

compiler software features. Low-level tests can be split into single-node tests and basic interpro-

cessor communication properties of the system. Single-node tests establish the clock resolution,

node computational intensity, memory bottlenecks, LINPACK and Livermore Loops bench-

mark tests can be used as well to evaluate completely the performance of a logic single node.

Communication benchmarks test basic communication primitives such as peer-to-peer latency

and bandwidth, synchronisation speed, etc.

CEAPTEB 5. BENCHMAJUCS 72

Table 3.2: PARKBENCH tests

Low level

RINFl do loops for Too and ni/g

POLYl Computational intensity /1/2

P0LY2 out of cache comp. intensity

COMMSl one way point to point comm. Byte/s

C0MMS2 two way point to point comm. Byte/s

C0MMS3 All to all communication

P0LY3 /i/gover the comm. network

SYNCHl Synchronisation speed barrier/s

Kernel Benchmarks

K1 Matrix multiplication

K2 Matrix transpose

K3 SCALPACK routines

K4 QR decomposition

K5 Matrix tridiagonilisation

K6 MG from NAS

K7 3D FFT

K8 CG from NAS

K9 IS from NAS

KIO paper & pencil 1 / 0 test

Compact Applications

CAl PSTSWM

CA2,3,4 LU, SP, BT from NAS

Kernel benchmarks include a wide range of computation intensive type problems. Some of

the benchmarks are taken Arom already existing benchmark suites such ag Genesis and NAS.

Kernel benchmarks include codes from matrix-matrix multiplication, Fourier transforms, par-

tially differential equations, etc.

Compact applications are "reduced" versions of complete apphcations. Applications for the

compact application suite are complete applications that produce results of research interest.

The application codes have been extensively tested and validated on a wide range of parallel

architectures and well documented.

5.5.4 T h e N A S Benchmark

NAS Benchmarks have been developed at NASA Ames Research Centre initially to assess

various performance aspects of parallel computers for various NASA problems. These programs

consist of Eve core benchmarks and three pseudo-applications. The programs were derived from

routines generally used in computational fluid dynamics applications. The 5 core benchmarks

CHAPTER 5. BENCHMARKS 73

are: Embarrassingly parallel (EP), Multigrid (MG), Conjugate gradient (CG), 3-D FFT PDE

(FT), and Integer sort (IS). The 3 pseudo-applications are: LU solver (LU), Pentadiagonal

solver (SP), and Block tridiagonal solver (BT). The Benchmarks can run at 5 diEerent problem

sizes (S,W,A,B,C).

E P Embarrassingly parallel benchmark performs 2D statistics from a large number of Gaussian

pseudo-random numbers, there is no communication among nodes (to measure the total

Eoating point performance of a parallel system).

M G Simplified Multigrid kernel solving a 3D Poisson PDE, used for communication perfor-

mance measurements

CG Conjugate Gradient computes the eigenvalue of a large sparse symmetric positive definite

matrix.

F T Computes a 3D PDE using FFTs, testing long distance communication.

IS Integer sort program, integer arithmetic performance and communication systems are stressed.

LU Compact application performs an SSOR scheme to solve a 5x5 block lower and upper

triangular system.

S P Compact apphcation, no-diagonally dominant scalar pentadiagonal equations solved with

a 5xr block size.

B T Compact application, contains a block triangular solver, similar to SP but difFerent com-

munication patterns.

Tests were precisely defined problems in a "paper and pencil" way, but no implementation

was given. Hence the responsibility of the benchmark implementation was moved to system

developers. Vendors were free to develop the tests in the best possible way according their

system capabilities. Source and information about the NAS benchmarks can be found at the

NASA NAS web site.

The original "paper-and-pencil" approach had some disadvantages as it could be seen as a

benchmark of the "bench-markers", some vendors could skip parts of a calculation which were

not interesting by using lookup tables, etc. The NPB version 2.0 released in 1995 includes a

model implementation using a message passing model based on the MPI communication library.

The NPB version contains 5 kernel (core) benchmarks and 3 compact CFD applications (pseudo-

applications). Tests can be executed in three classes, A for small size, B and C for large size.

Execution time for class A problems are normalised to the time required to run the tests on

one processor on a Cray Y-MP, and class B equivalent normalised to Cray C-90.

5.5.5 T h e E u r o B e n Benchmark

The EuroBen benchmark [227] started in 1990 with the EuroBen Group. The objective of the

EuroBen is to uncover and express the "performance fingerprint" of high performance computers

5. 74

by developing a benchmark that will yield a good understanding and a performance profile on

a wide range of different architecture systems.

The structure of EuroBen benchmark is split into four modules [226]. Contents of module

"1" include test programs for single node basic operation performance, memory subsystem per-

formance, as well as basic internode communication point to point tests. Module "2" contains

simple basic algorithms tests such as matrix-vector product, linear system solution, eigenvalue

and FFT problems. In module "3" there are tests encountered already in the first two mod-

ules which are more representative in scientific applications such as complex FFTs, very large

very sparse matrix-vector multiplication, block relaxation problems, etc. Finally module "4",

currently not active, was planned for application programs.

5.5.6 T h e P e r f e c t Club B e n c h m a r k

The Perfect Club benchmark suite was primarily targeted for "supercomputers" obtaining met-

rics about CPU time, wall clock time and Mflop/s for compact application-level tests. Compact

application tests from 13 scientific programs cover application areas such as computational fluid

dynamics (CFD), chemical and physical modeling, engineering design and signal processing.

Application tests intended to represent intensive supercomputer scientific workload could run

in two modes, an application code with no alternation (baseline runs) and vendor-optimised ap-

plication codes. Results report the harmonic mean of the MFLOPS (Millions of FLoating-point

Operations Per Second) rate for each given program. The number of FLOPS for each program

was determined by the number of floating point instructions executed in the CRAY X-MP using

the CRAY X-MP performance monitor. Unfortunately the complexity of the applications and

lack of application analysis made understanding the measured performance difficult.

!5.5/r TTtie ESPIDC] Eieiiclirouirlc

The System Performance Evaluation Cooperative (SPEC) Benchmarks started as a consortium

of HPC vendors in an attempt to establish a well-accepted and used benchmark set of met-

rics [204]. The SPEC benchmark suite consists of a set of eight integer and ten floating point

public-domain, non-trivial programs running under real conditions sufficiently large to stress

computationally any system. Results are normalised to DEC VAX 11/750 and for the new re-

lease SPEC95 results are normalised to Sun SPARCstation 10/40. SPEC results report only the

geometric mean of the testing programs as the relative performance figure, known as SPECint95

and SPECfp95. The lack of low-level evaluation indicates that this benchmark does not provide

clear estimates about the basic hardware characteristics of a system [69]. The commercial im-

portance of the SPEC benchmarks has often motivated vendors to add benchmark-specific flags

into compilers for specific benchmarks including SPEC tests. Sometimes these transformations

could result in incorrect code or even slow-down the performance of other applications [177].

The SPEC committee introduced a base-line performance measurement in order to eliminate

such problems. Performance results from these benchmarks are made publicly available.

CHAPTER o. BENCHAMRK5 75

Network

Nl

Processor 1

'

Or

Nl

'

Or

1 '

Processor P

Figure 5.2: The LogP abstract model parameters; source [53].

5.5.8 T h e LogP Model

The LogP model originally was introduced as a reahstic model for parallel algorithm design

[52]. It describes an abstract machine configuration of key resource performance characteristics

but does not rely on structured machine dependent details [144]. The cost model for a message

passing parallel system is characterised by four parameters, three of them describe the time

to perform an individual point-to-point operation and the other parameter provides a crude

description of computing capability:

L: the latency or delay, is deGned as the amount of time, for a small message, to be sent from

the sender processor to the receiver processor on the network or the time needed to be

processed by the network hardware.

o: the overhead, is defined as the time spent by the two CPUs engaged in sending or receiving a

message. The overhead parameter can be described sometimes as a sender-side overhead

Og or receiving-side overhead Or-

g: the gap, is defined as the minimum time interval between two consecutive message transmis-

sions or consecutive message receptions at a processor side, the reciprocal 1/g corresponds

to the available communication bandwidth.

P: processor is the number of processors/memory modules utilised.

The LogP model makes the assumption that the underlying network has a Hnite capacity which

allows at most messages to be transmitted from one processor to any other processor at

any time. If a processor attempts to transit a message that would exceed that network capacity

the processor stalls until the message can be sent without exceeding that limit.

The simplest point-to-point communication operation thus requires a time of Z, -I- 2o or

o, -I- Z, 4- Of. The round trip time or a request-response operation will require: 2(2, + 2o) [27].

5. BjEffCZHjkfAjRJKS 76

Transferring n sequential small messages rapidly from one processor to another wiU require

time: o 4- (n — l)g + L + Oy.

Parameter characterisation requires the use of a series of micro-benchmarks and careful

analysis of the resulted graphs [53, 27]. Extracting the individual LogP parameters for a

system is not always straightforward because they represent abstract quantities which might

not map well into hardware structural characteristics, e.g. timing limitations cannot distinguish

detailed measured parameters in many aggressive user-space communication protocols used in

workstation clusters [18].

5.5.9 O t h e r Benchmarks

Other benchmark categories such as proprietary benchmarks exist specifically tuned to evaluate

the performance of commercial hardware features or applications and therefore cannot be used

beyond their intended scope as standard benchmarks. The TPC benchmark suite is an example

of a commercial data processing and database benchmark which primarily gives information

about the throughput of commercial database transaction systems.

5.6 Comparison and Assessments

The benchmarking suites presented briefly in the previous section are classified into various

groups according to their characteristics, e.g. the way they approach performance evaluation,

or their internal structure. Historically benchmarks were developed to evaluate performance

characteristics of supercomputers, where performance characterisation was important. Bench-

marking requirements for architectures with advanced features are demanding because perfor-

mance tuning on such systems is often critical [157].

According to the targeting hardware platform benchmark suites can be divided into two

orthogonal characteristics: uniprocessor versus multiprocessor and vector processors versus

scalar processors. Parallel processor benchmarks often invoke uniprocessor benchmark suites in

order to analyse the performance of a single logic processor of their system. Benchmarks written

for vector processors systems fail to provide a clear estimation of scalar processor systems

performance because performance characteristics for vector pipelines and scalar systems with

cache are very different. In a similar way performance characteristics for shared memory and

distributed memory systems are significantly different [141].

The policy by which a benchmark suite approaches performance evaluation is another

important characteristic of benchmarks. A hierarchical bottom-up approach of a system per-

formance is obtained by splitting down the system components, analysing their performance

and moving towards the top of the hierarchy.

Low-level versus high-level and synthetic versus application-level benchmarks terms are

used frequently in the literature. Low-level tests are synthetic programs designed to measure

basic architectural features of a computer system, e.g. the memory bandwidth, pipeline speed,

etc. Tests of this level are simple to construct, port to a platform, or analyse. Results should

provide the peak hardware performance of the system regardless of higher-level software capa-

CHAPTER 5. BENCHMARKS 77

Parallel
Computers

Sequential
Computers

Clusters?

SPEC

PARCKBENCH
NAS

EuroBen

Perfect

UNPACK
Livermore Loops

Whetstones
Dhrystones

PCs Workstations Supercomputers

Figure 5.3: Benchmarking classlRcation areas uniprocessor versus, multiprocessor and vector

processor versus, scalar processor architecture

bilities. In many benchmarks low-level tests are extended to measure individual components

and features of a computer system such as communication subsystems, processor performance,

etc. Analysis of low-level tests will provide valuable information for the analysis of higher level

tests.

Kernel-level tests are usually synthetic, although sometimes could be modified parts of

applications or algorithms, i.e. such as found in a scientiSc subroutine libraries, introducing the

concept of an abstract workload. Synthetic kernel benchmarks attempt to match the average

frequency of operations performed for a large set of applications. Software aspects such as

compiler technology clearly have a signiGcant impact on performance. Results of these tests

can give an indication of real working conditions or sustained performance but cilso could create

misconceptions about the overall performance load.

Application-level tests can be either full scientiSc applications or stripped-down versions of

real applications. Results from these tests have to avoid genercilisation and can be expected to

give the most accurate picture of a computing system performance only if low-level benchmarks

performance is previously understood. Tests of this class have a number of disadvantages such

as portability, analysis of the results is difficult and the danger of measuring programming style

instead of performance.

5.7 Shortcomings of Existing Benchmarks

The characterisation of workload is probably the most fundamental key aspect of benchmarks.

The inEuence of the specific underlying hardware features and the software compiler capabilities

very often can alter signiEcantly the workload. Benchmarks that fail on this characterisation

will usually fail to meet their stated objectives as well. For higher-level benchmarks such as

kernel-level and application-level tests, compiler tuning capabilities become a critical issue.

This was the reason why many benchmarking suites introduced base-line tests, such as the

CHAPTERS. BENCHMARKS 78

(J
c

c
SP

00
<u
(J
c
e

1

\Hardware

Compiler X

Libraries

Low Kernel Application Benchmark
Level

Figure 5.4: The importance of eSiciency 6om low-level to higher-level tests from hardware to

software issues

SPEC suite where no compiler optimisations are permitted, or an optimised open-line suite of

tests. Hennessy and Patterson [107] refer to several cases in which Whetstone and Dhrystone

benchmarks have produced overestimated results because certain compilers detected specific

patterns and then optimised or simplified specific benchmark codes. Similar misleading results

can be produced with benchmarks based on MIPS metrics [200] either because the workload

has a different set of instructions or the size of the workload is different (e.g. it does not fit

within a specific size inside the memory hierarchy).

Performance information provided by application level benchmarks is representative only

for those particular programs. Hence the information obtained is sometimes inadequate to

provide insight and predict the performance of other applications. Inter-platform comparison

is also diScult for algorithmic and application level benchmarks as fairness issues concerning

the underlying hardware architecture might arise. This is a common case in parallel systems

where specific implementations of algorithms and applications might not adapt very well to the

underlying system characteristics. The 'Paper-and-pencil' benchmarks introduced by NAS solve

this problem in a way that allows parallel algorithms to vary between platforms by specifying

only the numerical algorithm leaving the cost of the required implementation either to the user

or the vendor. Most of the examined benchmark suites in this review fail to provide a concise

performance evaluation over the wide range of HPC platforms.

5.8 Summary

The measurement and understanding of computer system performance has always been an

important subject for computer developers and users. The main objective of a computer

benchmark is to evaluate the performance behaviour of a computer system with respect to

its suitability for a certain task-workload. However single workload benchmarks are inadequate

to provide accurate performance evaluation for modem computers.

A collection of workload benchmarks which target computer performance behaviour at

CHAPTER 5. BENCHMARKS T9

diEerent system levels known as benchmark suite can eliminate the single workload hmitation

but at the same time they introduce a variety of different performance metrics. In practice,

existing benchmark suites such as LINPACK or NAS cannot provide a concise performance

evaluation over the wide range of HPC platforms. The following chapters will examine the need

for a tailored benchmark suite and its main objectives for workstation cluster platforms.

Chapter 6

SCOPE; a Tailored Benchmark

Suite for Clusters of Workstations

6.1 The Requirement for a Tailored Release

The main target of a standard benchmark suite is to obtain general knowledge about the perfor-

mance of a system over an application spectrum as wide as possible. Nevertheless benchmarks

have certain limitations and drawbacks because all they measure is how fast the specific bench-

mark programs run whereas the performance of other appHcations is inevitably uncertain. More

importantly, benchmarking requirements for HPC and parEillel systems are higher. Full scale

evaluation for such systems, to quanti^ and compare objectively, is difHcult because of the wide

range of their design space and demands for fine tuning performance settings [228].

Clusters of workstations have emerged aa a parallel platform which has many similarities

with MPPs but at the same time strong quantitative and qualitative differences from other

parallel platforms. Although in the past few years differences between MPPs and clusters of

workstations have tended to merge, MPPs have several potential advantages over clusters of

workstations. The size and the quality of available resources per node is in favour of MPPs. For

example the communication subsystem and the 1/ 0 bandwidth of MPPs have better character-

istics from any distributed network system used for clusters in both terms of peak performance

and sustained load. The memory hierarchy in MPPs usually is larger and has better per-

formance characteristics than any commodity workstations memory hierarchy system [135].

Finally clusters cannot operate efBciently with tight global node synchronisation.

Another key point which can affect performance dramatically in HPC systems is the un-

derlying software technology and the run-time system support. MPPs have to run usually in

a batch mode environment while clusters of workstations usually run in multi-user interactive

environments. Most of MPPs are released with highly-optimised compilers and programming

libraries mostly written in the Fortran programming language. On the other hand the majority

of workstation clusters are based on general-purpose software, typically GNU or freeware soft-

ware, Linux, Free-BSD and C programming language with compilers which often do not provide

(%L4j°GrE%% 6. EUE%VCHjV&4j%2f S U m S 81

Table 6.1: Differences between MPPs and cluster

Characteristics Cluster MPP

cache size 512-lMbyte > 2Mbyte

memory size < 64Mbyte > 256Mbyte

interconnection Mbyte/s

support/tools - exist

compilers non aggressive aggressive

specific optimisations or specific hardware feature support^. These differences in programming

languages and runtime environment make the porting and running of benchmarks for MPPs on

workstation clusters a cumbrous task.

Finally the lack of standardisation among the architecture of clusters is another key point

of performance diversity. Despite the use of Commodity Off The Shelf (COTS) components

the classification of clusters of workstations is rather loose and virtually every single cluster

is built with its own individual architecture/configuration reflecting the nature of the targeted

application. Frequently the behaviour of the underlying interconnection network used in clusters

is often unpredictable and subjective to long delays and packet loss. Consequently, there is a

need to examine closer the performance behaviour of the interconnected network for each cluster.

On the contrary the interconnection network on MPPs is usually regarded by benchmarks as

an opaque subsystem which is fast, efficient and reliable.

Existing HPC benchmark suites for message-passing systems are designed primarily for

Distributed Memory or Shared Memory MPP systems rather than clusters. Most of these

benchmarks, in principle, run also on clusters of workstations simply because clusters support

the identical programming model as MPPs. Although theoretically the above condition is

sufficient for an MPP benchmark to run on a workstation cluster, it does not necessarily provide

useful information and understanding about specific performance characteristics of clusters of

workstations. The size of a benchmark workload designed for MPP in general does not fit

within the limited amount of resources of a commodity workstation cluster node. Therefore

many of the tests used in existing benchmarks are not suitable for networks of workstations.

For those reasons existing benchmark suites misinterpret the measured performance of

clusters and they often fail to provide meaningful performance information. This means that

conceptual issues in the performance measurement of workstation clusters are confused and

misunderstood. This chapter proposes a new benchmark suite called Specific Cluster Optimi-

sation and Performance Evaluation (SCOPE) which will address performance evaluation issues

specifically for workstation cluster characteristics such as interconnection network, message-

passing calls efficiency, heterogeneity and provide cluster administrators and programmers with

a useful performance evaluation tool.

^For example the GNU G C C compilers (especially on CISC architectures) have a rather conservative inter-

procedural alias analysis, while specific RISC-architecture commercial compilers such as GEM from D E C for

Alpha processors could be more aggressive and produce highly-optimised code [159].

CHAPTER 6. SCOPE.' A ZAILORED BENCmfARK 5L7TE 82

6.1.1 S C O P E Requ i remen t s and Object ives

The initiative of this chapter is to propose and define a benchmark set of performance tests

suitable for clusters of workstations which is straightforward to understand and use. The

objectives of the SCOPE benchmark suite is to provide a comprehensive set of benchmarks that

is generally accepted by both cluster users and cluster managers. The benchmark suite will

assist cluster designers to understand the behaviour of workstation clusters and hence develop

better systems out of COTS as well as provide application programmers with a comprehensive

tool and a methodology to develop and tune parallel applications for clusters of workstations

more e8iciently[220].

The SCOPE benchmark suite will make use of well-established benchmark tests together

with new tests to address performance evaluation and modeling aspects for workstation clusters

at the single-node level, internode communication-level and programming model level. The

SCOPE benchmark introduces a comparison between network-level and communication-library

level tests, as well as the notion of the performance evaluation of message-passing routines and

operations within the context of an algorithm execution. The benchmark suite has to be broad

enough to accommodate variations of clustered systems as well as to stimulate experimentation

with homogeneous or heterogeneous clusters of multi-node uni-processor or multi-processor

(SMP) nodes [31].

The proposed SCOPE benchmark suite requirements and objectives are summarised as

follow:

» Establish a simple and comprehensive set of benchmarks suitable for clusters of worksta-

tion systems that will provide meaningful information to cluster users and administrators.

— Easy to use by both administrators and programmers

— Realistic comparisons taking into account system configuration and resource avail-

ability

— Representable workload for typical algorithms and applications

Small in size with a low overhead. This implies that tests will not run for an excessively

long time

« To adhere to existing standards for benchmarking, methodology and result-reporting

» To provide support for heterogeneous clusters

» To provide support for SMP multiprocessor clusters

To run on MPP systems in order and provide comparative results

« SCOPE benchmark methodology will be expanded to provide support for cluster designers-

administrators and cluster users, application programmers at non-privileged root mode:

— User: wall-clock turn-around time of application.

CHAPTEE 6. SCOPE.' A Z4Z10RED BENCHMARK SL/ITE 83

- Numerical analyst: Speed-up, algorithm complexity, scalability prediction i.e. show

the scalability of a current algorithm on a current system.

- Computer management: throughput, average turn-around time, utilisation, eE-

ciency.

6.2 The St ructure of the SCOPE Benchmark

The construction of the proposed cluster benchmark suite is consistent with the PARKBENCH

[186] and Dongarra [61] benchmark recommendations and methodology which has established

a scientific discipline based on a well-defined measures, units and workload characterisation.

The philosophy of this benchmark suite is to provide system designers and programmers with

information about the key characteristics of clusters they need to know: single-node level perfor-

mance, interconnection-level performance, computational-model-level performance. According

to the EuroBench and the PARKBENCH methodology, tests are classified into: low-level where

communication primitives are tested, kernel-level in which computational model primitives are

tested and application-level where compact applications stress the system. In addition the

SCOPE benchmark introduces primitive network-level tests as well as tests at the algorithmic

level aJong with kernel-level tests. Hence tests of the SCOPE benchmark are grouped into four

categories following a hierarchical complexity structure:

1. Individual single node performance benchmarks i.e. include basic architectural benchmark

tests. User-specihc or architecture speciSc tests can be used as well to test and evaluate

individual characteristics of nodes, for example I /O support. Well-established single node

performance benchmark suites would be acceptable candidates.

e UNPACK, SPEC95 benchmark suites can be used

» User/architecture-speciEc individual node benchmarks e.g. STREAM [147], Imbench

[205]

2. Low-level tests which include two subcategories:

(a) Underlying communication network tests (at least two nodes must be involved) which

examine the raw underlying network performance. The idea of these tests is to eval-

uate the performance at the low-level interconnection network, often called network

raw performance, on top of which message-passing communication libraries reside.

« Latency test (ping-pong)

Bandwidth (a bi-section bandwidth test may be required according to the net-

work topology)

Clusters with sophisticated network topologies and routing nodes will require extra

tests for intermediate node latency and bi-section bandwidth evaluation. Such mea-

surements are easily derived from the basic point-to-point latency and bandwidth

features.

CBAPTEA 6. SCOPE; A Z4JI0RED BENCEAMEK SE/fTE 84

(b) Basic communication library tests (two or more nodes involved). These are classical

tests of message-passing libraries based on a ping-pong principle.

Peer to peer tests

- Latency

— Bandwidth

» Collective tests

— Synchronise

- Broadcast

- Reduce

— All to all

3. Kernel-level tests include two subcategories:

(a) Basic message-passing algorithmic kernel-like level operations and communication

patterns are tested (two or more nodes involved). Some of these tests are already

examined as low-level tests, at this level message-passing operations are examined

more realistically from the context of an algorithm and not the artificial environment

of a low-level ping-pong test.

« Shift operation

» Gather operation

» Scatter operation

Broadcast operation

(b) Kernel-level tests include common algorithms used in many SPMD and data decom-

position style parallel applications

» Sorting algorithm

« Relaxation algorithm

9 Matrix multiplication

4. Application-level tests, these tests have not been implemented at this current stage.

6.3 The S C O P E Benchmark Methodology

The remainder of this chapter describes the methodology of the SCOPE benchmark in terms

of methods, procedures, metrics and result presentation.

6.3.1 B e n c h m a r k Specification

The lack of standardisation and the diversity of cluster conGgurations has imposed restrictions

over the provided usability of benchmark codes either on low-level or higher-level tests. To

increase the portability and future upgrade-ability of SCOPE tests over different OS, supported

C H A P 6 . SCOPE; A Z'lIlORED BENCEMAAX SMTE 83

libraries and network protocols, the benchmark codes and tests will be provided also with a

"paper and pencil" speciGcation similar to that introduced by NAS. However, in this case there

is a concern about the difBculty to distinguish between machine and programmer capabihties.

One of the primary concern of the SCOPE suite is to reveal the real capabilities of a system

and by covering or hiding system pitfalls (this should be a primary concern of an apphcation

developer).

Each test specification will contain an introduction to the objectives of the test and a

detailed description of it. Specifications describe input parameters, output data format, timing

procedures and benchmark-specific metrics, e.g. compiler issues. Implementation restrictions

or other benchmark-specific characteristic tests also have to be described.

6.3.2 Pe r fo rmance Met r ics

Based on existing benchmarks, methodology units and symbols for the SCOPE are adopted

from section 5.4 and Table 5.1 are as follows:

« Central measure: wall-clock time T'(7V,p)

- Measurements will use either a timer based on calls and its derivatives

used in communication libraries for example call or use of hardware

speciGc assembly routines, with very low overhead. The last case enables new gen-

eration processors to make use of their precise internal timers which can simplify

benchmarking and extend further benchmark and profiling usability.

Tests will be repeated several times to overcome variable clock resolution and avoid other

independent processor activity or noise of a multiuser-multitasking environment. Results

will present the minimum time, the average time and the median time. The side effect

of repeating a test several times is known as the cache warm-'up eSect which provides

improved results when the test eventually resides in the system cache. Result fluctuation

in long run tests is relatively small compared to the short run tests, hence there is no

need to repeat them as many times as short run time tests. Results are stored in a text

mode during or at the end of the execution of the benchmark. This will make result

post-processing analysis eaaier for other tools.

Derived measures:

- /fopa = number of operations/time (operation count not known or defined)

- = (time for 1 processor) / (time for a P number of processors) see equation

5.5. We refer only to "relative speed-up" which is based on the execution time of

the parallel algorithm running on a single node/process of the target computer [120].

Interpretation and analysis of speed-up and efficiency measurements should be used

as a performance metric independent of runtime [191, 214].

- E^ctenci/=Speed-up/number of processors (see equation 5.6)

an indication of the utilisation of system resources^.

CHAPTER 6. SCOPE; A TAILORED BENCHMARK S[/fTE

- this is a metric deAned and used, in this thesis, for analysing

collective calls results. As effective bandwidth is deSned as the ratio of the aggregated

message size (i.e. payload only) of all data transfers taking place among the

processors within the period of this collective call, over the execution time of this

call.

where is the number of processors participating in this collective call and n is the

payload involved in the operation.

Analysis of the results of the SCOPE benchmarks will use the following approach

— Text mode (tabular presentation) whenever is straightforward to make comparisons

on certain points

— Graphs provides a concise representation for performance results

- Modeling and curve Gtting if possible for machine-specihc features

6.3.3 Sof tware Requ i r emen t s of S C O P E

Considering the variety of cluster platforms the use of standard software packages is an essential

requirement. The wide use of public domain packages will be used for baseline tests as well as

for some analysis and presentation of results.

® C compiler (optional FORTRAN compiler)

» Network libraries e.g. TCP/IP sockets, etc.

« MPI communication libraries (PVM could also be used)

Shell scripts, tools necessary for the analysis and presentation of results e.g.

PerZ, awt. Analysis and presentation of results is not necessarily performed on the target

platform.

6.3.4 Imp lemen ta t i on Rules and Opt imisa t ion

The role of sophisticated compilers to achieve the maximum performance from advanced proces-

sor features is crucial. The ability of a compiler to exploit hardware features, e.g. the available

of processor registers, has a strong impact on the performance outcome especially for kernel-

level and application-level tests [159]. It is essential to ensure that compiler optimisations do

not introduce any code elimination, alter the workload or produce erroneous results. Processors

that support instruction level parallelism (ILP) have the potential to change the instruction

order of critical parts of a test program and alter the workload. For this kind of side-effects an

- B o t h speed-up and efficiency are relative metrics in this context and should be interpreted according to the

runt ime.

CHAP TEE 6. SCOPE: A l A f l O R E D BENCHMARK SLTTE

anti-warping serialisation can be applied on critical parts of code to preserve the right execution

order of the workload.

In order to establish a common performance baseline set, each test has as a default op-

timisation (the level) and any other optimisation or compiler Hags will be stated as an

optimised performance metric/measurement. The later case will provide developers and pro-

grammers the chance to assess and experiment with the performance of non-standard features

e.g. in experimental test mode.

6.3.5 T i m e M e a s u r e m e n t and Considera t ions

Time is a fundamental metric for every computer benchmark and the basis of many tools for

code optimisation. The timing of a task can be expressed in terms of user CPU time and system

CPU time. User time is the amount of CPU time a program itself took to execute while system

time is the amount of CPU time that OS routines took place to service requests made by the

program. This time measurement technique in multiprocessing and multitasking systems, such

as clusters of workstations, is not suitable for benchmarking purposes because it ignores any

other kind of CPU activity which takes place during the test would yield unrealistic results.

For the SCOPE benchmark suite time measurement will always refer to the clock time it took

for a program to load, execute and exit (sometimes this is called wall-clock time, response time

or elapsed time) which is a universally-accepted time measurement method.

The accuracy and precision of benchmark results depends directly on the timer accuracy

used to take the measurements. Standard clock timer calls such as geMimeo/jag/O deGned in

various system timer libraries return the current time typically with a resolution of the order

of a few 7713, which is a common figure for UNIX platforms. In practice the poor resolution

of these calls restricts their usability for timing events that last for seconds or minutes. The

M/̂ time() communication library routine, used in many benchmarks to implement real-

time stopwatches, has based its portabihty on such timer calls to profile program performance.

Existing proGling or timing mechanisms based on such routines have several disadvantages

because measurement techniques are subject to noise and long overheads due to the system

calls involved. In addition such techniques introduce cache and memory pollution. In a multi-

tasking OS, measurement fluctuations can also occur under heavy-load conditions as well. Fine-

grained measurement is often not possible because of the poor clock resolution. To overcome

poor resolution problems and time a segment of program that requires little time to run we

can repeatedly execute that segment of code within a loop many times. The resulting time

can then be divided by the number of times the segment was executed to obtain a realistic

average elapsed time. Unfortunately this technique, of enclosing the program segment within a

loop, can also produce misguiding or unrealistic results because cache warm-up effects can take

place. Moreover sophisticated preprocessors and compilers are able to detect that no useful

computation is being performed and eliminate the code entirely. Therefore even for a single

piece of code, profiling and benchmarking can become tricky and complicated as additional

loop overhead estimation and subtraction from the final result is required.

For example, during the measurement of a test the time overhead of the geM:meo/jo^()

CHAPTER 6. SCOPE; A Z4I10RED BENCHMAm: S!7ITE

Table 6.2: Timing Registers of modern processors, for more information see Appendix

Processor Register width instr.

Pentium Pro TSC 64 rdtsc

Pentium II/III TSC 64 rdtsc

DEC Alpha PCC 32 rpcc

HP-PA 1.1 CR16 - mfctl

R10000/R12000 ? ? ?

Ultra Sparc I-III TICK 32 rdtick

RS6000/PowerPC MFTB 64 mftb

call is the time taking to exit the call at the start of the timing interval plus the time to enter

geM:meo/(fo;/() at the end of the timing interval. Loop overhead calculations in practice requires

the timing of two separate loops, one loop with a single instance of the expression and the

second loop with two instances of the expression T& as:

Ti = A^i(Zoop_oi' + ezpr)

Tg = 7V2(/oop_cw + 2eipr)

(6 .2)

(6.3)

The loop overhead and the timing estimation of the expression according to the above

equations 6.3 becomes:

erpr

2Ti Tg

Tz — Ti — Zoop_(w(N2 — A î)

(6.4)

(6.5)
2#2 -

The proposed SCOPE benchmark timing procedure has the following structure:

1. start timing

2. perform benchmark computations

3. end timing

4. measure overhead

5. compute benchmark run time

The above structure implies that computed time is greater than the timer resolution and the

measured overhead otherwise the benchmark computation execution stage has to be repeated

over a number of iterations.

The majority of modern processor architectures, see Table 6.2, provide time stamp counters

(TSC) built into the processor in order to facilitate hardware performance profiling. These

registers are incremented at the clock frequency of the CPU or an integer fraction of it. TSCs

are long enough (64 bit^) to provide a guaranteed monotonically-increasing timestamp which

^On a 400 MHz processor clock frequency, this would give a t ime between register overflows of: 2®'' cycles '

(1 second/400,000,000 cycles) or over 1000 years

C E A f TER 6. SCOPE; A TAJI,ORED BENCEMARJC SUITE 89

can be accessed easily with an inline assembly-language statement [118]. On a system reset, the

Time Stamp Counter (TSC) is set to zero. To access these counters, programmers can use a

simple 'read timestamp counter' instruction. The number of counts can be easily transformed

to time given the frequency of the processor clock:

number of cfoct cuc/eg
= ;—; (6.6)

procegaor c/ocA apeed

The advantage of timera is the very low overhead of their profiling mechanism,

typically a few clock cycles only and the resolution accuracy is on the order of nono-seconcfa.

The disadvantage of this mechanism is portability on different hardware platforms, this is be-

cause assembly language calls are involved which are processor dependent. However, portability

should not be a problem because the development of such inline assembly calls is trivial and the

number of diEerent processors used for clusters of workstations is small and hmited (see Table

6.2). Processor clock speed estimation in a similar way is the number of clock ticks divided

by the number of elapsed time (Appendix B has an example). In superscalar processors with

instruction level parallelism (ILP) and out-of-order execution support this profiling technique

might require some need extra serialising instructions (anti-warping) to ensure the right execu-

tion order of the critical timer source code. The following lines of code give an example of how

to use timer assembly calls on an Intel Pentium processor.

unsigned long timer_start, timer_end;

double duration;

asmC'mftb 7,0" : "=r" (start_t) ;) ; /* read timestamp counter */

. . . /* perform the operation */

asm("mftb 7,0" : "=r" (end_t) :) ; /* read timestamp counter */

duration = (end_t-start_t)/MHz; /* in microseconds */

6.4 SCOPE Single Node Tests

The following sections wih present a detailed overview of the SCOPE benchmark suite tests

following the hierarchical structure presented in section 6.2. Single node tests are intended to

measure the performance of a single node-workstation of a cluster, such kind of benchmarks

are known as baai'c arcA;tec(uroZ [114, 227]. Workstation characteristics such as the

arithmetic unit performance (e.g. pipeline), disk and memory subsystem performaiice should be

tested at this level (e.g. memcopy, or NCAR [102] memory bandwidth tests, etc). It is essential

that benchmarks do not exceed resource availabihty. Heterogeneous clusters of workstations

have to execute these basic architectural benchmarks for every di&rent type of node they

incorporate.

Several well-established benchmarks that provide information on the hardware/software

performance of workstations can be used aa the SCOPE single node tests. RINFl and POLYl/2

from PARKBENCH, LINPACK, Livermore Loops, SPEC95, STREAM and Imbench are good

examples of single node hardware performance tests. At this stage the proposed benchmark

suite does not provide additional single node tests.

6.5 S C O P E Low-level Tests

The computational model of distributed memory systems (DM) is based on the ability of system

nodes to communicate among themselves. Therefore the communication subsystem performance

on DM systems is an important issue which can affect the overall performance of the system

substantially. Parallel benchmark suites for DM systems have realised this importance and

provide various types of low-level benchmarks that load and test the communication subsystem.

The COMMS benchmark set from PARKBENCH [114] and Genesis [1] benchmark suites are

classical examples of ping-pong type communication benchmarks (similar type benchmarks are

included in the EuroBen suite module le).

Communication tests usually run at the level of computational model, e.g. the message-

passing level and assume that the efficiency of underlying communication subsystem is always

granted. In clusters of workstations this assumption is not always true, for example the underly-

ing network technologies presented in Chapter 3.1 exhibited large variations in both performance

and efficiency when used in clusters. Hence classical ping-pong benchmarks at the computa-

tional model level do not provide meaningful information for the communication bottleneck

or other communication performance tradeoffs in clusters of workstations. For this reason,

in order to emphasise the importance of the internode communication the SCOPE low-level

communication tests introduce an additional set of network-level tests to the low-level set:

9 The network level test stresses the network subsystem and is designed to measure the

"raw" performance of the network protocol e.g. latency and bandwidth of the underlying

Ethernet network.

» Communication library tests will provide information about the communication library

performance delivered at the application level. Tests in this category will follow a hierar-

chical structure.

The primary objective of low-level network and communication benchmarks of SCOPE is to

load and test the communication subsystem. In order to achieve this objective low-level test

use techniques such as cache warm-up, buffer alignment, preposting receive calls, etc. A per-

formance comparison between network-level and communication-level measurements is possible

providing that the extra overhead of the message-passing call is taken into account e.g. for

MPI/LAM this overhead is 32 bytes.

C K 4 f TEA 6. gCOPE; A TA&ORED BENCBMAAR: SC/ZTE 91

6.5.1 T h e Under ly ing Network-level P e r f o r m a n c e Tests

Network protocol developers do not always have a standard way of testing the performance

of their protocols. As a result many network benchmarks were presented with contradicting

metrics that do not clarify exactly the methodology of their tests, e.g. latency and bandwidth

might refer to round trip time (ping-pong) or alternatively data-hose tests (ping only). Other

optimisations which can strongly inAuence the outcome of results are memory page size, buffer

alignment to memory pages, prepending receive calls, etc. One of the key objectives for this

level of tests is to establish the necessary methodology required for such tests which aim to

standardise and evaluate point-to-point communication performance at the underlying network

level.

Performance results for latency and bandwidth at this level will show clearly the capabilities

of the underlying network subsystem. A direct performance comparison between the hardware

specifications, network level tests and the computational model level test is now possible, which

will provide valuable performance information within the multi-layered structure of the cluster

subsystems.

Portability at this level of tests in SCOPE is not always guaranteed because digerent

network protocols often provide different APIs (for example compare the performance between

the TCP/IP socket interface with the Active Messages interface). However, tests at this level are

relatively simple as they test communication primitives between two nodes and do not involve

complex blocking or non-blocking communication modes. A ping-jpong loop which measures

one-way round-trip time (RTT) between two adjacent nodes will sufBce to provide latency and

bandwidth information for the underlying network subsystem. In their simplest way a node

(master) sends a variable length M message to another node (slave) and the slave immediately

returns that message back to the master. The following pseudocode illustrates this ping-pong

principle:

MASTER-NODE SLAVE-NODE

Initialise Initialise

start := GetTimeO;

for I := 1 To N Do for I := 1 To N Do

Send(message); > Recv(message);

Recv(message); < Send(message);

end Do end Do

stop := GetTimeO;

print (stop - start) / N;

After a number of repetitions time can be collected outside the repetition loop. The minimum

send-receive time divided by two for zero-length message is reported as latency. Data rate or

bandwidth is calculated from the number of bytes sent divided by half the round-trip time [63].

Z,atenc!/(#) = fRTr/Z (6.7)

gandw%dtk(jV) = (6.8)

CEAPTER 6. SCOPE; A TAilORED BENCHMARK SC/ZTE 92

Various communication models [63, 186] have been developed in order to evaluate commu-

nication among processors in parallel systems. Applying the linear approach of [63, 186] with a

start-up time a (constant per segment cost) and a variable per-byte cost /3. the time required

for the underlying network to send/receive a message is given by^:

tn = G 4- (6.9)

In analogy to Hockney's model for point-to-point communication operations = 1/)^^ and

a = where is the asymptotic underlying network bandwidth which is measured for

aa infinite message length and is the half performance length that is the message length

required to achieve half of the asymptotic bandwidth equation 6.9 will become:

(6 10)

The message length at which half the maximum bandwidth is achieved (ni/z) is an important

indication because it demonstrates the capability of the system to exchange short messages

effectively. Parameters that can inGuence tests and measurements have to be considered for

each platform in order to analyse the results better, i.e. measurements on non-dedicated clusters

have to assess the egect of interference with other workload realistically.

6.5.2 Low-level Communica t ion L ibra ry Tests

This level of tests targets communication performance measured at the programming model

or at th application level. Results in this level are equivalent to the COMMS benchmark set

of PARKBENCH and Genesis benchmark suites. Tests at this level can be divided into two

groups, peer-to-peer tests which involve two adjacent nodes and measure latency and bandwidth

and collective communication tests which require participation of more than two nodes.

Low-level communication library tests stress (in the case of NOWs) the network sub-system

as well as other individual system characteristics e.g. CPU, memory, etc. Use of low-level tests,

together with network-level counterpart tests, will provide a clear picture of the underlying

system which can be useful to understand the behaviour of the system &om the administrators

and programmers point of view. Low-level communication library tests are portable and can

also run in MPPs, e.g. IBM SP2, which also provides some useful results for better assessment

and analysis of the performance of clusters of workstations.

6.5.3 Pee r - to -Pee r Tests

These tests are almost identical to network-level latency and bandwidth test. The main differ-

ence is the level at which they measure performance, in the former case it is at the network

subsystem end and in the later one performance is measured at the communication library level.

The peer-to-peer latency test measures the time a node takes to send a sequence of messages

to another node and receive back the echo, while the bandwidth test measures the time of

a sequence of back-to-back messages sent kom one node to another. In both tests receive

'^Sometimes a is refered as start-up time t, and is refered as per byte cost

CEAPTEB 6. SCOPE.' A TAILORED BENCEMARX SUZTE 93

cost/byte t

start-up cost t

Message length

Figure 6.1: A simpliRed communication cost model ^

operations were posted before the send ones [134,133). and functions are

used for the latency test and .9en AfP/_ free;; and Watfaff used for the bandwidth

test. Latency and bandwidth performance can be expressed as a function of the message size,

Hockney's parameters Too and ni/2 are directly applicable here.

/ = (n + ni /2) /ro

where the communication rate is:

and the startup time is:

1 + M-l/z/Tl

0̂ — ^^1/2/^00

(6.11)

(6.12)

(6.13)

In SCOPE tests, the message size always refers to the payload. Each test is repeated many

times in order to avoid any clock jitter, first-time and warm-up effects.

L a t e n c y a n d B a n d w i d t h Tes t

This benchmark is a straightforward ping-pong loop with a SEND - RECEIVE and RECEIVE -

SEND MPI functions between two peers [186, 167]. The test can run for both blocking and

non-blocking MPI communication modes. For the non-blocking tests there is no computational

locid overlapping on the nodes, so the results between blocking and non-blocking modes are not

significantly different [165, 145, 66).

Initialise

start := GetTimeO ;

for I:= 1 to N Do

if(rank == root)

Send(message);

Receive(message);

C E A f TEE 6. SCOPE; .4 Z4JI0RED BENCEMAEK S[/ITE 94

W6 16)#4

I »o»hk«*m)

UWIuul mod*

Figure 6.2: Latency of blocking and non-blocking MPI communication modes

else

Receive(message);

Send(message);

end if;

end Do;

end := GetTimeO;

Elapsed time is measured either with the system function or the Mf7_

An example of the test run over two Sun SPARC II workstations connected with 10 Mbit/s

Ethernet follows. The results for both blocking and non-blocking MPI communication modes

are iUustrated in Figure 6.2. The absolute values of these results are not so important as the

difference between the two communication mode primitives (blocking and non-blocking). Ready

and standard modes are faster than bu&red and synchronous modes for both the non-blocking

and blocking modes. Non-blocking communication tests are faster than the correspondent

blocking mode calls (except the synchronous mode).

6.5.4 Collective Calls Test

Collective communication routines differ from point-to-point communication routines in sev-

eral ways. They require coordinated communication within a group of processes which usually

involves more than two nodes. MPI-1 collective calls are blocking, thus their implementation

requires a lock mechanism usually implemented inside a protective communicator at the ini-

tialisation phase of each collective call which results in long initialisation overheads. Another

common feature of these calls is their implementation on top of single peer-to-peer calls, there-

fore their performance is based on the efficiency of the algorithm implemented (e.g. binomial

tree), the peer-to-peer call performance, the group size (j;) and the underlying network architec-

ture. For instance binomial tree-like algorithms require [loggp] steps for a collective all-to-one

or one-to-all calls. In practice the current implementation of MPICH [95] uses a combination

of binomial and sequential trees known as a Woct-boaed binomiaZ tree. The structure of the tree

is defined for the MPICH implementation by the MP1R_BCAST_BL0CK_S1ZE variable which

is 1 for clusters of workstations and 3 for the SP2 systems.

The time for each collective operation routine is expressed in general as a function of the

message size and the group size, i.e. the number of nodes participating in that call T{n,p).

Proposed collective routine tests for SCOPE are also suitable for Collective Communication Li-

brary implementations such as (MPI-CCL) [28] which utilise explicitly the native LAN broad-

cast mechanism for collective operations. Analysis of the results on these implementations

differs according to the implementation routine mechanism. Collective calls can provide a good

scalability measurement of the systems capability to sustain positive speedup in proportion to

the number of nodes. Collective routines can be divided into three sub-classes:

» synchronisation (i.e. barrier call)

® data movement-I (i.e. broadcast call)

» global computation (i.e. reduce operation call)

« data movement-II (i.e. all-to-all call)

The barrier call tests only the synchronisation primitives of a system (there is no data movement

among nodes). The other collective calls require data movement.

Synchronisat ion Call Test

The barrier call is a collective synchronisation routine, each node is blocked until all the nodes

within the group have reached this barrier call. The SCOPE synchronisation call test mea-

sures the latency of the MPI_Barrier call har ip) for groups of different number of nodes. The

MPICH implementation of the call is based on a butterfly communication structure algorithm

with log p steps often represented as a hypercube. Practical issues require the implementation

of a locking mechanism for each process with the initialisation of a protective communicator

in which synchronisation with zero payload peer-to-peer calls will take place. Figure 6.3 illus-

trates the complexity of the underlying communication pattern which takes place for a barrier

synchronisation call of a 9-node communicator using the MPICH implementation. The number

of peer-to-peer calls required from nodes to exchange for this call is given by:

2(|_log2pJ . - 2l"'«'PJ) (6.14)

A simplified model approximation for a multiple channel communication network of the barrier

synchronisation call can be given by 6.15:

ibarip) — {^oc ^init ' P) "t~ 3̂ [10g2 (6.15)

where tbarip) is the barrier synchronisation call latency for p nodes, toe is a constant startup

cost and tmit is the variable initialisation overhead cost per process, the last term of the above

equation represents the logarithmic part of the communication cost.

(ZHrAJPGTEjR 6. .SCTOjPf;; /I .SLfZrjS 97

stepl

step2

step3

Figure 6.4: MPICH Broadcast call communication pattern involved on an 8 node communicator

(where ia the required time for the broadcast of a message size n on p nodes). The

protective communicator initialisation phase is represented by the toe + tinit • P term. Each

single message-transfer step takes 4- t ^n although in practice these steps are not clearly

distinguished for short messages where noise and the start-up time dominates the latency of

the broadcast call.

Global Computat ion Test

In a global computation test the latency of a reduce routine is measured as a function of the

group size and the message size. A reduce operation call is a global computation (or combine

operation) collective call in which data flows from bottom-up, from the leaves to the root of

the tree. In addition, nodes have to access locally the transferred data in order to calculate

the partial results of the combine operation. For this reason the cost of a reduce operation is

relatively higher than a broadcast call. In practice a latency measurement test for a reduce call

is straight-forward. The implementation of any reduce operation involves the root process in all

of its execution steps, so a single ping test is sufficient to provide the necessary measurements

for this collective call. The combine operation for the SCOPE reduce test is a single-clock-cycle

logical operation (MPI_LOR).

The MPICH algorithm for the reduce operation is relative to the binary pattern of the

rank of each process, i.e. if the least significant bit is 1 send to the node with that bit zero,

if the bit is 0 then do a receive and combine. During the reduce test the cost of the combine

operation remains constant, while the communication cost of the call depends on the network

configuration. The reduce operation compared with the broadcast operation has an increased

cost because of the extra cost toU of the combine operation:

tredij^^ p) — ̂ oc 4" ' P (^s tyjTl 4- topTlJ (6.17)

(where tredin^p) is the time required for the reduce operation on p nodes, each step takes

ts + for a single message transfer plus the time required for the combine operation topTi).

ClfAPTER 6. SCOPE; A T.4JI,0RED BENCHMAm: St/ZTE 98

Figure 6.5: MPICH Reduce call communication pattern on azi 8 node communicator

Figure 6.6: MPICH All-to-all Ccdl communication pattern on 5 node communicator

D a t a Movement-II Test

The complexity of this test is equivalent to C0MMS3 benchmark of the low-level PARKBENCH

suite. Its purpose is to measure the communication system performance under total saturation

conditions and provide useful information of how the communication subsystem scales up with

an increasing number of nodes. An all-to-all call, used for this test, is a data movement

demanding routine because it requires each process (node) to send distinct data to every other

process (node) and receive data from every other process accordingly. Figure 6.6 shows an

example of the communication pattern involved with a 5 node communicator MPI AZffocfZ call.

6.6 S C O P E Kernel-level Tests

Traditionally kernel-level tests use algorithms or simplified factions of real applications. Results

of these tests are not sufRcient to access completely the performance potential of a parallel

machine on full scientific apphcations [114, 240]. However kernel-level performance tests can

be biased in favour of particular parallel architecture features, for example NUMA or SM

architectures. Information gained at this level of tests can provide a more realistic performance

guidance for programmers and application developers.

The proposed SCOPE kernel-level benchmarks comprise algorithmic and operation tests.

Kernel-level algorithmic tests include implementations of message-passing algorithms for matrix

CHAPTER 6. SCOPE.- A Z4&0RED BENCHMARK: SUITE 99

Master node

Decomposis ion phase

Sequential
processing
on each
node

Data gathering phase

Master node Resu l t

Initial da ta

Figure 6.7: The data parallelism model with a domain decomposition phase

to matrix, sorting and multi-grid relaxation routines. Results of these tests can be used either

to express the total elapsed time of the whole algorithm or partial performance on specUic

operation tests. Kernel-level operation tests provide information of the dehvered performance

of fundamental message passing operations such as broadcast, gather and scatter operations.

Algorithms used in kernel level tests do not use optimisations at the programming level,

such as loop unrolling or blocking segmentation. The compiler optimisation used throughout

the SCOPE tests is at level - 0 2 which is widely accepted for benchmarking. The following

paragraphs describe brieSy the implementation of the algorithms used as kernel-level bench-

marks.

6.6.1 Kernel- level Message Pass ing Opera t ion Tests

The single program multiple data (SPMD) model is an example of data parallelism used in

MIMD and SIMD machines and clusters of workstations [185, 125]. In contrast to functional

parallelism, data parallelism depends on the size of the problem because the entire data domain

is partitioned among individual processes. This directory contains tests such as broadcast, scat-

ter, gather and shift which are used in applications with data parallelism as Fig. 6.7 illustrates.

Although some of these calls have been examined previously in low-level tests there is a

performance gap between low-level tests and real applications. Kernel-level message-pagsing op-

eration tests are designed to examine the performance of these calls from a diEerent level within

the context of an application or an algorithm at the kernel-level. Results from kernel-level mea-

surements are more realistic and closer to the effective performance delivered at the application

level. Tests at this level measure the actual overhead of an operation at the programming

level. In addition, some of these operations are often encountered as a combination of single

peer-to-peer calls (e.g. shift operation or vector and stride scatter and gather operations) or

even associated during application initiEilisation phases with preliminary communication data

CfTAPTER 6. SCOPE; A TAILORED BENCHMARK SC/JTE IQO

exchange and datatype definitions, etc. Hence examination and benchmarking the performance

of these tests will be very useful for application developers and system designers which can be

combined to predict other application with data parallelism execution cost or scalability.

There are significant prospective differences between kernel-level tests and low-level tests.

The construction of kernel-level tests does not always guarantee a pending receive call for each

send call, something which undoubtedly improves performance in low-level such as ping-pong

tests [97]. All kernel-level operation tests are stripped-down versions of kernel-level tests with

the computational part omitted. The core of a kernel-level operation test does not have a loop

within which the operation under test is executed for a number of times to overcome poor timer

resolution. Instead the whole core of the test including initialisation phases, buffer allocation,

is repeated together with the operation under test. The timer has to run only for the targeting

routine or any other functions directly bound to that operation, e.g. buffer allocation, datatype

definition, displacements, etc. The amount of data each call has to transfer to and from other

nodes is relatively large, hence the disadvantage of poor timer resolution is not a primary issue.

The use of register timers as a profiling method, presented in section 6.3.5, will provide more

accurate results and shorten the length of tests.

The operations which are measured via the SCOPE kernel-level tests are;

» broadcast data

® scatter data

« gather data

» shift data among nodes

6.6.2 Kerne l - leve l B r o a d c a s t Tes t

This test emulates an application which has to broadcast an array of size N X N among a

number of p processes. The structure of this test is based on the allocation of a matrix which

will be initialised randomly on the root process. Then the root process has to broadcast the

matrix into all other processes within its communicator. Accordingly each node in advance has

to allocate a buffer area in order to run a beast call. The structure of this test is similar to the

low-level counterpart broadcast test. The matrix sizes for broadcasting varies N between 30

and 1080.

6.6.3 Kerne l - leve l Scat ter /Gather Ope ra t i ons

Scatter and gather are fundamental operations used in message-passing model to implement do-

main decomposition and composition phases. These two tests perform two almost-complementary

operations. The first operation scatters a buffer in parts to all tasks within a group and the

second one gathers together into the root node values from processes within that group. For

kernel-level operation tests the vectorised versions of these routines are tested. The initialisation

phase and explicit calculation of displacements are not timed during the tests.

CHAPTER 6. SCOPE.- A TAZIORED BENCHMARK SUITE 101

Buffer A
on root node nO

Buffers A A on nodes

0 1

2 3

4 5

^ nO n l

tf

n2 n3

n4 n5

size N X N
size (NxN)/p

Figure 6.8: Gather/Scatter operations

nO nl n2 n3 nO nl n2 n3

Figure 6.9: A shift right operation within all processors of a communicator

The scatter function has to decompose an array of size % W of the range 120-1680 and

distribute the sub-arrays among the nodes of its group. The gather operation on the other hand

has to transfer an array of size W of the range 120-1680 back into the root node.

6.6.4 Kernel-level Shift Opera t ion Test

The need for a shift operation is frequently encountered in many parallel algorithms. The

current shift operation test is a circular shift operation among p processors of the same processor

array taken from the core of Cannon's matrix multiplication algorithm implementation. This

test exchanges data between local nodes so it will provide a good indication about the scalability

of a cluster for this particular form of local communication pattern. The actual shift operation

starts with the identiGcation of the processes that will participate in this call. For the successful

implementation of the operation each node has to allocate an extra memory buffer for the

receiving data. The exchange of data is completed within two peer-to-peer calls. Then locally

each node has to swap its bu&rs at the end of the operation and return back the allocated

extra buffer. Implementation of the call is tested for array size TV ranging between 30 and 1080.

6.7 S C O P E Kernel-level Algorithmic Tests

This section of the benchmark suite includes a small set of kernel-level algorithmic tests which

are included in a wide range of real parallel application algorithms. Kernel-level algorith-

CHAPTER 6. SCOPE.' A TAILORED BENCHMAEX SUITE 102

mic tests will measure the overall performance of a cluster at a higher programming level.

Kernel-level algorithms covered at this stage in SCOPE are two matrix-matrix multiplication

algorithms, a sorting and a 2D relaxation algorithm. A particular attribute of these tests is

the degree in which they can be analysed to provide performance details at an elementary level

which can be applied to interpret more complicated algorithms later. Nonetheless algorithms

in this module should be kept simple and must avoid becoming a benchmarking of the available

software e^ort as happened in PerfectClub and other benchmark suites [120). The following

sections provide more detailed description about the proposed kernel-level algorithmic tests.

6.7.1 M a t r i x - m a t r i x Benchmarks

Matrix multiplication is a fundamental component of many numerical and non numerical al-

gorithms in various scientiGc applications. Matrix-matrix algorithms are highly parallehsed by

several algorithms and can assess the computational and communicational parts of a system.

The naive algorithm of matrix multiplication has 0(7V^) complexity.

m—1
^ ' bkj (6.18)
k=0

The sequential algorithm involves three nested loops and requires operations:

for i := 0 to N

for j := 0 to N

for k := 0 to N

c (i , j) := c (i , j) + a (i , k) b (k , j)

end k loop

end j loop

end i loop

There are many ways to parallelise this algorithm, in this study we consider the Row/Column

striped oriented algorithm and the Cannon's algorithm respectively. Both algorithms consider

a two-dimensional decomposition of the original matrices A and B over processors (nodes).

Each process has to accomplish a task of complexity. The difference among the

two algorithms is the amount of partial memory required on each node and the number of

interprocess communication steps required among nodes during the execution phase as well

as the flexibility of the algorithms to make use of the available cluster resources. A modified

version of the matrix multiplication algorithms that transposed the second matrix during the

initial partitioning showed significant speed-up relative to the original code (2-4 times) for small

numbers of nodes (results are presented in Appendix 203).

6.7.2 R o w / C o l u m n St r iped A l g o r i t h m Test

The Row/Column striped algorithm parallelises the outmost /or loop of the naive sequential

algorithm and requires a striped partitioning of the A matrix into row number of row blocks and

a partitioning of matrix B into co/ number of column blocks. Then it involves dot products

CHAPTER 6. SCOPE.' A TAILORED BENCHMARK SL/fTE 103

which is the operation between a row of the A matrix and the column of the B matrix. After

the dot product calculation each node has a sub-matrix of the C product matrix. Although the

algorithm implementation is straightforward as soon as sub-matrices are distributed to nodes,

the initialisation phase is complex because it requires the deGnition of several user datatypes

and the use of different sub-groups of nodes or communicators in MPI terminology.

According to Foster [80]. the execution time of a parallel program is the time that elapses

from when the first processor starts executing on the problem to when the last processor com-

pletes execution. During execution, each processor is computing, communicating, or idling:

Ttot — Ti-omp + Tcomm 4" (6.19)

Adopting this formulae to our algorithm we have to add the extra time of new datatypes

and communicators at the initialisation phase , which may be expected to depend on the

amount of datatype definition and the number of nodes p. In many caaes the initialisation of

new datatypes is done dynamically "on the Hy" within the algorithmic phases, therefore the

extra time overhead has to be credited to that operation.

Hence the equation 6.19 will become:

= Tinif -t- Tcomp + ?comm + Tidfg (6.20)

A more detailed analysis of this algorithm is presented in Appendix F.

6.7.3 Cannon ' s Algor i thm Test

Cannon's algorithm follows a checkerboard partitioning for each matrix and requires less

memory on each node than the Row-Column striped algorithm. In order for a node to calculate

a partial product it requires all blocks of its row and column to be systematically rotated

among the processors, therefore the computation step requires 1 steps with computation

and communication rotation. The execution time of the algorithm is summarised in a similar

way to Foster's analysis [80] as:

Ttot = Tinit 4- (6-21)

A more detailed analysis for both matrix multiplication algorithms is provided in Appendix

F.

6.7.4 Sor t ing Rou t ine Test

Sorting is a fundamental interesting problem in computing with numerous applications. Se-

quential comparison sorting algorithms have time complexity of O(nlogn) (where n is the size

of the array), but in general these are not easily paralleliseable and in addition do not scale

very well. Tests of such algorithms can provide a good indication of a cluster performance as

they include several all-to-all routines of random sizes. The SCOPE sorting algorithm test is an

implementation of the "parallel sorting by regular sampling algorithm" (PSRS) introduced by

Li et. al. [137] which has been eEectively implemented on many MIMD architectures [185]. The

CEAf TEE 6. SCOPE; A Z4JI0RED BENCffMARK SI/fTE 104

PSRS algorithm is a combination of characteristically important parallel operations cimong its

nodes. The implementation of the algorithm is split into four stages. During the first phase the

array is equally divided and distributed to all processes, each processor is assigned a continuous

block of [n/pl elements. Elements of these sub-arrays are sorted-out with sequential quick-sort

algorithm locally. In phase two the root processor gathers and sorts samples from all locally

sorted sub-arrays (nodes) and broadcasts pivot values to every processor again. Each pro-

cessor now haa to pcirtition the sub-sorted lists into sections according the pivot values. In the

third phase processors exchange partitions among them and rearrange again sub-arrays. In

the Anal stage, each node merges its p partitions into a single list, the root processor is gathering

(concatenate) all the lists in the final sorted list. The communication cost of the algorithm for

an MljVID architecture implementation with p number of processors and an afray size of n is:

in the first phase messages of C)(p) size, in phase two p pivots of size 0(p) while in phase

three there are p processor sending fi-./ messages of size 0(n/p) . The overall computational

complexity of the algorithm is approximated to: 0((n/p) logn 4- logp + n/plogp) which is

asymptotic to C)(n/plogn) when n > [137, 185]. See Appendix F for more details on the

analysis of this algorithm.

6.7.5 Mul t i -gr id Relaxa t ion R o u t i n e Test

This routine is an example of a linear second-order partial differential equation (PDE) using

a multi-grid iterative method to deAne an approximate solution. This is a rather simplified

approximation of a two-dimensional Laplace equation on a rectangular domain using Gauss-

Seidel-Relaxation:

where a; and y represent coordinates in space, and / is the function that compute the values.

This benchmark addresses the problem of processes exchanging and processing data locally.

The current multi-grid routine is based on a sample problem that acts on a two-dimensional

grid of data values. The boundary values of the grid have fixed values (halo) while interior values

are set to the average of all their neighbours:

j — f x , y - l + f x + l,y + fx,y+l 23^

The initial array of points is uniformly checkerboard distributed among processors into blocks

of (n /y^) X (n/\/p) grid size. Each processor uses these values for boundary conditions and

applying a normal sequential Gauss-Seidel averaging calculation on its own data. The next

step of the algorithm is to check whether the convergence is "close enough" to a solution or

to repeat another iteration. If a further iteration is required each processor exchanges its

"boundary" values with its four neighbours (above, below, left, right) and repeats the above

computationeil steps. The current test implementation on every iteration performs a global

checking for the maximum change but does not abandon the loop unless a certain number

of iterations is performed which guarantees a fixed workload each time the test runs. The

CHAPTER 6. SCOPE; A Z4fI0RED BENCHMAMC SI/ITE 103

parallel implementation of the message-passing test is a mixture of Gauss-Jacobi and Gauss-

Seidel methods known as a "chaotic" rubric [178]. A Gauss-Seidel iteration method is used for

the data of each process, while data from neighbouring processes are "fixed old values" which

resembles the Gauss-Jacobi method. Appendix F provides a detailed analysis of this relaxation

algorithm.

6.8 Summary

This chapter has proposed and examined the Specihc Cluster Operation and Performance Eval-

uation (SCOPE) benchmark suite. The main objective of the SCOPE benchmark suite is to

contribute to the scientiSc benchmark methodology for a comprehensive examination of work-

station cluster characteristics. The structure of the SCOPE benchmark suite is consistent with

the hierarchical abstraction levels of well-known benchmark suites.

Single-node-level includes basic architectural benchmark tests to evcduate individual node

characteristics. Low-level tests examine thoroughly performance at the communication level,

there is a special emphasis on underlying network performance tests, e.g. TCP/IP sockets and

on collective operations. Benchmarks at kernel-level provide performance evaluation closer to

the user level. Kernel-level operation tests examine delivered performance of fundamental data

parallehsm operations such as shift, etc. Kernel-level algorithmic tests include implementations

of message-passing algorithms, such as for matrix to matrix, sorting and multi-grid relaxation,

used in a wide range of parallel applications and measure the overall performance of a cluster

at a higher programming level.

At the current stage the SCOPE benchmark suite does not have any application-level tests

because the implementation of such tests is beyond the scope of this thesis.

Chapter 7

Experimental Results and Analysis

of SCOPE Benchmarks

This chapter demonstrates and analyses the SCOPE benchmark results obtained with the

experimental implementation on a variety of workstation clusters. Computer architectures

included in the clusters tested include SPARC workstations running Solaris, clusters of Pentium

workstations running Linux or NT, a cluster of DEC Alpha workstations running NT and a

cluster of SGI 0 2 workstations. Table 7.1 summarises the architectural characteristics and

configuration issues for these clusters. Several benchmark tests also run on MPP systems

(SP2, CS2) to provide reference points and assist in the analysis, evaluation and comparison of

performcince results in clusters of workstations although the benchmark suite does not target

MPPs.

AH the clusters presented in Table 7.1 can use the TCP/IP communication protocol suite

and either the MPICH message-passing communication hbrary or implementations based on it.

Individual cluster characteristics such as a dedicated intercoimection network, or dual network

interfaces, were taken into account and tests of these characteristics are also considered wherever

Table 7.1: Cluster configurations used for testing with SCOPE benchmarks

Cluster Node arch. OS Network conhg. Dedicated Nodes

Linux Pentium PC Linux/2.034 TCP/IP Ethernet No 3

NT Pentium PC NT/4.0 TCP/IP Ethernet No 8

Alpha Alpha NT/4.0 TCP/IP Faat Eth. Yes 8

Solaris SPARC-4 Solaris/2.6 TCP/IP Ethernet No 12

Ultra-SP. ULTRA Solaris/2.6 TCP/IP Ethernet No 12

Lyon/Eth. PentiumP PC Linux2.0.34 TCP/IP Ethernet No 6

Lyon/Myr. >> >> TCP/IP Myrinet Yes 6

Lyon/BIP >> >> BIP Myrinet Yes 6

IRJX 0 2 IRJX/6.3 TCP/IP Fast Eth. No 32

106

CHAPTER 7. SCOPE.' EXPEMME2VZ4I, RESLTLTS Ar^D ANAf/YSfS 107

Table 7.2: Individual processor SPECint95 SPECfp95 Agures [204]

System Processor MHz SPECint95 SPECfp95

SP2 Power2 66 3.23 9.33

SP2 Power2 133 6.17 17.6

CS2 SuperSPARC 40 >1 -

NT DEC 21164 500 13.9 15.2

Linux Pentium 200 8.09 6.75

0 2 RIOOOO 192 9.66 8.77

Ultra 1 UltraSPARC 143 5.87 8.38

SPARC-4 microSPARC II 110 1.59 1.99

possible. Measurements on "open" clusters (i.e. a non-dedicated intercommunication network)

were obtained when there was no other user activity, if possible, on the network to avoid

any interference and disturbance with the results and also affect the throughput of other user

jobs [172]. Parameters that can influence tests and measurements are taken into account for

each platform in order to analyse the results better, i.e. to assess the eSect of other workload

interference with some of our tests. The presence of background administrative workload "noise"

is considered invariant, small and negligible for the purposes of the test results. The message

size refers to payload. Each test is repeated several times in order to avoid any clock jitter,

Grst-time and warm-up effects. The best time from each measurement test is presented in the

results.

Before starting measurements on clusters it is useful to assess the SPEC benchmark per-

formance levels for the individual nodes used in our workstation cluster platforms. As shown

in Table 7.2 the equivalent SPEC performance marks [204] among these processors varies by

almost an order of magnitude.

7.1 Tests on M P P s

This section presents the latency and bandwidth test results run on the SP2 and CS2 at the

University of Southampton 6ind on the SP2 at Argonne National Laboratory. Results of the

low-level SCOPE benchmark tests on MPPs are used as a guideline to analyse and compare

the performance of clusters. Higher-level SCOPE benchmark tests can also run on MPPs but

the interpretation and analysis of the SCOPE test results on MPPs is beyond the scope of this

thesis.

In both SP2 machines the native IBM MPI implementation was used while on the CS2

system the MPICH 1.0.12 version was used. The processors of the SP2 are Power2 Super

Chip (P2SC) RS/6000 architecture which are superscalar pipelined chips capable of executing

four floating point calculations per cycle. The SP2 communication architecture is based on

a low-latency high-bandwidth two-level cross-bar switch (TB2 or TBS) with peak bandwidth

for the TBS DMA engine of 150 Mbyte/s [116]. Similarly the CS2 is an MPP machine with

CEAPTER 7. SCOPE; E%PERjAfEiVZ4I, RE5UI,TS AND ANAIYSIS 108

IMW l04:jW]6

Figure 7.1: Latency and bandwidth of SP2 and CS2 Southampton and SP2 at Argonne.

superscalar SPARC processor nodes (microSPARC 110) while its communication cross-point

switch is capable of providing 50 Mbyte/s link communication in each direction [218].

Figure 7.1 illustrates the SCOPE benchmark latency and bandwidth results on these MPP

machines as a function of message size. The diSerence in performance between the two SP2

machines is due to the different type of high-performance switch (TB2/TB3). All three systems

are batch systems and job allocation to nodes is done through a scAednkr. The interconnection

network is dedicated and graphs in Figure 7.1 illustrate smooth plots without fluctuations

or anomahes. A closer examination of the SP2 graphs demonstrates a breakpoint for message

sizes at 4 Kbyte, this is due to the different protocol policy used for sending/receiving small and

large messages from the MPI implementation (which is speciGed by the MP_EAGER_LIMIT

variable).

7.2 Low-level Communica t ion Tests Resu l t s

This section presents the low-level network and low-level communication library test results.

Low-level network tests targeting the underlying network API level performance directly. The

TCP/IP latency and bandwidth performance has been measured in most of the target plat-

forms. Minor modifications to these tests allow benchmarks to run on non-standard network

protocol APIs such as the BIP protocol to meet platform portability requirements. Tests at

the communication library level (i.e. the MPI level) did not require any modification across the

range of the platforms tested.

Low-level communication benchmarks test for peer-to-peer and collective operations such

as one-to-all broadcast, single-node accumulation (reduce) and barrier synchronisation among

all processes within their communicator/group [134].

7.2.1 T C P / I P and Berkeley Sockets In te r face Tests

Berkeley Sockets provide the main network UNIX API via which TCP and UDP services are

made available at the application level. In API the initial objective was to present the network

interface as a UNIX-like standard character device, in which sockets are file descriptors related to

C E A f TEjR 7. SCOPE.- RESLM/TS AND ANAIYSIS 109

the network device. In this way sockets are network communication endpoints, once connection

is established (STREAM) caji be used by standard reod(), wn^e(), cZo3e() OS functions.

The proposed SCOPE Berkeley socket-based benchmark has been designed around the

classical client-server model and the ping-pong principles presented in section 3.2.2, with no

computational steps. During the initiahsation phase the establishment of the connection be-

tween the two nodes and exchange of control parameters takes place. When timers on both

ends are setup, both nodes enter the main communication-intensive ping-pong loop.

7.2.2 The Linux Clus ter

This cluster is composed of Pentium PC nodes (at 166 MHz and 200MHz) running Linux 2.0.x.

The interconnection network is configurable, either as an open lOMbit/s Ethernet subnet or

a dedicated lOOMbit/s Ethernet segment. The MPI version used throughout the tests was

MPICH 1.1. The ability of this cluster to reconfigure its network channel either as lOMbit/s or

lOOMbit/s and the fact that one of the nodes uses a dual processor, resulted in the running of

three separate tests. One test is for the lOMbit/s Ethernet chaimel (between two PentiumPro

nodes), another test is for the 100 Mbit/s Ethernet channel (between a PentiumPro and a

Pentium 166), and the third test uses the loopback interface of the dual processor node (Pentium

166).

Network Performance. The following Table and Fig 7.2 illustrate latency and bandwidth

performance characteristics at the network level for the Linux cluster. The system could saturate

the Ethernet channel just above 1 Mbyte/s only for message sizes larger than 64 Kbyte. The

latency feature is moderate and rather high around 316 the half bandwidth performance

point is delayed as well at message sizes of 1 Kbyte or larger. Running the network test over

the Fast Ethernet path we notice a significant improvement in latency which drops down to 90

but the effective bandwidth for larger messages is restricted below 5.5 Mbyte/s. Detectable

breakpoints in the graphs occur between 1 and 2 Kbyte messages (Ethernet maximum packet

of 1.5 Kbyte) and around 4 Kbyte because of the OS memory page length size. Applying the

approximation model equation 6.10 and 6.11 for the Fast Ethernet channel yields a startup

time of 195 and asymptotic bandwidth around 5.7 Mbyte/s.

Network performance of Linux cluster min Lat. max BW ^1/2

Berkeley Sockets TCP/IP over Ethernet 316 /is 1.02 Mbyte/s 1 Kbyte

Berkeley Sockets TCP/IP over

Fast Ethernet

90 //a 5.47 Mbyte/s 1.5 Kbyte

Communicat ion library performance test . Latency and bandwidth test results at the

communication library level (MPI) are illustrated in the following table and Fig. 7.3. Perfor-

mance of these tests is degraded for both latency and bandwidth results compared to the raw

network performance because of the MPI communication library overhead. For the Ethernet

channel communication latency is increased to 638 while the bandwidth drops dramatically

7. SfJClFyS.- jELKT'EjllAdlCArDlL JUSSLmrS /U\[D vlff/LLlKSIS 110

Latency benchmark GEO d#m* Bandwidth benchmark GEO cloacf

Theor. TCP/IP ovti Eiheroet Thcor. TCP/IP over Fast EihenieJ tOOMbgAî

WW WW ZWIW
Mcissgc si te in byies

Figure 7.2: Network latency and bandwidth performance on the Linux cluster

Latency benchmark GEOchisicr

iw w
.Vfcitage s'ze in byles

Bandwidth bcnchruark GEOchisier

lOMbil/j
lOOSAiW Tlieof. TCP/IP over Eihanei rheor. TCP/IP over Fas EtlcnieJ

^ WW MM WW
Message sire in byta

Figure 7.3: Latency and bandwidth of the Linux cluster

to 265 Kbyte/s with further unpredicted performance degradation in several points. Figure

7.3 illustrates a break point around 16 Kbyte, which is the default MPICH message protocol

switching point, for all tested configurations. This is a feature of the MPI implementation

which uses a different policy for short and long messages on MPI send/recv calls.

Performance results for the Fast Ethernet subnet, in comparison with the network-level

performance test counterparts, are smoother and the MPI overhead does not degrade perfor-

mance dramatically compared to the measured network level test performance. The overhead

of the MPI library is around 200 fj.s, latency is 293 fj,s and bandwidth for large messages is 4.3

Mbyte/s. The half-bandwidth performance point ni/2 is at about 1.5 Kbyte which indicates

poor network performance for short-to-medium size messages. Further investigation of the OS

and the T C P / I P implementation is required, see [127].

Configuration of a Linux cluster min Lat. max BW

MPI over T C P / I P and Ethernet 587 265 Kbyte/s 1-1.5 Kbyte

MPI over T C P / I P and FastEthernet 293 fj,s 4.3 Mbyte/s ~1.5 Kbyte

MPI over T C P / I P using loopback 638 /US 624 Kbyte/s 1-1.5 Kbyte

(ZHLAjOGTEjR /. S(7CXFUS: j3J[PUSjtCV[E%V:n4jL ftEfZLQLllS AJVD /LPfAjLl̂ SIS 111

Latency benchrwrk BandwidU] bsichmart

:« iw am* iwM 6W* amw

Figure 7.4: Latency and bandwidth of the NT cluster

7.2.3 T h e N T cluster

The NT cluster is composed of 8 Alpha based DEC workstations and uses a dedicated intercon-

nection network with a lOOMbit/s Ethernet switch. According to Table 7.2 this cluster has the

most powerful processors/nodes among the clusters available in our tests. Several programming

environment differences with the rest of the systems tested, together with access restrictions

prevented network-level performance tests been run on this cluster. On the other hand, the

communication library tests were proved to be portable enough on this platform to run without

difficulties. The MPI version used in these measurements was rather an early experimental ver-

sion based on the MPICH one. The Abstract Device Interface (ADI) makes use of the TCP/IP

protocol stack provided by NT. The dedicated interconnection network of the cluster ensures

"smooth" undisturbed results.

Communicat ion library performance test . As we can see from Figure 7.4 results for

latency and bandwidth on the NT cluster are not impressive, the main reason for this is the

premature experimental version of that MPI implementation. An unnecessarily large number

of context switches seems to degrade performance significantly. The system was unable to use

the communication channel efficiently even for large messages and the latency is high even for

small messages. Further investigation of the T C P / I P implementation performance is necessary

because the overall performance of this cluster compared to its hardware capabilities is especially

poor.

Configuration of the NT cluster min Lat. max BW ni/2

MPI over TCP/IP 673 pa 120 Kbyte/s 100 byte

7.2.4 The S P A R C cluster

The SPARC cluster uses an open, non-dedicated, lOMbit/s Ethernet subnet running Solaris

(SunOS 5.5.1) with a communication library based on MPICH 1.0.12. Cluster nodes are either

SPARC-4 or UltraSPARC workstations (see Table 7.2). The following table shows the low-level

latency and bandwidth tests results for this cluster.

CHAPTER 7. SCOPE; E%PERIAfENZ4I, RESt/ITS AND ANAIYSIS 112

Figure 7.5: Latency and bandwidth on SPARC workstation clusters

Network Performance Tests. The network-level latency for a pair of Ultral nodes is 212

and 526 /ig for a pair of SPARC-4 nodes. Bandwidth features for both systems are similar

above 1 Mbyte/s. However, the half-bandwidth performance point provides some interesting

results, for the Ultral which is faster at 256 bytes while for the SPARC-4 the half-performance

point is delayed until a message size of 600 bytes. This is because Ultral nodes are computa-

tionally more powerful than SPARC-4 nodes thus start up time is considerable shorter and these

nodes can therefore make more eSicient use of the network channel when handling short mes-

sages. The approximate model equation 6.10 yields 160 start-up latency and 1.05 Mbyte/s

asymptotic bandwidth.

Network performance of SPARC clusters min Lat. max BW ni/2

Berkeley Sockets T C P / I P over Ethernet

Ultral workstation

a + b*x approximation

212 /fg

160 /̂ g

1.082 Mbyte/s

1.052 Mbyte/s

256 byte

170 byte

Berkeley Sockets TCP/IP over Ethernet

SPARC-4 workstation

526 jjLS 1.047 Mbyte/s 600 byte

Communicat ion library performance test . Plots in Figure 7.6 illustrate communication-

level latency and bandwidth-performance tests run on a pair of SPARC-4 and a pair of Ultra-

SPARC nodes respectively. Once again here the communication library latency figure is 2 to 2.5

times longer for small messages as was expected due to MPI communication library overhead

but bandwidth and the half-bandwidth performance point ni/g are not degraded significantly.

Configuration of a Sun cluster min Lat. max BW ^1/2

ULTRA SPARC 660 /ig 1.03 Mbyte/s 280 byte

SPARC-4 1.37 ms 1.01 Mbyte/s 750 byte

ULTRA SPARC (loopback) 1.5 ms 840 Kbyte/s 700 byte

Although theoretically this cluster has some of the least powerful nodes of our tested clus-

ters (SPARC-4), it gives some of the best performance results among the 10 Mbit/s Ethernet

configured clusters. Both SPARC-4 and ULTRA SPARC use the network channel very e@-

CHAPTER 7. SCOPE; EXPEMMEATTAI RESLTLTS AND ANAlYSfS 11c

L km SPARC
L Kn SPARC korh

Figure 7.6: Latency and bandwidth of the Solaris cluster

ciently and communication bottleneck is therefore close to the Ethernet channel hmits. The

non-dedicated intercommunication network had almost no effect on the results. Keeping the

test conhguration essentially the same, (the same software and intercommunication network) we

can switch between SPARC-4 and ULTRA SPARC nodes. As we expected the more powerful

node improves latency and bandwidth performance figures especially for short-size messages.

7.2.5 The SGI Clus te r

The SGI cluster is composed of Silicon Graphics 0 2 workstations interconnected with a switched

Fast Ethernet network. The communication library used throughout our tests waa the MPICH

1.1.1. Network level latency characteristics for this cluster are regarded rather high at 368

with the half-bandwidth performance point ni/2 is at 1.5 Kbyte, while bandwidth for large

messages approaches the theoretical absolute just above 12 Mbyte/s. The approximate latency

and bandwidth (from equation 6.10) for this cluster are 480 /iS and 12.4 Mbyte/s respectively.

Figure 7.8 illustrates communication library level test results for this cluster. The MPI overhead

is around 546 /iS and the half performance point is affected very little. Large message

bandwidth is degraded to 8.9 Mbyte/s. Results from the SGI cluster improve the overall

latency performance but the half bandwidth performance point is delayed to about 1.5 Kbyte.

This is due to the bandwidth improvement of the Fast Ethernet channel while the rest of the

communication mechanism is not likely to have any improvement over a 10 Mbit/s Ethernet

network.

Network performance of 0 2 cluster min Lat. max BW "1/2

Berkeley Sockets TCP/IP

over Fast Ethernet

o -1- 6 * z approximation

368

480 /la

12.06 Mbyte/s

12.40 Mbyte/s

1.5 Kbyte

1.5 Kbyte

Communication performance of 0 2 cluster min Lat. max BW ni/2

MPI over T C P / I P over Fast Ethernet 546 8.9 Mbyte/s '-'1.5 Kbyte

7. 5(:C)fyS; fLEI-SLTLgrS /lATD /ITV/LLTrSIS 114

Ljioky bcnchiiurt 3»»iwHJih t-emhinirt

-n»MmyO*ILO)y
Meuige liieibyto)

WW WM6 aaw W M # IW MOM &WM Mmw

Figure 7.7: Latency and bandwidth on 0 2 cluster

Figure 7.8; Communication level latency and bandwidth on 02 cluster

(TffAJSGTEJt 7. S(7CtPj3; JRiSSLflJlS JuND yL̂ LULYTSKS 115

BmmhndA benchmark

B IP over MjrineJ —*—
£ihcrna * -

^ wK

rjieor, TCP/IP over Eihcnica

tilr over Myniio

31 Mb̂

Figure 7.9: Latency and bandwidth on the BIP cluster for bare network protocols

7.2.6 The BIP Cluster

In previous sections we saw the impact in the performance of a general purpose communication

protocols such as T C P / I P in various clusters of workstations. A mismatch between hardware

and software evolution could essentially negate any advantages provided by high-performance

hardware.

The BIP cluster is built around Pentium-Pro machines running Linux 2.0.1, with an inter-

connection based on a Myrinet network. This network interface has been designed to deliver to

the application layer the maximum performance achievable by the hardware [183]. An attempt

to compromise between new hardware features and software compatibility such as BIP could

provide some very interesting results [183, 22]. The BIP cluster of workstations, presented in

section 2.7, provides a very flexible communication APIs because each node has two NIC (Eth-

ernet and Myrinet) and two flexible network protocol stacks T C P / I P or BIP (see Figure 2.11).

Benchmarking tests have been run using an API configured either as typical T C P / I P stack over

an Ethernet channel or T C P / I P over Myrinet or directly on top of the BIP network protocol

over Myrinet. In the first case the T C P / I P protocol stack on top of the Ethernet network was

selected.

Network performance of the BIP cluster min Lat. max BW ni/2

Berkeley Sockets T C P / I P over Ethernet 144 jjLS 1.04 Mbyte/s 150 byte

Berkeley Sockets T C P / I P over Myrinet 83 lis 24.6 Mbyte/s 2.5 Kbyte

BIP API over Myrinet 6 /iS 121 Mbyte/s 4 tCbyte

Configuration of BIP cluster min Lat. max BW ni/2

MPI over T C P / I P and Ethernet 280 1 Mbyte/s 300 byte

MPI over T C P / I P and Myrinet 171 17.9 Mbyte/s

MPI over BIP and Myrinet 11 114 Mbyte/s 8Kbyte

The performance of the T C P / I P Ethernet configuration gives latency for zero-size message

length 290 and a bandwidth close to 1 Mbyte/s for messages larger than 1 Kbyte. Changing

the physical network from Ethernet to Myrinet, via the same T C P / I P protocol stack (TCP/IP

CHvlPTJSR 7% S(:CXPj& 116

Latencv benchmari TtmD* II i z a 0 5 l 9 9 7 Bandwidth benchmark

Over Elhemet -*—
OverMyrineJ -*—

Over Myrine!-BIP -9--

iwM #»*

0*«f
Owf MyAw-BP

Figure 7.10: Latency and bandwidth on a Myrinet cluster with page alignment

over Myrinet) provides a significant performance improvement. Zero-size message latency is

171 fis and the bandwidth reaches 18 Mbyte/s, with an ni/2 figure below 1.5 Kbyte. In

the final API configuration (BIP over Myrinet) the application (benchmark) interacts directly

with the network interface through the BIP stack. The performance improvement in this

case is impressive, testing the network board performance to the network design limits. Zero

length message latency is 11 /tis and the bandwidth exceeds 114 Mbyte/s with half-bandwidth

performance point nx/2 at 8 Kbyte.

Figure 7.10 shows the latency and bandwidth graphs over those protocol stack configu-

rations, while Figure 7.9 and Table 7.3 illustrates the peer-to-peer performance measurements

of the underlying network protocols, without the use of communication libraries i.e. MPI.

Analysing results from the Ethernet configuration we observe that latency drops down to 144/is

but there is not any noticeable improvement in bandwidth because the current bottleneck is

still in the low bandwidth of the Ethernet channel. Using BSD sockets over the Myrinet con-

figuration we notice a further improvement in latency (84 /is) and bandwidth (23 Mbyte/s).

Finally the BIP configuration as a user-space API gives the best results with latency of 6 ps

and bandwidth above 120 Mbyte/s. Results from the last test show a noticeable discontinu-

ity at message sizes of 256 bytes, on the BIP curve, that reveals the point at which different

semantics, between short and long messages transmission modes, take place for that protocol

(the PIO/DMA switch-over specified by BIPSMALLSIZE [182]). From the above latency and

bandwidth graphs the impact of Ethernet and T C P / I P protocols on system performance is

clear. Figures 7.10, 7.9 and Table 7.3 show the impact of the MPI communication library and

the network protocols on the latency and the bandwidth. The Ethernet channel imposes a

bandwidth barrier at 1 Mbyte/s while the T C P / I P protocol stack imposes a bandwidth barrier

around 23 Mbyte/s. In terms of latency the time required by the OS to control the network

interface (e.g. the Ethernet board) is apparent as is the time required to proceed through the

network protocols according to equation 6.9.

The impact of the communication library (MPI) is related to the performance of the net-

work protocols. Therefore, as Figures 7.10 and 7.9 illustrate, the cost of the communication

library for a slow communication channel is very high (start time overhead <K t ^n per byte

cost), but as we move to faster communication channels this cost becomes higher and then rep-

117

Table 7.3: Ping-pong test results on various communication libraries

Configuration min Latency max BW % l / 2

T C P / I P sockets vs. 144/280^s

NIPI over TCP/IP

a-l-b*x approximation 137/- /ia

T C P / B I P sockets vs. 84/171^s

MPI over TCP/BIP

a+b*x approximation 74/ - /js

6/11 /̂ 3

1.06/1.0 Mbyte/s 0.3/0.3 Kbyte

1.09/- Mbyte/s

23/17.9Mbyte/s 1.5/1.5 Kbyte

24.7/- Mbyte/s

121/114 Mbyte/s 3/8 Kbyte BIP sockets vs.

MPI over BIP

a+b*x approximation 26/ - us 120.1/- Mbyte/s

Latency benchniait 12 Il:l7j2 1997 Bandwidth baichmart

Argoi>e SP2
SokMSPZ
&*o#C32

ScZsPZ hum CM Lyon BIP

Figure 7.11: Comparing latency and bandwidth between a Myrinet cluster and MPPs

resents a significant fraction of the communication overhead e.g. TCP/IP/Myrinet ((, ~ tyju).

Interfacing the MPI communication library directly onto the BIP without involving the OS

can minimise that overhead considerably and take advantage of the hardware capabilities. The

approximation modeling equation 6.10 provides results close to the measured ones as Table 7.3

shows.

7.2.7 Analysis of Peer - to -Peer Test Resu l t s

Traditional network protocols used with high-speed network technologies on NOWs often impose

a communication bottleneck which Hmits performance. The 10 Mbit/s Ethernet interconnection

in NOWs imposes a slow-speed barrier (IMbyte/s) in network operations. Throughout our

tests the Ethernet channel was saturated. Using a faster communication channel (such as a

Myrinet network) we would move the bottleneck to the higher communication protocols such

as TCP/IP . The communication bandwidth is now around 18 Mbyte/s for user applications

but the network usage remains very low (13%). The use of a network switch increases the

CHvlPgrEjR 7: 5(:(XFU3; fLEXS&rLOrS yLNCD ylffdLLilSZS 118

Lino* lOMb/i

T « « j * i 2 0 l 6 J 3 3 MM Bandwidth benchniArk

Tbcof. TCP/IP over Elhema

Figure 7.12: Comparing Latency and bandwidth of our clusters

aggregated bandwidth and improves performance by eliminating collisions and retransmissions.

A faster implementation of TCP/ IP has the potential to move the communication bottleneck

higher but at the same time other OS restrictions are likely to limit performance.

An aggressive zero-copy user-space network protocol (such as BIP) can eliminate protocol

bottlenecks, exploit more fully the network bandwidth (>83% at the application level) and in

addition reduce latency for short messages as well. The very low end-to-end latency of 6 fj,s

achieved by the BIP cluster is an important result for parallel applications which use small-size

messages to coordinate program execution and for this size of message, latency overhead domi-

nates the transmission time. As mentioned earlier for such small messages the communication

cost cannot be hidden by any programming model or programming techniques. Other impor-

tant features of the cluster are the high bandwidth of the network channel (121 Mbyte/s usable

bandwidth) and the use of the Myrinet switch which reduces potential contention problems.

Low-level results from the BIP cluster show that the BIP interface exploits the network

interface raw performance extremely well and delivers it to the application level. The MPI-BIP

performance is directly comparable with MPP systems such as the SP2, T3D, and the CS2. As

we can see from Figure 7.11 the BIP cluster has better latency features within the whole range

of the measurement compared with the MPP systems of Fig 7.11. In bandwidth terms for short

messages up to 256 bytes the BIP configuration outperforms all the other MPPs. Then for

messages up to 4Kbyte, which is the breakpoint of the SP2 at Argonne, the SP2 has a better

bandwidth, but then the BIP cluster performance is better again.

7.3 Low-level Collective Call Tests Results

This section will present results from collective call tests, which were discussed in section 6.5.4 of

the previous chapter. An important feature of the MPI collective calls is that they are built on

top of primitive peer-to-peer calls based usually on a tree-like algorithm. Barrier synchronisation,

broadcast, reduce and all-to-all tests were run on clusters that have more than 8 nodes available

unless the cluster had a specific characteristic e.g. the BIP cluster was tested in some tests with

6 nodes available only. In practice collective call testing proved more difficult than the peer-

to-peer testing because of the higher requirements in both resources and time duration. For

AA%UMK%S 119

Table 7.4: Latency and Bandwidth results

Configuration Cluster H^W min Lat. max BW

MPI &:TCP/IP NT/Alpha FastEth. 673 fj,s 120 KB/s 100

MPI & TCP/IP Linux/P.Pro Ethernet 587 /js 265 KB/s 1.5 K

MPI &TCP/IP Linux/P.Pro FastEth. 637 fis 652 KB/s L 5 K

MPI &: TCP/IP SPARC-4 Ethernet 660 iJ,s 1.03 MB/s 280

MPI &: TCP/IP ULTRA Ethernet 1.37 ms 1.01 fdlS/s 750

MPI &: TCP/IP Linux/P.Pro Ethernet 280 fis 1 MB/s 300

MPI &: TCP/BIP Linux/P.Pro Myrinet 171 17.9 MB/s L 5 K

MPI &: BIP Linux/P.Pro Myrinet 11 /US 114 MB/s 8 K

example it was difficult to book or pre-arrange clusters with a certain number of homogeneous

performance nodes for a certain amount of time. Another practical problem we have to address

was the large amount of information results for each of the test results.

7.3.1 Collective Call Tests on t h e S P A R C Clus te r

The SPARC-4 workstation cluster used for collective call tests is a typical cluster configuration

with a shared bus network topology. The barrier synchronisation test measures the time re-

quired for up to 10 SPARC-4 nodes to synchronise. Figure 7.13 illustrates the results of this

benchmark along with the fitting approximation of equation 6.15. These results point out a

number of facts: the graph is not linear as could be expected for a shared bus network. The

reason for this is the non-linear number of individual peer-to-peer calls required by the MPICH

synchronisation algorithm (see Fig. 6.3 and equation 6.14). Another fact is that individual

peer-to-peer calls do not include any payload and a small number of nodes are unlikely to cause

congestion problems on a shared bus network channel. A larger number of nodes however might

be expected to encounter congestion problems. According to equation 6.15 the approximated

logarithmic step of that model is estimated at 1.34 ms for this cluster which is very similar

to the single peer-to-peer latency time of 1.37 ms measured previously for this cluster. Con-

sequently according to equation 6.15 a two node synchronisation latency is around 2 ms and

involves only one "duplex" Send/Recv peer-to-peer call and so forth.

A broadcast collective operation is a data movement collective call with performance af-

fected by both the number of nodes participating and the message size. The broadcast algo-

rithm is based on a binary tree algorithm (described in section 6.5.4) and the actual number of

messages which nodes have to exchange is p-1 which cannot be overlapped in the shared bus

technology network cluster. Figure 7.14 illustrates the results of the broadcast call on various

number of nodes and different message sizes. In all graphs, time is proportional to the number

of nodes or the message size. The initial broadcast latency (for very small messages) is 1.35 ms

which is better than any barrier synchronisation call latency measured because the broadcast

algorithm is considerably less complicated than the synchronisation one. Hence the broadcast

120

Bar r i e r s y n c h r o n i s a t i o n test f o r the solar is c lus te r

10000

9 0 0 0

8 0 0 0

^ 7 0 0 0 g

I 6 0 0 0

= 3 0 0 0

§

I - 4 0 0 0

3 0 0 0

2000

1000

•

Solar is b a n i e r test — > —

.

3 6 7

N u m b e r o f n o d e s

Figure 7.13: Barrier Synchronisation test for the SPARC cluster

Bnsadcasl tesi on B63 chister

B65 1 node -
B65 2 node •
8 6 3 3 node •
B65 4 node -
B65 5 node -
B65 6 node -
B65 7 node -
B6S 3 node -

. J .

w ^ WW # i« ** am m

Brotdosl (est on B65 cjaster

Size of 4KB — 9 —

Figure 7.14: Broadcast test on a SPARC cluster

algorithm is expected to have less overhead than the barrier call. For larger messages the time

required for transmission through the narrow channel bandwidth for each pair of nodes in-

creases and becomes the dominant part of the call. The "effective bandwidth" of the broadcast,

which is the aggregated message size sent to all nodes over the period of the call improves as

the number of nodes increases for small to medium-size messages and for large-size message

is approaching 1.09 Mbyte/s. This is because in both cases startup time is improved with

warm cache effects or long message transmissions. The point at which the MP I implementation

changes the send/receive protocol policy at 16 Kbyte is just distinguishable.

The result of the reduce operation is shown in Fig. 7.15. The overhead of the reduce call

is very similar to the broadcast call, the essential difference being the extra overhead of the

operation involved in the reduce call. The global computation of the logical OR operation used

for the reduce operation benchmark is completed within a single clock cycle. The first plot of

these results shows the cost of a single node reduction operation which is purely computational

as there is no communication part involved. Here once more the latency of small messages (1.4

ms) is no better than the broadcast call but is still shorter than the synchronisation call.

CEAf TEE 7. SCOPE.- EXPERfMENlAl RES[/ iTS AND AjVAlYSIS 121

Rmdoce i«*i om B65 clmxicr

B63 I mode
865 2 no«k
863 3 »od*
B63 4 ood#
B65 5 node
B65 6 node
B63 7 mod*
B63 8 ood#

a ;

Figure 7.15: Reduce test on a SPARC cluster

Broadcast and reduce operation results are very similar because their algorithms have

similar complexity. Figure 7.14b and 7.15b show characteristically how an increase in the

number of nodes increases the broadcast and the reduce operation latency linearly on a shared

bus network. The cost of the combined operation does not aEect the results signiAcantly because

it represents a very small fraction of the call. A model approximation for broadcast and reduce

call based on equation 6.16 and 6.17 yields the following equations for this cluster:

and

1764 + [log2Pl - 0.91 - n

2073 + ["logjp] • 1.02 • n

where 1764 and 2073 are the startup time cost in microseconds and 0.9095 and 1.0225 is the

cost per byte respectively.

7.3.2 Collective Call Tests on t h e SGI Clus te r

The SGI cluster represents a cluster of fast workstations with a Fast Ethernet switched in-

terconnection network. This cluster has two main characteristics node availability, nodes are

connected via a number of cascaded network switches, and an opaque allocation node scheduler

which does not provide direct control over the selection of the nodes.

The barrier synchronisation test run on a set of 18 nodes. The initial synchronisation

latency for two nodes is 0.65 ma and the cost for each extra step of the algorithm is approximated

by equation 6.15 at 0.6 ma which is very close to the 0.55 ma latency measured for a single

peer-to-peer caU in section 7.2.5. Indeed the approximation model of equation 6.15 in practice

was proved correct. Comparing the results with the synchronisation test on the SPARC cluster

there are several conclusions. Fast nodes and a fast network channel such as those of the

SGI cluster provide signiGcant latency improvement. Initialisation overhead is reduced and the

synchronisation call iteration steps are evenly distributed (around 0.65 ms) which can simplify

the modeling approximation towards a logarithmic step function:

CEAPTEE 7. SCOPE; EXPEMMENZ4I, RESLTLTS AND ANAIYSJS 122

Bamcr lynchroniwuon test for the SGI duaer

02 bamertM!

8 10 12

Number of nodes

Figure 7.16: Barrier Synchronisation test for the SGI cluster

Bfowlcw: o« SOI ciMWf

0 2 2 node — > —
0 2 3 node - - -»—
0 2 4 node —»•--
0 2 5 node — G —
02 6 node —*—
02 7 mod# - -
028 mod*

Si«of32B . S%e of 4KB —» SizceflWKB

Figure 7.17: Broadcast test on a SGI cluster

Figures 7.17 and 7.18 show results of the broadcast and reduce operation test for the SGI

cluster. The left hand side graphs show latency results as a function of the message size for

different number of nodes. It is interested to notice that plots tend to group in three distinct

areas representing different logarithmic iterations of the broadcast algorithm. The same result

is illustrated on the right hand side plots where latency is shown as a function of the number

of nodes for different message sizes. These logarithmic iterations are presented as distinct

Eat areas on the graph. Both broadcast and reduce operation tests have considerable reduced

latency Egures over the SPARC cluster results. As the communication part of the calls becomes

smaller, due to improved node hardware, the cost of the reduce call slightly increases compared

with the cost of a broadcast call especially for large messages. The effective bandwidth for

broadcast cedl large messages is 8 Mbyte/s, for small-to medium-size messages and improves as

the number of nodes is increasing (because of a caching effect).

Figure 7.19 illustrates the results of an all-to-all call on the SGI cluster. The number of

peer-to-peer calls required for the implementation of this call is exponential to the number

of nodes participating. Hence as the number of the message size or the number of nodes is

CHAPTER 7. SCOPE; EXPERIMENTAI, RESUI/TS AND ANAiYSIS 123

SGI cWw

02 2 mode -
02 3 noilo 02 4 #wk 02 5 noik
02 6 nod*
02 7 ood«
02 S mode

sizeofZWB —»-Sam of IKB m

Figure 7.18: Reduce test on an SGI cluster

a :

AUk)"U Wl o# SGI cWWf

02 I node —-
02 2 mode —»
02 3 nod* "
024 «od# —»
02 3 mod# - -»
0 2 6 node - - o
02 7 mod« -»
02 8 modm —

Si«of32B — a :

Figure 7.19: All-to-all test on an SGI cluster

increasing the latency of the call increases exponentially. An important characteristic of the

MPI all-to-all caU implementation is that each node has also to exchange a peer-to-peer call

with itself, the left hand side figure shows the cost of this call when we run the test on a single

node.

Throughout the tests on the SGI cluster it has been shown that the use of a switched

interconnection network increases the overall elEciency of the cluster because the existence of

multiple communication paths avoids potential congestion problems experienced on a single

shared bus network previously. The bandwidth breakpoints at 16 Kbyte message size in Fig-

ures 7.17 and 7.19 are due to the MPI implementation transmission pohcy for long and short

messages.

7.3.3 Collective Call Tests on t h e B I P Clus ter

Collective call benchmarks run on the BIP cluster run on the same communication API configu-

rations presented earlier for the peer-to-peer tests. The barrier test measures the time required

for 2, 4 azid 6 nodes to synchronise. The MPI implementation of the call is based on a butterfly

mechanism, using a tree-like algorithm with logp steps (where p is the number of processors).

Figure 7.20 illustrates the barrier synchronisation latency as a function of the number of nodes.

From that figure we can see the discrete steps of the logarithmic implementation of the call.

124

WodJulZZ 13 11.31 1998
8192 BmnW beochmmrk

" ;

«'

' —

-

BlPconfig,
Myrinet config. 8-
Etb«m#(eoaf!g.

Number of nodes

Figure 7.20: Barrier Synchronisation tests for the BIP cluster and MPPs

For the BIP configuration this step is estimated around 19 //s (equation model 6.15 fit approx-

imation) while for the SP2 system similar tests show a start-up time close to 46 fis which again

gives for the BIP cluster better synchronisation figures than the SP2 system.

Similar discrete steps are visible on with the T C P / I P over Myrinet configuration curve as

well. The start-up time of this configuration is considerably longer (>250 /JS). The existence

of the Myrinet switch in both the BIP and the T C P / I P over Myrinet configurations allows

concurrent use of multiple paths and therefore efficient implementation of the call. On a bus

channel, (e.g. the T C P / I P over Ethernet configuration) latency start-up time is measured

around 400 fj.s and becomes larger as the number of nodes increases. It is important to note

that a barrier synchronisation call theoretically does not depend on the channel bandwidth,

although network latency often has a significant impact on the performance of an application.

Communication protocols that make significant use of OS calls (such as TCP/ IP) are penaltised

with high overheads leading to long latency times.

The Broadcast Operation Test. Each step takes ts + tyj-m for a single message transfer,

although in practice these steps are not very discrete for very small messages where noise and

the start-up time dominates the latency of the broadcast call.

For a bus-connected cluster (Ethernet configuration) the broadcast algorithm is imple-

mented in a sequential way. Frame collisions and retransmissions can affect bus performance

as the number of nodes ready to transmit and the size of the transmitting frame increases.

Table 7.5 illustrates the results of the broadcast test over the 10 Mbit/s Ethernet channel.

The bottleneck in the network layer is caused by the Ethernet channel saturating. Therefore,

characteristics from higher-level network protocols are not seeing and the graphs are linear (the

16Kbyte breakpoint is clear).

Moving to a faster network protocol (Myrinet configuration) the bottleneck is focused now

on the implementation of the TCP protocol. For broadcasting messages up to 2KB the start-up

time tg of the TCP protocol dominates the broadcast time, so the graph up to that message

size is almost flat (200-350 fis). Another breakpoint is visible for message sizes close to 64KB,

CEAPTER /. SCOPE.' EXPEMMENZAI, RESt/lTS AND AjVAlYSIS 125

MeMmge mzc fbyW)

BIP3nod# —
BIP 3 ntxle —«-
BiP 4 node -•-•• BIP) Dod« —o-BIP6 mode -BIP 7 mod* - @ BrP $ mod* - *

236 1024 41
M«Mno:ia(byw

I6K 64K 256K

Sin of 4KB 5a»(M j2B Sizeof236B —» SiMof IKB
DllWKB

Sm* of 16KB

BrnwIoM

Sim of 328 aum of 2368 Sz#of IKB
Sin of 4KB

i s a m :

Figure 7.21: BIP cluster broadcast tests

which is the maximum size for an IP datagram.

The results of broadcasting, using the BIP configuration, are similar to the previous ping-

pong ones. For messages close to 256 bytes there is a breakpoint because of the change of the

transmission protocol (short/long messages). Finally the effective bandwidth stays invariant of

the number of nodes and for Izirge messages is close to 90% of send/receive peer-to-peer calls.

The last column of Table 7.5 illustrates the results of the same broadcast test on two SP2

machines. The first machine uses the native IBM MPI implementation while the second one

uses the MPICH implementation. The binomial tree implementation of the broadcast call is

obvious for the later graph. In comparison with the SP2, broadcasting in the BIP cluster is

faster for short message (<256 bytes), then for message sizes up to 4KB the SP2 is faster, but

after this point the BPI cluster is faster again.

The Reduce Operation Test. A reduce operation call as a global computation (or combine

operation) collective call not only transfers data among the nodes, but nodes have to access

locally the transferred data in order to calculate the partial results of the combine operation as

well. For this reason the cost of a reduce operation is relatively higher, i.e. see Table 7.6 for

the plot for a single node.

Reduce operation tests run successfully for a combine MPI_LOR operation in all the

BIP cluster network protocol configurations. During the reduce operation test the cost of the

combine operation, MPI_LOR, remains constant while the communication cost depends on the

CEAf TEE 7. SCOPE; EXPERfMENTAI, RESt/lTS AND AjVAiYSIS 126

Table 7.5: Broadcast operation test measurements (time in //g)

Size Nodes Ethernet Myrinet BIP SP2

2 281 217 15 52

4 4 690 314 24 72

6 1217 334 25 100

2 480 227 51 59

256 4 1365 402 97 90

6 2493 371 123 124

2 3.8 ms 386 96 150

4K 4 12.3ms 789 190 286

6 24 ms 911 292 360

2 270 ms 19 ms 2226 3445

256K 4 837 ms 41 ms 4446 6857

6 1.43 s 61 ms 8533 10.2ms

Reduce lest on BIP clasier

B65 I node
B65 2 node B63 3 mod#
B65 4 node B63)mod#
B65 6 node B63 7 mod#
B65 8 node —-•»

Mynnel cluster

Sz.of32B — îMof4KB —=— 5p"o(|6*̂ — "—
Size of 65KB —-o—

Sim of 4KB Size of 236KB

Figure 7.22: BIP cluster reduce tests

CfL4J031Ej% 7. ,SC70jPf;; 2&XjREIRJ7W]SAnjiL JRjaStlLjrS L̂NT) AATdJLyjSIS 127

Table 7.6: Reduce operation test measurements (time in fis)

Size Nodes Ethernet Myrinet BIP SP2

2 227 232 16 82

4 4 736 435 20 104

6 1561 1555 24 117

2 432 248 61 93

256 4 1484 466 114 129

6 3 ms 1413 142 150

2 3807 439 16 256

4K 4 13 ms 876 299 476

6 27 ms 1638 453 588

2 274 ms 30 ms 13 ms 11 ms

256K 4 0.96 s 61 ms 32 ms 13 ms

6 1.63 s 95 ms 49 ms 15 ms

protocol configuration. The reduce operation compared with the broadcast operation has an

increased cost topm because of the extra cost of the combine operation:

= (t, + fiom + fopm) [foggpl (7.1)

(where Ued-p is the time required for the reduce operation on p nodes, each step takes f , +

for a single message transfer plus the time required for the combine operation topTn).

Table 7.6 illustrates the performance of the lOMbit/s Ethernet bus, which apparently is

very similar to the corresponding broadcast test graph. The reason for this is the high cost of

the communication in the Ethernet bus. The cost of the combine operation remains a relatively

small fraction of the communication cost and does not have a significant impact on performance

i.e. to {ts + tyjTn). As the communication cost decreases the computation cost of the combine

operation (which is constant) becomes a significant fraction of the reduce operation.

Comparing the results between the SP2 and the BIP cluster for the reduce test, we can

see that for short-message-size reduce operations the BIP system is faster, but slower for longer

messages (>8KB). The reason for this turned out to be a bug in the virtual-physical address

space management of the BIP protocol which reset the address space.

7.3.4 Analysis of Collective Cal l Test Resul t s

This section presents a brief analysis of the collective results presented in section 7.3 together

with some general observations and comparisons. For all platforms the performance of collective

calls is lower than their counterpart peer-to-peer calls. The startup time of collective calls is

longer than for peer-to-peer calls, and in addition their implementation is based on algorithms

with a logarithmic nature which can dominate performance when the payload is small, either

on a shared bus or a switched network architecture. The barrier synchronisation test behaviour

is an example of such a call with zero pay load. As the payload is increasing then the 10 Mbit/s

and to a lesser extent the 100 Mbit/s Ethernet channel imposes a communication bottleneck

which becomes noticeable on clusters with fast nodes. Network switches with multiple commu-

nication paths have the potential to alleviate congestion problems and thus improve the overall

bandwidth performance.

Another paradox of collective call tests, on SPARC and SGI clusters, is the effective per-

formance for small and medium size payload which increases slightly with the number or nodes.

The reason for this is the cache effect on repeated iterations of the basic peer-to-peer call in-

side the core of the collective routine algorithm. For the SGI cluster the effective performance

approaches 8 Mbyte/s (67% of the peer-to-peer call bandwidth) which does not deliver the

full potential of the network channel. The BIP cluster based on a simplified communication

protocol has the potential to deliver performance at higher levels. The effective bandwidth

performance approaches 70 Mbyte/s (more than 90% of the peer-to-peer call bandwidth which

was <80 Mbyte/s for that 8-node BIP cluster).

7.4 Kernel-level Tests

This section presents kernel-level benchmark results, most of which run on the SPARC, the SGI

and the BIP clusters. A practical difference among low-level and kernel-level communication

benchmarks is the ratio between computation/communication parts of the workload involved

in tests. While for lower level benchmarks this ratio is in favour of the communication part,

for kernel-level benchmarks the ratio is in favour of the computation part. Hence clusters with

powerful workstations may be expected to provide improved results. In practice, application

scaling to large number of nodes in workstation clusters can be severely restricted. This hap-

pens firstly by the sequential part of the algorithm according to Amdahl's law [4] and secondly

by the corresponding increase in communication and synchronisation which increases the in-

efficiency [114, 191] (this cost includes initialisation overheads such as buffer allocation and

synchronisation). Equation 7.2 gives the modified Amdahl's law with a simplified communica-

tion overhead cost a which increases with the number of nodes linearly. Figure 7.23 illustrates

various speed-up curves according to equation 7.2 for an algorithm with a 10% of the original

algorithm non-paralleliseable and for different values of communication overhead cost a:

The first part of kernel-level benchmarks comprises of kernel-level message passing oper-

ations, used for domain decomposition in applications with data parallelism, such as scatter,

gather, etc. These operations are examined within the context of more^ realistic conditions

compared to the idealised isolated core of the low-level tests. The second part of kernel-level

tests presents results from matrix operations, sorting and relaxation algorithms which run on

various network of workstation platforms. The size of problem/data used in kernel-level tests

is larger than its counterpart used for low-level tests.

^In real applications performance of the calls is expected to decrease as the burden on each node will be

usually larger.

CHAP TEE 7. SCOPE; EXPEEfMENTAI RESULTS AND ANAIYSB 129

WedJan 27(XH5 43 1999

Super! inuaf
Amdahl * bw -

A«ual(TcW].OOI
Acoial (TcmOOOB) -
AcrnnliTcmOOZ) -
Aconl (TcW). I) -

Number of pmceoon

Figure 7.23: Speed-up curves, Amdahl's law and communication overhead

7.5 Kernel-level Operat ion Tests Results

Kernel-level operation tests can be divided into two groups, according to the total amount of

data that has to be transmitted and as a function of the number of nodes. In the first case

broadcast and shift operations increase hnearly the amount of data need to be transmitted over

the network. Performance of these calls depends on the network architecture, e.g. on a p node

system the broadcast operation on a crossbar switch network can be implemented in log; p steps

while a shift operation is implemented in one or two steps. A shared bus network on the other

hand will need p sequential steps for the same data transmission.

The second group includes operations such as scatter and gather, data transmission re-

quirements do not change as the number of nodes is increasing. In principle implementation of

these operations is sequential and their performance does not depend on the underlying network

architecture. Of course the underlying network speed in both of the above cases is expected to

affect directly the performance characteristics for these operations.

7.5.1 T h e Broadcas t Opera t ion Test

This section presents the results of the kernel-level broadcast operation run on a 12-node SPARC

cluster and a 6-node Pentium-Pro BIP cluster. The "root" process of the broadcast test has

to distribute an array of size N X N over j? processes within its communicator. The array

sizes for broadcasting range N between 30 and 1080. Results below show the time for the

broadcast operation which does not include initialisation phases or bu%r allocation. Figure

7.24 illustrates results of the broadcast operation test measured as a function of the array size

and as a function of the number of nodes.

As Fig. 7.24 illustrates, moving to a larger number of nodes while the array size is fbced

the broadcast call results show a monotonically increased elapsed time. In comparison with the

counterpart low-level broadcast test results presented earlier in section 7 the SPARC cluster

results are neither clearly logarithmic nor linear as a function of the node number. The reason for

C%3vLPTj3R SCCHRE;; ELXPEfLCVfEiVTlAl j%f%SL%LTj).4fvD /IfvAjLyjxK; 130

KenwI'kT*) bnmdcMi op#mliom SPARC chMer K«a&c|.|#Ycl bmwilcmn opmrmdorn SPARC chm*

Number of nodes

miworZWZ —B— nwofBWI —»-«z«ef4w2 wwoflogm -
gbc afAOlM - -o -

KemKi-level broadcssl openiiion BIP cluster

Number of nodes

mof34(M —0--
[mof4W2 [mof60(m - » -

/X>"\

2 nodes — ' —
4 nodes ---*—
6nod«» —
8 nodes — s —
9 nodes - - »

slaofmmmx nxn
KemeHcwl biowkMi opwmdon BIP cWnr

5 nodes - -

256 312 1024 20W
Sim of irminx N%N

Figure 7.24: Kernel-level broadcast operation tests on the SPARC cluster (top) and the BIP

cluster (bottom)

CHAPTER 7. SCOPE; EXPERIMENTAL RESI/ITS AND ANAIYSIS 131

this is the linear (sequential at the best) non-deterministic nature of the Ethernet channel which

overwhelms the logarithmic nature of the broadcast algorithm and represents a substantial

fraction of the broadcasting call for large size arrays. On the other hand the BIP cluster

is using a crossbar switch technology network which scales logarithmically according to the

number of nodes (at least for the number of nodes we have tested). The bottom left graph of

Fig. 7.24 shows clearly three "lines" only, the bottom line is for a 2-node test results, the middle

line is the collapse of 3-node and 4-node plot results and the top line is the collapse of 3-node

and 6-node plot results.

The SPARC cluster effective bandwidth is measured around 1.1 Mbyte/s for a small number

of nodes but as the number of nodes increases the probability of collisions and congestion within

the network channel is increasing also hence the elective bandwidth is reduced progressively

to 0.8 Mbyte/s on a 12-node communicator. The size of the array also decreases slightly the

effective bandwidth. The first two measurements for array size N of 30-60 are subject to noise

and poor timer resolution.

The broadcast operation test on the BIP cluster gives some different results, with the

elective bandwidth for array sizes of N larger than 120 around 26-29 Mbyte/s for all node

conGgurations. This means that the network scales almost perfectly for the number of nodes

we used. For an array size of N—.f&O or less e&ctive bandwidth is almost double at 46 Mbyte/s,

the reason for this being the mechanism used by the OS to allocate space and memory pages

into buffers when the process needs them i.e. the Linux demand-paging memory management

policy [190]. This is an effect which is hidden and eventually cached when the actual routine is

repeated within a loop as the low-level tests do. Hence for large arrays the e&ctive bandwidth is

actually decreased by the system memory bandwidth limitation. In an absolute comparison the

kernel-level broadcast operation on the BIP cluster is 26-30 times faster than the SPARC cluster.

In the former one buffer allocation bottlenecks or limitations are masked by the relatively slow

transmission medium rate. Results in the BIP broadcast test were verified by both timing

methods, the conventional one using MP/_ and the use of the register timers such aa

rdtsc().

7.5.2 T h e S c a t t e r / G a t h e r Ope ra t i on Tests

This section examines the results of the scatter and gather operations presented previously in

6.6.3. The size of the arrays tested ranges N between N=120 and N=1680 with the node grid

is ranging between 2-12 nodes (and 2-6 nodes for the BIP cluster). Figure 7.25 illustrates the

results of the AfP/_5^caMen;() call run on the SPARC and BIP clusters. The left hand side

plots of this figure show the elapsed time of the operation as a function of the number of nodes

while plots on the right hand side of that figure show the same elapsed time as a function of

the array size. The amount of data disseminating from the root node to the rest of the nodes

for each array size is constant and sequential for each size of N, but independent of the number

of nodes. Multiple path networks such as switched networks caimot benefit substantially from

these operations.

The SPARC cluster results give an effective bandwidth around 1.1 Mbyte/s. Elapsed time

7. 5(:c)fus; jSJGFUsfinvfZBvgrwjL fiExsLOLais ^uNjo /lArAJcyisis 132

KemeHevei scatter operation SPARC cksle* Kernel-level scitler opention SPARC chisier

dm of I2(M -

Number of nodes

size of 500^2 — * —
size of 840*2 - - « —

KcmeHevel scatter operation BlPclnsicr

size of 1 2 M •

Number of nodes

awofZWI —«—
=Mof4W2 inofmm — aofloom - *— amf 1680*2 — *—

2X1 nodes — ' —
2X2 nodes — « —
3X2 mod* #-
4X2 nodes — a —
3X3 nodes
4X3 nodes - - o - •

KemeHevel scatteropention BIP cluster

3 nodes —»•
4 nodes

6 nodes — • •

Figure 7.25: Kernel-level scatter operation tests on the SPARC cluster and the BIP cluster

steadily increases as the number of nodes becomes larger because of the extra overhead of the

additional number of communication calls required and the possible congestion of the medium

channel. Operating on a small number of nodes there is an anomaly in results for array sizes

larger than 840 X 840 (a knee and a crossing overlap on the top left figure) which seems that

elapsed time is decreasing as the number of nodes is getting larger. This is happening because

the array sizes now approach the critical size of the system available memory and some memory

swapping activity will be taking place.

Results from the BIP cluster scale very well with the number of nodes, mainly because the

communication operation overhead is relatively low, thus results are practically independent of

the node number. The effective scatter operation bandwidth of the BIP system for small size

of arrays is 46-38 Mbyte/s but as the array size increases the effective bandwidth is stabilised

down to 20 Mbyte/s. Once again here we suspect that the effective bandwidth performance

drop is due to the system memory bandwidth limitations.

Results from the gather operation on the SPARC cluster are presented in Fig. 7.26. The

performance of the gather operation is marginally slower than the scatter operation e.g. less

than 5%. This means that receiving messages and writing to a buffer area is more costly than

reading and sending data. Graphs of the gather operation results are very similar to the scatter

operation observing also similar anomalies. An attempt to run the test over the BIP cluster

failed due to a bug in the MPI implementation which did not allow different datatypes of the

same data signature to be sent and received within the MPI_Gatherv() call.

CHAPTER 7. SCOPE; EXPERfMENTAI, RES[/I,T5 AND ANAIYSfS 133

Kenwl-kvcl pilwf op*moo# SPARC cWim K«ni«!-I#vd ;m(Wr op#noiMi SPARC

Nmbf of MxW
Mofew: -
aof IO«r: - a -

2X1 ood*
2X2 ooda
3X2
4X2 mode*
3X3 mode*

Figure 7.26: Kernel-level gather operation tests on the SPARC cluster

Performance difference between the scatter/gather functions and the broadcast call for the

BIP cluster is rather related to diSerent read data patterns. In gather/scatter operations data

are accessed once usually with a stride which apparently is more costly than re-transmitting

the same data as the broadcast call does [86].

7.5.3 T h e Shift Opera t ion Test

The shift operation is often used as a compound operation in many message-passing parallel

algorithms. MPI does not provide a single call for such an operation thus its implementation

requires several single peer-to-peer calls. Unlike the kernel-level operations previous examined

the shift operation is not a "strictly collective" call because performance is based on local

calls among neighbouring processes. Scalability of this operation depends on the abihty of

the communication network to provide multiple overlapping conmiunication paths. As the

number of nodes increases the amount of transferred data is increasing also, i.e.

Implementation of this operation was tested for matrix size between 30 to 1080 square elements.

The shift operation benchmark was run on the SPARC and the BIP clusters for various

number of nodes and array sizes as Fig. 7.27 illustrates. The SPARC cluster scales well only for

a small number of nodes when the size of the shifted array is relatively small. As the number

of nodes increases or the size of the array becomes larger then elapsed time increases rapidly

without following a specific pattern. In contrary the BIP cluster scales well with the number

of nodes and the size of the array. The cost of the shift operation, for the BIP cluster, depends

on the array size but not the number of nodes. The bottom right figure shows this attribute

very characteristically where all the plots of different nodes collapse into a single line. A small

anomaly in the results was noticed on a 6-node-grid of the shift operation with large array

sizes which is due to an uncontrolled background job on that sixth node during the test period.

The effective bandwidth of the shift operation for the SPARC cluster is close to 1 Mbyte/sec,

while on the BIP cluster once again the effective bandwidth for small messages is close to 42

Mbyte/sec but from medium to large size arrays it drops down to 30 Mbyte/sec.

CfLAjPGTEjR 7. JSCfOjPf;.' 134

K«nW-kTd diin openoom SPARC clm#W iluA opaniMi SPARC Uuww

4 000(̂ JJJ.

Number of nodes

^oFZW] -«- -
« of 430*2 -
^ of600*2 - -a -

Kernel-level shifl operation BIP CIOSIct

dz,of2W2 —Q—
azcof480"2
dim of 600*2 - -# -

5 OOOM —

M m ^ 5U IW 2MI
Slzo of mmoi: NxN

K#mcl-lgY«l dmA opmimiio* BIP clrnM*

3 nodes — » —
•1 nodes ••••»••-
5 nodes — 0 —
6 modm: - -

Figure 7.27: Kernel-level shift operation tests on the BIP cluster

7.5.4 Analysis of Kernel-level Opera t ion Tests

Low-level tests targeting the absolute performance of a call, obtaining the raw performance by

isolating the measured call with many iterations within the cache of the system. This level of

performance is often unrealistic and hardly achievable from an application program irrespective

of programming transformations and compiler optimisations. In kernel-level operation tests,

routines and operations are examined from the context of communication within computation

and from the point of view of the OS. Hence performance depends now on more realistic

parameters such aa communication protocol, OS handling, runtime programming techniques,

algorithms. The two clusters of workstations used for kernel-level operation tests (the SPARC

and the BIP cluster) represent two extreme ends of the current cluster intercommunication

spectrum.

The 10 Mbit/s bus technology Ethernet network imposes a communication bottleneck that

filters out any other activity of the node. Elective performance through the tests waa limited

below the 1 Mbyte/sec transmission barrier. Moving on to a Myrinet network with a user-

space network protocol (such as the BIP) kernel-level operation tests performance becomes

considerably better. The PCI communication barrier at 132 Mbyte/sec of the BIP cluster

is not an issue here as other potential bottlenecks from the OS and hardware subsystems

impose restrictions which limit performance to below 50 Mbyte/sec. The kernel-level operation

performance of the BIP cluster ranges between 29% - 63% of the counterpart peer-to-peer

send/receive communication low-level tests.

CEAPTEE 7. SCOPE; EXPERB/fENTAI, RESt/iTS AND ANAZ/YSIS 135

Ma#i% imdbpbwM *mp«d *l;ohlhm Mmirix mmkiplicmiiom Cammon * ijgonlhm

Slz# WO —
Szc 1080 —"—
aMl320 » -
Sin 1680 G -

Xumbel of moilM Nmmbnrof wxk*

Figure 7.28: Matrix Row/Column Striped and Canon algorithm on the SGI cluster

Tests on the BIP cluster were run twice using different timing methods, the conventional one

with calls and the register timer, e.g. the rdtsc(), via assembly calls (presented

in section 6.3.5). Results did not show substantial differences because test measuring times

were comparatively long (of the order of seconds).

7.6 Kernel-level Algor i thmic Tests Resu l t s

This section presents kernel-level algorithmic benchmark results from a 12-node SPARC cluster

and a 25-node SGI cluster configurations. The limited node number availability of the BIP

cluster prevent the execution of the full scale of tests on this platform. Performance analysis

and comparisons of kernel-level application tests will make use of information gained in previous

low-level and kernel-level benchmarks. However performance on the tests is expected to be

a%cted by the nature and the use of resources that each particular algorithm requires.

7.6.1 M a t r i x - m a t r i x B e n c h m a r k Resul t s

The matrix-matrix benchmarks consist of two different multiplication algorithms, the Erst al-

gorithm is the Matrix Row/Column Striped and the other one is Cannon's algorithm. Both

algorithms, described in previous chapters, have similar computational and communicational

complexity on their nodes but their communication patterns zind memory resource requirements

are diSerent.

Figure 7.28 illustrates the results of this benchmark for the SGI cluster. For a small number

of nodes the two algorithms provide similar results, then as the number of nodes increases

Cannon's algorithm starts giving better results. Finally for large number of nodes (and for

smaller matrix sizes) the Row/Column Striped algorithm gives better results than Cannon's

algorithm. There is a critical point at which further increase of the number of nodes generates

a communication traffic overflow that overwhelms any computational part improvement

of the algorithm and thus beyond that point there is no real benefit (see equation 7.2

and Fig. 7.23).

^^comp ^ ^^comm (7.3)

CHAPTEJt 7. SCOPE; EXPEMA'fEiVTAl RESULTS AND ANAIYSIS 136

Size MO: Sutpmd »l;ixiihm mmmhrn: Size 9 ^ CwuMM 1 flyihlkn mnmlyu:

Tcomm
Tcomp »-

Tuath

/ •

Nomhc of noUw

Siw 1080: Sfhped mlgonlhai mamly*

Tcomm

Nmnkrmf modw

fkmbgrof modw

Siz# 1060: Cmn#mi (mlpxidMa wmlyii:

Nmmbrnf of modm:

Tohl lomm -
Tcomm -

Tconun

Figure 7.29: Communication versus computation part between matrix algorithms for the SGI

cluster

This is more clear in Fig. 7.29 where the total cost of the algorithm is depicted along with its

partial computational and communicational cost. For large number of nodes the Row/Column

Striped algorithm uses fewer communication calls with larger messages than Cannon's algo-

rithm. For a matrix size of 840 X 840 the critical point at which the number of nodes does

not provide further improvement is beyond 16 nodes. On the other hand, for the Row/Column

Striped algorithm that critical number of nodes is close to 24 nodes. Increasing the matrix

size computation requirements increase exponentially and faster (complexity of C)(W^/p)) than

communication requirements (complexity of 0(7V + p)) on a p number of nodes. Hence the

critical saturation point is moving towards a higher number of nodes, for both algorithms in

the tests for matrix sizes greater than 1000 X 1000 there was positive speedup for all the first

25 available nodes.

The SPARC cluster has a limited number of nodes (12 nodes which provides only 3 possi-

ble configurations for the Cannon's algorithm). Throughout the tests the Row/Column Striped

algorithm implementation yields relatively better results for any number of nodes or matrix

size than Cannon's algorithm does on this cluster. Apparently the bus network architecture of

the SPARC cluster cannot tolerate the extra amount of communication calls i.e. shift opera-

tions, Cannon's algorithm requires in comparison to the SGI cluster with a switched network

infrastructure. Figure 7.30 shows in detail the cost of the communication and the computation

part of both algorithms for 600 X 600 and 1080 X 1080 matrix sizes respectively. In compar-

CHAPTER 7. SCOPE; EXPEMMENTAI, RES[/I,TS AND ANAlYSfS 137

Mmoix mmhipScmdo* wipeU ̂ Igomllwn. SPARC cimxw

Ŝ W) ^ 1060 -

M»*i% nmWpBcmdo* Cmnn# « ^Igonthm. SPARC cku*

Sizm 600 -

Number of node: Nmrnkruf ooiW:

Figure 7.30: Matrix Row/Column Striped and Cannon's algorithm on the SPARC cluster.

ison with the SGI cluster results the slower computational and communication performance

of these nodes it is noticeable as well their limited number. The computational part of the

algorithm remains high even for small size matrices while the communication part remains high

and unpredictable.

A modified version of the matrix multiplication algorithm was tested as well on these

platforms. The modiGcation attempts to increase the access locality of the inner-most loop

of the computational part of the algorithm by transposing the second matrix B during its

distribution among processes. This change in practice increases the communication cost of

matrix B distribution for Ethernet and Fast Ethernet networked clusters only marginally but

the computational part of the algorithm gains a substantial speedup. Results of those modified

tests are presented in Appendix G. Figure 7.32 illustrates the relative speedup achieved amongst

all the algorithms used for the SGI cluster for the matrix size of 1080 X 1080. The speedup for

the SGI cluster is super-linear for the Grst 25 nodes. The computational part of the algorithm is

clearly super-linear and in this case the communicational overhead is relatively small and does

not overwhelm the computational speedup. In contrary the communication overhead of the

SPARC cluster overwhelms quickly any computational part benefit and approaches at its best

a linear curve for a 9-node conGguration. Beyond that point speedup is increasing marginally

without any clear benefit.

7.6.2 Sort ing Algor i thm Resu l t s

The PSRS algorithm test (presented earlier in section 6.7.4) run on the SGI and the SPARC

cluster for sorting Hoating point vectors of size 1,2,4 and 8 million^ cells. Figure 7.33 shows

the results of the PSRS tests. Both the SGI and the SPARC system have similar behaviour on

a different scaling, that is for a small number of nodes the qsort algorithm dominates elapsed

time but as the number of nodes is increasing the communication part of the algorithm becomes

the dominant part. The implementation of this algorithm requires a rather complicated set of

communication structures which require many initialisation phases (e.g. vectorised calls for

gather, scatter and all-to-all routines do not scale well with the number of nodes). This implies

'•^1024*1024 elements

CEAf TEE 7. SCOPE; EXPERTMENTAI, RESt/ITS AND ANAIYSIS 138

Siz« 600 Smpcd zlgohOun SP^RC Size 6W Common I mlgonilmi mm#lvw SPARC

,/ r

Tcomm —

Nmmbf of ood«*

Siw lOMk Sihpwl migondun «omlyM SPARC

Total lime '
Tcomm — * —
Tcomp -•-»•••

Tt»ih - -

"

Number of wk*

Teomm —*—
Tcomp " tmm h - 1̂-

Nmmbcrof moda

Size 1080: C#nmom : UgonUm SPARC clawer

Tcomm

Nmmhef of mode*

Figure 7.31: Communication versus computation part between matrix algorithms for the

SPARC cluster

MmOi: MrnKpGalioo migondw* fpwH.mp leWive Mmnif mlgoridun* k* 1060 lize SPARC chwer

mod. smpeii
Cdnnon

Number of nodes

mod. unped
CWUMMI

mod. Cannnon

Nombef i}f uode:

Figure 7.32: Relative speedup results of the multiplication algorithms

CHAPTER 7. SCOPE; EXPERJMENTAI, EESLTITS AND AjVAI/YSIS 139

a high communication cost even for a small number of nodes (see Fig. 7.33 e, 7.33f).

The cost optimal complexity of the PSRS algorithm is 0((n/p) logn) [185] where n is the

size of the vector and p is the number of processors. Performance speedup for a small number

of nodes is poor and saturates fast when scaling to larger number of nodes because of the

excessive communication overhead. Despite the parallelisation algorithm, relative speedup is

low <3.5 for the SGI cluster. An 8-node configuration for both clusters proved to provide the

most elective configuration with a speedup between 1.8-3.3 for the SGI cluster, while speedup

for the SPARC cluster ranges between 2-4.7 for large size vectors. Paradoxically the relative

speedup of the SPARC cluster appears to be better than the SGI one simply because the

computational performance of these nodes is relatively low.

7.6.3 Mul t i -gr id Relaxat ion Test Resu l t s

The multi-grid relaxation test presented in section 6.7.5 is a mixture of Gauss-Jacobi and Gauss-

Seidel iteration methods. Tests were run successfully on both the SGI and the SPARC network

of workstations platforms for array sizes N % ./V ranging between 720 - 1500 for a fixed number

(1000) of iterations on a 16-node SGI and a 12-node SPARC cluster configurations respectively.

Figure 7.34 illustrates the results of the relaxation tests run on these platforms.

Communication requirements for the domain decomposition phases are smaller and have

a simpler complexity than the ones used for the matrix-matrix tests previously. The boundary

condition data exchange cost between neighbouring nodes is also low because the amount of data

each node has to exchange with its neighbouring nodes (halo of 4 elements) is limited and

uniformly distributed within a four peer-to-peer calls cycle. This is the same operation which

was studied previously with the shift operation test and it is proved scalable on a cluster with

switched network such as the SGI cluster. Hence the aggregate cost of the repeating exchange

operation remains relatively low and increases almost linearly with the halo size and the number

of iterations. Speedup is almost linear but as the number of nodes increases the computational

pcirt becomes smaller and at the same time the communication cost gradually represents a

signiGcant fraction of the overall cost (e.g. the calculated speedup of the computation part for

an array size of 1500 X 1500 running on 16 nodes is 14 and the overall speedup of the algorithm

is 12.25).

7.6.4 Analysis of Kernel-level Algor i thmic Tests

The scalability of the SCOPE kernel-level tests and other algorithms can be predicted in prin-

ciple by analysing the algorithm complexity combined with information obtained at lower-level

SCOPE tests. Such scalability prediction for data parallelism algorithms and applications is

straight-forward by separating the computation and communication part of the algorithm.

Appendix F provides an example estimation about the cost of the SCOPE kernel-level algo-

rithms. For the Matrix Row/Column Striped algorithm the communication cost is determined

by the the sum of the three major communication operations for the sub-matrices distribu-

tion TgcoHer, broadcast of sub-matrices along rows and columns communicators and the

gather operation at the end of the Enal stage of the algorithm Tgaf/ier- The combination of

CHvUSGrEjR JEDCF'EftlAIEIN-'rfLL fLE%)LrL]lS JU\%D .ATV̂ LLTrSfS 140

PSRS algohdwn on U* SCI chwif Somng algofiihm SPARC chuw

Number of Nodw

Somtng mlpxWim SGI chgicf

1 node
2M&I *
4mod# —*
8 node — # —

16 node —-»—
23 nod# -

3M 4M 3M

Compmadom vt commmmkmiiMi dm* om 4M dz« mnmy SGI e b w

PSRS mlgondim o# d* SPARC dmiw

12 node - - » - -

Number of Nodes

IM ozc mnrny SPARC cimiw Computation vs.

Total time
CommoM. d

XumbeToFNiKW Nwmbcf of Noda

Figure 7.33: Sorting algorithm results

CEAf TEE SCOPE; E%PERJMENT.4i RESL/LTS AND ANAjLYSIS 141

Rclmimdom mly»nihm SGI c! IWmxmiiom mlgodikm SOI c k w

Size 1020 -
Sue IXX)

5 : 10 12 H 16
Nkmbcr of #odc(

IWrnwAom *lgonilun SGI cUmw

SiM 768 ' "
Size 1020 —^—
Si» 1500 *-

linear

Number efnixk:

10 12

N*mb«f of mod**

RckwixMi mlgonUun ip—dmp SPARC d w w

Sze 1020
Siz, 1300

Nmmbwof nod*

Figure 7.34: SGI cluster multi-grid relaxation test results

Tcomm > Tl,ca#er 4- Tbcnat 4- with equation 7.3 and 5.5 can provide information about

the scalabihty of the algorithm. Results from kernel-level operation tests &om section 7.5 and

elapsed time of the algorithm running on a number of nodes aje required too.

The objective of the SCOPE kernel-level algorithmic benchmarks is to measure perfor-

mance of a workstation cluster closer to the programmer perspective. Cluster performance is

examined within the context of a parallel task (computation and communication) amid other

OS activities. Performance at this level is a combination of both the individucil performances of

the computation and the communication subsystems. Moreover kernel algorithmic tests mea-

sure the performance of the entire system and investigate how the system scales with a number

of nodes and a large problem size. For example, the communication part of the algorithmic tests

on the BIP cluster were on average 3-6 times faster than the SGI counterparts for the matrix

multiplication algorithm, but the overall performance on a 4-node SGI cluster is overwhelm-

ing higher than the 4-node BIP system cluster because the SGI node computational power is

significantly greater.

This is because performance at the higher levels depends on the nature of the algorithm

and not only the raw performance of the hardware, e.g. communication hardware. Therefore

for example the sorting algorithm scales rather poorly with the number of nodes. Problems

with regular domain decomposition such as the Row/Colunm Striped multiplication algorithm

gives a positive speed-up even on a 12-node shared bus network architecture cluster. For this

kind of problem the computation part usually decreases (e.g. exponentially) with the number

CfL4j3]rEjR /. jRjSSIILGTS /IffD ylffAJCT^SIS 142

Table 7.7: Comparisons with other benchmarks

Low-level network performance tests

System
SCOPE Other Benchmark Hardware

spe^
System

Lat BW Lat BW Test Name

Hardware

spe^

SPARC

SGI

BIP

212

368

6

L082

12.06

121 5 /US

I.13

II.92

126

netperf

netperf

custom BIP

1.25 Mbyte/s Ethernet

12.5 Mbyte/s Fast Eth.

132 Mbyte/s Myrinet

Low-level message-passing tests

SP2

CS2

50

107

31

35

52

113

32

38.6

PARKBENCH

PARKBENCH

40 Mbyte/s

50 Mbyte/s

Low-level synchronisation tests on two nodes

SP2 91 IJ.S 100 /js PARKBENCH —

of nodes but at the same time the communication part of the problem increases mainly due

to the extra communication overhead rather than the actual payload (which is usually reduced

for each call as the number of nodes increases). Thus algorithms with a higher computation

to communication ratio will usually obtain an improved speedup figure. The positive speed-up

of a system will stop at the time when the computation part improvement is balanced by the

increasing communication part time. The problem size also affects that point because it mostly

changes the computation part of the algorithm (usually exponential). This is also known as

Gordon Bell's Law of Massive Parallelism based on application scaling® and Gustafson [100].

Hence as the problem size increases then speed-up improves as well with the number of nodes.

In practice the optimal number of nodes for a specific problem of a certain size could be chosen

well below that theoretical optimum when the economic cost of the extra nodes is taken into

account.

7.7 S C O P E Overview

A comprehensive test and evaluation program for the SCOPE benchmark suite is a complex and

difficult task which is beyond the scope of the thesis. This is because the various benchmarks

have different workloads for each test. However, a brief examination and comparison of the

results obtained with other well-known benchmarks can provide additional information about

the reliability of the current SCOPE implementation.

The SCOPE low-level benchmarks detected correctly communication protocol changes on

every platform, as well as other performance anomalies and bottlenecks such as memory bot-

tlenecks. For example during the reduce test on the BIP cluster a performance anomaly was

observed which was caused by a poor buffer allocation in the BIP implementation. The hier-

^According to Gordon Bell: "there exists a problem tha t can be made sufficient large such tha t any network

of computers can run efficiently given enough memory, searching and work - but this problem may be unrelated

to no other"

7. jE2Cfyi%tI&fE%V:n4LL jtEOSLrUlS /LNQO /IffAjLYlSIS 143

archical structure of the SCOPE benchmarks is evenly reflected on the results obtained from

low-level to higher-level tests.

Sensible comparisons with other benchmark results is only feasible for a few of the SCOPE

low-level tests. The underlying network level tests can be compared with other benchmarks such

as netperf. In a similar way the communication library low-level tests can be compared with

some of the Genesis or PARKBENCH tests such as COMMS-Pingpongl or COMMS-Synch.

In contrast, for kernel-level tests the workload among different benchmarks varies significantly

and there is no common way of making comparisons. Table 7.7 illustrates results obtained from

similar low-level benchmark tests run on common platforms, which gave almost identical results

especially for some of the lower-level Genesis/PARKBENCH COMMS tests run on MPPs. This

brief benchmark comparison confirm that the SCOPE benchmark suite implementation results

are reliable and hence the benchmark suite has achieved its initial objectives.

7.8 Summary

This chapter has examined and analysed benchmark results obtained with the experimental

SCOPE implementation on a variety of workstation cluster and MPP platforms. SCOPE tests

on different abstraction layers were able to demonstrate accurately performance characteristics

on every tested platform. Analysis and comparison of SCOPE tests has provided valuable inside

information and understanding about potential performance bottlenecks on cluster sub-systems

such as the communication network and the message-passing library.

Performance comparisons between SCOPE tests and other benchmarks on the same plat-

forms, although not directly comparable, has shown that SCOPE results can provide a reliable

performance guideline for workstation clusters.

Chapter 8

Future Work

The SCOPE benchmark suite presented in earlier chapters provides a tool for evaluation and

research into the key performance issues of workstation clusters, rather than a development

of a user-orientated software package. The work discussed in this chapter presents topics of

user-orientated software development which are beyond the scope of this thesis and assume

the availability of a well-defined user-friendly package which in turn creates an opportunity

for novel research into the workstation cluster area. In addition this chapter discusses other

research work on issues identified elsewhere in this thesis.

8.1 S tandard Module and Baseline Tests

The SCOPE benchmark suite, as presented earlier in this thesis, is intended to address perfor-

mance evaluation issues for workstation clusters and provide an overall performance character-

isation for these parallel platforms. It is essential for the SCOPE benchmark suite to have an

established baseline and standard modules of tests in order to become a useful and comprehen-

sive performance evaluation tool for cluster administrators and application developers.

For these reasons the SCOPE benchmark suite will need to define a module of baseline tests

and a minimum set of resource requirements for workstation clusters. The resource requirements

are important because they will ensure that SCOPE baseline tests will run on cluster platforms

which will provide sensible results and allow comparisons with other parallel systems. Typical

minimum requirements will be, for example, the number of nodes, the underlying network

configuration, the node memory size/hierarchy, the type/speed of the CPU, type of the OS and

installed software tools. For example minimum hardware requirements could include features

such as those included in Table 8.1.

The baseline module of tests will need to define which tests will be used together with their

workload characterisation in a way that will provide a common basis for tests and workload

configuration over a wide range of workstation platforms. The tests and results presented in

Chapters 6 and 7 respectively, provide a useful starting point for the baseline module of tests.

As the baseline tests will provide results only on the minimum required resources, users will

be also interested in having tests running up to the limits of their current workstation cluster

144

CHAPTER 8. Ft/TURE WORK 145

Table 8.1: Minimum hardware system requirements for the SCOPE baseline tests

Cluster Features

System size number of nodes > 4

RAM size 32 Mbyte

Node size
Cache size

CPU Performance

512 Kbyte

> 8.6 SPECint95 ^

> 6.5 SPECfp95 ^

Message-passing system
Network bandwidth

Network latency

10 Mbit/s or better

<250 microsecond

Minimum resource req.

Base-l ine m o d u l e

System resources

^ S tandard m o d u l e tests

Figure 8.1: Baaeline and standard module tests

These tests will be known as "standard module tests" and they represent an expansion of the

baseline tests.

There is a subtle difference between baseline and standard module tests. Baseline test

results will provide a common base for direct comparisons between clusters, while standard

module tests will provide information about the maximum capabilities of each system. The

establishment of both a baseline test module and a minimum configuration requirement for

a workstation cluster will facilitate the automatic installation procedure of the benchmark

software as well as simphfying the actual test procedure.

8.2 Results: Analysis and Presenta t ion

The data output resulting from each benchmark execution is large and essentially meaningless

without using appropriate analysis and presentation utilities. The SCOPE benchmark will

need such utilities to analyse and present results in a concise and comprehensive way. Result

acquisition and analysis for each cluster can be automated by the use of scripts and configuration

tools. The deGnition and establishment of a baseline and a standard module of tests will assist

to standardise the way results are analysed and presented.

The presentation of the results in Chapter 7 of this thesis used several custom scripts and

tools in order to automate the data analysis procedure e.g. to enable the automatic creation of

result reports. Further improvement, for example, will be the use of a visualisation tool or a 3-D

^SPEC rates are taken from a Pentium Pro 200MHz system equivalent to 200 Mflop/s

8. jrLTTURJS VVOflK 146

presentation of collective routine results [163]. Baseline test results will be compared directly

with similar results taken from other clusters using a common benchmark result depository

database or a public web site [132].

The non-deterministic nature of the underlying intercommunication networks used in work-

station clusters together with the asynchronous mode of the message-passing model and other

runtime system activities often causes unpredictable delays when sending or receiving mes-

sages. These delays frequently result in substantial measurement fluctuation which can provide

additional information with statistical analysis.

A quantitative analysis of benchmark results is often useful to determine a particular

behaviour of a cluster. Chapters 6 and 7 introduced simple analytic models to explain and

understand system behaviour on various SCOPE tests. Most of the models discussed are rela-

tively straightforward and in some cases do not accurately explain the complicated underlying

hardware and software mechanisms. Further research in this area will improve the analysis

of workstation clusters and will facilitate the reliable performance optimisation of complicated

algorithms on clusters.

8.3 Advanced and Exper imental Module Tests

Benchmarks in general should not disbar or discourage innovative hardware technologies or

software techniques. The SCOPE benchmark should encourage and help cluster designers and

programmers to experiment and use novel enhancements either in hardware configuration ar-

chitecture of clusters or in experimental software techniques and algorithms tailored for clusters

of workstations, e.g. development and evaluation of latency-tolerant algorithms.

The SCOPE benchmark will introduce an advanced model of test which will assist exper-

imenting with new hardware and software features over possible improvements on workstation

clusters. Tests in this module will run in a non-standard mode in which the workload can

change. For this reason advanced module tests will be described as "paper and pencil" tests or

modified existing tests according the needs of the experimental conditions. For example spe-

cific cluster optimisations can be applied to compiler parameters or algorithms i.e. dependence

analysis and various algorithm transformations and optimisations.

Tests in advanced and experimental mode usually have to be carried out individually and

are difiicult to automate. In the later case the user needs to accept the responsibility for any

benchmark changes as well for the correct interpretation of the results. Comparisons with

standard mode test results should be cautious and usually carried out after a normalisation

procedure has taken place.

8.4 Benchmark Expansion and Future Tests

The rapid evolution in both hardware and software technology will inevitable bring changes in

workstation clusters as well. The SCOPE benchmark suite will need constantly to re-define and

re-establish its benchmarks according to the current needs and trends at each time. The main

CBAPTEE 8. FUTURE WORK 147

directions in which future tests of the SCOPE benchmark suite will focus on should include:

Tests with non-blocking communication calls have to be added especially for those tests

that include communication and computation parts which can be overlapped such as

algorithmic and kernel-level tests.

The new features introduced in MPI-2 such as single-sided function i.e. tests for put

and get calls and dynamic process management (see Chapter 4). Progress in this area

is not possible at present because of the inadequate MPI-2 implementations available for

workstation clusters.

» Parallel I/O tests, Appendix D presents some preliminary work in this direction with tests

on the proposed MPI-2 parallel I/O standard using the ROMIO implementation included

in the latest MPICH distribution.

» SpeciAc tests for clusters of symmetrical multiprocessors (SMP). COTS technology oEers

both the hardware and software infrastructure (e.g. 64-bit hardware multiprocessor archi-

tectures and real SMP mode support OS). The SCOPE benchmark suite will be extended

to include tests such as multi-threading synchronisation/communication and other tests

for shared memory mechanisms adapted by the message-passing model appropriate for

clusters of SMP nodes e.g. put and get.

« Heterogeneity; there are two main types of heterogeneity that can be deGned for clusters

of workstations. The first type is a heterogeneous cluster which has modes with diSerent

heirdware and software architectures (i.e. different data format and computational speed).

The second type of heterogeneous cluster includes nodes that have identical software

architecture i.e. the same OS and data format, but they diEer in the hardware architecture

i.e. computational speed^.

The first type of heterogeneity is more difficult to analyse and its performance estimation

is more di&cult. The second type of heterogeneity can be easily found aa a gradual

upgrading process of existing homogeneous clusters. In either case the most straight-

forward approach is to split cluster into sub-clusters with equivalent performance nodes

and the SCOPE benchmark run individually for each of these sub-clusters.

8.5 S C O P E and Other Benchmarks

Interoperability aspects between the SCOPE benchmark suite and other benchmarks need to be

integrated. Data results &om the SCOPE tests could be converted to a format that can be used

and processed with existing well-known benchmark data analysis tools (such as the Graphical

Benchmark Information Service and the PARKBENCH Interactive Curve-fitting Tool). Kernel-

level tests from known benchmarks such as NAS kernel tests can also be integrated within the

SCOPE kernel-level test methodology.

mainly implies different processor speed and size of hardware resources e.g. compare for example com-

put ing p la t forms based on SPARC and UltraSPARC.

CBAf TEE 8. FC/TURE WORK 148

Table 8.3: Workstation (w/s) architectures and OS SCOPE distribution will support

Node Hardware Operating

Architecture system

PC-based w/s NT

PC-based w/s Linux

Sun SPARC w/s Solaris

SGI w/s IRIX

IBM w/s AIX

This will increase the usability of the SCOPE benchmark and at the same time will enhance

performance evaluation comparisons between workstation clusters and other parallel platforms.

In a similar way tests from the SCOPE benchmarks suite could be used on MPP or SMP

systems.

8.6 Other Issues

Other issues that the SCOPE benchmark suite needs to address are improved documentation

and the usual software package distribution issues necessary to facilitate e&cient installation

on a wide platform of workstation architectures (Table 8.3).

The use of register timers aa the primary timing mechanism can be expanded to all the

platforms presented in Table 8.3. This will improve measurement accuracy and can also en-

able detailed functionality tests. Furthermore application programmers will be able to adapt

the high-accuracy timing mechanism used in the SCOPE benchmark suite to instrument and

monitor their own application code.

Batch scheduler management issues and other runtime system utilities for workstation

clusters are not widely used or standardised. Currently the SCOPE benchmark tests use small

script programs to launch tests on clusters. The introduction of a standardised job scheduler for

workstation clusters will improve significantly the SCOPE benchmark test running procedure

although it is not directly relevant to the SCOPE benchmark suit interests.

Chapter 9

Conclusions

9.1 The Requirement for H P C and Worksta t ion Clusters

The requirement for HPC is constantly increasing as application demands for significant com-

puting power are continuously increasing. A new generation of commercial applications such as

e-commerce and e-business, along with "traditional" scientific Grand Challenge Applications,

are generally increasing requirements for HPC. Parallelism is the key enabling technology which

can deliver the required computing performance for these large and very large scale scientific

and commercial applications. Although in principle the concept of aggregated computational

power available by means of parallelism is straightforward, implementation in practice has

proved to be a far more di&cult task than originally envisaged. For this reason, most of the

parallel systems built in the past were complicated (proprietary) and because they were rela-

tively expensive they were used only in few large organisations for "traditional" scientific Grand

Challenge Applications.

Workstation clusters using commodity components (sometimes referred as COTS) have the

potential to provide, at low cost, an alternative parallel platform suitable for many HPC apphca-

tions. Although in practice workstation clusters cannot replace completely MPPs or mainframe

systems, they can provide an entry-level HPC solution with excellent scalability, availability,

maintainability and performance/price characteristics for many large-scale applications.

The first part of this thesis investigates and establishes the current status of the worksta-

tion cluster concept. Chapters 2 and 3 have discussed and examined how over the past few

years the key hardware and software components of the workstation cluster infrastructure such

as node architecture, interconnection and OS functionality have improved their performance

dramatically. In additional the inherent programming model of clusters, which is a multicom-

puter message-passing parallel model, has become well estabhshed with the advent of MPI and

PVM.

Chapter 4 has examined the fundamental concepts of the message-passing model which is

straightforward and can provide efGcient SPMD and MPMD programming styles on distributed

memory (DM) platforms. This is important because all these parallel platforms currently adopt

the same computation model. Hence the potential advantage of this is that the techniques and

149

CHAPTER 9. CONCLUSIONS 150

methodology developed for parallel systems as well as parallel applications can be directly

adapted and used for clusters of workstations.

9.2 Evaluation of Worksta t ion Clusters with S C O P E

Having established the workstation cluster concept in the first part of this thesis, the second

part then investigates the provision of a novel performajice evaluation tool that will assist to

understand and analyse the performance behaviour of these systems.

In the past, workstation clusters were often wrongly classified either as distributed systems

or as loosely-coupled MPPs. This is because workstation clusters borrow many components,

techniques and research which were primarily designed for other platforms. In practice this

combination of technologies provides several advantages for clusters but at the same time the

evolution and performance of clusters is determined and limited by technologies designed for

other systems. Clusters still suffer from inherent drawbacks such as long latencies, low band-

width, lack of a "single system image" In terms of software programming environment and

inadequate administration tools. Recent research in communication protocols presented in

Chapter 9 has shown that improvements in the inherent limitations of clusters are feasible.

Research in this thesis has been focused around the concept of workstation cluster as a

HFC platform. In particular a tailored benchmark suite for clusters called Specific Cluster

Optimisation and Performance Evaluation (SCOPE) has been proposed and an initial imple-

mentation investigated in Chapter 6. The SCOPE benchmark suite, as proposed in this thesis,

contributes to the scientific benchmark methodology for the comprehensive examination of

workstation cluster performance characteristics. Among the objectives of this benchmark suite

is the promotion of the workstation cluster concept by e^^uating potential characteristics and

performance. This will assist commodity workstation cluster designers to understand and anal-

yse the performance behaviour of these systems better. Moreover, the SCOPE benchmark

methodology is flexible and provides application developers with a useful tool to understand

and program clusters more eGiciently.

In order to achieve these objectives the SCOPE methodology in chapter 6 proposes a rela-

tively small number of additional tests, in comparison to well-known parallel benchmark suites,

which enable users to evaluate in greater detail performance measurements inside the multi-

layered structure of workstation clusters. Low-level tests examine thoroughly the underlying

network performance as weU as the performance of primitive and commonly used message-

passing communication library routines. Kernel-level and algorithmic-level benchmarks exam-

ine in detail the realistic performance of the system delivered at the application level. Workloads

and tests at these levels consist mainly of common operations used in typical parallel algorithms

such as domain decomposition problems. Hence performance comparisons at different stages

and levels within the cluster structure become meaningful and provide a comprehensive pic-

ture of any cluster performance disparity between projected and delivered performance under

different workload levels.

An initial implementation of the SCOPE benchmark suite was tested on a variety of work-

station clusters with different internetworking technologies such as Ethernet, Fast Ethernet

CHAPTER g. CONCZ,[;gIONS 151

and Myrinet networks. The results of these tests presented in chapter 7 demonstrate that the

SCOPE benchmark suite is suHicient flexible to adapt and run useful tests on several di^erent

cluster configurations. The results also demonstrate potential performance characteristics on

various cluster sub-systems and provided valuable information about the overall cluster per-

formance behaviour and the run-time environment. Analytic performance models for low-level

tests developed in Chapter 6 were also verified by the actual test measurements in Chapter

7. Many of the low-level benchmarks were also tested on parallel MPP systems. Results from

these tests establish a clear and direct comparison performance guidelines between workstation

clusters and MPP parallel platforms but at the same time the tests on MPPs also verify and

validate the SCOPE test suite as well.

The potential infrastructure for workstation clusters is available to take full advantage of

existing hardware and software to provide a viable inexpensive parallel systems. Technological

advances in commodity computing components performance is expected to continue in the

foreseeable future. Additionally, the increased need for HPC and the availability of this parallel

platform will expand the usage of parallel programming, advancing further the overall field

of high performance computing. The SCOPE performance evaluation tool proposed in this

thesis has demonstrated the potential to identify and classify the performance evaluation of all

workstation clusters. Moreover the SCOPE evaluation tool methodology can be expanded and

provide support for the development of parallel applications and algorithms tailored to a specific

parallel platform. The combination of these features denotes that the SCOPE benchmark has

the potential to play a major role in developing clustered machines and applications together

in a way that can exploit the full computational capacity of the underlying systems.

Bibliography

[1] Cliff Addison, James Allwright, Norman Binsted, Nigel Bishop, Bryan Carpenter, Pe-

ter Dalloz, David Gee, Vladimir Getov, Tony Hey, Roger Hockney, Max Lemke, John

Merlin, Mark Pinches, Chris Scott, and Ivan Wolton. The Genesis Distributed-Memory

Benchmarks. Part 1: Methodology and General Relativity Benchmark with Results for

the SUPRJENUM Computer. Concurrency.' Practice ancf Eipenence, 5(l): l-22, February

1993.

[2] R. Alasdair, A. Bruce, J.G. Mills, and A.G. Smith. CHIMP/MPI User Guide.

ftp.epcc.ed.ac.uk/pub/chimp/release/doc/user.ps.Z, 1994.

[3] G. S. Almasi and A. Gottlieb. foroZW Comfuftng. Benjamin/Cummings, second

edition, 1994.

[4] G. Amdahl. The validity of the single processor approach to achieving large scale comput-

ing capabihties. In ylfZP.9 con/erence proceedings, Spring Jom(Computing Con/erence,

volume 30, pages 483-485, 1967.

[5] Akkihebba L. Ananda and Balasubramaniam Srinivasan. Distributed Computing S'l/s-

tems.- Concepts ond Aructures. IEEE Computer Society Press Reprint Collection. IEEE

Computer Society Press, Los Alamitos, California, 1991.

[6] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for NOW (Networks of

Workstations). ZEEE Micro, 15(l):54-64, February 1995.

[7] ANSA. TTie ;4(fronce(f #etuiorA:s 5'i/stems v4rc/;itecture .Re/erence Afanuaf. Castle

Hill, 1989.

[8] T. Aoyama, I. Tokizawa, and K. Sato. ATM VP-based broadband networks for multimedia

services. ZEEE Communications, 31(4):30-39, April 1993.

[9] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and J. Philbin. User-Space Commu-

nication: A Quantitative Study. In ACM, editor, Jfig/t f eryormance ^etworhng

and Computing.' Proceedings o/ tAe 5C5i9 Con/erence.' Cronge County

Contention Center, CrZondo, Morido, Woi;em6er New York, NY 10036,

USA and 1109 Spring Street. Suite 300. Silver Spring, MD 20910, USA, 1998. ACM Press

and IEEE Computer Society Press.

152

ftp://ftp.epcc.ed.ac.uk/pub/chimp/release/doc/user.ps.Z

153

[10] Semiconductror Industry Association. The national technology roadmap for semiconduc-

tors. http://www.sematech.org and http://itrs.net/ntrs/pubhitrs.nsf, 1998. International

Technology Roadmap for Semiconductors 1998 Update.

[11] J. Bacon. Concurrent intergroted v4pproocA fo Operating ŷsteTTLS, Dotatoae,

ond Dw(r*6ute(f ^yafems. Addison Wesley, 1993.

[12] G. Bell. The Future of High Performance Computers in Science and Engineering. Com-

munications of the ACM, CACM, 32(9):1091-1101, September 1989.

[13] G. Bernard, A. Duda, Y. Haddad, and G. Harrus. Primitives for distributed comput-

ing in a heterogeneous local area network environment. IEEE Tl-anaoctton on 5'o/(u;ore

.Engineering, 15(12):1567-1578, December 1989.

[14] David Bernstein, Mauricio Breternitz, Jr., Ahmed M. Gheith, and Bilha Mendelson.

Solutions and debugging for data consistency in multiprocessors with noncoherent caches.

International Journal of Parallel Programming, 23(1):83-103, February 1995.

[15] B. Bersheid, D. Ching, E. Lazowska, J. Sanislo, and M. Schwartz. A Remote Procedure

Call Facility for Interconnecting Heterogeneous Computer Systems. IEEE Transactions

on S'o/itwore Engineering, SE-13(8):880-894, August 1987.

[16] B. N. Bershad, D. T. Ching, E. D. Lazowska, J. Sanislo, and M. Schwartz. A remote

procedure call facility for interconnecting heterogeneous computer systems. IEEE Trans-

octiona on 6'o/(u;ore E'ngineering, SE)-13(8):880-894, August 1987.

[17] Raoul A. F. Bhoedjang, Tim Riihl, and Henri E. Bal. User-Level Network Interface

Protocols. Computer, 31(ll):53-60, November 1998.

[18] A. Bilas and J. P. Singh. The ejects of communication parameters on end performance

of shared virtual memory clusters. In froc. o/.9upercomputing'P7, November 1997.

[19] Andrew Birrell and Bruce Nelson. Implementing Remote Procedure Calls. y4CM YV-aTis.

Computer 2(l):39-59, February 1984.

[20] G. Blair, G Coulson, and N. Davies. Standards and platforms for open distributed pro-

cessing. ZEE EZectronica an(f Communication Engineering JoumaZ, 8(3):123-133, June

1996.

[21] J. M. Blum, T. M. Warschko, and W. F. Tichy. PSPVM: Implementing PVM on a

High-Speed Interconnect for Workstation Clusters. Z,ecture //otea in Computer 5'cience,

1156:235-235, 1996.

[22] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,

and Wen-King Su. Myrinet: A gigabit-per-second Local Area Network. Micro,

15(l):29-36, February 1995.

http://www.sematech.org
http://itrs.net/ntrs/pubhitrs.nsf

BIBMOGRAPny 154

[23] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic,

and Wen-King Su. Myrinet: A gigabit-per-second Local Area Network. Micro,

15(l):29-36, Feb 1995.

[24] D. Borman, R. Braden, and V. Jacobson. RFC 1323: TCP extensions for high perfor-

mance, May 1992. Obsoletes RFC1185.

[25] J. Y. Le Boudec. The asynchronous transfer mode: A tutorial. Computer A êfwor/cg anj

gystenw, 24:279-309, 1992.

[26] L.S. Brakmo and L.L. Peterson. Performance problems in BSD4.4 TCP. Technical report,

University of Arizona, 1994.

[27] M. Broxton. Study of Performance and Optimization of MPI Over lOOBaseT Switched

Ethernet Network. MIT, Laboratory for Computer Science, Computation Structures

Group Memo 412, August 1998.

[28] Jehoshua Bruck, Danny Dolev, Ching-Tien Ho, Marcel-C&t&lin Rogu, and Ray Strong.

EGicient Message Passing Interface (MPI) for Parallel Computing on Clusters of Work-

stations. JoumaZ o/ ParaZW onj DwfrituW Computing, 40(1): 19-34, January 1997.

[29] Greg Bums, Raja Daoud, and James Vaigl. LAM: An open cluster environment for MPI.

pcmmpi, 1994.

[30] R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel programming

system. Parallel Computing, 20:547-564, 1994.

[31] F. Cappello, 0 . Richard, and D. Etiemble. Performance of the NAS benchmarks on a

cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture

A'̂ otea m Computer .Science, 1662:339-??, 1999.

[32] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling general-purpose distributed

computing systems. ZEEE Thina. on Software Engineering, 14(2):141-154, 1988.

[33] Maui High Performance Computing Center. SP Parallel Programming Workshop Message

Passing Interface (MPI), January 1997.

[34] Sheue-Ling Chang, David Hung-Chang Du, Jenwei Hsieh, Rose P. Tsang, and Mengjou

Lin. Enhanced PVM communications o '̂er a high-speed LAN. parage/ oncf jif-

tributeif tecAnoZogy/ gyatems an(f oppZicotion;, 3(3):20-32, Fall 1995.

[35] F. Cheng, P. Vaughan, D. Reese, and A. Skjellum. TAe (7ni^ System. Engineering

Research Center, Mississippi State University, June 1 1994. Wed, 6 Dec 1995 22:29:48

GMT.

[36] Andrew A. Chien, Mark D. Hill, and Shubhendu S. Mukherjee. Cover Feature: Design

Challenges for High-Performance Network Interfaces. Computer, 31(ll):42-45, November

1998.

BfBMOGRAPHY 155

[37] G. Chiola and G. Ciaccio. Gamma: a low-cost network of workstations based on ac-

tive messages. In Proceedings of PDP'97 5th EUROMICRO workshop on Parallel and

Dwtn'buW frocesaimg, January 1997.

[38] G. Chiola and G. Ciaccio. Implementing a low cost, low latency parallel platform, f oraZZe/

Compufmg, 22(13):1703-1717, Feb 1997.

[39] G. Chiola and G. Ciaccio. Active Ports: A Performance-Oriented Operating System

Support to Fast LAN Communications. In ParaZZe/ Processing, volume 1470

of .Lecture jVofes in Com;)u(er Science, pages 622-624. Springer Verlag, September 1998.

[40] G. Ciaccio. Commwniccfiom System /or j ^ c i e n t ParaZZeZ Processing on CZiisters o/

Personal Computers. PhD thesis, Dipartimento di linformatica e Scienze dell'Iformazione

Universita di Genova, feb 1999. DISI-TH-1999-02 http://www.disi.unige.it/ caccio.

[41] D. Clark, V. Jocabson, J. Romkey, and M. Salwen. An ^alys is of TCP processing

overhead. Communicofions Mogazine, 27(6):23-29, June 1989.

[42] David Clark. Focus: ASCI Pathforward to 30 Tflops and beyond. IEEE Concurrency,

6(2):13-15, April/June 1998.

[43] David Clark. Focus: Supercomputing: The next generation. CompufationaZ 5'cience

0 .Engineering, 5(4):79-81, October/December 1998.

[44] David Clark. Technology news: Heavy trafRc drives networks to IP over Sonet. Co7nj)u(er,

31(12):17-20, December 1998.

[45] D. Cohen. Myrinet-on-VME Protocol Specification Draft Standard. Technical report,

VITA Standards Organisation, January 1998. url:http://www.vita.com.

[46] Danny Cohen, Gregory Finn, Robert Felderman, and Annette DeSchon. ATOMIC: A low-

cost, very-high-speed, local communication architecture. In P. Bruce Chen, C.Y. Roger;

Berra, editor. Proceedings o/ t/ie /ntemafionaZ Con/erence on PornneZ Processing.

VbZume .Z; .ArcWecture, pages 39-46, Syracuse, NY, August 1993. CRC Press.

[47] D. E. Comer and D. L. Stevens. /n(emettuor/:ing wî A TCP/ZP, VbZwme JZf.- CZien<-5'en;er

Progrtimming wancf ylpfZica^ions, 5'oc^e(Version. Prentice Hall, Engelwood Cliffs,

NJ, 1993.

[48] Compaq, Intel, Microsoft. Fir̂ uoZ /nter/oce ylrcAitec^ure ^peci/icotion, version 1.0 edition.

December 16 1997.

[49] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed 6'ysfems—Concepts and Design,

gnd Ed., chapter 17, pages 517-544. Addison-Wesley Pubhshers Ltd., 1994.

[50] C. Cranor, R. Gopalakrishnan, and P. Onufryk. Architectural Considerations for CPU

and Network Interface Integration. /EEE Micro, 20(l):18-26, January/February 2000.

http://www.disi.unige.it/
http://www.vita.com

B I B l f O G A A P n y 156

[51] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau, B. Chun, S. Lumetta, A. Main war-

ing, R. Martin, C. Yoshikawa, and F. Wong. Parallel Computing on the Berkeley NOW.

In Joint Symposium on Parallel Processing, Kobe Japan, 1997. JSPP'97.

[52] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser, Eunice

Santos, Ramesh Subramonian, and van Eicken Thorsten. LogP: Towards a realistic model

of parallel computation. In Proceedings o/ (Ae foiirfA ACM on

Principles Practice o/ PorafZeJ Progromming, pages 1-12, May 1993.

[53] David E. Culler, Lok Tin Liu, Richard P. Martin, and Chad 0 . Yoshikawa. Assessing

Fast Network Interfaces. ZEEE Micro, 16(l):35-43, February 1996.

[54] Thomas Sterling Tom Cwik, Don Becker, John Salmon, Mike Warren, and Bill Nitzberg.

An assessment of beowulf-class computing for nasa requirements: Initial findings from the

first nasa workshop on beowulf-class clustered computing. In Proceedings IEEE Aerospace,

1998.

[55] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled Edwards, and John

Lumley. Afterburner. IEEE Network, 7:35-43, July 1993.

[56] Stefanos N. Damianakis. EfBcient connection-oriented communication on high-

performance networks (thesis). Technical Report TR-582-98, Princeton University, Com-

puter Science Department, April 1998.

[57] M. A. R. Dantas. ^^cient 5'c/tejwZing o/ ParoZ/eZ Afpficafions on M^ork^afion Clusters.

PhD thesis. University of Southampton Electronic and Computer Science Dep., Sept 1997.

[58] M. A. R. Dantas. Evaluation of Process Migration for Parallel Heterogeneous Workstation

Clusters. In .EuroPor'^i^ Pam/ZeZ Processing, volume 1470 of .Lecture A^ofes in Computer

Science, pages 397-400. Springer Verlag, September 1998.

[59] M. A. R. Dantas and E. J. Zaluska. Improving load balancing in an MPI environment

with resource management. In Heather Mary Liddell, A. Colbrook, B. Hertzberger, and

P. Sloot, editors, .ffigA-peryormance computing anj nettuorting; international con/erence

an(f ea;/ii6ition, ^fPCA'^E'[%CP^7.ygGg, Brussefs, BeZgium, y4priZ.fJ-jP, .Zggg; proceedings,

volume 1067 of lecture notes in computer science, pages 959-960. Springer-Verlag, 1996.

[60] M. A. R. Dantas and E. J. Zaluska. Efficient scheduling of mpi applications on networks

of workstations, future Cenemtion Computer ,9ystems, 4(13):489-499, June 1997.

[61] J. Dongarra, J. Martin, and J. Worlton. Computer Benchmarking: Paths and Pitfalls.

ZBEjE' Spectrum, 24(7):38-43, July 1987.

[62] J. J. Dongarra. The LINPACK benchmark: an explanation. In E. N. Houstis, T. S.

Papatheodorou, and C. D. Polychronopoulos, editors, 5'upercomputing. ^st /ntemotionaZ

Con/erence Proceedings, pages 456-474, Berlin, Germany / Heidelberg, Germany / Lon-

don, UK / etc., 1988. Springer-Verlag.

BIBl/OGRAPny' 157

[63] J. J. Dongarra and T. Dunigan. Message-passing performance of various computers. Tech-

nical Report UT-CS-95-299, Department of Computer Science, University of Tennessee,

July 1995. Pri, 19 Sep 97 22:07:00 GMT.

[64] Jack Dongarra, Rolf Hemp el, Anthony J. G. Hey, and David W. Walker. A proposal for

a user-level, message passing interface in a distributed memory environment. Technical

Report ORNL/TM-12231, Engineering Physics and Mathematics Division, Mathematical

Sciences Section - Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, June

1993.

[65] Jack J. Dongarra. The Complete Linpack Report. Technical report. University of Ten-

nesse, July 1994.

[66] P.W. Dowd, S.M. Srinidhi, F.A. Pellegrino, T.M. Carrozzi, D.L. Guglielmi, and R. Glaus.

Impact of transport protocols and message passing hbraries on cluster-based computing

performance. In Proceedings of IEEE, October 1995.

[67] Dave Dunning, Greg Regnier, Gary McAlpine, Don Cameron, Bill Shubert, Frank Berry,

Anne Marie Merritt, Ed Gronke, and Chris Dodd. The Virtual Interface Architecture.

Micro, 18(2):66-76, March/April 1998.

[68] P. Ein-Dor. Grosch's Law Revisited: CPU Power and the Cost of Computation. ComTnun.

28(2):142-151, 1985.

[69] Jakob Engblom. Why Sj)eclnt95 should not be used to benchmark embedded systeum

tools. In Pmceedtngs o/ t/ie ACM Workshop on CompiZers ond

TooZa /or .BmAejcfed volume 34.7 of Notices, pages

96-103, NY, May 5 1999. ACM Press.

[70] Packet Engines. Gigabit ethernet guide. Technical report, Packet Engines Co, 1997. Also

appeared as http://www.packetengines.com/f-gigabiteducation.htm.

[71] Benjamin Falchuk and Ahmed Karmouch. Visual modeling for agent-based applications.

Com;)uter, 31(12):31-38, December 1998.

[72] D.G. Feitelson, P.F. Corbett, S Jonson Baylor, and Y. Hsu. Parallel I/O subsystems in

massively parallel supercomputers. ZEEE f arnZZeZ antf Di5(ri6u(ed TecAnoZo î/, 1995.

[73] J. T. Feo. An analysis of the computational and parallel complexity of the Livermore

loops. foroHeZ Compw^mg, 7(2):163-185, June 1988.

[74] Samuel A. Fineberg, Parkson Wong, Bill Nitzberg, and Chris Kuszmaul. PMPIO—

a portable implementation of MPI-IO. In frocee^fmgs o/ (/le 5'!/mpoaium on t/te

.Fy-om(*erg o/ faraZ/eZ Compu(a(:on, pages 188-195. IEEE Computer Society

Press, October 1996.

[75] A/I. J. Flynn. Some computer organizations and their effectiveness. /EEE TV-ans. Com-

;)u^era, C-21(9):948-960, September 1972.

http://www.packetengines.com/f-gigabiteducation.htm

[76] Michael J. Flynn, Patrick Hung, and Kevin W. Rudd. Deep-submicron microprocessor

design issues. M*cro, 19(4): 11-22, July/August 1999.

[77] MPI Forum. MPI: A message-passing interface MPI forum. Technical Report CS/E

94-013, Department of Computer Science, Oregon Graduate Institute, March 1994.

[78] MPI Forum. MPI-2: Extentions to the message-passing interface. Technical Report NO,

Department of Computer Science, Oregon Graduate Institute, November 1996.

[79] The MPI Forum. The MPI Message-passing Interface Standard. Tech-

nical report, Argonne Nationcil Lab, May 1995. Also available as

http: / /www .mcs. anl .gov /mpi/standard .html.

[80] I Foster. Degi'gnmg anj .BuiZding foroZkf frogroms. Addison-Wesley, 1995.

[81] G. Fox, W. Furmanski, T. Haupt, E. Akarsu, and H. Ozdemir, HPcc as High Performance

Commodity Computing on Top of Integrated Java, CORE A, COM and Web Standards.

In Eurofor'gg farof/eZ froceaging, volume 1470 of Z/ectwre m ,9c*ence,

pages 55-74. Springer Verlag, September 1998.

[82] A1 Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy

Sunderam. f VM.- fomZZeZ FirtuaZ MacAime A Z/aerg' TutoMaZ/or

foraZkZ The MIT Press ftp ftp.netlib.org/pvm3/book/pvm-book.ps. Sept

1994.

[83] G. A. Geist and V. S. Sunderam. The PVM system: Supercomputer level concurrent

computation on a heterogeneous network of workstations. In Quentin F. Stout and

Michael Joseph Wolfe, editors, 7%e Memor;/ Con/eremce

proceedings .ApriZ fortZamd, Oregon, pages 258-261, 1109 Spring Street,

Suite 300, Silver Spring, MD 20910, USA, 1991. IEEE Computer Society Press.

[84] W. Gentzsch. Parallel benchmark results for shared memory systems. 6'wpercompu(er,

6(4):10-16, July 1989.

[85] L. Geppert. Technology 1998 analysis and forcaat. 7EEE Spectntm, 35(l):19-28, January

1998.

[86] V. Getov, E. Hernandez, and T. Hey. Message-passing performance of parallel computers.

Z,ecture JVotes m Computer ^c^ence, 1300:1009-1016,1997.

[87] V. Getov, S. Hummel, and S. Mintchev. High-performance parallel programming in java:

Exploiting native librarie. In froceedmgs o/ (Ae Wbr/zsAop on Jauo /or .FigA-

f er/ormance TVetû orA; Computing, February 1998.

[88] M. Gourdreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Portable and Efficient Parallel

Computing Using the BSP Model. /EEE Tyansacttona on Computers, 48(7):670-689, July

1999.

ftp://ftp.netlib.org/pvm3/book/pvm-book.ps

BIBLIOGRAPHY 159

[89] W. Groop and E. Lusk. An abstract device definition to support the implementation of

a high-level piont-to-point message-passing interface. Technical report, Algonne National

Laboratory, 1995.

[90] W. Groop and E. Lusk. Creating an new MPICH device using the channel interface.

Technical report, Algonne National Laboratory, 1995.

[91] W. Groop and E. Lusk. The second-generation ADI for the MPICH implementation of

MPL Technical report, Algonne National Laboratory, 1995.

[92] W. Groop and E. Lusk. The implementation of the second generation MPICH ADI.

Technical report, Algonne National Laboratory, 1996.

[93] Bill Gropp and Barry Smith. Chameleon parallel programming tools user's manual.

Mathematics and Computer Science Division, Argonne National Laboratory, 1992.

[94] W. Gropp and E. Lusk. Sowing MPICH: A case study in the dissemination of a portable

environment for parallel scientific computing. The International Journal of Supercomputer

Applications and High Performance Computing, 11(2):103-114, Summer 1997.

[95] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementa-

tion of the MPI message passing interface standard. faroZZef Computing, 22(6):789-828,

September 1996.

[96] W. Gropp, E. Lusk, and A. Skjelum. Using MPI Portable Parallel Programming with the

Meaaoge-f aaamg The MIT Press Books, 1994.

[97] William Gropp. Tutorial on MPI: The Message-passing Interface. Also available as

http://mcs.anl.gov/tutoriaI.html.

[98] H. R. J. Grosch. High speed arithmetic: The digital computer as a research tool. JoumoZ

o/ t/ie Opttcof Socteti/ o/ America, 43(4):306-310, April 1953.

[99] The PSCHED API Working Group. An API for parallel job/resource management version

0.1. Technical report, PSCHED. 1996.

[100] John L. Gustafson. Reevaluating Amdahl's law. Communications o/fAe ACM, 31(5):532-

533, May 1988.

[101] P. Halsall. Doto Communications, Comj^uter #etiuorA;s one! Open 5'ystems. Addison

Wesley Publishers Ltd., forth edition, 1996.

[102] Steven W. Hammond, Richard D. Loft, and Phihp D. Tannenbaum. Architecture and

application: The performance of the NBC SX-4 on the NCAR benchmark suite. In ACM,

editor, 5'wpercomputing Con/erence frocee^iinga; 7Vo7;em6er .Z7-,g.0, Pittabwrg/i, fA,

New York, NY 10036, USA and 1109 Spring Street. Suite 300, Silver Spring, MD 20910,

USA, 1996. ACM Press and IEEE Computer Society Press.

http://mcs.anl.gov/tutoriaI.html

BfBMOGRAPEy 160

[103] J. C. Hardwick. Porting a vector library: a comparison of MPI, Paris, CMMD and PVM.

In IEEE, editor, froceeAngs 0/ (Tie ParaZkf f,tbraries Con/erence.- October

5'tote (/mt;ersi(y, Miaswsfp;);, pages 68-77, 1109 Spring Street,

Suite 300, Silver Spring, MD 20910, USA, 1995. IEEE Computer Society Press.

[104] G. Earing, P. Kacsuk, and G. Kotsis. Distributed and parallel systems: Environments

and tools. Parallel Computing, 22(13):1699-1711, April 1997.

[105] K. A. Hawick, D. A. Grove, and F. A. Vaughan. Beowulf - A New Hope for Parallel

Computing? In froc. 0/ fAe gtA ZOEA TVbrtaAop, TZutAerg/en, January 1999. Also

available as DHPC Technical Report DHPC-061.

[106] John Hennessy. The Future of Systems Research. Computer, 32(8):27-33, August 1999.

[107] John L. Hennessy and David A. Patterson. Computer Architecture A Quantative Ap-

proach. Morgan Kaufman, San Mateo, California, 1990.

[108] A.J.G. Hey. The MPI standard a progress report. Technical report. University of

Southampton, 1996.

[109] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM

Ty-anaactioTW on Mat/iemoticoZ 5'o^ware, 16(4):352-368, December 1990.

[110] M. B. Hill. 5'o/tiuore jGnnirommeTits /or faraZ/eZ Comj)wfing. PhD thesis. University of

Southampton, Electronic and Computer Science Department, April 1993.

[111] G. Hipper and D. Tavangahan. A new architecture for efBcient parallel computing in

workstation clusters: Conceptions and experiences. Technical report, Univesitat Rostock,

1996.

[112] R. Hockauf, W. Karl, M. Leberecht, M. Oberhuber, and M. Wagner. Exploiting Spa-

tial and Temporal Locality of Accesses: A New Hardware-Based Monitoring Approach

for DSM Systems. In E'wroP(ir'9<$ PamZfeZ Processing, volume 1470 of Z,ecture Notes in

Computer .Science, pages 206-215. Springer Verlag, September 1998.

[113] R. Hockney. PortakiZity oncf Pef/orTnance 0/ PoraZZe/ Processing, chapter Performance

Parameters and Results for the Genesis Parallel Benchmarks, pages 209-222. John Wiley

& Sons Ltd, 1994. Editors: T. Hey and J. Ferrante.

[114] R. Hockney. T/ze Science 0/ Computer BencAmarAiing. SIAM, 1996.

[115] High Performance Computing and Communications Foundation of America's Information

Future, 1996. Also available as http://www.ccic.gov/pubs/blue96/index.html.

[116] IBM. Sp2. Available as http://www.ibm.com.

[117] Myricom Inc. Myrinet: A brief, technical overview. Technical report, Myricom Inc, 1996.

http://www.myri.com.

http://www.ccic.gov/pubs/blue96/index.html
http://www.ibm.com
http://www.myri.com

BJBMOGRAPny 161

[118] Intel Co. Using the RDTSC Instruction for Performance Monitoring. 1999.

[119] D. James, D. Gustavson, and B. Fleischer. SerialExpress a High-Performance Workstation

Interconnect. Micro, 2(5):54-65, May 1998.

[120] Rakesh Jha, Richard C. Metzger, Brian VanVoorst, Luiz S. Pires, Wing Au, Minesh Amin,

David A. Castanon, and Vipin Kumar. The C3I parallel benchmark suite — introduction

and preliminary results. In ACM, editor, Con/erence froceeAngs;

PA, New York, NY 10036, USA and 1109 Spring Street,

Suite 300, Silver Spring, MD 20910, USA, 1996. ACM Press and IEEE Computer Society

Press.

[121] Young Moo Kang, Robert B. Miller, and Roger Alan Pick. Comments on "Grosch's law

re-revisited: CPU power and the cost of computation". Commwnicotiong o/ (/le v4CM,

29(8):779-781, August 1986.

[122] Vijay Karamcheti and Andrew A. Chien. Software overhead in messaging layers: Where

does the time go? In ProceeAnga o/ t/ie Con/erence on .Arc/tî ec-

tural Support for Programming Languages and Operating Systems, pages 51-60, San Jose,

California, October 4-7,1994. ACM SIGARCH, SIGOPS, SIGPLAN, and the IEEE Com-

puter Society.

[123] Krishna Ka\d, James Browne, and Anand Tripathi. Computer systems research: The

pressure is on. Computer, 32(l):30-39, January 1999.

[124] G. M. King, D. M. Dias, and P. S. Yu. Cluster architectures and S/390 Parallel Sysplex

scalability. fBM S'ystema Joumaf, 36(2):221-235, 1997.

[125] V. Kumar, A. Grama, A. Gupta, and G. Karypis. to ParaZkZ Computing

Deatgn and .AnoZyais o/ A/goht/ima. The Benjamin/Cummings Publishing Company, Inc,

1994.

[126] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. fntrojuction to Por-

aZZeZ Computing.' Design and v4naZ!/sis o/ AZgorit/ims. Benjamin/Cummings, Redwood

City, CA, 1994.

[127] K. Lai and M. Baker. A performance comparison of unix operating systems on the

Pentium. In .ZPgg TecAnicoZ Con/erence, January 1996.

[128] L. Lamport. A new solution of dijkstra's concurrent programming program. Communi-

cations o/tAe ACM, 17(8), August 1974.

[129] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In Com-

munications o/ tAe ACM. ACM Press, July 1978.

[130] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multi-

process Programs. ZEEErC, C-28(9j:690-691, September 1979.

a m U O G R A P H Y 162

[131] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,

20(11):806-811, November 1977.

[132] Brian LaRose. The development ajid implementation of a performance database

server. Master's thesis, University of Tennessee Computer Science Department,

http://netlib2.cs.utk.edu/tennessee/ut-cs-93-195.ps, Aug 1993.

[133] M. Lauria. High performeince mpi implementation on a network of workstations. Master's

thesis. University of Illinois at Urbana-Champaign, 1996.

[134] Mario Lauria and Andrew Chien. MPI-FM: High performance MPI on workstation clus-

ters. JoumaZ o/foraZ/ef ancf 40(1):4-18, January 1997.

[135] Ted Lewis. Mainframes are Dead, Long Live Mainframes. Computer, 32(8):102-104,

August 1999.

[136] Ted Lewis and Hesham El-Resini with In-Kyu Kim. Introduction to parallel computing.

Prentice Hall, 1992.

[137] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi. On the versatility of

parallel sorting by regular sampling. Parallel Computing, 19:1079-1103, October 1993.

[138] M. Lin, J. Hsieh, D. H. C. Du, and J. A. MacDonald. Performance of high-speed network

I /O subsystems for: Case study of a fibre channel network. In IEEE, editor, Proceedings,

Supercomputing '94: Washington, DC, November 14-18, 1994, Supercomputing, pages

174-183, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. IEEE

Computer Society Press.

[139] L. Liu, A. Mainwaring, and C. Yoshikawa. White paper on building TCP/IP active

messages. November 94.

[140] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Message-Passing vs. Distributed

Shared Memory on Networks of Workstations. In Proc. December

1995. Avialable online: <http://www.cs.rice.edu/''willy/papers/sc95.ps.gz>.

[141] Yong Luo. Shared memory vs. message passing: The COMOPS benchmark experiment,

r/te JoumoZ o/5'wperconipufing, 13(3):283-301, May 1999.

[142] Maccabe. PoraZ/eZ Computmg.- TAeoTT/ onj Practice. McGraw-Hill, 1994.

[143] B. E. Martin, C. H. Pedersen, and J. Bedford-Roberts. An object-based ta^conomy for

distributed computing systems. Computer, 24(8):17-27, August 1991.

[144] Richard P. Martin, Amin M. Vahdat, David E. Culler, and Thomas E. Anderson. Effects of

communication latency, overhead, and bandwidth in a cluster architecture. In Proceedings

o/ t/ze 2.̂ rd /ntemahona/ j'l/mposium on Computer v4rcA:tecture, pages 85-97,

Denver, Colorado, June 2-4, 1997. ACM SIGARCH and IEEE Computer Society TCCA.

http://netlib2.cs.utk.edu/tennessee/ut-cs-93-195.ps
http://www.cs.rice.edu/''willy/papers/sc95.ps.gz

BZBLIOGRAPHY 163

[145] F. Mattern and S. Puenfrocken. A non-blocking lightweight implementation of causal

order message delivery, in Computer j'cf'ence, 938:197-205, 1995.

[146] Timothy G. Mattson. Programming environments for parallel and distributed computing:

A comparison of P4. PVM, Linda, and TCGMSG. International Journal of Supercomputer

Applications and High Performance Computing, 9(2):138-161, Summer 1995.

[147] John D. McCalpin. Memory bandwidth and machine balance in current high performance

computers. 7EEB Tec/micoZ Committee on Computer Architecture neiusZetter, December

1995.

[148] Frank H. McMahon. The livermore kernels: a computer test of the numerical performance

range. Technical Report UCRL-53745, LLNL, Livermore, CA, December 1986.

[149] Eugene S. Meieran. 21st century semiconductor manufacturing capabilities. /nteZ Tec/z-

nology Journal, 4th Quarter '98, 1998.

[150] P. Melas, M. Dantas, and E. Zaluska. EfBcient Communication of MPI Applications on

Networks of Workstations. In Proceedings of the 15th lASTED International Conference,

pages 141-144. TASTED, February 1997.

[151] P. Melas and E. J. Zaluska. High Performance Protocols for Clusters of Commodity Work-

stations. In ^wrofar'^f foroNe/ frocegfimg, volume 1470 of i^ecture Wotea :n Comj?«ter

5'cience, pages 570-577. Springer Verlag, September 1998.

[152] P. Melas and E. J. Zaluska. Performance of Message-Passing Systems Using a Zero-

Copy Communication Protocol. In Poro/ZeJ ArcAitectures and Compilation recAnigues,

volume 1, pages 264-271. IEEE Computer Society, October 1998.

[153] Phil Merkey. Beowulf Project at CESDIS NASA, http://www.beowulf.org, 1999.

[154] Joerg Meyer. Message passing interface for Microsoft Windows 3.1. Master's thesis,

Department of Computer Science, University of Nebraska, December 1994.

[155] Sun Microsystems. TCP/ZP and Data CommTinications Cuide. Solaris 2.5, SunSoft edi-

tion, November 1995.

[156] S. Mintchev and V. Getov. Towards portable message passing in Ja\%: Binding MPI.

Z'ecture jyotea in Computer 5'cience, 1332:135-142, 1997.

[157] K. Morimoto, T. Matsumoto, and K. Hiraki. Performance evaluation of the MPI/MBCF

with the NAS parallel benchmarks. In J. J. Dongarra, E. Luque, and Tomas Margaief,

editors, .Recent aduancea in para/W mrtwaZ machine and message passing interyoce; MA

.European f yM/MP/ C/aera' Croup Meeting, .Barcelona, 6pain, 5'eptem6er JPPP;

proceedings, volume 1697 of Z,ecture #otes in Computer 5'cience, pages 19-26, Berlin,

Germany / Heidelberg, Germany / London, UK / etc., 1999. Springer-Verlag.

[158] D. Mosberger and L. Peterson. Careful protocols or how to use highly reliable networks.

In .̂ tA WbrAiaAop on Wbr/:atation Operating ^yatems Napa. U.S., 1993.

http://www.beowulf.org

B B L f O G R A P g y 164

[159] David Mosberger. Linux and the Alpha. Linux Journal, 42, October 1997.

[160] Shubhendu S. Mukherjee and Mark D. Hill. A survey of user-level network interfaces

for system area networks. Technical Report CS-TR-97-1340, University of Wisconsin,

Madison, February 1997.

[161] Shubhendu S. Mukherjee and Mark D. Hill. Research Feature: Making Network Interfaces

less Peripheral. Computer, 31(10):70-76, October 1998.

[162] Sape J. Mullender. Distributed .Systems. ACM Press, 1990.

[163] 0 . Nairn, A. Hey, and E. Zaluska. Do-loop-surface: an abstract representation of parallel

program performance. Concurrency.- Practice ond ^i'zperience, 8(3):205-234, April 1996.

[164] C. Catlett NASA. Parallel I/O: Getting ready for prime time. International Conference

on Parallel Processing, August 1994.

[165] N. Nevin. The performance of LAM 6.0 and MPICH 1.0.12 on a workstation cluster.

Technical Report OSC-TR-1996-4, Ohio Supercomputer Center, 1996.

[166] J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen. S/390 cluster technology:

Parallel Sysplex. IBM Systems Journal, 36(2);172-??, 1997.

[167] Natawut Nupairoj and Lionel M. Ni. Benchmarking of multicast communication services.

Technical Report MSU-CPS-ACS-103, Department of Computer Science, Michigan State

University, 1995.

[168] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers Inc., 1997.

[169] S. PaMn, V. Karamcheti, and A. Chien. Fast messages (fm): Efficient, portable com-

munication for workstation clusters and massively-parallel processors. Department of

Computer Science University of Illinois To appear in IEEE Concurrency.

[170] S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois

fast messages (fm) for myrinet. In in 5'upercompwting 'gj, San Diego, California, 1995.

[171] Dhabaleswar K. Panda and Lionel M. Ni. Special Issue on Workstation Clusters and

Network-Based Computing: Guest Editors' introduction. JoumnZ o/ f arofZef anif Z)is-

tributetf Computing, 40(l):l-3, January 1997.

[172] C. Papadopoulos and G. M. Parulkar. Experimental evaluation of sunOS IPC and TPC/IP

protocol implementation. In Michael G. Hluchyj, editor, Proceedings o/ tAe),2t/i 4̂nnuaZ

Joint Con/erence o/ t/ie Computer and Communicotions ,?ocieties on //etuiorting.-

foundotions /or t/ie future. VbZume 2, pages 628-637. Los Alamitos, CA, USA, March

1993. IEEE Computer Society Press.

[173] White Paper. Improving network performance with ethernet switching. Technical report,

Hewlett-Packard, 1993.

BIBMOGRAPgy 165

[174] Parasoft Corporation. Eayreas [/aer'a ManuaZ, 1989.

[175] J. Pasquale, E. Anderson, K. Fall, and J. Kay. ihigh Performance I/O and Networking

Software in Sequoia 2000. DigiW TecAnicoZ Journal, 7(3):84-94, 1995.

[176] David A. Patterson and John L. Hennessy. Computer Architecture A Quantitative Ap-

prooc/i. Morgan KauAnann Publishers, Los Altos, CA 94022, USA, second edition, 1996.

[177] David A. Patterson and John L. Hennessy. Computer Organization: The Hardware/

Zn^er/ace. Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 260, San

Mateo, CA 94403, USA, second edition, 1997.

[178] G. F. Pfister. Zn 5'eorcA o/ .Z/e. Prentic Hall International Inc., second edition,

Jan 1998.

[179] J. Postel. Internet Protocol. in/oT-mofion Center A f C pages 1-45, Septem-

ber 1981.

[180] J. Postel. Transmission Control Protocol. AFefiuort in/ormation Center jZfC 7P,9, pages

1-85, September 1981.

[181] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterhng. //umericaZ Aecipes

in C. Cambridge University Press, New York, NY, 1991.

[182] Loi'c Pry Hi. Draft: BIP messages user manual for BIP 0.92. Technical report, Laboratoire

de rinformatique du Parallelisme Lyon, 1997.

[183] Loic Prylli and Bernard Tourancheau. Bpi: A new protocol design for high performance

networking on myrinet. Technical report, LIP-ENS Lyon, September 1997.

[184] Loi'c Prylli and Bernard Tourancheau. New protocol design for high performance net-

working. Technical report, LIP-ENS Lyon, July 1997.

[185] M. Quinn. Parallel Computing: Theory and Practice. McGraw-Hill, 1994.

[186] PARKBENCH Committee: Report-1, assembled by Roger Hockney (chairman), and

Michael Berry secretary). Pubhc international benchmarks for parallel computers. Tech-

nical Report UT-CS-93-213, Department of Computer Sci/ence, University of Tennessee,

November 1993.

[187] Steven H. Rodrigues, Thomas E. Anderson, and David E. CuUer. High-performance

local-area communication with fast sockets. In USENIX, editor, ./PP7 y4nnuaZ Tec/tnicaJ

Con/erence, Janiion/ ^^97. ^naAeim. C/1. pages 257-274, Berkeley, CA, USA,

January 1997. USENDC.

[188] W. Rosenberry, D. Kenney, and G. Fisher. C5'F Distributerf Compi^tmg Em;ironnient.-

C/njerstonAng DCE. O'Reilly and Associates, Inc, 103 Morris Street, Suite A, Sebastopol,

Ca 95472.1993.

BIBMOGRAPny 166

[189] David E. Ruddock and Balakrishnan Dasarathy. Multithreading programs: Guidelines

for DCE applications. IEEE Software, 13(l):80-90, January 1996.

[190] David A Rusling. The Linux Kernel. Linux Document Project, 0.8-3 edition, January

1999. A\^lable as http://www.liniixdoc.org/LDP/tlk/tlk-title.html.

[191] Sartaj Sahni and Venkat Thanvantri. Performance metrics: Keeping the focus on runtime.

ZEEE paraZZeZ amj tec/inofog;/.' aysfemg onj appZicattona, 4(l):43-56, Spring

1996.

[192] J. Salmon, C. Stein, and T. Sterling. Scaling of Beowulf-class Distributed Systems.

In ACM, editor, SC'98: High Performance Networking and Computing: Proceedings of

the 1998 ACM/IEEE SC98 Conference: Orange County Convention Center, Orlando,

Florida, USA, November 7-13, 1998, New York, NY 10036, USA and 1109 Spring Street,

Suite 300, Silver Spring, MD 20910, USA, 1998. ACM Press and IEEE Computer Society

Press.

[193] R. Sandberg. The sun network filesystem: Design, implementation, and experience. In

Akkihebbal L. Ananda and Balasubramaniam Srinivasan, editors. Distributed Computing

Systems: Concepts and Structures, pages 300-316. IEEE Computer Society Press, Los

Alamos, CA, 1992.

[194] Russel Sandberg. The design and implementation of the Sun network Ele system. In

Proceedings of the USENIX Summer Conference, pages 119-130, Berkeley, CA, USA,

June 1985. USENIX Association.

[195] Michael Santifaller. rCP/ZP anj OATC/ATS'. Addison-Wesley, Reading, MA, USA, second

edition, 1994.

[196] B. Saphir, P. Bozemen, R. Evard, and P. Beckman. Production Linux Clusters, the tribble

project. In Supercomputing 99, editor, 5'C Supercomputing, November 1999.

Also available as http://www.nersc.gov/research/tribble.

[197] I. Schoinas and M. Hill. Address Translation Mechanisms in Network Interfaces. In

Proceedings of the Fourth International Symposium on High-Performance Computer Ar-

c/iitecture pages 219-230, February 1998.

[198] C. L. Seitz, N. J. Boden, J. Seizovic, and W. Su. The design of the caltech mosaic c

multicomputer. In Proceedings o/ (/le (7nii;erg*ty o/ Washington 5'ymposium o/ /ntegrotej

.Systems, pages 1-22. MIT Press, 1993.

[199] Charles L. Seitz. The caltech mosaic C: an experimental, fine-grmn multicomputer. In

Procee(f;ngs o/ (Ae on PamZZeZ /IZporifAms v4rcAi(ec(ures, pages

1-2, San Diego, CA, USA, June 1992. ACM Press.

[200] Robert D. Silverman. Exposing the Mythical MIPS Year. Computer, 32(8):22-26, August

1999.

http://www.liniixdoc.org/LDP/tlk/tlk-title.html
http://www.nersc.gov/research/tribble

BJBIIOGRAPny 167

[201] D. Sima, T. Fountain, and P. Kacsuk. Computer ^rcA*<ec(ures o Deaign j'pace

Approach. Addison-Weslay Longman Ltd, Essex, England, 1997.

[202] A. Skjellum, S. G. Smith, N. E. Doss, A. P. Leung, and M. Morari. The design and

evolution of Zipcode. PoraZ/eZ Computing, 20(4):565-596, April 1994.

[203] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra.

MP/.' (Ae compk^e re/erence. MIT Press, Cambridge, MA, USA, 1996.

[204] SPEC. The Standard Performance Evaluation Corporation: Better Benchmarks, June

1999. Available as http://www.SPEC.org/spec.

[205] Carl Staelin, Larry McVoy, and BitMover Inc. mhz: Anatomy of a micro-benchmark. In

Proceedings of the USENIX 1998 Annual Technical Conference, pages 155-166, Berkeley,

USA, June 15-19 1998. USENIX Association.

[206] W. Stallings. Prentice Hall International inc., second edition edition,

1995.

[207] T. Sterling, J. Salmon, D. Becker, and D. Savarese. How to Build a Beowulf a guide to the

implementation and application of PC clusters. Number ISBN 0-262-69218-X in Scientific

and Engineering Computation Series. The MIP Press, January 1999.

[208] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawalce, and C. V. Packer.

BEOWULF : A parallel workstation for scientific computation. In International Confer-

ence on PoroZ/eZ Proceaaing, v4rc/i*tecture, pages 11-14, Boca Raton, USA, August

1995. CRC Press.

[209] W. R. Stevens. TCP/ZP JZZwatrafecf, ybfwme TAe Protocol. Addison Wesley, Reading,

1995.

[210] I. Stoica, F. Sultan, and D. Keyes. Evaluating the hyperbohc model on a variety of archi-

tectures. Technical report. Department of Computer Science Old Dominion University,

1996.

[211] V. Strassen. Gaussian elimination is not optimal. jVumeriacAe 13:354-356,

1969.

[212] V. Strumpen. Communication latency hiding - model and implementation in high-latency

computer networks. Technical Report 1994TR-216, Swiss Federal Institute of Technology,

Zurich, June, 1994.

[213] Volker Strumpen. The network machine. Technical Report 1995DI-thll227, Swiss Federal

Institute of Technolog}', Zurich, July, 1995.

[214] Xian-He Sun and Jianping Zhu. Performance considerations of shared virtual memory ma-

chines. ZEEE TV-anaoctmns on ParaHeZ anc! DiatnbuW 6(11):1185-1194, Novem-

ber 1995. Also available as http://www.computer.org/tpds/tdl995/11185abs.htm.

http://www.SPEC.org/spec
http://www.computer.org/tpds/tdl995/11185abs.htm

B B M O G R A P n y 168

[215] Sun Microsystems. Inc. RFC 1057: RFC: Remote procedure call protocol specification:

Version 2, June 1988. Obsoletes RFC1050. Status: INFORMATIONAL.

[216] Sun Microsystems, Inc. RFC 1094: NFS: Network File System Protocol specification,

March 1989.

[217] SunSoft. 5.5 Zn êryaceg frogrommer's Guide. Sun Microsystem, revision

a edition, Nov 1993.

[218] Meiko Computing Surface. Computing sruface cs-2. Technical report, Meiko Scientific

Corporation, 1993.

[219] Mark R. Swanson and Leigh B. Stoller. Low Latency Workstation Cluster Communica-

tions Using Sender-Based Protocols. Technical Report UUCS-96-001, University of Utah,

Department of Computer Science, January 2, 1998.

[220] Ted Tabe and Quentin F. Stout. The use of the MPI communication library in the

NAS parallel benchmarks. Technical Report CSE-TR-386-99, University of Michigan

Department of Electrical Engineering and Computer Science, February 17, 1999.

[221] Andrew S. Tanenbaum. Distributed operating systems. Prentice-Hall, Englewood Cliffs,

NJ 07632, USA, 1995.

[222] Andrew S. Tanenbaum. Computer Networks. Prentice-hall International, Inc., 3rd edition,

1996. ISBN: 0-13-394248-1

h t t p : / / w w w . c s . v u . n l / a s t /ph /cn3 .h tml .

[223] Andrew S. Tanenbaum and Robbert van Renesse. Distributed operating systems.

17(4):419-470, December 1985.

[224] F.J. Valente. /or Per/ormonce

Computing. PhD thesis. University of Southampton, December 1995.

[225] Leslie G Valiant. A bridging model for parallel computation. Gommunications o/ (Ae

v4GM, 33(8):103, August 1990.

[226] A. J. A%n der Steen. The benchmark of the EuroBen group. PamfZeZ Go?nf utmg, 17(10-

11):1211-1221, December 1991.

[227] Adrianus Jan van der Steen. BencAmarting Performance Gomputers /or 5'cienti/:c

onj [TecAnico/ Gom,f«(atton. PhD thesis, ACCU, Utrecht, Netherlands, March 1997.

[228] Thorsten von Eicken. Mesaogea.- an .E^c:ent Gommunica(:on ^4rcA«(ecfure /or

Mu/^tprocessora. PhD thesis. University of California at Berkeley, November 1993.

[229] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-net: a user-level

network interface for parallel and distributed computing. In Proceedings o/t/ie y4GM

5'ymposii^m on Operating '̂g/stems Principles ('̂ G6'P ,̂ volume 29, pages 303-316, 1995.

http://www.cs.vu.nl/

BIBMOGRAPHY 169

[230] Jack C. M. Wang, John M. Gary, and Hari K. Iyer. A technique to evaluate benchmarks:

A case study using the Livermore loops. The International Journal of Supercomputer

4(4):40-55, Winter 1990.

[231] Thomas M. WARSCHKO, Joachim M. BLUM, and Walter F. TICHY. The

paraPC/parastation project: efBcient parallel computing by clustering workstations.

Technical Report iratr-1996-13, Universitat Karlsruhe, Institut fiir Programmstrukturen

und Datenorganisation, 1996.

[232] Thomas M. WARSCHKO, Walter F. TICHY, and Christian G. HERTER. EScient par-

allel computation on workstation clusters. Technical Report iratr-1995-21, Universitat

Karlsruhe, Institut fiir Programmstrukturen und Datenorganisation, 1995.

[233] R. P. Weicker. Dhrystone: A synthetic systems programming benchmark. Communica-

tions of the ACM, 27(10):1013-1030, October 1984.

[234] M. Welsh, A. Basu, and T. von Eicken. Low-latency communication over fast ethemet.

In Proc. EUROPAR '96, August 1996.

[235] Matt Welsh, Anindya Basu, Xun Wilson Huang, and Thorsten von Eicken, Memory

Management for User-Level Network Interfaces. IEEE Micro, 18(2):77-92, March/April

1998.

[236] Matt Welsh, Anindya Basu, and Thorsten von Eicken. ATM and Fast Ethemet net-

work interface for user-level communication. In Proceedings of the Third International

on /tigA f Computer .ArcAifecture, pages 332-342, 1997.

[237] S Wilbur and B Bacarisse. Building distributed systems with remote procedure call. lEE

S'o/twore jFngmeenng JoumaZ, 2(5):148-lo9, September 1987.

[238] M. Wilkes. CMOS Workstations and Senders — How Far Can Evolution and Innova-

tion Take Us? In Parallel Architectures and Compilation Techniques, volume 1. IEEE

Computer Society, October 1998.

[239] Wilson,K.G. Grand challenges to computational science. In froc. ZE.EjE' Cj" /ntJ. Con/.

JVo. ^ on Dota Engmeehng, February 1990.

[240] Frederick C. Wong, Richard P. Martin. Remzi H. Arpaci-Dusseau, and David E. Culler.

Architectural requirements and scalability of the NAS Parallel Benchmarks. In ACM,

editor, .9C'P .̂' Oregon Coniien(*on Center 777 AW Mortin Z,ut/ier J^ing Jr. BouZeuarii,

fortZonj, Oregon, 7^ot;em6er ./ggP, New York, NY 10036, USA and 1109 Spring

Street, Suite 300, Silver Spring, MD 20910, USA, 1999. ACM Press and IEEE Computer

Society Press.

[241] P. R. Woodward. Prespectives on supercomputing: Three decades of change. Computer,

pages 99-111, October 1996.

BIBLJOGRAPgY 170

[242] Paul R. Woodward. Perspective on supercomputing: Three decades of change. Computer,

29(10):99-111, October 1996.

[243] K. Yocum, D. Anderson, J. Chase, S. Gadde, A, Gallatin, and A. Lebeck. Balancing

DMA Latency and Bandwidth in a High-Speed Network Adapter. Technical Report CS-

1997-20, Department of Computer Science, Duke University, Nov 1997.

Appendix A

The 802.3 MAC Sublayer

The calculation of the maximum theoretical bandwidth of the Ethernet channel requires an

analysis of the data format field. Each frame of the 10 Mbit/s baseband standard starts with

a 7 byte preamble field followed by a start of frame byte (see Figure A.l). Then the fields of

destination and source address follow with 6 bytes each. Then the length of data field follows

and the variable data field with 0-1500 bytes. The pad field has a variable length 0-46 bytes

in order to guarantee the minimum frame length of 64 bytes. The last field of the frame is the

field of 4 bytes [222]. The minimum inter-packet gap required is 9.6 microseconds

which corresponds to 12 bytes at 10 Mbit/s [209].

Thus the minimum Ethernet raw packet overhead from Figure A.l and Table A.l is 38

bytes with a payload up to 1500 bytes. For a lOMbit/s channel the maximum theoretical

throughput is:

1500 ^ = 1.219MB2/fe/gec (A.l)
1500 + 38

For an Ethernet frame that carries a TCP/IP packet there is an extra overhead of 40 bytes

due to TCP and IP headers (IP fragmentation is excluded [195, 209]), consequently the payload

is reduced to 1460 bytes. The maximum theoretical throughput of a TCP/IP packet over a

lOMbit/s Ethernet without the corresponding ACK is:

1460 ^ lO'W/g ^ i. isGMBi/te/sec (A.2)
1500 + 38

If the acknowledgment packet (ACK), which the receiver has to send back to the sender,

is included the throughput drops slightly down to 1.125 Mb)4)e/s. In practice this will be the

PreamWc DcM Addnas Length Daia Pad Checksum

0-*6 4 96 UKC

Source Addra:

T h e 802 .3 f r a m e fo rma l

Figure A.l: The 802.3 frame format

171

APPENDIX A. THE 802.3 MAC SL/BI/AYER 172

Field D a t a (bytes) ACK (bytes)

Preamble Geld 8 8

Destination addr. 6 6

Source address 6 6

Length of data 2 2

IP header 20 20

TCP header 20 20

User data 0-1460 0

PAD field 0-6 6

CAC 6eld 4 4

Inter-packet gap 12 12

1538/84 84

Table A.l: Ethernet frame field sizes

Configuration ni/2

raw Ethernet 36

Ethernet/TCP/IP 70

Ethernet/TCP/IP, ACK . 132

Experimental result (lOBase) >170

Experimental result (lOOBase)

Table A.2: size for each protocol layer

worst case aa the TCP/IP at the receiver end could acknowledge more than one frame within

a single ACK reply.

Similarly the performance of a Fast-Ethernet network according to equations A.l and A.2

is 12.19Mbyte/sec and 11.86Mbyte/sec respectively.

= ((A.4)
2-jx

1 8 6 + 2 1
1/ 7 < z < 1460

T h e H e a d e r of t h e I P and t h e T C P Layer O v e r h e a d s Figure A.2 illustrates graphically

the impact of the extra overhead on the throughput (performance equation A.3). A simple

calculation of the y2 (half throughput performance) gives a 36 byte message size for the raw

Ethernet, a 70 byte message size for TCP/IP over an Ethernet frame, and a 132 byte message

size for TCP/IP over an Ethernet frame including an ACK.

APPENDIX A. TBE g023 MAC SLTBIAYER 173

TtcoMkml 9013 dwwi'm Uwm;bp

El&cniiri a* pafommar* -
HcIkhiU wtDi TCP/IP headers -Ktlicnict wiliiTO'/IPheadefs mid ACK •

M)I99? Theomicm] M02_3 rhmmnfr* k

-tdwaiT r̂ parHTiri.irr:
LiliimM milhTCiWhmdin -Ed««*a*iaiTC?Wh«»dcn«mlArK

MO 1000 nOO 1400

Figure A.2: Theoretical performance of an Ethernet pa^jcet

Ethernet header
22 Bytes

IP header
20 byies

TCP header
20 bytes

CRC chcksum
8 bytes

Stnicture of an Ethernet packet with TCP/IP

Data (48)

ROUK T L

Data 4-20

C

CM-5 packet

Figure A.3: The structure of azi Ethernet packet with TCP/IP header overhead, an ATM cell

and a proprietary network packet of CM-5

Prom plots of Fig A.2 we can see that for large messages the TCP/IP overhead and the

ACK tend to merge and improve the throughput performance as the overhead and the ACK

become a smaller fraction of the payload.

Appendix B

Processor Timing Mechanisms

B. l Pen t ium Time S tamp Counter

The following code fragment has been written to measure the time take to perform a floating-

point division:

/* read Pentium time stamp counter, 64 bits */

void rdtsc(val)

int val [] ;

{

asmC'rdtsc"); /* read time stamp to EAX */

asmC'movl 8(%ebp),%ecx"); /* move eax = val */

asmC'movl %eax,0(%ecx)"); /* move low 32 bits */

asmC'movl %edx,4(%ecx)"); /* move hi 32 bits */

}

B.2 D E C Alpha t imer

DEC Alpha processors provide time stamp counters similar to Intel Pentium. The process

cycle counter (PCC) is an unsigned 32-bit integer that increments once per N CPU cycles,

where N is an implementation specific integer in the range 1..16. The high-order 32 bits of the

process cycles counter are an offset that when added to the low-order 32 bits gives the cycles

count for this process. The process cycle counter is suitable for timing intervals on the order

of nanoseconds and may be used for detailed performance characterization. Special-Purpose

Instructions (rpcc d_reg) are used to read the content of this counter.

static inline u32 rpcc (vo id) / * */

{

u32 result;

asm volatile ("rpcc 7.0" : "r=" (result)) ;

174

APPENDIX B. PROCESSOR TIMING MECHANISMS 175

return result;

}

B.3 Ultra-SPARC TICK Register

Ultra-Sparc I-III architecture provides several processor performance monitoring registers such

as the Performance Control Register(PCR), Performance Instrumentation Counters(PICs) as

well as a TICK register which is incremented once per machine cycle. (SPARC-V9)

rd %%tick, %0

B.4 RS6000 Tick Register

The RS6000 architecture provides 64-bit time-stamp registers.

long long ReadtimerO

register long hi;

register long lo;

asm volatile("mftb %l\n" "mftbu 7.0";

"=r(hi)" , " = r " (l o) :) ;

return ((((long long)hi)«32) I lo) ;

}

unsigned tstart, tend;

double duration;

asmC'mftb %0": "=r" (tstart):); /* perform the operation */

asm ("mftb 7.0": "=r" (tend):);

duration^ (tend-tstart)*(BUS_PERI0D*4.0)

B.5 CPU Speed

A simple timer and a machine cycle counter are sufficient to calculate the speed of a processor.

The following code is an example which calculates the speed of a Pentium processor.

#include <stdio.h>

#include <time.h>

void main ()

{

volatile unsigned long long int x, xl;

int dt=5;

time_t t;

f'ROCZESjSOJR. jVnSCIHVlffKHVfg 176

printf("This program runs only on Pentium CPU\n");

printf("Please wait, this program takes about 6 sec

to run...\n") ;

time(&t);

while(t==time(NULL));

t = time(NULL);

asm v o l a t i l e (" r d t s c " : "=A" (x));

while(dt+t>time(NULL));

asm v o l a t i l e (" r d t s c " : "=A" (xl));

printf("Your Pentium/PentiumPro's clock

rate is %g Mhz\n",

((double)(xl-x))/((double)1000000)/((double)dt));

}

Appendix C

Case Study: Matrix Multiplication

In scientific applications matrix-matrix multiplication is often the most power-demanding part

of an application code. This implementation of the Strassen matrix multiplication algorithm

[211, 181] does not claim to be the fastest one possible or to introduce a new parallel program-

ming style, because the objective was restricted to use it as a test-bed for MPI performance

evaluation on heterogeneous and homogeneous clusters. Its implementation can combine point-

to-point communications and collective communications at the same time aa well as a possibility

for partial overlapping between communication and computation.

Strassen's Algor i thm

A single multiplication of two n x n, matrices requires multiplications and — 1) additions

resulting in complexity [109].

N

A',;) — ^ X J (C.l)
k=l

Strassen's algorithm can be applied to any n x n matrix where 7% = 2m. The original

matrices (A, B) can be partitioned into four m x m sub-matrices, so the algorithm proceeds as

follows:

OOO (loi

dlO Oil

6oo

6io

Coo Coi

ClO Cii
(C.2)

then the calculation of the partial sub-matrices is:

-Fb = ((^0 + Oil) X (('oo + bii) (C.3)

= (<IlO + Oil) X b, 00

f z = Ooo x (601 — 611 ^

fa = an X (—600 + 610)

(C.4)

(C.5)

(C.6)

177

APPENDIX C. CASE STUDY.- AfATRfX MULTIPLICATION 178

1-4 = (ooo + <ioi) X 611 (C.7)

P5 = (—Oil + oio) X (600 + 601) (C.8j

Pe 5 (oio — Gil) X (610 + 611) (C.9)

The hnal matrix C can be obtained as a single sum of Ps:

c o o = - F b + ' F ^ - ^ + I ^ (C.IO)

Coi = P; + Pj (C.ll)

c i o = P i + P 3 (C . 1 2)

cii = PQ + P2 — Pi + P5 (C.13)

The algorithm uses 7 multiplications instead of 8 which the classical algorithm requires,

and 14 extra summations. The number of multiplications of Strassen's algorithm is For

large n, there is a net saving of time because more time is saved with the smaller number of

multiplications than required for the extra additions. For example if n=1024 the complexity

ratio between the classical algorithm and this algorithm is around .̂,9 (for n=:2048 the ratio is

4.4).

C. l The Implementat ion

The MPI program runs on 7 processes and each process calculates a partial sub-matrix of the

product. The size of the matrices is variable with matrix sizes up to 1024 X 1024 used for the

tests. In the beginning, the two matrices which have to be multiplied are generated on processes

0 and 2. In the next stage sub-matrices Agut aJid Pgui, are distributed to other processes. In the

first MPI-session processes use MPI aemcf and rece*?;e functions to distribute the sub-matrices,

as shown in Figure C.l.

The next step calculates the partial product for each process. The partial product of each

process has now to be exchanged among 4 processes which finally calculate the 4 sub-matrices

of the product matrix (the second MPI-session).

N o t e The sequential and the MPI implementation make use of the same matrix or sub-matrix

multiplication function. This function haa undergone minor optimisations for speed.

APPENDIX C. CASE STUDY.- MATRJX MUITIPLfCATfON 179

I 1 m
CIO COI Cll

Processes distribution in Strassen's algorithm

Figure C.l: Data How among processes

C.2 The Environment

The application runs on both homogeneous and heterogeneous clusters (see Table C.l). During

the tests there was no need to modi^ its code at all demonstrating the portability of the MPI

implementations. The network used was an open one and the (uncontrolled) workload of other

users on the nodes is taken as constant throughout the tests. The results were measured during

off-peak hours to minimise the interference of other users.

The MPICH version used was;

MPI model implementation 1.00.12., ADI version 1.30-transport p4

Configured with -arch=solaris -device=ch_p4 -mpe -nof77

As can be seen from Table C.l and Figure C.2 the network of workstations used is not homo-

geneous. Some clusters are located in di&rent buildings and some clusters use either hubs or

Ethernet switches as well. The Solaris and IRIX workstations clusters are based on standard

Ethernet segments, while the departmental network is based on Ethernet hubs and Ethernet

switches. In this last network configuration, careful consideration of the process distribution

among the workstations could avoid potential network bottlenecks.

C.3 Results, Analysis and Comparisons

The sequential matrix multiplication program was run on different nodes to provide some mea-

surements in order to compare and evaluate the parallel implementation. Because the cluster

is heterogeneous results are aSected mostly by the node architecture e.g. CPU architecture.

APPENDIX C. CASE STrDY; MATRIX MI/ITIPIJCATION 180

Internet

\ WwuwneoM eonrommeui of woAoauoM

Figure C.2: The heterogeneous network architecture used

Table C.l: The heterogeneity of the cluster

WORKSTATION CPU MHz RAM SYSTEM OS Location

caesar SPARC 25 56 Sun 300 SunOS B 16

daedalus Pentium 75 16 PC Linux B 16

ringwood SPARC 20 32 Sun 4/60 SunOS B 16

taranaki SPARC 80 48 Sun SPARC2 SunOS B 16

euclid SPARC 25 56 Sun 300 SunOS B 16

b25d-xx R4000 100 48 SGI IRIX B 23

b25d-xx SPARC 70 32 Sun SPARC5 SOLARIS B 25

APPENDIX C. CASE STt/DY.- MATRIX MI/ITIPLICATION 181

MM * fcqueoiW

MPIckmcr-
HPOOOOAZQ

KGDSPmr;-

Figure C.3: Elapsed time between sequential and parallel code

MPI *#nom I xHpiml bi

kWWw facihhta
remm*

Figure C.4: The two MPI sessions

cache and RAM size^, clock speed, etc. The sequential code was tested over many different

hardware platforms with a wide range of results (from 465 sec to 4200 sec). The parallel MPI

implementation does not have such wide variations (144 sec to 420 sec). Size scalability of the

problem was tested as well. For example a test multiphcation of two 2048 X 2048 size matrices

run under 37 minutes for the parallel implementation while the sequential one failed on most

of the available computers because of lack of resources. Slow workstations usually slow down

the whole application, this means that faster workstations have to wait for the slow ones before

they can carry on computation. The MPI start-up overhead is relatively large which means

that there is no speed improvement for matrix sizes less than 512 X 512.

Figure C.4 shows the Grst MPI session (C.l) of the code, where processes "0" and "2" have

created the two matrices and initial distribution of the sub-matrices to the other processes.

In the second MPI-session of the program, processes start sending sub-matrices for the final

calculation of the product matrix (equations. C.10-C.13).

^In all caaes the RAM size was large enough to avoid any disk swapping.

APPENDIX C. CASE STLrDY.- MATRIX MULTIPLICATION 182

Table C.2: Sub-matrices exchange among processes before optimisation

m m Proc. 0 Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5 Proc. 6

S - > 6 S - > 3 S - > 4 S - > 6 S - > 6 S - > 0 R < - 0

R < - 1 S - > 0 S - > 0 R < - 1 R < - 2 - R < - 3

R < - 2 - - — - R < - 4

R < - 5 - - - - - -

9.78 3.79 89 3.68 4.74 2.26 7.53

C.4 Solutions and Suggestions

The main objective for this case study was to demonstrate that MPI is suitable and can be

used successfully either in a homogeneous or heterogeneous cluster environment, without any

modifications or special user privileges (aa other similar message-passing packages require). An

e@cient utilisation in a heterogeneous environment has been demonstrated with actual results

indicating that the existing heterogeneous cluster of workstations has a better performance than

an expensive centralised computer system (e.g. compare the existing SGI and Solaris cluster

and the HP9000 (1,5 GRAM, 4 nodes PA7020) in Figure C.3).

The underlying network has a significant effect on the performance of MPI in a cluster.

Slow network interconnect and network congestion can severely aSect node scalability and

overall performance of the application. An SPMD program can cause a bottleneck when all

the processes try to update or access the same resource simultaneously. Some overlap with

the computation has to be introduced to avoid the extra cost of collisions and retransmissions.

Potential bottlenecks in such environments can be caused by the underlying network and the

node computational load. The role of the sustaining OS and the communication protocols

should be considered as well in order to avoid superfluous underlying network layers overhead.

Reschedul ing Communicat ion A way to improve the MPI communication performance

is to identify which MPI communication mode suits the specific application and the specific

environment better, e.g. knowing the sequential nature of the Ethernet layer we can avoid con-

gesting the Ethernet layer [150]. Initially the communication order among the modes for the

second MPI section of the application is represented on Table C.2. Rearranging the communi-

cation order among processors we can minimise the amount of communication and consequently

reduce the congestion problem on the Ethernet bus (e.g. by use of an Ethernet switch). As

shown in Table C.3 there can be a significant reduction of the elapsed time in this phase.

An alternative to avoid network congestion can be the use of parallelism at the commu-

nication subsystem e.g. parallel communication architectures such as the Computer Network

Architecture (CNA) [111, 208]. Switched networked clusters in a similar way can also alleviate

most of the network congestion problems encountered during MPI session I and MPI session

II of the algorithm by overlapping communication links among different pairs of nodes. Fig-

ures 8-9 illustrate the performance of those sessions on a switched Fast Ethernet cluster of fast

APPENDIX C. CASE STL'Dy.- MATRIX MI/ITIPIICATION 183

Table C.3: Optimised sub-matrices exchange

m m Proc. 0 Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 5 Proc. 6

S - > 3 S - > 3 — R < - 1 S - > 6 R < - 0 R < - 4

- S - > 5 S - > 6 — R < - 2 R < - 3

s - > 6 S - > •5 S - > 4 — R < - 2 R < - 1 R < - 0

2.5 2,5 2.37 2.2 2.28 3.21 2.86

4 a " - — — r - - "C l a r

3 I
•

i
i

gm*

'' i
I'l' •
111
III *

--• m= -
lm""4MVWNP '̂""#WM0MN550*#R

Figure C.5: Matrix multiplication: a total view upshot of the program (top), total view up-

shot of the optimised program (middle), detailed upshot of the optimised part of the program

(bottom)

APPENDIX C. CASE STL'Dy; MATRIX Mt/LTIPI/ICATfON 184

4096 (

1024 I

256)

0.25

0.0625

0.015625

Sirmascn's ajgoriUim SGI 0 2 clusier

sequemial code — ^
parallel — * —

Speed-up - -

0
0 100 200 300 400 500 600 700 800 900 1000 1100

S izeof maoix

Sal May 01 I9X)2.35 1999

Figure C.6: Sequential algorithm versus, parallel Strassen's algorithm, and speed-up plots for

the SGI 0 2 cluster

Tki A{*29 IM9 Sumwmi X migonihm SGI 02 cWwr ThmApT29 1*:M:011999 SomMe#':&lgodAmSai02clm:Wf

- node 0- —

Figure C.7: MPI sessions I and II of the SGI 0 2 switched Fast Ethernet cluster

workstations (SGI 02). Although quantitative comparison with previous results is not possi-

ble, because both node and network performance of this cluster is signiGcantly different, it is

clear that the e%ct of multiple communication paths via the network switch provides a worth-

while improvement. Communication times are smaller and more evenly distributed among the

processes.

Sometimes the non-deterministic network behaviour can cause problems especially for a

heterogeneous environment spread among several LANs and buildings e.g. delays in transmis-

sion, performance degradation due to another network activities, or even worse workstations

can go down at any time. A non-responding node haa to be identified and isolated (or replaced)

from the MPI environment. An S-MPI environment [60, 58] with a job scheduler and a task

management could avoid many of these di&culties. Heterogeneous clusters require a different

copy of MPICH installation for each different platform as well as different executables and MPI

libraries. Any changes to the program source code require recompiling and updating of those

APPENDIX C. CASE STUDY; MATRIX MLriTZPjLICATfON 185

executables and other conhguration Gles. The avaiiabihty of distributed software tools for clus-

ters could help considerably [60, 58]. The following list shows a possible directory structure for

an MPI apphcation to run in a heterogeneous environment of SGI and SUN machines:

~/mpi_prog/-+-program.c

I-header.h

I-Makefile

I-IRIX-+-program.sgi

I I-program.sgi .0

I ' - M a k e f i l e . s g i

' - so lar is -+-program.sun

I-program.sun.o

' -Makef i l e . sun

Appendix D

MPI-2 and Parallel I /O

Disk I/O is the slowest level of the memory hierarchy, excluding serial-access magnetic media

e.g. tape drivers. Technological advances in storage devices have not improved the disk transfer

I/O performance in the same way that disk capacity or CPU performance has improved over

recent years. This disparity between CPU and I/O performance is a potential bottleneck,

especially in HPC and parallel systems. More applications are now demanding enhanced I/O

performance, i.e. database systems with large number of transactions, scientific applications

with bulk data transfer, video apphcations, or real time interaction between computers and

between computers and users [164].

Existing Distributed File Systems, such as NFS [193,194] or APS, are not adequate for HPC

because they have been designed to run on Distributed systems and do not cope successfully

with parallel applications or MPPs.

Internal parallel I/O subsystems were used successfully in MPPs such as Intel iPSC hyper-

cubes, nCube Paragon XP/S CM-5 Meiko CS-2 SPl SP2 Cray T3D, etc. Use of internal high

performance switching networks is possible for parallel data transfer on multiple 1 / 0 nodes. Un-

fortunately for such operations there are no standards and hence portability was not preserved

[72].

The semantics of a parallel hie system are not the same as of a sequential one, however

compatibility must frequently be preserved for many reasons. Concepts of parallel access modes,

locally partitioning of subfiles, etc must be speciAed. The API's semantics have to change as

well in order to adapt and exploit parallel I/O.

D . l M P I I / O Concepts and Semantics

The approach of defining I/O access modes to express chosen common patterns of shared files

such as collective data access is limited in its applicability. For this reason another radical way

was chosen to access files in which data partitioning and data accessing among processes is

expressed by derived datatypes. Selecting a datatype as the basis of partitioning a 61e among

processes also provides additional advantages of Sexibility and expressiveness.

An MPI file is an ordered collection of typed data items. Random or sequential access

186

APPENDIX D. M P f - 2 A N D P A R . 4 I l E Z , f / 0 187

etype

1 I filetype

• holes—
view of a file for a procees

tiling a file

• accesible data

Figure D.l: An etype, a Gletype, and a view of 61e for a process

to any integral set of these items is possible. Files are created, oj)ened, cZoaed and

collectively by a group of processes.

The e type or elementary datatype is the unit of data access and partitioning. can

be any predefined or derived MPI datatype. Data access operations are performed in ê ype

units, ojBfsets are expressed as a count of etypea. P:Ze poinfera point to the beginning of

The absolute byte position from the beginning of a 61e is called jispfacement, it defines the

location where a wew begins, see Figure D.l.

Accordingly to the datatype, a Bletype defines a template for accessing a Rle and is the

basis for partitioning a file among processes. A /ZZefi/pe can be either a single etype or a derived

MPI datatype constructed from multiple instances of the same Any extend of a Aok in a

datatype must be a multiple of the efi/fe 'a extend. Files are created by tiling of while

file size is measured in bytes from the beginning of the Ale.

A v iew defines the current set of data visible and accessible from an open file as an ordered

set of etypea. The Mew of a file is deGned by three quantities: a diapfacement, an efype and a

Each process has its own wew of the 61e according to its each wew is tiling

from the jiapJacemenf. The default uiew of a file is linear byte stream and can be changed by

the user during program execution.

A position in the file relative to the current view is called the offset, it is expressed as a

count of ea. DiapZacemen(and Aoka of the /i/eti/pe are skipped. The end of the file is

the of the first etype accessible in the current view starting after the last byte in the file

(see Figure D.2) . File pointers are implicit local OjgFaeta to each process maintained by &/IPI.

A a/iarej /i/e pointer is shared among all the group of processes that opened the file. Finally a

/i/e AandZe is an opaque object, which is used by all routines to operate on the file, it is created

by MPI_FILE_OPEN and freed by MPI_FILE_CLOSE.

Sometimes it is useful if a user can provide information on the access patterns for a file

and file streams which optimise I /O performance. MPI provides the FILE INFO mechanism

in which information can be passed to an in/o object.

There are a limited number of MPI I/O implementations that have been developed to

date. An example is ROMIO Version 1.0.0, released in October 1997. It is a high-performance,

portable implementation of MPI-IO that supports a wide range of hardware platforms and filing

systems (NFS, PIOFS, UFS, etc). This implementation based its portability on an internal

APPENDIX D. MPI-2AjVDPARAI,Z,Eif /0 188

e t y p e

J p r o c . I n i e i y p e

j p r o c . 2 n i e t y p c

1 p r o c . 3 f i l e t y p e

d i s p l a c e m e n t t i l ing a f i l e end_^of„ f i l e

Figure D.2: Tiling a Gle with Retypes of three processes

abstract I/O device layer called ADIO. This version of ROMIO includes everything defined in

the MPI-2 I/O chapter except file info, shared Hie pointer functions, split collective data access

routines, support for file inter-operability, I /O error handling.

PMPIO is a preliminary implementation of MPI I/O from NAS. It supports MPICH imple-

mentations providing full support for arbitrary hletypes, collective I/O operations, and support

for info objects cb_nodes and cb_buEer_8ize. This beta release does not include asynchronous

I/O, shared file pointers or support for files stored on NFS hie systems.

File Inter-operabil ity

File inter-operability is the ability to read the information previously written to a data file,

not just the bits of the Gle but the actual information the bits represent in a data Ale. File

inter-operability is speciRed in the MPI_FILE_OPEN call. MPI supports the conversion of

transferring the bits of a file into and out of the MPI environment between different machine

representations, using three data representations:

native No data type conversions are performed during read or write operations.

internal The implementation will perform type conversions if necessary and thus supports

heterogeneous environments.

external32 Each read or write operation converts all data from and to the "external32" rep-

resentation which is defined by MPI-2 and based in big-endian IEEE format.

A problem may arise when handling data representations that are unknown for the implementa-

tion, therefore a user defined data representation is introduced that inserts a third party Hlter

into the I/O stream to do data representation conversion.

In general, using the same data representation name when writing and reading a file does

not guarantee that the representation is compatible between two different implementations.

Instead representation guarantees compatibility.

D.2 M P I - I / O Da ta Par t i t ioning

As we can see MPI I/O attempts to maintain similar semantics for accessing data in Ales as the

MPI communication functions. Hence in MPI_FILE calls the format of data part argument has

APPENDIX D. MPI-2ANDR4RAIj:EI ,Z/0 189

the known order of 6w/, cownt, jotatyfie. Restrictions of the type signature matching, number

of continuation copies, overlapping regions etc, are similarly preserved in I/O as well.

MPI derived types are used to describe how data is laid out in the user buffer. The same

aspect is extended to describe how the data is laid out in the file as well.

Thus we distinguish two derived datatypes in MPI-2:

f i letype describing the layout in a file

buf type describing the layout in the user buffer.

and are derived by a third MPI datatype referred to, as the efemenfan/ datatype

or etype.

for accessing data are expressed as an integral number of etype items.

The _̂ Zetype defines a data pattern that is replicated through the file to tile the Rle with

data. MPI derived datatypes consist of Gelds of data that are located at specified onsets, (use

of displacement and offsets can leave "holes" between the datatype Gelds, which do

not contain any data^). A process can access the Gle data that matched items are in its access

Gletype (but not data that falls under holes, see Figure D.2).

Data which reside in holes can be accessed by other processes which use complementary

filetypes. MPI-I/0 provides Gletype constructors to help the user to create complementary

Gletypes.

The use of Gletypes allows a certain access pattern to be established NIPI-I/0 deGnes a

displacement from the beginning of the Gle emd the access pattern starts from that displacement

(header information can be stored there).

D.3 M P I - I / O Da ta Access Functions

MPI-I/0 deGnes three orthogonal mechanisms of data access:

posit ioning: explicit offset vs. implicit file pointer

synchronisation: blocking vs. nonblocking

coordination: independent vs. collective

MPI provides all combinations of these data access functions, including two types of Gle pointers,

individual and shared.

D.4 Positioning

Unlike UNIX Gle systems, a parallel environment must decide whether a Gle pointer is shared

by multiple processes or alternative each process is to maintain its own individual Gle pointer.

Parallel programs do not generally exhibit locality to the reference within a Gle often move

da ta type of{(double,0),(char,8)} would rounded to 16 with a hole of 7 bytes

APPENDZXD. MPZ-2AjVDPAjL4I,lEI,I/0 190

between distinct non-contiguous regions of a 61e. Thus for each read or write operation a seek

operation is almost always necessary. Multi-threaded or asynchronous I/O extend that need

even further. Therefore MPI-I/0 provides functions for positioning :

Explicit offset operation: the user specifies the offset (act as atomic seek-read/write opera-

tions)

Individualandshared file pointer operations use the implicit system maintained offsets for

positioning.

The different positioning methods are ort/iogonaZ, in the sense that they can be mixed in the

same program without affecting each other.

Explicit Offsets

MPI-I/0 uses two "keys" to describe locations in a file: an MPI jofatype and an the

first one is used as a template, and an which determines an initial position for transfers.

Offsets are expressed as an integral number of items relative to the Any holes a

Gletype has are ignored and do not count as etype items for the oEset.

File Pointers

When a file is opened in iVIPI-I/O the system creates a set of file pointers to keep track of the

current Gle position. There is a global 61e pointer shared by aU processes in the communicator

group (processes should use the same filetype) and there are individual file pointers local to

each process.

Each I /O operation leaves the file pointer pointing to the next data item after the last one

that was accessed:

new J lie position = oldposition H :—; : (U.l)
stze(et3/pe)

where cownt is the number of elements of type to be accessed and where size(datatype)

gives the number of bytes of actual data that composes the MPI datatype For both

performance and thread safety reasons MPI always updates the file pointer at the outset of an

operation by the amount of data requested.

D.5 Synchronisation

The MI-2 standard supports exphcit overlap of computation with I/O, through the use of

nonblocking I/O functions.

* A blocking I/O will block until the I/O request is completed.

G A non-blocking I/O call initiates an I/O operation, but does not wait for it to complete.

A separate request complete call (MPI WAIT, MPI_TEST) is needed to complete the

I/O request.

APPENDIX D. M P J - 2 A N D P A R 4 f , I E f , I / 0 191

D.5.1 Coord ina t ion

Global data accesses have significant potential for automatic optimisation. Every non-collective

data access routine has a collective counterpart. Independent calls do not imply any coordina-

tion among processes, and may be executed individually by any process within a communicator

group.

Collective I/O requests are executed by all processes within a communicator group. A

process can return &om a collective call as soon as its participation in the collective operation

is completed. Note that this return does not indicate that other processes have completed or

even started the I/O operation.

End of File

Unlike Unix Gles, the end of 61e is not absolute and identical for all processes accessing the Hie.

When a Gle grows, because of more data being written to it or the 61e being resized, the end

of the file of all processes accessing the 61e may change, data now are accessible, but not yet

written to the hie, win be read as zeroes.

D.6 Collective Operations

Collective operations in order to access a hie use the shared file pointer in the order deter-

mined by the ranks of the processes within the group. Calls return only after all the processes

within the group have initiated their accesses. Implementation of collective calls can be used

independently for each process hence it can be carried in parallel if possible.

D.6.1 Consis tency Semantics

They deGne the outcome of multiple access to single Gle, all Gle accesses being are related to a

speciGc Gle handle created from a collective open. MPI-2 provides three levels of consistency:

« Sequential among all accesses with a use of a single file handle

» Sequential among all accesses using file handles created from a single collective open

Weak consistency among all accesses not handled with a use of synchronisation mechanism

The default semantics for overlapping accesses does not guarantee sequential consistency (non-

atomic mode). In this mode all data in regions of the Gle which had overlapping accesses is

undeGned, unless weak consistency is enabled. Atomic access can be guaranteed for overlap-

ping accesses by enabling atomic mode routines. Overlapping accesses are not by deGnition

consistent.

Appendix E

Parallel I /O Tests

Technological advances in disk capacity and the improvement in CPU performajice achieved

over the last few years have not been matched by similar increases in disk bandwidth. This

disparity inevitably will become a potential bottleneck for HPC applications. The use of parallel

I/O provides a straightforward solution, although the implementation is still not easy. The

proposed MPI-2 standard addresses this problem using existing 61e systems without major

changes, thus preserving portability while still providing usable performance. Measurements

of performance end evaluation of HPC I/O systems can be undertaken using the parallel I/O

benchmark mechanisms reported in this paper.

This benchmark was originally based on the bonnie benchmark written by Tim Bray and

subsequently extended at the University of Southampton. It consists of a suite of three bench-

mark programs: The write benchmark tests and measures the MPI_write performance, while

the reofi benchmark tests and measures the performance of MPI read, and the rewnfe bench-

mark tests and measures the I/O performance of MPI.

E . l Test Conditions

The tests were run on an Ethernet network cluster of 12 SUN SPARC-4 workstations running

Solaris 2.5.1. During the experiments the network had no additional traSc, apart the overhead

of the Operating System, and the NFS file system.

The tests were run for different file sizes and diEerent block sizes. The size of file is restricted

to 32 Mbyte maximum because of an internally imposed disk quota. Some of the tests create

a file on the master's node temporary directory

The tests ware run for different sizes of file and different block sizes. The size of the file is

restricted to 32 Mbyte maximum because there is a disk quota hmit.

E.2 Wri t ing to the file test

The objective of this program is to measure the function bandwidth. The test

creates a test file and writes to it repeatedly a buffer of known block size. The use of blocking

192

APPENDIX E. P A R A I I E I I /O TESTS 193

lOBascT E[heme[

Figure E. l : The interconnection of the cluster

non-collective Ale operations ensures that all the outstanding requests associated with the file

have completed before the process closes the 61e.

open a file

get wall time

for the number of sizeof(file)/sizeof(block)

dirty the buffer

calculate the offset

write the buffer to the file

close the file

get wall time

E.3 Reading from the file test

This test is the opposite of the write program, it measures the MPI_Read() function bandwidth,

by opening the already-written test file and reading it, in blocks of known size. The test is timed

until it closes the 61e MPI_ C/oae^.

open a file

get wall time

for the number of sizeof(file)/sizeof(block)

calculate the offset

read from the file a block

buffer[random]++ (fool the compiler)

close the file

get wall time

E.4 Rewrit ing a file

This test reads a block from the test Ale, modifies the block and then writes it back to the hie.

The purpose of the test is to measure the eSectiveness of the filesystem, the cache, and the data

transfer rate. The main loop has additional commands in order to ensure that the compiler

does not optimize the operation specified.

open a file

APPENDIX E. P A A A I I E I I /O TESTS 194

Week o a IMM -Wô]276# -

6)336 261144

Figure E.2: Parallel I /O for one node, writing to a Gle

get' wall time

set the offset

read the first block

while the file is not read

dirty the buffer

write the buffer back to the file

calculate the nest offset

read the next block from the file

close the file

get wall time

E.5 Experimental results, tes ts

R u n n i n g tes t s in practice: There is a crucial test file size that is just larger than the

maximum size of I / O cache the system can allocate. Usually this size is estimated to be around

10 Mbyte less than the system's RAM size. For sizes less than this crucial size the system

appears to respond faster than its real I /O thus producing a misleading response.

E.5.1 R u n n i n g t he benchmark for one node

The parallel I /O benchmark was run on one node for a single process. The local attached hie

system was used (/(mp) for the test file.

The results 6ire consistent with the bonnie benchmark, although there is a slight degradation

of the throughput due to the extra overhead of the MPI calls. Increasing the buffer size provide

a considerable speed-up in all I /O operations.

E.5.2 R u n n i n g parallel I / O b e n c h m a r k for two nodes

This test runs on two nodes with two processes. The shared Ele system is NFS with a theoretical

maximum throughput of less than 1.28 Mbyte/sec. The impact of the interconnection network,

APPENDIX E. PARAI/lEI f / O TESTS 195

WJ h«mt1*naTk ^

MoA *iz« 4096
blcck.iz«l63M
bkckiiMW336 *

Figure E.S; Parallel I/O node reading a file for one

Wheichm#Am*nu«|mliWi«a

bkckiii#4096 -Mock iiz« 1192 -Wock Mzm I63M
block file 63336 -

Figure E.4: Parallel I/O for one node, rewriting a file (throughput)

APPENDIX E. PARAI/LEI I/O TESTS 196

-i: : * tL-r

-

Work ̂ 9192 a -block mw 256 N— hkckuMlWk Work mc 32761 -blofk *-

\

Figure E.5: Writing a file test on two nodes

d̂i»# ̂ nk mi ti*o modwi

bkck mic 1024 block:it«4)96 — WockwXI% 5-bkck gnmZ* *-hhckmm 1*394 block «M3Z7M Wock M# 6)536 *-

Figure E.6: Reading a Sle test on two nodes

Ethernet, afFects the disk buffer cache and is responsible for the unpredictable behavior of the

system aa well.

E.5.3 R u n n i n g paral lel I / O b e n c h m a r k for four nodes

The communication overhead, of the test nodes introduces congestion into the communication

channel, alfecting the shared I/O subsystem and decreasing performance slightly.

E.6 Summary

Internode connections and the I/O subsystem attachment are major factors in determining the

performance characteristics of a parallel system. The parallel I/O benchmark described in this

note provides useful information on the I/O performance that can be expected for applications

software. Future work will include measurements on alternative parallel systems (e.g. SMP

and MPP) and also incorporate additional tests.

APPENDIX E. PARAi l /El f / 0 TESTS 197

Tb,;,, f 192109 1997 I/O bcudoMft m

Mock R1C4096 -
block 1191

Week iw "

I6W

Figure E.7: Rewriting a 61e on two nodes

TucJml I) 15 06 09 1997 UO hmmrhmwA «Aimg m IWc **

Week miwZM Mock NM I0Z4 Week az# 4096
NockmimBMI bbckw I63W Mock lin 3276* bkek mm 63)36

w 2)6 lom j096

Figure E.8: Writing to a Rle over 4 nodes

T—Jwl 13 1)07 32 1997 I/O bmdoMfk fMdimg « Hi M \l*o Mukm)

bkKkwIOH -Work 40* hkekwfXIM

40* 163W 6M36

Figure E.9: Reading from a Gle over 4 nodes

/LPPEfWlDCjy PAfbLLLEi I/O TESTS 198

UO bcmduowk rtwrbing «file W

WockM, 1024 -
Mock iim40M -i

. block sizeS192 -
Wock «!« I63M -
WoctwMWW -
block «i%# 63336 -

* . ..J #. . '

Figure E.IO: Rewriting to a file over 4 nodes

Appendix F

Kernel-level Algorithmic Tests

F . l Row/Co lumn Striped Algorithm

The implementation of the Row-column-Oriented algorithm involves the following phases:

Initialisation phase: During this phase matrices A and B of size N x N are initialised and

filled with random numbers. A virtual two-dimension topology of nodes is de6ned and

groups of communicators for the number of rows and columns are initialised together with

user-specified block vectors needed in later stages of the algorithm.

Phase one: A block-striped partitioning of A and B matrices takes place. Matrix A is parti-

tioned horizontally and distributed over the first logical column of processors, then each

processor of that column broadcasts its sub-matrix along its own logical row. In a sim-

ilar way matrix B is partitioned vertically and distributed over the first logical row of

processors, followed by a broadcast operation along the columns of that row.

Tscatter = Col{ts + r) + rOW^tg + tyj) = {col + row){ts + t^N")
coZ row

where is the startup time and the cost per byte transmission. In a similar way the

cost of the broadcast call will be:

Tbcast = riog2 col] {ts + itu -) + [log; row] {ts 4- tu!)
col row

Phase two: The computation cost for each process with an 7V/p x matrix-size problem

is given bv:

T - f ^
p

where is the averaged cost for each iteration of the multiplication operation.

P h a s e three: During the last phase processes have to use an Mf7_(7a(Aer() call to gather

the product result matrix to a master node. The cost of this operation will be:

^gather — p{^s 4- ^) — P^s "f" i'W^"

199

APPENDIX F. KERjVEjL-LEVEiAI/GOPJTnMIC TESTS 200

Accordingly the total communication time will be the sum of the three major communication

operations: scatter for the sub-matrix distribution, broadcast of sub-matrices along rows and

columns and finally the local computation takes place to gather all the product sub-matrices

to the master node:

Tcomm — ^scatter 4- Tjycast ^gather

For the shake of simplicity when the processor grid is y p the total execution time becomes:

Ttot = T(nj(+ 1- -|- riog, -1=) + 4")
P \/P P

2Ar̂ 1
Ttof = Tinif + 1- + riog2 + P) + —^("V^ + VFI ^ 7:))

P VP yP

F.2 Cannon 's Algorithm

The implementation of algorithm has the following phases:

Ini t ia l i sat ion phase: This phase is very similar to the previous algorithm.

Pheise one: The checkerboard partitioning of matrices A and B among p processors into blocks

of (W/\/^) X (W/.\/^) size takes place here as well as the initial alignment of blocks at the

same time. The two MPI calls for this operation are for the MP7_ Scaler() routine:

^scatter — 2 X (p ' {tg + ^))

P h a s e two: In this phase there is a loop of ^ — 1 iterations, in each iteration there is a

computation part of an accumulated sub-matrix multiphcation as well as a shift operation

among matrices of the same row/column. The computation time is given accordingly:

comp — Ec
P

During the shift operation sub-matrices of the four neighboring processors are exchanged

so the total cost of the "shift" operation is given by:

jy2
Tshift = 4 X (\ /p • {ts +

P h a s e three: At the end of phase two processes have sub-matrices of the product result ma-

trix. A gather operation again is used in this phase to congregate the product matrix on

a master node.
j\r2

^gather — P{^s)

The total communication cost is the sum of the partial times required for the initial matrix

decomposition (the scatter operation), the shifting and gathering of the final sub-matrices:

Tcomm — ^scatter i^/P ^)^shift 4" Tgather

/LLfZCtRfGrfOWlC TISSTIS 201

At the root node the idling time is regarded as zero therefore the overall time is given by:

3 ^ 2

Tto(= —I- ^a(7p — 4-\/p) + — 4^%

The two diEerent algorithms of matrix multiplication are implemented and compared using

MPI and run over a cluster of SGI (02) workstations.

F.3 Sorting Rout ine

The implementation of the PSRS algorithm involves the following steps throughout its phases:

^tot — T^init 4- TcQTjip + Tcoram ^ ^idle

Initialisation phase; A list of n elements is created and filled with pseudo-random integers

by the master process. The values are evenly distributed in the range 0 through 2̂ ^ - 1.

Initialisation of various vectors, user-deGned datatypes and space allocation takes place

35 well during this phage for use later in the algorithm.

P h a s e one; The root node distributes data (n/p) evenly among nodes via an MPI_Scatter{)

call. Then each node is running a qsortQ algorithm to sort its local list of data 0{n/plogn).

N
^scatter — is

P
= 0 (n /p logn)

P h a s e two: An MPI_Gather() operation selects and sends p samples from each process to

the maater process. The master process then has to sort the sample list and to broadcast

values to all nodes

'^gather — p{is ^wP)

T^hcast — is iw{P 1)

Tgaort = lOgp)

Phase three; All processes have to partition their sub-lists according to the broadcasted pivot

values. The exchange of list partitions amongst all nodes is dynamic and based on an

call, the implementation of this step is more complex and requires the

deGnition of various displacements and extra memory space allocations on the Hy. The

main call is expecting to exchange at its worst case n element messages

in total among its nodes simultaneously.

Tall — P''{is 4" iw)

Tallv — P^its "t" t w ~)

APPEAFDZX F. KERNEI-IEVZI AiGORITEMIC TESTS 202

Phase four: Each node uses a gaort() function to sort-out the re-arranged hsts and an MPI_-

Gatherv() collective function to restore the complete sorted hst on the master node.

^gather — P{^s i-w)

N
Tgatherv ~ P{^s ^w~)

F.4 Mult igrid Relaxation Rout ine

The implementation of the multigrid routine follows a conservative approach including the

following phases:

Initialisation phzise: In this phase various declaration of user-de6ned MPI datatypes take

place as well as a virtual processor grid (n / ^) x (n / ^) to map the problem.

Phase one: Checkerboard partitioning of the two-dimensional grid amongst the processor grid

is performed. An MPI_Scatter() call with the appropriate vectors is used:

^scatter — P ' (^s)
P

Phase two: This phase incorporates the main loop of the algorithm. Each iteration scans each

point of the local grid and calculates its new value and the maximum deviation.

T comp —
p

After that a combination of MP7_Ae(fuce() and operation informs all pro-

cesses about the maadmum deviation change. If that change is not small enough neigh-

bouring processes exchange boundary values and repeat the iteration all over again.

For benchmarking purposes the number of iterations is fixed in number controlled by

a COUNTER variable. The cost of the reduce and the broadcast operation is relatively

small as they operate on a single value only and can be simplified to:

^red+bcast ~ p{ired 4" ^6c)

During the exchange of neighbouring process boundary values a combination of Send-

Receive MPI calls can be used, the cost of these exchanges can be approximated by:

N
Texch — 4 X {tg + tyj)

P

Phase three: At the end of phase two processes already have sub-matrices of the approximated

solution array. A gather operation is used again in this phase to congregate the hnal

multigrid solution on a master node.

Tgather — P{^s ^)

The total communication cost is the sum of the partial times required for the initial matrix

decomposition (the scatter operation), the shifting and gathering of the Anal sub-matrices:

^scatter "i" '^red+bcast ~t~ T^exch 4" Tgather

Appendix G

Modified Algorithmic-level Test

Results

This appendix illustrates test results from the matrix-to-matrix algorithmic test which has been

modified.

The modification transposes the second matrix which takes place during the decomposition

phase of the algorithm using a modiHed memory access pattern. The result is a complete

transparent matrix transpose in terms of both time and resources (e.g. extra memory). The

complexity of the new algorithm main loop is still the same and the real benefit derives

&om the improved access locality.

i,j — ^] 0,i,k ' ^j,k (G.l)
m—1

k=0

This modihcation can be equally applied to both matrix-to-matrix algorithms used, the

Row/Column striped algorithm and Cannon's algorithm. The following Ggures show the results

from tests run on the SGI cluster. Performance improvements over the original algorithm for the

SGI cluster varies according to the matrix size between 100%-50%. These results demonstrate

the importance of a tailored algorithm for a specific platform.

203

APPENDIX G. MODIFIED AIGORITEAIIC-I/EVEl TEST RES[;i,TS 204

Maoix nnUdpBaoo* iaip«d xlfohAm Size 840: Soipcd migodlhm

Sizm 1060
Siz= 1680

Number of nodes

Sz» 1080: SiHp«d mlgodUun

Tcomm

Ttomm

Number of nodes

Size 1320: Smped mjgoddunmmlyw

Tcomm

Nmmbcf of mod* Nmmb* of oodcx

Figure G.l: Modified striped algorithm (first part)

Size 1680: Striped ilgoriUun analysis Matrix Multiplication aigorilhms speed-up reUiive

Total time
Tcomm

Number of nodes Numb* ornnde:

Figure G.2: Modified striped algorithm (second part)

jiPf'JEfVDIX (3. iVfOjDjQFIEJ] 7IEST fLE%?LrL]lS 205

Mmmk m*ldpk#t ion Caown * #lp»nlhm « MO: C^mw* ! mlpwidun **a]y*ii

N u m b * of Dodw

Siz# 1060: Cmamom': mlgonUom m*alyd*

Siz« 15S0: Cmnpom 1 mIgohUm mamlyam

Tcomm

Tcomm

\ \

.

5

Sizm 1320: Cwnom : mlgondmi

MmlH: Mmldplkmdom mtgoddum bf II

M*xl«np«d '
Cmmnm*

mod. Catuixion -

Figure G.3: Modified Cannon algorithm

APPENDIX G. MODIFIED AIGORITBMIC-I/EVEI, TEST RESLr^TS 206

Table G.l: Performance improvement for matrix-to-matrix algorithms using a transpose mod-

iHcation

Matrix Free. S/C Mod. Impro- Cannon Mod. Impro-

size grid S/C vement Cannon vement

1x1 344 157 2.19 346 160 2.17

2x2 64.1 40.9 1.56 71.1 44.6 1.59

840 3x3 24.8 20.1 1.23 31.1 18.5 1.74

4x4 17.8 16.7 1.06 19.5 13.0 1.50

5x5 19 18.5 1.02 17.0 7.67 2.22

1x1 805 330 2.43 805 340 2.37

2x2 155 87.4 1.77 162 93.2 1.74

1080 3x3 56.2 39.9 1.41 68.7 38.1 1.80

4x4 31.5 28.2 1.12 40.4 24.0 1.68

5x5 25.5 26.4 0.96 31.1 19.0 1.64

1x1 1494 599 2.49 1503 626 2.39

2x2 303 157 1.92 319 170 1.88

1320 3x3 123 79 1.56 129 67.8 1.91

4x4 59.2 47.5 1.25 74.9 42.9 1.74

5x5 44.2 37.9 1.16 50.9 31.6 1.61

1x1 3185 1238 2.57 3429 1315 2.61

2x2 704 324 2.17 716 349 2.05

1680 3x3 274 155 1.77 284 138 2.06

4x4 142 96.6 1.47 160 81.9 1.96

5x5 90.6 64.9 1.39 104 58.5 1.78

