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PERCEPTION AND DISCUSSION 

This thesis is concerned with understanding in three-dimensional geometry. 

The study focuses on how visual perception and imagery of polyhedra are related to 

van Hiele levels and to Del Grande's spatial perception abilities. A written test is 

developed which is designed to assess van Hiele levels in three-dimensional 

geometry, as well as Del Grande's spatial perception abilities. Two empirical studies 

address how perception and imagery of polyhedra are related to geometric thought. 

The first of the empirical studies looks at the role of group discussion in enhancing 

visual perception and image formation of polyhedra. The second examines the role of 

purely tactile information about polyhedra and its role in forming stable models of 

polyhedra. 

The findings of the study reveal a distinction between visual perception and 

image formation of polyhedra. This distinction is marked, and is not normally drawn 

in the mathematics education literature. Visual perception is strongly connected to van 

Hiele levels but image formation is not. The findings of the study also reveal a strong 

influence through verbal discussion on increasing student's visual perception. 
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Chapter One 

The study's rationale 

1.1 Introduction 

This thesis addresses questions of perception and image formation in three-

dimensional geometry. The aim is to understand what difficulties there might be for 

prospective teachers in comprehending and appropriating polyhedral models, and how 

discussion might enhance their geometric perception. The basic question I address is: 

How do students own actions, the actions of others, and discussions of 

these actions and perceptions, assist them to gain greater insight and 

understanding of polyhedra? 

I was lead to this project by a previous programme in Brazil, with teachers and 

students on the use of concrete materials on teaching and learning geometry. This 

previous work was motivated by a desire to enhance the teaching and learning of 

geometry in north eastern Brazil. It was carried out by implementing a geometry course 

which emphasised transformation ideas, and utilised concrete manipulative material. 66 

mathematics teachers participated from secondary state and council schools in North-

eastern Brazil. The principal reasons for using concrete material extensively in this 

study were: 

1. Geometrical constructions abound in the built envirormient: once it is pointed out 

to them, children - and teachers - can see geometric constructions everywhere, in 

buildings, parks, and their planned environment. Further, their everyday and formal 

understanding of science, engineering, and architecture utilises concrete geometric 

forms in many ways. The study of polyhedra is rich in mathematical content and it 
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provides links to several other areas such as arts (to construct, create and design 

shapes), chemistry (to show molecular structures), and architecture (built structures). 

2. There is an interaction between students and teachers in using and building 

geometric material. In these interactions, and those between students, geometrical 

language generally improves. 

3. Concrete materials assist in an understanding of geometry based on action rather 

than one beginning with logical deduction, as is commonly taught in Brazil, van Hiele's 

work shows that the latter approach is doomed to failure. 

In some countries the study of 3-dimensional geometry in general, and polyhedra in 

particular, is educationally deprived because teachers and students are not experienced 

with the study of three- dimensional shapes. Brazilian schools have serious problems in 

the teaching and learning of mathematics in general, and geometry in particular 

(d'Ambrosio 1991, p. 79). As the majority of Brazilian mathematics teachers are not 

familiar with alternative teaching techniques, a variety of classroom procedures is rare. 

The conventional Brazilian mathematics lessons are mostly teacher-centred with little, 

sometimes no, pupil interaction. Brazilian mathematics teachers usually adopt a text 

book and most of them do not take into account recent changes in teaching 

methodology developed elsewhere. Most teachers interpret the textbook page by page 

to the children, with the textbooks containing both explanation and some exercises. 

In the north and north-east regions of Brazil, mathematics teachers are aware of the 

importance of the study of geometry in Brazilian schools. However, the majority of 

teachers of secondary schools in these areas do not have special training in geometry, 

and they, in general, do not like teaching it because they do not know enough about this 

subject. As a result, they generally avoid teaching geometry. 

In my Brazilian project, the activity of construction of geometric manipulatives was 

carried out by teachers constructing geometric models on the basis of given properties. 

Geometry was practised from the combination of properties to obtain a three 

dimensional shape. For example, a cube was specified as a polyhedron with 6 faces, 



The study's rationale 3 

each being a congruent square, and the internal angles all right angles. To construct the 

shapes by combination of properties, a mental image is useful, as is previous experience 

and knowledge. After having constructed the object, a description of it was required 

and I expected that constructing shapes would help them with a complete understanding 

of the shapes, by inspecting them. Each teacher used their own way to describe the 

three-dimensional shapes. 

First, the teachers were presented with a variety of two dimensional (polydron) 

shapes. Teachers chose these shapes according to the specified properties of three 

dimensional shape to construct a new shape and to imagine the net. 

Secondly, they were given nets, drawn on paper, to discover the three-dimensional 

shapes and then to construct them. 

Thirdly, they choose the two dimensional shape to form a three dimensional shape 

that they wanted and then tried to describe its properties. 

I also used this activity with the students and I detected more problems such as 

knowledge of shapes' properties and the name of the shapes. However these activities 

encouraged students to realise a relationship between two dimensional and three 

dimensional space and also to gain knowledge of abstract relationships, such as the 

area of the figure flattened. 

The teachers are aware that geometry is important. However they were critical that 

only a few notions are taught in the State schools. They listed a few reasons for the lack 

of interest in teaching this subject: 

1. Geometry is not related with every day life. 

2. Lack of teaching training in mathematics, particularly geometry. 

3. Lack of understanding of geometry, especially spatial relationships, 

transformation geometry, conservation of length, measurement, directions, and angles. 

4. Lack of understanding of the connection between algebra and geometry. (Usually 

teachers solve problems using a formula, but do not observe connections between 

formulas and geometric shapes.) 
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The teachers expressed a concern that there is no appropriate geometric content in 

the school syllabus, and what there is, is not related with real life. This made it very 

difficult to improve the teaching of geometry in Brazilian schools. Teachers agreed that 

geometry is taught on a level of deduction, that students are involved in proving 

theorems, using rules and axioms whilst most of these students are at lower levels of 

thinking. One of the teachers said: 

" Now, I observed that the me of the concrete materials such as 

geoboard and others in the classroom may help children through van Hiele 

levels. Euclidean geometry based on formal methods is not appropriate to 

the Brazilian mathematics curriculum." 

The emphasis on using and thinking about concrete material in the teachers' and 

students' geometry course was based on these concerns. 

A questionnaire was administered to the participating teachers approximately one 

year after the intensive course on geometry. The questionnaire indicated clearly that as 

polyhedra become more complex - with more faces and more intricate relationships 

between the faces, vertices and edges - teachers were less likely to use these models in 

their geometry classrooms. See Figure 1.1 below: 
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Figure 1.1 Percentage of teachers using the indicated polyhedra in their teaching (rank order) 

The shape mostly used after the teaching experiment in Brazilian schools is the cube. 

The more sides a polyhedron has, the lower the level of use by the teachers. I 

hypothesise that this is due to an increasing level of complexity; the teachers find the 

polyhedra with more sides increasingly difficult to understand. 

This created a dilemma for me. On the one hand I felt, for the reasons given above, 

that it was critical for the teachers to use concrete material with their students; on the 

other hand, the questionnaire indicated that many of the polyhedral models were 

difficult for the teachers to comprehend. 
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1.2 Research questions 

The above observations were the starting point for the investigations in this thesis. I 

wanted to know: 

* How do visual perception and imagery relate to each other? 

* Can students develop greater geometric language and thought through heightened 

perception and explanation? 

* Are some polyhedra more difficult than others to perceive - either through vision 

or touch, and are some polyhedra more difficult to imagine? 

* Whether visual perception and imagery are related to van Hiele levels or Del 

Grande's categories of spatial abilities? 

Some basic research questions became apparent: 

* How do student teachers understand polyhedra? 

* How do they form images of three-dimensional shapes? 

* What information can they be expected to gain by exploring polyhedra? 

* How do they develop their mathematical language through discussion in 

groups? 

* What is visual perception in the context of polyhedra? 

* What is imagery and how are visual perception and imagery related? 

* How are visual perception and imagery of polyhedra related to student's level of 

geometric thought? 

* How can discussion assist students to attain a heightened geometric knowledge 

of polyhedra? 

Perception of polyhedra, both visual and tactile, is intimately related to a person's 

general level of geometric thought - as indicated, for example, by the van Hiele levels 

(Burger & Shaughnessy, 1986; Crowley, 1987; Fuys, Geddes & Tischler, 1988; 

Gutierrez, Jaime & Fortuny, 1991; Guttierez, 1996; Mayberry, 1983; Usiskin, 1982; 

Van Hiele, 1986). 
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In the thesis I discuss theoretical issues of visual perception and imagery, 

particularly as they relate to three-dimensional geometry. Following this theoretical 

discussion I document and analyse two experimental studies. The first involved a 

number of pre-service secondary mathematics teachers in both visual perception and 

image formation of polyhedra. The second involved final year mathematics students' 

tactile perception and image formation of similar polyhedra. The reason for focusing 

solely on tactile perception and its relation to image formation was to separate out the 

role of visual perception when a student could both see and touch a polyhedron. Using a 

single sensory modality focuses more clearly on the nature of the information students 

get from that sense, and how, through discussion, they use that sensory information to 

build visual images. 

The study of imagery and visual perception in three-dimensional geometry was 

carried out to discover the difficulties that students and teachers may have in 

understanding polyhedra. Images were used to improve students' perception and the 

interpretation of the images through an understanding of the three-dimensional world. 

Students in both studies were given a test of geometric thinking, related to van Hiele 

levels, and Del Grande's categories of spatial abilities. 

1.3 Outline of the thesis 

An outline of the structure of the thesis follows. 

Chapter One 

Rationale for the thesis, including a background of previous work carried out in Brazil. 
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Chapter Two 

This chapter contains a review of literature pertaining to three relevant areas for this 

thesis; 

1. The use of concrete material on teaching and learning mathematics. It emphasises the 

fact that manipulatives by themselves do not generate mathematical experience: the 

information is processed in the students' mind by action and reflection. I explain what 

mean by concrete material and manipulatives. For a long time, manipulatives have been 

used to teach mathematics. I report in this chapter on the research evidence for the 

effectiveness, or otherwise, of manipulatives and concrete models. 

2. Psychological research on visual perception and image formation. Although other 

authors are taken into account the theoretical perspective presented here relies heavily 

on the work of Kosslyn (1996). Definitions of visual perception and image formation 

are difficult to find in the psychological literature, largely being assumed terms, and I 

make an effort to explain carefully what I mean by these terms in this thesis. 

3. Research on the ability to form images from verbal descriptions. This is central to the 

methodology of this thesis, and I present research - particularly that of Denis and Denis 

& Cocude -which shows that such image formation is possible. 

Chapter Three 

This chapter, on methodology, presents the kind of research and the area which was 

investigated. I gave details about the method used for data collection emphasising the 

use of concrete material. I present the types of concrete material used, the experimental 

protocols, and the nature of the student populations I give a list of question research 

and an overview about the results which requires experimental evidence. 
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Chapter Four 

This chapter discusses the development of a test according to van Hiele's levels of 

thinking and Del Grande's spatial abilities in three-dimensional geometry. This test was 

designed to assess students' van Hiele levels of thought and Del Grande's spatial 

abilities in three-dimensional geometry. Students enrolled on this test were pre-service 

teachers and undergraduate of mathematics course. The reliability of this test is 

analysed in this chapter. 

Chapter Five 

This chapter presents the empirical findings from the group discussion sections. I 

address in depth research questions about visual perception and image formation. A 

small group of pre-service secondary mathematics teachers involved with the written 

test volunteered to participate in group discussions. I investigate how these students 

understand polyhedra and gain information through discussion. Analysis of data from 

the discussion groups shows how pre-service teachers perceive polyhedra, how they 

utilise imagery, and how they develop their language and ideas through discussing the 

shapes. A crucial distinction is made in this chapter between surface and deep visual 

perception. 

Chapter Six 

This chapter presents a method for assessing van Hiele levels from verbal data, and 

analyses the empirical data from the previous chapter for changes in van Hiele levels. 

The techniques is based on units of verbal expression which form a base for give a 

single unit in communication. I present dialogues which were divided up into smaller 

chunks. These chunks when connected were concluded by the argument of the 

discussion. Moreover, I understand that there are conditional relations between 
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fragmented statements, the effect of connections that exist within chunks form cohesive 

units. The topics were related to a different frame such as the structure of the students' 

deduction which was examined and so far it was helpful to identification to assigning 

van Hiele levels. The analysis of part of verbal discussion shown that students will 

advance in van Hiele levels of thinking on basis of analyses of cohesive units. The 

cohesive units gave to students some insight in terms of how they can structure their 

questions or description. 

Chapter Seven 

This chapter continues the research questions about perception and image formation of 

polyhedron. All the polyhedra used in this experiment were the same as those in the 

previous, but this time were carried out with tactile experiments only. The results of the 

tactile perceptual tasks, the strategies used by students to describe and form images of 

the polyhedra are reported on this chapter. 

Chapter Eight 

This chapter provides discussions on the three empirical aspects of the thesis: written 

tests, group discussion sessions, and the tactile session. 

Chapter Nine 

This chapter provides conclusion for the overall study. 
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Chapter Two 

Literature Review 

2.1 Concrete materials and geometry 

2.1.1 What is meant by concrete material and manipulatives in mathematics? 

Both the terms "manipulative" and "concrete material", are used in this chapter in 

which I discuss the importance of them in teaching and learning geometry. There is a 

connection between work done with the use of manipulatives, and students' knowledge 

and their ability to develop strategies, alternative approaches, and reflection when they 

explore a mathematical task. New ideas can be stimulated by concrete material or a 

pictorial representation to construct meanings by reflection on a physical action. 

Manipulation basically is handling a physical object to explore its characteristics. It 

is an action on concrete material that appears to have a purpose, as defined by the 

manipulator, which is often exploratory in nature. Manipulation involves an on-going 

process of action and reflection. Concrete materials are essentially the physical objects 

that students manipulate, so the terms concrete material and manipulatives are 

relatively interchangeable. 

The usually stated purpose of using concrete material is that, for a teacher, they 

embody, or represent, a physical manifestation of a mathematical idea that the teacher 

wishes to convey. Teachers sometimes view concrete material as an external 

representation of an internal model they themselves have; at other times they view 

concrete material as the physical embodiment of a mathematical concept, task, or 

situation. They usually use such concrete material as cognitive tools: instruments with 

which a student interacts and hopefully constructs their own appropriate internal 

models. 
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Hynes (1986) defines manipulatives to be "concrete models that incorporate 

mathematical concepts, appeal to several senses, and can be touched and moved around 

by the student", and So well (1989), for example, views manipulatives as including both 

concrete and pictorial representations, and gives an operational definition of these 

terms: 

Concrete - students work directly with materials such as beansticks, Cuisenaire 

rods, geoboards, paper folding, or other manipulative materials, under the supervision 

of a teacher. 

Pictorial - students watch animated audiovisual presentation, observed 

demonstrations with concrete materials by teachers, or used pictures in printed 

materials. 

2.1.2 Concrete materials and manipulatives in geometry 

Concrete materials in geometry play a somewhat different role than in other parts of 

mathematics. For example, in dealing with the number "5" through the use of concrete 

objects, one can use any five objects that are regarded as instances of the same thing - 5 

counters, 5 cups, 5 children, 5 chairs. However, even when children cut out triangles of 

different shapes from a piece of card, each concrete triangle is, for a student, a triangle, 

unlike 5 counters which, for abstract counters, is not "5". In geometry the concrete 

material is often taken to be the thing it represents. For instance, as above, a cardboard 

triangle is taken to be a triangle even though it is only a physical approximation to an 

ideal triangle. Similarly, in 3-dimensional geometry a physical model of a polyhedron is 

often taken to be that polyhedron rather than a physical approximation to an idealised 

mental model. Geometrical models are often categorical in this sense: they are physical 

realisations of mental objects that are determined by their defining properties. 
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When learners manipulate a certain object such as a cardboard net of a cube, this 

situation establishes a relation between the characteristics of a physical object (action) 

and the exploratory purpose (reflection). 

Figure 2.1 Shows the net to construct a cube 

The relation between manipulatives/physical action and action/reflection are strongly 

connected, van Oers (1996) defines an action 

"... as an attempt to change some (material or mental) object from its initial form into 

another form." 

Krainer (1993) suggested that a high level of acting 

"... refers to the initiation of active processes of concept formation which are 

accompanied by relevant (concept generating) and high level of reflection an important 

aspect of reflection refers to further questions from the learner (which in their turn 

could lead to a new action)." 

Through this interaction between action and reflection students generate new 

knowledge. The effect of an action can stimulate reflection about this action. 
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From this point of view, when we look at the figure above, the process of action and 

reflection in geometry is related to shape and space: learners relate a two- dimensional 

shape represented by a net to a three-dimensional object (a cube). The connection 

between the net and a cube involves imagination. When we use imagination and image 

formation in this process, the action performed is the physical expression of a mental 

process. As an example, when learners use nets in their activities and transform a two 

dimensional shape into a three dimensional shape (construction of a shape - concrete 

action), they also may be able to imagine the results in reversible way, that is, from a 

cube, to imagine, the net (mental action). 

However, the mere presence of concrete material is not the most important thing in a 

student's development in geometry. Students can develop cognitively through 

heightened perception - visual and tactile, but they can also develop cognitively in the 

absence of concrete material though talk and imagination. This is essentially a process 

of developing insight, and leads us naturally to the ideas of van Hiele who, in 1957, 

developed a theory providing a model of pupil's knowledge development in geometry. 

He was interested in finding ways in which students could develop insight in geometry.: 

"In 1951 I became a teacher at a non-Montessori school, and soon I was immersed 

in a struggle about insight. I had understood that the learning of facts could not be the 

purpose of teaching mathematics, I was convinced that development of insight ought to 

be purpose. But the approach of the school was otherwise; it was though best that the 

teacher taught facts and methods; even if the pupil did not understand them." (van Hiele 

1986, p. 4). 

Because of this, van Hiele developed a theory of different levels of thinking in 

geometry. He considered that insight might be understood as the result of perception of 

a structure. Van Hiele (1986) developed the idea of structure from Gestalt theory, that 

the whole is perceived before the parts. 
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He observed Piaget's interviews with children who often required a knowledge of 

vocabulary or properties beyond the phase of learning that they were at. Consequently, 

he found the basis of his research in Piaget's work but went on to suggest that all 

students progress in their acquisition of geometrical knowledge by passing through five 

levels of thinking in consecutive order. He further stated that a student's level of 

thinking at a particular time could be identified. 

The five levels are sequentially graded. Each level is characterised by a particular 

process of organisation of thinking matter. A student at a higher level can be expected 

to be competent at lower level of thinking, but not at level above. If the teaching 

changes and requires a level of thinking above that of the students, he/she cannot 

understand and is not able to carry out the necessary thought processes. The student 

who is only able to perform at level n cannot understand level (n+1) or higher levels. 

Following van Hiele's ideas on the connections between perception, image 

formation, and language use in the development of geometric insight, this thesis 

describes the use of polyhedral manipulatives in exploring verbal and non-verbal 

processes for better understanding of concepts and cognitive process. Perception 

involves understanding of the real, visual or tactile, world. When we describe an object 

or scene we encode and decode visual or tactile information. Experimental approaches 

used in this thesis involve students in cognitive processes. Students become active 

learners applying prior information and experience in a new situation to acquire new 

knowledge. Manipulatives help learners to develop abilities to communicate using 

language - oral, written or drawn - and to reason more abstractly. When learners 

discuss, in groups, the products of their work they have opportunities to clarify their 

thinking, reporting their observations and expanding mathematical ideas. 

Educators and psychologists had been analysing the contents and methods of 

teaching and improving their curriculum according to van Hiele's ideas. In order to 
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design a new Russian curriculum van Hiele levels were used to analyse student 

materials for grades 1 to 8 involving children aged 7 to 15. To construct a new 

geometry course, Soviet research implemented the necessary modification in their 

methods of instruction. (Pyshkalo 1968, Wirzup, 1976). Manipulatives are essential 

aids in learning geometry, especially for students at lower levels in the van Hiele 

hierarchy (Fuys at al; 1988). 

"The need now is for classroom teacher and researchers to refine the phase of 

learning, develop van Hiele-based materials, and implement those materials and 

philosophies in the classroom setting. Geometric thinking can be accessible to every 

one." Crowley (1987) 

Research in geometry that is concentrated in the areas of visualisation, approaches 

to teaching, reasoning processes, and so on, are interested in the application of van 

Hiele theory in classrooms. Piaget's theory described mainly geometry as a science of 

space whereas van Hide's theory described geometry as the science of space and a tool 

to demonstrate a mathematical structure. 

2.1.3 Information processing 

Where does the information come from for learners to acquire new knowledge in 

mathematics? How does this information get into the children's brain while they 

manipulate materials? How do manipulatives help the learner to acquire new 

knowledge? Do teachers think that the students get information that is in the 

manipulatives by looking or manipulating? as illustrated in the cartoon below: 
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Information resides in the concrete material 

looks 

and 
sees 

A V [ ^ 

looks and sees 

"structure" 

Information 

gets into 

student's head 

Student 

Teacher thinks that the 

student "gets" information 

that is in the apparatus, by 

looking, or by manipulating 

Teacher 

Figure 2.2 Do teachers think that the students get information that is in the 

manipulatives by looking? 

Or do teachers think that the students get information, while seeing and manipulating 

materials, by acting on manipulatives and reflecting about those actions? as indicated 

below: 
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Information is created in the student's mind by 
action and reflection 

looks and sees 

"structure" 

Teacher thinks that the 

student "gets" information by 

actindg on the apparatus and 

thinking about those actions 
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looks 

and 

sees 

Teacher 
Acts on material. 

Perhaps acts more. 

Eventually thinks 

Informaton is created by the 

odrering that comes fi'om action 

and reflection on those actions 

Student 

Figure 2.3 Do teachers think that the students get information that is in the 

manipulatives by looking, manipulating and reflecting? 

The difference in view point might seem slight but is, in fact, profound. Memory is 

associated with thinking to access information stored in the mind to process new 

information. How is this new information processed? When learners use manipulatives 

with an exploratory purpose they are conscious of the effect of their action, but not, 

initially, of the process by which that effect was produced. On the other hand, they are 

not conscious of the organisation of cognitive structure. Crawford (1996) mentioned 

that 

"... an action involves conscious behaviour that is stimulated by a need subordinated 

to a goal. An operation is an action that is transformed as a means of obtaining a result 

under given conditions. Operation are habits and automated procedures that are carried 

out without conscious intellectual effort." 
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Explanation 

M E M O R Y " " ^ 
SOURCE ^ 

Reflect on - Abstraction 
(conscious) 

LEARNER 

Action 
Unco 

Creativ 

DERIVE 
INFORMATION MANIPULATIVE TEACHER 

Figure 2.4 Cognitive environment 

When teachers uses manipulatives in their lessons, they expect their students to 

understand the problem in a determined way. They expect manipulatives to stimulate a 

kind of perception that allows children to be conscious of their mental process. 

Vygotsky (1996, p. 161- 171), in his discussion about scientific concepts and 

implications for education and instruction, postulated that 

"... these concepts are not absorbed ready-made, and instruction and learning play a 

leading role in their acquisition... Reflective consciousness comes to the child through 

the portal of concepts." 

Hence, the creation of new knowledge is associated with the learners' previous 

experiences in which the topics explored were applicable. 

Manipulatives do not present ready information by themselves. Pimm (1996 p. 13) 

emphasises that the use of manipulatives by itself does not contain or generate 

mathematical experience. People can do this with their minds and the purpose of 

teachers is stimulate their students' abilities to think by themselves. For students to 
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acquire mathematical experience requires attention to their activities. Consequently, 

knowledge arises from the learner's reflective involvement in their activity. 

Information is created in the students' mind by actions and reflections. The work 

with manipulatives, such as nets, where a student uses a two-dimensional shape to 

obtain a three-dimensional shape, implies a process of reflective thought. This involves 

a heuristic process of problem solving. 

Piaget (1960) described geometry mainly as a science of space, and made extensive 

studies of children's logical thinking and of geometrical concepts with implications for 

the teaching of geometry. According to Piaget (1967) the manipulation of concrete 

objects forms the basis of people's learning about shapes. The activities that involve 

manipulative material are spontaneous and are essential for children to attain experience 

in spatial perception. 

Van Hiele (1986) was convinced that geometric thinking is a relatively high level 

activity, and that teaching and learning conflicts arise when students have not had 

enough experience in thinking at lower levels. His objective was to find a method to 

develop insight in students' thinking, and he described a connection between thinking 

and learning in geometry. Van Hide's theory uses a model that allows students to move 

through levels of geometric development. The significant contribution of van Hiele's 

studies was to engage researchers in progressive development of methodological 

aspects. Some researchers has been interested to develop some methodologies for 

geometric studies, that allow children to improve spatial thinking, visualisation and skill 

according to their individual capacity. Fuys et al. (1988) reported that manipulative 

materials are essential aids in learning geometry, specially for students at lower levels 

in the van Hiele hierarchy. 
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2.1.4 Effectiveness of concrete material and manipulatives 

2.1.4.1 Negative or questioning literature 

The recent literature on the effectiveness of concrete material and manipulatives in 

school began probably with the 1971 paper of Kieren. After reviewing a number of 

studies on the use of manipulatives he asked: 

"For whom, for which topics, and with what materials are manipulative and play-

like material valuable?" (p.232). 

Kieren's paper emphasised how little was known about the effective use of 

manipulatives, and highlighted the need for research to answer his question, above, in 

light of conflicting views. 

Picking up on Kieren's challenge, Friedman (1978) carried out a review of research 

in the years since Kieren's paper. He concluded that 

"On the basis of current research, it would appear that after the first grade, where the 

manipulative strategy has been effective in several situations, an instructional strategy 

that gives pre-eminence to the use of manipulative materials is unwarranted." (p.79). 

A decade later the situation was not much clearer. Baroody (1989) in an article in the 

Arithmetic Teacher, aimed at practising teachers, said: 

"Because we are still learning about what manipulatives should be used, how to use 

them effectively, and when they need to be used, we must be aware of the importance 

of keeping an open mind about using manipulatives." (p. 5). 

Baroody emphasised that manipulatives must be used appropriately for good results, 

and that the inappropriate use of them may make a mess of things. He was unconvinced 

that manipulatives necessarily stimulate reflection on the part of students. His 

conclusion was that the importance of manipulatives comes from the fact that physical 

experience is meaningful to pupils and that they are actively engaged in thinking as 
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they use it. However, reflection on what it was the teacher intended the manipultives to 

engender was by no means certain. 

Hiebert and Carpenter (1992) wrote about potential for instruction involving 

concrete material to go wrong: 

... it is not simply the presence of concrete materials that provides meaning for 

symbols, nor is it simply the juxtaposition of materials and symbols. In order for 

symbols to acquire meaning, learners must connect their mental representations of 

written symbols with their mental representations of concrete materials. The potential 

for these connections to create understanding is complicated by the fact that concrete 

materials themselves are representations of mathematical relationships and quantities. 

Thus, the usefulness of concrete materials as referents for symbols depends on both 

their embodiments of mathematical relationships and on their connections to written 

symbols (p. 72). 

Almost 20 years after Kieren's article, Askew and William (1995) again expressed a 

cautionary approach to the use of manipulatives: 

"... while practical work and 'real' contexts can be useful, they need to be chosen 

carefully, and accompanied by careful dialogue with pupils to establish the extent of 

their understanding. Pupils' success on a concrete task should not be taken as an 

indication of understanding the abstract. Each, practical and abstract need to be 

explored in their own right. How links are perceived between the two needs to be the 

subject of considerable discussion between pupils and teachers." 

Szendrei (1996), in an excellent review article aimed at researchers, repeated these 

concerns under the heading "How are educational material misused?" (p. 424-427). One 

of the important points she makes is that in the utilisation of concrete material a child 

may focus on features of the material that are, to the teacher, completely irrelevant. For 

instance, in the use of Cuisenaire rods to learn about number, a child may - and many 
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do - focus on the colour as the relevant attribute of the material. This is similar to the 

problem of divergent thinking in mathematics, recently pointed out by Gray (1993), 

Gray & Tall (1994), and Pitta & Gray (1997). These authors have demonstrated that 

many children, classed as under-achieving on the basis of school tests, focus on aspects 

of concrete material and number that is not relevant in a mathematics lesson. For 

example, in talking about a "ball" these children will habitually focus on the colour of 

the ball, and similarly in thinking about numbers will focus on mental objects of a 

particular colour. In using concrete material , or images of concrete objects, these 

children focus on aspects of the material that is not relevant to the mathematics 

teachers' concerns. 

2.1.4.2 Supportive literature 

As the questioning literature cited above suggests, there are many reports of 

successful use of concrete material. At roughly the same time as Kieren's 1971 paper, 

Fennema (1972), citing her 1969 report (Fennema, 1969), compared instructional 

approaches to learn basic multiplication. She reported the effectiveness of work with 

strategies based on use of Cuisenaire rods. She pointed out that childrens' development 

of ability to use symbols effectively is associated with experience through action, and 

through manipulation of concrete material. Cognitive development involves use of 

symbols that are associated first to the use of physical actions. So, she argues, children 

require the use of manipulatives to make symbolic models meaningful. 

Fuson and Briars (1990) used base-ten blocks to embody named value system of 

number words and also used digit cards to embody the positional base-ten system of 

numeration. They analysed children's understanding of multi-digit addition and 

subtraction and justifying procedures with named-value/base-ten concepts, 

understanding of place-value concepts, and being able to add and subtract multidigit 
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numbers of several places, including subtraction problems with zeros in the top 

numbers. For them, if the practical experiment is very complex, the interpretation of the 

results also becomes difficult. It is suggested that we are at a level where the connection 

between theory and practice is necessary and it requires detailed process data on 

interaction between teachers and pupils. This study showed that the pupils from the first 

grade were able to learn using the method of base ten blocks learning, but careful 

evaluation is needed, so that the teaching does not go beyond their comfortable level of 

learning. However, it was appropriate for the pupils in the second grade as they felt no 

difficulty in learning the task with the support of the physical material. 

Thompson (1992) used wooden blocks and also developed computerised 

microworlds in his research on operations with decimal numbers. Instructions were 

given for two groups of children to assist them in the construction of meaning for 

decimal numeration and construction of notational methods involving decimal numbers. 

They were free to develop their own schemes for solving addition and subtraction. The 

students who used wooden blocks understood decimal numerals and operations well, 

whilst the students who used microworlds were not so accurate in decimal calculation. 

As we have noted in the previous section, Friedman (1978) discussed the 

effectiveness of manipulatives in a six year review. He concluded that manipulatives 

had been effective in several situations. He concluded that the use of manipulatives 

were favourable for young children and not necessary for older children. 

Hunting & Lamon (1996) provide a positive view of the use of manipulatives, in the 

sense that these materials are understandable, motivational, and provide an alternative 

to expository teaching. Usually, students like to manipulate concrete models and they 

can became an activity learn manipulating physical material. These authors provide a 

view that the use of manipulatives require teachers' attention and responsibility in 

classroom instruction and also provide their students with the necessary activity to 
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provide learning environment. So, students have an opportunity to learning constructing 

their reflection. 

In the last decade there has been some research and commentary on the beneficial 

effects of the geoboard: 

(1) In solving the problem of counting squares: Comela & Watson (1977), 

L'Heureux (1982). These papers develop techniques, geometric in nature, that involve 

principles of counting. Students use geoboards to count squares which are shaped with 

vertices at pegs. They count different n x n squares which exhibit n2 square units 

determined by (n +1)2 pegs. 

(2) In solving the problem "How many Triangles": Moser (1985). This paper shows 

a problem whose solution is not directly obvious but requires the use of some 

mathematical ideas and skills. The problem is about a geoboard with five by five pegs 

and a single rubber band to form different triangles. 

(3) In computing perimeters of polygons: Smith (1980). This paper explores some 

activities with the use of geoboards. Polygons can be constructed with perimeters of n 

units where n is an even number. The Pythagorean theorem figures can be applied to 

some. Students learn that by using the hypotenuse of a right angle triangle, they 

discover that the hypotenuse forms (n + r) units. 

(4) In dealing with topological concepts of regions, boundary, inside and outside, 

combining geometry and arithmetic: Gutierrez, A. & Jaime, A. (1987). This paper 

emphasises the quality of a variety of activities regarding geometry in primary schools. 

The authors develop activities with the use of geoboards with five by five pegs. These 

activities induce students to carry out investigations 
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2.1.5 Theories of learning through concrete materials and manipulatives 

2.1.5.1 Montessori 

Maria Montessori (1870-1952) developed the Montessori method of teaching which 

has for its base the liberty of the child which comes through activity. Discipline must 

come through liberty and activity. Certainly, the view of discipline according to the 

Montessori method presents a special difference from the commonly conceived notion 

of discipline. 

For the Montessori methodology, discipline does not occur when students are 

artificially quiet: the method consider this situation as unproductive. 

"We claim that an individual is disciplined when he is the master of himself and 

when he can, as a consequence, control himself when he must follow a rule of life...it 

certainly embodies a lofty principle of education that is quite different from the absolute 

and undiscussed coercion that produces immobility." Maria Montessori pp. 86 (1967). 

This method allows students to become discoverers of the world through their work 

in such way that they can advance in their discoveries. The essential thing is the 

students experience. Students can work with material using their intelligence to explore 

and acquire knowledge, and became independent learners through mental activity. The 

lessons should be given through the regime of liberty by the manifestation of the child's 

natural tendency in the school. The Montessori Manipulatives also were used as tools to 

teach arithmetic to disabled children. From this point of view, the teacher must be 

careful in the preparation of the environment and materials with which students will 

work. Therefore Montessori lessons often look like an experiment. The Montessori 

method uses concrete material to explore a technique of tactile learning without the 

materials being seen. This technique encourages children to recognise and describe 

objects by what they are able to feel or to distinguish as different parts of the object. 
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2.1.5.2 Piaget 

Piaget's writings have strongly influenced our views of cognitive development, 

particularly in mathematics. Piagetian theory attempts to describe an individual's 

construction of knowledge of scientific, logical and mathematical ideas that come from 

organising actions through reflective abstraction. Piaget (1896-1980) studied 

particularly the evolution of children's thinking. He described the process of childrens' 

thinking and understanding by a clinical approach that involved questioning children in 

many problem situations. He concluded that children develop more refined thinking as 

they get older: they acquire more experience and knowledge, and develop more 

complex cognitive structures to organise that knowledge. Piaget determined that 

children pass through four periods/stages of cognitive development: 

1. Sensori-motor period (0 to 2 years) 

2. Pre-operational period (2 to 7 years) 

3. Concrete operational (7 to 12) 

4. Operational period 12+ 

Piaget and colleagues investigated children's concepts of space, and found that a 

child makes a progressive differentiation of various geometrical properties such as 

proximity, separation, and order, all of which are important in moving an object. From 

this work they suggested that thinking skills develop from concrete operational touch. 

Piaget was principally interested in epistemological studies, and advocated that 

experience is the base for both learning and more abstract knowledge. Learners take the 

nature of things in their real world. His work describes the development of physical, 

logical and mathematical concepts such as number, time, space, geometry. He described 

geometry (Piaget, 1960) mainly as a science of space and made extensive studies of 

children's logical thinking and of geometric concepts with implication for teaching 

geometry. 



Literature Review 28 

Piaget believed that the process of concept emerges during specific age ranges 

following the stages of children development. For him, the child's cognitive 

development rise through stages. The phases or stages of learning, determined by 

Piaget, become even more complex in relation to geometry. Some examples are: 

1. Development of the child's representational space was described by Piaget as a 

mental image of the real world . In Piaget's view, perception is the knowledge of 

objects resulting from direct contact with them and representation or imagination 

involves the evocation of objects in their absence or, it runs parallel to perception in 

their presence. 

2. How children acquire images through the perceptual activity and relationship 

between the activity, perception and the ability to generate images. 

3. Children communicate their understanding by using symbols such as signs, 

writing and drawing. 

Piaget's view, that an operation is internalised action and the spatial concept results 

from internalised action and children's reasoning, is related to concrete experience. The 

characteristics of an operation are: 

1. It originates from an activity. 

2. It is reversible when children are able to find to logically reverse an action that 

negates it. 

3. It is associative when children are able to think of a series of actions as a whole. 

The manipulation of concrete object forms the basis of people's learning about 

shapes (Piaget & Inhelder 1967). The activities that involve manipulatives are 

spontaneous and essential for children to attain experience in spatial perception. 

Piaget brought an enormous contribution to the study of the development of spatial 

thinking. He interpreted the development of spatial ideas by using the logical structure 

of mathematics itself in a sequential hypotheses: topological, projective and Euclidean. 
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He developed theories which are productive explaining results relating dimensions of 

psychological complexity. 

Child (1993 p.169) mentioned some classroom applications of Piaget's works. The 

concrete and experimental consideration of Piaget's theory is reflected in mathematical 

teaching programs for primary, secondary, middle and upper schools to assist students 

to attain more abstract reasoning. Piaget's view of cognitive development is related to 

concrete experience, requiring practical experience of concrete situations. The process 

of visual thinking can be explored with concrete experience. 

2.1.5.3 Van Hide 

The levels are called "Recognition", "Analysis". "Logical Ordering", "Deduction" 

and "Rigor". 

Van Hiele identifies five phases of learning (a didactic approach of sequencing 

instruction) during which students, according to the stage they have reached within a 

subject, pass from one level to the next (van Hiele 1986, Crowley 1987, Burger & 

Culpepper ). Crowley (1987) emphasises that these phases of learning are more 

dependent on the instruction received than on age or maturation. She stressed the 

method, the organisation of instruction and the material used. Hoffer (1983) reported 

that, 

"Van Hiele specified a sequence of phase that moves from very direct instruction to 

the students' independence of the teachers." 

These five phases of learning, through which students, progress, are: 

The first phase (inquiry/information): 

At this stage conversation and activities take place between teachers and students 

concerning objects of study. To clarify this content, observations are made and specific 

vocabulary is introduced. An example of this is for teachers to ask students questions 
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such as: what is a parallelogram? what is rectangle? what is a square? do you think a 

rectangle could be a square? Some knowledge of the topic to be studied is given to the 

student by the teacher who tries ascertain how the student understand the subject and 

interprets the language. 

The second phase (guided orientation): 

The teacher gives students a sequence of activities and explores through materials, 

the different relations of arrangement. The teacher asks, for instance, students to 

construct a rhombus using a geoboard, e. g. a rhombus is constructed with equal 

diagonals, one that is large and another that is smaller. At this phase students are 

engaged in exploring objects through activities such as measuring. 

The third phase (explicitation): 

Students with previous experience can employ words to express their opinions about 

structure using accurate and technical language. The students can discuss properties of a 

figure, in activities (rhombus, for example), together, and with the teacher. In this stage 

Hoffer (1983) related that "phase 3 has been incorrectly translated as explanation by 

other writers". It is essential here that students make observations explicit rather than 

receive lectures (explanation) from the teachers. 

Fourth phase (Free orientation); 

The students learn by using different ways to approach the task and gain experience 

in finding their own ways of solving problems. According to Hoffer (1983), and 

replicated by Crowley (1987), by orienting themselves in the field of investigation, 

many relations between the objects of the study become explicit to students. 

Fifth phase (integration) 

The student has considerable knowledge of the subject and can summarise and 

review the methods (a form of overview) without being presented anything new. They 

consolidate the objects and relations of their arrangements. 
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Van Hiele ( 1986 ) considers these stages in the study of the rhombus. 

First stage: A certain figure is demonstrated, it is called a "rhombus." The pupils are 

shown other geometrical figures and asked if they also are rhombuses. 

Second stage: The rhombus is folded on its axis of symmetry. Something is noticed 

about the diagonals and the angles. 

Third stage: The pupils exchange their ideas about the properties of a rhombus. 

Fourth stage: Some vertices and sides of a rhombus are given by position. The whole 

rhombus has to be constructed. 

Fifth stage: The properties of a rhombus are summed up and memorised 

2.1.5.4 Vygotsky 

Vigotsky developed a theory that has relevance for the sociological, psychological 

and educational aspects of development. His theory concerning the educational field 

was developed further than in cognition, whilst he also gave attention to sociocultural 

activity. He emphasised interactions between learning and development. Vigotsky's 

theory stresses the emphasis on human developmental experience and social influences. 

He assumes that human mental activities are related as a consequence of cultural 

learning. (Child 1993, p. 171) in his study of Vygotsky's theory mentioned that 

"The culture into which a child was born was the source of concepts to be 

internalised and this affected the psychological functioning of the brain." 

For Vygotsky three things contribute to construction of a new development: 

1. High mental functions (perception, deliberate attention, logic, memory and 

abstraction). 

2. Cultural development. 

3. Cultural development mastering one's own behavioural processes. 
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Vigotsky's theory involves all mental functions. To him the development of 

consciousness was seen as determined by the autonomous development of the single 

functions (Vygotsky 1996 p. 2). He devoted principal attention to the development of 

language in its relation to thought. Vigotsky and Piaget both paid attention to problems 

regarding language and thought. They developed two different points of view. Vigotsky 

was interested in the psychological aspect, and he investigated the origin of 

consciousness whereas Piaget was interested in epistemological aspects, and he 

investigated the origin of knowing. Both have the same view in the sense of 

spontaneous and non spontaneous concepts. Children have an individual construction of 

knowledge and meaning ( by their mental effort) influenced by an instruction. Piaget 

focused on the growth of an individual's knowledge, whereas Vygotsky regarded a 

person as essentially social first, with a developing individual consciousness. 

Vigotsky works embrace investigations into child's scientific concepts in 

comparison with spontaneous concepts. The spontaneous concept means that the 

concept formed by children are spontaneous and without systematic instruction. The 

scientific concept means that children develop concepts by their mental effort 

(spontaneous) and influenced by instruction (non spontaneous). He postulated that: 

"... concepts cannot be assimilated by the child in a ready made form, but have to 

undergo a certain development. Accumulation of knowledge supports a steady growth 

of scientific reasoning, which in its turn favourably influences the development of 

spontaneous thinking." (Vygotsky 1996 p. 146, 148). 

For him, scientific concepts originate in classroom instruction and spontaneous 

concepts involve everyday life. From this it follows that teaching and learning of 

scientific and spontaneous concepts are central to mathematics education. 

Vygotsky (1996) used manipulatives in his experimental study regarding process of 

concept formation in its developmental phases . The material used consist of wooden 
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blocks varying in colour, shape, height and size. For him, practical experience is an 

important factor to the development of child 's thinking. 

These three theories mentioned above contributed to teaching and learning mathematics 

in the sense of activity in school, and in task orientation, investigations, and problem 

solving mathematics. Also, these theories give a global contribution for curriculum 

development in education. Piaget stressed the development of spontaneous concepts 

rather than the influence of schools and maturation was a principal influence for this 

development. Van Hiele pointed out that insight might be understood as the result of 

perception of a structure, and he gave importance to the phases of learning through a 

didactic approach of sequencing instruction. Vygotsky emphasised instruction in 

schools and social interaction between children and other more qualified instructors. 

2.2 Visual perception and image formation 

2.2.1 Introduction 

Perception involves an observation of a sequence of events in a physical world. The 

physical world is constituted of heterogeneous things and our perception of it is 

selective. We observe the environment in which we live, and the environment 

determines what there is to perceive. A satisfactory understanding of perception lets us 

present a complete description of the appearance of objects or events. This involves the 

ability to detect and recognise objects. Then, we are able to describe how events 

happens or how things appear to us. Ancient philosophers such as Aristoteles and 

Diogenes developed theories about imagery. Nowadays, there appears to be an increase 

in debates in the literature about the connections between perception and imagery 

(Kosslyn 1996, Paivio, 1991b, Johnson-Laird 1983, 1996). 

When we refer to visual perception and mental imagery we assume that a person is 

able to distinguish the physical world from their internal mental world. A person 
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perceives the physical world, and it is different from the imagined world in the person's 

mind. Both perception and imagery are processed in the brain however they are 

normally (in the absence of hallucinations) interpreted as different things by an 

individual: perception is interpreted as "seeing" physical things or events, whilst 

imagery is interpreted as an imaginative recall of perceptions, or parts of perceptions. 

Visual perception and mental imagery can be distinguished by the existence of objects 

or events that happen in the real world while imagery occurs in the space of the mind. 

2.2.2 The importance of an ecological approach to visual perception 

2.2.2.1 Fundamental role of units in ecological perception 

Our environment provides structural units which can be captured by our perceptual 

system. According to Gibson (1986) units and the environment are inseparable because 

the units which describe the environment depend on the level of the environment 

described; 

"The smaller units are embedded in the larger units by what I call nesting ... Units 

are nested within larger units... There are forms within forms both up and down scales. 

... Things are components of other things." (p. 9). 

"... these units tends to be repeated over the whole surface of the earth, (p. 10)." 

2.2.2.2 Surface 

All physical objects which are provided by our environment consist in a body 

located in space and they exhibit a superficial appearance. Gibson's theory of 

perception emphasises that surfaces are structured at various levels of metric size, and 

the units are nested one to another. He also stressed that in order to describe an 

environment we need a particular geometry. It does not necessarily mean a 

conventional geometry consisting of points, lines and planes, or having a co-ordinate 
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system to locate a point or straight line in space. The space considered in ecological 

geometry is the space of regions that we walk such as on the street, and in the house. 

Gibson (1986) considered the shape of the terrestrial environment as a layout of 

environment. This layout is considered permanent in some features and changing in 

others. Ecological geometry differs from abstract geometry and he described the 

difference between the terms surface and plane. Planes are colourless, perfectly 

transparent and not substantial, they are not textured, and they have two sides, while 

surfaces are never perfectly transparent, they are coloured opaque and substantial, they 

are textured, and have only one side. The idea of a "sheet" must not be confounded with 

a geometrical plane because a sheet is an object consisting of two parallel surfaces 

together: it may be flat or curved surface, whereas a plane is not an object - it is 

imaginary. 

A stick must not be confounded with a geometrical line because it is an elongated 

object and it has a diameter. Similarly, a dihedral surface must not be confounded with 

a intersection of two planes. The geometry that involves points, lines and planes is an 

abstract geometry and the objects are distinguished by their surfaces which form an 

embodiment of points, lines and planes in geometry. So, a surface geometry must be 

distinguished from abstract geometry. A surface can be seen and an abstract geometry 

can only be visualised (Gibson, 1986, pp 12, 33-35). 

Gibson (1974, p. 8) stressed that surfaces and edges are fundamental sensations of 

space, the stimuli for which need to be discovered. A continuous surface establishes as 

a background and the edges establish a figure contrasting the back ground. In geometry, 

the superficial appearance of objects means a complete boundary of a figure. A concave 

object, and others objects such as a pot, we consider having both an internal and 

external surface. 
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When we talk about a polyhedron, the surface means a set of faces. Two flat faces 

meet and form dihedral angles, and the intersection between two such faces are the 

edges. The edges and the dihedral angles are distinguished. The integrity of both angles 

and edges of a polyhedron are important in perception. Each polyhedron has its own 

characteristic (determined by the faces, edges and vertices, and their arrangement) 

which determines its shapes and differs one from another. So, the perception of a 

polyhedron relies on the perception of its surface. When we see a polyhedron, we can 

also perceive some details such as colour and texture which do not characterise the 

polyhedron. 

2.2.3 Definition of visual perception 

Despite its widespread study in psychology, the term "visual perception" is rarely 

defined: it is usually illustrated through examples. The Encyclopedic Dictionary of 

Psychology (Harre and Lamb, 1983) does, however, define visual perception as: 

"the subjective experience arising from sensory stimulation of the visual system and 

brain." 

It goes on to say: 

"Perception requires not only detecting the presence or absence of features in the 

visual image, but also defining their relationship to one and another and assigning them 

to separate objects,. To achieve this end, perception cannot merely be a passive 

extracting process. It must also be an active integrating one, associating and organising 

the sensory information." (p. 655). 

We also need to distinguish two further aspects of visual perception that relate to the 

organisation of sensory experience. First, there is what we call "surface" perception in 

which processing of information is carried out. This comes about as a result of stimuli 

that allow one to detect such things as edges of objects, corners, faces, depth and 
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motion. Second, we also have "deep" perception which includes such things as 

detection of non-immediate visual properties of an object, as well as previously stored 

information about that object. 

For example, surface visual perception is involved when a student sees that an 

icosahedron has faces that are triangular. Deep visual perception is involved in a 

student's perception that an icosahedron can be seen as a non-overlapping union of two 

pentagonal pyramids, and a pentagonal band of alternating triangles: 

Figure 2.5. An icosahedron decomposed as a non-overlapping union of two 

pentagonal pyramids and a pentagonal band of triangles 

Deep visual perception involves an active, conscious intelligence and is not obtained 

simply through staring harder. A student's eye does not simply "see" deep features of 

objects such as polyhedra, in the surface sense of getting them directly from visual 

stimuli. Seeing is an active constructive process: 

"the brain does not passively record the incoming visual information. It actively 

seeks to interpret it, What you see is not what is really there; it is what your brain 

believes is there." (Crick, 1994, pp. 30- 31). 

The term visual perception is associated to physical objects and events. People 

improve their sense perception as they develop and mature, thus enabling an adult to 

perceive objects and events better than a baby. When people start looking at new and 

different objects they gradually become more familiar and certain about them, so they 
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develop a form of learning. Consequently, there may be changes in object perception 

resulting from experience. These changes in perception, we believe, are associated with 

thinking about and reflection on, perception. 

We can see objects and their properties such as colour, size, texture, and we can talk 

about events that happen. These are results of visual perception. When we see objects 

we can distinguish one from another. As an example we are able to distinguish an 

animal sleeping from a skin coat. However mistakes in interpretation of sensory data 

may be made and it does not imply that people do not see an object: in this case, people 

may not recognise what they saw. We can see things before we can identify them. 

When we do not recognise what we see, we are not able to realise a correct description. 

We distinguish the seeing of objects and the seeing of events by our sense of visual 

perception in a way that requires some knowledge of the things seen: as an example, we 

can see that windows are open. We can see objects closing and opening without 

knowing what they are, but to recognise an object or to perceive an event requires some 

level of identification. Cognitive psychology is interested in what people learn in their 

perceptual understanding, and with objects it requires us to understand that recognition 

and identification of objects requires some knowledge of what we see. As an example, 

we can recognise a three dimensional figure as a cube when, upon seeing it, the figure 

which we are seeing is distinguished from other three dimensional geometric figures by 

its properties. Firstly we receive sensory data, then utilise our perceptual sense, and 

then determine the meaning of what is perceived. To perceive objects and or events 

involves both perceptual sense and meaning. We make use of visual perception 

extensively in three dimensional geometry. 

We recognise the incoming visual signals according to the information we already 

have in our brains. The visual signals are just that - simply signals, or data; they do not 

in themselves, constitute information. It is an active organisation by the brain, of those 
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incoming signals, that constitutes new information. This ordering is assisted by an 

active, physical, ordering of visual signals. 

Perception requires the active process of the observer providing information in the 

organisation of action. Our perception becomes precise as a result of action and 

movement, and our visual system plays an important role in guided action. Action 

guides behaviour, and action is often directed at an object and generates a movement. 

For example, to pick up an object and use our hands in touch exploration of this object 

it is necessary to be aware of its shape, size, location and orientation. 

2.2.4 What is a mathematical unit? 

A unit is something that is seen as a whole, to that can be repeated in action - either 

with actual physical material, or in the mind. A person's competence in dealing with 

units - arithmetic or geometric - is important in their mathematical development. Von 

Glasersfeld and Richards' (1983) description of a numerical unit is: 

"A unit is that by virtue of which each of the things that exist is called one", (p. 1) 

They stressed that the construction of number is associated to the ability to the act of 

abstraction from the production of unitary things. So, a child can understand numbers 

and the development of these processes rely the child's construction, representation and 

recognition of figural pattern. The understanding of organisation of units is the basis of 

the development in arithmetic and geometric thinking. We can use the construction of 

numeric ideas (regarding as units) to describe the physical construction of a certain 

shape such as numbers of faces, vertices, edges etc that are parts of a whole. 

Wheatley and Reynolds (1996) stressed the involvement of reflective abstraction in 

learning about units. In their experiments using two dimensional shapes to children 

make tiling, they observed the children's method and thinking strategies used in this 

activity. So, they noted the relationship between a child's ability to construct abstract 
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units from two dimensional shapes and also their use of ten as an abstract unit in adding 

and subtracting whole numbers. They conjecture that "constructing abstract units is a 

quite general and significant mental operation, which transcends numbers". 

2.2.4.1 Difficulty with units in three dimensional geometry 

In later chapters we study image formation of polyhedra. A major question in the 

study of image formation in 3-dimensional geometry is: What is a perceptual unit? 

Kosslyn (1996, pp. 114-115) details how perceptual units are processed and how they 

are put together to form images, but does not discuss their nature - what it is about a 

perceptual unit that makes it a whole. 

For 3-dimensional geometric objects such as polyhedra, the possible nature of 

perceptual units is quite tricky. This is due, in part, to the invariant nature of perceptual 

units: those transformations that, applied to a perceptual unit, transform it into a 

perceptual unit. For instance we can scale a triangle by stretching uniformly in all 

directions, or we can apply a shear to a square: are these still the same perceptual units? 

In using pre-digested chunks of imagery, students manipulate geometric units in their 

heads. These units, such as triangles, squares and other polygons; pyramids; cones; 

cubes and cuboids, are capable of being transformed by rotation, shrinking, stretching, 

and so on, but retain their defining properties (vertex-edge-face relationships). 

One might argue that a natural unit in the perception of a regular icosahedron is a 

triangular face. However triangular faces, in themselves, lack an essential feature of a 

mathematical unit: they are not necessarily repeatable pieces of perceptual or mental 

data as far as 3-dimensional object building is concerned. One needs 20 equilateral 

triangles to build a regular icosahedron, but recognising this only gives the triangles as 

numerical units: something to be counted. It does not imply that the triangles are seen 

as geometric units: something to be arranged in space. 
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The units of a three dimensional shape must have a variety of properties that 

arranged together form a whole shape. The variety of components characterise a certain 

shape. In numeration, units is a collection of individual items takes together. So there is 

no straightforward analogy in construction of an arithmetic and geometric units 

because for both there are a variety of individual properties that form an individual 

item, and the concept of unitary thinks that can be repeated comes from the arithmetical 

concepts. 

2.2.5 Imagery 

2.2.5.1 Definition of imagery 

In this thesis it is important to state clearly what I mean by imagery. This is not an 

easy task, because it is not normally defined in the psychological literature, but taken 

for granted. In the following, I have taken the most salient points about imagery from 

Kosslyn (1996). 

By imagery I mean, in the context of geometry, the generation of mental images, the 

ability to inspect these images, and to maintain and transform them in the head. This is 

in accord with Intons-Peterson's (1996) definition of imagery as: 

"sensory-perceptual memory with spatial extent. ... we learn to label as imagery 

those memories that have salient sensory-perceptual and spatial features." (p.20). 

For example, from a verbal description of an object such as a polyhedron with 6 

equilateral congruent faces, one may form an image of a cube. With further information 

that the sides of faces are equal but the angles formed at adjacent edges are not right 

angles, one might mentally transform this image to resemble a rhomboid. This involves 

the processes of formation of an image, retention of that image, and inspection and 

transformation of the image. Note that in waking experience, images generally preserve 

the metric properties of space. 
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A perceived object is related by the senses - sight, touch, sound or taste - to a 

concrete object and an image is related to an abstract mental form, as for example 

when a verbal description activates associative memory to get enough information. This 

is an experience that uses imagination to form an image of an object. Concrete objects 

are built according to the laws of physics so that we cannot separate real objects from 

the physical laws to which they are subject. On the other hand, it is possible for images 

to be subject to alternative interpretation, as when an image of a rigid object is mentally 

transformed by increasing or decreasing the angles, or the size of faces, into another 

object. One may even imagine physically impossible objects, such as a Klein bottle, or 

so-called 'impossible figures'. In this sense the brain's activity is not subject - in 

imagination - to the physical constraints on real objects. 

Both perception and image formation embody information such as: 

a) Gestalt Organisation. This refers to seeing an object as a whole that means 

sum, combination, interaction of each part which correspond to the appearance of 

the shape. All of this visual information is sent to the brain which infers what, how 

and when these features form a determined shape. Therefore, the brain is able to 

identify differences between shapes 

b) Association of factors that lead to a particular form such as geometric information 

that specifies the appearance of a particular shape. For example, metric information 

distinguishes shapes of the same family, such as different family hexahedra. 

Figure 2.6 Different hexahedra. 
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A person can distinguish these metrically different hexahedra without conscious 

awareness of the way in which they were distinguished. It is the perceptual metrically 

different forms that impress themselves apparently directly to our vision. We say 

'apparently' because as individuals are not generally aware of the micro-processes that 

take place in their acts of visual perception. However, there is another sense in which a 

person who distinguishes these hexahedra perceptually is not aware of the process, but 

only of the outcome: the process of distinguishing is based on visual perceptual data 

and not on verbal data or verbal expression. A person could say, for instance, that the 

second example above is 'pointer' than the cube; however we contend that this verbally 

expressed distinction is not part of the visual distinction that the eye-brain makes in the 

first instance. The hexahedra are distinguished by the eye-brain without the intervention 

of verbally expressed properties. 

c) Organisation of units. 

• There are constraints on how perceptual units can fit together to form a polyhedra: 

for example we can form a hexahedron from equilateral triangles or squares only or 

using some quadrilaterals. On the other hand we can not built a hexahedron using a 

hexagon. 

d) Comprehension of how units may be organised; 

(i) Different size 

(ii) Different position. 

2.2.5.2 Images as one form of mental representation 

When we think about an object which is not present, we are forming and inspecting 

an image of this object which often contains a geometrical characteristic. Kosslyn 

(1996 p 3) refers to mental imagery in terms of mental representation: 
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" the term 'image' will refer to the internal representation that is used in information 

processing, not the experience itself" 

Eysenck and Keane (1996) define a representation as: 

"any notation or sign or set of symbols that 're-present' something to us. That is, 

stands for some thing in the absence of that thing." p. 204. 

Things are associated to the physical world or our imagination. There are distinctions 

between external representations such as pictures, words, and writing and our internal 

mental representations of these things. 

Mental representation are styles of imagination. Johnson- Laird (1996) stressed the 

form of representations and their process in construction. To him, the distinct forms of 

processing indicates the distinct format of representation. He (Johnson-Laird, 1983) 

emphasised three different forms of "representation": images, propositions, and mental 

models. These forms of representation are different but interrelated. This triple code 

theory stresses that prepositional representations are related to expressions in a mental 

language structure whereas images and mental models have an analog spatial structure. 

Linguistic expression builds propositional representations and then creates mental 

models. Propositional theory originates from language and logic and propositional 

representations are abstract. They are not words, they are only language-like. According 

to Anderson (1995) 

"... a proposition is the smallest unit of knowledge that can stand a separate 

assertion; the smallest unit about which it makes senses to make judgement true or 

false." 

Kosslyn defined propositional representation is a 'mental sentence' that specifies 

unambiguously the meaning of an assertion. 

We are able to construct a mental representation of an action and an event. As an 

example, while we listen to a description of an object or an event or read a text we are 
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able to construct a mental model. We rely on retaining in memory these constructed 

mental models and being able to and recall them. We also are often able to explain our 

mental models in language, when they present as images, ordering the words so 

listeners decode the words and reconstruct their representation of our mental models 

(our mental understanding). 

Images are associated to both thought and sensation. The difference between reality 

and images is that images are abstract and present intentional properties: to construct a 

new image requires a mental action. It is possible for us retain images and we are able 

to transform them - new images result from our mental activity - and reconstruct these 

images. On the other hand the concrete material that we can see or touch are physical 

objects and we experience and distinguish them through their effects on us through 

perception. 

2.2.5.3 Concrete models as representations of images 

Kosslyn (1996) views images as representations of objects or scenes: 

"The term 'image' will refer to the internal representation that is used in information 

processing, not the experience itself" (p. 3) 

and 

"According to the present theory, image generation is an extension of the kind of 

attentional priming discussed in chapter four. The representation of an object is 

accessed (by a property look-up subsystem, ... To form an image itself, the 

representation is primed so much that it sends its feedback to earlier areas .... (p. 287) 

This view of mental images is a consistent one in the psychological literature. We 

see, for example, an image of a particular face, and understand that it is an internal 

mental representation of a particular person's face. This is an example of how images 

can be mental representations of particular physical objects. Or, we may see an image 
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of a musical event that we attended earlier. These images are mental representations of 

particular world objects or scenes. What, however, about images of general classes, 

such as 'chairs'? When we form an image of a chair, is it a general, somewhat blurred, 

image of a generic chair, or is it an image of a particular object - a chair we have seen 

before? A designer, for example, may form an image of a chair never before seen 

,because they are yet to design it. This is an example of forming images from 

previously established perceptual units. 

However, in mathematics, and particularly in 3-dimensional geometry, the situation 

is somewhat different. Some images are categorical: a regular icosahedron, for example, 

can only be imagined, correctly, in one way (taking into account differing sizes). This is 

different from forming an image of a dog, even a specific variety of dog such as a 

poodle, because there are many different dogs and poodles in the world: such an image 

is not categorically determined. For irregular polyhedra, the situation is more like that 

for forming images of dogs: for example, there is a whole class of irregular icosahedra. 

So, at least for 3-dimensional geometry, we have the peculiar situation that a mental 

image of something as specific as a regular icosahedron is not a representation of that 

object: rather, concrete models of regular icosahedra are representations of the mental 

image. Drawings and concrete models are communicative devices, designed to 

represent what is seen in the mind. Hunting and Lamon (1996) made the same point in 

relation to concrete material: 

"we shall use the term 'model' to refer to a cognitive (internal) construction, a 

system of quantities, relationships, operations, and representations constructed in some 

subjectively meaningful way, connected to the individual's existing knowledge base, 

and used to make sense of one's subjective world of experience. Representations (or 

embodiments) such as Cuisenaire rods or Dienes blocks are concrete (external) 
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interpretations of internal models, notation systems that facilitate the communication of 

our models to others." 

This is not to say that models are useless in assisting students to form mental images; 

to the contrary, they can be quite useful. However, images can be inspected for 

prepositional information (Reisberg & Chambers, 1991): for example a person 

imagining a hexahedron can count the number of vertices and edges by inspecting an 

image.. The ambiguity, if any, is in a student's visual perception of the model. 

2.2.5.4 How might images of three-dimensional geometric objects be formed? 

There are two obvious ways in which people might form images of three-

dimensional shapes, such as polyhedra. One is by determining vertex-edge-face 

relationships, and fitting together individual faces in an appropriate arrangement. The 

other is by forming images from larger pre-digested pieces of the image, which are then 

assembled. 

Kosslyn indicates that images are formed from remembered units, so we expect that 

it is the latter mechanism by which people form images of polyhedra. 

Further, limitations in working memory also made us expect that this is the way 

people will form polyhedral images. Kosslyn (1996, p. 291) points out that: 

" .. it is better to relate parts and properties to the global image than to other parts or 

characteristics in the description of the shape in associative memory; if one builds 

detailed hierarchies of structural contingencies ... it would be rather easy to exceed 

working memory (i.e., limitations on how much information can be accessed at the 

same time) when generating an image." 

In image formation, seeking information about regular sub-objects such as cubes and 

pyramids that might fit together in certain ways to give the entire polyhedron, is a sort 

of mental "chunking" procedure. It involves mentally manageable sub-units of the 
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polyhedra which are built up, so allowing missing bits of the image to be filled in. We 

hypothesis that this is the way people form images of polyhedra, rather than focusing on 

analytic information about vertex structure. The reason is for them to reduce the 

cognitive load of image formation. 

2.2.5.5 Why might images be useful? 

One answer is that, as Kosslyn (1996) says: 

"Perhaps the most basic property of visual mental imagery is that images make 

accessible the local geometry of objects. ... The image depicts the spatial relations 

among portions of an object or scene allowing one to interpret them in a novel way." 

(pp. 335-336) 

This is one of the most useful features of images: they are manipulable in the head. 

Images can be mentally pulled apart and re-arranged, using parts of other images, in 

ways that would be difficult or impossible with concrete models. For example, a regular 

octahedron can be mentally transformed into an irregular octahedron, by a mental 

stretching of one of the constituent pyramids: 

Figure. 2.7 Shows the regular and irregular octahedron. 
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2.3 Learning through discussion 

2.3.1 Introduction 

Language is a fundamental component to explore image generation. From the 

individual effect of linguistic description another person forms an image of an object 

described. To form images from description, requires that people who listen to a 

description from someone else first store this verbal information in their short-term 

memory. They then use this to retrieve knowledge stored long-term in their mind. It is 

this long-term knowledge that, stimulated to recall by words in short-term memory, 

assists in the formation of images. Kosslyn (1996 p. 336) reports that imaged objects 

are interpreted using the same mechanism that are used to interpret objects during 

perception. Denis and Cocude (1989,1996) emphasise that image generation depends 

on the main characteristics of the description of a scene or object. These authors 

designed a experiment in which people were not presented with a map at any time but a 

description of a map of a circular island was given. The fictitious island contained six 

features placed at the periphery: a harbour, a lighthouse, a creek, a hut, a beach and a 

cave. From the description, the location of features was based on an hour coding 

system. The results of these experiments indicated a correlation between response times 

and distance. According to Denis (1996 p. 138) the mental representation constructed 

from verbal descriptions contain information structured in a way similar to perceptual 

representation. 

Kosslyn, Ball, and Reinser (1978) designed an experiment in which subjects were 

asked to memorise a given map of an island which contained seven objects: a hut, a 

tree, a rock, a well, a lake, sand and grass. There were twenty one pairs of objects 

positioned in different distances. The subjects learned to draw the location of each 

object (with considerable accuracy) on the map. Later, they were asked to close their 
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eyes to visualise the map. When the subjects listened to the name of an object, they 

were required to picture the map mentally and focus on the object named. After five 

seconds, other objects were named. Subjects were required to scan the map and focus 

on these other objects mentally. They were informed to press a button when they had 

mentally focused on these object. The researchers reported results regarding image 

scanning, distance, amount of material scanned over, and the reaction time. The time 

taken for the subject to perform the mental operation was plotted as a function of the 

distance between the two objects in the first map. The amount of material scanned was 

kept constant and the result was that the time increased linearly according to the 

distance scanned. 

Denis (1996) & Denis & Cocude (1989,1992) described an experiment regarding 

mental scanning studies which indicate the capacity of people to construct images or 

cognitive maps from verbal descriptions of spatial configurations. They focused in their 

studies on learning from a map and learning from a verbal description of a map. In the 

first situation people memorise a map and the location of its features. In the second, 

they explored the mechanisms that allow people to build up an image from 

communication about space. People used verbal description of scenes, and description 

of itineraries in unfamiliar environments. 

These experiments indicate that from verbal descriptions, people can build visual 

images and that they scan these images in much the same way and time as they would 

visually scan the real objects or scenes. 

2.3.2 Paivio's dual coding theory 

Cognitive psychologists have been interested in studies of the processes that relate 

thought and words. Johnson-Laird (1983) argues that there are three kinds of 

representation: mental models, propositions, and images. Paivio (1986, 1991a) 
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developed his dual code theory which proposes a basic distinction between imagery and 

propositional representation. The two different system for representation and processing 

of information are the non-verbal or imagery process which involves storage of 

information of non-verbal objects and events, and the verbal symbolic process which 

involves storage information of word meaning (linguistic information is stored in an 

appropriate verbal form). 

There are different modalities to process both systems: 

Symbolic System 
Sensorimotor System Verbal Non verbal 

Linguistic world Non-linguistic world 
Visual Printed word Visual object 
Auditory Spoken word environmental sound 
Hapitic Writing manipulate objects 

Table 2.1 The modalities which involve verbal and non verbal processes. 

By definition, the taste, smell and affective modalities are non verbal and there are 

no corresponding constructions of linguistic symbols. 

The theory of the two systems, verbal and non verbal, assumes that the cognitive 

behaviour mediated by these two independent, and partially interconnected systems, 

are appropriate to encode, store and retrieve information. Information can be transferred 

from one system to another or either system may work in isolation. The verbal system 

is considered as an abstract logical mode of representation whereas the non-verbal 

system is concerned more with the concrete analogical mode. An object - for example a 

cube - has a recalled name "cube". We recognise the shape by its recalled image, and 

we can link the image with the word "cube". Paivio adopted the term "logogen" 

referring to a word generator (it is specific to the sense of identification of the spoken 

sound of the word and the visual form of the written word) and "imagen" referring to 

image generator. The interconnection between systems links imagens and logogens, 

allowing objects to be named and names to evoke images. 
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The dual coding theory is relevant in this work which uses both verbal and non-

verbal mechanisms: both manipulatives and the their names are used as stimuli. 

When people form an image of a polyhedron from a description, the image may 

change according to the amount of the data given. The verbal data is encoded and 

decoded and images are evoked from the stimuli with contributions from memory. 

Therefore, stimuli, memory, and imagery are connected in the generation of a visual 

image from a verbal description. Memory for words is quite distinct from memory for 

pictures of common objects and there are differences between the recall of words and of 

pictures. Several operations are associated to memorisation of words or visual scenes or 

objects. Paivio's work basically involves memory for the name of stimuli shown in a 

picture. In our work we are interested in more than the memory of the names of the 

stimuli: we are also interested in the details of three-dimensional shapes. Visual 

learning and learning from verbal description are fundamental in this work. They 

involve imagery tasks and the use of verbal codes. Verbalising visual perception is 

related to an individual's capacity to identify and organise sentences. In our experiment, 

when the polyhedron was a common, or well-known, shape its parts were described and 

memorised spontaneously. Students who manipulated and described the shapes encoded 

information using both, verbal and non verbal system: words were used to indicate 

things perceived. In opposition, the students who listen to descriptions, invoked 

memory using the verbal system alone, and for them, words are used to evoke an 

image. 
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Methodological framework 

2.1. Introduction 

This thesis addresses connections between visual perception, tactile perception, 

imagery, language development and van Hiele levels of thought in three-dimensional 

geometry. The empirical research was based on a written test and on two different forms 

of experiments involving identification of properties of polyhedra, and the sharing of 

those properties with other students. 

2.2 Written Test 

I designed a test containing seven questions in three-dimensional geometry with each 

question involves various sub-items. The test initially had 7 items which were designed 

to generally relate to van Hiele levels of thought in geometry (van Hiele, 1986; Burger 

and Shaughnessy, 1986; Fuys et al, 1988; Gutierrez et al, 1991) and to the degree of 

acquisition of spatial abilities (Del Grande, 1987). The ways in which each question 

addressed van Hiele levels and Del Grande's categories of spatial abilities is indicated 

in the description following that question in chapter four. 

Note that 1 do not wish to claim the results of this test place precisely students into 

van Hiele levels or precise categories of spatial ability. Rather I have designed a test 

based around van Hiele levels and spatial abilities, the validity of which is open to 

interpretation. 

The different questions assess a student's use of adequate language in relation to 

each of the van Hiele levels, their spatial abilities. 



Methodological framework 54 

2.2.1 Del Grande's spatial perception abilities 

Del Grande (1987) define spatial perception as 

" the ability to recognise and discriminate stimuli in and from space and to interpret 

those stimuli by associating them with previous experiences." 

He examined seven abilities which are relevant to cognitive development. Our test in 

three-dimensional geometry is related to five of these seven spatial abilities. 

1. Figure-ground perception 

2. Perceptual constancy 

3. Position in space perception 

4. Perception of spatial relationships 

5. Visual discrimination 

which Del Grande describes as follows; 

Figure ground perception is the ability of identify a specific shape which involves 

intersecting lines, intersecting figures, figures completion, figure assembly. Figure 

assembly involves the use of two-dimensional shapes to obtain a new shape in three-

dimension. 

Perceptual constancy or constancy of shape and size is the ability to recognise 

shapes according to their appearance. The shape remains unaltered, the size of the shape 

does not change if the line of sight turned at different angles. However, their sensori 

image vary. 

Position-in-space perception is the ability to determine the relationship of one object 

to another object and to observer. The activities regarding to this ability involve change 

of position, and rotation of shapes. 
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Perception of spatial relationship is the ability to see one or more objects in relation 

to oneself or in relation to each other. The activity regarding this ability involves 

replication of part of three-dimensional figures. 

Visual discrimination is the ability to distinguish similarities and differences between 

objects. The activity regarding this ability involves classification of geometric shapes. 

The perception of space can be explored by the interpretation of experiences of 

seeing, and moving. According to Del Grande (1987): 

"... a person with perceptual constancy will recognise a cube seen from an oblique 

angle as a cube, even though the eye gets a different image when the cube is viewed 

from squarely in front or directly above."(p. 128) 

2.2.2 Background to van Hiele levels of thinking 

In 1957 Pierre Marie Van Hiele and his wife Diana Van Hiele-Geldof developed a 

theory providing a model of pupils' knowledge development in geometry in separate 

doctoral dissertations at the University of Utrecht. The great interest of Van Hiele and 

his wife was to find ways in which their students could develop insight into geometry. 

Diana died shortly after her dissertation was completed; consequently Van Hiele was 

left to explicate and advance the theory. Van Hiele observed that in some of Piaget's 

interviews with children, the children often required a knowledge of vocabulary or 

properties beyond the phase of learning that they were at. From this, the Van Hiele's 

went on to suggest that all students progress in their acquisition of geometrical 

knowledge by passing through five levels of thinking in consecutive order. They further 

stated that a student's level of thinking at a particular time could be identified. The van 

Hiele levels are sequentially graded. Mayberry (1983) and Crowley (1987) described 
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the lower level as being the basis of the higher level. The van Hiele levels are described 

below. 

2.2.3 Van Hiele levels of thinking 

Level 1 {Visualisation) Understanding basic geometric concept involves reasoning 

by the student at this level by means of a visual conceptualisation of ideas. Students 

observe objects and identify figures by comparing them with mental images but they do 

not identify properties of a figure. They recognise simple shapes by their appearance 

without distinguishing their properties. They are able to recognise similar figures with 

different sizes. 

Level 2 (Analysis). A student distinguishes properties of a figure by informal analysis 

of the component parts. They do not grasp the relationship between different figures or 

between properties. The figures are recognised by their parts (faces, edges, vertices 

etc.). They do not grasp the relationship between different figures or between properties 

and they cannot explain relationships between properties. 

Level 3 {Informal deduction) A student, through the process of definition, 

distinguishes the relationships between properties and figures. Example: a cube has 

opposite faces parallel and right angles. Students are able to classify families of solids. 

They can use informal argument, however, do not understand the significance of 

deduction as a whole. They can understand properties of concepts and form definitions, 

but they are not able to arrange sets of statements. 

Level 4 {Deduction) A student understands the ordered steps involved in proving 

theorems, using rules and axioms, and elaborates ordered statement one from another 

and provides definitions. They are able to develop a proof in more than one way. 
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Level 5 (Rigor) Students is at a high level of reasoning. They can work in a variety 

of axiomatic systems. They carry out rigorous formal deduction. They understand 

geometry without a model. Geometry can be seen to be abstract. 

2.2.4 Test administration 

The test was administered over a two year period. Twenty five students who took 

part in this work were enrolled in secondary initial teacher training (PGCE). All the 

students had completed a first degree in mathematics All of them were volunteers from 

the University of Southampton, UK. 12 of the students were from the year 1995-1996 

and the other 13 students were from the year 1996-1997. 

2.2.5 Description of the test 

The questions of the test were chosen in such a way as to indicate how the students 

organise their thoughts and how they use their previous knowledge and logic to build an 

argument. When students are required to give arguments it is necessary that they use an 

adequate language, according to van Hiele's theory, to explain their reasoning in three-

dimensional geometry. First students must understand the question and then they must 

think about the solution to give an answer. According to van Hiele's theory, the 

development of a person (child or young adult) is dependent on language and 

environment. 

A variety of manipulatives made from cardboard and plastic were available, and 

students were free to use this concrete material to assist them in answering the test 

questions. Some of these materials were presented in three-dimensional models and 

others in two-dimensional form. Each of the seven questions contained various sub-

items. Pen and papers were also available to the students. 
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2.3 Experiment on visual perception and image formation 

Van Hiele (1986) has argued that at each level of understanding in geometry, a 

characteristic language develops. A student learns a level of description that is 

appropriate to their level of understanding and geometric thought. This has two 

implications - first, by listening to and analysing students' language use in geometric 

settings we can to a large extent judge their level of geometric thought. Second, by 

enhancing a student's language use in geometry we automatically improve their level 

of geometric thought. 

In three-dimensional geometry physical models play an important role in a learner's 

understanding of an object's properties. In examining a particular polyhedron, a learner 

needs to find out what specifically characterises this polyhedron: what are its properties 

that distinguish it from other polyhedra. This entails a process of intelligent action and 

reflection, through manipulating a physical model and trying to integrate sensation into 

a coherent perceptual mental picture. 

A view of language and cognition, in the sense of how language schemes can provide 

a view of cognitive construction, provides us with a bridge between individual cognition 

and its development in social practice. 

Students can relate and share their reflections during discussions, whilst we can 

attempt to ascertain the students' level of geometric thought from their propositional 

statements and questions. 
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2.3.1 Information gained through discussion 

There are two distinct ways in which discussion can assist in the understanding of 3-

dimensional geometric objects such as polyhedra. One is in the development of visual 

perception and the other is in image formation. If a person can see and touch a 

polyhedron then providing information about the properties of the polyhedron through 

verbal representation can assist in the development of deep visual perception. Previous 

knowledge, coupled with a desire to explain the polyhedron's properties, allows the 

possibility of a person seeing beyond superficial properties. Visual perception of 3-

dimensional objects is often accompanied by tactile perception. These two forms of 

perception integrate to allow a student a visual-tactile perception of an object. A need 

to describe this perception in words to another student can crystallise perception in 

striking ways. The integration of surface visual perception and haptic exploration in the 

development of deep visual perception is not incidental. Indeed it is a dynamic 

responsible for development. As Thelen and Smith (1995) so persuasively point out: 

"As a consequence of the neuroanatomy, sensory integration may be the primitive. 

The developmental task may not be to construct, but to select from all the multimodal 

associations those that represent real-life correlations of perceptions and action in the 

world." (p. 191) 

The other way in which discussion can assist in the understanding polyhedra is 

through image formation dependent on verbal information. Verbal reports can be 

utilised by others to allow them to build mental representations of the polyhedron, 

usually through the formation of images. Following Johnson-Laird (1996) we view 

mental images as one form of mental representation, the others being propositions and 

mental models. 
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One might think, therefore, that I have confounded image formation and 

propositional knowledge in allowing that verbal descriptions can lead to imagery. 

However, there is evidence (Denis, 1996; Kosslyn, 1996; Denis and Cocude, 1989; 

Glushko and Cooper, 1978) that people can build images from verbal descriptions and 

that mental images formed as a result of these descriptions use visual mechanisms. 

According to Denis (1996 p. 138) mental representations constructed from verbal 

description contain information structured in a way similar to perceptual representation. 

Image formation is dependent on, but different from visual perception. Indeed, as 

Kosslyn (1996) points out: "... imaged objects are interpreted using the same 

mechanisms as perceived objects."(p. 327) and: 

"Although imagery and perception rely on the same mechanisms, those mechanisms 

are not used identically in the two cases. In particular, images contain "previously 

digested" information; they are already organised into perceptual units that have been 

previously interpreted. In contrast, in perception one must organise the input from 

scratch and match it to stored representations; one does not know in advance what the 

object is likely to be." (p. 329) 

Language is a fundamental component to explore image generation. From the 

individual effect of linguistic description another person forms an image of the object 

described. The formation of images from description requires that people who listen to 

the description retain verbal information and retrieve knowledge stored in the mind. 

Denis and Cocude (1989,1996) emphasise that image generation depends on how a 

scene or object characteristics is described. 
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2.3.2 Rationale for the task 

In this study I focus on the stimulus to form images from verbal descriptions, to form 

deeper visual perception as a result of questioning, and the possible transition of 

geometric thought from one level to another as a result of verbal interactions. The task 

we chose was that of identification of an unseen polyhedron. One student had a 

polyhedron out of sight of a group of others, whose task it was to determine the nature 

of the polyhedron by asking questions about it. A screen separated the student with the 

polyhedron from the others, so that the polyhedron was hidden from their view. The 

student with the polyhedron could be heard by the others who could see and talk to each 

other. 

Figure 3.1. Intended arrangement of students during the task sessions 

In each session we instructed the student with a polyhedron to answer questions from 

the other students, but not to volunteer information about the polyhedron. We also 

instructed the student with a polyhedron not to name it if they knew its name. The 

students who could not see the polyhedron were instructed to ask questions until they 

were satisfied they had a complete description of the hidden polyhedron. These students 

were permitted to talk with each other and to draw if they wished. 
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The student with the polyhedron will use language to describe visual perception, in 

answer to questions. The aim is that the other students will be stimulated by these verbal 

descriptions to form a mental image of the hidden polyhedron. In each session therefore 

we can document and analyse the visual perception of the student who has the 

polyhedron, the imagery of the students who cannot see it, and the verbal interactions 

that stimulate both. 

The ability of the students to identify the hidden polyhedron to their satisfaction 

depends on two things. The first is their ability to form images from verbal data. The 

second is the ability of the person with the polyhedron to exercise appropriate visual 

perception and to supply other students with that data. 

2.3.3 Task population 

There were 7 students who participated in the task. They were volunteers from a 

class of 12 pre-service secondary mathematics teachers at the University of 

Southampton, UK, and all had completed a first degree in mathematics. Not all students 

could attend all sessions, so they were not arranged systematically into groups. There 

were 5 sessions in all, each lasting approximately an hour, and each involving the 

investigation of several polyhedra. 

2.3.4 Manipulatives used 

The polyhedra used were: cube, cuboid, rhomboid, tetrahedron, octahedron (regular 

and irregular), dodecahedron, icosahedron, dual cube and octahedron, dual tetrahdra, 

hexagonal prism, right cones with square and hexagonal bases, hexagonal bisection of a 

cube, and triangular prism. These polyhedra were chosen to represent a selection of 

easy, moderate, and difficult to recognise polyhedra. Some, such as a cube, tetrahedron, 
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and pyramid, are commonly known, and have relatively few edges and faces, with 

simple arrangements of faces. At the other extreme objects such as a dual cube 

octahedron, dual tetrahedra, icosahedron, and a hexagonal bisection of a cube, are not 

commonly known and involve relatively complicated arrangements of different types of 

faces. The latter, in particular, were predicted to be relatively difficult to imagine. 

2.4 Tactile experiment 

2.4.1 Introduction 

While we are generally strongly dependent on a sense of vision to detect and 

recognise objects, our fingers can also give us objects around us. Our hands are a sense 

organ that we can use to get data about shape, size, weight, temperature and so on. We 

also use touch with purpose to identify an objects' surface, texture, softness, hardness, 

smoothness and other features. Some of this sensory data, such as temperature, may not 

be apparent to visual perception. According to Warren and Rossano (1991) the 

judgement of some properties such as size and shape are generally performed more 

accurately with vision than with touch. 

Shapes of objects are defined according to their surface arrangement and we can use 

our visual or tactile systems to recognise them. The task described below is a haptic 

exploration focusing on the ability to discriminate the location and parts that make a 

polyhedron. Students get tactile data and provide information about their sensations of 

feeling. In this tactile experiment, we provided the students with a feely box and some 

polyhedra which students manipulated (see the picture below). They used their hands 

to help form the image of the shapes by what they felt. Therefore, in this investigation, 

the hands' exploration was used with the purpose of acquiring information about 

geometric properties of the shapes. Hand movements were also used to relate to the 
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dimensions and position of parts of the polyhedron in space. In this research we were 

not interested in the texture, size, hardness, or weight of the polyhedra. The motor 

system was used in this activity to grasp and manipulate the shape. 

C 
i f wm 

Figure 3.2 Students use hand movements to represent part of the polyhedron and 

their position in space. 

The stimuli were presented in the three-dimensional form. All objects were 

polyhedron. When people use their fingers in a simple way to explore shapes, the skin 

first gets essential information of a two-dimensional form and our cognitive system 

provides organisation of this information to form an image of a three-dimensional 

shape. All the movements of the fingers are associated with the examination of shapes 

and knowledge. 

The literature presents research on non-visual perception that emphasises perception 

by feeling or by enclosing an object using one's hands. Littie research using this 

procedure seems to explore geometric properties of three-dimensional shapes. 

According to Gibson (1966) and Loomis & Lederman (1986) the haptic system is a 

perceptual system that uses both cutaneous and kinesthetic inputs which are acquired by 

manual exploration. Lederman & Klatzky (1987,1990), Klatzky & Lederman (1992, 
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1995), Klatzky e.t al. (1993) have done significant investigations regarding the 

conditions under which object dimensions are integrated during haptic exploration. 

Lederman & Klatzky (1987) have established the relationship between perceptual 

dimensions in haptic exploration and exploratory movements. In their experiment they 

used a match-to-sample task, in which blindfolded subjects were presented with 

multdimensional objects. They were interested in information about the objects. They 

analysed hand movement during haptic exploration to identify the texture, hardness, 

temperature, weight and volume. 

2.4.2 Population 

Data was collected from tactile exploration among undergraduate students. Two 

students, in their third year of their mathematics course, are referred to in Chapter ?. 

These two students are called M and S and they were volunteers from the University of 

Southampton, UK. 

We planned only one session involving investigation of polyhedra by haptic 

exploration, in this session the students worked together. We could identify their 

schemes and hand movements used by the students to get information about shapes, by 

having the bottom of the feely boxes open to our view, as in picture 6.1 above. The 

duration of the session was approximately one and a half hours. The whole session was 

videotaped. 

2.4.3 Procedure of tactile observation 

During the practical experiment each student has a feely box, and each feely box 

contains one cardboard shape of the same form and size: the pair of each shapes used in 

this experiment were congruent. All the polyhedron to be used in this experiment are the 
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same as those to be used in the visual-tactile experiments. The shapes are placed in the 

feely box one each time and replaced by a different shape after students declare they are 

satisfied with the discussion. The shapes to be used in this experiment are a cube, 

cuboid, hexagonal pyramid, triangular prism, squared pyramid, tetrahedron, irregular 

octahedron, regular octahedron, rhomboid, dodecahedron, icosahedron, cube-

octahedron, dual cube-octahedron, and dual tetrahedron. 

Students are also required to represent the objects that were in their mind by drawing 

them (if possible). The intention in this experiment is to focus on the way students get 

information, form images, and the way they externalise what they feel. 

In haptic perception of polyhedron, not only is the shape of the objects significant, but 

also their size is important to evaluate their parts. It becomes more difficult to identify a 

shape if one holds a very small or a very large example of it. Some difficulties in 

identification of the shape may occur as a consequence of constraints on our motor 

system. I used neither very large nor very small polyhedron. The shapes were of a size 

that students would likely feel comfortable whilst exploring them. 
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Results from the written test 

4.1 Introduction 

This test described in the previous chapter was designed to assess students' geometrical 

and spatial abilities. The purpose of this test is provide a base-line assessment of where 

students are in their geometric thought when we involve them in other learning 

activities. We used the test results in the following chapters about visual-tactile 

perception and image formation experimental results and tactile-only perception and 

image formation. 

4.2 Test questions 

Question 1 

a) The diagrams below represent three-dimensional figures. Can you group the diagrams 

that represent the same three-dimensional figure? 

/—71 

> 71 

(A) (B) 

3 

(C) (D) 

/ 

f ) (G) CH) 0) 

Figure 4.1 Three-dimensional shapes presented on question one. 
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b) What are the similarities and differences in each group? 

Question 1 explores basic geometric concepts which involve visual conceptualisation of 

ideas. This item is associated with Del Grande's perceptual constancy of shape and size, 

namely that students recognise that a figure has invariant properties. The sizes are 

compared between figures which represent the same shape. The question requests that 

the same figures should be grouped by their similarity in shape irrespective of size. In 

this question it is not necessary to list all the properties of the shapes. 

Question 2 

The figures (i) and (ii) are two bi-dimensional shapes. 

Is it possible to construct three-dimensional shapes using only figure (i) shown on the 

diagram below? 

If it is possible, draw the three-dimensional figures that you think can be constructed, 

using only figure (i). 

Name the three-dimensional shape 

If it is not possible to construct three-dimensional shapes, explain why not. 

X 2x 

0) (U) 

Figure 4.2 A square and a rectangle presented on question two. 

Is it possible to construct three-dimensional shapes using only figure (ii) shown on the 

diagram above? 
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If it is possible, draw the three-dimensional figures that you think can be constructed, 

using only figure (ii). 

Name the three-dimensional shapes. 

If it is not possible to construct three-dimensional shapes, explain why not. 

Could you list the properties of your solid(s)? 

This question is related to van Hiele level 2 and Del Grande's figure ground perception. 

It explores a student's ability to perceive intersecting figures, figure completion, and 

figure assembly. On question 2, a square (figure i) and a rectangle (figure ii) (with the 

size of two squares together) were presented. This question explores the combination of 

two-dimensional shapes to produce a new shape in another dimension. Also this 

question works over the combinations of three-dimensional shapes to obtain another 

one. 

To access Del Grande's figure ground perception we considered it an adequate answer 

if the students presented a drawing of the cube using only squares, and the drawing of 

the cuboid using rectangles. To get an adequate answer is not necessary to extend the 

plane faces. 

Examples of how students might arrange two-dimensional shapes to get a three-

dimensional shape are as follows; 

1. With the squares with length x, one can build a cube. If one organises the shapes by 

extending the face plane - as two cubes together - one can build a cuboid 

2. One can build a cuboid using rectangles with length 2x and width x. One can 

therefore construct a cube as a combination of two cuboids together. 

There are many distinct ways to arrange squares or rectangles to get different cuboids 

and different sizes of cubes. All the new figures that are obtained from combinations of 
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squares or rectangles have the faces in pairs lying in parallel planes. Indeed, the new 

solids appear by extending face planes. 

Question 3 

The diagrams below represent three-dimensional figures. 

a) Can you group the diagrams that represent the same three-dimensional figure?. 

X 

X 

(B) 
I X 
(C) 

I X 

(D) 

2x 

X 

(F) 

Figure 4.3 Polyhedra presented on test question three. 

b) List as many properties as you can for each group of figures. 

Question three requires that students group figures by their appearance. This item is 

linked with Del Grande position-in-space perception in which students determine the 

relationship of one shape to another, when they are congruent and in different positions 

(rotated), so in different view. Students were requested to distinguish figures of different 

shapes and recognise the equivalence of different views to successfully group them. 

The list of properties for each group are requested and these properties would be given 

by informal analysis of the component parts. 
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Question 4 

71 

The first figure shows a polygon. This polygon was used to make three solids, shown 

below as (A), (B), (C). 

This polygon was used to make 3 solids, shown below (A), (B) and (C). 

A B C 

Figure 4.4. Polyhedra presented on test question four. 

a) For each pair of solids list as many differences and similarities as you can. 

b) A regular shape is one in which 

c) Which of the shapes (A), (B), (C) are regular and which are irregular? Explain your 

answer. 

d) Draw the net of the shapes (A), (B) and (C) 

In this question it is necessary to perceive and describe the figures' properties by their 

similarities and differences. The way to distinguish one figure from another is to 

recognise the set of properties in combinations. Examples are: 
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® all three-dimensional figures are different in the number of faces, edges and vertices, 

therefore, they are different shapes; 

• give the numbers of faces, edges and vertices of each figure; 

• these three- dimensional figures have triangular (equilateral triangle) faces; 

• to each three-dimensional figure one could pay attention to the numbers of faces 

meet in each vertex. 

However for students to attain a high van Hiele level it is necessary at least to present an 

argument about transformation geometry. 

When we combine the shapes' properties we are describing and classifying them. 

Obviously, the classification of the figures in the question distinguishes the arrangement 

of the shapes. According to Roth and Bruce (1995) 

"Concepts are mentally represented as combinations of necessary and sufficient 

properties which define the categories so represented." (p.24) 

These authors refer to two-dimensional shapes. This theory can be applied to three-

dimensional shapes. This is because when the number of faces of a figure are described-

such as: the shape has six faces which means that the shape is a hexahedron-the other 

properties such as the faces are equilateral triangles and other necessary properties can 

be determined through discussion. 
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Question 5 

The picture below shows a church. 

73 

Left -

Side •Right side 

Front view 

Figure 4.5 The church presented on test question five. 

Could you draw the views: 

a) Base. 

b) Front 

c) Left side 

d) Right side 

Question five presented a simple figure of a church. Students were requested to identify 

the views which are represented by a drawing of a three-dimensional picture of church. 

Models of the church were available if students wish to use them. 

Question 6 

a) Are the following conditions sufficient to uniquely determine a solid? 

a. 12 edges 
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b. 8 vertices 

c. 6 faces 

b) Argument (If there is only one such solid, explain why. If there is more than one, say 

what different properties they have): 

This question explores relationships between shapes by a common set of properties and 

is related to van Hiele level four and Del Grande's figure ground perception: the ability 

to identify specific figures by their components, figure completion, and figure assembly. 

The properties of the figures and their interrelationship provide students with 

opportunities to explore the family and regularity of the shapes. By an asking the 

students for their arguments they were stimulated to think analytically about the shapes' 

properties. In this way they may understand the conditions to compare shapes and to 

give a satisfactory definition. 

Question 7. 

(a) Shade in all right hand faces. 

(b) Match the solids in pairs. 

1. 
2. Much tc xoWj iopea. 

Figure 4.6 Solids presented on test question seven. 
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Question 7 is related to van Hiele level three and perceptual constancy which involves 

constancy of shape and size. It is a DIME (Giles, 1989) design which explores aspects 

of shapes and space in which students see the drawing on the paper which represents 

three-dimensional shapes. This activity is associated to the position of the solids and 

their vertices and it is centred on visualisation. Students need to pay attention to the 

faces and edges. Students need to visualise and compare the solids indicating equal pairs 

according to their ability to interpret congruent solids made with cubes joined together. 

Plastic Multilink cubes were available if students wished to use them to help identify 

congruent pairs. In fact, students decided do not use this material. 

4.3 Relation of the questions to van Hiele levels and Del Grande's categories 

The arrangement of the test questions in relation to the van Hiele levels and Del Grande 

categories was as follows: 

van Hiele levels of thinking 

Level 1 Level 2 Level 3 Level 4 

Del Perceptual Constancy Question 1 Question 7 
Grande Figure Ground Perception Question 2 Question 6 

Spatial Position-in-space 
Perception 

Question 3 

Abilities Visual Discrimination Question 4 

Spatial Relationship Question 5 

Table 4.1 Arrangement of written test questions according to van Hide's theory and del 
Grande's perceptual abilities. 

4.4 Test results 

4.4.1 Del Grande's categories of spatial abilities 

The ways in which students answered the questions in relation to Del Grande's 

categories of spatial abilities was categorised in the following scheme: 

Precise: The question is answered very accurately with all relevant information 

included. 
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Adequate: The question is answered correctly, but not all relevant information is 

included. 

Insufficient: Insufficient information, and not a full answer. 

Inappropriate: Incorrect answer. 

Blank: No answer. 

We consider that a high qualitative understanding is required for student answers to be 

classified as precise or adequate. 

Table 3.2 below shows the number of students' answers in each of Del Grande's spatial 

abilities categories. 

Del Grande Spatial Abilities Categories 
Perceptual Figure Position Visual Spatial 
Constancy Ground in Space Discrimination Relationships 

Precise 16 2 24 6 11 
Adequate 3 17 7 9 
Insufficient 3 2 1 4 2 
Inappropriate 1 4 8 3 
Blank 2 

Table 4.2 Numbers of students according to degree of acquisition of Del Grande's 
perceptual abilities. 

4.4.2 Van Hiele levels 

We used the following method to quantify students acquisition of a van Hiele levels of 

thinking. We represented to each question a section from 0 to 100% corresponding to 

the degree of students questions. This numerical value can distinguish the degree of 

attainment of each van Hiele level. 

Did not attained Attained 
Completely incorrect Intermediate 

Blank or inappropriate insufficient Adequate Precise 

0% 1-5994 60-89% 90-100% 

Table 3.3. The numerical value distinguishes the degree of attainment of each van Hiele 
level. 
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In this thesis I did not identify no acquisition in van Hiele level one. The results show 

that there were students who could attain an intermediate level. It means that the 

students shows insufficient answer to get acquisition of the level (the answers are 

partially correct). These students have proficiency at a certain level, however lack 

proficiency in the next level. Some students show progressive experience to attain 

precisely a level. 

4.5 Gutierrez's profile 

Gutierrez (1991) proposed the above numerical degree of acquisition of a van Hiele 

level and profile as following. 

No acquisition Low intermediate high complete 
acquisition acquisition acquisition acquisition 

15 40 60 ^ 100 

Table 4.4 Gutierrez numerical degree of acquisition of a van Hiele levels. 

Degree of acquisition 
Profile Level 1 Level 2 Level 3 Level 4 

1 Complete Complete Complete < Low 
2 Complete Complete ^High < Low 
3 Complete High < Intermediate < Low 
4 Complete < Intermediate < Low No acquisition 

5 High or 
Intermediate 

< Low No acquisition No acquisition 

6 Low No acquisition No acquisition No acquisition 

This thesis shows the students according to degree of acquisition of van Hiele levels in 

table 4.3 in a different way than proposed for Gutierrez. 

4.6 General Results according to van Hiele levels of thinking 

Within the group of students tested most of them agree with the hierarchical structure of 

the van Hiele levels: see table 3.6 below. The profile used was similar to the profile 
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used to assess Del Grande's spatial perception. For two of the students enrolled on this 

work we were not able to assign a clear van Hiele level. Gutierrez et al {\99\) proposed 

a coding system to assign students to a specific degree of acquisition within each van 

Hiele level. We used a modification of that coding system to allocate students according 

their degree of acquisition. 

Not Attained Intermediate Attained 
Blank Inappropriate Insufficient Adequate Precise 

Level 1 5 20 
Level 2 3 11 11 
Level 3 2 5 10 8 
Level 4 15 8 2 
Level 5 

Table 4.6 Numbers of students according to degree of acquisition of van Hiele levels. 

Note that to assign students to a van Hiele level is a different consideration than their 

acquisition of spatial abilities. For their general geometric level of thinking we consider 

their abilities to express accurately shapes' properties, as distinct from perceiving them. 

4.7 General remarks on student answers 

Question 1 

A few students mentioned some properties of the shapes such as number of faces, 

vertices and edges. Most the students answered this question very precisely. 

Question 2 

Regarding question two, we will show how one of the students organised two-

dimensional shapes to obtain a new figure in another dimension. The entire process was 

done in imagination: this student did not use the manipulatives available. They drew the 

shapes and named them as a cube and a diamond prism. This student visualised a cube: 
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a three-dimensional figure made from squares. After having drawn the cube in position 

(1) and rotated it to position (2) this student gave the name of shape 2, as a diamond 

prism. Note that a cube can not be drawn on flat paper using only squares. So this 

student drew figure (2) as a combination of polygons called rhombus or diamonds 

which have four sides of equal length, forming two acute and two obtuse angles. This 

lead to this student's conclusion that several squares can make a diamond prism. 

X X 

X 

X 

Figure 4.7. Response of one student on question two. 

Question 3 

To demonstrate adequate Del Grande's position-in-space perception requires the 

students to correctly group the figures. One of the students presented difficulty in 

position-in-space perception. This student did not distinguish the square pyramids and 

tetrahedrons. They organised them in the same group and listed the properties as 

"pyramid with base x." 

Question 4 

The students showed the similarities in the shape of the faces and differences in the 

number of faces. A small number of students presented differences in the numbers of 

vertices and in numbers of edges. 

One of the students wrote: 

"Solid B has twice the volume of A, solid C has four times the volume of A and C is 

twice the volume of B." 



Results from the written test 

In reality, solid B is formed from two triangular pyramids placed together with faces in 

the shape of equilateral triangles. On the other hand, solid C is two square pyramids 

placed together with faces in the shape of equilateral triangles. So it is true that solid B 

has twice the volume of A, but it is not true that solid C is twice the volume of B. If we 

cut solid C in the vertical plane we will not have a shape formed by two pyramids with 

equilateral triangular faces. So this is a different shape from figure B. 

On question 4b students were asked to define a regular polyhedron. Some students gave 

insufficient properties to define a regular polyhedron. Very few students wrote that: 

All faces are regular polygons. All faces are the same and an equal number of faces 

TMeef a/ eacA vertex. 

This is an effective way to describe the regular polygon since it points out these 

properties: 

1. All faces are the same (a regular polygon). 

2. Equal number of faces meet at each vertex. 

The combination of these two properties is necessary to represent the concept of a 

regular polyhedron. 

Examples of student answers: 

a) "v4// the 2 dimensional shapes used in the 3D shape are the same size, same lengths 

and same angles." 

b) 'All faces are of the same shape and dimensions. Composed from the same regular 

c) 'Allfaces are the same." 

The answers a) and b) do not present a complete understanding of a regular polyhedron. 

Recognising parts that form a whole shape is a response indicative of van Hiele level 2. 

These are not sufficiently accurate statements to define a regular polyhedron. To obtain 
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an accurate definition requires an understanding of important properties in order to give 

this information. So how do these students mentally represent the idea of a regular 

polyhedron? What strategies do they use to recognise if a shape is or is not a regular 

polyhedron? 

Question 5 

We expected better performance of the students on this question, and the answers were 

a surprise. Some of the students presented difficulty in this item which is connected 

with Del Grande's perception of spatial relationships, concerned with relating the 

position of objects, completing figures, and assembling parts. 

All the students tried to answer this question. Different drawings of the same view were 

considered correct. For the different ways that students represent their answers the 

figures below shows the church and their views and the scheme that was used to analyse 

the students' correct drawings. 

The picture below represents some answers for the base view of the church and how we 

considered the answers. 

^ Correct and ^ 

Precise 

. Adequate Inadequate JBlank 
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The adequate answers were less accurate than precise answers. The students did not find 

it easier to draw the base view as compared with drawing a front view. The facility they 

showed in drawing a front view correctly is due to this view being displayed on the 

drawing in the question. The difference between the adequate and inadequate answers 

are that in an adequate answer, students think of the view rotated in the same plane as 

the paper. 

Question 6 

Some students showed difficulty giving a consistent argument in relation to this 

question. They associated the properties presented in the question with the properties of 

the cube and cuboid. These answers show some ability to form mental images of two 

shapes. However, these students showed no evidence of understanding that the faces 

could be general quadrilaterals. 

Question 7 

In the case of a pair of congruent solids, some of the properties visible in one solid are 

not fully visible in the other. Some students found difficulty interpreting the diagram, 

perhaps because properties are hidden, or because some cubes are hidden behind others. 

4.8 Reliability coefficient 

In this section we calculate the Kuder-Richardson (KR 20) formula (Anastasi & Urbina, 

1997, p. 97-99), inter-item consistency (briefly referred to as "reliability") of the test, in 

relation to its administration over two academic years to 25 students. 

We start the statistics procedure by computation of the standard deviation of total scores 

on the set of items using the formula: 
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Z(x-x)' 

83 

(SCO' 
n - 1 

The Kuder-Richardson formula for the interterm reliability is: 

^ n ^ 
-

( S D ) ' - E pq 
(SD)' vn-17 

where: 

the total score on the test equals the sum of the scores for the separate exercises. 

rtt is the reliability coefficient of the hole test. 

n is the number of items in the test. 

SD is the Standard deviation of total scores on the test. 

E pq is the product of the proportion of students who pass (p) and the proportion who 

do not pass (q) each item. 

Question 1 2 3 4 5 6 7 overall 
Reliability - 0.64 0 ^ 7 « a 5 OjU 0 J 6 

Table 3.7. Kuder-Richardson inter-term reliability, by question, and overall 

Since all the students answered question one correctly, this question had zero variance 

of score and it is considered reliable. On the other hand, we removed question five from 

the test scores because the reliability result was considerably less than 0.5. In this 

question students answers fluctuated from one item to another. 
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Chapter Five 

Results from the group discussion experiment 

5.1 Introduction 

There were 7 students (referred to below as A, B, C, D, F, K, R) who participated in 

this experiment. These students were volunteers from a class of 12 pre-service 

secondary mathematics teachers at the University of Southampton, UK. All had 

completed a first degree in mathematics. Only one - student D - had any experience with 

polyhedra in their undergraduate mathematics courses. 

All sessions were videotaped and selectively transcribed. The guiding principle in the 

transcription and analysis of the tapes was search for evidence for or against various 

issues related to visual perception and image formation, in the context of group 

discussion of properties of polyhedra. These issues were: 

• Visual perception versus image formation 

• Difficulties with visual perception 

• Difficulties with image formation 

• Visual perception and motor actions 

® Image formation and motor actions 

® Increased perception in a social setting 

• Increased formation of visual images in a social setting 

® Different types of visual perception and imagery 

• Connections with test results 
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• Deepening of visual perception 

® Learning through discussion 

5.2 Results from the task sessions 

5.2.1 Visual perception versus image formation 

In the first excerpt below we illustrate a vivid example of heightened visual 

perception, obtained through manipulating and talking about a hexagonal bisection of a 

cube, during the group discussions. Note that students were shown only one half of the 

sliced cube. 

Figure 5.1 Hexagonal bisection of a cube. 

Student A (test score 85%, very good spatial abilities) had been answering questions 

about the hexagonal bisection of a cube and trying to describe it to 3 other students. 

Student K had particular difficulty forming an image of the object, so A tried to describe 

it differently. "A" began the description and suddenly perceived the object as a slice 

through a cube, something that this student had not seen before. Note that in this, as in 

other excerpts, the student who sees and answers questions about the polyhedron is 

labelled ''with polyhedron". 

A (with polyhedron): Start of with a big cube K. It's the easiest way, I reckon, to 

draw it. 
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K: Big cube. Right. 

A (with polyhedron): O.K. And then all you're doing is you're taking a complete 

slice through that cube, which will act... . Oh god! why didn't I think of saying it like 

that? 

Student A then related the slice of the cube to a previously established view of a cube 

along a line through diagonally opposite vertices. This confirms that, in this student's 

mind, the object they saw and manipulated was indeed a slice though a cube 

(perpendicular to this line). 

A (with polyhedron): You know how when you look ... down ... the apex of a cube 

and you've got your Y-shape, you've got your hexagon? If you slice through that Y-

shape so you take out that Y .. 

D: What plane of symmetry are we slicing though? Vertical or horizontal? 

A (with polyhedron): Neither. 

K: Right. Got my cube. Yeah. 

A (with polyhedron): Right. Now you know when you've got your Y-shape. 

K: Yep. 

A (with polyhedron): If you ... do you remember, if you slice through it ... you 

would see the hexagon at the back? 

Two examples of image formation occurred in this group discussion when students K 

and D attempted to describe their understanding of the unseen hexagonal slice of a cube. 

In the excerpt below we see how these students used hexagons, triangles and pentagons 

as perceptual units, and attempted to organise those perceptual units into an image of 

the object they were trying to understand. 
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C: This isn't easy to describe. 

D: I can see it in my head now, I just can't . . . . 

K: Oh, yeah, I can imagine it going up, and then you're going like that (waves 

hands). 

D: I can visualise it. 

K: The triangles .. do they meet at the top? 

A (with polyhedron): No. 

K: Because you've got your base and the triangles going up, .. and then you've got, 

.. {inaudible) you join the two up. 

A (with polyhedron): It's literally like you've taken the cube and you've taken a slice 

though it. 

D: Can we get back to what we were talking about before, sorry. We've got our 

hexagon, and we've got our three triangles on alternate sides and we've folded them up 

a bit. Then we said from the apexes of the two triangles we've got a kind of . . . forming 

like a midpoint between those, joined up making a pentagon on each side. 

In exercising their ability to form images, students K and D utilise perceptual units 

that have been previously interpreted. These perceptual units are triangles, cubes and 

hexagons. Without such pre-digested perceptual units the students would not be able to 

form such complicated images at all as Kosslyn (1996) indicates. 

5.2.2 Difficulties with visual perception 

Student F (test score 56%, good spatial abilities, but difficulties with figure ground 

perception) demonstrated difficulties in visual perception of complex polyhedra. In the 
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excerpts below, F is describing a hexagonal slice of a cube to two other students. F 

demonstrated some difficulties in describing this shape. F described the two-

dimensional faces, but could not name an irregular pentagon as such. F did perceive 

that this pentagon was constructed by cutting a square, but in contrast, was not readily 

able to relate the three dimensional shape to a cube. 

Student B had asked how many different groups of faces there were in the object, 

and then went on to ask of what those groups consisted. F's answer shows marked 

hesitation in describing the irregular pentagons formed by the slice. At this point the 

five-sided polygon does not seem clear to F: 

B: What does each in the group have in common? 

F (with polyhedron): One group is triangles, and .... uhm, the other group has one, 

two, three, four, five sides. (Frowns) 

R: Uhm,... can you say what the groups are again please? 

F (with polyhedron): Ahh, there's one group of three triangles, and there's one group 

of three shapes with five sides. 

R: Sorry, a group of three ... ? 

F (with polyhedron): Three shapes with five sides. 

Notice that F does not use the term "pentagon" to describe these five-sided shapes. 

This is consistent with other statement's F made about irregular polygons, and indicates 

that F uses terms such as "pentagon" and "hexagon" to describe only regular polygons. 

However, with prompting from student R, F states, hesitantly, that the five-sided figures 

are squares with a corner cut off: 
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R: Uhm, ... can the five sided shapes be broken down into simple, plane simple 

combinations of simple shapes? For instance, like a square with a triangle stuck on top? 

F (with polyhedron): Uhm,.... it's a square... with a triangle... cut off. 

Figure 5.3. Side view of a hexagonal bisection of a cube 

F shows no evidence of perception of the irregular pentagons meeting at a corner to 

form a cube. It is not until student R prompts F with a statement about a cube, that F 

begins to use the term "cube" at all. One could argue that F did see the part of a cube in 

the hexagonal slice, but simply did not volunteer the information without being asked. 

However, that is not consistent with F's volunteering information about symmetry as 

soon as it is perceived; 

R: Uhm, so the isosceles triangle .... (long pause)... are there, do any of these faces 

meet at right angles? 

F (with polyhedron): Yes. The, .... the cor.., uhm, the corners of the square that 

haven't been cut, yeah, they all meet at ... uhm.... at right angles, all the sides of the 

...uhm... adjoining faces meet at right angles on those, on those corners. 

R: So you could say, you could start with a cube. 

F (with polyhedron): Yep. 

R: At one point. 

F: Mm hmm. 
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F manipulates the polyhedron, sits it on its hexagonal face, and volunteers: 

F (with polyhedron): About the corner of the cube it's very symmetrical. 

R: Right, opposite that uhm, nice right angled corner of the cube, is the hexagon? 

F (with polyhedron): Yep, yeah. 

We infer that at this point F has perceived part of a cube in the polyhedron, and 

clearly perceives symmetry about a corner of this cube. This visual perception appears 

to be stimulated by R's question about a cube, and by F's tactile investigation, placing 

the hexagonal face on the table so that the corner of the cube was apparent. 

Student R speculates whether the polyhedron is really part of a cube, and initially F 

thinks not. On reflection F perceives that building onto the hexagonal face might 

produce a cube: 

R: If you were to take some putty or something, uhm, and fill in around where the 

rectangle is would it easily make into a cube 

F (with polyhedron): No, I think is probably the answer to that. Uhm, ... oh maybe it 

does. You would have to build it onto, onto the hexagon. 

What is striking about F's perception is that it seems to occur very slowly. It takes 

place often in response to questions from the other students, and F normally takes quite 

some time to respond, often turning the polyhedron over in both hands. 

5.2.3 Difficulties with image formation 

It is quite possible to have good visual perception but to still have relatively 

difficulty in forming images. The problem, it seems, is one that besets all students of 
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mathematics, and it is the problem of establishing repeatable units: in this case, 

repeatable perceptual units. Student C (test score 97%, very good spatial abilities) 

exhibited excellent visual perception in the discussion groups. For example, in 

answering questions about a dual cube octahedron (see Figure 5.4) C's visual perception 

was of a high order. 

Figure 5.4. A dual cube octahedron 

In particular, when answering questions about the triangular faces, and the square 

base pyramids embedded in the dual cube octahedron, C perceived that the isosceles 

right triangles formed the corners of a square: 

A:... and the isosceles form what sort of base? 

C (with polyhedron): Well they don't. There's like a shape underneath ... 

D: So, in essence, do we have an object with 6 square pyramids sticking out of it? 

C (with polyhedron): Yeah. 

C (with polyhedron): So what you need to know is what the object is underneath. 
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However, C showed problems in forming an image of a hexagonal section of a cube. 

C sat quietly throughout most of the discussion, and in response to student A, indicated 

a difficulty: 

A: C - you're very quiet 

C: Yeah ... my brain's turned to jelly. 

C then asked if scissors were available to construct a model from paper: 

C: I've got really bad drawing skills. I think I could make it if I had some scissors. 

This is indicative of C's difficulty in image formation. C tried to turn the, for her, 

difficult task of image formation, based on verbal questioning, into a problem of visual 

and tactile perception by physical construction of the object. 

In another episode C along with two other students, is trying to identify a rhomboid. 

C asks if each face is a square after A's determining that each face has four sides. We 

can postulate that in order to ask the question, C must have had, or been in the process 

of forming, an image of a square. 

A: How many sides does each face have? 

K (with polyhedron): Four 

C: So is each face a square? 

K: No 

However, immediately following A's question about the angles in the faces, C asks if 

each face is a triangle: 

A: Are all the angles of each of the faces right angles? 

K (with polyhedron): No 
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C: Is each face a triangle? 

K (with polyhedron): No 

A: What, with four sides? 

General laughter. 

If, as Kosslyn (1996) indicates, image formation is dependent on visual perception 

and uses the same brain mechanisms, then it is difficult to reconcile this question about 

triangles with an image of a square that was constructed but a moment ago. This might 

indicate a problem with C's working memory, but even so, it still indicates that the 

image of the square in C's mind was far from permanent. This, of course, is likely to be 

a result of K's answer "No" to C's question "So is each face a square?". However we 

infer that C asked this question on the basis of K's statement that each face had four 

sides. So however we look at it, C did not have more than a transient image of a four 

sided figure. C may have had a mental model of a four sided figure (Johnson-Laird, 

1996) but this mental model did not translate into an image that was maintained, 

inspected or transformed. Any image there may have been when C asked "So is each 

face a square?" appears to have vanished by the time C asks "Is each face a triangle?" 

(unless one wants to argue, perversely it seems to us, that a person can have an image of 

a square, or four-sided figure, and upon inspecting it ask "Is it a triangle?"). The point is 

that C's image of a square - if indeed there was one - was fragile, and vanished when K 

answered "No" and A asked "Are all the angles of each of the faces right angles?", 

bearing in mind that C had just heard K say that each side had 4 faces. 

However, C was clearly capable of reasonable image formation, despite having some 

difficulties, as the following episodes indicate. Student A explains that if one puts a 

cube on the ground, such that it keeps its face on the ground in a fixed position, and in 
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addition pushes the top, the required shape would be formed. This student did not take 

into account that just the lateral faces of a cube would change from a square to a 

rhombus, with the top and bottom remaining the same shape: a square. This was clear 

however to student C, who scored highly on the written test. She demonstrated an 

ability to understand the logic of the situation which, we infer, came from a mental 

image of a cube being pushed laterally: 

A: Would the shape be as if you had a cube, and then you tilted it one way? 

K (with polyhedron): Mmm, yeah., if I think about it I know what you mean. 

Teacher: ... he said to elaborate on something like "tilt" for example, ... if she 

wanted to. 

K (with polyhedron): What do you mean by tilt? Do you mean sort of almost pushed 

to one side? 

A: If you keep .. if you put it on the ground, if you put a sq.. a cube on the ground, 

and you kept the face that's on the ground absolutely in position, and then pushed from 

the top .... so that the whole thing sort of went out shape. Just skewed over. Does that 

make any sense? 

C: No,... the faces at the bottom will still be a square, won't they? 

Despite C's functioning at a high level on the written test (a score of 97%) - in 

particular, showing very good spatial abilities - overall C did not show evidence of a 

high level of image formation. C's visual perception was excellent, but this did not 

translate into a high, or even particularly good, level of image formation. This seems to 

indicate that image formation, whilst highly dependent on good visual perception, 

develops in different ways. We propose that the problem of image formation of an 

object such as a polyhedron is one of integrating local and global features. The problem 
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of high level visual perception of a polyhedron, sufficient to describe it in words to 

someone else, is that of differentiating local parts of the object. It was in the task of 

integration of parts of a complex polyhedron that C seemed to have difficulties. It seems 

that C's analytic skills of differentiation were of a high order but the corresponding 

synthetic skills of integration were not so well developed. 

This ability to imagine a cube being transformed, and to argue about the properties of 

the mentally transformed object, on the face of it indicates a high level of image 

formation. However what C does in this episode is to imagine a cube - a relatively 

simple task - and then imagine the cube transformed. This is not a task that requires 

integration of local and global parts. 

There are two ways in which C could have mentally transformed the image of a 

cube. One is by generating an image of a previously seen physical cube being sheared. 

The other is by altering the mental image of a cube in a novel way. We hypothesise that 

is possible but unlikely that C had previously seen a physical cube being sheared, and 

that this student was, indeed, transforming the mental image of a cube, de novo. 

5.2.4 Visual perception and motor actions 

In this study we also observed numerous instances of students rolling polyhedra 

through their hands, rotating, and generally inspecting the polyhedra from different 

view points. For example student C, inspecting a dual cube octahedron, rotated it 

forward and backward about an axis between the hands. We infer that this was not used 

to count faces. C was asked after this rotation how many faces there were, and then 

carried out counting by tapping eight of the triangles and announcing "48". The rotation 

seemed to be a systematic way for C to visually perceive the object. 
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Student F rotated an icosahedron away from the body about an axis between the 

hands, but not so vigorously as C did for the dual cube octahedron. Then F appeared to 

count the triangular faces of the icosahedron by tapping the faces with a thumb and 

finger. In answer to the question: "Are they joined at all in squared based or triangular 

based pyramids?" F rotated the icosahedron quite vigorously about a number of 

different axes before answering. 

The physical actions carried out by the students on polyhedra, in conjunction with 

low-level visual perception, are the driving force behind the relatively rapid 

development of high-level visual perception. Development consists of an integration of 

stimuli from these different modalities. This process is a selection process, not a 

construction process: students do not construct one particular form of high-level visual 

perception. Rather they form it through (probably unconscious) integration of certain 

selected elementary schema. 

5.2.5 Image formation and motor actions 

The literature on transformation of mental images makes clear that motor subsystems 

of the brain are involved (Kosslyn, 1996). However, as far as we can ascertain there is 

no substantial evidence that motor subsystems are involved in image formation. In the 

group discussions we observed many instances of motor activity associated with image 

formation. This motor activity did not seem peripheral to the formation of mental 

images. It appeared to be a natural result of a student trying to mentally construct an 

image. It was as if the hands, in particular, were reflecting an internal attempt to build 

the image in the mind. Some striking instances of this are presented in the table below. 

The verbal transcripts and descriptions of motion come from Student D who was 

trying to visualise a hexagonal bisection of a cube. 
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Statement 

'So it's like a V-shape on one side'' 

"So we're going to take the corner 

away?" 

"Do these three triangles meet in an 

apex above the hexagon?" 

"You've got a hexagonal base and 

on alternate sides you've got your 

isosceles triangles" 

at the moment I'm kind of like 

trying to draw a net, a net, of this type 

of thing., so when I fold the triangles 

u p . / ' 

Action 

Raises both hands to face level with 

hands apart, brings index fingers 

together along the lines of an 

imaginary "V" and runs the fingers 

back out again. 

Shakes hands about a body width 

apart, then lowers hands and vibrates 

them in and out towards each other. 

Makes a tent shape with two hands, 

with just one finger of each hand 

touching. 

Makes a rough polygonal shape 

with thumbs and forefingers of both 

hands. 

Moves hands from approximating a 

polygon on the table to a folding up 

and down wave motion. 

lidble 5.1. &4cyk)riictiorL3(X)rres])orKluigto \%:rbai statemexitscifsaiideiitlD 



Results from the group discussion experiment 9 8 

Student D was not a singular case: other students also used hand motions as they 

were trying to describe the formation of mental images. This motor activity is quite 

different to the motor activity we observed in visual perception, and seems to be a 

significant aid to students in their attempts to construct a coherent mental image. Its 

origin is unclear; however our hypothesis is that it is a significant, but not necessary, 

component in the integration of local and global features of an unseen 3-dimensional 

object. The hand movements appear to assist in bringing together the parts of an object 

into a global image, and seem particularly related to issues of dimensionality and 

position in space. For instance, D's hand movements related to making a polygonal 

shape, described in Table 1, appeared to indicate how D was thinking of the hexagon as 

a 2-dimensional object. Similarly D's making a "V" shape appears to relate to the 

appearance of part of a 2-dimensional face of the object. However D also indicates by 

the position of the hands how this face is situated in space. Whereas, D's making a tent 

shape with the fingers indicates that three faces meet in a certain 3-dimensional 

configuration. Thus, the hand movements appear to be related to dimensionality and 

spatial positioning, as well as to the integration of local and global features of the 

object. 

5.2.6 Increased perception in a social setting 

In the excerpts below we show how the interaction between student F and other 

students in the group leads F to a higher degree of perceptual awareness. Note that in 

the discussions reported, F has an icosahedron which the other students are trying to 

identify through asking questions. 

F's responses lack accuracy in spatial reasoning which affect the verbal explanation. 

For example, F shows difficulty in understanding the arrangement of sets of perceptual 
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units when describing the icosahedron. Before any questions are asked, F has begun to 

count the number of triangular faces of the icosahedron. F uses a thumb and forefinger 

to tap the faces whilst counting them. 

K: So, what are the faces shape wise? 

F (with polyhedron): Equilateral triangles. 

C: How many? 

F found it difficult to identify the correct number of faces, so we infer that F has 

difficulty in understanding the arrangement of triangles in the shape: 

F (with polyhedron): Ah ... Thirty, I think. 

C: It is too many .... (general laughter) 

Student A asks a question about pyramids, and F manipulates the icosahedron, 

rotating it in various directions, apparently looking for "pyramids". F decides there 

aren't any: 

A: Are they joined at all in squared based or triangular based pyramids? 

F (with polyhedron): Uhm. Pyramids? No. 

However, as result of this questioning F perceives a pentagonal base pyramid: 

F (with polyhedron): Well, unless mm ... ahh ... can you have pentagon based 

pyramids? 

A: I don't see why not. 

F (with polyhedron): Yeah, well they are then. 

Student D reflects on the existence of pentagonal pyramids in the icosahedron, and 

begins a line of questioning that allows F to see the icosahedron as a pair of pentagonal 
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pyramids, rotated with respect to each other, and separated by a pentagonal band of 

triangles (see Figure 5.5). 

D: Is there 6 pentagon based pyramids? 

F (with polyhedron): Uhm ... (Pause of about 15 seconds). 

D's question causes F some difficulty because in looking for pentagonal based 

pyramids, F cannot see these pyramids as disjoint sub-objects, but rather as overlapping 

(which indeed they are). F persists in trying to see the icosahedron as a disjoint sum of 

simpler parts but, because of the overlapping nature of the pentagonal pyramids, cannot: 

F (with polyhedron): It's got so much symmetry, they overlap. Uhm ... 

C: Oh dear! Is there any kind of basic shape, underlying it, like a cube? 

F: Not that I can see. 

C: Oh! Is it a totally irregular mass of triangles? 

F: No its very regular, but... ahh ..so it makes it difficult to separate into... uhm ... 

D asks a question about the way in which the pentagonal pyramids might sit with 

respect to each other. He seems to have a mental image which he "describes" using his 

hands - one placed at head height facing palm down, the other below it, palm up: 
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D: For instance, if I have like, a pentagon based pyramid. How many... is ...is... are 

they kind of like... say if there's one on top is there also one on the bottom? 

F (with polyhedron; without hesitation): "Yes". 

The fact that F answered instantly tells us that F did perceive two pentagonal 

pyramids situated as D describes. F could not see D's hand movements, so relied 

completely on D's verbal description. We infer that slightly earlier F did not perceive 

this arrangement of the pentagonal pyramids, because F says: "No its very regular, but... 

ahh ..so it makes it difficult to separate into... uhm". 

Student D continues questioning, and the evidence is that F now perceives and 

describes the arrangement of the shape, prompted by D's question and by the 

information contained in that question; 

D: If there is one on the left hand side is there one on the right hand side? 

F (with polyhedron): There's one at the top, there is one on the bottom... There's one 

F rotates the icosahedron in various ways apparently looking for pentagon based 

pyramids on the "left" and "right" hand sides. F places one finger on the "top" pyramid" 

and another on the "bottom" pyramid. However, F's perception is still relatively fragile 

as the following statement indicates: 

F (with polyhedron): It's just really regular so it's difficult to split it up. 

F finally gives evidence of a clear perception of the icosahedron as a disjoint sum of 

two pentagonal pyramids and a polygonal band of triangles (an anti-prism). 

K: When you say there is one on top and one on the bottom, there's five making ... 

five triangles making, making the pyramid. 
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F (with polyhedron): Yeah. 

K: ... on top, and five making the bottom, so there's four going around the outside. 

F (with polyhedron): If you take the top off and the bottom off, you're not left ... with 

any pyramids. 

D: What are you left with? 

In answering D's question F places one hand over the "top" pyramid and the other 

hand over the "bottom" pyramid to leave the triangular band. We infer that is precisely 

at this point that F obtained a perception of the icosahedron as a disjoint sum of two 

pentagonal pyramids and a band of triangles: 

F (with polyhedron): The rest of the triangles in sort of in a line joined up. So you 

get... 

Unseen student: If you take the overall shape, will it be sort of long or round? 

F (with polyhedron): Round. I'm making it harder than it is. 

What is important about this episode is the gradual increase in F's visual and tactile 

perception of the icosahedron as a disjoint sum of simpler sub-units. This perception 

was prompted by the other students trying to reconcile their images of the icosahedron 

through questioning F. In this sense F was making sense of visual and tactile data as a 

result of that questioning. 

5.2.7 Increased formation of visual images in a social setting 

Despite student F's having difficulties on the written test with image formation, and 

F's almost total absence of questions during group discussions of relatively complex 

objects, F was able, through the questioning of other students, to produce good visual 

images. For example, a group of 5 students asked questions in an attempt to identify, or 
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form images of, a hidden dual cube octahedron. In an episode lasting approximately 10 

minutes, F did not ask a single question. However F produced the following drawings in 

the process of constructing a representation of the dual cube octahedron: 

Figure 5.6. F's drawing produced in a group session to describe a dual cube 

octahedron 

During the discussion F listened intently and nodded agreement at various points in 

the discussion. We are led to infer that despite F's lack of questioning, this student 

could organise the answers to the other students' questions, and their verbal statements 

of what they thought the object was, into a coherent mental image. This appears to be a 

clear illustration that active listening can be sufficient to form a complex mental image. 

5.2.8 Different types of visual perception and imagery 

In this study the students exhibited four basic types of visual perception and four 

types of image formation, as indicated in table 4 below. In describing a focus on spatial 

relations we have used the term "diectic", (Logan, 1995). This refers to a focus of visual 

attention on spatial relations, between objects, of top, bottom, left or right - and the term 

"intrinsic" - which refers to a focus of attention on relations of parts within an object. 
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Visual perception 

Step by step description of local 

parts, focusing on features of faces. 

Focus on decomposition into 3-

dimensional parts. 

Focus on spatial relations of 

faces(diectic or intrinsic visual 

attention - see opposite. Logan, 

1995,p. 112) 

Global-holistic focusing on 3-

dimensional features, providing 

alternative descriptions. 

Image formation 

Transformation of previous 

images. 

Focus on decomposition into 3-

dimensional parts 

Focus on decomposition into 3-

dimensional parts and their spatial 

relations - top, bottom, right, left 

(diectic visual attention: Logan, 

1995, p. 112) 

Focus on metric relations such 

as angles and lengths, focus on 

combinatorial relations of edges 

and faces. 

Table 5.2. Observed types of visual perception and image formation 

The most commonly observed type of visual perception and image formation vyas 

separation of a polyhedron into different classes of faces. Another commonly occurring 

type of perception and image formation was a focus on decomposition of a polyhedron 

into 3-dimensional parts and the determination of the spatial relationships of those parts. 

A good example of this is recognition of an icosahedron as consisting of a pair of 

pentagonal pyramids, rotated with respect to each other, and connected by a pentagon of 

triangles. We observed only one instance in which a student tried to gain combinatorial 

information about the positioning of faces around the edges of a given face, and we 

observed only one instances of a student offering information on the number of faces 
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meeting at a vertex. We observed no instances of a student asking for, or offering 

information on the number of edges meeting at a vertex. 

5.2.9 Connections with test results 

We expected that attainment in the written test would be connected both with visual 

perception and/or image formation. Whilst there does seem to be a general indicative 

connection between test results and visual perception, the same does not seem to be the 

case with regard to image formation. 

The evidence suggests that students with high conceptual levels can have difficulties 

with image formation, whilst students with low conceptual levels can successfully form 

complex geometric images. For example, student C scored 97% on the written test and 

exhibited very good spatial abilities. This student also had good visual perception yet 

encountered considerable difficulties in the formation of images of complex polyhedra. 

Student F scored only 57% on he written test yet this student successfully formed an 

image of a dual cube octahedron from other students' questions. In the table below we 

provide some evidence that there is a general connection between test scores and visual 

perception. 
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Studen 

t 

Test score 

( % ) 

Visual 

perception 

Evidence 

A 85 Very good Hexagonal section of a cube; coming to see the 

corner of the cube during explanation. 

B 44 Adequate Irregular octahedron; 8 faces, not square; 

triangular. It's similar to two pyramids. 

C 97 Excellent Dual cube-octahedron; seeing the cube. 

D 72 Good Hexagonal prism; eight faces, subdivided down 

into 2 sets. 

F 56 Adequate, with 

help 

Icosahedron, hexagonal section of a cube; 

difficulties in seeing more than local features. Slow 

perception. 

K 4 9 Adequate Dodecahedron; describing twelve faces, all the 

same; regular pentagons. Agreed it was like a big ball, 

but described it as not round. 

R 77 Good Inverted cube (not a polyhedron); "One tangible 

and one intangible basic shape. ... The triangles you 

can touch ... the squares you can't touch ..." 

Hexagonal prism; 3 pairs of 4 sided faces and one pair 

of hexagonal faces. 

Table 5.3. Relation between test scores and visual perception 

5. 3 Learning through discussion 

5.3.1 Introduction 

Interaction between students, through asking questions and receiving answers, and in 

arguing about different images, is a strong stimulus to the formation of a satisfactory 
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and stable mental image. In the group discussions there were many instances of students 

achieving image formation and perception that were at a higher level than indicated on 

written tests, and at a higher conceptual level than their written test scores indicated. We 

conclude that such group discussions can form a significant tool for assisting student to 

gain heightened geometric perception and imagery of polyhedra in a relatively short 

time span. 

Many authors have discussed how meaning develops through interactions and 

interpretation (Von Glasersfeld, E. 1987; Yeackel, Cobb & Wood, 1990; Yeackel, E., 

Coob, P., Wheatley, G., & Merkel, G. (1990). Cobb, Yeackel, Wood, 1992; Yackel & 

Cobb, 1993). This work shows evidence that students can use correct understanding to 

access relevant information. This study also shows how group discussion can influence 

the knowledge between students from questions and descriptions that were understood. 

During discussion students exchanged information and shared knowledge. One student's 

description should determine what another student knew previously and what 

information they needed to provide. 

Our perspective, therefore, is to consider the integration between questions and 

descriptions and how this integration can give opportunities for the students to cross the 

van Hiele levels of thinking. We do not intend to say that this integration can always 

guide students to cross the levels in a common and fast way. The study of internal 

action is important for this activity. Concerning geometric language, internal action 

occurs when students select what to say among a number of alternatives. Examples 

from two sessions follow: 

5.3.2 Group 1: transcription of the rhomboid session 

A: How many sides has the shape got? 
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(Relevant information directly related to the shape was required) 

K: Six 

D: Is that six faces? 

(The question and answers previously given, were not sufficient to 

determine if they were talking about a two- or three-dimensional shape). 

K: Yes, six faces, sorry. 

(New knowledge acquired to use the language for two-dimensional and three-

dimensional shapes). 

C: Are they all the same? 

(With this question C in her mind tried to determine the kinds of three-dimensional 

shapes according to the type of faces). 

Questions were significantly different and asked sequentially to distinguish shape. 

A: How many sides does it face have? 

(This question is related to the class of shapes) 

K: four 

(Students will determine in their minds to what class the bi-dimensional shape 

belong). 

A: Would the shape be as if you had a cube, and then you tilted it one way? 

K: What do you mean by tilt? Do you mean sort of almost pushed to one side? 

A: If you keep... if you put it on the ground, if you sq... a cube on the 
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ground, and you kept the face that's on the ground absolutely in position, 

and then pushed from the top... so that the whole thing sort of went out 

shape. Just skewed over. Does that make any sense? 

This statement implies transformational equivalence. It involved an imagined 

transformation of part of one shape to obtain the other one. From the statement this 

student had the mental transformation but not in a view that involved the whole shape. 

In the student's mind, the transformation was not performed in a holistic manner. This is 

to be compared with Shepard and Cooper (1982) who, in their classic studies on mental 

rotation, support the notion that mental rotation is indeed a holistic process. 

Student C, however, did not accepted A's argument. 

C: No,.... the faces at the bottom will still be a square, won't they? 

In these two statements, A and C report how the sequence of their images was 

gradually transformed. C was able to form the image of a fragmented part of the 

transformed shape to obtain a conclusion. This statement indicates transformational 

correspondence of certain parts of a shape: the process involved imagined 

transformation of part of one shape to obtain other one. This implies that 

transformational equivalence is closely connected to mental transformation. 

5.3.3 Group 2: transcription of the rhomboid session 

B: Is it a complex object? 

(This student try to selects shapes in their mind without previous information) 

F:No. 

R: Is it made up of flat surfaces or curved ones? 
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(This student tries to select rounded shapes from flat-faced shapes) 

F: Flat 

B: Does it have the ...are some sides four sided? 

(A descriptive question which, when presented begins a gradual increase in the 

complexity of the mental task). 

F: Ah! They all are . 

(Gradually increasing the mental task) 

B: Is it a cube? 

(The student with little information was not able to evaluate that the information 

given was not enough to predict the shape; student's were still in the stage of processing 

information) 

F: No 

B: Is it a cuboid? 

(Student B tried again to predict the shape without precise details. At the time student 

B tried to predict the shape, they lacked relevant information and it was done in the 

stage of processing information) 

F: No 

B; How many sides does it have? 

(Student B asked a question about relevant features, but not sufficient to predict the 

shape. This question is related to the class to which the shape belongs). 

F:SrK 

R: What are angles between the faces? 
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(This student tries to keep in mind a model of a certain shape. This metric 

information required is a consistent pattern of his reflection, which is related to the 

representation of action and reasoning). 

R: An approximation will do. 

F Ummm.... 

It: 30,45,60,90? 

F: Uh, in one face, there are two sets of two sides which meet at 45...and uhm, the 

other two corners uhm...the angles are greater than 90.... and the. The sides are parallel. 

(This action presented distinct characteristic because the shape' description shows 

different means Regarding part of the shape). 

R: How many shapes are there? 

(Student R tries to extend his conclusion) 

F:Sw 

(This answer was already given previously). 

B: Are all faces identical? 

(Student shows that have been organising the action carried out in the activity. B had 

carried out a plan in questioning. This plan realises the main action.) 

F: Yes. 

B: Are the rectangles or cube....ahh square? 

(This question shown results given in reason, he formed images of some bi-

dimensional shape that he believe that can be the face of the polyhedron). 

F: Neither. 
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B: But they are all four sided. 

(conclusion was drawn from questions and descriptions. The previous knowledge, 

action and reason were strongly associated. It indicates that they were substantial part of 

the activity) 

F: Yes 

B: Are opposite sides, are they parallel? 

(Certainly, B try to form the image of the shape, and the questions became gradually 

relevant and it indicated that his reason were influenced by hierarchical level of the 

action). 

F: Yeah 

These statements described the same shape and it is clear to notice the different 

structure of knowledge among the groups. The actions taken determines exactly whether 

the part of activity is finished and whether there is an appropriate condition to start a 

new part of the activity. When students completed their action they were satisfied and 

finished their activity. They have shown efficiency and tried to discuss in a way that 

avoided problems related to the understanding. 

Student B starts by asking questions, but these questions were of weak relation to the 

related feature. Within the conversation, student B could cross the van Hiele levels 

asking relevant questions about the number and nature of faces, and about parallelism. 

Student B on the written test presented poor answers related to shapes' feature. This 

student also presented difficulty with the position of the shape in space perception. B 

could not distinguish a tetrahedron from a square based pyramid. 

The effect of these experiments extended to students needing to produce an 

understanding and how they used the geometric language. The concrete material was 
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useful and the effect was direct on the individual learner (the student who manipulated 

the shape in how this student produce construction with those that others has in their 

mind). Therefore, The concrete material was present on the learning environment which 

involved the pattern of mutual developmental understanding and mutual intellectual 

development, and development of social autonomy. Yackel & Cobb (1993) argue that 

autonomy is defined with respect to students' participation in the practices of the 

classroom community. Cobb 1989 & Sincler 1990 discuss that the mathematical 

learning is a process of activity construction. For them, the origin of meaning in 

students socially and culturally is situated mathematical activity. 

This experience in geometric relationships as essence of external representation was 

significant because the students could share their interpretation. This thesis explains 

how students construct their geometrical knowledge interacting with each other. The 

new knowledge is expanded into the learning environment. The previous knowledge, 

reason and action guides the generation of images. 

Students showed the ability to use a particular interpretation of the words they heard. 

Some conventional terms was used to connect the description with their imagery. Some 

statements were arranged individually. Their interpretative analysis was supported by 

their particular understanding. Cobb, Yackel & Wood (1992) said that, in social terms, 

the development of taken-as-shared ways of symbolising mathematical activity by the 

classroom community clearly facilitates mathematical communication. 

The statements were offered by students in differed levels. Certainly, because one 

was more able than other in pointing out specific parts of the polyhedron. The student's 

individual purpose was share with their colleagues their understanding. They connected 

mental images with the use of words, and all the students had opportunities to translate 

what image they were forming. The interpretation is influenced by the process. 
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5.3.4 Significant results from group discussions 

We focus on how students generate an image of a certain shape. The results show that 

students were capable of processing metric properties during the discussion group, and 

they exchanged knowledge in the construction of images of three-dimensional shapes 

from their verbal descriptions. 

The structure of a description is associated to the cognitive capacity of the students who 

manipulate the shape to describe it. So, it is important to say that the structure of 

descriptions are not uniform. Each student adopted their own characteristics to describe 

the shapes. We also observed that students formulated questions which were unsuitable 

to predict the shapes whose description they sought. As an example we see below, in 

group discussion 2, the question: "is it a complex object ?" The answer for this question 

is not related directly to the surface features of a particular shape. It is a mere point of 

view which could vary from student to student. 

The correct prediction of the shape described depends on the coherence of description 

(how people interpret their visual perception and images) and the memorisation of the 

description (how people integrate the given information, structured basically on 

language, to build a mental image). We collected evidence from the group discussion 

which showed that the students who listened to the description occasionally did not 

memorise part of the description, or forgot some information. 

While the shapes were described students memorised the description. They were able to 

construct spatial conjectures from their previous knowledge. So, an image gradually 

was formed. Both, propositional and metric information may be essential in the process 

of image formation from verbal description. We observed in the discussion group that 

students generally required metric information like the number of faces, or number of 
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sides each face contains. Prepositional information such as parallelism of faces was 

also relevant to both group discussions. 

5.3.5 Transcription and comments on a section of discussion group 1 

Student K (level 2) manipulated a shape behind a screen, out of sight of students A 

(level 3—>4 ), D (level 3) and C (level 4). Student A begins with a quantitative and 

relevant question, but uses the word "sides" rather than "faces": 

A: How many sides has the shape got? 

K: Six. 

Student D checks that "sides" means "faces" (two-dimensional polygonal boundaries): 

D: Is that six faces? 

K: Yes, six faces, sorry. 

C: Are they all the same? 

K: Yeah. 

Now student A uses "sides" to mean "one-dimensional simplicial boundary" 

A: How many sides does each face have? 

K: Four 

A: So is each face a square? 

K: No 

Student A then asks for metric information: 

A: Are all the angles of each of the faces right angles? 

K: No 

and student C, apparently not aware, or forgetting, that the faces have 4 edges, asks: 

C: Is each face a triangle? 
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K: No 

A: What, with four sides? 

General laughter. 

Again student A asks for pertinent information, leading her to identify the shape in her 

own mind: 

A: Are opposite sides of the face, ahh .. parallel? 

K: Yes, and they are all equal. I would say. 

A: So, it's a rhombus? 

K: Yes. 

D: (Inaudible) 

C: (To D) Each face is a rhombus. 

However, further questioning by student A reveals that the identification of the shape as 

a "rhombus" is still somewhat confused; 

A: Would the shape be as if you had a cube, and then you tilted it one way? 

K: Mmm, yeah., if I think about it I know what you mean. 

Teacher: ... he said to elaborate on something like "tilt" for example, ... if she wanted 

to. 

K: What do you mean by tilt? Do you mean sort of almost pushed to one side? 

Student A explains that if one puts a cube on the ground, such that it keeps its face on 

the ground in a fixed position, and in addition pushes the top, the required shape would 

be formed. This student did not take into account that just the lateral faces of a cube 

would change from a square to a rhombus, with the top and bottom remaining the same 

shape: a square. This was clear to student C, who was functioning at van Hiele level 4. 

She demonstrated an ability to understand the logic of the situation: 
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A: If you keep .. if you put it on the ground, if you put a sq.. a cube on the ground, and 

you kept the face that's on the ground absolutely in position, and then pushed from the 

top .... so that the whole thing sort of went out shape. Just skewed over. Does that make 

any sense? 

C; No,... the faces at the bottom will still be a square, won't they? 

D: Kind of like you had a cube but just sheared to one side. 

K; Yes. That's what I was trying to say. 

Student C initiates a discussion on parallelism of opposite faces, which leads the group 

to agree that they have identified the object; 

C: Are,... are opposite faces parallel? 

A: Does it have 3 pairs of opposite parallel faces? 

A: Top and bottom, are they parallel? 

K: Yes, If you were to look at it umm.. head on you could almost have a... well you 

have a diamond shape 

Others: yeah, yeah. 

K: That's right to say diamond shape, isn't it? 

A: It's a kite, yeah? Like a kite. 

K: Yes, 8 vertices. 

A: Don't get technical on me! 

10.3.2. Transcript of discussion group 2 

Student F (no assigned van Hiele level: level l->2 generally, but shows evidence of 

level 3 thought) manipulated a shape behind a screen, out of sight of students B (no 

assigned level: level 2->3, but lacks some aspects of level 2 thought) and R (level 3). 
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Student B begins with a question he asked several times in group discussions. This 

question, which is more or less subjective, does not focus on properties of the object, 

and is in keeping with B's lacking some aspects of level 2 thought: 

B: Is it a complex object? 

F; No. 

Nowhere had we told the students about the flatness or otherwise of the faces of the 

objects, so R's next question is quite reasonable. 

R: Is it made up of flat surfaces or curved ones? 

F: Flat. 

Student B asks a relevant question about the nature of the faces. Notice, however, that B 

uses "sides" in two senses. Then B asks two questions which on the basis of the known 

information, are merely guesses. Finally, B asks a pertinent question about the number 

of faces. 

B: Does it have the ... are some sides 4 sided? 

F: Ah They all are. 

B: Is it a cube? 

F:No. 

B: Is it a cuboid? 

F:No. 

B; How many sides does it have? 

F:Six. 

Student R asks for metric information about angles - in keeping with the assigned van 

Hiele level 3: 

R: What are the angles between the faces? 

Teacher: (After a puzzled pause from student F) We haven't got a protractor! 
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R: An approximation will do. 

F: Umm ... 

II: 30,45,60,90? 

F: Uh, in one face, there are two sets of two sides which meet at 45 ... and uhm, the 

other two corners uhm .. the angles are greater than 90 ... and the, The sides are parallel. 

Student R then asks about the number of faces despite B having already ascertained that 

there were 6. 

R: How many faces are there? 

F:Sb(. 

Student B again asks a series of questions which indicate a functioning van Hiele level 

2, in that the questions are more analytical. They also involve visual discrimination in 

which this student tested poorly. 

B: Are all the faces identical? 

F:Ye& 

B; And are they rectangles or cubes... ahh, squares? 

F: Neither. 

B: But they are all four sided? 

F:Ye& 

B: Are opposite sides , (inaudible) are they parallel? 

F: Yeah. 

Student R makes an attempt at identification, and after being unable to draw the object, 

asks a question involving symmetry, which one would expect at level 4. Note that this 

student has good spatial abilities in all areas and very good position-in-space abilities; 

R: So it's a sort of squashed cube really? 

F: Yeah. 
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R; I can't draw it... (inaudible) 

R: If you, er, if you pick it up, and turn it around in 90 degrees and put it down again, 

would it, would it fit back into its previous position? 

F; Yes. And there is a lot of symmetry in, in each face as well. Between, if you uhm, put 

a line between them ... bisecting angles 

We found that the interchange of knowledge that took place during the discussions 

contributed to the development of the students. This led some of them to a higher van 

Hiele level than that observed in the written test. For example, in the written test student 

B presented very poor responses related to properties of shapes. This student also 

showed problems associated with position in space perception. On question three this 

student regarded tetrahedrons and square based pyramids as identical. The discussion 

above indicates a relatively higher achievement for this student in relation to the written 

test. 

Comparing the above dialogues it becomes clear that group 1 used a better 

mathematical language than group 2. They were able to make clear when the discussion 

was about two-dimensional shapes (a face of the solid) or three-dimensional objects. In 

the beginning of the discussion, without consistent information, group 2 tried to 

determine the shape. Also this group used the word "side" without explaining carefully, 

or negotiating, what they meant. 

5.3.6 Fluency of mathematical expression and thought, and its implications 

It is quite possible for people to speak fluently about a scene as they describe it, either 

by seeing it directly or in imagination. However, we propose that such fluent verbal 

descriptions are related only to what we term surface features of perception or images. 
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Surface features are those aspects of an object or scene that require very little conscious 

effort to grasp. Deep features of perceptual objects, scenes, or of mental images are, to 

the contrary, those features that take considerable conscious effort to assimilate. For 

example, some surface features of an icosahedron are that it has 12 vertices and the 

faces are triangles. A deep feature is that an icosahedron can be seen as a non-

overlapping union of two pentagonal pyramids and a pentagonal band of alternating 

triangles; 

Apparently, the concepts of surface features and deep features are relative notions: what 

is a deep feature of a polyhedron, say, might be a surface feature for someone else. 

However, evidence presented in this thesis indicates that seeing some features of 

objects such as polyhedra are inherently deep features. Such deep features seem to 

demand practice and training, independent of the person looking at the polyhedra. 

We hypothesise that when a person examines deep features of an object, a scene, or an 

image, and attempts to describe those deep features verbally, two things alternate: (a) 

speech and (b) examination of the percept or image. It is just this alternation, in our 

view, that produces verbal hesitancy. 

Fluency of mathematical expression is not necessarily connected to fluency of thought. 

Thurston (1997) remarks: 

"It's true that clear, articulate verbal expression can be, and often is, an important aid to 

understanding. However, words and articulateness can also get in the way of 

mathematical understanding. 

"Articulateness in speech and in writing tends to be pretty variable, and not closely 

linked to clarity of thought. I can recall very vividly, at the age of about 5, trying to 

puzzle out the adult world, and arriving at the conclusion that as people age, they 
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become much more fluent and articulate, while at the same time becoming boring, dull 

and fuzzy in their thinking." 

In examples (1) through (4) below, pre-service secondary teachers are discussing 

polyhedra. Student F is holding and looking at either half a hexagonal section of a cube, 

or an icosahedron, in order to describe their features to other students who cannot see 

these polyhedra. F is asked questions by other students - R, D and C -

(1) F (with half cube): Uhm,.... it's a square ... with a triangle ... cut off. 

(2) R: Uhm, so the isosceles triangle .... (long pause) ... are there? do any of these 

faces meet at right angles? 

F (with half cube): Yes. The, .... the cor..., uhm, the corners of the square that haven't 

been cut, yeah, they all meet at ... uhm ... at right angles, all the sides of the ... uhm ... 

adjoining faces meet at right angles on those, on those corners. 

(3) F (with icosahedron): Well, unless mm ... ahh ... can you have pentagon based 

pyramids? 

(4) D: Is there 6 pentagon based pyramids? 

F: Uhm ... (Pause of about 15 seconds). 

F: It's got so much symmetry, they overlap. Uhm ... 

C: Oh! Is it a totally irregular mass of triangles? 

F: No its very regular, but... ahh ..so it makes it difficult to separate into... uhm ... 

D (trying to imagine the hidden icosahedron): For instance, if I have like, a pentagon 

based pyramid. How many... is ...is... are they kind of like... say if there's one on top is 

there also one on the bottom? 

Student talk in explaining and questioning is often hesitant. We hypothesise this is 

because students are thinking and explaining alternately. In the examples we have 
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given, the thinking involves searching for deep features of geometric objects or images, 

and it seems to be just this focus of attention that inhibits speech at that moment. 
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Chapter Six 

Estimating van Hiele levels from verbal discourse 

6.1. Introduction 

One of my objectives is to see if, during discussion, students use language that 

indicates a higher level of geometric thought - as evidenced by van Hiele levels - than 

they showed on the written test. This means that I have to provide a means of assigning 

van Hiele levels from verbal data. In this section I describe, for each van Hiele level, 

the type of language indicative of that level, and proto-typical examples of such 

language. Following that I describe how I will implement these language descriptions 

with transcripts of verbal data. There are two obvious ways to attempt to make an 

assignment of van Hiele levels from verbal data a reliable assignment. One is to use a 

number of experts and calculate an assignment reliability. Another is to specify, as 

simply as possible, criteria for assigning levels so that a relatively high level of 

expertise is not required. I adopt the latter approach. 

6.2 The van Hiele levels and verbal discourse 

Level 1 (Visualisation) 

Understanding basic geometric concept involves reasoning by the student at this 

level by means of a visual conceptualisation of ideas. Students observe polyhedra and 

identify them by comparing with mental images, but they do not identify properties of a 

polyhedron. They recognise simple polyhedra by their appearance without 

distinguishing their properties. They are able to recognise similar polyhedra with 

different sizes. What is characteristic of this level is the ability to identify polyhedra 
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without necessarily being able to analyse their determining components. Description of 

polyhedra at this level lacks information about integration of parts that form the shape. 

Type of verbal discourse: 

Language used at this level is very simple and describes the polyhedra as a whole. It 

involves an account of obvious surface features without analysis. Names are not 

necessarily used appropriately. 

Typical examples: 

"The shape has a lot of faces." 

"It is round." 

"Does it have a lot of points?" 

Level 2 (Analysis) 

A student distinguishes properties of a figure by informal analysis of the component 

parts. They do not grasp the relationship between different figures or between 

properties. The figures are recognised by their parts (faces, edges, vertices etc.). They 

do not grasp the relationship between different figures or between properties and they 

cannot explain relationships between properties. 

At this level students analyse polyhedra in term of their surface feature and 

relationship between properties. Observation of class in what the shapes belong can 

happen. Each property is observed separately. Students being to understand that the 

several features must be integrated to form a polyhedra. Some simplistic conclusion can 

be observed. Students can thinking in shapes rather than as a visual gestalt. Students 

pointed out the angles, faces. They are able to compare the different kinds of shapes of 

faces that compound the polyhedra. Some interpretation of verbal description in terms 

of the surface feature to construct draw. Description of the class which the polyhedra 

belong (by its properties). 
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Type of verbal discourse: 

Students can thinking and describe shapes using language naming the properties 

such as: shape of faces, vertices or corners and some others geometric properties 

appropriately. 

Typical examples: 

"It has six faces." 

"Does the shape have triangular faces?" 

"The shape has five vertices." 

"It has twelve edges." 

"Are there any square faces?" 

Level 3 (Informal deduction) 

A student, though the process of definition, distinguishes the relationships between 

properties and figures. Example: a cube has opposite faces parallel and right angles. 

They are able to classify families of solids. They use ordered logic to understand the 

properties of concepts and form definitions, but they are not able to arrange sets of 

statements. 

The characteristic of this level is to identify and integrate a set of properties 

discovering new properties by deduction. Students are able to give reasons for the steps 

in describing how a polyhedra is arranged. They can differentiate solids by comparing 

their properties. They observe that rotated solids change their view point but retain their 

properties. They provide full definition and arguments for assumptions. 

Type of verbal discourse: 

Recognise that a polyhedron is regular, without necessarily giving an argument that 

defines regularity. Comparing properties of two polyhedra. 

Typical examples: 
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"This polyhedron is formed from two different types of pyramids." 

"It is a tetrahedron, but the previous shape was a pyramid." 

"How is the pyramid arranged on the face of the cube?" 

Level 4 (Deduction) 

A student understands the ordered steps involved in proving theorems, using rules 

and axioms, and elaborates ordered statement one from another and provide definitions. 

They are able to develop a proof in more than one way. 

This level is characterised by students formulating logically original sequences of 

statements that justify their conclusions. Students at this level are able to compare and 

contrast properties that define a certain shape. They examine and formulate definitions. 

They are able to change their initial definition or argument using logic. They can 

create some support for their arguments Observation of a set of properties to be sure 

that they are enough to draw conclusions. 

Type of verbal discourse: 

When the description of a polyhedron is not clear for other student on the above 

level, rigorously and creative changes of initial argument occur relating this polyhedron 

as a part of other shape. This argument supports their anterior statements. Give 

argument when talk about shapes' transformation. 

Typical examples: 

Put a cube on the ground, keep the face that's on the ground fixed, and then push 

from the top, so that the whole thing skewed over. Will this give a rhomboid? "No... the 

faces at the bottom will still be a square." 

"What is the plane of symmetry? Horizontal or vertical?" 

"If there are 6 faces there cannot be 48 edges, because ...." 
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6.3 Assigning levels from transcribed data 

6.3.1 Information units 

When students are involved in verbal discussions to discover properties of 

polyhedra, they are engaged in either giving, or asking for, information. I follow 

Halliday (1967) and the Prague School of discourse analysis (see, Brown and Yule, 

1988 ; Chapter 5) in assuming that the students verbal utterances will contain 

information units: smallest segments seeking or giving information about a particular 

aspect of a polyhedron. However, I do not follow Halliday in his analysis of 

information units through stresses in speech. Rather we utilise a (modified) technique of 

Brown and Yule (1988) who claim that information units are delineated by pauses in 

speech. The basis for this idea is expressed by Chafe (1979) who "regards the pause 

length as a function of the amount of planning which the speaker is putting into his next 

utterance." (Brown and Yule, 1988, p. 163). Of course, it is possible that some pauses in 

speech are there for the very good reason that the speaker must breathe, and this will 

normally result in short pauses. For the purposes of analysis I claim, following Brown 

and Yule (Chapter 6, 1998), that verbal utterances bounded by pauses, but internally 

without pauses, are information units. The assignment of van Hiele levels will proceed 

on the basis of a classification of these information units. A piece of dialogue 

transcribed from the experiment described in Chapter three, will be used for the purpose 

of describing the technique to be used for assigning van Hiele levels from 

transcriptions of verbal data. 

6.3.2 Cohesive units 

Information units are determined by pauses either side of them. Often these 

information units are connected to one another, in sequence, in a psycho-linguistic 
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sense through cohesive markers of language, of which pronouns are an example (Brown 

and Yule, 1988). A sequence of consecutively connected information units I call a 

cohesive unit. In a general sense, all utterances in a cohesive unit are in some way 

connected by dealing with the same topic, as indicated by the choesive markers. 

Therefore, while I use information units as the basic utterances to use in the assignment 

of van Hiele levels, account needs to be taken of the overall sense, structure, and 

meaning of a cohesive unit in assigning a van Hiele level. An example of a cohesive 

unit is given below. 

A (with polyhedron): [You know how when you look] 1 .... [down]2 ... [the apex of a 

cube and you've got your Y-shape?]3, [you've got your hexagon?]4 [If you slice 

through that Y-shape so you take out that Y ...]5 

D: What plane of symmetry are we slicing though? ... Vertical or horizontal? 

A (with polyhedron); [Neither.]6 

K: Right. Got my cube. Yeah. 

A (with polyhedron): [Right.]? [Now you know when you've got your Y-shape?]8 

K: Yep. 

A (with polyhedron): [If you]9 ... [do you remember?] 10 [if you slice through it] 11 

... [you would see the hexagon at the back?] 12 

A's comments 1 , 2 , 3 , 4 and 5 individually constitute information units: they are 

each bounded by pauses but contain no pauses internally. Taken together, without the 

pauses, they constitute a consecutive set of information units that form a cohesive unit: 
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"You know how when you look down the apex of a cube and you've got your Y-

shape? you've got your hexagon? If you slice through that Y-shape so you take out that 

Y" 

The cohesiveness comes from various ties: the "down" refers back to "look" in 

comment 1, and forward to "the apex of a cube" in comment 3; "your hexagon" refers 

back to "Y-shape" in comment 3; and "that Y-shape" in comment 5, refers to the same 

"Y-shape" in comment 3. There are explicit formal markers of cohesiveness as well; in 

comment 5, for example, the first "that" refers back to the "Y-shape" in comment 3. 

Other cohesive units uttered by A are: 

"Neither." 

"Right." 

"Now you know when you've got your Y-shape?" 

"If you ... do you remember? if you slice through it... you would see the hexagon at 

the back?" 

To these information units we can assign minimal van Hiele level: that is levels at 

which the student is functioning at least. They may, of course be functioning at a higher 

level. 

6.4 Increase in van Hiele level from the written test to verbal discussion 

In the analyses below I present 3 students whose van Hiele level of polyhedral 

thought, as indicated by their verbal utterances, was higher than that indicated by the 

written test. 
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6.4.1 Student A 

Student A is visually inspecting, manipulating, and describing a hexagonal bisection 

of a cube. 

A (with polyhedron): You know how when you look .... down ... [the apex of a cube 

and you've got your Y-shape?, you've got your hexagon? If you slice through that Y-

shape so you take out that Y ... 

I analyse the information units in this cohesive unit as follows. 

1. [You know how when you look] 

I observe that this student externalises their image using speech. This statement is 

characteristic of van Hiele level 1 because the student did not clearly indicate the 

general nature of what they looking at. It is, of course, possible that the student's 

thought process are operating at a higher van Hiele level, but this particular statement 

does not tell me any more. 

2. [down] 

This is a very general statement about direction: it does not indicate anything 

particular about that direction such as "look", "put", "face" etc. Of course, I know from 

the previous information unit, to which this one is linked, that "down" expressly refers 

to "look down". However, as a single, self-contained, information unit it tells us no 

more. As we shall see, it is only when one takes into account the cohesiveness of a 

sequence of information units that one can link the assigned van Hiele levels into an 

overall assessment. The student is seeing something and indicating the position of what 

they see. However, all that this information unit gives us is a sense of direction. This, 
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by itself is characteristic of level 1. When we connect it with the first information unit 

however we can draw a stronger conclusion. 

3. [the apex of a cube and you've got your Y-shape?] 

This statement indicates a higher level of thought, van Hiele level 3 -> 4, because it 

is not related simply to visual perception but to an imagined object. The "Y-shape" is 

not a visual object, per se, rather it is a higher level construction from the visual data. 

This is a more complex observation than we would normally expect from someone at 

level 3. However it is possible that, for this student, the "Y-shape" was visually 

prominent, so on the basis of this information unit we should not assign more than level 

3 (or possibly borderline level 4). 

4. [you've got your hexagon?] 

This statement expressed an aspect of a two dimensional shape without an analysis 

of its components. This statement is indicative of no more than a basic van Hiele level. 

5. [If you slice through that Y-shape so you take out that Y] 

This statement indicates a high level of thought: van Hiele level 4. The student has 

mentally dissected the polyhedron into other polyhedra and used those to form new 

mental images. 

The other information units/cohesive units of student A in the reported conversation 

are related to van Hiele levels as follows: 

* [Now you know when you've got your Y-shape?] van Hiele level 3 because the 

utterance deals with the arrangement of faces on a specific part of the polyhedron. 
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*[If you]...[do you remember?] [if you slice through it] ... [you would see the 

hexagon at the back?] van Hiele level 3, because there is an expression of how the parts 

that comprise the polyhedron are related together. 

Taking all these information units which together form a single cohesive unit, we see 

that on the basis of this cohesive unit we assign student A to at least van Hiele 4. This 

student tried to explain some physical laws which are difficult to express verbally It 

seems that this student began from a basic level and their description became more 

transparent, more flexible, and more logical during conversation. 

6.4.2 Student F 

Student F is visually inspecting, manipulating, and describing an icosahedron: 

A: Are they joined at all in squared based or triangular based pyramids? 

F (with polyhedron): Uhm. Pyramids? No. 

The sound "Uhm" is, superficially not a pause: that is, F indicated something by 

making this noise, rather than saying nothing. However, in the spirit that pauses 

themselves are indicative of thought (Chafe, 1979), I interpret "Uhm" as a verbal 

indication of a pause, carried out by F whilst she was thinking. I will use this 

assumption in the rest of the analysis of F's conversation. 

The information unit [Pyramids? No.] is indicative only of van Hiele level 1: 

thinking of a shape as a whole. 

I break the next utterances of student F: 

F (with polyhedron): Well, unless mm ... ahh ...can you have pentagon based 

pyramids? 

into the following information units: 
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[Well, unless] 

[can you have pentagon based pyramids?] 

The information unit [Well unless] indicates a mulling over of imagined 

possibilities. In this sense, I infer, it relates to imagining alternative pyramids. Note, 

however, that in itself, this information unit tells us nothing about student F's geometric 

levels of thought. It is only when it is taken in conjunction with what preceded and what 

follows, that we can infer it as relating to imagined alternatives to triangular and square-

based pyramids. 

The information unit [can you have pentagon based pyramids?] is indicative of van 

Hiele level 2. This is because it shows a potential understanding of a pyramid in terms 

of its surface features, and relationships between properties. It also indicates an 

understanding that several features might be integrated to form a pyramid. 

The dialogue continues: 

A: I don't see why not. 

F (with polyhedron): Yeah, well they are then. 

The information unit [Yeah, well they are then] tells us nothing, in itself, about F's 

level of geometric thought. However, taken together with her previous information unit 

[can you have pentagon based pyramids?] I infer that images of pentagonal-based 

pyramid were actually formed in F's mind. . Note that "they" refers to more than one 

pyramid, and indicates that F is beginning to see some structure in the icosahedron. 
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This indicates that F is thinking at the beginning of van Hiele level 3: an understanding 

of structure, but no evidence of informal argument. 

F (with polyhedron): It's got so much symmetry, they overlap. Uhm ... 

Symmetry is not a direct visual object. Therefore, in the information unit [It's got so 

much symmetry, they overlap] F presented logical thinking. Here we have two phrases: 

"It's got so much symmetry" and "they overlap". The first is indicative of level 3 

because observation of symmetry, but no argument about it, is a level 3 characteristic. 

The second is indicative of thought at the beginning of van Hiele level 4: it indicates an 

understanding of structure, but does not include informal argument. The "they" in this 

information unit refers to the pentagonal pyramids: this is evident from the immediately 

preceding discussion. 

F: No its very regular, but... ahh ..so it makes it difficult to separate into... uhm ... 

Here there are two information units: 

[No its very regular] 

[so it makes it difficult to separate into] 

The information unit [No its very regular] indicates level 3 thought: it refers to the 2-

dimensional faces of the icosahedron. F showed an understanding to determine the 

polyhedron's regularity, because F knew exactly which of the geometric properties 

determine regularity. 
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On the other hand, at this moment, F shows ingenuity in terms of forming an image 

of a dissected three-dimensional shape. 

F (with polyhedron): There's one at the top, there is one on the bottom... There's one 

The information unit [There's one at the top, there is one on the bottom] indicates 

that F was able to form the image of pentagon-based pyramids in different locations of 

the polyhedron in question. The following information unit [There's one] indicates she 

saw at least one more pentagon-based pyramid in the polyhedron. These two units are 

indicative of level 3 thought: they show that F saw the icosahedron as having internal 

structure. 

On the basis of these utterances, therefore, we place student F at the beginning of 

van Hiele level 4. 

6.4.3 Student D 

Student D is listening to a description of a hexagonal bisection of a cube, and asking 

questions about it. 

D is asking questions of student A who holds a hexagonal bisection of a cube. 

D: What plane of symmetry are we slicing through? ... Vertical or horizontal? 

There are two information units here: 

[What plane of symmetry are we slicing through?] 
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[Vertical or horizontal?] 

The first indicates thought at van Hiele level 4, because D presented an 

understanding of symmetry (non visual structure), in particular that there would be a 

plane of symmetry. 

The second information unit also indicates functioning at van Hiele level 4. The 

interchange of vertical and horizontal reflects that an image of planes of symmetry can 

be formed. 

These two temporally connected information units constitute a cohesive unit relating 

to a particular form of symmetry. This cohesive unit is indicative of van Hiele level 4 

thought because it shows evidence that D is seeking a set of properties to be sure that 

they are enough to draw conclusions. Some inferences (from D's previous knowledge) 

like vertical or horizontal, regarding the location of the planes of symmetry, indicates 

that D is reasoning progressively, from a question about symmetry in general, to a 

specific question about the plane of symmetry. 

D: Can we get back to what we were talking about before, sorry. We've got our 

hexagon, and we've got our three triangles on alternate sides and we've folded them up 

a bit. Then we said from the apexes of the two triangles we've got a kind of... forming 

like a midpoint between those, joined up making a pentagon on each side. 

Here there are 4 information units: 

[Can we get back to what we were talking about before, sorry.] 

[We've got our hexagon, and we've got our three triangles on alternate sides and 

we've folded them up a bit.] 
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[Then we said from the apexes of the two triangles we've got a kind of] 

[forming like a midpoint between those, joined up making a pentagon on each side. 

which we analyse as follows: 

[Can we get back to what we were talking before, sorry] 

This is characteristic of thinking at van Hiele level 2 because the language used 

indicates a requirement to analyse informally what was discussed before. 

[We've got our hexagon, and we've got our three triangles on alternate sides and 

we've folded them up a bit]. 

This statement indicates thought at van Hiele level 3. 

A variety of properties are described sequentially. D's statement uses relations 

between two-dimensional shapes (hexagon, triangles) which are part of the 3-

dimensional polyhedron : the phrase "we've folded them up a bit" indicates he is 

thinking 3-dimensionally. The intersection of shapes in a technical language has been 

developed. 

[Then we said from the apexes of the two triangles we've got a kind of] 

This statement indicates thought at van Hiele level 2 because it lacks more 

observations of properties. 

The statement shows only an observation of triangles and a relationship between 

them. 

[forming like a midpoint between those, joined up making a pentagon on each side.] 
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This statement indicates thought at van Hiele level 3, because it indicates reasoning 

regarding structural relations of some of the polyhedron's properties. These properties 

are not complete but are logically ordered. 

The cohesive unit: 

"Can we get back to what we were talking about before, sorry. We've got our 

hexagon, and we've got our three triangles on alternate sides and we've folded them up 

a bit. Then we said from the apexes of the two triangles we've got a kind of... forming 

like a midpoint between those, joined up making a pentagon on each side" 

therefore indicates an overall functioning at van Hiele level 4. 

Most of D's further utterances in this session serve only to place D at level 3. An 

exception is the following: 

D; Kind of like you had a cube, but just sheared to one side. 

This constitutes a single information unit, which indicates thought intermediate 

between level 3 and level 4 because there is use of transformations (level 4) but the 

transformation is applied inappropriately. The term "cube" evidently indicates 

identification of the figure. There is the possibility that D had an image of the 

transformed figure in mind. However, part of a relevant description for the 

transformation of the cube into a new polyhedron was omitted. For D to indicate 

thought at Hiele level 4 it would be necessary to give some discussion of transformation 

of most of the cube's properties. 



Chapter Seven 

Results from the tactile experiment 



Chapter Seven 

Results from the tactile experiment 

7.1 Introduction 

Students used the polyhedra directly to touch them and to discover their form. First, 

students touched the whole shape. Then, they passed their fingers very carefully for 

several minutes over the edges of the polyhedron with the intention of exploring the 

contours of the two-dimensional shapes and identifying them. It happens because these 

two-dimensional shapes are parts which form the polyhedron. 

In this experiment, students exhibited considerable depth in tactile observations. 

According to Kosslyn (1996, p. 4) a given type of mental representation corresponds to 

a particular method used by the brain to store information. In this work we used both 

pattern and description to represent the same shape. Apparently, it seems to be easy to 

imagine and to draw a shape's determining contours, but the experiment showed 

evidences that it is not. There are differences between the process of recognising a given 

pattern and representing the image in the mind by patterns. The difficulty arose because 

students were required to draw the shape, and they were not given a pattern to recognise 

it. The images were formed in the students' minds and they tried to make a drawing 

corresponding to their images. The interesting point is that students understood the 

arrangement of certain shapes. They were able to distinguish and describe with details 

parts that make the shapes but they were not able to represent the image in their mind by 

drawing. 
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7.2 Achievements for haptic exploration 

Most of the shapes were identified efficiently by the students through only tactile 

exploration. 

Students were encouraged to use their interpretative skills: they used words to 

describe what they felt, and the data they needed to form the image of the shape. It was 

important for students to reach the level of performance demonstrated, not only to give 

the correct identification of a shape, but also to explain how they identified the shape. 

This experiment allowed the students to use only their hands to analyse the shape and 

discuss between themselves, showing their efficiency to form mental images of 

polyhedra. They could move their hands and the shapes during exploration, and this 

exploratory movement was guided and definitely related to previous knowledge about 

the invariant properties of shapes. 

Students put their hands in the box to start their observation. They used both of their 

hands. The polyhedra were carefully selected and designed to be of a size that the whole 

shape could be felt by the hands. The palm and fingers were used to rotate the object 

several times. They passed their fingers carefully from one vertex to the other to feel the 

size of the edges. Several times they briefly closed and opened their eyes. They used 

their fingers to count the number of vertices to assure the kind of faces the object has, 

and then they counted the number of faces. They paid attention to possible parallelism 

of opposite faces of polyhedron. They drew the shapes that they imagined, and then 

touched the polyhedron again in the same way that they started the procedure of 

observation, apparently to assure themselves that they imagined it correctly. They 

verbally described their haptic perception and finally they looked at and touched the 

shape. 
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Students executed hand movements and shape movements which are associated with 

contacting of all the area and contours of the polyhedra. Within these movements they 

could feel exactly where the segments started and ended, to get an idea of the shape's 

surface. In this way, they could distinguish the regularity and irregularity of the shape's 

faces. They could detect the junction in the objects, contours, and feel the angles 

between faces. The level of stimulation was related to the kind of shape. As an example, 

a simple and common shape like a cube was discovered soon, in the first touch, and a 

shape like an icosahedron, required students to try very hard to identify it. 

This experiment shows that the students were competent to form images and identify 

polyhedra. We consider the significant use of hands to investigate the shapes, the 

movement of their hands on stationary shapes, the style of exploration (using only one 

finger, more than one finger, using finger and palm), and the region covered by touch. 

In relation to the time taken to identify shapes, it is important to note that was a marked 

contrast compared to the visual field. This study presents evidence of the students' 

efficiency by observing motor skill activation during manipulation. Often the students 

used their hands to precisely determine the edges and other properties of the 

polyhedron. The first set of properties deliberately observed were related to the kind of 

faces and the number of faces. For them it represents the first step (but not sufficient 

information) to form the image of the whole shape. 
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7.3 Results of the experiment 

Both students acquired a high level of thought and precision in their perceptual 

abilities on the written test; 

Spatial Abilities 

Student van Hiele 
levels 

Perceptual 
Constancy 
of Shape 
and size 

Figure 
Ground 

Perception 

Position in 
space 

perception 

Visual 
Discrimination 

Spatial 
Relationship 

M 3 - ^ 4 Precise adequate precise adequate precise 
S 3 > 4 precise precise precise adequate precise 

Table 6.1. Student results on the written test. 

The graphic 6.1 below shows the time that students spend in the haptic exploration 

section. For each shape the time was divided into expecting shapes only, drawing + 

writing properties + more time expecting and time spending on discussion 

Time taken for inspection and discussion 
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Figure 7.1 Time (second) expended in the tactile experiment. The shapes are represented on the 
graphic as follows; 1-Cube, 2-Squared Pyramid, 3-Triangular Prism, 4-Cuboid, 5-Regular Octahedron, 6-

Irregular Octahedron, 7-Hexagonal Pyramid, 8-Dual Tetrahedron, 9-Rhomboid, 10-Dodecahedron, 11-
Dual cube octahedron, 12-cubooctahedron, 13-Icosahedron. 

This graph shows evidence that the cube was the easiest and the icosahedron most 

difficult shape of which to form an image. Two seconds after touching the cube the 
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students reported that they knew what shape it was. On the other hand, the icosahedron 

was the only shape for which the students were not able to form an image; consequently 

they did not identify it. The easiest shape to identify was a cube and students drew it 

after discussion about the shape. Dual polyhedron in which shapes intersect each other, 

students did not try to draw. 

Polyhedron total 
time 

cube 95 

squared pyramid 101 

triang. prism 103 

cuboid 133 

reg. octahedron 139 

irreg. octahedron 153 

hexag. pyramid 195 

dual tetrahedron 290 

rhomboid 319 

dodecahedron 424 

dual cube 
octahedron 

450 

truncated cube 
octahedron 

493 

icosahedron 1023 

Table 7.2 Polyhedra used in the haptic experiment and total time (second) 
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y = .268x + 5.962, r2 = .948 

i 8.5 

Figure 7.2 Reaction time as function of complexity of polyhedron 

(Haptic exploration) = 0.943, p= 0.0001 

Source Degrees of 
freedom: 

Sum of 
squares: 

Mean 
Square: 

F test: 

REGRESSI 
ON 

1 13.114 13.114 201.209 

RESIDUAL 11 .717 .065 p = .0001 
TOTAL 12 13.831 

Table 7.3 Analysis of variance 

The results above show that, for these students, the rank of the polyhedra, when 

ranked by total time taken for inspection/discussion, scales linearly with the logarithm 

of the total time. (Paranthetically, this suggests a way to measure the haptic complexity 

of polyhedra: Repeat this experiment with many pairs of people/students and see if the 

average and/or standard deviation of total time taken for inspection/discussion scales in 

the same way as above. If so, and it is consistent, then the rank of a polyhedron can be 

taken as a measure of its haptic complexity.) 
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7.3.1 Transcription, comments, and students' procedures during haptic 

exploration 

We select four shapes for discussion to present. Our intention is show the scheme 

used by students during the discussion. The four shapes chosen were: 

The cube because it was considered the easiest shape to recognise by only hands 

contact. 

The rhomboid because students (in the two distinct experiments the visual and 

tactile and the only tactile) related this shape with the cube. 

The dual cube octahedron because the polyhedron and its dual are placed together 

with their edges bisecting each other. This shape presents a large number of faces, and 

the faces present pointed arrangements which apparently are not easy task identify it by 

touch only. However, the students had no difficulty in identifying it. 

The icosahedron because during tactile exploration students indicated limited 

understand of spatial relations. Concerning this shape, in the previous visual-tactile 

experiment (Chapter five) a student who manipulated it found difficulty in describing it, 

and this student was helped by the others who could not see the icosahedron. Working 

with this particular shape in both distinct experiments students showed different 

difficulties. Note that these difficulties are not to be merely explained in terms of the 

presence or absence of visual sense during experiment. The complexity of this 

polyhedron affected the difficulty of students' spontaneously understanding the 

arrangement of its surface. 

For each of these four shapes, except the cube, the students in the haptic experiment 

felt difficulty in representing them in two-dimensional drawings. 
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Cube 

Students spent only two seconds inspecting this shape to identify it. This episode 

provides evidence that generally people tend to generate images when touching an 

object in order to identify it. 

Experimenter: Would you like to put your hands into the box? 

M: We both think we know what it already is. (touching with fingertips of both 

hands and rotating the object) 

S: We knew what it was as soon as we picked it up. 

M: Yeah. 

Experimenter: without naming it? 

M; Without naming it? Properties? (The shapes were stationary and M's fingers 

passed over the edges) 

Experimenter- Yeah, properties. 

M: 8 vertices, 12 edges, (M reported the properties of the shape while keeping it 

stationary.) 

S: 6 faces 

M: The question is all the edges are the same length. That is what I was trying to do, 

feeling and then move my finger. 

M rotated the cube using the hands. M used all the fingers to rotate the object, then 

ended the rotation. With only the fingertips of two fingers on the vertices of the cube 

the object was rotated again. 

Experimenter: And also...what did you say about the same length? 

M: The same length. Describe whether it is something or not. Which we are not 

allowed to say. 
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(continue rotating the shape touching the vertices with the fingers). 

Experimenter: So what is intriguing is that you know what it is. 

M: They feel as if they are of the same length. You've got to take the opposite ones. 

Experimenter; So what do you think it is then? 

M and S together: A cube 

The students looked at the object. 

Experimenter: You say you knew as soon as you picked it up? 

S: Yeah. As soon as I put my hands in and picked it up I thought that was a cube. 

Students reported that using only fingertips it is difficult to discover the shape: it is 

important to use all the hand to identify the object. They also reported that as soon as 

they touched the cube they felt that it had the same length on all sides. The tactile 

exploration also was efficient to allow students to produce an abstract description 

through understanding the shape's organisation. 

Rhomboid 

Exploring this shape the students took more time inspecting it before commenting, 

than they did for the cube, cuboids, prism, different kinds of pyramids, and octahedrons. 

The time spent inspecting the rhomboid was about one minute and twenty-five seconds 

before they started to draw and discuss it. 

Students touched the shape using palms of both hands, and fingers. In the first step of 

exploration they moved their hands around the surface of the shape and used their hands 

to cover all the surface of the shape. Then carefully they used their fingers, in a stroking 

fashion, to feel the edges. Student S placed one of the flat faces of the rhomboid on the 

box and inspected the edges, faces and vertices. The students wrote some of the 
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properties of the object and tried to draw it. Then they went back to feeling it to check 

the vertices, edges and faces. 

Experimenter: This one seems to be taking you longest to write things down 

M: Because it is not a common shape which is never a day to day shape until now. 

And also it is harder to draw in three-dimensions. If you can imagine it in your head it is 

still hard to get down on paper. 

M moved the hand around stationary shape and then rotated it. 

Experimenter: Why? 

M: Pardon? 

Experimenter: Why? 

M: Because to draw a cube, you sort of., you know how to draw a cube in three 

dimensions on paper. Because you've done it so many times before. To draw a pyramid 

you've it done so many times before. 

M retained the shape stationary in her hands without moving her hands around it for 

a few seconds, then started moving her hands again and finally puts the shape on the 

box^ 

From this moment both students M and S no longer used their hands to inspect the 

shape. We conjecture that they felt it necessary to use their hands to relate to 

dimensionality as well as to the position of each part of the shape. They found a way to 

externalise how they use imagery to explain the parts of the rhomboid. They described 

how they form an image of the shape. 

S: (Inaudible) ... picture it in my head it... It is kind of like uhm... Because the sides 

feel like they are the same length. (Both students M and S used their hand to show the 

two-dimensional form of the rhombus) 

M: Its a diamond. (M uses the hands to show the form of the rhombus) 
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S: It is a cube and you've done that with it... Done that and done that. 

Both students, M and S used their hands to indicate the parallehsm of the opposite 

faces of the rhomboid. They inclined their hands in a particular direction to show the 

transformation of the cube into the rhomboid. 

M: So it will be... The face is a sort of a diamond shape now instead of rectangular. 

S: So I worked out how to draw it. Because of how it felt so... How I draw a cube, it 

shift it sideways and tilt the side to draw in three dimensions. 

Experimenter; Right. 

S: It was a bit weird when I first picked it up, until I put it down so one face flat on 

the bottom of the box. So I could feel how... What sort of shape it was. It helped rather 

than turning it round in my hand. 

Experimenter: So it felt the same number of faces, edges and vertices as in a cube? 

M: Yeah. Six faces. Which is right, yeah. 

Comparing the discussion group of the visual-tactile perception (Chapter five) and 

the tactile- only perception, students in the previous experiment formed the image of a 

rhomboid comparing its features to that of a cube. Then they transformed the cube into a 

rhomboid. Below we have the transcription of part of a session of the visual-tactile 

exploration when students compared the features of the cube to those of the rhomboid. 

The students A, C, D and K took part in the visual-tactile experiment. 

A; Would the shape be as if you had a cube, and then you tilted it one way? 

K: Mmm, yeah., if I think about it I know what you mean. 

Teacher: He said to elaborate on something like "tilt" for example, if she wanted to. 

K; What do you mean by tilt? Do you mean sort of almost pushed to one side? 

A: If you keep .. if you put it on the ground, if you put a sq.. a cube on the ground, 

and you kept the face that's on the ground absolutely in position, and then pushed from 
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the top .... so that the whole thing sort of went out shape. Just skewed over. Does that 

make any sense? 

C : No,... the faces at the bottom will still be a square, won't they? 

D: Kind of like you had a cube but just sheared to one side. 

K: Yes. That's what I was trying to say. 

C : Are,... are opposite faces parallel? 

A: Does it have 3 pairs of opposite parallel faces? 

A: Top and bottom, are they parallel? 

Dual cube octahedron 

Students spent about three minutes and thirty seconds only inspecting this shape 

without talking about it. Firstly they touched the shape with the palm and fingers of both 

hands to feel if it had a generally round form. Then they examined the faces and the 

form of the different pyramids that together form the shape. Both students placed the 

polyhedra on the bottom of the box, where they held the shape stationary, and then 

passed their fingers over the edges. After having rotated the shape and still keeping it on 

the bottom of the box, they felt the faces that form the pyramids and passed their fingers 

along the edges. After that, they lifted the shape and continued their examination, 

rotating the shape and feeling the opposite pyramids. They touched the shape at the 

intersection of the edges. The examination continued, with them placing the polyhedra 

again in the bottom of the box and lifting it several times. One of the students passed 

their fingers around the shape as if trying to feel a cube. 

Experimenter: Is there anything you can mention about this form? 

S: Well I think... 
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This statement underlines an important part of discussion group that is thinking 

through discussion. It seems to be supported by students' observation of the dual 

polyhedron, because this student seems to be genuinely reflecting. 

M; It is kind of sort of big spikes and little spikes (inaudible) Four edges and three 

(touching and feeling the pyramids). 

S: Yeah 

M: It feels if it could be... It feels as if it should be two shapes which are 

intersecting, like the larger one is a tetrahedron and it feels that the smaller one is a 

cube, intersecting with something else (Rotating the shape placing their fingers on the 

vertices of the cube) 

M showed a high level of thinking. By only touching the polyhedron this student 

could understand that the edges, intersecting each other, seemed to be polygons placed 

together, so discovering that one of the parts underlying the shape is a cube. 

Experimenter; Is that what it feels like? 

M: Yeah. 

Experimenter: It feels that way? And you can now see that? 

M: No. 

S shakes the head sideways signalling "NO". 

Experimenter; S can you... Can you feel a cube then? 

S : Not really. I can feel that if you've got the three biggest spikes there is uh, a 

smaller one in between it. And if I move it round, if you've got the three big ones there, 

there's a smaller one in between. But... I don't... (Placing the fingers on three pyramids 

that are part of the octahedron and then point the smaller pyramid - part of the cube - in 

between them.). 
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M- I can definitely feel a cube. Definitely feel a cube (With eyes closed and the 

fingers defining the cube). 

This part of the experiment showed the usefulness of classification of shapes placed 

together. This means relating polyhedra that have significant properties in common. 

S: Yeah. Now I can (Rotating the shape until place their fingers to define the cube). 

M: It feels like a big cube. 

S: (inaudible)... It felt like a cube, but its a little cube. 

We can observe from the discussion between the students M and S their high level of 

geometric thought. The students' performance indicates to us the way that they form 

images of the polyhedron. What is important is that these students M and S have formed 

the image of parts of the polyhedron in question, namely the image of a cube. When 

students are able to distinguish the parts of the polyhedron they may be able to discover 

the whole. The dual cube octahedron proved difficult to determine by touch alone: its 

features were not immediately apparent to touch-only perception. 

Experimenter: You felt a little cube? 

S: With three vertices. So I just put my fingers on the eight ones and now it feels like 

a cube (With the fingers on the vertices of the cube). 

M gave answers which guided S to refine her geometric performance. It seemed that 

this experimental study helped students to learn naturally and from each other. The 

information they used was stored and retrieved from memory. Interpretations of the 

shapes' properties provided prediction of this shape. 

M: If you ignore the triang... Ignore the big ones for a minute. Then... 

S: OK. I've got... I've got my fingers on the... on the vertices. 

M: On the cube? 

S: I'm holding the cube. 
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M; And ignore the big ones for a minute. 

S: (inaudible) And then you've got... Its like a cube with like... Its like these 

pyramids stuck on each face. 

Students could gradually form an image of the polyhedron in their minds. To 

recognise and classify a polyhedron that is composed of intersecting of polyhedra 

requires a development of understanding shapes. In this experiment, students acquired 

insight which was related to their background. 

M: Yeah. That's what it feels like. Yeah. 

Experimenter; Have a look. 

This experiment indicates students' development in perception by only haptic 

exploration. The students see the shape in their minds. 

M: A small cube. 

Experimenter: I'm afraid first of all you said that... That... That M it felt like a cube, 

but you didn't see. You quite literally feel... 

M: Yeah. 

S: Yeah. What M said about (inaudible) my fingers (inaudible) the vertices... 

(inaudible) 

Experimenter: Yeah she did. I heard M before. 

S: (inaudible) ... the fact that I was holding the cube without the (inaudible) just 

going like that in each face. 

Experimenter: When M was holding the cube I was about to say Here ... is. You can 

see the fingers sitting on the... sitting on the vertices of the cube. It was pretty clear that 

one. 

M: Yeah. Once you ignore the... sort of the odd bits and... 
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It is not easy to predict this polyhedron which is a pair of intersecting dual shapes. 

However, one of the intersecting shapes was a cube. Students did not feel that it was 

easy to notice the distinction between these two intersecting shapes. It requires a high 

level of understanding of the complexity of the structure of the shape. 

Experimenter: Yeah, you were trying to ignore the... 

M: See.. I think that the only reason that I actually saw the cube was because of the 

last one, where it was the two intersecting tetrahedra and it suddenly made me think; Ah 

may be this is something that is intersecting. 

Experimenter: But when you finished off you said a cube with square based 

pyramids stuck on the side, when you've got that description, did you have an image or 

not? 

S and M; Yeah. 

Experimenter: You did. And what about before the final verbal description or after 

do you think? 

M: Just before. 

S: Yeah. I could feel the cube sort of move my fingers on the top felt where it were. 

And just... I suppose you see it as you say it, if you see what I mean. You have to know 

what it looks like to be able to say what it is. 

M: Yeah. 

S: If you see what I mean. I couldn't have known that there was a square based 

pyramid on each face, because I didn't know that is what it was. Trying to put that into 

words. Sort of a split second after each other that you see it and say... you know what to 

say. Its not seeing it saying what do I call that? 

Experimenter: Yeah. 
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Icosahedron 

This was the longest part of the haptic exploration section. Students spent a long time 

and made many tentative explorations to form images. They used their hands, moving 

them around the icosahedron to feel that it is a convex shape. They passed their fingers 

from one vertex to the other over the edges. They rotated the shape several times. They 

placed their fingers over opposite vertices and then apparently tried to count the 

numbers of faces meeting in one vertex. They placed the shape flat on the bottom of the 

box, rotated it, and tried to draw it. Most of the time they inspected the shape carefully, 

and when they started to talk about it they did not show a great deal of confidence 

compared to their talking about the other shapes. They made considerable progress 

during discussion, however, they were not successful in identification of the whole the 

shape. 

Experimenter: Can you say anything about those? 

M: I can say what the faces are (Rotating the shape in the hands). 

To perform a complex task, that is to identify the icosahedron by tactile exploration, 

involves an understanding of the shapes' arrangement that is conditional on the tactile 

input data. Learning arises in the experiment through the knowledge that students bring 

to the experimental situation, their tactile explorations, and their discussions with each 

other. Students geometric development requires gaining some knowledge of features 

which characterise the polyhedron. M is probing features of the icosahedron by relating 

her tactile sensations to images built from stored memories which she retrieves at the 

time of exploration. 

Experimenter: Yes, well?... 

M and S: Triangular shapes. 



1 S7 
Results from the tactile experiment 

Experimenter: umhum. 

M; From what I can see... See if I can find a top to it, but somewhere like where it 

sits on the ground. From each sid... edge of the top triangle, another triangle comes 

down from it... (inaudible) 

S: How many pictures have you done? 

M: And from the point... Two other points of triangles... Vertex, two other vertices 

come on to each point on the top (Passing the fingers from one to other three vertices of 

the triangle and over the edges). 

In this stage of their exploration, the students tried to obtain control over the shape's 

features. They showed difficulties in discovering them. This experiment provides 

evidence that the properties of an icosahedron were not directly perceptible for them by 

touch data alone. 

S: I'm trying to imagine the next section (with the polyhedron placed on the bottom 

of the box, one of the triangles was in contact with the box and S rotated it passing the 

fingers over the edges of the top triangle). 

M: Six from the edges. And then... 

S: It.. three edges and three vertices so... (rotating the polyhedra) 

M: Yeah. Oh six, I was looking at the three edges. 

S: Six, yeah. 

In this phase of their exploration some important properties were not pointed ou by 

the students. They discussed some quantitative details, but lacked substantial discussion 

about the shapes arrangement. 

Experimenter: So what sort of image do you have now? 

S: Kind of like pentagons. 
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Students felt little difficulty in describing the images in their mind. S described a 

'pentagon' which is a two-dimensional shape and which is not a face of the 

icosahedron. This student imagined and discussed the shape at a more abstract level: 

what we have termed "deep perception". S was not able to dissect the icosahedron into 

two pentagonal pyramids and an antiprism. However, S could "feel" the pentagon that 

is the base of the pentagonal pyramid around the icosahedron, 

M: But triangles. 

S: Triangles. I can't quite... It's like... I suppose its kind of like it was before. Where 

you've got... it got like the middle bit (inaudible). 

M: But it seems to be more irregular. 

Experimenter: Its a lot more... 

M: Irregular. Its shape, than the pentagon... It feels it is just a random number of 

triangles stuck together to make a solid (With the shape on the hand passing palms and 

fingers over it). 

Students presented considerable interest in sharing their experience, and the language 

they used was adequate to this task. However, some problems arose in the interpretation 

of their perception. For example; an icosahedron is a very regular shape, but the 

students constructed an image of an irregular shape. 

M asks S: Can you find what is the top or the bottom? 

S: If you put flat on the bottom of the box, yeah. 

M; Then it feels two equilateral triangles on top and bottom. Isn't it? 

S; Yeah. 

M: Then you see what I mean when I said a triangle comes down from each edge. 

S: (inaudible) ... vertices. That would make six triangles around the top and six 

around the bottom and two... 
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Experimenter: And how many is there would you say? 

M: Fourteen. 

S: Fourteen. I think. Not by counting them, by... If you have a triangle at the top 

which it has got three triangles joined on its edges. Then three at the points... That 

seems to make six around the top bit. 

Students retrieved information that was accessible from their memory, allowing them 

to develop learning under the conditions of the experiment. On the basis of the 

statement above, students indicated an ability to express their understanding of the 

organisation of the triangles. This performance involves input information on memory 

and comparing the tactile sensory data from the concrete model to their mental 

representations. 

M: And six around the bottom as well. 

S: So it will then have six around the bottom bit. So that makes fourteen faces. 

This quantitative information could be helpful when students determine the class that 

a particular shape belongs to. An icosahedron has a considerable number of faces, and 

students felt it hard to count the them. Furthermore, these students failed to understand 

the arrangement of the shape; around each equilateral triangle there are nine other equal 

triangles. 

Figure 6.2 Icosahedron 
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Experimenter: If you put a finger on one of the vertices and you were doing 

something around it. 

M: Yeah. That is what I was trying to work out. How many uhm. It was like. I found 

the top. Sort of the top triangle for example. And I found the vertices, I was trying to 

work out how many triangles were coming out of that. Coming into that vertex. So... 

M lifted the shape, rotating it in the hands, and then placed it again on the bottom of 

the box, passed the fingers over the edge of the top triangle, lifted the shape again and 

passed the fingers over the edges of other triangles, and tried to count the number of 

triangles. Then, M tried to cover all the surface of the shape with both hands. 

Experimenter: And what was the answer to that? 

M: Three 

S shakes her head sideways. The students count again. 

M: There is five triangles going into each... Five triangles going into... I've got a 

point which has got five triangles coming into it (M pass a finger over the triangles). 

S:Yeah. Five 

M: (inaudible) (Trying to cover all the surface of the shape with both hands) 

From their interest in knowing the sequence of the arrangement of the triangles, 

students came to observe the number of triangles meeting in each vertex. This was in 

marked contrast to students reported in Chapter five who, in trying to form images of 

polyhedra, never asked questions about the arrangement of faces at a vertex. 

S: It sort of.. 

Experimenter: Have you counted the vertices? Have you counted on the other ones? 

M: Uhm yeah. It is harder with this one because it is all irregular. 

The students' view of regularity of the shape provides a strong constraint to the 

possibility of their identifying the whole shape. 
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S: It is like a triangle on the top, a triangle on the bottom, and then there is like a bit 

around the middle and they sort of slope up and there then up and there. 

S left the shape on the box and used hands to explain the position of the triangles, 

then used the thumbs and index fingers to represent a rounded part, probably the 

pentagon, and then joined the middle fingers representing the top of the shape, finally 

placing hands parallel and join them on opposite to the representation of the top of 

shape. 

Experimenter: Can you imagine... You said you were looking at the vertex that had 

five triangles coming of them. If you look straight down that vertex can you imagine 

what you would see? 

M: Yes. It is sort of looking down at a point with a pentagon sort of around it. The... 

So the point will be at the centre of the pentagon. Is it a pentagon? Yeah. But then it 

seems to be a little point... but underneath the pentagon then it is not the same on the 

other side its irregular. It's underneath (Uses the fingers to represent the pentagon and 

then check on the shape if form the pentagon and try to cover the region of the pentagon 

with one hand). 

Experimenter: What do you mean underneath? 

M: So what you can't see. It will be hidden, like behind the pentagon. 

This phase of learning shows students' increase in mastering the icosahedron, 

including detection of parts of the shape, but presenting difficulty in relating this part 

with the other parts of the icosahedron. 

M: It is not sort of symmetrical. But I it could be. 

M tried to feel some symmetry in the shape, but it did not seem obvious to her 

because she did not yet associate all the parts that form the whole shape. Consequently, 

there once again arose a difficulty for her to decide the regularity of the shape. 
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S: Does it make five edges. 

M: Seems almost like there is two bits to it. There is one shape, and then half of one 

shape and half of another as before. I feel as if I could slice across one bit (M touch on 

the two pentagonal pyramids on the top and on the bottom of the icosahedron). 

Experimenter: Did you say that the shape was regular or irregular? Regular or 

irregular? 

S and M: (inaudible) 

S: I feel like it should be regular. But it doesn't. 

M; I don't think it is regular. 

S: That makes sense. They feel like... They feel like they are equilateral triangles. 

Again these students were not able to distinguish the regularity of the shape. 

Furthermore, they did not identify the icosahedron. On the other hand, the students' 

argument indicated their high level of geometric thought regarding regularity. 

Equilateral triangles are a very regular two-dimensional shape They recognised that the 

three-dimensional shape in question was formed only by equilateral triangles. They 

understood that it is not enough to indicate the regularity to identify the polyhedron. 

Experimenter: Right. 

S: So the shape should be a regular shape. 

Experimenter: Where do you feel... feel the pentagon? 

M: Where? 

Experimenter: Where? 

M: Across that ring there. 

S: Around the middle. In the middle. Yeah. 

M: With the point there. 

Experimenter: How many pentagons did you feel? 



Results from the tactile experiment 

M: How many? 

Experimenter: Yes. 

M: (inaudible). Its two pentagon bits with something in the middle. With a ring 

around the middle. And that ring is triangles. So that is going to make... five, ten...uhm. 

(M tried to count opposite pentagons). 

M and S count. 

Experimenter: What were you saying about the ring of triangles? I think you said 

there were two pentagons on this. And a ring... A ring did you say? 

M: Yes. 

Experimenter: And then... 

M: A middle section, two points with., if you're looking from above each one, a 

pentagon shape, that you would see. I think towards each ... point. And then a middle 

section which 

S says to M: Rather than having... I mean rather than have it flat at the bottom, if you 

turn it that way, you would see a pentagon. 

M: Yeah. If you turn it with the vertex that has got five... 

M counts. 

S: All the vertices have (inaudible) 

M: That means they all have it which ever direction you look at the... 

S: If you looked at it flat... 

Experimenter: Can you see this ring that...? 

S: Yeah. I was looking at it so I had one of the triangles flat at the bottom of the box 

and trying to look at it that way, 

Experimenter; Right... Yes... 
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S: But what M was saying, if you put one the vertices facing you then if you... say if 

you drew that flat you would have a pentagon, I think. That is what you saying isn't it? 

M: Yeah. And for whichever vertex you take it... (Inaudible)... so whichever view 

you have of it, as long as you have a vertex pointing towards you, you've got a ... sort of 

a pentagon shape. Now how do you draw it? 

Students paid attention to the vertices which indicated an important part of the shape 

that could help them in understand the whole. The students' minds had processed tactile 

sensory data which was aimed at optimising their overall performance in identifying a 

complex shape. 

S: If it was flat... If it wasn't... If you look at it straight... 

M: Straight down yeah. 

S; You'd see a pentagon. 

M: You'd certainly see a pentagon, but I don't know what else you would see as well 

as the pentagon, but you'd see a pentagon. 

S: Yeah. 

M: I don't know about the things that would stick up beyond it (S tried to draw the 

shape that she imagined) 

The students see the shape. 

M: Oh. It is very simple and very regular isn't it? 

S: It didn't feel like that at all. 

Experimenter: No? What did it feel like? 

M: Very irregular. 

S: Yeah. The triangles... 
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M: Weird. This is the ring I was talking about. And I knew there were triangles one 

that way, one that way, one that way... And that you had a pentagon bit there and a 

pentagon bit there with the ring. 

7.4 Test results versus verbal discussion 

In this section we compare the vocabulary used on the written test and in verbal 

description during the study. The students' interaction provided for an improvement in 

their geometrical performance. The evidence from the test results presented in table 6.1 

and from students' description of poiyhedra, indicates that both M and S present high 

geometric ability. These students are close to accessing van Hiele level four. 

In the tactile experiment, as in the test responses, students paid attention to the 

shapes' properties, such as the kind of faces, and numbers of faces, edges and vertices. 

On the other hand during discussion they could express more about the shapes' 

properties: for example, symmetry was very little mentioned on the written test and 

mentioned much more during student discussion. Other examples of properties 

mentioned only in the discussion group were: 

During discussion of a cube, M reported that all the edges are the same length. 

Both M and S described the rhomboid indicating the parallelism of the opposite 

sides. 

They described the arrangement of the faces, and how these faces intersected, for a 

variety of poiyhedra. 

In her description of the dual cube octahedron, student M described the cube and the 

octahedron as intersecting to form the polyhedron. 

What is contrasting in the students' test responses and group discussion is the 

students' understanding about regularity of shapes. Neither student give a satisfactory 
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argument to define regularity on the written test. However, M's answers were more 

consistent than S's answers. For example: 

M answer that a regular shape is one in which: 

"...symmetry exists, for example a triangular based pyramid with the same size sides 

as base is regular. Symmetry occurs down the middle." 

M distinguished regular and irregular shapes. 

S answered, a regular shape is one in which: 

"... each of the edges are the same length." 

On the item that required distinction between regular and irregular shapes, S gave 

blank answers. On the other hand, in the discussion about the icosahedron, M and S 

both ran their hands over the equilateral triangles and decided it was not a sufficient 

condition to determine the regularity of the shape. 

These results indicate that in group discussion students can be involved in a strong 

effort to understand shapes compared to the results of written test. The evidence showed 

that the interaction between the students during group discussion can stimulate thinking 

deeply, because one student may influence the other to think with their comments or 

with their questions and answers. 

7.5 Aspects of tactile perception and the graphic representation of the 

polyhedra 

This section explores the graphic representation of the three-dimensional form that is 

the drawing of the polyhedra made by students during their haptic exploration. With this 

scheme we can observe the students' drawing which generally is topologically stable. 

By these drawings, that contain geometric information such as kind of faces and surface 

organisation, students are trying externalise what they have perceived. This technique in 
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which people get information and then try to represent it graphically (when it is 

possible) can be a way to indicate peoples' geometric insight about the relationship 

between a shapes' properties obtained by haptic perception and mental image formation. 

Students tried to identify three-dimensional objects and then represent them in two-

dimensional patterns. This identification involves real objects and mental models to 

obtain a graphic representation. Familiar shapes such as a cube, cuboids, pyramids in 

general, and octahedrons, did not present difficulty in drawing for students. 

Occasionally, it is complicated to match a two-dimensional image with a three-

dimensional model. Some problems arose regarding some shapes that students could 

identify but felt they had difficulty in drawing completely the object that was in their 

mind. Some of the polyhedra such as a dual cube octahedron and dual tetrahedron, 

which are shapes that intersect each other, students identified but did not try to draw. It 

occurred because the drawing approach presents projection in a perspective view that is 

qualitatively different from the three-dimensional model. A drawing only shows one 

view of the shape. For example a cube is made with all its faces square, so all its 

internal angles have ninety degrees. However, when we draw a cube the faces may not 

be represented by squares, and consequently the angles are not all ninety degrees. The 

projection is simple to draw in this case. In order to be specific, students presented in 

their drawings, a local arrangement of the parts of a polyhedron to give an oriented 

view. They also represented the hidden parts: the internal contours of some hidden parts 

that are transversal lines (representing the edges) crossing the lines that represent the 

parts not hidden. So, the view in perspective may produce some changes on the surface 

and other invariant properties of the polyhedron. This is the constraint in representing 

three-dimensional forms with two-dimensional forms. 
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8.1 Test results 

On the written test there were several ways students indicated understanding of three-

dimensional shapes. First, they imagined the two-dimensional shapes which formed 

parts of the three-dimensional object. Secondly, they thought about the arrangement of 

the two-dimensional shapes to obtain the three-dimensional object. Thirdly, they 

thought about the three-dimensional properties, including simple and familiar properties 

such as the number of vertices, and the number of edges. 

In relation to those questions on the test that asked for the properties of the 

representations of three-dimensional shapes, some of the students gave insufficient 

information about the shapes' properties. This is one of the reasons for some poor 

results that were obtained. On the other hand, their oral description of the geometric 

shapes by touch and seeing were more precise than their descriptions on this test. 

The results of the van Hiele test in three-dimensional geometry generally conformed 

to the hierarchical nature of the levels (Usiskin 1982, Mayberry 1983, Burger & 

Shaughnessy 1986, Gutierrez 1991) in a three-dimensional geometric setting. While it 

would be desirable to apply statistical procedures to test for the hierarchical nature of 

the levels we know of no such test. Private communication with Z. Usiskin of the 

University of Chicago confirmed that he too is not aware such a test. This would be a 

highly desirable statistical test to have, and perhaps techniques from item response 

modelling {ref. Anastasi & Urbina, 1997) could be of assistance. 
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However, the results presented indicate the assessment of Del Grande's spatial 

perception is not hierarchical. It is possible for a student to acquire the abilities pointed 

out by Del Grande without any regular sequence. 

8.2 Group discussion sessions 

8.2.1 Visual perception and imagery 

The results from the group discussion sessions supported several general 

conclusions: 

1. There is a distinction to be drawn between visual perception of polyhedra nad 

mental imagery of polyhedra. There was no correlation between visual perceptive 

ability or image formation. Visual perception was generally correlated with written 

test results, and thereby to van Hiele levels of geometric thought, but image 

formation bore no obvious relation to van Hiele levels. 

2. Group discussion assisted substantially in raising visual perception and in 

assisting image formation. The connection between discussion and increased 

visual perception - so evident with student F - is particularly significant in light 

of the connection between visual perception and van Hiele levels. 

3. Both visual perception and image formation were associated with hand gestures. 

The connection between hand gestures and image formation of polyhedra is 

significant in that, as far as we are aware, this has not been reported before in the 

psychological literature. This finding adds weight to Kosslyn's claim that image 

formation and visual perception share the same neural mechanisms. The hand 

gestures during image formation are probably a reflection of similar hand 
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gestures that would be made in handling the polyhedra during visual, and tactile, 

perception. 

8.2.2 Perception and mental models 

Strictly speaking, the visual perception of a pentagonal pyramid as a part of an 

icosahedron does not seem simply to be a question of perception alone, but also one of 

imagery. We hypothesise that a student has to form a pre-image, or mental model, of the 

pyramid and then see it in the physical object. It as if, upon being asked if there are 

pyramids in the icosahedron one forms a vague template - not quite a detailed, 

inspectable image - of a general pyramid, without assumptions as to the nature of its 

base, and then "sees" the pentagonal pyramid upon closer inspection. The pre-image is 

rather like what one sees when asked to imagine a bird. What sort of bird is it? It's 

generally no bird in particular and one cannot distinguishing fine features, because they 

aren't there. In the same way, in looking for a pyramid in an icosahedron we postulate 

that a student has a similar vague image of a paradigmatic pyramid - as a cone over a 

polygon - and then finds perceptual data to sharpen the image template into something 

with fine, detailed features. 

8.2.3 "Chunking" versus edge-vertex-face description 

What was striking about the student's questions was their concentration on faces of 

polyhedra, and the ways in which faces might fit together to form identifiable sub-

objects of a polyhedra. There were almost no questions on vertices and very few on 

edges. There were no questions asked, or information offered, on the number of edges 

meeting at a vertex. This is in marked contrast to an analytic description of a 

polyhedron: see for example, Maeder's description of the Wythoff symbol (Maeder, 
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1995). One might argue that students had not been taught to look at the combinatorial 

structure of vertices and edges - but equally they may not have been taught to integrate 

local and global features. One would expect a more even distribution of approaches in 

that case, and it was of interest to observe the lack of questions on combinatorial 

structure of vertices and edges. 

Both in visual perception and image formation, students seem to favour a plan of 

seeking information about relatively regular sub-objects such as cubes and pyramids 

that might fit together in certain ways to give the entire polyhedron. In image formation, 

this is a sort of mental "chunking" procedure in which mentally manageable sub-units 

of the polyhedra are built up, so allowing missing bits of the image to be filled in. We 

hypothesise that students do this, rather than focus on analytic information about vertex 

structure, so as to reduce the cognitive load of image formation. This is not surprising 

when we remember, as Kosslyn (1996) says, that images are formed from pre-conceived 

perceptual units. 

8.2.4 Implications for student learning 

In this study we have observed a suggestive connection between ability in 3-

dimensional geometric thought, and high-level visual perception. The written test was 

broadly compatible with testing for van Hiele levels. The results from this test and from 

the polyhedra identification tasks are significant. They indicate that, in assisting 

students to attain a higher functioning in 3-dimensional geometry, it is important to 

enhance their high-level visual perception. This is an active process of "training the 

eye" to see deeper aspects of 3-dimensional figures. We have illustrated that one way to 

do this is through their providing verbal descriptions for other students. Discussion and 

questioning usually stimulates a student to look more deeply and to begin to visually 
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analyse a figure. A general rise in geometric thought appears be associated with this 

heightened visual perception. As a result, a student is automatically propelled forwards 

in geometric thought, as evidenced by progress through the van Hiele hierarchy. 

8.2.5 Deepening of visual perception 

The students in this study were engaged in intelligent, goal-driven activity. 

For example, student F wanted to be able to answer A's question about pyramids in 

an icosahedron It is intelligent because F had an image of a pyramid and tried to match 

this image with visual perception coming from further actions on the icosahedron. At 

first there was no match . Then something resembling a pyramid - enough like a 

pyramid to be iconic - appeared in perception. F then asked if one could have a 

pentagonal pyramid. F's intelligent activity can be described in the following diagram 

(reminiscent of Skemp's 1986 director schemes): 

STUDENTF 

Imagery 

e.g. 
"dissected" 
icosahedron 

"Pattern 
matching" 
of skeleton 
image to 
perception 

Parts of 
an image 

Perception 

Action 

Sensation 

e.g. 
icosahedron 

§ 
d o 
k 

Figure 8.1 Student F's schemes 
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F was asked by A were there any pyramids. She said, after a pause, "No". At this 

point, we hypothesise F was scanning the visual perceptual form of the icosahedron for 

a match with an image: 

It seems that F was looking, in the physical model, for something that matched one 

of the following patterns. 

or 

Figure 5.6 F trying to form the image of part of the icosahedron 

F found no such match, and so said "No". 

However, a feature of F's visual perception is iconic for a pyramid - it reminded F of 

one - namely, the form at a vertex: 

Figure 5.7. F perception of part of the icosahedron 

We hypothesise this caused F to wonder if the part of the icosahedron now in focus 

could be called a pyramid, even though its base is a pentagon. 

Once agreement was made, F was happy that there are lots of pyramids in the 

pentagon. In fact, F can now visually perceive pentagonal pyramids in the icosahedron 

easily: witness F saying there is one at the top and bottom in answer to D's question. 

The perceptual procedure requires sequence and organisation of actions and 

reflection. Francis spontaneously realised a motor activity which contained the 
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possibility to improve her visual perception and consequently her use of words. F 

procedures allowed her to form a kind of structure related to her perception of, and F's 

thinking about, the icosahedron form an abstract structure: 

1. Attention to the correspondence between two dimensional shapes: the kind of two 

dimensional shape (namely triangles) and the conventional arrangement of the triangles 

to form the icosahedron which is a stable and conventional pattern (it is one particular 

icosahedron - regular - out of many possible). 

2. The spatial configurations are experienced and stored in memory, 

3. The spatial configuration are reorganised in F's mind. She saw the icosahedron 

and invoked a mental image. Mentally, she subdivided the icosahedron into two 

pyramids which had an antiprism in between. 

Certainly, her visual-tactile experimental activity has a consequent particular 

sequence of mental activity: the patterns are organised and subdivided into other 

patterns. However, her mental activity did not seem to involve creation of units. 

By this goal-directed pattern matching - scanning a visually perceived object for a 

match with an image - F visual perception was deepened . F was now seeing more than 

before, or possibly more than could be seen before, van Hiele would probably say she is 

seeing more structure. 

With further questioning about what is between these two pentagonal pyramids, F 

now appears to "see" an icosahedron in dissected form. This seeing may be perceptual, 

but F has the possibility of bringing the dissected icosahedron back to mind as an 

image. 

This re-collection is precisely what allows F's thinking about the icosahedron to 

move from perceptual to symbolic. Once a perceptual object such as an icosahedron can 
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be brought back to memory, as an image, and operated on again in the mind, it allows a 

person the possibility of becoming aware of the those operations, and so acts as a 

symbol in Steffe's sense. In this way a sensory object in the world - a cardboard 

icosahedron - becomes a visual and tactile perceptual object, an image to be recalled, an 

image to be operated on, and then a symbolic mathematical object. 

The drive - the motivating force - for students' deepening perception in this study is 

the goal-driven pattern matching activity of searching for matches with stored images in 

a perceptual object. 

8.2.5 Fluency of discussion 

I presented evidence that as student's are thinking about polyhedra - either inspecting 

them visually for features, or forming images of them - their verbal communication 

becomes less fluent, and more hesitant. 

Is it difficult - perhaps impossible - to both talk about an object and inspect deeply an 

image of it, or look deeply at it for visual information, at the same time? We have found 

no evidence for this in the psychological literature. However, there is currently a debate 

about the independence of auditory and visual codes (Paivio, 1991; Brandimonte, Hitch, 

& Bishop, 1992; Thompson & Paivio, 1994; Partridge, 1995; Mehta, & Newcombe, 

1996) that suggests the likelihood of just such a difficulty. Evidence from 

mathematically advanced students of varying levels of attainment shows that such 

difficulties occur in practice and are probably common. 

Mathematics teachers are aware that their students need to learn their lessons and that 

it does not happen automatically. Learning is a result of understanding, and 

internalisation happens according to the individual's interpretation that takes place 

through discussion or by experiences. Teachers' performance is importance in a quality 
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interaction between learners and their environment and teachers certainly look for an 

effective way to promote learning. 

In teaching and learning we must consider the objective of speech. There are 

differences in speech concerning learning from discussion (interaction) or presenting a 

talk to learners. A pre-prepared lesson may present less difficulty in processing different 

parts of speech than an informal discussion in which the students need to interpret the 

questions and/or answers about an object or the scene. This is because the organisation 

of sentences in a pre-prepared lesson can complement the construction of new 

information. 

The interpretation of verbalisation may happen before students understanding of a 

particular shape. When we are inspecting a shape and describing it we can detect more 

pauses or fragmented sentences or fragmented words in our speech than when we 

spontaneously give prepared lesson. We organise sentences in time and we tend to think 

while we examine a shape or event. We also think about the structure of the next 

sentence - thinking is a non-linguistic cognitive activity - and we use language to 

communicate thoughts: the results of thinking. We show evidence from our group 

discussions that informal descriptions are more easily affected by the organisation of the 

structure of a sentence than a prepared lesson in which new information is introduced 

constantly. Lessons based on discussion demand thinking on the part of the students. 

Students have difficulty in speaking fluently as they examine deep features of objects 

or images. Success in verbal description usually requires the speaker time to construct 

their understanding What does this say about a fluent verbal description of a 

mathematical topic in an area that normally involves geometric images? To us, it 

indicates that such fluent verbal descriptions do not involve inspection or perception of 

deep features of images or objects. In other words, fluency of verbal description is 
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generally incompatible with concurrent deep perception or imagery. Someone who 

describes such deep features fluently may have previously examined them deeply. 

However, they are probably not examining deep features at the same time as they talk 

fluently. 

If we, as teachers, explain mathematics in a clear, fluent manner, the chances are we 

are not thinking about deep visual features of the mathematics at the same time. How 

then do our students learn from us to see more deeply? We suspect that in the process of 

organising and delivering a classroom lesson, many - perhaps most - mathematics 

teachers' focus of attention is on the way in which the lesson is proceeding and not on 

deeper features of mathematical thought. Put simply, we can prepare a lesson on 

polyhedra, for example, and talk fluently about the properties of polyhedra because of 

our preparation. What we claim, is that at that moment of fluent delivery we - the 

teacher - are not inspecting deep properties of the polyhedra. In other words, we are 

concentrating on our delivery and not on our thought processes. 

Student hesitancy in explanation or questioning exists and is probably common. The 

reasons for this have to do with the extreme difficulty people have in talking about 

deeper features of objects or images at the exact same time. As a result we, as teachers, 

should not try to prevent students being hesitant, but rather recognise this hesitancy for 

what it is - prolonged deep perception or imagination. As Thurston (1997) says: 

"Most students have far more mental agility than their words, or their math homework, 

reflects. It's important to keep a good measure of humility, and not to assume we know 

what's going on in their minds. Forcing them to talk in ways that are not natural for 

them 'can' help them think clearly, but it 'can' and often does have the effect of 

blocking them from thinking for themselves." 
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8.3 Tactile session 

We have described the students hand movements during the task of discovering 

polyhedra. We noted that the effect of free haptic exploration of properties of common 

objects like a cube, cuboids in general, and squared pyramids which were identified in a 

considerably shorter time compared to the uncommon shapes like intersecting dual 

tetrahedra or dual cube octahedron. 

Note that there are marked contrasts in the procedures utilised in the two kinds of 

free explorations: tactile-only and visual-tactile exploration. Concerning the tactile- only 

exploration, students explored the vertices and the edges to perceive the kind of faces of 

the polyhedra, whereas in the visual-tactile exploration students immediately obtained 

the information about the faces of the shapes and concentrated on the arrangement of 

the faces. Sometimes the numbers of faces was not important for the visual-tactile 

exploration as, for example, in the description of the icosahedron. 

We have compared the hand movements from the video tapes of these two distinct 

experiments and we have evidences that the motor actions differ from the haptic 

experiment to the visual and tactile experiment. We conjecture that it happens according 

to the kind of information that the students get. Our visual system is more efficient than 

our tactile system in identifying objects. Information is processed more rapidly using 

the visual system than information obtained by the use of the tactile system. 

We also can compare the level of verbal descriptions from both experiments and we 

find that students produced similar abstract descriptions. The students' perceptual levels 

have shown sensitivity to conform to the variety of shapes, which is dependent on a 

shapes' organisation. Indeed, the results of the tactile experiment showed that students 

could reliably identify about 93% of the shapes given to them during the session and for 
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most of the shapes students obtained a deep features of perception. The two students 

could identify the same shapes and both had problem in identifying the icosahedron. 

With a simple identification of the polyhedron in question, it does not mean that the 

students attained a deep feature of perception: as an example, students identified the 

cube as soon as they could touch it. This was certainly identification by surface features 

because it required little conscious effort. However, in the student discussion both, M 

and S tried hard to identify the icosahedron without success. These students presented 

for this shape an intermediate stage between surface and deep features of perceptual 

objects. They could feel the pentagon around the shape. However, they could not 

perceive the antiprism which is the connection between the two pentagonal pyramids, 

one on the top and other on the bottom. Therefore, we assume that for a student to attain 

any perceptual level, it does not depend necessarily on complete identification of the 

whole shape. Excluding the cube that students identified by surface features and the 

icosahedron that students were not successful in identification but attained an 

intermediate level between surface and deep features of perception, for the other shapes, 

students clearly attained deep features of perception of the object. 

In both tactile and visual-tactile exploration students showed proficiency in the 

understanding of the polyhedron presented to them. The nature of hand movements, 

specifically during identifying parts of a polyhedron and understanding its organisation, 

manipulating the shapes, in the presence or in the absence of vision, clearly was of great 

importance for perceptual and cognitive understanding. 
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9.1 General conclusions 

This thesis focuses on the use of concrete manipulatives to enable students to learn 

by guided discovery. This approach creates an effective learning environment in which 

students were encouraged to use their thinking creatively. The use of manipulatives in 

this work motivated students to acquire new experience through sharing knowledge. 

The interaction between students one to another using concrete manipulatives and 

language as a vehicle of communication gave an important entry to students to become 

active learners. According to Leinkin & Zaslavsky (1997) interaction is an essential 

component in the process of making sense in the course of learning mathematics. 

Concerning the study of perception, findings presented in this thesis verified a 

complexity in the perception and description of polyhedra. It is important to notice that 

students used a variety of styles of descriptions with different expression to describe 

spatial relations. They adopted an individual strategy and consequently individual 

difference in describing shapes that allow them to integrate information to efficiently 

describe polyhedra to their students. The discussion group procedure revealed to both 

the describer and listeners an intention to facilitate the understanding of elements that 

form the arrangement of described polyhedra. The structure of a polyedron's description 

affected the quality of image formation for the students for whom the polyhedra were 

hidden. So, the same shape in the same situation was described differently by the 

different students. We note that the strategy used in polyhedral description does not 
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depend only the polyhedron's structure, but also depends on the students perception and 

their domain of previous knowledge. According to Denis (1996) 

" ...apt describers are not only characterised by adequate linguistic aptitudes but also 

by their capacity of constructing a coherent visuospatial representation of the object 

described." (p. 189) 

Some findings regarding comparison of results from different perceptual 

experiences, considering different conditions of stimulation, were reported in previous 

chapters. As an example, the human visual system is able to produce a visual image of a 

certain shape without intentional reasoning about the parts of the shape whereas the use 

of a "tactile- only system" the students showed interest in the parts that constitute the 

whole shapes. This tactile procedure is based on generating a numbers of images such 

as the two-dimensional forms that are parts of the polyhedron, the numbers and kind of 

two-dimensional shapes meet in each vertex before forming the image of the three-

dimensional object. 

We have shown in this thesis that understanding geometric shapes are all complex 

processes. The use of manipulatives can have a considerable effect on teaching and 

learners when used appropriately, taking into account both teachers and students 

perceptual abilities. Some polyhedra are definitely more complex than others, and 

obtaining deep perception of these complex polyhedra is not an easy task. Group 

discussion that involves students in visual and/or tactile exploration can contribute 

substantially to an increase in students' geometric knowledge and appropriate 

This thesis has pointed out the importance of visual learning, tactile learning and 

learning through discussion that involves visual perception and image formation. 

Evidence shows that verbalised visual perception or verbalised tactile perception are 
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associated with students' individual capacity to mentally organise the features of 

polyhedra and organise coherent sentences. 

This work shows evidence that students are usually hesitant while questioning, 

answering, and arguing about polyhedra. It happens because they were thinking and 

explaining alternatively. Evidence presented in this thesis indicates that while a student 

inspected a certain polyhedron and attained deep features of perception they made an 

effort to verbalise coherently those deep features. Therefore they inspected their 

perceptual sense, and generated images to produce coherent. As a result, fluency in 

verbal descriptions are related to the perceptual sense and to images. When students saw 

or felt some features of a polyhedra, it often indicated a deep feature of perception. 

Students often presented difficulty in speech fluency as they examined the deep 

feature of a polyhedron or image. Interpretation to construct sentences may happen 

before the students' understanding. Consequently students need time to have success in 

verbal description. 

This work presents evidence that during group discussion students reveal a sufficient 

understanding of the spatial model presented to them and during conversation, some 

students became competent to give a more elaborate description of their observations of 

a particular polhedron, using adequate geometric vocabulary. A deeper analysis of 

polyhedra promoted students to use different and detailed arguments. They were able to 

use different procedures and to stimulate the group to attain a high level of thought. 

The interpretation of the discussion group indicated that some consistent questions 

and explanations contained inferences from students' previous knowledge. Students' 

request to predict a certain shape, showed their development of geometric knowledge 

and consequently the development of geometric language, because the students' 

argumentation involved action, movement and progress between conjectures. 
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The reflexive relationship among students and between students and subject was both 

the purpose of analyses based on observation of students behaviour and cognition. The 

important cognitive aspects are: How students perceive and generate images of 

arrangement of the parts of polyhedra, how they integrate local and global features., 

what process the students used to generate images, and how they develop linguistic 

description. The cognitive development arose both in individuals and in the group as a 

whole. 

All the students who took part on this study had opportunites to develop their 

polyhedra understanding and consequently their linguistic description and language 

structure. The situation created by them while they described shapes and interaction 

between them prompted to them to converge on a polyhedron's interpretation The 

analysis of group discussion indicates that often students shared general geometric 

meaning. In addition the kind of students interaction in which they were engaged they 

had opportunities to be influenced by the others. As a result they were engaged in and 

they could produce mutual learning opportunites. 

9.2 Proposals for future research 

Previous chapters in this thesis provide results of investigations concerning students' 

cognitive development. This study examines students' abilities to represent their images 

through linguistic information and by drawing. Special sections show integration of 

students' linguistic development with students' improvement of perceptual abilities. 

The linguistic analysis is related to spatial orientation and prepositional information, 

meaning that students described verbally what they perceived. 
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In this section we provide a proposal for future work which is related to the research 

in this thesis. Some tasks will be outlined focusing on three-dimensional geometry. 

Tasks will be associated to construction of tactile perceptual models and visual-

tactile perceptual models. The purpose of this study is to consider the nature of 

students' explanation of their visual and tactile perception. The language used during 

students' discussion groups will be the source for interpretation of the perceptual 

models. Continuing the work with three-dimensional geometry focusing on tactile 

perception, visual perception, image formation, imagery, and language development, the 

interest for the future investigation will correlate these studies to investigate a hierarchy 

of perception and how this hierarchy is associated to the van Hiele levels. All the tasks 

intended to be used involve manipulation of concrete models and verbal information. 

The experiments reported in this thesis analysed the motor action during verbal 

description, and indicated how this is related to geometric thinking. For the future 

experiments it is also expected that students will express their geometric ideas using 

hand movements. 

When students describe their perception they are explaining their understanding, 

which not happen randomly: understanding depends on previous knowledge. The basic 

idea of the future work is to obtain evidence of different models which underlie 

perception in geometry. 

In the following section we describe the method which we intend to use to observe 

the characteristics of students' answers. 

9.2.1 Structure of the Perceptual Models 

We intend to construct a scheme of observation of perceptual data. This scheme of 

observation will provide a delineation of "phases". This will be perceptual phases. 
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similar to the van Hiele phases, as described in Chapter One. We will compare the 

relation between students thinking and their propositional statements. Instruction and 

experience will aid the students in observing properties of polyhedra. We will start from 

simple identification and recognition of shapes, moving onto the analysis and 

description of them. 

The hypothesised phases are: 

PHASE 1- Students differentiate polyhedra without being able to describe them in 

any geometric way. They identify shapes as a whole by their appearance. In this phase, 

students can differentiate one shape from another without providing any reasoning for 

their distinction. For example, they would be able to distinguish a triangular based 

pyramid from a square based pyramid. 

PHASE 2 -Students are able to see and recognise the faces of a polyhedron and are 

competent to describe them. This phase requires adequate description of different faces 

from one to another. For example square pyramids have triangular and square faces, and 

a description of each different face is required. 

PHASE 3- Students begin to describe arrangements of faces and/or edges. This phase 

requires extending explanations to the complex organisation of the parts that constitute 

the shape, and comparing properties of different three-dimensional shapes. Correct and 

logical justification of relations between different polyhedron of the same class are also 

characteristic of this phase. 

PHASE 4- Students can see and describe symmetries. This phase requires particular 

attention to proportionality and regularities presented in certain shapes. Therefore 

students must be able to compare symmetrical properties of two different polyhedron. 

An example is comparing the Platonic solids with other semi-regular solids or irregular 

solids and describing their perceptions. 
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PHASE 5- Seeing and describing integrated parts of a polyhedron. For example, 

perceiving that an icosahedron can be seen as a non-overlapping union of two 

pentagonal pyramids, and an anti-prism, or perceiving a dual cube-octahedron as an 

intersecting cube and octahedron. 

PHASE 6- Full description of the polyhedron analytically. Theoretical interpretation 

formulating a correct argument with precise details through the use more formal 

language explaining the geometric aspect of the shapes. For example, interpreting 

transformations, using argument to explain relationships between shapes. Relationship 

between shapes differing widely in their properties: students must explain their 

conclusions. 

To be placed in a particular phase students must provide evidence of their 

understanding using structured language. The validity of the perceptual models will be 

analysed according to students answers during interview. For each of the models, the 

vocabulary that students use will be analysed, to ascertain if this vocabulary is suitable 

to the phase. To analyse the students' answers and to assist their perceptual progress, 

each task will be correlated to the different models and the interviewer will have a list of 

questions to assess the students vocabulary and the use of language. We might measure 

the experiment validity for different schools to detect if groups are heterogeneous or 

not, so that we will have validity from a large population. 
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