
IMIVERSITY OF SOUTHAMPTON

An Architecture for Management of Large, Distributed, Scientific Data

Volume 1 of 1

Mark Papiani

Doctor of Philosophy

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

This thesis was submitted in May 2000.

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

An Architecture for Management of Large, Distributed, Scientific Data

Mark Papiani

This thesis describes research into Web-based management of non-traditional
data. Three prototype systems are discussed, and each of
which provided examples of new ideas in this area.

In 1994/1995, when most Web pages consisted of static HTML files, OBIS
(the GropA/caZ [181] [117] demonstrated the
benefits of interactive, dynamic Web pages for visualisation of scientific data. GBIS
also highlighted problems with storing the underlying data in a filesystem, which
initiated an investigation into the use of databases as the underlying source for
dynamic Web pages.

In 1996/1997 this research investigated awro/Mafzc generation of generic Web
interfaces to databases to facilitate rapid deployment of interactive Web-based
applications by developers with little Web development experience. A prototype
system, DBbrowse, demonstrates the results [180] [75]. DBbrowse can generate
Web interfaces to object-relational databases with intuitive query capabilities.
DBbrowse also demonstrates a method for browsing databases to further support
users with little database experience.

In 1999 concepts from GBIS and DBbrowse were used as the starting point for
examining new architectures for archiving scientific datasets. Data from numerical
simulations generated by the UK Turbulence Consortium was used as a case study.
Due to the large datasets produced, new Web-based mechanisms were required for
storage, searching, retrieval and manipulation of simulation results in the hundreds
of gigabytes range. A prototype architecture and user interface, EASIA
Architecture for Scientific Data Archives) [182] [183] is described. EASIA
demonstrates several new concepts for active digital libraries of scientific data.
Result files are archived in-place thereby avoiding costs associated with transmitting
results to a centralised site. The method used shows that a database can meet the
apparently divergent requirements of storing both the relatively small simulation
result metadata, and the large, distributed result files, in a unified, secure way.
EASIA also shows that separation of user interface specification from user interface
processing can simplify the extensibility of such systems. EASIA archives not only
data in a distributed fashion, but also applications. These are loosely coupled to the
archived datasets via a user interface specification file that uses a vocabulary defined
by a markup language. Archived applications can provide reusable dynamic server-
side post-processing operations. This can reduce bandwidth requirements for
requested data through server-side data reduction. The architecture allows post-
processing to be performed directly without the cost of having to rematerialise to
files, and it also reduces access bottlenecks and processor loading at individual sites.

Table of Contents

TABLE OF CONTENTS 3

LIST OF TABLES 7

LIST OF FIGURES 8

ACKNOWLEDGEMENTS 10

AUTHOR'S DECLARATION 11

1 INTRODUCTION 12

1.1 Outl ine of Research Areas 12

1.2 Structure of th is Thesis 15

2 DATABASE AND WEB DEVELOPMENTS 17

2.1 Database Developments 17

2.1.1 Object-Relational and Object-Oriented Database Technology 17

2.1.2 SQL:1999 23

2.1.3 Parallel Databases 26

2.1.4 Java Database Access 29

2.1.5 Microsoft's Data Access Strategy 34

2.2 Web Developments 35

2.2.1 The Common Gateway Interface 36

2.2.2 Web Server Extensions 38

2.2.3 FastCGI 39

2.2.4 Java and Java Applets 39

2.2.5 Java Servlets 43

2.2.6 Java Server Pages and Active server Pages 43

2.2.7 Distributed Object Technologies 45

2.2.8 XML and Dynamic HTML 55

2.3 Multi-tier Web/Database Connectivity 64

2.4 Summary 68

3 THE GRAPHICAL BENCHMARK INFORMATION SERVICE 69

3.1 Introduction 69

3.2 GBIS Overview 69

3.3 GBIS Implementation 72

3.4 GBIS Result File Structure ...75

3.5 Updating the Results Database to include additional Machines and Manufacturers

77

3.6 Conclusions 78

4 AUTOMATICALLY GENERATING WEB INTERFACES TO

RELATIONAL DATABASES 80

4.1 Introduction 80

4.2 Providing Web Access to the Database 82

4.3 Automatically Generating the User Interface and SQL Queries 83

4.4 Providing Database Browsing via Dynamic Hypertext Links Derived from

Referential Integrity Constraints 84

4.5 Example of a Database Browsing Session 87

4.6 Conclusions 93

5 AN ARCHITECTURE FOR MANAGEMENT OF LARGE, DISTRIBUTED,

SCIENTIFIC DATA 95

5.1 Introduction 95

5.2 System Architecture and User Interface 99

5.2.1 System Architecture 99

5.2.2 XML Specification of the User Interface 101

5.2.3 Searching and Browsing Data 101

5.2.4 Interface Customisation thi'ough XUIS Modification 107

5.2.5 Suitable Processing of Data Files Prior to Retrieval: 'Operations' 109

5.2.6 Code Upload for Server-side Execution 117

5.2.7 Administration Features 119

5.3 Implementat ion and Design Decisions 119

5.3.1 Experimental Bandwidth Measurements 119

5.3.2 SQL Management of External Data: The New DATALINK Type 121

5.3.3 Java Servlets and JavaScript 123

5.4 Conclus ions 127

6 RELATED WORK 129

6.1 Related Work on User Interfaces to Databases 129

6.1.1 Introduction 129

6.1.2 Stand-alone Graphical Query Interfaces to Databases 130

6.1.3 Web-based User Interfaces to Databases 137

6.2 Related Work on Web-based Management of Scientif ic Data 140

6.3 Discussion 147

7 SUMMARY 149

7.1 Contr ibut ions to the Field 149

7.1.1 GBIS 149

7.1.2 DBbrowse 150

7.1.3 EASIA 150

7.2 Future Work 153

7.2.1 Gathering Operation Statistics and Caching Results 153

7.2.2 Providing a Multidatabase Capability 154

7.2.3 Can Codes other than Java be Uploaded for Execution? 155

7.2.4 Runtime Monitoring of Post-Processing Operations 156

7.2.5 XML as a Scientific Data Standard 156

7.2.6 Other Enhancements to the EASIA Architecture 158

7.3 Concluding Remarks 160

APPENDIX A : PUBLICATIONS AND PRESENTATIONS 161

APPENDIX B : CLIENT/SERVER 'PING' BENCHMARK RESULTS 163

REFERENCES167

List of Tables

Table 1: Experimental bandwidth measurements for file transfer between two UK universities... 120

List of Figures

Figure 1: A 2-tier architecture using a Java Applet and JDBC for database access 64

Figure 2: A 3-tier architecture using a Java Applet, CORBA and JDBC 65

Figure 3: A 3-tier architecture using HTML/HTTP, Java Servlets and JDBC 67

Figure 4: Graph showing results of the Multigrid Benchmark 71

Figure 5: Graph showing results of the LU Simulated CFD Application Benchmark 72

Figure 6: GBIS manufacturer list page 73

Figure 7: GBIS machine list page 74

Figure 8: GBIS change defaults page 74

Figure 9 Example contents of a GBIS result data file 76

Figure 10: Interconnection strategy for providing Web accesses to a database 83

Figure 11: Employee Activity database schema and relationships between entities 85

Figure 12: Selecting tables of interest 87

Figure 13: Selecting columns and specifying conditions 88

Figure 14: Results from querying the DEPARTMENT table 89

Figure 15: Browsing to find all employees in department number ' 0 1 1 ' 89

Figure 16: Browsing to show project activities for each employee 90

Figure 17: Browsing to inline full project details 91

Figure 18: Refining a query during the browsing stage 92

Figure 19: Query results after refinement 92

Figure 20: Displaying the SQL that generated the result 93

Figure 21: System architecture 99

Figure 22: Login screen 100

Figure 23: Table selection screen 102

Figure 24: Searching the archive 103

Figure 25: Result ftom querying the SIMULATION table 104

Figure 26: Sample database schema for UK Turbulence Consortium 105

Figure 27: CLOB browsing 105

Figure 28: DATALINK browsing 106

Figure 29: Customised display of results from a query on the SIMULATION table 108

Figure 30: Result table showing 'operations' available for post-processing datasets 112

Figure 31: 'Operation' description and parameter input form 113

Figure 32: Output from 'operation' execution 114

Figure 33: NCSA's SDB [243] has been specified as an 'operation' in the XUIS and invoked on a

dataset managed within the EASIA architecture 116

Figure 34: User administration screen 119

Figure 35: Security mechanism employed for uploaded post-processing codes 125

Figure 36; The client/server ping benchmark 163

Figure 37: Client/server ping benchmark results 164

10

Acknowledgements

The UK Turbulence Consortium provided data for the EASIA research

prototype. IBM's DB2 Scholars programme provided DB2 licenses.

Thanks to Tony Hey for employing me as a research assistant for 5 years.

Thanks to Ed Zaluska for putting me in touch with Tony after reading my initial

speculative employment enquiry to the University. Thanks to Denis Nicole for

putting me in touch with the UK Turbulence Consortium. Thanks to David Walker

and Kirk Martinez for acting as external and internal examiner for my viva.

I would like to thank my parents Rolando and Jenny for all their support

during my on/off 34-year reign as a student! Thanks to my sisters Sandra and Lisa

for their support and for helping me to buy birthday presents. Thanks to the Lads in

Bournemouth (Brett Colley, Dayle Colley, Andy Foote and Paul Brady) for

dragging me out at weekends and accepting partial responsibility for this thesis

taking so long.

Thanks to Dave and Fleur (and Callum) who were with me at the start of my

University days back in 1987. Thanks for your friendship over the years, and please

be patient - 1 promise to ring soon.

My colleague at Southampton University (and partner in crime/gym),

Alistair Dunlop, made the 5 years at Southampton the most fun I have ever had in a

job. Thanks to Jasmin Wason for working with me after Alistair had left the

University for the lure of industry. Thanks also to Jasmin for helping get my viva

together.

Finally, special love and thanks to the special people who had to put up with

me during this project - Sara Gibbs and Tanya Smith.

12

1 Introduction

This thesis describes research (during the period 1994 to 2000) into Web-based

management of non-traditional data. In this thesis traditional data is defined as

simple datatypes including integers, floating-point types, characters, dates, times and

timestamps (effectively datatypes that are associated with the traditional relational

data model (see Chapter 2)). Non-traditional data is characterised by complex

multimedia datatypes including text, audio, image and video, as well as binary files

used for other purposes such as multidimensional scientific data (effectively

datatypes that are associated with newer object-oriented and object-relational data

models (see Chapter 2)).

The Internet (particularly the Web) is having a dramatic effect on all walks

of life, from commerce to education and research to leisure. Over the last few years

the nature of the Web has been changing from a file based, textual, static, insecure

environment with dumb browsers to a database based, multimedia, dynamic, secure,

environment with smart browsers. Three prototype systems are discussed in this

thesis, GBTS (the GropAzca/ .BeMc/z/MarA: '̂grvzcg) [181] [117],

[180] [75] and /or

v4rcAzve.$) [182] [183], each of which has provided exemplars of new ideas for non-

traditional data management in the fast evolving Web environment.

1.1 Outline of Research Areas

This thesis describes research into Web-based management of non-traditional data

concentrating on the following areas.

zmporfoMce q/ mferacfzvg

GBIS was an early system (1994/95) employing CGI (Common Gateway

Interface) sciipting [48] combined with standard application programs, to

provide Web-based management of scientific data. GBIS was designed to

manage non-traditional data in the form of textual output files 6om

multiprocessor benchmark results. At a time when most Web pages consisted of

static HTML (Hypertext Markup Language) [122] Hies, GBIS demonstrated

dynamic Web pages for visualisation of scientific data. GBIS employed some of

the first technologies available for dynamic Web pages with user interaction

(such as the CGI and associated scripting using the Bourne Shell and PERL).

At the ACM SIGMOD Conference in 1996, Manber suggested that one of

the main lessons to be gained from the success of the Web was the importance

of browsing [147]. He went on to say that an important step would be to find a

way to browse even relational databases. The early part of this research

involved a survey of database user interfaces. Existing techniques for browsing

databases were studied. Existing methods for Web/database connectivity were

studied in detail. At the time, most existing systems required programming

effort. One aim was to find an automated technique for connecting databases to

the Web and for searching and browsing the data via a Web-based user

interface.

DBbrowse (1996/1997) was the result of research into generation

of generic Web interfaces to object-relational databases, to facilitate rapid

deployment of interactive Web-based applications by developers with little Web

development experience. DBbrowse demonstrated a novel method for browsing

databases using the Web.

yb/" active can /Manage

The Internet allows for fast, effective scientific collaboration on a scale that

has previously been impossible. It is now possible to transfer research results, in

the form of scientific papers, result files or metadata describing experiments, in

seconds or minutes to worldwide locations. Advances in computing technology,

such as larger, cheaper storage and faster processing, have affected the type of

14

data that can be manipulated, allowing, fbr example, /MwcA /oz-gg?" raw result

data to be generated and exchanged.

Additional motivation for this research came from the Caltech Workshop on

Interfaces to Scientific Data Archives [235], which identified an urgent need for

in&astructures that could manage and federate ac/fve libraries of scientific data.

Hawick and Coddington [112] define active data archives as follows: "An acf/vg

data archive can be defined as one where much of the data is generated on-

demand, as value-added data products or services, derived from existing data

holdings". They also state that the information explosion has led to a very real

and practical need for systems to manage and interface to scientific archives.

Treinish [217] [218] presents ideas for interactive archives for scientific data.

He believes that the capability to produce data is growing much faster than the

ability to manage data. Typical storage and communications protocols are not

suitable for current archives and there must be a fundamental change from

providing static archives that provide bulk data access to dynamic, interactive

systems. Data volumes are too large for practical examination and the starting

point for locating relevant data should consist of searching metadata that

provides abstractions of the archive. Treinish believes that browsing is

extremely important for data selection. He suggests that large datasets can be

represented by much smaller visual representations that allow browsing to

identify features of interest. He concludes that fiiture research should include

experimentation with compression techniques to aid visual browsing and

secondly the design of architectures for interactive archives. These architectures

could include the integration of metadata, data servers, visual browsing and

existing data analysis tools.

The final architecture and prototype implementation described in this thesis,

EASIA, is an architecture for an active digital archive that can reduce

bandwidth requirements for Web-based management of large, scientific

datasets. The first aim for this architecture was to extend the automated

Web/database connectivity techniques, developed in the DBbrowse, to the types

of scientific data management problems described above. Browsing techniques

15

&om DBbrowse could be used to facilitate navigation through metadata

associated with scientific datasets to identify potential datasets of interest.

Beyond this, EASIA provides features that meet Treinish's requirements for the

architecture of future interactive scientific archives. Namely, integration of

metadata, data servers, and existing data analysis applications.

Scientific data management introduces new problems associated with

storage and retrieval of large, oAen unformatted, Gles in an environment where

bandwidth is limited. EASIA provides new mechanisms for Web-based storage,

searching, retrieval and manipulation of scientific datasets in the hundreds of

gigabytes range. EASIA demonstrates several new concepts for active digital

libraries of scientific data. EASIA archives data in a distributed fashion so that

large datasets can be archived at (or close to) the sites where they are generated

in order to eliminate the costs associated with transfer to a centralised

repository. EASIA also archives applications. Archived applications can

provide reusable dynamic server-side post-processing operations that can reduce

bandwidth requirements for requested data. Post-processing can also be

achieved by allowing users to upload code to be run securely on the file servers

hosting the datasets.

Research and development of the GBIS, DBbrowse and EASIA prototypes has

required comprehensive knowledge of Web and database technologies, and of

related work. This thesis therefore contains significant critical review in these areas.

Finally, it is worth noting that although successive prototypes use different

technologies due to emergence of improved solutions in this fast changing field,

wherever possible the prototypes have been implemented using commodity

components, technologies and open standards.

1.2 Structure of this Thesis

The rest of this thesis is structured as follows;

16

Chapter 2: Database and Web Developments - This chapter describes the state-

of-the-art in database and Web technologies. The purpose of this research was to

provide a critical survey of available technologies and to assess the best ways to

implement the architectures developed during this research.

Chapter 3: The Graphical Benchmark Information Service - This chapter

provides a detailed description of the research surrounding GBIS.

Chapter 4: Automatically Generating Web Interfaces to Relational Databases -

This chapter provides a detailed description of the research surrounding

DBbrowse.

Chapter 5: An Architecture for Management of Large, Distributed, Scientific

Data - This chapter provides a detailed description of the research surrounding

EASIA.

Chapter 6: Related Work - This chapter reviews related work on user interfaces

to databases. Web based interfaces to databases are compared to DBbrowse,

particularly in terms of techniques for data browsing. The second part of this

chapter discusses related research in the area of Web-based management of

scientific data, providing comparisons with the EASIA architecture.

Chapter 7; Summary - This chapter provides a summary, ideas for future related

research and closing remarks.

17

2 Database and Web Developments

This chapter provides an overview of developments in database and Web technology

over the last few years. This survey was carried out to understand the current state-

of-the-art in these fields and then to assess the suitability of different technologies

for implementation of the systems to be developed during this research. The chapter

is split into three main sections covering database developments, Web

developments, and multi-tier Web/database coimectivity.

2.1 Database Developments

This section describes why object-relational database technology was

preferred to object-oriented database technology. Sections on SQL: 1999, parallel

databases and Java database access follow. Object-relational databases and

SQL: 1999 were used in the DBbrowse and EASIA architectures, and Java database

access mechanisms were used in the implementation of EASIA. A separate section

on Microsoft's data access strategy is included for completeness since Microsoft

promotes different technologies to those being used by most of the other database

vendors.

2.1.1 Object-Relational and Object-Oriented Database Technology

2.1.1.1 Reasons for Choosing Object-Relational Technology for this
Research

A primary requirement for the database technology selected for this research was

that it could support both traditional data types and non-traditional data, such as the

large binary data files often used for scientific datasets. Object-oriented database

management systems (OODBs) and object-relational database management systems

(ORDBs) both provide this capability. ORDBs were chosen for this research for a

number of reasons that are described below.

Firstly, ORDBs support the standardised Structured Query Language (SQL)

[59] as well as providing metadata, which defines amongst other things, the database

schema. These two features make it possible to build generic, schema driven,

dynamic interfaces to databases. This was a requirement for both the DBbrowse

(chapter 4) and EASIA prototypes (chapter 5). Second, ORDBs support a security

18

model as a Amdamental function. This feature is lacking in OODBs. Third, parallel

versions exist for all the m^or ORDBs, allowing migration to high performance

parallel architectures if necessary. Fourth, despite around ten years of marketing and

attempts to standardise their features, OODBs remain a niche technology with a

corresponding increased risk associated with their usage. All of the market leaders

associated with relational database management systems (RDBs) now offer ORDB

products. These include IBM DB2 Universal Database [65] [42], OracleS [174],

Informix Dynamic Server [128], Sybase Adaptive Server [214] and Microsoft SQL

Server 7 [206]. With all the major database vendors supporting object-relational

(OR) technology it seems likely that this will remain the dominant database

technology.

2.1.1,2 The Progression of Object-Oriented Database Standardisation

Carey [30] discusses the progress that OODBs have made and why their impact has

not lived up to expectations. He concludes that we are on the verge of an era where

ORDBs will begin taking over the enterprise. Carey gives some of the reasons for

the early success of RDBs (the foundation of all ORDBs) and contrasts these with

the progression of OODBs. In the early days of RDBs there was a single, clearly

defined data model based on sets of tuples with simple attributes. Similarly, SQL,

emerged early on as the query language for RDBs. Development of OODBs has

been very different, with no initial agreement on the details of the data model and no

query model or language.

In the early 1990's a consortium of OODB vendors formed the Object Data

Management Group (ODMG, formerly known as the Object Management

Group) [168] to address these problems. An Object Database Standard, ODMG-93,

was released in 1996 [37]. This contains several chapters which define; the ODMG

object model (which is an extension of the Object Management Group (OMG) [170]

data model); an object definition language (ODL); an object query language (OQL);

a binding to C++ and Smalltalk for all functionality, including object definition,

manipulation, and query. Release 2.0 of the standard, ODMG-97, also included a

Java language binding [38] (refer to Section 2.2.4 for information on Java). (Release

3.0 of the Standard was published this year [39]. Unfortunately, as with the previous

19

version, this standard is available for purchase in book format only and is not

available for free download. This probably hinders widespread knowledge of the

standard.) Although the standard has been out in some form for about 6 years, there

are still differences between many of the OODB products in terms of their

programming interfaces and query support. Many vendors conform to parts of the

specification corresponding to individual chapters in the standard. Variations in the

level of support for standards across different OODBs made this technology

unsuitable for underpinning the standards-based, vendor independent prototype

scientific data archiving systems that were investigated during this research.

The lack of sufficient standardisation between OODBs is not solely an

implementation issue. The standard itself is still not comprehensive in some areas.

For example, the Java binding does not yet support certain features of the ODMG

Data Model such as, extents, keys, relationships and access to metadata (see for

example [43]). A further barrier to portability amongst Java bindings from different

vendors is the fact that the mechanism for identifying classes is

not specified. A Java OODB application can contain both persistent and transient

objects of the same class (this is known as orthogonal persistence - where

persistence is independent of class). The standard states that a transient object

belonging to a persistence-capable class can be made persistent if it is bound to a

name within the database or if it is referenced by another persistent object. This is

known as As an example of the divergence in this area,

the OODB from POET [188] currently uses a configuration file to indicate

persistence-capable classes. This works in conjunction with a pre-processor for the

Java source files, which extracts required information from the files and stores it in a

dictionary, and then calls the standard Java compiler. The Objectivity/DB OODB

[169], on the other hand, determines persistence-capability by requiring that such

classes inherit from a specified superclass.

OODBs are designed to add persistence to objects within an object-oriented

(0 0) programming language. Despite an OODB standard, language differences

make it very difficult to port OODB applications between languages. Even for non-

database applications, written in the same language, portability between compilers

from different vendors is sometimes an issue, which gets magnified once the OODB

20

environment is added. Architectural differences associated w i t h j ' g n / g / ' j ' ('dumb

server' with intelligent 'fat' clients) versus object servers ('thin' clients with an

intelligent server) also complicate portability issues amongst OODBs [43].

2.1.1.3 Object-Relational: Combining the Benefits of Object-Oriented
and Relational Technology

Kim [139] is an advocate of OR technology. He reviews the promises of

OODBs, examines the reality of these systems, and concludes by discussing how

their promises may be fulfilled through unification with relational technology. Kim

begins by highlighting the following advantages that OODBs have over RDBs.

Within the relational model, the responsibility for defining and displaying

the structure of the data typically lies with the application. The application must

impose the 'object structure' on the data from the flat generalised relational

structure. OODBs, on the other hand, can directly model data as structured objects.

For example, hierarchical data (or complex nested data) must be represented as

tuples in multiple relations in an RDB. OODBs allow the data type of an attribute to

be a primitive type or an arbitrary user defined type (UDT). Row (or composite

types) and multi-valued collection attributes (sets, bags, arrays and lists) are also

available. This nested object representation allows hierarchical data to be naturally

represented. This could for example, be used for an engineering bill of materials

where an item list for an assembly may contain several sub-assemblies. The ability

to represent this structure as nested objects avoids the need for tuples in multiple

tables, which involves expensive joins for retrieval. Reference types can allow

simpler query paths that avoid complex value-based joins, using instead, pointer-

based navigation.

RDBs offer a set of primitive, built-in data types with no means of adding

UDTs. OODBs allow complex unstructured data to be stored as UDTs. Furthermore,

new data types may be created as new classes, possibly even as subclasses of

existing classes, inheriting their attributes and methods.

Although RDBs ofkr stored procedures (a program written in a procedural

language and stored in the database for later loading and execution) these are not

21

encapsulated with data. Further, since RDBs do not have the inheritance mechanism,

the stored procedures cannot automatically be reused.

OODBs overcome these problems and have the potential to reduce the

difficulty of designing large complex databases and applications. Inheritance and

encapsulation make database design and application program reuse possible.

However, most OODBs still lack basic database features that the users of RDBs

have come to expect. These features include a full non-procedural query language,

views, dynamic schema changes and parameterised performance tuning. Added to

this, the robustness, scalability and fault tolerance of OODBs does not meet that of

more mature RDBs. Kim recommends combining features from the 0 0 and

relational models in support of the OR model. This combination makes it possible to

support UDTs, dynamic schema changes, SQL, triggers, constraints, automatic

query optimisation, and views as a unit of authorisation.

Current OR products support features such UDTs, user-defined functions

(UDFs), triggers and enhanced integrity constraints. UDTs allow the set of built-in

types to be extended with new data types such as text, image, audio, video, time

series, Ime, point, polygon, etc. There are variations in the capabilities of UDTs

amongst the different vendors. The most basic form of UDT is a renamed or distinct

base type, which can be used to add stronger typing. Beyond this UDTs can

represent row types or full (ADTs) that encapsulate arbitrarily

complex structures and attributes. UDFs can apply to both base types and UDTs to

define methods by which applications create, access and manipulate data. Vendors

are beginning to market UDTs in type extension packages, for example, Informix's

Datablades and IBM's Relational Extenders provide packages for spatial and time-

series data.

The features and advantages of the OR model made it the natural choice for

the EASIA scientific data archive (Chapter 5). Ferreira et al. [92] also support OR

technology for scientific data management. They state that an important subset of

scientific applications fall into the complex data with queries category (as defined in

Stonebraker's classification matrix for DBMS applications [211]) and can therefore

be supported by object-relational database management systems.

22

2.1.1,4 Support for Object-Oriented Databases

Ceiko and Celko [40] and Bloom [20] provide an alternative viewpoint to

that given so far. Both are supportive of OODB technology. Bloom believes that the

trend towards increasingly complex 0 0 applications, particularly multi-tier

distributed object systems, will require more database functionality and that RDBs

will increasingly give way to OODBs. Celko and Celko believe that both models

have a place. They state that rather than trying to fit data to a database model, a

database model should be chosen according to the type of data and expected access

patterns. For simple data, RDBs provide a proven high performance solution for

both simple queries (such as those associated with transaction processing systems)

and complex queries (such as those associated with data mining). For complex data,

or data involving complex relationships, OODBs provide a better solution. Internet

based multimedia solutions tend to fall into this second category, suggesting an

increasing demand for OODBs. OODB vendors have been particularly quick at

enhancing their existing products, or producing new product ranges with XML

(Extensible Markup Language, see Section 2.2.8) capabilities. They argue that

OODBs are a natural match for structured, nested, richly linked information and are

therefore capable of storing XML data in native form as objects rather than having

to dissassemble the data into tabular data [120] [205]. (In fact, the market leading

OODB vendor, until now known as Object Design, has recently rebranded itself, and

is now known as Excelon [88] after one of its XML products, and is concentrating

on dynamic XML-based business-to-business (B2B) commerce.)

Despite these claims, during this reserarch ORDBs proved entirely adequate

for representing complex data from numerical simulations. This data was stored in

native binary formats in non-traditional data types. Advantages of the 0 0 data

model might have been more apparent if the scientific datasets needed to be stored at

a lower-level of granularity, for example, in order to make individual elements of a

multi-dimensional array directly accessible through a standard database query.

However, a complex representation of relationships between data items, using for

example, nested objects, carries with it its own set of disadvantages. For examle,

once an object is nested inside another object, then to maintain efficient delivery a

mechanism of separating these objects may be required when the whole object is not

23

required. Also, if an existing nested class is needed in a new class definition, then

the nested class definition needs to be repeated in the new class. Often, the solution

to both of these problems is to separate objects, and to store links between them in

the form of references. However, this leads increasingly to a one-to-one

correspondence between classes in OODBs and tables in ORDBs. Furthermore,

Ensor and Stevenson [85] report that they have rarely (if ever) experienced

performance problems with the use of foreign key (see Section 4.4) links to navigate

a parent child-relationship. Indeed, if the actual value of the foreign key is required

then a reference based model exhibits the disadvantage that the reference must be

navigated to obtain that value.

2.1.1.5 Additional Resources

The book by Ullman and Widom [220] covers the latest database standards

(for 0 0 and OR technology) including OQL, ODL, SQL2, and SQL3 (now

SQL: 1999, see Section 2.1.2) with explanations of how to design databases for both

models using ODL and entity-relationship modelling [44].

Currently ORDB products do not provide complete object capabilities in

terms of encapsulation, inheritance, polymorphism, object IDs and pointer based

navigation. However, the Aitnre direction of ORDBs is to achieve many of the

benefits of the object model. The emerging SQL: 1999 standard, described in the

next section, incorporates these features. For ORDBs that do support the majority of

the new object features, such as row types, inheritance, references, path expressions

and UDTs the BUCKY ^Benchmark of Universal or Complex ^wery Fnterfaces^

[31] was designed to test the performance of these

new features. The benchmark provides an OR version of BUCKY and a

semantically equivalent relational schema and queries so that the performance of the

0 0 features can be compared with traditional RDB functionality.

2.1.2 SQL:1999

The prototype systems created during this research benefited in particular from

several new OR features that form part of the emerging SQL: 1999 Standard

(formerly known as SQL3, see for example [79]). For example, DBbrowse and

EASL^ both made extensive use of non-traditional. Large OBject (LOB) data types

24

described in Part 2 of the Standard. EASIA also uses JDBC which is discussed in

Pai-t 10 of the Standard (being the technology upon which SQLJ is layered, see

Section 2.1.4.2). EASIA also used SQL/MED, described in Part 9 of the Standard, at

the foundation of its architecture (see Section 5.3.2).

SQL: 1999 enhances SQL2 (also known as SQL-92) [59] into a

computationally complete language for the definition and management of persistent,

complex objects. SQL: 1999 includes generalisation and specialisation hierarchies,

multiple inheritance, user defined data types, triggers and assertions, support for

knowledge based systems, recursive query expressions, and additional data

administration tools. It also includes the specification of ADTs, object identifiers,

methods, inheritance, polymorphism, encapsulation, and all of the other facilities

normally associated with object data management.

In 1993, the ANSI and ISO development committees decided to split future SQL

development into a multi-part standard. Currently there are 9 parts:

Part 1: SQL/Framework (ANSI/ISO/IEC 9075-1-1999) - A non-technical

description of how the document is structured,

Part 2: SQL/Foundation (ANSI/ISO/IEC 9075-2-1999) - The core specification,

including all of the new ADT features.

. Part 3: SQL/CLI (Call Level Interface) (ANSI/ISO/IEC 9075-3-1999)

Part 4: SQL/PSM (Persistent Stored Modules) (ANSI/ISO/IEC 9075-4-1999) -

The stored procedures specification, including computational completeness.

. Part 5: SQL/Bindings (ANSI/ISO/IEC 9075-5-1999) - The Dynamic SQL and

Embedded SQL bindings taken from SQL-92.

Part 6: SQL/Transaction - An SQL specialisation of the popular XA Interface

developed by X/Open.

Part 7: SQL/Temporal - Adds time related capabilities to the SQL standards.

Part 9: SQL/MED - Management of External Data (see Section 5.3.2).

Parti0: SQL/OLB - Object Language Bindings (see Section 2.1.4.2).

25

Part 8 existed at one time under the informal name SQL/Object, but its material got

incorporated into Part 2. ISO also accepted a recommendation to cancel the project

under which Part 6 was being developed. The rationale for the cancellation was that

the working draft had not been changed since about 1995 and nobody seemed to be

interested in publication of the material in question any more.'

In the USA, the entirety of SQL: 1999 is being processed as both an ANSI

domestic project (the X3H2 committee covers Database and includes SQL) and as

an ISO project (ISO/IEC JTCl/SC 21/WG3 DEL). The ISO standards lifecycle

requires that every proposal for a standard starts life as a Working Draft (WD),

progresses to Committee Draft (CD), then to Final Committee Draft (FCD),

followed by Draft Internal Standard (DIS), and finally International Standard.

Eisenberg and Melton [81] report on the status of each part of SQL: 1999 as at

March 2000. Parts 1 to 5 are International Standards with Part 10 expected to reach

International Standard in 2000 (currently at DIS ballot stage), Part 9 in 2001

(currently at FCD ballot stage) and Part 7 in 2003. For the next generation of the

SQL standard (after SQL: 1999), Part 5 has been eliminated by merging its contents

into SQL/Foundation, and a new Part 11, SQL/Schemata, has been created to hold

the Information and Definition Schema specifications that were removed from

SQL/Foundation [81].

In addition to the SQL: 1999 work, a number of additional related projects

are being pursued, including, SQL/MM. Approved in early 1993, this is a new

ISO/IEC international standardisation project (within WG3) for development of an

SQL class library for multimedia applications. This multi-part standard will specify

packages of SQL ADT definitions using the facilities for ADT specification and

invocation provided in the emerging SQL: 1999 specification. SQL/MM intends to

standardise class libraries for science and engineering, full-text and document

' Private communication to the author from Hugh Darwen, Database Specialist, IBM United

Kingdom Limited, 15 Jul 1999.

26

processing, and methods for the management of multimedia objects such as image,

sound, animation, music, and video.

The object management features of SQL: 1999 incorporate many of the

features of OODBs. In view of this a merger group [150] was formed with

participation from ANSI X3H2 and the ODMG, with intent to merge the ODMG's

OQL query language with SQL: 1999. OQL would then form a read-only subset of

SQL: 1999, since OQL does not include [/PZW7E and preferring

to implement these through method invocation.

Obtaining status information on the SQL Standards, and copies of the

Standards themselves can be difficult. In the past the standards were available for

purchase only, with SQL-92 costing around $295. Now the first 5 Parts of

SQL: 1999 (that have reached the level of International Standard) are available for

electronic dovmload from both the y47VS7 S'forg [12] and the

7VC773' Aorg [161], at a price of $20 per part. There is however, no

official Web site that details the status of the emerging Parts of the SQL Standard.

However, a document repository for ISO/IEC JTC1/SC21/WG3 is available at

[130], although it is very difficult to navigate. Books are also beginning to emerge.

Gulutzan and Pelzer [106] provide coverage of the first 5 parts of the standard and

Fortier [97] provides information on SQL/Foundation. The Web site at [207] is

outdated but still contains some useful information.

2.1.3 Parallel Databases

The availability of powerful, relatively inexpensive commodity CPU chips and other

computer components now means that multi-processor computing offers mainframe

or better than mainframe performance at a much lower cost than traditional

hardware. As such, few large-scale data-processing projects are undertaken without

first evaluating parallel technology. For database vendors, it is essential that their

database management systems exploit multi-processor hardware platforms if they

are to survive in the commercial database market place. Indeed, all the major

vendors have parallel relational database products including, Oracle, IBM,

Informix, Sybase, Tandem and Teradata. A comprehensive features based

27

comparison of parallel database management systems and hardware platforms for

these systems is available in a report by Bloor Research carried out in 1995 [166]^.

Parallel database systems are often categorised by the way they share

hardware resources such as memory or disk. Three categories can be distinguished;

shared-memory (SM), shared-disk (SD) and shared-nothing (SN). In SM systems all

processors share all disks and all memory. In SD systems, each processor has its

own private memory but all processors have access to all disks. Oracle 7 is an

example DBMS that uses a SD environment. In SN systems each processor has its

own private memory and disks. The majority of commercial parallel databases fit

into this category.

There have been many debates as to which architecture is most suited to

parallel databases. In 1992 DeWitt and Gray [67] asserted that the shared-nothing

architecture had emerged as the consensus for parallel and distributed system

architecture. In an earlier paper Stonebraker [210] concluded that SN systems would

have no apparent disadvantages when compared to alternative systems. Baru et al.

[17] also expound the virtues of the SN architecture, perhaps not surprisingly, since

they were the team responsible for IBM's DB2 Parallel Edition (now DB2 Universal

Database Extended Enterprise Edition). Arguments in favour of the SN architecture

include a theoretically lower hardware cost due to commodity components and the

ability to scale-up to higher numbers of processors. Disadvantages include data skew

where data is not balanced across disks (and processors), the need for distributed

deadlock detection and a multiphase commit protocol. Complex software is required

to split SQL statements into many subtasks to be executed on different processors

and then to merge the results. Where possible this approach uses function shipping,

that is, operations are performed where the data reside to reduce inter-processor

communications. This architecture has an availability problem in the case of a disk

or processor failure. In practice, multiply attached disks and replication, are used,

much the same as in a SD environment.

' This report is not freely available but can be purchased from Bloor Research.

28

Rahm [191] and Valduriez [224] [223] have more recently advocated the

benefits of a shared-something and shared-disk respectively. The software required

to provide parallel database processing is considerably less complex for SM due to

the global memory address space. SM provides easy load balancing. Fast inter-

processor communications are possible since this is carried out in memory. Potential

disadvantages include a memory bottleneck, especially as the speed of the

processors increases and the number of processors is increased. Maintaining

availability is also more of a problem than with SN and SD, in the case of a memory

fault. Hardware cost is potentially higher due to the need to link each processor to

each memory module. SD provides the possibility of easier load balancing, less

communications overhead than SN, and nodes can more easily be partitioned for

different functions e.g. fbr complex query or transaction processing. Software is

more complex than SM due to the need for coordinated global locking and two-

phase commit. Access to shared disk can become a bottleneck due to limited bus

capacity.

Norman and Thanisch [165] propose that developments in technology now mean

that distinctions based on hardware architecture are no longer so relevant when

comparing performance of parallel architectures. Important factors include the way

processes and threads are organised to cooperate in transaction and complex parallel

query organisation and the sophistication of the optimiser. Nearly all of the

commercial parallel database products now run on both Symmetric Multiprocessor

(SMP) platforms in which processors share memory or Massively-Parallel Processor

(MPP) platforms in which processors have private memory. This is a necessity since

the trend in hardware design is to combine the two architectures so that an MPP

platform can include multiple SMP nodes. Both MPP and SMP parallel relational

database products are based on three simple techniques:

- this involves distributing the rows of a table across multiple

disk drives. Three basic methods are used; hash, range and round robin.

f - Operators are overlapped so that the results of one operator are

incrementally sent to the next operator in the execution plan.

29

• Partitioned execution - relational operators are replicated to increase I/O

bandwidth available through partitioned tables.

In a 1996 Object-Relational summit presentation, Dewitt [66] described

extending parallelisation of RDBs to include ORDBs as a challenging area for

current database research. The techniques used to parallelise RDBs are not adequate

for parallelising ORDBs. Problem areas include row valued attributes and collection

attributes which can lead to skewed data distributions and storing and retrieving

multimedia data e.g. partitioning individual images. It remains to be seen how

commercial DBMSs will meet these challenges.

Parallel databases provide transparent parallelism from the user's point of

view. Applications that run on sequential DBMSs can run unmodified on parallel

versions of the products. For efficient performance database administrator effort is

needed to adjust performance tuning parameters (such as memory allocation) and for

deciding on the best data partitioning strategy.

Whilst a parallel database was used as the underlying database for the

DBbrowse prototype (described in Section 4.2), the capabilities of parallel databases

were not exploited for any significant part of this research. Both the DBbrowse and

EASIA prototypes were designed to support relatively simple queries that might be

associated with access to metadata relevant to archived scientific data. EASIA stores

the actual scientific datasets external to the database, which frees the database of the

resource intensive post-processing of scientific data (refer to Section 5.2.5).

2.1.4 Java Database Access

This section focuses on JDBC and SQLJ. Respectively, these provide dynamic and

static SQL interfaces to relational databases Aom within the Java programming

language. JDBC is used in the EASIA prototype due to the ad-hoc (i.e. dynamic)

nature of the queries, posed by the scientific users, aimed at locating datasets of

interest. EASIA also requires JDBC to discover schema information about the

database at runtime.

30

2.1.4.1 Java Database Connectivity

The Java Database Connectivity (referred to as JDBC, although according to Sun

this is a trademarked name not an acronym [137]) specification [232] is supported

by all the major database vendors and allows open database connectivity directly

from within Java. JDBC was added to Java version 1.02 in 1996. It consists of an

API (found in the java.sql package of the standard Java API [132]) that contains a

few implemented classes and many database neutral interface classes that specify

behaviour without any implementation. Database vendors or other third parties

provide the actual implementation of these interfaces in the form of JDBC drivers.

Usually two initial statements in a JDBC application are used to firstly, register a

JDBC Driver and secondly, to open up a database connection (using the

Dr/vgrMaMoger class from the JDBC API) using the previously registered driver.

These two statements are often the only two that need to be changed to run the

application against a DBMS 6om a different vendor.

The JDBC API is similar in concept to Microsoft's Open Database

Connectivity (ODBC) [172]. The JDBC standard is based on the X/Open SQL CLI

(Call Level Interface) [62], the same basis for ODBC. Applications talking ODBC to

relational servers have reduced the need for writing embedded SQL. A CLI

application does not require precompilation or binding but instead uses a standard

set of functions to execute SQL statements and related services at runtime.

Traditionally, precompilers have been specific to a particular database product. This

requires source code to be written and compiled for each database product. Also

embedded SQL applications have to be bound to a specific database before use. The

CLI allows for portable applications that are independent of the database product

and can be distributed in binary form.

ODBC is however not appropriate for direct use from Java since it is a C

interface. Indirect usage of ODBC from Java, using calls from Java to native C code,

has many disadvantages in the areas of portability, security, implementation and

robustness. JDBC is designed to reduce these problems, and will not only allow

applications which are independent of the database product but will also allow

machine independent applications to be written. Whilst ODBC and JDBC are

31

designed to provide database independence, true portability still resides with the

application designer. A driver must support at least ANSI SQL-92 (also known as

SQL2) Entry Level to be called 'JDBC Compliant'. This gives applications that

want wide portability a lowest common denominator. However, JDBC allows any

query string to be passed to the underlying database, so that an application can use

any database specific commands available, at the expense of reduced portability.

Currently, the JDBC specification also requires that selected semantics from

the ANSI SQL-92 Transitional Level must be supported by drivers written for

databases that support the SQL-92 Transitional Level. In view of this, JDBC

supports a DBMS independent escape syntax for stored-procedures, scalar functions,

dates, times and outer joins. A driver must convert the escape syntax into a DBMS

specific syntax. The escape syntax is generally different to the SQL-92 syntax for

the same functionality. In cases where all of the targets DBMSs for an application

support SQL-92 syntax, the application designer can use this syntax. Finally, on the

subject of portability, there are a number of JDBC metadata interfaces that provide

information on the functionality of the target database. The application designer can

use this metadata to provide different execution paths for databases that support

different levels of SQL compliance. For example, the application designer can query

the metadata to find out if the target database supports some form of outer join, and

implement this in a different way if the database does not.

JDBC drivers may also support the JDBC Standard Extension API [233].

These include support for the Java Naming and Directory Interface (JNDI),

connection pooling, distributed transaction support and rowsets. The JNDI can be

used in addition to the JDBC driver manager to manage data sources and

connections, which allows the application to be independent of a particular JDBC

driver and JDBC URL. A rowset encapsulates a set of rows and may or may not

keep an open database connection. The specification discusses several different

types of rowsets. A rowset allows off-line updates to be performed and

propagated to the underlying database using an optimistic concurrency control

algorithm. Rowsets also add support for the Java Beans component model. A rowset

object is a Java Bean and may be serialised. It is therefore a suitable container for

32

tabular data that can be passed between different components of a distributed

application.

JDBC can be used for any database system for which a driver exists. This is

not restricted to RDBs but includes ORDBs and even non-relational technology such

as IBM's IMS. At the present time there are different ways to implement drivers that

fit into one of four categories [136]:

1. The JDBC-ODBC Bridge provides JDBC access via most ODBC drivers. Note

that some ODBC binary code and in many cases database client code must be

loaded on each client machine that uses this driver, so this kind of driver is most

appropriate on a corporate network, or for application server code written in Java

in a 3-tier architecture.

2. A native-API partly-Java driver converts JDBC calls into calls on the proprietary

client API. Note that, like the bridge driver, this style of driver requires that

some binary code be loaded on each client machine.

3. A net-protocol all-Java driver translates JDBC calls into a DBMS-independent

net protocol, which is then translated, to a DBMS protocol by a server. This net

server middleware is able to connect its all Java clients to many different

databases. The specific protocol used depends on the vendor. In general, this is

the most flexible JDBC alternative. It is likely that all vendors of this solution

will provide products suitable for Intranet use. In order for these products to also

support Internet access they must handle the additional requirements for

security, access through firewalls, etc., which the Web imposes.

4. (frzvef converts JDBC calls into the network protocol

used by DBMSs directly. This allows a direct call from the client machine to the

DBMS server and is a practical solution for Intranet access. Since many of these

protocols are proprietary the database vendors themselves will be the primary

source for this style of driver. Several database vendors have these in progress.

IBM's DB2 JDBC driver was used in the development of the EASIA prototype.

IBM provides both type 2 and type 3 JDBC drivers for DB2. For Java applications

the DB2 Client software must be installed on the client making this a category 2

implementation (this driver was used in EASIA). For Java no DB2 code is

installed on the client and a category 3 implementation is applicable. A DB2 server

(or client) must be installed on the Web server machine along with DB2's JDBC

Applet Server, When an Applet is downloaded, additional class files are downloaded

associated with DB2's JDBC Driver. The Applet calls the JDBC API to connect to

DB2, and the driver establishes communications with the database via the DB2

JDBC Applet Server on the Web server machine. (Although advertised as a type 3

driver this is not strictly the case since the Applet Server can only connect to IBM's

DB2 database. Type 4 classification is also not strictly applicable either, since JDBC

calls are not passed directly to the database server but to the Applet server.)

2.1.4.2 SQLJ

JDBC is becoming ubiquitous for relational and object-relational database access

from Java. JDBC is primarily a interface and does not require pre-

compilation or binding to a particular database in advance. Dynamic SQL query

plans are determined at run-time. This can be advantageous for DBMSs subject to

frequent updates since the latest database statistics can be used for query plan

optimisation. However, for DBMSs in which databases statistics do not change

significantly, 5'gZ can provide a performance advantage because query plans

are determined ahead of execution, during pre-compilation.

JDBC can, however, offer some of the potential performance advantages of

static SQL through prepared SQL statements. An SQL statement containing host

variables can be prepared before execution and can then be executed multiple times,

with different values for the host variables. This can give a performance advantage

because the database will compute the execution plan for the query only once, when

the statement is prepared and subsequent execution of the query will use the same

plan. JDBC method calls to prepared SQL statements can only be executed at run-

time. Therefore, although the execution plan vyill only be computed once this

computation will still occur at run-time. True static SQL allows the embedded SQL

statements to be pre-compiled and the program can be bound to a particular database

34

ahead of execution. The optimised query plan can therefore be determined at this

time. Static SQL offers several other advantages to the code developer:

cAgch'ng - of SQL statements.

- to ensure that data exchanged between the host language and

SQL have compatible types.

Schema checking - to ensure that the SQL statements are compatible with the

target database schema.

ANSI and ISO standards exist for Embedded SQL within the C, COBOL,

FORTRAN and ADA languages amongst others, and in April 1997, Oracle, IBM

and Tandem jointly proposed, SQL J - Embedded SQL for Java (known at the time

as JSQL). SQLJ Part 0 (Embedded SQL for Java) has been accepted as an ANSI

standard and will form Part 10 of SQL: 1999 known as SQL/OLB [61] (see also

Section 2.1.2). Although SQLJ is aimed at providing a static SQL binding from

Java, the standard layers SQLJ upon JDBC such that an SQL/OLB compliant

implementation also provides access to JDBC features.

SQLJ Parti (Java Stored Routines) and Part2 (Java Data Types) are also

undergoing standardisation, though not as part of the SQL standard. For further

details, see for example [208] [80] and [81].

2.1.5 Microsoft's Data Access Strategy

The previous section mentioned that most commercial database vendors provide

JDBC drivers for their products. One notable exception is Microsoft. (However,

some third parties provide JDBC drivers for Microsoft databases, and the JDBC-

ODBC Bridge can be used to access a Microsoft DBMS). Microsoft has a strategy,

known as [/Mzverj'a/ (UDA) [222], for providing access to database and

non-database information across the enterprise. UDA provides data access services

to Windows Distributed interNet Application (DNA) Architecture [236], which is

Microsoft's overall strategy for building scalable, distributed, multi-tier Internet

based, client/server applications.

35

UDA provides access to a variety of information sources, including relational and

non-relational, and a programming interface that can be used with many (Windows

based) languages and tools since it is based on Microsoft's COM (Component

Object Model) component technology [56] [50]. UDA is implemented through the

following technologies: OLE DB [173] (a system level interface),

OZy'gc/f (ADO) [5] (an application level interface that is easier to use than to OLE

DB and which can be used by any language or tool that can use COM) and ODBC

[172]. Microsoft uses yet another acronym, MDAC {Microsoft Data Access

to describe the packaged release of these technologies.

Whilst ODBC has been very successful for Microsoft, it was designed for

relational databases. OLE DB, on the other hand, defines a collection of COM

interfaces for accessing relational data, ISAM/VSAM mainframe data, hierarchical

databases, email, file system stores, and more. ADO will eventually replace ODBC.

However, currently an OLE DB/ODBC bridge is available for databases that do not

have a native OLE DB driver.

Microsoft has produced a paper comparing ADO with JDBC [7]. The paper

(not surprisingly) criticises JDBC in a number of areas including the fact that JDBC

is a low-level API really only suitable for relational data sources. OLE DB, on the

other hand, can access many different data sources. Also OLE DB can be used in

many different languages and tools since it is based on COM components. Whilst

other vendors are building universal databases with new datatypes to centralise non-

traditional datatypes, Microsoft is building OLE DB components to interface to the

data in its original form. A useful overview of Microsoft's data access strategy is

available in [144]. OLE DB was rejected as an implementation technology for this

research as it is vendor and platform specific (requiring an underlying COM-based

architecture). Also, although JDBC is a low-level API it is very easy to use. During

the course of this research JDBC proved to be extremely versatile for coimecting to

different vendor's databases on different platforms.

2.2 Web Developments

The three prototype systems described in this research all provide Web-based

management of non-traditional data. Each system demonstrated new mechanisms

36

and architectures. These 3 systems chart a progression in the usage of increasingly

sophisticated technologies for creating dynamic/interactive Web pages and for

providing Web/database integration. The previous section discussed the variety of

available database technologies. This section discusses the Web technologies that

were available, and describes why different technologies were used to implement the

prototypes.

Initially, data for Web pages was stored in conventional data files containing

static links to other files. There are still many Web sites that are constructed in this

way. However, increasingly Web sites now produce dynamic Web pages in response

to users' requests. There is huge effort both from industrial and research institutions

devoted to developing tools and techniques for dynamic Web-based client/server

systems. Often Web pages are no longer based on conventional files but are built

from data extracted from database management systems. This section discusses the

technologies that have enabled the transition from the static Web to the new

dynamic, interactive Web.

2.2.1 The Common Gateway Interface

Initially the Web consisted of pre-written HTML pages, containing text, images and

fixed links to additional pages. The CGI transformed the static Web by providing

one of the earliest techniques for generating dynamic Web page content. With CGI,

a Web server passes certain Hypertext Transfer Protocol (HTTP) [93] requests to an

external program residing on the Web server. The output of this program is then

returned as an HTML page to the client's browser. In addition to providing dynamic

content, CGI also allowed for user interaction via HTML forms.

CGI is still the most widely used mechanism for server-side processing

[121]. This is because the CGI approach has a number of benefits including ease of

implementation, portability of server software, the use of standard Web browsers as

clients and the existence of a wealth of existing tools and sample code. A CGI

program receives input from the client's browser, via interaction with the Web

server, by reading environment variables and or standard input, and provides HTML

page output, via interaction with the Web server, by writing to standard output. This

simplicity allows CGI programs to be written in any language, although PERL has

37

become the predominant choice [124]. The simplicity of CGI leads to a number of

well-known limitations (see for example [124] [74]):

• Sessions Problem: In most client/server systems the client stays connected to the

server through multiple transmissions. However, with CGI, once a request is

handled the CGI program terminates, closing down any communications channel

with the server. The underlying HTTP protocol is stateless and is not designed to

maintain state between multiple requests from the same client. Crude

mechanisms can be employed to maintain state, including hidden variables in

HTML forms and Netscape's client state cookies [184].

• Server Load/Scalability. The CGI mechanism starts a new process every time a

request is made that accesses a CGI program. For CGI programs written in

PERL, this performance degradation was magnified in initial CGI

implementations since each request also had to start a new PERL interpreter. A

further consequence of server-side processing is that work that might usefully be

done by the client (such as form validation) has to be emulated by CGI programs

on the server, further increasing the workload on the server.

• Slow. Web browsers cannot send requests to the server asynchronously,

performing other work while the request is processed. Clients wait for the sever

response which includes the time for the server to start the CGI process.

• ZzfM/fecy The presentation of the user interface and

results A-om queries are restricted by the limitations of HTML.

Both the GBIS and DBbrowse prototypes were implemented using CGI technology

largely because this was the emerging mechanism for implementing interactive

HTML pages at the time. GBIS used UNIX shell scripting for implementing the CGI

programs, whilst DBbrowse was written using PERL CGI programs. DBbrowse

performed a new database connection for each query, even for subsequent queries

submitted by the same user. This leads to performance degradation. Connecting to a

database is typically very slow, often requiring several seconds to login a user [175].

Repeated database login also limits the client/server functionality, precluding

session-oriented database-applications. DBbrowse did not allow the use of an SQL

cursor to retrieve a subset of the rows in the answer table, with user interaction to

request further rows from the database. This problem is inherited from the

statelessness of the HTTP protocol. Lack of state also lead to repeated queries for

metadata in DBbrowse.

The EASIA prototype does not use the CGI mechanism. Instead EASIA uses

Java Servlets (see Section 2.2.5) to remove the process per request overhead

associated with CGI, to maintain state between requests and to maintain database

connections for a complete client session. EASIA also uses some basic Dynamic

HTML (DHTML) features to allow some server side-processing and more advanced

presentation. Before discussing the reasons behind choosing Java Servlets for

implementing EASIA, a few other alternatives to the CGI mechanism are discussed.

Many technologies have been developed to overcome the limitations of CGI, but in

turn these can exhibit other disadvantages.

2,2.2 Web Server Extensions

To overcome the performance problems associated with process creation using CGI,

Web server vendors provided APIs to allow extensions to the Web server itself.

Microsoft's Web server extension API is known as ISAPI [129] (Internet Server

Application Programming Interface), Netscape's is known as NSAPI [167], whilst

Apache provides the Apache API [13]. Applications built using these APIs run in

the same process as the Web server so that communication between the application

and the Web server is very fast. Additionally, applications remain in memory once

loaded. However, there are a number of problems associated with Web server

extension APIs. Firstly they are proprietary, tying the application to a particular Web

server vendor. Also, development with these technologies is complex. ISAPI, for

example, is only accessible from C++. Wizards are available to help create the

framework for ISAPI code, however building on the framework is not simple [189].

To simplify development, whilst improving the performance of CGI

programs, a number of products have been created on top of the Web server APIs. A

module called [186] is available for the Apache Web Server, which

embeds a PERL interpreter into memory so that this only has to be done once at

initialisation time. In addition, each PERL CGI program is only compiled once and

then kept in memory to be used each time the program is run. This module is only

available for the Apache Web Server.

ActiveState's PerlEx [4] also improves the performance of PERL CGI

programs running on several popular Web servers (including those from Microsoft,

Netscape and O'Reilly). It uses the Web server's native API to accomplish this.

PerlEx is, however, only available for Web servers running on the Windows NT

platform.

Due to Web-server and language portability issues, Web server extensions

were not considered a suitable technology for implementation of the prototype

systems created during this research.

2.2.3 FastCGI

Open Market's faj-fCG/ [90] is another attempt to deal with the performance

limitations of CGI. It consists of a specification [26] along with freely available

source and object code for extending Web server products. FastCGI uses persistent

CGI processes that are reused to handle multiple requests to remove the overhead of

creating a new process for each CGI request. Although processes are reused there is

still at least one process for each FastCGI program, and in order to handle multiple

concurrent requests for the same program, a pool of processes is required. Another

problem with FastCGI is that it is not implemented for some of the most popular

Web Servers, including Microsoft's Internet Information Server [124].

2.2.4 Java and Java Applets

In 1995 Sun Microsystems launched the Java programming language. Described as

"write once, run anywhere" Java portability relies on compiling source code to byte

codes for a virtual machine (specified by Sun Microsystems). The byte code is then

interpreted on any platform using a platform specific Java Runtime Environment

(JRE). Before discussing the implications of this for Web development a brief note

on the ownership of Java follows.

Java is owned by Sun Microsystems and is licensed to third parties. In April

1999 [135], Sun Microsystems proposed to standardise formally Java technology

40

through ECMA [77], an internationally recognised standards developing body with

strong ties to ISO. The proposed submission would consist of the Java 2 platform,

Standard Edition (J2SE), Version 1.2.2 specifications. These consist of the following

technology specifications:

1. Java Language Specification (with Clarifications and Amendments) [105].

2. Java Virtual Machine Specification [145].

3. Java 2 Platform API Specification [132].

However, on December 7, 1999 Sun issued a press release announcing the

withdrawal of the proposal from ECMA [213] which stated, "Sun is withdrawing

from the process in order to protect the integrity of the Java technology and the

investment made in it by the worldwide community using Java technology". The

article goes on to state that Sun is committed to maintaining compatibility across

implementations of the Java platforms and that they encourage the community to

compete on implementation, not on standards. The press release also states that Sun

noted that ECMA has formal rules governing patent protections but that there are

currently no formal protections for copyrights or other intellectual property.

Currently, therefore, Java remains a de facto standard.

Two fundamental categories of Java programs are Java applications and Java

Applets. Java applications are standalone programs that can be run using a JRE and

which have similar properties to programs written in other languages. Java Applets

on the other hand, are designed to be downloaded and run inside a Web browser

using an embedded JRE. Java Applets introduced a fundamentally new concept to

dynamic Web pages. Instead of generating the pages server-side it is now possible to

download executable content, in the form of Applets, to be run within the user's

Web browser. Java Applets therefore provide an alternative philosophy to the

proprietary and non-standard CGI workarounds discussed in the previous sections.

A Java Applet can be downloaded and run on the client. A Java Applet can make its

own network connections using Java sockets, or can employ technologies such as

JDBC and/or distributed object technologies (such as CORBA, see Section 2.2.7) for

communicating with server-side databases and application logic. These technologies

41

can eliminate the bottleneck imposed by the CGI on the server and provide session-

oriented communications. Additionally, sophisticated graphics are available via

Java's Abstract Window Toolkit (AWT) class library.

Due to the security implications of allowing downloaded executable content

to be run on a user's machine, Java Applets do however, run in a sandboxed

environment. Generally speaking, Web browsers restrict Java Applets by:

• Preventing an Applet from running any external executable program.

• Preventing an Applet Aom reading or writing to the local file system.

• Preventing an Applet from communicating with any server other than the

host from which they were downloaded (the originating host).

• Ensuring that an Applet attaches an Applet warning message to any window

that it creates (to prevent, for example, the user &om inadvertently typing in

a password in what appeared to be a window from a local standalone

application, but which might, in fact, be sent to the originating host).

• Preventing an Applet from accessing any local information except for the

Java and operating system version, and the characters used to separate files,

paths and lines.

In addition, a bytecode verifier ensures that all class files obey the rules of the Java

language, which enforces, for example, memory protection (this is to prevent

damage from Java classes bytecodes constructed by hand or by a non-compliant

compiler).

It is now possible to relax some of these restrictions through available

options in current Web browsers. Also, digital signatures provide authentication of

the provider of Java Applet classes thereby allowing a user to grant very specific

extended privileges to individual classes or signers.

During the construction of the DBbrowse and EASIA prototypes Java

Applets were evaluated as a suitable implementation technology. However, Java

Applets were rejected for a number of reasons.

42

1. Applets have restrictions associated with network access to multiple hosts,

and access to the local environment as discussed above. These restrictions

were too limiting for the EASIA application, which needs to connect to

multiple file server hosts, and which is required to allow users to save and

results to the client machine. Paepke et al review technical challenges faced

during construction of the Stanford Digital Library [178]. They state that

Java security managers and their interaction with browsers were a constant

source of trouble. The speed at which Java is developing leads to constant

revisions and incompatibilities.

2. It was difficult to build robust Java Applet software for an environment

where users vyill have browsers from different vendors and at different

release levels. Applets really need to be tested on all possible client

platforms, and even then new versions of browsers may introduce new

incompatibilities [178] [124].

3. The Java Abstract Windowing Toolkit (AWT), the basis for graphical user

interfaces in Java, is, according to Hunter and Crawford [124], the most

error-prone and inconsistently implemented portion of the Java language.

Although 'SWING' now provides an all Java class library for user interface

components, which may prove to be more robust, SWING support in users'

browsers cannot be relied on.

4. Often the response times of JAVA GUIs proved to be slow in execution and

slow to download. This is an important consideration when there is no

control over the client machines of the users.

Although Java Applets were not used for the prototypes, Java was used server-side.

The portability of Java code and the extensive APIs (or class libraries, for example

JBDC) provided great benefits. Java were used to implement server-side

logic in the EASIA prototype. Servlets are discussed next.

43

2.2.5 Java Servlets

Version 1.0 of the Java Servlet API was released in mid 1997. A Java Servlet [63] is

a dynamically loaded Java class that extends the capabilities of a Web server. Once

loaded a Servlet remains in memory, and is handled by separate threads within the

Web server process. This provides a much better performance than CGI, which

creates a new process for each request. Orfali and Harkey [175] found that Servlets

performed over an order of magnitude better than CGI in a 'ping' benchmark.

Servlets are written in Java and, unlike the previously discussed non-

standard CGI workarounds, are supported by all m^or Web servers. Servlets were

unavailable when the GBIS and DBbrowse prototypes were implemented. However,

Servlet technology was used to implement EASIA. The decision to use Servlets

allowed the system to be portable across operating systems and Web servers, and

allowed access to the full range of Java APIs such as JDBC and the security APIs

(see the discussion of code upload for server-side execution Section 5.2.6).

Servlets also provided a mechanism to maintain state for the duration of a

user's login session and to invalidate a user's session and log a user out after a

period of inactivity (by storing a stateful last modified variable).

Since Servlets are a server-side technology they do not provide a means of

enhancing the user interface presented in the client's Web browser. EASIA still uses

HTML forms as the main user interface technology, enhanced with some browser

independent DHTML.

2.2.6 Java Server Pages and Active server Pages

Sun has also released a technology called JavaServer Pages (JSP) [134]. This

is very similar to Microsoft's Active Server Pages (ASP). One main difference is

that JSP uses Java as the language that is embedded within the HTML pages.

However, unlike Java Applets, which execute client side, the embedded Java code is

executed server-side (as with ASP) and a standard Web page is returned to the

client. Also JSP is designed to work with different Web servers and on different

platforms.

44

Sun state that JSP technology was designed to try and provide an industry-wide

solution for creating Web pages with dynamic content. JSP is designed to be simpler

than Sun's Servlet technology, thereby reducing the level of expertise required to

build applications. JSP, like ASP, can separate application logic from Web page

content. So, for example, the appearance of a page can be changed without

modification to the application logic. A Servlet application, on the other hand,

requires that the entire Servlet be edited and recompiled for such a change.

Behind the scenes, JSP pages are converted to Servlets and compiled the Grst

time that they are requested to improve performance for subsequent requests. Since

JSP pages are compiled into Servlets they benefit from Java security and memory

management facilities. Finally, JSP pages can interact with Java Beans Components

to perform complex processing. JSP was not employed during the implementation of

EASIA. This was partly due to the fact that EASIA was started before JSP became

widely available and partly because it proved to be straightforward to implement

EASIA using Servlets directly.

ASP [3] technology was developed to run transparently on top of ISAPl.

ASP can provides memory resident, multi-threaded server-side applications whilst

offering simpler development than ISAPl applications. ASP is a similar technology

to JSP, allowing Web pages to include embedded scripting instructions (using for

example, Microsoft's JScript and VBScript languages) along with other HTML tags.

When Microsoft's IIS (Internet Information Server) Web server first gets a request

for a particular ASP page it compiles the script in the Web page and loads the

compiled code into memory. The script then performs some server-side processing

and writes a standard HTML page back to the client. Underneath the covers, ASP

uses a Microsoft supplied ISAPl DLL that runs within the same memory space as

the IIS Web server to process the Web pages.

Originally ASP simply provided server-side scripting. Now however, ASP is

one of Microsoft's mainstream technologies for Web-based application

development. It is now tightly integrated vyith other Microsoft technologies (see for

example [189]) such as ADO, COM and MTS (Microsoft Transaction Server) [151].

Third parties have ported ASP technology to other platforms. As with other

45

Microsoft technologies, ASP was not used for any prototypes in this thesis as it

generally restricts the architecture to the Microsoft Windows platform. Some

attempts have been made to port ASP to other operating systems, for example.

Chili!soft's Chili!ASP [58] provide a comprehensive commercial product range

which allows ASP to operate on Web servers other than IIS and on alternative

operating systems to Windows NT.

2.2.7 Distributed Object Technologies

At the same time that Applets were investigated as a possible implementation

technology for client-side processing, distributed object technologies were evaluated

as a means for the clients to communicate with server-based parts of the

applications. Distributed objects have the potential to allow Java Applets to

communicate with the server using a higher level of abstraction than alternative

mechanisms such as a raw socket connection employing a user-defined protocol, or

HTTP (and CGI) based communications. The result of the evaluation was to reject

distributed object technologies as a possible implementation technology for EASIA,

largely due to the previously discussed problems associated with the client-side Java

Applets. However, this section provides a brief description of some of the issues

presented by the distributed object technologies.

The need for better client/server performance in the Web environment lead to

resurgence in the popularity of distributed object technologies, particularly in

combination with Java. During the evaluation of these technologies a simple

client/server 'ping' benchmark was run which showed distributed object

technologies to perform two orders of magnitude better than the CGI mechanism

with a performance level within the same order of magnitude as raw socket

programming. The details of the experiment are given in Appendix B.

The major database and middleware vendors have all been active in the

distributed object arena. The principal distributed object technologies are CORBA

(Common Object Request Broker Architecture) from the OMG [53], DCOM

(Distributed Component Object Model) from Microsoft [27] and RMI (Remote

Method Invocation) from Sun [133]. Their promise is to provide an infrastructure

fbr distributed computing which allows the invocation of methods on objects just as

46

if they were part of the local application, whereas the objects can actually be located

anywhere on a network. That is, they are intended to provide 1nr.Al/remn+p

transparency so that the developers do not have to worry about factors such as

transports, server locations, object activation, target operating systems, etc. A brief

overview of the features of these technologies follows (concentrating on CORBA as

this formed the bulk of the evaluation) along with a general discussion of why they

have not succeeded in the Web environment and a mention of the new direction

these technologies are taking in middleware component architectures.

2.2.7.1 CORBA

CORBA is an open standard overseen by the OMG, a consortium of over 700

companies within the computer industry. CORBA's architecture is built around three

key building blocks:

• OMG Interface Definition Language (IDL)

• The Object Request Broker (ORB)

• The standard Internet Inter-Orb protocol (HOP)

The key to CORBA is that CORBA objects have well defined interfaces that can be

expressed in OMG Zangwagg (IDL). IDL is a simple declarative

language used to define object types by specifying their interfaces. IDL syntax is

similar to C++ or Java, but it does not contain any programming constructs. An

interface definition consists of:

• operations - method signatures

• parameters - arguments of operations - in (client to server), out (server
to client), inout (both ways)

• attributes - instance or class variables - 'get' and 'set' methods must be
supplied for each attribute (get only for read-only attributes)

• exceptions - exceptions that operations may raise

An IDL interface can also specify inheritance from parent interfaces, and typed

events that it emits. An important feature of CORBA is that it is language neutral.

47

Clients and servers can be written in a number of different languages, including

Java, C, C++, Smalltalk and ADA, and bindings fbr other languages such as

COBOL are in the process of being specified. Clients written in one language are

able to communicate with servers written in a different language. It is possible to

implement the same interface in multiple objects.

IDL is used to map CORBA objects into particular programming languages

through the use of IDL compilers. An IDL compiler for the Java language

automatically produces a "̂̂ <6 class for the client, a class for the server and

a Jhva class that corresponds to the IDL. The stub and skeleton classes

glue the actual client and server code to the ORB. The ORB is the middleware that

handles the client/server interaction. An API is defined to allow client/server object

interaction with the ORB.

The stub class provides local proxy objects that the client can invoke

methods on. The methods in the stub proxy object in turn invoke operations on the

real object implementation, via the skeleton on the server. Once the client stub has

been instantiated on the client using an object reference to a CORBA server object,

standard Java code is used to invoke methods on that object.

During a client request the stub automatically builds a block of information

that identifies the object and method to be used, and which contains the parameters

to be sent. This block of information is packaged in a device-independent manner.

This is known as /MOfj'AaZ/mg. The skeleton class at the server

unmarshalls the parameters. It directs the operation request to the appropriate

method of the correct object implementation. The skeleton class then captures the

return value or exception and sends this, in marshalled form, back to the stub on the

client.

Two classes usually have to be written for the server side of the request.

These are referred to as the and A object is an instance of the

object implementation, i.e. code that implements the methods specified in the IDL

interface. The programmer will add the body of the operations defined in the IDL

(and Java interface) and also constructors for the object.

48

A server object can be started manually (at the command line) and it then

instantiates a servant object (or multiple servant objects, possibly of different types).

The server code also initialises the ORB environment and registers the available

servant objects with the ORB.

The CORBAl.l specification (introduced in 1991) concentrated on

producing portable object applications by defining CORBA IDL and the CORBA

API. However CORBA implementations from different vendors were not

interoperable. CORBA2.0 [53] (first adopted in 1994) includes the specification of

inter-ORB interoperability, known as the General Inter-ORB Protocol (GlOP). This

protocol defines the message format for invoking operations on CORBA objects.

One mandatory Inter-ORB protocol (lOP) that must be implemented by CORBA2.0

compliant ORBs it the Internet Inter-ORB Protocol (HOP) which uses TCP/IP as its

transport protocol. CORBA2.0 also allows an object reference to be used by a client

using any compliant ORB, through the use of OZygc/

(lORs).

In the Web environment CORBA clients are subject to security restrictions.

Applets that invoke operations on CORBA objects are limited to opening network

connections back to the host from which they were downloaded. Another restriction

occurs in the case of firewalls which do not permit TCP/IP based HOP

communications to cross them. A method often used to overcome these problems is

known as 777Y? rwMMgZ/mg. HOP messages are placed in a HTTP wrapper which

enables them to pass through firewalls. The messages are sent back to the

originating host of the applet and a daemon process on the host machine forwards

the CORBA request to the machine that hosts the required object.

This completes a brief overview of some of the important features of

CORBA. This overview provides details that allow comparisons with DCOM and

RMI in the next two sections, followed by a discussion of why these technologies

have not superseded HTTP as the protocol for Web communications, and how they

might, instead, succeed in middleware component architectures. For more detailed

comparisons of these distributed object technologies, see for example, [45] [175]

49

[187] [192] [215] and for excellent links to information on CORBA in general, refer

to [41].

2.2.7.2 DCOM

DCOM is Microsoft's distributed object technology to compete with CORBA.

DCOM extends Microsoft's COM from the desktop to the network allowing objects

to communicate over the Internet. It is best to consider COM and DCOM as a single

technology that provides a range of services for component interaction, from

services promoting component integration on a single platform, to component

interaction across networks. In fact, COM and its DCOM extensions are merged into

a single runtime. This single runtime provides both local and remote access. COM is

both a specification and an implementation that specifies a binary standard for

implementing objects. The implementation part is a dynamic link library that

includes API function calls. These can be used to instantiate an object and give it a

unique ID. COM specifies how the objects can be instantiated and how they can

communicate locally using the predefined interfaces that they implement. DCOM

uses object-oriented remote procedural calls to extend COM, and is built on top of

the Open Software Foundation (OSF) Distributed Computing Environment (DCE)

Remote Procedural Call (RPC) [177].

DCOM, like CORBA, uses an interface definition language. However, these

are not the same. A DCOM IDL file contains interface definitions, which are

divided into an interface header and an interface body. The interface header contains

details applicable to the whole interface. The interface body contains items such as

function prototypes and pre-processor directives. CORBA IDL is far more succinct

and self explanatory than DCOM IDL. A DCOM Interface is a group of related

functions held in an array of function pointers known as a vzrrwa/ or

The table points to the implementations of the interface functions. A client receives

a pointer to the interface, but cannot instantiate an instance or create a unique

DCOM object and hence catmot maintain state between connections. A client can

only reconnect to an interface pointer of the same class. Hence DCOM has transient

stateless objects compared with CORBA's persistent objects and object references.

50

DCOM is primarily a Windows based technology. Language bindings are available

for all Microsoft development environments including Visual C++, Visual Basic and

Visual J++. In contrast to CORBA, which is an open standard overseen by the

Object Management Group (a consortium over 700 companies from within the

Computer Industry), DCOM is proprietary. In 1996 Microsoft announced that it

would hand over its object technology specification to the Active Group [2]. The

Active Group consisted of software vendors and system vendors and was to be

directed by a steering committee including. The aim of the group was to determine a

process to transfer ActiveX specifications and appropriate technology to a standards

body. However, subsequently Microsoft has quietly abandoned its 1996

commitment to hand over ActiveX to an independent body and the Active Group

has also vanished along with this promise.

COM/DCOM has, however, been ported to a number of other operating

systems by Microsoft and other organisations (see for example [51] [52] [86])

although support for many of the technologies built on top of COM/DCOM is very

limited on these other platforms. A report by the OMG states that Microsoft

Windows is always likely to be the reference platform for DCOM and that "non-

Windows versions will always have second-class status" [54]. The report quotes

Bob Muglia, the Vice-President of Microsoft's Developer Tools Division, as saying,

"Microsoft imapologetically will make sure that ActiveX works best on Windows".

(ActiveX is a core Microsoft Internet technology based on COM/DCOM.)

2.2.7.3 RMI

RMI is a set of Java Classes that Sun first included in JDKl. l . When introduced,

RMI was a non-CORBA compliant ORB restricted to use only from within the Java

Language. This allows RMI to be optimised for Java usage. However, it prevents

RMI from being directly incorporated into existing software written in other

languages. It may also be a problem in applications where the execution time of

interpreted Java byte code does not provide sufficient performance.

The main ways in which RMI differed from CORBA when it was first

introduced are as follows:

51

• No IDL — RMI uses Java interfaces, directly, to specify the interfaces of remote

objects. These interface definitions contain the method signatures of all remote

methods. On the server side a class is created to implement this interface. An

RMI compiler is used to generate client stub and server skeleton classes using

the byte code of this interface implementation class. This class can then be

instantiated by a server program to create remote objects.

• Objects can be passed by value — Since RMI uses Java interfaces and not IDL to

define interfaces it is possible to include method invocations that reference local

objects. Clients and servers can therefore pass one another objects for which no

stub and skeleton classes exist. Additionally, it is not possible to simply pass an

object reference, as would be the case for an object passed as a parameter to a

local method, because object references are memory locations of objects which

are valid only within the local Java virtual machine. RMI solves this problem by

passing the actual value of the object instead of just a reference. There is

therefore no further connection to the original object.

• URL based object names — RMI allows remote object references to be stored

using an URL-based naming scheme which can be very useful in the Internet

environment.

• — Clients can download stub classes &om the server,

dynamically as required, if they have a reference to a remote object and do not

have the stub locally.

Over the last couple of years the differences between RMI and CORBA have

become fewer. RMI can now be implemented on top of HOP thereby allowing a

level of interaction between RMI and CORBA objects. Also, the CORBA

specification now supports objects by value.

2.2.7.4 Distributed Objects Have Not Succeeded in the Web
Environment

Despite the promise of distributed objects they have not succeeded in the Web

environment. HTTP is the protocol of the Web, not HOP. There are a number of

52

reasons for this lack of penetration on the Web. Firstly, these technologies are

complex to use and the idea that applications can be built without regard to whether

objects are local or remote is currently false (see for example [227]). Second, they

require significant runtime support to operate properly. Third, these technologies

were not designed explicitly for the Web, with consequences such as their inability

to traverse firewalls without specific workarounds. Fourth, the mechanism by which

they tightly couple applications to interfaces is too rigid to cope with change. For

example, CORBA IDL is used to produce binary programs for use as stubs and

skeletons at the client and server. A change to an IDL defined interface requires

regeneration of the stub and skeleton and consequential changes (code update,

recompilation, redeployment) to the programs that use them. If these technologies

are being used to bridge applications between different organisations, then exact

agreement is required on the interfaces being used. The rest of this section reviews a

number of books and papers that add weight to the above argument.

In 1997, Orfali and Harkey [175] asserted that the Web was on the verge of a

distributed object revolution, with ubiquitous deployment of Java and CORBA. In

their 'Object Web' environment, clients would dynamically discover and use objects

made available through CORBA's trading service. Clearly this has not

materialised. The authors also quoted Marc Andreessen, the cofbunder of Netscape,

making the following prediction in 1996;

"The next shift catalyzed by the web will be the adoption of enterprise systems

based on distributed objects and HOP (Internet Inter-ORB protocol)".

"We expect to distribute 20 million HOP clients over the next 12 months and

millions of IlOP-based servers over the next couple of years".

If these targets have been achieved then it is solely due to

CORBA software being bundled with Netscape products. However, in terms of

actual deployment, the numbers are orders of magnitude out.

Tallman and Kain [215] quote Gary Voth, Microsoft Group Manager for

Marketing as saying in 1998, "There are only 50,000 or 60,000 deployments of

CORBA around the world". What Voth did not mention, is that there are even fewer

53

enterprise solutions using COM. Tallman and Kain state that they tried to find

references for COM projects but were unable to identify much comparable

experience. Whilst significant COM development occurs at the desktop and

departmental level, it is currently an unproven enterprise technology.

Box [22] compares the suitability of Java, CORBA, COM/DCOM and XML

as technologies for enabling component software that can provide collaboration and

cooperation amongst software development organisations. He believes that it is

unlikely that Java, CORBA or DCOM will dominate the Internet. Box states

"Ironically, while Microsoft and the Object Management Group (OMG) were

arguing over whether the Internet would be run on DCOM or CORBA, the

Hypertext Transfer Protocol (HTTP) took over as the dominant Internet protocol".

A news report in [91] mentioned the heavy bias towards XML in

an early preview of Microsoft's Deve/opgr 7 and made the following

statement concerning DCOM: "In essence, Microsoft is replacing the DCOM RPC

messaging technology with an XML/HTTP technology that allows for remote

method invocation".

CommerceNef's eCo System initiative [103] originally used CORBA to

define business services. However, this was abandoned in favour of XML. The

authors suggest that while CORBA appears workable within organisations that

control APIs, it is not practical for inter-enterprise integration. Business documents,

defined in XML provide a simpler, human readable, intuitive way for businesses to

interoperate. Businesses already exchange information via documents on which they

largely agree, whereas programming APIs for business system interfaces almost

certainly differ. The role that XML has assumed in the Web environment is

discussed in more detail in Section 2.2.8, but first a brief description of emerging

middleware component architectures follows as these could be the environment in

which distributed objects will succeed.

2.2.7.5 Server-side Component Architectures

Before leaving the discussion of distributed object technologies it is worth noting

that new middleware component architectures have arisen in the last couple of years

that may provide a lifeline for these technologies. Therefore, although distributed

54

objects have not proliferated in the Web environment, they may still succeed as the

communication mechanism of choice within organisations. Sun's Enterprise Java

Beans (EJB) architecture [148] (based on CORBA and RMI) and the Microsoft

Transaction Server architecture [151] [216] (based on COM/DCOM) promise 'plug

and play' enferprzj'e computing (which effectively translates as

computing) features. (Note that EJB is an entirely different concept to JavaBeans

technology [110] which allows visual program composition without the need to

access source code. Programs built from JavaBeans are designed to be run in a

single Java virtual machine.) The idea is to provide a level of abstraction, which can

virtually free the developer of any middleware expertise when building scalable,

transactional, distributed applications. Rather than writing to middleware APIs (as

was previously the case with CORBA and DCOM applications) components gain

middleware services implicitly and transparently. These transparent services include

transactions, persistence, security, state management, component lifecycle,

threading, resource-sharing and more.

EJB and MTS also fit within wider enterprise computing strategies &om Sun

and Microsoft, embodied in Java Enterprise Edition [202] and Windows

(DNA) architecture [236] respectively. Java Enterprise Edition

incorporates EJB, RMI, JDBC, Java Naming and Directory Interface (JNDI), Java

Transaction API (JTA), Java Transaction Service (JTS), Java Messaging Service

(JMS), Servlets, JSP, Java IDL, JavaMail, Connectors and XML. The Windows

DNA architecture incorporates many Microsoft technologies, centred on its COM,

for building scalable, distributed, multi-tier Internet based client/server applications.

The DNA approach involves 'plugging together' COM components for developing

all tiers of distributed applications, including, user interface and navigation, business

logic, and storage. Developers can combine many different COM aware languages

(C-H-, Java, Visual Basic, JScript, VBScript), tools and services to create

applications. DNA services include, amongst other things, transactions (MTS),

component management. Dynamic HTML, Web browser (Internet Explorer (IE))

and server (Internet Information Server (IIS)), scripting (JScript, VBScript),

message queuing (Microsoft Message Queue Server (MSMQ)), security, directory

services (Active Directory), data access (UDA, SQLServer), systems management,

55

and user interfaces. This list appears to be fairly flexible in different Microsoft

publications, but in general it is fair to say that it incorporates most of Microsoft's

core technologies.

Further comparison of EJB and MTS is available in [193] and Microsoft's

view of the advantages they see in MTS over EJB is available in [55]. It is too early

to say if either of these strategies will be successful, but the usual 'Microsoft

Windows only' caveats apply to MTS/DNA. Chang and Harkey [43] provide words

of scepticism aimed at the transparency that middleware component architectures

may provide (from very complex underlying technologies and interactions),

encapsulated in their statement, "It will be quite a feat to figure out the reason when

something goes wrong. It will likely be a feat to explain when something goes right

in terms of expected results and performance".

2.2.8 XML and Dynamic HTML

Currently XML (Extensible Markup Language) is an important and rapidly

expanding technology area associated with the development of the Web. XML is

discussed in this section along with DHTML, the DOM (Docw/MgMf Moc/e/)

and JavaScript since there is significant overlap between these technologies. For

example, two of the components of DHTML include the DOM and JavaScript. Also

the DOM specification defines a JavaScript binding that can be used to manipulate

XML (and HTML) documents.

In this research XML was used in the EASIA architecture, firstly as a means

of specifying the content of the user-interface without specifying its representation,

and second, to define interfaces to external server-side applications that can be

incorporated into the EASIA scientific dataset post-processing capabilities.

JavaScript is used in the EASIA user mterface to provide a more dynamic feel than

can be achieved with HTML forms alone.

2.2.8.1 XML

Until now HTML has been /Ae language of the Web. HTML is a fixed markup

language that is, in fact, an application of the

Language (SGML) [127] [57]. However, HTML has a number of limitations. XML

was designed to provide a new markup language for the Web without the limitations

56

exhibited by HTML. XML arrived in late 1996 and finally reached maturity as a

World y/ide V/eb CGnsortium (W3C) [238] Recommendation in February 1998 [23].

(The W3C is an international industry consortium founded in October 1994 to guide

the development of the Web, by providing a repository of information,

specifications, reference code implementations, prototypes and sample applications,

amongst other things A is the highest level a specification can

attain within the W3C.)

XML is a subset of SGML. It is a metalanguage for defining other markup

languages, which can be used for describing and exchanging structured data in the

Internet environment, XML provides most of the functionality of SGML but without

the complexity. Essentially XML documents are and resemble HTML

documents with user-defined elements. An element consists of an opening and

closing tag (indicated by angular brackets similar to HTML's standard tags) which

surrounds content. XML removes the limitations of HTML by providing:

- The ability to define custom tags and attributes. XML tags can

use meaningful names to describe their content, thereby providing self-

describing documents. Text-based XML documents with meaningfiil tags can

facilitate data reuse across different platforms and applications.

- XML can describe data in a nested structure.

Description - XML supports a metadata description (a schema) for the

structured data. Currently the mechanism for this is to associate a Document

(DTD) with the XML document.

Fa/zcfar/oM - If a DTD is included, XML supports verification to ensure the data

is (according to the supplied DTD) and

An XML document is if:

1. It contains one or more elements.

57

2. It has exactly one root element that has a unique opening and closing tag that

surrounds the whole document.

3. All other elements within the document are nested with no overlap between

elements.

A well-formed XML document may additionally be described as valid if it

conforms to a DTD. These are expressed in Bach/j'-TVawr (EBNF) notation

(see for example, the XML Specification [23]). Although DTDs are currently the

recognised way to associate a schema with an XML document (in line with the

current XML specification), there are a number of efforts underway to develop

alternative schemas for XML to overcome some of the problems associated with

DTDs. DTDs can be difficult to write and are limited in their descriptive power.

DTDs cannot specify data types, default element content, or relationships within the

data. DTDs also require separate parsers to XML, and different authoring tools. The

main contender is now [240] [241], a two-part draft specification for a

schema language, which provides a superset of the capabilities, found in DTDs. This

working draft draws heavily on a number of other proposals.

Since XML consists of user-defined elements, an application usually needs

to parse an XML document and specialised APIs have been created for this purpose.

There are two major types of XML parsers: Tree-based and event-based. A tree-

based XML parser compiles an XML document into an internal tree structure and

then provides an API to navigate that tree. The DOM (Section 2.2.8.2) specifies

such an APT Event-based parsers report parsing events (such as start and end tags)

directly to an application via call backs without building an internal tree. Whilst this

is a lower API it has the advantage that it is not as memory hungry as a tree-based

API which builds an in-memory parse tree. SAX (the Simple API for XML) [203]

provides a standard interface for event-based parsing. Most parsers will also validate

an XML document against a specified DTD.

Having described the origins of XML and a brief overview of some of its

features, the following two sections discuss two diverse applications of XML.

Firstly, as a mechanism for presentation content management on the Web, and

58

second, as a data standard and enabling Technology for document-driven distributed

computing.

2.2.8.1.1 XML for Presentation and Content management

XML was originally seen as a way to overcome the shortcomings in HTML by

providing a markup language vyith user-defined tags that could separate presentation

from content. One application of XML is therefore as a markup language for Web

pages. However, XML does not provide any information about how data should be

displayed. One mechanism to associate display information is to write a server-side

application, which parses and transforms a requested XML document to an HTML

format prior to it being served to the client. Such an application can be custom built

or can be based on generic processors.

Style sheet processors are available that can be run-server-side or can be

embedded within Web browsers such that they can be sent an XML document

(which includes a link to a style sheet) directly. In this case the style sheet contains

the rules that define how a document should appear and the Web browser can

process the style sheet along with the XML document it is retrieving in order to

display it. The two style sheet languages that are currently being used fbr this

purpose are Zangwage (XSL) [89] [14] and

(currently a two level specification, CSSl [33], CSS2 [34], with a third level in

progress). Separation of content from presentation, in this way, has a number of

advantages. Different style sheets can be used to display the same XML document in

different ways to different users, or in different formats to different devices, for

example, to provide simpler presentation for low-resolution screens, such as those

found on hand-held computers. Also, the same style sheet can be used to display

different XML documents in the same style. It is also beneficial for content

management since fragments of XML content can be retrieved from multiple

sources and rendered into a single document. Conversely, a single fragment of XML

content can appear as a component of many different Web pages. XML can also

enhance searching and indexing mechanisms used for Web pages. Pages containing

XML markup facilitate metadata discovery through their use of machine

recognisable tags (and possibly complete, standardised XML vocabularies used by

particular industries or groups).

59

Despite this initial focus for XML, a major current focus is now on its role as a

vendor, platform and application independent data format that can be used to

connect autonomous, heterogeneous applications. This is the subject of the next

section.

2.2.8.1.2 XML as a Data Standard and as an Enabling Technology for
Document-Driven Distributed Computing

Phipps [185] discusses how XML can complete the picture for a paradigm shiA in

computing. Historically, computing solutions have consisted of complex systems

containing mutually dependent hardware, operating systems, software packages,

network software and data formatting amongst other things. However, it is now

possible to provide a simpler framework, which breaks the traditional dependencies.

Phipps suggests that there are four parts to a modern computer solution and also

defines the technologies for each part;

1. Network - indisputably TCP/IP is the solution.

2. Desktop - a space to load solutions - probably browsers, but the key feature is

that solutions can be instantiated without requiring additional installed software

or proprietary operating system features.

3. Programs - In the Web environment Java is now established as the de-facto

standard for code development.

4. Data - until now there has been no obvious generic data format.

XML fills the final gap by providing an open data formatting system. Whilst Java

provides a platform independent application development language, XML provides

an application independent data standard.

XML is often described as self-documenting because it consists of named

tags and an optional schema that defines the language represented by these tags.

Currently such schemas are constructed as DTDs. A DTD defines, amongst other

things, valid elements, attributes and rules for their use. XML can specify new

markup languages for a particular purpose, sometimes referred to as vocabularies.

60

Industry-specific XML vocabularies are beginning to proliferate (see for example,

the repositories at OASIS [116] repository at XML.org [242]).

As touched on in Section 2.2.7.4 XML could become an enabling technology

for (/ocwTMgMf ceMfr/c computing consisting of loosely coupling heterogeneous

applications on the Web. One of the reasons for the success of the Web is that it is

based on a simple stateless protocol. XML could be used as the syntax for request-

response message exchange between applications. In this scenario XML DTDs are

used to define interfaces between services. XML parsers are used to marshal data,

which is sent to a server via an HTTP POST method, and an XML message is

returned to the client. Services can be made available by exposing XML DTDs or

vocabularies. Since the underlying protocol is HTTP, messages are not blocked by

firewalls. Furthermore, this framework benefits from work has been dedicated to,

and continues to be done to optimise the performance, scalability, and reliability of

HTTP servers. The loose coupling of client and server also make it possible to

complete requests even if a client uses an old version of a DTD.

XML is a mechanism for representing data and does not provide a transport

protocol. As mentioned above, the simplest way to transport XML between services

is to use the HTTP protocol. A number of proposals are being put forward for

standardising XML remote procedural call mechanisms to remote processes or

objects. These include the 5'z/MpZg 0^'gcf f rococo/ (SOAP) [204] and .iOkOL-

RFC [239]. These proposals each describe basic object invocation mechanisms with

varying features, all of which use HTTP as the transport and XML for message

syntax. They do not require the complex run-time support of distributed object

technologies such as CORBA and DCOM, and they provide the major benefit of

being and thus able to pass through firewalls that accept HTTP requests.

Conversely, these protocols do not currently support such features as metadata

discovery and objects-by-reference (the latter would require bi-directional HTTP

and distributed garbage collection).

2.2.8.2 The Document Object Model

The DOM specification [71] from the W3C defines an interface that allows

programs and scripts to dynamically access and update the content, structure and

61

style of HTML and XML documents. The Document Object Model provides a

standard set of objects for representing HTML and XML documents, a standard

model of how these objects can be combined, and a standard interface for accessing

and manipulating them.

The DOM is designed to be language and implementation independent and

as such the core of the specification consists of interfaces defined using OMG IDL

[170]. However, the specification also contains language bindings fbr Java and

JavaScript. Programmers can use the DOM to build documents, navigate document

structure, and add, modify, or delete elements and content.

The W3C Document Object Model Working Group carries out Work on DOM.

Work by this group covers:

Modelling new parts of XML; the DOM is an API to an XML document. As

new features are added to XML, the DOM API should model these. Namespaces

is an example.

CSS Object Model: an object model for modifying and attaching a CSS style

sheet to a document.

Event model: a model for allowing user and application events.

Traversal interfaces: an interface for selectively processing parts of the

document according to user-specified criteria.

Content Models and Validation: an object model for modifying and attaching a

Content Model to a document.

Load and Save interfaces: loading XML source documents into a DOM

representation and for saving a DOM representation as a XML document.

Views and Formatting Object Model: physical characteristics and state of the

presentation.

The DOM is a multi-level specification, with Level 1 [71] a full recommendation

and Level 2 [72] currently a candidate recommendation of the W3C. A list of the

62

current and envisaged DOM specifications along with timescales is available at [70].

These include:

• Functionality equivalent to that evident in Netscape Navigator 3.0 and Microsoft

Internet Explorer 3.0, which is referred to as Level 0. The model builds on this

existing technology.

• Level 1. This concentrates on the actual core, HTML, and XML document

models. It contains functionality for document navigation and manipulation.

• Level 2, which is at Candidate Recommendation stage, includes a style sheet

object model, and defines functionality for manipulating the style information

attached to a document. It also enables traversals on the document, defines an

event model and provides support for XML namespaces [160].

• Level 3 will address document loading and saving, as well as content models

(such as DTDs and schemas) with document validation support. In addition, it

will also address document views and formatting, key events and event groups.

• Further levels. These may specify some interface with the possibly underlying

window system, including some ways to prompt the user. They may also contain

a query language interface, and address multithreading and synchronisation,

security, and repository.

The DOM is used in XML parsers (see Section 2.2.8.1) and also in client-side

JavaScript as discussed m the next section.

2.2.8.3 Javascript

JavaScript is an interpreted scripting language originally developed by

Netscape. Despite its name JavaScript bears little resemblance to Java other than in

some basic syntactic constructs such as selection and iteration statements (Flanagan

[94] suggests that the name was simply chosen as a marketing ploy). Javascript is

untyped and although object-oriented, it features inheritance rather

than the class-based inheritance of Java and C++ (refer to [94] for further details).

63

Javascript allows executable content to be embedded in Web browsers for client side

execution. Unlike Java Applets, JavaScript cannot draw graphics, perform

networking or file I/O, however it can control browser behaviour and content. Java

Applets, by contrast, cannot control the browser as a whole, but can provide

capabilities such as graphics, file I/O, networking and multithreading.

The core JavaScript language has been standardised in the ECMA-262

standard [78] and, to maintain vendor-neutrality, is officially known in the standard

as ECMAScript. This is because the name JavaScript belongs to Netscape and

Microsoft's version is officially known as JScript. In this document, however, the

term JavaScript is used generically to refer to all these related technologies, as is

common practice.

JavaScript interpreters are embedded in both the Netscape and Microsoft

Web Browsers. JavaScript interpreters in these Browsers provide many features

beyond those defined in the ECMA specification, which concentrates more on the

core of the language syntax. Many of the additional features are incompatible

between the two browsers but are being standardised in other places such as the

Document Object Model Specifications (see Section 2.2.8.2). The incompatibilities

between JavaScript and JScript, and the fact that they tend to include new features at

a much faster rate than can be reflected in the ECMAScript and DOM specifications,

vastly complicates writing HTML pages containing JavaScript that are intended to

work in both Netscape and Microsoft Web browsers. Therefore, although Javascript

was used in the EASIA user interface to provide a more dynamic feel, a small subset

of cross-browser supported features was used. Sometimes, where JavaScript features

were required that were inconsistently implemented in the two browsers, the version

of the browser was first detected in the code, and different execution paths were

followed accordingly.

2.2.8.4 Dynamic HTML

According to the W3C, /fZ&A is a term used by some vendors to describe

the combination of HTML, style sheets and scripts that allows documents to be

animated" [73]. Flanagan [94] states that Dynamic HTML (DHTML) is a loosely

defined term which encompasses the technologies included in fourth generation

64

browsers that enable HTML documents to be more dynamic and interactive than

before. He suggests that the m^or new technologies are the DOM, the event model

(being standardised in DOM Level 2), CSS and absolute positioning of HTML

elements (now part of the CSS2). Hence, DHTML is really an umbrella term

covering many of the technologies discussed earlier in this section. Consequently, as

mentioned during descriptions of the individual technologies, DHTML is useful but

subject to many compatibility issues between the major Web browsers.

2.3 Multi-tier Web/Database Connectivity

The final section of this chapter ties together database and Web technologies to

discuss how the Web enables multi-tier computing. The GBIS, DBbrowse and

EASIA architectures all use 3-tier architectures consisting of a client or presentation

tier, a middle tier hosting the bulk of the application logic, and finally a data tier.

The rest of this section compares two and three tier architectures, explaining the

advantages of such a 3-tier architecture.

Web Browsei'

«v:i Aiipit'l ^
,/

HTTP
Web Server

Java Applet

F/gwrg 7.' wj'mg a Java OMcf JDBC/or

Figure 1 illustrates an example of a 2-tier architecture using Java Applets and JDBC.

As stated in section 2.1.4.1 there are a number of different ways that JDBC drivers

can be implemented with respect to their network architecture. The diagram shows a

direct 2-tier connection between a Java Applet and a database server. Once the

Applet has been downloaded JDBC is used to make a direct connection to a remote

database server and SQL is shipped to the database. A client/server database

application using such a 2-tier architecture is easy to implement. However, 2-tier

65

client/server systems can experience network performance problems. These stem

from the fact that SQL can produce a large amount of network traffic if a client is

issuing individual SQL select statements to a server with each query generating

resulting data that has to be sent back across the network. SQL has been extended

with stored-procedures to reduce this problem by allowing SQL to manage functions

as well as data. These functions reside on the server and encapsulate a number of

SQL commands, to avoid the need for sending intermediate results back to the

client. However, procedural extensions to SQL are non-standard with no two

vendors having an equivalent implementation.

H I T P

Java Applet

CORBA

JDBC

Database
Server

Gateway
Server

; Web Server

Fzgwre 2. wi'/zzg a Java a W

Figure 2 illustrates an example of a 3-tier architecture. A Java Applet on the client

tier communicates with a middle tier Java application using CORBA. The middle

tier application communicates with the data tier using JDBC. A 3-tier client/server

architectures such as this can offer the fbllovying advantages:

- The volume of data passed between client and server

can be reduced. The middle-tier logic can perform multiple SQL queries and

additional data processing to return only the final result to the client. In contrast,

66

2-tier systems may need to perform multiple SQL queries to obtain a desired

result, shipping data &om server to client at each stage, with final data

processing carried out at the client.

jcAecfw/mg - Server programs can be duplicated

and distributed across multiple server platforms and middle-tier logic can

incorporate load balancing and scheduling. In addition, placement of expensive

tasks on known high performance servers can be used to control server load. It is

also possible for the client to communicate with different middle-tier servers for

different tasks (whilst still using the same data tier).

q / cZ/gMf j-grvgr Zogfc - client and server complexity can be

controlled.

CoMMgcfzoM f ooZj' - The middle tier can be used to pool database

connections using prestatrted processes that are already connected to the

database.

- Data access is restricted to the middle-tier business logic.

There is no direct access to the database from the client. This allows strict

control over the types of data access operations that can be made. Even if a client

has access to a valid database access password, there is no direct communication

path to the database. In a 2-tier arrangement the client usually has control of a

database access API, allowing the full range of SQL access. Additional security

benefits are achieved between the client and middle-tier, where communication

can be protected using existing Internet security mechanisms such as HTTPS -

HTTP plus Secure Socket Layer (SSL)^.

^ SSL was introduced by Netscape and has become the de facto standard for secure online

communications. It forms the basis of the Transport Layer Security (TLS) Protocol [125] under

development by the Internet Engineering Task Force (IETF). HTTPS is not the same as S-HTTP

[195], which is an extension to HTTP to support sending individual messages securely over the Web,

whereas SSL is designed to establish a secure connection between two computers. SSL and S-HTTP

have very different designs and goals so it is possible to use the two protocols together. Both have

been submitted to the IETF for approval as standards, SSL is the far more prevalent technology, with

support from all major Web servers and browsers.

67

Easier Maintenance - In a 2-tier environment a precise SQL call can become

'fragile' - changes to the DBMS schema (such as renaming a column) will cause

the client's SQL call to fail. One way to reduce this problem is to use 'robust'

queries that contain more generic select statements and then to filter the retrieved

data at the client, but this has a network performance overhead. If client code

needs to be changed to accomodate schema changes then modified client code

will have to be re-distributed to all the users. In a 3-tier environment such

changes can be isolated from the client.

fzerj' can - As user interface technology

changes it is possible to upgrade the client tier without re-writing the business

logic. It is also possible to support different user interfaces for different users

simultaneously, without any change to the other tiers. Separation of the business

logic from the data tier, via a standard database access API, makes it easier to

upgrade or replace the underlying database.

- Multi-tier Web-based systems usually comprise UNIX

Workstations or Windows NT servers on the middle and data tiers. It is far

easier, and cheaper to expand such systems, by increasing CPUs, memory,

servers etc. compared with mainframe based solutions, which require more long-

term planning.

More m f/ze evenr qy yaz/wre - A multi-tier system distributed

across many middle-tier servers and possibly multiple-backend data sources can

continue in the event of a server failure.

&ow$er

HTML FoiM
l-TTTP

CHcnt Tier (GIH)

Web Server

CGi
I'l SIMt ."•«

Tava

Swrvlkl

accesa AP

ADddEc Her
(Business Logic)

Data Tier

Figure 3 illustrates another possible 3-tier architecture using HTML on the client tier

communicating to a middle-tier Java Servlet using HTTP. The Java Servlet

communicates with the data tier using JDBC. This is the basis of the architecture

used in the EASIA prototype.

2.4 Summary

The three prototypes that were developed during this research used leading-edge

database and Web technologies available at the time. This chapter has surveyed the

technology options that were available and has described reasons for particular

choices. Wherever possible the prototypes were implemented using open standards.

The different choices of technologies used in the three prototypes reflect the on-

going emergence of new technologies, better suited to particular tasks.

• GBIS used the CGI with programs implemented using UNIX shell scripting and

PERL.

• DBbrowse used CGI and PERL to connect object-relational databases to the

Web. Database communication was achieved using system calls from PERL to a

command line processor provided with the database.

• EASIA uses Java Servlets, Java Database Connectivity, XML and object-

relational databases that support SQL/MED.

The client-side of each of these applications was implemented using HTML

communicating with the server via HTTP. Some DHTML was used on the client to

increase the dynamic feel of the user interface, however, this was restricted to

features that would run in both of the two most popular Web browsers, Netscape

Navigator and Microsoft Internet Explorer.

The next three chapters describe the GBIS, DBbrowse and EASIA

prototypes that made use of the chosen technologies to illustrate new Web-based

architectures for Web-based management of non-traditional data.

69

3 The Graphical Benchmark Information Service

3.1 Introduction

This chapter describes an investigation, carried out during 1994/1995, into the use of

the Web for management and visualisation of scientific data. The Graphical

Benchmark Information Service (GBIS) [181] [117] was developed to provide a

graphical interface to display user-selected results from the PARKBENCH

(PARallel Kernels and BENCHmarks) [118] multiprocessor benchmark suite.

Two of the m^or factors that determine the success of a benchmark suite are

the availability of the benchmark codes and the availability of the results obtained.

The general availability of benchmark codes was easy to arrange using fl:p sites and

links to source code and documentation from Web pages. The main goal of GBIS

was to target the second factor for success, by making the results from

PARKBENCH as widely available as possible, in a format that was easy to

assimilate. For this reason the method selected to implement the service was to use

the Web, and to ensure that any software used was &eely available in the public

domain. GBIS provides graphs of benchmark results rather than tabular results

because unlike single-processor benchmarks, multi-processor benchmarks can yield

tens of numbers for each benchmark on each computer, as factors such as the

number of processors and problem size are varied. A graphical display of

performance surfaces therefore provides a useful way of comparing results. At a

time when most Web pages consisted of static HTML pages, GBIS demonstrated the

benefits of interactive dynamic Web pages for scientific data archives.

The rest of this chapter begins with an overview of GBIS. The

implementation is then described. The structure of GBIS result files and the

mechanisms for updating GBIS data are then covered. Finally, some conclusions are

presented.

3.2 GBIS Overview

GBIS provides the following features:

70

• Interactive selection of benchmark and computers from which a performance

graph is generated and displayed.

• Default graph options that can be changed: Available output formats; gif,

xbm, postscript or tabular results.

• Selectable ranges or autoscaling.

• Choice of log/linear axes.

• Key to traces that can be positioned as required.

• Links to PARKBENCH and NAS Parallel benchmark information available

on the Web (including documentation and source codes).

• Details of how to send in results for inclusion in the GBIS.

The PARKBENCH suite contains several categories of benchmark codes that test

different aspects of computer performance. The suite is divided into four categories;

low-level, kernel, compact application and HPF compiler benchmarks. The codes

within these categories were developed specifically for PARKBENCH or adopted

from existing benchmark suites. For example, the low-level codes were taken from

the GENESIS [6] Benchmark Suite while several of the kernel benchmarks were

taken from the NAS Parallel Benchmarks [15] [16].

The PARKBENCH suite contains single-processor codes and multi-

processor codes that use the PVM (Parallel Virtual Machine) [101] and MPI

(Message Passing Interface) [157] [158] message passing libraries. Both the single-

processor and multi-processor codes produce tens of numbers as results and the most

satisfactory way of displaying these numbers is in a graphical manner.

Many of the multi-processor codes are designed to be run numerous times,

on the same computer, with the number of processors varied each time. A

performance figure in Mflop/s is obtained for each run. By plotting a graph, called a

trace, of performance against number of processors, the observed speedup can be

seen i.e. the change in performance that results when more processors are used to

solve the same sized problem. By incorporating performance traces for different

71

computers on the same graph, it is possible to compare the relative performance of

different computers, as well as the actual speedup.

Another factor that can be varied for several of the benchmark codes, is the

problem size. Traces of temporal performance in, for example, timesteps per second

against number of processors, can be plotted for the same computer, with a different

problem size associated with each trace. The observed scaleup can be seen from the

relative position of the traces, i.e. the increase in the size of problem that can be

solved in the same time period when more processors are used.

GBIS allows several other types of graphs to be plotted depending on the

type of performance metrics that a particular benchmark produces. These

performance metrics include benchmark performance, temporal performance,

simulation performance, speedup and efficiency. These metrics are defined in

Hockney [116] and the PARKSENCH Report [118].

^Southampton HPC Centre - GBIS - MULTIGRID - Netsca

a
35121

^ kwemei

M U L T I G R I D

C90NAeiF#kB6CLASSa -e— TSDNA8 1Fob.06CLA8ea -I— VPPSOONASIWm-.OaCLASBB -Q--
R88000.6P.WM*^nodm1-67MI-kNAS10«.e4CUkSSa 8X-3 MAS 1 OclM CLASS 8 Pa*«f̂AmMmng*XLJKIMI-kNAS10«.06CUkS8a

/

at-'* /

Documhi'

The low-level benchmarks in the PARKBENCH suite measure performance

parameters that characterise the basic machine architecture. These parameters can be

72

used in performance formulae that predict the timing and performance of more

complex codes. Hockney and Jesshope [119] describe the low-level parameters.

These low-level benchmarks output vectors of numbers which can be satisfactorily

displayed and analysed as graphs. For example, GBIS allows a choice of two graph

types to be plotted for the COMMSl benchmark from the PARKBENCH suite;

message transfer fz/Mg or transfer can be plotted against message length.

Figure 4 and Figure 5 provide examples of graphs generated by GBIS. They

contain user-selected results for the Multigrid and LU Simulated CFD Application

benchmarks [15], respectively. These graphs were generated using the default GIF

output option, and the colour postscript output option, respectively. The data was

loaded into the GBIS system from the NAS Parallel Benchmark (Version 1.0)

results (NAS NPBl) [198] and the NAS Parallel Benchmarks (Version 2.1) results

(NAS NPB2) [200].

LU SIMULATED GFD APPU CATION

TB1G NAG 1JUI.9SCLA66B

6X-4.32 NAG 1 Nw.SG CLAGG B -4-

10 100
Number of pmcowom

3.3 GBIS Implementation

The GBIS user interface was implemented using HTML forms and the CGI. UNIX

Bourne shell scripts running on the Web server machine (at the University of

73

Southampton) processed the forms. The user navigates through a set of HTML

forms, making selections along the way, to produce a graph of required results. As

the user progresses from one HTML form to another, state is maintained using

hidden variables, which point to unique temporary files that are stored on the server.

The temporary files are automatically deleted when they are no longer required, with

the exception of the final page showing the graph. These pages are deleted

periodically via an automated shell script.

^Southampton HPC Centre - GBIS- Manufacturer list - Netscai

9eH

LU CFD

Results are available for the following manufacturers:-

r BBN
r CONVEX
r CRAY
r DEC
r FUJITSU
r IBM
r INTEL
r KENDALL-SQUARE
r MASPAR
r MEIKO
r NCUBE
r NEC
r SILICON-GRAPHICS
r THINKING.MACHINE6

Press hfre to res^ selections |

Sdect the manuActurers of iiderest the above Est, then press &e button bdow to display
a Est of machine modds for the chosea manufacturers.

The first HTML form displayed allows the user to select a benchmark. A

Bourne Shell script processes this selection and returns another form consisting of a

list of manufacturers, for which results exist (Figure 6). The user then selects a

number of manufacturers which in turn produces another form displaying all

machine results for the chosen benchmark plus manufacturers (Figure 7).

Transparent to the user, each machine result corresponds to a data file of Cartesian

coordinates stored on the Web server machine. These data files are used in

conjunction with the public domain plotting package, GNUPLOT in order to plot the

graphs.

74

^Sou thamp ton HPC Centre - GBIS-Machine List - Netscape

AWoad
^ "

PAPER SPEOFICATION NOT m sonrcc cock v a w m . Taken Axan NAS P a n M
Bencbnmk repoM 12-93, received OcLM

NPB 1, Claa: B problem mze. This is an impkmeolalioa of the NPB 1, NAS PENCIL AND
PAPER SPECmCA-nON NOT a source code version. Taken &(«n NAS P a r d d
Benchmuk report 12-93, received Feb.94

NPB 1, Class A problem size, This is an inq)km(otalion of the NPB 1, NAS PENCIL AND
PAPER SPECIFICATION NOT a source code version, Taken &om NAS PraBel
Benchmark report 12-93, received Fcb.94

NEC

P SX-4-16
NPB 1, Class B problem size. This is animplemenWkm of the NPB 1, NAS PENCIL AND
PAPER SPECIFICATION NOT a source code version. Taken &om NAS ParaUei
Benchmark report 12-93, received OcL93

SILICON-GRAPHICS

r Powcr-Cliallenge-XL.75MHz
NPB 1, Class B problem size, This is an impkmentalion of the NPB 1, NAS PENCIL AM)
PAPER SPECIFICATION NOT a source code verdon. Taken &om NAS ParaHei
Bendunaik report 12-93, received OcL94
r Power-Chanenge-XL.75MHz
NPB 1, Class A piiblem size. This Is m impkmenlalion of the NPB 1, NAS PENCIL AND
PAPER SPECIFICATION NOT a source code version. Taken &om NAS Î araHe!
Benchmek report 12-93, received Oct.94
r Power-Challcnge-XL.90MHz
NPb 1. Class B problem size. Thb is an rnnplemmtation of the NPB 1. NAS PENCIL AND

GBIS uses the information processed from the forms, to create an appropriate

GNUPLOT batch file. This file contains a list of commands which provide a means

of setting graph options (e.g. axes scaling, axes types, etc.) to default values or user

selected values (Figure 8) and for naming the data files to be plotted.

EHeS

(II.LSGF nicx Al lyT Oin lOĴS
Select the requited output format:-

f Diaplay graph as .gif image (defaul t)
^ Diaplay graph as .xbm image
" Display graph as pos t sc r ip t using ex te rna l

Diplay tabular r e s u l t s

If you have selected graphical results

the following can be changed

Enter range to p lo t (leave f i e l d blank to autoscale)

^ Colour postsc

X axis log or l i n e a r : - |LOG 21

Y ax is log or l i n e a r : - |LOG 2)

In te r x-Y coordinates where the
key to the t race names should be displayed (leave blank for top rigl

X pos i t ion : I Note, enter both X and T, a s .

T pos i t ion : | entry wi l l not be used

Press here to rese t se lec t ions ^ e s e t j

change as many of the above as you wish
Ml hnve fin].mhrrl vcrjr Action: h i t thm button twlow

The shell scripts then execute GNUPLOT using this batch file, on the Web server

machine, to produce a postscript file of the graph as output. Depending on the

75

format the user selected for the results, this postscript file is made available for

viewing by a hypertext link from a Web page, or, is converted to another format

(e.g. GIF) which can be displayed directly on a Web page.

3.4 GBIS Result File Structure

The result data files associated with each machine are stored as a hierarchy of UNIX

text files on the Web server machine. This method was chosen due to the diversity

of different vectors of results that need to be stored for the different benchmarks.

The convention used for the directory structure is:

benchmark name/machine manufacturer/result file name

Where, result file name is in the form:

(machine model)_(date benchmarked)_(problem size)_(benchmark metric)

For example,

MULTIGRID/[BI\/I/SP-2_10.AUG.94_CLASSB_PERF

The machine model, date benchmarked and problem size, from the result file name,

are used to label traces on the graph; while the benchmark metric is used in choosing

labels for the graph axes and in selecting the choice of log or linear axes for the

default graph format. For some benchmarks the result of a single run (on a single

machine) corresponds to several results files in the GBIS database. This is to allow

the results to be plotted in different ways. For example, if the benchmark produces

results which can be plotted as any one of, benchmark performance, temporal

performance or simulation performance, against number of processors, then three

different files of coordinates must be stored. These are distinguished by using a

different benchmark metric in the filename, so that the appropriate file can be found,

for the type of graph requested.

The actual contents of results data files are in a format that GNUPLOT can

use directly. This consists of lines that contain coordinates and comment lines,

beginning with the # character. The availability of comment lines was used to

incorporate additional information that was parsed by the GBIS system. This is

explained with reference to the example file contents shown in Figure 9.

76

#!CS-2 at the University of Southampton.

##Genesis3.0, PVM, FORTRAN 77,

##26 May 94

#IVIessage Length / ByteTransfer Time / us

0 1.983E-04

1 2.001 E-04

2 2.006E-04

3 2.007E-04

#RINF=9.810 MByte/s

#NHALF=1791.949 Byte

#STARTUP=195,200 us

Fzgwre P q/a GBZS" cZafa/z/g.

The path and filename for this file are:

COI\/IMS1/l\/IEIKO/CS-2_26.MAY.94_TIIVIE

The file contents are plotted if the user selects time against message length. For the

COMMSl benchmark, the transfer rate can also be plotted against message length.

Therefore, a Gle containing different coordinate values also exists, with a name

ending in RATE (indicating the metric).

As well as lines containing coordinates, there are lines beginning with the

characters #!, ## and #. These lines are treated as comments by GNUPLOT because

they begin with at least one # character. However, the GBIS system uses these lines

in the following way. Lines beginning #! and ## are parsed and then used in the

construction of the 'machine list' HTML form (see for example, Figure 7). The

string after the #! is used to label a checkbox identifying a particular machine, and

strings following ##, are placed below the checkbox to describe the particular result

further, by providing, for example, details of the environment and for the particular

benchmark run. Lines beginning with a single # are not parsed for display purposes,

77

but can be used to store additional comment information. This is accessible if the

user requests text results as the complete contents of the file are returned in this case.

Bourne shell scripts and PERL programs were developed to convert

automatically, or semi-automatically, the results files generated by the benchmarks

into the format required by GBIS. For example, a PERL program was written to take

the Latex version of the NAS Parallel Benchmark Results and creates the required

directories and results data files for GBIS.

3.5 Updating the Results Database to include additional Machines
and Manufacturers

GBIS provided an ftp site onto which users could upload new benchmark results.

Users were instructed to supply results in the GBIS-specific format, or to supply

results files in the raw output format used by the benchmarks. The latter could be

converted using the scripts mentioned above. Once result files were in the required

format, updating the GBIS database involved three steps:

1. Add the new result data file to the correct benchmark/manufacturer directory.

2. If a new manufacturer subdirectory was created in step 1 then run a shell script

which updates the list of manufacturers available for each benchmark.

3. Run a shell script to update the list of available machines available for each

manufacturer.

The scripts mentioned above produce the HTML files that are used in the creation of

the forms containing the manufacturer list for a given benchmark and the machine

list for each manufacturer. The script in step 2 uses the names of all subdirectories of

a given benchmark directory and hides the HTML file created in the benchmark

directory for later use. The script in step 3 works through each of the manufacturer

subdirectories and hides an HTML file in each one. This file is constructed by

parsing the lines, describing the machine benchmarked, from each result data file.

The HTML files, used in constructing the forms, are updated periodically in

this manner in order to improve the response time for GBIS results. Initially, the

fbrms listing manufacturers, and then machines for selected manufacturers, were

78

generated dynamically for every user request, however the response times proved

unacceptable, necessitating the batch update mechanism described above.

3.6 Conclusions

GBIS was an early system employing CGI scripting combined with standard

application programs, to provide Web-based management of scientific data. GBIS

successfully demonstrated the benefits of dynamic Web-based graphical results for

displaying multiprocessor benchmark results. GBIS has been cited (in the NAS

Parallel Benchmarks 2.0 specification [16], and Hockney's book [117]) and reused

(mirrored at the University of Tennessee at Knoxville [100], and adopted by the

f araZZe/ Consortium to form the basis of their Online

Benchmark Information System [194]) by other members of the multiprocessor

benchmarking community.

On-going use of GBIS also proved useful in highlighting a number of areas

where improvements could be made to the approach used for scientific data

management. Firstly, it was not possible to issue complex searches, to find, say, all

the machines that exceeded a particular performance level with a specified number

of processors. Instead, the primary method of locating results was browsing. Limited

searching was available via a feature that generated an HTML page containing

summary information from all the result files. This could then be searched using a

'find' option of the Web browser.

Secondly, GBIS was difficult to update with new results. The syntax for the

content of the GBIS result files did not follow a well-known standard and very few

results were submitted in the GBIS format. Although GBIS could also process

results supplied as raw output files from the benchmarks, on a number of occasions,

users took it upon themselves to 'tidy up' these files (which contained significant

human readable commentary) prior to submission, with the result that the automated

conversion scripts could no longer parse them.

The next two chapters describe two subsequent architectures that were

developed to manage non-traditional data on the Web. Whilst these architectures are

not directly related to GBIS - they provide generic rather than application specific

architectures for management of non-traditional data - they do incorporate features

79

that overcome the problems described above. The first system, DBbrowse (Chapter

4), automates the integration of databases with the Web. In so doing, DBbrowse

supports significantly improved search capabilities. Furthermore, by storing the

underlying data in an object-relational database, DBbrowse capitalises on database

update mechanisms (such as import of comma delimited text files). The EASIA

architecture (Chapter 5) uses not only object-relational database technology for

Web-based management of scientific data, but also XML to provide a well-defined

language for defining the interface between data and applications. As discussed in

Chapter 2, XML provides significant advantages for data exchange between

applications.

80

4 Automatically Generating Web Interfaces to Relational

Databases

4.1 Introduction

Whilst the GBIS prototype (from the previous chapter) described an

system for scientific data visualisation, this chapter describes a

generic mechanism for Web-based management of non-traditional data that is not

targeted to a particular domain. The catalyst for this new approach was the

availability of digitised data from the Sir Winston Churchill Archive. The History

Department at the University of Southampton had begun to archive digitised data

using a simple relational database. The existing schema used traditional datatypes to

store information describing a document (for example, a letter written by Sir

Winston Churchill) and also the name of a local file containing a digitised image of

the document. The archivists from the history department had the necessary skills to

build the database and images, however they wanted to make the data accessible to a

wider audience via the Web and sought advice on this might be accomplished.

As with GBIS, Web-based management of non-traditional data was at the

heart of the problem. Like GBIS, the digitised archive contained some data in the

form of text files. However, instead of containing scientific result data, the text files

contained transcripts of some of the documents from the archive. In addition the data

consisted of binary multimedia files containing digitised images (and perhaps audio

and video files). Furthermore, as already mentioned, this complex data was

complemented by simple relational data. In view of the mixture of datatypes and the

work that had already been done to store the archive using a database, an initial

prototype system was built to interface a database to the Web and to make

use of the database's sophisticated query capability and well-known update

mechanism. A description of this work is published in [75]. (The described system

replaced the initial relational database with an object-relational database so that the

images could be stored directly v^thin the database.) Like GBIS, this system was

application specific and was written specifically for the database schema used by the

archive. The report in [75] did however, briefly mention foreign keys (available in

81

some relational databases) as a possible generic mechanism for browsing from one

table to another in a relational database, in order to focus on specific data. This idea

underpinned the DBbrowse prototype [180] [179] [76] that is described in detail in

this chapter.

The DBbrowse prototype was the culmination of research carried out during

1996/1997 into generation of ggngrzc Web interfaces to object-relational

databases. Experience with the Sir Winston Churchill Archive had highlighted the

need for systems that could facilitate rapid deployment of interactive Web-based

applications by developers with little Web development experience. DBbrowse

provided such a system by generating Web interfaces, incorporating intuitive query

capabilities, to object-relational databases. DBbrowse differed from commercial

Web/database integration offerings that were emerging during this time, since they

all required programming effort (refer to Chapter 6). DBbrowse also demonstrated a

novel method for browsing databases on the Web to further facilitate users with little

database experience. A summary of the features exhibited by DBbrowse follows:

• Completely automatic, schema driven creation of Web interfaces to relational

and object-relational databases, which require no programming effort to use, and

no additional database administrator effort.

• Because HTML is not stored, no separate maintenance of the HTML pages and

database source data is required. Any changes made to the database are reflected

the next time that the data is accessed.

« Data and schema changes are handled automatically.

• By connecting to the database in real-time the sophisticated search engine

provided by the database management system (DBMS) is made use of.

• The interface is generic rather than application domain specific.

• The ability to in a hypertext-like fashion, fi-om any data to all related

data held in the database. Links to related data are derived from

relationships and do not need to be specified.

82

® Sets of tuples can be operated on at the same time.

* Query refinement during the browsing stage.

In the remainder of this chapter the configuration used for providing Web access to

the DBMS is first described. A section on automatically generating the user

interface and SQL queries follows. Finally, a feature is described which provides

hypertext browsing of the database based on schema relationships extracted from the

database catalogue, and an example of this is described in detail.

4.2 Providing Web Access to the Database

To interface the database to the Web, an access path must exist between the machine

nominated to be the Web server and the machine on which the database resides. One

option is to install the Web server and database server on the same machine. An

alternative approach that allows the Web server machine and database machine to be

physically separate, requires the Web server machine to be a database client. The

implementation described here uses this approach. IBM's DB2 Object-Relational

Database (see for example [42]) was installed on a single node of an IBM RS/6000

SP2 parallel machine. The DB2 Client Application Enabler (CAE) was installed on

a separate machine that also contains the Web server. The CAE provides run-time

support to allow local applications access to remote database servers. The

configuration is illustrated in Figure 10.

Users of this system interact with their local Web browser, which sends and

receives information to/from the Web server. A user's request for information is sent

via the Web server to the database and the result is shipped back to the user as an

HTML page. The first step in this operation is for the Web server to construct an

SQL query &om the information provided by the user and to issue this query to the

database. To do this, the Web server uses the CGI mechanism to invoke an external

program (written in PERL) that has been developed. This program, Query

Generator, decodes the information forwarded by the Web server and constructs a

query in SQL that is sent to the database client. The database client in turn forwards

83

the query to the remote database server on the SP2.The result from the query is

returned to the Query Generator program via the database client.

I l] User
VAW Server Workstation

Internet

HTML

/ Qireiy Siimitted
via HTML fctm

IBMSP2

Quay
I Generator

I H IML
G e i t e f A o r

r DBZOienl
ApplicaJian

Enabler

The second step in returning the required information to the user is to construct an

HTML page with the results returned from the database. After gMg/]/ CeMerafor

receives the results from the database, it invokes the fagg GgMemfor

program. This program creates an HTML page for display to the user, based on a

combination of static information and the results returned from the query.

4.3 Automatically Generating the User Interface and SQL Queries

The automatic Web interface to the database is constructed as follows. When the

user accesses the home page a link is available to display all the available databases.

This link invokes a CGI program (written in PERL) which queries the database

manager instance to find out the names of all the individual databases being

managed. The user next selects a link to the particular database of interest. This

invokes a further CGI program that accesses the database system catalogue to obtain

metadata describing the schema of the required database. Details of table names,

column names, column data types and primary and foreign keys are extracted at

various stages of interaction with the user, as required by the underlying system. The

metadata is used to present the user with an HTML form, similar to Figure 12, to

select the tables of interest from the chosen database. The columns in the selected

table are then displayed in a query form based interface akin to gwg/g/ By

(QBE) [244]. To use the query form, users are required to select the fields to be

84

returned by the query, and optionally, they can restrict the data returned by placing

selection conditions on one or more fields. Operators such as =, <, >, >=, <=, o ,

and MO/ are included for use in specifying these constraints. The conditions

are entered in a text box next to the field name. The text can contain wild cards, with

an underscore replacing a single character and a percent sign replacing an arbitrary

number of characters. For each field, the data type is also displayed to the user. For a

UDT, both the name of the UDT and the underlying base-type name are supplied.

Depending on the base-type of a field, any condition entered will be used in an

appropriate way. For example, if the field is a CLOB, then a string in the condition

field, will be used within a DB2 2004716 function in the generated SQL. Once the

query form is complete the user presses the 'Submit Query' button. The query result

is a table consisting of the requested columns, and rows that meet the selection

conditions.

4.4 Providing Database B rowsing via Dynamic Hypertext Links
Derived from Referential Integrity Constraints

The interface described above provides the user with a query access capability on

the data, but does not provide the user with any browsing ability. To add a browsing

facility on the data the existence of ybre/gM in the database are exploited. A

foreign key (FK) in a relation R2 is a subset of attributes in R2, such that FK is a

primary key in relation Rl . Most databases used in industry contain foreign keys

because of the need to maintain referential integrity. (Informally, a database that

uses referential integrity ensures that each value of a foreign key in R2 refers to an

existing row in Rl . For example, referential integrity may be used to ensure that the

department number entered in a record of an employee table is valid, by ensuring

that a corresponding department number entry exists in a department table).

DBbrowse creates dynamic hypertext links based on the relationships implied by

foreign keys.

The database catalogue tables identify the primary and foreign keys in all

relations. When a user requests data from the database, the catalogue is examined to

see if the requested table columns participate in referential integrity constraints. The

system tables are also queried to identify any columns containing LOB data. For

85

both these cases the data returned from the database is modified so that the attributes

within these columns are 'selectable'. The resulting HTML page thus contains a

table with Hypertext links.

DEBLRTMENT

DEPTHAME

EMSTDATE

paojwo

PREHDATE

EMPLOYEE

Legend:
Pri irtary k#y«

OCK- t o - DDRy

77. E?Mp/o}'gg j'cAeTMa a W A e A v e e n

gnr/rigj'.

DBbrowse automatically generates 5 different link types. These are described below

with examples based on the sample 'employee activity' database schema of Figure

11.

ZmA: (xpe 7. j'mg/g Ae)/ va/wg wzYZ fo a roM/ o/"a faA/g m w/zzcA f̂ Ag

va/wg o/Tpearj' a ^gy.

This is a specialising link and will always return a single row. For example, referring

to Figure 11, a row from the EMPLOYEE table displays a link on the

WORKDEPT field. Selecting this link in the EMPLOYEE table will retrieve full

details of the employee's department by displaying the appropriate row from the

DEPARTMENT table.

86

ZmA: (xpe 2. Wwe 7M(̂ rovv̂ y m a â6Ze, M'AzcA

coMfam fAg va/ug m aybrg/gM &}".

This is a generalising link. The user may have a choice of tables to link to, and for

the selected table, zero or more rows may be returned. For example, referring to

Figure 11, a row from the EMPLOYEE table will display links from the EMPNO

(employee number) field to the PROJECT, EMP_ACT (employee activity) or

DEPARTMENT tables. Selecting the link to, say, the EMP_ACT table will display

any employee activity rows that contain that employee number.

Links of type 3 and 4 are special cases of types 1 and 2 above:

(Xpg j. /orgzgM ĝ}" m Âg rgj'wẐ fa6/g 6e ĝ/gĉ ĝ f fo

j!7gr/br/M a ZmA; q/(%pg 7 aAovg, ybr gacA roiv ĵ rg.ygMA

For example, a result table consisting of rows from the EMPLOYEE table would

display a link from the WORKDEPT column to the DEPARTMENT table.

Selecting this link will perform a join to inline full details of each employee's

department.

ZmA: ()/̂ g coT^ /̂ĝ g coZw/MM m Âg rgj'wZr ra6/g can 6g j'g/gc/g^f

/)gr/br7M a oy%)g 2 a6ovg, ybr gacA row ̂ rgjgnf.

For example, a result table consisting of rows from the EMPLOYEE table would

display a link from the EMPNO column to the PROJECT, EMP_ACT or

DEPARTMENT table. Selecting the link to, say, the EMP_ACT table will, for

every row present, perform a join to inline full details of any employee activity rows

that contain the employee number.

« ZmA: (%pg J. a 2,0.8 (xpg rAg .y/zg q//Ag ZO.B

ZM TTzzj' 6g .yg/gĉ gf̂ To rg/7"zgvg Âg acrwaZ Z O B f A g <̂ ara6a,yg.

A LOB field could, for example, contain image, audio, video or character data.

DBbrowse relies on the user's browser to display different types of non-traditional

data according to helper applications specified within the user's browser, for the

various MIME types (see for example [98] [159]) associated with incoming content.

87

The links described above provide the capability of browsing the database for

information without the need for the user to explicitly submit further database

queries. When the user selects a dynamic link a CGI program is invoked to generate

the new query based on the selection. The new query is then supplied to the HTML

fagg GgMemrof program for execution and for displaying results to the user. The

process then repeats.

4.5 Example of a Database Browsing Session

This section shows the screen shots from an example query submitted to a sample

database ('TBMSWMPZ' that was supplied with IBM's DB2/6000 version 2). The

database contains employee records and details of their project activities. The

schema and relationships between entities are shown in Figure 11.

The following queries will be answered by completing an initial query form

and subsequent browsing:

For eacA j'Aow wA/cA lyorAfng on,
wzYAm r/zg gmp/oyggj' wAo Aorvg

VIM 80 Budummh* QpUmmm OmcWy ^

^ & % : t a X
/ f i lw ft* d8G/-f_ ai*

J W#t DwchXYl WbMM)

JI • ̂ parallel dh & tp WMP mcarch group

lht'M)lalnD#t#bum'IBMSAMPL"#rc:
) t DWA&TVENT

t̂ p.o.pp
-* EMP ACT

Ffgwrg 72." 5'gZgcrmg ra6Zĝ q/"ZM ĝ/'gj'r.

The homepage displayed by DBbrowse contains a link that will list all the existing

databases. This list is created dynamically, so that if a new database is created, it

will automatically appear. Figure 12 shows the screen that results from selecting the

'IBMSAMPL' database. This screen displays the list of tables from the chosen

database. The user can select a table. To answer the initial query, the

DEPARTMENT table is selected and the 'show columns' button is pressed.

Figure 13 displays a list of columns from within the DEPARTMENT table.

This is a QBE-like form. The user selects the columns of interest, enters any

conditions and then presses the 'Submit Query' button.

H Fite Eiift View 6b Sootaflsries OpUop* Direeiory Window

, ' 6 ' A: '
j mek .j ; H*** j WW j § | N* i W | |
' Loĉ n* *: 'jk B0A0/rg_-oin/l:9ccvl\jua ,:*:1

Handbook*

gHHl̂ piiiuUd (H* & fp
: e w 3 u c h g r o u p

DEPARTMEffT

DgPTK̂HE '

, ChATlfC'-zR

..OC^T'ON

Mreinatively Subiaii d SQI qua)

Sutu%u(Qucjy| Clear Vakt.

Fzgwre 73. 5'e/gc/%Mg coWzfzom.

Figure 14 shows the result table containing the requested columns of the

DEPARTMENT table. To display all the employees within the

'MANUFACTURING SYSTEMS' department the user selects a link from the

DEPTNO column with value ' D l l ' . Three links are available in this column from

DEPTNO ' D i r . The second link, labelled 'T2% is a link to the EMPLOYEE table,

as shown in the 'link to' text under the DEPTNO column heading (this is a link of

89

HW Bat uo ikmlrmmMcm Opnum* Dw#c4wy

4* j I & I .% j I & I a I I* 1 f/1
Locatiun | i tc ,'»wlu ;-i« *nlw - .< <̂1

Mhgl. m N#wl IMwA"* CDoli HmuWUooK* H«t M#l OMctoryi

^ 0 0 ^ puiulk':1 Hl> & fj)
I tALWX h (poup

&n#wEK&corcdSQLauea

i D E P A R T M E N T

. . .wjPn-CumPv'ryK.Ej'VjCtOj. AOOfT: i: .3̂
(%)%: JL NNIN6 g o i m
"CT"- iNPOIUviATlOMCgNTg:- C01<ILIL]3̂

CDEVELOPMBNT CENTER !D01(%L]1]3)
L p MANUFACnuUMO SYSTEMS D11<T1 T2.73-L-IfV r M̂INISTRATION &YSTEML D2ia%I2,]S.

" _ SUPP^'"3mvlCES a o i d l 3 . 3 3 ,
QQZ2C !dP@lAtloMB i E U d] . ± L O

I SCFTV/ARFSUPHuA': ?21(T'] T% T31
9 record/«i xcjectcd

RefmaQueryi

Uwrnrwa y . i : l9*i;
* f " - y w i M f : ftMW gap''

Figure 14: Results from querying the DEPARTMENT table.

Figure 15 shows the result table after selecting this link. The next step is to find out

which projects and activities each employee works on. The table shows that a link is

available from the EMPNO column to the EMP_ACT (employee activity) table.

The user selects the EMP_ACT link available below the EMPNO column heading

(this is a link of type 4).

OpUemm DvWry ####*

& ' J, , ;

rc#emrch gronp

mUPLOYEK
EMPNO : '

aw* MRST"kAMEMID)"TTLASTNAMF (&Wm
amAmnmm *

n ,, IN. f -Tkmu

oocrv*#i. %

OOP nc. ' _) ^ 1104, """

bNMK*-' I _ir. CAC '»J4 96#

Fzgwrg 7 J.' .groM/j'mg To aZ/ m 'D77 '.

90

Figure 16 shows the new result table. The employee activity data has been inlined

(joined) with the employee fields. The number of rows has increased since some

employees work on more than one activity within a project.

Hb Edt We* Q* BnokmmAm Opboo* OMcWfY WoUo»

a; ' :

Loc#lM)n ' zvl , 9(3 w i o i *c UK a#rl

Newi Ux*; HamAooK) Net awfch* Net Dkmtmyj

d b & t p
group

EMPLOYEErEMP_ACT

EMP_ACrj:KOjNO EMPLOY&E.WORKDEPT
LMPLOVBELASTNAME E W ACT 4CTNO I

6DAMS0N 60
/I ; z . . iK

K'?:: Dl MANKA

YOSHIMUIU. 70

SCOOT'TEr ' 70
70

WALî ' &
-BROWN ^
3R0WN dO

k-*]' IJONES 80
^ i O N E S im

LJTZ 40

- Bal'

Ffgwrg 76.' ^rcy'gc/ ybr eacA e/MpZqyee.

The user now has details about all employees and their activities within the

'MANUFACTURING SYSTEMS' department. Project details are limited to just a

display of the project number at this stage. However, the column labelled

EIVIP_ACT.PROJNO shows a link to the PROJECT table. The PROJECT link is

selected to expand the project number to full project details (this is a link of type 3).

The result is shown in Figure 17.

As an aside, a button labelled 'Refine Query' follows each result. Pressing

this button allows the user to remove columns from the displayed table, and/or

allows the user to add further conditions to reduce the number of rows. Figure 16

and subsequent screens have been refined to remove columns which are not of

interest, to reduce the data for the screen shots. An example of refining a query is

given below.

91

HW BA 0* BmokmmA* Omptwy WMpw

' -< ! . : 6 A)
#MC j ' * MM* I &MM (.1 I fm# 1 #W f I

iDĈ OOn)iH| "p iu * : ^ w '«0"D/«-g.-qu:fraMi,#d w r l

#Nt3 Mwi MwlaCMli Hmmi#mo*i (WtAwrck Met Dwcloryi aoMwwm!

Idb &.*p
,hgx*up

BWPACLBMMXmV&PROnKT II
): : : . !{

KMPLOYEKLASTNAMk PROJECT PROĴvANh FkIP_ACTACTW(

gTt()W\

W_PROOT*'M

DESIGN
W J PROGRAM
!̂ 0N
WLMMX?AM

T}ESION
*0

4DMWK^ WLaMKTDEmm *
%ri' ADAMSOk WLAOBOTDESIGk It

V/L]lOB<̂D̂Gh &
L-IL fOSmWDH" W -̂ROBOTDESrOK
;%̂r WuAOIMTDBm̂' %

WALKEy WLMBOTDESIGN T

WLfRODCO'f:'
IPROGS

luiES

. i n k E L . . . j.

#L BROrCONT
moGs
V/̂PRODCOh'̂

F/gwrg 77." jBrow^mg fo m/mg j^rq/ecr 6/ĝ azZ&

By browsing through the database the first part of the query has been answered. That

is:

Fmcf a/Z /Ae e/?^/oyeg^ m fAg 'M4#L/K4CrL%CVG
For eacA e/y^Zo}'eg j'AoTi/ M/AzcA ̂ ro/'gc^^ rAg)/ arg woA-̂ Mg OM, rAgzr
ac/Yv/f/gj M/zYAm rAoj'g ̂ rq/'gcf&

In order to complete the Gnal part of ± e query it is necessary to refine the result.

This is achieved by pressing the ' Refine Query' button. Figure 18 shows how to

refine a query. A query form is displayed which shows all columns in the current

result table. Any existing conditions are also displayed. The

EMPLOYEE.WORKDEPT field shows a condition ' D l l ' which has been added as

a result of previous browsing which requested this department. Note that the button

to the right of the label is not depressed for this column. This is because, although a

condition exists on this field, the column is not currently displayed.

92

-wj

W » W##(awrm CM! WMidhmulu H#i

^ l l l ^ poi'allcl dh & (p
' jesearch group

K*(m*

P^Ofpt rfLES»{Mr

''f'Wj .LTPd: I- 4MC

^ , p _ t T C * 0

. VH ' ly. j ' .

21 p. . p.i)_

Cwpwylcmk

F/gz/z-e 7̂ .- of f^age.

The user now has to add two further conditions. The

PROJECT.PROJNAIVIE must match 'W L ROBOT DESIGN' and the

EMP_ACT.ACTNO must match '60'. Figure 19 shows the result of this refined

query. Through an initial query and subsequent browsing the results to all the initial

questions have now been answered.

AW W#w Am MBdonaMim Ophom* DwuU*y

; ,' 6 ; : i t : 3 ' « I !
#«* t.« — f hum* I W W * * ' I f Mif I P W I I
- " : - '

Location)iCLp •'/-.uxa «c« n uk aOaO/cg'-fc;-"^-ef-list^ pe'-l
WtW»f#wn Cuel| HamtookP Met SwnAi N«tDk#ok*vi

4I & tp
rewwch group

5.bmp Ezecmcd aOi. AKr?

PROJECT. EMPLOYEE, a*P_ACT >
: ^MPLOYEE.afPNO !
t/XPLOYPKLASTNAMB PR0J&CffR0JNAMFEMP_ACTĵrT̂0P'i
. DEPARTNEfm t
U)AM»OK VLxOBQ-fDESEON W :6,
YOSklMURA mn̂ tL33,i3) WLROBOfb̂GN M m'

IrccoinW*) MkcwL

The option to display the generated SQL is available for every result table. Figure 20

shows the SQL that has been generated automatically to obtain the result of Figure

19.

93

Eat Vhw Qm Bouhiwkm OpdoM Oir#cf@iY MnAwf Help
a ! j4
Mw ' W

LOMbon / /wil l a c »qini ic iJ'-MWI/tm.-j.rifitwqmry

What* Hew* Cooll HamBwioki Net Swmchl Net Dmclory; SoltMwi tarn

HHHl̂ paialJd cll) & tp
' lacorch gioup

T h e I 'xtKutctl Q u e i y w w :

kCKcr SMPuÔ EEl ASTNAkt, EMPLOYEE-cWNO,fAOjECT.PxOjNAME. EMP 4CT ACTNO. PROJECT RESPEMP. EMPLOYEE FI&STNAME btm PROIEM. ':MPL0YEE,JMP_\C1 ."hCiemOTECT.FROJNAME-WiROBOTDESlGN wd EMPLOYEE.WORKDEPT- Dll *uaEw(P (4rTACTNC.oOm.idEMB ĈEMPNO-EMPLOYEE PWPNO OKI PROTECTPROJNO.JMP f̂CTPRO'MO

Li^myiUnO't.jxy *i3 J ' wy u- \19Mii
I'm 1*̂ fi—imiTifr

ML

Fzgz/re 20." fAe 5'gZ rê w/A

This example did not provide an example of how LOB data is retrieved. An example

of this is deferred until Section 5.2.3.2 of the description of the EASIA prototype.

4.6 Conclusions

The DBbrowse prototype was an early system that demonstrated a dynamic Web

interface to an underlying object-relational database. Unlike GBIS, which was

application domain specific, DBbrowse provides automatic generation of generic

Web interfaces to facilitate rapid deployment of interactive Web-based applications

by developers with little Web development experience. The dynamic approach,

based on an underlying database, provides a number of advantages over static Web

pages. In particular, no HTML page maintenance is required when the data changes

and hypertext links do not become 'stale'. Any changes made to the database are

reflected the next time that the data is accessed. Schema changes are also handled

automatically. By connecting to the database in real-time the sophisticated search

engine provided by the database management system is made use of.

DBbrowse can generate Web interfaces to object-relational databases with

intuitive query capabilities. DBbrowse automatically handles non-traditional BLOB

and CLOB datatypes by delivering them to the user's Web browser with an

94

appropriately specified content type. DBbrowse also demonstrated a novel method

for browsing databases to further facilitate users with little database experience. The

data browsing technique does not rely on explicit relationships defined in the data

model, but extracts implied relationships from the relational model to dynamically

include hyperlinks in results. DBbrowse differed from commercial products offering

Web/database integration at the time, which required programming effort, for

example, to define page templates and predefined embedded queries and hypertext

links.

An automated system such as DBbrowse also exhibits a number of possible

disadvantages compared to custom built or programmable interfaces. For example,

whilst the earlier application specific GBIS interface interpreted text files as

containing coordinates for post-processing with GNUPLOT, DBbrowse relies on the

user's browser to display different content according to helper applications specified

within the user's browser (for various received content types). Furthermore

DBbrowse used names extracted from the database catalogue to label the QBE-like

interface, with no level of customisation.

The implementation of DBbrowse also had a number of possible

weaknesses. Firstly, DBbrowse was based on CGI scripts written in PERL with the

associated performance issues discussed in Chapter 2. Second, DBbrowse used

embedded system calls in the PERL scripts to communicate with the database. This

restricts portability of the system to different databases.

The next chapter describes the EASIA prototype. This system addresses the

weaknesses described above by providing an architecture that incorporates

customisation, extensible post-processing capabilities, improved performance and

database independence. The EASIA architecture also goes beyond this level of

improvement by providing a distributed architecture, which can securely manage

very large non-traditional data.

95

5 An Architecture fo r Management of Large, Distributed,
Scientific Data

5.1 Introduction

This chapter describes the final results of this research, which culminated in

the implementation of the EASIA (Extensible Architecture Ibr Scientific

Information Archives) prototype. The motivation for EASIA was a requirement of

the UK Turbulence Consortium [199] [219] to provide an architecture for archiving

and manipulating the results of numerical simulations. The EASIA architecture

picks up where DBbrowse left off by providing automated Web-based management

of non-traditional data, with the addition of customisation, extensible post-

processing capabilities, improved performance and database independence. Beyond

these initial enhancements, EASIA incorporates new Web-based data management

techniques that were necessitated by the nature of the data being generated by the

Consortium. The non-traditional data to be managed consisted, in the main, of large

(multi-gigabyte) multidimensional scientific datasets, often stored in unformatted

FORTRAN output files. This chapter therefore describes research that provided

solutions to the many new problems that arose whilst trying to manage large

datasets, in the relatively low bandwidth environment provided by the Web.

One of the objectives of the UK Turbulence Consortium is to improve

collaboration between groups working on turbulence by providing a mechanism for

dissemination of data to members of the turbulence modelling community. The

consortium is now running simulations on larger grid sizes than has previously been

possible, using the United Kingdom's new national scientific supercomputing

resource"^. One complete simulation, comprising perhaps one hundred timesteps,

requires a total storage capacity of some hundreds of gigabytes. This necessitated

new Web-based mechanisms for storage, searching and retrieval of multi-gigabyte

A 576 processor Cray T3E-1200E situated at the University of Manchester, which forms part of the

Computer Services for Academic Research (CSAR) service run on behalf of the UK research

Councils, http://www.csar.cfs.ac.uk/

http://www.csar.cfs.ac.uk/

96

datasets that are generated for each timestep in a simulation. In particular, an

architecture was required that could minimise bandwidth usage whilst performing

these tasks.

The Caltech Workshop on Interfaces to Scientific Data Archives [235]

identified an urgent need for infrastructures that could manage and federate active

libraries of scientific data. The workshop found that whilst databases were much

more effective than flat files for storage and management purposes, trade-offs

existed as the granularity of the data objects increased in size. If a database is being

created to manage metadata describing scientific results, then ideally the database

should also be used to store the actual scientific result data in a unified way.

However for large output files it becomes costly and inefficient to store the data as

BLOBs within the database.

EASIA uses an implementation of the new SQL: 1999 DATALINK type,

defined in Dofa [60], to provide database

management of scientific metadata and large, distributed result files simultaneously

with integrity. This technology is applied to the Web, by providing a user interface

to securely manage large files in a distributed scientific archive, despite limited

bandwidth.

A database table containing an attribute defined as a DATALINK type can

store a URL that points to a file on a remote machine. Once a URL has been entered

into the database, software running on the remote machine ensures that the file is

treated as if it was actually stored in the database, in terms of security, integrity,

recovery and transaction consistency. This mechanism is used to allow large result

files to be across the Web.

The EASIA architecture provides the following features for scientific data

archiving:

1. [Agfj' q / C/zg arcAzvg, wAo /nay Aove ZzY/Ze or no or

Ĝ gvg/op/MgMf g%pgrrf.yg, caM accgj'j' Âg jyj'fg/M. EASIA uses techniques from

DBbrowse as the basis for its automatically generated user interface. However,

instead of querying the database catalogue directly to produce the interface,

EASIA generates a user interface from w ĝr mfgr/acg jpgcz/zca /̂oM /f/g

97

to a database that supports DATALINKs. An XML Document Type

Definition (DTD) has been created to define the structure of the XUIS. An initial

XUIS is constructed automatically using metadata extracted from the database

catalogue. This can then be customised to provide specialised features in the

interface.

a Web-based feel. This is similar to database browsing in DBbrowse with

additional functionality (described in detail later in the chapter) associated with

DATALINK columns.

generated. For the UK Turbulence Consortium, this means that files can, for

example, be archived at the Manchester site on a local machine that is connected

via a high-speed link to the supercomputer. By entering the URLs of these files

(using a Web-based interface) into a DATALINK column of a remote database

(hosted at Southampton for example) database security and integrity features can

then be applied to the files. An alternative to this, which achieves similar

database security and integrity for result files, is to use a Web interface to upload

a file across the Internet and then store it as a BLOB in a centralised archive at

the new location. However, this alternative is not feasible for large files due to

limited Internet bandwidth. Even if a file can be transferred to a centralised site,

additional processing cost is incurred (which is not present with the DATALINK

mechanism) when loading the file as a BLOB type into the database.

4. Because simulation results are stored in unmodified files, existing post-

j5mcg.y^mg uj'g ^Zg fgcA»zgwgj', caM 6g fo

fAg y?/gj' vy/r/zow/ Aorvmg To rgwrzYg opp/zca/fow. An alternative would be to

modify applications to first access result objects from a database, but this would

be very undesirable for many scientific users who often apply post-processing

codes written in FORTRAN.

5. The Caltech workshop [235] recommended 'cheap supercomputers for archives'.

The report suggests that research is necessary to establish whether high-

performance computing resources, built from commodity components, are viable

for data-intensive applications (as well as compute-intensive applications, as has

98

been shown to be the case in for example, the Beowulf project [228]). The

arcAzrgc/wre ^ Aemg /o a Zaz-ge arcAzvg

coTM/Moĉ zYy co/T^OMenr̂ , /MacAmej' m y?/e j'en/erĵ

ybr a .ymg/g Security, backup and integrity of the file servers can be

managed using SQL/MED. This arrangement can provide high performance in

the following areas:

• Data can be distributed so that it is physically located closest to intensive

usage.

« Data distribution can reduce access bottlenecks at individual sites.

* Each machine provides a that allows

multiple datasets to be post-processed simultaneously. Suitable user-directed

post-processing, such as array slicing and visualisation, can significantly

reduce the amount of data that needs to be shipped back to the user. EASIA

can archive not only data in a distributed fashion, but also applications. Post-

processing codes that have been archived by the system can be associated

with remote data files using the XUIS. This allows dynamic server-side

execution of the stored applications, with chosen datasets as input

parameters. These applications are loosely coupled to the datasets (in a

many-to-many relationship) via XML defined interfaces defined in the

XUIS. This allows reuse of these server-side post-processing operations.

This level of extensibility and post-processing capability offers a significant

advantage over the DBbrowse system for scientific data archiving. EASIA is

an arcA/ve, according to the definition by Hawick and

Coddington [112] (see Section 1.1), since additional data can be derived on

demand as value-added data products or services.

The rest of this chapter expands the description of the EASIA architecture and

features given above. Section 5.2 describes the system architecture and user

interface in detail. Sections 5.3 discuses the implementation of EASIA and design

decisions that were made. Finally some conclusions are presented.

99

5.2 System Architecture and User Interface

This section starts with a high level view of the EASIA architecture. The use of

XML to specify the functionality of the user interface via the XUIS is then

described. The differences between searching and browsing in EASIA and

DBbrowse, and the effect of the XUIS customisation on these features are covered

next. The ability to archive applications as well as data is discussed with examples

of XUIS modification to include post-processing operations. The next section then

shows how post-processing can be achieved not only via these archived applications,

but also by allowing users to upload code for secure server-side execution against

datasets. Finally, a brief description is given of the user administration features

within EASIA.

5.2.1 System Architecture

The EASIA architecture is illustrated in Figure 21. It consists of a database server

host (located at Southampton University) and a number of file server hosts that may

be located anywhere on the Internet. All of these hosts have an installed Web server

to allow HTTP (or HTTPS) communications directly from a Web browser client.

DeAabase Server

Web
Browser
Clients

Internet
Web Server

Java Sc rv le t
Co do

Database
H T T P /
H T T P S

Me tada ta f o r
Sc ient i f ic

n f o r m at io ai f i le
references

Enc ryp ted
fl ic acccss

key

File Server 1

Web Server

G e t Request/
Enc ryp ted
fi le access

k e y
n voca t i on

Datalink File Manager Database
m h a g e f M n t o f

nal i & t a
L a r g e , S d e n t M i c ^

D a t a Fi les
C o d e A r c h i v

File Server n

Fzgwre 27.' arcAzYecrwre.

A user of the system initially connects to the Web server on the database server host.

The URL of the system invokes a Java Servlet program. Separate threads within the

100

Servlet process handle requests from multiple Web browser clients. Each user is first

presented with a login screen (Figure 22). Once a user has been verified, interaction

with the database is possible via HTML pages that are dynamically generated by the

Servlet code. These pages consist of HTML forms, JavaScript and hypertext links.

Turbulence Consorlium Data Management - Netscape l - l a r x i
Ek Ec* go Commumcakf

hekad Hane Swrch Nwoape Pnni

UK Turbulence Consortium

W e l c o m e t o t h e U K T u r b u l e n c e C o n s o r t i u m D a t a M a n a g e m e n t S e r v i c e

Username: j — — — •

P a s s w o r d : |

I Rw#

Developed and maintained by the i t.;- department

22. Zogm

The database server stores metadata describing the scientific information such as,

simulation titles, descriptions and authors. This data is stored locally in the database

and is accessed by the Servlet code using JDBC. The data is represented by tables

with attributes defined as standard SQL-types, BLOB types, or CLOB datatypes.

The latter types are used in the system to store small image/video files, executable

code binaries or small ASCII files containing source code or descriptive material for

the turbulence simulations.

For scientific data archiving, an essential feature of the interface is the novel

use of remote file severs that store files referenced by attributes defined as

DATALINK SQL-types. These file servers manage the Zargg files associated with

simulations, which have been archived where they were generated. When the result

of a database access yields a DATALINK value, the interface presents this to the

user as a hypertext link that can be used to download the referenced file. The URL

contains an encrypted key that is prefixed to the required file name. This key is

verified by DATALINK file manager code (running on the file server host) which

101

intercepts attempts to access any files controlled by the remote database. Without

this key, files cannot be accessed, either via the locally installed Web server or

directly from the file system by a locally connected user. (The DATALINK

mechanism is discussed further in Section 5.3.2.) As well as allowing a user to

simply download a dataset, the interface also allows user-selected post-processing

codes to execute on the remote file server host to reduce the volume of data

returned.

5.2.2 XML Specification of the User Interface

The system is started by initialising the Java Servlet code vyith an XUIS. This

initialisation can take several seconds but it is a one-off cost that is not repeated

during subsequent requests from users. A default XUIS can be created prior to

system initialisation using a tool that has been created. This tool, written in Java,

uses JDBC to extract data and schema information from the database being used to

archive simulation results. This default XUIS conforms to a DTD that has been

defined for EASIA. The default XUIS can be customised prior to system

initialisation. The XUIS contains table names, column names, column types, sample

data values for each column, and details of primary keys and foreign keys that

participate in referential integrity constraints. The XUIS also allows aliases to be

defined for table and column names.

The following sections explain how this information is used to provide an

interface with searching and browsing capabilities and how it facilitates

customisation of the interface and dynamic execution of post-processing

applications.

5.2.3 Searching and Browsing Data

After logging in users of the interface can begin to locate information in the

scientific archive by searching or browsing data or by using a combination of both

techniques. DBbrowse required the user to begin in searching mode and to submit at

least one query fbrm before browsing of results could commence. EASIA allows

browsing from the start (a feature that was added in response to a request from a

user). This is accomplished by allowing the user to request 'All Data for Table' via a

single hypertext link (see for example, Figure 23), instead of initially requesting the

102

search form for that table. The effect is to return all the rows from the table with all

available hypertext links marked up in the results. The two subsections that follow

explain further enhancements to searching and browsing in EASIA.

g k Edit \(iew Go ^ommuKXitcif Help

: Reload Home Seatc-h Nettcapc F W
A*

Select a t a b l e n a m e to start your query

'AUTHOR

CODE RLE

AUTHOR

CODE FILE

JTHOR KEY

RESU^FIE RESULT FILE

CO\]jLOAD_CODE_FILE
iSIMULATION J<EY SIMULATION
CODE_DESCRIPTION
DOVWLOAD_RESULT
SIMULATION KEY -> SIMULATION

.SIMULATION SIMULATION

VISUALISATION FILE

(SIMULATION _KEY
DESCRIPTION
[AUTHOR_KEY -> AUTHOR
POWNLOAD_VISUAL
|3IMULATIONJ<EY -> SIMULATION

VISUALISATION FILE

Dccimient Done

5.2.3.1 Searching

To search for data a user selects a link to a query form Ibr a particular table

(indicated by the hyperlinks in the 'Search Table' column of the example shown in

Figure 23). This provides a query form similar to that in DBbrowse (see for

example, Figure 24). The majority of users of the scientific data archives are

frequent repetitive, simple queries. For this category of user, a form-based visual

query system (VQS) represents a better alternative than an iconic VQSs or

diagrammatic VQSs [35]. Form-based interfaces also facilitate non-expert users by

capitalising on the natural tendency of people to organise data into tables [35]. An

enhancement over DBbrowse is the availability of sample values for the text entry

fields, available from drop down lists. Two of the major problems faced by users of

text based query languages, such as SQL, are a semantic one in choosing the correct

attributes and relationships between them, and a syntactic one in building the correct

textual expression that corresponds to the chosen query. By offering the user choices

103

of column names, table names and operators, the instance of syntactic error can be

reduced. Providing column names, datatypes and va/wgj' can aid substantially

in narrowing the semantic meaning of a domain [111]. For example, a column

called 'TITLE' in a personnel database could be used to store values such as 'Mr',

'Mrs', 'Dr', etc., or it could store a person's job title such as 'Chief Engineer'. A

sample value will quickly clarify the intended meaning. The interface randomly

selects ten sample values to be displayed for each simple attribute type. The drop-

down list of samples displays the SQL-type by default as this also provides useful

information.

EASIA obtains the table names, column names, data types and sample values

used in the query form from the XUIS used to initialise the system (rather than

directly from the database catalogue as is the case with DBbrowse), This allows

customisation as discussed in Section 5.2.4.

Tuibulence Database Queiy Form - Netscape

FW# So CommMcatof dep

i J' ^ t
Reload Hon* Seach NAcape P w SacwA

SIMULATION Query

F 3!
f: 31

: [like 2] |numerlcal «lmukillon|

F 31
F 31

' |VARCHARO0) 3 r r r r
|vARCHAHgS4) 2i ^
CL0B(10MByte)
|VAFICHAR(30) 3 r r r r
|VAFICHAR(30) ^ r r r r
VAR CHAR (500)

J

of iDocumenk Done

5.2.3.2 Browsing

Foreign key and primary key browsing in EASIA are similar to those in DBbrowse,

except that the specification of these keys in the XUIS determines whether or not the

links are displayed. Links are included in the XUIS by default if referential integrity

constraints are available in the database metadata. If metadata describing referential

104

integrity is not available, the XUIS can still be customised to include these hypertext

links. (Figure 25 illustrates that the display for primary key browsing has been

changed in EASIA, for the case where there may be a choice of tables to browse to.

Selecting one of these values will return all the rows that the key appears in from

one of the referenced table, in m

The description that follows explains BLOB and CLOB browsing that applies

to both EASIA and DBbrowse. (During the description of DBbrowse in Chapter 4

an example of the ability to retrieve LOB data through browsing was deferred until

this section, as it is similar in both prototypes.) The description of DATALINK

browsing at the end of this section is, however, a new and essential feature, only

available in EASIA.

Turbulenece Database Queiy Result - Netscape

fw E* Yew jjo CfMmu
B a Q

a 3!l
Aek)od Home Saach hiwcape AW Sacun̂j

< NEW QUERY > <LOGOUT>

SIMULATION
(2 records) D E S C R I P T I O N l ike ' ^ n u m e r i c a l s i m u l a t i o n % '

LastUpdated 11.01.1SS9

ri'cqGrrrisosnp
B 1 9 9 9 0 2 0 9 1 5 0 S 3 2

5 0 4 B y t e A 1 9 9 G 0 1 1 0 1 5 1 0 4 2

J-ajTi inar S e p a r a t i o n B u b b l e s 1704 i M 9 9 9 0 2 0 9 1 5 1 0 4 ?

; Document Done
ZJ

J,:-' 3

Fzgz/rg . / (g W r g ^ w g ^ m g Âg .SVM[/L4770#^a6Zg.

Figure 25 shows a sample result screen that was generated after the query from

Figure 24 (CLOB DESCRIPTION field containing the words 'numerical

simulation') was run against the SIMULATION table described by the schema

shown in Figure 26. This schema was used by the EASIA prototype to store data

from the UK Turbulence Consortium. The SIMULATION result table (Figure 25)

contains data corresponding to simple SQL-types, such as the title and date for a

simulation. As well as simple types, BLOB and CLOB types are used to store small

105

files that can be uploaded over the Internet. Cells associated with these types display

a ZOB ZmA: to the object. Selecting one of these links causes the data associated with

the cell to be returned to the client. The link displays the size of the object in bytes,

which may help users decide whether they want to retrieve the object.

SIMULATION

SIMULATION KEY

[DESCRIPTION

DATE_R UN

AUTHOR

A U T H O R K E Y

ORGANISATION

TELEPHONE 1

TELEPHONES

VISUAUSATION_FILE

) DOWNLOAD_VISUAL

MEASUREMENT

TIMESTEP

FILE_SERVER_SITE

FILE_SIZE_BYTE

FILE_FORMAT

DESCRIPTION

RESUL.T_FILE

Fil F NAMF

DOWN LOAD_RE6U LT

MEASUREMENT

TIMESTEP

RESULT_DESCR IPTION

FILE_SERVER^|-rE

FILJE_SIZE_BYTE

FILE_FORMAT

CODE_FILE

CODE NAME

DOWNLOAD_CODE_FILE

CODE_TYPE

CODE_VERSION

CODE_DATE

C C C E _ L A N Q U A (3 E

60URCE_0R_BINAnY

COOE_DESCR IPTION

FILE_SERVER_SITE

FILE_SIZE_BYTE

FILE_FORMAT

Legend:

one-to-many

OATA LINK
BLOB/CLOB

For example, Figure 26 indicates that the DESCRIPTION attribute in the

SIMULATION table is a CLOB type. Selecting the hypertext link on the

DESCRIPTION field labelled '704 Byte' in Figure 25, will retrieve the description

(of the simulation entitled, 'Laminar Separation Bubbles DNS') and display it

directly in the browser window since it contains character data. This is shown in

Figure 27.

•••1 ••••••••Mi
6o CofMMJMCatOf H'*'

a
Swch Nahcape FW Swfily

DESCRIPTICW: Direct nuroerlcal almuiatlons of the three-dimensional
(3-D) time-dependent Incompressible Navier-Stokes equations are
performed to Investigate laminar separation bubbles (bubbles). Bubbles
are generated by suction of fluid through the upper boundary of the
simulation. Transition is achieved by introduction of disturbances
upstream of the bubble. Three imain sinmlation (3DF-A, 3DF-B and 3DF-C)
results are presented here. The difference between the three simulations
IS the mean bubble length, where 3DF-A is the shortest and SDF-C
IS the longest bubble.

zJ
DocunM.nl Done J-' a

Fzgwrg 27." CZOB

106

For BLOB data (e.g. a stored image or executable) selecting the link will allow the

user to save the data as a file, or process the retrieved data according to helper

applications specified within the user's browser. EASIA attempts to identify the type

of data being returned to the client and sets the content type in the HTTP header

accordingly. For CLOB retrieval an attempt is made to identify the character data as

either plain text or HTML content.

The sample schema of Figure 26 contains not only non-traditional LOB data,

but also non-traditional data stored using attributes of the DATALINK SQL-type.

These DATALINK attributes serve the main purpose of the architecture - to archive

large scientific data via the Web. The attributes in the Turbulence Consortium

schema are used for storing result files, code files, and visualisation files. When

present in a result table, the value of a DATALINK attributes is displayed as a

filename, with a hypertext link that contains an embedded encrypted key, required to

access the file from the remote file server (see Section 5.3.2). If the link is selected

EASIA uses the key to retrieve the file from the appropriate distributed remote file

server and sets the content type accordingly. Figure 28 shows the effect of selecting

a hypertext link on a DATALINK attribute in the VISUALISATION FILE table of

Figure 26. An MPEG movie of a channel flow simulation is retrieved and displayed.

Bo Lam&MMk* b«lp

R«lo#d Horn* S#*ch N#t*cap# Pmrl

< NEW QUERY »

V I @ U A L I S A T I O N _ P n _ E
(1 moonh)SMULATION_KEY -

SOUTHAMPTON
UNIVERSITY pw.mpg

'I "I J at-

107

Hyperlinks on BLOB/CLOB and DATALINK types are included in the EASIA

interface if the XUIS specifies a column as consisting of one of these types. The

EASIA system also makes use of DATALINK columns for its post-processing

services. This is an extremely important part of the architecture and is discussed

separately discussed in Sections 5.2.5 and 5.2.6. But first, the mechanism for

the searching and browsing aspects of the user interface via XUIS

modification is described.

5.2.4 Interface Customisation through XUIS Modification

The XUIS can be customised to provide aliases for table names and column names

as well as user-deGned sample values. It is also possible to prevent tables or

columns being displayed in the query forms and results, by removing them from the

XUIS. Hypertext links for navigation between tables can also be added or removed

by modification of the XUIS. A fragment of the XML for the XUIS is shown below:

<table name = "AUTHOR" primaryKey = "AUTHOR.AUTHOR_KEY">

<tablealias> Author </tablealias>

<column name = "AUTHOR_KEY" colid = "AUTHOR.AUTHOR_KEY">

<type>

<VARCHAR/>

<size>30</size>

</type>

<!- - Primary key links for this column defined next - ->

<pk>

<refby tablecolumn = "SIMULATION.AUTHOR_KEY"/>

</pk>

<samples>

<sample>A19990110151042</sample>

<sample>A19990209151042</sample>

Initial feedback from users indicated that they would like the option to replace the

keys displayed in the results with more meaningful data. The XUIS can be modified

to specify a 'substitute column' to be displayed in the results in place of foreign

keys. The substitute column is a user-specified column from the table that the

108

foreign key references. For example, the AUTHOR KEY attributes in the

SIMULATION result table of Figure 25 can be replaced by, say, the NAME

attribute from the referenced AUTHOR table (see the schema in Figure 26). These

values still provide a brovysing link to the full author details. The XUIS can also be

customised to replace primary keys with the names of linked tables. Both of these

customisations are illustrated in Figure 29, which shows a similar query result to

Figure 25 but with a modified XUIS. Note that the foreign key links to the author

table now list the author's name, which is far more intuitive than the long character

string (key value) that was previously displayed. Also, the long character strings

values of SIMULATION KEY (primary key values) have been replaced instead

with hypertext links showing the table names, 'CODE_FILE', 'RESULT_FILE' and

'VISUALISATION__FILE', Again this is more intuitive for the user, as it is now

possible, for example, to obtain all the result files fbr the 'Channel Flow Simulation'

in the first row of Figure 29 by selecting the 'RESULT FILE' link.

Tuibulenece Database Queiy Result - Netscape

^
Home Seach HaUcap* Pmx SecunQ;

<NEWQUERY >

S I M U L A T I O N

(2 records) DESCRIPTION like ^numerical simuIation%'

; i n . 1 . J U . . M V * .'1.1

JQDE FILE BESULT FILE -VISUALISATION FILE:

< LOGOUT

LMlUpdalmd 11^11.1800

:C0DE FILE RESULT FILE VISUALISATION MMBvIa 11997/1998
^Bubbles
bNS

0S\ ' Rusuhs

zj
:Docim8ncDone X 'w Ji-' 3

An example of the XML used to specify a substitute column for a foreign key is as

follows:

109

<table name = "SIMULATION" primaryKey = "SIMULATION.SIMULATION_KEY">

<column name = "AUTHOR_KEY" colid = "SIMULATION.AUTHOR_KEY">

<!- - Foreign key link defined here, with possible substitute columns - ->

<fk tablecolumn = "AUTHOR.AUTHOR_KEY" substcolumn =

"AUTHOR.NAME"/>

5.2.5 Suitable Processing of Data Files Prior to Retrieval: 'Operations'

McGrath [149] asserts that users of scientific data servers usually only require a

selected part of a dataset that is typically stored in a large complex file, and that it is

critical therefore, to provide a means to identify data of interest, and to be able to

retrieve the selected data in a useable format. Ferreira et al. [92] also discuss multi-

dimensional datasets that typify scientific results, stating that applications that post-

process such data, do not typically use all possible data in the dataset. Hawick and

Coddington [112] describe the need for active data archives, where data is generated

on-demand from existing data because many of the data items required by users are

actually obtained by processing data. This section explains how EASIA can

be extended to provide an active archive that facilitates server-side post processing

of stored datasets prior to delivery to the client.

Referring back to the system architecture, Figure 21 shows that the Web

servers on the remote file servers can process a standard HTTP 'Get request' to

return a complete result file to the client (if the encrypted file access key is correct).

This is the functionality that has been described so far. However, Figure 21 also

shows that a Java Servlet can be invoked on the file server to handle the incoming

request.

A fundamental feature of the EASIA architecture is that it allows the XUIS

to be modified to allow post-processing applications that have been archived using

DATALINK values, to be executed dynamically server-side, to reduce the data

volume returned to the user. These applications can consist of Java classes or any

other executable format, suitable for the file server host on which the data resides,

including C, FORTRAN and scripting languages. These applications do not have to

110

be specially written for the architecture (in fact, stored DATALINKs

can be downloaded separately for standalone execution elsewhere) and they can be

packaged in a number of different formats including various compressed archive

formats (such as tar.Z, gz, zip, tar etc.). The only restriction is that the initial

executable file accepts a filename as a command line parameter and that any file

output uses relative path names. The filename accepted as a command line

parameter corresponds to the name of a dataset that is to be processed. Archived

applications are associated with a number of archived datasets using a markup

syntax that has been defined for 'operations' in the XUIS. If the application allows

other user-specified parameters, the syntax for operations has been defined so that an

HTML form will be created to request these parameters at invocation time. The

XML syntax defined for operation parameters is similar to that used for HTML

forms. Applications that correspond to operations do not have to be stored as

DATALINKs. They can also be specified in the XUIS in the form of URLs that

refer to CGI programs or Servlets that run on the file server host to provide a post-

processing service. A fragment of the XUIS definition for an operation is shovm

below:

<table name = "RESULT_FILE"

primaryKey = "RESULT_FILE.FILE„NAME RESULT_FILE.SIMULATION__KEY">

<column name = "DOWNLOAD_RESULT" colid =

"RESULT_FILE.DOWNLOAD_RESULT">

<ty p e x D AT A LIN K/></ty pe>

<operation name= "Getlmage" type="JAVA" filename="Getlmage.class"

format="jar" guest.access="true" column="false">

<!- -Only allow this operation on attributes in this column that meet the

following conditions- ->

<if>

<condition colid="RESULT_FILE.SIMULATION_KEY">

<eq>'S19990110150932'</eq>

</condition>

<condition colid="RESULT_FILE.IVIEASUREIVIENT ">

<eq>'u,v,w,p'</eq>

I l l

</condition>

</if>

<!- - The location of the operation can be a URL or code that is archived using

another DATALINK column, retrieved with the following query - ->

<location>

<database.result colid="CODE_FILE.DOWNLOAD_CODE_FILE">

<condition colid= "CODE_FILE.CODE_NAIVIE ">

<eq>'Getlmage.jar'</eq>

</condition>

</database.result>

</location>

<description>

<! - - Place a description of the operation here or use a database.result

to select the description text from the database - ->

</description>

<! - - Define any parameters that the above operation uses. These can be

constant, selected from database results, or prompted for from the user via

an HTML form- ->

<parameters>

<param>

<variable>

<description>Select the slice you wish to visualise:

</description>

<select name="slice" size="4">

<option value="x0">x0=0.0</option>

<option values "x1 ">x1 =0.1015625</option>

<!-- alternatively a select can use a

database.result element instead of options - >

</select>

</variable>

</param>

<param>

112

<variable>

<description>Select velocity component or pressure:

</description>

<input types "radio" name="type"

vaiue="u">u speed</input>

<input type="radio" name="type"

value="v">v speed</input>

</variable>

</param>

</parameters>

</operation>

</co[umn>

An example of the processing associated with an operation stored as a DATALINK

follows. This corresponds to the Gef/zMage operation in the XUIS &agment above.

Figure 30 shows the result of a query on the RESULT_FILE table from the schema

of Figure 26. The columns containing a cog icon in the column header present the

user with operations to execute against the preceding DATALFNK column

containing dataset result files. Not that the Ger/magg (and operation only

appears against the DATALINK values that are contained in rows that meet the

other conditions defined in the XUIS (for example, a specified

SIMULATION_KEY and MEASUREMENT type).

•3am!

RemnM M e
(93 records) N o Restr ic t ions

Lw«Upd#Wd:ij)l IPPP

U.V.W.P

u . v . w . p

^ u , v , w , p

. W . p

I E E E b m a i y

I E E E b i n a r y

I E E E b i n a r y

I E E E b i n a r y

HDF

HDF

HDF

2 rmmkr unmg* plu» mce
annotabon
(HDF SDS mod Vdala
*Kmmple

ro«ter miuges for Imyer
aemture aemo

.Document Dom#

113

Selecting the 'Getlmage' hyperlink corresponding to the DATALINK value

containing 'data_01.dat' produces the screen shown in Figure 31. This describes

what the operation does, and requests that the user specifies any input parameters

that were defined for the operation in the XUIS. The information contained in this

form was specified in the XUIS and the operation itself is stored as a DATALINK in

the CODE FILE table of the schema shown in Figure 26. The example

operation extracts a user-specified slice from a dataset corresponding to a simulation

of turbulence in a 3-D channel and returns a GIF image of a user-selected velocity

component or pressure from the flow field. The result (applied to 'data_01.dat') is

shown in Figure 32. When the user submits the request in Figure 31 this initiates a

sequence of processing. The location of the DATALINK file corresponding to the

dataset to be processed and the location of the DATALINK file corresponding to the

Getlmage operation along with the selected parameter values, are passed to a Servlet

running on the file server host. This Servlet also receives other information (stored

as hidden fields in the HTML form of Figure 31) that was initially specified in the

XUIS, such as the executable type for the operation (e.g. FORTRAN, C or Java) and

whether the application is contained in a compressed archive format.

E M U

Getlmage

This program reads a data file which contains the flow field from the channel flow
simulation by Prof Neil Sandham and outputs a GIF image of user-specified slice from
the input data.

2 files are output, image.gif contains the requested speed or pressure image.
3cale.gif contains the colour map. The minimum and maximum value represented by
the colour map is written to standard out along with the time value for the dataset.

Select U:e dice you * k h to vkuwUme:
x0=00
xl01015625
x2=0 203125
x3=0 3046875 J

Select velocity conqione^ #r prewm-e:

u

V speed
^ w speed

premure

OoamantOon*

I ResatFou.

The Servlet then makes external system calls to unpack the application in the

temporary directory created for the user and to execute the application with the

114

given dataset filename and other command line arguments (obtained from the

parameters). The Servlet redirects standard output and standard error from the

executable to files in the temporary directory. When the application EASIA displays

the name of the operation and the parameters that were chosen as its arguments, then

any standard output and error messages are displayed. This is followed by a

checklist of result files produced by the application from which the user selects files

to download as illustrated in Figure 32. Since the Getlmage operation produces GIF

images, which the browser understands, these are also displayed directly on the Web

page.

P a r i i m e l e i - s c l i o s e i i :

o p e r a t i o n = O e t l m a g e
d a t a — d a t a ^ O l . d a t
p a r a m O =
s l i c e =

O u t p u t I s :

t i m e — 8 1 . 2 3 1 4 3

u (n i i n) - - 2 . 2 6 7 2 1 0 2 E - 5
u (m a x) — 1 9 . 3 5 7 6 1 3

T h e r e w e r e i i o e r r o r *

P l e a s e s e l e c t t h e files t o b e c l o v \ ' n l o a d e < l .

P s c a l e . g i f

f ? i n i a g e . g i f

: D o w n l o H f l
O u t p u t (o u L t x t)

1 . 4 8 K B

1 0 1 9

3 4 b y t e s

J
G I F I m a g e s g e n e r a t e d :

s c a l e . g i f i m a g e . g i f

I I
Docummni Don#

When the user hits 'submit request' in the results page of Figure 32 a multipart

HTTP response is used to return all the files that were selected on the check box list.

The multipart HTTP response uses a technique called Server Push where a sequence

of response pages, not necessarily of the same content type, are sent to the client.

The socket connection between the client and server remains open until the last page

has been sent. In this case a series of 'Save As' dialogue boxes are presented to the

user in turn. A default filename appears in the 'Save As' dialogue box corresponding

to the actual file currently available for download.

115

After downloading the files the temporary directory and all of its contents are

deleted. If the user does not download the files in this way the temporary directories

are removed periodically when they are no longer being used. This is an important

feature in multi-user system such as EASIA, which could otherwise produce large

number of post-processing results on each file server.

The above example demonstrated a post-processing service consisting of an

application that was archived by the database using DATALINKs, and loosely

coupled to the dataset using the XUIS. The application is also available for use by

other datasets by appropriate specification in the XUIS. Furthermore, since

applications do not require any special coding specific to EASIA, the Ger/magg

code used by the operation above can also be downloaded from the archive. This is

achieved by locating it in the CODE FILE table and selecting the hypertext link that

accompanies the filename since it is stored as a DATALINK. Users with appropriate

privileges are thus fi-ee to download archived datasets operations for execution

in other environments, if they choose not to post-process using the built in operation

mechanism.

Operations in EASIA can consist not only of code archived in DATALINK

types, but also of post-processing services that are identified by URLs specified in

the XUIS. A URL-based service is hosted on the same machine as the dataset and

consists of a CGI program or Servlet that can accept an HTTP POST request along

with associated parameters. An example of this type of operation follows.

NCSA's .Bmyyj'er (SDB) [243] [149] consists of a CGI

program fbr browsing data in a number of scientific formats such as the Hierarchical

Data Format (HDF)^ [115]. This CGI program is written in C and provides

functionality such as visualisation and extraction of subsets of data specifically

written for the supported scientific data formats. However SDB does not provide

^ HDF, created at the National Center for Supercomputing Applications, is a multiobject self-defining

file format for sharing scientific data in a distributed environment. The HDF library contains

interfaces for storing and retrieving compressed or uncompressed raster images with palettes, and an

interface for storing and retrieving n-Dimensional scientific datasets together with information about

the data, such as labels, units, formats, and scales for all dimensions.

116

sophisticated storage and search capabilities for archiving and selecting the data files

that it can process. It assumes that these files are simply placed in a directory

structure belonging to the Web server. It is possible however, to incorporate SDB as

an operation in EASIA by the inclusion of simple markup in the XUIS, which

specifies the SDB URL (for post-processing appropriate result files). This allows

SDB to benefit from secure data management architecture and search capabilities

provided by EASIA. The XML fragment to include the SDB operation in EASIA is

shown below:

<operation name="SDB" type="" filename="" format="" guest.access="true"

column="false">

<if>

<condition colid="RESULT„FILE.FILE_FORI\/IAT">

<eq>'HDF'</eq>

</condition>

</if>

<location><LIRL> http://dns.ecs.soton.ac.uk/cgi-bin/SDB </URL></location>

<description>

NCSA Scientific Data Browser (SDB) obtained from

</description>

</operation>

Scientific Data Browser

TJiis info came from ajuii-as.hdf

Thim Sle the following film dwcriptionm:

To melecf m parliculmr onnotadon, thi« buHon: Ann

I m a g e s

There are 2 imagem in thim Ale. (image: have been *n:hmampled for dinplay) :
Image*

Label* ;r>escnplioii.«; :T)imensinn.c Tmage(snbs:ainiile<iJ Pale

I i t wi ./WfAbiiK
* dwvO 623 by Z71 t

demcO =623 by 271

http://dns.ecs.soton.ac.uk/cgi-bin/SDB

117

An example of the functionality that this can provide is illustrated in Figure 30 and

Figure 33. Figure 30 shows a hyperlink labelled 'SDB' in an operation associated

with the DATALINK file 'annras.hdf. This link initialises SDB with this file as

shown in Figure 33. The user can now use SDB to post-process the dataset.

5.2.6 Code Upload for Server-side Execution

Moore et al. [152] discuss mechanisms for data-intensive computing applications

(i.e. applications where execution time is dominated by movement of data) on

emerging 'GRID' based computer systems. They believe that such applications will

be difficult to support in GRID environments due to insufficient bandwidth for

access to remote data repositories. They suggest, therefore, that one challenge is to

support distributed processing, in which an application is moved to the site where

the data resides.

As well as predefined operations, EASIA also provides a mechanism to

allow users to upload Java code for secure server-side execution to post-process

datasets stored on the file server hosts. In Figure 30 this facility is indicated by the

arrow icon. The intention to allow authorised users to post-process datasets stored in

EASIA with uploaded code is specified in the XUIS as shown in the following XML

fragment:

<table name = "RESULT_FiLE"

primaryKey = "RESULT_FILE.FILE_NAME RESULT_FILE.SIMULATION_KEY">

<column name="DOWNLOAD_RESULT" colid=

"RESULT_FILE.DOWNLOAD_RESULT">

<type><DATALINK/></type>

<!- - Code upload is allowed against this DATALINK attribute, but not for

guest users. A Java jar file can be run against the data- ->

<upload type= "JAVA" format="jar" guest.access="false" column="false">

<!- -Only allow this operation on attributes in this column that meet

the following conditions- ->

<if>

<condition colid= "RESULT_FILE.SIMULATION KEY">

118

<eq>'S19990110150932'</eq>

</condition>

<condition colid="RESULT_FILE.I\/IEASUREIVIENT">

<eq>'u,v,w,p'</eq>

</condition>

</if>

</upload>

</column>

The user selects the arrow icon next to the dataset of interest and is then prompted

for the name of a Java jar archive to upload, and the name of the initial Java class

file to run. Processing then follows a similar patter to predefined operations. The

initial Java class file that is run must accept a filename as its first parameter since the

path to the selected dataset will automatically be inserted here. It must also use

relative path names for any file output. The uploaded archive is unpacked in a

temporary directory and the code is run against the dataset on the file server host

where the dataset is resident (and being controlled by the DATALINK mechanism).

Any output files from running the code, including console output to standard output

and standard error, are returned to the user.

A major difference between uploaded post-processing codes and predefined

post-processing operations, is that uploaded codes are restricted to the Java

programming language. This is because EASIA makes use of Java security features

to restrict the capabilities of the uploaded code. These restrictions effectively mimic

those applied to downloaded Java Applets on the Web. The only relaxation to this

'sandboxing' is that the code is allowed to read the input dataset file and is allowed

to write output files to the temporary directory that has been specially created.

Another implication of the use of Java for uploaded codes is that the data files to be

processed must be compatible with the Java language. That is, the byte arrangements

for the datatypes stored in the files must match those of the Java language or the

uploaded code must be capable of making any necessary conversions.

119

The code upload feature can be of great benefit where datasets are too large to

download in their raw format, and where the dataset is hosted on a high-performance

platform.

5.2.7 Administration Features

Users of the EASIA system are managed on the Web via the screen shown in Figure

34. This allows users to be added to the underlying database, removed or modified.

This screen is only available to users with administrative privileges.

^MairMainFacSIS Useis"Netscape ME
4 ^ ^ ^

hmbao rkme Ani

Maintain Users

d a n . D r . D # n i « . N i c o l e . 2 0 0 0 - 0 1 - 0 1
l . ' . l ' . M A M A M i f l l a f e W m i i b t e U l t t e M M

, P r o f . N e i l . S a n d h a m . 1 9 9 9 - 0 6 - 0 1

Tide . |=r

S u m a m e

Forename |nark

Uwrid: |=P

P w r f o r d |

P w t w o f d E x p i i y D a t e (y y y y - m m - d t O . | l 9 9 9 - 0 3 - 2 8

R#mov# U##r] Su#p*ixj U # * f | Fomi j A d d U $ * f | U p d * # U # * f

R e t u r n t o b o r n e p a g e

i D o c u m m n t b o w

5.3 Implementation and Design Decisions

This section discusses the implementation of the EASIA architecture. The results of

initial experimental bandwidth measurements for electronic file transfers between

UK universities are given. These results led to the rejection of the option of

transferring large simulation files to a centralised archive. Next the DATALINK

SQL-type is discussed as this presented an alternative (f/f/rzAwreaf data management

mechanism. Finally, the decision to use Java Servlets and JavaScript is discussed.

5.3.1 Experimental Bandwidth Measurements

From the outset limited bandwidth was likely to be the major factor influencing the

design of the system. To assess what might be possible, some experimental results

were obtained for the time required to transfer a file between two Universities using

the UK's academic computing network. Before presenting the results, some

background on the status of this network is provided.

120

Since the late 1970s the United Kingdom Universities and Research Councils have

operated their own computer networks. In the early 1980s these networks were

consolidated into a single system knovm as the Joint Academic Network (JANET).

JANET is managed and developed by the United Kingdom Education and Research

Networking Association (UKERNA) [221].

The latest phase of improvement to this network, SuperJANET III, recently

replaced the backbone of the network. The new backbone connects a central ring of

switching centres (at London, Bristol, Manchester and Leeds) via 155 Mbit/s ATM

technology. From this core the network fans out at 155 or 34 Mbit/s to backbone

These points cormect to a number of regional networks called

Mz/ropo/z/aM serving areas where several institutions are

located closely. Some institutions are not connected to a MAN (for geographic or

other considerations) and receive SuperJANET access via leased lines or British

Telecoms's SuperJANET tries to

ensure broad parity of provision for each institution. Nodes are not necessarily

operated at full link capacity. Instead the actual bandwidth is related to the number

of institutions connected to a node.

l i i l l l l i w

t o r s m a l l

s i n i i i l i i t i u i i

d i l l a t i l e

Estimated

transfer lime

for lar^e

simulation data

HIc

Day To Southampton 0.25 45m20s 4h50m085

Day From Southampton 0.37 30m38s 3h16ni02s

Evening To Southampton 0.58 19m32s 2h05m03s

Evening From Southampton 1.94 SmSls 37m23s

7. y b r / w o [/AT

The University of Southampton currently has a 10 Mbit/s SMDS connection to

SuperJANET. Repeated measurements were made of the time required to transfer an

121

85 MByte file to/from Queen Mary & WestHeld College, London (also connected to

SuperJANET via a 10 Mbit/s link). These tests were performed using ftp, between

two UNIX workstations, on different days and at different times to account for

varying network loads. The average measured bandwidths from repeated transfers

are shown in Table 1.

In the table 9am to 6pm is classified as daytime and 6.01pm to 8.59am as

evening. Weekends (6.01pm Friday to 8.59am Monday) are included in the evening

measurements. The table shows the measured bandwidths and also the estimated

time required for transferring a file of a particular size, calculated from this

bandwidth result. The two file sizes are 85 MByte for a small simulation and 544

MByte for a large simulation. These correspond to two current simulation

resolutions being used by the UK Turbulence consortium. It should be noted that

each timestep in a simulation generates four such files (three velocity components

and a pressure component).

These results show, not surprisingly, that evening is the best time to transfer

files. Less predictable is the fact that supplying result files Southampton will

achieve significantly better performance than trying to send results to Southampton.

This suggests that currently most of the University's available bandwidth is being

used to retrieve data from the Internet rather than supply it.

These results showed that using the Internet to transfer results from large

simulations to Southampton for archiving was not a viable option (requiring around

8 hours for the four files per timestep in the evening) and hence that a centralised

architecture, similar to that used for example in DBbrowse, was not viable. At this

point a distributed architecture was considered and a mechanism was sought that

could offer distributed storage of datasets in the EASIA architecture. The

DATALINK feature of SQL: 1999 provided a suitable mechanism and is described

next.

5.3.2 SQL Management of External Data: The New DATALINK Type

Both ANSI and ISO have accepted the proposal for SQL Part 9: Management of

External Data [60], which includes the specification of the DATALINK type. ISO

122

submitted SQL/MED for Final Committee Draft (FCD) ballot at the beginning of

2000 and it should be published as an International Standard in 2001 [81].

DATALINKs provide the following features for database management of

external files: (an external file referenced by the database

cannot be renamed or deleted), ZiraMfacfzoM (changes affecting both the

database and external files are executed within a transaction to ensure consistency

between a file and its metadata), Security (file access controls can be based on the

database privileges) and ./(ecove/}' (the database

management system can take responsibility for backup and recovery of external files

in synchronisation with the internal data).

The EASIA architecture uses IBM's implementation of the DATALINK type

that is available for DB2 [64]. This uses a DB2 database that stores the data

associated with standard types internally, plus DATALINK specific software

rtmning on the remote file servers to manage external data. This software processes

SQL and statements that affect DATALINK columns,

to link and unlink files for the database. It manages information about linked files,

and previous versions of linked files for recovery purposes. It also intercepts file

system commands to ensure that registered files are not renamed, deleted and

optionally, check the user's access authority. An example of the SQL syntax for

creating a table with a column containing a DATALINK SQL-type is as follows

(refer to the RESULT FILE table in the schema of Figure 26):

CREATE TABLE RESULT_FILE (

download_result DATALINK
LINKTYPE URL

FILE LINK CONTROL

READ PERMISSION DB

The parameter specifies that a check should be made to

ensure the existence of the file during a database insert or update.

can be set to DB (database) of FS (filesystem). If the database manages read

permission then files can only be accessed using an encrypted file access token.

123

obtained from the database by users with the correct database privileges. Without a

valid token, the DATALINK software denies the read request. Further details of

these parameters, and additional parameters that can be specified in the DATALINK

column definition, are available in [60].

A DATALINK value can be entered via a standard SQL INSERT or

UPDATE statement. The value takes the form:

http://host/filesystem/directory/filename

The filesystem part of this URL is a specially mounted DATALINK File System

(DLFS) in the AIX version of the software. The directory and filename are standard

UNIX file systems. If read permission is managed by the database, an SQL

statement retrieves the value in the form:

http://host/fllesystem/directory/access_token;filename

The file can then be accessed from the filesystem in the normal way using the name:

access_token;filename

or, by using the full URL if the file is placed on a Web server (as in EASIA). The

access tokens have a finite life determined by a database configuration parameter.

This can be set to expire after an interval.

5.3.3 Java Servlets and JavaScript

The EASIA architecture was implemented using Java Servlets on the server

side and HTML forms/JavaScript on the client side. Whilst Java Applets can

produce sophisticated user interfaces the technology was rejected for the client side

of EASIA for the reasons given in Chapter 2. Namely, the difficulty in building

robust Applets, the restrictions posed on client's browsers, the requirement for the

client to have hardware that could offer reasonable performance, and the security

restrictions that apply to Applets. HTML forms were used instead, augmented with

JavaScript to give the interface a more dynamic feel than can be achieved with

HTML form alone. A subset of JavaScript is used which works with both the

Netscape and Microsoft Web browser.

Servlets were chosen for the server side development for the reasons outlined

in Chapter 2. Namely, improved performance over CGI, the ability to maintain state

http://host/filesystem/directory/filename

124

and track users' sessions through the Servlet API, and the availability of many other

useful Java APIs for example, security and database access APIs.

One of the most difficult problems encountered during the implementation of

EASIA concerned the processing mechanism for predefined post-processing

operations and code upload. Sun's Java Web Server (JWS) was used as the Servlet

engine on the distributed file server hosts. The initial idea for predefined Java post-

processing codes and uploaded codes was that a specially written operation startup

Servlet running within the JWS would dynamically load the required Java class

(using Java Reflection). Any output would be written to a temporary directory that

had a unique name based on the user's Servlet session identifier (and time/date

information). However, it proved extremely difficult to redirect any file output to the

temporary directory using this mechanism. Although it is straightforward in Java to

redirect any output directed to standard output or standard error to files in the

temporary directory, it was not possible to get the Servlet to redirect any

other Ale output from the user's code (which used relative path names as mentioned

in Sections 5.2.5 and 5.2.6). Instead, it was found that all output was written to the

directory that the Servlet was run 6om. According to Bwg 43078.^6 at

Sun's Java Developer Connection^, the Java API does not allow the working

directory to be changed as this complicates multithreaded code.

^ The following bug report is taken from the Sun's Java Developer Connection Bugs Database

(http://developer.javasoft.com/developer/jdchome.html)

Bug Id 4307856 Submit Date Jan 27, 2000 Workaround None.

Description There should be a way for a Java application (not an Applet) to set the current directory.

This feature has a number of uses but it's mainly necessary to run certain applications launched from

the Java application. This has been sorely missing for years and it's causing a lot of problems for

developer that are then forced to use ugly hacks to work around the problem.

Evaluation The Java platform API specifically does not allow the working directory to be changed,

since having such mutable global state would vastly complicate writing multithreaded programs

(4307856). For the purpose of creating a subprocess that runs in a different directory, however, a

new variant of the Runtime.exec method was introduced in J2SDK 1.3 (Kestrel, see RFE 4156278).

http://developer.javasoft.com/developer/jdchome.html

125

The implemented solution uses the startup Servlet to invoke the operation class file

via a system call to a dynamically created batch file. This batch file changes the

directory to the appropriate temporary directory, unpacks the code if it is stored in an

archive format (such as jar or zip) and then invokes another Java interpreter to run

the operation class file for the user's requested post-processing code. Another

advantage to this batch file approach is that it also supports post-processing codes

written in other languages. The batch file is still dynamically created by the startup

Servlet but in this case it contains appropriate commands to invoke the non-Java

post-processing code.

Cli ent

browser

Upload
code

startup S e i v l e t

S e c i i f i t y M a n a g e r

Execute batch file to Secure
change directoiy and Application
run Secure
Application Uploaded

F Classes
loaded and
am using
reflection

The batch file mechanism is also used to run uploaded post-processing codes. This is

required to not only fix the file output problem, but also to implement the

'sandboxing' restrictions required in this case. Firstly, a multipart HTTP request is

used to send the file and name of the initial class to run, as input at the user's Web

browser, to the file server host where the chosen data resides. The startup Servlet

running at the file server host receives the request using its input stream. As

illustrated in Figure 35 the j'far/wp Servlet then creates a script that changes to the

required temporary directory, unpacks the uploaded jar archive, and then invokes

another Java interpreter with another special j'ecure class that is used to

implement the 'sandboxing' for uploaded code. This special class declares

appropriate security restrictions and then dynamically loads and runs the user's

126

uploaded code using Java reflection (applied to the user's input corresponding to the

name of the class to run).

To end this section on implementation of the Java Servlet code that

comprises the majority of the EASIA system a few comments on the portability and

performance of the system are warranted. To demonstrate the portability of the

Servlet code used for post-processing on remote file servers, the code has been

ported to both AIX and Windows NT. This was a simple task as the code uses a

configuration class file to retrieve any system specific information. The only change

to the configuration file was the location of the JDK. The configuration class can

automatically derive all other system specific information such as file separators and

the appropriate format for batch files. The Servlet code that runs on the database

server host at Southampton (Figure 21) and which implements the main EASIA

backend processing, is also portable to different platforms. Database independence

depends on support for LOB datatypes and the new SQL: 1999 DATALINK type.

Query and post-processing performance of the EASIA system has not been

studied in detail, as it is reasonably independent of the architecture. As has already

been described, EASIA uses multithreaded Servlet code to improve performance

over the CGI mechanism used in the earlier GBIS and DBbrowse prototypes.

Furthermore, the response times for database queries will depend on the number of

concurrent users, but as explained in Chapter 2, most object-relational databases

have parallel versions available if performance is insufficient on sequential

platforms.

One area that should be re-implemented to improve performance is the batch

file mechanism for executing post-processing operations. As stated above this was

used primarily to change the working directory in Java and to sandbox uploaded

post-processing codes. However, each concurrent post-processing operation running

on a machine will result in a new Java interpreter being started and rurming for the

duration of the operation. A more efficient mechanism would be to create a

permanent server process in Java that simply received parameters from the batch

files for particular operation requests and spawned multiple threads to service the

operations.

127

It is not possible to say much more about the performance of post-processing codes

in EASIA as the system can incorporate diverse code types through the XUIS

specification. Additionally, the performance of post-processing codes will depend

upon the file server platform that they run on. In general, the overhead created by

EASIA's Java code is likely to be negligible compared to Web response times and

the times taken for scientific codes to post-process large datasets.

5.4 Conclusions

A prototype system, EASIA, has been constructed to meet a requirement of the

UK Turbulence Consortium to make available to authorised users, large result files

from numerical simulations, with a total storage requirement in the hundreds of

gigabytes range. The major limiting factor in trying to meet this requirement is the

available bandwidth in the Web environment. EASIA greatly reduces bandwidth

requirement by allowing datasets to be managed in a fashion (with

centralised metadata) thereby avoiding costly network transfers associated with

uploading data files to a centralised site. Data distribution also reduces retrieval

bottlenecks at individual sites. Bandwidth requirement is further reduced by the

active nature of the EASIA architecture, which allows data reduction through post-

processing. Post-processing can be achieved via archived applications or by

allowing users to upload code to be run securely on the file servers hosting the

datasets. Although EASIA is distributed in nature, it maintains integrity between

metadata and the actual data files.

The interface presented by EASIA is specifically aimed at users with a

scientific background who are not familiar with SQL. As such, EASIA aims to help

users locate scientific data files of interest, using an intuitive searching and browsing

mechanism that has been inherited from DBbrowse. Unlike DBbrowse, however, the

user interface in EASIA is not only automated, but also customisable and extensible.

Automated construction is achieved by allowing the user interface specification to

be defined in an XML file used to initialise the system and by providing a tool that

can generate a default XML specification. Separating the user interface specification

from the user interface processing can provide a number of further advantages:

128

• The user interface, although schema driven can be customised to use aliases

for table and column names and to present different sample values. Tables

and attributes can also be hidden from view.

• Hypertext links to related data can be specified in the XML even if there are no

referential integrity constraints defined for the database.

• Different Users (or classes of user) can have different XML files thereby

providing them with different user interfaces to the same data.

« For scientific data archiving a major benefit, facilitated by the XML user

interface specification, is the capability to associate 'operations' with database

columns, so that a user can extend the interface by including standard post-

processing codes. EASIA can archive these codes along with data. They can then

be applied dynamically to the data. These applications are loosely coupled to the

datasets via XML defined interfaces. They provide reusable server-side post-

processing operations such as data reduction and visualisation.

The EASIA architecture uses distributed commodity computing and non-

proprietary technologies such as the new SQL DATALINK type, defined in

SQL/MED. EASIA combines leading edge Web-based technologies and techniques

to provide a complete working architecture, including Web-based user interface for

archiving large, distributed files, whilst maintaining database security, integrity and

recovery.

129

6 Related Work

This chapter describes related work. It is split into two main sections. The first

section discusses related work on user interfaces to databases and provides

comparisons with DBbrowse. In particular, this section concentrates on user

interfaces to databases that include browsing mechanisms, and on Web-based user

interfaces to databases. The m^ority of this section focuses on the state-of-the-art at

the time DBbrowse was published in 1997. The second section discusses related

work on Web-based management of scientific data and provides comparisons with

the current EASIA architecture.

6.1 Related Work on User Interfaces to Databases

6.1.1 Introduction

Graphical interfaces to databases are an important tool in the database world to

provide easy access to data without the need for technical knowledge on database

design or the need to learn declarative languages such as SQL. Accordingly, there

has been a substantial body of research in this area. PC products such as Access and

Paradox still show the influences of early work such as TIMBER [212] and FADS

[197] and owe much to the seminal work on Query By Example (QBE) [244].

However, database interfaces have long since surpassed this early work due to

advances in technology. This section describes some of the research that has led to

the current generation of database interfaces. Firstly, stand-alone interfaces to

databases are discussed as these have provided many of the techniques later adopted

for Web-based interfaces to databases. Subsequently new Web interfaces to

databases are discussed. Contrasts will be drawn between these systems and

DBbrowse, which provides a Web interface to relational and object-relational

databases that is generated completely automatically. Interfaces that provide

database browsing will be highlighted so that the method of browsing can be

compared to that in DBbrowse, which is based on generating automatically links to

browse for related data, based on inferred relationships derived from referential

integrity constraints.

130

6.1.2 Stand-alone Graphical Query Interfaces to Databases

6.1.2.1 Early Graphical Interfaces Incorporating Database Browsing

Early examples of database browsing consisted of low-level commands rather than

visual techniques and were usually applied to extended relational database models.

These systems incur significant cost in terms of defining the database schema and

loading the database due to the extended data model. Metro's work on BAROQUE

[153] describes natural-language-like browsing commands for exploring a view of a

relational database that resembles a semantic network. Each real world entity is

modelled with one database item. This data item could appear in different attributes

e.g. the data item "Los Angeles" could appear in both the location attribute of a

University table and the name attribute of a city table. An additional item directory

table is constructed, with a row for every distinct data item, that contains attribute

and data item pairs. BAROQUE is therefore amenable to access by value without

knowledge of the schema, i.e. the user can use "Los Angeles" as a search value

without knowing the name of the attribute in which this value occurs. The system

uses commands such as 'what is' (to find out the details of the items position in the

network hierarchy i.e. schema information) and 'what is known about' to extract all

the relationships in which the item appears. Relationships are obtained between a

data item and all other attributes in all the tuples that the value is found. One

problem with browsing related items based on data item values alone, is that

spurious links can be generated which have no real relationship. Browsing in

BAROQUE occurs additional cost in the space required to store the item directory

table and the computation required for its initialisation and update.

Stonebraker's database browser, TIMBER [212], was a specification and

partial implementation of a graphics based browser for an extended relational

database. The browser included a relation browser for fixed format relations, an

editor for text data stored in relations and a map browser for geographic image data.

Icon fields were also available to provide visual representation of database rows.

Commands were specified for selection and projection of data and for browsing

which consisted of finding the next icon or row that satisfied an expression.

131

Browsing in VAGUE [155] involved language based queries that had a 'fuzzy'

specification of the data. The relational data model had to be extended with the

concept of and the query language vyith a .y/mzVar-fo comparitor. A

special metric table was created to define the type of metric for each domain used in

the database. A second additional table showed which domain corresponded to each

database attribute. Data metrics could be computational. For example, for the

domain money, the metric could calculate the absolute difference between two data

items. Data metrics can also be tabular, whereby a new table was created to provide

a value of the data metric for every possible pair of data item values. Once all these

database extensions were in place (no small task presumably!) vague queries could

incorporate the similar-to comparitor in order to browse the database based on the

distance between data items defined by the metrics.

Browsing is the principal method of navigation in Metro's work on loosely

structured databases [154]. Such databases are collections of facts that are defined as

named binary relationships between data values, for example, (employee, earns,

salary) and (employee, works-for, department). The data can be regarded as a

network of values that can be browsed using a dedicated query language.

6.1.2.2 Data Browsing within Data Models Containing Explicit
Relationships

Systems have been designed to provide data browsing for database models that have

relationships between objects in the database. Such database models include

(E-R) [44] and data models. Most of these

systems are closely bound to the underlying database system and do not provide a

generic interface to different DBMSs. Examples of these interfaces are Databrowse

[196], LID [96], KIVIEW [156], OdeView [8], and PESTO [32].

provided a user interface to an E-R database system. The user

produced an E-R diagram with a tool called Schemadesigner and then expanded the

entities into entity tables through a property sheet that defines fields, data types and

keys. No direct query facility was provided. However, the user could begin by

selecting a table to display a scrollable list of all the tuples. It was possible to expand

any single tuple on display to show all related tuples in referencing tables that had

been linked by arrows in Schemadesigner. Binary and text data types were

132

supported in this system so that links could be made to associated images and text

f i l e s .

Fogg's Living in a Database (LID) graphical query interface uses similar

ideas to Databrowse to provide browsing for an E-R database, but with improved

presentation graphics and also the ability to enter queries by entering search

conditions for the attributes of the currently selected entity. Both LID and

Databrowse suffer from the weakness that sets of tuples cannot be operated on at the

same time. For example, in a personnel database, the user may want to display the

department details for all employees simultaneously, without having to browse the

details for each employee one at a time, moving backwards and forwards between

the employee and department entities.

KIVIEW provided an interface to a database characterised by a semantic

network consisting of objects connected by binary relationships. The user sets up

several views, linked in a tree-like structure. A view of an object consists of all the

facts in which the object participates. A fact is a triplet containing two objects and

the name of the relationship between them. KIVIEW introduced 'synchronous

browsing' of related objects, a technique that is also used in OdeView and PESTO.

When the information in the root view is modified, the content of the other views

changes automatically. In KIVIEW commands were used to explicitly indicate the

synchronising links.

OdeView provides a GUI for the Ode OODB. OdeView allows browsing of

objects, following chains of references and displaying selected portions of objects.

The display features of OdeView were implemented by requiring object class

defmers to provide certain display-oriented and query-oriented functions for their

classes. Objects can be displayed in one or more formats depending on the semantics

of the display function. OdeView also provides schema browsing where users can

display object classes, select an object class, display subclasses, display superclasses

and display metadata, e.g. the number of objects in the class. The system as

implemented did not include selection and projection although these were discussed

as extensions.

133

PESTO (Portable Explorer of STructured Objects) [32] is an on-going joint project

between IBM Almaden and the University of Wisconsin to develop a user interface

that supports browsing and querying of OODBs. The interface allows users to

navigate the relationships that exist among objects. In addition, users can formulate

complex object queries through an integrated query paradigm that presents querying

as an extension of browsing. PESTO is schema-driven, and allows the display of

multiple objects of a single collection at the same time and references or collections

of references to be displayed in separate windows, which can be synchronised to

change when the referencing object changes value. The user can browse the same

collection independently in several windows. PESTO has two major differences to

DBbrowse. Firstly, PESTO is a stand-alone application that is not integrated with

the Web. Second, PESTO is designed for object databases with explicit relationships

defined between objects. However, PESTO has been used to interface to DB2/6000,

an ORDB, by using an object to relational mapping tool. Relational joins, which

create new objects out of attribute data copied from pairs of other objects, are not

supported and due to PESTO's 0 0 interaction model, relational projection is not

supported, though it can be simulated through attribute hiding.

6.1.2.3 Database Schema Browsing

Other systems have concentrated on browsing databases at the level rather

than the data level. Schema browsing provides a useful tool for understanding the

structure and relationships between database entities, particularly for large

databases. These include, GUIDE [237], ISIS [104], SKI [140], SNAP [28] and

OPOSSUM [108].

GUIDE used a graph-based view of the E-R schema with queries expressed

as traversal paths on this network. ISIS and SKI provided design, browsing and

querying at the schema level for semantic database models that are considerably

richer than the E-R model. SNAP was a system for schema design, schema browsing

and specification of graphical queries. Schema browsing in SNAP consisted of

navigating the schema diagram using pan and zoom, by repositioning objects, and

by reformatting hierarchies. SNAP allowed queries to be posed against the schema

of a specific object-based semantic database model to return browsable data. Queries

134

were expressed using query graphs of entity sets and its attributes with results

returned as tabular text.

O f O&S'C/M is a recent project that provides a direct schema editor for

schemas from virtually any data model and allows schema exploration through a

choice of visual representations. OPOSSUM does not include any query capabilities.

Haber [107] provides a framework for developing graphical schema browsers. The

framework is based on formal definitions of a (/afa for capturing schemas, a

visual model for capturing visualisations, and a visual metaphor that defines a

mapping between the two models. Visual metaphors for database schemas include

directed-graphs, E-R diagrams and textual tables. Mixed metaphors allow different

visual metaphors for different parts of the same schema.

6.1.2.4 Graphical Query Interfaces to Entity-Relationship and Object-
Oriented Database Models

Campbell [29] defined an E-R algebra over a set of entity-set and relationship-set

descriptors with and established set of operators. Graphical manipulation of E-R

diagrams was used to formulate queries using this underlying E-R algebra.

Operations such as delete, restrict, project, union, intersection and difference were

available to manipulate the E-R diagram into the required query format. In order that

the language was relationally complete (i.e. the language could answer any query

that relational algebra can answer) additional operators such as duplicate (part of E-

R diagram) and create-relationship were added.

Elmarsi and Larson [82] also provided query formulation through E-R

diagram manipulation. The system involved several steps for query formulation.

Firstly, the user chooses the entities and relationships of interest. Second, the user

chooses one of the entities to be the root entity. The diagram is redrawn as a

hierarchy with the root entity at the top. If the graph has cycles, these are removed

by duplicating leaf nodes. This is done so that when the user selects attributes from

different entities, only one connecting path is possible. For example, consider three

entities department, student, and course. With department as the root entity, the

student and course entities could appear directly below department. Additionally the

student entity could appear again below the course entity. During the third step the

user next selects attributes to enter restriction conditions. These are numbered so

135

that after simple conditions are completed, complex conditions can be specified

using, AND, OR and NOT, on the numbered conditions. Finally, attributes are

selected for projection. The query is then submitted.

Query by Diagram (QBD) [36] makes use of an E-R data model and a query

language that uses diagrams. The user interacts with the conceptual schema its

information and content, and with successive approximations, extracts the

subschema of interest. A number of strategies are available for this. The user can

simply delete unwanted entities and attributes. The user can select two objects and

retain only objects associated with all the paths that connect them. The user can type

in attribute names in Boolean expressions and retain only those entities that have

attributes that satisfy the expression. It is also possible to expand the subschema by

including the next level of connected objects. The user next transforms the

subschema building a temporary view. This involves operations such as replacing an

entity-relationship-entity path with a single entity. Finally the subschema is used to

pose the query. The user selects a starting entity. The query path is built by selecting

further symbols. Selection conditions can be placed on attributes. If two

disconnected entities are chosen the user must apply a comparison condition

between them. Once a path has been built for an elementary query, the user can

build a second path and link it to the first via union, intersection or difference.

The Pasta-3 interface [143] uses a drag and drop method for forming and

refining queries. Some of the features include query editing through handy values

and automatic path completion. Pasta-3 is an interface to KB2; a knowledge base

system embedded in Prolog. KB2 uses an E-R data model, extended with inheritance

and deductive rules. Schema browsing is provided through an E-R diagram or an

entity inheritance lattice. A tabular display window shows the result of querying or

browsing. E-R items can be copied into a query workspace window or selected from

menus. A popup menu can be used to choose properties associated with the entity

for fiirther work. The user can mark properties for projection and/or enter

conditions. Operators and functions can be selected from menus. Handy values are

available through menu selection. These are the values of attributes that have a

domain of no more than 15 different possible values. Automatic path completion is

available for E-R items in the query workspace that are connectable but not yet

136

connected. If evaluate is selected, the system will find missing items and offer to add

them in, if exactly one path is possible, or propose a choice if several paths exist.

Advanced features include recursive queries using duplicated entity icons, and

subqueries, formulated by shrinking a query to an icon and using it as an operand in

a new query condition.

Doan et al. [69] describe the concept of a multi-paradigm query interface to

OODBs that includes textual, form-based and graph-based queries with automatic

translation between these paradigms. The interface described in the experiments

supports only two paradigms, textual and graph-based. Graph queries are formulated

by direct manipulation using popup menus attached to boxes in a query graph

window. The basic structure of the textual query involves iteration over classes of

objects, and the application of functions to retrieve attribute values. Clicking on a

translation button makes automatic translation between graphical and textual

queries.

6.1.2.5 Systems for Database Graphical User Interface Development

There are a number of research projects building tools to help construct graphical

interfaces to 0 0 databases. FaceKit [142] [141] allows the user to define a user

interface and an application simultaneously, rather than building a distinct user

interface on top of an application. The system treats the interface design as an

integrated unit with the database. The interface is built using representational

and both of which are stored in the database

itself as methods. The representational component builds, maintains and invokes the

methods used to produce the visual representation of objects and is also responsible

for input and output associated with the interface. The operational component is

responsible for processing user queries and sending the results to the

representational component, it has access to the database management tools. The

system is tied to a specific OODB ('Cactis') and is useful for building domain

specific application interfaces rather than generic database exploration interfaces.

Flynn and Maier [95] take a similar approach in the Object Display

Definition System, where display information for complex objects is a complex

object itself that is stored in the database and managed by that system instead of the

137

individual applications. Advantages include the reuse of displays for different

applications built on the same database objects and modularity since display

definitions can be developed independently of applications.

0 2 provided and [21]. 02Look is a graphical toolkit,

built on top of Motif, to provide functions to manipulate database objects rather

widgets usually associated with such toolkits. ToonMaker is a user interface editor

that allows the user to graphically specify how objects should be displayed and

which then generates 02Look code.

6.1.3 Web-based User Interfaces to Databases

This section looks at different approaches to providing Web access to databases.

One approach to providing Web access to database information is to maintain the

original data in the database and additionally construct static HTML pages using

data exported from the database. BestWeb [18] is an example of a product that helps

users to construct HTML pages using data extracted from databases and provides

basic query tools on these pages. Because database information on the Web is not

linked to source data in real-time, this approach is only appropriate if the amount of

data to be viewed on the Web is small and changes infrequently. In addition the

facilities of the underlying database such as the search engine and access controls

are lost.

IBM's Net.Data [162] (formerly, DB2 Web Connection [164]) uses the

power of the underlying database by providing access to source data through a

macro language. This includes SQL and HTML sections linked together via cross-

language variable substitution. The HTML sections are used to express the format of

the input and output reports, and the SQL sections to express the database

commands. Because the forms and reports are built in advance, users are constrained

with respect to the information they receive and the queries they are able to make.

Similar projects included amongst others, the GSQL Database Gateway [84],

Sybase's web.sql [230], Illustra's Web DataBlade Module [99] and Allaire's Cold

Fusion (using Cold Fusion Mark-up Language embedded in HTML) [49].

Hadjiefthymiades ef aZ. [109] describe a 'generic' framework for databases

on the Web. Really this is approach is similar to those above. The user provide a

138

hypertext link to a 'query specification file' (QSF) which is effectively a CGI script

which has database and presentation components. The QSF sets up a QBE-like form.

However, all field names must be defined in the QSF, and there is no automation .In

fact, the only section of a select statement that users can effect is the w/zgre clause

through restrictions placed on fields in the QBE. The fields for projection are fixed

in the QSF, and fields that might be joined are explicitly stated in the QSF. The

argument that their approach is generic because it uses dynamic SQL as defined by

the X/Open standard does not really hold. A QSF written for one DBMS is unlikely

to run on another system, since the parameters extracted from the QSF are passed to

a compiled C program containing Dynamic SQL. This would have been pre-

processed using a DBMS specific precompiler.

HyperSQL [163] allows users to select queries from menus and compose

queries by filling out forms. The results of a query contain hypertext links,

'querylinks', to browse the database for related information. Although the interface

is designed for users who are not computer experts, the HyperSQL language itself is

designed for database administrators. A HyperSQL query interface requires a set of

pre-defined text-files. These files contain HTML and additional HyperSQL

descriptors. The HyperSQL descriptors provide the syntax for connecting to the

target database, describing the layout of a query form, generating SQL 6om the

completed form and describing the layout of query output. Querylinks are statically

associated with pre-defined queries, which can however receive data fields as

parameters. HyperSQL differs from the systems described above through the

availability of Query Designer [190]. This tool allows users to create or customise

query forms without having to use any of the scripting or query languages. Users

can develop query forms and output screens graphically using a Web browser. This

involves selecting a database then selecting input and output fields from the

database. Two input fields will be joined automatically if they are selected from two

different tables for which there is only one possible relationship. More complex

joins are specified manually by selecting fields and keys that join them. The layout

of the input form and result screen can be defined using relative coordinates, and

different font types. A graphical schema display is available to show the database

layout. This shows table names, and the keys that join them.

139

The UMass Information Navigator [123] automates generation of the initial Web

interface to the database and subsequent links. A forms-based input screen is created

from database metadata. This allows the user to graphically formulate a query. The

system then supports browsing using hypertext links that perform an SQL select on

another table. However, the system relies upon matching column names to find

additional tables to link to. There is no guarantee that matching column names

contain related information, consequently the resulting select statement may be

completely unrelated to the original data.

Much of the related work described in this section has reflected the status of

research related to DBbrowse up until 1997. Subsequently, commercial products

have appeared offering similar functionality to DBbrowse. Impromptu Web Query

from COGNOS [126] is a good example of such a product. It supports automated

generation of QBE-like interfaces to relational databases. A user can start with an

ad-hoc query and then navigate to related information using hypertext links that are

embedded in the query results. Unlike DBbrowse, Impromptu Web Query also

supports pre-defined queries. In addition, when performing predefined or ad hoc

queries, users can; add, remove, and resequence columns; modify column fonts,

colors, names, descriptions, and sort orders; incorporate totals and subtotals; specify

filters using fixed values or prompts with picklists, and apply predefined tabular and

chart templates. However, Impromptu Web Query does not support all the features

that were present in DBbrowse in 1997. It does not support LOB columns and does

not inline data from joined tables to existing results. Also it does not support query

refinement during browsing.

Further information on user interfaces to databases is available in the survey

by Catarci et al. [35]. A number of books are available with further information

specific to Web/database integration techniques, for example [138]. Also, the Web

site at [1] still contains some useful links in this area despite being out of date.

DBbrowse has moved forward since 1997, having been used as the basis for the

EASIA architecture. Research related to the EASIA architecture is discussed in the

next section.

140

6.2 Related Work on Web-based Management of Scientific Data

EASIA used simulation data from the UK Turbulence Consortium for proof of

concept. There are a number of existing Web-based interfaces to turbulence

simulation databases such as the 'European Research Community on Flow

Turbulence and Combustion (ERCOFTAC) fluid dynamics database' in the UK

[87]. The system is implemented using static HTML pages with links to the data

files. Secure access to the data files is provided by Access Control Lists (ACLs),

which are a standard feature of most Web servers. The 'DNS Database of

Turbulence and Heat Transfer' in Japan provides Web pages with links to data on an

ftp server [68]. There is no search facility but each directory contains an index file

containing brief details of all the files in that directory.

Moving outside of the turbulence domain there are a number of active

scientific data archives. The Ocean Circulation and Climate Advanced Modelling

Project (OCCAM) [171] provides a Web-based mechanism for obtaining slices of

large scientific datasets &om high-resolution models of the world ocean. The

OCCAM data selector is a Java Applet that allows the user to request data extracts

by clicking and dragging the mouse pointer on the area of interest on a map of the

world. The user then enters an email address and the required format for the data

that is prepared off-line and placed on an ftp server for the user to download. This

system uses the notion of post-processing large datasets to reduce the volume of data

that has to be returned to the client. The system is however a customised application

for one specific application and is only partially automated.

NCSA's (SDB) [243] [149] consists of a CGI

program for browsing data in a number of scientific formats such HDP [115]. This

system is not tied to a particular application, instead it is tied to the specified

scientific data formats. The CGI program is written in C and provides functionality

such as visualisation and extraction of subsets of data. However SDS does not

provide sophisticated storage and search capabilities for archiving and selecting the

data files that it can process. It assumes that these files are simply placed in a

directory structure belonging to the Web server.

141

Ferreira a/, describe how scientific datasets usually consist of multi-dimensional

data representing, for example, spatial coordinates, time, temperature or velocity.

Several research and commercial systems have been developed for

managing/visualising multi-dimensional data, however, they provide little support

for analysing or processing the datasets in other ways, focusing instead on

management and retrieval aspects. They state that an important subset of scientific

applications fall into the complex data with queries category (as defined in

Stonebraker's classification matrix for DBMS applications [211]) and can therefore

be supported by database management systems. To this end they

describe an infrastructure knovm as the Dafa (ADR) that provides

a framework, based on an ORDB, for building databases that support storage,

and /PA'Ocgj'j'mg of multi-dimensional scientific datasets. These three

features coupled with the use of an ORDB, match the main features of the EASIA

architecture. However, ADR is not a Web-based architecture and the

implementation and ease of use is very different to EASIA. ADR is not automated,

but is a complex system requiring expert domain knowledge and extensive C4-4-

programming for each customised application.

In addition to the main features mentioned above, ADR supports index

generation, memory management and scheduling of processing across a parallel

machine. ADR allows customised processing of datasets by applications that must

follow a defined style. This is known as an ADR query and consists of:

• Retrieving input data items from selected by a range query (which probably uses

a complex user-defined index and lookup method).

• Mapping the retrieved data items to output items (by projecting the input data

points to points in the output attribute space and finding the output data items

that correspond to the projected points).

• Computing the output items by some aggregation of all the retrieved input items

mapped to the same output item.

142

Unlike EASIA which stores datasets and post-processing operations in external

binary files tightly coupled to the database via DATALINKs, ADR stores datasets

internally in an ORDB, and makes use of internally stored user-defined functions to

process the data. The authors state that this usually requires data structures that are

more complex than simple tables. In many cases, complex user-defined types

consisting of nested relations are used. The complex types may also support

attributes that are sets or references to other objects. Regardless of the data types that

are defined to store datasets in ADR, datasets must be partitioned into chunks, a job

that must be done by 'the domain engineer prior to loading the database'. Data

chunks are required to support parallel processing in ADR by distributing them

across a disk farm in a shared nothing architecture. The expertise required to load

data into ADR is in contrast with the EASIA architecture. Also it does not look at

the problems associated with initially shipping the data to an archive because ADR

does not assume a Web-based environment.

To build a version of ADR for a particular application, a eMgrneer

with the necessary authorisation to customise the system, must provide functions to

pre-process input datasets, access input data items, and provide the necessary

processing to map input data items to output data items. These functions must be

written in C++ and inherit from a set of base classes that ADR provides. A client

program must also be implemented for each domain, for example, a GUI to allow

end users to generate requests and display output. A number of successful

customised ADR databases are described in the paper, running on an IBM SP2

supercomputer. Overall, ADR appears to be geared to expert users and

administrators who augment the system with customised code for each application.

It is also geared towards customised parallel processing algorithms on the back end.

ADR is not easily extensible and does not allow code to be uploaded for server-side

execution.

The University of Adelaide is involved in a number of projects associated

with scientific data archives [46] [47] [112] [113] [114] [131]. Active digital

archives for the satellite/geospatial domain are a common theme in all these papers.

In particular, Web-based data archives have been built to access two dimensional

image data associated with the Japanese GMS-5 geostationary meteorological

143

satellite. Images from this satellite amount to around 75 gigabytes a year, and are

stored on a RAID disk array and tape silo, accessible from a high-speed (155 Mbit/s)

network. The initial Web interface to the data, known as ERIC, constituted an active

scientific archive, since it provided services for not only searching and downloading

data of interest, but also processing of the data prior to download. ERIC allowed

cropping of a selected region of an image, and the creation of downloadable MPEG

animations of specified time slices for a given region. ERIC was initially

implemented using HTML and CGI scripts in PERL and was functional, but

restrictive and not easily extended. The ERIC architecture is similar in nature to

GBIS. Both offered bespoke CGI-based Web interfaces to scientific data, which

produced visual output. Both systems also used underlying data stored as files in a

UNIX filesystem. James and Hawick [131] discussed the fact that the types of

requests that ERIC could service were all hard coded and that a new idea would be

to define a generalised service specification language. This could be used to generate

automatically the sequence of interface forms, which would allow the possibility of

dynamic addition of new services to a running system. These ideas are close to the

ideas that have been implemented by the XUIS in EASIA.

The initial ERIC interface has now been superseded by a more advanced

interface that uses Java and CORBA, which the authors suggest, can more easily be

customised for different users and applications. However, this interface does not yet

appear to support the generalised service specification language and the automated

generation of interface forms described above. The new architecture uses the

Java/CORBA infrastructure to integrate Web-based clients with broadband

networks, mass data stores, and high performance computers. The system conforms

to a subset of the Geospatial Imagery Access Services (GIAS) specification from the

US National Imagery and mapping Agency (NIMA) [102], which uses CORBA IDL

to define an object-oriented API for remote access to an image server. The

University of Adelaide GIAS prototype is implemented using a commercial product

for management of multimedia objects. StudioCentral from Silicon Graphics is used

at the heart of the system. This provides a C++ based API for user management,

repository access, querying, hierarchical data modelling and asset versioning.

StudioCentral uses a persistent data store (usually an Oracle or Informix database) to

144

store asset metadata and a file system for storing multimedia files (since this is

usually faster and more scalable than using the database). The Adelaide GIAS

system uses Java Native Methods (JNI) [132] to wrap the StudioCentral C-H- API

and match it to the interface required for GIAS. A test client has been implemented

as a Java Applet, which uses CORBA to interact with the server side of the

repository. Overall, the system supports remote invocation of methods on the server,

and handling the transfer of data between the client and server. It also supports

loading, accessing and querying of image data via the database, and routines for

processing the data and metadata. In terms of customisation, the authors state [46]

that a particular application would have its own specialised user interface, which

might consist of a Java Applet that could use additional application specific classes

along with the basic Applet. The system differs from the EASIA architecture in

many ways. EASIA rejected the use of Java Applets/CORBA due to client side

performance issues, firewall restrictions and general stability of Applet-based

Java/CORBA systems. The Adelaide system also requires code to be written to

customise the system for different applications. Also, it does not support allowing

arbitrary post-processing code to be uploaded by the users for secure execution

against the data.

Caltech are also carrying out research into active scientific data archives. A

number of papers published by Caltech researchers discuss their Synthetic Aperture

(SARA) system [9] [10] [11] [234]. The SARA system provides a Web-

based mechanism for obtaining synthetic aperture radar (SAR) data covering the

Puglia region of Italy. The system first presents a user with a map of the earth. The

user can zoom to a particular area by clicking on the map. Rectangular tracks are

indicated on the map for regions that have an associated SAR image. The user can

select a track to invoke a Java Applet that displays a thumbnail image of the area.

The Applet includes GUI controls to allow a subset of the track to be chosen, along

with an output format and colouring information. The user also selects a location

from which the final data should be generated and returned (SARA data is mirrored

in multiple locations around the world. The initial SARA system was based on

stateless CGI scripting. Latest proposals for the architecture include an extensible,

scalable digital library that allows complex, supervised processing and data mining.

145

This architecture shares a number of ideas that are common to those used in EASIA.

The architecture uses Java Servlets and XML. An XML vocabulary is used to

describe SAR data. This contains metadata about a track and a list of base URLs and

associated files from which the binary SAR data can be obtained. In the new system

a number of services are combined using XML requests and responses over HTTP.

The XML response contains only textual data that includes URLs associated with

any binary files generated by the request. The client can retrieve the binary files

using these URLs. The architectures used in the Caltech projects are often integrated

with supercomputing facilities. Their architectures are designed to allow on-demand

back-end processing to post-process data in order to reduce data returned to clients

with low bandwidth connections.

Whilst the proposals for the SARA system share similarities with EASIA

features there are also a number of differences. The user interface is not

automatically generated. Instead, the system appears to use customised GUI front-

ends for the particular domain. The architecture does not concentrate on secure,

distributed in-place storage of data for bandwidth reduction. They do not describe a

facility for allowing arbitrary post-processing code to be uploaded by the users for

secure execution against the data. The Caltech architecture uses XML as a means to

transfer metadata and control information between services. The system is extended

by adding new services. However, SARA does not appear to use XML as the

mechanism for defining the user interface or for defining how new services are

included in the system. Code has to be written to incorporate any changes. EASIA

uses XML to define the user interface and to define how new post-processing logic

is included, and simply requires changes to the markup to incorporate extensions.

The is also under development at Caltech

by members of the Jet Propulsion Laboratory [83] [229]. This is a Java application

that allows atmospheric scientists to visualise and analyse data. Web Winds is

downloaded as a Java application and runs on the client machine. Data for analysis

must exist local to the client machine or be accessible via a URL in which case the

data must first be downloaded and saved. Alternatively, accessing data via a URL

from a browser can launch Web Winds as a helper application for a Web browser

with an appropriately configured MIME type. Data formats must be self-describing,

146

e.g. HDF or NetCDF, or raw binary/textual data can be handled by first using a tool

to specify parameters for the data. For large datasets, too large to fit in memory or

too large to view, Web Winds allows reduction in resolution or sub-setting to limit

the viewed area.

Web Winds is designed to aid understanding of data through visualisation and

scientific collaboration through transfer of information among computers and

people. A user can construct a sophisticated interactive visualisation interface using

simple 'point and click' actions without programming knowledge. Construction

consists of interactively linking data, control and display components in windows on

the client machine. Components consist of around 20 'application tools' split into 3

categories: displays, display filters and controls. Sophisticated visualisation is

available for up to 3 dimensions. Two-dimensional slices are displayed, often with a

slider controlling the third dimension. 3D displays are planned for the future.

A Web Winds session generates a file (a 'script') containing the set of

commands that were issued. These can then be rerun by the user later to recreate the

session, and possibly sent to a collaborator for their own use. The underlying

scripting language also facilitates collaboration as follows. If two remote users both

have Web Winds running, and they approve connection, then both users' Web Winds

desktops will mimic each other. This activity requires that both users have a local

copy of the data, or access the same data via a URL. In this way, only scripting

commands need to be exchanged during the collaborative session.

Future research on Web Winds aims to enhance the architectural options by

the end of 2000. Enhancements include allowing distribution of the components of a

Java application to a server so that data can be accessed by the server through high-

bandwidth connections to make selecting only the data that is required much more

efficient. They also plan to provide server-side packages for subsetting data near the

data source. The authors acknowledge that large datasets present a challenge due to

limited Internet bandwidth and that a means of reducing bandwidth requirement is to

subset data at source. Finally, they plan to build interfaces to other database systems

to allow more sophisticated data queries, and to allow the results to be fed directly

into the display and control applications.

147

Whilst Web Winds provides a mechanism for visualising/analysing large datasets

along with a novel method of facilitating collaboration, it is the ideas for future work

that bare closest resemblance to EASIA. EASIA already integrates database queries

for initial discovery of data, with results fed directly into distributed server-side

post-processing applications. EASIA provides a number of other advantages. First,

EASIA manages distributed data in a secure fashion using access tokens associated

with data stored as DATALINKs. Secondly, because EASIA stores data on

distributed servers, it is possible to manage different types of raw binary files as

required. Web Winds can manage raw binary files but, since these are read by Java

applications on the client platform, they need to use the standard Java sizes to

represent different data types and the raw files need to use byte ordering

(or the Java applications need to make all the necessary conversions). Finally,

EASIA is extensible, allowing new post-processing operations to be added. The

final two advantages allow, for example, EASIA to manage datasets written as

unformatted FORTRAN Gles on a platform that uses byte ordering,

with associated post-processing applications associated with the datasets through

customisation of the XUIS.

6.3 Discussion

This chapter has described research related to the DBbrowse and EASIA

architectures. DBbrowse, which automatically generated Web interfaces to

databases, differed from related systems in a number of ways. The m^ority of

related systems were targeted at creating application domain specific interfaces

rather than generic interfaces. These required programming effort to define page

templates and pre-defined queries. At the time, none of these systems provide

hypertext browsing via automatic links derived from referential integrity constraints

extracted from the catalogue. Some stand-alone systems provided a degree of data or

schema browsing, however these were usually tied to prototype database systems

rather than commercial database systems. In addition, the systems that did include

some form of database browsing were usually designed to work with object-oriented

or entity-relationship databases and schemas, in which explicit relationships are

148

defined. DBbrowse derived inferred relationships and was targeted at the object-

relational data model.

DBbrowse was used as the basis fbr the EASIA architecture. The EASIA

architecture provides a generic architecture for management of large, distributed

scientific data. Most existing Web-based interfaces to scientific data archives do not

consider the problems associated with initially transferring large datasets to the

archive. Nor do they provide mechanisms for maintaining integrity between

metadata describing results and the actual data files. The EASIA architecture

provides a Web-based interface to a distributed scientific data archive whilst

maintaining database security, integrity and recovery features (implemented using

the new SQL: 1999 DATALINK SQL-type).

The interface presented by EASIA uses automation techniques from

DBbrowse, requiring no HTML page maintenance. As such, EASIA does not rely

on the scientific user-base having Web development experience. The extensibility

mechanism used in EASIA also differs from related research. EASIA allows

customisation through changes to XML markup. Additional post-processing services

can be added to EASIA in this way. This provides an easy way to increase the

capabilities of the system with the inclusion of post-processing codes written in any

language. These codes do not have to be specially written to comply with any API

defined by the system, as is the case with most other extensible architectures. The

new post-processing services merely have to follow a simple design pattern, which

requires them to read the data to be processed from a filename supplied as a

command line argument, and to uses relative path names for any file output. Since

post-processing codes used in EASIA follow this generic pattern, and do not use any

EASIA specific interfaces, they can be downloaded and used for other purposes if

desired. Finally, EASIA differs from related architectures by allowing users to

upload arbitrary post-processing code for secure server-side execution against the

archived data.

149

7 Summary

This thesis describes research into Web-based management of non-traditional data.

Traditional data was defined as simple datatypes including integers, floating-point

types, characters, dates, times and timestamps (effectively datatypes that are

associated with the traditional relational data model (see Chapter 2)). Non-traditional

data is characterised by complex multimedia datatypes including text, audio, image

and video, as well as binary files used for other purposes such as multidimensional

scientific data (effectively datatypes that are associated with newer object-oriented

and object-relational data models (see Chapter 2)). Three prototype architectures are

discussed, GBTS", and &4S7/4, each of which provided exemplars of new

ideas in this area of Web-based management of non-traditional data. Research and

development of these prototype systems has required comprehensive knowledge of

Web and database technologies. Therefore, this thesis also contains critical review of

technologies and developments in these areas.

7.1 Contributions to the Field

Research into the GBIS, DBbrowse and EASIA architectures has been published in

[181] [117] [180] [75] [182] [183] (and has appeared in conference poster sessions,

tutorials and other invited talks, see Appendix A). Each of these prototype systems

demonstrated new ideas for Web-based management of non-traditional data using

commodity components, technologies and open standards.

7.1.1 GBIS

GBIS was an early system employing CGI scripting combined with standard

application programs, to provide Web-based management of scientific data. GBIS

successfully demonstrated the benefits of dynamic Web-based graphical results for

displaying multiprocessor benchmark results. GBIS was well received by members

of the multiprocessor benchmarking community. The system has been reported in

Hockney's book [117], mirrored at the University of Tennessee at Knoxville [100],

adopted by the RAPS (Real Applications on Parallel Systems) Consortium to form

the basis of their Online Benchmark Information System [194], and cited in the NAS

150

Parallel Benchmarks 2.0 specification [16] as a site for accessing NPB results in

graphical Web pages.

7.1.2 DBbrowse

The DBbrowse prototype demonstrated an automatically generated, generic Web

interface to an underlying object-relational database. DBbrowse can generate Web

interfaces with intuitive query capabilities. DBbrowse automatically handles non-

traditional BLOB and CLOB datatypes by delivering them to the user's Web

browser with an appropriately specified content type. At the time DBbrowse was

created, Web/database integration was just beginning to emerge, as a way of

overcoming the shortcomings associated with static Web pages or dynamic Web

pages based on data in a file system (as was the case in GBIS for example).

Web/database integration can reduce HTML page maintenance when the data

changes, and reduce the instance of invalid hypertext links when static pages are

removed and reordered. Web pages dynamically generated from databases can also

benefit from the sophisticated search engine provided by the database management

system. DBbrowse differed from commercial product offerings at the time, which

required programming effort, for example, to define page templates and predefined

embedded queries and hypertext links.

DBbrowse also demonstrated a method for browsing databases to further

support users with little database experience. This technique provides one possible

solution to Manber's suggestion that one of the main lessons to be gained from the

success of the Web was the importance of browsing, and that an important step

would be to find a way to browse even relational databases [147]. The data browsing

technique used in DBbrowse does not rely on explicit relationships defined in the

data model (as was the case with some of the related work), but extracts implied

relationships from the relational model to dynamically include hyperlinks in results.

7.1.3 EASIA

The EASIA architecture was motivated by the need for research into scientific data

archives as highlighted in a number of reports and papers. For example, the Caltech

Workshop on Interfaces to Scientific Data Archives [235] identified an urgent need

for infrastructures that could manage and federate active libraries of scientific data.

151

Hawick and Coddington [112] state that the information explosion has led to a very

real and practical need for systems to manage and interface to scientific archives.

Treinish's [217] [218] recommendations for future research into interactive archives

for scientific data include the integration of metadata, data servers, visual browsing

and existing data analysis tools. The features of EASIA provide several novel ideas

for addressing these requirements.

The EASIA architecture demonstrates Web-based management of large,

distributed, scientific data. EASIA uses sample data from numerical simulations run

by the UK Turbulence Consortium to investigate Web-based mechanisms for

management of large datasets, with a total storage requirement in the hundreds of

gigabytes range, in the relatively low bandwidth environment exhibited by the Web.

EASIA combines leading edge Web-based technologies including an

implementation of the new SQL: 1999 DATALINK type, defined in SQL

q / " [6 0] , to provide database management of

scientific metadata and large, distributed result files simultaneously with integrity.

This technology is applied to the Web, by providing a user interface to securely

manage large files in a distributed scientific archive, despite limited bandwidth.

The EASIA architecture demonstrates a number of advantages for Web-based

archiving of large scientific datasets:

• Unlike most existing Web-based scientific data archives, EASIA considers the

problems associated with initially transferring large datasets to the archive. The

EASIA solution is to allow datasets to be managed in a distributed fashion (with

centralised metadata) thereby avoiding costly network transfers associated with

uploading data files to a centralised site.

• Result files can be archived at (or close to) the point where they are generated.

• Proper data distribution reduces access bottlenecks at individual sites.

• Bandwidth requirement is further reduced by the active nature of the EASIA

architecture. EASIA can archive applications as well as data. Post-processing of

data can be achieved via these archived applications, and also by allowing users

to code to be run securely on the file servers hosting the datasets.

152

Suitable user-directed post-processing, such as array slicing and visualisation,

can significantly reduce the amount of data that needs to be shipped back to the

user.

Data can be distributed so that it is physically located closest to its intensive

usage.

EASIA helps users to locate scientific data files of interest, using an intuitive

interface that incorporates a searching and browsing mechanism that has been

inherited from DBbrowse. Also, unlike many existing scientific data archives,

EASIA is easily extended by allowing the user interface specification to be defined

in an XML file. Separating the user interface specification from the user interface

processing demonstrates a number of further advantages:

• The user interface, although schema driven can be customised and relationships

between data can be specified even if these relationships do not exist, or are not

apparent from the database schema.

Different users (or classes of user) can have different XML files thereby

providing them with different user interfaces to the same data.

• The EASIA architecture provides a generic interface that can be applied to many

different applications.

For scientific data archiving a major benefit, facilitated by the XML user

interface specification, is the ease with which standard post-processing codes can

be associated with data. Post-processing codes that have been archived by the

system can be associated with remote data files in the

XUIS. This allows dynamic server-side execution of the stored applications,

with chosen datasets as input parameters, to generate derived data on-demand.

Applications are loosely coupled to the datasets (in a many-to-many

relationship) via XML defined interfaces specified in the XUIS. This allows

reuse of these server-side post-processing operations.

153

• Because simulation results are stored in unmodified files, existing post-

processing applications, that use standard file I/O techniques, can be applied to

the files without having to rewrite the applications. An alternative would be to

modify applications to first access result objects from a database, but this would

be very undesirable for many scientific users who often apply post-processing

codes written in FORTRAN. This would also be more costly since the data

would have to be loaded into the database as BLOBs and extracted from the

database when required. Each file server host machine provides a distributed

processing capability thereby allowing multiple datasets to be post-processed

simultaneously.

7.2 Future Work

7.2.1 Gathering Operation Statistics and Caching Results

A useful extension to EASIA would be to store in the database the execution times

for operations, which have already been run by users, along with the output type and

the size of the output. The identity of the operation and the identity of the dataset, as

well as any parameters would also be recorded. This would allow future users to

scan existing results to get an estimate for the execution time of any post-processing

that they require. An extension to this would be to allocate an amount of storage on

the file servers as an 'operation result cache'. The results from post-processing

operations (i.e. derived data, images, etc.) could then be stored in the database using

DATALINKs. The table of operation statistics would be updated to indicate that the

operation result is available from cache. A replacement policy such as FIFO (first in

first out) or LRU (least recently used) could be applied once the cache is full.

Storing operation results as DATALINKs should be a reasonably easy task.

Operation results are already written to a directory structure containing unique

directory names. The Servlet code running on the database server host (Figure 21)

already handles the invocation of operations and returns the results to the user. It

could be amended to time the invocation and update the database.

The above scenario mirrors the belief of Hawick and Coddington [112] that

it is not necessarily feasible or desirable to store all possible derived data

combinations for a given archive. Instead, it is more practical to store the services

154

needed to create the derived data products and to cache results to amortise their cost

of production. However, they also make the important point that trade-offs need to

be considered before caching derived data. Factors such as user access patterns and

the time and resources required to generate the data need to be evaluated against the

resources required to store and manage the derived data. EASIA could include

additional configuration parameters associated with this cache, such as a minimum

execution time, below which it is not worth caching results.

7.2.2 Providing a Multidatabase Capability

Pepcke et al. [178] state that collections for digital libraries are often maintained by

different organisations so that autonomous control over access to collections is

required in many cases. EASIA could be modified to provide a single view of

multiple autonomous databases in a loosely coupled

(FDBS). The FDBS would use a multidatabase language system (in the taxonomy

by Bright et al. [24]) in which heterogeneous databases can be accessed at the user

interface level through a query language and tools that can integrate data from

different sources without a global schema. This functionality could be implemented

by extending the DTD for the XUIS to contain multiple database user interface

definitions. The relationships, which currently allow browsing of related data in

associated tables, would be extended to allow browsing to related data in tables in

disjoint databases. Queries could be shipped to a remote database using 2-tier JDBC

drivers that operate over networks or by using a distributed object technology in a

multi-tier architecture, or by using an XML/HTTP combination (as described in

Chapter 2). As well as FDB browsing, a new XUIS DTD could allow several tables

to be grouped into a supertable that could present a single view of the grouped

tables for query purposes. This FDB functionality, although limited, would serve a

useful purpose of allowing not only distribution of result files, but also distribution

and autonomous administration of the database containing the simulation metadata

stored internally in the database at different sites. This would remove the potential

single point of failure from the architecture - the database server host (Figure 21). A

simpler way to remove this single point of failure initially is simply to install the

core EASIA code on multiple database server hosts.

155

7,2.3 Can Codes other than Java be Uploaded for Execution?

Many scientific researchers use FORTRAN or C to post-process their results. It

would therefore be extremely beneficial if EASIA could accept uploaded code

consisting of binary codes generated from these languages (not just Java uploads). If

security were not an issue this would be trivial as the code could simply be executed

in a temporary directory as an external command similar to Java uploads. Whilst

EASIA allows this to happen for pre-defined archived applications (with the

assumption that an administrator is only providing proven code as part of the

system), it is not an acceptable policy for uploaded code.

The Java Native Interface (JNI) allows native code (currently C and C++) to

be integrated into Java applications. However, the security manager cannot control

native methods as they bypass the low-level bytecode checks [231]. Java security is

designed around the implicit assumption that the user's entire application is coded in

Java. Research could be devoted to finding secure mechanisms for executing

uploaded binary codes. Brown [25] states that one approach to ensuring secure

execution of remotely sourced binary code on user's systems is "the use of 'software

fault isolation technologies' [226] which augment the instruction stream, inserting

additional checks to ensure safe execution [209]". An interim solution, that is not

ideal, would be to allow the upload of C or FORTRAN binaries, by specially trusted

users.

C and FORTRAN code would also be platform specific. Whilst it is easier to

ensure that pre-defined archived applications can be compiled for the particular file

server host that they will reside on, this becomes more of an issue for uploaded

codes. Users may not have access to the correct platforms or compilers for the

intended server-side host. Another line of enquiry might therefore be to look at the

possibilities for uploading source codes. It might also prove to be easier to vet

source code [25]. Another possibility along these lines would involve research into

automatic translation of uploaded C and FORTRAN source code into secure Java

code.

156

7.2.4 Runtime Monitoring of Post-Processing Operations

Another feature that may be a desirable extension to EASIA is the provision of

feedback during the execution of post-processing codes (particularly where

execution times are long (see for example [146]). The user could query the system

during a long simulation and observe information such as current output to standard

output or standard error, or other result files generated so far, or the average time to

produce a result file. An option to stop the simulation from the Web could also be

provided.

7.2.5 XML as a Scientific Data Standard

Scientific data archives and tools for processing scientific data can benefit from

standardised data formats. Standardised data formats make it easier for scientists to

exchange data, and they make it easier for tools and processes to exchange data.

Self-describing data formats can additionally benefit from keeping all the

information necessary to understand and process the data, bound to the data. Self-

describing data can also benefit from tools and processes that require less user

intervention to specify the details of the data representation.

Currently, EASIA can archive datasets that use any data standard or

representation. It is then up to the user to either download that dataset to their client

and post-process it locally, or to use archived operations that have been associated

with the dataset, or to upload post-processing code written in Java that understands

the data representation. If the user post-processes data using archived operations

then details of the data format are less relevant to the user. Instead, the data format

of any output derived from the post-processing is important to the user in this case.

If the user uploads post-processing code, or downloads a dataset to the client then

the exact format of the data representation needs to be known. This information can

be stored in metadata in other attributes in the database that are linked to the relevant

dataset. Alternatively, the dataset itself can be self-describing, for example, using a

format such as HDF [115].

Operations are loosely coupled to data in EASIA, allowing them to be reused

for many different datasets. This reuse is greatly enhanced if the operations are

written in a generic fashion that reads and writes standardised data formats (refer to

157

[201] for an extensive listing of other commonly used scientific data formats). For

example, Section 5.2.5 explained how the SDB operation was used in EASIA to

post-process arbitrary HDF datasets.

Whilst HDF is a commonly used scientific data format, at the current time,

XML is emerging as the standardised data format for just about any application.

XML is therefore gaining an advantage over other data formats in terms of

recognition throughout the software community. Also since XML is being

incorporated into many emerging software tools, data stored as XML will benefit

from the availability of generic off-the-shelf tools. Furthermore, XML is both human

and machine-readable. These advantages do not make formats such as HDF

redundant. Indeed, it is possible for XML to provide a wrapper around binary

formats such as HDF, and probably necessary since XML is predominantly a text-

based format. XML can incorporate binary data through text encoding such as base-

64 encoding but this is likely to be too verbose for large scientific datasets. The

more likely integration for XML and scientific data formats is for XML to store

simple textual metadata internally and for the XML to link to external binary files

containing the raw results. In this fashion, existing scientific formats can benefit

from the advantages offered by XML. The Extensible Scientific Interchange

Language (XSIL) [19] is an example of this.

XSIL is an XML defined language for representing collections of scientific

data objects. This is not tied to a particular scientific domain but has support for

common scientific data formats such as parameters, arrays and tables and binary

streams which can consist of internal character data or links to external data in

various formats, for example, binary files. The authors indicate a number of uses for

XSIL including use as general transport format between disparate applications, as a

documentation format for collections of scientific data, and as an "ultra-light" data

format, whereby the XML contains all the required metadata for external files. This

format is light since the metadata can be digested and then deleted once the

description of the linked raw files has been obtained. Whilst the DTD for XSIL

looks fairly superficial at this stage, and probably needs extending to be able to

represent more scientific datasets, the concept is extremely important.

158

On-going research into scientific data archives should investigate the use of XML as

a common data format. This research would look at defining new XML schemas for

representing a wide variety of scientific data. Once these XML languages exist then

there will be enormous benefits in terms of data and application reuse, for example

for post-processing operations in an architecture like EASIA.

Beyond this, XML could also be used to define the interfaces between

applications. Well known XML schemas could specify the type of data that an

application can handle, and also the type of post-processing service and output that

is offered. It may be possible in future to dynamically discover distributed services

from the XML interfaces they present. It may then be possible to ship small XML

defined datasets to the services for post-processing, or alternatively the code for the

service could be shipped to the data for secure execution.

7.2.6 Other Enhancements to the EASIA Architecture

Brief descriptions of other enhancements that could be made to EASIA are listed

below. The first list of enhancements is associated with extensions to the DTD for

the XUIS, to allow a greater diversity of operations and parameters to be specified.

• Currently operations apply to a single dataset at a time. This mechanism could

be extended to allow operation processing to be applied to all datasets present in

a result, thereby allowing post-processing code that requires, say, average values

over many timesteps in a simulation to be selected once, rather than repeatedly

for many individual datasets.

• Currently, only one operation can be applied to a dataset before the output is

returned to the user. Operations could be chained to allow multiple stages of

post-processing in which the output of the first operation is used as the input of

the next operation in the chain.

• Operations need not be restricted to post-processing files stored in DATALINK

columns. They could also be applied to LOB columns, or indeed columns

associated with traditional types (providing, for example, string processing,

mathematical functions, or graphs for numeric columns).

159

• Operations are currently archived by the database using DATALINKs, or exist

as hosted services invoked through a URL with associated parameters. This

model could be extended to allow operations to be stored on the database server

host in BLOB attributes. These operations would then need to be uploaded to the

file server host for execution against a dataset. These codes would have to be

Java to cope with platform heterogeneity. Alternatively binary versions of the

code would need to be stored for different platforms, or a mechanism of source

code distribution and automatic compilation would need to be implemented.

• EASIA could be extended with more interactive operations. These could take the

form of Java Applets or Java applications that are downloaded to the user. This

would be desirable for some applications where a complex GUI is more suitable

to the particular post-processing method. For example, a Java image or movie

viewer Applet on the client could display images/movies being generated server

side and streamed to the client.

• The XUIS could be extended to allow user-defined presentation of the output of

queries, particularly the presentation of post-processing operation results.

Additionally, EASIA could benefit from the following enhancements.

• EASIA could be extended to include version control for both data and code.

• EASIA could be extended to support scheduling of post-processing operations,

particularly where the operations are resource intensive and where they require

parallel computing facilities.

• EASIA could be extended to include off-line storage.

• Currently EASIA is updated using raw database update mechanisms such as

importing data from comma delimited text files. A Web-based GUI needs to be

implemented based on information in the XUIS in a similar fashion to the query

interface.

• An investigation could be carried out into caching and replication extensions to

the EASIA architecture. This could include the asynchronous migration (or

i O U

replication) of datasets to file server hosts closest to the location of most

intensive client usage.

EASIA could be extended with a facility to download all the files displayed in a

query result or operation result, without multiple intervention from the user. For

example, in the case where a query yielded say 100 separate files representing

datasets from different timesteps in a simulation. Currently, the user would need

to click on each of the displayed links in turn to save the files. (Note that

commercial tools are available to extend Web browsers with such download

facilities. Some can even restart downloads of individual files from the point of

failure if they fail mid way through). In a similar vain EASIA could offer an in-

built option to allow the user to retrieve large files in several smaller chunks.

(Currently, this can only be achieved for operation output files, and only then by

including a specific operation with this facility.)

7.3 Concluding Remarks

The final results of this thesis demonstrated a novel Web-based architecture for

management of scientific data. Bandwidth availability is a limiting factor in this

environment, and is of particular relevance to the management of the large scientific

datasets that often result from numerical simulations run on high performance

computing platforms. Although bandwidth availability is likely to increase

dramatically in the next few years, advances in computing technology will also

result in increases in the size of scientific datasets that are generated. Active digital

libraries are therefore likely to remain an important area of research for the

foreseeable future. In order that scientists can concentrate on their core competency,

data management architectures need to be automated, where possible, and easily

extensible to make use of new and existing data post-processing tools.

161

Appendix A : Publications and Presentations

• Refereed Journal Papers

• Papiani, M., Wason, J., L., Dunlop, A., N. and Nicole, D., A. A Distributed

Scientific Data Archive Using the Web, XML and SQL/MED. ACM

.9/GMOD Vol. 28(3), September, 1999, 56-62.

• Dunlop, A.N., Papiani, M. and Hey, A., J., G. Providing Access to a

Multimedia Archive Using the World-Wide Web and an Object-Relational

Database Management System. <6

Journal, Vol. 7(5), October, 1996, 221-6. ISSN 0956-3385.

• Papiani, M., Hey, A., J., G. and Hockney, R., W. The Graphical Benchmark

Information Service. Scientific Programming, Vol. 4(4), 1995, 219-227.

ISSN 1058-9244.

* Also appears Tn. Hockney, R., W. 5'czgMce q/"

Philadelphia, USA, SIAM, 1996, 104-15. ISBN 0-89871-

363-3.

• Refereed Conference Proceedings

• Papiani, M., Wason, J., L. and Nicole, D., A. An Architecture for

Management of Large, Distributed, Scientific Data Using SQL/MED and

XML.

DaraAaj'e TecAMoZogy (EDBT), Konstanz, Germany, March, 2000.

(/». Zanolio, C., Lockermann, P., C., Scholl, M., H. and Gmst, T.,

Advances in Database Technology, EDBT 2000, Lecture Notes in Computer

Science, Vol. 1777, Springer-Verlag, 2000. ISBN 3-540-67227-3)

• Papiani, M., Dunlop, A., N. and Hey, A., J., G. Automatic Web Interfaces

and Browsing for Object-Relational Databases, m

BVVCODyj, London, 7-9th July, 1997, 131-2.

162

(/». Embury, S., M., Fiddian, N., J., Gray, W., A. and Jones, C., J., eck.

ZM DaraAcj'e, Lecture Notes in Computer Science, Vol. 1271,

Springer-Verlag, 1997. ISBN 3-540-63263-8.)

• Refereed Poster Sessions

• Papiani, M., Dunlop, A., N. and Hey, A., J., G. Automatic Web Interfaces

and Hypertext Browsing for Object-Relational Databases, The Eighth ACM

TM/gf-Ma/yoMa/ Co^z-gMcg OM Southampton, England, April 1997.

• Related International Conference Tutorial Presentations

• Dunlop, A., N. and Papiani, M. Java, the Web and Databases, Tutorial

CoA^rgMCg. 1-4 September

1998, University of Southampton, UK.

• Related Invited Talks

• Papiani, M., Dunlop, A., N. and Hey, A., J., G. Automatically Generating

World-Wide Web Interfaces to Relational Databases, British Computer

5'oczg(y 6'g/Mma/' 5'grzg^ OM TVgii; DzrgcfzoM^ m Dgvg/qpTMgM .̂

7%g Co/porafg iywpgrA/gAw/cfy, University of Wolverhampton, April

1997.

• Papiani, M. Parkbench (PARallel Kernels and BENCHmarks) Release 1.0

and the Graphical Benchmark Information Service (GBIS), In; proceedings

q / f/zg ({RgaZ OM famZ/g/ Graz,

Austria, 18 May, 1995.

163

Appendix B : Client/Server 'Pi ng' Benchmark Results

This appendix reports some benchmark results from 1997, which compared the

performance of available technologies for Web based client/server interaction. The

codes for the benchmarks were taken from Orfali and Harkey [175]. The benchmark

measures the round trip time for a client to increment a variable on a server and

receive a reply from the server (see Figure 36). First, the client program calls the

server program to initialise the variable on the server to zero and then starts a timer.

Secondly, the client calls the server repeatedly to increment the variable. Thirdly, the

client program stops the timer and calls the server to find the final value of the

variable. The average round-trip ping time is calculated and displayed.

Client Server

sum

operation

incrementSumO

attribute
1000 iterations

set sum to 0
start timer

stop timer
get sum

incrementSum

Four different client/server technologies/configurations were compared. Throughout,

Java was used as the programming language. For each configuration the experiment

was repeated between five and ten times. Each experiment measured the time for

between ten and one thousand increments and recorded the average time for one

increment (or 'ping'). The results of the experiments are displayed in Figure 37. The

error-bars on the graph show the minimum and maximum value recorded for the

average ping for each configuration.

164

250.0

x>
c

§ 150.0
M

178.5

SOCKET

The following notes apply generally to the experiment;

• The client ran on a workstation and the server on a single node IBM SP2

supercomputer, although little difference was noted if the locations of the client

and server were transposed.

• The client platform consisted of an IBM Power Series 820, PowerPC

workstation with a lOOMHz RS6000 603e CPU, 32MByte of memory, running

the AIX 4.1.4.0 operating system.

® The server Platform consisted of a single 66.5MHz thin-node 2 on an IBM SP2,

with 256MByte memory, running the AIX 4.1.4.0 operating system.

• The network consisted of Southampton University's shared 10 Mbit/s Ethernet

network. Results were recorded over several days on a typically loaded network.

• IBM's Java Development Kit (JDK), version 1.0.2D, was used for all the

experiments because a just-in-time compiler was available for this version. This

is with the exception of the RMI experiment that used IBM's JDK version 1.1.1

165

because the RMI classes were not available in the earlier release. There was no

just-in-time compiler available with IBM's JDKl.1.1. However, in practice, the

just-in-time compiler did not appear to have an effect on the performance of this

benchmark. It appears that the network delays were far more significant than the

computation times of the Java programs.

• The CORBA experiment used the VisiBroker for Java [225] (version 1.2.0,

December 9,1996) CORBA2.0 implementation.

The socket experiment used the Java class that requires

data to first be converted to bytes. The bytes are then stored in a buffer and

written to the output stream when the buffer is full, or explicitly via a method

call.

* The CGI experiment used the Fmf TracA: HTTP Server. A Java Applet

running on the client machine made a socket connection to the server and used

the 'POST' method of the HTTP protocol to initiate the CGI program on the

server. The CGI program was also written in Java.

The fbllowing conclusions can be drawn from the results:

1. Sockets give the best performance of around 180 pings per second.

2. Distributed object technologies (CORBA and RMI) give the next best

performance (approximately half that of the pure socket performance.

3. CGI performs two orders of magnitude worse than the distributed object

technologies in this simple client/server ping benchmark.

Hence, whilst the CGI mechanism is widely used to provide HTML forms for user

interaction vyith the Web, in its raw form this technology exhibits poor performance

when compared with other Java based technologies that are available for Web-based

client/server interaction. Java Servlets did not form part of this experiment as it was

carried out before they became generally available. However, Orfali and Harkey

166

have shown Servlets to perform an order of magnitude better than CGI in the above

benchmark [175]. Chapter 2 discusses the technologies and options in more detail.

167

References

[1] Accessing a Database Server via the World Wide Web.

http://kulichki-iso.rarnbler.ru/moshkow/WEBMASTER/dbcgigateways.txt

[2] The Active Group Homepage, http://www.activex.org/

[3] Active Server Pages (ASP), Microsoft Corporation.

http://msdn.microsoft.com/workshop/server/toc.htm

[4] ActiveState PerlEx, ActiveState Tool Corporation.

http ://www. acti vestate. com/plex

[5] ActiveX Data Objects (ADO), Microsoft Universal Data Access Web Site,

Microsoft Corporation, http://vyww.microsoft.com/data/ado/

[6] Addison, C., A., Getov, V., S., Hey, A., J., G., Hockney, R., W. and Wolton, I.,

C. The GENESIS Distributed memory Benchmarks. Dongarra, J., J. and

Gentzsch, W., eck. Co/Mpwrer North Holland, 1993, 257-271.

[7] ADO/WFC vs. JDBC, Microsoft Universal Data Access, Technical Materials,

Microsoft Corporation, August, 1998.

http ://www. micro soft. com/data/techmat. htm

http://www.microsoft.com/data/ado/adotechinfo/adovsjdbc.htm

[8] Agrawal, R., Gehani, N., H. and Srinivasan, J. Ode View: the Graphical Interface

to Ode. froc. May, 1990.

[9] Aloiso, G., Cafaro, M., Messina, P. and Williams, R., D. A Distributed Web-

based Metacomputing Environment. Proceedings of the 5'^ Int. Conf. On High

fgf/brmaMce Europe, Vienna, Austria, 1997.

[10] Aloiso, G., Cafaro, M. and Williams, R. The Digital Puglia project: An

Active Digital Library of remote Sensing Data, f q/" r/ze 7'̂

On /fzgA f g/ybr/Mancg Ewrqpe, Amsterdam, The

Netherlands, 1999.

http://kulichki-iso.rarnbler.ru/moshkow/WEBMASTER/dbcgigateways.txt
http://www.activex.org/
http://msdn.microsoft.com/workshop/server/toc.htm
http://vyww.microsoft.com/data/ado/
http://www.microsoft.com/data/ado/adotechinfo/adovsjdbc.htm

168

[11] Aloisio, G., Milillo, G. and Williams, R. An XML Architecture for High

Performance Web-based Analysis of Remote-Sensing Archives. Technical

Report CACR-167, Center for Advanced Computing at Caltech, September

1988. (Submitted to Future Generation Computer Systems.)

[12] American National Standards Institute (ANSI) Electronic Standards Store.

http://webstore.ansi.org

[13] Apache API Notes, The Apache Server Group.

http://www.apache.org/docs/misc/API.html

[14] Associating Style Sheets with XML documents. Version 1.0, W3C

Recommendation, 29 June, 1999. http://vyww.w3.org/TR/xml-stylesheet

[15] Bailey, D., Barszcz, E., Barton,J., Brovming, D., Carter, R., Dagum, L.,

Fatoohi, R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon,

H., Venkatakrishnan, V. and Weeratunga. S. The NAS Parallel Benchmarks,

Technical Report RNR-94-007, NASA Ames Research Center, Moffett Field,

CA 94035, USA, March 1994. http://v/ww.nas.nasa.gov/Sofitware/NPB/

[16] Bailey, D., Harris, T., Saphir, W., van der Winjgaart, R., Woo, A. and

Yarrow, M. The NAS Parallel Benchmarks 2.O., Technical Report RNR-95-020,

NASA Ames Research Center, Moffett Field, CA 94035-1000, USA, December,

1995. http://vyww.nas.nasa.gov/Software/NPB/

[17] Baru, C., K., Fecteau, G., Goyal, A., Hsiao, H., Jhingram, A., Padmanabhan,

S., Copeland, G., P. and Wilson, W., G. DB2 Parallel Edition. IBM Systems

JowrW, Vol. 34(2) 1995, 292-322.

[18] Best Web Intelligent Interface Builder, Version 1.0., Best-Seller Inc., 3300

Cote Vertu, Suite 303, Montreal, Quebec H4R 2B8.

[19] Blackburn, K., Lazzarini, A., Prince, T. and Williams, R. XSIL: Extensible

Scientific Interchaiige Language, q/ fAg PP

Amsterdam, 1999. http://www.cacr.caltech.edu/-roy/papers/xsil.pdf

[20] Bloom, I., P. Object Databases versus Universal Servers: Reality and Myth,

May, Volpe Brown, Whelan and Co., San Francisco, USA, 1997.

http://webstore.ansi.org
http://www.apache.org/docs/misc/API.html
http://vyww.w3.org/TR/xml-stylesheet
http://v/ww.nas.nasa.gov/Sofitware/NPB/
http://vyww.nas.nasa.gov/Software/NPB/
http://www.cacr.caltech.edu/-roy/papers/xsil.pdf

169

http:// gate. vwco. com/

[21] Borras, P., et al. Building User Interfaces for Database Applications; The 0 2

Experience. Vol. 21(1), March 1992.

[22] Box, D. Lessons from the Component Wars: An XML Manifesto,

September, 1999.

http://msdn.microsoft.com/workshop/xml/articles/xmlmanifesto.asp

[23] Bray, J., Paoli, J. and Sperberg-McQueen, C., M. Extensible Markup

Language (XML) 1.0, W3C Recommendation, 10 February, 1998.

http://www.w3.org/TR/REC-xml

[24] Bright, M., W., Hurson, A., R., and Pakzad, S., H. A Taxonomy and Current

Issues in Multidatabase Systems. IEEE Computer, Vol. 25(3), 1992, 50-60.

[25] Brown, L. Mobile Code Security, aW

fFbrW World Congress Centre, Melbourne, Victoria, Australia, 1996.

http://www.csu.edu.auyspecial/auugwww96/proceedings/brown/brown.html

[26] Brown, M., R. FastCGI Specification Version: 1.0, Open Market, Inc., 29

April 1996. http://www.fastcgi.eom/fcgi-devkit-2.l/doc/fbgi-spec.html

[27] Brown, N. and Kindel, C. Distributed Component Object Model Protocol -

DCOM/1.0, Microsoft Corporation, January, 1998.

http://www.microsoft.com/com/resources/specs.asp

[28] Bryce, D. and Hull, R. SNAP: A Graphics Based Schema Manager, froc.

Los Angeles, California, February, 1986,

151-64.

[29] Campbell, D., M., Embley, D., W. and Czejdo, B. Graphical Query

Formulation for an Entity-Relationship Model.

.EMgzMgermg, Vol. 2, 1986, 89-121.

[30] Carey, M., J. and DeWitt, D., J. Of Objects and Databases: A Decade of

Turmoil, frocggafmg.y on Kg/}" Zargg

Dafa6aj^g.y, Mumbai (Bombay), India, 3-6 September, 1996, 3-14.

http://msdn.microsoft.com/workshop/xml/articles/xmlmanifesto.asp
http://www.w3.org/TR/REC-xml
http://www.csu.edu.auyspecial/auugwww96/proceedings/brown/brown.html
http://www.fastcgi.eom/fcgi-devkit-2.l/doc/fbgi-spec.html
http://www.microsoft.com/com/resources/specs.asp

170

[31] Carey, M., J., DeWitt, D., J., Naughton, J., F., Asgarian, M., Brown, P.,

Gehrke, J., E., and Shah, D., N. The BUCKY Object-Relational Benchmark,

froceeafrngj' q/"/Ae 57GM0D /nf. 1997.

[32] Carey, M., J., Haas, L., M., Maganty, V. and Williams, J., H. PESTO: An

Integrated Query/Browser for Object Databases. q/̂ rAg

/MfernafzoMaZ CoT^rgMcg OM large Mumbai (Bombay), India,

3-6 September, 1996, 203-14.

[33] Cascading Style Sheets, level 1, W3C Recommendation, 17 December,

1996. http://www.w3.org/pub/WWW/TR/REC-CSS 1

[34] Cascading Style Sheets, level 2, CSS2 Specification, W3C Recommendation

12 May, 1998. http://www.w3.org/TR/REC-CSS2

[35] Catarci, T., Costabile, M., F., Levialdi, S., and Batini, C. Visual Query

Systems for Databases: A Survey. Vbwma/ qf langwaggj'

8, 1997,215-60.

[36] Catarci, T. and Santucci, G. Query By Diagram: A Graphic Query System,

froc. Rome, Italy, 1988.

[37] Cattell, R. 7%e ODMG-Pj 7..2 ,̂

Morgan Kaufman Publishers, 1996. http://www.odmg.org

[38] Cattell, R., G., G. and Barry, D., K., eck. 7Ag

0DMG-P7, 2.0, Morgan Kaufman Publishers, 1997, 256pp.

http://www.odmg.org

[39] Cattell, R., G., G., Barry, D., K., Berler, M., Eastman, J., Jordan, D., Russell,

C., Schadow, O., Stanienda, T. and Fernando Velez, gĉ '. 7%g OZygĉ Dafa^afg

AaMcfarcf. ODMG J.O, Morgan Kaufinan Publishers, 2000,300pp.

http://vyww.odmg.org

[40] Celko, J. and Celko, J. Debunking Object-Database Myths, Byte, October,

1997, 101-106.

[41] The Cetus Links, http://www.cetus-links.org/

http://www.w3.org/pub/WWW/TR/REC-CSS
http://www.w3.org/TR/REC-CSS2
http://www.odmg.org
http://www.odmg.org
http://vyww.odmg.org
http://www.cetus-links.org/

171

[42] Chamberlain, D., D. 4̂ fo DB2

Academic Press/Morgan Kaufmann, 1998, 800pp.

[43] Chang, D. and Harkey, D. C/zeMfyS'erver y4ccej'̂ M/zfA Java antf

John Wiley and Sons, Inc., 1998, 606pp.

[44] Chen, P. An Entity-Relationship Model - Towards a Unified View of Data.

on Vol. 1(1), January, 1976.

[45] Chung, P., E., Huang, Y. and Shalini, S. DCOM and CORE A Side by Side,

Step by Step, and Layer by Layer, Bell Laboratories, 1997.

http://www.bell-labs.com/~emerald/dcom_corba/Paper.html

[46] Coddington, P., D., Hawick, K., A. and James, H., A. Web-based Access to

Distributed High-Performance Geographic Information Systems for Decision

Support, froc. q/ fAg Tfowan /nA C o ^ S'c/gnce:; '99,

January, 1999.

[47] Coddington, P., D., Hawick, K., A., Kerry, K., E., Mathew, J., A., Silis, A.,

J., Webb, D., L., Whitbread, P., J., Irving, C., G., Grigg, M., W., Jana, R. and

Tang, K. Implementation of a Geospatial Digital Library Using Java and

CORE A. Proc. Of TOOLS Asia '98, September, 1988.

[48] The Common Gateway Interface, National Center for Supercomputer

Applications, University of Illinois, Urbana-Champaign, 1995.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html

[49] Cold Fusion Homepage, Allaire Corporation.

http://www.allaire.com/products/coldfusion/index.cfm

[50] COM: Delivering on the Promises of Component Technology, Microsoft

Corporation, http://www.microsoft.com/com/default.asp

[51] COM for Solaris 1.0, Microsoft Corporation.

http://www.microsoft.com/com/resources/solaris.asp

[52] COM for Tru64 UNIX, Compaq Corporation.

http ://www. unix. digital. com/com/

http://www.bell-labs.com/~emerald/dcom_corba/Paper.html
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://www.allaire.com/products/coldfusion/index.cfm
http://www.microsoft.com/com/default.asp
http://www.microsoft.com/com/resources/solaris.asp

172

[53] The Common Object Request Broker: Architecture and Specification,

Revision 2.3.1, Object management Group, October, 1999. http://www.omg.org

[54] Comparing ActiveX and CORBA/IIOP, Object Management Group, 1997.

http: //ftp. omg. org/Iibrary/acti vex. html

[55] Comparing Microsoft Transaction Server to Enterprise JavaBeans, Microsoft

Corporation, 30 July, 1998. http://www.microsoft.com/com/wpaper/mts-ejb.asp

[56] The Component Object Model Specification, Microsoft Corporation and

Digital Equipment Corporation, Draft Version 0.9, October 24, 1995.

http://www.microsoft.com/com/resources/specs.asp

[57] Cover, R. The SGML/XML Web Page. September, 1999.

http://www.oasis-open.org/cover/sgml-xml.html

[58] Cross-Platform ASP Development Strategies, white paper. Chili!Soft, 1999.

http://www.chilisoft.com/whitepeppers/default.asp

[59] Database Language SQL, ANSI Standard No. X3.135-1992. American

National Standards Institute, 1992. (ISO/IEC 9075:1992.)

[60] Database Language SQL - Part 9: SQL/MED, Version for ISO FCD Ballot,

November 1999. ftp://jerry.ece.umassd.ediV'SC32/WG3

/Progression_Documents/FCD/fcdl-med-1999-l l.pdf

[61] Database Language SQL - Part 10: SQL/OLB, ISO Final Committee Draft,

November, 1999. ftp://ierry.ece.umassd.edu/SC32/WG3/

Progression_Documents/FCD/fcdi2-olb-1999-11 .pdf

[62] Data Management: SQL Call Level Interface (CLI), X/Open CAE

March, 1995. ISBN 1-85912-081-4, C451.

[63] Davidson, J., D., and Ahmed, S. Java Servlet API Specification, Version

2.1a, November, 1988. http://java.sun.com/products/servIet/index.html

[64] Davis, J., R. DATALINKS: Managing External Data with DB2 Universal

Database, White paper, IBM Corporation, February, 1999.

http://www.omg.org
http://www.microsoft.com/com/wpaper/mts-ejb.asp
http://www.microsoft.com/com/resources/specs.asp
http://www.oasis-open.org/cover/sgml-xml.html
http://www.chilisoft.com/whitepeppers/default.asp
http://java.sun.com/products/servIet/index.html

173

http ://www. software. ibm .com/ data/pubs/papers

[65] DB2 Universal Database, IBM Corporation.

http://www.soAware.ibm.com/data/db2/udb

[66] DeWitt, J., D. Combining Object Relational Parallel: Like Trying to Mix Oil

and water, http://www.es.wise.edu/'-dewitt/vldbsum.ps

[67] DeWitt, D., J. and Gray, J. Parallel Database Systems: The Future of High

Performance Database Systems. q / y 4 C M Vol. 35(6), 1992,

85-98.

[68] The DNS Database of Turbulence and Heat Transfer, Turbulence and Heat

Transfer Laboratory, University of Tokyo, Japan.

http://www.thtlab.t.u-tokyo.ac.jp/

[69] Doan, D., K., Norman, W., P. and Kilgour, A. Design and User Testing of a

Multi-Paradigm Query Interface to an Object-Oriented Database. SIGMOD

Vol. 24(3), September 1995.

[70] Document Object Model (DOM) Activity Statement, W3C.

http://www.w3 .org/DOM/Activity

[71] Document Object Model (DOM) Level 1 Specification, Version 1.0, W3C

Recommendation, October, 1998. http://www.w3.org/TR/REC-D0M-Level-l

[72] Document Object Model (DOM) Level 2 Specification, Version 1.0, W3C

Candidate Recommendation, May, 2000.

http://www.w3 .org/TR/WD-DOM-Level-2

[73] Document Object Model (DOM) Web page maintained by the W3C DOM

Working Group, 11 December, 1998. http://www.w3.org/D0M/

[74] Duan, N., N. Distributed Database Access in a Corporate Environment Using

Java. /MrerMafmnaZ PFof/c/ PFWe Paris, France, May 6-10,

1996.

[75] Dunlop, A., N., Papiani, M. and Hey. A.J.G. Providing Access to a

Multimedia Archive Using the World-Wide Web and an Object-Relational

http://www.soAware.ibm.com/data/db2/udb
http://www.es.wise.edu/'-dewitt/vldbsum.ps
http://www.thtlab.t.u-tokyo.ac.jp/
http://www.w3
http://www.w3.org/TR/REC-D0M-Level-l
http://www.w3
http://www.w3.org/D0M/

174

Database Management System. TEE <6 EMgzMggymg Jowrna/,

Vol. 7(5), October 1996, 221-6.

[76] Dunlop, A., N., Papiani, M., Quinn, M., J. and Hey. A.J.G. User-Directed

Database Searching and Browsing via the World Wide Web, Technical Report

96-80-3, Department of Computer Science, Oregon State university, USA,

October, 1996. http://www.cs.orst.edu/-quinn/www-db/Overview.html

[77] ECMA - European Association for Standardizing Information and

Communication Systems, http://vyww.ecma.ch/

[78] ECMAScript Language Specification, 3rd edition, ECMA Standard ECMA-

262, December 1999, ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

[79] Eisenberg, A. and Melton, J. SQL: 1999, ibrmerly known as SQL3. S/GMDD

Vol. 28(1), March, 1999.

[80] Eisenberg, A. and Melton, J. SQLJ Part 0, Now Knovm as SQL/OLB

(Object-Language Bindings). S'/GMOD Vol. 27(4), December, 1998.

[81] Eisenberg, A. and Melton, J. SQL Standardization: The Next Steps.

Vol. 29(1), March, 2000, 63-7.

[82] Elmarsi, R. and Larson, J., A. A Graphical Query Facility for ER Databases,

f m c . Chicago, October, 1985, 236-

45.

[83] Elson, L., Allen, M., Goldsmith, J., Orton, M. and Weibel, W. An Example

of a Network-Based Approach to Data Access, Visualization, Interactive

Analysis and Distribution, Draft Paper, Jet Propulsion Laboratory, Caltech,

1999. http://webwinds.jpl.nasa.gov/papers/paper 1 .pdf

[84] Eng, J. GS'gZ, National Center for Supercomputer

Applications, University of Illinois, Urbana-Champaign, 1994.

http://hoohoo.ncsa.uiuc.edu/SDG/People^ason/pub/gsql/starthere.html

[85] Ensor, D., Stevenson, 1. Omc/g & 0'Reilly& Associates Inc.,

1997, 115pp.

[86] EntireX Homepage, Software AG.

http://www.cs.orst.edu/-quinn/www-db/Overview.html
http://vyww.ecma.ch/
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf
http://webwinds.jpl.nasa.gov/papers/paper
http://hoohoo.ncsa.uiuc.edu/SDG/People%5eason/pub/gsql/starthere.html

175

http;//www.softwareag.com/entirex/Default.htm

[87] European Research Community on Flow Turbulence and Combustion

(ERCOFTAC) fluid dynamics database, http://fluindigo.mech.surrey.ac.uk

[88] Excelon Corporation Homepage, http://www.odi.com/

[89] Extensible Stylesheet Language (XSL) Specification, W3C Working Draft,

21 Apr 1999. http://www.w3.org/TR/WD-xsl

[90] FastCGI: A High-Perfbrmance Web Server Interface, Technical White

Paper, Open Market, Inc., April, 1996.

http://www.fastcgi.eom/fcgi-devkit-2.l/doc/fastcgi-whitepaper/fastcgi.htm

[91] Fawcett, N. Microsoft Ditches its Java Tool, 2 December, 1999.

http://www.vnunet.eom/News/l 04030

[92] Ferreira, R., Kurc, T., Beynon, M., Chang, C., Sussman, A. and Saltz, J.

Object-relational Queries into Multidimensional Databases with the Active Data

Repository. JowrMaZ q/"

1999.

[93] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and T.

Berners-Lee, T. Hypertext Transfer Protocol - HTTP/1.1, IETF RFC 2616, June

1999. http://www.ietf.org/rfc/rfc2616.txt

[94] Flanagan, D. JavaScript, 2''^ edn, 0'Reilly& Associates Inc., 1998, 776pp.

[95] Flynn, B. and Maier, D. Supporting Display Generation for Complex

Database Objects 57GM0D vRgcorc/, 21(1), March 1992.

[96] Fogg, D. Lessons from a "Living in a Database" Graphical Query Interface,

froc. Con/:, June 1984.

[97] Fortier, P., J. 5'igZ J. Vwip/g/Mg/z/mg f/ze McCrraw-

Hill Book Company, 1999, 414pp.

[98] Freed, N. and Borenstein, N. Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies, IETF RFC 2045, November,

1996. http://www.ietf.org/rfc/rfc2045.txt

http://www.softwareag.com/entirex/Default.htm
http://fluindigo.mech.surrey.ac.uk
http://www.odi.com/
http://www.w3.org/TR/WD-xsl
http://www.fastcgi.eom/fcgi-devkit-2.l/doc/fastcgi-whitepaper/fastcgi.htm
http://www.vnunet.eom/News/l
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2045.txt

176

[99] Gaffney, J. Illustra's Web DataBlade Module. SIGMOD Record, Vol. 25(1),

March, 1996.

[100] GBIS Home Page, University of Tennessee at Knoxville.

http://www.netlib.org/parkbench/gbis/html/

[101] Geist, A., Beguelin, A., Dongarra, J., J., Manchek, R., Jiang, W. and

Sunderam, V. PVM: Parallel Virtual Machine: A User's Guide and Tutorial for

Networked Parallel Computing, MIT Press, 1994, 176pp.

http: //www. epm. oml. gov/pvm/pvm_home .html

[102] Geospatial Imagery Access Services (GIAS) specification, version 3.2,

NOIOI-C, U.S. National Imagery and Mapping Association, 28 July, 1998.

http://www.nima.mil/aig/

[103] Glushko, R., J., Tenerbaum, J., M. and Meltzer, B. An XML Framework for

Agent-based E-commerce. q / " V o l . 4 2 (3) , 1999.

[104] Goldman, K., J., Kanellakis, P., C. and Zdonik, S., B. ISIS; Interface for a

Semantic Information System, 1985,

328-42.

[105] Gosling, J., Joy, W. and Steele, G., L. The Java Language Specification,

Addison-Wesley, 1996, 825pp. http://iava.sun.com/doc/

[106] Gulutzan, P. and Pelzer, T. 5'gZ-PP R&D Publications,

1999, 1078pp.

[107] Haber, E., loannidis, Y. and Livny, M. Foundations of Visual Metaphors for

Schema Display. JowmaZ q / Z M f g / Z z g e M f 3 (3 / 4) , July, 1994.

[108] Haber, E., loannidis, Y. and Livny, M. OPOSSUM: Desk-Top Schema

Management through Customizable Visualization, f q/" fAe 27^^

Zô rgg DczfaAczj-g Cof^rgMcg (TZD^), September, 1995.

[109] Hadjiefthymiades, S., P. and Martakos, D., 1. A Generic Framework for the

Deployment of Structured Databases on the World Wide Web. Fifth

/MfgmarmMaZ PFg6 Co^rgMcg, Paris, France, May 6-10, 1996.

http://www.netlib.org/parkbench/gbis/html/
http://www.nima.mil/aig/
http://iava.sun.com/doc/

177

[110] Hamilton, G. JavaBeans Specification, Version 1.01, Sun Microsystems,

Inc., July, 1997. http://www.javasofl.com/beaiis/index.html

[111] Haw D., Goble, C., A., and Rector, A., L. GUIDANCE: Making it easy for

the user to be an expert, froc. OM [/ygr /o

DafaAgj'ej', Ambleside, UK, 13-15th July, 1994, 19-44.

[112] Hawick, K., A. and Coddington, P., D. Interfacing to Distributed Active Data

Archives, JowrnaZ on Co/Mpwfer to appear.

[113] Hawick, K., A. and James, H., A. Distributed High-Perforniance

Computation for Remote Sensing. Proc. Of Supercomputing '97, San Jose, USA,

November, 1997.

[114] Hawick, K., A. and James, H., A. Eric: A User and Applications Interface to

a Distributed Satellite Data Repository. Technical Report DHPC-008, Computer

Science Department, University of Adelaide, 1997.

[115] The Hierarchical Data Format (HDF) Homepage, http://hdfncsa.uiuc.edu

[116] Hockney, R., W. A Framework for Benchmark Performance Analysis.

5'wpgrcompw^gr Vol. IX-2, March, 1992, 9-22.

[117] Hockney, R., W. The Science of Computer Benchmarking, Philadelphia,

USA, SIAM, 1996,104-115. ISBN 0-89871-363-3.

[118] Hockney, R., W. and Berry, M., eds. Public International Benchmarks for

Parallel Computers, PARKBENCH Committee: Report Number 1.

frogra/M/Mmg, 3(2), 1994, 101-46.

[119] Hockney, R., W. and Jessope, C., R. Parallel Computers 2., Bristol and

Philadelphia, Adam-Hilger/IOP Publishing, 1988.

[120] Hogan, M. Defining a Scalable Database for XML, DocwmeMfarzoM

Santa Clara, USA, 10 March, 1998.

http://www.poet.com/about/presentations/presentations.html

[121] Horstmann, C., S. and Cornell, G. Cofg Java 2.' FbZw/Mg 7 -

Sim Microsystems Press, 1999, 742pp.

http://www.javasofl.com/beaiis/index.html
http://hdfncsa.uiuc.edu
http://www.poet.com/about/presentations/presentations.html

178

[122] HTML 4.0 Specification, W3C Recommendation, 24 April, 1998.

http ://www. w3. org/TR/REC-html40

[123] Hudson, R., L. UMass Information Navigator. IDEA Conference, New

Orleans, USA, October 17-20, 1994. http://home.oit.umass.edu/

[124] Hunter, J. and Crawford, W. Java Servlet Programming, O'Reilly &

Associates, 1998, 510pp.

[125] IETF TLS Working Group Home Page.

http; //www. ietf org/html. chart ers/tl s-charter. html

[126] Impromptu Web Query, COGNOS, Inc.

http://www.cognos.com

[127] Information Processing - Text and Office Systems - Standard Generalized

Markup Language (SGML), ISO 8879:1996.

http://www.iso.ch/cate/dl6387.html

[128] Informix Dynamic Server, Informix Corporation.

http ://www. Informix. com/informix/products/ids/overview.htm

[129] IS API Reference, Microsoft Corporation, 1999.

http://msdn.microsoft.com/library/psdMisref/isre9iIx.htm

[130] The ISO/IEC JTC1/SC21/WG3 document repository.

ftp://jerry.ece.umassd.edu/

[131] James, H., A. and Hawick, K., A. A Web-based Interface for On-Demand

Processing of Satellite Imagery Archives, froc. (y fAg

5'c/eMcg Co/^rgMcg Perth, Australia, February, 1988.

[132] Java 2 Platform, Standard Edition, vl.2.2 API Specification, Sun

Microsystems, Inc. http://java.sun.eom/products/jdk/l.2/docs/api/index.html

[133] Java Remote Method Invocation (RMI) Specification, Sun Microsystems.

http://java.sun.com/products/jdk/rmi/

http://home.oit.umass.edu/
http://www.cognos.com
http://www.iso.ch/cate/dl6387.html
http://msdn.microsoft.com/library/psdMisref/isre9iIx.htm
http://java.sun.eom/products/jdk/l.2/docs/api/index.html
http://java.sun.com/products/jdk/rmi/

179

[134] Java Server Pages, White paper, Sim Microsystems, Inc., June, 1999.

http://www.javasoA.com/products/jsp/whitepaper.html

[135] Java Technology Standardization, Sun Microsystems Inc., June, 1999.

http://java.sun.com/aboutJava/standardization/index.html

[136] JDBC Data Access API; Drivers, Sun Microsystems Inc., July, 1999.

http: //j ava. sun. com/products/] dbc/dri ver s. html

[137] JDBC Guide: Getting Started, Sun Microsystems, Inc., March 6, 1997.

http ://j ava. sun.com/products/jdk/1.2/docs/guide/j dbc/getstart/introTOC .doc.html

[138] Keyes, J. Ovg/- //zg

McGraw-Hill, 1998, 551pp.

[139] Kim, W. Object-Oriented Database Systems: Promises, Reality, and Future.

q/rAe Dublin, Ireland, 1993, 676-87.

[140] King, R. and Melville, S. Ski: A Semantics-Knowledgeable Interface, froc.

/MA Fe/]/ Zargg Singapore, Aug., 1984, 30-33.

[141] King, R. and Novak, M. Building Reusable Data Representations with

FaceKit. 21(1), March 1992.

[142] King, R. and Novak, M. FaceKit: A Database Interface Design Toolkit.

.Proc. Fg/y Zargg Amsterdam, The Netherlands,

August, 1989,115-23.

[143] Kuntz, M. and Melchert, R. Pasta-3's Graphical Query Language: Direct

manipulation. Cooperative Queries, Full Expressive Power. Proc. 15th Int. Conf.

Kg/]/ Zargg Dafa6mgj', Amsterdam, The Netherlands, August, 1989, 97-105.

[144] Lazar, D. Microsoft Strategy for Universal Data Access, Microsoft

Corporation, October, 1997 (Updated August 15, 1998).

http://www.microsoft.com/data/udastra.htm

[145] Lindholm, T. and Yellin, F. TTzg Java MacAmg S)9gcz/zcâ zoM,

gcA?, Addison-Wesley Pub Co., 1999, 496pp. http://java.sun.com/docs/

http://www.javasoA.com/products/jsp/whitepaper.html
http://java.sun.com/aboutJava/standardization/index.html
http://www.microsoft.com/data/udastra.htm
http://java.sun.com/docs/

180

[146] Long, J., Spencer, P. and Springmeyer, R. SiniTracker - Using the Web to

Track Computer Simulation Results. OM angf

S'z/MwW/OM, San Francisco, USA, 1999. (Proceedings available in:

Series, Vol. 31(3), from the Society for Computer Simulation.)

[147] Manber, U. Future Directions and Research Problems in the World Wide

OM Montreal, Canada, June 3-5, 1996, 213-15.

[148] Matena, V. and Hapner, M. Enterprise JavaBeans Specification, Version 1.1,

Sun Microsystems, Inc., December, 1999.

http://www.javasoA.com/products/ejb/

[149] McGrath, R., E. A Scientific Data Server: The Conceptual Design. White

Paper, National Center for Supercomputing Applications, University of Illinois,

Urbana-Champaign, January, 1997.

http://hdf.ncsa.uiuc.edu/horizon/DataServer/sds_design.html

[150] Melton, J. ODMG, ANSI X3H2-95-

161/DBL:Y0W-32, 15 April 1995.

ftp://jerry.ece.umassd.edu/isowg3/dbl/YOWdocs/yow032.pdfgz

[151] Microsoft Transaction Server (MTS), Microsoft Corporation.

http://www.microsoft.com/com/tech/MTS.asp

[152] Moore, W., R., Baru, C., Marciano, R., Rajasekar, A. and Wan, M. Data-

Intensive Computing. 7̂ .' Foster, I. and Kesselman, C., gck. Grzc/.-

ybr a #gw San Francisco, California, Morgan

Kaufmann Publishers, Inc., 1999, 105-129.

[153] Motro, A. BAROQUE: A Browser for Relational Databases. y4CM

on Q^cg Vol. 4(2), April, 1986, 164-81.

[154] Motro, A. Browsing in a loosely structured database. Proc. ACM SIGMOD

OM vWanagg/Mgnf q/Da/a, Boston, June, 1984,197-207.

http://www.javasoA.com/products/ejb/
http://hdf.ncsa.uiuc.edu/horizon/DataServer/sds_design.html
ftp://jerry.ece.umassd.edu/isowg3/dbl/YOWdocs/yow032.pdfgz
http://www.microsoft.com/com/tech/MTS.asp

181

[155] Motro, A. VAGUE: A User Interface to Relational Databases that Permits

Vague Queries. on 6, 1988, 187-

214.

[156] Motro, A., D'Atri, A. and Tarantino, L. The Design of KIVIEW: An Object-

Oriented Browser, froc. 2 ^ /nr. OM Dafa April, 1988.

[157] MPI; A Message Passing Interface Standard, Version 1.1, Message Passing

Interface Forum, University of Tennessee, Knoxville, Tennessee, June, 1995.

http://www.mpi-fbrum.org/docs/docs.html

[158] MPI-2: Extensions to the Message-Passing Interface, Message Passing

Interface Forum, University of Tennessee, Knoxville, Tennessee, 18 July, 1997.

http://www.mpi-forum.org/docs/docs.html

[159] Multipurpose Internet Mail Extensions (MIME).

http://www.oac. uci. edu/indiv/ ehood/MIME

[160] Namespaces in XML, W3C Recommendation, 14 January, 1999.

http://www.w3.org/TR/REC-xml-names

[161] National Committee for Information Technology Standards (NCITS)

Standards Store, http://www.cssinfo.com/ncits.html

[162] Net.Data Homepage, IBM Corporation.

http ://www. software. ibm. com/data/net. data/

[163] Newsome, M., Pancake, C., Hanus, J. and Moore, L. HyperSQL User's

Guide and Language Reference, Technical Report, Department of Computer

Science, Oregon State University, February 1996.

[164] Nguyen, T. and Srinivasan, V. Accessing Relational Databases from the

World Wide Web. q//Ae

OM MaMaggTMgM/ q/Dafa, Montreal, Canada, June 4-6,1996, 529-40.

[165] Norman, M. and Thanisch, P. Much Ado About Shared-Nothing. SIGMOD

Vol. 25(3), September 1996.

http://www.mpi-fbrum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.oac
http://www.w3.org/TR/REC-xml-names
http://www.cssinfo.com/ncits.html

182

[166] Norman, M. and Thanisch, P. Parallel Database Technology: An Evaluation

and Comparison of Scalable Systems, The Bloor Research Group, UK, 1995.

ISBN 1-874160-17-1. http://www.bloor.co.uk/

[167] NSAPI Programmer's Guide, Netscape Communications Corporation,

December, 1997.

http://developer.netscape.com/docs/manuals/enterprise/nsapi/index.htm

[168] The Object Data Management Group, http://www.odmg.org/

[169] Objectivity/DB, Objectivity Corporation, http://www.objectivity.com

[170] The Object Management Group, http://www.omg.org/

[171] Ocean Circulation and Climate Advanced Modelling (OCCAM) Project, The

Southampton Oceanography Centre in collaboration with the Universities of

East Anglia and Exeter.http://www.soc.soton.ac.uk/JRD/OCCAM/welcome.html

[172] ODBC 2.0 Programmer's Reference and SDK Guide, ISBN 1-55615-658-8.

[173] OLE DB, Microsoft Universal Data Access Web Site, Microsoft

Corporation. http://www.microsofl:.com/data/oledb/

[174] OracleS, Oracle Corporation, http://www.oracle.com

[175] Orfali, R. and Harkey, D. Client/Server Programming with JAVA and

John Wiley & Sons, Inc., 1998,1022pp.

[176] Organisation for the Advancement of Structured Information (OASIS).

http://www.oasis-open.org

[177] The OSF Distributed Computing Environment, Open Software Foundation,

1996. http://www.osf.org/dce/

[178] Paepcke, A., Baldonado, M., Chang, C-C., K., Cousins, S. and Garcia-

Molina, H. Building the InfoBus: A Review of Technical Choices in the

Stanford Digital Library Project. Working Paper SIDL-WP-1998-0096, Stanford

Digital Library Project, Stanford University, 1998.

http://www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-WP-1998-0096

http://www.bloor.co.uk/
http://developer.netscape.com/docs/manuals/enterprise/nsapi/index.htm
http://www.odmg.org/
http://www.objectivity.com
http://www.omg.org/
http://www.soc.soton.ac.uk/JRD/OCCAM/welcome.html
http://www.oracle.com
http://www.oasis-open.org
http://www.osf.org/dce/
http://www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-WP-1998-0096

183

[179] Papiani, M., Dunlop, A., N. and Hey. A.J.G. Automatically Generating

World-Wide Web Interfaces to Relational Databases, British Computer Society

Seminar Series on New Directions in Systems Development: Intranets - The

Corporate Superhighway, University of Wolverhampton, 23 April, 1997.

http://www.ecs.soton.ac.iik/-mp

[180] Papiani, M., Dunlop, A., N. and Hey, A., J., G. Automatic Web Interfaces

and Browsing for Object-Relational Databases. Advances in Databases:

London, 7-9th July, 1997, 131-2.

m Vol. 1271, Springer-Verlag, 1997.)

[181] Papiani, M., Hey, A.J.G. and Hockney, R.W. The Graphical Benchmark

Information Service. Vol. 4(4), 1995, 219-227.

[182] Papiani, M., Wason, J., L., Dunlop, A., N. and Nicole, D., A. A Distributed

Scientific Data Archive Using the Web, XML and SQL/MED. ACM SIGMOD

Vol. 28(3), September, 1999, 56-62.

[183] Papiani, M., Wason, J., L. and Nicole, D., A. An Architecture for

Management of Large, Distributed, Scientific Data Using SQL/MED and XML.

recAno/ogy Konstanz, Germany, March, 2000, 447-61.

(Zecfwre 5'czgMCg, Vol. 1777, Springer-Verlag, 2000.)

[184] Persistent Client State HTTP Cookies, Netscape Communications

Corporation, 1996. http://www.netscape.com/newsref/std/cookie_spec.html

[185] Phipps, S. IBM, e-business, & XML, Transcript of talk presented at.YMI'P&,

Chicago, Illinois, November, 1998.

http://www-4.ibni.com/software/developer/speakers/phipps/papers.html

[186] Pisoni, A. Popular Perl Complaints and Myths, Version 1.04. 5 August,

1999. http://perl.apache.org/perl_myth.html

http://www.ecs.soton.ac.iik/-mp
http://www.netscape.com/newsref/std/cookie_spec.html
http://www-4.ibni.com/software/developer/speakers/phipps/papers.html
http://perl.apache.org/perl_myth.html

184

[187] Plasil, F. and Stal, M. An Architectural View of Distributed Objects and

Components in CORE A, Java RMI and COM/DCOM, Software Concepts and

Tools, Vol. 19(1), Springer, 1998.

http://nenya.ms.mff.cuni.ez/thegroup/COMP/FPLUSOBR.PS.gz

[188] POET Object Server Suite, POET Software Corporation.

http://www.poet.com

[189] Powers, S. O'Reilly & Associates, Inc., April,

1999, 490pp.

[190] Query Designer: Graphical Query-Building Tool, NACSE - Northwest

Alliance for Computational Science and Engineering, 1996.

http://www.nacse.org/mgd/qd/

[191] Rahm, E. Parallel Query Processing in Shared Disk Database Systems, fmc .

Asilomar, September, 1993.

[192] Raj, G., S. A Detailed Comparison of CORBA, DCOM and Java/RMI,

September 21,1998. http://www.execpc.com/-gopalan/misc/compare.html

[193] R^, G., S. A Detailed Comparison of Enterprise JavaBeans (EJB) and The

Microsoft Transaction Server (MTS) Models, May, 1999.

http://members.tripod.com/gsraj/misc/ejbmts/ejbnitscomp.html

[194] RAPS (Real Applications on Parallel Systems) Online Benchmark

Information System, http://www.pallas.de/raps.html

[195] Rescorla, E. and Schif&nan, A. The Secure HyperText Transfer Protocol,

IETF RFC 2660, August, 1990. http://www.ietf.org/rfc/rfc2660.txt

[196] Rogers, T. and Cattell, R. Entity-relationship Database User Interfaces. In-.

Stonebraker, M. m Morgan Kaufman, 1988.

[197] Rowe, L. and Shoens, K. FADS - A Forms Application Development

System, frocgg^/mg^^ Âg Cof^reMcg OM MzMagg/MgM^ q/Dafa,

June 1982.

http://nenya.ms.mff.cuni.ez/thegroup/COMP/FPLUSOBR.PS.gz
http://www.poet.com
http://www.nacse.org/mgd/qd/
http://www.execpc.com/-gopalan/misc/compare.html
http://members.tripod.com/gsraj/misc/ejbmts/ejbnitscomp.html
http://www.pallas.de/raps.html
http://www.ietf.org/rfc/rfc2660.txt

185

[198] Saini, S. and Bailey, D., H., NAS Parallel Benchmark (Version 1.0) Results

11-96, Technical Report NAS-96-18, NASA Ames Research Center, Moffett

Field, CA 94035-1000, USA, November 1996.

http://www.nas.nasa.gov/Software/NPB/

[199] Sandham, N.D. and Howard, R.J.A. Direct Simulation of Turbulence Using

Massively Parallel Computers. /».- A. Ecer ef a/., famZ/eZ Compŵ â zoMaZ

'P7, Elsevier, 1997.

[200] Saphir, W., Woo, A. and Yarrow, M. The NAS Parallel Benchmarks 2.1

Results, Technical Report NAS-96-010, NASA Ames Research Center, Moffett

Field, CA 94035-1000, USA, August, 1996.

http://www.nas.nasa.gov/Software/NPB/

[201] Scientific Data Format Information FAQ, 13 Oct 1995.

http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html

ftp://rtftn.mit.edu/pub/usenet/news.answers/sci-data-Ibrmats

[202] Shannon, W. Java2 Platform Enterprise Edition Specification, vl.2, Sun

Microsystems, Inc., December, 1999. http://java.sun.com/j2ee/

[203] The Simple API for XML, SAX 2.0, May, 2000.

http ://www.megginson. com/S AX/sax.html

[204] Simple Object Access Protocol (SOAP) Specification, May, 2000.

http://msdn.microsoft.com/xmI/generaI/soapspec.asp

[205] Sprenger, P. Relational DBMSes Trail Objects in XML Race, Planet IT, 20

July, 1998.

http://pIanetit.com/techcenters/docs/database/technology/PITl 9980911S0058/1

[206] SQL Server 7, Microsoft Corporation, http://www.microsoft.com/sql/

[207] SQL Standards Home Page. JCC Consulting, Inc.

http://www.jcc.com/SQLPages/] ccs_sql.htm

[208] SQLJ Home Page, http://www.sqlj.org

http://www.nas.nasa.gov/Software/NPB/
http://www.nas.nasa.gov/Software/NPB/
http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html
ftp://rtftn.mit.edu/pub/usenet/news.answers/sci-data-Ibrmats
http://java.sun.com/j2ee/
http://www.megginson
http://msdn.microsoft.com/xmI/generaI/soapspec.asp
http://pIanetit.com/techcenters/docs/database/technology/PITl
http://www.microsoft.com/sql/
http://www.jcc.com/SQLPages/
http://www.sqlj.org

186

[209] Stefen, J., L. Adding Run-Time Checking to the Portable C Compiler.

5'q/hi/aA'e a W V o l . 22(4), April, 1992, 305-16.

[210] Stonebraker, M. The Case for Shared Nothing, DaraAme

Vol. 9(1), 1986,4-9.

[211] Stonebraker, M. and Brown, P. Object-Relational DBMSs, Tracking the

Next Great Wave. Morgan-Kaufman Publishers, Inc., 1998.

[212] Stonebraker, M. and Kalash, J. TIMBER: A Sophisticated Relation Browser.

q / " T n A on FgAy large September, 1982, 1-

10.

[213] Sun Microsystems Withdraws Java 2 Platform Submission from ECMA, Sun

Microsystems Inc., 7 December, 1999.

http;//java. sun.com/pr/1999/12/pr991207-08.html

[214] Sybase Adaptive Server, Sybase, Inc.

http ://www. sybase. com/products/databaseservers/

[215] Tallman, O. and Kain, J., B. COM versus CORBA: A Decision Framework.

September, 1998.

http://www.quoininc.eom/quoininc/COM_CORBA.html

[216] Transaction Server Overview, Microsoft Corporation, September 7, 1998.

http://vyww.microsofil:.com/ntserver/appservice/exec/overview/

transo verview. asp

[217] Treinish, L., A. Interactive Archives for Scientific Data, Informatics and

Z'g/g/Mafzcj', Vol. 11(4), November, 1994.

[218] Treinish, L., A. Interactive Archives for Scientific Data, 1999.

http://www.research.ibm.eom/people/l/lloydt/IA/home.htm

[219] UK Turbulence Consortium Web Site, University of Southampton, 1999.

http://www.hpcc.ecs.soton.ac.uk/~turbulence/

http://www.quoininc.eom/quoininc/COM_CORBA.html
http://www.research.ibm.eom/people/l/lloydt/IA/home.htm
http://www.hpcc.ecs.soton.ac.uk/~turbulence/

187

[220] Ullman, J., D. and Widom, J. A First Course in Database Systems, Prentice-

Hall Inc., 1997, 470pp.

[221] United Kingdom Education and Research Networking Association

(UKERNA) Homepage, http://www.ja.net

[222] Universal Data Access Web Site, Microsoft Corporation.

httpV/www.microsoA.com/data/

[223] Valduriez, P. Parallel Database Systems - Open Problems and New Issues.

Vol. 1(2), 1993, 137-65.

[224] Valduriez, P. Parallel Database Systems: The Case for Shared-Something.

PrA OM Dafa .EMgrneermg, Vienna, Austria, April

19-23,1993.

[225] VisiBroker Homepage, Corel Corporation (formerly Borland/Inprise).

http://www.inprise.com/visibroker/

[226] Wahbe, R., Lucco, S., Anderson, T. and Graham, S., L. EfBcient software-

based fault isolation, T̂ gv/gw;, Vol.27(5), December, 1993,

203-16.

[227] Waldo, J., Wyant, G., Wollrath, A. and Kendall, S. A Note on Distributed

Computing, Sun Microsystems Laboratories, Inc., November 1994.

http ://www. sunlab s. com/techrep/1994/abstract^ 9. html

[228] Warren, M., S., Germann, T., C., Lomdahl, P., S., David M. Beazley, D., M.

and Salmon, J., K. Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for

$150k. Gordon Bell Price/Performance Prize, Supercomputing 1998.

http ://cnls. lanl. go v/avaion/

[229] Web Winds Interactive Data System, Jet Propulsion Laboratory, Caltech,

1999. http://webwinds.jpl.nasa.gov/

[230] web.sql, Sybase Corporation.

http://www.sybase.com/products/intemet/websql/

[231] Weiss, M., Johnson, A. and Kiniry, J. Security Features of Java and HotJava,

Open Software Foundation Research Institute, 1996.

http://www.ja.net
http://www.microsoA.com/data/
http://www.inprise.com/visibroker/
http://webwinds.jpl.nasa.gov/
http://www.sybase.com/products/intemet/websql/

188

http://www.pem.edu/~mccaslin/java/security.htm

[232] White, S. and Hapner, M. 2.0 Sun Microsystems Inc., Version

1.0, June, 1998. http://java.sun.eom/products/jdk/l.2/docs/guide/jdbc/index.html

[233] White, S. and Hapner, M. JDBC 2.0 Standard Extension API. Sun

Microsystems, Inc., Version 1.0, December, 1998.

http://] ava. sun. com/products/j dk/1.2/docs/guide/j dbc/index.html

[234] Williams, R. and Sears, B. A High-Performance Active Digital Library. In:

Herzberger, O. and Sloot, P., M., A. q/" Lecture

Notes in Computer Science, Springer-Verlag, 1998.

[235] Williams, R., Bunn, J., Reagan, M., and Pool, C., T. Workshop on Interfaces

to Scientific Data Achives, California, USA, 25-27 March, 1998, Technical

CALTECH, 42pp. http://www.cacr.caltech.edu/isda

[236] Windows Distributed interNet Application (DNA) Architecture, Microsoft

Corporation, http://www.microsoft.com/dna/

[237] Wong, H., K., T. and Kuo, I. GUIDE: Graphical User Interlace for Database

Exploration. q/ on Fg/g/ Zargg Da^aArngj',

September, 1982, 22-32.

[238] The World Wide Web Consortium (W3C) Home Page, http://www.w3.org/

[239] XML-RFC Specification, XML-RPC.com, October, 1999.

http://www.xml-rpc.com

[240] XML Schema Part I: Structures, W3C Working Draft, 7 April, 2000.

http://www.w3 .org/TR/xmlschema-1/

[241] XML Schema Part 2: Datatypes, W3C Working Draft, 7 April, 2000.

http://www.w3 .org/TR/xmlschema-2/

[242] XML.org. http://xml.org

[243] Yaeger, N. A Web Based Scientific Data Access Service: The Central

Component of a Lightweight Data Archive, National Center for Supercomputing

Applications, University of Illinois, Urbana-Champaign.

http://www.pem.edu/~mccaslin/java/security.htm
http://java.sun.eom/products/jdk/l.2/docs/guide/jdbc/index.html
http://www.cacr.caltech.edu/isda
http://www.microsoft.com/dna/
http://www.w3.org/
http://www.xml-rpc.com
http://www.w3
http://www.w3
http://xml.org

189

http://hdf.ncsa.uiuc.edu/apps/ogis/isprspaper.htnil

http://hdfncsa.uiuc.edu/horizon/

[244] Zloof M.M. Query By Example. fecferafzoM o /

Vol. 44, National Computer

Conference, 1975, 431-8.

http://hdf.ncsa.uiuc.edu/apps/ogis/isprspaper.htnil
http://hdfncsa.uiuc.edu/horizon/

