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This thesis investigates the employment of Radial Basis Function (RBF) networks in the
context of multilevel channel equalisation. The RBF-based Decision Feedback Equaliser
(DFE) was found to outperform the conventional DFE at the cost of an increased computa-
tional complexity. The RBF DFE was studied in the context of a wideband Burst-by-Burst
(BbB) Adaptive Quadrature Amplitude Modulation (AQAM) scheme, where the modu-
lation modes of no transmission (NO TX), Binary Phase Shift Keying (BPSK), 4-QAM,
16-QAM and 64-QAM were invoked by the transmitter, depending on the prevalent chan-
nel quality. The ’short-term BER’ of the received burst quantifies the channel quality,
which was used as the modem mode switching criterion in order to switch between different
modulation modes. The Bit Per Symbol (BPS) throughput improvement for the proposed
AQAM scheme designed for a target Bit Error Rate (BER) of 1% was up to a factor of two
in comparison to the fixed constituent modulation modes.

The logarithmic version of the RBF equaliser referred to as the Jacobian RBF equaliser
was derived, which has a reduced computational complexity. Turbo codes were invoked
for improving the BER and BPS performance of the BbB AQAM scheme. The Jacobian
RBF equaliser provides a logarithmic-domain output, which can be used to provide soft
outputs for the channel decoder. We proposed employing the average magnitude of the
Log-Likelihood Ratio (LLR) of the bits in the received burst as the channel quality measure
for our adaptive scheme. The system exhibited a better BPS performance, when compared
with the uncoded AQAM/RBF DFE system at low to medium channel SNRs and also
showed an improved coded BER performance at higher channel SNRs.

The recently developed family of iterative equalisation and channel decoding techniques
termed as turbo equalisation were explored and we investigated the employment of RBF-
based turbo equalisers. A reduced-complexity RBF DFE turbo equaliser (TEQ) was pro-
posed where the RBF DFE skips the evaluation of the symbol LLRs in the current iteration
when the symbol becomes sufficiently reliable after channel decoding in the previous iter-
ation. The proposed scheme provided an equivalent BER performance to the RBF DFE
TEQ with a complexity reduction of approximately 21% at an SNR of 6dB.
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Chapter 1

Introduction

The popularity and penetration of mobile cellular communication systems and wireless net-
working technologies is growing at an ever-faster rate and this is certainly set to continue in
the foreseeable future. Second-generation mobile radio systems, which use digital technol-
ogy in contrast to the analogue first-generation systems, are proving successful worldwide
in providing communications services to users. The customer base is increasing faster than
expected. These second-generation systems are dominated by the Pan-European Global
System of Mobile Communnications (GSM) [1], and the Pan-American IS-136 [2], IS-95
[2] schemes while in Japan by the Personal Digital Cellular (PDC) and Personal Handy-
phone System (PHS) technology. However, these second-generation systems provide only
voice and low-data-rate services. The predicted market requirements and service needs were
translated to technical requirements for the definition of third-generation (3G) mobile radio
systems [3, 4] in North America, Asia and Europe. The 3G mobile technology will not
only deliver a wide variety of wireless services — speech, video and data at various bit rates
but it also will herald a new era of services that combine high-speed mobile access with
mobile multimedia and Internet Protocol (IP) based services. The International Mobile
Telecommunications system in the year 2000 [4] (IMT-2000) — formerly known as Future
Public Land Mobile Telecommunications Systems (FPLMTS) - is the term used by the
International Telecommunications Union (ITU) as the specification for 3G services, based
upon a ’family’ of compatible standards, of which a GSM-based evolution is set to be the

most widespread. The 3G mobile systems have to satisfy the following requirements [5]:

e Support a wide range of bearer services from voice and low-rate to high-rate data
services with at least 144 kbit/s in vehicular, 384 kbit/s in outdoor-to-indoor and up

to 2 Mbit/s in indoor and picocell environments.

e Capacity and coverage improvement over that of the second generation systems, while

achieving a higher quality transmission.
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e Circuit-switched and packet-switched oriented operation.

Over recent years a significant amount of efforts has been devoted, both in industry and
academia, towards the definition of the IMT-2000 third-generation wireless communication
systems, standards, technologies and applications. Several regional standard organizations
- led by the European Telecommunications Standards Institute (ETSI) in Europe, by the
Association of Radio Industries and Businesses (ARIB) in Japan and by the Telecommuni-
cations Industry Association (TTA) in the United States have been dedicating their efforts
to specifying the standards for IMT-2000. A total of 15 Radio Transmission Technology
(RTT) IMT-2000 proposals were submitted to ITU-R in June 1998, five of which are satel-
lite based solutions, while the rest are terrestrial solutions. Although the standard has now
reached maturity, there is still a large set of important research and development problems
to be addressed and resolved. At the time of writing research is already under way towards
identifying the fundamental challenges and issues in the field of the fourth generation broad-
band wireless communication systems, which are expected to provide further improvements
in terms of services, data rate, capacity, flexibility, power consumption and cost.

The new generation of mobile communication systems have to develop novel multiple-
access techniques, along with the associated coding, equalisation and compression technolo-
gies, in order to meet the requirements for a reliable and secure transfer of large volumes
of information at speeds commensurate with those of the fixed broadband networks. The
overall objective is an improved efficiency of information transfer per unit bandwidth, higher
protection against interference, efficient frequency re-use and channel allocation techniques,

along with a concomitant decrease in implementational cost.

1.1 Research Motivation

In order to cope with the expected traffic and service quality demands of mobile communi-
cations, further research into transceiver design is required. Our research will focus on the
equalisation aspects of dispersive fading mobile channels using neural network techniques
[6].

Artificial Neural Networks (ANN) draw their inspiration from the structure of the human
brain and from its functions. An ANN does not attempt to model faithfully the neuro-
biology of the human brain, but rather it employs the abstract notions of how the brain
function. One of the key characteristics of the brain is its ability to learn and adapt
appropriately to changing circumstances. Thus, for ANNs to learn from their environment,
they must adopt a training or learning algorithm. Here we embark on making use of
different ANN structures and their learning algorithms, which are applied to the wireless

communications field, employing neural network based channel equalisation. Our objective
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is to use new approaches from an ANN perpective, in order to improve the performance of
conventional channel equalisers.

Due to the scarcity and price of radio spectrum available for mobile services, spectral
efficiency is of primary concern for future mobile communication systems. The third gen-
eration system must accommodate a wide range of services and channel types, from pico-
to macro-cellular, supporting data rates up to 2 Mbits/s. In this respect, the challenge
is to provide a high transmission throughput, given the limited radio spectrum as well as
to maintain a certain target transmission quality. The system may adapt to a range of
factors related to both the channel and service quality, depending on whether speech, data
or multimedia services are concerned. Adaptation may apply to the modulation mode and
to the Forward Error Correction (FEC) coding scheme employed, among a range of other
potential system features. For example, we can adapt the modulation modes based on the
prevalent channel conditions, where a higher-order modulation mode is utilized, when the
channel quality is favourable. By contrast, when the channel quality is low, the transmission
integrity can be maintained by invoking a more robust modulation mode. In this treatise,
we will explore the implementation and performance of the neural network based equalisers
in a similar adaptive modulation mode based scheme.

In conjunction with equalisation, channel decoding can be employed in order to further
improve the performance of the communications system. Powerful error correction schemes
— such as turbo codes [7] — have been shown to yield performances close to Shannon’s per-
formance limits. Instead of performing the equalisation and decoding separately, higher
performance gains can be achieved by implementing the equalisation and decoding opera-
tions jointly and iteratively. This technique is also known as turbo equalisation and has
been shown to combat the effects of the channel-induced intersymbol interference success-
fully. Motivated by these trends, in this treatise we set out to amalgamate these powerful

performance enhancement techniques with neural network based equalisation.

1.2 Organisation of Thesis

Below, we present the layout of the thesis:

e In Chapter 2, we cast channel equalisation as a classification problem. We give a brief
overview of neural networks and present the design of some neural network based
equalisers. In this thesis, we choose to examine a neural network structure referred to
as the Radial Basis Function (RBF) network in more detail for channel equalisation,
since it has an equivalent structure to the so-called optimal Bayesian equalisation
solution [8]. The structure and properties of the RBF network are described, fol-

lowed by the implementation of a RBF network as an equaliser. We will discuss the
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computational complexity issues of the RBF equaliser with respect to that of con-
ventional linear equalisers and provide some complexity reduction methods. Finally,
performance comparisons between the RBF equaliser and the conventional equaliser

are given over various channel scenarios.

e Chapter 3 commences by summarising the concept of adaptive modulation that adapts
the modem mode according to the channel quality in order to maintain a certain target
bit error rate and an improved bits per symbol throughput performance. The RBF
based equaliser is introduced in a wideband Adaptive Quadrature Amplitude Mod-
ulation (AQAM) scheme in order to mitigate the effects of the dispersive multipath
fading channel. We introduce the short-term Bit Error Rate (BER) as the channel
quality measure. Lastly, a comparative study is conducted between the constituent
fixed mode, the conventional DFE based AQAM scheme and the RBF based AQAM

scheme in terms of their BER and throughput performance.

e In Chapter 4 we incorporate turbo channel coding in the proposed wideband AQAM
scheme. A novel reduced-complexity RBF equaliser utilizing the so-called Jacobian
logarithmic relationship [9] is proposed and the turbo-coded performance of the Ja-
cobian RBF equaliser is presented for the various fixed QAM modes. Furthermore,
we investigate using various channel quality measures — namely the short-term BER
and the average Log-Likelihood Ratio (LLR) magnitude of the data burst generated
either by the RBF equaliser or the turbo decoder — in order to control the modem

mode-switching regime for our adaptive scheme.

e Chapter 5 introduces the principles of iterative, joint equalisation and decoding tech-
niques known as turbo equalisation [10]. We present a novel turbo equalisation scheme,
which employs a RBF equaliser instead of the conventional trellis-based equaliser. The
structure and computational complexity of both the RBF equaliser and trellis-based
equaliser are compared and we characterise the performance of these RBF and trellis-
based turbo-equalisers. We then propose a reduced-complexity RBF assisted turbo
equaliser, which exploits the fact that the RBF equaliser computes its output on a
symbol-by-symbol basis and the symbols of the decoded transmission burst, which are

sufficiently reliable, need not be equalised in the next turbo equalisation iteration.
e Chapter 6 summarises our main findings and conclusions. Suggestions for future work
are also presented.
The novel contributions of the thesis are as follows:

e A wideband AQAM scheme was implemented with the aid of a RBF based equaliser.

The modem mode switching metric was based on the short-term BER of the equalised
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burst as estimated by the RBF equaliser. The short-term BER switching thresholds
were obtained by estimating the BER improvement/degradation upon switching to a

lower /higher order modulation mode [11, 12].

e Based on the approach often used in turbo codes, we proposed generating the output
of the RBF network in logarithmic form by invoking the so-called Jacobian logarithm
[13, 14], in order to reduce the computational complexity of the RBF equaliser. The
proposed RBF equaliser using the Jacobian logarithm was referred to as the Jacobian

logarithmic RBF equaliser [9].

e Turbo coding was incorporated into the wideband AQAM scheme, where Burst-by-
Burst (BbB) based decoding was achieved. The average burst LLR amplitude was
proposed as the channel quality measure. The performance of the RBF DFE assisted
BbB AQAM in conjunction with turbo coding was assessed using different modem
mode switching criteria — namely the short-term BER and the average burst LLR

magnitude before and after turbo channel decoding [9].

e We presented a novel turbo equalisation scheme, which employs a RBF equaliser
instead of the conventional trellis-based equaliser. The proposed turbo equaliser was
shown to achieve identical BER performance to the conventional turbo equaliser, while
incurring a lower complexity [15]. The computational complexity of the RBF turbo
equaliser was further reduced by refraining from feeding back those decoded symbols

which were deemed sufficiently reliable to the equaliser in the next iteration for further

iterative equalisation.

Having presented an overview of the thesis, let us now commence our discussions with a

brief overview of neural network based equalisation.



Chapter 2

Neural Network Based

Equalisation

In this chapter, we will give an overview of neural network based equalisation. Channel
equalisation can be viewed as a classification problem. The optimal solution to this classifi-
cation problem is inherently nonlinear. Hence we will discuss, how the nonlinear structure of
the artificial neural network can enhance the performance of conventional channel equalisers
and examine various neural network designs amenable to channel equalisation, such as the
so-called multilayer perceptron network [16, 17, 18, 19, 20], polynomial perceptron network
[21, 22, 23, 24] and radial basis function network [25, 26, 8, 27]. We will examine a neural
network structure referred to as the Radial Basis Function (RBF) network in detail in the
context of equalisation. As further reading, the contribution by Mulgrew [28] provides an
insightful briefing on applying RBF network for both channel equalisation and interference
rejection problems. Originally RBF networks were developed for the generic problem of
data interpolation in a multi-dimensional space [29, 30]. We will describe the RBF network
in general and motivate its application. Before we proceed, our forthcoming section will

describe the discrete time channel model inflicting intersymbol interference that will be used

throughout this thesis.

2.1 Discrete Time Model for Channels Exhibiting Intersym-

bol Interference

A band-limited channel that results in intersymbol interference (ISI) can be represented by

a discrete-time transversal filter having a transfer function of:

L
F(z) = faz™", (2.1)
n=0
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Figure 2.1: Equivalent discrete-time model of a channel exhibiting intersymbol interference
and experiencing additive white Gaussian noise

where f, is the nth impulse response tap of the channel and L + 1 is the length of the
channel impulse response (CIR). In this context, the channel represents the convolution of
the impulse responses of the transmitter filter, the transmission medium and the receiver
filter. In our discrete-time model discrete symbols I are transmitted to the receiver at a
rate of % symbols per second and the output vy at the receiver is also sampled at a rate of
% per second. Consequently, as depicted in Figure 2.1, the passage of the input sequence
{I;} through the channel results in the channel output sequence {vy} that can be expressed

as

L
Ve =Y fulp-n+m  —o00<k< oo, (2.2)

n=0
where {73} is a white Gaussian noise sequence with zero mean and variance 0727. The number
of interfering symbols contributing to the IST is L. In general, the sequences {vg}, {I;},
{n} and {f,} are complex-valued. Again, Figure 2.1 illustrates the model of the equivalent
discrete-time system corrupted by Additive White Gaussian Noise (AWGN).

2.2 Equalisation as a Classification Problem

In this section we will show that the characteristics of the transmitted sequence can be
exploited by capitalising on the finite state nature of the channel and by considering the
equalisation problem as a geometric classification problem. This approach was first ex-

pounded by Gibson, Siu and Cowan [17], who investigated utilizing nonlinear structures
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Figure 2.2: Linear m-tap equaliser schematic

offered by Neural Networks (NN) as channel equalisers.
We assume that the transmitted sequence is binary with equal probability of logical ones
and zeros in order to simplify the analysis. Referring to Equation 2.2 and using the notation

of Section 2.1, the symbol-spaced channel output is defined by

L
Vg — Z ntk—n + Mk
n=0
= T+ —o00 <k < oo, (2.3)

where {n;} is the additive Gaussian noise sequence, {f,}, n =0,1,..., L is the CIR, {I;}
is the channel input sequence and {0} is the noise-free channel output.

The mth order equaliser, as illustrated in Figure 2.2, has m taps as well as a delay of
T, and it produces an estimate Ii—, of the transmitted signal I_,. The delay 7 is due
to the precursor section of the CIR, since it is necessary to facilitate the causal operation
of the equaliser by supplying the past and future received samples, when generating the
delayed detected symbol I;,_.. Hence the required length of the decision delay is typically
the length of the CIR’s precursor section, since outside this interval the CIR is zero and
therefore the equaliser does not have to take into account any other received symbols. The
channel output observed by the linear mth order equaliser can be written in vectorial form
as

T
vi= o o1 o Ve | (2.4)
and hence we can say that the equaliser has an m-dimensional channel output observation

space. For a CIR of length L + 1, there are hence ny = 2X7™ possible combinations of the

binary channel input sequence
T
Iy = [ Iy Iyv oo Iymerpi1 } (2.5)

that produce n, = 2L+ different possible noise-free channel output vectors

- R T
Vk:[vk Vp—1 v ’l)k_m+1:i .
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The possible noise-free channel output vectors ¥y or particular points in the observation
space will be referred to as the desired channel states. Expounding further, we denote each
of the ny = 2X7™ possible combinations of the channel input sequence I, of length L +m
symbols as s;,1 <4 < ny = 2L where the channel input state s; determines the desired

channel output state r;, i = 1,2,...,n, = 2™, This is formulated as:

Vi =TI ifIk:Si, i=l,2,...,n5. (27)

The desired channel output states can be partitioned into two classes according to the

binary value of the transmitted symbol I, as seen below:
Virr = {Vll—r = +1},
Vir = {Fllier = -1}, (28)
and
=V UV (2.9)
We can denote the desired channel output states according to these two classes as follows:

+ + — +
r €V, 1=1,2,...,n,,

r; €V, i=12...,n;, (2.10)

where the quantities n and n; represent the number of channel states rj and r; in the

set V+ and V., _, respectively.
The relationship between the transmitted symbol I, and the channel output v can also

be written in a compact form as:
vi = Fly+ny

= i+, (2.11)

where 7, is an m-component vector that represents the AWGN sequence, ¥ is the noise-free

channel output vector and F is an m x (m + L) CIR-related matrix in the form of:

[ fo £ ... o |
. 0 Jfo R P T 0 , (2.12)
0 0 fo ..o S fr |

with fj,7 =0,..., L being the CIR taps.
Below we demonstrate the concept of finite channel states in a two-dimensional output
observation space (m = 2) using a simple two-coefficient channel (L = 1), assumming the

CIR of:
F(z) =1+0.5z"L. (2.13)
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0 1 05| Vi = [ﬁk Ug—1 JT and I = [ I, Iy I» }T_ All the

1 05 0 } i
possible combinations of the transmitted binary symbol I, and the noiseless channel outputs

Thus, F = {

Uk, Up_1, are listed in Table 2.1.

Iy Iy Iyo| U Op—1
-1 -1 -1 -1.5 -1.5
-1 -1 +1 -1.5 -0.5
-1 -+1 -1 0.5 +0.5
-1 +1 +1 0.5 +1.5
+1 -1 -1 +0.5 -1.5
+1 -1 +1 | +0.5 -0.5
+1 1 -1 +1.5 +0.5
+1 41 +1 | +1.5 +1.5

Table 2.1: Transmitted signal and noiseless channel states for the CIR of F/(z) = 1 +0.527"
and an equaliser order of m = 2.

Figure 2.3 shows the 8 possible noiseless channel states v, for a BPSK modem and the
noisy channel output v in the presence of zero mean AWGN with variance 072, =0.05. It is
seen that the observation vector v forms clusters and the centroids of these clusters are the
noiseless channel states r;. The equalisation problem hence involves identifying the regions
within the observation space spanned by the noisy channel output vy that correspond to
the transmitted symbol of either Iy = +1 or I = —1.

A linear equaliser performs the classification in conjunction with a decision device, which
is often a simple sign function. The decision boundary, as seen in Figure 2.3, is constituted
by the locus of all values of vi, where the output of the linear equaliser is zero as it is
demonstrated below. For example, for a two tap linear equaliser having tap coefficients ¢;

and cg, at the decision boundary we have:

vpC) + Vp1ca =0 (2.14)
and
c
Vpo1 = — (= )k (2.15)
C2

gives a straight line decision boundary as shown in Figure 2.3, which divides the observation
space into two regions corresponding to Iy = +1 and I, = —1. In general, the linear
equaliser can only implement a hyperplane decision boundary, which in our two-dimensional
example was constituted by a line. This is clearly a non-optimum classification strategy, as
our forthcoming geometric visualisation will highlight. For example, we can see in Figure 2.3

that the point v = [ 0.5 —0.5 } associated with the I, = +1 decision is closer to the
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Figure 2.3: The noiseless BPSK-related channel states vx = r; and the noisy channel

outputs vi of a Gaussian channel having a CIR of F(z) = 1 + 0.527! in a two-dimensional
observation space. The noise variance 0727 = (.05, the number of noisy received v; samples
output by the channel and input to the equaliser is 2000 and the decision delay is 7 = 0.
The linear decision boundary separates the noisy received v clusters that correspond to
Iy = +1 from those that correspond to [, _, = —1.
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decision boundary than the point v = [ —-1.5 —0.5 ] associated with the I, = —1 decision.
Therefore, in the presence of noise, there is a higher probability of the channel output centred

at point v = [ 0.5 -0.5 ] to be wrongly detected as Iy = —1, than that of the channel

output centred around v = [ —-1.5 -0.5 } being incorrectly detected as Iy = +1. Gibson
et. al. [17] have shown examples of linearly non-separable channels, when the decision
delay is zero and the channel is of non-minimum phase nature. The linear separability of
the channel depends on the equaliser order, m, on the delay 7 and in situations where the
channel characteristics are time varying, it may not be possible to specify values of m and
7, which will guarantee linear separability.

According to Chen, Gibson and Cowan [21], the above shortcomings of the linear equaliser
are circumvented by a Bayesian approach [31] to obtaining an optimal equalisation solution.
In this spirit, for an observed channel output vector vy, if the probability that it was caused
by I_, = +1 exceeds the probability that it was caused by I_, = —1, then we should
decide in favour of +1 and vice versa. Thus, the optimal Bayesian equaliser solution is
defined as [21]:

~ 1 if fBayes >
Iy = sgn(fBayes(vk)) = * ' fB v (Vk) ’ (2'16)
-1 if fBayes (vk) <0,

where the optimal Bayesian decision function fpayes(:), based on the difference of the asso-

ciated conditional density functions is given by [8]:
fBayes(Vk) = P(Vk[fkw'r = +1) — P(Vkllk——’r — _1)

n;*' ng
= > piplvi—tf) = pyp(vi —17), (2.17)
3=1 j=1

where p;r and p; is the a priori probability of appearance of each desired state r;r € VTZ, -
and r; € V,, ., respectively and p(-) denotes the associated probability density function.
The quantities n} and n; represent the number of desired channel states in Vi - and V.5 ,
respectively, which are defined implicitly in Figure 2.3. If the noise distribution is Gaussian,

Equation 2.17 can be rewritten as:

ni
FBayes(Ve) = > p(2mo2) ™ 2eap(~|vi — 7 |*/207)
=1
— 3" p5 (@ro?) ™ eap(—||vi, — 15 |2/202). (2.18)
J=1

Again, the optimal decision boundary is the locus of all values of v, where the probability

Ip_; = +1 given a value vy is equal to the probability I;_, = —1 for the same vy.
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In general, the optimal Bayesian decision boundary is a hyper-surface, rather than just
a hyper-plane in the m-dimensional observation space and the realisation of this nonlinear
boundary requires a nonlinear decision capability. Neural networks provide this capability
and the following section will discuss the various neural network structures that have been
investigated in the context of channel equalisation, while also highlighting the learning

algorithms used.

2.3 Introduction to Neural Networks

2.3.1 Biological and Artificial Neurons

( 1 O .
. Activation
: ) function
Inputs z; FO Y
Terminal S .
e : /
/' F Uk :
a Synaptic
weights
(inc. bias)
(a) Anatomy of a typical biological
neuron, from Kandel [32] (b) An artificial neuron (jth-neuron)

Figure 2.4: Comparison between biological and artificial neurons

The human brain consists of a dense interconnection of simple computational elements
referred to as neurons. Figure 2.4(a) shows a network of biological neurons. As seen in
the figure, the neuron consists of a cell body — which provides the information-processing
functions — and of the so-called axon with its terminal fibres. The dendrites seen in the
figure are the neuron’s ‘inputs’, receiving signals from other neurons. These input signals
may cause the neuron to fire, i.e. to produce a rapid, short-term change in the potential
difference across the cell’s membrane. Input signals to the cell may be excitatory, increasing

the chances of neuron firing, or inhibitory, decreasing these chances. The axon is the
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neuron’s transmission line that conducts the potential difference away from the cell body
towards the terminal fibres. This process produces the so-called synapses, which form either
excitatory or inhibitory connections to the dendrites of other neurons, thereby forming a
neural network. Synapses mediate the interactions between neurons and enable the nervous
system to adapt and react to its surrounding environment.

In Artificial Neural Networks (ANN), which mimic the operation of biological neural net-
works, the processing elements are artificial neurons and their signal processing properties
are loosely based on those of biological neurons. Referring to Figure 2.4(b), the jth-neuron
has a set of I synapses or connection links. Each link is characterized by a synaptic weight
wij, = 1,2,...,1. The weight w;; is positive, if the associated synapse is excitatory and it
is negative, if the synapse is inhibitory. Thus, signal z; at the input of synapse %, connected
to neuron j, is multiplied by the synaptic weight w;;. These synaptic weights that store
‘knowledge’ and provide connectivity, are adapted during the learning process.

The weighted input signals of the neuron are summed up by an adder. If this summation
exceeds a so-called firing threshold 6}, then the neuron fires and issues an output. Otherwise
it remains inactive. In Figure 2.4(b) the effect of the firing threshold 6; is represented by
a bias, arising from an input which is always ‘on’, corresponding to zo = 1, and weighted
by woj = —6; = b;. The importance of this is that the bias can be treated as just another
weight. Hence, if we have a training algorithm for finding an approriate set of weights for
a network of neurons, designed to perform a certain function, we do not need to consider
the biases separately.

The activation function f(-) of Figure 2.5 limits the amplitude of the neuron’s output to
some permissible range and provides nonlinearities. Haykin [6] identifies three basic types

of activation functions:

1. Threshold Function. For the threshold function shown in Figure 2.5(a), we have

1 ifv>0
= = . 2.19
/() { 0 ifv<0 ( )

Neurons using this activation function are referred to in the literature as the McCulloch-
Pitts model [6]. In this model, the output of the neuron gives the value of 1 if the

total internal activity level of that neuron is nonnegative and 0 otherwise.

2. Piecewise-Linear Function. This neural activation function, portrayed in Figure 2.5(b),
is represented mathematically by:
1, v>1
fwW=< v, —1>v>1, (2.20)
-1, v< -1
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Figure 2.5: Various neural activation functions f(v)

where the amplification factor inside the linear region is assumed to be unity. This

activation function approximates a nonlinear amplifier.

3. Sigmoid Function. A commonly used neural activation function in the construction of
artificial neural networks is the sigmoid activation function. It is defined as a strictly
increasing function that exhibits smoothness and asymptotic properties, as seen in
Figure 2.5(c). An example of the sigmoid function is the hyperbolic tangent function,
which is shown in Figure 2.5(c) and it is defined by [6]:

1—-ezp(—v
fv) = 1= eap(-v) (2.21)
1 + exp(—wv)
This activation function is differentiable, which is an important feature in neural

network theory [6].
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The model of the jth artificial neuron, shown in Figure 2.4(b) can be described in math-

ematical terms by the following pair of equations:

y; = f(vg), (2.22)
where:
I
U5 = Zwijxi. (2.23)
i=0

Having introduced the basic elements of neural networks, we will focus next on the as-
sociated network structures or architectures. The different neural network structures yield

different functionalities and capabilities. The basic structures will be described in the fol-

lowing section.

2.3.2 Neural Network Architectures

The network’s architecture defines the neurons’ arrangement in the network. Various neural
network architectures have been investigated for different applications, including for exam-
ple channel equalisation. Distinguishing the different structures can assist us in their design,
analysis and implementation.We can identify three different classes of network architectures,

which are the subjects of our forthcoming deliberations.

n
input output h
layer layer input hidden output
layer layer layer
(a) Single-Layer  Perceptron
(SLP) (b) Multi-Layer Perceptron (MLP)

Figure 2.6: Layered feedforward networks

The so-called layered feedforward networks of Figure 2.6 exhibit a layered structure, where

all connection paths are directed from the input to the output, with no feedback. This



CHAPTER 2. NEURAL NETWORK BASED EQUALISATION 17

implies that these networks are unconditionally stable. Typically, the neurons in each layer
of the network have only the output signals of the preceding layer as their inputs.

Two types of layered feedforward networks are often invoked, in order to introduce neural

networks, namely the
e Single-Layer Perceptrons (SLP) which have a single layer of neurons.
o Multi-Layer Perceptrons (MLP) which have multiple layers of neurons.

Again, these structures are shown in Figure 2.6. The MLP distinguishes itself from the SLP
by the presence of one or more hidden layers of neurons. Figure 2.6(b) illustrates the layout
of a MLP having a single hidden layer. It is referred to as a p-h-g network, since it has
p source nodes, h hidden neurons and ¢ neurons in the output layer. Similarly, a layered
feedforward network having p source nodes, h; neurons in the first hidden layer, hy neurons
in the second hidden layer, h3 neurons in the third layer and ¢ neurons in the output layer
is referred to as a p-hi-ho-hz-g network. If the SLP has a differentiable activation function,
such as the sigmoid function given in Equation 2.21, the network can learn by optimizing
its weights using a variety of gradient-based optimization algorithms, such as the gradient
descent method, described briefly in Appendix A. The interested reader can refer to the
monograph by Bishop [33] for further gradient-based optimization algorithms used to train
neural networks.

The addition of hidden layers of nonlinear nodes in MLP networks enables them to
extract or learn nonlinear relationships or dependencies from the data, thus overcoming
the restriction that SLP networks can only act as linear discriminators. Note that the
capabilities of MLPs stem from the nonlinearities used within neurons. If the neurons
of the MLP were linear elements, then a SLP network with appropriately chosen weights
could carry out exactly the same calculations, as those performed by any MLP network.
The downside of employing MLPs however, is that their complex connectivity renders them
more implementationally complex and they need nonlinear training algorithms. The so-
called error back propagation algorithm popularized in the contribution by Rumelhart ef.
al. [34, 35] is regarded as the standard algorithm for training MLP networks, against which
other learning algorithms are often benchmarked [6].

Having considered the family of layered feedforward networks we note that a so-called
recurrent neural network [6] distinguishes itself from a layered feedforward network by
having at least one feedback loop.

Lastly, lattice structured neural networks [6] consist of networks of a one-dimensional,
two-dimensional or higher-dimensional array of neurons. The lattice network can be viewed

as a feedforward network with the output neurons arranged in rows and columns. For
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Figure 2.7 Two-dimensional lattice of 3-by-3 neurons
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example, Figure 2.7 shows a two-dimensional lattice of 3-by-3 neurons fed from a layer of 3
source nodes.

Neural network models are specified by the nodes’ characteristics, by the network topol-
ogy, and by their training or learning rules, which set and adapt the network weights
appropriately, in order to improve performance. Both the associated design procedures and
training rules are the topic of much current research [36]. The above rudimentary notes only
give a brief and basic introduction to neural network models. For a deeper introduction
to other neural network topologies and learning algorithms, please refer for example to the
review by Lippmann [37]. Let us now provide a rudimentary overview of the associated

equalisation concepts in the following section.

2.4 Equalisation Using Neural Networks

A few of the neural network architectures that have been investigated in the context of
channel equalisation are the so-called Multilayer Perceptron (MLP) advocated by Gibson,
Siu and Cowan [16, 17, 18, 19, 20], as well as the Polynomial-Perceptron (PP) studied by
Chen, Gibson, Cowan, Chang, Wei, Xiang, Bi, L.-Ngoc et. al. [21, 22, 23, 24]. Furthermore,
the RBF was investigated by Chen, McLaughlin, Mulgrew, Gibson, Cowan, Grant et. al.
[25, 26, 8, 27], the recurrent network [38] was proposed by C.-Sueiro, A.-Rodriguez and
F.-Vidal, the Functional Link (FL) technique was introduced by Gan, Hussain, Soraghan
and Durrani [39, 40, 41] and the Self-Organizing Map (SOM) was proposed by Kohonen et.
al. [42].

Various neural network based equalisers have also been implemented and investigated for
transmission over satellite mobile channels [43, 44, 45]. The following section will present

and summarise some of the neural network based equalisers found in literature. We will
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investigate the RBF structure in the context of equalisation in more detail during our later

discourse in the next few sections.

2.5 Multilayer Perceptron Based Equaliser

Vk—m+1

Vg

Input layer

Hidden layer 1

Hidden layer 2

Qutput layer

Figure 2.8: Multilayer perceptron model of the m-tap equaliser of Figure 2.2

Multilayer perceptrons (MLPs), which have three layers of neurons, i.e. two hidden
layers and one output layer, are capable of forming any desired decision region for example
in the context of modems, which was noted by Gibson and Cowan [46]. This property
renders them attractive as nonlinear equalisers. The structure of a MLP network has been
described in Section 2.3.2 as a layered feedforward network. As an equaliser, the input of
the MLP network is the sequence of the received signal samples {v;} and the network has a
single output, which gives the estimated transmitted symbol I._,, as shown in Figure 2.8.

Figure 2.8 shows the m — hy — hg — 1 MLP network as an equaliser. Referring to Figure 2.9,

(1-1)
Yhia

Figure 2.9: The jth neuron in the mth layer of the MLP



CHAPTER 2. NEURAL NETWORK BASED EQUALISATION 20

the jth neuron (j = 1,..., A;) in the [th layer (I = 0,1, 2,3, where the Oth layer is the input

layer and the third layer is the output layer) accepts inputs v(=1) = [vgl'“l) e v,(lllj)]T from

the (I — 1)th layer and returns a scalar v]@ given by

hi—1
=Wy =1 1=0,1,2,3, (2.24)
=1

where hy = m is the number of nodes at the input layer, which is equivalent to the equaliser
order and hs is the number of neurons at the output layer, which is one according to
Figure 2.8. The output value vj(l) serves as an input to the (I + 1)th layer. Since the
transmitted binary symbol taken from the set {+1,-1} has a bipolar nature, the sigmoid
type activation function f(-) of Equation 2.21 is chosen to provide an output in the range
of [-1,+1], as shown in Figure 2.5(c). The MLP equaliser can be trained adaptively by the
so-called error back propagation algorithm described for example by Rumelhart, Hinton
and Williams [34].

The major difficulty associated with the MLP is that training or determining the required
weights is essentially a nonlinear optimisation problem. The mean squared error surface
corresponding to the optimisation criterion is multi-modal, implying that the mean squared
error surface has local minima as well as a global minimum. Hence it is extremely diffi-
cult to design gradient type algorithms, which guarantee finding the global error minimum
corresponding to the optimum equaliser coefficients under all input signal conditions. The
error back propagation algorithm to be introduced during our further discourse does not
guarantee convergence, since the gradient descent might be trapped in a local minimum
of the error surface. Furthermore, due to the MLP’s typically complicated error surface,
the MLP equaliser using the error back propagation algorithm has a slower convergence
rate than the conventional adaptive equaliser using the Least Mean Square (LMS) algo-
rithm described in Appendix A. This was illustrated for example by Siu et al. [20] using
experimental results. The introduction of the so-called momentum term was suggested by
Rumelhart et al. [35] for the adaptive algorithm to improve the convergence rate. The idea
is based on sustaining the weight change moving in the same direction with a momentum’
to assist the back propagation algorithm in moving out of a local minimum. Nevertheless,
it is still possible that the adaptive algorithm may become trapped at local minima. Fur-
thermore, the above-mentioned momentum term may cause oscillatory behaviour close to a
local or global minimum. Interested readers may wish to refer to the excellent monograph
by Haykin [6] that discusses the virtues and limitations of the error back propagation algo-
rithm invoked to train the MLP network, highlighting also various methods for improving
its performance. Another disadvantage of the MLP equaliser with respect to conventional

equaliser schemes is that the MLP design incorporates a three-layer perceptron structure,
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Figure 2.10: Multilayer perceptron equaliser with decision feedback

which is considerably more complex.
Siu et al. [20] incorporated decision feedback into the MLP structure, as shown in Fig-

ure 2.10 with a feedforward order of m and a feedback order of n. The authors provided
simulation results for binary modulation over a dispersive Gaussian channel, having an im-
pulse response of F(z) = 0.3482 + 0.8704z~! + 0.3482z2. Their simulations show that the
MLP DFE structure offers superior performance in comparison to the LMS DFE structure.
They also provided a comparative study between the MLP equaliser with and without feed-
back. The performance of the MLP equaliser was improved by about 5dB at a BER of 1074
relative to the MLP without decision feedback and having the same number of input nodes.
Siu, Gibson and Cowan also demonstrated that the performance degradation due to decision
errors is less dramatic for the MLP based DFE, when compared to the conventional LMS
DFE, especially at poor signal-to-noise ratio (SNR) conditions. Their simulations showed
that the MLP DFE structure is less sensitive to learning gain variation and it is capable
of converging to a lower mean square error value. Despite providing considerable perfor-
mance improvements, MLP equalisers are still problematic in terms of their convergence

performance and due to their more complex structure relative to conventional equalisers.
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2.6 Polynomial Perceptron Based Equaliser

The so-called PP or Volterra series structure was proposed for channel equalisation by Chen,
Gibson and Cowan [21]. The PP equaliser has a simpler structure and a lower computational
complexity, than the MLP structure, which makes it more attractive for equalisation. A
perceptron structure is employed, combined with polynomial approximation techniques, in
order to approximate the optimal nonlinear equalisation solution. The design is justified
by the so-called Stone- Weierstrass theorem [47], which states that any continuous function
can be approximated within an arbitrary accuracy by a polynomial of a sufficiently high
order. The model of the PP was investigated in detail by Xiang et al. [24]. The nonlinear
equaliser is constructed according to [21]:

m-—1 m-1

m—1
fo(ve) = z Ciy Vk—iy T Z z CiyigVk—iy Vk—ip T -

i1=0 11=0142=11

m~—1 m—1
+ § cee E Ciy ..y Vk—iy - - - Vk—ips

=0 4=i

_ iw“ (2.25)

i=0
fee(vi) = f(fp(vi)), (2.26)
Ii—r = sgn[fep(vi)), (2.27)

where [ is the polynomial order, m is the equaliser order, z; ; are the so-called monomials
(polynomial with a single power term) corresponding to the power terms of the equalizer
inputs from vg_;, t0 vg_j, ... Vk—j, w; are the corresponding polynomial coeflicients c¢;;
to ¢y, and n is the number of terms in the polynomial. Here, the term w; and z;k
of Equation 2.25 correspond to the synaptic weights and inputs of the perceptron/neuron
described in Figure 2.4(b), respectively.

The function f,(vy) in Equation 2.26 is the polynomial that approximates the Bayesian
decision function fpayes(vi) of Equation 2.17 and the function fpp(vy) in Equation 2.26
is the PP decision function. The activation function of the perceptron f(-) is the sigmoid
function given by Equation 2.21. The reasons for applying the sigmoidal function were
highlighted by Chen, Gibson and Cowan [21], which are briefly highlighted below. In
theory the number of terms in Equation 2.25 can be infinite. However, in practice only a
finite number of terms can be implemented, which has to be sufficiently high to achieve a
low received signal mis-classification probability, i.e. a low decision error probability. The
introduction of the sigmoidal activation function f(z) is necessary, since it allows a moderate
polynomial degree to be used, while having an acceptable level of mis-classification of the

equaliser input vector corresponding to the transmitted symbols. This was demonstrated
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by Chen et. al. [21] using a simple classifier example. Chen et. al. [21] reported that
a polynomial degree of [ = 3 or 5 was sufficient with the introduction of the sigmoidal
activation function judging from their simulation results for the experimental circumstances
stipulated.

From a conceptual point of view, the PP structure expands the input space of the
equaliser, which is defined by the dimensionality of {v4}, into an extended nonlinear space

and then employs a neuron element in this space. Consider a simple polynomial perceptron

— 21 U

Y

[1  Input layer

C111

Output layer

Figure 2.11: Polynomial perceptron equaliser using an equaliser order of m = 2 and poly-
nomial order of [ = 3

based equaliser, where the equaliser order is m = 2 and the polynomial order is [ = 3. Then

the polynomial decision function is given by:

2
fep(vi) = flcovk + c1up—1 + coovi + Co1vkVE—1 + C11V5—1 +

3 2 2 3
Co00Vy + Co01VEVE—1 + Co11VkVE—1 + Clll'Uk_l)- (2.28)

The structure of the equaliser defined by Equation 2.28 is illustrated in Figure 2.11. The
simulation results of Chen ef. al. [21] using binary modulation show close agreement with
the bit error rate performance of the MLP equaliser. However, the training of the PP
equaliser is much easier compared to the MLP equaliser, since only a single-layer percep-

tron is involved in the PP equaliser. The nonlinearity of the sigmoidal activation function
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introduces local minima to the error surface of the otherwise linear perceptron structure.
Thus, the stochastic gradient algorithm [34, 35] assisted by the previously mentioned mo-
mentum term [35] can be invoked in their scheme in order to adaptively train the equaliser.
The decision feedback structure of Figure 2.10 can be incorporated into Chen’s design [21]
in order to further improve the performance of the equaliser.

The PP equaliser is attractive, since it has a simpler structure than that of the MLP. The
PP equaliser also has a multi-modal error surface — exhibiting a number of local minima and
a global minimum — and thus still retains some problems associated with its convergence
performance, although not as grave as the MLP structure. Another drawback is that
the number of terms in the polynomial of Equation 2.25 increases exponentially with the
polynomial order [ and with the equaliser order m, resulting in an exponential increase of

the associated computational complexity.

2.7 Radial Basis Function Networks

2.7.1 Introduction

Input Layer Hidden Layer Output Layer

Figure 2.12: Architecture of a radial basis function network

In this section, we will introduce the concept of the so-called Radial Basis Function (RBF)
networks and highlight their architecture. The RBF network [6] consists of three different
layers, as shown in Figure 2.12. The input layer is constituted by p source nodes. A set of
M nonlinear activation functions ¢;,7 = 1,..., M, constitutes the hidden second layer. The
output of the network is provided by the third layer, which is comprised of output nodes.
Figure 2.12 shows only one output node, in order to simplify our analysis. This construction
is based on the basic neural network design. As suggested by the terminology, the activation
functions in the hidden layer take the form of radial basis functions [6]. Radial functions are

characterized by their responses that decrease or increase monotonically with distance from
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Figure 2.13: Gaussian radial basis function described by Equation 2.30 with centre ¢; = 0
and spread of 207 = 1.

a central point, ¢, i.e. as the Euclidean norm ||x — c|| is increased, where x = [z1 72 ... zp]”
is the input vector of the RBF network. The central points in the vector ¢ are often referred

to as the RBF centres. Therefore, the radial basis functions take the form
(pl(x) = (p(”X - Ci”), 1=0,...,M, (229)

where M is the number of independent basis functions in the RBF network. This justifies

the 'radial’ terminology. A typical radial function is the Gaussian function which assumes

the form:

D)
20;

vi(x) = exp (—M), 1=0,...,M, (2.30)
where 20’? is representative of the ’spread’ of the Gaussian function that controls the radius
of influence of each basis function. Figure 2.13 illustrates a Gaussian RBF, in the case of a
scalar input, having a scalar centre of ¢ = 0 and a spread or width of 202-2 = 1. Gaussian-like
RBFs are localized , i.e. they give a significant response only in the vicinity of the centre
and ¢(z) — 0 as z — oo . As well as being localized, Gaussian basis functions have a
number of useful analytical properties, which will be highlighted in our following discourse.

Referring to Figure 2.12, the RBF network can be represented mathematically as follows:
M

F(x) = wips(x). (2.31)
3=0

The bias b in Figure 2.12 is absorbed into the summation as wg by including an extra basis

function g, whose activation function is set to 1. Bishop [33] gave an insight into the
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role of the bias wo when the network is trained by minimizing the sum-of-squared error
between the RBF network output vector and the desired output vector. The bias is found
to compensate for the difference between the mean of the RBF network output vector and
the corresponding mean of the target data evaluated over the training data set.

Note that the relationship between the RBF network and the Bayesian equalisation solu-
tion expressed in Equation 2.18, can be given explicitly. The RBF network’s bias is set to
b= wp = 0. The RBF centres ¢;,i = 1,..., M, are in fact the noise-free dispersion-induced
channel output vectors r;,4 = 1,...,ns indicated by circles and crosses, respectively, in
Figure 2.3 and the number of hidden nodes M of Figure 2.12 corresponds to the number
of desired channel output vectors, ng, i.e. M = n,. The RBF weights w;,i =1,...,M, are
all known from Equation 2.18 and they correspond to the scaling factors of the conditional
probability density functions in Equation 2.18. Section 2.9.1 will provide further exposure
to these issues.

Having described briefly the RBF network architecture, the next few sections will present
its design in detail and also motivate its employment from the point of view of classification
problems, interpolation theory and regularization. The design of the hidden layer of the
RBF is justified by Cover’s Theorem [48] which will be described in Section 2.7.2. In Sec-
tion 2.7.3, we consider the so-called interpolation problem in the context of RBF networks.
Then, we discuss the implications of sparse and noisy training data in Section 2.7.4. The
solution to the problem of using regularization theory is also presented there. Lastly, in

Section 2.7.5, the generalized RBF network is described, which concludes this section.

2.7.2 Cover’s Theorem

The design of the radial basis function network is based on a curve-fitting (approzimation)
problem in a high-dimensional space, a concept, which was augmented for example by
Haykin [6]. Specifically, the RBF network solves a complex pattern-classification problem,
such as the one described in Section 2.2 in the context of Figure 2.3 for equalisation, by first
transforming the problem into a high-dimensional space in a nonlinear manner and then
by finding a surface in this multi-dimensional space that best fits the training data, as it
will be explained below. The underlying justification for doing so is provided by Cover’s

theorem on the separability of patterns, which states that [48]:

a complex pattern-classification problem non-linearly cast in a high-dimensional
space is more likely to become linearly separable, than in a low-dimensional

space.

We commence our discourse by highlighting the pattern-classification problem. Consider

a surface that separates the space of the noisy channel outputs of Figure 2.3 into two
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separating surface

Figure 2.14: Pattern-classification into two dimensions, where the patterns are linearly
non-separable, since a line cannot separate all the X* and X~ values, but the non-linear
separating surface can — hence the term nonlinearly separable

regions or classes. Let X denote a set of N patterns or points x1,x2,...,Xy, each of which
is assigned to one of two classes, namely X+ and X~. This dichotomy or binary partition
of the points with respect to a surface becomes successful, if the surface separates the
points belonging to the class X+ from those in the class X ~. Thus, to solve the pattern-
classification problem, we need to provide this separating surface that gives the decision
boundary, as shown in Figure 2.14.

We will now non-linearly cast the problem of separating the channel outputs into a high-
dimensional space by introducing a vector constituted by a set of real-valued functions

©i(x), where 1 = 1,2,..., M, for each input pattern x € X, as follows:
e(x) = [p1(x) p2(x) .. pur()]", (2.32)

where pattern x is a vector in a p-dimensional space and M is the number of real-valued
functions. Recall that in our approach M is the number of possible channel output vectors
for Bayesian equalisation solution. The vector ¢(x) maps points of x from the p-dimensional
input space into corresponding points in a new space of dimension M, where p < M. The
function ¢;(x) of Figure 2.12 is referred to as a hidden function, which plays a role similar to
a hidden unit in a feedforward neural network, such as that in Figure 2.6(b). A dichotomy
XT,X~ of X is said to be p-separable, if there exists an M-dimensional vector w, such

that for the scalar product w’'y(x) we may write

wlpx)>0, ifxeXT (2.33)

and

wlip(x) <0, ifxec X™. (2.34)

The hypersurface defined by the equation
wlp(x) =0 (2.35)
describes the separating surface in the ¢ space. The inverse image of this hypersurface is

{x:wle(x) =0}, (2.36)
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which defines the separating surface in the input space.

Below we give a simple example in order to visualise the concept of Cover’s theorem in
the context of the separability of patterns. Let us consider the XOR problem of Table 2.2,
which is not linearly separable since the XOR = 0 and XOR = 1 points of Figure 2.15(a)

cannot be separated by a line. The XOR problem is transformed into a linearly separable

Iy €9 XOR

- OO
= O e O
O e O

Table 2.2: XOR truth table

problem by casting it from a two-dimensional input space into a three-dimensional space

T T
by the function ¢(x), where x = [ T1 Iy ] and ¢ = [ w1 @y V3 ] The hidden
functions of Figure 2.12 are given in our example by:
pi1(x) = =1, (2.37)
p2(x) = o, (2.38)
p3(x) = @122 (2.39)

The higher-dimensional p-inputs and the desired XOR output are shown in Table 2.3.

01 2 w3 | XOR
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 2.3: XOR truth table with inputs of ¢1, @2 and 3.

Figure 2.15(b) illustrates, how the higher-dimensional XOR problem can be solved with
the aid of a linear separating surface. Note that ¢;,7 = 1,2, 3 given in the above example
are not of the radial basis function type described in Equation 2.29. They are invoked as a
simple example to demonstrate the general concept of Cover’s theorem.

Generally, we can find a non-linear mapping ¢(x) of sufficiently high dimension M, such
that we have linear separability in the ¢-space. It should be stressed, however that in some
cases the use of nonlinear mapping may be sufficient to produce linear separability without

having to increase the dimensionality of the hidden unit space [6].



CHAPTER 2. NEURAL NETWORK BASED EQUALISATION 29

©3

L2 )\ o(1,1,1)

Decision
hyperplane

I (0,1) o{1,1)

©
(0,0) (1,0) ¢1
o——— g1
(a) XOR problem, (b) XOR problem mapped to the three-
which is not linearly dimensional space by the function ¢(x). The
separable. mapped XOR problem is linearly separable.

Figure 2.15: The XOR problem solved by ¢(x) mapping. Bold dots represent XOR = 1,
while hollow dots correspond to XOR = 0.

2.7.3 Interpolation Theory

From the previous section, we note that the RBF network can be used to solve a nonlinearly
separable classification problem. In this section, we highlight the use of the RBF network
for performing ezact interpolation of a set of data points in a multi-dimensional space.
The exact interpolation problem requires every input vector to be mapped exactly onto the
corresponding target vector, and forms a convenient starting point for our discussion of RBF
networks. In the context of channel equalisation we could view the problem as attempting
to map the channel output vector of Equation 2.4 to the corresponding transmitted symbol.

Consider a feedforward network with an input layer having p inputs, a single hidden
layer and an output layer with a single output node. The network of Figure 2.12 performs a
nonlinear mapping from the input space to the hidden space, followed by a linear mapping
from the hidden space to the output space. Overall, the network represents a mapping from

the p-dimensional input space to the one-dimensional output space, written as
s:RP = R, (2.40)

where the mapping s is described by a continuous hypersurface I' C RP*1. The continuous
surface I' is a multi-dimensional plot of the output as a function of the input. Figure 2.16
illustrates the mapping F'(z) from a single-dimensional input space z to a single-dimensional
output space and the surface I'. Again, in the case of an equaliser, the mapping surface I
maps the channel output to the transmitted symbol.

In practical situations, the continuous surface I' is unknown and the training data might
be contaminated by noise. The network undergoes a so-called learning process, in order

to find the specific surface in the multi-dimensional space that provides the best fit to the
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F(x)

\
'surface’ T

®  training data

——— interpolation

Figure 2.16: Stylised exact interpolation between the known input-output pairs by the
continuous surface T’

training data d; where 7 = 1,2,..., N. The ‘best fit’ surface is then used to interpolate
the test data or for the specific case of an equaliser, the estimated transmitted symbol.
Formally, the learning process can be categorized into two phases, the training phase and
the generalisation phase. During the training phase, the fitting procedure for the surface
T is optimised based on N known data points presented to the neural network in the
form of input-output pairs [x;,d;],i = 1,2,... N. The generalization phase constitutes
the interpolation between the data points, where the interpolation is performed along the
constrained surface generated by the fitting procedure, as the optimum approximation to
the true surface I".

Thus, we are led to the theory of multivariable interpolation in high-dimensional spaces.
Assuming a single-dimensional output space, the interpolation problem can be stated as

follows:

Given a set of N different points x; € RP,7 = 1,2,..., N, in the p-dimensional
input space and a corresponding set of N real numbers d; € R',i = 1,2,..., N,
in the one-dimensional output space, find a function F' : RP — R! that satisfies

the interpolation condition:
F(Xi):di, ’i:1,2,...,N, (2-41)

implying that for ¢ = 1,2,..., N the function F(x) interpolates between the values d;. Note
that for exact interpolation, the interpolating surface is constrained to pass through all the

training data points x;. The RBF technique is constituted by choosing a function F(z)
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that obeys the following form:
N
F(x) =Y wip(llx — xil]), (2.42)
=1

where ¢;(x) = ¢(l|lx — x;]]),i = 1,2,...,N, is a set of N nonlinear functions, known as
the radial basis function, and |.|]| denotes the distance norm that is usually taken to be
Euclidean. The known training data points x; € RP,i = 1,2, ..., N constitute the centroids
of the radial basis functions. The unknown coefficients w; represent the weights of the RBF
network of Figure 2.12. In order to link Equation 2.42 with Equation 2.31 we note that
the number of radial basis functions M is now set to the number of training data points NV
and the RBF centres ¢; of Equation 2.29 are equivalent to the training data points x;, i.e.,
c; =x;,1=1,2,... N. The term associated with 1 = 0 was not included in Equation 2.42,
since we argued above that the RBF bias was wy = 0.

Upon inserting the interpolation conditions of Equation 2.41 in Equation 2.42, we obtain

the following set of simultaneous linear equations for the unknown weights w;:

Y11 P12 ... PIN wy d
80.21 90.22 @?N 21‘12 _ d.2 7 (2.43)
| eN1 @N2 - NN | [ wN | | dN ]
where
i = o(llx; —xll),  5i=12...,N. (2.44)
Let
d = [di,dy,...,dy]" (2.45)
W= ['LUI,'UJQ,---,'U)N]T: (2-46)

where the N-by-1 vectors d and w represent the equaliser’s desired response vector and
the linear weight vector, respectively. Let @ denote an N-by-N matrix with elements of
©ji, J,4 = 1,2,..., N, which we refer to as the interpolation matriz, since it generates the
interpolation F(x;) = d; through Equation 2.41 and Equation 2.42 using the weights w;.

Then Equation 2.43 can be written in the compact form of:
dw =d. (2.47)

We note that if the data points d; are all distinct and the interpolation matrix ® is positive
definite, implying that all of its elements are positive and hence ® is invertible, then we

can solve Equation 2.47 to obtain the weight vector w, which is formulated as:

w=>&"1d, (2.48)
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where &~ is the inverse of the interpolation matrix ®.
From Light’s theorem [49], there exists a class of radial basis functions that generates an
interpolation matrix, which is positive definite. Specifically, Light’s theorem applies to a

range of functions, which include the Gaussian functions [49] of:

,,.2
p(r) = exp (—ﬁ) (2.49)
s — x:]12 o
i = exp(””TUQ’L), j,i=1,2,...,N, (2.50)

where o2 is the variance of the Gaussian function. Hence the elements ¢j; of ® can be
determined from Equation 2.50. Since ® is invertible, it is always possible to generate
the weight vector w for the RBF network from Equation 2.48, in order to provide the
interpolation through the training data.

In an equalisation context, exact interpolation can be problematic. The training data are

sparse and are contaminated by noise. This problem will be addressed in the next section.

2.7.4 Regularization Theory

The partitioning hyper-surface and the interpolation hyper-surface mentioned in the previ-
ous sections was reconstructed or approximated from a given set of data points that may
be sparse or noisy during learning. Therefore, the learning process used to reconstruct or
approximate the classification hyper-surface can be seen as belonging to a generic class of
problems referred to as inverse problems [6].

An inverse problem may be 'well-posed’ or 'ill-posed’. In order to explain the term ‘well-
posed’, assume that we have a domain X and a range Y taken to be spaces obeying the
properties of metrics and they are related to each other by a fixed but unknown mapping
Y = F(X). The problem of reconstructing the mapping F' is said to be well-posed, if the

following conditions are satisfied [50]:

1. Existence: For every input vector x € X, there exists an output y = F(x), where

y €Y, as seen in Figure 2.17.

2. Uniqueness: For any pair of input vectors x,t € X, we have F(x) = F(t) if, and only

if, x = t.
3. Continuity: The mapping is continuous.

If these conditions are not satisfied, the inverse problem of identifying x giving rise to y
is said to be ill-posed.
Learning, where the partitioning or interpolation hyper-surface is approximated, is in

general an ill-posed inverse problem . This is because the uniqueness criterion may be
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Mapping

Domain X Range Y

Figure 2.17: The mapping of the input domain X onto the output range ¥’

violated, since there may be insufficient information in the training data to reconstruct the
input-output mapping uniquely. Furthermore, the presence of noise or other impairments
in the input data adds uncertainty to the reconstructed input-output mapping. This is the
case in the context of the equalisation problem.

Tikhonov [51] proposed a method referred to as regularization for solving ill-posed prob-
lems. The basic idea of regularization is to stabilize the solution by means of some auxiliary
non-negative function that imposes prior restrictions such as, smoothness or correlation con-
straints on the input-output mapping and thereby converting an ill-posed problem into a
well-posed problem. This approach was treated in depth by Poggio and Girosi [52].

According to Tikhonov’s regularization theory [51], the previously introduced function F

is determined by minimising a cost function E(F), defined by

E(F) =E(F) + Ne(F), (2.51)
where )\ is a positive real number referred to as the regularization parameter and the two
terms involved are [51]:

1. Standard Error Term: This term, denoted by &(F'), quantifies the standard error
between the desired response d; and the actual response y; for training samples 7 =

1,2,...,N. It is defined by

(di — y:)?

DN —
.MZ

gs(F) -

-
Il
—

[d; — F(x;)]%. (2.52)

fl
DO | b
'MZ

1

-
Il

2. Regularizing Term: This term, denoted by £.(F), depends on the geometric properties
of the approximation function F(x). It provides the so-called a priori smoothness

constraint and it is defined by
1
E(F) = S |[PF|? (2.53)

where P is a linear (pseudo) differential operator, referred to as a stabilizer [6], which

stabilizes the solution F', rendering it smooth and therefore continuous.
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The regularization parameter A indicates, whether the given training data set is suffi-
ciently extensive in order to specify the solution F(x). The limiting case A — 0 implies
that the problem is unconstrained. Here, the solution F(x) is completely determined from
the given data set. The other limiting case, A — oo, implies that the a priori smoothness
constraint is sufficient to specify the solution F'(x). In other words, the training data set is
unreliable. In practical applications the regularization parameter X is assigned a value be-
tween the two limiting conditions, so that both the sample data and the a priori information
contribute to the solution F(x).

The minimisation of the cost function £(F) by evaluating the derivative of £(F) in Equa-
tion 2.51 provides the following solution to F(x) [6]:

Flx) = [di — F(x:)]G (x; %)

P
W'Mz

—

w; G(x; %), (2.54)

Il
'MZ

=1

1

where G(x;x;) denotes the so-called Green function centred at x; and w; = }[d; — F(x;)].
Equation 2.54 states that the solution F'(x) to the regularization problem is a linear superpo-
sition of N number of Green functions centred at the training data points z;,7 = 1,2, ..., V.
The weights w; are the coefficients of the ezpansion of F(x) in terms of G(x;x;) and z; are
the centres of the ezpansion for i = 1,2,..., N. The centres x; of the Green functions used
in the expansion are the given data points used in the training process.

We now have to determine the unknown expansion cofficients w; denoted by

w; = i—[di CP(x)],  i=12,...,N. (2.55)
Let

= [F(x1),F(x2),..., F(xy)]7, (2.56)
d = [di,dy,...,dN]7, (2.57)

[ Glxiix1) G(xiixs) ... G(x1:xn) |
o - G(x?;xl) G(XQ';XQ) G(XQ‘;XN) , (2.58)

| G(xy;x1) G(xnix2) ... G(xwnixw) |
w = [wp,wa,...,wy]l. (2.59)

Rewriting Equation 2.55 and Equation 2.54 in matrix form, we obtain respectively:

(d-F) (2.60)

W =

> =
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and
F = Gw. (2.61)

Upon substituting Equation 2.61 into Equation 2.60, we get
(G + AI)w =d, (2.62)

where I is the N-by-N identity matrix.

Invoking Light’s Theorem [49] from Section 2.7.3, we may state that the matrix G
is positive definite for certain classes of Green functions, provided that the data points
X1, Xg,...,Xy are distinct. The classes of Green functions covered by Light’s theorem in-
clude the so-called multi-quadrics and Gaussian functions [6]. In practice, A is chosen to be
sufficiently large to ensure that G + AI is positive definite and therefore, invertible. Hence,

the linear Equation 2.62 will have a unique solution given by
w = (G + AI)"ld. (2.63)

The set of Green functions used is characterized by the specific form adopted for the
stabilizer P and the associated boundary conditions [6]. By defination, if the stabilizer P
is translationally invariant, then the Green function G(x;x;) centred at x; will depend only

on the difference between the argument x and x;, i.e.:
G(x;x;) = G(x — x;). (2.64)

If the stabilizer P is to be both translationally and rotationally invariant, then the Green

function G(x;x;) will depend only on the Euclidean norm of the difference vector x — x;,
formulated as:

G(x;x;) = G(||lx — x4]]). (2.65)
Under these conditions, the Green function must be a radial basis function. Therefore, the

regularized solution of Equation 2.54 takes on the form:
N
F(x) =Y wG(l|lx — xi)). (2.66)
i=1

An example of a Green function, whose form is characterized by the differential operator 7
that is both translationally and rotationally invariant is the multivariate Gaussian function

that obeys the following form

G(x;x;) = exp <_§le_,21x—xi”2) , 1=1,...,N. (2.67)

2

Equation 2.67 is characterized by a mean vector x; and common variance o?2.
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It is important to realize that the solution described by Equation 2.66 differs from that
of Equation 2.42. The solution of Equation 2.66 is regularized by the definition given
in Equation 2.63 for the weight vector w. The two solutions are the same only if the
regularization parameter A is equal to zero. The regularization parameter A provides the
smoothing effect in constructing the partition or interpolation hyper-surface during the
learning process.

Typically, the number of training data symbols is higher than the number of basis func-
tions required for the RBF network to give an acceptable approximation to the interpolation
solution. The generalized RBF network is introduced to address this problem and its struc-

ture is discussed in the following section.

2.7.5 Generalized Radial Basis Function Networks

The one-to-one correspondence between the training input data x; and the Green function
G(x;x;) for i =1,2,..., N is prohibitively expensive to implement in computational terms
for large N values. Especially the computation of the linear weights w; is computationally
demanding, which requires the inversion of an N-by-N matrix according to Equation 2.63.
In order to overcome these computational difficulties, the complexity of the RBF network
would have to be reduced and this requires an approximation to the regularized solution.
The approach followed here involves seeking a suboptimal solution in a lower-dimensional
space that approximates the regularized solution described by Equation 2.54. This can
be achieved using Galerkin’s method [6]. According to this technique, the approximated

solution F*(x) is expanded using a reduced M < N number of basis functions, as follows:

M
F(x) = wipi(x), (2.68)
i==1
where ¢;(x),7=1,2,..., M, is a new set of basis functions. The number M of the basis

functions M is typically less than the number of data points N and the coeflicients w;

constitute a new set of weights. Using radial basis functions, we set
pi(x) =G(lx—eil), 1=12,..., M, (2.69)

where ¢;,7 = 1,2,..., M, is the set of RBF centres to be determined. Thus, with the aid of
Equation 2.68 and Equation 2.69 we have

M
Frx) = Y wiG(x;c)
i=1

M
= > wG(x - cl). (2.70)
=1
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Now the problem we have to address is the determination of the new set of weights
w;, 1= 1,2,..., M, based on a reduced number of M < N basis functions so as to min-
imize the new cost function £(F*) according to Tikhonov’s cost function of Equation 2.51.

This new cost function is defined by

2
N

M
§F) =3 | di= Y wiGllxi — sl |+ AIPF* (2.71)

i=1

Minimizing Equation 2.71 with respect to the weight vector w yields [6]:

(GTG + \Go)w = G'd, (2.72)
where
d = [di,da,...,dy]T, (2.73)
G(x1;e1) G(xy;e) ... G(xi;em)
G(xq; G{x9; oo G(xg;
a - (Xf? c1) (X? c2) (le cur) , (2.74)
| G(xn;c1) G(xnser) ... G(xnjewm) |
W= [w17w27"'7wM}T7 (275)
G(e;e1)  Glep;ee) ... G(erzen)
G(cy; Glces; .. Geo;
Go = (c? c1) (C"f c2) (02_ e | (2.76)
| Glepr;er) Glem;ea) ... Glearsewr) 1

Here, the matrix G is a non-symmetric N-by-M matrix and the matrix Gy is a symmetric

M-by-M matrix. Thus, upon solving Equation 2.72 to obtain the weights w, we get:
w = (GTG + AGy)~'GTd. (2.77)

Observe that the solution in Equation 2.77 is different from Tikhonov’s solution in Equa-
tion 2.63. Specifically, in Equation 2.58 the matrix G is a symmetric N-by-N matrix, while
in Equation 2.74 it is a non-symmetric N-by-M matrix.

By introducing a number of modifications to the exact interpolation procedure presented
in Section 2.7.3 we obtain the generalized radial basis function network model that provides
a smooth interpolating function, in which the number of basis functions is determined by
the affordable complexity of the mapping to be represented, rather than by the size of the

data set. The modifications which are required are as follows:

1. The number of basis functions, M, need not be equal to the number of training data

points, V.
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2. In contrast to Equation 2.42, the centres of the basis functions are no longer con-
strained to be given by N training input data points x;. Thus, the position of the
centres of the radial basis functions ¢;,i = 1,2,..., M, in Equation 2.70 are the un-
known parameters that have to be ’learned’ together with the weights of the output
layer w;,2 = 1,2,..., M. A few methods of obtaining the RBF centres are as fol-
lows: random selection from the training data, the so-called Orthogonal Least Squares
(OLS) learning algorithm of Chen, Cowan, Grant et al. [53, 54] and the well-known
K-means clustering algorithm [8]. We opted for using the K-means clustering algo-
rithm in order to learn the RBF centres in our equalisation problem and this algorithm

will be described in more detail in Section 2.8.

3. Instead of having a common RBF spread or width parameter 202, as described in
Equation 2.49, each basis function is given its own width 202-2 , as in Equation 2.67.
The value of the spread or width is determined during training. Bishop [33] noted
that based on noisy interpolation theory, it is a useful rule of thumb when designing
the RBF network with good generalization properties to set the width 202 of the RBF
large in relation to the spacing of the RBF input data.

Here, the new set of RBF network parameters, c;, 022, and w;, where 1 <1 < M < N,
can be learnt in a sequential fashion. For example, a clustering algorithm can be used to
estimate the RBF centres, ¢;. Then, an estimate of the variance of the input vector with
respect to each centre provides the width parameter, 022. Finally, we can calculate the RBF
weights w; using Equation 2.77 or adaptively using the LMS algorithm [6].

Note that apart from regularization, an alternative way of reducing the number of basis
functions required and thus reduce the associated complexity is to use the OLS learning
procedure proposed by Chen, Cowan and Grant [53]. This method is based on viewing the
RBF network as a linear regression model, where the selection of RBF centres is regarded
as a problem of subset selection. The OLS method, employed as a forward regression
procedure, selects a suitable set of RBF centres, which are referred to as the regressors,
from a large set of candidates for the training data, yielding M < N. As a further advance,
Chen, Chng and Alkadhimi [54] proposed a regularised OLS learning algorithm for RBFs
that combines the advantages of both the OLS and the regularization method. Indeed, it
was OLS training that was used in the initial application of RBF networks to the channel
equalisation problem [27]. Instead of using the regularised interpolation method, we opted
for invoking detection theory, in order to solve the equalisation problem with the aid of
RBF networks. This will be expounded further in Section 2.9.

Having described and justified the design of the RBF network of Figure 2.12 that was
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previously introduced in Section 2.7.1, in the next section the K-means clustering algo-
rithm used to learn the RBF centres and to partition the RBF network input data into K

subgroups or clusters is described briefly.

2.8 K-means Clustering Algorithm

In general, the task of the K-means algorithm [55] is to partition the domain of arbitrary
vectors into K regions and then to find a centroid-like reference vector, ¢;,7 = 1,..., K, that
best represents the set of vectors in each region or partition. In the RBF network based
equaliser design the vectors to be clustered are the noisy channel state vectors vg, bk =
—00,...,00 observed by the equaliser using the current tap vectors, such as those seen in
Figure 2.3, where the centroid-like reference vectors are constituted by the optimal channel
states r;,7 = 1,...,ns, as described in the previous sections. Suppose that a set of input

patterns x of the algorithm is contained in a domain P. The K-means clustering problem

is formulated as finding a partition of P, P = [P1,...,Pg], and a set of reference vectors
C = {c1,...,cx} that minimize the cluster MSE cost function defined as follows:
K
MSE(P,€) = 3 [ () [x - cilPax, (2.78)
i=1 /P
where || || denotes the [y norm and p(x) denotes the probability density function of x.

Upon presenting a new training vector to the K-means algorithm, it repetitively updates
both the reference vectors or centroids ¢; and the partition P. We define ¢; ; and x;, as the
ith reference vector and the current input pattern presented to the algorithm at time k.

The adaptive K-means clustering algorithm computes the new reference vector ¢; ;1 as
Cigor1 = g+ Mi(xp) {p(xe — cie) b (2.79)

where 4 is the learning rate governing the speed and accuracy of the adaptation and M;(xy)
is the so-called membership indicator that specifies, whether the input pattern x; belongs
to region P; and also, whether the ith neuron is active. In the traditional adaptive K-means

algorithm the learning rate  is typically a constant and the membership indicator M;(x)

is defined as:

M) = { 1 if |x — ¢ff2 < ||x — ¢;||? for each i # j (2.80)
0 otherwise.

A serious problem associated with most K-means algorithm implementations is that the

clustering process may not converge to an optimal or near-optimal configuration. The

algorithm can only assure local optimality, which depends on the initial locations of the

representative vectors. Some initial reference vectors get 'entrenched’ in regions of the algo-

rithm’s input vector domain with few or no input patterns and may not move to where they
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are needed. To deal with this problem, Rumelhart and Zipser [56] employed leaky learning,
where in addition to adjusting the closest reference vector, other reference vectors are also
adjusted, but inconjunction with smaller learning rates. Another approach, proposed by
DeSieno and is referred to as the conscience algorithm [57] keeps track of how many times
each reference vector has been updated in response to the algorithm’s input vectors and if a
reference vector gets updated or "wins’ too often, it will ’feel guilty’ and therefore pulls itself
out of the competition. Thus, the average rates of winning’ for each region is equalized and
no reference vectors can get ’entrenched’ in that region. However, these two methods yield
partitions that are not optimal with respect to the MSE cost function of Equation 2.78.

The performance of the adaptive K-means algorithm depends on the learning rate u in
Equation 2.79. There is a tradeoff between the dynamic performance (rate of convergence)
and the steady-state performance (residual deviation from the optimal solution or excess
MSE). When using a fixed learning rate, it must be sufficiently small for the adaptation
to converge. The excess MSE is smaller at a lower learning rate. However, a smaller
learning rate also results in a slower convergence rate. Because of this problem, adaptive K-
means algorithms having variable learning rates have been investigated [58]. The traditional
adaptive K-means algorithm can be improved by incorporating two mechanisms: by biasing
the clustering towards an optimal partition and by adjusting the learning rate dynamically.
The justification and explanation concerning how the two mechanisms are implemented is
described in more detail by Chinrungrueng et al. [58].

Having described the K-means clustering algorithm, which can be used as the RBF
network’s learning algorithm, we proceed to further explore the RBF network structure in

the context of an equaliser in the following Section.

2.9 Radial Basis Function Network Based Equalisers

2.9.1 Introduction

-1} Vk—m+1

Y
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Radial Basis Function Network

Figure 2.18: Radial Basis Function Equaliser for BPSK
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The RBF network is ideal for channel equalisation applications, since it has an equiva-
lent structure to the so-called optimal Bayesian equalisation solution of Equation 2.18 [8].
Therefore, RBF equalisers can be derived directly from theoretical considerations related
to optimal detection and all our prior knowledge concerning detection problems [31] can be
exploited. The neural network equaliser based on the MLP of Section 2.5, the polynomial
perceptrons of Section 2.6 and on the so-called self-organizing map [42] constitutes a model-
free classifier, thus requiring a long training period and large networks. The schematic of
the RBF equaliser is depicted in Figure 2.18. The overall response of the RBF network of

Figure 2.12, again, can be formulated as:

M
frer(vi) = > wip(|lve —cill),
i=1
plz) = exp(~a®/p), (2.81)
where ¢;,7 = 1,..., M represents the RBF centres, which have the same dimensionality
as the input vector vy, || - || denotes the Euclidean norm, ¢(-) is the radial basis function

introduced in Section 2.7, p are positive constants defined as the spread or width of the
RBF in Section 2.7 (each of the RBFs has the same width, i.e., 202 = p, since the received
signal is corrupted by the same Gaussian noise source) and M is the number of hidden
nodes of the RBF network. Note that the number of input nodes of the RBF network in
Figure 2.12, p, is now equivalent to the order m of the equaliser, i.e. p = m, and the bias

is set to b = 0. The detected symbol is given by:
Iy—r = sgn(frr(vi)), (2.82)

where the decision delay 7 is introduced to facilitate causality in the equaliser and to provide
the ’past’ and the ’future’ received samples, with respect to the ’delayed’ detected symbol,
for equalisation.

The relationship between the RBF network and the Bayesian equalisation solution ex-
pressed in Equation 2.18 can be established explicitly. The RBF centres ¢;,i = 1,..., M are
in fact constituted by the noise-free channel output vectors r; indicated by the circles and
crosses in Figure 2.3, while the number of hidden nodes M in Figure 2.12 corresponds to
the number of desired channel output vectors, ng, i.e., M = n,. The weights w; correspond
to the scaling factors of the conditional probability density functions in Equation 2.18 given
by:

P = { pi2moy) P v € Vil (2.83)
—jr)i(Z'/ra,%)_m/2 fr,eV, .,
where p; is the a priori probability of occurance for the noise-free channel output vector r;

and 072, is the noise variance of the Gaussian channel. For equiprobable transmitted binary
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symbols the a priori probability of each state is identical. Therefore, the network can be
simplified considerably in the context of binary signalling by fixing the RBF weights to
w; = +1, if the RBF centroids ¢; correspond to a positive channel state VZF and to w; = —1,
if the centroids ¢; correspond to a negative channel state v;". The widths p in Equation 2.81
are controlled by the noise variance and are usually set to p = 202, while () is the noise
probability density function, which is usually Gaussian. When these conditions are met,
the RBF network realizes precisely the Bayesian equalisation solution [8], a fact, which is
augmented further below.

Specifically, in order to realize the optimal Bayesian solution using the RBF network, we
have to identify the RBF centres or the noise-free channel output vectors. Chen et al. [8]
achieved this using two alternative schemes. The first method identifies the channel model
using standard linear adaptive CIR estimation algorithms such as for example Kalman
filtering [59] and then calculates the corresponding CIR-specific noise-free vectors. The
second method estimates these vectors or centres directly using so-called supervised learning
— where training data are provided — and a decision-directed clustering algorithm [8, 26],
which will be described in detail in Section 2.9.3.

The ultimate link between the RBF network and the Bayesian equaliser renders the
RBF design an attractive solution to equalisation problems. The performance of the RBF
equaliser is superior to that of the MLP and PP equalisers of Sections 2.5 and 2.6 and it needs
a significantly shorter training period, than these nonlinear equalisers [8]. Furthermore,
Equation 2.81 shows that RBF networks are linear in terms of the weight parameter w;,
while the non-linear RBFs ¢(z) are assigned to the hidden layer of Figure 2.12. The
RBF network can be configured to have a so-called uni-modal error surface where frpr in
Equation 2.81 exhibits only one minimum, namely the global minimum, with respect to its
weights w;, while also having a guaranteed convergence performance. The RBF equaliser
is capable of equalising nonlinear channels, can be also adapted to non-Gaussian noise
distributions. Furthermore, in a recursive form, referred to as the recurrent RBF equaliser
[38], the equaliser can provide optimal decisions based on all the previous received samples,
Vk_i,t = 0,...,00, instead of only those previous received samples, vg_;,7 = 0, ..., Vp—m+1
which are within the equaliser’s memory. The RBF equaliser can be used to compute the so-
called a posteriori probabilities of the transmitted symbols, which are constituted by their
correct detection probabilities. The advantages of using the a posteriori symbol probabilities
for blind equalisation and tracking in time-variant environments have been discussed in
several contributions [38, 60]. Furthermore, the a posteriori probabilities generated can
be used to directly estimate the associated BER without any reference signal. The BER
estimate can be used by the receiver as a measure of reliability of the data transmission

process or even to control the transmission rate in variable rate digital modems or to invoke
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a specific modulation in adaptive QAM systems.

Number of subractions and additions | 2n,m — 1
Number of multiplications ns(m + 1)
Number of divisions Ng
Number of exp() Mg

Table 2.4: Computational complexity of a linear RBF network equaliser having m inputs and
n,s hidden units per equalised output sample based on Equation 2.81. When the optimum
Bayesian equaliser of Equation 2.18 is used, we have n, = 2L+™_ while in Section 2.9.7 we
will reduce the complexity of the RBF equaliser by reducing the value of n;.

The drawback of RBF networks is, however, that their complexity, i.e. the number of
neurons 7, in the hidden layer of Figure 2.12 grows dramatically, when the channel memory
L and the equaliser order m increase, since ng = 2¢7™. The vector subtraction v; — ¢; in
Equation 2.81 involves m subtraction operations, while the computation of the norm || - ||2
of an m-element vector involves m multiplications and m — 1 additions. Thus, the term
wi(||vk — ¢i]]) in Equation 2.81 requires 2m — 1 additions/subtractions, m + 1 multiplica-
tions, one division and an exp(-) operation. The summation Zf\il in Equation 2.81 where
M = ng, involves ng — 1 additions. Therefore the associated computational complexity of
the RBF network equaliser based on Equation 2.81 is given in Table 2.4.

For non-stationary channels the values of the RBF centres, ¢;, will vary as a function
of time and each centre must be re-calculated, before applying the decision function of
Equation 2.81. Since n; = 217 can be high, the evaluation of Equation 2.81 may not
be practical for real-time applications. A range of methods proposed for reducing the
complexity of the RBF network equaliser and to render it more suitable for realistic channel

equalisation will be described in Section 2.9.7. Our simulations results will be presented in

Section 2.12.

2.9.2 RBF-based Equalisation in Multilevel Modems

In the previous sections, the transmitted symbols considered were binary. In this section,
based on the suggestions of Chen, McLaughlin and Mulgrew [25], we shall extend the
design of the RBF equaliser to complex M-ary modems, where the information symbols
are selected from the set of M complex values, Z;,7 = 1,2,..., M. An example is, when a
Quadrature Amplitude Modulation (QAM) scheme [61] is used.

Since the delayed transmitted symbols I;_, in the schematic of Figure 2.18 may assume
any of the legitimate M complex values, the channel input sequence I, defined in Equa-

tion 2.5, produces ny; = ML+™ different possible values for the noise-free channel output
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vector Vv, of Figure 2.18 described in Equation 2.6, which were visualised for the binary
case in Figure 2.3. The desired channel states can correspondingly be partitioned into M

classes — rather than two — according to the value of the transmitted symbol Ix_., which is

formulated as follows:

Vi, = %l =T},
= {rf,...rh.orhd i=1,2,00M, (2.84)

where r;, ji=1,... ,ni, is the jth desired channel output state due to the M-ary transmitted
symbol Iy, = 7;,4 = 1,..., M. More explicitly, the quantities n’ represent the number
of channel states ré- in the set Vrfm. The number of channel states in any of the sets V,ﬁm
is identical for all the transmitted symbols Z;,i = 1,2,..., M, ie. n’ = n} for ¢ # j and
i, =1,... M. Lastly, we have 3, ni = n,.

Thus, the optimal Bayesian decision solution of Equation 2.16 defined for binary signalling
based on Bayes’ decision theory [21] has to be redefined for AM-ary signalling as follows, in

order to achieve the minimum error-probability:

feer =17, ifCF(k) = max{G(k),1 < i < M}, (2.85)
where (;(k) is the decision variable based on the conditional density function given by:

Glk) = Pillg—r =1;) - P(lp—r = Iy)

ni
= > plp(ve—ri), 1<i< M. (2.86)
=1

The quantities pg,i =1,....M,7=1,... ,né denote the a priori probability of appearance
of each desired state r; € Vi . associated with the transmitted M-ary symbol Z;,¢ =
1,..., M and p(-) is the probability density function of the additive noise of the channel.

Thus, there are M neural 'subnets’ associated with the M decision variables (;(k) =
Pvilly—r = 1;) - P(Ix_r = I;),i = 1,2,..., M. The architecture of the RBF equaliser
for the M-ary multilevel modem scenario considered is shown in Figure 2.19. Note that
the output of each sub-RBF network gives the corresponding conditional density function
Gi(k) = P(viIx—r = I;)- P(Ix—r = Z;) and this output value can be used for generating soft
decision inputs in conjunction with error correction techniques. Observe that the schematic
of Figure 2.19 is more explicit, than that of Figure 2.18, since for the specific case of BPSK
we have M = 2. This yields two equaliser subnets, which correspond to the transmission
of a logical one as well as a logical zero, respectively.

The computational complexity of the M-ary RBF equaliser is dependent on the order M

of the modulation scheme, since the number of sub-RBF hidden nodes is equivalent to n’ =
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Figure 2.19: Radial Basis Function Equaliser for M-level modems

MEF™ /M. Thus, its application is typically restricted to low-order M-ary modulation
schemes. The computational complexity of each subnet of the M-ary RBF equaliser is
similar to that in Table 2.4, taking into account the reduced number of hidden nodes, namely
! = ny/M. Thus, the overall computational complexity of the M-ary RBF equaliser

8

described by Equation 2.85 and 2.86 is given in Table 2.5.

n

Number of subractions and additions | 2nsm — M
Number of multiplications ng(m+1)
Number of divisions g
Number of exp() Tg
Number of max operation 1

Table 2.5: Computational complexity of an mth-order RBF network equaliser per equalised
output sample for M-ary modulation based on Equation 2.85 and 2.86. The total number
of hidden nodes of the RBF equaliser is n;.

2.9.3 Adaptive RBF Equalisation

The knowledge of the noise-free channel outputs is essential for the determination of the
decision function associated with Equation 2.85. The channel state estimation — where the
channel states were defined in Section 2.2, in particular in the context of Equation 2.8 -
requires the knowledge of the CIR, but this often may not be available. Thus the channel

state has to be "learned’ during the actual data transmission or inferred during the equaliser
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training period, when the transmitted symbols are known to the receiver. This can be

achieved typically in two ways [26]:
e By invoking CIR estimation methods [26, 25, 62]
e By employing so-called clustering algorithms [8] as described in Section 2.8

These methods will be highlighted by the following two Sections.

2.9.4 Channel Estimation Using a Training Sequence

According to our approach in this section, the channel model is first estimated using algo-
rithms such as the Least Mean Square (LMS) algorithm [59]. With the knowledge of the
CIR, the channel state can then be calculated. Let us define the CIR estimate associated
with the model of Figure 2.1 as:

N R R T
fy = [ fox - fLk } ; (2.87)
and introduce the (L + 1)-element channel estimator input vector
T
I = [ Iy ... I } ) (2.88)

where {I;} is the transmitted channel input sequence, which is known during the training
period. Then the error between the actual channel output v; and the estimated channel

output derived using the estimated CIR f,_1 can be expressed as:
=y — 11 (2.89)
€k = Vg — Lpalfk

The CIR estimate can then be updated following the steepest descent philosophy of Equa-
tion A.3 as follows:

fr = o1 + ppely, (2.90)
where ¢ is the step-size defined by the channel estimator learning rule. Note however that
the LMS channel estimation technique based on the channel model described in Figure 2.1

will fail, if the channel is non-linear in its nature.

During data transmission after learning, a decision-directed and delayed version of Equa-

tion 2.89 and Equation 2.90 is used, which is formulated as:

€ker = Vk—r —fpr1lpp—r

fp_r, = f‘k—’r—l + /J'fgk~7ij’,k~77 (291)

that can be employed to track time-varying channels, where

PN | A A (2.92)
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is the channel estimator input vector associated with the CIR vector fr_,. Note that
during data transmission, {I;_,} is the delayed symbol, detected by the equaliser. At
instant k + 1, the delayed CIR estimate f;_, is used to track the time-varying channel as
though it were the most recent estimate f,. The current channel model f;,; might have
changed considerably. This tracking error owing to the inherent decision delays will degrade
the performance of the channel estimator. As it will be demonstrated in Figure 2.22 at a
later stage, increasing the decision delay 7 first introduced in the context of Equation 2.82
improves the performance of the equaliser for a stationary channel. By contrast, this will
degrade the performance of the channel estimator for a nonstationary channel environment.
Thus we need to achieve a reasonable compromise and the selection of the decision delay
parameter 7 yielding satisfactory equaliser performance will depend on how rapidly the CIR
varies.

The computational complexity of the LMS channel estimator is characterised in Table 2.6
based on Equation 2.89, which requires L+ 1 multiplication and L+ 1 addition/subtraction
operations, and Equation 2.90 which involves L + 2 multiplication and L + 1 addition
operations. On the basis of the estimated CIR £, it is straightforward to compute the
estimated noise-free channel outputs 7 using convolution and therefore to generate the
channel output states r;. Upon substituting Equation 2.7 into the noiseless version of

Equation 2.11, the channel output state r; can be computed from:
r; =Fs; (2.93)

where the elements of the CIR matrix F are obtained from Equation 2.90. Equation 2.93
requires m(m + L) multiplication and m(m + L — 1) addition operations. Therefore, an
additional computational load is encountered in converting the CIR estimate f, into the
vector r; of channel output states and this has to be added to the computational complexity
calculation of the CIR estimator given in Table 2.6, in order to quantify to give the total

complexity for this channel state learning method, as shown in Table 2.7.

2(L + 1) + 1 multiplications
2(L + 1) additions or subtractions

Table 2.6: Computational complexity of the LMS CIR estimator for a channel having L +1
symbol-spaced taps per estimated CIR based on Equation 2.89 and Equation 2.90.

The CIR estimate can also be updated using the Recursive Least Square (RLS) algorithm
[59], which has a better convergence performance compared to the LMS algorithm in most
cases. However, the RLS algorithm exhibits a higher computational complexity than the

LMS algorithm. For dispersive mobile radio channels the adaptive algorithm is expected to
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m(m + L) 4+ 2(L + 1) + 1 multiplications
3L + m + 1 additions or subtractions

Table 2.7: Computational complexity of the m-dimensional channel output state learning
algorithm using the LMS CIR estimator for a channel having L + 1 symbol-spaced taps per
channel output state based on Equation 2.89, Equation 2.90 and Equation 2.93.

continuously operate during both the training and transmission periods in highly nonsta-
tionary environments, consequently its numerical stability is vital. Many versions of the fast
RLS algorithm may not be suitable for this purpose. The CIR can also be estimated using
the so-called least sum of square errors (LSSE) algorithm [63]. This algorithm is similar to
the CIR estimator used in the GSM system [64] and those in [65, 66], and it exhibits a low

computational complexity.

2.9.5 Channel Output State Estimation using Clustering Algorithms

Apart from training sequences, the channel states can also be estimated invoking the clus-
tering algorithms described in Section 2.8. The computational procedures of the so-called
supervised K-means clustering algorithm during the equaliser training period can be sum-

marised as follows [8]:

if Ik = 84, then
Cik =Cik—1+ e (Vk — Cig—1),

otherwise
Cik = Cik—1, (2.94)

where i, is the associated learning rate, s;,1 < i < ny = MLH™ is the ith channel input
sequence and I = { Iy . Ipome1-r ]T is an (m + L)-element transmitted symbol
vector, which is known during the training phase. Explicitly, according to Equation 2.94
the clustering algorithm takes into account the most recently received m-element vector vi
in adapting the 7th RBF centre c¢;, if the current (L + m)-element channel input vector
I, is given by the specific (L + m)-element vector s;. Initially, the RBF centres are all
set to 0, e g = 0,i =1 < i < ng = MEFT™ Equation 2.94 dictates that the previous
centroid ¢; x_; has to be updated according to the ’distance’ (vy — ci ) between itself and
the most recent (L + m)-element received vector vy, after scaling it by the learning rate pc.
Otherwise the ith centre is not updated based on the information of the current received
vector vi. Referring back to Section 2.8, the membership indicator defined by Equation 2.80

differs from that of the supervised version of the K-means clustering algorithm described
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by Equation 2.94. Explicitly, this modified membership indicator is defined as:

1 ifIk:Si

0 otherwise.

A@@)={ (2.95)

For time-varying channels we have to track the time-varying channel states during trans-
mission after the training period. For tracking the channel-induced channel state variations,
the following decision-directed clustering algorithm can be used to adjust the RBF centres,

in order to take into account the current network input vector v in the updating of the

centres as follows [8]:
if ik—T = §;, then
Cik =Cik1+ e (Vier — Cif—1)s

otherwise
Cik = Cik—1, (2.96)

where I_, = [ Lier oo Dhyremyior ]T represents the (L + m) equalised demodulated
symbols after decision and a delay of 7. Note that whilst in Equation 2.94 the transmitted
vector I, was used, in Equation 2.96 the vector ik_T at the output of the decision device is
used. The computational complexity of the clustering algorithm obeying Equation 2.94 is

given in Table 2.8.

Local operation: Find 1, 1 = 1,...,n,, for which Iy =s;.
m multiplication
2m additions or subtrations

Table 2.8: Computational complexity of the clustering algorithm specified by Equation 2.94
per channel output state for a RBF network having m inputs and ns hidden nodes.

As we mentioned previously, all the RBF centres were initially set to 0. However, the
centres can be initialised to the corresponding noisy channel states, in order to improve
the convergence rate, since there is a higher probability that the actual channel states are
nearer to the noisy channel states, than to ¢;o = 0,2 = 1,...,n, = MEFT™ Thus, the

algorithm described by Equation 2.94 can be adapted as follows:
if I = s;, and ¢;  has not been initialised then

ik = Yk, (2.97)
else if Iy =s;, and c; ; has been initialised then
Cik = Cij—1+ e (Vi — Cip—1)-
The achievable improvement of the convergence performance in conjunction with this algo-

rithm will be demonstrated by our simulation results in Section 2.12.
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2.9.6 Other Adaptive RBF Parameters

In the previous subsection, clustering algorithms were used for training the RBF centres.
Similar procedures can be employed also for training the RBF weights as it will be outlined
below. Explicitly, if our previous assumption of equiprobable symbols is violated, we have to
adjust the RBF weights in order to learn the corresponding scaling factors of the conditional
probability density functions in Equation 2.18 during the training period. The adaptation
of the RBF weights can be achieved pursuing the approach of Chen, Mulgrew and Grant
using the following supervised LMS algorithm [8]:

ex = Iy—r— frRBF(VE)

Wik = Wikp—1+ puwerp(lvi — cil)), (2.98)

where (1, is the learning rate for the RBF weights. Explicitly, the error ¢, = Iy — frer (Vi)
between the (L + m)-element transmitted symbol vector Ijx_, and the RBF’s output is
scaled by the RBF learning rate u,, and this product is then used to weight o(||vi —c;|), in
order to update the previous RBF weight w; 1, where ¢(]|vy — ¢;||) is the RBF evaluated
at the Euclidean norm ||vy — ¢;|| characteristic of the ’distance’ between the centroids
ci,i=1,...,ns = ML and the (L + m)-element received vector vy.

Furthermore, if the exact number of RBF centres is not known precisely or if there is a
deliberate attempt to use a reduced set of centres to reduce the computational complexity
— as it will be described in Section 2.9.7 — it may be prudent to train the weights using the
LMS algorithm of Equation 2.98, in order to make best use of the actual centres that have
been provided [28]. Similarly, in noisy environments, where clustering techniques may only
provide fairly crude estimates of the centres, training the RBF weights will make best use
of the trained centres [28]. Another method of training the RBF weights is demonstrated in
Chapter 5 where the information of the coded symbols, generated by the channel decoder

is used to adapt the RBF weights.

2.9.7 Reducing the Complexity of the RBF Equaliser

In an effort to reduce the RBF equaliser’s complexity, Chng et al. [67] proposed finding a
RBF centre subset model in order to approximate the Bayesian decision function’s response
given in Equation 2.18 for the current (L + m)-element input vector vi. This implied
using only the centres which are near, in Euclidean sense, to the current input vector v
for the subset model. The rationale of this approach is based on the assumption that the
contribution of the RBF centres to the decision function is inversely related to their distance
from the input vector, as we can observe from Equation 2.18. The decision function response

using only the centres within a distance of A from v is very similar to the full Bayesian
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RBF response, if the distance A is sufficiently large. Chng’s results show that a distance of
A = 40, is sufficient and can reduce the number of centres required for the subset model
to as small as 5-10% of the full model. Chng’s paper [67] also provides a fast algorithm for
identifying the specific centres, which are within a distance of A from the input vector vy
for the subset model .

Patra and Mulgrew [68] investigated the computational complexity aspects of RBF equal-
izers. They proposed an RBF equaliser using scalar centres, which can implement the
Bayesian decision function of Equation 2.18, while allowing a lower computational com-
plexity compared to previously reported RBF equalizers. This issue will be detailed in the
next section, hence suffice to say here that the scalar centre ¢;; is the (I 4+ 1)th component
of the RBF centroid vector ¢; = [cip ... ¢y ... ci(m-l)]T, associated with the mth order
equaliser, where ¢;; assumes the possible values of the noise-free channel output 9 in order
to realise the optimal Bayesian decision function of Equation 2.18. For binary transmission,
there are 2% possible noise-free channel output states, which correspond to each of the
m elements of the equaliser’s input vector v, described in Equation 2.6, where L + 1 is the
length of the CIR. The mapping between the scalar centres and the scalar channel states
will be expounded in more detail in Section 2.10.

The RBF equaliser described by the scalar centres can efficiently employ subset centre
selection for computing the decision function of Equation 2.18, resulting in a substantial
reduction in computational complexity. The algorithm proposed for subset centre selection
by Patra [68] is more attractive compared to that suggested by Chng [67] et al. , since it is
more efficient in terms of selecting a subset of the total set of centres in the one-dimensional
space. This is because we only need to sclect a subset of centres from a total of 21! possible
scalar centres for Patra’s method [68] compared to a total of ns = 2™+ possible vector
centres for Chng’s method [67].

Another method of selecting a subset of significant RBF centres is to make use of past
detected symbols. This idea, which incoporated decision feedback into the RBF network
was proposed by Chen et al. [25, 26]. Section 2.11 will present this approach in more
detail, together with our simulation results in Section 2.12.

In an effort to further reduce the complexity we invoke an approach often used in turbo
codes [69]. for complexity reduction. Specifically, we proposed generating the output of the
RBF equaliser in logarithmic form by invoking the Jacobian logarithm [13, 14], in order
to avoid the computation of exponentials and to reduce the number of multiplictions per-
formed. We refer to this equaliser as the Jacobian RBF equaliser, which will be introduced

in Section 4.2.
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2.10 Scalar Noise-free Channel Output States

In this section, we will describe in detail the scalar noise-free channel output states and
relate them to the m-element noise-free channel output state vector v; and to the scalar
RBF centres ¢; that we have mentioned in Section 2.9.7. After defining the scalar noise-free
channel output state, we will expound on how it is used to reduce the complexity of the
RBF equaliser.

Referring back to Equation 2.6 and Equation 2.3, the Ith element ¢_;,/ =0,1,...,m -1,
of the (L+1)-element noise-free channel output vector ¥, corresponds to the so-called block-
convolution of a sequence of L + 1 transmitted symbols and the L + 1 CIR taps. In other
words, the number of transmitted symbols contributing to the value of ¥_; is L + 1 and
we represent these transmitted symbols by an L + 1 element vector Ify, as described by
Equation 2.88. Let us now introduce the concept of scalar states using the channel-state
example of Table 2.1, where the scalar channel output states are r; = —1.5, rp = —0.5,
r3 = 0.5 and 4 = 1.5, while the number of scalar channel states is ns f = 2L+l =4 (L =1).
Thus, the vector channel output states can be expressed with the aid of the scalar states
forming the vector as r1 = [r; 717, ro = [r1 ro]?, ..., etc. More explicitly at every instant
—o00 < k < oo the noiseless scalar channel output is given by the corresponding convolution
of the input bits and the CIR. In general, the number of different possible combinations
of the (L + 1)-element transmitted symbol sequence in Iy is ns s = 2L+l for a binary
modulation scheme. We represent these transmitted symbol combinations equivalently as
a channel input state Sgcqier, where s = 1,2,...,n, 5 = 2L+1 " After convolution with the
CIR, each of these channel input states Sgcqier; generates a scalar channel output state
rit=1,2,... 055 = 2841 Thus, as we have seen with reference to Table 2.1 the noise-
free channel output 95 can take up any of the ng ; = 2541 gcalar channel output states r;,

depending on Iy, which is summarised as:

Vp =715 if If,k = Sgcalar,i 1=1,... » s, fs -0 < k < 0. (2.99)
Similarly to our introductory example, the scalar channel output states r;,72 = 1,2,...,n5 5 =
2L+1 can be suitably combined to form the vector channel output statesrj,j = 1,2,...,n, =

2™+l seen in Equation 2.7.

In order to realise the optimal Bayesian decision function of Equation 2.18 , the scalar
centre ¢; — which is the (I +1)th component of the vector centre ¢;, wherei =1,2,...,ns =
2m*L and | = 0,1,...,m — 1, as mentioned in Section 2.9.7 — has to assume the value
of these scalar channel output states r;. The scalar centres ¢; can be obtained from a
lookup table that provides the mapping @ : R — C, where R = {rl,...,ri,...rns,f}

and C = {¢go,. .. 7cilv"'7cns(m-1)}' Using again the example of Table 2.1 and letting
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¢c; =151 =1,...,n, the scalar centres correspond to the scalar channel output states as

follows : cog = r1,¢c01 = r1,C10 = T1,€11 = T2,..., etc.
A scalar channel output state r; is just the conditional mean of the noisy observation vy

given by I7x = Sscalar,i, and a clustering procedure can be used to update the scalar channel

states as follows [25]:

if It = Sscalar,i, then
Tik = Tik—1 + thr - (Vb — Tik—1),
otherwise
Tik = Tik—1, (2.100)

where p, is the associated learning rate of the scalar channel states. For time-varying
channels, it is necessary to continuously update r; during data transmission. This can be

achieved using the following decision-directed version of Equation 2.100:

if If,lc—'r = Sscalar,is then
Tik = Tik—1+ thr * (Vk—r — Tik—1)
otherwise

Tik = Tik—1- (2.101)

The computational complexity of the clustering algorithm in the context of the scalar chan-
nel states is given in Table 2.9. Note that the computational load of the clustering scheme
for the scalar channel states is lower than that for the vector channel states, which becomes
explicit by comparing Table 2.9 and Table 2.8 of Section 2.9.5, since ng y < ns. However,
some additional processing is required, in order to expand the scalar states into the vector

states. This is not costly, especially, if the expansion can be done via a lookup table.

Local operation: Find 4, ¢ =1,...,n, s, for which I = Sscaiar,i-
1 multiplications
2 additions or subtractions

Table 2.9: Computational complexity of the clustering algorithm per scalar channel output
state for ng ; number of scalar channel output states based on Equation 2.100.

As mentioned in Section 2.9.3, the channel states can be learnt by invoking channel es-
timation methods. Section 2.9.4 described a channel estimation method using the LMS
algorithm. Since the number of channel taps L + 1 is lower than that of the scalar chan-

nel states ns p = MLFL it becomes explicit that an adaptive scheme based on a channel
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estimator requires a shorter training period than the clustering approach. Thus the for-
mer is better suited for time-variant channels. However, the clustering scheme does not
assume the linear channel model described by Equation 2.1 and it is immune to nonlinear
distortion. When significant nonlinear distortion is inflicted for example by the system’s
power amplifier, the estimated channel states based on a linear model will deviate from
the true states, causing a performance loss. The clustering approach does not suffer form
this problem and it always converges to the set of true channel output states, regardless of
whether the channel is linear or nonlinear.

The scalar channel state clustering scheme provides faster convergence compared to the
vector channel state clustering scheme, since the convergence performance depends on the
number of clusters or channel states and the number of scalar channel states is less than
the number of vector channel states. This will be demonstrated in Section 2.12, which will
provide simulation results in order to characterize the performance of the scalar channel
state clustering scheme.

Upon extending the scalar channel state concept to multilevel modems, we note that
the number of channel states n, ; = MLF! grows exponentially with the number M of
symbol constellation points used in the modulation scheme. Thus, the convergence rate is

dependent on the type of modulation scheme used.

2.11 Decision Feedback Assisted Radial Basis Function Net-
work Equaliser [25, 26, 62]

Feedforward section Decision-feedback sectio
' o - 1
: 1 1 vk—?}n-&{l L 1 Iknr-:—n
Vg 2 2T 1o z- - o —1 !
1 1 z I
H 1 H : _1 1
\ N \ 4
Radial Basis Function R'BF center '
Network selection mechanism
Detector I
k4
Ik—T

Figure 2.20: Radial basis function equaliser with decision feedback

In their seminal contribution Chen, Mulgrew and McLaughlin [25, 62, 26] introduced

decision feedback into the RBF equaliser in order to reduce its computational complexity, as
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mentioned earlier in Section 2.9.7. Figure 2.20 illustrates this design for a binary modulation
scheme. Observe in the figure that in contrast to conventional DFEs, where the output of
the feedback section is subtracted from that of the feedforward section, here the feedback
section is employed to assist in the operation of the feedforward section, as it will become
explicit later in this section. The structure of a decision feedback RBF equaliser is specified
by the equaliser’s decision delay 7, the feedforward order m and the feedback order n.
The n-symbol long binary feedback vector Iteeapack t—r = [ Lievt oo Dh—rn ] is
associated with ny = 27 states. We denote the set of ny = 2" different feedback sequences
by sf;, 1 < j < ny=2" The binary subset V,;} . and V,; . of the channel states defined in
Equation 2.8 can be further partitioned into ny subsets, VWJ{’T’ ; and | according to the
ny = 2" possible feedback states such that the union of the n; = 2" number of feedback

states associated with the two legitimate binary transmitted symbols can be formulated as:

Ve = U Vs,
1<j<ng

Ve = U Vrss (2.102)
1<j<ny

where V;fﬁ is the set of possible v values associated with the delayed transmitted symbol
I, = £1 and the feedback symbol sequence ifeedback,k_f = sy ; yields the following

subsets:

v+ = {Vllx-r =+1N ifeedbaak,k-"l' - Sf,j}7

mT,j
gy (ks = =1 NI feeavack t— = Sy}

1<j < ny. (2.103)
Thus the role of the feedback symbol vector I feedback k—r i the decision feedback structure
is to select a subset of centres for a particular decision. The proportion of channel states in
the sets VT:;T,J- and V, _  is nj,j =n; /ns and ng ;= ng [ng, respectively. The total number
of channel states associated with the feedback state sy ; is given by n, ; = an +ng ;. Given
the feedback vector Ifeedback k—r = Sy,j, the Bayesian decision function of Equation 2.18 can

be rewritten with a reduced number of noiseless channel states as:

+
ng;
fBayes(VkiIfeedback,k—'r = Sf,j) = Zp;ti(zﬂ-o’%)_mﬂexp(‘llvk - r;:i||2/20-72])
i=1

=
8,7
— > p5,@r02) M emp(~||lvi — vyl /207),
=1
i=1,...,nf, (2.104)

+ P
where r;7; and r;,

the feedback vector I Feedback,k—r 1S Sy;, while the superscript + and ~ correspond to the

1=1,... ,nffj,j =1,...,ny are the ith noiseless channel states, when
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transmitted symbols of Iy, = +1 and Iy, = —1, respectively. Explicitly, r; € Vg m,
1 € Vo r s while pj ; and p;; are the a priori probability of occurance for each state rj s
and T respectively. The minimum error probability decision is thus formulated as:

fk—r = Sgn(fBayes(Vlc]ifeedback,k—T - Sf,j))- (2'105)

The relationship between the RBF network described in Equation 2.81 and the Bayesian
DFE decision function expressed in Equation 2.104 can now be given explicitly. The weights
w; in Equation 2.81 correspond to the scaling factors of the conditional probability density
function given by j:pﬁ(%m%)“m/ 2 in Equation 2.104. This was mentioned before in the
context of Equation 2.83. The RBF centres ¢; in Equation 2.81 correspond to the noise-free
channel output vectors r]Z and r; That is, if the n-element feedback symbol sequence
Ifeedback,k——v' obtained is equxvalent to sy ;, we assigned the m,; number of RBF centres
¢, = 1,...,n,,, to the channel output vector rjiz, =1,... ij The decision feedback
reduces the computatlonal complexity of the RBF equaliser, since the number of RBF
hidden nodes needed to realize the Bayesian equalisation solution of Equation 2.18 is reduced
from ng = 2™+L to ng j = ny/np = 2L /2n = 2mFL" with the knowledge of the feedback
state value. However, when the equaliser makes an incorrect decision and this decision is
fed back, the wrong subset of centres is selected and this will degrade the BER performance
of the RBF DFE, as it will be demonstrated in Section 2.12.

Extending the decision feedback RBF equaliser to a multilevel modem scenario is straight-
forward by introducing sub-RBF networks for each possible decision variable based on the
conditional probability density function, as it was described in Section 2.9.2. The condi-

tional Bayesian decision variable of Equation 2.86 can be redefined for the Bayesian DFE

as:
Gk) = P(ville—r = Zi NI tecapack k—r = S5,1)
ny
> Piap(vi = 1),
=1
1< <M,
1 <7< ny, (2.106)
where ré ; is the Ith noiseless channel state, [ = 1,. ni when the feedback vector is given

by Ifeedback k—r = Sy,; and the transmitted symbol is Iy, = 7, i.e., r S V;L g

The computational complexity of the decision feedback assisted RBF equaliser is given
in Table 2.10 based on Equation 2.104, which is similar to that without decision feedback
given in Table 2.5, except for the reduced number of hidden units ns,; < MEt™ - We
conclude that in general, the complexity increase of the RBF DFE is of the order of ME
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Determine the feedback state
2ng ;m — M subtraction and addition
nsj(m +1)  multiplication

Ng,j division
Ns,j exp()
1 max evaluation

Table 2.10: Computational complexity of a decision feedback RBF network equaliser with
m inputs and n, ; hidden units per equalised output sample based on Equation 2.104.

since as ng j = ML Hence, its application is typically restricted to low-order M-ary
modulation schemes, such as 4-QAM and to channels, where the ISI does not extend beyond
four or five symbol periods [28].

The oldest symbol that influences the decision at the kth signalling instant, which pro-
duces the detected symbol I ., is It _ma1-1, as seen in Equation 2.5. The oldest feedback

symbol is Iy r_,. Therefore, it is sufficient to employ a feedback order of
n=logons=L+m—-1-r1, (2.107)

because this will enable us to influence decisions over the memory duration L of the con-
catenated channel and the feedforward RBF section m. Assuming hencen =L+m—-1-7,
Chen, Mulgrew and McLaughlin [26] mathematically proved that the Bayesian DFE of a
feedforward order of m = 7 + 1 has the same conditional decision variables as those hav-
ing a feedforward order of m > 7 + 1. The mathematical proof is given in Appendix B.
Thus, given the delay 7 — which was defined in the context of Figure 2.18 as the total
decision delay of the feedforward shift-register of the RBF DFE - the feedforward order
m = 7+ 1 is sufficient for attaining the best possible BER at the lowest possible complexity
[26]. This is demonstrated in Figure 2.22 over the two-path channel environment of Fig-
ure 2.21(a). Substituting m = 7 + 1 in Equation 2.107 gives the corresponding feedback
order of n = loggny; = L. Overall, the equaliser delay 7 specifies the number of channel
states mg, required for computing the decision variables and thus determines the compu-
tational complexity encountered. A pragmatic rule is to set the equaliser’s decision delay
to 7 = L [26]. However, note that increasing the decision delay 7 and feedforward order
m will improve the performance of the RBF equaliser, as demonstrated in Figure 2.23, at
the expense of increasing the computational complexity exponentially, since the number
of desired channel states n, = MLT™ increases exponentially with m. Figure 2.24 shows
the equaliser’s BER performance versus its feedforward order m. The BER performance
improves almost linearly with the feedforward order, before the curves reach their SNR-

dependent residual BERs. The effect of increasing the feedforward order is more significant
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Figure 2.21: Four discrete time channel impulse responses for an oversampling ratio of 10.

in BER-reduction terms at high E,/Ny values, as shown in Figure 2.24. For example, at
an SNR of 12dB, an increase of the feedforward order from m = 3 to m = 6 improves the
equaliser's BER performance by an order of magnitude, from 1075 to 1075,

In the next subsection we shall further illustrate the concept of the feedback states and

the redefined noiseless channel states using the same example as in Section 2.2.

2.11.1 Radial Basis Function Decision Feedback Equaliser Example

The channel impulse response used in this example was given by Equation 2.13, which is
repeated here for convenience: F(z) = 1+ 0.5z~ implying that we have L = 1. We use

the following equaliser parameters:
e Feedforward order of m = 2.
o Feedback order of n = 1.

e Decision delay of 7 = 1.
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Figure 2.22: BER versus SNR performance of the RBF equaliser with correct decision
feedback upon varying the feedforward order m over the dispersive two-path Gaussian
channel of Figure 2.21(a). The equaliser decision delay 7 was fixed to 1 symbol and the
feedback order n was varied according to n = L+ m — 1 — 7, where L + 1 = 2 is the CIR

length.
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Figure 2.23: BER versus SNR performance of the RBF equaliser with correct decision
feedback upon varying the decision delay 7 over the dispersive two-path Gaussian channel
of Figure 2.21(a). The equaliser feedforward order m was fixed to m = 7 + 1 and the
feedback order n was varied according to n = L+ m — 1 — 7, where L +1 = 2 is the CIR
length. The equaliser’s complexity increases exponentially with m, as seen in Table 2.10.
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Figure 2.24: BER versus feedforward order m of the RBF equaliser with correct decision
feedback for varying E,/Ny values over the dispersive two-path Gaussian channel of Fig-
ure 2.21(a). The equaliser decision delay 7 was varied according to 7 = m — 1 and the
equaliser complexity increases exponentially with m, as seen in Table 2.10.

Thus, in Figure 2.20 we have I Feedback k-1 = [fk_gJ , since the feedforward section delays the

received signal by two sampling interval durations. Furthermore, vy = [ U Vg1 }T and
the delayed transmitted symbol is I_y. The number of noise-free channel output states
is ny = 2m+tL = 221 — 8 in Figure 2.25, where n = 4 and n; = 4, the number of
feedback states is ny = 2" = 2, while the number of subset channel states associated with
the ny = 2" = 2 feedback states is n;fj =2and ng; = 2. We denote the feedback states
Sy, where j = 1,2 as s5; = [~1] and s¢p = [+1]. Assuming that the feedback symbols are
correct, all the combinations of the transmitted binary symbols Iy, Ir_1 and Iy_5 as well
as the noiseless channel outputs ¥y, U1, the noiseless channel output states r;fj and r;
and the feedback states sy ; are listed in Table 2.11. Again, Figure 2.25 shows the noiseless
channel output states observed by an equaliser having a feedforward order of m = 2 and
decision delay of 7 = 1. Figure 2.26(a) and Figure 2.26(b) show the noiseless channel
output states of the RBF DFE using the parameters given above, when the feedback state
sy; is equivalent to -1 and +1, respectively, as stated in Table 2.11. Following the spirit
of Figure 2.3 in partitioning the decision space, at this stage we have to decide, what the
transmitted bit Iy_o was. This decision can be carried out by evaluating Equation 2.106
and identifying the symbol Z;, 1 = 1,..., M associated with the highest probability.

Note that the number of channel states required, in order to estimate the transmitted
symbol Ij,_, is now reduced from n; = 2"+l to n, ; = ny/ny = 2mTL /20 = 2MHLTDf we

invoke the feedback state sy ; in order to assist in the RBF subset selection. Explicitly, in
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L Ty Tp—2| O gy St L
11 1 |15 L [spi=—1 1,
+1 -1 -1 | +05 -15 [sp1=—1]ry,
141 -1 |05 405 [sp=—1]1p,
+1 41 -1 | +15 405 |sp1=—1|r],
-1 -1 41 [ 15 0.5 [spa=+1 |1,
+1 -1 41 [ 405 <05 |spp= 41|15,
-1 41 41| 05 415 | spp =41 | 1]y
+1 +1 41 | +1.5 +1.5[sjo=+1|r3,

Table 2.11: Transmitted signal Iy, Ix_1, Ix_2, noiseless channel output ¥, 0x—1, feedback
channel states s;; and noiseless channel states r;; for the channel impulse response of
F(z) = 1+ 05271 and equaliser feedforward order of m = 2, feedback order of n = 1
and decision delay of 7 = 1 symbol. The coordinates 03 and ¥;_; identify the points r;;
in Figure 2.25 and 2.26. This table is the extension of Table 2.1, where the entries were
rearranged appropriately, in order to separate the entries assosiated with s;; = —1 and

Sf2 = +1.

the example given above the number of channel states is reduced from 8 to 4, given the
information of the feedback symbols. The computational complexity reduction factor owing
to decision feedback is actually higher than ny, since a DFE typically requires a reduced
feedforward order m with respect to that, which is required without decision feedback. This
is justified by the following arguments. Increasing the number of feedforward taps m ex-
tends the dimensionality of the observation space. This is necessary, in order to be able to
increase the Euclidean distance between the RBF centres and thus to decrease the probabil-
ity of mis-classification. It is apparent that the minimum distance amongst the constellation
points of the subsets Vrj’ ,; and Vo . of Figure 2.26 for a particular feedback state sy,j,
is larger than amongst the points of the full subsets Vi~ and V,; . of Figure 2.25. Thus,
with the introduction of decision feedback, the Euclidean distance between the centres is
already increased and hence a smaller m is sufficient for maintaining a given equaliser perfor-
mance. Again, the increased Euclidean distance can be observed by comparing the noiseless
channel outputs ¥, U1 in Figure 2.25 and those in Figure 2.26. The distance between
a constellation point or state corresponding to the transmitted symbol I = +1 and the
nearest point or state corresponding to the transmitted symbol Iy = —1 is increased, when
the DFE scheme is used. Another important advantage of the decision feedback method
is that the noiseless channel! states r;; corresponding to different transmitted symbols are
linearly separable, provided that the parameters of the RBF DFE are chosen to be 7 = L,
m=7+1=L+1andn =L+m—7—1= L, which was proven mathematically by
Chen, Mulgrew, Chng and Gibson [70] for a PAM modulation scheme. This proof can be
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Figure 2.25: The noiseless channel states @, Ux_1 of a channel having a CIR of F(z) =
14 0.527! in a two-dimensional observation space. The filled circles represent the channel
states in the set V1 corresponding to the transmitted symbol of I_, = +1 and the hollow

sT
circles represent the channel states in the set VT;}T corresponding to the transmitted symbol

of I_, = —1, where the feedforward order is m = 2 and the decision delay of the equaliser

is T = 1.

readily extended to a QAM scheme. It should be emphasized that even though the noise-
less channel states are linearly separable for the conditions stated above for the equaliser’s
parameters, the optimal decision boundary will generally be nonlinear. However, the linear
separability is a highly desired property to have, since the equalisation performance in this
case is generally significantly better, than that of the nonlinearly separable case [71]. Note
that the noiseless channel states r; in the equaliser’s observation space can be inseparable,

as it will be demounstrated in Section 2.12.1.

2.11.2 Space Translation Properties of the Decision Feedback

In this section we provide a brief discourse on a technique, which can be used to reduce
the number of states to be stored by the equaliser and also to eliminate the selection of the
subset of states corresponding to the feedback symbol Ix_o in the example of Figure 2.26.
In general, when 7 > 1, several feedback symbols influence the number of feedback states
and hence the associated storage and complexity reduction may be significant.

For a particular feedback state sy ; characterized by the specific symbols I}, in the feedback
and V;;T,j are related to the subsets VTT—IL—,T,Z and VT;)TJ having

register, the subsets VWJ{Tj
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Figure 2.26: The noiseless channel states 0, U1 observed by the RBF DFE with feedfor-
ward order of m = 2, feedback order of » = 1 and decision delay of 7 = 1 symbol, assuming
that the feedback symbols are correct. The channel has a CIR. of F(z) = 1+ 0.5z7%. The
filled circles represent the channel states in the set V"1 . corresponding to the transmitted

m77-7-7
symbol of I, = +1 and the hollow circles represent the channel states in the set Vn;,lT’j
corresponding to the transmitted symbol of I, = —1. Again, our final decision concerning

the transmitted bit I _o is based on identifying the symbol Z;, 7 = 1, ..., M associated with
the highest probability.

consecutive feedback states of sy ; and sy, respectively, by a linear transformation. This
can be shown mathematically as follows. Upon rewriting Equation 2.11, in order to take
into account the decision feedback state in the expression of the noisy channel output and

assuming n < L and m = 74+ 1, gives:

vy = FI; + 14, (2.108)
where 1, = [ M ovr Th—mtl }T. The transmitted symbols influencing vy can be divided
in three classes as follows: I = [ I{k I%jk I::,}’:k ]T, where I ;, indicates those symbols,
which reside in the feedforward shift register, I, ; denotes those in the feedback register and

I3 ; consists of the rest of the symbols that influence vy but are left out by the DFE. These

symbols can be written as:

T
Il,k = I:Ik Ik—T}
T
Ly = [Ik_T_l Ik_T_n] (2.109)
T
I3,k = [:Ik—r-n—l Ikwme—H}

Furthermore, the m x (m + L) CIR-related matrix F has the form

F— [ F, F, F, ] (2.110)
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with the m x (7 + 1) matrix F1, m x n matrix Fy and m x (m + L —n — 7 — 1) matrix Fj

defined by

[ fo AL o f
Foo | 0] (2.111)
R i
0 ... 0 fo |
[ fre1 Fri2 oo frim |
F, = f:'r fr+1 : 7 (2.112)
: . fn+1
fl fn-l fn
[ frantt fransz oo fmsr—1 |
Fy — fran  frensr : ’ (2.113)
: . ' fr1
L fat1 A o]

where f; = 0 for 1 < L. Explicitly, F; hosts those CIR taps, which affect the feedforward
section, symbols contained by I x, Fy encompasses those, which weight the feedback sym-
bols I, while F'3 contains the symbols not considered by the DFE. Under the assumption
that the feedback symbol is correct, that is I Feedback k—7 = Lo & and based on Equation 2.108,

the noise-free channel output vector of Equation 2.6 can be rewritten as

v = Filip+ F2ifeedback,k—7 +F3ls

=V} + Fol jeedvack k-1 (2.114)

where we introduced
{};c = FlIl,k +F313,k. (2.115)

Thus the linear transformation between the consecutive noise-free channel output vectors
of ¥} and ¥}, is provided by the term FZifeedback,k-—T in Equation 2.114.
Using the CIR of Equation 2.13 we have f,41 = 0, f1 = 0.5, fo = 1 in Equations 2.111

1 05 0
- 2.113, yielding F; = [ 0 1 J, F, = !i 05 } and F3 = 0. Assuming [ = +1 and

1
I_1 = +1, we have I j = ‘: ) } and evaluating Equation 2.115 gives:

Ve = [; OIE)H”JFO:[T}. (2.116)
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Hence from Equation 2.114, for the specific feedback state of sy ; = I Feedback,k—r = [—1] the

noiseless channel state is given by

o] [ o ]_[us
! [1J [—0.5} [0.5}’ (2117)

while for the feedback state of sy o = I feedback k—r = |+1] the noiseless channel state is given

by
1. 1.
el e I e (2.118)
’ 1 0.5 1.5
as seen in Table 2.11.

We note that the linear transformation of Equation 2.114 between the consecutive noise-
free channel outputs of ¥; and ¥}, depends on the feedback states sy; and the CIR. The
geometric distance amongst the corresponding points of the set of Vn'; o and of the set V' j
for the same feedback state sy ; is not altered by the transformation. Using the example
in Figure 2.26, the geometric distance between the points r;’l and ry, corresponding to
the feedback symbol I,_5 = —1, is equivalent to the geometric distance between the points
r;“, 5 and Iy corresponding to the feedback symbol Iy 5 = —1. Thus it is sufficient to
consider just one particular feedback state, when examining the Symbol Error Rate (SER)
performance.

Previous research [70, 72] pointed out furthermore that the elements of ¥} can be com-
puted recursively. The ith element of ¥}, where, i =m —1,...,2,1, can be represented by

its unit delayed version as follows:
— 1 .
Vg—i = 2 Vggl—i i=m=—1,...,2,1, (2.119)

where 271 is the unit-delay operator. From Equation 2.114, the sth and (¢ — 1)th elements

of ¥}, can be written as

T
Vk—i = v;'c_i+2fm+j_1—ifk—~r—j (2.120)
i=1
n
Vk—it1 = 'Ullc—i+1+me+j~1—i+llk—7~j- (2.121)
J=1

Using Equation 2.119, 2.120 and 2.121, we have:

-1
Vg—i = 2 Vgl

n
-1 !
= Zz Vp_j+1 -+ Z fm+j-1-i+llk~'r—j
=1

T
-1,/
= 2 W+ Y fmageilbo1r—j
=1
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Figure 2.27: Space-translated RBF DFE

n n
! -1,
Vg—i T Z Jmtj—ictdk—r—j = 27 Up_1 + Z Imaj—idk—1-7—j

j=1 Jj=1
n+1
—1..7
= Z Ug_jp1 T Z Jmtj—i-1dg—r—j
j=2
! -1,/
Vk—i = % Vpy1-4— Jm—ilk—r—1 + frn—itndp—r—n—1

i=m—1,...,2,1. (2.122)
Upon substituting n = L into Equation 2.122 we arrive at:

Vkei = 2 Vhg1oi — fmeilbr—1 (2.123)

vho= g (2.124)

Based on this interpretation of decision feedback, an alternative DFE structure is depicted
in Figure 2.27. This version of the space-translated RBF DFE realises the same opti-
mal solution as the subset centre selection RBF DFE depicted in Figure 2.20. However, the
space-translated RBF DFE of Figure 2.27 removes the requirement of different set of centres
for different decision feedbacks and has hence a clear advantages in hardware implementa-
tional terms. The decision feedback 'merges’ the channel states corresponding to different
feedback states and hence the DFE of Figure 2.27 can be studied more conveniently in the

translated v'-space. !

! This property leads to the implementation of the so-called Minimum BER (MBER) DFE based on either
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2.12 Simulation Results

2.12.1 Performance of RBF Assisted Equalisers over Dispersive Gaussian

Channels

In all our results presented in this section the transmitted symbols I, were equiprobable
binary symbols assuming values from the set {£1}. Therefore the weights of the RBF
network were fixed to w; = +1, if the RBF centroids ¢; seen in Figure 2.12 correspond to a
positive channel state v;r and to w; = —1, if the RBF centroids ¢; correspond to a negative

as explained in Section 2.9.1. The noise variance 0727 was fixed to unity,

channel state v, ,
while the power of the transmitted symbol was varied according to the SNR per bit, namely
Ey/Ny. The transmitted symbol was oversampled by a factor of 10 and it was pulse-shaped.
Both the transmitter and receiver had a square root Nyquist filter [61] with a roll-off factor
of 0.5. The combined transfer function of these two filters produced a raised cosine filter
and this design satisfies the Nyquist criterion of zero ISI at sampling instants.

Initially the centres of the RBF network were positioned at the desired channel states seen
for example in Figure 2.3. The width of the RBF network p was set to 20,27. We assumed that
the CIR was known and the number of hidden nodes was set to n, = 2L+™. In practice the
CIR can be estimated using channel sounding [75, 76] and using the estimated CIR would
result in some performance degradation. The impulse responses of the channels used for the
simulations were characterized by Figure 2.21(a) for the two-path channel, Figure 2.21(b)
for the three-path channel and Figure 2.21(c) for the five-path channel.

The BER performance of the RBF network was compared with that of the linear MSE
equaliser [59] (pp. 607-612). The tap weights of the linear MSE equaliser were set to obtain
the best possible performance and both schemes used the same number of taps given by
m. Figure 2.28 and Figure 2.29 shows our BER performance comparison for the two-path
channel and the three-path channel, respectively. The two-path results of Figure 2.28 show
that for the same number of taps the RBF network equaliser provides superior performance
in comparison to the linear MSE equaliser, before the residual BER is reached, above which
the BER performance did not improve upon increasing Ej,/Ny. Beyond this point the RBF
network equaliser and the linear MSE equaliser have a similar BER performance.

This can be explained graphically by first observing the desired channel states in the
channel observation space of Figure 2.30. For the two-path channel environment of Fig-
ure 2.21(a) and an equaliser having three taps, the desired channel states and a linear

decision boundary surface provided by the linear MSE equaliser is shown in Figure 2.30.

T
Note that the noiseless channel output v = [ 00 O ] due to the transmitted data

a linear filter [70] or on the so-called support vector machine [73, 74] proposed by Chen et. al. that construct
hyperplanes, which can separate the different signal classes.
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Figure 2.28: BER versus Ej/Ny performance of the RBF equaliser using no decision feed-
back upon varying the number of equaliser taps m over the two-path Gaussian channel of
Figure 2.21(a) using BPSK. The performace is compared to that of the linear MSE equaliser
using m number of taps. The residual BER bound (= 5747, where L+ 1 is the CIR length)
is shown for different values of m. The residual BER is due to the constellation points
appearing on top of each other in Figure 2.30.
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Figure 2.29: BER versus E} /Ny performance of the RBF equaliser using no decision feedback
upon varying number of equaliser taps m over the three-path dispersive Gaussian channel
of Figure 2.21(b) employing BPSK. The performace is compared to that of the linear MSE
equaliser using m number of taps.
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sequence of {—=1+1—1+1} and {+1 -1+ 1 — 1} corresponds to both Iz, = +1 and
I,_, = —1. Thus the channel states r* and r™ are inseparable both linearly and nonlinearly
at that point, even when the input dimension is increased. This provides the performance
limitation manifested in terms of the residual BER for both the linear MSE equaliser and
the RBF network equaliser. The value of the residual BER is dependent on the relative
frequency of encountering this inseparable channel state scenario. For example, in the case
of the two-path channel environment mentioned above, where there are two channel states
corresponding to the noiseless channel output vector v = [ 0 00 }T and both are clas-
sified as corresponding to I, = +1 or Iy_, = —1, one channel state out of the total of
ns legitimate channel states will be classified wrongly, irrespective of Ej,/Ny. Thus, the
minimum achievable bit error rate will be h‘1§ for a particular equaliser order m. This ex-
plains the BER residual in Figure 2.28. The BER residual ’bound’ of ;3; is also shown in
Figure 2.28 using dashed line for the various m values employed. The three-path results
of Figure 2.29 also show superior performance in comparison to the linear MSE equaliser,
before the residual BER is reached. Again, the residual BER ’bound’ can be explained by
the inseparable channel states.

The BER performance generally improves upon increasing the number of equaliser taps
m, as does the 'bound’ ;%; The dimension of the channel observation space that increases
with increasing m has the effect of increasing the Euclidean distance between the desired
channel states and therefore improves the separability between ¥+ and v, but does not
irradicate the ambiguity associated with v = { 0 00 }T

Figure 2.31, Figure 2.32 and Figure 2.33 show the BER performance of the RBF network
equaliser in conjunction with decision feedback for the two-path channel, three-path chan-
nel and five-path channels of Figure 2.21, respectively. The equaliser feedforward order m
is fixed to 7 + 1, while the feedback order was set to n = L, as described in Section 2.11.
The results shows that the decision feedback structure not only decreases the computa-
tional complexity, since less taps and less hidden nodes are neccesary, it also substantially
improves the BER performance. The residual BER is eliminated, since the desired states
vT and v~ that correspond to the same point in the channel observation space have now
different feedback states and the set of noiseless channel states anf’ ; and Vo o are now
separable. This confirms the findings by Chen, Mulgrew, Chng and Gibson [70] that the
noiseless channel states corresponding to a different transmitted symbol are linearly sepa-
rable, provided that the decision delay, feedforward section and feedback section length of
the RBF DFE are chosentober =L, m=7+1=L+landn=L+m—-7—-1=L.

Note furthermore that the error propagation due to erroneous decision feedback has a

moderate effect on the performance of the BPSK RBF network equaliser, amounting to
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Figure 2.31: BER versus E,/Ny performance of the BPSK RBF equaliser with decision
feedback over the dispersive two-path Gaussian channel of Figure 2.21(a). The equaliser
has a feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1
symbol.
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O —— Correct symbol fed back .
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Figure 2.32: BER versus E,/Ny performance of the BPSK RBF equaliser with decision
feedback over the dispersive three-path Gaussian channel of Figure 2.21(b). The equaliser
has a feedforward order of m = 3, feedback order of n = 2 and decision delay of 7 = 2
symbols.
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Figure 2.33: BER versus Ey/Ny performance of the BPSK RBF equaliser with decision
feedback over the dispersive five-path Gaussian channel of Figure 2.21(c). The equaliser
has a feedforward order of m = 5, feedback order of n = 4 and decision delay of 7 = 4

symbols.

around 1dB performance degradation at BER = 10™* for all the three channels of Fig-
ure 2.21.

2.12.2 Performance of Adaptive RBF DFE

As our next endeavour, the adaptive performance of the RBF network equaliser employing
the K-means clustering algorithm of Section 2.9.5 was investigated. Firstly, the average

normalised MSE of the vector centres at signalling interval k£ was defined as:

MSE o2 Z ch k— Cg optH (2.125)

7’1,3 7 =1

where n, is the number of RBF centres, ag is the variance of the noise-free received signal,
Cik,t=1,...,n5,k=0,...,00 represents the ith assumed RBF centre at signalling interval
k and c; op is the vector associated with the ith desired or assumed 'true’ RBF center. The
K-means clustering technique operates by iteratively adjusting the RBF centres upon every
sampling instance according to Equation 2.94 during training mode, while Equation 2.96
is used during the decision-directed mode. The centres’ MSE convergence performance is
demonstrated over the two-path channel environment in Figure 2.34 using different number
of training symbols, while in Figure 2.35 upon varying the learning rate p. of Equation 2.94

and 2.96. The results show a good convergence performance for our stationary two-path
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Figure 2.34: The MSE of the BPSK RBF equaliser centres versus transmitted symbol index
for various numbers of training samples using the vector centre clustering algorithm of
Section 2.9.5 over the two-path channel environment of Figure 2.21(a). The equaliser had
m = 5 feedforward taps and a decision delay of 7 = 2 symbols. The centre learning rate .
of Equations 2.94 and 2.96 was set to 0.1 and the SNR was 10dB.

channel of Figure 2.21(a) upon invoking the decision-directed learning algorithm of Equa-
tion 2.96. However, further simulations have to be carried out, in order to investigate the
effect of time-varying wideband mobile channels. As the learning rate p. is increased, the
centres converge faster to their desired positions, but as expected, the MSE curves of the
centres become more spurious, especially at low SNRs as we can see from Figure 2.35. Based
on these results we recommend using a variable learning rate u., where . is set to a higher
rate during the training mode so that the equaliser converges faster and is set to a lower
rate during the decision-directed learning mode, in order to reduce the spuriousity of the
centre MSE.

The performance of the scalar centre clustering algorithm described in Section 2.10 is
demonstrated over the same two-path Gaussian channel environment in Figure 2.36 and
Figure 2.37. Comparing Figure 2.35 and Figure 2.36 using various centre learning rates py,
shows that the scalar centre clustering algorithm provides a significantly faster convergence
rate, since the number of scalar centres ng ; = MEHL =4 (M = 2,L = 1) is only dependent
on the number of symbol constellation points, M, and on the CIR length L + 1. Hence
the number of scalar centres is significantly less than the number of vector centres given by
ns = MET™ = 64 (m = 5), which is additionally dependent on the equaliser order m as
well. However, the MSE learning curves of the centres are more spurious in conjunction with
the scalar centre clustering algorithm, since the value of a scalar center affects the value of

a few vector centres that contain that particular scalar centre and thus the estimation error
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Figure 2.35: The MSE of the BPSK RBF equaliser centres versus transmitted symbol
index for various learning rates p. of the centres using the vector centre clustering
algorithm of Section 2.9.5 over the two-path channel environment of Figure 2.21(a). The
equaliser had m = 5 feedforward taps and a decision delay of 7 = 2 symbols, and the
number of training symbols was 700.
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Figure 2.36: The MSE of the BPSK RBF equaliser centres versus transmitted symbol
index for various learning rates p, of the centres using the scalar centre clustering
algorithm of Section 2.10 with 700 training symbols over the two-path channel environment
of Figure 2.21(a). The equaliser had m = 5 feedforward taps and a decision delay of 7 = 2

symbols.
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Figure 2.37: The MSE of the BPSK RBF equaliser centres versus transmitted symbol
index for various number of training samples using the scalar centres clustering
algorithm of Section 2.10 over the two-path channel environment of Figure 2.21(a). The
equaliser had m = 5 feedforward taps and a decision delay of 7 = 2 symbols. The centre

learning rate u, was set to 0.1.



CHAPTER 2. NEURAL NETWORK BASED EQUALISATION 7

of a scalar center will be magnified, when we examine the average normalised MSE of the
vector centres in Figure 2.36. Figure 2.37 shows the average normalised MSE of the RBF
centres for a varying number of training symbols. Note that the algorithm still converges
during the decision-directed mode, although the MSE curve behaves more spuriously during

this mode compared to the learning phase, especially at low SNRs.
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Figure 2.38: The MSE of the BPSK RBF equaliser centres versus transmitted symbol in-
dex for various learning rates p; using the LMS channel estimator technique of
Section 2.9.4 with 300 training symbols over the two-path channel environment of Fig-
ure 2.21(a). The equaliser had m = 5 feedforward taps and a decision delay of 7 = 2

symbols.

The centres’” MSE convergence performance for the channel estimation method using
the LMS algorithm described in Section 2.9.4 is demonstrated in Figures 2.38 and 2.39.
Comparing Figure 2.36 and 2.38 using varying learning rates shows that the LMS channel
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Figure 2.39: The MSE of the BPSK RBF equaliser centres versus transmitted symbol
index for various number of training samples using the LMS channel estimator
technique of Section 2.9.4 over the two-path channel environment of Figure 2.21(a). The
equaliser had m = 5 feedforward taps and a decision delay of 7 = 2 symbols. The channel
estimator learning rate uy was set to 0.03.
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estimator technique provides faster convergence rate at a given learning rate, since the
number of CIR coefficients that were adapted according to Equation 2.90 by the LMS
channel estimator is less than the number of scalar centres of the scalar clustering algorithm.
However, if we compare Figure 2.36(a), (b), (c¢) and (d) with Figure 2.38(a), (b), (c) and
(d), respectively, they show rather similar convergence rates during the training mode since
the number of scalar centres (2X+1 = 4) is not too high compared to the number of channel
coefficients (L + 1 = 2) to be learnt adaptively. Figure 2.39 shows the average normalised
MSE of the RBF centres for varying number of training symbols. Again, the LMS channel

estimator technique of Section 2.9.4 still converges during the decision-directed mode.
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Figure 2.40: The MSE of the BPSK RBF equaliser centres versus transmitted symbol index
using the scalar centre clustering algorithm of Section 2.10 with centers initialised
to the corresponding noisy channel states, as described by Equation 2.97 over the
two-path channel environment of Figure 2.21(a). The MSE of the BPSK RBF equaliser
centres learnt using the scalar centre clustering algorithm with centres initially set to 0 for
SNR = 40dB is shown for comparison. The equaliser had m = 5 feedforward taps and a
decision delay of 7 = 2 symbols. The learning rate u, was set to 0.1 and the number of
training symbols is 200.

Figure 2.40 shows the centres” MSE convergence performance, when the scalar centres
clustering algorithm was initialised with the corresponding noisy channel states, as de-
scribed in Section 2.10 over the same two-path Gaussian channel environment. Comparing
Figure 2.36(b) and Figure 2.40 reveals that the initialisation to the corresponding noisy
channel states significantly increases the convergence rate of the clustering algorithm at a
low additional computational cost. The convergence rate is also seen to be faster than that
of the LMS channel estimator technique when we compare Figure 2.38(d) with Figure 2.40,
since the number of scalar centres (2X*! = 4) is not significantly higher, than the number
of channel coefficients (L + 1 = 2) to be learnt adaptively. Note that since the number
of scalar centres (MZ%+1) increases exponentially with the length L of the CIR, the LMS
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channel estimation technique will have a better convergence rate for high order modula-
tion scheme and high CIR lengths, than the scalar centre clustering algorithm using the

above-mentioned initialisation to the noisy centres.

2.12.3 Performance of the RBF Equaliser for Square-QAM over Gaussian

Channels

In this section the performance of the RBF equaliser is analysed in conjunction with multi-
level modulation schemes in a Gaussian environment. We used square-shaped Quadrature
Amplitude Modulation (QAM) constellations [61]. Figure 2.41 portrays the location of each
constellation point in terms of their in-phase (I) and quadrature-phase (Q) components for
2-, 4-, 16- and 64-QAM. Each constellation point is assigned a bit sequence. Gray coding
is applied to assign the bit sequences to their respective constellation points, ensuring that
the nearest-neighbour constellation points had a Hamming distance of one. Therefore the
assignment of constellation points is optimised in terms of minimising the BER. For a more
in-depth understanding of QAM techniques, the interested reader is referred to [61].

We use a RBF DFE for multilevel modems as discussed in Section 2.9.2 and Section 2.11.
Figure 2.42 shows the bit error rate performance for the 2-, 4-, 16- and 64-QAM schemes in
conjunction with correct and detected symbol feed-back. The performance degradation due
to decision errors is approximately 0.5dB for 2- and 4-QAM, 1dB for 16dB, 1.5dB for 64dB
at BER = 107 and thus it has a moderate effect at low BERs. Note however the Fj/Ny
degradation increases, as the BER increases, which becomes more significant at higher order
QAM.

Figure 2.43 shows the performance comparison between the conventional DFE and the
RBF equaliser with decision feedback over the dispersive two-path Gaussian channel of
Figure 2.21(a). The parameters of the conventional DFE were chosen such that it exhibited
the best possible performance for our simulation scenario and hence a further increase of the
feedforward order would not give a significant performance improvement. The conventional
DFE used in our simulations had a feedforward order of m = 7, feedback order of n = 1 and
decision delay of 7 = 7 symbols. The RBF equaliser using decision feedback was found to
give a similar performance with a reduced feedforward order of 2, feedback order of 1 and
decision delay of 1 symbol. The performance of the RBF assisted decision feedback equaliser
can still be further improved quite significantly by increasing both the decision delay T and
the feedforward order m, as we discussed in Section 2.11 and this was demonstrated in

Figure 2.23 for Binary Phase Shift Keying (BPSK).
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Figure 2.42: BER versus Ej /Ny performance of the RBF equaliser using decision feedback
over the dispersive two-path AWGN channel for different M-QAM schemes. The impulse
response of the two-path channel is described by Figure 2.21(a). The equaliser had a
feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol.
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2.12.4 Performance of the RBF Equaliser over Wideband Rayleigh Fad-

ing Channels

In this section we used M-QAM symbols. The combined transfer function of the transmitter
and recetver filters yielded a raised cosine filter with a roll-off factor of 0.5. The transmitter
and receiver filters were identical and were implemented as finite-impulse-response (FIR) fil-
ters. The filter tap weights were samples of the truncated square-root-raised-cosine impulse
response. The transmitted symbol was oversampled by a factor of 8 and it was pulse-shaped.

The baseband time-invariant multipath fading channel was represented as follows:
c(t) =" filt)di_rye), (2.126)
=0

where n. is the number of fading paths, f;(¢) is the complex-valued ith CIR tap at time
t, 7i(t) is the excess delay at time ¢ and d; is a delta function located at signalling instant
t. The multipath components f;(¢) have independent Rayleigh fading statistics, they are
uncorrelated and are scaled by their designed weights. For a more in-depth charaterization
of Rayleigh fading channels, the reader is referred to the tutorial by Sklar [77]. In our
simulations, the fading parameters of the channel are given in Table 2.12 and we employ
two symbol-spaced fading paths with the weights given by 0.707 +0.707z71. The structure
of the transmitted burst is given in Figure 2.44, where the training symbol sequence is
implemented as a preamble. In our simulations, the number of training symbols L1 was set

to 27 and the number of data symbols Lp was set to 144.

Transmission Frequency 1800MHz
Transmission Rate 133kBds
Vehicular Speed 30 mph
Normalised Doppler Frequency | 6 x 1074

Table 2.12: Simulation parameter of the Rayleigh fading channel

Figure 2.45 provides our BER performance comparison between the conventional DFE
and the RBF DFE for different M-QAM schemes. The conventional DFE assumed perfect
channel estimation and its equaliser coefficients were optimised using the MSE criterion as
described in [59] (pp. 607-612). The centres of the RBF DFE were positioned at the desired
channel states. In these simulations the CIR taps were kept constant for the duration of
the transmitted burst and were faded before the next burst, which we refer to as burst-
invariant fading. From Figure 2.45 we note that for BPSK, the RBF DFE having a low
feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol

was found to give similar performance to the conventional DFE having a feedforward order
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of m = 7, feedback order of n = 1 and decision delay of 7 = 7 symbols. For 4-QAM, 16-
QAM and 64-QAM, the RBF DFE having the same parameters gives inferior performance
compared to the conventional DFE in the two-path Rayleigh fading channel scenario. This
is dissimilar to the performance of the two-path Gaussian channel shown in Figure 2.43.
The performance degradations endured by the higher order modulation schemes are higher
under fading channel conditions even in conjunction with perfect channel estimation, since
these schemes are more sensitive to fades due to their reduced Euclidean distance between
their neighbouring constellation points. Nevertheless, the performance of the RBF DFE
can be improved by increasing both the decision delay 7 and the feedforward order m, as
we discussed in Section 2.11, at the expense of increased computational complexity. This is
demonstrated in Figure 2.46, where the performance of the RBF DFE having an increased
decision delay of 7 = 2 and corresponding feedforward order of m = 3 and n = 1 showed
an improved performance, attaining similar BER performance curves to the previously
described conventional DFE for BPSK, 4-QAM and 16-QAM. The performance of 64-QAM
is not shown here due to the associated high computational complexity of the simulation.
The adaptive performance of the RBF DFE was investigated over the two-path Rayleigh
fading channel at a normalised Doppler frequency of 6 x 10~% for the BPSK modulation
scheme. In our adaptive RBF DFE simulations, we used a variable centre learning rate
tir, where we had p, = 0.3 during the training mode and u, = 0.1 during the decision-
directed learning mode. We assigned a sequence of Ly pseudo-random binary symbols as
the training symbol sequence as seen in Figure 2.44. We note, however that we will have to
find the symbol sequence that can give the best training performance. Figure 2.47 provides
our performance comparison for the RBF DFE using perfect channel estimation and when
the adaptive RBF DFE is trained with the aid of the scalar centre clustering algorithm
described in Section 2.10. Figure 2.47 shows that there is a high performance degradation
due to the imperfect CIR knowledge and a residual BER is experienced in our simulations,
when the wideband fading channel is symbol-invariant, as opposed to being burst-invariant,
i.e. when it is kept invariant for only a symbol duration rather than for a burst duration.
This phenomenon can be explained by comparing Figure 2.48 and 2.49 with Figure 2.50 and
2.51 that show the snapshots of the channel output vector v, and that of the learnt and
ideal channel states r;;, when the feedback state is sy ; = [—1] for the SNR of 30dB. The
fades are symbol-invariant for Figure 2.48 and 2.49, and burst-invariant for Figure 2.50 and
2.51 throughout the transmission frame of Ly + Lp = 177 symbols. The ideal channel states
were obtained from the taps of the impulse response of the channel at the start of the frame
and the learnt channel states were obtained using the scalar centre clustering algorithm
described in Section 2.10. We also observed from Figure 2.48 and 2.49 as well as from

Figure 2.50 and 2.51 that the scalar clustering algorithm is capable of tracking the desired
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channel states. At high SNRs the fades dominate, rather than the Gaussian noise, resulting
in error statistics, which are not Gaussian. When the fading of the CIR is symbol-invariant,
the effect of the fades is evident throughout the whole transmission burst, as we can observe
from Figure 2.48 and 2.49 and this degrades the BER performance and gives an increased
residual BER. But if the fade is burst-invariant, the channel effects due to fades will not be
evident throughout the whole transmission frame, as shown in Figure 2.50 and 2.51, and thus
this effect will not manifest itself in the results. The degradation of the BER performance
due to fades within the transmission burst is evident in Figure 2.48(b). Theoretically, the
channel output vectors are separable at any time instance due to the appropriate setting
of the equaliser’s parameters. However, the clustering algorithm tracking error and the
small Euclidean distance between the channel states rendered the channel output vectors
inseparable for the symbol-invariant fading scenario.

The channel output vectors are separable however for burst-invariant fading, as shown in
Figure 2.50(b). During our simulations, the RBF DFE produced 77 symbol errors out of
144 data symbols in the frame of Figure 2.48(b) for the symbol-invariant fading scenario,
but did not give any symbol errors in the frame of Figure 2.50(b) for the burst-invariant
fading scenario. The inseparable channel output vectors explain the residual BER present
during our symbol-invariant fading simulations, as shown in Figure 2.47. We note that
even for relatively slow fading channels, the channel states can change significantly from
symbol-to-symbol within a transmission burst duration. This phenomenon was noted in our
simulations. Hence, when we assume perfect channel estimation and burst-invariant fading

in our simulations, the results constitute best-case estimates.
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Figure 2.43: BER versus signal to noise ratio performance of the RBF equaliser using de-
cision feedback and the conventional DFE over the dispersive two-path Gaussian channel
for different M-QAM schemes. The impulse response of the two-path channel is described
by Figure 2.21(a). The RBF equaliser had a feedforward order of m = 2, feedback order of
n = 1 and decision delay of 7 = 1 symbol. The conventional DFE had a feedforward order
of m = 7, feedback order of n = 1 and decision delay of 7 = 7 symbols. Correct symbols
were fed back.

Training Symbols Data Symbols

Lt Lp

Figure 2.44: Transmitted frame structure depicting the position of the data and training
symbols. For example in the context of the COST 207 CIR of Figure 2.52 the number of
training symbols L7 were 49 and the number of data symbols Lp were 122.
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Figure 2.45: BER versus signal to noise ratio performance of the conventional DFE and
the RBF equaliser with decision feedback over the two equal weight, symbol-spaced path
Rayleigh fading channel of F(z) = 0.707 + 0.707z~! for different M-QAM schemes. Both
equalisers assume perfect CIR estimation. The conventional DFE had a feedforward order
of m =7, feedback order of n = 1 and decision delay of 7 = 7 symbols. The RBF DFE had
a feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 =1
symbol. Correct symbols were fed back. The Rayleigh fading parameters are summarised
in Table 2.12.
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Figure 2.46: BER versus signal to noise ratio performance of the conventional DFE and
the RBF equaliser with decision feedback over the two equal weight, symbol-spaced path
Rayleigh fading channel of F(z) = 0.707 4+ 0.707z~! for different M-QAM schemes. Both
equalisers assume perfect CIR estimation. The conventional DFE had a feedforward order
of m =7, feedback order of n = 1 and decision delay of 7 = 7 symbols. The RBF DFE had
a feedforward order of m = 3, feedback order of n = 1 and decision delay of 7 = 2
symbol. Correct symbols were fed back. The Rayleigh fading parameters are summarised

in Table 2.12.
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O e Learnt - symbol-invariant fading
N Learnt - burst-invariant fading

0 5 10 15 20 25 30 35
E, /N, (dB)

Figure 2.47: BER versus Ej, /Ny performance of the adaptive RBF DFE with correct decision
fedback under burst-invariant fading and symbol-invariant fading. The RBF DFE is adapted
using the scalar centre clustering algorithm described in Section 2.10. The performance of
the RBF DFE using perfect CIR estimation is provided for comparison. The RBF DFE
had a feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1
symbol. The Rayleigh fading parameters are summarised in Table 2.12.
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Figure 2.48: The channel output vectors, learnt channel output states and ideal channel
output states of 1-4 transmission bursts in two-dimensional observation space, when the
feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel.
The fading is symbol-invariant. The DFE had the parameters of m = 2,n = 1 and

7 = 1, while the SNR was 30dB.
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Figure 2.49: The channel output vectors, learnt channel output states and ideal channel
output states of 5-8 transmission bursts in two-dimensional observation space, when the
feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel.
The fading is symbol-invariant. The DFE had the parameters of m = 2,n
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7 = 1, while the SNR was 30dB.
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Figure 2.50: The channel output vectors, learnt channel output states and ideal channel
output states of 1-4 transmission bursts in two-dimensional observation space when the
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feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel.
The fading is burst-invariant. The DFE had the parameters of m =2,n =1 and 7 = 1,

while the SNR was 30dB.
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Figure 2.51: The channel output vectors, learnt channel output states and ideal channel

output states in two-dimensional observation space when the feedback symbol is -1 over
The fade is burst-

v(k)

(c) Tth frame burst

93

IS

100
80
60
40

vk - )
8

=20

&

channel output vector :
O Lk.=+1

Ik-'r='1

learnt channel state :

® I,..,=+1
AL, =-1

ideal channel state :
i =+1
Ik"r =-1

®

-40
-100-80 -60 -40 -20 0 20 40 60 80 100

v(k)

(b) 6th frame burst

4%

channel output vector :
O Ig,=+1

Ik»‘r= -1

learnt channel state :

® I, =+1
A L =-1

ideal channel state :

O L ,=+1
Q

,=-1

a0

15 .10 -5 05
v(k)

10 15 20

(d) 8th frame burst

the two-path symbol-spaced, equal-gain Rayleigh fading channel.

invariant. The DFE had the parameters of m = 2,n = 1 and 7 = 1, and the SNR was

30dB.
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2.12.5 Performance of the RBF DFE over COST 207 Channels

In this section the performance of the RBF DFE is investigated over the widely-used family
of Rayleigh fading COST 207 test channels [78]. The magnitude of the impulse responses
and their respective delays can be calculated by applying a set of rules, which is specified
in the COST 207 report [78]. More specifically, the CIR taps may be positioned on an
equispaced legitimate raster, provided the taps themselves are not equispaced. The impulse
responses and the relative delays of the channels referred to as the Typical Urban (TU) and
Hilly Terrain (HT) models are shown in Figure 2.52 and Table 2.13. Figure 2.53 shows the
observed channel output and the learnt channel states in a two dimensional [ U Ug_1 }
space, when the decision delay is one symbol for the AWGN contaminated dispersive TU and
HT channels without fading. Note in Figure 2.53(b) that the channel states are separable
without fading. The fading parameters used in our simulations were given in Table 2.12.
The structure of the transmitted burst was given in Figure 2.44. In our simulations, the
number of training symbols L7 was set to 49 and the number of data symbols Lp was set
to 122. The scalar centre clustering algorithm of Equation 2.100 was used in conjunction
with a variable centre learning rate such that p, was 0.3 during the training mode and
0.1 during the decision-directed learning mode. Figure 2.54 shows the BER versus Ep/Ny
performance for the COST 207 TU and HT channels, where the RBF DFE parameters
were set to be m = 2,n = 1,7 = 1 for the TU channel and m = 3,n = 2,7 = 2 for
the HT channel, so that the decision delay covered the whole impulse response length.
Thus, we assumed L = 1 for the TU channel and L = 2 for the HT channel. Figure 2.54
depicts the BER performance for both symbol-invariant and burst-invariant fading burst.
From Figure 2.54 we observed again the residual BER of approximately 10~% due to the
desired channel states that are close together in terms of Euclidean distance, which is a
consequence of the non-ideal learnt channel states and inseparable channel state clusters
in the symbol-invariant scenario, as mentioned in Section 2.12.4. For the burst-invariant
scenario, the residual BER was approximately 2 x 10~% for TU channel and 5 x 1075 for
the HT channel, where again, the explanation of Section 2.12.4 applies. However, for the
burst-invariant scenario, where the noiseless channel states remain the same throughout
the burst duration, the performance degradation that produces the residual BER is due

to the non-ideal learnt channel states, especially when the desired channel states are close

together.
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Hilly Terrain Typical Urban
Position (us) | Relative Power (dB) | Position (us) | Relative Power (dB)

0.00 -0.7 0.00 -0.87
0.94 -14.99 1.88 -9.03
1.88 -15.44 2.82 -13.12
15.04 -29.30 4.70 -21.28
15.98 -10.89

17.86 -23.13

95

Table 2.13: The relative power and delay of each path in the COST 207 [78] Typical Urban
and Hilly Terrain channels which are depicted in Figure 2.52.
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Figure 2.52: The impulse response of the COST 207 Typical Urban and Hilly Terrain
channels depicting the relative power of each impulse and their relative delays, as shown in

Table 2.13



CHAPTER 2. NEURAL NETWORK BASED EQUALISATION 96

X vpwithl = +1 i X vpwithl .= +1
e VkWith Ik—?‘= -1 ° VkWith Ik—T= -1
O 1, state O r; state
100 O 1, state 100 Q r; state
80 T 80
60 N % 60 & 3 &  o%
40 40
_20 _2l P ® LA
S S
'40 i 9 3 @ ®
- . -40
by ..._?
-60 L ) .60 ‘O - »
80t " Pi 801 v v ¥
-100 -100
-100-80 -60 -40 -20 0 20 40 60 80 100 -100-80 -60 -40 -20 0 20 40 60 80 100
Vi Vg
(a) COST 207 Typical Urban Channel (b) COST 207 Hilly Terrain Channel

Figure 2.53: The noisy channel outputs v, and the learnt channel states r; of the COST
207 Typical Urban and Hilly Terrain channels with their transfer function depicted in
Figure 2.52 for a BPSK modulation scheme. The SNR was 30dB, the number of samples
was 171 and the decision delay was one symbol. The channel states r; were learnt with
the aid of the scalar clustering algorithm of Section 2.10, where the number of training
symbols was 49 and the learning rate p, was set to 0.3 during training mode, while to 0.1
during decision-directed mode. By comparison, the corresponding quantities for the CIR of
F(z) =0.707 + 0.7072~! were plotted in Figures 2.50 and 2.51.
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Figure 2.54: BER versus E,/Ny performance for the BPSK RBF DFE in conjunction with

correct decision fedback over the COST 207 TU and HT channels with the impulse responses
described by Table 2.13 and Figure 2.52.
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2.13 Conclusions

In this chapter we provided a brief overview of neural networks and described, how equalisa-
tion can be viewed as a classification problem. The architecture of RBF networks was pre-
sented and we described the design of the RBF equaliser based on the Bayesian equaliser so-
lution. Our performance comparisons between the linear MSE equaliser and RBF equaliser
in Figure 2.28 and 2.29 demonstrated that the RBF equaliser is capable of providing superior
performance with the aid of an equivalent equaliser order at the expense of an exponential
complexity increment upon increasing the equaliser order. According to Figure 2.28 and
2.29, the RBF equaliser'having a feedforward order of m = 9 provides a performance im-
provement of 10dB and 20dB over the linear MSE equaliser for the two-path and three-path
Gaussian channel of Figure 2.21, respectively, at a BER of 1073. We note that both the
linear MSE equaliser and the RBF equaliser exhibit a residual BER characteristic, if the
channel states corresponding to different transmitted symbols are inseparable in the channel
observation space, as shown in Figure 2.30.

The adaptive performance of the RBF equaliser employing the vector centre clustering
algorithm of Section 2.9.5, scalar centre clustering algorithm of Section 2.10 and the LMS
channel estimator of Section 2.9.4 were compared. The convergence rate of the clustering
algorithm depends on the number of channel coefficients to be adapted and therefore de-
pends on the modulation scheme used and on the CIR length. However, the convergence
of the LMS channel estimation technique only depends on the CIR length and therefore
this technique is preferred for high-order modulation schemes and high CIR lengths. This
is particularly true for the scenario, where the modulation mode of the training sequence
and the data sequence differs, e.g for the adaptive QAM system described in Chapter 3,
where a more robust modulation mode is used for the training sequence. The LMS channel
estimation technique could only be used to obtain the correponding RBF centres, since the
desired channel output differs for the training- and data sequences. However, note that the
LMS channel estimation technique incurs a higher computational complexity compared to
both the vector and scalar clustering algorithms, as demonstrated in Table 2.7, 2.8 and 2.9.

Decision feedback was then introduced into the RBF equaliser, in order to reduce its com-
putational complexity. As a result, its performance improved, since the Euclidean distance
between the channel states corresponding to different transmitted symbols increased, when
the DFE scheme was used. Recall that the parameters of the RBF DFE were chosen to be
m =7+ 1and n = L, where m, n, 7 and L + 1 are the feedforward order, feedback order,
delay and CIR length, which provide the best solution for a fixed equaliser delay 7. As
expected, the performance degradation due to decision error propagation increased, as the

BER increased, which became more significant for higher order QAM, as it was shown in
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Figure 2.42. For fading channel conditions, the performance degradation for higher order
modulation schemes were higher, since they are more sensitive to fades due to the reduced
Euclidean distance between the neighbouring channel states.

We investigated the performance of the adaptive RBF equaliser in symbol- and burst-
invariant fading scenarios. We observed the effects of inseparable channel state clusters for
symbol-invariant fading in Figure 2.48(b), which was due to the fast-fading effects present
across the burst duration. This phenomena, together with the non-ideal learnt channel
states, explain the residual BER present in our simulations. Therefore, we have to note that
even for relatively slow fading channels, the channel states value can change significantly
on a symbol-by-symbol basis in a transmission burst duration.

In the next chapter, we will proceed to investigate the implementation and performance

of the RBF equaliser in the context of adaptive modulation schemes.



Chapter 3

Adaptive Modulation

In this chapter, the concept of RBF equalisers is extended to Burst-by-Burst (BbB) Adap-
tive QAM (AQAM) schemes. BbB AQAM schemes employ a higher-order modulation
mode in transmission bursts, when the channel quality is favourable, in order to increase
the throughput and conversely, a more robust but lower-order modulation mode is utilized
in those transmission bursts, where the instantaneous channel quality drops. The modem
mode switching regime will be detailed in more depth during our further discourse. We
will show that this RBF-AQAM scheme naturally lends itself to accurate channel quality
estimation. We will provide an outline of our various assumptions and the description of
the simulation model, leading to our RBF-AQAM performance studies. This scheme is
shown to give a significant improvement in terms of the mean BER and bits per symbol
(BPS) performance compared to that of the individual fixed modulation modes. Let us now

commence with a brief background on adaptive modulation in both narrow- and wide-band

fading channel environments.

3.1 Background to Adaptive Modulation in a Narrowband
Fading Channel

We summarise here the principles of adaptive modulation in a narrow-band Rayleigh fading
channel environment. In a narrow-band channel, as a result of channel fading, the short-
term SNR can be severely degraded. This typically degrades the short-term BER at the
receiver. Again, the concept of adaptive modulation is to employ a higher modulation mode,
when the channel quality is favourable, in order to increase the throughput and conversely,
a more robust modulation mode is employed, in order to provide an acceptable BER, when
the channel exhibits a deep fade. Thus, adaptive modulation is not only used to combat the

fading effects of a narrow-band channel, but it also attempt to maximise the throughput.

100
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This idea is somewhat reminiscent of invoking a coarse power control scheme although
without the detrimental effects of inflicting increased interferences upon other system users
due to powering up during the intervals of low channel quality. In our work we used a
variable number of modulation levels and again, we refer to this scheme as AQAM, while

maintaining a constant transmitted power.

( Uplink o —
MS [ S - BS
Evaluate perceived Signal modem modes Evaluate perceived
_ used by MS .
channel quality and channel quality and
decide the transmission Downlink decide the transmission
mode of local TX — mode of local TX
- / Signal modem modes ~ 4
used by BS
(a) Open-loop based signalling
r A Uplink [

Ms i BS
Evaluate perceived Signal modem modes Evaluate perceived
channel quality and to be used by BS channel quality and
signal the requested signal the requested
transmission mode | _ Downlink transmission mode
to the BS TX D to the MS TX

- 4 Signal modem modes - g

to be used by MS

(b) Close-loop based signalling

Figure 3.1: Closed- and open-loop signalling regimes for AQAM, where BS represents the
Base Station, MS denotes the Mobile Station and the transmitter is represented by TX.

Adaptive modulation can only be invoked in the context of duplex transmissions, since
some method of informing the transmitter of the quality of the link as perceived by the
receiver is required unless an explicit feedback control channel is provided by the system.
More explicitly, in adapting the modulation mode, a signalling regime has to be imple-
mented in order to harmonise the operation of the transmitter and receiver with regards

to the adaptive modem mode parameters. The range of signalling options is summariszed
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in Figure 3.1 for both so-called open-loop and closed-loop signalling. For example, adap-
tive modulation can be applied in a time division duplex (TDD) arrangement, where the
uplink and downlink transmissions are time-multiplexed onto the same carrier as depicted
in Figure 3.2. If the channel quality of the uplink and downlink can be considered similar,
an open-loop signalling system can be implemented, where the modulation mode can be
adapted at the transmitter based on the information about the channel quality acquired
during its receiving mode. This open-loop system is portrayed in Figure 3.1(a). The specific
modem mode invoked has to be explicitly signalled by the transmitter to the receiver along
with the reverse-direction information and it must be strongly protected against trans-
mission errors, in order to avoid catastrophic BER degradations in case of modem mode
signalling errors. By contrast, if the above channel quality predicability is not applicable
— for example due to the presence of co-channel interference, etc. — the closed-loop based
signalling system shown in Figure 3.1(b) can be implemented. This would be typical in a
frequency division duplex (FDD) based system, where the uplink and downlink transmission
frequency bands are different. Explicitly, the receiver has to instruct the remote transmitter
concerning the modem mode to be used for meeting the receiver’s target integrity require-
ments. The modem mode side-information signalling requirement is the same for both of
the above signalling scenarios. For example, two bits per transmission burst are required to
signal four different modem modes. However, the channel quality information will be based
on a more obsolete channel quality estimate in the dissimilar uplink/downlink scenario,
when the receiver instructs the remote transceiver concerning the modem mode to be used
for meeting the receiver’s BER target. It was shown in the context of a Kalman-filtered
DFE block turbo coded AQAM scheme that it is feasible to refrain from explicitly signalling
the modem modes upon invoking blind mode detection and hence increase the associated
throughput [79].

Having discussed briefly the principle of adaptive modulation and the associated scenarios,
where it can be applied, we can now explore the methology used for choosing the appropriate
number of modulation levels.

Torrance [80] used the instantaneous received power as the channel quality measure. The
estimated instantaneous received power was used to select the suitable modulation mode
by comparing the received power against a set of switching thresholds, l,,n = 1,...,4,
as depicted in Figure 3.3. These switching thresholds govern the tradeoff between the
mean BER and the BPS performance of the system. If low switching thresholds are used,
the probability of employing a high-order modulation mode increases, thus yielding a better
BPS performance. Conversely, if high switching thresholds are used, a low-order modulation
mode is employed more frequently, resulting in an improved mean BER performance. In his

efforts to derive upper-bound performance bounds Torrance [80] assumed perfect channel



CHAPTER 3. ADAPTIVE MODULATION 103

Mobile Station
" receives

—— .
transmits

Mobile Station

QAM symbols QAM symbols TDD frames
: QAM symbols QAM symbols
: Base Station ——=|<— Base Station —
| T ) receives transmits
. Propagation

delay .:

E<__ The channel quality required __ .
: to be approximately constant :

Figure 3.2: The TDD framing structure used in our AQAM system

Short Term SNR

A\ 64QAM

Ly

I3

[ Nwan

2

~
/

] am

\—\\\/ BPSK

No Transmission (NO TX)

Time

Figure 3.3: Stylised profile of the short-term received SNR, which is used to choose the next
modulation mode of the transmitter in TDD mode.
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quality estimation and compensation, perfect knowledge of the modulation mode at the
receiver and perfect estimation of the expected received power prior to transmission.

Webb and Steele [81] used the received signal strength and the BER as channel qual-
ity measures in a flat Rayleigh-fading environment. The signal to co-channel interference
ratio and the expected delay spread of the channel was used by Sampei, Komaki and
Morinaga [82] as the criteria to switch amongst the modulation modes and the legitimate
modulation rates. They used %-rate QPSK, %—rate QPSK, QPSK, 16-QAM, 64-QAM in a
narrow-band channel environment. Sampei, Morinaga and Hamaguchi utilised the signal
to noise ratio and the normalised delay spread as the channel quality measure.

For a review of other work that has been conducted using adaptive modulation, the reader

is referred to Wong’s thesis [83].

3.2 Background on Adaptive Modulation in a Wideband Fad-
ing Channel

In this section we will initially extend the AQAM concept to wideband fading channel
environments by employing conventional channel equalisation. We will briefly summarise,
how the performance of the equaliser and the AQAM scheme can be jointly optimized.

As expected, the AQAM switching criteria of the narrow-band scenario mentioned in
Section 3.1 has to be modified for the wideband channel environment. In Torrance’s paper
[80] for example, the quality of the channel was determined on the basis of the short-term
SNR, which was then used as a metric in order to choose the appropriate modulation mode
for the transmitter. However, in a wideband environment, the SNR metric is not reliable
in quantifying the quality of the channel, where the existence of the multipath components
in the wideband channel produces not only power attenuation of the transmission burst,
but also intersymbol interference, as discussed in Section 2.1. Even when the channel SNR
is high, QAM transmissions over wideband Rayleigh fading channels are subjected to error
bursts due to ISI. Consequently, the metric required to quantify the channel quality has to
be redefined, in order to incorporate the effects of the wideband channel.

Wong and Hanzo [83, 84] approached this problem by formulating a two-step methology
to mitigate the effects of the dispersive wideband channel. The first step employed a con-
ventional Kalman-filtering based DFE, in order to eliminate most of the ISI. In the second
step, the signal to noise plus residual interference ratio at the output of the equaliser was
calculated based on the channel estimate. This ratio was referred to as the pseudo SNE,
since it exhibited a Gaussian-like distribution and it was used as a metric to switch the
modulation mode. Again, in [83, 84], Wong used the conventional Kalman-filtering based

DFE depicted in Figure 3.4. If the IST due to past detected symbols is eliminated by the
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Figure 3.4: Decision-feedback equaliser schematic

feedback filter, then the wanted signal power, the residual ISI signal power and the effective

noise power can be expressed as follows [85]:

Wanted Signal Power = FE []qoln]2] , (3.1)
-1

Residual IST Signal = Y E [jgrTn—kl*], (3.2)

k=—K;

0
Effective Noise Power = N Z ;12 (3.3)

Jj=—Ki

n = —00,...,00, (3.4)
where g = Z?:_Kl ¢ifk—j, ¢jyj = —Ki,...,0 are the feedforward tap coefficients, ¢;,7 =

1,..., Ky are the feedback tap coefficients, fi is the kth impulse response tap of the channel
and Ny is the noise power. Therefore, the pseudo SNR output of the DFE, yppg, can be

calculated as follows:

2
TDFE = =1 > “‘-’;’I”’ ] ; —. (3.5)
Yk F [lakLn—k[*] + No Zj-_——-Kl |51
The calculated pseudo SNR output of the DFE, yppp, is then compared against a set of
switching threshold levels, I,, stored in a lookup table. The pseudo SNR output of the
DFE, YyppR, is used for invoking the appropriate modem mode as follows [83]:

e

NO TX ifyppg < b

BPSK ifly <vypre <la

Modulation Mode = ¢ 4-QAM  if Iy < ypre < I3 (3.6)
16-QAM ifls < ypre <l4

64-QAM if yprp > la,

\
where l,,n = 1,..., 4 are the pseudo-SNR thresholds levels, and Powell’s Multi-dimensional
Line Minimization technique [86] was used to optimize the switching levels /, in [84].

In the forthcoming sections, instead of the conventional DFE, we will explore using the

RBF network for the equalisation process, as described in Section 2.9. The joint adaptive
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Figure 3.5: System schematic of the joint adaptive modulation and RBF equaliser scheme

modulation and RBF equalisation scheme will be described next, followed by our simulation

results.

3.3 System Description of Joint Adaptive Modulation and
RBF based Equalisers

In this section, we will describe the joint AQAM and RBF network based equalisation
scheme and the switching metric employed. We commence by exploring the joint AQAM
and RBF equaliser scheme’s best-case performance. Finally, the performance of this scheme

and that of the individual fixed modulation modes is compared in terms of their mean BER

and BPS.

3.3.1 System Overview

The schematic of the joint AQAM and RBF network based equalisation scheme is depicted
in Figure 3.5. We use the RBF DFE described in Section 2.11 in this scheme. At the
receiver, the RBF DFE is trained using the method described in Section 2.9.3 and then
the corrupted received signal is equalized. The short-term probability of bit error or short-
term BER of the transmitted burst is calculated from the output of the sub-RBF network,
and is used as the switching metric. Section 3.3.2 will highlight this issue in more detail.
The short-term BER is compared to a set of switching BER values corresponding to the
modulation mode of the received data burst. Consequently, a modulation mode is selected
for the next transmission, assuming channel quality similarity for the uplink and downlink
transmissions. This implies that the similarity of the short-term BER of consecutive uplink
and downlink data bursts can be exploited, in order to set the next modulation mode.
The modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM, 64-QAM and

no transmission (NO TX), similarly to Equation 3.6. Therefore, the modulation mode is
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switched according to the estimated short-term BER, Py ohori-term» @5 follows:
3

( .
NOTX if A bit, short-term = £ 5

BPSK if Py > Ppit, short-term = P
Modulation Mode = ¢ 4-QAM  if PM > Pt ahortterm = F16 (3.7)
16-QAM  if PI%A > Pbit, short-term = Pé}l/l

64-QAM  if Pé}l/l > Pbit, short-term>

where PiM,z' = 2,4,16,64 are the switching BER thresholds corresponding to the various
M-QAM modes.

3.3.2 Modem Mode Switching Metric

The RBF equaliser based on the optimal Bayesian decision function of Equation 2.18, as
described in Chapter 2, is capable of providing the 'on-line’ estimation of the BER in the
receiver without the knowledge of the transmitted symbols. This is possible, since the
equaliser is capable of estimating the a posteriori probability of the transmitted symbols,
if the CIR is known and provided that the centres of the RBF network are assigned the
values of the channel states, as it was originally suggested in Section 2.9.

Referring to Section 2.9.2 and Figure 2.19, the output of the RBF networks provides the
conditional probability density function of each legitimate QAM symbol, Z;,i =1, ..., M
which is described by Equation 2.86. The a posteriori probability ¢;(k) of the transmitted

symbols, can be evaluated from the conditional density function, ¢;(k) as follows:

() = P(lu, = Tive)
P(Vkuk—"r =Z;)  Ply-r = I;)
P(vi)

= Gi(k) -0 <k <. (3-8)

The a posteriori probability {(k) of the detected symbol can be obtained without the knowl-
edge of the term P(vy), if the a posteriori probability has unity support (i.e. the sum of

the a posteriori probabilities of all symbols is unity):

GH L pew
Zﬁl ) <k < oo, (3.9)

where ¢ (k) = max{(;(k),1 <i < M}, as defined in Equation 2.85. Therefore, the proba-

S(k) =

bility of a symbol error associated with the decision I_, = I} is given by:

Pi(k) =1-¢(k), —o0 < k < o0, (3.10)
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and the overall probability of symbol error of the detector is given by:

P,

symbol = E{P(k)} —00 <k < oo. (3.11)

Similarly, the probability of a bit error can be obtained from the a posteriori probability
of the bits representing the QAM symbols. Below we provide an example for the 4-QAM
scheme. The a posteriori probability of the 4 symbols, 71, Z5, T3 and Zy, is estimated by
the RBF networks as <1, ¢2, ¢3 and ¢4, respectively. A 4-QAM symbol is denoted by the bits
UpUy and the symbols 77, Zy, 73 and Z4 correspond to 00, 01, 10 11, respectively. Thus,

the a posteriori probability of the bits is given as follows:

P(Uy =1) = P(UpUy = 11 UUpUy = 10) = ¢4 + g3,
P(Up = 0) = P(UUy = 01 UUpU; = 00) = <3 + ¢,
P(Uy = 1) = P(UgUy = 11U UpUy = 01) = ¢4 + &,
P(U, =0) = P(U0U1 = 10U UpU; = 00) = ¢3 + q1. (3.12)

In general, the average probability of bit error for the detected symbol at signalling instant
k is given by:

~ eBESL_ pik) = b)
Pb(k) - D BPS 3

where BPS denotes the number of bits per symbol and b; is the value (either 0 or 1) of
the ith bit of the symbol exhibiting the maximum a posteriori probability. The overall

(3.13)

probability of bit error for the detector is given by:
Py = BE{PR(k)}  —o00o<k< oo (3.14)

For our joint RBF based equalisation and AQAM scheme, we are unable to obtain the
true probability of bit error for the detector, namely P;; averaged over all data bursts,
since we need to collect a large number of received samples for an accurate estimation.
We can only obtain the short-term probability of bit error, Pbit, short-term» Which is the
average bit error probability over a data burst that was received, i.e.,

ZLI:JI Py(n)

Pbit, short-term = o ’ (3.15)
where Lp is the number of data symbols per burst. Thus, we could estimate the channel
quality on a BbB basis, relying on the estimated Pbit, short-term value. The short-term
probability of bit error or BER is only an estimate of the actual P;; of the system for the
duration of the data burst. The accuracy of the estimation is dependent on the number of

data symbols Lp in the burst. This issue will not be discussed further for now.
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Having described the switching metric used by the joint AQAM and RBF equaliser
scheme, we will further investigate this scheme with the aim of producing a best-case per-
formance estimate. Before proceeding, the next section will present the assumptions used,

when we employ this scheme in a wideband channel environment.

3.3.3 Best-case Performance Assumptions

In deriving the best-case performance of this joint adaptive modulation and RBF based

equalisation scheme, the following assumptions are made:

1. Perfect CIR estimation or channel state estimation is assumed at the receiver. The
RBF’s centres are assigned the values of the channel states. The associated CIR and
channel state estimation techniques were presented in Section 2.9.3, 2.9.4 and 2.9.5.
We note that incorrect estimation of the channel states will degrade the performance
of the constituent fixed modulation modes, as it was demonstrated by our simulation
results in Section 2.12. This degradation is neglected here with the aim of deriving a

best-case performance estimate.

2. The CIR is time-invariant for the duration of the transmission burst, but varies from
burst to burst, which corresponds to assuming that the channel is slowly varying.
However, if the CIR changes during the transmission burst or if the estimation algo-
rithm gives an inaccurate channel estimate, the effect of the channel variations can
be considered by modifying the noise variance estimate, as discussed in [38, 87]. Let
us briefly summarize this idea. We define the error between the noisy channel output

v and the estimated noiseless channel state output 9, as follows:

e = wvp — g
L ~
= Ur — anfk—n
n=0
= Ap(lgyeo oy Ip—1) + 0, (3.16)

where Af(-) is an error function caused by an inaccurate estimate of the channel
impulse response fn,n = 0,...,L. Having determined this noise term, the RBF
equaliser uses the noise variance in its width parameter seen in Equation 2.81 in order
to compute the conditional probability densities of each ligitimate QAM symbols.
Therefore, by computing the 'noise variance’ as the average of ei, and substituting
these values in Equation 2.81 yields p = 2F [e]. Hence we translated the CIR

estimation error to a noise-like term.

3. We assume furthermore that the receiver has perfect knowledge of the modulation

mode used in its received transmission burst. For a practical system, control symbols
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must be used to convey the modulation mode employed by the transmitter to the

receiver [88, 89].

4. The RBF DFE used in the system neglects error propagation by feeding the correct
symbol to be used for RBF subset centre selection or space translation, as described in
Section 2.11. However, at low target BERs, we will expect low performance degrada-

tion due to decision feedback error propagation, as it was demonstrated in Figure 2.42.

5. The short-term probability of error estimate, namely Pbit, short-term. 18 known prior
to transmission for all the modulation modes used in the system. This can be as-
sumed in a TDD scenario, where the channel can be considered similar in the uplink
and downlink transmission and when the channel is slowly varying. We also as-
sume that given the estimated Pbit, short-term for a particular modulation mode,
the transmitter knows the corresponding short-term probability of bit error for the
other modulation modes used in the system under the same channel conditions. Thus,
the transmitter of a base station for example, can utilize its receiver’s Pbit, short-term
estimation for its next transmission, provided that there is a high channel quality cor-
relation between the transmitter and receiver slots. Note however that the latency
between the transmitter and receiver slots can affect the quality of the estimation.
This latency is mitigated, when employing slot-by-slot TDD - as in the third gen-
eration IMT-2000 and UTRA [90, 91, 92] proposals - where any TDD-slot can be

configured as an uplink or downlink slot, hence reducing the latency of channel qual-

ity estimates.

During our further discourse we will gradually remove these idealistic assumptions.
Having described the assumptions stipulated, in order to derive the best-case performance
of this joint adaptive modulation and RBF based equalisation scheme, we now describe our

simulation model.

3.3.4 Simulation Model for Best-case Performance

In our experiments, pseudo-random symbols were transmitted in a fixed-length burst for all
modulation modes over the burst-invariant wideband channel to fulfill assumptions 2 and
5. The receiver received each data burst having different modulation modes and equalised
each one of them independently. The estimated short-term probability of bit error or BER
was obtained for each modulation mode, as described in Section 3.3.2. The highest-order

modulation mode, M* that provided a short-term BER P , which was below
bit, short-term
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Figure 3.6: The simulation schematic of the joint AQAM and RBF DFE arrangement used
for best-case BER performance estimation.

the target BER Pbit, target’ when:
. _ M
M* = max{M = 2,4,16,64, such that Pbit, short-term < Pbit, target}7 (3.17)

was chosen to be the actual modulation mode that was used by the transmitter and the
received equalised burst was used for the BER estimation of the system. The notation
P]:/;i/tt, short-term epresents the short-term BER of M-QAM. However, if all the modu-
lation mode could not provide the targetted BER performance, i.e. Pgit, short-term =
Pbit, target: NO TX mode is utilized. Figure 3.6 shows the simulation schematic of the
joint AQAM and RBF DFE scheme used in our best-case BER performance evaluation.

The next section will present our simulation results and analysis.

3.3.5 Simulation Results

The simulation parameters are listed in Table 3.1, noting that we analysed the joint AQAM
and RBF equaliser scheme over a two-path Rayleigh fading channel. The wideband fading
channel was burst-invariant. The RBF DFE used in our simulations had a feedforward

order of m = 2, feedback order of n = 1 and delay of 7 = 1.

Number of data symbols per burst, Lp 144

Number of training symbols per burst, Ly | 27

Transmission Frequency 1.9GHz
Transmission Rate 2.6MBd
Vehicular Speed 30 mph
Normalised Doppler Frequency 3.3 x 1075
Channel weights 0.707 4 0.707z7!
RBF DFE feedforward order, m 2

RBF DFE feedback order, n 1

RBF DFE decision delay, 7 1

Table 3.1: Simulation parameters
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Figure 3.7 portrays the short-term BER of the burst-invariant channel versus symbol
index, as estimated by the RBF DFE. For the simulated scenario, i.e., for a Doppler fre-
quency of 3.3 X 1075 the short-term BER is slowly varying and it is relatively predictable
for a number of consecutive data bursts. Thus, assumption 2 of Section 3.3.3 is valid for
this scenario.

The probability density function (PDF) of the BER estimation error of the RBF DFE
for various channel SNRs is shown in Figure 3.8 for BPSK transmission bursts. The actual
BER is the ratio of the number of bit errors encountered in a data burst to the total number
of bits transmitted in that burst. Figure 3.8 suggests that the RBF DFE provides a good
BER estimation, especially for high channel SNRs. We note, however that the accuracy
of the actual BER evaluation is limited by the burst-length of 144 bits and its resolution
is 1/144. Hence at high SNRs the actual number of errors registered is often 0, which
portrays the BER estimation algorithm of Equation 3.15 in a less accurate light in the PDF
of Figure 3.8, than it is in reality.

We will now analyse the best-case performance of the joint AQAM and RBF DFE scheme
in more detail, using the simulation model described in Section 3.3.4 and the assumptions
listed in Section 3.3.3. We designed two systems, a higher integrity scheme, having a target
BER of 107%, which can be rendered error-free by error correction coding and hence we refer
to this arrangement as a data transmission scheme; the lower integrity scheme was designed
for maintaining a BER of 1072, which is adequate for speech transmission especially in
conjunction with FEC. The target BPS values of these schemes were 3 and 4.5 bits per
symbol, respectively, although these values can only be attained for sufficiently high SNRs.

Figure 3.9(a) and Figure 3.9(b) shows the simulated best-case performance of the joint
AQAM and RBF DFE scheme for the target BER of 1072 designed for speech transmission
and for the target BER of 10™* created for data transmission, respectively. The BER
performance of the constituent fixed modulation modes is also depicted in both figures for
comparison. The best-case performance was evaluated for two different adaptive modulation
schemes. In the first scheme, the transmitter always transmitted data without transmission
blocking, i.e. the NO TX mode of Equation 3.7 was not invoked. By contrast, in the
second scheme, dummy data was transmitted, whenever the estimated short-term BER was
higher than the target BER, a scenario, which we referred to as transmission blocking. The
transmission of dummy data during blocking allowed us to keep monitoring the BER, in
order to determine when to commence transmission and in which modem mode.

We will commence by analysing Figure 3.9(a), where the joint AQAM and RBF DFE
scheme was designed for speech transmission, i.e. for a BER of 1072, For the adap-
tive scheme, which did not incorporate transmission blocking, the performance of adaptive

modulation was better or equivalent to the performance of BPSK in terms of the mean
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Figure 3.7: Short-term BER versus symbol index as estimated by the RBF DFE over the
two-path equal-weight, symbol-spaced Rayleigh fading channel of Table 3.1. The RBF DFE
had a feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1
symbol. Perfect channel impulse response estimation is assumed and the error propagation
due to decision feedback is ignored. The transmitted burst of Figure 2.44 consists of 171
symbols (144 data symbols and 27 training symbols).
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BER and mean BPS for the SNR range between 0dB and 9dB. At the channel SNR of
9dB, even though the mean BER performance was equivalent for the adaptive scheme and
the BPSK scheme, the mean BPS for the adaptive scheme improved by a factor of 1.5,
resulting in a mean BPS of 1.5. In the SNR range of 9dB to 16dB, the adaptive scheme
outperformed the 4-QAM scheme in terms of the mean BER performance. At the channel
SNR of 16dB, the mean BERs of both schemes are equivalent, although the mean BPS
of the adaptive scheme is 2.7, resulting in a BPS improvement by a factor of 1.35, when
compared to 4-QAM. At the channel SNR of 26dB, the mean BPS improvement of the
adaptive scheme is by a factor of 1.3 for an equivalent mean BER. The adaptive scheme
that utilized transmission blocking achieved a mean BER below 1%. At the channnel SNR
of 12dB, even though the mean BER performance was equivalent for the BPSK scheme and
the adaptive scheme with transmission blocking, the mean BPS for the adaptive scheme
improved by a factor of 2. As the SNR improved, the performance of the adaptive schemes
both with and without transmission blocking converged, since the probability of encounter-
ing high short-term BERs reduced. The mean BER and mean BPS performance of both
adaptive schemes converged to that of 64-QAM for high SNRs, where 64-QAM becomes
the dominant modulation mode.

Similar trends were observed for data-quality transmission, i.e. for the 107 target BER
scheme in Figure 3.9(b). However, we note that for the SNR range between 8dB to 20dB,
the mean BER of the adaptive scheme without transmission blocking was better, than that

of BPSK. This phenomenon was also observed in the narrowband adaptive modulation



CHAPTER 3. ADAPTIVE MODULATION 115

scheme of [80] and in the wideband joint AQAM and DFE scheme of [83, 84], which can be
explained as follows. The mean BER of the system is the ratio of the total number of bit
errors to the total number of bits transmitted. The mean BER will decrease with decreasing
number of bits error and with increasing number of total bits transmitted in the data burst.
For a fixed number of symbols transmitted, the number of total bits transmitted in a data
burst is constant for the BPSK scheme, while for the AQAM scheme the total number of
bits transmitted in a data burst increased, when a higher-order AQAM mode was used.
However, in this case the BER increased. If the relative bits per symbol increment upon
using AQAM is higher than the relative bit error ratio increment, then the mean BER of
the adaptive scheme will be improved. Consequently the adaptive mean BER can be lower
than that of BPSK.

The probability of encountering each modulation mode employed in the adaptive scheme
based on the estimated short-term BER switching mechanism is shown in Figure 3.10 and
Figure 3.11 for the BER = 1072 and BER = 10™* schemes, respectively. As expected, the
sum of the probabilities at each particular SNR is equal to one. At low SNRs, the lower
order modulation modes (NO TX or BPSK) are dominant, producing a robust system. At
higher SNRs, the higher order modulation modes become dominant, yielding a higher mean
BPS and yet a reduced mean BER. From Figure 3.11(b), we observe that the transmission
blocking mode was dominant in the SNR range of 0dB to 4dB and thus the mean BER
performance was not recorded in that range of SNRs in Figure 3.9(b).

Comparing Figure 3.10(a) and Figure 3.11(a), the probability of transmission blocking
was higher for data-quality transmission, in order to achieve a lower target BER due to
the associated more stringent BER requirements of 104, The probability of transmission
blocking was close to zero, once the channel SNR increased to about 16dB and 20dB for
the BER = 1072 and BER = 10~* schemes, respectively. These are the points, where the
performance of the adaptive schemes with and without transmission blocking converged, as
demonstrated in Figure 3.9. We observed that the probabilities of the 4-QAM, 16-QAM
and 64-QAM modes being utilized for the adaptive scheme with and without transmission
blocking was fairly similar. This is because introducing transmission blocking will predomi-

nantly affect the probability of BPSK, which will be utilized instead of no data transmission.

In summary, the AQAM RBF DFE scheme has its advantages, when compared to the
individual fixed modulation modes in terms of the mean BER and mean BPS performance.
Note however for the adaptive scheme without transmission blocking that the target perfor-
mance of BER = 1072 and BER = 10~ can only be achieved, if the channel SNR is higher
than 9dB and 18dB, respectively. The target mean BERs for speech transmission (BER

= 107?) and data transmission (BER = 10™*) were achieved for all channel SNRs, when
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Figure 3.9: The simulated best-case performance of the AQAM RBF DFE showing also
the BER performance of the constituent fixed modulation schemes, namely BPSK, 4-QAM,
16-QAM and 64-QAM, over the two-path Rayleigh-fading channel of Table 3.1 and using
the assumptions of Section 3.3.3.
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joint AQAM and RBF DFE scheme for best-case performance during speech-quality
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Rayleigh fading channel using the simulation parameters listed in Table 3.1 and the as-

sumptions stated in Section 3.3.3.
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Figure 3.11: The probability of encountering the various M-QAM modulation modes in
the joint AQAM and RBF DFE scheme for best-case performance during data-quality
transmission (target BER of 107%) over the two-path equal-weight, symbol-spaced
Rayleigh fading channel using the simulation parameters listed in Table 3.1 and the as-

sumptions stated in Section 3.3.3.
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we utilized transmission blocking. The target performance for speech (BER = 107%) and
data (BER = 107*) transmission in terms of mean BPS (4.5 and 3, respectively) can only
be achieved for the AQAM scheme with and without transmission blocking, if the channel
SNR is in excess of about 22dB. Thus, the advantage of using an adaptive scheme with
transmission blocking is that the performance of the joint AQAM and RBF DFE scheme
can be 'tuned’ to a certain required mean BER performance. However, the disadvantage is
that the utilization of transmission blocking results in transmission latency, an issue, which
was addressed for example in [93, 94]. Specifically, the interdependency of the required
buffer size, doppler frequency and latency was analysed. Furthermore, frequency hopping
was proposed for reducing the average duration of NO TX mode at low Doppler frequencies,
where the latency and the buffer size may become excessive.

Let us now embark on a comparative analysis between the joint AQAM RBF DFE scheme
and the Kalman-filtering based joint AQAM DFE scheme introduced by Wong et. al. [84]
for wideband channels. The joint AQAM DFE scheme in [84] used the pseudo-SNR at the
output of the DFE as the switching metric, an issue discussed briefly in Section 3.2. The
pseudo-SNR at the output of the DFE was compared to a set of pseudo-SNR. thresholds
optimized using Powell’s method [86]. Table 3.2 gives the results of the optimization process
invoked, in order to achieve transmission integrities of 10=2 and 10™% over the two-path
Rayleigh-fading channel of Table 3.1 [84]. The conventional DFE used in the adaptive
scheme had a feedforward order of m = 15, feedback order of n = 2 and decision delay of
7 = 15 symbols. The parameters m, n and 7 of the conventional DFE were chosen such
that it exhibited the best possible performance for our simulation scenario and hence further
increase of the feedforward order would not give a significant performance improvement.
We note again that for our best-case performance comparisons, the switching metric used
for both schemes — namely the short-term BER for the AQAM RBF DFE scheme and the
pseudo SNR for the AQAM DFE scheme — was estimated perfectly prior to transmission
and the appropriate AQAM mode was chosen for the data burst to be transmitted, which
satisfied the target BER requirement.

11(dB) | [b(dB) | l5(dB) | 14(dB)
Speech | 3.68026 | 6.3488 | 11.7181 | 17.8342
Data | 8.30459 | 10.4541 | 16.8846 | 23.051

Table 3.2: The optimized switching levels [, of the joint adaptive modulation and DFE
scheme for speech and data transmission in the two-path Rayleigh fading channel [84]. The
target mean BER and BPS performance for speech was 1072 and 4.5, respectively, while
for computer data, 10~* and 3, respectively.
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Figure 3.12 provides the BER performance comparison of the conventional DFE and the
RBF DFE over the two-path Rayleigh fading channel of Table 3.1 for the constituent fixed
modulation modes. The BER performance of the RBF DFE for BPSK and 4-QAM was
better than that of the conventional DFE, as the SNR increased. By contrast, the BER
performance of the RBF DFE was inferior compared to that of the conventional DFE for 16-
and 64-QAM. The performance of the RBF DFE can be, however, improved by increasing
both the decision delay 7 and the feedforward order m, as argued in Section 2.11, at the
expense of increased computational complexity. However, the present parameter values
for the conventional DFE and RBF DFE are convenient, since they yield similar BER
performances.

The performance comparison of the adaptive schemes, i.e. that of the AQAM DFE and
AQAM RBF DFE, is given in Figure 3.13. For the 1072 target BER system, the AQAM
RBF DFE provides a better BER performance, than the Kalman-filtering based AQAM
DFE in the SNR range from 0dB to 28dB at the expense of a lower BPS performance,
especially for higher SNRs. As the SNR exceeds 28dB, the BER performance of the AQAM
DFE scheme becomes superior to that of the AQAM RBF DFE. This is because at higher
SNRs the 64-QAM modulation mode prevails and since the 64-QAM BER performance of
the conventional DFE was better, than that of the RBF DFE in Figure 3.12, hence the
mean BER improvement of the AQAM DFE is expected, when compared to that of the
AQAM RBF DFE.

For the 10™* target BER system, the BER performance of the AQAM DFE and AQAM
RBF DFE is fairly similar in the SNR range from 5dB to 12dB, but the BPS performance
of the AQAM RBF DFE is better, than that of the AQAM DFE in that range. In this
SNR range the lower-order modulation modes dominate. Since the RBF DFE can provide a
better BER performance, than that of the conventional DFE for the lower-order modulation
modes, the BPS performance of the AQAM RBF DFE can be improved, while maintaining
a similar BER performance to that of the AQAM DFE. As the SNR exceeds 12dB, the
BER performance of the AQAM RBF DFE remains better at the expense of a lower BPS
performance.

The overall results of our simulations show that the AQAM RBF DFE is capable of
performing similarly to the AQAM DFE at a lower decision delay and lower feedforward
and feedback order. However, the computational complexity of the RBF DFE is dependent
on the modulation mode, since the number of RBF centres increases with the number of
modulation levels, as discussed in Section 2.7. This is not so in the context of the conven-
tional DFE, where the computational complexity is only dependent on the feedforward and
feedback order. Table 3.3 compares the computational complexity of the RBF DFE (m = 2,

n =1, 7 = 1) and the conventional DFE (m = 15, n = 2) used in our simulations. The
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complexity analysis of the RBF DFE is based on Table 2.10. The high computational cost
incurred by the RBF DFE in the high-order M-ary modulation modes presents a drawback
for the AQAM RBF DFE scheme.

Operation RBF DFE Conventional DFE
BPSK | 4-QAM | 16-QAM | 64-QAM

subtration and addition 15 60 1008 16320 16

multiplication 12 48 768 12288 17

division 4 16 256 4096 0

exp() 4 16 256 4096 0

Table 3.3: Computational complexity of RBF DFE and conventional DFE per equalised
output sample. The RBF DFE has a feedforward order of . = 2, feedback order of n =1
and decision delay of 7 = 1 symbol. The number of RBF hidden units n,; is dependent
on the order of the M-QAM modes and the channel memory L where n,; = MmEL=n,
The channel memory is assumed to be L = 1. The complexity analysis of the RBF DFE is
based on Table 2.10. The conventional DFE has a feedforward order of m = 15, feedback
order of n = 2 and decision delay of 7 = 15 symbols.

Nevertheless, we note that unlike the conventional DFE, the AQAM RBF DFE is capable

of performing well over channels, which result in non-linearly separable received phasor

constellations.

3.3.6 Discussion

In the above sections, BbB adaptive modulation was applied in conjunction with the RBF
DFE of Section 2.11 in a wideband channel environment. The short-term BER of Equa-
tion 3.15 estimated by the RBF DFE was used as the modem mode switching metric in
order to switch between different modulation modes. The validity of using this metric was
tested in Section 3.3.5 and in Figure 3.8 it was shown that the RBF DFE gives a good
BER estimate for the adaptive scheme to maintain the target mean BER performance. The
simulation results also showed that there was a performance improvement in terms of the
mean BER and mean BPS, when compared to the constituent fixed modulation modes. The
performance of the joint AQAM RBF DFE scheme was then compared to that of the joint
AQAM conventional DFE scheme investigated by Wong [84]. The AQAM RBF DFE having
a lower feedforward and feedback order and a smaller decision delay, showed comparable
performance to the AQAM DFE in our simulations.

In our future work, the performance of the AQAM RBF DFE will be investigated in
practical situations, where the effect of discarding the assumptions made in Section 3.3.3 is

to be quantified.
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Figure 3.12: BER versus SNR performance of the conventional DFE and the RBF DFE over
the two-path equal-weight symbol-spaced Rayleigh-fading channel of Table 3.1 for different
M-QAM schemes. The conventional DFE has a feedforward order of m = 15, feedback
order of n = 2 and decision delay of 7 = 15 symbols. The RBF DFE has a feedforward
order of m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbols.

3.4 Performance of the AQAM RBF DFE Scheme: Switch-
ing Metric Based on the Previous Short-term BER Es-

timate

In this section, we analyse the performance of the AQAM RBF DFE scheme by discarding
assumption 5 of Section 3.3.3. Therefore, the estimated short-term BER of the current
transmitted burst is used to select the modulation mode for the next transmission burst,
as described in Equation 3.7.

The BER switching thresholds corresponding to M-QAM, Pf”,i = 2,4,16,64, can be

obtained by estimating the BER degradation/improvement, when the modulation mode is
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Figure 3.13: Simulated best-case performance of the AQAM RBF DFE scheme and the
numerical best-case performance of the joint AQAM conventional DFE scheme for speech-
and data-transmission [84], using the parameters listed in Table 3.1 and the assumptions
stated in Section 3.3.3. The modem mode switching levels used for the joint AQAM con-
ventional DFE scheme are listed in Table 3.2. The RBF DFE had a feedforward order of
m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol and the conventional
DFE had a feedforward order of m = 15, feedback order of n = 2 and decision delay of
7 = 15 symbols.
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switched from M-QAM to a higher/lower number of modulation levels. In this experiment,
we obtain this BER degradation/improvement measure from the estimated short-term BER
of every modulation mode used, under the same instantaneous channel conditions. Fig-
ure 3.14 shows the estimated short-term BER of all the possible modulation modes that
can be invoked, assuming that the current mode is 4-QAM, versus the estimated short-term
BER of 4-QAM under the same instantaneous channel conditions. The short-term BERs of
the modulation modes are obtained on a burst-by-burst basis from the RBF DFE according
to Equation 3.15. Each point in Figure 3.14 represents the RBF DFE’s estimated short-term
BER for a specific received data burst using the corresponding modulation mode. In order
to maintain the target BER of 1072, Figure 3.14 demonstrates, how each switching BER
threshold P# is obtained. The short-term BER of the 4-QAM transmission burst, when the
corresponding BPSK, 16-QAM and 64-QAM transmission burst under the same instanta-
neous channel conditions has an estimated BER of 10~2 is approximately 6 x 1072,10712
and 0, respectively. For example, if the estimated short-termm BER of the received 4-QAM
transmission burst is below Pl = 107!2, the modulation mode can be ’safely’ switched to
16-QAM for the next transmission burst, since the short-term BER of this 16-QAM trans-
mission burst is expected to be below the target BER of 1072. The 4-QAM error probability
of P = 107!2 used in this example for switching to 16-QAM appears extremely conserva-
tive, but it is justified by the large uncertainty associated with the estimation of the BER
due to the Rayleigh-faded impulse response taps. This manifests itself also in the rather
spread nature of the BER estimates in Figure 3.14. A feasible technique for mitigating this
phenomenon is employing the fade-tracking scheme of Figure 11.2 in Reference [61]. Using
this method the switching BER thresholds were obtained for the target BER of 1072 and
1074, as listed in Table 3.4 and Table 3.5, respectively in the context of all possible com-
binations of the mode transitions. Note that the extremely low values for Py = 1 x 107%°
and PL = 1 x 10730 in Table 3.5 were obtained by extrapolating the curves similar to
Figure 3.14 but for 16-QAM and 64-QAM, respectively, in order to achieve the target BER
of 107%.

Figure 3.15 shows the BER and BPS performance of the joint AQAM RBF DFE scheme
designed for BER = 1072 with the switching thresholds given in Table 3.4 — when using
the current transmission burst’s BER estimate, in order to determine the modem mode of
the next transmission burst — in contrast to its best-case performance. The performance
comparison shows that there is little performance degradation, when the current short-term
BER estimate is used to control the modulation mode of the next transmission burst based
on the switching parameters of Table 3.4 for the AQAM scheme designed for BER = 1072.
Since the channel of Table 3.1 is slowly varying, the performance of the joint AQAM RBF

DFE scheme based on the switching parameters of Table 3.4 is comparable to its best-case
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Table 3.4: The switching BER thresholds PZ-M of the joint adaptive modulation and RBF
DFE scheme for the target BER of 1072 over the two-path Rayleigh fading channel of

Table 3.1.
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Figure 3.15: The BER and BPS performance of the joint AQAM RBF DFE scheme using
the current BER estimate in order to estimate the next burst’s transmission
mode, and its best-case performance for the 10~2 target BER system, using the parameters
listed in Table 3.1. The modem mode switching levels used for the joint AQAM RBF DFE
scheme are listed in Table 3.4. The RBF DFE had a feedforward order of m = 2, feedback

order of n = 1 and decision delay of 7 =

1 symbol.
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performance.
Ps+! pM P! 15
NOTX | 9x107° | 1x10°1° 0.0 0.0
BPSK 1x107% | 1x10°5 0.0 0.0

4-QAM [15x107%2| 1x107* [1x10"% 0.0
16-QAM [ 1.2x 1071 | 5x1072 | 1x10~% [1x 10750
64-QAM | 2.2x 1071 [ 1.5x1071 | 3x1072 | 1x107*

Table 3.5: The switching BER thresholds P/ of the joint adaptive modulation and RBF
DFE scheme for the target BER of 107* over the two-path Rayleigh fading channel of

Table 3.1.

Figure 3.16 shows the BER and BPS performance of the AQAM RBF DFE scheme de-
signed for data-transmission using the switching threshold given in Table 3.5 in comparison
to its best-case performance. The degradation with respect to the best-case performance
of the AQAM RBF DFE scheme designed for data transmission at BER = 10~* based on
the switching threshold given in Table 3.5 is more significant compared to the adaptive
scheme designed for BER = 1072, as seen in Figure 3.15 and Figure 3.16. Note that for
the low BER switching thresholds of Pk(= 1 x 107%%) and Pj¢(= 1 x 107%%) in Table 3.5
— which was required by the adaptive scheme for achieving the target BER of 10~% - the
RBF DFE is unable to provide BER estimates of such high accuracy. As the SNR improves,
the relative frequency of encountering the switching thresholds Ppy and P¢f increases and
thus the performance degradation compared to the best-case increases. The performance
degradation with respect to the best-case was also contributed by the spread nature of the
BER estimates due to the Rayleigh-faded CIR taps. The BER estimation spread was more
evident, when the BER estimate decreased, as shown in Figure 3.14. Therefore, there is
a substantial BER estimation inaccuracy associated with the switching thresholds Py and
3

Figure 3.17 and 3.18 compare the probability of encountering each modulation mode em-
ployed in the adaptive scheme and those employed in the best-case performance scenario for
speech-quality (BER = 1072) transmission and data-quality (BER = 107*) transmission,
respectively. Figure 3.17 shows that the switching BER thresholds of Table 3.4, deter-
mined with our suggested method and the previous short-term BER estimate is capable of
providing similar modulation mode utilization for the adaptive scheme designed for speech-
quality transmission compared with its best-case performance. However, for data-quality
transmission, we note from Figure 3.18 that the utilization of the 64-QAM mode of the
adaptive scheme is more frequent, than that of the best-case performance for high SNRs.

This also explains the substantial BER degradation from its best-case performance, as the
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Figure 3.16: The BER and BPS performance of the joint AQAM RBF DFE scheme using
the current BER estimate in order to estimate the next burst’s transmission
mode, and its best-case performance for data-transmission, using the parameters listed
in Table 3.1. The modem mode switching levels used for the AQAM RBF DFE scheme are
listed in Table 3.5. The RBF DFE had a feedforward order of m = 2, feedback order of
n = 1 and decision delay of 7 = 1 symbol.
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Figure 3.17: The probability of encountering the various M-QAM modulation modes in the
joint AQAM and RBF DFE scheme during speech-quality transmission (target BER
of 0.01) over the two-path equal-weight, symbol-spaced Rayleigh fading channel using the
simulation parameters listed in Table 3.1. The probability of modulation mode utilization
for best-case performance, as given in Figure 3.10, is provided for comparison.
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Figure 3.18: The probability of encountering the various M-QAM modulation modes in the
joint AQAM and RBF DFE scheme during data-quality transmission (target BER of
0.0001) over the two-path equal-weight, symbol-spaced Rayleigh fading channel using the
simulation parameters listed in Table 3.1. The probability of modulation mode utilization
for the best-case performance, as given in Figure 3.11, is provided for comparison.
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SNR improves, as demonstrate in Figure 3.16.

3.5 Conclusions

The RBF DFE was shown to provide a good ’on-line’ BER estimation of the received
data burst, which was used as the AQAM mode switching metric. Qur simulation results
showed that the proposed RBF DFE-assisted burst-by-burst adaptive modem outperformed
the individual constituent fixed modulation modes in terms of the mean BER and BPS.
Transmission blocking was utilised to maintain the target BER performance. Without
transmission blocking, the target BER of 1072 and 10~ can only be achieved, when the
channel SNR is higher than 9dB and 18dB, respectively. However, the disadvantage is that
the utilization of transmission blocking results in transmission latency.

The AQAM scheme employing RBF DFE was compared to the AQAM scheme using
conventional DFE in order to mitigate the effects of the dispersive wideband channel. Our
results showed that the AQAM RBF DFE scheme was capable of performing as well as the
conventional AQAM DFE at a lower decision delay and lower feedforward as well as feedback
order. The performance of the AQAM RBF DFE can be improved by increasing both the
decision delay 7 and the feedforward order m, at the expense of increased computational
complexity, while the performance of the conventional AQAM DFE cannot be improved
significantly by increasing its equaliser order. However, the computational complexity of
the RBF DFE is dependent on the AQAM mode and increases significantly for higher-
order modulation modes. This is not so in the context of the conventional DFE, where the
computational complexity is only dependent on the feedforward and feedback order.

A method to obtain the switching BER thresholds of the joint AQAM RBF DFE scheme
was proposed in Section 3.4 and was shown to suffer only minor performance degradation
in comparison to the achievable best-case performance generated by assuming that the
corresponding BER of all modulation modes was known given the estimated BER of the
received burst.

Overall, we have shown that our proposed AQAM scheme improved the throughput
performance compared to the constituent fixed modulation modes. The RBF DFE provided
a reliable channel quality measure, which quantified all channel impairments, irrespective of
their source for the AQAM scheme and at the same time it improved the BER performance.

In the following chapter, we will enhance the performance of the AQAM RBF DFE by

invoking turbo coding.



Chapter 4

RBF Equalisation Using Turbo
Codes

In this chapter, the wideband AQAM scheme explored in the previous chapter is extended
to incorporate the benefits of channel coding. Channel coding, with its error correction and
detection capability, is capable of improving the BER and throughput performance of the
wideband AQAM scheme. Since the wideband AQAM scheme always attempts to invoke
the appropriate modulation mode in order to combat the wideband channel effects, the
probability of encountering a received transmitted burst with a high instantaneous BER
is low, when compared to the constituent fixed modulation modes. This characteristic is
advantageous, since due to the less bursty error distribution, a coded wideband AQAM
scheme can be implemented successfully without the utilization of long-delay channel in-
terleavers. Therefore we can exploit the error detection capability of the channel codes
near-instantaneously at the receiver for every received transmission burst.

Turbo coding [7] is invoked in conjunction with the RBF assisted AQAM scheme in a
wideband channel scenario in this chapter. We will first introduce the novel concept of
Jacobian RBF equaliser, which is a reduced-complexity logarithmic version of the RBF
equaliser. The Jacobian logarithmic RBF equaliser generates its output in the logarithmic
domain and hence it can be used to provide soft outputs for the turbo decoder. We will
investigate different channel quality measures — namely the short-term BER and average
burst log-likelihood ratio magnitude of the bits in the received burst before and after channel
decoding — for controlling the mode-switching regime of our adaptive scheme. We will now

briefly review the concept of turbo coding.

130



CHAPTER 4. RBF EQUALISATION USING TURBO CODES 131

4.1 Introduction to Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajshima [7]. These
codes achieve a near-Shannon-limit error correction performance with relatively simple com-
ponent codes and invoking large interleavers. The component codes that are usually used
are either recursive systematic convolutional (RSC) codes or block codes. The general
structure of the turbo encoder is shown in Figure 4.1. The information sequence is encoded
twice, using an interleaver or scrambler between the two encoders, rendering the two en-
coded data sequences approximately statistically independent of each other. The encoders
produce a so-called systematically encoded output, which is equivalent to the original in-
formation sequence, as well as a stream of parity information bits. The parity outputs of
the two component codes are then often punctured in order to maintain as high a coding
rate as possible, without substantially reducing the codec’s performance. Finally, the bits

are multiplexed before being transmitted.

. Component
Input Bits Code 1
Puncturing
and —= Qutput Bits
Multiplexing
Interleaver Component
Code 1

Figure 4.1: Turbo encoder schematic

The turbo decoder consists of two decoders, linked by interleavers in a structure obeying
the constraints imposed by the encoder, as seen in Figure 4.1. The turbo decoder accepts
soft inputs and provides soft outputs as the decoded sequence. The soft inputs and outputs
provide not only an indication of whether a particular bit was a binary 0 or a 1, but
also deliver the so-called log-likelihood ratio (LLR) of the bit which constituted by the
logarithm of the quotient of the probability of the bit concerned being a logical one and
zero, respectively. Two often-used decoders are the Soft Qutput Viterbi Algorithm (SOVA)
[95] and the Maximum A Posteriori (MAP) [96] algorithm.

As seen in Figure 4.2, each decoder takes three types of inputs - the systematically encoded
channel output bits, the parity bits transmitted from the associated component encoder
and the information estimate from the other component decoder, referred to as the a priori
information of the decoded bits. The decoder operates iteratively. In the first iteration, the
first component decoder provides a soft output and the so-called extrinsic output based on

the soft channnel outputs alone. The terminology ’extrinsic’ implies that this information is



CHAPTER 4. RBF EQUALISATION USING TURBO CODES 132

Systematic -

(S:(;]ft | Component S o]

annel ———\ | S Decoder N nterleaver
Outputs Parity 1 _
Interleaver
Component X )
N De-Interleaver

Parity 2 Decoder ]

Figure 4.2: Turbo decoder schemaitic

not based on the received information directly related to the bit concerned, it is rather based
on information, which is indirectly related to the bit due to the code-constraints introduced
by the encoder. This extrinsic output generated by the first decoder — which constitutes the
first decoder’s ’opinion’ as to the bit concerned - is used by the second component decoder as
a priori information, and this information together with the channel outputs is used by the
second component decoder, in order to generate its soft output and extrinsic information.
Symmetrically, in the second iteration, the extrinsic information generated by the second
decoder in the first iteration is used as the a priori information for the first decoder. Using
this a priori information, the decoder is likely to decode more bits correctly than it did in the
first iteration. This cycle continues and at each iteration the BER in the decoded sequence
drops. However, the extra BER improvement obtained with each iteration diminishes, as
the number of iterations increases. In order to limit the computational complexity, the
number of iterations is usually fixed according to the prevalent design criteria expressed in
terms of performance and complexity. When the series of iterations is curtailed, after either
a fixed number of iterations or when a termination criterion is satisfied, the output of the
turbo decoder is given by the de-interleaved a posteriori LLRs of the second component
decoder. The sign of these a posteriori LLRs gives the hard decision output and in some
applications the magnitude of these LLRs provides the confidence measure of the decoder’s
decision. Because of the iterative nature of the decoder, it is important not to re-use
the same information more than once at each decoding step, since this would destroy the
independence of the two encoded sequences which was originally imposed by the interleaver
of Figure 4.2. For this reason the concept of the so-called extrinsic and intrinsic information
was used in the original paper on turbo coding by Berrou et al. [7] to describe the iterative

decoding of turbo codes.
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For a more detailed exposition of the concept and algorithm used in the iterative decoding
of turbo codes, the reader is referred to [7, 69]. Other, non-iterative decoders have also
been proposed [97, 98] which give optimal decoding of turbo codes, but they are rather
complex and providing disproportionately low improvement in performance over iterative
decoders. Therefore, the iterative scheme shown in Figure 4.2 is usually used. Continuing
from our previous work, where we used an RBF equaliser to mitigate the effects of the
wideband channel, we will introduce turbo coding in order to improve the BER and/or
BPS performance.

In the next section, before we discuss the joint RBF equalisation and turbo coding system,
we will introduce the Jacobian logarithmic RBF equaliser, which computes the output of
the RBF network in logarithmic form based on the Log-MAP algorithm [13] used in turbo

codes to reduce their computational complexity.

4.2 Jacobian Logarithmic RBF Equaliser

The Bayesian-based RBF equaliser has a high computational complexity due to the evalu-
ation of the nonlinear exponential functions in Equation 2.81 and due to the high number
of additions/subtractions and multiplications/divisions required for the estimation of each
symbol, as it was expounded in Section 2.9.

In this section — based on the approach often used in turbo codes — we propose generating
the output of the RBF network in logarithmic form by invoking the so-called Jacobian
logarithm [13, 14] , in order to avoid the computation of exponentials and to reduce the
number of multiplications performed. We will refer to the RBF equaliser using the Jacobian
logarithm as the Jacobian logarithmic RBF equaliser. Below we will present this idea in

more detail.
We will first introduce the Jacobian logarithm, which is defined by the relationship [13]:

J(A1,20) = In(eM 4 ™)
= max(A1, Ag) + In(1 + Pl
~ max(Ay, A2) + fe(|M — A2)s (4.1)

where the first line of Equation 4.1 is expressed in a computationally less demanding form as
max (A1, A2) plus the correction function f.(-). The correction function f.(z) = In(1 + ™)
has a dynamic range of In(2) > f.(z) > 0, and it is significant only for small values of
z [13]. Thus, f.(z) can be tabulated in a look-up table, in order to reduce the computational
complexity [13]. The correction function f.(-) only depends on |A; — Az|, therefore the look-
up table is one dimensional and experience shows that only few values have to be stored [99].

The Jacobian logarithmic relationship in Equation 4.1 can be extended also to cope with a
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higher number of exponential summations, as in In (3_7_; e** ). Reference [13] showed that

this can be achieved by nesting the J(A1, A2) operation as follows:

In (Z e’\’“) = J(An, J(/\n—h v J(Ag, J()\Q, )\1)) e )) (4-2)

k=1
Having presented the Jacobian logarithmic relationship, we will now decribe, how this
operation can be used to reduce the computational complexity of the RBF equaliser.

The overall response of the RBF network, given in Equation 2.81, is repeated here for

convenience:

M
frBr(vi) = ) wiexp(=|vk - cill*/p). (4.3)

=1
Expressing Equation 4.3 in a logarithmic form and substituting in the Jacobian logarithm,

we obtain:

M
In(frr(vi)) = (> wiexp(—|vi — cil|*/p))
=1

M
= In()_ exp(In(w;)) exp(— vk — ci|*/p))
i=1
M

= ln(z exp(w; + vig))

i;l
= I} exp(Au))
=1
= JAumk JA -1y - - - T (A2k5 Adig) - - ), (4.4)

where w, = In(w;), which can be considered as a transformed weight. Furthermore, we
used the shorthand vy, = —||vx — ¢;||*/p and Ay = vi + w!. By introducing the Jacobian
logarithm, every weighted summation of two exponential operations in Equation 4.3 is sub-
stituted with an addition, a subtraction, a table look-up and a max operation according to
Equation 4.1, thus reducing the computational complexity. The term ln(zgl exp(w]+vit))
requires 3M — 1 additions/subtractions, M — 1 table look-up and M — 1 max(-) operations.
Most of the computational load arises from computing the Euclidean norm term ||vy — ¢;||?,
and the associated total complexity will depend on the number of RBF centres and on the
dimension m of both the RBF centre vector ¢; and the channel output vector vi. The
evaluation of the term v, = —|vi — ¢;||?/p requires 2m — 1 additions/subtractions, m
multiplications and one division operation. Therefore, the computational complexity of a
RBF DFE having m inputs and n, ; hidden RBF nodes per equalised output sample, which
was previously given in Table 2.10, is now reduced to the values seen in Table 4.1 due to

employing the Jacobian algorithm.
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| Determine the feedback state
ns,j(2m +2) — 2M  subtraction and addition
g TN multiplication
Ng,j division
Ng; — M+ 1 max
nsj — M table look-up B

Table 4.1: Computational complexity of a M-ary Jacobian logarithmic decision feedback
RBF network equaliser with m inputs and n, ; hidden units per equalised output sample
based on Equations 2.104 and 4.4.

Exploiting the fact that the elements of the vector of noiseless channel outputs constitut-
ing the channel states r;,7 = 1,...,n, correspond to the convolution of a sequence of (L+1)
transmitted symbols and (L + 1) CIR taps — where these vector elements are referred to as
the scalar channel states 7, =1,...,n, ¢(= MEHL) — we could use Patra’s and Mulgrew’s
method [68] to reduce the computational load arising from evaluating the Euclidean norm

vi in Equation 4.4. Expanding the term v gives

llve — o2
v = Ve — il
0
_ ) (e —en)?
p p
- (vk—j — Cij)2 L (Vb—m1 — Ci(m—l))2
p p ’
1=1,..., M, k= —o0,...,00, (4.5)

where v;,_; is the delayed received signal and c;; is the jth component of the RBF centre
vector c;, which takes the values of the scalar channel outputs r;,l = 1,...,n, r as described
in Section 2.10. Note from Equation 4.5 that v, is a summation of the delayed components,

— )2
—(v’“—pc’i and the scalar centres c¢;; take the values of the scalar channel outputs r;,[ =

1,...,n, . Thus, we could reduce the computational complexity of evaluating Equation 4.5
by pre-calculating d; = —@L_p-r—ﬁ,l =1,...,ng for all the n, s possible values of the scalar
channel outputs r;,] = 1,...,n, and storing the values. From Equation 4.5 the value of

;1 can be obtained by summing the corresponding delayed values of d;, which we will define
as

Y
dlj:_.(.%jﬂ_”)-, I=1,...,ns5, j=0,...,m—1 (4.6)

0
Substituting Equation 4.6 into Equation 4.5 yields:

m—1
vik= Y dy, i=1,...,M, k=-o00,...,00. (4.7)
j =0

="y
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Figure 4.3: Reduced complexity computation of v;; in Equation 4.5 for substitution in
Equation 4.4 based on scalar channel output.

The reduced complexity computation of v;;, in Equation 4.7 for substitution in Equation 4.4
based on the scalar channel outputs 7;, can be represented as in Figure 4.3. The multiplexer
(Mux) of Figure 4.3 maps dj; of Equation 4.6 corresponding to the scalar centre r; to the

contribution of the vector centre’s component c;;.

The computation of d; = —(w“—_p@i,l = 1,...,n,,f requires n, s multiplication, division
and subtraction operations. For every RBF centre vector ¢;, computing its corresponding
v, value according to Equation 4.7 needs m — 1 additions. The reduced computational
complexity per equalised output sample of an M-ary Jacobian DFE with m inputs, ns; =
M™+E=m hidden RBF nodes derived from n, ; = M+ scalar centres is given in Table 4.2.
Comparing Table 4.1 and 4.2, we observe a substantial computational complexity reduction,
especially for a high feedforward order m, since ng s < n,j, if m —n < 1. For example,
for the 16-QAM mode we have n,; = 256 and n,; = 256 for the RBF DFE equaliser
parameters of m = 2, n = 1 and 7 = 1. The total complexity reduction is by a factor of
about 1.3. If we increase the RBF DFE feedforward order and use the equaliser parameters
of m =3, n=1and 7 = 2 - which gives a better BER performance — then we have
ng,f = 256 and ng ; = 4096 — and the total complexity reduction is by a factor of about 2.1.

The computational complexity can be further reduced by neglecting the RBF scalar centres
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situated far from the received signal vy, since the contribution of RBF scalar centres r; to
the decision function is inversely related to their distance from the received signal vg, as

recognised by Patra [68].

Determine the feedback state

nej(m+2) —2M +ng ;  subtraction and addition
N, f multiplication

Mg, f division

ngj — M+1 max

nsj — M table look-up

Table 4.2: Reduced computational complexity per equalised output sample of an M-ary
Jacobian logarithmic RBF DFE based on scalar centres. The Jacobian RBF DFE based on
Equation 2.104 and 4.4 has m inputs and n, ; hidden RBF nodes, which are derived from

the ns ; number of scalar centres.

Figures 4.4 and 4.5 show the BER versus SNR performance comparison of the RBF DFE
and the Jacobian logarithmic RBF DFE over the two-path Gaussian channel and two-path
Rayleigh fading channel of Table 3.1, respectively. For the simulation of the Jacobian
logarithmic RBF DFE the correction function f.(-) in Equation 4.1 was approximated by a
pre-computed table having eight stored values ranging from 0 to In(2). From these results
we concluded that the Jacobian logarithmic RBF equaliser’s performance was equivalent to
that of the RBF equaliser, whilst having a lower computational complexity.

Having presented the proposed reduced complexity Jacobian logarithmic RBF equaliser,
we will now proceed to introduce the joint RBF equalisation and turbo coding system and

investigate its performance in both fixed QAM and burst-by-burst (BbB) AQAM schemes.

4.3 System Overview

The structure of the joint RBF DFE and turbo decoder is portrayed in Figure 4.6. The
output of the RBF DFE provides the a posteriori LLRs of the transmitted bits based on the
a posteriori probability of each legitimate M-QAM symbol. The a posteriori LLR of a data
bit uy is denoted by L(ug|vy), which was defined as the log of the ratio of the probabilities

of the bit being a logical 1 or a logical 0, conditioned on the received sequence vy:

Clulve) = I(pet =LY,
= L(ug = +1|vg) = L(ug = —1|vy), (4.8)

where the term L(uy = *£1|vg) = In(P(ur = £1|vy)) is the log-likelihood of the data bit

ug having the value +1 conditioned on the received sequence vy.
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Figure 4.4: BER versus signal to noise ratio performance of the RBF DFE and the Jacobian
logarithmic RBF DFE over the dispersive two-path Gaussian channel of Figure 2.21(a)
for different M-QAM modes. Both equalisers have a feedforward order of m = 2, feedback
order of n = 1 and decision delay of 7 = 1 symbol.

The LLR of the bits representing the QAM symbols can be obtained from the a posteriori
log-likelihood of the symbol. Below we provide an example for the 4-QAM mode of our
AQAM scheme. The a posteriori log-likelihood Ly, Lo, L3 and L4 of the four possible
4-QAM symbols is given by the Jacobian RBF networks. A 4-QAM symbol is denoted by
the bits UpU; and the symbols 71, Zo, Z3 and Z, correspond to 00, 01, 10 11, respectively.
Thus, the a posteriori LLRs of the bits are obtained as follows:

L(Uolvy) =
L(Urlvy) =

where,

L(UO = ”Vk) = L(UOUI = 11U UyU; = IOle) = ln(eP(UﬂUlzlllvk)‘P(UoUl:lolvk))

L(Uy = 1|vg) — L(Up = O|vg),
LU, = 1|vg) — L(U; = 0]vg),

(4.9)

J(Ly4, L3),
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Figure 4.5: BER versus signal to noise ratio performance of the RBF DFE and the Jacobian
logarithmic RBF DFE over the two path equal weight, symbol-spaced Rayleigh fad-
ing channel of Table 3.1 for different M-QAM modes. Both equalisers have a feedforward
order of m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol. Correct

symbols were fed back.

L(Uy = 0lvi) = L(UpU; = 01 U UpUy = 00]vy) = In(eFoV1=011ve) P(oU1=001vk)y — ([, L),
L(Uy = 1]vg) = L(UpUs = 11 U UpUs = 01]vy) = In(eP@oli=11ve)-PUoU1=011v0)y — J(L, L,
L(Uy = 0vi) = L(UpUy = 10U Upl; = 00]vy,) = In(ePUoUr=10vi)- PUoth=00Ivi)y = (L, L

)’
)7

(4.10)

and J(A1, A2) denotes the Jacobian logarithmic relationship of Equation 4.1.

Note that the Jacobian RBF equaliser will provide log,(AM) number of LLR values for
every M-QAM symbol. These value are fed to the turbo decoder as its soft inputs. The
turbo decoder will iteratively improve the BER of the decoded bits and the detected bits
will be constituted by the sign of the turbo decoder’s soft output.

The probability of error for the detected bit can be estimated on the basis of the soft
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Figure 4.6: Joint RBF DFE and turbo decoder schematic

output of the turbo decoder. Referring to Equation 4.8 and assuming P(ux = +1|v) +
P(uy = —1|vy) = 1, the probability of error for the detected bit is given by

1= Plug = +1|vg) = Pluy = —1|vg), i Lluplve) 200,y

Perror(uk) = .
1 —plug = —1|vg) = P(ug = +1]vg), if L(ug|ve) <0

With the aid of the definition in Equation 4.8 the probability of the bit having the value of

+1 or -1 can be rewritten in terms of the a posteriori LLR of the bit, L(ug|vy) as follows:

1
Pluw =+lvi) = e
1

Upon substituting Equation 4.12 into Equation 4.11, we redefined the probability of error
of a detected bit in terms of its LLR as:

L (4.13)

Perror(uk) = I—W’

where |L(ug|vg)| is the magnitude of L£(uy|vg). Again, the average short-term probability

of bit error within the decoded burst is given by:

E'L:bo Perror (Uz)
Pbit, short-term = — Ls ) (4.14)

where Ly is the number of decoded bits per transmitted burst and u; is the ¢th decoded bit
in the burst. This value, which we will refer to as the estimated short-term BER was found
to give a good estimation of the actual BER of the burst, which will be demonstrated in
Section 4.4. The actual BER is the ratio of the number of bit errors encountered in a data
burst to the total number of bits transmitted in that burst.

In the next section we will investigate the performance of the turbo-coding assisted RBF

DFE M-QAM scheme based on our simulation results.

4.4 Turbo-coded RBF-equalized M-QAM Performance

According to our BER versus BPS optimistion approach high code rates in excess of 2/3

are desirable, in order to maximise the BPS throughput of the system. Consequently, block
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Figure 4.7: Transmission burst structure of the so-called FMA1 nonspread data mode as
specified in the FRAMES proposal [101].

codes were favoured as the turbo component codes in preference to the more widely used
Recursive Systematic Convolutional (RSC) code based turbo-coded benchmarker scheme,
since turbo block coding has been shown to perform better for coding rates in excess of
2/3 [100]. This is demonstrated first in Figure 4.11, which will be discussed in more depth
at a later stage. In our simulations, unless otherwise stated, we hence utilized the turbo
coding parameters given in Table 4.3 and employed the transmission burst structure shown
in Figure 4.7. The turbo encoder used two Bose-Chaudhuri-Hocquenghem BCH(31, 26)
block codes in parallel. A 9984-bit random interleaver was used between the two compo-
nent codes, unless otherwise stated. We used the Log-MAP decoder [13] throughout our
simulations, since it offered the same performance as the optimal MAP decoder with a
reduced complexity. The DFE used correct symbol feedback and we assumed perfect CIR

estimation, hence the associated results indicate the system’s upper-bound performance.

BCH RSC
Component code BCH(31,26) | K =3, n=2,k=1
Octal generator polynomial G[0] = 73 G[1] = 5g
Code rate, R 072=21 1075
Turbo interleaver type Random Random
Turbo interleaver size 9984-bit 9984-bit
Component decoders Log-MAP Log-MAP

Table 4.3: The turbo BCH and RSC coding parameters

4.4.1 Results over Dispersive (Gaussian Channels

We will first investigate the performance of the joint RBF DFE M-QAM and turbo coding
scheme over the two-path Gaussian channel of Figure 2.21(a). Figure 4.8 provides our BER
performance comparison between the RBF DFE scheme and the conventional DFE scheme

in conjunction with the turbo BCH codec of Table 4.3. The RBF DFE has a feedforward

}The parity bits were not punctured, since block turbo codes suffer from performance loss upon puncturing
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Figure 4.8: BER versus SNR performance for the BPSK RBF DFE and for a conventional
DFE using the turbo BCH codec of Table 4.3 with different number of iterations over
the dispersive two-path Gaussian channel of Figure 2.21(a). The conventional DFE has a
feedforward order of m = 7 and a feedback order of n = 1. The turbo interleaver size is
9984 bits.
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order of 2, feedback order of 1 and decision delay of 1 symbol in Figure 4.8(a) and a feed-
forward order of 3, feedback order of 1 and decision delay of 1 symbol for Figure 4.8(b).
The parameters of the conventional DFE were a feedforward order of 7 and feedback order
of 1, which were assigned such that they gave the best possible BER performance according
to our experiments and hence there was no significant BER improvement upon increasing
the feedforward and feedback order. Figure 4.8 also demonstrates the effect of the number
of decoding iterations used. The performance of the uncoded scheme is also provided as a
comparison. Using turbo coding improves the performance by approximately 3.2dB at a
BER of 1072 for both the RBF DFE (m = 2,7 =1 and m = 3,7 = 2) and for conventional
DFE schemes. As the number of iterations used by the turbo decoder increases, both the
turbo-coded RBF DFE and the turbo-coded conventional DFE scheme perform significantly
better. However, the 'per-iteration’ BER improvement is reduced, as the number of itera-
tions increases. Hence, for complexity reasons, the number of decoding iterations was set
to six for our forthcoming simulations.

Figure 4.8(a) indicates that the turbo-coded conventional DFE scheme performs slightly
better than the turbo-coded RBF DFE (m = 2,7 = 1) scheme, corresponding to approx-
imate improvements of 0.5dB, 0.3dB and 0.1dB for one iteration, three iterations and six
iterations, respectively, at a BER of 10~%. However, the performance of the turbo-coded
RBF DFE scheme can be further improved by increasing its feedforward order and decision
delay, as demonstrated in Figure 4.8(b), unlike that of the turbo-coded conventional DFE
where there is no further performance improvement upon increasing the equaliser order.
The improved turbo-coded RBF DFE (m = 3,7 = 2) scheme gives an SNR improvement of
0.2dB, 0.2dB and 0.5dB for one iteration, three iterations and six iterations, respectively,
at a BER of 10™* compared to the conventional DFE scheme. The SNR improvement at a
BER of 10~ compared to the uncoded conventional DFE is -0.5dB and 0.2dB for the RBF
DFE using m = 2,7 = 1 and m = 3,7 = 2, respectively. We observed that the turbo-coded
performance of the conventional DFE and RBF DFE follow the trends of their uncoded
performances.

We will now extend our investigations to QAM schemes. Figure 4.9 shows the BER
performance of the BCH turbo-coded RBF DFE system for various QAM modes over the
two-path Gaussian channel. Introducing turbo coding into the system improves the perfor-
mance by 8dB for BPSK, 4-QAM and 16-QAM and by about 9.5dB for 64-QAM at a BER
of 1074, Note that turbo coding only starts to improve the uncoded performance after the
uncoded BER drops below 107!, since coding could not improve the BER performance, if
the number of errors in the undecoded burst exceeded a certain limit.

The Jacobian logarithmic RBF DFE introduced in Section 4.2 can be used to substitute
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Figure 4.9: BER versus SNR performance for the RBF DFE using the turbo codec of Ta-
ble 4.3 over the dispersive two-path Gaussian channel of Figure 2.21(a) in conjunction
with various QAM modes. The RBF DFE has a feedforward order of m = 2, feedback order
of n = 1 and a decision delay of 7 = 1 symbol. The number of turbo BCH(31,26) decoder
iterations is six, while the random turbo interleaver size is 9984 bits.
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the RBF DFE in order to reduce the computational complexity of the system. The turbo-
coded performance of the Jacobian logarithmic RBF DFE is shown to be similar to that of
the RBF DFE in Figure 4.10, since the Jacobian logarithmic algorithm is capable of giving

a good approximation of the equalised channel output LLRs.
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Figure 4.10: BER versus SNR performance for the RBF DFE and Jacobian logarithmic RBF
DFE using the turbo codec of Table 4.3 over the dispersive two-path Gaussian channel of
Figure 2.21(a) in conjunction with various QAM modes. The equaliser has a feedforward
order of m = 2, feedback order of n = 1 and a decision delay of 7 = 1 symbol. The number
of turbo BCH(31,26) decoder iterations is six, while the random turbo interleaver size is

9984 bits.

4.4.2 Results over Dispersive Fading Channels

We will now investigate the performance of the joint RBF DFE M-QAM and turbo coding
scheme over the wideband Rayleigh fading channel environment of Table 4.4, while the
parameters of the turbo codec are given in Table 4.3.

As noted before, Figure 4.11 shows the performance of the Jacobian RBF DFE in con-
junction with both BCH and RSC based turbo coding for various QAM modes. The BCH
turbo-coded scheme improves the system performance by 5dB, 4dB, 7dB and 8dB using
BPSK, 4-QAM, 16-QAM and 64-QAM, respectively, for a BER of 10~%. By contrast, for
the RSC turbo coded scheme the BER performance improves by 2dB for BPSK and 4-
QAM, while 3dB for 16-QAM and 64-QAM. Similarly to the 2-path Gaussian channel, the
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turbo-coded schemes only start to provide significant BER improvements with respect to
the uncoded scheme, once the uncoded BER dips below 10~!. Our performance compari-
son with the turbo convolutional codec of Table 4.3 given in Figure 4.11 demonstrates that
the R = 0.72 turbo block code provides a better BER performance than the R = 0.75
RSC-turbo codec, at the cost of a higher computational complexity. As seen in Table 4.3,
a half rate RSC encoder of constraint lenght K = 3 was used in the RSC turbo codec. The
generator polynomials expressed in octal terms were set to seven (for the feedback path)
and five. Similarly to the turbo BCH codec, the code rate was set to 0.75 by applying
a random puncturing pattern in the RSC encoder. The turbo interleaver depth was also

chosen to be 9984 bits.

Transmission Frequency 1.9GHz
Transmission Rate 2.6MBd
Vehicular Speed 30 mph
Normalised Doppler Frequency | 3.3 x 1075
Channel weights 0.707 + 0.707z1

Table 4.4: Simulation parameters for the two-path Rayleigh fading channel

Modulation Mode | BPSK | 4-QAM | 16-QAM | 64-QAM
Interleaver Size 494 988 1976 2964

Table 4.5: Corresponding random interleaver sizes for each modulation mode

4.5 Channel Quality Measure

In order to identify the potentially most reliable channel quality measure to be used in our
BbB adaptive turbo-coded QAM modems to be designed during our forthcoming discourse,
we will now analyse the relationship between the average burst LLR magnitude before and
after channel decoding. For this reason, the random turbo interleaver size was reduced
from the previously used 9984 bits and it was varied on a BbB basis, corresponding to the
modulation mode used, as shown in Table 4.5, in order to enable BbB decoding so that we
could obtain the average burst LLR magnitude of the coded data burst corresponding to
the uncoded data burst. Explicitly, the interleaver size is set to be equivalent to the number
of source bits in a data burst, in order to enable BbB decoding. Since the code rate is 0.72
and the number of coded bits is 684, 1368, 2736 and 4104 for BPSK, 4-QAM, 16-QAM and
64-QAM, respectively, for a burst length of 684 symbols, the interleaver size (= number of
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Figure 4.11: BER versus SNR performance for the Jacobian logarithmic RBF DFE using
the turbo codec of Table 4.3 over the dispersive two-path fading channel of Table 4.4
for various QAM modes. The equaliser has a feedforward order of m = 2, feedback order
of n =1 and a decision delay of 7 = 1 symbol. The number of convolutional and BCH
turbo decoder iterations is six, while the turbo interleaver size is fixed to 9984 bits.
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source bits = number of coded bits - number of parity bits) is as shown in Table 4.5. The

average burst LLR magnitude is defined as follows:

Lo L (ug
Laverage = 2izo }Liu !Vk)l, (4.15)

where Ly is the number of data bits per transmitted burst and wu; is the ith data bit in the
burst. Figure 4.12 shows the improvement of the average burst LLR magnitude after turbo
decoding for the turbo BCH codec of Table 4.3 over the wideband Rayleigh fading channel
environment of Table 4.4. As seen in the figure, the gradient of the curve is approximately
unity for the average burst LLR magnitude before decoding over the range of 0 to 5 for
BPSK and 4-QAM, 0 to 6 for 16-QAM and 0 to 10 for 64-QAM. Thus, there is no average
LLR magnitude improvement upon introducing turbo decoding in this low reliability range.
This is in harmony with our previous observations in Figures 4.10 and 4.11, namely that
there is no BER improvement for BERs below 10~!. Beyond this range, there is a sharp
increase in the decoded LLR magnitude due to turbo decoding. Figure 4.12(a) also shows the
effect of increasing the number of decoder iterations on the average burst LLR magnitude.
Increasing the number of decoder iterations improves not only the BER, but also the average
confidence measure of the decoder’s decisions.

Figure 4.13 shows the relationship between the estimated short-term BER defined in
Equation 4.14 and the average burst LLR magnitude after turbo decoding using six itera-
tions. Note that the curves becomes more ’spread out’, as the short-term BER decreases.

This is because the relationship between the probability of bit error in the decoded burst
expressed in the logarithmic domain is inversely proportional to its LLR magnitude, as
shown in Figure 4.14. The average of the burst LLR magnitude is dominated by the LLR
values of the bits having lower probability of bit error, whereas the short-term BER of the
burst is dominated by the bits with higher probability of bit error. The variance of the LLR
values of the bits in the burst accounts for the ’spread’ of the the estimated short-term BER
versus average burst LLR magnitude curves in Figure 4.13 at low short-term BER values.

Since the average burst LLR magnitude is related to the estimated short-term BER, after
accounting for the ’spread’ at low short-term BERs, the average burst LLR magnitude can
be used as the modem mode switching metric in our AQAM scheme, which will be discussed
in Section 4.6. The average burst LLR magnitude is preferred instead of the short-term
BER as the modem mode switching metric, because it can avoid the extra computational
complexity of having to convert the output of the RBF DFE and the turbo decoder from
the LLR values to BER values according to Equation 4.13, in order to obtain the short-term
BER of the data burst.
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Figure 4.12: The average burst LLR magnitude after turbo decoding versus the average
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ing employing the parameters of Table 4.3 over the burst-invariant two-path fading channel

of Table 4.4.
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Figure 4.15: System schematic of the joint adaptive modulation and RBF equaliser scheme
using turbo coding

4.6 Turbo Coding and RBF Equaliser Assisted AQAM

4.6.1 System Overview

The schematic of the joint AQAM and RBF network based equalisation scheme using turbo
coding is depicted in Figure 4.15. The switching thresholds can be based on the switching
metric either before or after turbo decoding. In this section we will investigate the perfor-
mance of the AQAM scheme using either the short-term BER or the average burst LLR
magnitude as our switching metric.

For our experiments in the following sections, the simulation parameters are listed in
Table 4.4, noting that we analysed the joint AQAM and RBF DFE scheme in conjunction
with turbo coding over the two-path Rayleigh fading channel of Table 4.4. The wideband

fading channel was burst-invariant, implying that during a transmission burst the channel
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impulse response was considered time-invariant. In our simulations, we used the Jacobian
RBF DFE of Section 4.2, which gave a similar turbo-coded BER performance to the RBF
DFE but at a lower computational complexity, as it was demonstrated in Figure 4.10. The
Jacobian RBF DFE had a feedforward order of m = 2, feedback order of n = 1 and decision
delay of 7 = 1. We used the BCH(31, 26) code of Table 4.3 as the turbo component code and
the BbB random interleavers depending on the modulation mode were employed, as given
in Table 4.5. The modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM,
64-QAM and NO TX.

4.6.2 Performance of the AQAM Jacobian RBF DFE Scheme: Switching
Metric Based on the Short-Term BER Estimate

Following from Section 3.4, where the uncoded AQAM RBF DFE scheme used the estimated
short-term BER to switch the modem mode, we will now investigate the performance of the
turbo-coded AQAM RBF DFE scheme based on the same switching metric. The estimated
short-term BER can be obtained both before or after turbo BCH(31,26) decoding for the
coded system. The estimated short-term BER before decoding can be obtained with the aid
of the RBF DFE based on Equation 3.15, while that after turbo decoding can be obtained
with the aid of the decoder based on Equation 4.14.

The plot of the estimated BER versus actual BER before and after turbo BCH(31,26)
decoding and their corresponding PDFs of the BER estimation error for the Jacobian RBF
DFE and for various channel SNRs is shown in Figures 4.16, 4.17, 4.18 and 4.19, for BPSK
transmission bursts over the dispersive two-path Gaussian channel of Figure 2.21(a) and
the two-path Rayleigh fading channel of Table 4.4, respectively. The actual burst-BER is
the ratio of the number of bit errors encountered in a data burst to the total number of bits
transmitted in that burst. The figures suggest that the Jacobian RBF DFE and the turbo
BCH(31,26) decoder provide a good BER estimation, especially at higher channel SNRs.
We note, however again that the accuracy of the actual BER evaluation is limited by the
burst-length of 684 bits and 494 bits for the undecoded and decoded bursts, respectively.
Therefore, for high SNRs the actual number of errors registered is often 0, which portrays
the estimation algorithm in a less accurate light in the PDF of Figure 4.18 and 4.19 than
it is in reality, since the 'resolution’ of the reference BER is 1/684 or 1/494.

We shall refer to the AQAM scheme that utilised the switching thresholds based on the
short-term BER before and after decoding, 'before decoding’-scheme and ’after decoding’-
scheme, respectively. The short-term BER Pbit, short-term» Obtained from either the RBF
DFE or the turbo BCH(31,26) decoder is compared to a set of switching BER thresholds,
Pl-M,z' = 2,4,16,64, corresponding to the various M-QAM modes, and the modulation
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for the dispersive two-path Rayleigh
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Figure 4.18: Discretised PDF of the error between the actual BER of BPSK bursts and the
BER estimated by the Jacobian RBF DFE before and after turbo BCH(31,26) decoding for
the dispersive two-path AWGN channel of Figure 2.21(a) using BPSK. The number of
turbo BCH(31,26) decoder iterations is six, while the random turbo interleaver size is 494.
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Figure 4.19: Discretised PDF of the error between the actual BER of BPSK bursts and the
BER estimated by the Jacobian RBF DFE before and after turbo BCH(31,26) decoding for
the two-path Rayleigh fading channel of Table 4.4 using BPSK. The number of turbo
decoder iterations is six, while the turbo interleaver size is 494.
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mode is switched according to Equation 3.7.

As discussed in Section 3.4, the switching BER thresholds can be obtained by estimating
the BER degradation/improvement, when the modulation mode is switched from M-QAM
to a higher/lower value of M. We obtain this BER degradation/improvement measure
from the estimated short-term BER of every modulation mode used under the same channel
scenario.

In our experiments used to obtain the switching BER thresholds, pseudo-random symbols
were transmitted in a fixed-length burst for all modulation modes across the burst-invariant
wideband channel. The receiver receives each data burst having different modulation modes,
equalises and turbo BCH(31,26) decodes each one of them independently. The estimated
short-term BER before and after turbo BCH(31,26) decoding for all modulation modes was
obtained according to Equation 3.15 and Equation 4.14, respectively. Thus, we have the
estimated short-term BER of the received data burst before and after decoding for every
modulation mode under the same channel conditions, which we could use to observe the
BER degradation/improvement, when we switch from M-QAM to a higher/lower value of
M. We could not use the BER performance versus SNR curve of Figure 4.11 generated over
the dispersive two-path fading channel of Table 4.4 for the various QAM modes to estimate
the BER improvement/degradation, since the BER in that figure was an average of the
time-varying short-term BER of all the transmitted bursts over the faded channel. For the
switching mechanism we need the 'short-term’ BER measure and not the ’long-term’ BER
measure to configure the modem for the next transmission burst.

The switching BER thresholds for the 'before decoding’-scheme can be obtained by es-
timating the degradation/improvement of the short-term BER before decoding, when the
modulation mode is switched from M-QAM to a higher/lower value of M to achieve the
target BER after decoding. Figure 4.20 shows the estimated short-term BER after decod-
ing for all the possible modulation modes that can be switched to versus the estimated
short-term BER of 16-QAM before decoding under the same channel conditions. The figure
shows how each switching BER threshold P! i = 2,4,16,64 is obtained. For example, in
order to maintain the target BER of 1074, the short-term BER of the 16-QAM transmission
burst before turbo decoding has to be approximately 2.5 x 1071, 2 x 107!, 5 x 1072 and
1x 1073, when switching to BPSK, 4-QAM and 64-QAM, respectively, under the same chan-
nel conditions. Using the same method for the other modulation modes, the switching BER
thresholds are obtained, as listed in Table 4.6. For the ’after decoding’ switching scheme,
the short-term BER thresholds }DiM,’i = 2,4,16, 64, listed in Table 4.7 were obtained. How-
ever, for NO TX bursts, where only dummy data are transmitted, turbo decoding is not
necessary. Thus, for NO TX bursts we use the short-term BER before decoding as the

switching metric.
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Figure 4.20: The estimated short-term BER after turbo BCH(31,26) decoding for all the
possible modulation modes that can be invoked, assuming that current mode is 16-QAM
— versus the estimated short-term BER of 16-QAM before decoding over the two-path
Rayleigh fading channel of Table 3.1.

PM PM Pl P

NOTX [25x1072 ] 2x107% | 1 x10732 0.0

- BPSK [ 25x107%] 2x1073 | 1x107%? 0.0

4-QAM | 1x107t | 4x1072 | 4x10°° 0.0
16-QAM | 25x1071 | 2x1070 | 5x1072 [1x 1073
64-QAM [ 3.2x 1071 [ 25%x107 T [1.3x1071 [ 5x 1072

Table 4.6: The switching BER thresholds P/ of the joint adaptive modulation and RBF
DFE scheme for the turbo-decoded target BER of 10™* over the two-path Rayleigh fading
channel of Table 3.1. The switching metric is based on the estimated short-term BER
obtained before turbo decoding from the RBF DFE. This table explicitly indicates the
uncoded modem BER that has to be maintained by the modem modes shown at the top of
the table, in order to achieve the 107 turbo-decoded BER after switching to the various

modem modes seen in the left-most column.
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PM PM Pt P!

NOTX | 3x1072 [25x107% | 1 x10~% 0.0

BPSK | 1x107° [ 1x107% 0.0 0.0

4-QAM | 8x107%2 | 1x107° | 1 x 10750 0.0
16-QAM | 2x107! | 1.6x107t | 1x107° |1x10~%
64-QAM [ 32x10° 1 [27x1071 [ 1.3x10°T ] 1x10°°
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Table 4.7: The switching BER thresholds PZ/\’t of the joint adaptive modulation and RBF
DFE scheme for the turbo-decoded target BER of 10™* over the two-path Rayleigh fading
channel of Table 3.1. The switching metric is based on the estimated short-term BER
obtained after turbo decoding from the decoder. This table explicitly indicates the coded
modem BER that has to be maintained by the modem modes shown at the top of the table,
in order to achieve the 10™* turbo-decoded BER after switching to the various modem

modes seen in the left-most column.

Figure 4.21 shows the performance of the 'before decoding’-scheme and ’after decoding’-
scheme using the switching thresholds given in Tables 4.6 and 4.7, respectively. Both
schemes have similar BPS performances. However, the 'before decoding’-scheme performs
better, than the ’after decoding’-scheme in terms of its BER performance. Note that the
‘after decoding’-scheme could only achieve the target BER of 10~* beyond the SNR of
32dB. The performance degradation of the ’after decoding’-scheme can be explained by
observing Figure 4.22, which shows the short-term BER fluctuation obtained before and
after decoding at an SNR of 10dB for 4-QAM - the dominant modulation mode at 10dB.
The BER fluctuation after decoding is more spurious and hence exhibits a higher variance
than before decoding. Our modem mode switching mechanism assumes that the BER of
the transmission burst is slowly varying and the estimated short-term BER of the current
received burst is used to select the modulation mode for the nezt transmission burst. The
spurious nature of the short-term BER after decoding, which is used as the switching metric,
defies the BER predictability assumptions made and hence degrades the performance of the
modulation mode switching mechanism. We also note from Table 4.7 that the thresholds
required for the modem to switch to a higher-order modulation mode are extremely low.
For example, when the BER must be lower than Pfls = 1x 10750 for the modem to switches
from 4-QAM to 16-QAM. The extremely low values of the thresholds associated with the
‘after decoding’-scheme degrade the performance of the mode switching mechanism. The
"before decoding’-scheme has a more reasonable set of thresholds, as shown in Table 4.6 and
therefore performs better.

In the following section, we will investigate the performance of the coded adaptive scheme

using the average burst LLR magnitude, defined by Equation 4.15 as an alternative switch-

ing metric.
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Figure 4.21: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Jaco-
bian RBF DFE aiming for a target BER of 10™* for data-transmission using the parameters
listed in Table 4.4. The *before decoding’-scheme and ’after decoding’-scheme uses the es-
timated short-term BER of Equation 3.15 and 4.14 before and after decoding, respectively,
as switching metric. The modem mode switching BERs used for both schemes are listed
in Table 4.6 and 4.7. The Jacobian RBF DFE had a feedforward order of m = 2, feedback
order of n = 1 and decision delay of 7 = 1 symbol. The turbo coding parameters are given
in Table 4.3 and the number of turbo decoder iterations is six. The BbB turbo interleaver
size was fixed according to the modulation mode used as shown in Table 4.5.

4.6.3 Performance of the AQAM Jacobian RBF DFE Scheme: Switching
Metric Based on the Average Burst LLR Magnitude

As discussed in Section 4.3, the probability of bit error is related to the magnitude of the
bit LLR according to Equation 4.13. Thus, in addition to the BER-based switching criteria
of the previous section, the magnitude of the bit LLR can also be used as the modem mode
switching metric. The turbo decoder iteratively improves the BER of the decoded bits.
Since the average burst LLR magnitude before and after decoding has an approximately
linear relationship, as demonstrated by Figure 4.12 in Section 4.4.2, the average probability
of error for the decoded burst can be inferred from the average burst LLR magnitude
provided by the RBF equaliser using Equation 4.15. Thus, this parameter can also be used
as the switching metric of the turbo-coded BbB AQAM scheme.

Figure 4.23 and 4.24 portray the average burst LLR magnitude fluctuation before and
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Figure 4.22: Short-term BER before and after turbo BCH(31,26) decoding versus symbol
index for 4-QAM and for a channel SNR of 10dB over the two-path equal-weight, symbol-
spaced Rayleigh fading channel of Table 3.1. The RBF DFE had a feedforward order of
m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol. Perfect CIR estimation
is assumed and decision fedback error propagation is ignored. These low short-term BER
estimates were obtained from the average values of Equation 4.13, which was plotted in

Figure 4.14.

after turbo decoding, respectively, over the burst-invariant channel of Table 4.4 versus the
symbol index for various QAM modes, as given by the RBF DFE and the turbo decoder,
which is slowly varying and predictable for a number of consecutive data bursts. Therefore
in our simulated channel scenario the average burst LLR magnitude both before and after
turbo decoding constitute suitable metrics for the AQAM switching mechanism.

The average burst LLR magnitude obtained from either the RBF DFE or the turbo de-
coder is compared to a set of switching LLR magnitudes corresponding to the modulation
mode of that data burst. Consequently, a modulation mode is selected for the next trans-
mission burst, based on the current estimated BER upon assuming slowly fading channels.
More explicitly, this implies that the similarity of the average burst LLR magnitude of con-
secutive data bursts can be exploited, in order to set the next modulation mode. Again,
the modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM, 64-QAM and

no transmission (NO TX). Therefore, the modulation mode is switched according to the
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Figure 4.23: Average burst LLR magnitude before turbo decoding versus transmission
burst index for various QAM modes as given by the RBF DFE over the two-path equal-
weight, symbol-spaced Rayleigh fading channel of Table 3.1. Perfect CIR estimation is
assumed and error propagation in decision feedback is ignored.
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Figure 4.24: Average burst LLR magnitude after turbo decoding versus transmission
burst index for various QAM modes as given by the RBF DFE over the two-path equal-
weight, symbol-spaced Rayleigh fading channel of Table 3.1. Perfect CIR estimation is
assumed and error propagation in decision feedback is ignored.
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average burst LLR magnitude as follows:

;

NO TX if Laverage < L£3"

BPSK  if £3" < Laverage < L1

Modulation Mode = { 4-QAM  if £ < Laverage < Li¢ (4.16)
16-QAM if L{{ < Laverage < Py’

64-QAM if L3} < Laverage,

\

where EZM,i = 2,4,16,64 are the switching LLR magnitude thresholds corresponding to
the M-QAM mode.

The LLR magnitude switching thresholds corresponding to M-QAM, LM, = 2,4,16,64,
can be obtained by estimating the average burst LLR magnitude degradation/improvement,
upon switching the modulation mode from M-QAM to a higher/lower number of bits per
symbol. The target BER requirement can be met by obtaining the average burst LLR
magnitude of each modulation mode corresponding to the estimated channel quality and
by activating the specific mode satisfying this target BER.

In our experiments, we obtained the LLR magnitude degradation/improvement upon
switching from each modem mode to all other legitimate modes under the same instan-
taneous channel conditions. As an example for the "before decoding’-scheme, Figure 4.25
shows the short-term BER - defined in Equation 4.14 — that would be encountered upon
switching to all possible AQAM modes after BCH(31,26) turbo decoding versus the av-
erage burst LLR magnitude of 4-QAM before decoding, which was the current AQAM
mode. In order to maintain the target BER of 10™%, Figure 4.25 demonstrates how each
switching LLR magnitude £},7 = 2,4, 16,64 is obtained after averaging the LLR magnitude
occurances seen in the figure. More explicitly, the average burst LLR magnitudes before
decoding encountered in the 4-QAM transmission burst would have to be 4.0, 7.5, 40.0
and 100.0, before switching to BPSK, 4-QAM, 16-QAM and 64-QAM AQAM bursts under
the same channel conditions, leading to an estimated BER of 10™* after BCH(31,26) turbo
decoding. For example, if the average LLR magnitude Laverage before decoding of the
received 4-QAM transmission burst is in the range of 100 > Laverage > 40, the modulation
mode is switched from 4-QAM to 16-QAM for the next AQAM burst, since the BER of
this 16-QAM transmission burst is estimated to be below the target BER of 1071, Note
that due to the ’spreading’ of the average burst LLR magnitude before decoding versus the
short-term BER curve - especially for higher-order AQAM modes, as seen in Figure 4.25 -
the threshold is estimated from the mean of this dynamic range. Using the same method
for the other modulation modes, the 'before decoding’ switching LLR magnitude thresholds
were obtained for the turbo-decoded target BER of 107, as listed in Table 4.8. For the

‘after decoding’ switching scheme, a similar method was implemented, in order to obtain
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the switching thresholds listed in Table 4.8. Similar to the 'after decoding’ short-term BER
switching metric described in Section 4.6.2, the average burst LLR magnitude before de-
coding is used as the switching metric for the NO TX bursts, since turbo decoding is not

performed in this mode.

Before Decoding After Decoding
P LM L [ |2 [ 2 T o8 | £X
NO TX || 8.0 | 17.0 | 90.0 | 380.0 || 8.0 | 17.0 | 90.0 | 380.0
BPSK | 8.0 |17.0 | 90.0 | 380.0 || 40.0 | 100.0 | oo 00
4QAM || 4.0 | 7.5 | 40.0 | 140.0 | 6.0 | 32.0 | 230.0 | oo
16QAM || 2.0 | 3.0 | 11.5 | 55.0 || 3.2 | 4.0 40.0 | 200.0

64QAM || 1.7 | 2.2 | 6.2 | 30.0 || 24.0| 3.0 6.5 45.0

Table 4.8: The switching LLR magnitude thresholds EzM before and after decoding of the
RBF DFE BbB AQAM scheme with turbo coding for the target BER of 10™* over the
two-path Rayleigh fading channel of Table 4.4.

Figure 4.26 compares the performance of the adaptive schemes using the short-term BER
estimate based on Equation 4.14 and the average burst LLR magnitude before and after
decoding as the switching metric. Both the ’before’ and ’after decoding’ LLR schemes
of this section have similar BER and BPS performances to the ’before decoding’ short-
term BER scheme of Section 4.6.2, although the scheme using the average burst LLR
magnitude as the switching metric has a lower computational complexity. This is because
the output of the Jacobian RBF DFE is in a logarithmic form and obtaining the short-term
BER values requires us to convert the logarithmic output to the non-logarithmic domain
using exponential functions, in order to acquire the probability of bit error according to
Equation 4.14.

Figure 4.27 shows our performance comparison of the AQAM Jacobian RBF DFE scheme
in conjunction with turbo BCH(31,26) coding for the target BER of 10~* with the *before
decoding’ LLR magnitude switching metric along with its constituent turbo-coded fixed
QAM modes. Figure 4.27 also shows the BER and BPS performance of the AQAM RBF
DFE scheme without turbo coding, using the shori-term BER as the switching metric, as
described in Section 3.4 for performance comparison. The switching BER thresholds of the
AQAM RBF DFE scheme without turbo coding were listed in Table 3.5.

Referring to Figure 4.27, the coded BPS performance was better than that of the uncoded
scheme for the channel SNR range of 0dB to 26dB, with a maximum SNR gain of 4dB at
a channel SNR of 0dB. However, at high SNRs, the BPS performance is limited by the
coding rate of the system to achieve a maximum BPS throughput of % -6 = 4.33. The
turbo BCH(31,26) coded AQAM system also exhibited a superior BER performance, when
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Figure 4.25: The estimated short-term BER for all the possible turbo BCH(31,26) de-
coded AQAM modes versus the average burst LLR magnitude of 4-QAM over the two-path
Rayleigh fading channel of Table 3.1. The figure illustrates the expected spread of the
short-term BER of all turbo decoded modem modes given a certain average burst LLR
magnitude value in conjunction with 4-QAM as the current modem mode.
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compared to the uncoded system for the channel SNR range of 0dB to 16dB and for the
range above 28dB. However, the coded AQAM system failed to achieve the target BER
of 107 for the SNR range of 16dB to 28dB. This was because the spread nature of the
short-term BER versus LLR magnitude curves observed in Figure 4.25 leads to inaccuracies
in obtaining these LLR magnitude thresholds, especially for £ and L34, as demonstrated
in Figure 4.25. These inaccuracies affect the switching performance for the SNR range of
16dB to 28dB. The spread nature of the short-term BER versus LLR magnitude curves in

Figure 4.25 is due to a number of factors and these investigations are set aside for future

work.

L Lt ot | g
NO TX | 10.0 | 30.0 | 280.0 | 1000.0
BPSK | 10.0 | 30.0 | 280.0 | 1000.0
4-QAM | 8.0 [ 12.0 | 100.0 | 350.0
16-QAM | 3.0 | 5.0 | 30.0 | 120.0
64-QAM | 2.5 | 3.0 | 13.0 | 70.0

Table 4.9: The switching LLR magnitude thresholds EZM before decoding of the RBF DFE
BbB AQAM scheme using turbo coding for the zero-error target performance over the
two-path Rayleigh fading channel of Table 4.4.

Since the estimated short-term BER is a somewhat eratic function of the turbo decoder’s
input LLR, the switching LLR values have to be conservative, if the target BER cannot be
exceeded. For the BER = 107 scenario the switching LLR was adjusted experimentally
to be near the upper end of the LLR-range observed in Figure 4.25. When aiming for
virtually error-free communications, an even more conservative LLR threshold has to be
chosen, in order not to precipitate a plethora of transmission errors, even at the cost of
thereby reducing the achievable, BPS throughput of the system. Figure 4.28 shows the
BER and BPS performance of the near-error-free, turbo-coded AQAM Jacobian RBF DFE
scheme with the more conservative, increased LLR magnitude switching thresholds listed in
Table 4.9. The BER and BPS performance of the uncoded AQAM RBF DFE system is also
given in the figure for comparison. The BPS performance of the error-free coded system
was better, than that of the uncoded AQAM system for the channel range of 0dB to 15dB,
as evidenced by Figure 4.28. However, the BPS performance is limited by the coding rate of
the system to a maximum value of 4.33 at high channel SNRs. This suggests that the best
overall BER/BPS performance is achieved by our system, if we add the AQAM option of
switching off the turbo BCH(31,26) code under high SNR conditions, namely around 25dB.
This allows us to attain a BPS of 6 in this SNR region.

Wong [83] introduced the concept of variable rate turbo coding AQAM schemes with
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the aim of improving the throughput of turbo block coded AQAM scheme at high channel

SNRs. Two types of variable code rate schemes were implemented:

1. Partial turbo block coded adaptive modulation scheme: The switching mecha-

nism is capable of disabling and enabling the channel encoder for a chosen modulation

mode.

2. Variable rate turbo block coded adaptive modulation scheme: The coding
rate is varied by utilizing different BCH component codes for the different modulation
modes. The higher-order modulation modes are assigned a higher code rate, in order
to improve the effective data throughput at medium to high average channel SNRs
and conversely, the lower-order modulation modes will be accompanied by lower code
rates, in order to ensure maximum error protection at low average channel SNRs,

where these modes have a high selection probability.

These methods can similarly be implemented for our turbo-coded AQAM RBF DFE system,

in order to improve the throughput performance at high channel SNRs.

4.6.4 Switching Metric Selection

The choice of the switching metric depends on a variety of factors, which are discussed
here with reference to Figures 4.21 — 4.27. The most reliable channel quality metric is the
BER of a given transmitted burst, since this metric is capable of quantifying all channel
impairments, irrespective of the effects of its source. Explicitly, the BER of the transmission
burst quantifies the influence of reduced received signal strength or reduced SNR, that of
increased ISI or co-channel interference, etc. The short-term BER of a transmission burst
can be estimated for example with the aid of the RBF DFE using Equation 4.14.

In conjunction with turbo FEC coding also, the LLR of Equation 4.8 at the input or
output of the turbo decoder can be used with the aid of Equation 4.13 and 4.14, in order
to estimate the BER. Explicitly, the probability of a specific bit being in error is given by
Equation 4.13, which can be averaged according to Equation 4.14 for a transmission burst.
The corresponding short-term BER versus transmission burst index was plotted using both
the channel decoder’s input and output SNRs in Figure 4.22 over the two-path equal-weight
symbol-spaced Rayleigh channel of Table 4.4. Observe that due to the higher fluctuation
of the FEC decoder’s output LLRs the output BER fluctuates over a wider range. The
corresponding turbo decoder LLRs both before and after turbo decoding are plotted in
Figure 4.23 and 4.24, respectively, for 0dB, 8dB and 16dB channel SNRs. As expected, the
evolution of the LLRs is similar, although the output LLR fluctuates over a wider dynamic
range, since the turbo decoder typically improves the input LLRs upon each iteration, unless

the LLR changes polarity several times, which is the sign of a low-reliability decision.
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Since the BER curves of the turbo-coded constituent AQAM modem modes seen in
Figure 4.9 are extremely steep, upon switching for example from the BPSK mode to 4-
QAM the BER increases dramatically, by several orders of magnitude. Hence, for example
the BPSK BER has to become significantly lower than 10~ in Figure 4.9, before switching
to 4-QAM can take place. This justifies the extreme BER differences observed in Table 4.6
and Table 4.7. In conclusion of our discussions on the choice of switching metric we infer
from Figure 4.21 that whilst the BER of the AQAM switching regime using the LLRs
before turbo-decoding attains a lower BER, this is not associated with any reduction of the
BPS throughput, and hence this switching metric was deemed more beneficial to invoke.
This is because due to the higher steepness of the turbo-decoded BER curve, the BER is
more often misjudged on the basis of the output LLRs. This then often results in using an
‘optimistic’ high BPS AQAM mode, which increases the BER. When the channel quality is
under-estimated, a reduced number of bits per symbol is used, however the associated BER
reduction is insufficient for compensating for the increase of BER of the ’over-estimated’

channel quality scenario. These under- and over-estimated BERs result in the high spread

of the curves seen in Figure 4.25.

4.7 Conclusions

In this chapter, we have investigated the performance of the RBF equaliser using turbo
coding. We have also demonstrated the application of turbo BCH coding in conjunction
with AQAM in a wideband fading channel. The use of different switching criteria — namely
the short-term BER and average burst LLR magnitude before and after decoding — was
discussed. We observed that the performance of the switching mechanism depends on the
fluctuation of the switching metric, since the AQAM scheme assumes that the channel qual-
ity is slowly varying. The turbo-coded AQAM RBF DFE system exhibited a better BPS
performance, when compared to the uncoded system at low to medium channel SNRs, as
evidenced by Figure 4.27. The same figure also showed an improved coded BER perfor-
mance at higher channel SNRs. A virtually error-free turbo-coded AQAM scheme was also
characterized in Figure 4.28.

In the next chapter we will explore the recently developed family of iterative equalisation
and channel decoding techniques, a scheme which is termed as turbo equalisation. We will

investigate the employment of RBF equaliser in the equaliser component.
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Figure 4.26: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Ja-
cobian RBF DFE using different switching metrics for a data-transmission target BER of
10~ over the two-path Rayleigh fading channel of Table 4.4. The modem mode switching
thresholds used for both scheme are listed in Tables 4.6 and 4.8, respectively. The Jacobian
RBF DFE had a feedforward order of m = 2, feedback order of n = 1 and decision delay
of 7 = 1 symbol. The turbo coding parameters were given in Table 4.3 and the number of
turbo decoder iterations was six. The BbB turbo interleaver size was fixed according to the
modulation mode used, as shown in Table 4.5.
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Figure 4.27: The BER and BPS performance of the uncoded and turbo BCH(31,26) coded
AQAM Jacobian RBF DFE for a data-transmission target BER of 104 over the two-path
Rayleigh fading channel of Table 4.4. The average LLR magnitude modem mode switching
thresholds before decoding used for this scheme are listed in Table 4.8. The Jacobian RBF
DFE had a feedforward order of m = 2, feedback order of n = 1 and decision delay of
7 = 1 symbol. The turbo coding parameters were given in Table 4.3 and the number of
turbo decoder iterations was six. The BbB turbo interleaver size was fixed according to the
modulation modes used, as shown in Table 4.5.
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Figure 4.28: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Ja-
cobian RBF DFE for targetted no error transmission over the two-path Rayleigh fading
channel of Table 4.4. The average LLR magnitude modem mode switching thresholds be-
fore decoding used for this scheme are listed in Table 4.9. The Jacobian RBF DFE had a
feedforward order of m = 2, feedback order of n = 1 and decision delay of 7 = 1 symbol.
The turbo coding parameters were given in Table 4.3 and the number of turbo decoder
iterations is six. The BbB turbo interleaver size was fixed according to the modulation
mode used as shown in Table 4.5.



Chapter 5

RBF Turbo Equalisation

This chapter presents a novel turbo equalisation scheme, which employs a RBF equaliser
instead of the conventional trellis-based equaliser of Douillard et. al. [10]. The basic
principles of turbo equalisation will be highlighted. Structural, computational cost and
performance comparisons of the RBF-based and trellis-based turbo equalisers are provided.
A novel element of our design is that in order to reduce the computational complexity of
the RBF turbo equaliser (TEQ), we propose invoking further iterations only, if the decoded
symbol has a high error probability. Otherwise we curtail the iterations, since a reliable

decision can be taken. Let us now introduce the concept of turbo equalisation.

5.1 Introduction to Turbo Equalisation

In the conventional RBF DFE based systems discussed in Chapter 4 equalisation and chan-
nel decoding ensued independently. However, it is possible to improve the receiver’s per-
formance, if the equaliser is fed by the channel outputs plus the soft decisions provided by
the channel decoder, invoking a number of iterative processing steps. This novel receiver
scheme was first proposed by Douillard et. al. [10] for a convolutional coded binary phase
shift keying (BPSK) system, using a similar principle to that of turbo codes and hence it
was termed turbo equalisation. This scheme is illustrated in Figure 5.1, which will be de-
tailed during our forthcoming discourse. Gertsman and Lodge [102] extended this work and
showed that the iterative process of turbo equalisation can compensate for the performance
degradation due to imperfect channel estimation. Turbo equalisation was implemented in
conjunction with turbo coding, rather than conventional convolutional coding by Raphaeli
and Zarai [103], demonstrating an increased performance gain due to turbo coding as well
as with advent of enhanced ISI mitigation achieved by turbo equalisation.

The principles of iterative turbo decoding [69] were modified appropriately for the coded
M — QAM system of Figure 5.2. The channel encoder is fed with independent binary data

171
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LE(er) = LP(c L (cn) +
(€x) (ex) Interleaver [ @4
LD (cn)
LE (er) _—

SISO ”—T@_» De-Interleaver Channel — g
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Figure 5.1: Iterative turbo equalisation schematic
Channel Cn ¢k | M-ary | Ik Eguivalem /T Yk | Turbo 3
dn Encoder Interleaver Mapping Discrete \i/ Equaliser dn
Channel
Nk

Figure 5.2: Serially concatenated coded M-ary system using the turbo equaliser, which
performs the equalisation, demodulation and channel decoding iteratively.

d, and every log, (M) number of bits of the interleaved, channel encoded data ¢, is mapped
to an M-ary symbol before transmission. In this scheme the channel is viewed as an ’inner
encoder’ of a serially concatenated arrangement, since it can be modelled with the aid of
a tapped delay line similar to that of a convolutional encoder [10, 104]. At the receiver
the equaliser and decoder employ a Soft-In/Soft-Out (SISO) algorithm, such as the optimal
Maximum A Posteriori(MAP) algorithm [96] or the Log-MAP algorithm [13]. The SISO
equaliser processes the a priori information associated with the coded bits ¢; transmitted
over the channel and — in conjunction with the channel output values vy — computes the a
posteriori information concerning the coded bits. The soft values of the channel coded bits
¢k are typically quantified in the form of the log-likelihood ratio defined in Equation 4.8.
Note that in the context of turbo decoding — which was discussed in Chapter 4 - the
SISO decoders compute the a posteriori information of the source bits only, while in turbo
equalisation the a posteriori information concerning all the coded bits is required.

In our description of the turbo equaliser depicted in Figure 5.1, we have used the notation
L¥ and LP to indicate the LLR values output by the SISO equaliser and SISO decoder,
respectively. The subscripts e, 4, a and p were used to represent the extrinsic LLR, the
combined channel and extrinsic LLR, the a priori LLR and the a posteriori LLR, respec-
tively. Referring to Figure 5.1, the SISO equaliser processes the channel outputs and the
a priori information £Z(c;) of the coded bits, and generates the a posteriori LLR values
CI;E (ck) of the interleaved coded bits ¢, seen in Figure 5.2. Before passing the above a
posteriori LLRs generated by the SISO equaliser to the SISO decoder of Figure 5.1, the



CHAPTER 5. RBF TURBO EQUALISATION 173

contribution of the decoder — in the form of the a priori information £Z(c;) — from the
previous iteration must be removed, in order to yield the combined channel and extrinsic
information £F(c;) seen in Figure 5.1. They are referred to as ’combined’, since they are
intrinsically bound and cannot be separated. However, note that at the initial iteration
stage, no a priori information is available yet, hence we have £EF(c;) = 0. To elaborate
further, the a priori information £E(c;,) was removed at this stage, in order to prevent the
decoder from processing its own output information, which would result in overwhelming
the decoder’s current reliability-estimation characterising the coded bits, i.e. the extrinsic
information. The combined channel and extrinsic LLR values are channel-deinterleaved —
as seen in Figure 5.1 — in order to yield £F(c,), which is then passed to the SISO chan-
nel decoder. Subsequently, the channel decoder computes the a posteriori LLR values of
the coded bits [ll?(cn). The a posteriori LLRs at the output of the channel decoder are
constituted by the extrinsic LLR £2(c,) and the channel-deinterleaved combined channel
and extrinsic LLR L£F(c,) extracted from the equaliser’s a posteriori LLR, EZ‘? (ck). The
extrinsic part can be interpreted as the incremental information concerning the current bit
obtained through the decoding process from all the information available due to all other
bits imposed by the code constraints, but excluding the information directly conveyed by
the bit. This information can be calculated by subtracting bitwise the LLR values Ef (cn) at
the input of the decoder from the a posteriori LLR values L2 (cy) at the channel decoder’s

output, as seen also in Figure 5.1, yielding:

LD (en) = L (cn) — LE (cn). (5.1)

The extrinsic information £ (c,) of the coded bits is then interleaved in Figure 5.1, in order
to yield £P(cy,), which is fed back in the required bit-order to the equaliser, where it is used
as the a priori information £E(c;) in the next equalisation iteration. This constitutes the
first iteration. Again, it is important that only the channel-interleaved extrinsic part — i.e.
LP(cr) of Cf,) (cn) — is fed back to the equaliser, since the interdependence between the a
priori information L£E(c;) = LP(cy) used by the equaliser and the previous decisions of
the equaliser should be minimized. This independence assists in obtaining the equaliser’s
reliability-estimation of the coded bits for the current iteration, without being ’influenced’
by its previous estimations. Ideally, the a priori information should be based on an in-
dependent estimation. As argued above, this is the reason that the a priori information
LE(cp) is subtracted from the a posteriori LLR value Ef (ck) at the output of the equaliser
in Figure 5.1, before passing the LLR values to the channel decoder. In the final iteration,
the a posteriori LLRs E;? (d,) of the source bits are computed by the channel decoder. Sub-
sequently, the transmitted bits are estimated by comparing EPD (dn) to the threshold value

of 0. For EpD(dn) < 0 the transmitted bit d,, is deemed to be a logical 0, while d,, = +1 or
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a logical 1 is output, when ﬁ}?(dn) > 0.

Previous turbo equalisation research has implemented the SISO equaliser using the Soft-
Output Viterbi Algorithm (SOVA) [10], the optimal MAP algorithm [105] and linear filters
[106]. We will now introduce the proposed RBF based equaliser as the SISO equaliser in
the context of turbo equalisation. The following sections will discuss the implementational

details and the performance of this scheme, benchmarked against the optimal MAP turbo

equaliser scheme of [105].

5.2 RBF Assisted Turbo Equalisation

The RBF network based equaliser is capable of utilizing the a priori information LE(ep)
provided by the channel decoder of Figure 5.1, in order to improve its performance. This
a priori information can be assigned namely to the weights of the RBF network [107]. We
will describe this in more detail in this section. For convenience, we will rewrite Equa-
tion 2.81, describing the conditional probability density function (PDF) of the ith symbol,
1=1,..., M, associated with the ith subnet of the M-ary RBF equaliser:

Fhr(v) = S wiellivi - i),
7=1
g2
p(z) = exp (—-;-) (5.2)

i=1,...,M, j=1,...,nt

where cé-, w;, ©(-) and p are the RBF’s centres, weights, activation function and width,
respectively. In order to arrive at the Bayesian equalisation solution [8] — which was high-
lighted in Section 2.9 — the RBF centres are assigned the values of the channel states rg
defined in Equation 2.84, the RBF weights defined in Section 2.7.1 correspond to the a
priori probability of the channel states p;- = P(r%) and the RBF width introduced in Sec-

J
tion 2.7.1 is given the value of 20,2] where o2 is the channel noise variance. The actual

number of channel states n’ is determined bynthe specific design of the algorithm invoked,
reducing the number of channel states from the optimum number of M™*+E~1 where m is
the equaliser feedforward order and L + 1 is the CIR duration [26, 67, 68]. The probability
p; of the channel states ré-, and therefore the weights of the RBF equaliser can be derived
from the LLR values of the transmitted bits, as estimated by the channel decoder.

Expounding further from Equation 2.7 and 2.11, the channel output can be defined as
r; = FSj, (53)

where F is the CIR matrix defined in Equation 2.12 and s; is the jth possible combination

T
of the (L 4 m) transmitted symbol sequence, s; = [ 51 -+ Sjp .- Si(L+m) } . Hence
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— for a time-invariant CIR and assuming that the symbols in the sequence s; are statistically

independent of each other — the probability of the received channel output vector r; is given

by:
P(r;) = P(sj)

= P(Sj1 N...spN -"Sj(L—!—m))
L+4+m

= [ Plsip) d=1,...,n (5.4)
p=1

The transmitted symbol vector component s;, — i.e. the pth symbol in the vector — is given

by m = logy M number of bits ¢;p1, ¢jp2, .. ., ¢jpm. Therefore,
P(S]’p) = P(ijl N CjpgM... ijm)
m
= [[Pljp) d=1,...,0,, p=1,...,L+m. (5.5)
g=1

We have to map the bits c;pq representing the M-ary symbol sj, to the corresponding bit
{ck}. Note that the probability P(r;) of the channel output states and therefore also the
RBF weights defined in Equation 5.2 are time-variant, since the values of £,(cx) are time-
variant. Based on the definition of the bit LLR of Equation 4.8, the probability of bit cx
having the value of +1 or -1 can be obtained after a few steps from the a priori information

LEZ(ct) provided by the channel decoder of Figure 5.1, according to:

_ _exp(=LF (cr)/2)
Ploy = £1) = 1+ exp(—LE (ck)) eRp(ELS (@)/2) (54)

Hence, referring to Equation 5.4, 5.5 and 5.6, the probability P(r;) of the received channel

output vector can be represented in terms of the bit LLRs L (cjp,) as follows:

P(rj) = P(s;)

B exp(—£E (e0)/2) 1 |
B H 1 +exp (—ﬁggcqu)) P (E Gpa’ ﬁg(CJM)>

L+m m 1
= Oy H H €xp (5 " Cipg * EaE(ijq))

m
Z Cipgq * 'Cg(cqu) .7 = 1a fee anéa (57)
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where the constant Crp(s ) = HpLi{n ;“:1 %2%% is independent of the bit ¢jpq.
Therefore, we have demonstrated how the soft output £Z(¢;) of the channel decoder of
Figure 5.1 can be utilized by the RBF equaliser. Another way of viewing this process is
that the RBF equaliser is trained by the information generated by the channel decoder.
The RBF equaliser provides the a posteriori LLR values of the bits ¢; according to
> i f ]ii’,BF(Vk)

LE(¢;) =1n hTEL , (5.8)
P ch:i_l f}zBF(Vk)

where fipn(vy) was defined by Equation 5.2 and the received sequence vy is shown in
Figure 5.2. In the next section we will provide a comparative study of the RBF equaliser

and the conventional MAP equaliser of [108].

5.3 Comparison of the RBF and MAP Equaliser

UVj<k Vg Vi>k

ap-1(s") i (s',5) Bi(s)
Figure 5.3: Example of a binary (M = 2) system’s trellis structure

The a posteriori LLR value Ef of the coded bit ¢, given the received sequence vy, of

Figure 5.2, can be calculated according to [105]:

Z(s’,s)éck:-*rlp(slvsavk) (5.9)
Z(s’,s):ck:~1p(sl757vk) ’

[,f(ck) =In (
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where s" and s denote the states of the trellis seen in Figure 5.3 at trellis stages k — 1 and

k, respectively. The joint probability p(s, s, vy) is the product of three factors [105]:

p(s',s,vi) = p(s',vj<k) - P(s|s') - plvk]s’, s) - p(vjsklS), (5.10)
~ -~ s~ " ——
ap_1(s") V(s ,5) Br.(s)

where the term «y_1(s’) and Bk (s) are the so-called forward- and backward oriented tran-

sition probabilities, respectively, which can be obtained recursively, as follows [105]:

ap(s) = > (s, 5) - op_1(s) (5.11)
s/
Br-1(s) = > (s’ s) - Bels). (5.12)
S
Furthermore, v4(s',s),k = 1,...,F represents the trellis transitions between the trellis

stages (k — 1) and k. The trellis has to be of finite length and for the case of MAP
equalisation, this corresponds to the length F of the received sequence or the transmission
burst. The branch transition probability vz (s’, s) can be expressed as the product of the a

priori probability P(s|s") = P(cg) and the transition probability p(vg|s’, s):
Yi(s', 8) = Plex) - p(vgls', s). (5.13)

The transition probability is given by:

v — Ug)?
plunls' ) = ——exp(— {2 D, (5.14)
\/ 2702 5

where 7y, is the noiseless channel output, and the a priori probability of bit ¢; being a logical

1 or a logical 0 can be expressed in terms of its LLR values according to Equation 5.6.

Since the term 2202 in the transition probability expression of Equation 5.14 and the
7

_CE . . . .
term f_’;ig{p(ﬁ_ ﬁ(zﬂ’“()cs)) in the a priori probability formula of Equation 5.6 are constant over

the summation in the numerator and denominator of Equation 5.9, they cancel out. Hence,

the transition probability is calculated according to [105]:

'7/6(3,’3) - wk"yz(slas)’ (515)
Ve — D|?
7*(5173) — eXp(—l k2a2k‘l ) (516)
n
wp = exply o L2(cx). (5.17)

Note the similarity of the transition probability of Equation 5.15 with the PDF of the RBF
equaliser’s ith symbol described by Equation 4.3, where the terms wy and y*(s', s) are the

RBF’s weight and activation function, respectively, while the number of RBF nodes n!
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is one. We also note that the computational complexity of both the MAP and the RBF
equalisers can be reduced by representing the output of the equalisers in the logarithmic
domain, utilizing the Jacobian logarithmic relationship [13] described in Equation 4.1. The
RBF equaliser based on the Jacobian logarithm — highlighted in Section 4.2 — was hence
termed as the Jacobian RBF equaliser.

The memory of the MAP equaliser is limited by the length of the trellis, provided that
decisions about the kth transmitted symbol I are made in possession of the information
related to all the received symbols of a transmission burst. In the MAP algorithm the
recursive relationships of the forward and backward transition probabilities of Equation 5.11
and 5.12, respectively, allow us to avoid processing the entire received sequence vy everytime
the a posteriori LLR Ef (ck) is evaluated from the joint probability p(s’, s, vk) according
to Equation 5.9. This approach is different from that of the RBF based equaliser having a
feedforward order of m, where the received sequence vy of m-symbols is required each time
the a posteriori LLR Ef (c) is evaluated using Equation 5.8. However, the MAP algorithm
has to process the received sequence both in a forward and backward oriented fashion
and store both the forward and backward recursively calculated transition probabilities
ai(s) and Bk (s), before the LLR values ﬁf(ck) can be calculated from Equation 5.9. The
equaliser’s delay facilitates invoking information from the ’future’ samples vg,...,Vp—r41
in the detection of the transmitted symbol I;_,. In other words, the delayed decision of
the MAP equaliser provides the necessary information concerning the ’future’ samples v;~x
— relative to the delayed kth decision — to be utilised and the information of the future
samples is generated by the backward recursion of Equation 5.12.

The MAP equaliser exhibits optimum performance. However, if decision feedback is
used in the RBF subset centre selection as in [26] or in the RBF space-translation as in
Section 2.11.2, the performance of the RBF DFE TEQ in conjunction with the idealistic
assumption of correct decision feedback is better, than that of the MAP TEQ due to
the increased Euclidean distance between channel states, as it will be demonstrated in
Section 5.5. However, this is not so for the more practical RBF DFE feeding back the

detected symbols, which may be erroneous.

5.4 Comparison of the Jacobian RBF and Log-MAP Equaliser

Building on Section 5.3, in this section the Jacobian logarithmic algorithm is invoked,
in order to reduce the computational complexity of the MAP algorithm. We denote the

forward, backward and transition probability in the logarithmic form as follows:

Ap(s) = Infax(s)) (5.18)
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Bi(s) = In(B(s)) (5.19)
Pk(‘s,?S) = ln(’yk(slas))» (520)

which we also used in Section 5.3. Thus, we could rewrite Equation 5.11 as:

Als) = In (Z T(s'ss) - aH(s'))

= In (Z exp (Dx(s',s) + Ak_l(s'))> , (5.21)

s’

and Equation 5.12 as:

Bi-1(s’) = In (Z Y (s', 8) -5k(3))
= In (Z exp (Tx(s',s) + By (s))) . (5.22)

From Equation 5.21 and 5.22, the logarithmic-domain forward and backward recursion can
be evaluated, once T'k(s’,s) was obtained. In order to evaluate the logarithmic-domain
branch metric T'x(s', s), Equations 5.15-5.17 and 5.20 are utilized to yield:

Ve — VU
T(s'ys) = — %+5 ok - L7 (ck). (5.23)

By transforming ay(s), vk(s',s) and Bi(s) into the logarithmic domain in the Log-MAP
algorithm, the expression for the LLR, ﬁ;j (cx) in Equation 5.9 is also modified to yield:

m(E(s,,s):m:H ar-1(5) (5'59) ms))
(

(

Dot s)=ep=—1%—1(8") - Ve(', 8) - Br(s)

. 25 5)ep=t1€XP (Ap—1(s") + Ti(s", 8) + k(S))
- D (st sy epm—1€XP (Ap—1(s") + Tk (s, 5) + By 8)

Ll (ck) =

= In Z exp (Ag-1(s') + Tx(s', 8) + By(s

(s',8)=cp=+1

—1In Z exp (Ap_1(s") + Tk (s',5) + Bk(s))> : (5.24)
(s',8)=rep=—1

In the trellis of Figure 5.3 there are M possible transitions from state s’ to all possible

states s or to state s from all possible states s’. Hence, there are M — 1 summations of the

exponentials in the forward and backward recursion of Equation 5.21 and 5.22, respectively.

Using the Jacobian logarithmic relationship of Equation 4.2, M — 1 summations of the

exponentials requires 2(M-1) additions/subtractions, (M — 1) maximum search operations
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and (M — 1) table look-up steps. Together with the M additions necessitated to evaluate
the term Ty (s’,s) + Ag_1(s") and T'x(s',s) + Bg(s) in Equation 5.21 and 5.22, respectively,
the forward and backward recursion requires a total of (6AM — 4) additions/subtractions,
2(M-1) maximum search operations and 2(M-1) table look-up steps. Assuming that the
term - - LE(c;) in Equation 5.23 is a known weighting coefficient, evaluating the branch
metrics given by Equation 5.23 requires a total of 2 additions/subtractions, 1 multiplication
and 1 division.

By considering a trellis having x number of states at each trellis stage and M legitimate
transitions leaving each state, there are %MX number of transitions due to the bit ¢ =
+1. Each of these transitions belongs to the set (s’,s) = ¢ = +1. Similarly, there
will be 2Mx number of ¢; = —1 transitions, which belong to the set (s',s) = ¢ =
—1. Evaluating A(s), Bx—1(s") and T'x(s, s) of Equation 5.21, 5.22 and 5.23, respectively,
at each trellis stage k associated with a total of My transitions requires My (6M — 2)
additions/subtractions, My (2M — 2) maximum search operations, My (2M — 2) table
look-up steps, plus My multiplications and My divisions. With the terms A (s), Bx—1(s")
and I';(s’,s) of Equations 5.21, 5.22 and 5.23 evaluated, computing the LLR Ef(ck) of
Equation 5.24 using the Jacobian logarithmic relationship of Equation 4.2 for the summation
terms In(3 g g)me, =11 €xP(+)) and In(3 0 1., 7 exp(-)) requires a total of 4(3Mx—-1)+
2Myx + 1 additions/subtractions, My — 2 maximum search operations and My — 2 table
look-up steps. The number of states at each trellis stage is given by x = M = ns,f/ M.
Therefore, the total computational complexity associated with generating the a posteriori

LLRs using the Jacobian logarithmic relationship for the Log-MAP equaliser is given in
Table 5.1.

Log-MAP Jacobian RBF
subtraction N, f(6M +2) =3 | ng s+
and addition Mnl(m +2) — 4
multiplication | ng ¢ g f
division T, f N, f
max ns f2M —1) =2 | Mn! — 2
table look-up | ns ;(2M —1) —2 | Mnl — 2

Table 5.1: Computational complexity of generating the a posteriori LLR Ef for the Log-
MAP equaliser and the Jacobian RBF equaliser [9]. The RBF equaliser order is denoted by
m and the number of RBF centres is nf. The notation ny ; = MZT! indicates the number
of trellis states for the Log-MAP equaliser and also the number of scalar channel states for

the Jacobian RBF equaliser.

For the Jacobian RBF equaliser, the LLR expression of Equation 5.8 is rewritten in terms
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of the logarithmic form In (f45(vk)) to yield:

> fIi%BF(Vk)

ﬁg(ck) = In ZCkTH f}zBF(Vk)
(Z o o (9 her (1)
= In Z%;’_l exp (In(fiz0(Vi)))

= In| > exp(In(fipp(vi) | —In| D exp(In(frar(ve))) | (5:25)

7 7
cp=+1 cp=—1

The summation of the exponentials in Equation 5.25 requires 2(M-2) additions/subtractions,
(M-2) table look-up and (M — 2) maximum search operations. The associated complex-
ity of evaluating the conditional PDF of M symbols in logarithmic form according to
Equation 4.4 was given in Table 4.1. Therefore, — similarly to the Log-MAP equaliser —
the computational complexity associated with generating the a posteriori LLR [,57 for the
Jacobian RBF equaliser is given in Table 5.1. Figure 5.4 compares the number of addi-
tions/subtractions per turbo iteration involved in evaluating the a posteriori LLRs Ef for
the Log-MAP equaliser and Jacobian RBF equaliser according to Table 5.1. More explicitly,
the complexity is evaluated upon with varying the feedforward order m for different values of
L, where (L + 1) is the CIR duration under the assumption that the feedback order n = L
and the number of RBF centres is n} = M™*L="/M. Since the number of multiplica-
tions and divisions involved is similar, and by comparison, the number of maximum search
and table look-up stages is insignificant, the number of additions/subtractions incurred
in Figure 5.4 approximates the relative computational complexities involved. Figure 5.4
shows significant computational complexity reduction upon using Jacobian RBF equalisers
of relatively low feedforward order, especially for higher-order modulation modes, such as
M = 64. The figure also shows an exponential increase of the computational complexity,
as the CIR length increases. Observe in Figure 5.4 that as a rule of thumb, the feedforward
order of the Jacobian RBF DFE must not exceed the CIR length (L +1) in order to achieve
a computational complexity improvement relative to the Log-MAP equaliser, provided that
we use the optimal number of RBF centres, namely n = M™+L=7 /M.

The length of the trellis determines the storage requirements of the Log-MAP equaliser,
since the Log-MAP algorithm has to store both the forward- and backward-recursively
calculated metrics Ag(s) and By_1(s’) before the LLR values Ef (ck) can be calculated.
For the Jacobian RBF DFE, we have to store the value of the RBF centres and the storage

requirements will depend on the CIR length L+1 and on the modulation mode characterised

by M.
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Figure 5.4: Number of additions/subtractions per iteration for the Jacobian RBF DFE of
varying equaliser order m and the Log-MAP equaliser for various values of L, where L + 1
is the CIR length. The feedback order of the Jacobian RBF DFE is set to n = L and the
number of RBF centres is set to nt = M™E=7 /M.
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5.5 RBF Turbo Equaliser Performance

The schematic of the entire system was shown in Figure 5.2, where the transmitted source
bits are convolutionally encoded, channel-interleaved and mapped to an M-ary modulated
symbol. The encoder utilized a half-rate recursive systematic convolutional (RSC) code,
having a constraint length of K = 5 and octal generator polynomials of Gy = 35 and
G = 23. A random channel interleaver of 20 000-bit memory was invoked. The transmission
burst structure used in this system is the FMA1 non-spread speech burst, as specified in
the Pan-European FRAMES proposal [101], which is seen in Figure 5.5. We have assumed
that perfect knowledge of the CIR was available, which implies that our results portray the

best-case performance.
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Figure 5.5: Transmission burst structure of the so-called FM A1 nonspread speech mode as
specified in the FRAMES proposal [101].

5.5.1 Dispersive Gaussian Channels

The performance of the Jacobian RBF DFE TEQ was initially investigated over a dispersive
Gaussian channel. Figure 5.6 provides the BER performance comparison of the Log-MAP
and Jacobian RBF DFEs in the context of turbo equalisation. Various equaliser orders were
used over a three-path Gaussian channel having a z-domain transfer function of F(z) =
0.5773 + 0.5773271 + 0.5773272 and employing BPSK. Figure 5.6(b) shows that when the
feedback information is not error-free, the Log-MAP TEQ outperforms the Jacobian RBF
DFE TEQ for the same number of iterations. The corresponding uncoded systems using
the Log-MAP equaliser and the Jacobian RBF DFE exhibit similar performance trends.
Comparing Figure 5.6(a) for the equaliser parameters of m = 3, n = 2 and 7 = 2, as well
as Figure 5.6(b) for the equaliser parameters of m = 4, n = 2 and 7 = 3, we observe that
the performance of the Jacobian RBF DFE TEQ improves, as the feedforward order and
the decision delay of the equaliser increases. This is achieved at the expense of increased
computational complexities as evidenced by Figure 5.4. The above trend is a consequence
of the enhanced DFE performance in conjunction with increasing feedforward order and
decision delay, as it was demonstrated and justified in Section 2.11. However, as seen in

Table 5.1, the approximate number of additions/subtrations for the Jacobian RBF DFE
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Figure 5.6: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the three-
path Gaussian channel having a z-domain transfer function of F(z) = 0.5773 +0.5773z7! +

0.57732~2 for BPSK.
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Figure 5.7: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the five-
path Gaussian channel having a z-domain transfer function of F(z) = 0.227 + 0.46z™! +
0.688272 4 0.46273 4+ 0.2272* for BPSK. The Jacobian RBF DFE has a feedforward order
of m = 5, feedback order of n =4 and decision delay of 7 = 4 symbols.
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increased from 44 to 100 for a feedforward order increase from m = 3 to m = 4. Both the
Log-MAP and the Jacobian RBF DFE TEQs converge to a similar BER performance upon
increasing the number of iterations. The Log-MAP TEQ performs better, than the Jacobian
RBF DFE TEQ at a lower number of iterations, as shown in Figure 5.6. This is, because
effectively the Log-MAP equaliser has a higher feedforward order, which is equivalent to the
length of the trellis and also exhibits a longer decision delay, as discussed in Section 5.3. The
performance of the Log-MAP TEQ in the zero-ISI — i.e. non-dispersive — Gaussian channel
environment was also presented in Figure 5.6(b) for comparison. The Log-MAP TEQ, the
Jacobian RBF DFE TEQ using m = 4, n = 2, 7 = 3 and the Jacobian RBF DFE TEQ
employing m = 3, n = 2, 7 = 2 performed within approximately 0.2dB, 0.2dB and 0.5dB,
respectively, from this zero-ISI, i.e. non-dispersive AWGN benchmarker at BER of 1074,
The BER performance of the RBF DFE TEQ using correct decision fedback is also shown in
Figure 5.6, which exhibits a better performance than the Log-MAP TEQ. This is possible
— although the Log-MAP equaliser is known to approximate the optimal performance —
because the RBF DFE’s subset centre selection mechanism creates an increased Euclidean
distance between the channel states [26] and effectively eliminates the postcursor ISI, which
improves the performance of the Jacobian RBF DFE TEQ.

The performance of the TEQs was then investigated over a dispersive Gaussian channel
having an increased CIR length. Figure 5.7 compares the performance of the Log-MAP TEQ
and the Jacobian RBF DFE (m = 5, n = 4, 7 = 4) TEQ over the five-path Gaussian channel
associated with the transfer function of F(z) = 0.227 4+ 0.46z~! + 0.688272 + 0.4627° +
0.227z*. The performance of both the Log-MAP and Jacobian RBF DFE TEQs degrades
with increasing CIR lengths, especially at lower SNRs, when we compare Figures 5.6 and
5.7. This is due to the increased number of multipath components to be resolved, when
the CIR length is increased, a phenomenon which was also demonstrated in Figures 2.32
and 2.33 for an uncoded RBF DFE over the three-path and five-path channels, respectively.
For the five-path channel, the Log-MAP TEQ and the Jacobian RBF DFE TEQ using
m =5, n =4, 7 =4 performed within about 1dB and 5dB, respectively, from the zero-ISI,
non-dispersive Gaussian limit at a BER of 107%. We observed from Figure 5.6(b) and 5.7,
that the coded BERs only start to decrease once the uncoded BERs reached approximately

2 x 1071,

5.5.2 Dispersive Rayleigh Fading Channels

Let us now investigate the performance of the TEQs in a dispersive Rayleigh fading chan-
nel environment. A three-path, symbol-spaced fading channel of equal weights was utilized,

where the Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x 107
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Figure 5.8: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the
three-path Rayleigh fading channel for BPSK. The Jacobian RBF DFE has a feedforward
order of m = 3, feedback order of n = 2 and decision delay of 7 = 2 symbols.



CHAPTER 5. RBF TURBO EQUALISATION 188

LOG MAP RBF DFE
— — uncoded - decision feedback
O e 1 iteration — uncoded
a - 2 iterations O —— 1 iteration
. L SNRTR 3iterations || O —— 2 iterations
105 " 1 * —— 3 iterations
---- NoISI
i § =+ = 3jterations :
10 . ] ", correct feedback
2
107}
& s
=
m 2
10°
5
2
10-4 L
5
2
-5 N . L
10 X :
0 2 4 10 12 14

6 s
Ey/ N, (dB)

Figure 5.9: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the three-
path Rayleigh fading channel for 4-QAM. The Jacobian RBF DFE has a feedforward order
of m = 3, feedback order of n = 2 and decision delay of 7 = 2 symbols.
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Figure 5.10: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the
three-path Rayleigh fading channel for 16-QAM. The Jacobian RBF DFE has a feedfor-
ward order of m = 3, feedback order of n = 2 and decision delay of 7 = 2 symbols.
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The CIR was assumed to be burst-invariant. Figure 5.8, 5.9 and 5.10 portray the perfor-
mance of the Log-MAP TEQ and that of the Jacobian RBF DFE TEQ for BPSK, 4-QAM
and 16-QAM, respectively. The Jacobian RBF DFE has a feedforward order of m = 3, feed-
back order of n = 2 and decision delay of 7 = 2 symbols. Figure 5.8 and Figure 5.9 show for
BPSK and 4-QAM, that the Log-MAP TEQ and the Jacobian RBF DFE TEQ converge to
a similar BER performance, but the Log-MAP TEQ requires a lower number of iterations.
Specifically, two iterations are required for the Log MAP TEQ and three iterations for the
Jacobian RBF DFE TEQ to achieve near-perfect convergence, since the Log-MAP TEQ
exhibited a better BER performance for an uncoded system than the Jacobian RBF DFE.
The performance of the Log-MAP TEQ at two iterations and that of the Jacobian RBF
DFE TEQ at three iterations is about 2dB and 2.5dB away from the zero-ISI Gaussian
BER curve for BPSK and 4-QAM, respectively, at a BER of 107%. For 16-QAM, the effect
of error propagation degrades the performance of the Jacobian RBF DFE TEQ by 10dB at
BER of 10™#, when we compare the Jacobian RBF DFE TEQ’s correct feedback based and
decision feedback assisted performance after 4 iterations, as seen in Figure 5.10. Again, the
performance can be improved by increasing the equaliser feedforward order at the expense
of higher computational complexity, as discussed in Section 5.5.1.

The iteration gain of the Jacobian RBF DFE TEQ after 3 iterations at a BER of 1073 was
1.3dB, 3dB and 4dB for the modulation modes of BPSK, 4-QAM and 16-QAM, respectively.
By contrast, for the Log-MAP TEQ the corresponding iteration gains were 0.5dB, 0.9dB
and 2dB for the modulation modes of BPSK, 4-QAM and 16-QAM, respectively. Explicitly,
the iteration gain was defined as the difference between the channel SNR required in order
to achieve a certain BER after one iteration and the corresponding channel SNR required
after n number of iterations. The iteration gain was higher for the higher-order modulation
modes, since the distance between two neighbouring points in the higher-order constellations
was lower and hence it was more gravely affected by ISI and noise.

Since the computation of the associated implementational complexity summarised in
Table 5.1 is quite elaborate, here we only give an estimate of the Log-MAP TEQ’s and the
Jacobian RBF DFE TEQ’s complexity in the context of both BPSK and 4-QAM, employing
the parameters used in our simulations. Specifically, in the BPSK scheme the approximate
number of additions/subtractions and multiplications/divisions for the Log-MAP TEQ was
109 and 16 per iteration, respectively, whereas for the Jacobian RBF DFE TEQ (m = 3,
n = 2, 7 = 2) the corresponding figures were 44 and 16, respectively. The ’per iteration’
complexity of the Jacobian RBF DFE TEQ was approximately a factor of (109/44 =)2.5,
4.4 and 16.3 lower, than that of the Log-MAP TEQ, for BPSK, 4-QAM and 16-QAM,

respectively.
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Overall, due to the error propagation that gravely degrades the performance of the Jaco-
bian RBF DFE TEQ when using 16-QAM, the Jacobian RBF DFE TEQ could only provide
a practical performance versus complexity advantage for lower order modulation modes,
such as BPSK and 4-QAM. It is worth noting here that we have attempted using the LLR
values output by the decoder in the previous iteration as the feedback information for the
feedback section of the RBF DFE. However, we attained an inferior performance compared
to the scenario using the RBF DFE outputs as the feedback information. This is because
the BER improves on every iterations and the BER of the input of the equaliser fed back
from the decoder was improved after equalisation. Therefore the output of the equaliser was
more reliable, than the output of the decoder in the previous iteration. Turbo equalisation
research has been focused on developing reduced complexity equalisers, such as the receiver
structure proposed by Glavieux et. al. [106], where the equaliser is constituted by two linear
filters. Motivated by this trend, Yeap et. al. [109, 110, 111] proposed a reduced complexity
trellis-based equaliser scheme based on equalising the in-phase and quadrature-phase com-
ponent of the transmitted signal independently. This novel reduced complexity equaliser is
termed as the In-Phase/Quadrature-phase Equaliser (I/Q EQ). When a channel having a
memory of L symbol durations was encountered, the trellis-based equaliser must consider
MEHL total number of transitions at each trellis stage, as discussed in Section 5.4. The
complexity of the complex-valued trellis-based equaliser increased rapidly with L. However,
by removing the associated cross-coupling of the in-phase and quadrature-phase signal com-
ponents and hence rendering the channel output to be only dependent on either quadrature
component, the number of transitions considered was reduced to (\//—\/l_)L“. Therefore,
there will be an I/Q EQ for each I/Q component, subtituting the original trellis-based
equaliser and giving a complexity reduction factor of 5—)—(—/\—;——:_4% = 0.5 x VML+L. The TEQ
using I/Q EQs was capable of achieving the same performance as the Log-MAP TEQ for
4-QAM and 16-QAM, while maintaining a complexity reduction factor of 2.67 and 16, re-
spectively, over the equally-weighted three-path Rayleigh fading channel using a normalised
Doppler frequency of 3.3 x 1075 [109, 110, 111]. The complexity of the RBF DFE could be
similarly reduced to that of the I/Q EQ by equalising the in-phase and quadrature-phase
components of the transmitted signal separately. In the following section, we proposed an-
other novel method of reducing the complexity of TEQ by making use of the fact that the
RBF DFE evaluates its output on a symbol-by-symbol basis.

5.6 Reduced-complexity RBF Assisted Turbo Equalisation

The Log-MAP algorithm requires forward and backward recursions through the entire se-

quence of symbols in the received burst in order to evaluate the forward and backward
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transition probability of Equation 5.11 and 5.12, before calculating the a posteriori LLR
values Lp(ck). Therefore, effectively the computation of the a posteriori LLRs Lp(ct) is
performed on a burst-by-burst basis. The RBF based equaliser, however, performs the
evaluation of the a posteriori LLRs Ly(c;) on a symbol-by-symbol basis. Therefore, in
order to reduce the associated computational complexity, the RBF based TEQ may skip
evaluating the symbol LLRs according to Equation 5.8 in the current iteration, when the
symbol has a low error probability or high a priori LLR magnitude |£Z(c;)| after channel
decoding in the previous iteration. If, however this is not the case, the equaliser invokes a
further iteration and attempts to improve the decoder’s reliablility estimation of the coded
bits. The output f]’;2 pr(vi) of the RBF equaliser provides the likelihood of the ith symbol at
instant k. The log-likelihood values of the ith symbol provided by the channel decoder in the
previous iteration obey an approximately linear relationship versus the log-likelihood values
from the equaliser in the current iteration, as demonstrated in Figure 5.11 for the BPSK
mode over a three-path, symbol-spaced fading channel of equal CIR tap weights, where the
Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x 10~%. Therefore,
the logarithmic domain output In ( f}{ B F(vk)> of the RBF equaliser can be estimated based

on this near-linear relationship portrayed in Figure 5.11 according to:
I (fhar(vi)) = 9+ In(La(lk = T)) + ¢, (5.26)

where In(L, (I = Z;)) is the log-likelihood of the transmitted symbol I being the ith QAM
symbol Z; based on the decoder’s soft output, g is the log-likelihood gradient and c is the
log-likelihood intercept point. Both g and ¢ can be inferred from Figure 5.11. As our
next action, we have to set the LLR magnitude threshold | L|nreshoid, where the estimated
coded bits ¢ output by the decoder in the previous iteration become sufficiently reliable for
refraining from further iterations. Hence the symbols exhibiting an LLR value above this
threshold are not fed back to the equaliser for futher iterations, since they can be considered
sufficiently reliable for subjecting them to hard decision. The LLRs passed to the decoder
from the equaliser are calculated from the symbols’ log-likelihood values based on the linear
relationship of Equation 5.26 instead of the more computationally demanding Equation 5.8,
in order to reduce the computational complexity. We refer to this RBF based-TEQ as the
reduced-complezity RBF TEQ.

In our experiments, the above mentioned log-likelihood gradient and the intercept point
were found to be g = 1.2 and ¢ = —7.5, respectively, according to the near-linear relationship
of Figure 5.11. We set the LLR magnitude threshold |£|resnorg Such that the symbols in the
burst that were not fed back to the equaliser for further iterations became sufficiently reli-
able and hence exhibited a low probability of decoding error. The threshold was initially set

to | Lthreshord = 10 based on our experiments, such that the symbols that were not fed back
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Figure 5.11: The log-likelihood of the RBF turbo equalised symbols before and after equal-
isation over the three-path, symbol-spaced fading channel of equal CIR tap weights, where
the Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x 1074, at an
SNR of 0dB using BPSK.

to the decoder exhibited a probability of error below 5 x 10~ according to Equation 4.13.
Figures 5.12 and 5.13 compare the performance of the reduced-complexity Jacobian RBF
DFE TEQ to that of the Jacobian RBF DFE TEQ of Section 5.4 over the three-path Gaus-
sian channel having a transfer function of F(z) = 0.5773 + 0.57732~! + 0.5773272. The
reduced-complexity Jacobian RBF DFE TEQ provides an equivalent BER performance
to that of the Jacobian RBF DFE TEQ of Section 5.4, while exhibiting a reduced com-
putational complexity, which is proportional to the percentage of the BPSK symbols fed
back for further iterations in Figure 5.12 and 5.13. We note that in our experiments the
reduced-complexity Jacobian RBF DFE TEQ using the detected decision feedback — rather
than error-free feedback — required a higher LLR magnitude threshold of |L|ipreshold = 26
(which guaranteed a probability of error of 5 x 10712 according to Equation 4.13), in order
to provide an equivalent BER performance to that of the Jacobian RBF DFE TEQ), since
the decision feedback error propagation reduced the decoder’s reliability estimation of the
coded bits. The higher the LLR magnitude threshold, the higher the percentage of bits fed
back, resulting in a higher complexity. According to Figure 5.12 depicting the performance
of the reduced-complexity Jacobian RBF DFE TEQ relying on correct decision feedback,

the average percentage of bits not requiring further iterations for a channel SNR of 4dB was
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Figure 5.12: BER performance and the percentage of symbols not requiring equalisation
by the reduced-complexity RBF TEQ using correct decision feedback over the three-path
Gaussian channel having a z-domain transfer function of F(z) = 0.5773 + 0.5773z7" +
0.5773z~2 for BPSK. The LLR magnitude threshold, the log-likelihood gradient and the log-
likelihood intercept point were set to |L|ipreshod = 10, g = 1.2 and ¢ = —7.5, respectively.
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Figure 5.13: BER performance and the percentage of symbols not requiring equalisation
by the reduced-complexity RBF TEQ using detected decision feedback over the three-
path Gaussian channel having a z-domain transfer function of F(z) = 0.5773 +0.5773z7" +
0.57732~2 for BPSK. The LLR magnitude threshold, the log-likelihood gradient and the log-
likelihood intercept point were set to |L|ipreshora = 26, ¢ = 1.2 and ¢ = —7.5, respectively.



CHAPTER 5. RBF TURBO EQUALISATION 196

20% for the second iteration, 70% for third iteration and approximately 90% for the consec-
utive iterations. This amounts to a total of approximately 54% computational complexity
reduction at the SNR of 4dB. Referring to Figure 5.13, the reduced-complexity Jacobian
RBF DFE TEQ relying on detected symbol-based — rather than perfect — decision feedback
with its associated higher LLR magnitude threshold provides a total of approximately 21%
computational reduction at an SNR of 6dB. Figure 5.14 depicts the performance of the
reduced-complexity Jacobian RBF DFE TEQ relying on detected decision feedback over
the three-tap equal gain, symbol-spaced Rayleigh faded CIR obeying a Doppler frequency
of 1.5 x 107*. A LLR magnitude threshold of 10 was sufficient for the reduced-complexity
Jacobian RBF DFE TEQ in order to provide an equivalent BER performance to that of
the Jacobian RBF DFE TEQ. The RBF DFE provided a better reliability-estimation over
the dispersive burst-invariant Rayleigh fading channel compared to the dispersive Gaussian
channel, since the uncoded BER performance was better over the Rayleigh fading channel,
as it is seen from comparing Figures 5.13 and 5.14. ! Hence less errors were propagated
from the equaliser’s decision feedback to future bits. Referring to Figure 5.14, the reduced-
complexity Jacobian RBF DFE TEQ using decision feedback provides approximately 35%
computational complexity reduction at an SNR of 4dB.

The reduced-complexity RBF DFE TEQ implementation can be used instead of the RBF
DFE TEQ in order to provide substantial computational reductions without degrading the
BER performance. Since the reliability of the symbols in the decoded burst is provided by
the channel decoder in the previous iteration, we were capable of designing a system, where
the percentage of bits not equalised in the decoded burst was set according to our design cri-
teria for every iteration, such that each burst exhibited a predetermined fixed computational

complexity reduction for the sake of practical, constant-complexity implementations.

5.7 Conclusions

In conclusion, in this chapter the Jacobian RBF DFE TEQ has been proposed and analysed
comparatively in conjunction with the well-known Log-MAP TEQ [13, 105]. The associated
performances and complexities have been compared in the context of BPSK, 4-QAM and
16-QAM. The computational complexity of the Jacobian RBF DFE TEQ is dependent on
the number of RBF centres, the CIR length and modulation mode. The associated 'per
iteration’ implementational complexity of the Jacobian RBF DFE TEQ (m = 3, n = 2,

'The three-tap Rayleigh fading channel has a better BER performance than the three-path Gaussian
channel, because the dispersive Gaussian channel has a bad spectral characteristic exhibiting spectral null.
By contrast, for the Rayleigh fading channel, the CIR taps are faded and hence the frequency-domain transfer
function does not exhibit a permanent null.
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Figure 5.14: BER performance and the percentage of symbols not requiring equalisation
by the reduced-complexity RBF TEQ using detected decision feedback over the three-tap
equal-gain Rayleigh fading channel for BPSK. The LLR magnitude threshold, the log-
likelihood gradient and the log-likelihood interception were set to |L|iareshoia = 10, g = 1.2

and ¢ = —7.5, respectively.
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T = 2) was approximately a factor 2.5, 4.4 and 16.3 lower in the context of BPSK, 4-
QAM and 16-QAM, respectively, for the three-path channel considered. The performance
degradation compared to the conventional Log-MAP TEQ [105] was negligible for BPSK
and 4-QAM, but was approximately 10dB for 16-QAM over the three-path, equal-weight,
symbol-spaced burst-invariant Rayleigh fading channel environment considered. The large
performance degradation for the 16-QAM scheme is due to the error propagation effect
of the DFE, which becomes more grave in conjunction with higher order constellations.
Therefore, the Jacobian RBF DFE TEQ could only provide a practical performance versus
complexity advantage over the conventional Log-MAP TEQ [105] for lower modulation
modes. Our proposed reduced-complexity Jacobian RBF DFE TEQ was shown to provide
an equivalent BER performance to that of the RBF DFE TEQ at a reduced computational
load. The reduced-complexity Jacobian RBF DFE TEQ using detected decision feedback
provided approximately 21% (at SNR of 6dB) and 35% (at SNR of 4dB) computational

reduction for dispersive Gaussian and Rayleigh channels, respectively.



Chapter 6
Summary and Conclusions

This thesis investigated the application of neural networks in the context of channel equalisa-
tion. As an introduction, the family of established neural network based equaliser structures
was reviewed. We opted for studying RBF network based equalisers in detail and inves-
tigated their implementation in conjunction with adaptive modulation and turbo channel
coding, in order to improve the performance of the transceivers investigated. Below, the

main findings of our investigations and suggestions for further research are presented.

6.1 Summary

Chapter 2 provided a brief overview of neural networks and described, how equalisation can
be viewed as a classification problem. We studied the performance of the RBF equaliser
assisted QAM schemes and their adaptive convergence performance in conjunction with both
clustering algorithms and LMS channel estimators. The RBF equaliser provided superior
performance compared to the linear MSE equaliser using an equivalent equaliser order at
the expense of a higher computational complexity, as it was shown in Figure 2.28 and
2.29. According to Figure 2.28 and 2.29, the RBF equaliser (m = 9) provided performance
improvements of 10dB and 20dB over the linear MSE equaliser over two-path and three-
path Gaussian channels, respectively, at a BER of 1073. We note that both the linear MSE
equaliser and the RBF equaliser exhibited residual BER characteristics, if the channel states
corresponding to different transmitted symbols are inseparable in the channel observation
space, as it was shown in Figure 2.30. The adaptive performance of the RBF equaliser
employing the LMS channel estimator of Section 2.9.4, the vector centre clustering algorithm
of Section 2.9.5 and the scalar centre clustering algorithm of Section 2.10 was compared. The
convergence rate of the clustering algorithm depends on the number of channel coefficients to
be adapted and therefore also on the modulation scheme used and the CIR length. However,

the convergence of the LMS channel estimation technique only depends on the CIR length
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and therefore this technique is preferred for high-order modulation schemes and high CIR
lengths. In Section 2.11 decision feedback was introduced into the RBF equaliser, in order
to reduce its computational complexity and to improve its performance, since due to its
employment the Euclidean distance between the channel states corresponding to different
transmitted symbols was increased. The performance degradation due to decision error
propagation increase as the BER increased, which became more significant for higher-order
QAM constellations, as it was shown in Figure 2.42. The performance degradation for
higher-order modulation schemes was higher for fading channel conditions, since they are
more sensitive to fades due to the reduced Euclidean distance between the neighbouring
channel states. We note that even for relatively slow fading channels, the channel states
value can change significantly on a symbol-by-symbol basis in a transmission burst duration.
Inseparable channel state clusters were observed for symbol-invariant fading, as it was shown
in Figure 2.48(b), which is due to the fading effects manifesting themselves across the burst
duration. These phenomena, together with the non-ideal learnt channel states, explain the
residual BERs present in our simulations.

Chapter 3 introduces the concept of adaptive modulation invoked, in order to improve
the throughput of the system, while maintaining a certain target BER performance. The
RBF DFE’s ’on-line’ BER estimation of the received data burst was used as the AQAM
modem mode switching metric in order to quantify the channel’s quality. Our simulation
results of Section 3.3.5 showed that the proposed RBF DFE-assisted BbB adaptive modem
outperformed the individual constituent fixed modulation modes in terms of the mean BER
and BPS. The AQAM scheme employing RBF DFE was compared to the AQAM scheme
using a conventional DFE, in terms of mitigating the effects of the dispersive wideband
channel. Our results in Section 3.3.5 showed that the AQAM RBF DFE scheme was ca-
pable of performing as well as the conventional AQAM DFE at a lower decision delay and
lower feedforward as well as feedback order. The performance of the AQAM RBF DFE can
be improved by increasing both the decision delay 7 and the feedforward order m, at the
expense of increased computational complexity, while the performance of the conventional
AQAM DFE cannot be improved significantly by increasing its equaliser order. However,
the computational complexity of the RBF DFE is dependent on the AQAM mode and in-
creases significantly for higher-order modulation modes. This is not so in the context of the
conventional DFE, where the computational complexity is only dependent on the feedfor-
ward and feedback order. A practical method of obtaining the switching BER thresholds of
the joint AQAM RBF DFE scheme was proposed in Section 3.4, which was shown to provide
a near-identical performance in comparison to the achievable best-case performance for the
target BER of 10~2. However, for the lower target BER of 10~%, the BER performance

degradation in comparison to the best-case performance was more significant, since the
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RBF DFE was unable to provide a BER estimate of such high accuracy and also because of
the spread nature of the BER estimates seen for example in Figure 3.14. Overall, we have
shown that our proposed AQAM scheme improved the throughput performance compared
to the fixed modulation modes. On the whole, the RBF DFE provides a reliable channel
quality measure, which quantifies all channel impairments, irrespective of their source for
the AQAM scheme and at the same time improves the BER performance.

Chapter 4 proposed the Jacobian RBF equaliser that invoked the Jacobian logarithmic ap-
proximation, in order to reduce the computational complexity of the original RBF equaliser
discussed in Section 2.9.1, while providing a similar BER performance. For example, the
total complexity reduction was by a factor of about 2.1, when we considered a 16-QAM
RBF DFE in conjunction with the equaliser parameters of m = 3, n = 1 and 7 = 2. The
performance of the RBF DFE was investigated using turbo coding and it was compared to
the turbo-coded conventional DFE scheme in Section 4.4. Introducing BCH(31,26) turbo
coding into the system improved the SNR-performance by 9.5dB for BPSK and by about
8dB for 4-QAM, 16-QAM and 64-QAM at a BER of 107%. The performance of the conven-
tional DFE and RBF DFE schemes depends on their uncoded performance. We have also
investigated the application of turbo BCH coding in conjunction with AQAM in a wide-
band fading channel. We observed in Section 4.6.2 that the performance of the switching
mechanism depends on the fluctuation of the switching metric since the AQAM switching
regime assumed that the channel quality was slowly varying. This was demonstrated in
Section 4.6.2, when we compared the performance of the AQAM scheme using the short-
term BER before and after turbo decoding as the switching metric. The spurious nature
of the short-term BER after turbo decoding was shown in Figure 4.22, which degraded the
performance of the AQAM scheme, as it assumed that the channel quality was slowly vary-
ing. The turbo-coded AQAM RBF DFE system exhibited a better BPS performance, when
compared to the uncoded system at low to medium channel SNRs — in the range of 0dB
to 26 dB — as evidenced by Figure 4.27. The same figure also showed an improved coded
BER performance at higher channel SNRs — in the range above 30dB. A virtually error-free
turbo-coded AQAM scheme was also characterized in Figure 4.28. The BPS performance
of the error-free coded system was better, than that of the uncoded AQAM system for the
channel SNR range of 0dB to 15dB, as evidenced by Figure 4.28. Overall, we have pre-
sented the advantageous interactions of RBF-aided DFE and BbB AQAM in conjunction
with turbo FEC.

Chapter 5 presented the Jacobian RBF DFE TEQ and comparatively analysed its associ-
ated performance and complexity with the well-known Log-MAP TEQ [105] in the context
of BPSK, 4-QAM and 16-QAM. The computational complexity of the Jacobian RBF DFE

TEQ was shown in Section 5.4 to be dependent on the number of RBF centres, on the
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CIR length and on the modulation mode. The associated 'per iteration’ implementational
complexity of the Jacobian RBF DFE TEQ (m = 3, n = 2, 7 = 2) was approximately a
factor 2.5, 4.4 and 16.3 lower in the context of BPSK, 4-QAM and 16-QAM, respectively,
for the three-path channel considered as seen in Table 5.1. The associated performance
degradation compared to the Log-MAP TEQ was shown in Figures 5.8, 5.9 and 5.10 to be
approximately 0.2dB, 0.2dB and 10dB for BPSK, 4-QAM and 16-QAM, respectively over
the three-path, equal-weight, symbol-spaced Rayleigh fading channel environment consid-
ered. The large performance degradation for the 16-QAM scheme was due to the error
propagation effect of the DFE, which became more grave in conjunction with higher-order
constellations. Therefore, the Jacobian RBF DFE TEQ of Section 5.2 could only provide a
practical performance versus complexity advantage for lower modulation modes. In terms
of storage requirements, the Jacobian RBF DFE is less demanding, as it only has to store
the values of the RBF centres, while the Log-MAP equaliser has to store both the forward-
and backward-recursively calculated metrics. Our proposed reduced-complexity RBF DFE
TEQ — where the RBF DFE skips evaluating the symbol LLRs in the current iteration
when the symbol is sufficiently reliable after channel decoding in the previous iteration —
was shown in Section 5.6 to give significant computational complexity reductions, while pro-
viding an equivalent BER performance to the RBF DFE TEQ. The complexity reduction
was approximately 21% (at an SNR of 6dB) and 35% (at an SNR of 4dB) for dispersive

Gaussian and Rayleigh channels, respectively.

6.2 Suggestions for Future Research

In most of our work initially we have made some idealistic assumptions for our AQAM
scheme, such as those in Section 3.3.3. Further work has to explore and quantify the
performance of our proposed systems in practical scenarios in the presence of co-channel
interference (CCI), CIR estimation errors, channel quality estimation latency, etc. Research
has also been conducted in employing neural network based equalisers in code-division
multiple-access (CDMA) environments [112, 113, 114, 115, 116, 117, 118, 119] and it appears
promising to explore further this work in conjunction with our coded AQAM schemes.
Space-time processing techniques [120] are powerful in enhancing the capability of mobile
communication services and are currently regarded by many within the wireless communi-
cations community as a core system component in future generation of mobile networks.
Space-time processing techniques optimize the cellular spectral efficiency of the network by
implementing more than one antenna element in order to optimally transmit and receive
signals to or from users using both temporal and spatial signal processing techniques in the

transceiver. Implementing coding in conjunction with space-time techniques, Tarokh et. al.
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[121, 122, 123, 124, 125] presented a range of new advanced modem schemes suitable for
high-data-rate wireless communications based on space-time coded modulation (STCM).
Simulation results for the proposed STCM-based modem show great promise as a powerful
channel coding method for high-data-rate wireless applications. Hence it appears promis-
ing to implement this technique in conjunction with our proposed RBF equalisers and to
investigate its performance over wideband channels subjected to CCI.

Chen et. al. proposed a strategy for designing DFE-based support vector machines
(SVM) [73]. The SVM design in conjunction with low-complexity conventional DFE struc-
tures achieves asymptotically the minimum BER (MBER) solution [70], which provides a
performance close to the optimal Bayesian DFE. Unlike the exact MBER solution, the SVM
solution can be computed significantly more efficiently. The low-complexity structure of the
SVM DFE provides an attractive alternative to the optimal Bayesian-based RBF DFE and

to its implementation in conjunction with AQAM schemes and turbo coding.



Appendix A

Least Mean Square Algorithm
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Figure A.1: Linear equaliser schematic

For a linear transversal filter shown in Figure A.1, the optimum coefficients according to
the mean square error (MSE) criterion [59], are determined from the solution of a set of

linear equations, which can be expressed in matrix form as:
IC=¢, (A1)

where T is the (2K + 1) x (2K + 1) covariance matrix of the input signal samples {vy}, C
is the column vector of (2K + 1) equaliser tap weights {c;} and £ is a set of (2K + 1) cross-
correlations between the unequalised input samples v and the equalised desired response
{I}.

In order to avoid the direct matrix inversion in obtaining Copy, We can minimize the MSE

J by iteratively descending on the associated MSE versus the equaliser coefficient surface
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via gradient methods [126, 59]. Each equaliser tap weight is changed in the direction
opposite to its corresponding gradient component §J/écy, k = —-K,...,~1,0,—-1,..., K at
the currently encountered point of the MSE surface. The iteratively updated values of the

coefficient vector C are given by [59]:
Clc-l-l =TCr—-€=C + ME(EICVZ), (A2)

where the vector C}, is the set of equaliser coefficients at the kth iteration, g = I — Iy
is the equalisation error at kth iteration, V' is the vector of the equaliser input signal
samples that generate the equaliser output I, ie., Vi = [Vpyx ... Uk ... vp_x]7 and p is
the associated step-size. The difficulty with the gradient descent method is in determining
the covariance matrix I and the vector &€ of cross correlations, which will need a collection
of unequalised data {v}. An alternative is to estimate the MSE surface gradient and adjust

the tap weights according to the relation [126, 59]:
Cii1=Cr + /JSV};. (A.3)

This is the LMS algorithm, which is implementationally simple. In order to guarantee
convergence of the recursive relation in Equation A.3, the step-size p must satisfy the
inequality [59]:

0 < u < 2/Amax, (A.4)
where Amax is the largest so-called eigenvalue of T" [59]. Note that Amax cannot be greater
than the trace of T, tr[T'], which can be expressed as [59] (2K + 1)E(v?) for a linear
transversal filter. Thus convergence of the coefficient vector is assured by [126]

2
In general: 0 < p < —=
tr[T] 5 (A.5)

Tr | filter: 0 )
ansversal fifter: U <4 < (2K + 1)(received signal power)

In practical applications, the LMS algorithm employs noisy estimates of the MSE surface
gradient. The noise in these estimates causes the coefficients to fluctuate randomly around
the optimal values. The final MSE in steady state is Ji;,, + Jexcess- The excess mean
square error term Jexcess is defined in a simplified form by Proakis [59] and Widrow[126]

as:
1
Jexcess ~ §quint7’[I‘]- (A.6)

From Equation A.6, we can see that the value of u has to be as small as possible, in order
to reduce the excess MSE. However, at the same time the step size p is proportional to the
speed of convergence. A fast convergence is important, if the statistical time variations of

the signal occur rapidly. Therefore a compromise is necessary for ensuring good tracking of
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the time-variant signal statistics without undue degradation of the associated performance.
To overcome this problem, in the LMS algorithm the step-size is often made time-varying.

A few of the time-varying forms found in the literature are:

Stochastic approximation schedule [127] :  p(k) = % (A7)
Search-then-converge schedule [128]: (k) = i—_{—_—%%m (A.8)

where a, up and k are constant.
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Appendix B

Minimal Feedforward Order of
RBF Equaliser with Decision
Feedback [Proof]| [26]

The RBF DFE has a feedforward order of m, feedback order of n and a decision delay of 7.
We denote the (m + L)-symbol length channel input sequence that determines the values
of the noiseless channel state rj,7 = 1,...,n, by 1,_,, where the CIR length is L + 1. Let
I, = sj,j = 1,...,n,, where s; represents the ns possible states of I,_,. Referring to

Equation 2.106, we consider rz.’l € Vrflmj,j =1,...,npfor I_, =Z;,i =1,..., M, where
. . . T
vo=lriy ] 1SiSM, 1<j<m,  1<I<nn (BI)

Assuming m > 7 + 1, the squared distance between the channel output vector v of Equa-

tion 2.2 and rg-l is

i i 142
an,j,z(k) = |[lvg ‘r;',zH
T ) m—1 )
= Z('Uk—u _r;',l,u)Z + Z (Vk—u — T;',l,u)z

u=0 u=71+1
m—1

. . 9

Wik + Y (Weu —1h00)%
u=7+1

1< <M. (B.2)

The feedback symbols are assumed to be correct, that is,

- T
Iy—r = l: Iy 71 oo Igqn ] > (B3)
wheren =L+ m —1— 7. For any r?l € Vrfz,m’ and 1 <1i < M, we have:

L
P =3 folk—un THI<u<m -1 (B.4)
n=0
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Upon introducing

m—1 '
o) = ), (vp—u —7j5.)" (B.5)
u=7+1
We have:
win 1 (B) = Wiy (k) + @(k). (B.6)

The conditional Bayesian decision variables, given that I, =s 7, are as follows:

ni
GkTe—r =sp5) =Y a-exp(—wy, ;1/p), 1<i <M, (B.7)
=1

where « is an arbitrary positive scalar, p = 20% and ng is the number of states in V,, _ ..

J
Substituting Equation B.6 into Equation B.7 yields:

GfTr =555) = Y o eap(—a(k)/p) exp (—wi 4y j,(k)/p)
[==1

5,7
= Z& rexp(—wryy5.(k)/p) 1<i<M, (B.8)
=1
where ﬁi)j is the number of states in V* +1,r,; and & is a positive scalar, since o and (k) are

positive scalars. This proves that the RBF DFE based on the Bayesian solution [26] having
a feedforward order of m = 7 + 1 has the same conditional decision variables, as those of

arbitrary higher feedforward orders of m > 7 + 1.

In the above proof, the number of states in V2, _ ﬁ’s ; has first implicitly been multiplied

by a factor of M™~ 7! 50 as to match the number of states in Vjﬁ ns, and then reduced

?T7] ’

to the original n§ ;. This is allowed, since & is an arbitrary positive scalar.
2.
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List of Symbols

Ck

¢

Cik

fn
fBayes(')
fC()

fo ()
frp(’)

bias of the jth neuron (Figure 2.4(b)).
channel encoded data bit at signalling instant & (Figure 5.2).

the centres of the ith RBF at the hidden layer of the RBF net-
work (Equation 2.29).

the ith RBF centres at signalling interval k£ (Equation 2.94).
the ¢th training data or desired response.

data bit at signalling instant n (Figure 5.2).

expectation operator.

cost function of the neural network output function F' defined

by Equation 2.51.

SNR per bit.

output function of the neural network with input x (Figure 2.12).
activation function of neuron (Figure 2.4(b)).

the nth CIR taps in Equation 2.1 and Figure 2.1.

optimal Bayesian decision function (defined by Equation 2.17).

the correction function of the Jacobian logarithmic relationship

in Equation 4.1.
polynomial function of the PP network in Equation 2.25.

overall response of the PP network equaliser (defined by Equa-

tion 2.26).
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frBF(")

G(x;x;)

I

[:D

E?(Cn)

Laverage

£

Ly
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overall response of the RBF network equaliser (defined by Equa-
tion 2.81).

the Green function centred at x; with input x (2.54).

discrete transmitted symbol at signalling instance k (Figure 2.1,

Equation 2.2).
detected symbol at signalling instance £ (Figure 2.2).

the ith symbol constellation point of M-ary modulation scheme

where i = 1,2,..., M.

the Jacobian logarithmic relationship between the values A1 and

Ag), as defined by Equation 4.1.
polynomial degree of the PP network (Equation 2.25).

memory length of the CIR defined in Figure 2.1 and Equa-
tion 2.1.

the LLR values output by the SISO decoder (Figure 5.1).

the channel-deinterleaved extrinsic LLR of the coded bit ¢, ob-
tained from the decoder (Figure 5.1).

the channel-deinterleaved a posteriori LLR values of the coded

bits ¢ obtained from the SISO decoder (Figure 5.1).
the LLR values output by the SISO equaliser (Figure 5.1).

the channel-interleaved a priori LLR information of the coded

bits ¢; provided to the SISO equaliser (Figure 5.1).

the combined channel and extrinsic LLR information obtained

form the SISO equaliser (Figure 5.1).

the channel-interleaved a posteriori LLR information of the coded

bits ¢ obtained from the SISO equaliser (Figure 5.1).
average burst LLR magnitude defined by Equation 4.15.

the ith switching LLR magnitude threshold corresponding to the
M-QAM mode (Equation 4.16).

number of data bits per transmitted burst.
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MSE(P, C)
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“©H

Ts,j
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number of data symbols per transmitted burst.
number of training symbols per transmitted burst.

log-likelihood of the data bit ux having the value +1 (Equa-
tion 4.8).

LLR value of data bit ug defined by Equation 4.8.

number of equaliser feedforward taps or equaliser feedforward

order (Figure 2.2).

number of linearly independent basis functions in the RBF net-

work described by Figure 2.12 and Equation 2.31.

number of symbol constellation points in a multilevel modulation

scheme.

MSE cost function of for the K-means clustering algorithm, de-
fined in Equation 2.78, that partitions the input pattern x into
partition P and finds a reference vector C for the partitioned

input pattern.

MSE of RBF vector centres at signalling interval k defined by
Equation 2.125.

membership indicator that specifies, whether the input pattern
x belongs to region P; and also whether the ith neuron is active

(Equation 2.79).
feedback order of decision feedback equaliser.

number of feeback states of the RBF network equaliser with de-

cision feedback.

number of desired channel states or noise-free channel output

values.

number of desired channel states corresponding to the transmit-

ted symbol I}, = £1.

number of desired channel states corresponding to the feedback

state Sfj-

number of noise-free scalar channel states.
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P
P

P

5 bit, short-term
PiM

Perror (uk)

Dbi

55

St

br{-}
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domain containing input patterns x (Equation 2.78).
partition of input patterns (Equation 2.78).
linear (pseudo) differential operator (Equation 2.53).

the estimated short-term BER defined by Equation 3.15.

the ith switching BER threshold corresponding to the M-QAM
mode (Equation 3.7).

probability of error of the detected bit wuy defined by Equa-
tion 4.11.

a priori probability of appearance of the sth desired channel state

(Equation 2.83).
probability density function.
probability of z occurring.

conditional probability density function of z, given that the state

of nature is s.

the ith scalar channel states at signalling interval k (Equation 2.100).

noise-free channel output vector defined in Figure 2.3 where r; =

Vi.

the 7th noise-free channel output state corresponding to the trans-

mitted symbol I = £1 (Equation 2.10).

the ith noise-free channel output state corresponding to the trans-

mitted symbol I;, = £1 and feedback sequence sy ; (Equation 2.104).

the ith channel input sequence, 7 = 1,...,n; = M**™ (Equa-

tion 2.7).

the ith channel feedback sequence, i = 1,...,n,; = M" (Equa-
tion 2.103).

symbol duration.

trace of a matrix.
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Vg

Vi

wW;

Z;
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Yik
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Br(s)

213

output of the jth neuron at the mth layer of the MLP (Figure 2.9,
Equation 2.24).

noise-contaminated received symbol at the output of the chan-
nel, which is input to the receiver (defined by Figure 2.1 and
Equation 2.2).

noise-free channel output defined in Equation 2.3. (We have

v = Uk, when vk is uncontaminated by noise.)

equaliser input vector constituted by m vy samples, as defined

by Figure 2.1 and Equation 2.2.

equaliser noise-free input vector constituted by m v, sample

(Equation 2.11).

subset of channel states that corresponds to the transmitted sym-
bol I = %1 for the RBF equaliser having an equaliser order of
m and delay 7 (defined by Equation 2.8).

subset of channel states that corresponds to the transmitted sym-
bol Iy = *1 and feedback state sy ; for the RBF equaliser having
an equaliser order of m and delay 7 (defined by Equation 2.103).

the 7th weight of the jth neuron (Figure 2.4(b)).
the ith weight of the RBF network.

the ith input of the neural network at the input layer (Fig-
ure 2.6).

the output of the jth neuron (Figure 2.4(b)).

the monomials corresponding to the inputs vg_;, t0 Vg—i; - .. Vk—4,
of the PP network having a polynomial degree of [ at signalling

interval k& (Equation 2.25).

the forward oriented transition probability (Figure 5.3, Equa-
tion 5.11).

the backward oriented transition probability (Figure 5.3, Equa-
tion 5.12).
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the trellis transitions probability between the trellis stages (k—1)
and k (Figure 5.3, Equation 5.13).

the forward oriented transition probability in logarithmic form

(defined by Equation 5.18).

the backward oriented transition probability in logarithmic form

(defined by Equation 5.19).

the trellis transitions probability between the trellis stages (k—1)
and k in logarithmic form (defined by Equation 5.20).

error between the actual channel output vy and the estimated

channel output at signalling interval k (defined by Equation 2.89).
equaliser delay (Figure 2.2).

white Gaussian noise sequence with zero mean and variance a%

(Figure 2.1, Equation 2.2).

pseudo SNR output of the conventional DFE (defined by Equa-
tion 3.5).

width parameter of the RBF equaliser (Equation 2.81).
variance of the Gaussian function.
variance of the additive white Gausian noise.

variance of the Gaussian noise at the output of the equaliser after

equalisation.

variance of the information symbols.

variance of the noise-free received signal.

firing threshold of the jth neuron, where 6; = —b; (Figure 2.4(b)).

step-size or learning rate of the adaptive K-means clustering

algorithm defined by Equation 2.79.
learning rate for the vector centres (Equation 2.94).
step-size for the CIR estimator (Equation 2.90).

learning rate for the scalar centres (Equation 2.100).
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learning rate for the RBF weights (Equation 2.98).
regularization parameter in Equation 2.51.

the ith radial basis function at the hidden layer of the RBF
network (Figure 2.12, Equation 2.29).

interpolation matrix (Equation 2.47).



Glossary

3G
ANN
AQAM
ARIB
AWGN
BbB
BER
BPS
BPSK
ccCI
CDMA
CIR
DFE
ETSI
FDD
FEC
FIR
FL

FPLMTS

Third Generation

Artifial Neural Network

Adaptive Quadrature Amplitude Modulation
Association of Radio Industries and Businesses
Additive White Gaussian Noise

Burst-by-Burst

Bit Error Rate, the proportion of the bits received incorrectly
Bits Per Symbol, the proportion of the bits per symbol
Binary Phase Shift Keying

Co-Channel Interference

Code Division Multiple Access

Channel Impulse Response

Decision Feedback Equalizer

European Telecommunications Standards Institute
Frequency Division Duplex

Forward Error Correction

Finite Impulse Response

Functional Link

Future Public Land Mobile Telecommunications Systems
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Glossary

GSM

HT

I
I/Q EQ
IMT-2000
ISI

ITU

LLR
LMS
MAP
MBER
MLP
MSE
NN
NO TX
OLS
PDC
PHS

PP

QAM

RBF
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Global System for Mobile Communications, A Pan-European digi-

tal mobile radio standard operating at 900MHz.

Hilly Terrain, channel impulse response of a hilly terrain environ-

ment

In-phase component of QAM mode
In-Phase/Quadrature-phase Equaliser

International Mobile Telecommunications in the year 2000
Intersymbol Interference

International Telecommunications Union, formerly the CCITT, stan-

dardisation group

Log Likelihood Ratio

Least Mean Square, a stochastic gradient algorithm
Maximum A-Posteriori algorithm

Minimum Bit Error Rate criterion

Multilayer Perceptron

Mean Square Error

Neural Networks

No Data Transmission

Orthogonal Least Square

Personal Digital Cellular, 2G system in Japan
Personal Handyphone System, 2G system in Japan

Polynomial Perceptron, a perceptron structure based on polynomial

of its input
Quadrature component of QAM mode
Quadrature Amplitude Modulation

Radial Basis Function
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RLS
RSC
RTT

SER

SLP
SNR
SOM
SOVA
STCM
SVM
TDD

TTA

TU
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Recursive Least Square
Recursive Systematic Convolutional code
Radio Transmission Technology

Symbol Error Rate, the proportion of the symbols received incor-

rectly

Single Layer Perceptron

Signal to Noise Ratio, noise energy compared to the signal energy
Self-Organising Map

Soft Output Veterbi Algorithm

Space-Time Coded Modulation

Support Vector Machine

Time Division Duplex

Telecommunications Industry Association, standard organizations

in United States

Typical Urban, channel impulse response of an urban environment
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