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This thesis investigates the employment of Radial Basis Function (RBF) networks in the 

context of multilevel channel equalisation. The RBF-based Decision Feedback Equaliser 

(DFB) was found to outperform the conventional DFE at the cost of an increased computa-

tional complexity. The RBF DFE was studied in the context of a wideband Burst-by-Burst 

(BbB) Adaptive Quadrature Amplitude Modulation (AQAM) scheme, where the modu-

lation modes of no transmission (NO TX), Binary Phase Shift Keying (BPSK), 4-QAM, 

16-QAM and 64-QAM were invoked by the transmitter, depending on the prevalent chan-

nel quality. The 'short-term BER' of the received burst quantiGes the chaimel quality, 

which was used as the modem mode switching criterion in order to switch between different 

modulation modes. The Bit Per Symbol (BPS) throughput improvement for the proposed 

AQAM scheme designed for a target Bit Error Rate (BER) of 1% was up to a factor of two 

in comparison to the fixed constituent modulation modes. 

The logarithmic version of the RBF equaliser referred to as the Jacobian RBF equaliser 

was derived, which has a reduced computational complexity. Turbo codes were invoked 

for improving the BER and BPS performance of the BbB AQAM scheme. The Jacobian 

RBF equaliser provides a logarithmic-domain output, which can be used to provide soft 

outputs for the channel decoder. We proposed employing the average magnitude of the 

Log-Likelihood Ratio (LLR) of the bits in the received burst as the channel quality measure 

for our adaptive scheme. The system exhibited a better BPS performance, when compared 

with the uncoded AQAM/RBF DFE system at low to medium channel SNRs and also 

showed an improved coded BER performance at higher channel SNRs. 

The recently developed family of iterative equalisation and channel decoding techniques 

termed as turbo equalisation were explored and we investigated the employment of RBF-

based turbo equalisers. A reduced-complexity RBF DFE turbo equaliser (TEQ) was pro-

posed where the RBF DFE skips the evaluation of the symbol LLRs in the current iteration 

when the symbol becomes sufficiently reliable after channel decoding in the previous iter-

ation. The proposed scheme provided an equivalent BER performance to the RBF DFB 

TEQ with a complexity reduction of approximately 21% at an SNR of 6dB. 
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Chapter 1 

In t roduc t ion 

The popularity and penetration of mobile cellular communication systems and wireless net-

working technologies is growing at an ever-faster rate and this is certainly set to continue in 

the foreseeable future. Second-generation mobile radio systems, which use digital technol-

ogy in contrast to the analogue Erst-generation systems, are proving successful worldwide 

in providing communications services to users. The customer base is increasing faster than 

expected. These second-generation systems are dominated by the Pan-European Global 

System of Mobile Communnications (GSM) [1], and the Pan-American 18-136 [2], IS-95 

[2] schemes while in Japan by the Personal Digital Cellulajr (PDC) and Personal Handy-

phone System (PHS) technology. However, these second-generation systems provide only 

voice and low-data-rate services. The predicted market requirements and service needs were 

translated to technical requirements for the dehnition of third-generation (3G) mobile radio 

systems [3, 4] in North America, Asia and Europe. The 3G mobile technology will not 

only deliver a wide variety of wireless services - speech, video and data at various bit rates 

but it also will herald a new era of services that combine high-speed mobile access with 

mobile multimedia and Internet Protocol (IP) based services. The International Mobile 

Telecommunications system in the year 2000 [4] (IMT-2000) - formerly known as Future 

Public Land Mobile Telecommunications Systems (FPLMTS) - is the term used by the 

International Telecommunications Union (ITU) as the speciEcation for 3G services, based 

upon a 'family' of compatible standards, of which a GSM-based evolution is set to be the 

most widespread. The 3G mobile systems have to satis^ the following requirements [5]: 

# Support a wide range of bearer services from voice and low-rate to high-rate data 

services with at least 144 kbit/s in vehicular, 384 kbit/s in outdoor-to-indoor and up 

to 2 Mbit/s in indoor and picocell environments. 

* Capacity and coverage improvement over that of the second generation systems, while 

achieving a higher quality transmission. 

1 
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« Circuit-switched and packet-switched oriented operation. 

Over recent years a signiBcant amount of eSorts has been devoted, both in industry and 

academia, towards the definition of the IMT-2000 third-generation wireless communication 

systems, stajidards, technologies and applications. Several regional standard organizations 

- led by the European Telecommunications Standards Inst i tute (ETSI) in Europe, by the 

Association of Radio Industries and Businesses (ARIB) in J a p a n and by the Telecommuni-

cations Industry Association (TIA) in the United States have been dedicating their efi'orts 

to specifying the standards for IMT-2000. A total of 15 Radio Transmission Technology 

(RTT) IMT-2000 proposals were submitted to ITU-R in June 1998, Eve of which are satel-

lite based solutions, while the rest are terrestrial solutions. Although the standard has now 

reached maturity, there is stiU a large set of important research and development problems 

to be addressed and resolved. At the time of writing research is already under way towards 

identi^ing the fundamental challenges and issues in the Eeld of the fourth generation broad-

band wireless communication systems, which are expected to provide further improvements 

in terms of services, data rate, capacity, Eexibility, power consumption and cost. 

The new generation of mobile communication systems have to develop novel multiple-

access techniques, along with the associated coding, equalisation and compression technolo-

gies, in order to meet the requirements for a rehable and secure transfer of large volumes 

of information at speeds commensurate with those of the Exed broadband networks. The 

overall objective is an improved e@ciency of information transfer per unit bandwidth, higher 

protection against interference, eScient frequency re-use and channel allocation techniques, 

along with a concomitant decrease in implementational cost. 

1.1 Research Mot ivat ion 

In order to cope with the expected traSc and service quality demands of mobile communi-

cations, further research into transceiver design is required. Our research wiU focus on the 

equalisation aspects of dispersive fading mobile channels using neural network techniques 

[6]. 

ArtiEcial Neural Networks (ANN) draw their inspiration from the structure of the human 

brain and from its functions. An ANN does not attempt to model faithfully the neuro-

biology of the human brain, but rather it employs the abstract notions of how the brain 

function. One of the key characteristics of the brain is its ability to learn and adapt 

appropriately to changing circumstances. Thus, for ANNs to learn from their environment, 

they must adopt a training or learning algorithm. Here we embark on making use of 

diEierent ANN structures and their learning algorithms, which are applied to the wireless 

communications Eeld, employing neural network based channel equalisation. Our objective 
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is to use new approaches from an ANN perpective, in order to improve the performance of 

conventional channel equahsers. 

Due to the scarcity and price of radio spectrum available for mobile services, spectral 

e@ciency is of primary concern for future mobile communication systems. The third gen-

eration system must accommodate a wide range of services and channel types, from pico-

to macro-cellular, supporting data rates up to 2 Mbits/s. In this respect, the challenge 

is to provide a high transmission throughput, given the limited radio spectrum as well as 

to maintain a certain target transmission quality. The system may adapt to a range of 

factors related to both the channel and service quality, depending on whether speech, data 

or multimedia services are concerned. Adaptation may apply to the modulation mode and 

to the Forward Error Correction (FEC) coding scheme employed, among a range of other 

potential system features. For example, we can adapt the modulation modes based on the 

prevalent channel conditions, where a higher-order modulation mode is utilized, when the 

channel quality is favourable. By contrast, when the channel quality is low, the transmission 

integrity can be maintained by invoking a more robust modulation mode. In this treatise, 

we will explore the implementation and performemce of the neural network based equahsers 

in a similar adaptive modulation mode based scheme. 

In conjunction with equalisation, channel decoding can be employed in order to further 

improve the performance of the communications system. Powerful error correction schemes 

- such as turbo codes [7] - have been shown to yield performances close to Shannon's per-

formance limits. Instead of performing the equalisation and decoding separately, higher 

performance gains can be achieved by implementing the equalisation and decoding opera-

tions jointly and iteratively. This technique is also known as turbo equalisation and has 

been shown to combat the effects of the channel-induced intersymbol interference success-

fully. Motivated by these trends, in this treatise we set out to amalgamate these powerful 

performance enhancement techniques with neural network based equalisation. 

1.2 Organisat ion of Thesis 

Below, we present the layout of the thesis: 

8 In Chapter 2, we cast channel equalisation as a classification problem. We give a brief 

overview of neural networks and present the design of some neural network based 

equalisers. In this thesis, we choose to examine a neural network structure referred to 

as the Radial Basis Function (RBF) network in more detail for channel equalisation, 

since it has an equivalent structure to the so-called optimal Bayesian equalisation 

solution [8]. The structure and properties of the RBF network are described, fol-

lowed by the implementation of a RBF network as an equaliser. We will discuss the 
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computational complexity issues of the RBF equaliser with respect to that of con-

ventional linear equalisers and provide some complexity reduction methods. Finally, 

performance comparisons between the RBF equaliser and the conventional equaliser 

are given over various channel scenarios. 

# Chapter 3 commences by summarising the concept of adaptive modulation that adapts 

the modem mode according to the channel quality in order to maintain a certain target 

bit error rate and an improved bits per symbol throughput performance. The RBF 

based equaliser is introduced in a wideband Adaptive Quadrature Amplitude Mod-

ulation (AQAM) scheme in order to mitigate the effects of the dispersive multipath 

fading channel. We introduce the short-term Bit Error Rate (BER) as the channel 

quality measure. Lastly, a comparative study is conducted between the constituent 

hxed mode, the conventional DFE based AQAM scheme and the RBF based AQAM 

scheme in terms of their BER and throughput performance. 

e In Chapter 4 we incorporate turbo channel coding in the proposed wideband AQAM 

scheme. A novel reduced-complexity RBF equaliser utilizing the so-called Jacobian 

logarithmic relationship [9] is proposed and the turbo-coded performance of the Ja-

cobian RBF equaliser is presented for the various fixed QAM modes. Furthermore, 

we investigate using various channel quality measures - namely the short-term BER 

and the average Log-Likelihood Ratio (LLR) magnitude of the data burst generated 

either by the RBF equaliser or the turbo decoder - in order to control the modem 

mode-switching regime for our adaptive scheme. 

# Chapter 5 introduces the principles of iterative, joint equalisation and decoding tech-

niques known as turbo equalisation [10]. We present a novel turbo equalisation scheme, 

which employs a RBF equaliser instead of the conventional treUis-based equaliser. The 

structure and computational complexity of both the RBF equaliser and trellis-based 

equahser are compared and we characterise the performance of these RBF and treHis-

based turbo-equalisers. We then propose a reduced-complexity RBF assisted turbo 

equaliser, which exploits the fact that the RBF equaliser computes its output on a 

symbol-by-symbol basis and the symbols of the decoded transmission burst, which are 

sufficiently reliable, need not be equalised in the next tu rbo equalisation iteration. 

# Chapter 6 summarises our main Endings and conclusions. Suggestions for future work 

are also presented. 

The novel contributions of the thesis are as follows: 

» A wideband AQAM scheme was implemented with the aid of a RBF based equaliser. 

The modem mode switching metric was based on the short-term BER of the equalised 



burst aa estimated by the RBF equaliser. The short-term BER switching thresholds 

were obtained by estimating the BER improvement/degradation upon switching to a 

lower/higher order modulation mode [11, 12]. 

» Based on the approach often used in turbo codes, we proposed generating the output 

of the RBF network in logarithmic form by invoking the so-called Jacobian logarithm 

[13, 14], in order to reduce the computational complexity of the RBF equaliser. The 

proposed RBF equaliser using the Jacobian logarithm was referred to as the Jacobian 

logarithmic RBP equaliser [9]. 

# Turbo coding was incorporated into the wideband AQAM scheme, where Burst-by-

Burst (BbB) based decoding was achieved. The average burst LLR amplitude was 

proposed as the channel quality measure. The performance of the RBF DFE assisted 

BbB AQAM in conjunction with turbo coding was aasessed using di&rent modem 

mode switching criteria - namely the short-term BER and the average burst LLR 

magnitude before and after turbo channel decoding [9]. 

0 We presented a novel turbo equalisation scheme, which employs a RBF equaliser 

instead of the conventional trellis-based equaliser. The proposed turbo equaliser was 

shown to achieve identical BER performance to the conventional turbo equaliser, while 

incurring a lower complexity [15]. The computational complexity of the RBF turbo 

equaliser was further reduced by refraining from feeding back those decoded symbols 

which were deemed sufficiently reliable to the equaliser in the next iteration for further 

iterative equalisation. 

Having presented an overview of the thesis, let us now commence our discussions with a 

brief overview of neural network based equalisation. 



Chapter 2 

Neura l Network Based 

Equalisat ion 

In this chapter, we will give an overview of neural network based equalisation. Channel 

equalisation can be viewed as a classiEcation problem. The optimal solution to this classiE-

cation problem is inherently nonlinear. Hence we will discuss, how the nonlinear structure of 

the artificial neural network can enhance the performance of conventional channel equalisers 

and examine various neural network designs amenable to channel equalisation, such as the 

so-called multilayer perceptron network [16, 17, 18, 19, 20], polynomial perceptron network 

[21, 22, 23, 24] and radial basis function network [25, 26, 8, 27]. We will examine a neural 

network structure referred to as the Radial Basis Function (RBF) network in detail in the 

context of equahsation. As further reading, the contribution by Mulgrew [28] provides an 

insightful brieEng on applying RBF network for both channel equalisation and interference 

rejection problems. Originally RBF networks were developed for the generic problem of 

data interpolation in a multi-dimensional space [29, 30]. We will describe the RBF network 

in general and motivate its application. Before we proceed, our forthcoming section will 

describe the discrete time channel model inflicting intersymbol interference that will be used 

throughout this thesis. 

2.1 Discrete T ime Model for Channels Exh ib i t i ng In tersym-

bol In ter ference 

A band-limited channel that results in intersymbol interference (ISI) can be represented by 

a discrete-time transversal Slter having a transfer function of: 

L 

n=0 

6 
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~ —1 z 

/ o / i - 4 ^ / ^ - l / L 

{ ^ A } 

{%} 
Figure 2.1: Equivalent discrete-time model of a channel exhibiting intersymbol inter&rence 
and experiencing additive white Gaussian noise 

where / „ is the n th impulse response tap of the channel and L + 1 is the length of the 

channel impulse response (CIR). In this context, the channel represents the convolution of 

the impulse responses of the transmitter Elter, the transmission medium and the receiver 

Elter. In our discrete-time model discrete symbols 7̂  are transmitted to the receiver at a 

rate of ^ symbols per second and the output at the receiver is also sampled at a rate of 

^ per second. Consequently, as depicted in Figure 2.1, the passage of the input sequence 

{Ik} through the channel results in the channel output sequence {%} that can be expressed 

as 

= ^ + % - oo < A < oo. (2.2) 

71=0 

where {%} is a white Gaussian noise sequence with zero mean and variance The number 

of interfering symbols contributing to the ISI is In general, the sequences { f t } , {A}, 

{%} and {/„} are complex-valued. Again, Figure 2.1 illustrates the model of the equivalent 

discrete-time system corrupted by Additive White Gaussian Noise (AWGN). 

2.2 Equal isat ion as a Classification P r o b l e m 

In this section we will show that the characteristics of the transmitted sequence can be 

exploited by capitalising on the Snite state nature of the channel and by considering the 

equalisation problem as a geometric classiEcation problem. This approach was first ex-

pounded by Gibson, Siu and Cowan [17], who investigated utilizing nonlinear structures 
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Vk -1 - 1 

Equaliser Decision Function 

h-7 

Figure 2.2: Linear m-tap equaliser schematic 

offered by Neural Networks (NN) aa channel equalisers. 

We assume that the transmitted sequence is binary with equal probability of logical ones 

and zeros in order to simplify the analysis. Referring to Equation 2.2 and using the notation 

of Section 2.1, the symbol-spaced channel output is deSned by 

L 

Vk — ^ ] fnlk—n + Vk 

(2.3) 
n=0 
% + % — oo < A < oo, 

where {%} is the additive Gaussian noise sequence, {/n}, n. = 0 ,1 , . . . is the CIR, {7^} 

is the channel input sequence ajid {%} is the noise-free channel output. 

The mth order equaliser, as illustrated in Figure 2.2, has m taps as well as a delay of 

T, and it produces an estimate of the transmitted signal it-T- The delay T is due 

to the precursor section of the CIR, since it is necessary to facilitate the causal operation 

of the equaliser by supplying the past and future received samples, when generating the 

delayed detected symbol Ik-r- Hence the required length of the decision delay is typically 

the length of the CIR's precursor section, since outside this interval the CIR is zero and 

therefore the equaliser does not have to take into account any other received symbols. The 

channel output observed by the linear mth order equaliser can be written in vectorial form 

as 
r -I r 

Vt = t;*: %- l . . . 'Ut-m+l , 

and hence we can say that the equaliser has an m-dimensional channel output observation 

space. For a CIR of length -t-1, there are hence = 2^+"^ possible combinations of the 

binary channel input sequence 

Ifc = Ik ^k-

that produce 2Z,+77i djgerent possible noise-free channel output vectors 

- r 
Vk Vk—l • • • Vk—rn+l 

(2.5) 

(2 .6 ) 
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The possible noise-free channel output vectors % or particular points in the observation 

space will be referred to aa the desired channel states. Expounding further, we denote each 

of the Tig = 2^+^" possible combinations of the channel input sequence It of length + m 

symbols as s,, 1 < % < = 2^+" ,̂ where the channel input state determines the desired 

channel output state ri, % = 1 , 2 , . . . , = 2^+^ .̂ This is formulated aa: 

Vk if Ifc — Sj, 1 , 2 , . . . , T ig . (2.7) 

The desired channel output states can be partitioned into two classes according to the 

binary value of the transmitted symbol / t - r , seen below: 

= {Vt |4-T = +1}, 

— {vtiA:—T = 

and 

(2.8) 

= (2.9) 

We can denote the desired channel output states according to these two classes as follows: 

z = 1 , 2 , . 

; = 1 , 2 , J ^ ^nijT (2.10) 

where the quantities mj" and represent the number of channel states and in the 

set and 1^^-, respectively. 

The relationship between the transmitted symbol 7̂  and the channel output can also 

be written in a compact form as: 

Vfc = FlA: + rjf. 

(2.11) 

where rj/. is an m-component vector that represents the AWGN sequence, is the noise-free 

channel output vector and F is an m x (m + L) CIR-related matr ix in the form of: 

/o A . . . A 

0 /o . . . A - 1 

0 

0 
(2.12) 

0 0 /o . . . A - i 

with = 0 , . . . , Z, being the CIR taps. 

Below we demonstrate the concept of finite channel states in a two-dimensional output 

observation space (m = 2) using a simple two-coefEcient channel {L = 1), assumming the 

CIR of: 

E(z) = l - | - 0 . 5 z - \ (2.13) 
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Thus, F = 

possible com 

. All the 
1 0.5 0 _ r _ _ iT r iT 
„ . „ _ 7 = Vk Vk^i and 7^-1 h - ^ 
0 1 0.5 L J L 

iinations of the transmitted binary symbol a n d the noiseless channel outputs 

listed in Table 2.1. 

^t-1 A - 2 '^k—1 

-1 -1 -1 
-1 -1 - n 
-1 4-1 -1 
-1 +1 +1 

-1.5 -1.5 
-1.5 -0.5 
-0.5 -kO.5 
-0.5 4-1.5 

+1 -1 -1 
4-1 -1 +1 
-kl +1 -1 
+1 4-1 -kl 

+0.5 -1.5 
4-0.5 -0.5 
4-1.5 4"0.5 
4-1.5 4-1.5 

Table 2.1: Transmitted signal and noiseless channel states for the CIR of E(z) 
and an equaliser order of m = 2. 

1 + 0.5Z-

Figure 2.3 shows the 8 possible noiseless channel states v* for a BPSK modem and the 

noisy channel output in the presence of zero mean AWGN with variance = 0.05. It is 

seen that the observation vector forms clusters and the centroids of these clusters are the 

noiseless channel states r̂ . The equahsation problem hence involves identi^ing the regions 

within the observation space spanned by the noisy channel output that correspond to 

the transmitted symbol of either 7̂  = +1 or — — 1-

A linear equaliser performs the classif cation in conjunction with a decision device, which 

is often a simple sign function. The decision boundary, as seen in Figure 2.3, is constituted 

by the locus of all values of v*, where the output of the linear equaliser is zero as it is 

demonstrated below. For example, for a two tap linear equaliser having tap coeScients ci 

and cg, at the decision boundary we have: 

= 0 

and 

'91 

'C2' 

(2.14) 

(2.15) 

gives a straight line decision boundary as shown in Figure 2.3, which divides the observation 

space into two regions corresponding to 7̂  = +1 ^md 7̂^ = — 1. In general, the linear 

equaliser can only implement a hyperplane decision boundary, which in our two-dimensional 

example was constituted by a line. This is clearly a non-optimum classiEcation strategy, as 

our forthcoming geometric visualisation will highlight. For example, we can see in Figure 2.3 

that the point v = 0.5 - 0 . 5 associated with the 7̂  = +1 decision is closer to the 
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^ 0 

vt with Zt-T = +1 
• vj. with /t-T = -1 
X vt = rt state 
0 v*. = r r atate 

"" linear boundary 

-3 0 

Figure 2.3: The noiseless BPSK-related channel states and the noisy channel 
outputs v;t of a Gaussian channel having a CIR of E(z) — 1 + 0.5z"^ in a two-dimensional 
observation space. The noise variance cr̂  = 0.05, the number of noisy received v* samples 
output by the channel and input to the equaliser is 2000 and the decision delay is T = 0. 
The linear decision boundary separates the noisy received clusters that correspond to 

= +1 from those that correspond to = — 1-
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decision boundary than the point v = —1.5 —0.5 associated with the = —1 decision. 

Therefore, in the presence of noise, there is a higher probability of the channel output centred 

at point V = 0.5 -0 .5 to be wrongly detected 38 7 ^ = —1, than that of the channel 

output centred around v = —1.5 —0.5 being incorrectly detected as 7̂  = +1- Gibson 

ef. aZ. [17] have shown examples of hnearly non-separable channels, when the decision 

delay is zero and the channel is of non-minimum phase nature. The linear separability of 

the channel depends on the equaliser order, m, on the delay r and in situations where the 

channel characteristics are time varying, it may not be possible to specify values of m and 

T, which will guarantee linear separability. 

According to Chen, Gibson and Cowan [21], the above shortcomings of the hnear equaliser 

are circumvented by a Bayesian approach [31] to obtaining an optimal equalisation solution. 

In this spirit, for an observed channel output vector v^, if the probability that it was caused 

by = +1 exceeds the probability that it was caused by = — 1, then we should 

decide in favour of -f-1 and vice versa. Thus, the optimal Bayesian equaliser solution is 

defined as [21]: 

- 1 if/Boyea(vt) < 0, 

where the optimal Bayesian decision function yga2/ea(), based on the diSerence of the asso-

ciated conditional density functions is given by [8]: 

fBayesi'^k) — ~ +1) ~ P{'^k\^k—T — ^1) 

^ - r^) - - r7), (2.17) 

where and is the a priori probabihty of appearance of each desired state E 

and E respectively and p ( ) denotes the associated probability density function. 

The quantities nf and nj represent the number of desired channel states in and 

respectively, which are deSned implicitly in Figure 2.3. If the noise distribution is Gaussian, 

Equation 2.17 can be rewritten as: 

nt 
/BagfeXvt) = ^p^(27ra^)-'^/^ea;p(- | |vt-rt | |^/2cr^) 

i=:l 
nj 

- ^p7(27r(7^)-":/^ea;p(-||vA - r7||2/2(T^). (2.18) 
j=i 

Again, the optimal decision boundary is the locus of all values of v^, where the probabihty 

— +1 given a value is equal to the probabihty = — 1 for the same v^. 
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In general, the optimal Bayesian decision boundary is a hyper-surface, rather than just 

a hyper-plane in the m-dimensional observation space and t h e realisation of this nonlinear 

boundary requires a nonlinear decision capability. Neural networks provide this capability 

and the following section will discuss the various neural network structures that have been 

investigated in the context of channel equalisation, while also highlighting the learning 

algorithms used. 

2.3 In t roduc t ion to Neura l Networks 

2.3.1 Biological and Artificial Neurons 

'̂ Apical dendrite 
„ Cell body 

* V 

Basal dendrite 
(lnaial##gm#n() 

Termnal 

Dendnte 

13ms-
(a) Anatomy of a typical biological 
neuron, &om Kandel [32] 

Xq — 1 

WQj — bj 

Inputs 4 

Activation 
function 

•Vj 

Synaptic 
weights 

(inc. bias) 

(b) An artificial neuron (jth-neuron) 

Figure 2.4: Comparison between biological and artiEcial neurons 

The human brain consists of a dense interconnection of simple computational elements 

referred to as neurons. Figure 2.4(a) shows a network of biological neurons. As seen in 

the Egure, the neuron consists of a cell body - which provides the information-processing 

functions - and of the so-called axon with its terminal fibres. The dendrites seen in the 

Egure are the neuron's 'inputs', receiving signals from other neurons. These iuput signals 

may cause the neuron to /zre, i.e. to produce a rapid, short-term change in the potential 

difference across the cell's membrane. Input signals to the cell may be excitatory, increasing 

the chances of neuron Bring, or inhibitory, decreasing these chances. The axon is the 
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neuron's transmission line that conducts the potential difference away from the cell body 

towards the terminal Ebres. This process produces the so-called gynopaea, which form either 

excitatory or inhibitory connections to the dendrites of o ther neurons, thereby forming a 

neural network. Synapses mediate the interactions between neurons and enable the nervous 

system to adapt and react to its surrounding environment. 

In Artificial Neural Networks (ANN), which mimic the operation of biological neural net-

works, the processing elements are artificial neurons and their signal processing properties 

are loosely based on those of biological neurons. Referring to Figure 2.4(b), the _;th-neuron 

has a set of I synapses or connection links. Each link is characterized by a synaptic weight 

lUij, % = 1 , 2 , . . . , / . The weight lUij is positive, if the associated synapse is excitatory and it 

is negative, if the synapse is inhibitory. Thus, signal a:, at the input of synapse %, connected 

to neuron j, is multiphed by the synaptic weight These synaptic weights that store 

'knowledge' and provide connectivity, are adapted during the learning process. 

The weighted input signals of the neuron are summed up by an adder. If this summation 

exceeds a so-called firing threshold 6j, then the neuron fires a n d issues an output. Otherwise 

it remains inactive. In Figure 2.4(b) the effect of the firing threshold 9j is represented by 

a bias, arising from an input which is always 'on', corresponding to zo = 1, weighted 

by woj = — T h e importance of this is that the bias can be treated as just another 

weight. Hence, if we have a training algorithm for Ending an approriate set of weights for 

a network of neurons, designed to perform a certain function, we do not need to consider 

the biases separately. 

The activation function /(•) of Figure 2.5 limits the amplitude of the neuron's output to 

some permissible range and provides nonlinearities. Haykin [6] identifies three basic types 

of activation functions: 

1. TAregAoM For the threshold function shown in Figure 2.5(a), we have 

Neurons using this activation function are referred to in the literature as the McCu/focA-

fiMa mocfef [6]. In this model, the output of the neuron gives the value of 1 if the 

total internal activity level of that neuron is nonnegative and 0 otherwise. 

2. Piecewise-Linear Function. This neural activation function, portrayed in Figure 2.5(b), 

is represented mathematically by: 

f 1, ^ > 1 

/(i;) = < r, - 1 > 7; > 1 , (2.20) 

- 1 , i ; < - l 
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(a) Threshold activation function (b) Piecewise-linear activation function 

5 

(c) Sigmoid activation function 

Figure 2.5: Various neural activation functions / (n) 

where the amplification factor inside the linear region is assumed to be unity. This 

activation function approximates a nonlinear ampliSer. 

3. Sigmoid Function. A commonly used neural activation function in the construction of 

artificial neural networks is the sigmoid activation function. It is defined as a strictly 

increasing function that exhibits smoothness and asymptotic properties, as seen in 

Figure 2.5(c). An example of the sigmoid function is the hyperbolic tangent function, 

which is shown in Figure 2.5(c) and it is defined by [6]: 

1 — ea:p(—r) 
/ W (2.21) 

1 + ea;p(—f) 

This activation function is differentiable, which is an important feature in neural 

network theory [6]. 
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The model of the j th artihcial neuron, shown in Figure 2.4(b) can be described in math-

ematical terms by the following pair of equations: 

where: 

Vj — 

^ ^ WijXi-
1 = 0 

(2.22) 

(2.23) 

Having introduced the basic elements of neural networks, we will focus next on the as-

sociated network structures or architectures. The diSerent neural network structures yield 

diSerent functionalities and capabilities. The basic structures will be described in the fol-

lowing section. 

2.3.2 Neural Network Architectures 

The network's architecture dehnes the neurons' arrangement in the network. Various neural 

network architectures have been investigated for dlEerent applications, including for exam-

ple channel equalisation. Distinguishing the diSierent structures can assist us in their design, 

analysis and implementation. We can identify three diEerent classes of network architectures, 

which are the subjects of our forthcoming deliberations. 

input 
layer 

output 
layer 

(a) Single-Layer Perceptron 
(SLP) 

input 
layer 

hidden 
layer 

output 
layer 

(b) Multi-Layer Perceptron (MLP) 

Figure 2.6: Layered feedforward networks 

The so-called of Figure 2.6 exhibit a layered structure, where 

all connection paths are directed from the input to the output, with no feedback. This 
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implies that these networks are imconditionally stable. Typically, the neurons in each layer 

of the network have only the output signals of the preceding layer as their inputs. 

Two types of layered feedforward networks are often invoked, in order to introduce neural 

networks, namely the 

# f ercep^rona (SLP) which have a single layer of neurons. 

a Multi-Layer Perceptrons (MLP) which have multiple layers of neurons. 

Again, these structures are shown in Figure 2.6. The MLP distinguishes itself from the SLP 

by the presence of one or more foi/era of neurons. Figure 2.6(b) illustrates the layout 

of a MLP having a single hidden layer. It is referred to as a p-h-q network, since it has 

p source nodes, A hidden neurons and g neurons in the output layer. Similarly, a layered 

feedforward network having p source nodes, neurons in the 6rst hidden layer, /ig neurons 

in the second hidden layer, /13 neurons in the third layer and g neurons in the output layer 

is referred to as a p-Ai-A2-A3-g network. If the SLP has a diflerentiable activation function, 

such as the sigmoid function given in Equation 2.21, the network can learn by optimizing 

its weights using a variety of gradient-based optimization algorithms, such as the grocfieMf 

descent method, described briefly in Appendix A. The interested reader can refer to the 

monograph by Bishop [33] for further gradient-based optimization algorithms used to train 

neural networks. 

The addition of hidden layers of nonlinear nodes in MLP networks enables them to 

extract or learn nonlinear relationships or dependencies from the data, thus overcoming 

the restriction that SLP networks can only act as linear discriminators. Note that the 

capabilities of MLPs stem from the nonlinearities used within neurons. If the neurons 

of the MLP were linear elements, then a SLP network with appropriately chosen weights 

could carry out exactly the same calculations, as those performed by any MLP network. 

The downside of employing MLPs however, is that their complex connectivity renders them 

more implement at ionally complex and they need nonlinear training algorithms. The so-

called error propagation algorithm popularized in the contribution by Rumelhart e(. 

aZ. [34, 35] is regarded as the standard algorithm for training MLP networks, against which 

other learning algorithms are often benchmarked [6]. 

Having considered the family of layered feedforward networks we note that a so-called 

recurrenf meuraZ neWorA [6] distinguishes itself from a layered feedforward network by 

having at least one /eejAacA loop. 

Lastly, lattice structured neural networks [6] consist of networks of a one-dimensional, 

two-dimensional or higher-dimensional array of neurons. The lattice network can be viewed 

as a feedforward network with the output neurons arranged in rows and columns. For 
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Input layer 
O-

Figure 2.7: Two-dimensional lattice of 3-by-3 neurons 

example, Figure 2.7 shows a two-dimensional lattice of 3-by-3 neurons fed from a layer of 3 

source nodes. 

Neural network models are specified by the nodes' characteristics, by the network topol-

ogy, and by their training or learning rules, which set and adapt the network weights 

appropriately, in order to improve performance. Both the associated design procedures and 

training rules are the topic of much current research [36]. The above rudimentary notes only 

give a brief and basic introduction to neural network models. For a deeper introduction 

to other neural network topologies and learning algorithms, please refer for example to the 

review by Lippmann [37]. Let us now provide a rudimentary overview of the associated 

equahsation concepts in the following section. 

2.4 Equal isat ion Using Neura l Ne tworks 

A few of the neural network architectures that have been investigated in the context of 

channel equalisation are the so-called Multilayer Perceptron (MLP) advocated by Gibson, 

Siu and Cowan [16, 17, 18, 19, 20], as well as the Polynomial-Perceptron (PP) studied by 

Chen, Gibson, Cowan, Chang, Wei, Xiang, Bi, L.-Ngoc e(. af. [21, 22, 23, 24]. Furthermore, 

the RBF was investigated by Chen, McLaughlin, Mulgrew, Gibson, Cowan, Grant ê . aJ. 

[25, 26, 8, 27], the recurrent network [38] was proposed by C.-Sueiro, A.-Rodriguez and 

F.-Vidal, the Functional Link (FL) technique was introduced by Gan, Hussain, Soraghan 

and Durrani [39, 40, 41] and the Self-Organizing Map (SOM) was proposed by Kohonen et. 

of. [42]. 

Various neural network based equalisers have also been implemented and investigated for 

transmission over satellite mobile channels [43, 44, 45]. The following section wiH present 

and summarise some of the neural network based equalisers found in literature. We will 
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investigate the RBF structure in the context of equalisation in more detail during our later 

discourse in the next few sections. 

2.5 Mult i layer Pe rcep t ron Based Equal i ser 

z~^ z~^ . -1 z~^ z~^ . -1 '^k—m+l 

Input layer 

Hidden layer 1 

Hidden layer 2 

Output layer 

Figure 2.8: Multilayer perceptron model of the m-tap equaliser of Figure 2.2 

Multilayer perceptrons (MLPs), which have three layers of neurons, i.e. two hidden 

layers and one output layer, are capable of forming any desired decision region for example 

in the context of modems, which was noted by Gibson and Cowan [46]. This property 

renders them attractive as nonlinear equalisers. The structure of a MLP network has been 

described in Section 2.3.2 as a layered feedforward network. As an equaliser, the input of 

the MLP network is the sequence of the received signal samples {%} and the network has a 

single output, which gives the estimated transmitted symbol Jfc-r, as shown in Figure 2.8. 

Figure 2.8 shows the m — - Ag — 1 MLP network as an equaliser. Referring to Figure 2.9, 

Figure 2.9: The jth neuron in the mth layer of the MLP 
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the jth neuron (j = 1 , . . . , A/) in the t̂h layer (Z = 0,1,2,3, where the 0th layer is the input 

layer and the third layer is the output layer) accepts inputs from 

the (/ — l)th layer and returns a scalar given by 

hi-i 
J = 1 , Z = 0 , l ,2 ,3 , (2.24) 

2=1 

where ho = m is the number of nodes at the input layer, which is equivalent to the equaliser 

order and Ag is the number of neurons at the output layer, which is one according to 

Figure 2.8. The output value serves as an input to the (Z + l)th layer. Since the 

transmitted binary symbol taken from the set {+1,-1} has a bipolar nature, the sigmoid 

type activation function /(•) of Equation 2.21 is chosen to provide an output in the range 

of as shown in Figure 2.5(c). The MLP equaliser can be trained adaptively by the 

so-called error back propagation algorithm described for example by Rumelhart, Hinton 

and Williams [34]. 

The major di@culty associated with the MLP is that training or determining the required 

weights is essentially a nonhnear optimisation problem. The mean squared error surface 

corresponding to the optimisation criterion is multi-modal, implying that the mean squared 

error surface has local minima as well as a global minimum. Hence it is extremely difE-

cult to design gradient type algorithms, which guarantee Ending the global error minimum 

corresponding to the optimum equaliser coeScients under all input signal conditions. The 

error back propagation algorithm to be introduced during our further discourse does not 

guarantee convergence, since the gradient descent might be trapped in a local minimum 

of the error surface. Furthermore, due to the MLP's typically complicated error surface, 

the MLP equaliser using the error back propagation algorithm has a slower convergence 

rate than the conventional adaptive equaliser using the Least Mean Square (LMS) algo-

rithm described in Appendix A. This was illustrated for example by Siu of. [20] using 

experimental results. The introduction of the so-called momentum term was suggested by 

Rumelhart aJ. [35] for the adaptive algorithm to improve the convergence rate. The idea 

is based on sustaining the weight change moving in the same direction with a 'momentum' 

to assist the back propagation algorithm in moving out of a local minimum. Nevertheless, 

it is still possible that the adaptive algorithm may become t rapped at local minima. Fur-

thermore, the above-mentioned momentum term may cause oscillatory behaviour close to a 

local or global minimum. Interested readers may wish to refer to the excellent monograph 

by Haykin [6] that discusses the virtues and limitations of the error back propagation algo-

rithm invoked to train the MLP network, highlighting also various methods for improving 

its performance. Another disadvantage of the MLP equaliser with respect to conventional 

equaliser schemes is that the MLP design incorporates a three-layer perceptron structure, 
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Figure 2.10: Multilayer perceptron equaliser with decision feedback 

which is considerably more complex. 

Sill ef 0̂ . [20] incorporated decision feedback into the MLP structure, as shown in Fig-

ure 2.10 with a feedforward order of m and a feedback order of M. The authors provided 

simulation results for binary modulation over a dispersive Gaussian channel, having an im-

pulse response of F(z) = 0.3482 + 0.8704z^^ + 0.3482z"^. Their simulations show that the 

MLP DFE structure offers superior performance in comparison to the LMS DFE structure. 

They also provided a comparative study between the MLP equaliser with and without feed-

back. The performance of the MLP equaliser was improved by about 5dB at a BER of 10"'̂  

relative to the MLP without decision feedback and having the same number of input nodes. 

Siu, Gibson and Cowan also demonstrated that the performance degradation due to decision 

errors is less dramatic for the MLP based DFE, when compared to the conventional LMS 

DFE, especially at poor signal-to-noise ratio (SNR) conditions. Their simulations showed 

that the MLP DFE structure is less sensitive to learning gain variation and it is capable 

of converging to a lower mean square error value. Despite providing considerable perfor-

mance improvements, MLP equalisers are still problematic in terms of their convergence 

performance and due to their more complex structure relative to conventional equalisers. 
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2.6 Polynomial Pe rcep t ron Based Equa l i se r 

The so-called PP or Volterra series structure was proposed for channel equalisation by Chen, 

Gibson and Cowan [21]. The PP equaliser has a simpler s t ructure and a lower computational 

complexity, than the MLP structure, which makes it more attractive for equalisation. A 

perceptron structure is employed, combined with polynomial approximation techniques, in 

order to approximate the optimal nonlinear equalisation solution. The design is justified 

by the so-called Stone-Weierstrass theorem [47], which states that any continuous function 

can be approximated within an arbitrary accuracy by a polynomial of a sufficiently high 

order. The model of the PP was investigated in detail by Xiang et al. [24]. The nonlinear 

equaliser is constructed according to [21]: 

m—l m—1 m—1 

il=0 21=0 12=11 
m—l m—l 

~l~ ^ ] • • • ^ • • • '^k—ii; 
i i = 0 

n 

= (2.25) 
1=0 

= /(/p(vA:)), (2-26) 

-̂ k-T = (2.27) 

where I is the polynomial order, m is the equaliser order, Xi^k are the so-called monomials 

(polynomial with a single power term) corresponding to the power terms of the equalizer 

inputs from Vk-ii to • • • ^k-ii, Wi are the corresponding polynomial coefficients Ci^ 

to Ci^...ii and n is the number of terms in the polynomial. Here, the term Wi and Xi^k 

of Equation 2.25 correspond to the synaptic weights and inputs of the perceptron/neuron 

described in Figure 2.4(b), respectively. 

The function j/p(vt) in Equation 2.26 is the polynomial that approximates the Bayesian 

decision function fBayesi^k) of Equation 2.17 and the function / p f (v*) in Equation 2.26 

is the P P decision function. The activation function of the perceptron /(•) is the sigmoid 

function given by Equation 2.21. The reasons for applying the sigmoidal function were 

highlighted by Chen, Gibson and Cowan [21], which are briefly highlighted below. In 

theory the number of terms in Equation 2.25 can be infinite. However, in practice only a 

finite number of terms can be implemented, which has to be su&ciently high to achieve a 

low received signal mis-classification probability, i.e. a low decision error probability. The 

introduction of the sigmoidal activation function / (a;) is necessary, since it allows a moderate 

polynomial degree to be used, while having an acceptable level of mis-classification of the 

equaliser input vector corresponding to the transmitted symbols. This was demonstrated 
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by Chen e(. aZ. [21] using a simple classi&er example. Chen ef. of. [21] reported that 

a polynomial degree of Z = 3 or 5 was su&cient with the introduction of the sigmoidal 

activation function judging from their simulation results for t h e experimental circumstances 

stipulated. 

From a conceptual point of view, the PP structure expands the input space of the 

equaliser, which is dehned by the dimensionality of {v*}, into an extended nonlinear space 

and then employs a neuron element in this space. Consider a simple polynomial perceptron 

Cm 

Output layer 

Y Input layer 

Figure 2.11: Polynomial perceptron equaliser using an equaliser order of m = 2 and poly-
nomial order of / = 3 

based equaliser, where the equaliser order is m = 2 and the polynomial order is / = 3. Then 

the polynomial decision function is given by: 

/ f p ( v t ) = /(coUjt + + 

cooo^t + (2.28) 

The structure of the equaliser defined by Equation 2.28 is illustrated in Figure 2.11. The 

simulation results of Chen ef. oZ. [21] using binary modulation show close agreement with 

the bit error rate performance of the MLP equaliser. However, the training of the PP 

equaliser is much easier compared to the MLP equaliser, since only a single-layer percep-

tron is involved in the PP equaliser. The nonlinearity of the sigmoidal activation function 
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introduces local minima to the error surface of the otherwise linear perceptron structure. 

Thus, the stochastic gradient algorithm [34, 35] assisted by the previously mentioned mo-

mentum term [35] can be invoked in their scheme in order to adaptively train the equaliser. 

The decision feedback structure of Figure 2.10 can be incorporated into Chen's design [21] 

in order to further improve the performance of the equaliser. 

The PP equaliser is attractive, since it has a simpler structure than that of the MLP. The 

PP equaliser also has a multi-modal error surface - exhibiting a number of local minima and 

a global minimum - and thus still retains some problems associated with its convergence 

performance, although not as grave as the MLP structure. Another drawback is that 

the number of terms in the polynomial of Equation 2.25 increases exponentially with the 

polynomial order Z and with the equaliser order m, resulting in an exponential increase of 

the associated computational complexity. 

2.7 Radial Basis Function Networks 

2.7.1 Introduction 

Vo = ![ 

Wo = 6 

*- -F(x) 

Zp_l 

Input Layer Hidden Layer Output Layer 

Figure 2.12: Architecture of a radial basis function network 

In this section, we will introduce the concept of the so-called Radial Basis Function (RBF) 

networks and highlight their architecture. The RBF network [6] consists of three different 

layers, as shown in Figure 2.12. The input layer is constituted by p source nodes. A set of 

M nonlinear activation functions y;,, t = 1 , . . . , M, constitutes the hidden second layer. The 

output of the network is provided by the third layer, which is comprised of output nodes. 

Figure 2.12 shows only one output node, in order to simplify our analysis. This construction 

is based on the basic neural network design. As suggested by the terminology, the activation 

functions in the hidden layer take the form of radial basis functions [6]. Radial functions are 

characterized by their responses that decrease or increase monotonically with distance from 
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9̂  

Figure 2.13: Gaussian radial basis function described by Equation 2.30 with centre q = 0 
and spread of 2(7̂  = 1. 

a central point, c, i.e. as the Euclidean norm ||x —c|| is increased, where x = [a;i rrg - -

is the input vector of the RBF network. The central points in the vector c are often referred 

to as the RBF centres. Therefore, the radial basis functions take the form 

= y(l|x c,; % = 0 , . . . , M, (2.29) 

where M is the number of independent basis functions in the RBF network. This justifies 

the 'radial' terminology. A typical radial function is the Gaussian function which assumes 

the form: ^ 

y)i(x) = , z = 0 , . . . , M, (2.30) 
2af 

where 2af is representative of the 'spread' of the Gaussian function that controls the radius 

of influence of each basis function. Figure 2.13 illustrates a Gaussian RBF, in the case of a 

scalar input, having a scalar centre of c = 0 and a spread or width of 2(7̂  = 1. Gaussian-like 

RBFs are localized , i.e. they give a signiEcant response only in the vicinity of the centre 

and Y;(a;) — 0 as a; —> oo . As well as being localized, Gaussian basis functions have a 

number of useful analytical properties, which will be highhghted in our following discourse. 

Referring to Figure 2.12, the RBF network can be represented mathematically as follows: 

M 
(2.31) 

%—0 

The bias 6 in Figure 2.12 is absorbed into the summation as wo by including an extra basis 

function yo, whose activation function is set to 1. Bishop [33] gave an insight into the 
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role of the bias wo when the network is trained by minimizing the sum-of-squared error 

between the RBF network output vector and the desired ou tpu t vector. The bias is found 

to compensate for the difference between the mean of the R B F network output vector and 

the corresponding mean of the target data evaluated over the training data set. 

Note that the relationship between the RBF network and the Bayesian equalisation solu-

tion expressed in Equation 2.18, can be given explicitly. The RBF network's bias is set to 

& = lOo = 0. The RBF centres Cj, ? = 1 , . . . , M, are in fact the noise-free dispersion-induced 

channel output vectors ri,% = indicated by circles and crosses, respectively, in 

Figure 2.3 and the number of hidden nodes M of Figure 2.12 corresponds to the number 

of desired channel output vectors, i.e. M = n^. The RBF weights Wi,i = 1,..., M, are 

all known from Equation 2.18 and they correspond to the scaling factors of the conditional 

probabihty density functions in Equation 2.18. Section 2.9.1 will provide further exposure 

to these issues. 

Having described brieSy the RBF network architecture, the next few sections will present 

its design in detail and also motivate its employment from the point of view of classification 

problems, interpolation theory and regularization. The design of the hidden layer of the 

RBF is justiGed by Cover's Theorem [48] which wiU be described in Section 2.7.2. In Sec-

tion 2.7.3, we consider the so-called interpolation problem in t h e context of RBF networks. 

Then, we discuss the implications of sparse and noisy training data in Section 2.7.4. The 

solution to the problem of using regularization theory is also presented there. Lastly, in 

Section 2.7.5, the generalized RBF network is described, which concludes this section. 

2.7.2 Cover's Theorem 

The design of the radial basis function network is based on a curve-fitting {approximation) 

problem in a high-dimensional space, a concept, which was augmented for example by 

Haykin [6]. Specifically, the RBF network solves a complex pattern-classification problem, 

such as the one described in Section 2.2 in the context of Figure 2.3 for equalisation, by Erst 

transforming the problem into a high-dimensional space in a nonlinear manner and then 

by Ending a surface in this multi-dimensional space that best fits the training data, as it 

will be explained below. The underlying justification for doing so is provided by Cover's 

on the which states that [48]: 

a complex pattern-classiScation problem non-linearly cast in a high-dimensional 

space is more likely to become linearly separable, than in a low-dimensional 

space. 

We commence our discourse by highlighting the pattern-classiEcation problem. Consider 

a surface that separates the space of the noisy channel outputs of Figure 2.3 into two 
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separating surface 

Figure 2.14: Pattern-classification into two dimensions, where the patterns are linearly 
non-separable, since a line cannot separate all the X"̂  and values, but the non-linear 
separating surface can - hence the term nonhnearly separable 

regions or classes. Let % denote a set of N patterns or points X2, . . . , x^, each of which 

is assigned to one of two classes, namely and This dichotomy or binary partition 

of the points with respect to a surface becomes successful, if the surface separates the 

points belonging to the class from those in the class Thus, to solve the pattern-

classification problem, we need to provide this separating surface that gives the decision 

boundary, as shown in Figure 2.14. 

We will now non-linearly cast the problem of separating the channel outputs into a high-

dimensional space by introducing a vector constituted by a set of real-valued functions 

iy;i(x), where % = 1 , 2 , . . . , M, for each input pattern x E as follows: 

y W = [ m N y 2 ( x ) . . . yM(x)]^, (2.32) 

where pattern x is a vector in a p-dimensional space and M is the number of real-valued 

functions. Recall that in our approach M is the number of possible channel output vectors 

for Bayesian equalisation solution. The vector y)(x) maps points of x from the p-dimensional 

input space into corresponding points in a new space of dimension M, where p < M. The 

function y)i(x) of Figure 2.12 is referred to as a which plays a role similar to 

a hidden unit in a feedforward neural network, such as that in Figure 2.6(b). A dichotomy 

of % is said to be if there exists an Af-dimensional vector w, such 

that for the scalar product w^y)(x) we may write 

w ^ y ( x ) > 0 , if X G (2.33) 

and 

w ^ y ( x ) < 0 , i f x G % " . (2.34) 

The hypersurface deEned by the equation 

w ^ y ( x ) = 0 (2.35) 

describes the separating surface in the y; space. The inverse image of this hypersurface is 

{x : w ^ y ( x ) = 0}, (2.36) 
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which dehnes the separating surface in the input space. 

Below we give a simple example in order to visualise the concept of Cover's theorem in 

the context of the separability of patterns. Let us consider t h e XOR problem of Table 2.2, 

which is not linearly separable since the XOR = 0 and XOR = 1 points of Figure 2.15(a) 

cannot be separated by a line. The XOR problem is transformed into a hnearly separable 

Xl 2:2 XOR 
0 0 0 

0 1 1 
1 0 1 

1 1 0 

Table 2.2; XOR truth table 

problem by casting it from a two-dimensional input space into a three-dimensional space 

by the function yi(x), where x a;i 372 
T 

and if = y?! ^2 The hidden 

functions of Figure 2.12 are given in our example by: 

— xx. (2.37) 

y^2(x) — 3̂ 2; (2.38) 

y3(x) — a;ia:2- (2.39) 

The higher-dimensional </?-inputs and the desired XOR output are shown in Table 2.3. 

¥>1 y)2 XOR 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

Table 2.3: XOR truth table with inputs of </9i, 992 and (̂ 3. 

Figure 2.15(b) illustrates, how the higher-dimensional XOR problem can be solved with 

the aid of a hnear separating surface. Note that y?,,« = 1,2, 3 given in the above example 

are not of the radial basis function type described in Equation 2.29. They are invoked as a 

simple example to demonstrate the general concept of Cover's theorem. 

Generally, we can find a non-linear mapping (p(x) of sufficiently high dimension M, such 

that we have linear separability in the y^-space. It should be stressed, however that in some 

cases the use of nonhnear mapping may be suBcient to produce linear separabihty without 

having to increase the dimensionality of the hidden unit space [6]. 
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Z2 

M (0,1) 

(0,0) 

o(l , l ) 

(a) XOR problem, 
which is not linearly 
separable. 

(0 

Decision 

hyperplaiie 
\ 

'"ftr; i-.trr. 

:%i0,o) 

p(i, i , i) 
•r 

Lp\ 

(b) XOR problem mapped to the three-
dimensional space by the function y(x). The 
mapped XOR problem is linearly separable. 

Figure 2.15: The XOR problem solved by <p(x) mapping. Bold dots represent XOR = 1, 
while hollow dots correspond to XOR = 0. 

2.7.3 Interpolation Theory 

From the previous section, we note that the RBF network can be used to solve a nonlinearly 

separable classiEcation problem. In this section, we highlight the use of the RBF network 

for performing earacf of a set of data points in a multi-dimensional space. 

The exact interpolation problem requires every input vector to be mapped exactly onto the 

corresponding target vector, and forms a convenient starting point for our discussion of RBF 

networks. In the context of channel equalisation we could view the problem as attempting 

to map the channel output vector of Equation 2.4 to the corresponding transmitted symbol. 

Consider a feedforward network with an input layer having p inputs, a single hidden 

layer and an output layer with a single output node. The network of Figure 2.12 performs a 

nonlinear mapping from the input space to the hidden space, followed by a linear mapping 

from the hidden space to the output space. Overall, the network represents a mapping from 

the p-dimensional input space to the one-dimensional output space, written aa 

s : (2.40) 

where the mapping g is described by a continuous hypersurface T C . The continuous 

surface F is a multi-dimensional plot of the output as a function of the input. Figure 2.16 

illustrates the mapping f (z) from a single-dimensional input space a; to a single-dimensional 

output space and the surface T. Again, in the case of an equaliser, the mapping surface T 

maps the channel output to the transmitted symbol. 

In practical situations, the continuous surface F is unknown and the training data might 

be contaminated by noise. The network undergoes a so-caUed Zeammg proceaa, in order 

to End the specific surface in the multi-dimensional space that provides the best St to the 
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FW 

'surface' F 

* training data 

interpolation 

Figure 2.16: Stylised exact interpolation between the known input-output pairs by the 
continuous surface F 

training data (f; where % = 1 ,2 , . . . ,7V. The 'best Et' surface is then used to interpolate 

the test data or for the speciSc case of an equaliser, the estimated transmitted symbol. 

Formally, the learning process can be categorized into two phases, the training phase and 

the generalisation phase. During the training phase, the fi t t ing procedure for the surface 

r is optimised based on N known data points presented to the neural network in the 

form of input-output pairs [x,, d*], % = 1, 2 , . . . TV. The generalization phase constitutes 

the interpolation between the data points, where the interpolation is performed along the 

constrained surface generated by the Htting procedure, aa the optimum approximation to 

the true surface F. 

Thus, we are led to the theory of multivariable interpolation in high-dimensional spaces. 

Assuming a single-dimensional output space, the interpolation problem can be stated as 

follows: 

Given a set of TV diSerent points x, E 1 ,̂% = 1 , 2 , . . . , in the p-dimensional 

input space and a corresponding set of # real numbers E , % = 1 , 2 , . . . , .ZV, 

in the one-dimensional output space, End a function f : 1^ 

the interpolation condition: 

that satisfies 

i — 1,2,... , N, (2.41) 

implying that for i = 1 , 2 , . . . , AT the function f'(x) interpolates between the values d,. Note 

that for exact interpolation, the interpolating surface is constrained to pass through aH the 

training data points Xj. The RBF technique is constituted by choosing a function F{x) 
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that obeys the following form: 

N 

W = ^ - Xill), (2.42) 

where = 1 ,2 , . . . , ^ , is a set of # nonlinear fimctions, known as 

the radial basis function, and ||.|| denotes the distance norm that is usually taken to be 

Euclidean. The known training data points — 1 , 2 , . . . , ^ constitute the centroids 

of the radial basis functions. The unknown coefficients Wi represent the weights of the RBF 

network of Figure 2.12. In order to link Equation 2.42 with Equation 2.31 we note that 

the number of radial basis functions M is now set to the number of training data points N 

and the RBF centres Cj of Equation 2.29 are equivalent to t h e training data points Xj, i.e., 

Cj = Xi, i = 1, 2 , . . . N. The term associated with 2 = 0 was not included in Equation 2.42, 

since we argued above that the RBF bias was wo = 0. 

Upon inserting the interpolation conditions of Equation 2.41 in Equation 2.42, we obtain 

the following set of simultaneous linear equations for the unknown weights w,: 

(2.43) 

where 

Let 

m i <fl2 - - di 

<̂ 21 ^22 - . Ŷ2Ar W2 
= 

- -

= y'dIX; - Xill), == 1 2,. . .,N. 

d = \d\, G?2 3 

w [lUl,W2,...,W;v]^, 

(2.44) 

(2.45) 

(2.46) 

where the AT-by-l vectors d and w represent the equaliser's desired response vector and 

the linear weight vector, respectively. Let $ denote an jV-by-# matrix with elements of 

^ == 1 , 2 , w h i c h we refer to as the mafnz, since it generates the 

interpolation J^(xi) — d* through Equation 2.41 and Equation 2.42 using the weights Wi. 

Then Equation 2.43 can be written in the compact form of: 

$vy = d. (2.47) 

We note that if the data points d, are all distinct and the interpolation matrix $ is positive 

definite, implying that all of its elements are positive and hence $ is invertible, then we 

can solve Equation 2.47 to obtain the weight vector w, which is formulated as: 

ViT = # M (2.48) 
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where is the inverse of the interpolation matrix # . 

From ^Aeorem [49], there exists a class of radial basis functions that generates cin 

interpolation matrix, which is positive definite. Specifically, Light's theorem applies to a 

range of functions, which include the Gaussian functions [49] of: 

y)(r) = exp 

= exp( )' = (2.50) 

where is the variance of the Gaussian function. Hence the elements cpji of $ can be 

determined from Equation 2.50. Since $ is invertible, it is always possible to generate 

the weight vector w for the RBF network from Equation 2.48, in order to provide the 

interpolation through the training data. 

In an equalisation context, exact interpolation can be problematic. The training data are 

sparse and are contaminated by noise. This problem will be addressed in the next section. 

2 .7 .4 R e g u l a r i z a t i o n T h e o r y 

The partitioning hyper-surface and the interpolation hyper-surface mentioned in the previ-

ous sections was reconstructed or approximated from a given set of data points that may 

be sparse or noisy during learning. Therefore, the learning process used to reconstruct or 

approximate the classification hyper-surface can be seen as belonging to a generic class of 

problems referred to as mnerae probZema [6]. 

An inverse problem may be 'well-posed' or 'ill-posed'. In order to explain the term 'well-

posed', assume that we have a domain ^ and a range Y taken to be spaces obeying the 

properties of metrics and they are related to each other by a fixed but unknown mapping 

y = E(%). The problem of reconstructing the mapping E is said to be we/Z-poaej, if the 

following conditions are satisEed [50]: 

1. Ezzgfence." For every input vector x E there exists an output = E(x), where 

y G F , as seen in Figure 2.17. 

2. Uniqueness: For any pair of input vectors x, t G X , we have E(x) = F{t) if, and only 

if, X = t. 

3. Continuity: The mapping is continuous. 

If these conditions are not satisEed, the inverse problem of identi^ing a; giving rise to 

is said to be ill-posed. 

Learning, where the partitioning or interpolation hyper-surface is approximated, is in 

general an ill-posed inverse problem . This is because the uniqueness criterion may be 
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\\ x y Mapping 

Domain X Range Y 

Figure 2.17; The mapping of the input domain X onto the output range Y 

violated, since there may be insufRcient information in the training data to reconstruct the 

input-output mapping uniquely. Furthermore, the presence of noise or other impairments 

in the input data adds uncertainty to the reconstructed input-output mapping. This is the 

caae in the context of the equalisation problem. 

Tikhonov [51] proposed a method referred to aa /or goWng pro6-

Zemg. The basic idea of regularization is to the solution by means of some auxiliary 

non-negative function that imposes prior restrictions such as, smoothness or correlation con-

straints on the input-output mapping and thereby converting an ill-posed problem into a 

well-posed problem. This approach was treated in depth by Poggio and Girosi [52]. 

According to Tikhonov's regularization theory [51], the previously introduced function F 

is determined by minimising a cos( /unction deSned by 

+ (2.51) 

where A is a positive real number referred to as the regularization parameter and the two 

terms involved are [51]: 

1. Standard Error Term: This term, denoted by 6s{F), quantifies the standard error 

between the desired response di and the actual response m for training samples i = 

1, 2 , . . . , A .̂ It is defined by 

N 

2 
e.(f) = 

1 = 1 

1 ^ 
= (2.52) 

=̂1 

Aegu/onzmg Term.- This term, denoted by depends on the geometric properties 

of the approximation function F{x.). It provides the so-called a priori smoothness 

constraint and it is deEned by 

(2.53) 

where V is a linear (pseudo) differential operator, referred to as a stabilizer [6], which 

stabilizes the solution F , rendering it smooth and therefore continuous. 
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The regularization parameter A indicates, whether the given training data set is suS-

ciently extensive in order to specif the solution E(x). The limiting case A — 0 imphes 

that the problem is unconstrained. Here, the solution F{x) is completely determined from 

the given data set. The other limiting case, A oo, implies that the a priori smoothness 

constraint is suKcient to specify the solution E(x). In other words, the training data set is 

unreliable. In practical apphcations the regularization parameter A is assigned a value be-

tween the two limiting conditions, so that both the sample da t a and the a priori information 

contribute to the solution F{x). 

The minimisation of the cost function by evaluating the derivative of in Equa-

tion 2.51 provides the following solution to E(x) [6]: 

N 

E(x) 
i=l 

N 

= y^WiG(x;xi), (2.64) 
i—l 

where G(x;xj) denotes the so-called Green function centred at Xi and Wi = 

Equation 2.54 states that the solution -F(x) to the regularization problem is a linear superpo-

sition of JV number of Green functions centred at the training data points i , , i = 1 ,2 , . . . , N. 

The weights are the o/ (Ae ezpongion of E(x) in terms of G(x; x,) and are 

the centres of the expansion for i = 1,2,... , N. The centres Xj of the Green functions used 

in the expansion are the given data points used in the training process. 

We now have to determine the unknown expansion coGcients Wi denoted by 

'̂ 1 — ̂  [di i — 1,2,, .N. (2.55) 

Let 

F 

d 

G 

[E(x i ) ,E(x2) , . . . , f^ (x^)r , 

G(xi;xi) G(xi;x2) . 

G(x2;xi) G(x2;x2) . 

G(xi;x;v) 

G(x2;xAr) 

G(x;v;xi) G(x//;x2) . . . (?(xAr;xAr) 

W = [ 'Wi,W2,. . . , 'W;v]^. 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

Rewriting Equation 2.55 and Equation 2.54 in matrix form, we obtain respectively; 

w = —(d - F) (2.60) 
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and 

F = Gw. (2.61) 

Upon substituting Equation 2.61 into Equation 2.60, we get 

(G 4- AI)w = d, (2.62) 

where I is the iV-by-A'" identity matrix. 

Invoking Light's Theorem [49] from Section 2.7.3, we may state that the matrix G 

is positive deSnite for certain classes of Green functions, provided that the data points 

x i , x 2 , . . . ,x / / are distinct. The classes of Green functions covered by Light's theorem in-

clude the so-called multi-quadrics and Gaussian functions [6]. In practice, A is chosen to be 

suSciently large to ensure that G + AI is positive definite and therefore, invertible. Hence, 

the linear Equation 2.62 wiU have a unique solution given by 

w = (G + AI)-^d. (2.63) 

The set of Green functions used is characterized by the specific form adopted for the 

stabilizer V and the associated boundary conditions [6]. By defination, if the stabilizer V 

is translationally invariant, then the Green function (j(x; x j centred at x, will depend only 

on the diEerence between the argument x and x,, i.e.: 

G(x; Xi) = G(x - Xi). (2.64) 

If the stabilizer 7̂  is to be both ond arzonf, then the Green 

function G(x;xi) will depend only on the Euclidean norm of the difference vector x — x,, 

formulated as: 

G(x;xi) = (7 ( | | x -x i | | ) . (2.65) 

Under these conditions, the Green function must be a radial basis function. Therefore, the 

regularized solution of Equation 2.54 takes on the form: 

N 

E(x) == ̂ W ; G ( | | x - Xill). (2.66) 
1=1 

An example of a Green function, whose form is characterized by the diEerential operator 7̂  

that is both translationally and rotationally invariant is the multivariate Gaussian function 

that obeys the following form 

G(x;xi) = e a ; p ^ - ^ ^ | | x - x i | | ^ j , % = (2.67) 

Equation 2.67 is chciracterized by a mean x, and common woHonce cr̂ . 
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It is important to realize that the solution described by Equation 2.66 differs from that 

of Equation 2.42. The solution of Equation 2.66 is by the deEnition given 

in Equation 2.63 for the weight vector w. The two solutions are the same only if the 

regularization parameter A is equal to zero. The regularization parameter A provides the 

smoothing effect in constructing the partition or interpolation hyper-surface during the 

learning process. 

Typically, the number of training data symbols is higher t h a n the number of basis func-

tions required for the RBF network to give an acceptable approximation to the interpolation 

solution. The generalized RBF network is introduced to address this problem and its struc-

ture is discussed in the following section. 

2.7.5 Generalized Radial Basis Function Networks 

The one-to-one correspondence between the training input data x, and the Green function 

G(x; Xi) for % = 1 ,2 , . . . , jV is prohibitively expensive to implement in computational terms 

for large AT values. Especially the computation of the linear weights W; is computationally 

demanding, which requires the inversion of an JV-by-JV matrix according to Equation 2.63. 

In order to overcome these computational difficulties, the complexity of the RBF network 

would have to be reduced and this requires an approximation to the regularized solution. 

The approach followed here involves seeking a suboptimal solution in a lower-dimensional 

space that approximates the regularized solution described by Equation 2.54. This can 

be achieved using Galerkin's method [6]. According to this technique, the approximated 

solution F*{x) is expanded using a reduced M < N number of basis functions, as follows: 

M 

F*(x) = ^ W i y i ( x ) , (2.68) 
2=1 

where yPi(x), % = 1 , 2 , . . . , M, is a new set of basis functions. The number M of the basis 

functions M is typically less than the number of data points AT and the coe@cients 

constitute a new set of weights. Using radial basis functions, we set 

y?i(x) = G(l |x-Ci| |) , % = 1,2, (2.69) 

where Ci, % = 1 , 2 , . . . , M, is the set of RBP centres to be determined. Thus, with the aid of 

Equation 2.68 and Equation 2.69 we have 

-F*(x) - y^WiG(x; Ci) 
1=1 
M 

= ^ iu i (9 ( | | x —Cill). (2.70) 
1=1 
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Now the problem we have to address is the determination of the new set of weights 

= 1 ,2 , . . . ,M, based on a reduced number of M < # basis functions so aa to min-

imize the new cost function according to Tikhonov's cost function of Equation 2.51. 

This new cost function is defined by 

2 
AT / M 

1=1 y j=l 

Minimizing Equation 2.71 with respect to the weight vector w yields [6]: 

(G^G + AGo)w = G^d, 

(2.71) 

where 

w 

Gn 

[̂ 1 5 ^2 7 • • • ) ^n1 ) 

G(xi;ci) G(xi;C2) 

G(x2;ci) G(x2;c2) 

G(x^;ci) G(x;y;c2) 

\w\, W2-, • • • ; ; 
G(ci;ci) G(ci;c2) 

G(c2;ci) G(c2;c2) 

.. G(xi;CM) 

.. G(X2;CM) 

.. (?(ci;CM) 

.. G(C2;CM) 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

G(cM;ci) G(cM;c2) . . . G(cM;cM) 

Here, the matrix G is a non-symmetric N-hj-M matrix and the matrix Gq is a symmetric 

M-by-M matrix. Thus, upon solving Equation 2.72 to obtain the weights w, we get: 

(2.77) w = (G''G + AGo)-^G^d. 

Observe that the solution in Equation 2.77 is different from Tikhonov's solution in Equa-

tion 2.63. Specifically, in Equation 2.58 the matrix G is a symmetric A '̂-by-iV matrix, while 

in Equation 2.74 it is a non-symmetric N-hy-M matrix. 

By introducing a number of modifications to the exact interpolation procedure presented 

in Section 2.7.3 we obtain the generalized radial basis function network model that provides 

a smooth interpolating function, in which the number of basis functions is determined by 

the affordable complexity of the mapping to be represented, rather than by the size of the 

data set. The modiScations which are required are as follows: 

1. The number of basis functions, M, need not be equal to the number of training data 

points, jV. 
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2. In contrast to Equation 2.42, the centres of the basis functions are no longer con-

strained to be given by ^ training input data points x, . Thus, the position of the 

centres of the radial basis functions c^, i = 1, 2 , . . . , M , in Equation 2.70 are the un-

known parameters that have to be 'learned' together with the weights of the output 

layer Wi,i = 1 , 2 , . . . , M . A few methods of obtaining the RBF centres are as fol-

lows: random selection from the training data, the so-called Orthogonal Least Squares 

(OLS) learning algorithm of Chen, Cowan, Grant of. [53, 54] and the well-known 

jiT-means clustering algorithm [8]. We opted for using the jiT-means clustering algo-

rithm in order to learn the RBF centres in our equalisation problem and this algorithm 

will be described in more detail in Section 2.8. 

3. Instead of having a common RBF spread or width parameter 2(7 ,̂ as described in 

Equation 2.49, each basis function is given its own wid th 2af, as in Equation 2.67. 

The value of the spread or width is determined during training. Bishop [33] noted 

that based on noisy interpolation theory, it is a useful rule of thumb when designing 

the RBF network with good generalization properties to set the width 2cr̂  of the RBF 

large in relation to the spacing of the RBF input data. 

Here, the new set of RBF network parEimeters, ĉ , <7̂ , and tUi, where 1 < z < M < .ZV, 

can be learnt in a sequential fashion. For example, a clustering algorithm can be used to 

estimate the RBF centres, c,. Then, an estimate of the variance of the input vector with 

respect to each centre provides the width parameter, cr̂ . Finally, we can calculate the RBF 

weights Wi using Equation 2.77 or adaptively using the LMS algorithm [6]. 

Note that apart from regularization, cin alternative way of reducing the number of basis 

functions required and thus reduce the associated complexity is to use the OLS learning 

procedure proposed by Chen, Cowan and Grant [53]. This method is based on viewing the 

RBF network as a linear regression model, where the selection of RBF centres is regarded 

as a problem of subset selection. The OLS method, employed as a forward regression 

procedure, selects a suitable set of RBF centres, which are referred to as the regressors, 

from a large set of candidates for the training data, yielding M < N. As a further advance, 

Chen, Chng and Alkadhimi [54] proposed a regularised OLS learning algorithm for RBFs 

that combines the advantages of both the OLS and the regularization method. Indeed, it 

was OLS training that was used in the initial application of R B F networks to the channel 

equalisation problem [27]. Instead of using the regularised interpolation method, we opted 

for invoking detection theory, in order to solve the equalisation problem with the aid of 

RBF networks. This will be expounded further in Section 2.9. 

Having described and justified the design of the RBF network of Figure 2.12 that was 
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previously introduced in Section 2.7.1, in the next section the jT-means clustering algo-

rithm used to learn the RBF centres and to partition the R B F network input data into K 

subgroups or clusters is described brieEy. 

2.8 / \ - m e a n s Cluster ing Algor i thm 

In general, the task of the if-means algorithm [55] is to part i t ion the domain of arbitrary 

vectors into jiT regions and then to And a centroid-like reference vector, ĉ , i = 1 , . . . , -fT, that 

best represents the set of vectors in each region or partition. In the RBF network based 

equaliser design the vectors to be clustered are the noisy channel state vectors vt,A; = 

—oo,.. . , oo observed by the equaliser using the current tap vectors, such as those seen in 

Figure 2.3, where the centroid-hke reference vectors are constituted by the optimal channel 

states ri,% — 1 , . . . ,72,̂ , as described in the previous sections. Suppose that a set of input 

patterns x of the algorithm is contained in a domain P. The i^-means clustering problem 

is formulated as Ending a partition of P, P = [P i , . . . , P;^], and a set of reference vectors 

C = { c i , . . . , that minimize the cluster MSB cost function deGned as follows: 

K „ 

MSE(P,C) = y / p(x) . ||x - c^||^(fx, (2.78) 

where || || denotes the Z2 norm and p(x) denotes the probability density function of x. 

Upon presenting a new training vector to the j^^-means algorithm, it repetitively updates 

both the reference vectors or centroids and the partition P . We deEne and x^ as the 

ith reference vector and the current input pattern presented to the algorithm at time k. 

The adaptive jiC-means clustering algorithm computes the new reference vector 

~ î,k (2.79) 

w h e r e i s the learning rate governing the speed and accuracy of the adaptation and M;(xt) 

is the so-called membership indicator that speciEes, whether the input pattern x^ belongs 

to region P, and also, whether the ith. neuron is active. In the traditional adaptive j^-means 

algorithm the learning rate is typically a constant and the membership indicator Mi(x) 

is defined as: 

M . M = h ' ' - P ^ 11" - ' ' I I ' ^ ' (2,80) 
0 otherwise. 

A serious problem associated with most jiT-means algorithm implementations is that the 

clustering process may not converge to an optimal or near-optimal conEguration. The 

algorithm can only assure local optimality, which depends on the initial locations of the 

representative vectors. Some initial reference vectors get 'entrenched' in regions of the algo-

rithm's input vector domain with few or no input patterns and may not move to where they 
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are needed. To deal with this problem, Rumelhart and Zipser [56] employed leaky learning, 

where in addition to adjusting the closest reference vector, other reference vectors are also 

adjusted, but inconjunction with smaller learning rates. Another approach, proposed by 

DeSieno and is referred to as the conscience algorithm [57] keeps track of how many times 

each reference vector has been updated in response to the algorithm's input vectors cind if a 

reference vector gets updated or 'wins' too often, it will 'feel guilty' and therefore pulls itself 

out of the competition. Thus, the average rates of 'winning' for each region is equalized and 

no reference vectors can get 'entrenched' in that region. However, these two methods yield 

partitions that are not optimal with respect to the MSB cost function of Equation 2.78. 

The performance of the adaptive iiT-means algorithm depends on the learning rate // in 

Equation 2.79. There is a tradeoS between the (fi/nomzc pef/ormonce (rate of convergence) 

and the steady-state performance (residual deviation from t h e optimal solution or excess 

MSE). When using a fixed learning rate, it must be sufficiently small for the adaptation 

to converge. The excess MSB is smaller at a lower learning rate. However, a smaller 

learning rate cilso results in a slower convergence rate. Because of this problem, adaptive A"-

means algorithms having variable learning rates have been investigated [58]. The traditional 

adaptive i^-means algorithm can be improved by incorporating two mechanisms; by biasing 

the clustering towards an optimal partition and by adjusting the learning rate dynamically. 

The justiEcation and explanation concerning how the two mechanisms are implemented is 

described in more detail by Chinrungrueng ef oA [58]. 

Having described the jiT-means clustering algorithm, which can be used as the RBF 

network's learning algorithm, we proceed to further explore t h e RBF network structure in 

the context of an equaliser in the following Section. 

2.9 Radia l Basis Funct ion Network B a s e d Equalisers 

2.9.1 Introduction 

- 1 

Radial Basis Function Network 

1' 
h - r 

Figure 2.18: Radial Basis Function Equaliser for BPSK 
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The RBF network is ideal for channel equalisation applications, since it has an equiva-

lent structure to the so-called optimal Bayesian equalisation solution of Equation 2.18 [8]. 

Therefore, RBF equalisers can be derived directly from theoretical considerations related 

to optimal detection and all our prior knowledge concerning detection problems [31] can be 

exploited. The neural network equaliser based on the MLP of Section 2.5, the polynomial 

perceptrons of Section 2.6 and on the so-called self-organizing map [42] constitutes a model-

free classiher, thus requiring a long training period and large networks. The schematic of 

the RBF equaliser is depicted in Figure 2.18. The overall response of the RBF network of 

Figure 2.12, again, can be formulated as: 

/BBF(vt) = - Cill), 
i=l 

(2-81) 

where Ci,% = 1 , . . . , M represents the RBF centres, which have the same dimensionahty 

as the input vector v^, || - || denotes the Euclidean norm, yp( ) is the radial basis function 

introduced in Section 2.7, p are positive constants deEned as the spread or width of the 

RBF in Section 2.7 (each of the RBFs has the same width, i.e., 2af = p, since the received 

signal is corrupted by the same Gaussian noise source) and M is the number of hidden 

nodes of the RBF network. Note that the number of input nodes of the RBF network in 

Figure 2.12, p, is now equivalent to the order m of the equaliser, i.e. p = m, and the bias 

is set to 6 = 0. The detected symbol is given by: 

A-T = (vt)), (2.82) 

where the decision delay r is introduced to facilitate causality in the equaliser and to provide 

the 'past' and the 'future' received samples, with respect to the 'delayed' detected symbol, 

for equahsation. 

The relationship between the RBF network and the Bayesian equalisation solution ex-

pressed in Equation 2.18 can be established explicitly. The R B F centres c,,* = 1 , . . . , M are 

in fact constituted by the noise-&ee charmel output vectors r, indicated by the circles and 

crosses in Figure 2.3, while the number of hidden nodes M in Figure 2.12 corresponds to 

the number of desired channel output vectors, n^, i.e., M = Us- The weights w, correspond 

to the scaling factors of the conditional probability density functions in Equation 2.18 given 

by: 

r i t r . e C , . . (2.83) 

% -pi(27ro-^) i f r ^ e V ^ , . r , 

where pi is the a priorj probabihty of occurance for the noise-free channel output vector n 

and cr̂  is the noise variance of the Gaussian channel. For equiprobable transmitted binary 
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symbols the a priorj probability of each state is identical. Therefore, the network can be 

simplified considerably in the context of binary signalling by Exing the RBF weights to 

Wi = 4-1, if the RBF centroids Cj correspond to a positive channel state and to w, = - 1 , 

if the centroids c, correspond to a negative channel state v~. The widths p in Equation 2.81 

are controlled by the noise variance and are usually set to p = 2(7 ,̂ while y)() is the noise 

probability density function, which is usually Gaussian. W h e n these conditions are met, 

the RBF network realizes precisely the Bayesian equalisation solution [8], a fact, which is 

augmented further below. 

SpeciGcally, in order to realize the optimal Bayesian solution using the RBF network, we 

have to identify the RBF centres or the noise-free channel ou tpu t vectors. Chen et al. [8] 

achieved this using two alternative schemes. The first method identifies the channel model 

using standard linear adaptive CIR estimation algorithms such as for example Kalman 

filtering [59] and then calculates the corresponding CIR-specific noise-free vectors. The 

second method estimates these vectors or centres directly using so-called supervised learning 

- where training data are provided - and a decision-directed clustering algorithm [8, 26], 

which will be described in detail in Section 2.9.3. 

The ultimate link between the RBF network and the Bayesian equaliser renders the 

RBF design an attractive solution to equalisation problems. The performance of the RBF 

equaliser is superior to that of the MLP and PP equalisers of Sections 2.5 and 2.6 and it needs 

a significantly shorter training period, than these nonlinear equalisers [8]. Furthermore, 

Equation 2.81 shows that RBF networks are linear in terms of the weight parameter Wi, 

while the non-linear RBFs are assigned to the hidden layer of Figure 2.12. The 

RBF network can be configured to have a so-called uni-modal error surface where JRBF in 

Equation 2.81 exhibits only one minimum, namely the global minimum, with respect to its 

weights Wi, while also having a guaranteed convergence performance. The RBF equaliser 

is capable of equalising nonlinear channels, can be also adapted to non-Gaussian noise 

distributions. Furthermore, in a recursive form, referred to as the recurrent RBF equaliser 

[38], the equaliser can provide optimal decisions based on all the previous received samples, 

Vk-i, i = 0,... ,oo, instead of only those previous received samples, i = 0 , . . . , Vk-m+i 

which are within the equaliser's memory. The RBF equaliser can be used to compute the so-

called a posteriori probabilities of the transmitted symbols, which are constituted by their 

correct detection probabilities. The advantages of using the a posteriori symbol probabilities 

for blind equalisation and tracking in time-variant environments have been discussed in 

several contributions [38, 60]. Furthermore, the a posteriori probabilities generated can 

be used to directly estimate the associated BER without any reference signal. The BER 

estimate can be used by the receiver as a measure of reliability of the data transmission 

process or even to control the transmission rate in variable ra te digital modems or to invoke 



C f f / i m S j R 2. fffCUfLduL TVICGrvyCUSK j%/LSJSZ) fCC)[L4J[J(L4L3Tf()ff 43 

a speciSc modulation in adaptive QAM systemg. 

Number of subractions and additions 1 
Number of multiplications 4- 1) 
Number of divisions 
Number of exp() Ma 

Table 2.4: Computational complexity of a linear RBF network equaliser having m inputs and 
Us hidden units per equalised output sample based on Equation 2.81. When the optimum 
Bayesian equaliser of Equation 2.18 is used, we have Ug = 2^+"^, while in Section 2.9.7 we 
will reduce the complexity of the RBF equaliser by reducing the value of Ug. 

The drawback of RBP networks is, however, that their complexity, i.e. the number of 

neurons in the hidden layer of Figure 2.12 grows dramatically, when the channel memory 

2} and the equaliser order m increase, since The vector subtraction in 

Equation 2.81 involves m subtraction operations, while the computation of the norm || - ||̂  

of an m-element vector involves m multiplications and m — 1 additions. Thus, the term 

— Cill) in Equation 2.81 requires 2m — 1 additions/subtractions, m + 1 multiplica-

tions, one division and an exp(-) operation. The summation in Equation 2.81 where 

M = Us, involves — 1 additions. Therefore the associated computational complexity of 

the RBF network equaliser based on Equation 2.81 is given in Table 2.4. 

For non-stationary channels the values of the RBF centres, c ,̂ wiU vary as a function 

of time and each centre must be re-calculated, before applying the decision function of 

Equation 2.81. Since rig = 2^+"^ can be high, the evaluation of Equation 2.81 may not 

be practical for real-time applications. A range of methods proposed for reducing the 

complexity of the RBF network equaliser and to render it more suitable for realistic channel 

equalisation will be described in Section 2.9.7. Our simulations results will be presented in 

Section 2.12. 

2.9.2 RBF-based Equalisation in Multilevel M o d e m s 

In the previous sections, the transmitted symbols considered were binary. In this section, 

based on the suggestions of Chen, McLaughlin and Mulgrew [25], we shall extend the 

design of the RBF equaliser to complex Ai-ary modems, where the information symbols 

are selected from the set of complex values, 2 ,̂ % = 1 , 2 , , Ai. An example is, when a 

Quadrature Amplitude Modulation (QAM) scheme [61] is used. 

Since the delayed transmitted symbols I^-T in the schematic of Figure 2.18 may assume 

any of the legitimate M. complex values, the channel input sequence Ifc, defined in Equa-

tion 2.5, produces Ug = different possible values for the noise-free channel output 
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vector vt of Figure 2.18 described in Equation 2.6, which were visualised for the binary 

case in Figure 2.3. The desired channel states can correspondingly be partitioned into Ai 

classes - rather than two - according to the value of the transmitted symbol Ik-ry which is 

formulated as follows: 

^ {v/cj/zc-r = 

= % = 1,2, (2.84) 

where r ,̂ j = 1 , . . . , is the '̂th desired channel output state due to the //(-ary transmitted 

symbol % = 1, • • • ,M.. More explicitly, the quantities n® represent the number 

of channel states in the set -r- The number of channel states in any of the sets 

is identical for all the transmitted symbols % = 1 ,2 , . . . , A i , i.e. — Ma for % ^ and 

= 1 , . . . Ai. Lastly, we have Mg = Mg. 

Thus, the optimal Bayesian decision solution of Equation 2.16 defined for binary signalling 

based on Bayes' decision theory [21] has to be redeEned for Ai-ary signalling aa follows, in 

order to achieve the minimum error-probability: 

= zr, if C*W = max{0(A:), 1 < % < A(}, (2.85) 

where (A;) is the decision variable based on the conditional density function given by: 

(i(A) = f (v t j l t -T = 2i) - f (7t-T — Zji) 

ni 
= - r}), 1 < 2 < Af. (2.86) 

j=i 

The quantities p'j,i = 1,... ,M,j = 1 , . . . , n® denote the a priori probability of appearance 

of each desired state r®- G associated with the transmitted Af-ary symbol l i , i = 

1 , . . . , Ai and p{-) is the probability density function of the additive noise of the channel. 

Thus, there are Af neural 'subnets' associated with the A/( decision variables (̂ :(A:) = 

= ^ ) ' = ^),% = 1 ,2 , . . . ,Ai. The architecture of the RBF equaliser 

for the Ai-ary multilevel modem scenario considered is shown in Figure 2.19. Note that 

the output of each sub-RBF network gives the corresponding conditional density function 

(i(A) = f (vt|7k-T — Zi) vP(Zt-T = Zi) and this output value can be used for generating soft 

decision inputs in conjunction with error correction techniques. Observe that the schematic 

of Figure 2.19 is more explicit, than that of Figure 2.18, since for the specific case of BPSK 

we have M. = 2. This yields two equaliser subnets, which correspond to the transmission 

of a logical one as well as a logical zero, respectively. 

The computational complexity of the Ai-ary RBF equaliser is dependent on the order M 

of the modulation scheme, since the number of sub-RBF hidden nodes is equivalent to nl = 
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Ist subnet 

Vk 
- 1 - 1 

— 1 - 1 

Radial Basis Function Network 

Radial Baais Function Network 

Max Ik — T 

Figure 2.19: Radial Basis Function Equaliser for vW-level modems 

jM.. Thus, its application is typically restricted to low-order vW-ary modulation 

schemes. The computational complexity of each subnet of the //(-ary RBF equaliser is 

similar to that in Table 2.4, taking into account the reduced number of hidden nodes, namely 

n\ = Us/M.. Thus, the overall computational complexity of the Ai-ary RBF equaliser 

described by Equation 2.85 and 2.86 is given in Table 2.5. 

Number of subractions and additions 2nsm - M 
Number of multiphcations + 1) 
Number of divisions Ms 
Number of exp() ris 
Number of max operation 1 

Table 2.5: Computational complexity of an mth-order RBF network equaliser per equalised 
output sample for Ai-ary modulation based on Equation 2.85 and 2.86. The total number 
of hidden nodes of the RBF equaliser is Ug. 

2.9.3 Adaptive R B F Equalisation 

The knowledge of the noise-free channel outputs is essential for the determination of the 

decision function associated with Equation 2.85. The channel state estimation - where the 

channel states were deEned in Section 2.2, in particular in the context of Equation 2.8 -

requires the knowledge of the CIR, but this often may not be available. Thus the channel 

state has to be 'learned' during the actual data transmission or inferred during the equaliser 



CHAPTER 2. NE(7RAI, KBTWORK BASED EQL/AMSATfON 46 

training period, when the transmitted symbols are known to the receiver. This can be 

achieved typically in two ways [26]: 

8 By invoking CIR estimation methods [26, 25, 62] 

« By employing so-called clustering algorithms [8] as described in Section 2.8 

These methods will be highlighted by the following two Sections. 

2.9.4 Channel Estimation Using a Training Sequence 

According to our approach in this section, the channel model is first estimated using algo-

rithms such as the Least Mean Square (LMS) algorithm [59]. With the knowledge of the 

CIR, the channel state can then be calculated. Let us deEne the CIR estimate associated 

with the model of Figure 2.1 as: 

fo,k • • • fL,k 

and introduce the (jL -I- l)-element channel estimator input vector 

iT 
Ik • • • Ik—I 

(2.87) 

(2.88) 

where {7^} ia the transmitted channel input sequence, which is known during the training 

period. Then the error between the actual channel output % and the estimated channel 

output derived using the estimated CIR can be expressed aa: 

Et (2.89) 

The CIR estimate can then be updated following the steepest descent philosophy of Bqua-

tion A.3 as follows: 

= (2.90) 

where is the step-size deGned by the channel estimator learning rule. Note however that 

the LMS channel estimation technique based on the chaimel model described in Figure 2.1 

will fail, if the chaimel is non-linear in its nature. 

During data transmission after learning, a decision-directed and delayed version of Bqua-

tion 2.89 and Equation 2.90 is used, which is formulated as: 

^k—T — 1^k—T f f c — T — T 

ffc —T — f/c —T—1 "I" —rl/j/c —T' (2.91) 

that can be employed to track time-varying channels, where 

i T 
Ik—T • • • Ik—T— L (2.92) 
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is the channel estimator input vector associated with the CIR vector ft-T- Note that 

during data transmission, { ^ - y } is the delayed symbol, detected by the equaliser. At 

instant t + 1, the delayed CIR estimate is used to track the time-varying channel as 

though it were the most recent estimate f^. The current channel model ft+i might have 

changed considerably. This tracking error owing to the inherent decision delays will degrade 

the performance of the channel estimator. As it will be demonstrated in Figure 2.22 at a 

later stage, increasing the decision delay r first introduced in the context of Equation 2.82 

improves the performance of the equaliser for a stationary channel. By contrast, this will 

degrade the performance of the chaimel estimator for a nonstationary chaimel environment. 

Thus we need to achieve a reasonable compromise and the selection of the decision delay 

parameter T yielding satisfactory equaliser performance will depend on how rapidly the CIR 

varies. 

The computational complexity of the LMS channel estimator is characterised in Table 2.6 

based on Equation 2.89, which requires L + 1 multiplication and L + 1 addition/subtraction 

operations, and Equation 2.90 which involves L + 2 multiplication and L + 1 addition 

operations. On the basis of the estimated CIR it is straightforward to compute the 

estimated noise-free channel outputs using convolution and therefore to generate the 

channel output states r,. Upon substituting Equation 2.7 into the noiseless version of 

Equation 2.11, the channel output state can be computed from: 

n = Fsi (2.93) 

where the elements of the CIR matrix F are obtained from Equation 2.90. Equation 2.93 

requires m(m + L) multiplication and m(m + L — 1) addition operations. Therefore, an 

additional computational load is encountered in converting the CIR estimate ffc into the 

vector r j of channel output states and this has to be added to the computational complexity 

calculation of the CIR estimator given in Table 2.6, in order to quantify to give the total 

complexity for this channel state learning method, as shown in Table 2.7. 

2(L + 1) + 1 multipHcations 
2(L + 1) additions or subtractions 

Table 2.6: Computational complexity of the LMS CIR estimator for a channel having L + 1 
symbol-spaced taps per estimated CIR based on Equation 2.89 and Equation 2.90. 

The CIR estimate can also be updated using the Recursive Least Square (RLS) algorithm 

[59], which has a better convergence performance compared to the LMS algorithm in most 

cases. However, the RLS algorithm exhibits a higher computational complexity than the 

LMS algorithm. For dispersive mobile radio channels the adaptive algorithm is expected to 
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m{m + L) + 2{L + 1) + 1 multiplications 
3L + m + 1 additions or subtractions 

Table 2.7: Computational complexity of the m-dimensional channel output state learning 
algorithm using the LMS CIR estimator for a channel having -L + 1 symbol-spaced taps per 
channel output state based on Equation 2.89, Equation 2.90 and Equation 2.93. 

continuously operate during both the training and transmission periods in highly nonsta-

tionary environments, consequently its numerical stability is vital. Many versions of the fast 

RLS algorithm may not be suitable for this purpose. The CIR can also be estimated using 

the so-called least sum of square errors (LSSE) algorithm [63]. This algorithm is similar to 

the CIR estimator used in the GSM system [64] and those in [65, 66], and it exhibits a low 

computational complexity. 

2.9.5 Channel Output State Est imat ion using Cluster ing Algorithms 

Apart from training sequences, the chaimel states can also be estimated invoking the clus-

tering algorithms described in Section 2.8. The computational procedures of the so-called 

supervised K-meems clustering algorithm during the equaliser training period can be sum-

marised as foUows [8]: 

if Ik = Si, then 

otherwise 
Ci,k = (2.94) 

where /ic is the associated learning rate, Sj, 1 < z < is the ith channel input 
r 1 jT 

sequence and = A - - 4-m+i-z , is an (m -t- Z,)-element transmitted symbol 

vector, which is known during the training phase. Explicitly, according to Equation 2.94 

the clustering algorithm takes into account the most recently received m-element vector v^ 

in adapting the ith RBF centre if the current {L + m)-element channel input vector 

Ik is given by the specific {L + m)-element vector s,. Initially, the RBF centres are all 

set to 0, i.e = 0,% = 1 < * < Equation 2.94 dictates that the previous 

centroid kas to be updated according to the 'distance' (v^ — between itself and 

the most recent (i} 4- 7n,)-element received vector v* after scaling it by the learning rate /ic-

Otherwise the ith centre is not updated based on the information of the current received 

vector Vfc. Referring back to Section 2.8, the membership indicator defined by Equation 2.80 

differs from that of the supervised version of the AT-means clustering algorithm described 
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by Equation 2.94. Explicitly, this modified membership indicator is defined as: 

MXx) = ( ^ (2.95) 
[ 0 otherwise. 

For time-varying channels we have to track the time-varying channel states during trans-

mission after the training period. For tracking the channel-induced channel state variations, 

the following decision-directed clustering algorithm can be used to adjust the RBF centres, 

in order to take into account the current network input vector in the updating of the 

centres as follows [8]: 

if = Si, then 

^i,k — ' iy^k—T 

otherwise 

^i.k — ^i,k—li (2.96) 

where Ik- r = 

symbols after c 

T 
^k—T • • • Ik-T—m-^l—L represents the (Z, 4- m) equalised demodulated 

ecision and a delay of T. Note that whilst in Equation 2.94 the transmitted 

vector Ik was used, in Equation 2.96 the vector tk - r at the ou tpu t of the decision device is 

used. The computational complexity of the clustering algorithm obeying Equation 2.94 is 

given in Table 2.8. 

Local operation: Find i, i = 1 , . . . , n j , for which 1^ = Sj 
m multiplication 
2m additions or subtrations 

Table 2.8: Computational complexity of the clustering algorithm specified by Equation 2.94 
per channel output state for a RBF network having m inputs and rig hidden nodes. 

As we mentioned previously, all the RBF centres were initially set to 0. However, the 

centres can be initialised to the corresponding noisy channel states, in order to improve 

the convergence rate, since there is a higher probability that the actual channel states are 

nearer to the noisy channel states, than to Cĵ o = 0, % = 1, . . . , Thus, the 

algorithm described by Equation 2.94 can be a<lapted as follows: 

if Ik = Si, and Ci^k has not been initialised then 

= Vt, ^ 2 

else if Ik = Si, and has been initialised then 

^i,k — (^i,k—l + l^c ' (vfc — Ci^k—l)-

The achievable improvement of the convergence performance in conjunction with this algo-

rithm will be demonstrated by our simulation results in Section 2.12. 
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2 .9 .6 O t h e r A d a p t i v e R B F P a r a m e t e r s 

In the previous subsection, clustering algorithms were used for training the RBF centres. 

Similar procedures can be employed also for training the R B F weights as it will be outlined 

below. Explicitly, if our previous assumption of equiprobable symbols is violated, we have to 

adjust the RBF weights in order to learn the corresponding scaling factors of the conditional 

probability density functions in Equation 2.18 during the training period. The adaptation 

of the RBF weights can be achieved pursuing the approach of Chen, Mulgrew and Grant 

using the following supervised LMS algorithm [8]: 

+ (2.98) 

where is the learning rate for the RBF weights. Explicitly, the error / a g f (v*) 

between the [L + m)-element transmitted symbol vector J-k-r and the RBF's output is 

scaled by the RBF learning rate //.u, and this product is then used to weight y(| |vt — Ci||), in 

order to update the previous RBF weight where <^(||v;c — C;||) is the RBF evaluated 

at the Euclidean norm ||vt — Ci|| characteristic of the 'distance' between the centroids 

Cj, i = 1 , . . . , ris = and the {L + m)-element received vector v^. 

Furthermore, if the exact number of RBF centres is not known precisely or if there is a 

deliberate attempt to use a reduced set of centres to reduce the computational complexity 

- as it will be described in Section 2.9.7 - it may be prudent to train the weights using the 

LMS algorithm of Equation 2.98, in order to make best use of the actual centres that have 

been provided [28]. Similarly, in noisy environments, where clustering techniques may only 

provide fairly crude estimates of the centres, training the R B F weights will make best use 

of the trained centres [28]. Another method of training the R B F weights is demonstrated in 

Chapter 5 where the information of the coded symbols, generated by the channel decoder 

is used to adapt the RBF weights. 

2 .9 .7 R e d u c i n g t h e C o m p l e x i t y of t h e R B F E q u a l i s e r 

In an effort to reduce the RBF equaliser's complexity, Chng et al. [67] proposed finding a 

RBF centre subset model in order to approximate the Bayesian decision function's response 

given in Equation 2.18 for the current {L + m)-element input vector v^. This implied 

using only the centres which are near, in Euclidean sense, to the current input vector 

for the subset model. The rationale of this approach is based on the assumption that the 

contribution of the RBF centres to the decision function is inversely related to their distance 

from the input vector, as we can observe from Equation 2.18. The decision function response 

using only the centres within a distance of A from vt is very similar to the full Bayesian 



RBF response, if the distance A is sufficiently large. Chug's results show that a distance of 

A = 4(7;; is su&cient and can reduce the number of centres required for the subset model 

to as small as 5-10% of the full model. Chng's paper [67] also provides a fast algorithm for 

identifying the specific centres, which are within a distance of A from the input vector 

for the subset model . 

Patra and Mulgrew [68] investigated the computational complexity aspects of RBF equal-

izers. They proposed an RBF equaliser using scalar centres, which can implement the 

Bayesian decision function of Equation 2.18, while allowing a lower computational com-

plexity compared to previously reported RBF equalizers. This issue will be detailed in the 

next section, hence su@ce to say here that the scalar centre is the (f -t- l)th component 

of the RBF centroid vector = [Qo - - Qz - - associated with the mth order 

equaliser, where Qf assumes the possible values of the noise-free channel output in order 

to realise the optimal Bayesian decision function of Equation 2.18. For binary transmission, 

there are possible noise-free channel output states, which correspond to each of the 

m elements of the equaliser's input vector v, described in Equation 2.6, where i/ 1 is the 

length of the CIR. The mapping between the scalar centres and the scalar channel states 

will be expounded in more detail in Section 2.10. 

The RBF equaliser described by the scalar centres can efficiently employ subset centre 

selection for computing the decision function of Equation 2.18, resulting in a substantial 

reduction in computational complexity. The algorithm proposed for subset centre selection 

by Patra [68] is more attractive compared to that suggested by Chng [67] aZ. , since it is 

more efScient in terms of selecting a subset of the total set of centres in the one-dimensional 

space. This is because we only need to select a subset of centres from a total of 2^+^ possible 

scalar centres for Patra's method [68] compared to a total of rig = possible vector 

centres for Chng's method [67]. 

Another method of selecting a subset of significant RBF centres is to make use of past 

detected symbols. This idea, which incoporated decision feedback into the RBF network 

was proposed by Chen et al. [25, 26]. Section 2.11 will present this approach in more 

detail, together with our simulation results in Section 2.12. 

In an effort to further reduce the complexity we invoke an approach often used in turbo 

codes [69]. for complexity reduction. Specifically, we proposed generating the output of the 

RBF equaliser in logarithmic form by invoking the Jacobian logarithm [13, 14], in order 

to avoid the computation of exponentials and to reduce the number of multiplictions per-

formed. We refer to this equaliser as the Jacobian RBF equaliser, which will be introduced 

in Section 4.2. 
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2.10 Scalar Noise-free Channel O u t p u t S t a t e s 

In this section, we will describe in detail the scalar noise-free channel output states and 

relate them to the m-element noise-free channel output s ta te vector v; and to the scalar 

RBF centres cu that we have mentioned in Section 2.9.7. After defining the scalar noise-free 

channel output state, we will expound on how it is used to reduce the complexity of the 

RBF equaliser. 

Referring back to Equation 2.6 and Equation 2.3, the /th element = 0, l , . . . , m — 1, 

of the (L+l)-element noise-free channel output vector corresponds to the so-called block-

convolution of a sequence of L -|- 1 transmitted symbols and the L + 1 CIR taps. In other 

words, the number of transmitted symbols contributing to t h e value of Vk-i is Z, -t-1 and 

we represent these transmitted symbols by an iL -t- 1 element vector ly &s described by 

Equation 2.88. Let us now introduce the concept of scalar states using the channel-state 

example of Table 2.1, where the scalar channel output states are ri = —1.5, rg = —0.5, 

rg = 0.5 and r4 = 1.5, while the number of scalar channel states is = 2^+^ = 4 (Z, = 1). 

Thus, the vector channel output states can be expressed with the aid of the scalar states 

forming the vector as r i = [ri ri]^, rg = [ri . . . , etc. More explicitly at every instant 

—oo < A; < oo the noiseless scalar channel output is given by the corresponding convolution 

of the input bits and the CIR. In general, the number of different possible combinations 

of the (2} -k l)-element transmitted symbol sequence in is zigj = 2^+^ for a binary 

modulation scheme. We represent these transmitted symbol combinations equivalently as 

a channel input state Sscaiar,î  where % — 1 , 2 , . . . , = 2^+^. After convolution with the 

CIR, each of these channel input states Sgcafar,: generates a scalar channel output state 

ri,i = 1 , 2 , . . . , U g j = 2^+^. Thus, as we have seen with reference to Table 2.1 the noise-

free channel output Vk can take up any of the Ugj = 2^+^ scalar channel output states r,, 

depending on which is summarised as: 

Vĵ  — Ti if ~ ^scalar,i * — '^s,f i OO k K. DC. (2.99) 

Similarly to our introductory example, the scalar channel output states r^, i = 1, 2 , . . . , j = 

2̂ "̂ ,̂ can be suitably combined to form the vector channel output states r ,̂̂ ' = 1 , 2 , . . . , — 

2™+^, seen in Equation 2.7. 

In order to realise the optimal Bayesian decision function of Equation 2.18 , the scalar 

centre c*/ - which is the (Z -I- l)th component of the vector centre Ci, where % = 1 , 2 , . . . , = 

2m+L ^ _ 0 , 1 , . . . ,m — 1, as mentioned in Section 2.9.7 - has to assume the value 

of these scalar channel output states r,. The scalar centres cn can be obtained from a 

lookup table that provides the mapping Q : E C, where A = { n , - , n , 

and C = {coo,. Using again the exEtmple of Table 2.1 and letting 
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c, = r,,* = 1 , . . . ,71̂ , the scalar centres correspond to the scalar channel output states as 

follows : Coo = n , coi = n , cio = n , cii = 7 - 2 , . . e t c . 

A scalar channel output state n is just the conditional mean of the noisy observation 

given by = SacoZar,:, &nd a clustering procedure can be used to update the scalar channel 

states as follows [25]: 

if I/,A: ~ ^scalar,i) then 

- (t;*: -

otherwise 

fi,k — (2.100) 

where //r is the associated learning rate of the scalar channel states. For time-varying 

channels, it is necessary to continuously update during data transmission. This can be 

achieved using the following decision-directed version of Equation 2.100: 

if if,k~T ~ then 

= n , t - i + ' (^ t -T - n . t - i ) 

otherwise 

= (2.101) 

The computational complexity of the clustering algorithm in t he context of the scalar chan-

nel states is given in Table 2.9. Note that the computational load of the clustering scheme 

for the scalar channel states is lower than that for the vector channel states, which becomes 

exphcit by comparing Table 2.9 and Table 2.8 of Section 2.9.5, since Tigj < Mg. However, 

some additional processing is required, in order to expand the scalar states into the vector 

states. This is not costly, especially, if the expansion can be done via a lookup table. 

Local operation: Find i, i = 1,... ,nsj, for which If̂ k = ^scalar,i-
1 multiplications 
2 additions or subtractions 

Table 2.9: Computational complexity of the clustering algorithm per scalar channel output 
state for Ugj number of scalar channel output states based on Equation 2.100. 

As mentioned in Section 2.9.3, the channel states can be learnt by invoking channel es-

timation methods. Section 2.9.4 described a channel estimation method using the LMS 

algorithm. Since the number of channel taps L + 1 is lower than that of the scalar chan-

nel states j it becomes explicit that an adaptive scheme based on a channel 



(Tff/LF'T'jBjS 2. ZVICCffLdLL jVfCgrvyOJRJf IC(2[Z/LLJ%L4LGrrC)7f 54 

estimator requires a shorter training period than the clustering approach. Thus the for-

mer is better suited for time-variant channels. However, the clustering scheme does not 

assume the linear channel model described by Equation 2.1 and it is immune to nonlinear 

distortion. When significant nonlinear distortion is inflicted for example by the system's 

power amplifier, the estimated channel states based on a linear model will deviate from 

the true states, causing a performance loss. The clustering approach does not suSer form 

this problem and it always converges to the set of true channel output states, regardless of 

whether the channel is linear or nonlinear. 

The scalar channel state clustering scheme provides faster convergence compared to the 

vector channel state clustering scheme, since the convergence performance depends on the 

number of clusters or channel states and the number of scalar channel states is less than 

the number of vector channel states. This will be demonstrated in Section 2.12, which will 

provide simulation results in order to characterize the performance of the scalar channel 

state clustering scheme. 

Upon extending the scalar channel state concept to multilevel modems, we note that 

the number of channel states j grows exponentially with the number of 

symbol constellation points used in the modulation scheme. Thus, the convergence rate is 

dependent on the type of modulation scheme used. 

2.11 Decision Feedback Assisted Radia l Basis Funct ion Net-

work Equaliser [25, 26, 62] 

Feedforward section Decision-feedback section 

y 1 y-1 

Radial Basis Function 
Network 

RBF center 
selection mechanism 

Detector _) 

Figure 2.20: Radial basis function equaliser with decision feedback 

In their seminal contribution Chen, Mulgrew and McLaughlin [25, 62, 26] introduced 

decision feedback into the RBF equaliser in order to reduce its computational complexity, as 
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mentioned earlier in Section 2.9.7. Figure 2.20 illustrates this design for a binary modulation 

scheme. Observe in the figure that in contrast to conventional DFEs, where the output of 

the feedback section is subtracted from that of the feedforward section, here the feedback 

section is employed to assist in the operation of the feedforward section, as it will become 

explicit later in this section. The structure of a decision feedback RBF equaliser is specified 

by the equaliser's decision delay r , the feedforward order m a n d the feedback order n. 

The fi-symbol long binary feedback vector I/eedtact.t-T = 4 - T - i - - - 4 - T - n 

associated with my — 2" states. We denote the set of my = 2" different feedback sequences 

by s j j , 1 < j < n / = 2". The binary subset and of the channel states defined in 

Equation 2.8 can be further partitioned into nj subsets, - and according to the 

ny = 2" possible feedback states such that the union of the ny = 2" number of feedback 

states associated with the two legitimate binary transmitted symbols can be formulated as: 

= I I y"" 

V̂ .r = U (2.102) 

where is the set of possible values associated with the delayed transmitted symbol 

i t-T = and the feedback symbol sequence i/eedtoct.t-T = s / j yields the following 

sidasets: 

^ = +1 (~^ifeedback,k-T — 

^m,T,j " {vtlA-T = "1 ^ifeedback,k-T = ^f,j}i 

! < ; < % / . (2.103) 

Thus the role of the feedback symbol vector tfeedback,k-T in the decision feedback structure 

is to select a subset of centres for a particular decision. The proportion of channel states in 

the sets and is and respectively. The total number 

of channel states associated with the feedback state syj is given by Ttgj — . Given 

the feedback vector = s / j , the Bayesian decision function of Equation 2.18 can 

be rewritten with a reduced number of noiseless channel states as: 

fBayes{'^k\ifeedback,k—T — ̂ f , j ) — ^ ^ ll̂ fc ~ I I 
1=1 

1=1 

; = l , . . . , m / , (2.104) 

where and j = 1 , . . . , my are the zth noiseless channel states, when 

the feedback vector I/eedtoct.t-T is Syj, while the superscript and " correspond to the 
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transmitted symbols of Ik-r = +1 and Ik-r = —1, respectively. Explicitly, r+j E 

G while and Eire the a priori probability of occurance for each state rt^ 

and rj^, respectively. The minimum error probability decision is thus formulated as: 

Ik—T ~ ^Q'^^fsayesiyk^feedback,k—T ~ (2.105) 

The relationship between the RBF network described in Equation 2.81 and the Bayesian 

DFE decision function expressed in Equation 2.104 can now be given explicitly. The weights 

Wi in Equation 2.81 correspond to the scaling factors of the conditional probability density 

function given by ±p^^(27r(T^)^™/^ in Equation 2.104. This was mentioned before in the 

context of Equation 2.83. The RBF centres Cj in Equation 2.81 correspond to the noise-free 

channel output vectors r^^ and rj-. That is, if the n-element feedback symbol sequence 

I/eed6oct,A:-T obtained is equivalent to Syj, we assigned the Mgj number of RBF centres 

Cj, i = 1 , . . . , Us J , to the channel output vector = 1 , . . . , n f j . The decision feedback 

reduces the computational complexity of the RBF equaliser, since the number of RBF 

hidden nodes needed to realize the Bayesian equalisation solution of Equation 2.18 is reduced 

from Hs = 2™"*"̂  to Ugj = rig/uf = 2'"+-^/2" = with t h e knowledge of the feedback 

state value. However, when the equaliser makes an incorrect decision and this decision is 

fed back, the wrong subset of centres is selected and this will degrade the BBR performance 

of the RBF DFE, as it will be demonstrated in Section 2.12. 

Extending the decision feedback RBF equaliser to a multilevel modem scenario is straight-

forward by introducing sub-RBF networks for each possible decision variable based on the 

conditional probability density function, as it was described in Section 2.9.2. The condi-

tional Bayesian decision variable of Equation 2.86 can be redefined for the Bayesian DFE 

as: 

Ci(^) ~ P{^k\^k—T — ^feedback,k—T — ^ f , l ) 

/=1 
1 < « < Af, 

1 < ; < r,/, (2.106) 

where r®-̂  is the Ith noiseless channel state, I = 1,... ,nl J when the feedback vector is given 

by I/eedtoct.t-T = s / j and the transmitted symbol is = Zj, i.e., e 

The computational complexity of the decision feedback assisted RBF equaliser is given 

in Table 2.10 based on Equation 2.104, which is similar to tha t without decision feedback 

given in Table 2.5, except for the reduced number of hidden units Ugj < We 

conclude that in general, the complexity increase of the RBF DFE is of the order of M.^, 
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Determine the feedback state 
2ns j m — -M. subtraction and addition 
Usj im + 1) multiplication 
Us J division 

exp() 
1 max evaluation 

Table 2.10: Computational complexity of a decision feedback RBF network equaliser with 
m inputs and hidden units per equalised output sample based on Equation 2.104. 

since as Hence, its application is typically restricted to low-order Ai-ary 

modulation schemes, such as 4-QAM and to channels, where the ISI does not extend beyond 

four or Eve symbol periods [28]. 

The oldest symbol that influences the decision at the Ath signalling instant, which pro-

duces the detected symbol is ft-m+i-z,, seen in Equation 2.5. The oldest feedback 

symbol is Therefore, it is 8u@cient to employ a feedback order of 

n loggMy = L + m — 1 — r, (2.107) 

because this will enable us to influence decisions over the memory duration L of the con-

catenated channel and the feedforward RBF section m. Assuming hence n = L + m — 1 — r , 

Chen, Mulgrew and McLaughlin [26] mathematically proved that the Bayesian DFE of a 

feedforward order of M = T + 1 has the same conditional decision variables as those hav-

ing a feedforward order of m, > T + 1. The mathematical proof is given in Appendix B. 

Thus, given the delay r - which was defined in the context of Figure 2.18 as the total 

decision delay of the feedforward shift-register of the RBF D F E - the feedforward order 

m = T + 1 is sufficient for attaining the best possible BER at the lowest possible complexity 

[26]. This is demonstrated in Figure 2.22 over the two-path channel environment of Fig-

ure 2.21(a). Substituting m, = r 4-1 in Equation 2.107 gives the corresponding feedback 

order of M — loggM/ = Z,. Overall, the equaliser delay T specifies the number of channel 

states ris, required for computing the decision variables and thus determines the compu-

tational complexity encountered. A pragmatic rule is to set the equaliser's decision delay 

to T = L [26]. However, note that increasing the decision delay r and feedforward order 

m will improve the performance of the RBF equaliser, as demonstrated in Figure 2.23, at 

the expense of increasing the computational complexity exponentially, since the number 

of desired channel states increases exponentially with m. Figure 2.24 shows 

the equaliser's BER performance versus its feedforward order m. The BER performance 

improves almost linearly with the feedforward order, before the curves reach their SNR-

dependent residual BERs. The eSect of increasing the feedforward order is more significant 



CHAPTER 2. NBE/RAiL BASED EQUAMgATfOjV 68 

1 -
o 
c 0.8 - 0.707 0.707 

a 
8 0.6 -
Pi 

0.4 -

3 
& 0.2 -

20 40 60 80 

Oversampling Index 

(a) Two-path channel 

100 

u 
e 0.8 -

a 
8 0.6 -

Pi 

a ' 
"3 
& 0.2 _ 
a 

0 -

0.815 

0.407 0.407 

20 40 60 80 

Oversampling Index 

(b) Three-path channel 

100 

1 -

<u 
C 0.8 -

a 
8 0.6 -

Pi 

(X 

0.688 

0.460 

0.4 -
g 0.227 

0.2 -

0 -

0.460 

0.227 

20 40 60 80 

Oversampling Index 

(c) Five-path channel 

100 

Figure 2.21: Four discrete time channel impulse responses for an oversampling ratio of 10. 

in BER-reduction terms at high Eb/ATo values, as shown in Figure 2.24. For example, at 

an SNR of 12dB, an increase of the feedforward order from m = 3 to m = 6 improves the 

equaliser's BER performance by an order of magnitude, from 10"® to 10"®. 

In the next subsection we shall further illustrate the concept of the feedback states and 

the redefined noiseless channel states using the same example as in Section 2.2. 

2 .11 .1 R a d i a l B a s i s F u n c t i o n D e c i s i o n F e e d b a c k E q u a l i s e r E x a m p l e 

The channel impulse response used in this example was given by Equation 2.13, which is 

repeated here for convenience: F{z) = 1 + 0.5z"^, implying that we have L = 1. We use 

the following equaliser parameters: 

# Feedforward order of m = 2. 

# Feedback order of M = 1. 

Decision delay of T = 1. 
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Figure 2.22: BER versus SNR performance of the RBF equaliser with correct decision 
feedback upon varying the feedforward order m over the dispersive two-path Gaussian 
channel of Figure 2.21(a). The equaliser decision delay T was 6xed to 1 symbol and the 
feedback order n was varied according to n = I/ + m — 1 - r , where X + 1 = 2 is the CIR 
length. 
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Figure 2.23: BER versus SNR performance of the RBF equaliser with correct decision 
feedback upon varying the decision delay r over the dispersive two-path Gaussian channel 
of Figure 2.21(a). The equaliser feedforward order m was fixed to m = r + 1 and the 
feedback order n was varied according io n = L + m — 1 — T, where L + 1 = 2 is the CIR 
length. The equaliser's complexity increases exponentially with m,, aa seen in Table 2.10. 
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Figure 2.24: BER versus feedforward order m of the RBF equaliser with correct decision 
feedback for varying Et/.ZVo values over the dispersive two-path Gaussian channel of Fig-
ure 2.21(a). The equaliser decision delay T was varied according to T = m — 1 and the 
equahser complexity increases exponentially with m, as seen in Table 2.10. 

Thus, in Figure 2.20 we have I/gedbodk.t- 4 - , since the feedforward section delays the 
T 

and received signal by two sampling interval durations. Furthermore, v t : 

the delayed transmitted symbol is Ik~i- The number of noise-free channel output states 

is = 2"^+^ = 2^+^ — 8 in Figure 2.25, where nj" = 4 and = 4, the number of 

feedback states is my = 2" = 2, while the number of subset channel states associated with 

the n j = 2" = 2 feedback states is Tij" - = 2 and n~ • = 2. We denote the feedback states 

Syj, where j = 1,2 as s/_i = [—1] and sy_2 — [+1]- Assuming that the feedback symbols are 

correct, all the combinations of the transmitted binary symbols Ik, Ik-i and 7^-2 aa well 

as the noiseless channel outputs tit, tit-i, the noiseless channel output states and 

and the feedback states s / j are listed in Table 2.11. Again, Figure 2.25 shows the noiseless 

channel output states observed by an equaliser having a feedforwaird order of m = 2 and 

decision delay of T = 1. Figure 2.26(a) and Figure 2.26(b) show the noiseless channel 

output states of the RBF DFE using the parameters given above, when the feedback state 

S f j is equivalent to -1 and +1, respectively, as stated in Table 2.11. Following the spirit 

of Figure 2.3 in partitioning the decision space, at this stage we have to decide, what the 

transmitted bit 7^-2 was. This decision can be carried out by evaluating Equation 2.106 

and identifying the symbol = 1 , . . . , vW associated with the highest probability. 

Note that the number of channel states required, in order to estimate the transmitted 

symbol is now reduced from n, = 2"^+^ to zigj = Ms/zi/ = 2'"+^/2" = if we 

invoke the feedback state syj in order to assist in the RBF subset selection. Explicitly, in 
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h 4 - 1 A - 2 #6-1 
-1 -1 -1.5 -1.5 S/,1 = - 1 rr,i 

+ 1 -1 -1 4-0.5 -1.5 S/,1 = - 1 
+1 -1 -0.5 4-0.5 S/,1 == - 1 

+1 +1 -1 +1.5 4-0.5 s/,1 = - 1 
-1 +1 -1.5 -0.5 S/,2 = + 1 ri.2 

+1 -1 +1 4-0.5 -0.5 S/,2 = + 1 12,2 
+1 +1 -0.5 +1.5 S/,2 + 1 

+1 + 1 +1 +1.5 4-1.5 S/,2 = + 1 y.4-
^2,2 

Table 2.11: Transmitted signal 7 ,̂ A - i , A-2 , noiseless channel output feedback 
channel states syj and noiseless channel states for the channel impulse response of 
j^(z) — 1 + 0.5z"^ and equaliser feedforward order of m = 2, f^dback order of n = 1 
and decision delay of T = 1 symbol. The coordinates iit and identify the points ^ 
in Figure 2.25 and 2.26. This table is the extension of Table 2.1, where the entries were 
rearranged appropriately, in order to separate the entries assosiated with = —1 and 
5/,2 = 4-1. 

the example given above the number of channel states is reduced from 8 to 4, given the 

information of the feedback symbols. The computational complexity reduction factor owing 

to decision feedback is actually higher than ny, since a DPE typically requires a reduced 

feedforward order m with respect to that, which is required without decision feedback. This 

is justiGed by the following arguments. Increasing the number of feedforward taps m ex-

tends the dimensionality of the observation space. This is necessary, in order to be able to 

increase the Euclidean distance between the RBF centres and thus to decrease the probabil-

ity of mis-classification. It is apparent that the minimum distance amongst the constellation 

points of the subsets and ^ of Figure 2.26 for a particular feedback state sy j , 

is larger than amongst the points of the full subsets of Figure 2.25. Thus, 

with the introduction of decision feedback, the Euclidean distance between the centres is 

already increased and hence a smaller m is sufficient for maintaining a given equaliser perfor-

mance. Again, the increased Euclidean distance can be observed by comparing the noiseless 

channel outputs in Figure 2.25 and those in Figure 2.26. The distance between 

a constellation point or state corresponding to the transmitted symbol 7̂^ = + 1 and the 

nearest point or state corresponding to the transmitted symbol /^ = — 1 is increased, when 

the DFE scheme is used. Another important advantage of the decision feedback method 

is that the noiseless channel states corresponding to diSerent transmitted symbols are 

linearly separable, provided that the parameters of the RBF DFE are chosen to be r = L, 

m = T + l = L + l and n = L + m — T — 1 = L, which was proven mathematically by 

Chen, Mulgrew, Chng and Gibson [70] for a PAM modulation scheme. This proof can be 
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Figure 2.25: The noiseless channel states r ^ - i of a channel having a CIR of F{z) = 
1 + 0.5z"^ in a two-dimensional observation space. The Blled circles represent the channel 
states in the set corresponding to the transmitted symbol of/fe_r = +1 and the hollow 
circles represent the channel states in the set corresponding to the transmitted symbol 
of it-T = —1, where the feedforward order is m = 2 and the decision delay of the equaliser 
is T = 1. 

readily extended to a QAM scheme. It should be emphasized that even though the noise-

less channel states are linearly separable for the conditions s tated above for the equaliser's 

parameters, the optimal decision boundary will generally be nonlinear. However, the linear 

separability is a highly desired property to have, since the equalisation performance in this 

case is generally significantly better, than that of the nonlinearly separable case [71]. Note 

that the noiseless channel states r, in the equaliser's observation space can be inseparable, 

as it will be demonstrated in Section 2.12.1. 

2 .11 .2 S p a c e Trans la t ion P r o p e r t i e s of t h e D e c i s i o n F e e d b a c k 

In this section we provide a brief discourse on a technique, which can be used to reduce 

the number of states to be stored by the equaliser and also to eliminate the selection of the 

subset of states corresponding to the feedback symbol 7^-2 in the example of Figure 2.26. 

In general, when r > 1, several feedback symbols influence the number of feedback states 

and hence the associated storage and complexity reduction may be significant. 

For a particular feedback state scharacter ized by the speciGc symbols 7% the feedback 

register, the subsets related to the subsets and ; having 
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(a) The detected feedback symbol 
7t_2 is equivalent to -1 

(b) The detected feedback symbol 
is equivalent to + 1 

Figure 2.26: The noiseless channel states i;t, i't-i observed by the RBF DFE with feedfor-
ward order of m = 2, feedback order of n, = 1 and decision delay of T = 1 symbol, assuming 
that the feedback symbols are correct. The channel haa a CIR of E(z) = 1 + 0.5z^^. The 
Slled circles represent the channel states in the set corresponding to the transmitted 

symbol of Ik-r = +1 and the hollow circles represent the channel states in the set Vm,T,j 
corresponding to the transmitted symbol of Ik-r = —1. Again, our final decision concerning 
the transmitted bit 7^-2 ia baaed on identifying the symbol z = 1 , . . . , Ai associated with 
the highest probabihty. 

consecutive feedback states of s / j and Sf^i, respectively, by a linear transformation. This 

can be shown mathematically as follows. Upon rewriting Equation 2.11, in order to take 

into account the decision feedback state in the expression of t he noisy channel output and 

assuming n < L and m — T + 1, gives: 

v t = F I t + 77k, (2.108) 
r iT 

where % . . . %-m+i - The transmitted symbols inBuencing can be divided 

r -|T 

in three classes as follows: Ik = , where indicates those symbols, 

which reside in the feedforward shift register, l2_t denotes those in the feedback register and 

Ig t consists of the rest of the symbols that inEuence vt but are left out by the DFE. These 

symbols can be written as: 
lT 

• • • Ik~T 

l2,k 

U,k 

^k—T—1 

Ik—T—n—1 

Ik—T—n 

Ik—m—L+l 
T 

(2.109) 

Furthermore, the m x (m + j}) CIR-related matrix F has the form 

F = F i Fg Fg (2.110) 
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Tvith tlus?7i)< (r-k 1) loiatrix ITi, x?i loiatrix aiwi ini x (?7i 4-jL - %--T - 1) niatrix ITg 

deEned by 

Fi = 

fo fi 

0 /o 

fr 

fl 

Fz -

0 . . . 0 

A + i / T + 2 

fr / r+ l 

(2.111) 

F.I = 

A - -

fr+n+l fr+n+l 

fr+n fr+n+l 

fn+1 

fr+n 

A + i 

fn 

(2.112) 

/z,-

fm+L — l 

fL 

(2.113) 

where /^ = 0 for ? < L. Explicitly, F i hosts those CIR taps, which affect the feedforward 

section, symbols contained by Fg encompasses those, which weight the feedback sym-

bols l2,k, while Fg contains the symbols not considered by the DFE. Under the assumption 

that the feedback symbol is correct, that is I/eedbact,t-T = I2,A: ciiid based on Equation 2.108, 

the noise-free channel output vector of Equation 2.6 can be rewritten as 

Vfc — + ^2'^ feedback,k—r + P3I3,/: 

v i Fol 2^ feedback,k—Ti 

where we introduced 

+ F3l3,t. 

(2.114) 

(2.115) 

Thus the linear transformation between the consecutive noise-free channel output vectors 

of Vfc and is provided by the term Fgl/eedAact.A-T hi Equation 2.114. 

Using the CIR of Equation 2.13 we have f r + i = 0 , / i = 0.5, /o = 1 in Equations 2.111 

- 2.113, yielding F i 

= +1, we have = 

' 1 0.5 ' 0 
, F2 = 

0 1 0.5 

Vfc = 

and Fg = 0. Assuming Ij. = and 

and evaluating Equation 2.115 gives: 

(2.116) 
' 1 0.5 ' ' 1 " 

+ 0 = 
" 1.5 ' 

+ 0 = 
0 1 1 1 
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Hence from Equation 2.114, for the speciEc feedback state of = I/eed6act,A-T = ["!] the 

noiseless channel state is given by 

'2,1 
' 1.5 " 0 ' 1.5 " 

1 -0 .5 0.5 
(2.117) 

while for the feedback state of sy g = I/eedbact.t-T = [+1] the noiseless channel state is given 

by 
1 .p; n I S 

(2.118) 
' 1.5 ' 0 ' 1.5 ' 

1 0.5 1.5 12,2 

as seen in Table 2.11. 

We note that the linear transformation of Equation 2.114 between the consecutive noise-

free channel outputs of and v]|. depends on the feedback states s a n d the CIR. The 

geometric distance amongst the corresponding points of the set o i V ^ ^ j and of the set 

for the same feedback state s / j is not altered by the transformation. Using the example 

in Figure 2.26, the geometric distance between the points and corresponding to 

the feedback symbol 7^-2 = — 1, is equivalent to the geometric distance between the points 

r^2 and r^2 corresponding to the feedback symbol Ik--2 = —1- Thus it is sufficient to 

consider just one particular feedback state, when examining t h e Symbol Error Rate (SER) 

performance. 

Previous research [70, 72] pointed out furthermore that the elements of vj|. can be com-

puted recursively. The iih element of v^, where, i = m — 1 , . . . , 2 , 1 , can be represented by 

its unit delayed version as follows: 

^ — i ^ — TTt 1; • • • ! ^5 1; (2.119) 

where is the unit-delay operator. From Equation 2.114, t he ?th and {i — l ) th elements 
I 
k of v i can be written as 

'^k-i + 'y ] fm+j-l-ilk- -T-J 

Using Equation 2.119, 2.120 and 2.121, we have 

"^k—i 

j=l 

(2.120) 

(2.121) 

^ I "^k—i+l y y fm+j—l—i+l^k-

j=l 

^ "^k—i+l "t" y fm+j—jlk—l-T—j 

J=:l 

T-J 
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Figure 2.27: Space-translated RBF DFE 

' ^ k - i "t" ^ ] f m + j - i ~ l ^ k - T — j 

j = l 

^ i+1 "t" ^ y f m + j - i l k - l - T - j 

i=i 
n+1 

= Z ^ y fm+j—i—lIk—T-j 

'^k—i ^ ^ "^k+l—i ^ fm—iIk—T — 1 + fm—i+nIk-T-n-~l 

% = m — 1 , . . . , 2 ,1 . 

Upon substituting n = L into Equation 2.122 we arrive at: 

Ak+1 —i fm—ilk—T—l 

VJ. — VK-

(2.122) 

(2.123) 

(2.124) 

Based on this interpretation of decision feedback, an alternative DFE structure is depicted 

in Figure 2.27. This version of the space-translated RBF DFE realises the same opti-

mal solution as the subset centre selection RBF DFE depicted in Figure 2.20. However, the 

space-translated RBF DFE of Figure 2.27 removes the requirement of different set of centres 

for digerent decision feedbacks and has hence a clear advantages in hardware implementa-

tional terms. The decision feedback 'merges' the channel states corresponding to different 

feedback states and hence the DFE of Figure 2.27 can be studied more conveniently in the 

translated v'-space. ^ 

^This property leads to the implementation of the so-called Minimum BER (MBER) DFE based on either 
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2.12 Simulat ion Resul ts 

2 .12 .1 P e r f o r m a n c e of R B F A s s i s t e d Equal i sers o v e r D i spers ive G a u s s i a n 

C h a n n e l s 

In all our results presented in this section the transmitted symbols Ik were equiprobable 

binary symbols assuming values from the set {±1}- Therefore the weights of the RBF 

network were fixed to Wi = +1, if the RBF centroids c, seen in Figure 2.12 correspond to a 

positive channel state and to w, = — 1, if the RBF centroids c, correspond to a negative 

channel state v^, as explained in Section 2.9.1. The noise variance cr̂  was Exed to unity, 

while the power of the transmitted symbol was varied according to the SNR per bit, namely 

^b/JVo. The transmitted symbol was oversampled by a factor of 10 and it was pulse-shaped. 

Both the transmitter and receiver had a square root Nyquist filter [61] with a roll-off factor 

of 0.5. The combined transfer function of these two filters produced a raised cosine filter 

and this design satisfies the Nyquist criterion of zero ISI at sampling instants. 

Initially the centres of the RBF network were positioned at the desired channel states seen 

for example in Figure 2.3. The width of the RBF network p was set to 2cr^. We assumed that 

the CIR was known and the number of hidden nodes was set t o Ug = In practice the 

CIR can be estimated using channel sounding [75, 76] and using the estimated CIR would 

result in some performance degradation. The impulse responses of the channels used for the 

simulations were characterized by Figure 2.21(a) for the two-path channel, Figure 2.21(b) 

for the three-path channel and Figure 2.21(c) for the five-path channel. 

The BER performance of the RBF network was compared with that of the linear MSB 

equaliser [59] (pp. 607-612). The tap weights of the linear MSB equaliser were set to obtain 

the best possible performance and both schemes used the same number of taps given by 

m. Figure 2.28 and Figure 2.29 shows our BER performance comparison for the two-path 

channel and the three-path channel, respectively. The two-path results of Figure 2.28 show 

that for the same number of taps the RBF network equaliser provides superior performance 

in comparison to the linear MSB equaliser, before the residual B E R is reached, above which 

the BER performance did not improve upon increasing EIJ/NQ. Beyond this point the RBF 

network equaliser and the linear MSB equaliser have a similar BER performance. 

This can be explained graphically by first observing the desired channel states in the 

channel observation space of Figure 2.30. For the two-path channel environment of Fig-

ure 2.21(a) and an equaliser having three taps, the desired channel states and a linear 

decision boundary surface provided by the linear MSB equaliser is shown in Figure 2.30. 

Note that the noiseless channel output v = 0 0 0 due to the transmitted data 

a linear filter [70] or on the so-called support vector machine [73, 74] proposed by Chen et. al. that construct 
hyperplanes, which can separate the different signal classes. 
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Figure 2.28: BER versus performance of the RBF equaliser using no decision feed-
back upon varying the number of equaliser taps m over the two-path Gaussian channel of 
Figure 2.21(a) using BPSK. The performace is compared to that of the linear MSE equaliser 
using m number of taps. The residual BER bound (= where _L + 1 is the CIR length) 
is shown for diSerent values of m. The residual BER is due to the constellation points 
appearing on top of each other in Figure 2.30. 
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Figure 2.29: BER versus performance of the RBF equaliser using no decision feedback 
upon varying number of equaliser taps m over the three-path dispersive Gaussiazi channel 
of Figure 2.21(b) employing BPSK. The performace is compared to that of the linear MSE 
equaliser using m number of taps. 
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sequence of {—1 + 1 — 1 + 1} and {+1 - 1 + 1 - 1 } corresponds to both 7^-^ = +1 &nd 

Ik-T = —1- Thus the channel states r+ and r~ are inseparable both linearly and nonlinearly 

at that point, even when the input dimension is increased. This provides the performance 

limitation manifested in terms of the residual BER for both the linear MSB equaliser and 

the RBF network equaliser. The value of the residual BER is dependent on the relative 

frequency of encountering this inseparable channel state scenario. For example, in the case 

of the two-path channel environment mentioned above, where there are two channel states 
iT 

0 0 0 and both are clas-corresponding to the noiseless channel output vector v = 

siSed as corresponding to = +1 or A-T — —1, one channel state out of the total of 

Us legitimate channel states will be classified wrongly, irrespective of Eb/No. Thus, the 

minimum achievable bit error rate will be ^ for a particular equaliser order m. This ex-

plains the BER residual in Figure 2.28. The BER residual 'bound' of ^ is also shown in 

Figure 2.28 using dashed line for the various m values employed. The three-path results 

of Figure 2.29 also show superior performance in comparison to the linear MSB equaliser, 

before the residual BER is reached. Again, the residual BER 'bound' can be explained by 

the inseparable channel states. 

The BER performance generally improves upon increasing the number of equaliser taps 

m, as does the 'bound' The dimension of the channel observation space that increases 

with increasing has the eSect of increasing the Euchdean distance between the desired 

channel states and therefore improves the separability between v+ and v~, but does not 
iT 

irradicate the ambiguity associated with v 0 0 0 

Figure 2.31, Figure 2.32 and Figure 2.33 show the BBR performance of the RBF network 

equaliser in conjunction with decision feedback for the two-path channel, three-path chan-

nel and five-path channels of Figure 2.21, respectively. The equaliser feedforward order m 

is fixed to T + 1, while the feedback order was set to n = L, as described in Section 2.11. 

The results shows that the decision feedback structure not only decreases the computa-

tional complexity, since less taps and less hidden nodes are neccesary, it also substantially 

improves the BER performance. The residual BER is eliminated, since the desired states 

v+ and v~ that correspond to the same point in the channel observation space have now 

diSerent feedback states and the set of noiseless channel states , and . are now 

separable. This confirms the findings by Chen, Mulgrew, Chng and Gibson [70] that the 

noiseless channel states corresponding to a diEerent transmitted symbol are linearly sepa-

rable, provided that the decision delay, feedforward section and feedback section length of 

the RBF DFE are chosen t o b e r = L, m = r + l = Z/ + l and n = L + m — T — 1 = L. 

Note furthermore that the error propagation due to erroneous decision feedback has a 

moderate eSect on the performance of the BPSK RBF network equaliser, amounting to 
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Figure 2.31: BER versus performance of the BPSK RBF equaliser with decision 
feedback over the dispersive two-path Gaussian channel of Figure 2.21(a). The equaliser 
has a feedforward order of m = 2, feedback order of n = 1 and decision delay of T = 1 
symbol. 
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Figure 2.32: BER versus Eh/No performance of the BPSK R B F equaliser with decision 
feedback over the dispersive three-path Gaussian channel of Figure 2.21(b). The equaliser 
has a feedforward order of m = 3, feedback order of = 2 and decision delay of T = 2 
symbols. 
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Figm-e 2.33: BBR versus Et/No performance of the BPSK RBF equaliser with decision 
feedback over the dispersive f ive-path Gaussian channel of Figure 2.21(c). The equaliser 
has a feedforward order of m = 5, feedba^ik order of m = 4 and decision delay of T = 4 
symbols. 

around IdB performance degradation at BER 

ure 2.21. 

10 ^ for all the three channels of Fig-

2 .12 .2 P e r f o r m a n c e of A d a p t i v e R B F D F E 

As our next endeavour, the adaptive performance of the RBF network equaliser employing 

the if-means clustering algorithm of Section 2.9.5 was investigated. Firstly, the average 

normalised MSE of the vector centres at signalling interval A; was deEned as: 

MSB(c, A;) H,opt I (2.125) 

where is the number of RBF centres, is the variance of the noise-free received signal, 

Ci_t, % = 1 , . . . , Mg, A = 0 , . . . , oo represents the %th aasumed RBF centre at signalling interval 

A and is the vector associated with the %th desired or assumed 'true' RBF center. The 

j^-means clustering technique operates by iteratively adjusting the RBF centres upon every 

sampling instance according to Equation 2.94 during training mode, while Equation 2.96 

is used during the decision-directed mode. The centres' MSB convergence performance is 

demonstrated over the two-path channel environment in Figure 2.34 using different number 

of training symbols, while in Figure 2.35 upon varying the learning rate /̂ c of Equation 2.94 

and 2.96. The results show a good convergence performance for our stationary two-path 
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training samples = 300 
training samples = 700 
training samples = 1000 
training samples = 2000 
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Number of symbol sample 

Figure 2.34; The MSE of the BPSK RBF equaliser centres versus transmitted symbol index 
for various numbers of training samples using the vector cen tre clustering algorithm of 
Section 2.9.5 over the two-path channel environment of Figure 2.21(a). The equaliser had 
m = 5 feedforward taps and a decision delay of r — 2 symbols. The centre learning rate /ic 
of Equations 2.94 and 2.96 was set to 0.1 and the SNR was lOdB. 

channel of Figure 2.21(a) upon invoking the decision-directed learning algorithm of Equa-

tion 2.96. However, further simulations have to be carried out, in order to investigate the 

effect of time-varying wideband mobile channels. As the learning rate /ic is increased, the 

centres converge faster to their desired positions, but as expected, the MSE curves of the 

centres become more spurious, especially at low SNRs aa we can see from Figure 2.35. Based 

on these results we recommend using a variable learning rate /Ug, where /ic is set to a higher 

rate during the training mode so that the equaliser converges faster and is set to a lower 

rate during the decision-directed learning mode, in order to reduce the spuriousity of the 

centre MSB. 

The performance of the scalar centre clustering algorithm described in Section 2.10 is 

demonstrated over the same two-path Gaussian channel environment in Figure 2.36 and 

Figure 2.37. Comparing Figure 2.35 and Figure 2.36 using various centre learning rates /̂ r, 

shows that the scalar centre clustering algorithm provides a significantly faster convergence 

rate, since the number of scalar centres Ugj = = 4 {A4 = 2, X = 1) is only dependent 

on the number of symbol constellation points, M., and on the CIR length L + 1. Hence 

the number of scalar centres is signiScantly less than the number of vector centres given by 

Us = = 64 (m = 5), which is additionally dependent on the equaliser order m as 

well. However, the MSE learning curves of the centres are more spurious in conjunction with 

the scalar centre clustering algorithm, since the value of a scalar center affects the value of 

a few vector centres that contain that particular scalar centre and thus the estimation error 



GH/LPllBjR JYfCfTRdLL ByLSJSD f&CZtl/LLJf&dLGrjCirf 74 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 
1.5 

1.0 

0.5 

0.0 

SNR = OdB 
SNR = 5dB 
SNR = lOdB 
SNR = 20dB 
SNR = 30dB 
SNR = 40dB 

0 500 1000 1500 2000 2500 3000 3500 4000 
Number of symbol sample 

SNR = OdB 
SNR = 5dB 
SNR = lOdB 
SNR = 20dB 
SNR = 30dB 
SNR = 40dB 

1000 1500 2000 2500 3000 3500 4000 
Number of symbol sample 

(a)/4c 0.05 (b) (b) = 0.1 

S u 

o 

z 

SNR = OdB 
SNR = 5dB 
SNR = lOdB 
SNR = 20dB 
SNR = 30dB 
SNR = 40dB 

u 

I 
% 

I 
1000 1500 2000 2500 3000 3500 4000 
Number of symbol sample 

SNR = OdB 
SNR = 5dB 
SNR = lOdB 
SNR = 20dB 
SNR = SOdB 
SNR = 40dB 

500 1000 1500 2000 2500 3000 3500 4000 
Number of symbol sample 

(c) (c) — 0.2 (d) (d) = 0.4 

Figure 2.35: The MSE of the BPSK RBF equaliser centres versus transmitted symbol 
index for various learning rates jic of the centres using the vector centre clustering 
algorithm of Section 2.9.5 over the two-path channel environment of Figure 2.21(a). The 
equaliser had m = 5 feedforward taps and a decision delay of T = 2 symbols, and the 
number of training symbols was 700. 
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Figure 2.36: The MSE of the BPSK RBF equaliser centres versus transmitted symbol 
index for various learning rates fir of the centres using the scalar centre clustering 
algorithm of Section 2.10 with 700 training symbols over the two-path channel environment 
of Figure 2.21(a). The equaliser had m — h feedforward taps and a decision delay of T = 2 
symbols. 
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Figure 2.37: The MSE of the BPSK RBF equaliser centres versus trajismitted symbol 
index for various number of training samples using the scalar centres clustering 
algorithm of Section 2.10 over the two-path channel environment of Figure 2.21(a). The 
equaliser had m = 5 feedforward taps and a decision delay of r = 2 symbols. The centre 
learning rate jUr was set to 0.1. 
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of a scalar center will be magniEed, when we examine the average normahsed MSB of the 

vector centres in Figure 2.36. Figure 2.37 shows the average normahsed MSB of the RBF 

centres for a varying number of training symbols. Note that the algorithm still converges 

during the decision-directed mode, although the MSB curve behaves more spuriously during 

this mode compared to the learning phase, especially at low SNRs. 
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Figure 2.38: The MSB of the BPSK RBF equaliser centres versus transmitted symbol in-
dex for various learning rates /// using the LMS channel est imator technique of 
Section 2.9.4 with 300 training symbols over the two-path channel environment of Fig-
ure 2.21(a). The equaliser had m = 5 feedforward taps and a decision delay of r = 2 
symbols. 

The centres' MSB convergence performance for the channel estimation method using 

the LMS algorithm described in Section 2.9.4 is demonstrated in Figures 2.38 and 2.39. 

Comparing Figure 2.36 and 2.38 using varying learning rates shows that the LMS channel 
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Figure 2.39: The MSE of the BPSK RBF equaliser centres versus transmitted symbol 
index for various number of training samples using the LMS channel estimator 
technique of Section 2.9.4 over the two-path channel environment of Figure 2.21(a). The 
equaliser had = 5 feedforward taps and a decision delay of T = 2 symbols. The channel 
estimator learning rate /i/ was set to 0.03. 
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estimator technique provides faster convergence rate at a given learning rate, since the 

number of CIR coeScients that were adapted according to Equation 2.90 by the LMS 

channel estimator is less than the number of scalar centres of t h e scalar clustering algorithm. 

However, if we compare Figure 2.36(a), (b), (c) and (d) with Figure 2.38(a), (b), (c) and 

(d), respectively, they show rather similar convergence rates during the training mode since 

the number of scalar centres (2^+^ = 4) is not too high compared to the number of channel 

coefficients (L + 1 = 2) to be learnt adaptively. Figure 2.39 shows the average normalised 

MSB of the RBF centres for varying number of training symbols. Again, the LMS channel 

estimator technique of Section 2.9.4 still converges during the decision-directed mode. 
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Figure 2.40; The MSB of the BPSK RBF equaliser centres versus transmitted symbol index 
using the scalar centre clustering algorithm of Section 2.10 with centers initialised 
to the corresponding noisy channel states, as described by Equation 2.97 over the 
two-path channel environment of Figure 2.21(a). The MSB of the BPSK RBF equaliser 
centres learnt using the scalar centre clustering algorithm with centres initially set to 0 for 
SNR = 40dB is shown for comparison. The equaliser had m = 5 feedforward taps and a 
decision delay of T = 2 symbols. The learning rate //r was set to 0.1 and the number of 
training symbols is 200. 

Figure 2.40 shows the centres' MSB convergence performance, when the scalar centres 

clustering algorithm wag initialised with the corresponding noisy channel states, as de-

scribed in Section 2.10 over the same two-path Gaussian channel environment. Comparing 

Figure 2.36(b) and Figure 2.40 reveals that the initialisation to the corresponding noisy 

channel states significantly increases the convergence rate of the clustering algorithm at a 

low additional computational cost. The convergence rate is also seen to be faster than that 

of the LMS channel estimator technique when we compare Figure 2.38(d) with Figure 2.40, 

since the number of scalar centres (2-̂ +^ = 4) is not significantly higher, than the number 

of channel coefficients (Z, + 1 = 2) to be learnt adaptively. Note that since the number 

of scalar centres increases exponentially with the length IL of the CIR, the LMS 
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channel estimation technique will have a better convergence rate for high order modula-

tion scheme and high CIR lengths, than the scalar centre clustering algorithm using the 

above-mentioned initialisation to the noisy centres. 

2 .12 .3 P e r f o r m a n c e of t h e R B F Equal iser for S q u a r e - Q A M over Gauss ian 

Channe l s 

In this section the performance of the RBF equaliser is analysed in conjunction with multi-

level modulation schemes in a Gaussian environment. We used square-shaped Quadrature 

Amplitude Modulation (QAM) constellations [61]. Figure 2.41 portrays the location of each 

constellation point in terms of their in-phase (I) and quadrature-phase (Q) components for 

2-, 4-, 16- and 64-QAM. Each constellation point is assigned a bit sequence. Gray coding 

is applied to assign the bit sequences to their respective constellation points, ensuring that 

the necirest-neighbour constellation points had a Hamming distance of one. Therefore the 

assignment of constellation points is optimised in terms of minimising the BER. For a more 

in-depth understanding of QAM techniques, the interested reader is referred to [61]. 

We use a RBF DFE for multilevel modems as discussed in Section 2.9.2 and Section 2.11. 

Figure 2.42 shows the bit error rate performance for the 2-, 4-, 16- and 64-QAM schemes in 

conjunction with correct and detected symbol feed-back. The performance degradation due 

to decision errors is approximately 0.5dB for 2- and 4-QAM, IdB for 16dB, 1.5dB for 64dB 

at BER = 10"^ and thus it has a moderate effect at low BERs. Note however the Et/No 

degradation increases, as the BBR increases, which becomes more signiGcant at higher order 

QAM. 

Figure 2.43 shows the performance comparison between t h e conventional DFE and the 

RBF equaliser with decision feedback over the dispersive two-path Gaussian channel of 

Figure 2.21(a). The parameters of the conventional DFE were chosen such that it exhibited 

the best possible performance for our simulation scenario and hence a further increase of the 

feedforward order would not give a signiEcant performance improvement. The conventional 

DFE used in our simulations had a feedforward order of m = 7, feedback order of n = 1 and 

decision delay of T = 7 symbols. The RBF equaliser using decision feedback was found to 

give a similar performance with a reduced feedforward order of 2, feedback order of 1 and 

decision delay of 1 symbol. The performance of the RBF assisted decision feedback equaliser 

can still be further improved quite signiGcantly by increasing both the decision delay T and 

the feedforward order m, as we discussed in Section 2.11 and this was demonstrated in 

Figure 2.23 for Binary Phase Shift Keying (BPSK). 
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Figure 2.41: QAM Phasor Constellations 
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Figure 2.42: BER versus Eh/No performance of the R B F equal iser using decision feedback 
over the dispersive two-path AWGN channel for different Ai-QAM schemes. The impulse 
response of the two-path channel is described by Figure 2.21(a). The equaliser had a 
feedforward order of m = 2, feedback order of M — 1 and decision delay of T = 1 symbol. 
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2 .12 .4 P e r f o r m a n c e of t h e R B F Equal iser over W i d e b a n d Rayle igh Fad-

ing Channe l s 

In this section we used .M-QAM symbols. The combined transfer function of the transmitter 

and receiver Elters yielded a raised cosine Elter with a roH-oE factor of 0.5. The transmitter 

and receiver Elters were identical and were implemented as Snite-impulse-response (FIR) 51-

ters. The filter tap weights were samples of the truncated square-root-raised-cosine impulse 

response. The transmitted symbol was oversampled by a factor of 8 and it was pulse-shaped. 

The baseband time-invariant multipath fading channel was represented as follows: 

"c 
= (2.126) 

i=0 

where Mc is the number of fading paths, /i(t) is the complex-valued %th CIR tap at time 

t, Ti(<) is the excess delay at time f and is a delta function located at signalling instant 

The multipath components /i(() have independent Rayleigh fading statistics, they are 

uncorrelated and are scaled by their designed weights. For a more in-depth charaterization 

of Rayleigh fading channels, the reader is referred to the tutorial by Sklar [77]. In our 

simulations, the fading parameters of the channel are given in Table 2.12 and we employ 

two symbol-spaced fading paths with the weights given by 0.707 4- 0.707z"^. The structure 

of the transmitted burst is given in Figure 2.44, where the training symbol sequence is 

implemented as a preamble. In our simulations, the number of training symbols LT was set 

to 27 and the number of data symbols was set to 144. 

Transmission Frequency 1800MHz 
Transmission Rate 133kBds 
Vehicular Speed 30 mph 
Normalised Doppler Frequency 6 X 1 0 - ^ 

Table 2.12; Simulation parameter of the Rayleigh fading channel 

Figure 2.45 provides our BER performance comparison between the conventional DFE 

and the RBF DFE for different A^-QAM schemes. The conventional DFE assumed perfect 

channel estimation and its equaliser coefficients were optimised using the MSE criterion as 

described in [59] (pp. 607-612). The centres of the RBF DFB were positioned at the desired 

channel states. In these simulations the CIR taps were kept constant for the duration of 

the transmitted burst and were faded before the next burst, which we refer to as burst-

invariant fading. From Figure 2.45 we note that for BPSK, the RBF DFE having a low 

feedforward order of m = 2, feedback order of n = 1 and decision delay of T — 1 symbol 

was found to give similar performance to the conventional DFE having a feedforward order 
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of m = 7, feedback order of n = 1 and decision delay of r = 7 symbols. For 4-QAM, 16-

QAM and 64-QAM, the RBF DFE having the same parameters gives inferior performance 

compared to the conventional DFE in the two-path Rayleigh fading channel scenario. This 

is dissimilar to the performance of the two-path Gaussian channel shown in Figure 2.43. 

The performance degradations endured by the higher order modulation schemes are higher 

under fading channel conditions even in conjunction with perfect channel estimation, since 

these schemes are more sensitive to fades due to their reduced Euclidean distance between 

their neighbouring constellation points. Nevertheless, the performance of the RBF DFE 

can be improved by increasing both the decision delay T and the feedforward order m, as 

we discussed in Section 2.11, at the expense of increased computational complexity. This is 

demonstrated in Figure 2.46, where the performance of the R B F DFE having an increased 

decision delay of r = 2 and corresponding feedforward order of m = 3 and n = 1 showed 

an improved performance, attaining similar BER performance curves to the previously 

described conventional DFE for BPSK, 4-QAM and 16-QAM. The performance of 64-QAM 

is not shown here due to the associated high computational complexity of the simulation. 

The adaptive performance of the RBF DFE was investigated over the two-path Rayleigh 

fading channel at a normalised Doppler frequency of 6 x 10""^ for the BPSK modulation 

scheme. In our adaptive RBF DFE simulations, we used a variable centre learning rate 

where we had Hr = 0.3 during the training mode and /ij- = 0.1 during the decision-

directed learning mode. We assigned a sequence of LT pseudo-random binary symbols as 

the training symbol sequence as seen in Figure 2.44. We note, however that we will have to 

find the symbol sequence that can give the best training performance. Figure 2.47 provides 

our performance comparison for the RBF DFE using perfect channel estimation and when 

the adaptive RBF DFE is trained with the aid of the scalar centre clustering algorithm 

described in Section 2.10. Figure 2.47 shows that there is a high performance degradation 

due to the imperfect CIR knowledge and a residual BER is experienced in our simulations, 

when the wideband fading channel is symbol-invariant, as opposed to being burst-invariant, 

i.e. when it is kept invariant for only a symbol duration rather than for a burst duration. 

This phenomenon can be explained by comparing Figure 2.48 and 2.49 with Figure 2.50 and 

2.51 that show the snapshots of the channel output vector v^, and that of the learnt and 

ideal channel states Vĵ i, when the feedback state is s y j = [—1] for the SNR of 30dB. The 

fades are symbol-invariant for Figure 2.48 and 2.49, and burst-invariant for Figure 2.50 and 

2.51 throughout the transmission frame oi LT + LD = 177 symbols. The ideal channel states 

were obtained from the taps of the impulse response of the channel at the start of the frame 

and the learnt channel states were obtained using the scalar centre clustering algorithm 

described in Section 2.10. We also observed from Figure 2.48 and 2.49 as well as from 

Figure 2.50 and 2.51 that the scalar clustering algorithm is capable of tracking the desired 
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channel states. At high SNRs the fades dominate, rather t h a n the Gaussian noise, resulting 

in error statistics, which are not Gaussian. When the fading of the CIR is symbol-invariant, 

the effect of the fades is evident throughout the whole transmission burst, as we can observe 

from Figure 2.48 and 2.49 and this degrades the BER performance and gives an increased 

residual BER. But if the fade is burst-invariant, the channel eEects due to fades will not be 

evident throughout the whole transmission frame, as shown in Figure 2.50 and 2.51, and thus 

this effect will not manifest itself in the results. The degradation of the BER performance 

due to fades within the transmission burst is evident in Figure 2.48(b). Theoretically, the 

channel output vectors are separable at any time instance due to the appropriate setting 

of the equaliser's parameters. However, the clustering algorithm tracking error and the 

small Euclidean distance between the channel states rendered the channel output vectors 

inseparable for the symbol-invariant fading scenario. 

The channel output vectors are separable however for burst-invariant fading, as shown in 

Figure 2.50(b). During our simulations, the RBF DFE produced 77 symbol errors out of 

144 data symbols in the frame of Figure 2.48(b) for the symbol-invariant fading scenario, 

but did not give any symbol errors in the frame of Figure 2.50(b) for the burst-invariant 

fading scenario. The inseparable channel output vectors explain the residual BER present 

during our symbol-invariant fading simulations, as shown in Figure 2.47. We note that 

even for relatively slow fading channels, the channel states can change signiGcaJitly from 

symbol-to-symbol within a transmission burst duration. This phenomenon was noted in our 

simulations. Hence, when we assume perfect channel estimation and burst-invariant fading 

in our simulations, the results constitute best-case estimates. 
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Figure 2.43: BER versus signal to noise ratio performance of the R B F equaliser using de-
cision feedback and the conventional D F E over the dispersive two-path Gaussian channel 
for different vW-QAM schemes. The impulse response of the two-path channel is described 
by Figure 2.21(a). The RBF equaliser had a feedforward order of m = 2, feedback order of 
m = 1 and decision delay of T = 1 symbol. The conventional DFE had a feedforward order 
of m = 7, feedback order of n = 1 and decision delay of T = 7 symbols. Correct symbols 
were fed back. 

Training Symbols Data Symbols 

Figure 2.44: Transmitted frame structure depicting the position of the data and training 
symbols. For example in the context of the COST 207 CIR of Figure 2.52 the number of 
training symbols were 49 and the number of data symbols were 122. 
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Figure 2.45: BER versus signal to noise ratio performance of the conventional DFE and 
the RBF equaliser with decision feedback over the two equal weight, symbol-spaced path 
Rayleigh fading channel of F{z) = 0.707 + 0.707z"^ for different Ai-QAM schemes. Both 
equalisers assume perfect CIR estimation. The conventional D F E had a feedforward order 
of m = 7, feedback order of n = 1 and decision delay of r = 7 symbols. The RBF DFE had 
a feedforward order of m = 2, feedback order of n = 1 and decision delay of r = 1 
symbol. Correct symbols were fed back. The Rayleigh fading parameters are summarised 
in Table 2.12. 
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Figure 2.46: BER versus signal to noise ratio performance of the conventional DFE and 
the RBF equaliser with decision feedback over the two equal weight, symbol-spaced path 
Rayleigh fading channel of F{z) = 0.707 + 0.707z"^ for different vW-QAM schemes. Both 
equalisers assume perfect CIR estimation. The conventional DFB had a feedforward order 
of m = 7, feedback order of n = 1 and decision delay of r = 7 symbols. The RBF DFE had 
a feedforvyard order of m = 3, feedback order of n = 1 and decision delay of r = 2 
symbol. Correct symbols were fed back. The Rayleigh fading parameters are summarised 
in Table 2.12. 
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O Learnt - symbol-invariant fading 
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Figure 2.47: BER versus Eb/No performance of the adaptive R B F DFE with correct decision 
fedback under burst-invariant fading and symbol-invariant fading. The RBF DFE is adapted 
using the scalar centre clustering algorithm described in Section 2.10. The performance of 
the RBF DFE using perfect CIR estimation is provided for comparison. The RBF DFE 
had a feedforward order of m = 2, feedback order of M = 1 and decision delay of T = 1 
symbol. The Rayleigh fading parameters are summarised in Table 2.12. 
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Figure 2.48: The channel output vectors, learnt channel ou tpu t states and ideal channel 
output states of 1-4 transmission bursts in two-dimensional observation space, when the 
feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel. 
The fading is symbol-invariant. The DFE had the parameters of m = 2, ri = 1 and 
T = 1, while the SNR was 30dB. 
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Figure 2.49: The channel output vectors, learnt channel output states and ideal channel 
output states of 5-8 transmission bursts in two-dimensional observation space, when the 
feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel. 
The fading is symbol-invariant. The DFE had the parameters of m = 2 ,n = 1 and 
T = 1, while the SNR was 30dB. 
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Figure 2.50: The channel output vectors, learnt channel output states and ideal channel 
output states of 1-4 transmission bursts in two-dimensional observation space when the 
feedback symbol is -1 over the two-path symbol-spaced, equal-gain Rayleigh fading channel. 
The fading is burst-invariant. The DFE had the parameters of m = 2, n = 1 and r = 1, 
while the SNR was 30dB. 
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Figure 2.51: The channel output vectors, learnt channel output states and ideal channel 
output states in two-dimensional observation space when the feedback symbol is -1 over 
the two-path symbol-spaced, equal-gain Rayleigh fading channel. The fade is burst-
invariant. The DFE had the parameters of m = 2,n = 1 and T = 1, and the SNR was 
30dB. 
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2.12.5 P e r f o r m a n c e of the R B F D F E over C O S T 207 Channels 

In this section the performance of the RBF DFB is investigated over the widely-used family 

of Rayleigh fading COST 207 test channels [78]. The magnitude of the impulse responses 

and their respective delays can be calculated by applying a set of rules, which is specified 

in the COST 207 report [78]. More speciHcally, the CIR taps may be positioned on an 

equispaced legitimate raster, provided the taps themselves are not equispaced. The impulse 

responses and the relative delays of the channels referred to as the Typical Urban (TU) and 

Hilly Terrain (HT) models are shown in Figure 2.52 and Table 2.13. Figure 2.53 shows the 

observed channel output and the learnt channel states in a two dimensional 

space, when the decision delay is one symbol for the AWGN contaminated dispersive TU anc 

HT channels without fading. Note in Figure 2.53(b) that the channel states are separable 

without fading. The fading parameters used in our simulations were given in Table 2.12. 

The structure of the transmitted burst was given in Figure 2.44. In our simulations, the 

number of training symbols was set to 49 and the number of data symbols was set 

to 122. The scalar centre clustering algorithm of Equation 2.100 was used in conjunction 

with a variable centre learning rate such that was 0.3 during the training mode and 

0.1 during the decision-directed learning mode. Figure 2.54 shows the BER versus Eh/No 

performance for the COST 207 TU and HT channels, where the RBF DFE parameters 

were set to be m = 2,M = 1,T = 1 for the TU channel and m — 3,7% = 2,T = 2 for 

the HT channel, so that the decision delay covered the whole impulse response length. 

Thus, we assumed L = 1 for the TU channel and L = 2 for the HT channel. Figure 2.54 

depicts the BER performance for both symbol-invariant and burst-invariant fading burst. 

From Figure 2.54 we observed again the residual BER of approximately 10"^ due to the 

desired channel states that are close together in terms of Euclidean distance, which is a 

consequence of the non-ideal learnt channel states and inseparable channel state clusters 

in the symbol-invariant scenario, as mentioned in Section 2.12.4. For the burst-invariant 

scenario, the residual BER was approximately 2 x 10~® for TU channel and 5 x 10~® for 

the HT channel, where again, the explanation of Section 2.12.4 applies. However, for the 

burst-invariant scenario, where the noiseless channel states remain the same throughout 

the burst duration, the performance degradation that produces the residual BER is due 

to the non-ideal learnt channel states, especially when the desired channel states are close 

together. 
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Hilly Terrain Typical Urban 
Position (fis) Relative Power (dB) Position (/is) Relative Power (dB) 

0.00 -0.7 0.00 -0.87 
0.94 -14.99 1.88 -9.03 
1.88 -15.44 2.82 -13.12 

15.04 -29.30 4.70 -21.28 
15.98 -10.89 
17.86 -23.13 

Table 2.13: The relative power and delay of each path in the COST 207 [78] Typical Urban 
and Hilly Terrain channels which are depicted in Figure 2.52. 
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Figure 2.52: The impulse response of the COST 207 Typical Urban and Hilly Terrain 
channels depicting the relative power of each impulse and their relative delays, as shown in 
Table 2.13 
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Figure 2.53: The noisy channel outputs and the learnt channel states r, of the COST 
207 Typical Urban and Hilly Terrain channels with their transfer function depicted in 
Figure 2.52 for a BPSK modulation scheme. The SNR was 30dB, the number of samples 
was 171 and the decision delay was one symbol. The channel states r, were learnt with 
the aid of the scalar clustering algorithm of Section 2.10, where the number of training 
symbols was 49 and the learning rate /i^ was set to 0.3 during training mode, while to 0.1 
during decision-directed mode. By comparison, the corresponding quantities for the CIR of 
f'(z) — 0.707 + 0.707z"^ were plotted in Figures 2.50 and 2.51. 
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symbol-invariant fading : 
• - HT channel with m - 3, n - 2, r= 2 
o TU channel with m - 2, n - 1, 1 
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Figure 2.54: BER versus E(,/JVo performance for the BPSK R B F DFE in conjunction with 
correct decision fedback over the COST 207 TU and HT channels with the impulse responses 
described by Table 2.13 and Figure 2.52. 
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2.13 Conclusions 

In this chapter we provided a brief overview of neural networks and described, how equalisa-

tion can be viewed as a classification problem. The architecture of RBF networks was pre-

sented and we described the design of the RBF equaliser based on the Bayesian equaliser so-

lution. Our performance comparisons between the linear MSE equaliser and RBF equaliser 

in Figure 2.28 and 2.29 demonstrated that the RBF equaliser is capable of providing superior 

performance with the aid of an equivalent equaliser order at the expense of an exponential 

complexity increment upon increasing the equaliser order. According to Figure 2.28 and 

2.29, the RBF equaliser having a feedforward order of m = 9 provides a performance im-

provement of lOdB and 20dB over the linear MSE equaliser for the two-path and three-path 

Gaussian channel of Figure 2.21, respectively, at a BER of 10"^. We note that both the 

linear MSE equaliser and the RBF equaliser exhibit a residual BER characteristic, if the 

channel states corresponding to different transmitted symbols are inseparable in the channel 

observation space, as shown in Figure 2.30. 

The adaptive performance of the RBF equaliser employing the vector centre clustering 

algorithm of Section 2.9.5, scalar centre clustering algorithm of Section 2.10 and the LMS 

channel estimator of Section 2.9.4 were compared. The convergence rate of the clustering 

algorithm depends on the number of channel coefficients to be adapted and therefore de-

pends on the modulation scheme used and on the CIR length. However, the convergence 

of the LMS channel estimation technique only depends on the CIR length and therefore 

this technique is preferred for high-order modulation schemes and high CIR lengths. This 

is particularly true for the scenario, where the modulation mode of the training sequence 

and the data sequence diSers, e.g for the adaptive QAM system described in Chapter 3, 

where a more robust modulation mode is used for the training sequence. The LMS channel 

estimation technique could only be used to obtain the correponding RBF centres, since the 

desired channel output differs for the training- and data sequences. However, note that the 

LMS channel estimation technique incurs a higher computational complexity compared to 

both the vector and scalar clustering algorithms, as demonstrated in Table 2.7, 2.8 and 2.9. 

Decision feedback was then introduced into the RBF equaliser, in order to reduce its com-

putational complexity. As a result, its performance improved, since the Euclidean distance 

between the channel states corresponding to difi'erent transmitted symbols increased, when 

the DFE scheme was used. Recall that the parameters of the RBF DFE were chosen to be 

m = T + 1 and n = L, where m, n, T and L + 1 are the feedforward order, feedback order, 

delay and CIR length, which provide the best solution for a fixed equaliser delay r . As 

expected, the performance degradation due to decision error propagation increased, as the 

BBR increased, which became more significant for higher order QAM, as it was shown in 
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Figure 2.42. For fading channel conditions, the performance degradation for higher order 

modulation schemes were higher, since they are more sensitive to fades due to the reduced 

Euclidean distance between the neighbouring channel states. 

We investigated the performance of the adaptive RBF equaliser in symbol- and burst-

invariant fading scenarios. We observed the e&cts of inseparable channel state clusters for 

symbol-invariant fading in Figure 2.48(b), which was due to the fast-fading effects present 

across the burst duration. This phenomena, together with the non-ideal learnt channel 

states, explain the residual BER present in our simulations. Therefore, we have to note that 

even for relatively slow fading channels, the channel states value can change significantly 

on a symbol-by-symbol basis in a transmission burst duration. 

In the next chapter, we will proceed to investigate the implementation and performance 

of the RBF equaliser in the context of adaptive modulation schemes. 



Chapter 3 

Adaptive Modulat ion 

In this chapter, the concept of RBF equalisers is extended to Burst-by-Burst (BbB) Adap-

tive QAM (AQAM) schemes. BbB AQAM schemes employ a higher-order modulation 

mode in transmission bursts, when the channel quality is favourable, in order to increase 

the throughput emd conversely, a more robust but lower-order modulation mode is utilized 

in those transmission bursts, where the instantaneous channel quality drops. The modem 

mode switching regime will be detailed in more depth during our further discourse. We 

will show that this RBF-AQAM scheme naturally lends itself to accurate channel quality 

estimation. We will provide an outline of our various aasumptions and the description of 

the simulation model, leading to our RBF-AQAM performance studies. This scheme is 

shown to give a significant improvement in terms of the mean BER and bits per symbol 

(BPS) performance compared to that of the individual fixed modulation modes. Let us now 

commence with a brief background on adaptive modulation in both narrow- and wide-band 

fading channel environments. 

3.1 Background to Adapt ive M o d u l a t i o n in a Nar rowband 

Fading Channel 

We summarise here the principles of adaptive modulation in a narrow-band Rayleigh fading 

channel environment. In a narrow-band channel, as a result of channel fading, the short-

term SNR can be severely degraded. This typically degrades the short-term BER at the 

receiver. Again, the concept of adaptive modulation is to employ a higher modulation mode, 

when the channel quahty is favourable, in order to increase the throughput and conversely, 

a more robust modulation mode is employed, in order to provide an acceptable BER, when 

the channel exhibits a deep fade. Thus, adaptive modulation is not only used to combat the 

fading e&cts of a narrow-band channel, but it also attempt to maximise the throughput. 

100 
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This idea is somewhat reminiscent of invoking a coarse power control scheme although 

without the detrimental eEects of inSicting increased interferences upon other system users 

due to powering up during the intervals of low channel quality. In our work we used a 

variable number of modulation levels and again, we refer to this scheme as AQAM, while 

maintaining a constant transmitted power. 

Uplink 

Signal modem modes 
used by MS 

Downlink 

Signal modem modes 

Evaluate perceived 
channel quality and 
decide the transmission 
mode of local TX 

MS BS 
Evaluate perceived 
channel quality and 
decide the transmission 
mode of local TX 

Signal modem modes 
used by BS 

(a) Open-loop based signalling 
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Signal modem modes 
to be used by BS 

Downlink 

Signal modem modes 

BS 
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channel quality and 
signal the requested 
transmission mode 
to the MS TX 

MS 
Evaluate perceived 
channel quality and 
signal the requested 
transmission mode 
to the BS TX 

Signal modem modes 
to be used by MS 

(b) Close-loop based signalling 

Figure 3.1: Closed- and open-loop signalling regimes for AQAM, where BS represents the 
Base Station, MS denotes the Mobile Station and the t ransmitter is represented by TX. 

Adaptive modulation can only be invoked in the context of duplex transmissions, since 

some method of informing the transmitter of the quality of the link as perceived by the 

receiver is required unless an explicit feedback control channel is provided by the system. 

More explicitly, in adapting the modulation mode, a signalling regime has to be imple-

mented in order to harmonise the operation of the transmitter ajid receiver with regards 

to the adaptive modem mode parameters. The range of signalling options is summariszed 



in Figure 3.1 for both so-called open-loop and closed-loop signalling. For example, adap-

tive modulation can be applied in a time division duplex (TDD) arrangement, where the 

uplink and downlink transmissions are time-multiplexed onto the same carrier as depicted 

in Figure 3.2. If the channel quality of the uplink and downlink can be considered similar, 

an open-loop signalling system can be implemented, where the modulation mode can be 

adapted at the transmitter based on the information about the channel quality acquired 

during its receiving mode. This open-loop system is portrayed in Figure 3.1(a). The specific 

modem mode invoked has to be explicitly signalled by the transmit ter to the receiver along 

with the reverse-direction information and it must be strongly protected against trans-

mission errors, in order to avoid catastrophic BBR degradations in case of modem mode 

signalling errors. By contrast, if the above channel quality predicability is not applicable 

- for example due to the presence of co-channel interference, etc. - the closed-loop based 

signalling system shown in Figure 3.1(b) can be implemented. This would be typical in a 

frequency division duplex (FDD) based system, where the uplink and downlink transmission 

frequency bands are different. Explicitly, the receiver has to instruct the remote transmitter 

concerning the modem mode to be used for meeting the receiver's target integrity require-

ments. The modem mode side-information signalling requirement is the same for both of 

the above signalling scenarios. For example, two bits per transmission burst are required to 

signal four diSerent modem modes. However, the channel quality information wiH be based 

on a more obsolete channel quality estimate in the dissimilar uplink/downlink scenario, 

when the receiver instructs the remote transceiver concerning the modem mode to be used 

for meeting the receiver's BBR target. It was shown in the context of a Kalman-filtered 

DFE block turbo coded AQAM scheme that it is feasible to refrain from explicitly signalling 

the modem modes upon invoking blind mode detection and hence increase the associated 

throughput [79]. 

Having discussed brieEy the principle of adaptive modulation and the associated scenarios, 

where it can be applied, we can now explore the methology used for choosing the appropriate 

number of modulation levels. 

Torrance [80] used the instantaneous received power as the channel quality measure. The 

estimated instantaneous received power was used to select the suitable modulation mode 

by comparing the received power against a set of switching thresholds, = 1, - ,4, 

as depicted in Figure 3.3. These switching thresholds govern the tradeoff between the 

mean BER and the BPS performance of the system. If low switching thresholds are used, 

the probability of employing a high-order modulation mode increases, thus yielding a better 

BPS performance. Conversely, if high switching thresholds are used, a low-order modulation 

mode is employed more frequently, resulting in an improved mean BER performance. In his 

efforts to derive upper-bound performance bounds Torrance [80] assumed perfect channel 
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Figure 3.2: The TDD framing structure used in our AQAM system 
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Figure 3.3: Stylised profile of the short-term received SNR, which is used to choose the next 
modulation mode of the transmitter in TDD mode. 



qucility estimation and compensation, perfect knowledge of the modulation mode at the 

receiver ajid perfect estimation of the expected received power prior to transmission. 

Webb and Steele [81] used the received signal strength a n d the BER as channel qual-

ity measures in a flat Rayleigh-fading environment. The signal to co-channel interference 

ratio and the expected delay spread of the channel was used by Sampei, Komaki and 

Morinaga [82] as the criteria to switch amongst the modulation modes and the legitimate 

modulation rates. They used | - r a t e QPSK, g-rate QPSK, QPSK, 16-QAM, 64-QAM in a 

narrow-band channel environment. Sampei, Morinaga and Hamaguchi utilised the signal 

to noise ratio and the normalised delay spread as the channel quality measure. 

For a review of other work that has been conducted using adaptive modulation, the reader 

is referred to Wong's thesis 

3.2 Background on Adapt ive M o d u l a t i o n in a Wideband Fad-

ing Channel 

In this section we will initially extend the AQAM concept to wideband fading chaimel 

environments by employing conventional channel equalisation. We will briefly summarise, 

how the performance of the equaliser and the AQAM scheme can be jointly optimized. 

As expected, the AQAM switching criteria of the narrow-band scenario mentioned in 

Section 3.1 has to be modified for the wideband channel environment. In Torrance's paper 

[80] for example, the quality of the channel was determined on the basis of the short-term 

SNR, which was then used as a metric in order to choose the appropriate modulation mode 

for the transmitter. However, in a wideband environment, t he SNR metric is not reliable 

in quantifying the quality of the channel, where the existence of the multipath components 

in the wideband channel produces not only power attenuation of the transmission burst, 

but also intersymbol interference, as discussed in Section 2.1. Even when the channel SNR 

is high, QAM transmissions over wideband Rayleigh fading channels are subjected to error 

bursts due to ISI. Consequently, the metric required to quantify the channel quality has to 

be redefined, in order to incorporate the effects of the wideband channel. 

Wong and Hanzo [83, 84] approached this problem by formulating a two-step methology 

to mitigate the eSects of the dispersive wideband channel. T h e first step employed a con-

ventional Kalman-filtering based DFE, in order to eliminate most of the ISI. In the second 

step, the signal to noise plus residual interference ratio at the output of the equaliser waa 

calculated based on the channel estimate. This ratio was referred to as the 

since it exhibited a Gaussian-like distribution and it was used as a metric to switch the 

modulation mode. Again, in [83, 84], Wong used the conventional Kalman-filtering based 

DFE depicted in Figure 3.4. If the ISI due to past detected symbols is eliminated by the 
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Figure 3.4: Decision-feedback equaliser schematic 

feedback Elter, then the wanted signal power, the residual ISI signal power and the elective 

noise power can be expressed as follows 

Wanted Signal Power — 

Residual ISI Signal = 

Effective Noise Power = 

t=— 

% E 1= 
j=-Ki 

n—k\ 

n -oo, ,oo. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where % = 9 , J = . . . , 0 are the feedforward tap coeEcients, Cj, j = 

1,... ,K2 are the feedback tap coefRcients, fk is the kth impulse response tap of the channel 

and JVo is the noise power. Therefore, the pseudo SNR output of the DFE, 7 d f e , can be 

calculated as foUows: 

^ 
7DFB (3.5) 

The calculated pseudo SNR output of the DFE, is t h e n compared against a set of 

switching threshold levels, stored in a lookup table. T h e pseudo SNR output of the 

DFE, 7£)PE, is used for invoking the appropriate modem mode as follows [83]: 

NOTX i f 7 D f ^ < Z i 

BPSK if Zi < < Z2 

4-QAM if 2̂ < y o F B < h (3-6) 

16-QAM if (3 < < Z4 

64-QAM if jDPE > I4, 

where /„, n = 1 , . . . , 4 are the pseudo-SNR thresholds levels, and Powell's Multi-dimensional 

Line Minimization technique [86] was used to optimize the switching levels in [84]. 

In the forthcoming sections, instead of the conventional DFB, we wiU explore using the 

RBF network for the equalisation process, as described in Section 2.9. The joint adaptive 

Modulation Mode 
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Figure 3.5: System schematic of the joint adaptive modulation and RBF equaliser scheme 

modulation and RBF equalisation scheme will be described next , followed by our simulation 

results. 

3.3 System Descript ion of Joint A d a p t i v e Modula t ion and 

R B F based Equalisers 

In this section, we will describe the joint AQAM and R B F network based equalisation 

scheme and the switching metric employed. We commence by exploring the joint AQAM 

and RBF equaliser scheme's best-case performance. Finally, the performance of this scheme 

and that of the individual fixed modulation modes is compared in terms of their mean BER 

and BPS. 

3.3.1 System Overview 

The schematic of the joint AQAM and RBF network based equalisation scheme is depicted 

in Figure 3.5. We use the RBF DFE described in Section 2.11 in this scheme. At the 

receiver, the RBF DFE is trained using the method described in Section 2.9.3 and then 

the corrupted received signal is equalized. The short-term probability of bit error or short-

term BER of the transmitted burst is calculated from the output of the sub-RBF network, 

and is used as the switching metric. Section 3.3.2 will highlight this issue in more detail. 

The short-term BER is compared to a set of switching BER values corresponding to the 

modulation mode of the received data burst. Consequently, a modulation mode is selected 

for the next transmission, assuming channel quality similarity for the uplink and downlink 

transmissions. This implies that the similarity of the short-term BER of consecutive uplink 

and downlink data bursts can be exploited, in order to set the next modulation mode. 

The modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM, 64-QAM and 

no transmission (NO TX), similarly to Equation 3.6. Therefore, the modulation mode is 
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switched according to the estimated short-term BER, short-term' ^ foHows: 

' N O T X A o r M e r m > f ^ 

BPSK i f - P 2 ^ > f b i t , short- term a 

4-QAM i f J ' 4 ^ > - P b i t , short- term >-Pm C ?) 

16-QAM if > f b i t . shor t - term > 

64-QAM if > -Pbit, shor t - te rm' 

where = 2,4,16,64 are the switching BER thresholds corresponding to the various 

Ai-QAM modes. 

3 . 3 . 2 M o d e m M o d e S w i t c h i n g M e t r i c 

The RBF equaliser based on the optimal Bayesian decision funct ion of Equation 2.18, as 

described in Chapter 2, is capable of providing the 'on-line' est imation of the BER in the 

receiver without the knowledge of the transmitted symbols. This is possible, since the 

equaliser is capable of estimating the a posteriori probability of the transmitted symbols, 

if the CIR is known and provided that the centres of the R B F network are assigned the 

values of the channel states, as it was originally suggested in Section 2.9. 

Referring to Section 2.9.2 and Figure 2.19, the output of t h e R B F networks provides the 

conditional probability density function of each legitimate Q A M symbol, = 1 , . . . , Ai 

which is described by Equation 2.86. The a posteriorj probability ^(A:) of the transmitted 

symbols, can be evaluated from the conditional density funct ion, Ci(^) as follows: 

Q(A;) = P ( 7 t - T = ^ | v t ) 

_ f (vtiA—r = - - P ( 4 - t = ^i) 

0(A) 
oo < A; < oo. (3.8) 

The a posteriori probability ^{k) of the detected symbol can be obtained without the knowl-

edge of the term P(vfc), if the a posteriori probability has un i ty support (i.e. the sum of 

the a posteriori probabilities of all symbols is unity): 

C(&) 

E : ^ i O ( A ) 

where Cr(A) — ^ ^ ̂  deEned in Equation 2.85. Therefore, the proba-

bility of a symbol error associated with the decision I^-r = is given by: 

Ps(A:) = 1 — f(A;), —oo < A: < oo, (3.10) 

^(A) ^ - o o < A: < oo, (3.9) 
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and the overall probability of symbol error of the detector is given by: 

-Symbol == - oo < A; < oo. (3.11) 

Similarly, the probability of a bit error can be obtained f rom the a posteriori probability 

of the bits representing the QAM symbols. Below we provide an example for the 4-QAM 

scheme. The a postenori probability of the 4 symbols, %i, Zg, Zg and Z4, is estimated by 

the RBF networks as Ti, gg, % and ?4, respectively. A 4-QAM symbol is denoted by the bits 

and the symbols %i, %2, % and %4 correspond to 00, 01, 10 11, respectively. Thus, 

the a posteriori probability of the bits is given as follows: 

P([7o = 1) = f ([/oC/i = 11 U = 10) = ';4 + 

P([;o = 0) - P([/o[/i = 01 U [/oC/i = 00) = % + fi, 

P([ / i = 1) = P([/o(7i = 11 U [/oC/i = 01) = ^4 + f2, 

P([/i = 0) = P([/o(7i = 10 U [/oC/i = 00) - + fi. (3.12) 

In general, the average probabihty of bit error for the detected symbol at signalling instant 

A; is given by: 

= (3.13) 

where BPS denotes the number of bits per symbol and is the value (either 0 or 1) of 

the ith bit of the symbol exhibiting the maximum a posteriori probability. The overall 

probabihty of bit error for the detector is given by: 

— E{P^(A;)} — 00 < A < 00. (3.14) 

For our joint RBF based equalisation and AQAM scheme, we are unable to obtain the 

true probabihty of bit error for the detector, namely averaged over aU data bursts, 

since we need to coUect a large number of received samples for an accurate estimation. 

We can only obtain the short-term probability of bit error, short-term' which is the 

average bit error probability over a data burst that was received, i.e.. 

n] 
-^bit, short-term 2,^ ' (3-15) 

where is the number of data symbols per burst. Thus, we could estimate the channel 

quality on a BbB basis, relying on the estimated P^j^ short-term value. The short-term 

probability of bit error or BER is only an estimate of the actual Pj^j^ of the system for the 

duration of the data burst. The accuracy of the estimation is dependent on the number of 

data symbols Pf) in the burst. This issue wUl not be discussed further for now. 



Having described the switching metric used by the joint AQAM and RBF equaliser 

scheme, we will further investigate this scheme with the aim of producing a best-case per-

formance estimate. Before proceeding, the next section will present the assumptions used, 

when we employ this scheme in a wideband channel environment. 

3.3.3 Best-case Performance Assumptions 

In deriving the best-case performance of this joint adaptive modulation and RBF based 

equalisation scheme, the following assumptions are made: 

1, Perfect CIR estimation or channel state estimation is assumed at the receiver. The 

RBF's centres are assigned the values of the channel states. The associated CIR and 

channel state estimation techniques were presented in Section 2.9.3, 2.9.4 and 2.9.5. 

We note that incorrect estimation of the channel states will degrade the performance 

of the constituent fixed modulation modes, as it was demonstrated by our simulation 

results in Section 2.12. This degradation is neglected here with the aim of deriving a 

best-case performance estimate. 

2. The CIR is time-invariant for the duration of the transmission burst, but varies from 

burst to burst, which corresponds to assuming that t he channel is slowly varying. 

However, if the CIR changes during the transmission burst or if the estimation algo-

rithm gives an inaccurate channel estimate, the effect of the channel variations can 

be considered by modifying the noise variance estimate, as discussed in [38, 87]. Let 

us briefly summarize this idea. We define the error between the noisy channel output 

and the estimated noiseless channel state output 0̂  follows: 

et = - 'Ut 
L 

— '^k ^ ] fnlk~n 
n—0 

= . . . , Ik—h) 4" f]k: (3.16) 

where A / ( ) is an error function caused by an inaccurate estimate of the channel 

impulse response — 0, Having determined this noise term, the RBP 

equaliser uses the noise variance in its width parameter seen in Equation 2.81 in order 

to compute the conditional probability densities of each ligitimate QAM symbols. 

Therefore, by computing the 'noise variance' aa the average of e ,̂ and substituting 

these values in Equation 2.81 yields = 2^ . Hence we translated the CIR 

estimation error to a noise-like term. 

3. We assume furthermore that the receiver has perfect knowledge of the modulation 

mode used in its received transmission burst. For a practical system, control symbols 



must be used to convey the modulation mode employed by the transmitter to the 

receiver [88, 89]. 

4. The RBF DFE used in the system neglects error propagation by feeding the correct 

symbol to be used for RBF subset centre selection or space translation, aa described in 

Section 2.11. However, at low target BERs, we wiU expect low performance degrada-

tion due to decision feedback error propagation, as it was demonstrated in Figure 2.42. 

5. The short-term probability of error estimate, namely short-term' known prior 

to transmission for all the modulation modes used in. the system. This can be ag-

sumed in a TDD scenario, where the channel can be considered similar in the uplink 

and downlink transmission and when the channel is slowly varying. We also as-

sume that given the estimated short-term ^ particular modulation mode, 

the transmitter knows the corresponding short-term probability of bit error for the 

other modulation modes used in the system under the same channel conditions. Thus, 

the transmitter of a base station for example, can utUize its receiver's short-term 

estimation for its next transmission, provided that there is a high channel quality cor-

relation between the transmitter and receiver slots. Note however that the latency 

between the transmitter and receiver slots can aEect the quality of the estimation. 

This latency is mitigated, when employing slot-by-slot TDD - as in the third gen-

eration IMT-2000 and UTRA [90, 91, 92] proposals - where any TDD-slot can be 

configured as an uplink or downlink slot, hence reducing the latency of channel qual-

ity estimates. 

During our further discourse we will gradually remove these idealistic assumptions. 

Having described the assumptions stipulated, in order to derive the best-case performance 

of this joint adaptive modulation and RBF based equalisation scheme, we now describe our 

simulation model. 

3 .3 .4 S i m u l a t i o n M o d e l for B e s t - c a s e P e r f o r m a n c e 

In our experiments, pseudo-random symbols were transmitted in a fixed-length burst for all 

modulation modes over the burst-invariant wideband channel to fulfill assumptions 2 and 

5. The receiver received each data burst having diEerent modulation modes emd equalised 

each one of them independently. The estimated short-term probability of bit error or BER 

was obtained for each modulation mode, as described in Section 3.3.2. The highest-order 

modulation mode, M* that provided a short-term BER short term' was below 
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Figure 3.6: The simulation schematic of the joint AQAM and RBF DFE arrangement used 
for best-case BER performance estimation. 

the target BER target' 

VW* = max{Ai = 2,4,16,64, such that short-term ^ % t , target)' (3.17) 

was chosen to be the actual modulation mode that was used by the transmitter and the 

received equalised burst was used for the BER estimation of the system. The notation 

short-term ^^presents the short-term BBR of Ai-QAM. However, if all the modu-

lation mode could not provide the targetted BBR performance, i.e. short-term ^ 

^ i t target' mode ia utilized. Figure 3.6 shows the simulation schematic of the 

joint AQAM and RBF DFE scheme used in our best-case B E R performance evaluation. 

The next section will present our simulation results and analysis. 

3.3.5 Simulation Results 

The simulation parameters are listed in Table 3.1, noting that we analysed the joint AQAM 

and RBF equaliser scheme over a two-path Rayleigh fading channel. The wideband fading 

channel was burst-invariant. The RBF DFE used in our simulations had a feedforward 

order of m — 2, feedback order of = 1 and delay of T = 1. 

Number of data symbols per burst, 144 
Number of training symbols per burst, LT 27 
Transmission Frequency 1.9GHz 
Transmission Rate 2.6MBd 
Vehicular Speed 30 m p h 
Normalised Doppler Frequency 3.3 X IQ-s 
Channel weights 0.707 -1- 0.707z-^ 
RBF DFE feedforward order, m 2 
RBF DFE feedback order, n 1 
RBF DFE decision delay, r 1 

Table 3.1: Simulation parameters 



Figure 3.7 portrays the short-term BER of the burst-invariant channel versus symbol 

index, as estimated by the RBF DFE. For the simulated scenario, i.e., for a Doppler fre-

quency of 3.3 x 10^^ the short-term BER is slowly varying and it is relatively predictable 

for a number of consecutive data bursts. Thus, assumption 2 of Section 3.3.3 is valid for 

this scenario. 

The probability density function (PDF) of the BER estimation error of the RBF DFE 

for various channel SNRs is shown in Figure 3.8 for BPSK transmission bursts. The actual 

BER is the ratio of the number of bit errors encountered in a da ta burst to the total number 

of bits transmitted in that burst. Figure 3.8 suggests that t he RBF DFE provides a good 

BER estimation, especially for high channel SNRs. We note, however that the accuracy 

of the actual BER evaluation is limited by the burst-length of 144 bits and its resolution 

is 1/144. Hence at high SNRs the actual number of errors registered is often 0, which 

portrays the BER estimation algorithm of Equation 3.15 in a less accurate light in the PDF 

of Figure 3.8, than it is in reality. 

We will now analyse the best-case performance of the joint AQAM and RBF DFE scheme 

in more detail, using the simulation model described in Section 3.3.4 and the assumptions 

listed in Section 3.3.3. We designed two systems, a higher integrity scheme, having a target 

BER of 10"^, which can be rendered error-free by error correction coding and hence we refer 

to this arrangement as a data transmission scheme; the lower integrity scheme was designed 

for maintaining a BER of 10"^, which is adequate for speech transmission especially in 

conjunction with FEC. The target BPS values of these schemes were 3 and 4.5 bits per 

symbol, respectively, although these values can only be at tained for sufficiently high SNRs. 

Figure 3.9(a) and Figure 3.9(b) shows the simulated best-case performance of the joint 

AQAM and RBF DFE scheme for the target BER of 10"^ designed for speech transmission 

and for the target BER of 10"^ created for data transmission, respectively. The BER 

performance of the constituent Exed modulation modes is also depicted in both Egures for 

comparison. The best-case performance was evaluated for two different adaptive modulation 

schemes. In the first scheme, the transmitter always transmitted data without transmission 

blocking, i.e. the NO TX mode of Equation 3.7 was not invoked. By contrast, in the 

second scheme, dummy data was transmitted, whenever the estimated short-term BER was 

higher than the target BER, a scenario, which we referred to as transmission blocking. The 

transmission of dummy data during blocking allowed us to keep monitoring the BER, in 

order to determine when to commence transmission and in which modem mode. 

We will commence by analysing Figure 3.9(a), where the joint AQAM and RBF DFE 

scheme was designed for speech transmission, i.e. for a B E R of 10"^. For the adap-

tive scheme, which did not incorporate transmission blocking, the performance of adaptive 

modulation was better or equivalent to the performance of BPSK in terms of the mean 
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Figure 3.7: Short-term BER versus symbol index as estimated by the RBF DFE over the 
two-path equal-weight, symbol-spaced Rayleigh fading channel of Table 3.1. The RBF DFE 
had a feedforward order of m = 2, feedback order of n = 1 and decision delay of r = 1 
symbol. Perfect channel impulse response estimation is assumed and the error propagation 
due to decision feedback is ignored. The transmitted burst of Figure 2.44 consists of 171 
symbols (144 data symbols and 27 training symbols). 
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Figure 3.8: Discretised PDF of the error between the actual BER of the data burst and 
the BER estimated by the RBF DFE for the two-path Rayleigh fading channel of Table 3.1 
using BPSK. 

BER and mean BPS for the SNR range between OdB and 9dB. At the channel SNR of 

9dB, even though the mean BER performance was equivalent for the adaptive scheme and 

the BPSK scheme, the mean BPS for the adaptive scheme improved by a factor of 1.5, 

resulting in a mean BPS of 1.5. In the SNR range of 9dB to 16dB, the adaptive scheme 

outperformed the 4-QAM scheme in terms of the mean BER performance. At the channel 

SNR of 16dB, the mean BERs of both schemes are equivalent, although the mean BPS 

of the adaptive scheme is 2.7, resulting in a BPS improvement by a factor of 1.35, when 

compared to 4-QAM. At the channel SNR of 26dB, the mean BPS improvement of the 

adaptive scheme is by a factor of 1.3 for an equivalent mean BER. The adaptive scheme 

that utilized transmission blocking achieved a mean BER below 1%. At the channnel SNR 

of 12dB, even though the mean BER performance was equivalent for the BPSK scheme and 

the adaptive scheme with transmission blocking, the mean B P S for the adaptive scheme 

improved by a factor of 2. As the SNR improved, the performance of the adaptive schemes 

both with and without transmission blocking converged, since the probability of encounter-

ing high short-term BERs reduced. The mean BER and mean BPS performance of both 

adaptive schemes converged to that of 64-QAM for high SNRs, where 64-QAM becomes 

the dominant modulation mode. 

Similar trends were observed for data-quality transmission, i.e. for the 10"^ target BER 

scheme in Figure 3.9(b). However, we note that for the SNR range between 8dB to 20dB, 

the mean BER of the adaptive scheme without transmission blocking was better, than that 

of BPSK. This phenomenon was also observed in the narrowband adaptive modulation 
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scheme of [80] and in the wideband joint AQAM and DFE scheme of [83, 84], which can be 

explained as follows. The mean BER of the system is the ratio of the total number of bit 

errors to the total number of bits transmitted. The mean BER will decrease with decreasing 

number of bits error and with increasing number of total bits transmitted in the data burst. 

For a Sxed number of symbols transmitted, the number of total bits transmitted in a data 

burst is constant for the BPSK scheme, while for the AQAM scheme the total number of 

bits transmitted in a data burst increased, when a higher-order AQAM mode was used. 

However, in this case the BER increased. If the relative bits per symbol increment upon 

using AQAM is higher than the relative bit error ratio increment, then the mean BER of 

the adaptive scheme will be improved. Consequently the adaptive mean BER can be lower 

than that of BPSK. 

The probability of encountering each modulation mode employed in the adaptive scheme 

based on the estimated short-term BER switching mechanism is shown in Figure 3.10 and 

Figure 3.11 for the BER = 10"^ and BER = 10""̂  schemes, respectively. As expected, the 

sum of the probabilities at each particular SNR is equal to one. At low SNRs, the lower 

order modulation modes (NO TX or BPSK) are dominant, producing a robust system. At 

higher SNRs, the higher order modulation modes become dominant, yielding a higher mean 

BPS and yet a reduced mean BER. From Figure 3.11(b), we observe that the transmission 

blocking mode was dominant in the SNR range of OdB to 4dB and thus the mean BER 

performance was not recorded in that range of SNRs in Figure 3.9(b). 

Comparing Figure 3.10(a) and Figure 3.11(a), the probability of transmission blocking 

waa higher for data-quality transmission, in order to achieve a lower target BER due to 

the associated more stringent BER requirements of 10""^. T h e probability of transmission 

blocking was close to zero, once the channel SNR increased to about 16dB and 20dB for 

the BER = 10"^ and BER = 10^^ schemes, respectively. These are the points, where the 

performance of the adaptive schemes with and without transmission blocking converged, as 

demonstrated in Figure 3.9. We observed that the probabilities of the 4-QAM, 16-QAM 

and 64-QAM modes being utilized for the adaptive scheme wi th and without transmission 

blocking was fairly similar. This is because introducing transmission blocking will predomi-

nantly affect the probability of BPSK, which will be utilized instead of no data transmission. 

In summary, the AQAM RBF DFE scheme haa its advantages, when compared to the 

individual Sxed modulation modes in terms of the mean BER and mean BPS performance. 

Note however for the adaptive scheme without transmission blocking that the target perfor-

mance of BER = 10"^ and BER = 10"^ can only be achieved, if the channel SNR is higher 

than 9dB and 18dB, respectively. The target mean BERs for speech transmission (BER 

= 10"^) and data transmission (BER = 10"^) were achieved for all channel SNRs, when 
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Figure 3.9: The simulated best-case performance of the AQAM RBF DFE showing also 
the BER performance of the constituent fixed modulation schemes, namely BPSK, 4-QAM, 
16-QAM and 64-QAM, over the two-path Rayleigh-fading channel of Table 3.1 and using 
the assumptions of Section 3.3.3. 
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Figure 3.10: The probability of encountering the various Af-QAM modulation modes in the 
joint AQAM and RBF DFE scheme for best-case per formance during speech-quality 
transmission (target B E R of 0.01) over the two-path equal-weight, symbol-spaced 
Rayleigh fading channel using the simulation parameters listed in Table 3.1 and the as-
sumptions stated in Section 3.3.3. 
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Figure 3.11; The probability of encountering the various A-f-QAM modulation modes in 
the joint AQAM and RBF DFE scheme for best-case per formance during data-quality 
transmission (target B E R of 10"^) over the two-path equal-weight, symbol-spaced 
Rayleigh fading channel using the simulation parameters listed in Table 3.1 and the as-
sumptions stated in Section 3.3.3. 
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we utilized transmission blocking. The target performance for speech (BER, = 10" )̂ and 

data (BBR = 10" )̂ transmission in terms of mean BPS (4.5 and 3, respectively) can only 

be achieved for the AQAM scheme with and without transmission blocking, if the channel 

SNR is in excess of about 22dB. Thus, the advantage of using an adaptive scheme with 

transmission blocking is that the performance of the joint AQAM and RBF DFE scheme 

can be 'tuned' to a certain required mean BER performance. However, the disadvantage is 

that the utilization of transmission blocking results in transmission latency, an issue, which 

waa addressed for example in [93, 94]. SpeciEcaHy, the interdependency of the required 

buSer size, doppler frequency and latency was analysed. Furthermore, frequency hopping 

was proposed for reducing the average duration of NO TX mode at low Doppler frequencies, 

where the latency and the buffer size may become excessive. 

Let us now embark on a comparative analysis between the joint AQAM RBF DFE scheme 

and the Kalman-filtering based joint AQAM DFE scheme introduced by Wong et. al [84] 

for wideband channels. The joint AQAM DFE scheme in [84] used the pgencfo-j'TVA at the 

output of the DFE as the switching metric, an issue discussed brieSy in Section 3.2. The 

pseudo-SNR at the output of the DFE was compared to a set of pseudo-SNR. thresholds 

optimized using Powell's method [86]. Table 3.2 gives the results of the optimization process 

invoked, in order to achieve transmission integrities of 10^^ and 10"^ over the two-path 

Rayleigh-fading channel of Table 3.1 [84]. The conventional DFE used in the adaptive 

scheme had a feedforward order of m = 15, feedback order of n = 2 and decision delay of 

T = 15 symbols. The parameters m, n and r of the conventional DFE were chosen such 

that it exhibited the best possible performance for our simulation scenario and hence further 

increase of the feedforward order would not give a significant performance improvement. 

We note again that for our best-case performance comparisons, the switching metric used 

for both schemes - namely the short-term BER for the AQAM RBF DFE scheme and the 

pseudo SNR for the AQAM DFE scheme - was estimated perfectly prior to transmission 

and the appropriate AQAM mode was chosen for the data burst to be transmitted, which 

satisGed the target BER requirement. 

Zi(dB) f2(dB) Z3(dB) Z4(dB) 
Speech 3.68026 6.3488 11.7181 17.8342 
Data 8.30459 10.4541 16.8846 23.051 

Table 3.2: The optimized switching levels of the joint adaptive modulation and DFE 
scheme for speech and data transmission in the two-path Rayleigh fading ckaimel [84]. The 
target mean BER and BPS performance for speech was 10"^ and 4.5, respectively, while 
for computer data, 10"^ and 3, respectively. 
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Figure 3.12 provides the BER performance comparison of the conventional DFB and the 

RBF DFB over the two-path Rayleigh fading channel of Table 3.1 for the constituent fixed 

modulation modes. The BER performance of the RBF D F E for BPSK and 4-QAM was 

better than that of the conventional DFE, as the SNR increased. By contrast, the BER 

performance of the EBF DFE was inferior compared to that of the conventional DFE for 16-

and 64-QAM. The performance of the RBF DFB can be, however, improved by increaaing 

both the decision delay r and the feedforward order m, as argued in Section 2.11, at the 

expense of increased computational complexity. However, the present parameter values 

for the conventional DFE and RBF DFE are convenient, since they yield similar BER 

performances. 

The performance comparison of the adaptive schemes, i.e. tha t of the AQAM DFE and 

AQAM RBF DFE, is given in Figure 3.13. For the 10"^ target BER system, the AQAM 

RBF DFB provides a better BER performance, than the Kalman-hltering based AQAM 

DFE in the SNR range from OdB to 28dB at the expense of a lower BPS performance, 

especially for higher SNRs. As the SNR exceeds 28dB, the BER performance of the AQAM 

DFB scheme becomes superior to that of the AQAM RBF DFE. This is because at higher 

SNRs the 64-QAM modulation mode prevails and since the 64-QAM BER performance of 

the conventional DFE was better, than that of the RBF D F E in Figure 3.12, hence the 

mean BBR improvement of the AQAM DFE is expected, when compared to that of the 

AQAM RBF DFB. 

For the 10"^ target BER system, the BER performance of the AQAM DFE and AQAM 

RBF DFE is fairly similar in the SNR range from 5dB to 12dB, but the BPS performance 

of the AQAM RBF DFE is better, than that of the AQAM DFE in that range. In this 

SNR range the lower-order modulation modes dominate. Since the RBF DFE can provide a 

better BER performance, than that of the conventional DFE for the lower-order modulation 

modes, the BPS performance of the AQAM RBF DFB can be improved, while maintaining 

a similar BBR performance to that of the AQAM DFB. As the SNR exceeds 12dB, the 

BER performance of the AQAM RBF DFE remains better at the expense of a lower BPS 

performance. 

The overall results of our simulations show that the AQAM RBF DFE is capable of 

performing similarly to the AQAM DFE at a lower decision delay and lower feedforward 

and feedback order. However, the computational complexity of the RBF DFE is dependent 

on the modulation mode, since the number of RBF centres increases with the number of 

modulation levels, as ciiscussed in Section 2.7. This is not so in the context of the conven-

tional DFE, where the computational complexity is only dependent on the feedforward and 

feedback order. Table 3.3 compares the computational complexity of the RBF DFB (m = 2, 

n = 1, r = 1) and the conventional DFE (m = 15, n = 2) used in our simulations. The 
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complexity analysis of the RBF DFE is based on Table 2.10. The high computational cost 

incurred by the RBF DFE in the high-order vW-ary modulation modes presents a drawback 

for the AQAM RBF DFE scheme. 

Operation RBF DFE Conventional DFE 
BPSK 4-QAM 16-QAM 64-QAM 

subtration and addition 15 60 1008 16320 16 
multiplication 12 48 768 12288 17 
division 4 16 256 4096 0 
exp() 4 16 256 4096 0 

Table 3.3: Computational complexity of RBF DFE and conventional DFE per equalised 
output sample. The RBF DFE has a feedforward order of m = 2, feedback order of n = 1 
and decision delay of T = 1 symbol. The number of RBF hidden units is dependent 
on the order of the Ai-QAM modes and the channel memory where Mgj = 
The channel memory is assumed to be i = 1. The complexity analysis of the RBF DFE is 
based on Table 2.10. The conventional DFE has a feedforward order of m = 15, feedback 
order of m = 2 and decision delay of T = 15 symbols. 

Nevertheless, we note that unlike the conventional DFE, the AQAM RBF DFE is capable 

of performing well over channels, which result in non-linearly separable received phasor 

constellations. 

3.3.6 Discussion 

In the above sections, BbB adaptive modulation was applied in conjunction with the RBF 

DFE of Section 2.11 in a wideband channel environment. T h e short-term BER of Equa-

tion 3.15 estimated by the RBF DFE was used as the modem mode switching metric in 

order to switch between diSerent modulation modes. The validity of using this metric waa 

tested in Section 3.3.5 and in Figure 3.8 it was shown that the RBF DFE gives a good 

BER estimate for the adaptive scheme to maintain the target mean BER performance. The 

simulation results also showed that there was a performance improvement in terms of the 

mean BER and mean BPS, when compared to the constituent fixed modulation modes. The 

performance of the joint AQAM RBF DFE scheme was then compared to that of the joint 

AQAM conventional DFE scheme investigated by Wong [84]. T h e AQAM RBF DFE having 

a lower feedforward and feedba<± order and a smaller decision delay, showed comparable 

performance to the AQAM DFE in our simulations. 

In our future work, the performance of the AQAM RBF DFE will be investigated in 

practical situations, where the effect of discarding the assumptions made in Section 3.3.3 is 

to be quantified. 
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Figure 3.12: BER versus SNR performance of the conventional DFE and the RBF DFE over 
the two-path equal-weight symbol-spaced Rayleigh-fading channel of Table 3.1 for different 
Af-QAM schemes. The conventional DPS has a feedforward order of m = 15, feedback 
order of n = 2 and decision delay of r = 15 symbols. The RBF DFE has a feedforward 
order of m = 2, feedback order of n = 1 and decision delay of r = 1 symbols. 

3.4 Performance of the A Q A M R B F D F E Scheme: Switch-

ing Met r i c Based on t h e Previous S h o r t - t e r m B E R Es-

t i m a t e 

In this section, we analyse the performance of the AQAM R B F DFE scheme by discarding 

assumption 5 of Section 3.3.3. Therefore, the estimated short-term BER of the current 

transmitted bm'st is used to select the modulation mode for the transmission burst, 

as described in Equation 3.7. 

The BER switching thresholds corresponding to Ai-QAM, = 2,4,16,64, can be 

obtained by estimating the BER degradation/improvement, when the modulation mode is 
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Figure 3.13; Simulated best-case performance of the AQAM RBF DFE scheme and the 
numerical best-caae performance of the joint AQAM conventional DFE scheme for speech-
and data-transmission [84], using the parameters listed in Table 3.1 and the assumptions 
stated in Section 3.3.3. The modem mode switching levels used for the joint AQAM con-
ventional DFE scheme are listed in Table 3.2. The RBF DFE had a feedforward order of 
m, = 2, feedback order of n, = 1 and decision delay of T = 1 symbol and the conventional 
DFE had a feedforward order of m = 15, feedback order of n, = 2 and decision delay of 
T = 15 symbols. 
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Figure 3.14: The estimated short-term BER for all the possible modulation modes that can 
be invoked, assuming that the current mode is 4-QAM - versus the estimated short-term 
BER of 4-QAM for the two-path Rayleigh fading channel of Table 3.1. 
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switched from Ai-QAM to a higher/lower number of modulation levels. In this experiment, 

we obtain this BBR degradation/improvement measure from the estimated short-term BER 

of every modulation mode used, under the same instantaneous channel conditions. Fig-

ure 3.14 shows the estimated short-term BER of all the possible modulation modes that 

can be invoked, assuming that the current mode is 4-QAM, versus the estimated short-term 

BER of 4-QAM under the same instantaneous channel conditions. The short-term BERs of 

the modulation modes are obtained on a burst-by-burst basis from the RBF DFE according 

to Equation 3.15. Each point in Figure 3.14 represents the R B F DFE's estimated short-term 

BER for a specific received data burst using the corresponding modulation mode. In order 

to maintain the target BER of 10"^, Figure 3.14 demonstrates, how each switching BER 

threshold P / is obtained. The short-term BER of the 4-QAM transmission burst, when the 

corresponding BPSK, 16-QAM and 64-QAM transmission burs t under the same instanta-

neous channel conditions has an estimated BER of 10"^ is approximately 6 x 10"^, 10"^^ 

and 0, respectively. For example, if the estimated short-term BER of the received 4-QAM 

transmission burst is below P^ = 10"^ ,̂ the modulation mode cazi be 'safely' switched to 

16-QAM for the next transmission burst, since the short-term BER of this 16-QAM trans-

mission burst is expected to be below the target BER of 10"^. The 4-QAM error probability 

of Pfg = 10"^^ used in this example for switching to 16-QAM appears extremely conserva-

tive, but it is justified by the large uncertainty associated with the estimation of the BER 

due to the Rayleigh-faded impulse response taps. This manifests itself also in the rather 

spread nature of the BER estimates in Figure 3.14. A feasible technique for mitigating this 

phenomenon is employing the fade-tracking scheme of Figure 11.2 in Reference [61]. Using 

this method the switching BER thresholds were obtained for the target BER of 10"^ and 

10"^, as listed in Table 3.4 and Table 3.5, respectively in the context of all possible com-

binations of the mode transitions. Note that the extremely low values for P ^ = 1 x 10"^^ 

and = 1 X 10"^° in Table 3.5 were obtained by extrapolating the curves similar to 

Figure 3.14 but for 16-QAM and 64-QAM, respectively, in order to achieve the target BER 

of 10-4. 

Figure 3.15 shows the BER and BPS performance of the joint AQAM RBF DFE scheme 

designed for BER = 10"^ with the switching thresholds given in Table 3.4 - when using 

the current transmission burst's BER estimate, in order to determine the modem mode of 

the next transmission burst - in contrast to its best-case performance. The performance 

comparison shows that there is httle performance degradation, when the ct/rren^ short-term 

BER estimate is used to control the modulation mode of the next transmission burst based 

on the switching parameters of Table 3.4 for the AQAM scheme designed for BER = 10"^. 

Since the channel of Table 3.1 is slowly varying, the performance of the joint AQAM RBF 

DFE scheme based on the switching parameters of Table 3.4 is comparable to its best-case 



125 

pM 
A 

NO TX 9x:w-3 5x1.0-5 0 . 0 0.0 
BPSK 1 x 1 0 ^ 5x10-5 0.0 0.0 

4-QAM 6x10-2 lxlO-% 1 X 10-1% 0.0 
16-QAM 2x10-1 1x10-1 lxl.0-% IxlO-K 
64-QAM 3x10-1 2x:W-i 9x10-% lxjW-% 

Table 3.4: The switching BER thresholds of the joint adaptive modulation and RBF 
DFE scheme for the target BER of 10"^ over the two-path Rayleigh fading channel of 
Table 3.1. 

BER : BPS : 
TX blocking - upper bound — — TX blocking - upper bound 
without TX blocking - upper bound — - - without TX blocking - upper bound 

o - - TX blocking o — ̂ TX blocking 

0 ' " without TX blocking 0 - - - - without TX blocking 

W ^ „-4 

15 20 25 
SNR (dB) 

Figure 3.15: The BER and BPS performance of the joint AQAM RBF DFE scheme using 
the current BER estimate in order to estimate the next burst's transmission 
mode, and its best-case performance for the 10~^ target BER system, using the parameters 
listed in Table 3.1. The modem mode switching levels used for the joint AQAM RBF DFE 
scheme are listed in Table 3.4. The RBF DFE had a feedforward order of m = 2, feedback 
order of M = 1 and decision delay of T = 1 symbol. 
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performance. 

pM pM 

NO TX 9 X 1 0 - ^ 1 X 1 0 - ^ ^ 0 . 0 0 . 0 

BPSK 1 X 1 0 - ^ 1 X 1 0 - ^ ^ 0 . 0 0.0 
4-QAM 1 . 5 X 1 0 - ^ 1 X 1 0 - 4 1 X 1 0 - 4 5 0.0 
16-QAM 1 . 2 X 1 0 - ^ 5 X 1 0 - ^ 1 X 1 0 - 4 1 X 1 0 - ^ " 

64-QAM 2 . 2 X 1 0 - ^ 1 .5 X 1 0 - ^ 3 X 1 0 - ^ 1 X 1 0 - 4 

Table 3.5: The switching BBR thresholds P / ^ of the joint adaptive modulation and RBF 
DFE scheme for the target BBR of 10"^ over the two-path Rayleigh fading channel of 
Table 3.1. 

Figure 3.16 shows the BBR and BPS performance of the AQAM RBF DFE scheme de-

signed for data-transmission using the switching threshold given in Table 3.5 in comparison 

to its best-cage performance. The degradation with respect to the best-case performance 

of the AQAM RBF DFB scheme designed for data transmission at BBR = 10"^ based on 

the switching threshold given in Table 3.5 is more significant compared to the adaptive 

scheme designed for BBR = 10"^, as seen in Figure 3.15 and Figure 3.16. Note that for 

the low BBR switching thresholds of Pj^(= 1 x 10""̂ ®) and _F^(= 1 x 10~®°) in Table 3.5 

- which was required by the adaptive scheme for achieving t h e target BBR of 10"^ - the 

RBF DFE is unable to provide BBR estimates of such high accuracy. As the SNR improves, 

the relative frequency of encountering the switching thresholds Pfg and Pg^| increases and 

thus the performance degradation compared to the best-case increases. The performance 

degradation with respect to the best-case was also contributed by the spread nature of the 

BBR estimates due to the Rayleigh-faded CIR taps. The BER estimation spread was more 

evident, when the BER estimate decreased, as shown in Figure 3.14. Therefore, there is 

a substantial BER estimation inaccuracy associated with the switching thresholds and 

Figure 3.17 and 3.18 compare the probability of encountering each modulation mode em-

ployed in the adaptive scheme and those employed in the best-case performance scenario for 

speech-quality (BER = 10~^) transmission and data-quality (BER = 10""^) transmission, 

respectively. Figure 3.17 shows that the switching BBR thresholds of Table 3.4, deter-

mined with our suggested method and the previous short-term BBR estimate is capable of 

providing similar modulation mode utihzation for the adaptive scheme designed for speech-

quality transmission compared with its best-case performance. However, for data-quahty 

transmission, we note from Figure 3.18 that the utilization of the 64-QAM mode of the 

adaptive scheme is more frequent, than that of the best-case performance for high SNRs. 

This also explains the substantial BBR degradation from its best-case performance, as the 
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Figure 3.16: The BER and BPS performance of the joint AQAM RBF DFE scheme using 
the current B E R est imate in order to est imate the n e x t burst's transmission 
mode, and its best-case performance for data-transmission, using the parameters listed 
in Table 3.1. The modem mode switching levels used for the AQAM RBF DFE scheme are 
listed in Table 3.5. The RBF DFE had a feedforward order of m = 2, feedback order of 
M = 1 and decision delay of T = 1 symbol. 
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• NoTX . ... - No TX . upper bound 
o BPSK X - — B M K . upper bound 
A 4 QAM - 4 QAM . upper bound 

0 16 QAM — 16 QAM - upper bound 
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(a) With transmission blocking (b) W i t h o u t t r a n s m i s s i o n b lock ing 

Figure 3.17: The probability of encountering the various Ai-QAM modulation modes in the 
joint AQAM and RBF DFE scheme during speech-quality transmiss ion (target B E R 
of 0.01) over the two-path equal-weight, symbol-spaced Rayleigh fading channel using the 
simulation parameters listed in Table 3.1. The probability of modulation mode utilization 
for best-cage performance, as given in Figure 3.10, is provided for comparison. 
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(a) W i t h t r a n s m i s s i o n b lock ing (b) W i t h o u t t r a n s m i s s i o n b lock ing 

Figure 3.18: The probability of encountering the various Ai-QAM modulation modes in the 
joint AQAM and RBF DFE scheme during data-quality t ransmiss ion (target B E R of 
0.0001) over the two-path equal-weight, symbol-spaced Rayleigh fading channel using the 
simulation parameters listed in Table 3.1. The probability of modulation mode utilization 
for the best-case performajice, as given in Figure 3.11, is provided for comparison. 



SNR improves, as demonstrate in Figure 3.16. 

3.5 Conclusions 

The RBF DFE was shown to provide a good 'on-line' B E R estimation of the received 

data burst, which was used as the AQAM mode switching metric. Our simulation results 

showed that the proposed RBF DFE-assisted burst-by-burst adaptive modem outperformed 

the individual constituent fixed modulation modes in terms of the mean BER and BPS. 

Transmission blocking was utilised to maintain the target BER performance. Without 

transmission blocking, the target BER of 10"^ and 10"^ can only be achieved, when the 

channel SNR is higher than 9dB and 18dB, respectively. However, the disadvantage is that 

the utilization of transmission blocking results in transmission latency. 

The AQAM scheme employing RBF DFB was compared to the AQAM scheme using 

conventional DFE in order to mitigate the effects of the dispersive wideband channel. Our 

results showed that the AQAM RBF DFB scheme was capable of performing as well as the 

conventional AQAM DFB at a lower decision delay and lower feedforward as well aa feedback 

order. The performance of the AQAM RBF DFE can be improved by increasing both the 

decision delay r and the feedforward order m, at the expense of increased computational 

complexity, while the performance of the conventional AQAM DFE cannot be improved 

significantly by increasing its equaliser order. However, the computational complexity of 

the RBF DFE is dependent on the AQAM mode and increases significantly for higher-

order modulation modes. This is not so in the context of the conventional DFE, where the 

computational complexity is only dependent on the feedforward and feedback order. 

A method to obtain the switching BER thresholds of the joint AQAM RBF DFE scheme 

was proposed in Section 3.4 and was shown to suSer only minor performance degradation 

in comparison to the achievable best-case performance generated by assuming that the 

corresponding BER of all modulation modes was known given the estimated BER of the 

received burst. 

Overall, we have shown that our proposed AQAM scheme improved the throughput 

performance compared to the constituent fixed modulation modes. The RBF DFE provided 

a reliable channel quality measure, which quantified all channel impairments, irrespective of 

their source for the AQAM scheme and at the same time it improved the BER performance. 

In the following chapter, we will enhance the performance of the AQAM RBF DFE by 

invoking turbo coding. 



Chapter 4 

R B F Equalisat ion Using Turbo 

Codes 

In this chapter, the wideband AQAM scheme explored in the previous chapter is extended 

to incorporate the benefits of channel coding. Channel coding, with its error correction and 

detection capability, is capable of improving the BER and throughput performance of the 

wideband AQAM scheme. Since the wideband AQAM scheme always attempts to invoke 

the appropriate modulation mode in order to combat the wideband channel eEects, the 

probability of encountering a received transmitted burst with a high instantaneous BER 

is low, when compared to the constituent 5xed modulation modes. This characteristic is 

advantageous, since due to the less bursty error distribution, a coded wideband AQAM 

scheme can be implemented successfully without the utilization of long-delay channel in-

terleavers. Therefore we can exploit the error detection capability of the channel codes 

near-instantaneously at the receiver for every received transmission burst. 

Turbo coding [7] is invoked in conjunction with the RBF assisted AQAM scheme in a 

wideband channel scenario in this chapter. We will first introduce the novel concept of 

Jacobian RBF equaliser, which is a reduced-complexity logarithmic version of the RBF 

equaliser. The Jacobian logarithmic RBF equaliser generates i ts output in the logarithmic 

domain and hence it can be used to provide soft outputs for the turbo decoder. We will 

investigate different channel quality measures - namely the short-term BER and average 

burst log-likelihood ratio magnitude of the bits in the received burs t before and after channel 

decoding - for controlling the mode-switching regime of our adaptive scheme. We will now 

briefly review the concept of turbo coding. 

130 
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4.1 In t roduc t ion to Tu rbo Codes 

Turbo codes were introduced in 1993 by Berrou, Glavieux a n d Thitimajshima [7]. These 

codes achieve a near-Shannon-limit error correction performance with relatively simple com-

ponent codes and invoking large inter leavers. The component codes that are usually used 

are either recursive systematic convolutional (RSC) codes or block codes. The genercd 

structure of the turbo encoder is shown in Figure 4.1. The information sequence is encoded 

twice, using an interleaver or scrambler between the two encoders, rendering the two en-

coded data sequences approximately statistically independent of each other. The encoders 

produce a so-called systematically encoded output, which is equivalent to the original in-

formation sequence, as well as a stream of parity information bits. The parity outputs of 

the two component codes are then often punctured in order to maintain as high a coding 

rate as possible, without substantially reducing the codec's performance. Finally, the bits 

are multiplexed before being transmitted. 

Input Bits 

Output Bits 

Interleaver Component 
Code 1 

Component 
Code 1 

Puncturing 
and 
Multiplexing 

Figure 4.1: Turbo encoder schematic 

The turbo decoder consists of two decoders, linked by interleavers in a structure obeying 

the constraints imposed by the encoder, as seen in Figure 4.1. The turbo decoder accepts 

soft inputs and provides soft outputs as the decoded sequence. The soft inputs and outputs 

provide not only an indication of whether a particular bit was a binary 0 or a 1, but 

also deliver the so-called log-likelihood ratio (LLR) of the bi t which constituted by the 

logarithm of the quotient of the probability of the bit concerned being a logical one and 

zero, respectively. Two often-used decoders are the Soft Output Viterbi Algorithm (SOVA) 

[95] and the Maximum A Posteriori (MAP) [96] algorithm. 

As seen in Figure 4.2, each decoder takes three types of inputs - the systematically encoded 

chaimel output bits, the parity bits transmitted from the associated component encoder 

and the information estimate from the other component decoder, referred to as the a priori 

information of the decoded bits. The decoder operates iteratively. In the first iteration, the 

first component decoder provides a soft output and the so-called extrinsic output based on 

the soft channnel outputs alone. The terminology 'extrinsic' implies that this information is 
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Figure 4.2: Turbo decoder schematic 

not baaed on the received information directly related to the bit concerned, it is rather based 

on information, which is indirectly related to the bit due to the code-constraints introduced 

by the encoder. This extrinsic output generated by the Hrst decoder - which constitutes the 

Erst decoder's 'opinion' as to the bit concerned - is used by the second component decoder as 

a priori information, and this information together with the channel outputs is used by the 

second component decoder, in order to generate its soft ou tpu t and extrinsic information. 

Symmetrically, in the second iteration, the extrinsic information generated by the second 

decoder in the Erst iteration is used as the a priori information for the Erst decoder. Using 

this a priori information, the decoder is likely to decode more bits correctly than it did in the 

first iteration. This cycle continues and at each iteration the B E R in the decoded sequence 

drops. However, the extra BER improvement obtained with each iteration diminishes, as 

the number of iterations increases. In order to limit the computational complexity, the 

number of iterations is usually fixed according to the prevalent design criteria expressed in 

terms of performance and complexity. When the series of iterations is curtailed, after either 

a fixed number of iterations or when a termination criterion is satisfied, the output of the 

turbo decoder is given by the de-interleaved a posteriori LLRs of the second component 

decoder. The sign of these a posteriori LLRs gives the hard decision output and in some 

applications the magnitude of these LLRs provides the confidence measure of the decoder's 

decision. Because of the iterative nature of the decoder, it is important not to re-use 

the same information more than once at each decoding step, since this would destroy the 

independence of the two encoded sequences which was originally imposed by the interleaver 

of Figure 4.2. For this reason the concept of the so-called extrinsic and intrinsic information 

was used in the original paper on turbo coding by Berrou ef aZ. [7] to describe the iterative 

decoding of turbo codes. 
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For a more detailed exposition of the concept and algorithm used in the iterative decoding 

of tnrbo codes, the reader is referred to [7, 69]. Other, non-iterative decoders have also 

been proposed [97, 98] which give optimal decoding of t u r b o codes, but they are rather 

complex and providing disproportionately low improvement in performance over iterative 

decoders. Therefore, the iterative scheme shown in Figure 4.2 is usually used. Continuing 

from our previous work, where we used an RBF equaliser to mitigate the effects of the 

wideband channel, we will introduce turbo coding in order to improve the BER and/or 

BPS performance. 

In the next section, before we discuss the joint RBF equalisation and turbo coding system, 

we win introduce the Jocobmn eguoZwer, which computes the output of 

the RBF network in logarithmic form based on the Log-MAP algorithm [13] used in turbo 

codes to reduce their computational complexity. 

4.2 Jacobian Logari thmic R B F Equal iser 

The Bayesian-based RBF equaliser has a high computational complexity due to the evalu-

ation of the nonlinear exponential functions in Equation 2.81 and due to the high number 

of additions/subtractions and multiplications/divisions required for the estimation of each 

symbol, as it was expounded in Section 2.9. 

In this section - based on the approach often used in turbo codes - we propose generating 

the output of the RBF network in logarithmic form by invoking the so-called Jacobian 

logarithm [13, 14] , in order to avoid the computation of exponentials and to reduce the 

number of multiplications performed. We will refer to the R B F equaliser using the Jacobian 

logarithm as the Jacobian logarithmic RBF equaliser. Below we will present this idea in 

more detail. 

We will Erst introduce the Jacobian logarithm, which is deSned by the relationship [13]: 

J(Ai,A2) = 

— max(Ai,A2)+ln(l-|-e"l'^^"'^^l) 

% max(Ai,A2) + /c(|'^i — ( 4 - 1 ) 

where the first line of Equation 4.1 is expressed in a computationally less demanding form as 

max(Ai, A2) pins the correction function /c()- The correction function /c(3:) = ln(l -I-

has a dynamic range of ln(2) > /c(2:) > 0, and it is signiScant only for small values of 

X [13]. Thus, fc{x) can be tabulated in a look-up table, in order to reduce the computational 

complexity [13]. The correction function /c(-) only depends on |Ai — A2I, therefore the look-

up table is one dimensional and experience shows that only few values have to be stored [99]. 

The Jacobian logarithmic relationship in Equation 4.1 can be extended also to cope with a 
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higher number of exponential summations, aa in In (^^=1 6^*=). Reference [13] showed that 

this can be achieved by nesting the J(Ai, A2) operation as follows: 

= J(An,J(A;:_l , . . .J(A3,J(A2,Ai)) . . . ) ) . (4.2) 
\ t = l / 

Having presented the Jacobian logarithmic relationship, we will now decribe, how this 

operation can be used to reduce the computational complexity of the RBF equaliser. 

The overall response of the RBF network, given in Equat ion 2.81, is repeated here for 

convenience: 

/AgF(vt) = (4.3) 

Expressing Equation 4.3 in a logarithmic form and substituting in the Jacobian logarithm, 

we obtain: 

M / A B f ( v t ) ) = h i ( ^ W i e x p ( - | | v t - C i | | ^ / p ) ) 
i=l 

= h i ( ]^exp(h i (wi ) )exp( - | | v ;k -C i | | ^ /p ) ) 

= h i ( ^ e x p ( w ^ + z/it)) 
2 = 1 

M 

l n ( ^ e x p ( A i t ) ) 

i=l 
— '/(AMt, ' /(A(M-l)t ,- -)), (4-4) 

where w[ = In(wi), which can be considered as a t ransformed weight. Furthermore, we 

used the shorthand 1/,̂  = —||vt — Ci||^//) and = i/it + luj. B y introducing the Jacobian 

logarithm, every weighted summation of two exponential operat ions in Equation 4.3 is sub-

stituted with an addition, a subtraction, a table look-up and a max operation according to 

Equation 4.1, thus reducing the computational complexity. The term hi(^j^2 exp('Wj-Hz/it)) 

requires 3M — 1 additions/subtractions, M — 1 table look-up a n d M — 1 max(-) operations. 

Most of the computational load arises from computing the Euclidean norm term ||v^ — Ci||^, 

and the associated total complexity will depend on the number of RBF centres and on the 

dimension m of both the RBF centre vector Cj and the channel output vector v^. The 

evaluation of the term Vik = —jjvt - Cj||^/p requires 2m — 1 additions/subtractions, m 

multiphcations and one division operation. Therefore, the computational complexity of a 

RBF DFE having m inputs and hidden RBF nodes per equalised output sample, which 

was previously given in Table 2.10, is now reduced to the values seen in Table 4.1 due to 

employing the Jacobian algorithm. 
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Determine the feedback state 
7isj(2?7i + 2) — 2vW subtraction and addition 

multiplication 
division 

Tig j - + 1 max 

Maj - Ai table look-up 

Table 4.1: Computational complexity of a vW-ary Jacobian logarithmic decision feedback 
RBF network equaliser with m inputs and Ugj hidden units per equalised output sample 
based on Equations 2.104 and 4.4. 

Exploiting the fact that the elements of the vector of noiseless channel outputs constitut-

ing the channel states ri, % = 1 , . . . , Tig correspond to the convolution of a sequence of (2̂  + 1) 

transmitted symbols and + 1) CIR taps - where these vector elements are referred to as 

the scalar channel states n , / = 1 , . . . , n s j { = - we could use Patra's and Mulgrew's 

method [68] to reduce the computational load arising from evaluating the Euclidean norm 

i/ik in Equation 4.4. Expanding the term 1/*̂  gives 

- I k t - Cill̂  
= -

P 

p 

m + l 

P 
1 , . . . , M , A; = —oo, . . . ,oo, (4.5) 

where Vk^j is the delayed received signal and Cij is the j t h component of the RBF centre 

vector Ci, which takes the values of the scalar channel outputs r/ , / = 1 , . . . , Hgj as described 

in Section 2.10. Note from Equation 4.5 that Vik is a summation of the delayed components, 

— and the scalar centres take the values of the scalar channel outputs = 

1 , . . . , rig J . Thus, we could reduce the computational complexity of evaluating Equation 4.5 

by pre-calculating di = _ ^ = 1 , . . . , j for all the U g j possible values of the scalar 

channel outputs ri,l = 1,..., and storing the values. From Equation 4.5 the value of 

i^ik can be obtained by summing the corresponding delayed values of di, which we will define 

as 

d, Z = 1, ,n 
P 

a,/, J = 0 , . . . , m — 1. 

Substituting Equation 4.6 into Equation 4.5 yields: 

m—1 

^ik E i = 1, -oo, , oo. 

(4.6) 

(4.7) 
j=0 
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Figure 4.3: Reduced complexity computation of in Equat ion 4.5 for substitution in 
Equation 4.4 based on scalar channel output. 

The reduced complexity computation of in Equation 4.7 for substitution in Equation 4.4 

based on the scalar channel outputs n , can be represented as in Figure 4.3. The multiplexer 

(Mux) of Figure 4.3 maps dgj of Equation 4.6 corresponding to the scalar centre n to 

contribution of the vector centre's component c^. 

The computation of di = — = 1 , . . . , n s j requires r i g j multiplication, division 

and subtraction operations. For every RBF centre vector Cj, computing its corresponding 

Uik value according to Equation 4.7 needs m — 1 additions. The reduced computational 

complexity per equalised output sample of an Ai-ary Jacobian DFE with m inputs, j = 

RBF nodes derived from j scalar centres is given in Table 4.2. 

Comparing Table 4.1 and 4.2, we observe a substantial computational complexity reduction, 

especially for a high feedforward order m, since j if m, — M < 1. For example, 

for the 16-QAM mode we have n ^ j = 256 and Ugj = 256 for the RBF DFE equaliser 

parameters of m = 2, M = 1 and T — 1. The total complexity reduction is by a factor of 

about 1.3. If we increase the RBF DFE feedforward order and use the equaliser parameters 

of m = 3, M = 1 and T = 2 - which gives a better BER performance - then we have 

Ugj = 256 and = 4096 - and the total complexity reduction is by a factor of about 2.1. 

The computational complexity can be further reduced by neglecting the RBF scalar centres 
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situated far from the received signal nt, since the contribution of RBF scalar centres n to 

the decision function is inversely related to their distance from the received signal 7;̂ , as 

recognised by Patra [68]. 

Determine the feedback state 
n,aj (7n, + 2) — 2//( + Mg y subtraction and a<ldition 
Ugj multiplication 
Ugj division 
Ma j — + 1 max 
Msj — Ai table look-up 

Table 4.2: Reduced computational complexity per equalised output sample of an M-aiy 
Jacobian logarithmic RBF DFE based on scalar centres. The Jacobian RBF DFE based on 
Equation 2.104 and 4.4 has m inputs and j hidden RBF nodes, which are derived from 
the Tig J number of scalar centres. 

Figures 4.4 and 4.5 show the BER versus SNR performance comparison of the RBF DFE 

and the Jacobian logarithmic RBF DFE over the two-path Gaussiaji channel and two-path 

Rayleigh fading channel of Table 3.1, respectively. For t h e simulation of the Jacobian 

logarithmic RBF DFE the correction function /c(-) in Equation 4.1 was approximated by a 

pre-computed table having eight stored values ranging from 0 to ln(2). Prom these results 

we concluded that the Jacobian logarithmic RBF equaliser's performance was equivalent to 

that of the RBF equaliser, whilst having a lower computational complexity. 

Having presented the proposed reduced complexity Jacobian logarithmic RBF equaliser, 

we will now proceed to introduce the joint RBF equalisation and turbo coding system and 

investigate its performance in both fixed QAM and burst-by-burst (BbB) AQAM schemes. 

4.3 Sys tem Overview 

The structure of the joint RBF DFE and turbo decoder is portrayed in Figure 4.6. The 

output of the RBF DFE provides the a posteriori LLRs of the transmitted bits based on the 

a pogterjon probability of each legitimate Ai-QAM symbol. The a posteriori LLR of a data 

bit ut is denoted by which was deEned as the log of the ratio of the probabilities 

of the bit being a logical 1 or a logical 0, conditioned on the received sequence v^: 

— L{uk — 4-l|v/;) — L{uk — 11 ), (4.8) 

where the term = j: l |vt) = = j: l |vt)) is the log-likelihood of the data bit 

Uk having the value ± 1 conditioned on the received sequence v^. 
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Figure 4.4: BER versus signal to noise ratio performance of the RBF DFE and the Jacobian 
logarithmic RBF DFE over the dispersive two-path Gauss ian channel of Figure 2.21(a) 
for different Af-QAM modes. Both equalisers have a feedforward order of m = 2, feedback 
order of n = 1 and decision delay of T = 1 symbol. 

The LLR of the bits representing the QAM symbols can be obtained from the a posteriori 

log-likelihood of the symbol. Below we provide an example for the 4-QAM mode of our 

AQAM scheme. The a posteriori log-likelihood Li, L2, L3 and L4 of the four possible 

4-QAM symbols is given by the Jacobian RBF networks. A 4-QAM symbol is denoted by 

the bits C/of/i and the symbols %i, I2, % and correspond to 00, 01, 10 11, respectively. 

Thus, the a posteriorj LLRs of the bits are obtained as follows: 

= Olvt), 

= i | v t ) - = o |v t ) , (4.9) 

where, 

j[:([/o = l |v t ) = = 11 U = 10|vt) = = 7(^:4,^3), 
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Figure 4.5: BER versus signal to noise ratio performance of t he RBF DFE and the Jacobian 
logarithmic RBF DFE over the two path equal weight, symbol - spaced Rayleigh fad-
ing channel of Table 3.1 for different A^-QAM modes. Both equalisers have a feedforward 
order of m = 2, feedback order of M = 1 and decision delay of T = 1 symbol. Correct 
symbols were fed back. 

= 0|vt) - = 01 U C/oC/i = 00|vt) -

= l |v t ) = = 11 U (7o[/i = 01|vt) = = J(Z,4,^2), 

^([/i = 0|vt) = - 10 U = 00|v&) = 

(4.10) 

and J(Ai, A2) denotes the Jacobian logarithmic relationship of Equation 4.1. 

Note that the Jacobian RBF equaliser will provide log2(vW) number of LLR values for 

every Ai-QAM symbol. These value are fed to the turbo decoder as its soft inputs. The 

turbo decoder will iteratively improve the BER of the decoded bits and the detected bits 

wiU be constituted by the sign of the turbo decoder's soft output. 

The probability of error for the detected bit can be estimated on the basis of the soft 
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Figure 4.6: Joint RBF DFE and turbo decoder schematic 

output of the turbo decoder. Referring to Equation 4.8 a n d assuming P{uk = + l | v t ) + 

P{uk = —Ijvt) = 1, the probability of error for the detected bi t is given by 

•{uk) — (4.11) 
1 - = + l | v t ) = = - l l v t ) , if > 0 

1 - = + l | v t ) , if / :(ut |vt) < 0 

With the aid of the deSnition in Equation 4.8 the probability of the bit having the value of 

4-1 or -1 can be rewritten in terms of the a pogteriori LLR of the bit, as follows: 

1 
= +1|VA:) = 

-
1 g-/:(ut|vt) ' 

1 
(4.12) 

1 + e/:("k|v&)' 

Upon substituting Equation 4.12 into Equation 4.11, we redefined the probability of error 

of a detected bit in terms of its LLR as: 

1 
P. (4.13) 

1 _l_ g|z:(ut|vt)| 

where |vC(ut|vt)| is the magnitude of vC(t/t|vt). Again, the average short-term probability 

of bit error within the decoded burst is given by: 

s^Lh p 
2^1=0 

^ i t , short-term Lb 
(4.14) 

where Lb is the number of decoded bits per transmitted burst and Ui is the i th decoded bit 

in the burst. This value, which we will refer to as the estimated short-term BER was found 

to give a good estimation of the actual BER of the burst, which will be demonstrated in 

Section 4.4. The actual BER is the ratio of the number of bi t errors encountered in a data 

burst to the total number of bits transmitted in that burst. 

In the next section we will investigate the performance of the turbo-coding assisted RBF 

DFE A4-QAM scheme based on our simulation results. 

4.4 Turbo-coded RBF-equal ized vW-QAAI P e r f o r m a n c e 

According to our BER versus BPS optimistion approach high code rates in excess of 2/3 

are desirable, in order to maximise the BPS throughput of the system. Consequently, block 
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288 microseconds-
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1 Guard | 
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Figure 4.7: Trcmsmission burst structure of the so-caHed F M A l nonspread data mode as 
specified in the FRAMES proposal [101]. 

codes were favoured as the turbo component codes in preference to the more widely used 

Recursive Systematic Convolutional (RSC) code based turbo-coded benchmarker scheme, 

since turbo block coding has been shown to perform better for coding rates in excess of 

2/3 [100]. This is demonstrated first in Figure 4.11, which will be discussed in more depth 

at a later stage. In our simulations, unless otherwise stated, we hence utilized the turbo 

coding parameters given in Table 4.3 and employed the transmission burst structure shown 

in Figure 4.7. The turbo encoder used two Bose-Chaudhuri-Hocquenghem BCH(31, 26) 

block codes in parallel. A 9984-bit random interleaver was used between the two compo-

nent codes, unless otherwise stated. We used the Log-MAP decoder [13] throughout our 

simulations, since it offered the same performance as the optimal MAP decoder with a 

reduced complexity. The DFB used correct symbol feedback and we assumed perfect CIR 

estimation, hence the associated results indicate the system's upper-bound performance. 

BCH RSC 
Component code 
Octal generator polynomial 
Code rate, .R 
Turbo interleaver type 
Turbo interleaver size 
Component decoders 

BCH(31,26) 

0.72 = # 1 
Random 
9984-bit 
Log-MAP 

iir = 3, n = 2, A: = l 
(?[0] = 7g G[l] = Sg 
0.75 
Random 
9984-bit 
Log-MAP 

Table 4.3: The turbo BCH and RSC coding parameters 

4.4.1 Results over Dispersive Gaussian Channels 

We will first investigate the performance of the joint RBF DFE vW-QAM and turbo coding 

scheme over the two-path Gaussian channel of Figure 2.21(a). Figure 4.8 provides our BBR 

performance comparison between the RBF DFE scheme and the conventional DFE scheme 

in conjunction with the turbo BCH codec of Table 4.3. The RBF DFE has a feedforward 

^ T h e p a r i t y b i t s were n o t p u n c t u r e d , s ince block t u r b o codes sufTer f r o m p e r f o r m a n c e loss u p o n p u n c t u r i n g 
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Figure 4.8: BER versus SNR performance for the BPSK RBF DFE and for a conventional 
DFE using the turbo BCH codec of Table 4.3 with different number of iterations over 
the dispersive two-path Gaussian channel of Figure 2.21(a). The conventional DFB has a 
feedforward order of m = 7 and a feedback order of n = 1. T h e turbo interleaver size is 
9984 bits. 
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order of 2, feedback order of 1 and decision delay of 1 symbol in Figure 4.8(a) and a feed-

forward order of 3, feedback order of 1 and decision delay of 1 symbol for Figure 4.8(b). 

The parameters of the conventional DFE were a feedforward order of 7 and feedback order 

of 1, which were assigned such that they gave the best possible BER performance according 

to our experiments and hence there was no significant BER improvement upon increasing 

the feedforward and feedba<j{ order. Figure 4.8 also demonstrates the eEect of the number 

of decoding iterations used. The performance of the uncoded scheme is also provided as a 

comparison. Using turbo coding improves the performance by approximately 3.2dB at a 

BER of 10"^ for both the RBF DFE (m = 2, r = 1 and m = 3, r = 2) and for conventional 

DFE schemes. As the number of iterations used by the tu rbo decoder increases, both the 

turbo-coded RBF DFE and the turbo-coded conventional DFE scheme perform significantly 

better. However, the 'per-iteration' BER improvement is reduced, as the number of itera-

tions increases. Hence, for complexity reasons, the number of decoding iterations waa set 

to six for our forthcoming simulations. 

Figure 4.8(a) indicates that the turbo-coded conventional DFE scheme performs slightly 

better than the turbo-coded RBF DFE (m = 2, T — 1) scheme, corresponding to approx-

imate improvements of 0.5dB, O.SdB and O.ldB for one iteration, three iterations and six 

iterations, respectively, at a BER of 10"'^. However, the performance of the turbo-coded 

RBF DFE scheme can be further improved by increasing its feedforward order and decision 

delay, as demonstrated in Figure 4.8(b), unlike that of the turbo-coded conventional DFE 

where there is no further performance improvement upon increasing the equaliser order. 

The improved turbo-coded RBF DFB (m = 3, T = 2) scheme gives an SNR improvement of 

0.2dB, 0.2dB and O.SdB for one iteration, three iterations and six iterations, respectively, 

at a BER of 10"^ compared to the conventional DFE scheme. The SNR improvement at a 

BER of 10"^ compared to the uncoded conventional DFE is -O.SdB and 0.2dB for the RBF 

DFE using M = 2, T = 1 and M = 3, R = 2, respectively. We observed that the turbo-coded 

performance of the conventional DFE and RBF DFE follow the trends of their uncoded 

performances. 

We will now extend our investigations to QAM schemes. Figure 4.9 shows the BER 

performance of the BCH turbo-coded RBF DFE system for various QAM modes over the 

two-path Gaussian channel. Introducing turbo coding into the system improves the perfor-

mance by 8dB for BPSK, 4-QAM and 16-QAM and by about 9.5dB for 64-QAM at a BBR 

of 10"" .̂ Note that turbo coding only starts to improve the uncoded performance after the 

uncoded BER drops below 10"^, since coding could not improve the BER performance, if 

the number of errors in the undecoded burst exceeded a certain limit. 

The Jacobian logarithmic RBF DFB introduced in Section 4.2 can be used to substitute 
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Figure 4.9: BER versus SNR performance for the RBF DFE using the turbo codec of Ta-
ble 4.3 over the dispersive W o - p a t h Gaussian channel of Figure 2.21(a) in conjunction 
with various QAM modes. The RBF DFE has a feedforward order of m — 2, feedback order 
of n = 1 and a decision delay of r = 1 symbol. The number of turbo BCH(31,26) decoder 
iterations is six, while the random turbo interleaver size is 9984 bits. 
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the RBF DFE in order to reduce the computational complexity of the system. The turbo-

coded performance of the Jacobian logarithmic RBF DFB is shown to be similar to that of 

the RBF DFE in Figure 4.10, since the Jacobian logarithmic algorithm is capable of giving 

a good approximation of the equalised chaimel output LLRs. 

10' 

10 

10' 

10'̂  

10 

1 0 ' 
10 15 

SNR (dB) 

m = 2, n = 1, T= 1 : 

o BPSK Jacobian RBF DFE 
• 4 Q A M Jacob ian R B F D F E 

A 1 6 Q A M Jacob ian R B F D F E 

0 6 4 Q A M Jacob ian R B F D F E 

e BPSK RBF DFE 
* 4QAMRBFDFE 
* 16QAMRBFDFE 
X 64QAMRBFDFE 

20 25 30 

Figure 4.10: BER versus SNR performance for the RBF DFE and Jacobian logarithmic RBF 
DFE using the turbo codec of Table 4.3 over the dispersive two-path Gaussian channel of 
Figure 2.21(a) in conjunction with various QAM modes. The equaliser has a feedforward 
order of m = 2, feedback order of n = 1 and a decision delay of r = 1 symbol. The number 
of turbo BCH(31,26) decoder iterations is six, while the random turbo interleaver size is 
9984 bits. 

4.4.2 Results over Dispersive Fading Channels 

We will now investigate the performance of the joint RBF D F E Ai-QAM and turbo coding 

scheme over the wideband Rayleigh fading channel environment of Table 4.4, while the 

parameters of the turbo codec are given in Table 4.3. 

As noted before. Figure 4.11 shows the performance of the Jacobian RBF DFE in con-

junction with both BCH and RSC based turbo coding for various QAM modes. The BCH 

turbo-coded scheme improves the system performance by 5dB, 4dB, 7dB and 8dB using 

BPSK, 4-QAM, 16-QAM and 64-QAM, respectively, for a B E R of 10~'^. By contrast, for 

the RSC turbo coded scheme the BER performance improves by 2dB for BPSK and 4-

QAM, while 3dB for 16-QAM and 64-QAM. Similarly to the 2-path Gaussian channel, the 
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turbo-coded schemes only start to provide signifcant BER improvements with respect to 

the uncoded scheme, once the uncoded BER dips below 10^^. Our performance compari-

son with the turbo convolutional codec of Table 4.3 given in Figure 4.11 demonstrates that 

the = 0.72 turbo block code provides a better BBR performance than the = 0.75 

RSC-turbo codec, at the cost of a higher computational complexity. As seen in Table 4.3, 

a half rate RSC encoder of constraint lenght jiT = 3 was used in the RSC turbo codec. The 

generator polynomials expressed in octal terms were set to seven (for the feedback path) 

and Sve. Similarly to the turbo BCH codec, the code rate was set to 0.75 by applying 

a random puncturing pattern in the RSC encoder. The turbo interleaver depth was also 

chosen to be 9984 bits. 

Transmission Frequency 1.9GHz 
Transmission Rate 2.6MBd 
Vehicular Speed 30 mph 
Normalised Doppler Frequency 3.3 X 10-^ 
Channel weights 0.707 -t- 0.707z-^ 

Table 4.4: Simulation parameters for the two-path Rayleigh fading channel 

Modulation Mode BPSK 4-QAM 16-QAM 64-QAM 
Interleaver Size 494 988 1976 2964 

Table 4.5: Corresponding random interleaver sizes for each modulation mode 

4.5 Channe l Quali ty Measure 

In order to identify the potentially most reliable chaimel quality measure to be used in our 

BbB adaptive turbo-coded QAM modems to be designed during our forthcoming discourse, 

we will now analyse the relationship between the average burst LLR magnitude before and 

after channel decoding. For this reason, the random turbo interleaver size was reduced 

from the previously used 9984 bits and it waa varied on a BbB basis, corresponding to the 

modulation mode used, as shown in Table 4.5, in order to enable BbB decoding so that we 

could obtain the average burst LLR magnitude of the coded data burst corresponding to 

the uncoded data burst. Explicitly, the interleaver size is set to be equivalent to the number 

of source bits in a data burst, in order to enable BbB decoding. Since the code rate is 0.72 

and the number of coded bits is 684, 1368, 2736 and 4104 for BPSK, 4-QAM, 16-QAM and 

64-QAM, respectively, for a burst length of 684 symbols, the interleaver size (= number of 
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Figure 4.11: BER versus SNR performance for the Jacobian logarithmic RBF DFE using 
the turbo codec of Table 4.3 over the dispersive two-path fading channel of Table 4.4 
for various QAM modes. The equaliser has a feedforward order of m = 2, feedback order 
of n = 1 and a decision delay of r = 1 symbol. The number of convolutional and B C H 
turbo decoder iterations is six, while the turbo interleaver size is fixed to 9984 bits. 
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source bits = number of coded bits - number of parity bits) is as shown in liable 4.5. The 

average burst LLR magnitude is deSned as follows: 

^average = (4.15) 
•̂ 6 

where is the number of data bits per transmitted burst and is the zth data bit in the 

burst. Figure 4.12 shows the improvement of the average burs t LLR magnitude after turbo 

decoding for the turbo BCH codec of Table 4.3 over the wideband Rayleigh fading channel 

environment of Table 4.4. As seen in the figure, the gradient of the curve is approximately 

unity for the average burst LLR magnitude before decoding over the range of 0 to 5 for 

BPSK and 4-QAM, 0 to 6 for 16-QAM and 0 to 10 for 64-QAM. Thus, there is no average 

LLR magnitude improvement upon introducing turbo decoding in this low rehabihty range. 

This is in harmony with our previous observations in Figures 4.10 and 4.11, namely that 

there is no BER improvement for BBRs below 10"^. Beyond this range, there is a sharp 

increase in the decoded LLR magnitude due to turbo decoding. Figure 4.12(a) also shows the 

eEect of increasing the number of decoder iterations on the average burst LLR magnitude. 

Increasing the number of decoder iterations improves not only the BER, but also the average 

conEdence measure of the decoder's decisions. 

Figure 4.13 shows the relationship between the estimated short-term BBR dehmed in 

Equation 4.14 and the average burst LLR magnitude after t u r b o decoding using six itera-

tions. Note that the curves becomes more 'spread out', ag the short-term BBR decreases. 

This is because the relationship between the probability of bit error in the decoded burst 

expressed in the logarithmic domain is inversely proportional to its LLR magnitude, as 

shown in Figure 4.14. The average of the burst LLR magnitude is dominated by the LLR 

values of the bits having lower probability of bit error, whereas the short-term BER of the 

burst is dominated by the bits with higher probability of bit error. The variance of the LLR 

values of the bits in the burst accounts for the 'spread' of the the estimated short-term BER 

versus average burst LLR magnitude curves in Figure 4.13 at low short-term BER values. 

Since the average burst LLR magnitude is related to the estimated short-term BBR, after 

accounting for the 'spread' at low short-term BBRs, the average burst LLR magnitude can 

be used as the modem mode switching metric in our AQAM scheme, which will be discussed 

in Section 4.6. The average burst LLR magnitude is preferred instead of the short-term 

BER as the modem mode switching metric, because it can avoid the extra computational 

complexity of having to convert the output of the RBF DFE and the turbo decoder from 

the LLR values to BER values according to Equation 4.13, in order to obtain the short-term 

BER of the data burst. 
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Figure 4.12: The average burst LLR magnitude after turbo decoding versus the average 
burst LLR magnitude before turbo decoding using BbB interleaving and turbo BCH decod-
ing employing the parameters of Table 4.3 over the burst-invariant two-path fading channel 
of Table 4.4. 
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Figure 4.13: The estimated short-term BER versus the average burst LLR magnitude after 
turbo BCH(31,26) decoding using six iterations over the burst-invariant two-path fading 
channel of Table 4.4. 
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Figure 4.15: System schematic of the joint adaptive modulation and RBF equaliser scheme 
using turbo coding 

4.6 Turbo Coding and R B F Equaliser Ass isted A Q A M 

4.6.1 System Overview 

The schematic of the joint AQAM and RBF network based equalisation scheme using turbo 

coding ig depicted in Figure 4.15. The switching thresholds can be based on the switching 

metric either before or after turbo decoding. In this section we will investigate the perfor-

mance of the AQAM scheme using either the short-term B E R or the average burst LLR 

magnitude as our switching metric. 

For our experiments in the following sections, the simulation parameters are listed in 

Table 4.4, noting that we analysed the joint AQAM and RBF DFE scheme in conjunction 

with turbo coding over the two-path Rayleigh fading channel of Table 4.4. The wideband 

fading channel was burst-invariant, implying that during a transmission burst the channel 
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impulse response was considered time-invariant. In our simulations, we used the Jacobian 

RBF DFE of Section 4.2, which gave a similar turbo-coded BER performance to the RBP 

DFE but at a lower computational complexity, as it was demonstrated in Figure 4.10. The 

Jacobian RBF DFE had a feedforward order of m = 2, feedback order of n = 1 and decision 

delay of r = 1. We used the BCH(31, 26) code of Table 4.3 as the turbo component code and 

the BbB random interleavers depending on the modulation mode were employed, as given 

in Table 4.5. The modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM, 

64-QAM and NO TX. 

4.6.2 Performance of the AQAM Jacobian RBF D F E Scheme: Switching 

Metric Based on the Short-Term BER Es t imate 

Following from Section 3.4, where the uncocfed AQAM RBP D F E scheme used the estimated 

short-term BER to switch the modem mode, we will now investigate the performance of the 

turbo-coded AQAM RBF DFE scheme based on the same switching metric. The estimated 

short-term BER can be obtained both before or after turbo BCH(31,26) decoding for the 

coded system. The estimated short-term BBR before decoding can be obtained with the aid 

of the RBF DFE based on Equation 3.15, while that after t u r b o decoding can be obtained 

with the aid of the decoder based on Equation 4.14. 

The plot of the estimated BER versus actual BER before and after turbo BCH(31,26) 

decoding and their corresponding FDFs of the BER estimation error for the Jacobian RBF 

DFE and for various channel SNRs is shown in Figures 4.16, 4.17, 4.18 and 4.19, for BPSK 

transmission bursts over the dispersive two-path Gaussian channel of Figure 2.21(a) and 

the two-path Rayleigh fading channel of Table 4.4, respectively. The actual burst-BER is 

the ratio of the number of bit errors encountered in a data burs t to the total number of bits 

transmitted in that burst. The figures suggest that the Jacobian RBF DFE and the turbo 

BCH(31,26) decoder provide a good BER estimation, especially at higher channel SNRs. 

We note, however again that the accuracy of the actual BER evaluation is limited by the 

burst-length of 684 bits and 494 bits for the undecoded and decoded bursts, respectively. 

Therefore, for high SNRs the actual number of errors registered is often 0, which portrays 

the estimation algorithm in a less accurate light in the PDF of Figure 4.18 and 4.19 than 

it is in reality, since the 'resolution' of the reference BER is 1/684 or 1/494. 

We shall refer to the AQAM scheme that utilised the switching thresholds based on the 

short-term BER before and after decoding, 'before decoding'-scheme and 'after decoding'-

scheme, respectively. The short-term BER short-term' obtained from either the RBF 

DFE or the turbo BCH(31,26) decoder is compared to a set of switching BER thresholds, 

= 2,4,16,64, corresponding to the various Ai-QAM modes, and the modulation 
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Figure 4.16: The actual BER versus estimated BER before and after turbo BCH(31,26) 
decoding with the error PDF given in Figure 4.18 for the dispersive two-path Gaussian 
channel of Figure 2.21(a) using BPSK. The number of turbo BCH(31,26) decoder iterations 
is six while the random turbo interleaver size is 494. 
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Figure 4.17: The actual BBR versus estimated BER before and after turbo BCH(31,26) 
decoding with error PDF given in Figure 4.19 for the dispersive two-path Rayleigh 
fading channel of Table 4.4 using BPSK. The number of tu rbo decoder iterations is six, 
while the turbo interleaver size is 494. 
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Figure 4.19: Discretised PDF of the error between the actual BER of BPSK bursts and the 
BER estimated by the Jacobian RBF DFE before and after turbo BCH(31,26) decoding for 
the two-path Rayleigh fading channel of Table 4.4 using BPSK. The number of turbo 
decoder iterations is six, while the turbo interleaver size is 494. 
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mode is switched according to Equation 3.7. 

As discussed in Section 3.4, the switching BER thresholds can be obtained by estimating 

the BER degradation/improvement, when the modulation mode is switched from A^-QAM 

to a higher/lower value of We obtain this BER degradation/improvement measure 

from the estimated short-term BER of every modulation mode used under the same channel 

scenario. 

In our experiments used to obtain the switching BER thresholds, pseudo-random symbols 

were transmitted in a fixed-length burst for all modulation modes across the burst-invariant 

wideband channel. The receiver receives each data burst having different modulation modes, 

equalises and turbo BCH(31,26) decodes each one of them independently. The estimated 

short-term BER before and after turbo BCH(31,26) decoding for all modulation modes was 

obtained according to Equation 3.15 and Equation 4.14, respectively. Thus, we have the 

estimated short-term BER of the received data burst before and after decoding for every 

modulation mode under the same channel conditions, which we could use to observe the 

BER degradation/improvement, when we switch from Ai-QAM to a higher/lower value of 

Ai. We could not use the BER performance versus SNR curve of Figure 4.11 generated over 

the dispersive two-path fading channel of Table 4.4 for the various QAM modes to estimate 

the BER improvement/degradation, since the BER in that Egure was an average of the 

time-varying short-term BER of all the transmitted bursts over the faded channel. For the 

switching mechanism we need the 'short-term' BER measure and not the 'long-term' BER 

measure to configure the modem for the next transmission burs t . 

The switching BER thresholds for the 'before decoding'-scheme can be obtained by es-

timating the degradation/improvement of the short-term B E R before decoding, when the 

modulation mode is switched from Af-QAM to a higher/lower value of Ai to achieve the 

target BER after decoding. Figure 4.20 shows the estimated short-term BER after decod-

mg for all the possible modulation modes that can be switched to versus the estimated 

short-term BER of 16-QAM 6e/ore (iecocfmg under the same chaimel conditions. The Sgure 

shows how each switching BER threshold = 2,4,16,64 is obtained. For example, in 

order to maintain the target BER of 10"^, the short-term BER of the 16-QAM transmission 

burst before turbo decoding has to be approximately 2.5 x 10"^, 2 x 10"^, 5 x 10"^ and 

1X 10"^, when switching to BPSK, 4-QAM and 64-QAM, respectively, under the same chan-

nel conditions. Using the same method for the other modulation modes, the switching BER 

thresholds are obtained, as listed in Table 4.6. For the 'after decoding' switching scheme, 

the short-term BER thresholds i = 2,4,16,64, listed in Table 4.7 were obtained. How-

ever, for NO TX bursts, where only dummy data are transmitted, turbo decoding is not 

necessary. Thus, for NO TX bursts we use the short-term BER 6e/ore (fecocfmg as the 

switching metric. 
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Figure 4.20: The estimated short-term BBR after turbo BCH(31,26) decoding for all the 
possible modulation modes that can be invoked, assuming tha t current mode is 16-QAM 
- versus the estimated short-term BER of 16-QAM before decoding over the two-path 
Rayleigh fading channel of Table 3.1. 

pM pA4 
-He 

pM 
-^4 

NO TX 2.5 X 10-^ 2 X 10-^ 1 X 10-^^ 0.0 
BPSK 2.5 X 10-^ 2 X 10-^ 1 X 10"^^ 0.0 

4.QAM 1 X 10-^ 4 X 10"^ 4 X 10-^ 0.0 
16-QAM 2.5 X 10-^ 2 X 10-^ 5 X 10-^ 1 X 10-^ 
64-QAM 3.2 X 10-^ 2.5 X 10-^ 1.3 X 10-^ 5 X 10-^ 

Table 4.6: The switching BBR thresholds of the joint adaptive modulation and RBF 
DFE scheme for the turbo-decoded target BER of 10̂ '̂  over the two-path Rayleigh fading 
channel of Table 3.1. The switching metric is based on the estimated short-term BER 
obtained before turbo decoding from the R B F DFE. This table explicitly indicates the 
uncoded modem BBR that has to be maintained by the modem modes shown at the top of 
the table, in order to achieve the 10"'̂  turbo-decoded BER after switching to the various 
modem modes seen in the left-most column. 
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pM 
4 

NO TX 3 X 1 0 - ^ 2 . 5 X 1 0 - ^ 1 X 1 0 - ^ ^ 0 . 0 

BPSK 1 X 1 0 - ^ 1 X 1 0 - ^ " 0 . 0 0 . 0 

4-QAM 8 X 1 0 - ^ 1 X 10-^ 1 X 1 0 - ^ " 0 . 0 

16-QAM 2 X 1 0 - ^ 1.6 X 10-^ 1 X 1 0 - ^ 1 X 1 0 - ^ ^ 

64-QAM 3 . 2 X 1 0 - ^ 2 . 7 X 1 0 - 1 1 . 3 X 1 0 - 1 1 X 1 0 - ^ 

Table 4.7: The switching BER thresholds P / ^ of the joint adaptive modulation and RBF 
DFE scheme for the turbo-decoded target BER of 10"^ over the two-path Rayleigh fading 
channel of Table 3.1. The switching metric is based on t h e estimated short-term BER 
obtained after turbo decoding from the decoder. This table explicitly indicates the coded 
modem BER that has to be maintained by the modem modes shown at the top of the table, 
in order to achieve the 10"^ turbo-decoded BER after switching to the various modem 
modes seen in the left-most column. 

Figure 4.21 shows the performance of the 'before decoding'-scheme and 'after decoding'-

scheme using the switching thresholds given in Tables 4.6 and 4.7, respectively. Both 

schemes have similar BPS performances. However, the 'before decoding'-scheme performs 

better, than the 'after decoding'-scheme in terms of its BER performance. Note that the 

'after decoding'-scheme could only achieve the target BER of 10"^ beyond the SNR of 

32dB. The performance degradation of the 'after decoding'-scheme can be explained by 

observing Figure 4.22, which shows the short-term BER fluctuation obtained before and 

after decoding at an SNR of lOdB for 4-QAM - the dominant modulation mode at lOdB. 

The BER Suctuation after decoding is more spurious and hence exhibits a higher variance 

than before decoding. Our modem mode switching mechanism assumes that the BER of 

the transmission burst is slowly varying and the estimated short-term BER of the current 

received burst is used to select the modulation mode for the neai transmission burst. The 

spurious nature of the short-term BER after decoding, which is used as the switching metric, 

defies the BER predictability assumptions made and hence degrades the performance of the 

modulation mode switching mechanism. We also note from Table 4.7 that the thresholds 

required for the modem to switch to a higher-order modulation mode are extremely low. 

For example, when the BER must be lower than = 1 x 10~®° for the modem to switches 

from 4-QAM to 16-QAM. The extremely low values of the thresholds associated with the 

'after decoding'-scheme degrade the performance of the mode switching mechanism. The 

'before decoding'-scheme has a more reasonable set of thresholds, as shown in Table 4.6 and 

therefore performs better. 

In the following section, we wiU investigate the performance of the coded adaptive scheme 

using the average burst LLR magnitude, defined by Equation 4.15 as an alternative switch-

ing metric. 
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Figure 4.21: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Jaco-
bian RBF DFE aiming for a target BER of 10"^ for data-transmission using the parameters 
listed in Table 4.4. The 'before decoding'-scheme and 'after decoding'-scheme uses the es-
timated short-term BER of Equation 3.15 and 4.14 before and after decoding, respectively, 
as switching metric. The modem mode switching BERs used for both schemes are hsted 
in Table 4.6 and 4.7. The Jacobian RBF DFE had a feedforward order of m = 2, feedback 
order of m = 1 and decision delay of T = 1 symbol. The turbo coding parameters are given 
in Table 4.3 and the number of turbo decoder iterations is six. The BbB turbo inter leaver 
size was fixed according to the modulation mode used as shown in Table 4.5. 

4.6.3 Performance of the AQAM Jacobian RBF D F E Scheme: Switching 

Metric Based on the Average Burst LLR Magni tude 

As discussed in Section 4.3, the probability of bit error is related to the magnitude of the 

bit LLR according to Equation 4.13. Thus, in addition to the BER-based switching criteria 

of the previous section, the magnitude of the bit LLR can also be used as the modem mode 

switching metric. The turbo decoder iteratively improves the BER of the decoded bits. 

Since the average burst LLR magnitude before and eifter decoding has em approximately 

linear relationship, eis demonstrated by Figure 4.12 in Section 4.4.2, the average probabihty 

of error for the decoded burst can be inferred from the average burst LLR magnitude 

provided by the RBF equaliser using Equation 4.15. Thus, this parameter can also be used 

as the switching metric of the turbo-coded BbB AQAM scheme. 

Figure 4.23 and 4.24 portray the average burst LLR magnitude Euctuation before and 
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Figure 4.22: Short-term BBR before and after turbo BCH(31,26) decoding versus symbol 
index for 4-QAM and for a channel SNR of lOdB over the two-path equal-weight, symbol-
spaced Rayleigh fading channel of Table 3.1. The RBF DFE had a feedforward order of 
m = 2, feedback order of % = 1 and decision delay of T = 1 symbol. Perfect CIR estimation 
is assumed and decision fedback error propagation is ignored. These low short-term BER 
estimates were obtained from the average values of Equation 4.13, which was plotted in 
Figure 4.14. 

after turbo decoding, respectively, over the burst-invariant chaiinel of Table 4.4 versus the 

symbol index for various QAM modes, as given by the RBF D F E and the turbo decoder, 

which is slowly varying and predictable for a number of consecutive data bursts. Therefore 

in our simulated channel scenario the average burst LLR magnitude both before and after 

turbo decoding constitute suitable metrics for the AQAM switching mechanism. 

The average burst LLR magnitude obtained from either the RBF DFE or the turbo de-

coder is compared to a set of switching LLR magnitudes corresponding to the modulation 

mode of that data burst. Consequently, a modulation mode is selected for the next trans-

mission burst, based on the current estimated BER upon assuming slowly fading channels. 

More explicitly, this implies that the similarity of the average burs t LLR magnitude of con-

secutive data bursts can be exploited, in order to set the next modulation mode. Again, 

the modulation modes utilized in our system are BPSK, 4-QAM, 16-QAM, 64-QAM and 

no transmission (NO TX). Therefore, the modulation mode is switched according to the 
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Figure 4.23; Average burst LLR magnitude before turbo d e c o d i n g versus transmission 
burst index for various QAM modes as given by the RBF D F E over the two-path equal-
weight, symbol-spaced Rayleigh fading channel of Table 3.1. Perfect CIR estimation is 
assumed and error propagation in decision feedback is ignored. 
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Figure 4.24: Average burst LLR magnitude after turbo d e c o d i n g versus transmission 
burst index for various QAM modes as given by the RBF D F E over the two-path equal-
weight, symbol-spaced Rayleigh fading channel of Table 3.1. Perfect CIR estimation is 
assumed and error propagation in decision feedback is ignored. 
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average burst LLR magnitude as follows: 

N O T X i f / : a v e r a g e < r ^ 

BPSK i f / : ^ < r a v e r a g e < r f 

4-QAM if < ^average < -^le (4-16) 

16-QAM i f r j ^ < / : a v e r a g e < f ^ 

64-QAM if ^ ^average, 

where = 2,4,16,64 are the switching LLR magnitude thresholds corresponding to 

the vW-QAM mode. 

The LLR magnitude switching thresholds corresponding to Ai-QAM, % = 2,4,16,64, 

can be obtained by estimating the average burst LLR magnitude degradation/improvement, 

upon switching the modulation mode from Ai-QAM to a higher/lower number of bits per 

symbol. The target BER requirement can be met by obtaining the average burst LLR 

magnitude of each modulation mode corresponding to the estimated channel quality and 

by activating the speciEc mode satisfying this target BER. 

In our experiments, we obtained the LLR magnitude degradation/improvement upon 

switching from each modem mode to all other legitimate modes under the same instan-

taneous channel conditions. As an example for the 'before decoding'-scheme, Figure 4.25 

shows the short-term BER - defined in Equation 4.14 - that would be encountered upon 

switching to all possible AQAM modes after BCH(31,26) turbo decoding versus the av-

erage burst LLR magnitude of 4-QAM before decoding, which was the current AQAM 

mode. In order to maintain the target BBR of 10"^, Figure 4.25 demonstrates how each 

switching LLR magnitude % = 2,4,16,64 is obtained after averaging the LLR magnitude 

occurances seen in the figure. More explicitly, the average burs t LLR magnitudes before 

decoding encountered in the 4-QAM transmission burst would have to be 4.0, 7.5, 40.0 

and 100.0, before switching to BPSK, 4-QAM, 16-QAM and 64-QAM AQAM bursts under 

the same channel conditions, leading to an estimated BER of 10"^ after BCH(31,26) turbo 

decoding. For example, if the average LLR magnitude / 2 a v e r a g e before decoding of the 

received 4-QAM transmission burst is in the range of 100 > /^average ^ 40, the modulation 

mode is switched from 4-QAM to 16-QAM for the next AQAM burst, since the BER of 

this 16-QAM transmission burst is estimated to be below the target BER of 10"^. Note 

that due to the 'spreading' of the average burst LLR magnitude before decoding versus the 

short-term BBR curve - especially for higher-order AQAM modes, aa seen in Figure 4.25 -

the threshold is estimated from the mean of this dynamic range. Using the same method 

for the other modulation modes, the 'before decoding' switching LLR magnitude thresholds 

were obtained for the turbo-decoded target BER of 10"^, as listed in Table 4.8. For the 

'after decoding' switching scheme, a similar method was implemented, in order to obtain 
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the switching thresholds listed in Table 4.8. Similar to the 'af ter decoding' short-term BER 

switching metric described in Section 4.6.2, the average burst LLR magnitude 6e/ore (fe-

coding is used as the switching metric for the NO TX bursts, since turbo decoding is not 

performed in this mode. 

Before Decoding After Decoding 
pM rM 

-̂ 64 
rM. 
^2 / I f ' rM 

-̂ 64 
NO TX 8.0 17.0 90.0 380.0 8.0 17.0 90.0 380.0 
BPSK 8.0 17.0 90.0 380.0 40.0 100.0 oo oo 
4QAM 4.0 7.5 40.0 140.0 6.0 32.0 230.0 00 
16QAM 2.0 3.0 11.5 55.0 3.2 4.0 40.0 200.0 
64QAM 1.7 2.2 6.2 30.0 24.0 3.0 6.5 45.0 

liable 4.8: The switching LLR magnitude thresholds before and after decoding of the 
RBF DFE BbB AQAM scheme with turbo coding for the target BER of 10"^ over the 
two-path Rayleigh fading channel of Table 4.4. 

Figure 4.26 compares the performance of the adaptive schemes using the short-term BER 

estimate based on Equation 4.14 and the average burst LLR magnitude before and after 

decoding as the switching metric. Both the 'before' and 'after decoding' LLR schemes 

of this section have similar BER and BPS performances to the 'before decoding' short-

term BER scheme of Section 4.6.2, although the scheme using the average burst LLR 

magnitude as the switching metric has a lower computational complexity. This is because 

the output of the Jacobian RBF DFB is in a logarithmic form and obtaining the short-term 

BER values requires us to convert the logarithmic output to the non-logarithmic domain 

using exponential functions, in order to acquire the probability of bit error according to 

Equation 4.14. 

Figure 4.27 shows our performance comparison of the AQAM Jacobian RBF DFE scheme 

in conjunction with turbo BCH(31,26) coding for the target B E R of 10""^ with the 'before 

decoding' LLR magnitude switching metric along with its constituent turbo-coded fixed 

QAM modes. Figure 4.27 also shows the BER and BPS performance of the AQAM RBF 

DFE scheme without turbo coding, using the short-term BER as the switching metric, as 

described in Section 3.4 for performance comparison. The switching BER thresholds of the 

AQAM RBF DFE scheme without turbo coding were listed in Table 3.5. 

Referring to Figure 4.27, the coded BPS performance was be t te r than that of the uncoded 

scheme for the channel SNR range of OdB to 26dB, with a maximum SNR gain of 4dB at 

a channel SNR of OdB. However, at high SNRs, the BPS performance is limited by the 

coding rate of the system to achieve a maximum BPS throughput of ^ 6 = 4.33. The 

turbo BCH(31,26) coded AQAM system also exhibited a superior BER performance, when 
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Figure 4.25: The estimated short-term BBR for all the possible turbo BCH(31,26) de-
coded AQAM modes versus the average burst LLR magnitude of 4-QAM over the two-path 
Rayleigh fading channel of Table 3.1. The figure illustrates the expected spread of the 
short-term BER of all turbo decoded modem modes given a certain average burst LLR 
magnitude value in conjunction with 4-QAM as the current modem mode. 
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compeired to the uncoded system for the channel SNR range of OdB to 16dB and for the 

range above 28dB. However, the coded AQAM system failed to achieve the target BER 

of 10""̂  for the SNR range of 16dB to 28dB. This waa because the spread nature of the 

short-term BER versus LLR magnitude curves observed in Figure 4.25 leads to inaccuracies 

in obtaining these LLR magnitude thresholds, especially for and as demonstrated 

in Figure 4.25. These inaccuracies aEect the switching performance for the SNR range of 

16dB to 28dB. The spread nature of the short-term BER versus LLR magnitude curves in 

Figure 4.25 is due to a number of factors and these investigations are set aside for future 

work. 

fM rM 
'̂ 4 

rM 
'̂ 16 

rM 
-'-'64 

NO TX 10.0 30.0 280.0 1000.0 
BPSK 10.0 30.0 280.0 1000.0 

4-QAM 8.0 12.0 100.0 350.0 
16-QAM 3.0 5.0 30.0 120.0 
64.QAM 2.5 3.0 13.0 70.0 

Table 4.9: The switching LLR magnitude thresholds before decoding of the RBF DFE 
BbB AQAM scheme using turbo coding for the zero-error target performance over the 
two-path Rayleigh fading channel of Table 4.4. 

Since the estimated short-term BER is a somewhat eratic function of the turbo decoder's 

input LLR, the switching LLR values have to be conservative, if the target BER cannot be 

exceeded. For the BER = 10"^ scenario the switching LLR was adjusted experimentally 

to be near the upper end of the LLR-range observed in Figure 4.25. When aiming for 

virtually error-free communications, an even more conservative LLR threshold has to be 

chosen, in order not to precipitate a plethora of transmission errors, even at the cost of 

thereby reducing the achievable, BPS throughput of the system. Figure 4.28 shows the 

BER Eind BPS performance of the near-error-free, turbo-coded AQAM Jacobian RBP DFE 

scheme with the more conservative, increased LLR magnitude switching thresholds listed in 

Table 4.9. The BER and BPS performance of the uncoded AQAM RBF DFE system is also 

given in the figure for comparison. The BPS performance of the error-free coded system 

was better, than that of the uncoded AQAM system for the channel range of OdB to 15dB, 

as evidenced by Figure 4.28. However, the BPS performance is limited by the coding rate of 

the system to a maximum value of 4.33 at high channel SNRs. This suggests that the best 

overall BER/BPS performance is ax:hieved by our system, if we add the AQAM option of 

switching off the turbo BCH(31,26) code under high SNR conditions, namely around 25dB. 

This allows us to attain a BPS of 6 in this SNR region. 

Wong [83] introduced the concept of variable rate turbo coding AQAM schemes with 
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the aim of improving the throughput of turbo block coded AQAM scheme at high channel 

SNRs. Two types of variable code rate schemes were implem.ented: 

1. Partial turbo block coded adaptive modulat ion scheme; The switching mecha-

nism is capable of disabling and enabling the channel encoder for a chosen modulation 

mode. 

2. Variable rate turbo block coded adaptive m o d u l a t i o n scheme: The coding 

rate is varied by utihzing different BCH component codes for the different modulation 

modes. The higher-order modulation modes are assigned a higher code rate, in order 

to improve the elective data throughput at medium to high average channel SNRs 

and conversely, the lower-order modulation modes will b e accompanied by lower code 

rates, in order to ensure maximum error protection a t low average channel SNRs, 

where these modes have a high selection probability. 

These methods can similarly be implemented for our turbo-coded AQAM RBF DFE system, 

in order to improve the throughput performance at high channel SNRs. 

4 .6 .4 S w i t c h i n g M e t r i c S e l e c t i o n 

The choice of the switching metric depends on a variety of factors, which are discussed 

here with reference to Figures 4.21 - 4.27. The most reliable charmel quahty metric is the 

BER of a given transmitted burst, since this metric is capable of quantifying all channel 

impairments, irrespective of the eSects of its source. Explicitly, the BER of the transmission 

burst quantifies the influence of reduced received signal strength or reduced SNR, that of 

increased ISI or co-channel interference, etc. The short-term B E R of a transmission burst 

can be estimated for example with the aid of the RBF DFE using Equation 4.14. 

In conjunction with turbo FEC coding also, the LLR of Equation 4.8 at the input or 

output of the turbo decoder can be used with the aid of Equat ion 4.13 and 4.14, in order 

to estimate the BER. Explicitly, the probability of a specific bi t being in error is given by 

Equation 4.13, which can be averaged according to Equation 4.14 for a transmission burst. 

The corresponding short-term BER versus transmission burst index was plotted using both 

the channel decoder's input and output SNRs in Figure 4.22 over the two-path equal-weight 

symbol-spaced Rayleigh channel of Table 4.4. Observe that due to the higher fluctuation 

of the FEC decoder's output LLRs the output BER fluctuates over a wider range. The 

corresponding turbo decoder LLRs both before and after turbo decoding are plotted in 

Figure 4.23 and 4.24, respectively, for OdB, 8dB and 16dB channel SNRs. As expected, the 

evolution of the LLRs is similar, although the output LLR fluctuates over a wider dynamic 

range, since the turbo decoder typically improves the input LLRs upon each iteration, unless 

the LLR changes polarity several times, which is the sign of a low-reliability decision. 



4. fLBLF fCqfLr/LLIfLd/TfOff LrSjTVtZ ]1[0RJ9(] C()i:)jE%? IGIT 

Since the BBR curves of the turbo-coded constituent AQAM modem modes seen in 

Figure 4.9 are extremely steep, upon switching for example from the BPSK mode to 4-

QAM the BBR increases dramatically, by several orders of magnitude. Hence, for example 

the BPSK BER has to become significantly lower than 10"® in Figure 4.9, before switching 

to 4-QAM can take place. This justifies the extreme BER differences observed in Table 4.6 

and Table 4.7. In conclusion of our discussions on the choice of switching metric we infer 

from Figure 4.21 that whilst the BER of the AQAM switching regime using the LLRs 

before turbo-decoding attains a lower BER, this is not associated with any reduction of the 

BPS throughput, and hence this switching metric was deemed more beneficial to invoke. 

This is because due to the higher steepness of the turbo-decoded BER curve, the BER is 

more often misjudged on the basis of the output LLRs. This then often results in using an 

'optimistic' high BPS AQAM mode, which increases the BER. When the channel quality is 

under-estimated, a reduced number of bits per symbol is used, however the associated BER 

reduction is insufficient for compensating for the increase of BER of the 'over-estimated' 

channel quality scenario. These under- and over-estimated B E R s result in the high spread 

of the curves seen in Figure 4.25. 

4.7 Conclusions 

In this chapter, we have investigated the performance of the RBF equaliser using turbo 

coding. We have also demonstrated the application of turbo BCH coding in conjunction 

with AQAM in a wideband fading channel. The use of different switching criteria - namely 

the short-term BER and average burst LLR magnitude before and after decoding - was 

discussed. We observed that the performance of the switching mechanism depends on the 

fluctuation of the switching metric, since the AQAM scheme assumes that the channel qual-

ity is slowly varying. The turbo-coded AQAM RBF DFE system exhibited a better BPS 

performance, when compared to the uncoded system at low to medium channel SNRs, as 

evidenced by Figure 4.27. The same figure also showed an improved coded BER perfor-

mance at higher channel SNRs. A virtually error-free turbo-coded AQAM scheme was also 

characterized in Figure 4.28. 

In the next chapter we will explore the recently developed family of iterative equalisation 

and channel decoding techniques, a scheme which is termed as turbo equalisation. We will 

investigate the employment of RBF equaliser in the equaliser component. 
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BER : BPS : 
'Before Decoding'BER Threshold • 'Before Decoding' BER Threshold 

# 'Before Decoding' LLR Threshold o - — 'Before Decoding' LLR Threshold 
A 'After Decoding' LLR Threshold A — — 'After Decoding' LLR Threshold 
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SNR (dB) 

Figure 4.26: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Ja-
cobian RBF DFE using different switching metrics for a data-transmission target BER of 
10"'̂  over the two-path Rayleigh fading channel of Table 4.4. The modem mode switching 
thresholds used for both scheme are listed in Tables 4.6 and 4.8, respectively. The Jacobian 
RBF DFE had a feedforward order of m = 2, feedback order of n = 1 and decision delay 
of T = 1 symbol. The turbo coding parameters were given in Table 4.3 and the number of 
tm'bo decoder iterations was six. The BbB turbo interleaver size was Exed according to the 
modulation mode used, as shown in Table 4.5. 



GTLGRUBO CfODiSS 169 

turbo-coded BER • - turbo-coded BER 
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Figure 4.27: The BER and BPS performance of the uncoded and turbo BCH(31,26) coded 
AQAM Jacobian RBF DFE for a data-transmission target B E R of 10"'^ over the two-path 
Rayleigh fading channel of Table 4.4. The average LLR magnitude modem mode switching 
thresholds before decoding used for this scheme are listed in Table 4.8. The Jacobian RBF 
DFE had a feedforward order of m = 2, feedback order of n = 1 and decision delay of 
T = 1 symbol. The turbo coding parameters were given in Table 4.3 and the number of 
turbo decoder iterations was six. The BbB turbo interleaver size was fixed according to the 
modulation modes used, as shown in Table 4.5. 
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Figure 4.28: The BER and BPS performance of the turbo BCH(31,26) coded AQAM Ja-
cobian RBF DFE for targetted no error transmission over t he two-path Rayleigh fading 
channel of Table 4.4. The average LLR magnitude modem mode switching thresholds be-
fore decoding used for this scheme are listed in Table 4.9. The Jacobian RBF DFE had a 
feedforward order of m — 2, feedback order of n = 1 and decision delay of T — 1 symbol. 
The turbo coding parameters were given in Table 4.3 and the number of turbo decoder 
iterations is six. The BbB turbo interleaver size was fixed according to the modulation 
mode used as shown in Table 4.5. 



Chapter 5 

R B F Turbo Equal isat ion 

This chapter presents a novel turbo equalisation scheme, which employs a RBP equaliser 

instead of the conventional trellis-based equaliser of Douillard et. al. [10]. The basic 

principles of turbo equalisation will be highlighted. Structural, computational cost and 

performance comparisons of the RBF-based and trellis-based turbo equalisers are provided. 

A novel element of our design is that in order to reduce the computational complexity of 

the RBF turbo equaliser (TEQ), we propose invoking further iterations only, if the decoded 

symbol has a high error probability. Otherwise we curtail t h e iterations, since a reliable 

decision can be taken. Let us now introduce the concept of t u r b o equalisation. 

5.1 In t roduc t ion to Turbo Equal isat ion 

In the conventional RBF DFE based systems discussed in Chapter 4 equalisation and chan-

nel decoding ensued independently. However, it is possible to improve the receiver's per-

formance, if the equaliser is fed by the channel outputs plus the soft decisions provided by 

the channel decoder, invoking a number of iterative processing steps. This novel receiver 

scheme was Erst proposed by Douillard oA [10] for a convolutional coded binary phase 

shift keying (BPSK) system, using a similar principle to that of turbo codes and hence it 

was termed turbo equalisation. This scheme is illustrated in Figure 5.1, which will be de-

tailed during our forthcoming discourse. Gertsman and Lodge [102] extended this work and 

showed that the iterative process of turbo equalisation can compensate for the performance 

degradation due to imperfect channel estimation. Turbo equalisation was implemented in 

conjunction with turbo coding, rather than conventional convolutional coding by Raphaeli 

and Zarai [103], demonstrating an increased performance gain due to turbo coding as well 

as with advent of enhanced ISI mitigation achieved by turbo equalisation. 

The principles of iterative turbo decoding [69] were modified appropriately for the coded 

— QAM system of Figure 5.2. The channel encoder is fed with independent binary data 

171 
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Figure 5.1: Iterative turbo equalisation schematic 
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Figure 5.2: Serially concatenated coded M-ary system using the turbo equaliser, which 
performs the equalisation, demodulation and channel decoding iteratively. 

dn and every log2(Ai) number of bits of the interleaved, channel encoded data % is mapped 

to an vW-ary symbol before transmission. In this scheme the channel is viewed as an 'inner 

encoder' of a serially concatenated arrangement, since it can be modelled with the aid of 

a tapped delay line similar to that of a convolutional encoder [10, 104]. At the receiver 

the equaliser and decoder employ a Soft-In/Soft-Out (SISO) algorithm, such as the optimal 

Maximum A Posteriori{MAP) algorithm [96] or the Log-MAP algorithm [13]. The SISO 

equaliser processes the a priori information associated with the coded bits % transmitted 

over the channel and - in conjunction with the channel output values - computes the a 

posteriori information concerning the coded bits. The soft values of the channel coded bits 

Cyfc are typically quantified in the form of the log-likelihood ra t io defined in Equation 4.8. 

Note that in the context of turbo decoding - which was discussed in Chapter 4 - the 

SISO decoders compute the a posteriori information of the source bits only, while in turbo 

equalisation the a posteriori information concerning all the coded bits is required. 

In our description of the turbo equaliser depicted in Figure 5.1, we have used the notation 

and to indicate the LLR values output by the SISO equaliser and SISO decoder, 

respectively. The subscripts e, %, a and p were used to represent the extrinsic LLR, the 

combined channel and extrinsic LLR, the a priori LLR and the a posteriori LLR, respec-

tively. Referring to Figure 5.1, the SISO equaliser processes the channel outputs and the 

a priori information of the coded bits, and generates the a posteriori LLR values 

of the interleaved coded bits % seen in Figure 5.2. Before passing the above a 

posteriori LLRs generated by the SISO equaliser to the SISO decoder of Figure 5.1, the 
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contribution of the decoder — in the form of the a priori information C^{ck) — from the 

previous iteration must be removed, in order to yield the combined channel and extrinsic 

information seen in Figure 5.1. They are referred to as 'combined', since they are 

iutrinsicaUy bound and cannot be separated. However, note that at the initial iteration 

stage, no a priori information is available yet, hence we have — 0. To elaborate 

further, the a priori information was removed at this stage, in order to prevent the 

decoder from processing its own output information, which would result in overwhelming 

the decoder's current reliability-estimation characterising the coded bits, i.e. the extrinsic 

information. The combined channel and extrinsic LLR values are channel-deinterleaved -

as seen in Figure 5.1 - in order to yield which is then passed to the SISO chan-

nel decoder. Subsequently, the channel decoder computes the a posteriori LLR values of 

the coded bits /2^(cn). The a posteriori LLRs at the output of the channel decoder are 

constituted by the extrinsic LLR and the channel-deinterleaved combined channel 

and extrinsic LLR extracted from the equaliser's a posteriori LLR vC^(ct). The 

extrinsic part can be interpreted as the incremental information concerning the current bit 

obtained through the decoding process from all the information available due to all other 

bits imposed by the code constraints, but excluding the information directly conveyed by 

the bit. This information can be calculated by subtracting bitwise the LLR values >Cf (c„) at 

the input of the decoder from the a posteriori LLR values vC^(cn) at the channel decoder's 

output, as seen also in Figure 5.1, yielding; 

( s . i ) 

The extrinsic information C^(cn) of the coded bits is then interleaved in Figure 5.1, in order 

to yield jC^{ck), which is fed back in the required bit-order to t he equaliser, where it is used 

as the a priori information C^{ck) in the next equalisation iteration. This constitutes the 

Erst iteration. Again, it is important that only the channel-interleaved extrinsic part - i.e. 

(%) of - is fed back to the equaliser, since the interdependence between the a 

priori information /Zf (c^) = (%) used by the equaliser and the previous decisions of 

the equaliser should be minimized. This independence assists in obtaining the equaliser's 

reliability-estimation of the coded bits for the current iteration, without being 'influenced' 

by its previous estimations. Ideally, the a priori information should be based on an in-

dependent estimation. As argued above, this is the reason that the a priori information 

(c/t) is subtracted from the a posteriori LLR value a t the output of the equaliser 

in Figure 5.1, before passing the LLR values to the channel decoder. In the final iteration, 

the a posteriori LLRs £p(dn) of the source bits are computed by the channel decoder. Sub-

sequently, the transmitted bits are estimated by comparing to the threshold value 

of 0. For Cp{dn) < 0 the transmitted bit dn is deemed to be a logical 0, while dn = +1 or 
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a logical 1 is output, when > 0. 

Previous turbo equalisation research has implemented the SISO equaliser using the Soft-

Output Viterbi Algorithm (SOVA) [10], the optimal MAP algorithm [105] and linear filters 

[106]. We will now introduce the proposed RBF based equaliser as the SISO equaliser in 

the context of turbo equalisation. The following sections will discuss the implementational 

details and the performance of this scheme, benchmarked against the optimal MAP turbo 

equaliser scheme of [105]. 

5.2 R B F Assisted Turbo Equalisat ion 

The RBF network based equaliser is capable of utilizing the a priori information 

provided by the channel decoder of Figure 5.1, in order to improve its performance. This 

a priori information can be assigned namely to the weights of the RBF network [107]. We 

will describe this in more detail in this section. For convenience, we will rewrite Equa-

tion 2.81, describing the conditional probability density function (PDF) of the %th symbol, 

i = 1,... ,M, associated with the ith subnet of the M-ary R B F equaliser; 

n: 

,2 

S i 

y)(a;) = exp ( — ^ ) (5.2) 

1 — 1, . . . , , J — 1, . . . , 

where c^, y)() and p are the RBF's centres, weights, activation function and width, 

respectively. In order to arrive at the Bayesian equalisation solution [8] - which was high-

lighted in Section 2.9 - the RBF centres are assigned the values of the channel states re-

defined in Equation 2.84, the RBF weights defined in Section 2.7.1 correspond to the a 

priori probability of the channel states pj — f (r^) and the R B F width introduced in Sec-

tion 2.7.1 is given the value of 2cr̂  where is the channel noise variance. The actual 

number of channel states is determined by the specific design of the algorithm invoked, 

reducing the number of channel states from the optimum number of where m is 

the equaliser feedforward order and L -|- 1 is the CIR duration [26, 67, 68]. The probability 

p* of the channel states r̂  , and therefore the weights of the R B F equaliser can be derived 

from the LLR values of the transmitted bits, as estimated by the channel decoder. 

Expounding further from Equation 2.7 and 2.11, the channel output can be defined as 

Fj = Fs^, (5.3) 

where F is the CIR matrix defined in Equation 2.12 and Sj is the j t h possible combination 

of the (L 4- m) transmitted symbol sequence, sj = S j i . . . S j p . . • 

T 
Hence 
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- for a time-invariant CIR and assuming that the symbols in the sequence Sj are statistically 

independent of each other - the probability of the received channel output vector Vj is given 

by: 

f ( r , ) = f ( s , ) 

= P{sji n . . . Sjp n . . . 
L+m 

= J = 1, - " , (5.4) 
p=i 

The transmitted symbol vector component Sjp - i.e. the pth symbol in the vector - is given 

by m = logg M number of bits Cjpi, Cjp2,..., Cjpm- Therefore, 

P{^jp) — f (cjpi n . . . Cjpq n . . . Cjprn) 

m 

= 2 2 j = 1 , . . . , Hg, p = 1 , . . . , Z/ + Tn. (5.5) 
5=1 

We have to map the bits Cjp, representing the Af-azy symbol to the corresponding bit 

{ct}. Note that the probability f (r^) of the channel output states cind therefore also the 

RBF weights defined in Equation 5.2 are time-variant, since the values of Cp{ck) are time-

variant. Based on the definition of the bit LLR of Equation 4.8, the probability of bit % 

having the value of +1 or -1 can be obtained after a few steps f rom the a priori information 

/I^(ct) provided by the channel decoder of Figure 5.1, according to: 

Hence, referring to Equation 5.4, 5.5 and 5.6, the probability P { r j ) of the received channel 

output vector can be represented in terms of the bit LLRs C^icjpq) as follows: 

f ( r , . ) = f ( s j ) 
L+m 

I I 
p=l 

L+m m 

= I T n f (%g) 

L+m m / ^ \ 

— (s; ) ' n n Gxp f » - - / i f (c;p,) 

m 

p = l 9 = 1 

— ^C^{sj) • GXP I ^ • ^ai'^jpg) 1 i — 1) • . • ) (5.7) 
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vrhere thuscxmstajit CTcffs,) = incLepeiideid of thel)it Cjpg. 

Therefore, we have demonstrated how the soft output of the channel decoder of 

Figure 5.1 can be utilized by the RBF equaliser. Another way of viewing this process is 

that the RBF equaliser is trained by the information generated by the channel decoder. 

The RBF equaliser provides the a posteriori LLR values of the bits % according to 

C&=-1 

(5.8) 

where (v^) was deSned by Equation 5.2 and the received sequence v* is shown in 

Figure 5.2. In the next section we will provide a comparative study of the RBF equaliser 

and the conventional MAP equaliser of [108]. 

5.3 Compar i son of t he R B F and M A P Equal iser 

- 1 

+1 

Vk 

Figure 5.3: Example of a binary [M. = 2) system's trellis structure 

The a posteriori LLR value of the coded bit given the received sequence of 

Figure 5.2, can be calculated according to [105]: 

(5.9) 



CHAPTER 5. RBF Tt/RBO EQUAMSATION 177 

where a' and 5 denote the states of the trellis seen in Figure 5.3 at trellis stages A; - 1 and 

A, respectively. The joint probability is the product of three factors [105]: 

where the term ^md ,8^(5) the so-called forward- and backward oriented tran-

sition probabilities, respectively, which can be obtained recursively, as follows [105]: 

(5.11) 
s' 

A - i ( a ) = ^ 7 t ( 5 ' , a ) A(a)- (5-12) 
a 

Furthermore, 'Yt(^%5),A — 1, . , .F represents the trellis transitions between the trelhs 

stages (A; - 1) and A. The trelhs has to be of hnite length and for the case of MAP 

equalisation, this corresponds to the length ^ of the received sequence or the transmission 

burst. The branch transition probability 7fc(s', s) can be expressed as the product of the a 

priori probability P(g|5') = P(ck) and the transition probability a): 

7t(a',a) =-P(ct) -p(i;t|a',&). (5-13) 

The transition probability is given by: 

p ( t ; t | / , 3 ) = —exp( -^^ ' ' ), (5.14) 

where {it is the noiseless channel output, and the a priori probability of bit c* being a logical 

1 or a logical 0 can be expressed in terms of its LLR values according to Equation 5.6. 

Since the term ^ in the transition probability expression of Equation 5.14 and the 

term in the a priori probabihty formula of Equation 5.6 are constant over 

the summation in the numerator and denominator of Equation 5.9, they cancel out. Hence, 

the transition probability is calculated according to [105]: 

7t(a' ,5) == (5 15) 

y(a ' ,8 ) = ) (5.16) 

w* = exp(^ C f / : f ( c t ) ) . (5.17) 

Note the similarity of the transition probability of Equation 5.15 with the PDF of the RBF 

equahser's %th symbol described by Equation 4.3, where the terms w* and 'y*(a',g) are the 

RBF's weight and activation function, respectively, while the number of RBF nodes 
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is one. We also note that the computational complexity of b o t h the MAP and the RBF 

equalisers can be reduced by representing the output of the equalisers in the logarithmic 

domain, utihzing the Jacobian logarithmic relationship [13] described in Equation 4.1. The 

RBF equaliser based on the Jacobian logarithm - highlighted in Section 4.2 - was hence 

termed as the Jacobian RBF equaliser. 

The memory of the MAP equaliser is limited by the length of the trellis, provided that 

decisions about the A:th transmitted symbol 7* are made in possession of the information 

related to all the received symbols of a transmission burst. In the MAP algorithm the 

recursive relationships of the forward and backward transition probabilities of Equation 5.11 

and 5.12, respectively, allow us to avoid processing the entire received sequence everytime 

the a posteriori LLR £.p{ck) is evaluated from the joint probability p{s',s,-Vk) according 

to Equation 5.9. This approach is diSerent from that of the R B F based equaliser having a 

feedforward order of m, where the received sequence of m-symbols is required each time 

the a posteriori LLR £^(cfc) is evaluated using Equation 5.8. However, the MAP algorithm 

has to process the received sequence both in a forward and backward oriented fashion 

and store both the forward and backward recursively calculated transition probabilities 

0:^(5) aiid before the LLR values can be calculated from Equation 5.9. The 

equaliser's delay facilitates invoking information from the ' fu ture ' samples %-T+i 

in the detection of the transmitted symbol Ik-T- In other words, the delayed decision of 

the MAP equaliser provides the necessary information concerning the 'future' samples vj^k 

- relative to the delayed t th decision - to be utilised and the information of the future 

samples is generated by the backward recursion of Equation 5.12. 

The MAP equaliser exhibits optimum performance. However, if decision feedback is 

used in the RBF subset centre selection as in [26] or in the R B F space-translation as in 

Section 2.11.2, the performance of the RBF DFE TEQ in conjunction with the idealistic 

assumption of correct decision feedback is better, than that of the MAP TEQ due to 

the increased Euclidean distance between channel states, as it wiU be demonstrated in 

Section 5.5. However, this is not so for the more practical R B F DFE feeding back the 

detected symbols, which may be erroneous. 

5.4 Compar i son of t he Jacobian R B F and L o g - M A P Equaliser 

Building on Section 5.3, in this section the Jacobian logarithmic algorithm is invoked, 

in order to reduce the computational complexity of the MAP algorithm. We denote the 

forward, backward and transition probability in the logarithmic form as follows: 

(5-18) 
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Bt(5) = l i i (^ tM) (5.19) 

rA:(/,a) = lii('yt(5%a)), (5.20) 

which we also used in Section 5.3. Thus, we could rewrite Equation 5.11 as: 

At(a) = l i i ^ ^ % ( 8 ' , a ) ' % - i ( / ) j 

= k i ^ ^ e x p ( r t ( 5 ' , a ) + A t _ i ( a ' ) ) ^ , (5.21) 

and Equation 5.12 as; 

g t - l ( / ) = l n ^ ^ % ( / , 5 ) A ( a ) j 

= In exp ( r t ( / , a) + ^^(a)) j . (5.22) 

From Equation 5.21 and 5.22, the logarithmic-domain forward and backward recursion can 

be evaluated, once Ft (a', a) wag obtained. In order to evaluate the logarithmic-domain 

branch metric r/c(s',s), Equations 5.15-5.17 and 5.20 are utilized to yield: 

r t ( / , a ) = + ^ - (CA:). (5.23) 

By transforming 0!t(a), 'yt(a',a) and /St(a) into the logarithmic domain in the Log-MAP 

algorithm, the expression for the LLR, C^{ck) in Equation 5.9 is also modified to yield: 

.E/ \ _ 1 «A:-i(/) - 7 t ( / , a ) - A ( a ) 

.p c* n at- i (a') '7t(a',5) - A (a) 

_ ^ /I](a',a)=>ct==+1 Gxp (v4t_i(/) -I- rk(g% a) + Bt(a)) 
^ GxP (^t-i(a') + rA(a', a) -I- gt(a)) 

/ \ 
= In I ^ exp (At_i(/) 4- rt(a', a) 4- Bt(a)) 

y(s',s)=^>cfc=+i J 

^ 111 f ^ exp (^fc_i(s')-h rfc(s', s) + i?fc(s)) j . (5.24) 
\(3',a)=>ct=—1 / 

In the trellis of Figure 5.3 there are possible transitions from state 5' to all possible 

states a or to state 5 from all possible states g'. Hence, there aze — 1 summations of the 

exponentials in the forward and backward recursion of Equation 5.21 and 5.22, respectively. 

Using the Jacobian logarithmic relationship of Equation 4.2, — 1 summations of the 

exponentials requires 2(yW-l) additions/subtractions, {Ad — 1) maximum search operations 
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and (Ai — 1) table look-up steps. Together with the additions necessitated to evaluate 

the term and rt(5',a) + -8t(a) in Equation 5.21 and 5.22, respectively, 

the forward and backward recursion requires a total of {6A4 — 4) additions/subtractions, 

maximum search operations and 2(Ai-l) table look-up steps. Assuming that the 

term ^ Cf in Equation 5.23 is a known weighting coefficient, evaluating the branch 

metrics given by Equation 5.23 requires a total of 2 additions/subtractions, 1 multiplication 

and 1 division. 

By considering a treUis having % number of states at each trellis stage and Ai legitimate 

transitions leaving each state, there are number of transitions due to the bit ct = 

-1-1. Each of these transitions belongs to the set (a', a) => = +1. Similarly, there 

will be ^ M x number of % = —1 transitions, which belong to the set {s',s) =4> % = 

—1. Evaluating and of Equation 5.21, 5.22 and 5.23, respectively, 

at each trellis stage k associated with a total of Mx transitions requires vW%(6Ai — 2) 

axlditions/subtractions, A(x(2A^ - 2) maximum search operations, Aix(2A< - 2) table 

look-up steps, plus multiphcations and divisions. With the terms At (a), 

and rt(a',5) of Equations 5.21, 5.22 and 5.23 evaluated, computing the LLR of 

Equation 5.24 using the Jacobian logarithmic relationship of Equat ion 4.2 for the summation 

terms exp(-)) and exp(.)) requires a total of 4(^vW%-l)-|-

2M.X + 1 additions/subtractions, Mx — 2 maximum search operations and M.X — 2 table 

look-up steps. The number of states at each trellis stage is given by % — Tlj 
Therefore, the total computational complexity associated with generating the a posteriori 

LLRs using the Jacobian logarithmic relationship for the Log-MAP equaliser is given in 

Table 5.1. 

Log-MAP Jacobian RBF 
subtraction 

and addition 
multiplication 
division 
max 
table look-up 

-|- 2) — 3 

n,,X2A( - 1) - 2 
ngj(2:jvi — 1) — 2 

-I- 2) — 4 

AiMl - 2 
Ain^ - 2 

Table 5.1: Computational complexity of generating the a posteriori LLR for the Log-
MAP equaliser and the Jacobian RBF equaliser [9]. The RBF equaliser order is denoted by 
m and the number of RBF centres is The notation y = indicates the number 
of trellis states for the Log-MAP equaliser and also the number of scalar channel states for 
the Jacobian RBF equaliser. 

For the Jacobian RBF equaliser, the LLR expression of Equation 5.8 is rewritten in terms 



of the logarithmic form hi (/ji^jr(vA)) to yield: 

exp (hi(/^gp,(vt))) \ 

In 

Z ' exp ( h i ( / ^ ^ ( v t ) ) ) j 
ct=-l / 

\ ( \ 
^ exp (hi(/j(gf,(vt))) I - In ^ exp (ln(/^gf.(v&))) 

\ct=+l / / 

.(5.25) 

The summation of the exponentials in Equation 5.25 requires 2(A4-2) additions/subtractions, 

(Ai-2) table look-up and (jA/( — 2) maximum search operations. The associated complex-

ity of evaluating the conditional PDF of M symbols in logarithmic form according to 

Equation 4.4 was given in Table 4.1. Therefore, - similarly to the Log-MAP equaliser -

the computational complexity associated with generating the a posteriori LLR for the 

Jacobian RBF equaliser is given in Table 5.1. Figure 5.4 compares the number of addi-

tions/subtractions per turbo iteration involved in evaluating the a posteriori LLRs £p for 

the Log-MAP equaliser and Jacobian RBF equaliser according to Table 5.1. More explicitly, 

the complexity is evaluated upon with varying the feedforward order m for diSerent values of 

L, where {L + 1) is the CIR duration under the assumption tha t the feedback order n = L 

and the number of RBF centres is n\ = Since the number of multiplica-

tions and divisions involved is similar, and by comparison, t h e number of maximum search 

and table look-up stages is insigniScant, the number of additions/subtractions incurred 

in Figure 5.4 approximates the relative computational complexities involved. Figure 5.4 

shows significant computational complexity reduction upon using Jacobian RBF equalisers 

of relatively low feedforward order, especially for higher-order modulation modes, such as 

M = 64. The figure also shows an exponential increase of t he computational complexity, 

as the CIR length increases. Observe in Figure 5.4 that as a rule of thumb, the feedforward 

order of the Jacobian RBF DFE must not exceed the CIR length {L + 1) in order to achieve 

a computational complexity improvement relative to the Log-MAP equaliser, provided that 

we use the optimal number of RBF centres, namely n\ = jM.. 

The length of the trellis determines the storage requirements of the Log-MAP equaliser, 

since the Log-MAP algorithm has to store both the forward- and backward-recursively 

calculated metrics Ak{s) and Bk-i{s') before the LLR values £^(cfc) can be calculated. 

For the Jacobian RBF DFE, we have to store the value of the RBF centres and the storage 

requirements will depend on the CIR length i^-t-1 and on the modulation mode characterised 

by M. 
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Figure 5.4: Number of additions/subtractions per iteration for the Jacobian RBF DFE of 
varying equaliser order m and the Log-MAP equaliser for various values of L, where L + 1 
is the CIR length. The feedback order of the Jacobian RBF D F E is set to n = L and the 
number of RBF centres is set to n® = 
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5.5 R B F Turbo Equaliser Pe r fo rmance 

The schematic of the entire system was shown in Figure 5.2, where the transmitted source 

bits are convolutionally encoded, channel-interleaved and mapped to an M-ary modulated 

symbol. The encoder utilized a half-rate recursive systematic convolutional (RSC) code, 

having a constraint length of K = 5 and octal generator polynomials of Go = 35 and 

Gi = 23. A random channel interleaver of 20 000-bit memory was invoked. The transmission 

burst structure used in this system is the PMAl non-spread speech burst, as speciGed in 

the Pan-European FRAMES proposal [101], which is seen in Figure 5.5. We have assumed 

that perfect knowledge of the CIR was available, which implies that our results portray the 

best-case performance. 

< 72 microseconds ^ 

1 
1 Data 

1 1 
1 Training I Data 

1 1 
1 Guard | 

! Sequence 1 i i 
1 1 

<— 72 symbols 27 symbols^ <—72 symbols —^ 

Figure 5.5: Transmission burst structure of the so-called FMAl nonspread speech mode as 
specified in the FRAMES proposal [101]. 

5.5.1 Dispers ive Gauss ian Channels 

The performance of the Jacobian RBF DFE TEQ was initially investigated over a dispersive 

Gaussian channel. Figure 6.6 provides the BER performance comparison of the Log-MAP 

and Jacobian RBF DFEs in the context of turbo equalisation. Various equaliser orders were 

used over a three-path Gaussian channel having a z-domain transfer function of F(z) = 

0.5773 + 0.5773z"^ + 0.5773^"^ and employing BPSK. Figure 5.6(b) shows that when the 

feedback information is not error-free, the Log-MAP TEQ outperforms the Jacobian RBF 

DFE TEQ for the same number of iterations. The corresponding uncoded systems using 

the Log-MAP equaliser and the Jacobian RBF DFE exhibit similar performance trends. 

Comparing Figure 5.6(a) for the equaliser parameters of m = 3, n = 2 and r = 2, as well 

as Figure 5.6(b) for the equaliser parameters of m = 4, n = 2 and r = 3, we observe that 

the performance of the Jacobian RBF DFE TEQ improves, as the feedforward order and 

the decision delay of the equaliser increases. This is achieved at the expense of increased 

computational complexities as evidenced by Figure 5.4. The above trend is a consequence 

of the enhanced DFB performance in conjunction with increasing feedforward order and 

decision delay, as it was demonstrated and justiSed in Section 2.11. However, as seen in 

Table 5.1, the approximate number of additions/subtrations for the Jacobian RBF DFE 
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(a) The Jacobian RBF DFE has a feedforward order of m = 3, 
feedback order of n = 2 and decision delay of t = 2 symbols. 
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(b) The Jacobian RBF DFE has a feedforward order of m = 4, 
feedback order of n = 2 and decision delay of r = 3 symbols. 

Figure 5.6: Performance of the Log-MAP TEQ and Jacobian R B F DFE TEQ over the three-
path Gaussian channel having a z-domain transfer function of f (z) = 0.5773 + 0.5773z + 
0.5773Z-2 BPSK. 
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Figure 5.7: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the five-
path Gaussian channel having a z-domain transfer function of F{z) = 0.227 + 0.46^"^ + 
0.688z-^ + 0.46^-3 + 0.227^-"^ for BPSK. The Jacobian RBF DFE has a feedforward order 
of 771 = 5, feedback order of n = 4 and decision delay of T = 4 symbols. 
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increased from 44 to 100 for a feedforward order increase from m = 3 to m = 4. Both the 

Log-MAP and the Jacobian RBF DFE TEQs converge to a similar BER performance upon 

increasing the number of iterations. The Log-MAP TEQ performs better, than the Jacobian 

RBF DFE TEQ at a lower number of iterations, as shown in Figure 5.6. This is, because 

eEectively the Log-MAP equaliser has a higher feedforward order, which is equivalent to the 

length of the trellis and also exhibits a longer decision delay, as discussed in Section 5.3. The 

performance of the Log-MAP TEQ in the zero-ISI - i.e. non-dispersive - Gaussian channel 

environment was also presented in Figure 5.6(b) for comparison. The Log-MAP TEQ, the 

Jacobian RBF DFE TEQ using M = 4, n = 2, T = 3 and the Jacobian RBF DFE TEQ 

employing m = 3, n = 2, T = 2 performed within approximately 0.2dB, 0.2dB and 0.5dB, 

respectively, from this zero-ISI, i.e. non-dispersive AWGN benchmarker at BER of 10"^. 

The BER performance of the RBF DFE TEQ using correct decision fedback is also shown in 

Figure 5.6, which exhibits a better performance than the Log-MAP TEQ. This is possible 

- although the Log-MAP equaliser is known to approximate the optimal performance -

because the RBF DFB's subset centre selection mechanism creates an increased Euclidean 

distance between the channel states [26] and effectively eliminates the postcursor ISI, which 

improves the performance of the Jacobian RBF DFE TEQ. 

The performance of the TEQs was then investigated over a dispersive Gaussian channel 

having an increased CIR length. Figure 5.7 compares the performance of the Log-MAP TEQ 

and the Jacobian RBF DFE (m = 5, n = 4, T = 4) TEQ over t he five-path Gaussian channel 

associated with the transfer function of F{z) = 0.227 4- 0.46z"^ + 0.688z"^ 4- 0.46z"^ + 

0.227z~^. The performance of both the Log-MAP and Jacobian RBF DFE TEQs degrades 

with increasing CIR lengths, especially at lower SNRs, when we compare Figures 5.6 and 

5.7. This is due to the increased number of multipath components to be resolved, when 

the CIR length is increased, a phenomenon which was also demonstrated in Figures 2.32 

and 2.33 for an uncoded RBF DFE over the three-path and five-path channels, respectively. 

For the five-path channel, the Log-MAP TEQ and the Jacobian RBF DFE TEQ using 

m = 5, n = 4, T = 4 performed within about IdB and 5dB, respectively, from the zero-ISI, 

non-dispersive Gaussian limit at a BER of lO"'^. We observed from Figure 5.6(b) and 5.7, 

that the coded BBRs only start to decrease once the uncoded BBRs reached approximately 

2 X 1 0 - \ 

5.5.2 Dispers ive Rayle igh Fading Channels 

Let us now investigate the performance of the TEQs in a dispersive Rayleigh fading chan-

nel environment. A three-path, symbol-spaced fading channel of equal weights was utilized, 

where the Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x lO""̂ . 
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Figure 5.8: Performance of the Log-MAP TEQ and Jacobian RBF DFE TEQ over the 
three-path Rayleigh fading channel for B P S K . The Jacobian RBF DFE has a feedforward 
order of m = 3, feedback order of m — 2 and decision delay of r = 2 symbols. 
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Figure 5.9; Performance of the Log-MAP TEQ and Jacobian R B F DFE TEQ over the three-
path Rayleigh fading channel for 4 - Q A M . The Jacobian RBF DFE has a feedforward order 
of m = 3, feedback order of n = 2 and decision delay of r = 2 symbols. 
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Figure 5.10: Performance of the Log-MAP TBQ and Jacobian RBF DFB TBQ over the 
three-path Rayleigh fading channel for 16-QAM. The Jacobian RBF DFE has a feedfor-
ward order of m = 3, feedback order of ra = 2 and decision delay of r = 2 symbols. 



The CIR was assumed to be burst-invariant. Figure 5.8, 5.9 and 5.10 portray the perfor-

mance of the Log-MAP TEQ and that of the Jacobian RBF DFE TEQ for BPSK, 4-QAM 

and 16-QAM, respectively. The Jacobian RBF DFE has a feedforward order of m = 3, feed-

back order of n = 2 and decision delay of r = 2 symbols. Figure 5.8 and Figure 5.9 show for 

BPSK and 4-QAM, that the Log-MAP TEQ and the Jacobian RBF DFE TEQ converge to 

a similar BER performance, but the Log-MAP TEQ requires a lower number of iterations. 

Specifically, two iterations are required for the Log MAP T E Q and three iterations for the 

Jacobian RBF DFB TBQ to achieve near-perfect convergence, since the Log-MAP TBQ 

exhibited a better BER performance for an uncoded system t h a n the Jacobian RBF DFE. 

The performance of the Log-MAP TBQ at two iterations ajid that of the Jacobian RBF 

DFE TEQ at three iterations is about 2dB and 2.5dB away from the zero-ISI Gaussian 

BER curve for BPSK and 4-QAM, respectively, at a BER of 10"^. For 16-QAM, the effect 

of error propagation degrades the performance of the Jacobian RBF DFE TEQ by lOdB at 

BER of 10"^, when we compare the Jacobian RBF DFE T E Q ' s correct feedback based and 

decision feedback assisted performance after 4 iterations, ag seen in Figure 5.10. Again, the 

performance can be improved by increasing the equaliser feedforward order at the expense 

of higher computational complexity, as discussed in Section 5.5.1. 

The iteration gain of the Jacobian RBF DFE TEQ after 3 iterations at a BER of 10"^ was 

1.3dB, 3dB and 4dB for the modulation modes of BPSK, 4-QAM and 16-QAM, respectively. 

By contrast, for the Log-MAP TEQ the corresponding iteration gains were 0.5dB, 0.9dB 

and 2dB for the modulation modes of BPSK, 4-QAM and 16-QAM, respectively. Explicitly, 

the iteration gain was defined as the difference between the channel SNR required in order 

to achieve a certain BER after one iteration and the corresponding channel SNR required 

after n number of iterations. The iteration gain was higher for the higher-order modulation 

modes, since the distance between two neighbouring points in t h e higher-order constellations 

was lower and hence it was more gravely aEected by ISI and noise. 

Since the computation of the associated implementational complexity summarised in 

Table 5.1 is quite elaborate, here we only give an estimate of t he Log-MAP TEQ's and the 

Jacobian RBF DFE TEQ's complexity in the context of both BPSK and 4-QAM, employing 

the parameters used in our simulations. SpeciEcaUy, in the BPSK scheme the approximate 

number of additions/subtractions and multiplications/divisions for the Log-MAP TEQ was 

109 and 16 per iteration, respectively, whereas for the Jacobian RBF DFE TEQ (m = 3, 

% =: 2, T = 2) the corresponding Egures were 44 and 16, respectively. The 'per iteration' 

complexity of the Jacobian RBF DFE TEQ was approximately a factor of (109/44 =)2.5, 

4.4 and 16.3 lower, than that of the Log-MAP TEQ, for BPSK, 4-QAM and 16-QAM, 

respectively. 
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Overall, due to the error propagation that gravely degrades the performance of the Jaco-

bian RBF DFE TEQ when using 16-QAM, the Jacobian R B F DFE TEQ could only provide 

a practical performance versus complexity advantage for lower order modulation modes, 

such as BPSK and 4-QAM. It is worth noting here that we have attempted using the LLR 

values output by the decoder in the previous iteration as t he feedback information for the 

feedback section of the RBF DFE. However, we attained an inferior performance compared 

to the scenario using the RBF DFE outputs as the feedback information. This is because 

the BER improves on every iterations and the BER of the input of the equaliser fed back 

from the decoder was improved after equalisation. Therefore the output of the equaliser was 

more reliable, than the output of the decoder in the previous iteration. Turbo equalisation 

research has been focused on developing reduced complexity equalisers, such as the receiver 

structure proposed by Glavieux oZ. [106], where the equaliser is constituted by two linear 

niters. Motivated by this trend, Yeap oZ. [109, 110, 111] proposed a reduced complexity 

trellis-based equaliser scheme based on equalising the in-phase and quadrature-phase com-

ponent of the transmitted signal independently. This novel reduced complexity equaliser is 

termed as the In-Phase/Quadrature-phase Equaliser (I/Q EQ). When a channel having a 

memory of L symbol durations was encountered, the trellis-based equaliser must consider 

total number of transitions at each trellis stage, as discussed in Section 5.4. The 

complexity of the complex-valued trellis-based equaliser increased rapidly with L. However, 

by removing the associated cross-coupling of the in-phase and quadrature-phase signal com-

ponents and hence rendering the channel output to be only dependent on either quadrature 

component, the number of transitions considered was reduced to . Therefore, 

there will be an I /Q EQ for each I /Q component, subti tut ing the original trellis-based 

equaliser and giving a complexity reduction factor of ^ = 0.5 x V T h e TEQ 

using I /Q EQs was capable of achieving the same performance as the Log-MAP TEQ for 

4-QAM and 16-QAM, while maintaining a complexity reduction factor of 2.67 and 16, re-

spectively, over the equally-weighted three-path Rayleigh fading channel using a normalised 

Doppler frequency of 3.3 x 10"^ [109, 110, 111]. The complexity of the RBF DFE could be 

similarly reduced to that of the I /Q EQ by equalising the in-phase and quadrature-phase 

components of the transmitted signal separately. In the following section, we proposed an-

other novel method of reducing the complexity of TEQ by making use of the fact that the 

RBF DFE evaluates its output on a symbol-by-symbol basis. 

5.6 Reduced-complexi ty R B F Assisted T u r b o Equal isa t ion 

The Log-MAP algorithm requires forward and backward recursions through the entire se-

quence of symbols in the received burst in order to evaluate the forward and backward 
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transition probability of Equation 5.11 and 5.12, before calculating the a posteriori LLR 

values /2p(ct). Therefore, effectively the computation of the a posteriori LLRs /Ip(ct) is 

performed on a burst-by-burst basis. The RBF based equaliser, however, performs the 

evaluation of the a posteriori LLRs Cp{ck) on a symbol-by-symbol basis. Therefore, in 

order to reduce the associated computational complexity, t h e RBF based TEQ may skip 

evaluating the symbol LLRs according to Equation 5.8 in t h e current iteration, when the 

symbol has a low error probability or high a priori LLR magnitude |£f'(cfc)| after channel 

decoding in the previous iteration. If, however this is not t h e case, the equaliser invokes a 

further iteration and attempts to improve the decoder's reliablility estimation of the coded 

bits. The output fjispi'Vk) of the RBF equaliser provides the likelihood of the i th symbol at 

instant k. The log-likelihood values of the ?th symbol provided by the channel decoder in the 

previous iteration obey an approximately linear relationship versus the log-likelihood values 

from the equaliser in the current iteration, as demonstrated in Figure 5.11 for the BPSK 

mode over a three-path, symbol-spaced fading channel of equal CIR tap weights, where the 

Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x 10"^. Therefore, 

the logarithmic domain output In of the RBF equaliser can be estimated based 

on this near-linear relationship portrayed in Figure 5.11 according to: 

In (vt)) = g . h i ( i ; . (4 = 2i)) + c, (5.26) 

where ln{La{Ik = %%)) is the log-likelihood of the transmitted symbol being the ith QAM 

symbol based on the decoder's soft output, g is the log-likelihood gradient and c is the 

log-likelihood intercept point. Both g and c can be inferred from Figure 5.11. As our 

next action, we have to set the LLR magnitude threshold |vC|tArea/iofd, where the estimated 

coded bits output by the decoder in the previous iteration become sufficiently reliable for 

refraining from further iterations. Hence the symbols exhibiting an LLR value above this 

threshold are not fed back to the equaliser for futher iterations, since they can be considered 

sufficiently reliable for subjecting them to hard decision. The LLRs passed to the decoder 

from the equaliser are calculated from the symbols' log-likelihood values based on the linear 

relationship of Equation 5.26 instead of the more computationally demanding Equation 5.8, 

in order to reduce the computational complexity. We refer to this RBF based-TEQ as the 

reduced-complexity RBF TEQ. 

In our experiments, the above mentioned log-likelihood gradient and the intercept point 

were found to be g = 1.2 and c = —7.5, respectively, according to the near-linear relationship 

of Figure 5.11. We set the LLR magnitude threshold such that the symbols in the 

burst that were not fed back to the equaliser for further iterations became sufficiently reli-

able and hence exhibited a low probabihty of decoding error. The threshold was initially set 

to = 10 based on our experiments, such that the symbols that were not fed back 
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Figure 5.11: The log-likelihood of the RBF turbo equalised symbols before and after equal-
isation over the three-path, symbol-spaced fading channel of equal CIR tap weights, where 
the Rayleigh fading statistics obeyed a normalised Doppler frequency of 1.5 x 10"^, at an 
SNR of OdB using BPSK. 

to the decoder exhibited a probability of error below 5 x 10~® according to Equation 4.13. 

Figures 5.12 and 5.13 compare the performance of the reduced-complexity Jacobian RBF 

DFE TEQ to that of the Jacobian RBF DFE TEQ of Section 5.4 over the three-path Gaus-

sian channel having a transfer function of F{z) = 0.5773 + 0.5773z"^ + 0.5773z^^. The 

reduced-complexity Jacobian RBF DFE TEQ provides an equivalent BER performance 

to that of the Jacobian RBP DFE TEQ of Section 5.4, while exhibiting a reduced com-

putational complexity, which is proportional to the percentage of the BPSK symbols fed 

back for further iterations in Figure 5.12 and 5.13. We note that in our experiments the 

reduced-complexity Jacobian RBF DFE TEQ using the detected decision feedback - rather 

than error-free feedback - required a higher LLR magnitude threshold of \C\threshold = 26 

(which guaranteed a probability of error of 5 x 10"^^ according to Equation 4.13), in order 

to provide an equivalent BER performance to that of the Jacobian RBF DFE TEQ, since 

the decision feedback error propagation reduced the decoder's reliability estimation of the 

coded bits. The higher the LLR magnitude threshold, the higher the percentage of bits fed 

back, resulting in a higher complexity. According to Figure 5.12 depicting the performance 

of the reduced-complexity Jacobian RBF DFB TBQ relying on correct decision feedback, 

the average percentage of bits not requiring further iterations for a channel SNR of 4dB was 
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Figure 5.12: BBR performance cmd the percentage of symbols not requiring equalisation 
by the reduced-complexity RBF TEQ using correct decision feedback over the three-path 
Gaussian channel having a z-domain transfer function of f (z) = 0.5773 + 0.5773z"^ 4-
0.5773z~^ for BPSK. The LLR magnitude threshold, the log-likelihood gradient and the log-
likelihood intercept point were set to = 10, g — 1 2 and c = —7.5, respectively. 
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Figure 5.13: BER performance and the percentage of symbols not requiring equalisation 
by the reduced-complexity RBF TEQ using detected decision feedback over the three-
path Gaussian channel having a z-domain transfer function of I^(z) = 0.5773 + 0.5773z^^ + 
0.5773z"^ for BPSK. The LLR magnitude threshold, the log-likelihood gradient and the log-
likelihood intercept point were set to jCjthreshoid = 26, g = 1.2 and c = —7.5, respectively. 
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20% for the second iteration, 70% for third iteration and approximately 90% for the consec-

utive iterations. This amounts to a total of approximately 54% computational complexity 

reduction at the SNR of 4dB. Referring to Figure 5.13, the reduced-complexity Jacobian 

RBF DFE TEQ relying on detected symbol-based - rather t h a n perfect - decision feedback 

with its associated higher LLR magnitude threshold provides a total of approximately 21% 

computational reduction at an SNR of 6dB. Figure 5.14 depicts the performance of the 

reduced-complexity Jacobian RBF DFE TEQ relying on detected decision feedback over 

the three-tap equal gain, symbol-spaced Rayleigh faded CIR obeying a Doppler frequency 

of 1.5 X 10"^. A LLR magnitude threshold of 10 was sufficient for the reduced-complexity 

Jacobian RBF DFE TEQ in order to provide an equivalent BER performance to that of 

the Jacobian RBF DFE TEQ. The RBF DFE provided a be t te r reliability-estimation over 

the dispersive burst-invariant Rayleigh fading channel compared to the dispersive Gaussian 

channel, since the uncoded BER performance was better over the Rayleigh fading channel, 

as it ia seen from comparing Figures 5.13 and 5.14. ^ Hence less errors were propagated 

&om the equaliser's decision feedback to future bits. Referring to Figure 5.14, the reduced-

complexity Jacobian RBF DFE TEQ using decision feedback provides approximately 35% 

computational complexity reduction at an SNR of 4dB. 

The reduced-complexity RBF DFE TEQ implementation can be used instead of the RBF 

DFE TEQ in order to provide substantial computational reductions without degrading the 

BER performance. Since the reliability of the symbols in the decoded burst is provided by 

the channel decoder in the previous iteration, we were capable of designing a system, where 

the percentage of bits not equalised in the decoded burst was set according to our design cri-

teria for every iteration, such that each burst exhibited a predetermined Exed computational 

complexity reduction for the sake of practical, constant-complexity implementations. 

5.7 Conclusions 

In conclusion, in this chapter the Jacobian RBF DFE TEQ has been proposed and analysed 

comparatively in conjunction with the well-known Log-MAP T E Q [13, 105]. The associated 

performances and complexities have been compared in the context of BPSK, 4-QAM and 

16-QAM. The computational complexity of the Jacobian R B F DFE TEQ is dependent on 

the number of RBF centres, the CIR length and modulation mode. The associated 'per 

iteration' implementational complexity of the Jacobian RBP DFE TBQ (m = 3, n, = 2, 

^The three-tap Rayleigh fading channel has a better BER performance than the three-path Gaussian 
channel, because the dispersive Gaussian channel has a bad spectral characteristic exhibiting spectral null. 
By contrast, for the Rayleigh fading channel, the CIR taps are faded and hence the frequency-domain transfer 
function does not exhibit a permanent null. 
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Figure 5.14: BER performance and the percentage of symbols not requiring equalisation 
by the reduced-complexity RBF TEQ using detected decision feedback over the three-tap 
equal-gain Rayleigh fading channel for BPSK. The LLR magnitude threshold, the log-
likelihood gradient and the log-likelihood interception were set to \C\threshold = 10, g = 1.2 
and c = —7.5, respectively. 
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T = 2) waa approximately a factor 2.5, 4.4 and 16.3 lower in the context of BPSK, 4-

QAM and 16-QAM, respectively, for the three-path channel considered. The performance 

degradation compared to the conventional Log-MAP TEQ [105] was negligible for BPSK 

and 4-QAM, but was approximately lOdB for 16-QAM over the three-path, equal-weight, 

symbol-spaced burst-invariant Rayleigh fading channel environment considered. The large 

performance degradation for the 16-QAM scheme is due to the error propagation effect 

of the DFE, which becomes more grave in conjunction with higher order constellations. 

Therefore, the Jacobian RBF DFE TEQ could only provide a practical performance versus 

complexity advantage over the conventional Log-MAP TEQ [105] for lower modulation 

modes. Our proposed reduced-complexity Jacobian RBF D F E TEQ was shown to provide 

an equivalent BER performance to that of the RBF DPE TEQ at a reduced computational 

load. The reduced-complexity Jacobian RBF DFE TEQ using detected decision feedback 

provided approximately 21% (at SNR of 6dB) and 35% (at SNR of 4dB) computational 

reduction for dispersive Gaussian and Rayleigh channels, respectively. 



Chapter 6 

S u m m a r y and Conclusions 

This thesis investigated the application of neural networks in the context of channel equalisar 

tion. As an introduction, the family of established neural network based equaliser structures 

was reviewed. We opted for studying RBF network baaed equalisers in detail and inves-

tigated their implementation in conjunction with adaptive modulation and turbo channel 

coding, in order to improve the performance of the transceivers investigated. Below, the 

main findings of our investigations and suggestions for further research are presented. 

6.1 S u m m a r y 

Chapter 2 provided a brief overview of neural networks and described, how equalisation can 

be viewed as a classification problem. We studied the performance of the RBF equaliser 

assisted QAM schemes and their adaptive convergence performance in conjunction with both 

clustering algorithms and LMS channel estimators. The R B F equaliser provided superior 

performance compared to the linear MSB equaliser using an equivalent equaliser order at 

the expense of a higher computational complexity, aa it waa shown in Figure 2.28 and 

2.29. According to Figure 2.28 and 2.29, the RBF equaliser = 9) provided performance 

improvements of lOdB and 20dB over the linear MSE equaliser over two-path and three-

path Gaussian channels, respectively, at a BBR of 10"^. We note that both the linear MSE 

equaliser and the RBF equaliser exhibited residual BBR characteristics, if the channel states 

corresponding to different transmitted symbols are inseparable in the channel observation 

space, as it was shown in Figure 2.30. The adaptive performance of the RBF equaliser 

employing the LMS channel estimator of Section 2.9.4, the vector centre clustering algorithm 

of Section 2.9.5 and the scalar centre clustering algorithm of Section 2.10 was compared. The 

convergence rate of the clustering algorithm depends on the number of channel coefficients to 

be adapted and therefore alao on the modulation scheme used and the CIR length. However, 

the convergence of the LMS channel estimation technique only depends on the CIR length 
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and therefore this technique is preferred for high-order modulation schemes and high CIR 

lengths. In Section 2.11 decision feedback waa introduced into the RBF equaliser, in order 

to reduce its computational complexity and to improve its performance, since due to its 

employment the Euclidean distance between the channel s ta tes corresponding to different 

transmitted symbols was increased. The performance degradation due to decision error 

propagation increase as the BBR increased, which became more signiBcant for higher-order 

QAM constellations, as it was shown in Figure 2.42. The performance degradation for 

higher-order modulation schemes was higher for fading channel conditions, since they are 

more sensitive to fades due to the reduced Euclidean distance between the neighbouring 

channel states. We note that even for relatively slow fading channels, the channel states 

value can change significantly on a symbol-by-symbol basis in a transmission burst duration. 

Inseparable channel state clusters were observed for symbol-invaziant fading, as it was shown 

in Figure 2.48(b), which is due to the fading effects manifesting themselves across the burst 

duration. These phenomena, together with the non-ideal learnt channel states, explain the 

residual BBRs present in our simulations. 

Chapter 3 introduces the concept of adaptive modulation invoked, in order to improve 

the throughput of the system, while maintaining a certain target BER performance. The 

RBF DFE's 'on-line' BER estimation of the received data burs t was used as the AQAM 

modem mode switching metric in order to quanti^ the charmel's quality. Our simulation 

results of Section 3.3.5 showed that the proposed RBF DFE-assisted BbB adaptive modem 

outperformed the individual constituent fixed modulation modes in terms of the mean BER 

and BPS. The AQAM scheme employing RBF DFE was compared to the AQAM scheme 

using a conventional DFE, in terms of mitigating the effects of the dispersive wideband 

channel. Our results in Section 3.3.5 showed that the AQAM RBF DFE scheme was ca-

pable of performing as well as the conventional AQAM DFE at a lower decision delay and 

lower feedforward as well as feedback order. The performance of the AQAM RBF DFE can 

be improved by increasing both the decision delay T and the feedforward order at the 

expense of increased computational complexity, while the performance of the conventional 

AQAM DFE cannot be improved significantly by increasing its equaliser order. However, 

the computational complexity of the RBF DFE is dependent on the AQAM mode and in-

creases significantly for higher-order modulation modes. This is not so in the context of the 

conventional DFE, where the computational complexity is only dependent on the feedfor-

ward and feedback order. A practical method of obtaining the switching BER thresholds of 

the joint AQAM RBF DFE scheme was proposed in Section 3.4, which was shown to provide 

a near-identical performance in comparison to the achievable best-case performance for the 

target BER of 10"^. However, for the lower target BER of 10"*, the BER performance 

degradation in comparison to the best-case performance was more significant, since the 



RBF DFE waa unable to provide a BBR estimate of such high accuracy and also because of 

the spread nature of the BER estimates seen for example in Figure 3.14. Overall, we have 

shown that our proposed AQAM scheme improved the throughput performance compared 

to the fixed modulation modes. On the whole, the RBF D F E provides a reliable channel 

quality measure, which quantifies all channel impairments, irrespective of their source for 

the AQAM scheme and at the same time improves the BER performance. 

Chapter 4 proposed the Jacobian RBF equaliser that invoked the Jacobian logarithmic ap-

proximation, in order to reduce the computational complexity of the original RBF equaliser 

discussed in Section 2.9.1, while providing a similar BER performance. For example, the 

total complexity reduction was by a factor of about 2.1, when we considered a 16-QAM 

RBF DFE in conjunction with the equaliser parameters of m = 3, n = 1 and r = 2. The 

performance of the RBF DFE was investigated using turbo coding and it was compared to 

the turbo-coded conventional DFE scheme in Section 4.4. Introducing BCH(31,26) turbo 

coding into the system improved the SNR-performance by 9.5dB for BPSK and by about 

8dB for 4-QAM, 16-QAM and 64-QAM at a BER of 10"^. T h e performance of the conven-

tional DFE and RBF DFE schemes depends on their uncoded performance. We have also 

investigated the application of turbo BCH coding in conjunction with AQAM in a wide-

band fading channel. We observed in Section 4.6.2 that the performance of the switching 

mechanism depends on the fluctuation of the switching metric since the AQAM switching 

regime assumed that the channel quality was slowly varying. This was demonstrated in 

Section 4.6.2, when we compared the performance of the AQAM scheme using the short-

term BER before and after turbo decoding as the switching metric. The spurious nature 

of the short-term BER after turbo decoding was shown in Figure 4.22, which degraded the 

performance of the AQAM scheme, as it assumed that the channel quality was slowly vary-

ing. The turbo-coded AQAM RBF DFE system exhibited a bet ter BPS performance, when 

compared to the uncoded system at low to medium channel SNRs - in the range of OdB 

to 26 dB - as evidenced by Figure 4.27. The same figure also showed an improved coded 

BER performance at higher channel SNRs - in the range above SOdB. A virtually error-free 

turbo-coded AQAM scheme was also characterized in Figure 4.28. The BPS performance 

of the error-free coded system was better, than that of the uncoded AQAM system for the 

channel SNR range of OdB to 15dB, as evidenced by Figure 4.28. Overall, we have pre-

sented the advantageous interactions of RBF-aided DFE and BbB AQAM in conjunction 

with turbo FBC. 

Chapter 5 presented the Jacobian RBF DFE TEQ and comparatively analysed its associ-

ated performance and complexity with the well-known Log-MAP TEQ [105] in the context 

of BPSK, 4-QAM and 16-QAM. The computational complexity of the Jacobian RBF DFE 

TEQ was shown in Section 5.4 to be dependent on the number of RBF centres, on the 



CIR length and on the modulation mode. The associated 'per iteration' implementational 

complexity of the Jacobian RBF DFE TEQ (m = 3, n = 2, r = 2) was approximately a 

factor 2.5, 4.4 and 16.3 lower in the context of BPSK, 4-QAM and 16-QAM, respectively, 

for the three-path channel considered as seen in Table 5.1. The associated performance 

degradation compared to the Log-MAP TEQ was shown in Figures 5.8, 5.9 and 5.10 to be 

approximately 0.2dB, 0.2dB and lOdB for BPSK, 4-QAM a n d 16-QAM, respectively over 

the three-path, equal-weight, symbol-spaced Rayleigh fading channel environment consid-

ered. The large performance degradation for the 16-QAM scheme was due to the error 

propagation eSect of the DFE, which became more grave in conjunction with higher-order 

constellations. Therefore, the Jacobian RBF DFE TEQ of Section 5.2 could only provide a 

practical performance versus complexity advantage for lower modulation modes. In terms 

of storage requirements, the Jacobian RBF DFE is less demanding, as it only has to store 

the values of the RBF centres, while the Log-MAP equaliser has to store both the forward-

and backward-recursively calculated metrics. Our proposed reduced-complexity RBF DFE 

TEQ - where the RBF DFE skips evaluating the symbol LLRs in the current iteration 

when the symbol is suSciently reliable after channel decoding in the previous iteration -

was shown in Section 5.6 to give significant computational complexity reductions, while pro-

viding an equivalent BER performance to the RBF DFE T E Q . The complexity reduction 

was approximately 21% (at an SNR of 6dB) and 35% (at an SNR of 4dB) for dispersive 

Gaussian and Rayleigh channels, respectively. 

6.2 Suggestions for Fu tu re Research 

In most of our work initially we have made some idealistic assumptions for our AQAM 

scheme, such as those in Section 3.3.3. Further work has to explore and quantify the 

performance of our proposed systems in practical scenarios in the presence of co-channel 

interference (CCI), CIR estimation errors, channel quality estimation latency, etc. Research 

has also been conducted in employing neural network based equalisers in code-division 

multiple-access (CDMA) environments [112, 113, 114, 115, 116, 117, 118, 119] and it appears 

promising to explore further this work in conjunction with our coded AQAM schemes. 

Space-time processing techniques [120] are powerful in enhancing the capability of mobile 

communication services and are currently regarded by many within the wireless communi-

cations community as a core system component in future generation of mobile networks. 

Space-time processing techniques optimize the cellular spectral efficiency of the network by 

implementing more than one antenna element in order to optimally transmit and receive 

signals to or from users using both temporal and spatial signal processing techniques in the 

transceiver. Implementing coding in conjunction with space-time techniques, Tarokh et. al. 



[121, 122, 123, 124, 125] presented a range of new advanced modem schemes suitable for 

high-data-rate wireless communications based on space-time coded modulation (STCM). 

Simulation results for the proposed STCM-based modem show great promise as a powerful 

channel coding method for high-data-rate wireless applications. Hence it appears promis-

ing to implement this technique in conjunction with our proposed RBF equalisers and to 

investigate its performance over wideband channels subjected to CCI. 

Chen et. al. proposed a strategy for designing DFE-based support vector machines 

(SVM) [73]. The SVM design in conjunction with low-complexity conventional DFE struc-

tures achieves asymptotically the minimum BER (MBER) solution [70], which provides a 

performance close to the optimal Bayesian DFE. Unlike the exact MBER solution, the SVM 

solution can be computed significantly more efficiently. The low-complexity structure of the 

SVM DFE provides an attractive alternative to the optimal Bayesian-based RBF DFE and 

to its implementation in conjunction with AQAM schemes and turbo coding. 
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Least Mean Square Algor i thm 
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Figure A.l: Linear equaliser schematic 

For a linear transversal filter shown in Figure A.l, the optimum coefficients according to 

the mean square error (MSE) criterion [59], are determined from the solution of a set of 

linear equations, which can be expressed in matrix form as: 

rc = (A.l) 

where T is the (2^" + 1) x (27(7 + 1) covariance matrix of the input signal samples {(;&}, C" 

is the column vector of {2K + 1) equaliser tap weights {c^} and ( i s a set of {2K + 1) cross-

correlations between the unequalised input samples % and the equalised desired response 

{A}. 

In order to avoid the direct matrix inversion in obtaining C o p t , we can minimize the MSE 

J by iteratively descending on the associated MSE versus the equaliser coefficient surface 
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via gradient methods [126, 59]. Bach equaliser tap weight is changed in the direction 

opposite to its corresponding gradient component 5J/Sck,k = —K,..., —1,0, —1,... , ^ at 

the currently encountered point of the MSE surface. The iteratively updated values of the 

coefficient vector C are given by [59]: 

C t + i = r c t - ( = Ck + (A.2) 

where the vector Ct is the set of equaliser coe&cients at the Ath iteration, Et = A — 

is the equalisation error at Ath iteration, is the vector of the equaliser input signal 

samples that generate the equaliser output 7 ,̂ i G., V t = is 

the associated step-size. The difficulty with the gradient descent method is in determining 

the covariance matrix T and the vector ^ of cross correlations, which will need a collection 

of unequalised data {%}. An alternative is to estimate the M S E surface gradient and adjust 

the tap weights according to the relation [126, 59]: 

= (A.3) 

This is the LMS algorithm, which is implementationally simple. In order to guarantee 

convergence of the recursive relation in Equation A.3, the step-size must satis^ the 

inequality [59]: 

0 < /̂  < 2/Amax, (A 4) 

where Amax is the largest so-called eigenvalue of F [59]. Note that Amax cannot be greater 

than the trace of F, tr[F], which can be expressed as [59] {2K 4- l)E{vl) for a linear 

transversal filter. Thus convergence of the coefficient vector is assured by [126] 

2 
In general: 0 < /̂  < —r-r 

r, (A.5) 
Transversal hlter: 0 < < 

(2jiL + 1) (received signal power) 

In practical applications, the LMS algorithm employs noisy estimates of the MSE surface 

gradient. The noise in these estimates causes the coeScients to Huctuate randomly around 

the optimal values. The final MSE in steady state is 4- Jexcess- The excess mean 

square error term Jexcess is defined in a simplified form by Proakis [59] and Widrow[126] 

aa: 

^excess ^ G) 
1 
2̂  

From Equation A.6, we can see that the value of // has to be as small as possible, in order 

to reduce the excess MSE. However, at the same time the step size /i is proportional to the 

speed of convergence. A fast convergence is important, if the statistical time variations of 

the signal occur rapidly. Therefore a compromise is necessary for ensuring good tracking of 
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the time-variant signal statistics without undue degradation of the associated performance. 

To overcome this problem, in the LMS algorithm the step-size is often made time-varying. 

A few of the time-varying forms found in the literature are: 

Stochastic approximation schedule [127] : l^{k) = y (A.7) 

Search-then-converge schedule [128] : , (A.8) 

k 

1 + (/:/«) 

where o, //o and K are constant. 
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Appendix B 

Minimal Feedforward O r d e r of 

R B F Equaliser wi th Decision 

Feedback [Proof] [26] 

The RBF DFE has a feedforward order of m, feedback order of n and a decision delay of r . 

We denote the {m + L)-symbol length channel input sequence that determines the values 

of the noiseless channel state rj, j = 1 , . . . , by It -r , where the CIR length is + 1. Let 

It-T = Sj, J = 1, - ., where Sj represents the possible states of It-r- Referring to 

Equation 2.106, we consider ^ G J = 1 , . . . , f o r Zt-T — Zi, % = 1,. . -, Ai, where 

(B.l) 

tion 2.2 and r*, is 

Assuming m > r + 1, the squared distance between the channel output vector of Equa-

T m—1 

U = 0 U=T+1 

m—1 

= ^ T + i j , f W + ^ 
U = T + 1 

1 < 2 < A/(. (B.2) 

The feedback symbols are assumed to be correct, that is, 
1 T 

Ife—T Ik—T—1 • • • ^k-
(B.3) 

where M = Z, + m — 1 — T . For any ^ G j 1 < % < vW, we have: 

L 

^ ^ T + l < u < m - l . (B.4) 
n=0 
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Upon introducing 
m—1 

(B.5) 
u=r+l 

We have: 

(B-6) 

The conditional Bayesian decision variables, given that It_T = syj, are as follows: 

"I ; 
CX^lik-T = s / j ) = ^ a - 1 < ^ < Ai, (B.7) 

z=i 

where a is an arbitrary positive scalar, p = 2cr̂  and is the number of states in 

Substituting Equation B.6 into Equation B.7 yields: 

- s / j ) = ^ a - ea;p (-w(A:)//)) ezp 
Z=:l 

= ^ 6 - ((A;)//)) 1 < % < vW, (B.8) 
1=1 

where is the number of states in and a is a positive scalar, since o: emd w(A:) are 

positive scalars. This proves that the RBF DFE based on the Bayesian solution [26] having 

a feedforward order of m = T + 1 haa the same conditional decision variables, aa those of 

arbitrary higher feedforward orders of m > r + 1. 

In the above proof, the number of states in has first implicitly been multiplied 

by a factor of so as to match the number of states in then reduced 

to the original n\ j . This is allowed, since a is an arbitrary positive scalar. 
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List of Symbols 

bias of the _;th neuron (Figure 2.4(b)). 

ct channel encoded data bit at signalling instant A (Figure 5.2). 

Ci the centres of the ith RBF at t he hidden layer of the RBF net-

work (Equation 2.29). 

the %th RBF centres at signalling interval A (Equation 2.94). 

di the ith training data or desired response. 

data bit at signalling instant % (Figure 5.2). 

E'(.) expectation operator. 

£{F) cost function of the neural network output function F defined 

by Equation 2.51. 

E i s / N q S N R p e r b i t , 

F(x) output function of the neural network with input x (Figure 2.12). 

/ ( . ) activation function of neuron (Figure 2.4(b)). 

fn the nth CIR taps in Equation 2.1 and Figure 2.1. 

/Bayea() Optimal Bayesian decision function (deEned by Equation 2.17). 

/c(-) the correction function of the Jacobian logarithmic relationship 

in Equation 4.1. 

yp() polynomial function of the PP network in Equation 2.25. 

fpp{-) overall response of the PP network equaliser (defined by Equa-
tion 2.26). 
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() 

<?(x; Xi) 

h 

h 

./(Ai, A2) 

I 

L 

D £ 

'average 

overall response of the RBF network equaliser (defined by Equa-

tion 2.81). 

the Green function centred at x, with input x (2.54). 

discrete transmitted symbol at signalling instance A; (Figure 2.1, 

Equation 2.2). 

detected symbol at signalling instance k (Figure 2.2). 

the ith symbol constellation point of M-ary modulation scheme 

where i = 1, 2 , . . . ,A4. 

the Jacobian logarithmic relationship between the values Ai and 

A2), as de&ned by Equation 4.1. 

polynomial degree of the PP network (Equation 2.25). 

memory length of the CIR defined in Figure 2.1 and Equa-

tion 2.1. 

the LLR values output by the SISO decoder (Figure 5.1). 

the channel-deinterleaved extrinsic LLR of the coded bit ob-

tained from the decoder (Figure 5.1). 

the channel-deinterleaved a pogteriori LLR values of the coded 

bits ct obtained from the SISO decoder (Figure 5.1). 

the LLR values output by the SISO equaliser (Figure 5.1). 

the channel-interleaved a priori LLR information of the coded 

bits Ck provided to the SISO equaliser (Figure 5.1). 

the combined channel and extrinsic LLR information obtained 

form the SISO equaliser (Figure 5.1). 

the channel-interleaved a posteriori LLR information of the coded 

bits Ck obtained from the SISO equaliser (Figure 5.1). 

average burst LLR magnitude deEned by Equation 4.15. 

the ith switching LLR magnitude threshold corresponding to the 

Ai-QAM mode (Equation 4.16). 

Lb number of data bits per transmitted burst. 
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Ld 

= :kl) 

/:(?/&) 

m 

M 

At 

MSB(P, C) 

MSB(c, A;) 

M;fx) 

n 

d: 7% 

Tlaj = 

n, J = 

number of data symbols per transmitted burst. 

number of training symbols per transmitted burst. 

log-likelihood of the data bit having the value ±1 (Equa-

tion 4.8). 

LLR value of data bit defined by Equation 4,8. 

number of equaliser feedforward taps or equaliser feedforward 

order (Figure 2.2). 

number of linearly independent basis functions in the RBF net-

work described by Figure 2.12 and Equation 2.31. 

number of symbol constellation points in a multilevel modulation 

scheme. 

MSE cost function of for the means clustering algorithm, de-

Ened in Equation 2.78, that partitions the input pattern x into 

partition P and Ends a reference vector C for the partitioned 

input pattern. 

MSB of RBF vector centres at signalling interval A deEned by 

Equation 2.125. 

membership indicator that specifies, whether the input pattern 

X belongs to region IP, and also whether the %th neuron is active 

(Equation 2.79). 

feedback order of decision feedback equaliser. 

number of feeback states of the R B F network equaliser with de-

cision feedback. 

number of desired channel states or noise-free channel output 

values. 

number of desired channel states corresponding to the transmit-

ted symbol Ik = ±1. 

number of desired chaimel states corresponding to the feedback 

state syj. 

number of noise-free scalar channel states. 
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V 

P^ bit, short-term 

pM 

P3rror 

Pi 

P( ) 

p(®|s) 

T 

t r { } 

domain containing input patterns x (Equation 2.78). 

partition of input patterns (Equation 2.78). 

linear (pseudo) differential operator (Equation 2.53). 

the estimated short-term BER de&ned by Equation 3.15. 

the ith switching BER threshold corresponding to the A4-QAM 

mode (Equation 3.7). 

probability of error of the detected bit de&ned by Equa-

tion 4.11. 

a pnon probability of appearance of the ith desired channel state 

(Equation 2.83). 

probability density function. 

probability of z occurring. 

conditional probability density function of z, given that the state 

of nature is s. 

the 2th scalar channel states at signalling interval k (Equation 2.100). 

noise-free channel output vector defined in Figure 2.3 where r, = 

the ith noise-free channel output s ta te corresponding to the trans-

mitted symbol 7̂  = :l:l (Equation 2.10). 

the %th noise-free channel output s ta te corresponding to the trans-

mitted symbol Ik = ± 1 and feedback sequence s y j (Equation 2.104). 

the ith channel input sequence, i = 1 , . . . , (Equa-

tion 2.7). 

the f th channel feedback sequence, 2 = 1 , . . . , risj = Ai" (Equa-

tion 2.103). 

symbol duration. 

trace of a matrix. 
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output of the jth neuron at the m t h layer of the MLP (Figure 2.9, 

Equation 2.24). 

Vk noise-contaminated received symbol at the output of the chan-

nel, which is input to the receiver (defined by Figure 2.1 and 

Equation 2.2). 

Vk noise-free channel output defined in Equation 2.3. (We have 

Vk = Vk, when % is uncontaminated by noise.) 

v/c equaliser input vector constituted by m Vk samples, as defined 

by Figure 2.1 and Equation 2.2. 

V;;. equaliser noise-free input vector constituted by m "ut sample 

(Equation 2.11). 

subset of channel states that corresponds to the transmitted sym-

bol i t = the RBF equaliser having an equaliser order of 

m and delay T (deSned by Equation 2.8). 

• subset of channel states that corresponds to the transmitted sym-

bol /fc = ± 1 and feedback state s y j for the RBF equaliser having 

an equaliser order of m and delay r (defined by Equation 2.103). 

Wij the ith weight of the jih neuron (Figure 2.4(b)). 

Wi the ith weight of the RBF network. 

Xi the %'th input of the neural network at the input layer (Fig-

ure 2.6). 

the output of the jth neuron (Figure 2.4(b)). 

the monomials corresponding to the inputs to 

of the PP network having a polynomial degree of I at signalling 

interval k (Equation 2.25). 

0!;t:(a) the forward oriented transition probability (Figure 5.3, Bquar 

tion 5.11). 

)8A:(5) the backward oriented transition probability (Figure 5.3, Equa-

tion 5.12). 
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I-tfa', s) 

£k 

Vk 

IDFE 

a 

<7̂  

a N 

(Jj 

(̂ 0 

f^c 

jJ/j. 

the trellis transitions probability between the trellis stages (/=-!) 

and k (Figure 5.3, Equation 5.13). 

the forward oriented transition probability in logarithmic form 

(defined by Equation 5.18). 

the backward oriented transition probability in logarithmic form 

(defined by Equation 5.19). 

the trellis transitions probability between the trellis stages (k — 1) 

and k in logarithmic form (defined by Equation 5.20). 

error between the actual channel output Vk and the estimated 

channel output at signalling interval A (defined by Equation 2.89). 

equaliser delay (Figure 2.2). 

white Gaussian noise sequence with zero mean and variance 

(Figure 2.1, Equation 2.2). 

pseudo SNR output of the conventional DFE (defined by Equa-

tion 3.5). 

width parameter of the RBF equaliser (Equation 2.81). 

variance of the Gaussian function. 

variance of the additive white Gausian noise. 

variance of the Gaussian noise at t h e output of the equaliser after 

equalisation. 

variance of the information symbols. 

variance of the noise-free received signal. 

firing threshold of the j t h neuron, where 6*̂  = —bj (Figure 2.4(b)). 

step-size or learning rate of the adaptive K-me&ns clustering 

algorithm defined by Equation 2.79. 

learning rate for the vector centres (Equation 2.94). 

step-size for the CIR estimator (Equation 2.90). 

learning rate for the scalar centres (Equation 2.100). 
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/i^ learning rate for the RBF weights (Equation 2.98). 

A regularization parameter in Equation 2.51. 

the ith radial basis function at the hidden layer of the RBF 

network (Figure 2.12, Equation 2.29). 

$ interpolation matrix (Equation 2.47). 



Glossary 

3G Third Generation 

ANN ArtlBal Neural Network 

AQAM Adaptive Quadrature Amplitude Modulation 

ARIB Association of Radio Industries and Businesses 

AWGN Additive White Gaussian Noise 

B b B Burst-by-Burst 

B E R Bit Error Rate, the proportion of t h e bits received incorrectly 

B P S Bits Per Symbol, the proportion of t he bits per symbol 

B P S K Binary Phase Shift Keying 

CCI Co-Channel Interference 

C D M A Code Division Multiple Access 

CIR Channel Impulse Response 

DFE Decision Feedback Equalizer 

ETSI European Telecommunications Standards Institute 

F D D Frequency Division Duplex 

EEC Forward Error Correction 

FIR Finite Impulse Response 

FL Functional Link 

F P L M T S Future Public Land Mobile Telecommunications Systems 
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G S M 

H T 

I / Q E Q 

IMT-2000 

ISI 

I T U 

L L R 

L M S 

M A P 

M B E R 

MLP 

M S B 

N N 

N O T X 

OLS 

P D C 

P H S 

P P 

Q 

Q A M 

R B F 

Global System for Mobile Communications, A Pan-European digi-

tal mobile radio standard operating at 900MHz. 

Hilly Terrain, channel impulse response of a hilly terrain environ-

ment 

In-phase component of QAM mode 

In-Phase/Quadrature-phase Equaliser 

International Mobile Telecommunications in the year 2000 

Intersymbol Interference 

International Telecommunications Union, formerly the CCITT, stan-

dardisation group 

Log Likelihood Ratio 

Least Mean Square, a stochastic gradient algorithm 

Maximum A-Posteriori algorithm 

Minimum Bit Error Rate criterion 

Multilayer Perceptron 

Mean Square Error 

Neural Networks 

No Data Transmission 

Orthogonal Least Square 

Personal Digital Cellular, 2G system in Japan 

Personal Handyphone System, 2G system in Japan 

Polynomial Perceptron, a perceptron structure based on polynomial 

of its input 

Quadrature component of QAM mode 

Quadrature Amplitude Modulation 

Radial Basis Function 
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RLS 

R S C 

R T T 

SER 

SLP 

S N R 

SOM 

SOVA 

STCM 

SVM 

T D D 

TIA 

Recursive Least Square 

Recursive Systematic Convolutional code 

Radio Transmission Technology 

Symbol Error Rate, the proportion of the symbols received incor-

rectly 

Single Layer Perceptron 

Signal to Noise Ratio, noise energy compared to the signal energy 

Self-Organising Map 

Soft Output Veterbi Algorithm 

Space-Time Coded Modulation 

Support Vector Machine 

Time Division Duplex 

Telecommunications Industry Association, standard organizations 

in United States 

T U Typical Urban, channel impulse response of an urban environment 
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