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Doctor of Philosophy 

Blind fault detection and source identiGcation 
using Higher Order Statistics for impacting systems 

By Jong-Soo SEO 

Classical deconvolution methods for source identification can only be used if the 

transfer function of the system is known. For many practical situations, however, 

this information is not accessible and/or is time varying. The problem addressed is 

that of reconstruction of the original input from only the measured signal. This is 

known as 'bhnd deconvolution'. By using Higher Order Statistics (HQS), the 

restoration of the input signal is established through the maximisation of higher 

order moments (cumulants) with respect to the characteristics of the signals 

concerned. 

This paper demonstrates the restoration of input signals that have a pulse-like 

form. From only the measured signal (an output of the unknown system), its 

normalised cumulant is constructed and employed to calculate the coefficients of 

the inverse filter through both a Wiener approach and global optimisation. This 

filter is then convolved with the measured signal to give the restored signal. 

The inverse filter is determined iteratively and aspects affecting convergence and 

performance that are investigated include: The choice of the initial inverse filter 

and, order determination of the filter for both nonrecursive and recursive 

deconvolution operators. An experimental verification is carried out for the 

restoration of our impacting signal arising in the response of a cantilever beam 

with an end stop when randomly excited. 

Technique for the detection of non-Gaussian impacting signal from the observed 

signal through the higher order (>2) cumulant tensor (known as 'Higher Order 

Singular Value Decomposition, HOSVD') are introduced and discussed. 
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Chapter 1, Introduction 

PART I Introduction and basic statistical foundations 

Chapter 1 

Introduction 

1.1 The aim of the research 

For many mechanical systems undergoing normal operation, indications of 

malfunctions and advance warning of system failure may be contained in 

measurements of physical characteristics. Similar situations arise in seismic 

information, characterising earthquake symptoms or monitoring of ECG 

(electrocardiograph) and other signals for heart conditions. The problems 

addressed here relate to obtaining more reliable and consistent detection of the so-

called "hidden" signals which are the causes of system malfunctioning. These 

hidden signals are not directly measurable. The determination of these 'causes' 

from output variables is an inverse problem. These problems can sometimes be 

straightforward when the system through which the causes pass is known. For 

many physical situations, however, where it is impractical to assume the 

availability of the system characteristics we require restoration of the original 

input signal solely from the measured (observed) signal. In this case, the 

restoration is called blind inversion. 
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As can be seen in Figure 1.1.1, suppose a process consists of an input signal 

(which cannot be observed) and an unknown linear system producing a measured 

signal which is often noise corrupted. 

Linear 
system 

InDUt H 
s igna l 

H 

Noise 
signal 

-n + 
Measured 

s igna l 

Figure 1.1.1 Linear Time-Invariant (LTI) system and signals 

The aim here is to find the input signal from the measured signal alone. One 

practical representative example of the above situation can be found in condition 

monitoring, which may require the identification of the 'cause' of a mechanical 

imbalance or impacting phenomenon which can arise in rotating machinery. For 

the retrieval of this cause, the statistical properties of the measured signal and their 

relationships with the unknown linear system are considered; Specifically, higher 

order statistics (more than second order) are the key to possible solutions and are 

the focus of this work. 

1.2 Review of theoretical analysis and practical applications 

1.2.1 Theoretical background to blind deconvolution 

If the input (original) signal cannot be observed, we may be able to utilise its 

statistical characteristics as the basis of its restoration. In this work, the structure 

of system responding to the input is assumed to be linear and time invariant (LTI) 

characterised by the time-domain impulse response sequence. Recently, Higher-

Order (> 3) Statistics (HQS) [Mendel, 1991; Nikias and Petropulu, 1993] have 

been considered in various signal processing areas, and used to find optimum 

inverse filters to restore the original input signal. In particular, cumulants display 

the degree of higher-order correlation and also provide a measure of the 

2 



Chapter 1, Introduction 

"departure" from the Gaussianity. The advantages of HOS are due to their ability 

to carry the phase information of a signal or a system and to suppress any (white 

or coloured) Gaussian additive noise [Nikias and Raghuveer, 1987]. 

Under certain conditions, such as for non-Gaussian, independent, identically, 

distributed (i.i.d.) signals, Donoho [Donoho, 1981] has shown that the probability 

distribution of a linear combination of these signals tend to become 'closer' to 

Gaussian (this is sometimes referred to as partial order) than that of the individual 

components before the linear combination (e.g., input signals). Based on this, the 

idea of blind deconvolution is approached by selecting an inverse system that can 

decrease the Gaussianity of the output of the inverse system. Thus, maximising an 

appropriately selected function (which can represent the degree of the Gaussianity) 

with respect to the parameters (coefficients of the linear inverse filter) of the 

inverse system achieves blind deconvolution. Concerning this 'appropriate' 

function, Wiggins [Wiggins, 1978] has proposed an objective function which 

consists of two cumulants (i.e., the fourth-order cumulant divided by the squared 

second-order cumulant), which is called 'Minimum Entropy Deconvolution 

(MED)'. This objective function is called the kurtosis and can be related to the 

partial order described by Donoho. When the kurtosis of any signal is greater than 

3 (or greater than zero, according to another widespread definition of kurtosis), 

this is referred to the 'super-Gaussianity' or when smaller than 3 it is known as 

'sub-Gaussianity'. For both cases, maximisation of the absolute value of the 

objective function has been used to yield the reconstruction of the input signal. 

Other criteria have been proposed. For example, another objective function, 

namely entropy has been suggested by Claerbout [Claerbout, 1977] leading to 

'parsimonious deconvolution'. He considered that MED is excessively biased 

towards the larger events and a method which 'sees more' of the data would result 

in a better deconvolution. It was essentially a generalisation of Wiggins' work 

[Wiggins, 1978]. Ooe and Ulrych [Ooe and Ulrych , 1978] proposed maximising a 

modified ratio with the application of an exponential transformation of the 

measured data, which lead to faster convergence relative to MED. These have 

been a variety of attempts on the problem and Figure 1.2.1 illustrates the various 
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objective functions that have been used. 

For any of the methods described above, by pushing the objective functions 

toward their maximum (by adjusting the inverse filter coefficients) one attains 

blind deconvolution (sometimes referred to as equalisation). The procedure of 

obtaining the coefficients of the inverse filter from which we can reconstruct the 

unknown input signal may be achieved by (i) (nonlinear) iterative methods using a 

matrix equation (e.g., [Nandi and Mampel, 1997]) or (ii) a stochastic gradient 

method using an updating parameter to maximise/minimise the objective function 

(e.g., [Cadzow, 1996]). 

Mult ichanne 
Var iabi 

Norm r a t i o 
Gray (1979) 

;=i 

>§ y.i\ 

Ar/c, 

M 1% 

General Ised 
Form of order r , s 

Ooe and U l rych (1978) 

Object Ive Function 

Entropy 
in imisa t ion 

Claerbout (1977) 
d Godfrey (1978 

Skewness Gontro 
Cadzo* (1996) and 

Nandi (1997) K u r t o s i s Contro 
Wiggins (1978) and 

Cadzow (1996) 

Figure 1.2.1 The objective functions 
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1.2.2 Practical applications of blind deconvolution 

As practical motivation for blind deconvolution (and equalisation), these methods 

have been applied in different fields. The name blind deconvolution was first used 

by Stockham [Stockham et al, 1975] for the restoration of old recordings based on 

a model of the signal. We note a few of these applications. 

A high speed data transmission over a communication channel (e.g., telephone 

channel) relies on the use of adaptive equalisation. In its traditional form, adaptive 

equalisation requires the transmission of a training sequence, the exact form of 

which is known at the receiver. The training sequence provides the "desired 

response" for the adjustment of the tap weights (filter coefficients) of a linear 

transversal filter (i.e., Finite Impulse Response, FIR filter), so as to minimise the 

mean-square value of the error signal. There are, however, practical situations 

where it is not feasible to use a training sequence. For example, in a digital radio 

system the received signal suffers from a phenomenon known as multipath, which 

arises from the fact of the transmitted signal reaches the receiver via a multiplicity 

of paths. This presence of multipath can produce severe channel fading [Pozidis 

and Petropulu, 1997; Tsatsanis and Giannakis, 1997] and therefore system outage, 

characterised by a significant reduction in the received signal power. If the outage 

occurs during the training process, the adaptive equaliser in the receiver is 

deprived of its desired response, and the adaptive filtering process is thereby 

seriously impaired. In such a situation, one is compelled to use some form of blind 

equalisation which does not require the use of a training sequence for the 

adjustment of the equaliser's tap weights. In multilevel digital transmission 

systems, blind deconvolution techniques are required to equalise dispersive 

channels (systems) when equaliser convergence is not guaranteed due to high 

channel distortion, and the simple solution of transmitting a training sequence 

known to the receiver is not feasible. This may occur, for instance, in multipoint 

networks for computer communication [Godard, 1980], in microwave digital radio 

after deep fades [Foschini, 1985]. 
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In a speech quality enhancement problem, elimination of acoustic reverberation 

components produced by the surrounding environment of a talker (adaptive 

cancellation of this reverberation) is a blind deconvolution problem [Juang et al, 

1995]. In a typical situation, the original speech is unobservable and the multipath 

channel responsible for the generation of the reverberation is unknown. 

In seismic deconvolution, the usual procedure is to assume a layered earth model, 

and the requirement is to use the received signal to estimate the sequence of 

reflection coefficients corresponding to the various layers of the model. The 

received signal is itself made up of echoes produced at the different layers of the 

model in response to the excitation which is ordinarily in the form of a short-

duration pulse. The equally spaced time sequence of reflection coefficients may be 

viewed as the impulse response of the layered earth model. In this case, the 

deconvolution problem is complicated by the fact that the exact waveform of the 

excitation responsible (called a wavelet) for the generation of the received signal 

is usually unknown. Wiggins [Wiggins, 1977] introduced minimum entropy 

deconvolution (MED) in seismic data analysis, seeking the phase and amplitude of 

that transfer function of the inverse channel (system) that maximises the kurtosis 

of the deconvolved data. The restoration of seismic reflectivity series is often 

achieved by multichannel deconvolution. Gray [Gray, 1979] has introduced a 

variable norm deconvolution from which appropriate objective functions are 

selected depending on the statistical characteristics of each channel by assuming 

one of a generalised Gaussian function family. As shown in Figure 1.2.1, the 

coefficients a, and are adjustable to characterise the data. Ideally, the setting 

of these coefficients can be made in each calculation by inspecting the probability 

distribution of the currently estimated reflectivity series on each channel. 

For Non-destructive Evaluation (NDE) of materials problems, which aims to 

restore the impulsive spikes leaving the material under examination [Nandi and 

Mampel, 1997], the scheme of the objective function is applied as for the problem 

of seismic deconvolution. 

A similar problem arises in image restoration. In this application, an unknown 

system represent the blurring effects [Kundur and Hatzinakos, 1996] caused by 
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photographic or electronic imperfections or both. An original image or scene of 

interest constitutes the system input. The system output is a blurred version of the 

original image. Given the blurred image, the requirement is to restore the original 

image. 

Among the above applications of the deconvolution problems, mechanical system 

diagnosis and condition monitoring is an important issue in engineering. The 

identification of defects inducing periodic [Pachaud et al, 1997] or non-periodic 

impulsive forces from measured signals can be achieved through the utilisation of 

the higher order statistical values (e.g. skewness and kurtosis) of the available data. 

It is this notion that is investigated in what follows. 
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1.3 Structure of the thesis 

This thesis is presented in three parts: 

Part I (Chapters 1, 2); This is a general introduction to blind deconvolution 

techniques and higher order statistical properties of random signals, Part n 

(Chapters 3, 4); These describe fundamental concepts of blind deconvolution 

problems using higher order (normalised) cumulants and the application of higher 

order singular value decomposition, and Part HI (Chapters 5, 6, 7 and 8); This 

includes the practical application of higher order statistics with detailed 

descriptions of blind deconvolution and includes experimental verification. The 

contents of the chapters is summarised below, emphasising the novel contribution 

contained in each. 

Chapter 2: This is a theoretical background to Higher Order Statistics (HQS), 

and defines moments and cumulants. The merits of higher-order cumulants are 

explained and the justification for the use of normalised higher order cumulants in 

deconvolution problem is provided. To verify the theoretical properties of 

independent, identically distributed {i.i.d.) signals in higher order statistics and to 

validate the use of higher order cumulants for impacting signals restoration, some 

computational simulations are carried out using two different types of random 

signals namely exponentially distributed i.i.d. and a random impulse train signal. 

This chapter focuses on the theme of this thesis emphasising the validity of the 

application of higher order statistics to the source signal reconstruction problem. 
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Chapter 3 deals with the formulations and procedures of blind deconvolution 

using constrained and normalised cumulants as the objective functions and their 

use in blind deconvolution problems. Discussions of three different inverse filter 

types (MA, AR, and ARMA systems) are provided and their performances in 

restoring source signals are compared. The behaviour of the objective functions 

for each type of inverse filter is tested. This chapter justifies a fundamental 

procedure for blind deconvolution based on a local optimisation. 

Chapter 4 introduces the concept of Singular Value Decomposition (SVD) of 

random signals and Higher-Order Singular Value Decomposition (HOSVD) via 

the construction of higher-order tensors of measured signals. The singular values 

from this tensorial decomposition become essential parameters for checking the 

existence of non-Gaussian impacting signals and also provide an approximate 

guide to the classification of measured signals which are appropriate for impacting 

signal reconstruction. The ability of HOSVD for detection, classification and 

reconstructability of non-Gaussian signals through various simulations are 

provided. The aim of this contribution is to put HOSVD/tensors into a practical 

context. This has included computational experiments and from this the deduction 

of empirical criteria for detection. 

Chapter 5 describes a blind deconvolution procedure to restore an input signal 

using the third- and fourth-order cumulants in which the effect of initial inverse 

filter selection and determination of the appropriate length of the FIR inverse filter 

is investigated. Since the blind deconvolution problem inherently suffers from a 

lack of information, this chapter gives a guide to practical signal reconstruction, 

especially with respect to the selection of inverse filter type and inverse filter 

length determination. 
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In Chapter 6, a generalised Wiener optimisation scheme is described and 

contrasted with an optimisation method known as Differential Evolution (DE) 

(similar to the Genetic Algorithm) used for seeking a global optimum. Signal 

restoration is demonstrated using both the generalised Wiener approach and DE 

method. 

Chapter 7 deals with multichannel signal processing for source signal 

identification problems; including Blind Source Separation (BSS) for convolutive 

channels and a multichannel blind deconvolution process. The results provide 

practical tools for impacting signal reconstruction. 

Chapter 8 concludes the research with an experimental verification of blind 

deconvolution. We demonstrate a reconstruction of an impacting signal under 

controlled experimental, but reasonably realistic conditions. 

Conclusions and future research paths are described in Chapter 9. 

10 
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Chapter 2 

Analysis of Random signals 

2.1 Introduction 

In signal processing, signals may be broadly classified into two types -

deterministic and random. A deterministic signal is one that may be reproduced 

exactly in repeated measurements. The unit impulse response of a linear time 

invariant filter is an example of a deterministic signal. A random signal, or 

random process, is a signal that is not exactly repeatable. Tape hiss or background 

clutter in radar images, speckle noise in synthetic aperture radar (SAR) images, 

and engine noise in speech transmission from the cockpit of an aircraft are 

examples. In general practical signals are a mixture of the two. This thesis 

emphasises the modelling of signals as random process. 

In this chapter, the background that is necessary to understand how a random 

process may be described and how its statistical properties are affected by a linear 

time-invariant system is presented. This includes the introduction of cumulants 

and their relationship to moments, how changes occur as a result of linear filtering 

and noise corruption, leading to justification of the use of normalised higher order 

cumulants for the deconvolution problem (in Chapter 3). 

11 
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2.2 Moments and cumulants 

In signal processing, we often express a random variable as X(n) and its realisation 

as x(n), where the indexing variable, n, takes on integer values and is frequently 

associated with time. This discrete random variable sequence is often referred to 

as a random time series. These random variables are described by the probability 

density function px(x). For convenience, the simple notation p(x) will be employed 

as a probability density function (p.d.f.) of a random variable X. The probability 

density function is analogous to a unit mass distributed along the x-axis. If this 

mass is distributed in a continuous fashion, then X is said to be a continuous 

random variable and p(x) is a continuous function of x. On the other hand, if the 

mass is located at only a finite or a countably infinite number of points on the x-

axis, X is said to be a discrete random variable and p(x) is composed of a sum of 

weighted displaced Dirac delta functions [Bendat and Piersol, 1986]. When the 

unit mass is distributed in both a continuous and a discrete fashion, the random 

variable is mixed and the associated probability density function contains both 

continuous and Dirac delta components. 

Moments and the moment generating function 

Moments are introduced to summarise the manner in which the unit mass is 

distributed in terms of a set of discrete parameters. In particular, the nth order 

moment of random variable X is specified by 

E{X'']= ^ x"p{x)dx, for n =1,2,... (2.2.1) 

where the symbol E denotes the expected value operator. If the nth order moment 

exists, it then follows that all moments of order smaller than n also exist. The first-

order moment is commonly referred to as the mean value of random variable X 

and corresponds to the centre of gravity of the unit mass distribution. To 

emphasise its importance, the symbol n\ =E{X} denotes the mean value. 

The Fourier transform serves as an important analysis and synthesis tool in 

12 
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mathematically based disciplines. It is therefore quite natural that its use in the 

study of random variables be considered. In particular, the Fourier transform of 

the probability density function of the random variable X is 

(^ ) = ^2 2 2) 

This Fourier transform is referred to as the moment generating function of random 

variable X [Cadzow, 1996]. 

For two random variables X and Y related as below, properties of the moment 

generating functions include; 

Translation 

Y = X + a <=> —e''^ (f)^(y(d) (2.2.3) 

Scaling 

Y = aX <=» (f>y (co) = (j)-^ (aoS) (2.2.4) 

Addition 

y = + = (2.2.5) 

where Xi and X2 are mutually independent random variables and a is a scalar. 

Since a probability density function has unit area and is real, the moment 

generating functions properties follow as; 

(0) = 1, (co)\ < 1 for all co 

(l)x*{o}) = (px (~®), where means complex conjugate 

We now explain why this function is called the moment generating function. 

Applying Taylor series to the equation (2.2.2), the term E{e^'^} can be expanded 

\k=0 J k=0 

13 
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k 
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If we denote = , the moment generating function and moments are 

related as follows (omitting the symbol 'Z' in for brevity); 

= 1 + ' + (2.2.7) 

The &th coefficient of this expansion is obtained by evaluating Mh derivative of 

the moment generating function and equating oj = 0, which corresponds to the 

Ath moment of the random variable. 

= (_/)^E{%"} forA;= 1 , 2 , 3 , ( 2 . 2 . 8 ) 
(W=0 

Thus, the above equation (2.2.8) finally yields the moments up to Mh order. The 

moments up to fourth order (fc=l,2,3,4) are written as 

m^-Mom[X'\ = E[X], Mom[X,X] = E{X^] (2 2 9) 

The central moments can be considered as a random variable's unit-mass 

distribution about its mean value. The nth order central moment of random 

variable X is defined by 

= ^[X-n\ \p{x)dx fork = 1,2,3,... 

Clearly, a random variable's moments and central moments are identical when its 

mean value is zero. The second-order central moment is commonly referred to as 

the variance of random variable X and specially denoted as a/ = . Variance 

provides a measure of how dispersed the mass is about its centre of gravity (mean). 

The third-order central moment is typically used to measure the skewness of the 

density function about its mean value and denoted as i.e., 

(2.2.11) 

14 
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For example, the skewness measure is zero if the density function is symmetric 

about its mean value (and further all odd central moments other than 3 are zero as 

well in this case). The fourth-order central moment is often used to measure the 

excess [Cadzow, 1996] or flatness (i.e., kurtosis) [Braun and Hammond, 1986] of 

the probability density function about its mean. This is expressed as 

/ y j ' z z E f L X ( 2 . 2 . 1 2 ) 

Cumulant generating function and cumulants 

By taking the natural logarithm of the moment generating function defined in 

equation (2.2.2), another characteristic function is introduced. This logarithm is 

commonly referred to as the cumulant generating function (also called the second 

characteristic function) [Nikias and Petropulu, 1993; Barrett, 1964; Rice, 1944] 

and is formally specified as 
((U) = ((U)] = }] (2.2.13) 

This possesses the following properties; 

Translation 

y = % + a <=> (yy(6;) = g^ + ( / (6/) (2.2.14) 

Scaling 

y = a% (^(6;) = (y^(a6;) (2.2.15) 

Addition 

y = Xi + X2 <=> = (2.2.16) 

where X\ and X2 are mutually independent random variables and a is a scalar. 

Note that comparing (2.2.16) to (2.2.5), the addition of the two random variables 

turns out to be simple addition of the cumulant generating function rather than 

multiplication as for moments. 

15 
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From the relationship (2.2.7) and (2.2.13), a Taylor series expansion of the 

cumulant generating function can be written as 

(a;) = (A/)] = In 1+ jcon\ + • + 
( M 

k\ 
m,+- (2.2.17) 

and as with the same relationship between the moment generating function and 

moment, we define the Mh order cumulant of the random variable by 

differentiating the cumulant generating function with respect io co k times and 

equating co=0 as 

< = (-;) (fa;" 
foxk= 1,2,3, .... (2.2.18) 

from which the cumulants are expressed in terms of the moments as, 

Cj = CMm[Z] = mj, 

C2 =Cum[X,X] = m2-mf, 

C3 = Cum[X,X,X] = + Im^, 

C4 = Cum[X ,X ,X ,X] = m^- 4m^t7\ - Sm^ +1 - 6m^. (2.2.19) 

Also, the cumulants of the random variable are functions of the moments and 

central moments can be expressed by using (2.2.18). The first eight cumulants as 

functions of the central moments are 

2̂ = 

C3 

C4 

C; =/4--lC^W3/4 C2.:2.:20) 

Cg = //g -15//4/^2 -10//^^ + 30//2^ 

= //, - 21//;//; -35//4//3 + 210//;//2^ 

Cg = //g - 28//g//2 - - 35 / / / + 4 2 0 / / ^ ^ 

+560/^3 ~ 630/^2 

Note that, 

(i) For the symmetric probability density functions, all central moments and 

16 
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cumulants Ck for k odd are zero. 

(ii) For the Gaussian case, all cumulants Ck of order greater than second (k>2) are 

zero [Nikias and Petropulu, 1993]. 

This is the key for recognising that cumulants are indications of non-Gaussianity 

of signals. 

Moment generating function and cumulant generating function for a 

multivariate process 

Given a set of n real random variables {Zi, X2, ... ,Xn}, their joint moments of 

order r=kx+k2+ ... + L are given by [Papoulis, 1991] 

X/" ] = E{x/' - '''' } 

=...=6^=0 
dco^ ' 3 ( ^ 2 " " 

where 

(j)^ {0)^,0)2,...,co^) = E{exp(j(c0^xi + CO2X2+... + co^x^))} (2.2.22) 

is their joint characteristic function. In the same way, the joint cumulants of order 

r are defined as the differentiation of the natural logarithm of joint moments i.e., 

(2.2.23) 
6̂  =<%=...=6^=0 dco^ 'dc02 ' ,...,dco^ " 

where 

= (2.2.24) 

The above may be applied to time series. If {Xi} is a real stationary random 

process, cumulant sequences are described using the relations with the moments 

(if their moments exist up to nth order) 

Ist-order cumulants ; 

cf'=Cum[X^\ = n\'- E{X^{k)], (mean value) (2.2.25) 

17 
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2nd-order cumulants ; 

C2 (Jx) = Cum{X^,X^]-m2 , (covariance sequence) (2.2.26) 

where (r,) is the autocorrelation sequence and is the time lag 

along the sequence X\ (assuming Xi is a discrete time series, then is an 

integer). 

3rd-order cumulants ; 

cf ' (^i, ̂ 2)" , X J 
(2.2.27) 

4th-order cumulants ; 

cf ' (̂ 1, , ̂ "3 ) = %! , %! , Xi, ] 

= (7̂  )/M '̂ (r^ - (r^ )m^' ) 

+/M '̂ )/M '̂ (f; - r j - (r^ - T,, (7 ,̂ ) (2.2.28) 

+/M '̂ (fz, 7-3) + (r, ,7-2)] + (/M,̂ ' )̂  (fi) + (fz) + (r^) 

+/M '̂(7^ -7^) + m^'(r3 - r 2 ) + m^'(r2 -7^)-6(m;^')'* 

which are similar expressions to (2.2.19) except now including the time lags. 

Properties of cumulants 

The following are some important properties of cumulants ; 

[CPl] If Xi, i = 1,2,...,A:, are constants, and Xu i - 1,2,...,A:, are random variables, 

then 

r t \ 
Cum{A^X^,A^X2,...,A^X^)= Y\^i Cum(X^,X2,...,X^). 

V 1=1 y 

[CP2] Cumulants are symmetric in their arguments, i.e., 

Cum{X^, X2,..., ) = Cwm(Z. , X . ,..., X.^), 

where is a permutation of (1,2,...,^). 

[CP3] Cumulants are additive in their arguments, i.e., 

Cwm(X(, +}^,Z;,Z2,...,Z^) = CM/M(%o,Z;,Z2,...,Z^) + Cw/M(]^,Z;,Z2,...,Z^) 

18 
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This means that cumulants of sums equal sums of cumulants (hence, the name 

"cumulant"). 

[CP4] If a is a constant, then 

Cum(a+ - Cum{Z^,Z2,...,Zf.). 

[CPS] If the random variables {Xi} are independent of the random variables {7;}, i 

= 1,2,...,A:, then 

Cum{X^ = Cum{X^,X2,—,X^) + Cum{Y-^,Y2,...,Y^). 

[CP6] If a subset of the k random variables {%, } is independent of the rest, then 

Cum{X^,X2,...,X^) = Q. 

Suppose v{n)=z{n)+w{n) where z(n) and w{n) are independent; then from [CPS], 

= - + - If is Gaussian 

(coloured or white) and k>3 then, ( r , , fg , . , ( r , , ) , 

whereas (r) = ĉ 2 (r) + ( f ) . In essence, cumulants can draw non-Gaussian 

signals out of Gaussian noise, thereby boosting their signal-to-noise ratios. 

Cumulants of an independent, identically distributed (i.i.d.) random sequence are 

delta (Kroneckor) functions (the same is not true for joint moments), i.e., if w{n) is 

an i.i.d. process, then [BriUinger, 196S; Giannakis and Mendel, 1989; Nikias and 

Petropulu, 1993] 

(fi , ) =; / \ ( ^ ( f ) . . . (̂  (r^.^), 

where y^k is the Ath-order cumulant of the stationary random sequence w{n). 

The nth-order cumulant function of a non-Gaussian stationary random process 

{Z(A:)} can be written as (for n=3,4 only); 

(r,, (^1, f ; , ( r , , r»_i) (2.2.29) 

where ,^_i) is the nth-order moment function of {X{k)} and 
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is the nth-order moment function of an equivalent Gaussian 

process that has the same mean value and autocorrelation sequence as 

Clearly, if {%(&:)} is Gaussian, = and thus 

(Tj , T 2 , z ; _ j ) = 0. Note, however, that this is only true of orders n=3 and 4. 

By putting 7̂  = = 7̂  = 0 and for zero mean {nf\ = 0) we get 

YI = E^x{kY^ = C2 (0) (variance) 

= c^(0,0) (skewness) 

= <(0,0,0) (kurtosis) 

(2.2.30) 

The normalised kurtosis is defined as YtliY'lf ^ which is widely used in machine 

condition monitoring [Braun and Hammond, 1986; Dyer and Stewart, 1978]. 

2.3 Linear filtering and statistical properties of random signals 

This section explains the properties of the higher order statistics during the linear 

filtering process, leading to the use of normalised cumulants in the bhnd 

deconvolution problem. 

2.3.1 Relationship between input and output cumulants in linear filtering 

A familiar starting point for many problems in signal processing and system 

theory is the single-input single-output (SISO) linear and time-invariant (LTI) 

model depicted in the Figure 2.3.1. 

w { k ) 

'(A:) 

Figure 2.3.1 Single-channel system 
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Second order properties; 

In Figure 2.3.1, in which x{k) is a white sequence input with finite variance cr^; 

H{z){=Z{h{k)}) is the transfer function of a causal stable system (channel) having 

impulse response sequence h{k)\ w{k) is white Gaussian noise with variance cr̂  ; 

x{k) and w{k) are statistically independent and so therefore are zik) and w{k) ; z(k) 

is the output of the system that is assumed noise free ; and, v(A) is the output of the 

system corrupted by Gaussian noise. Letting r(*) and 5(*) denote the correlation 

function and Fourier transform of the correlation function (i.e., the spectrum), 

respectively, then 

(^) + /;, (^) = (2.3.1) 
i=0 

= (2.3.2) 

(A;) = E{x(M)v(» + ̂ )} = o'̂ :(A(̂ ) (2.3.3) 

From equation (2.3.2) we see that all phase information has been lost in the 

spectrum (or in the autocorrelation) ; hence, we say that correlation or power 

spectrum is phase blind. 

Higher order properties; 

We now construct the higher order statistics of the input x and the output v. 

For input a;; 

The system in Figure 2.3.1 is assumed to be causal and stable, and {%(/)} is 

assumed to be independent, identically, distributed (i.i.d.), and non-Gaussian, i.e., 
C "] ̂ t-l) — X t if ~ ~ ' ^ k - l (2.3.4) 

= 0 otherwise (2.3.5) 

where denotes the ^th-order cumulant of x{i). The additive noise w{k) is 
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assumed to be Gaussian. 

To justify the equation (2.3.4), we note that 

CM7M[%(/o),%(i\),...,x(z^_J] = CMm[A:(;(,),%(io +A - 'o) ' -'^(^o +4-1 "'o)] 

c kiii '̂o''2 ~ '̂o'•••'̂ 'i-1 ~ '̂o) (2.3.6) 

= y only if = f'o 

To show equation (2.3.5), we have made a substitution of variables and invoked 

the stationarity of z{k) and the causality of h{k). The former tells us that 

will not depend upon time t , the latter tells us that 

h{k) = 0 for ^ < 0. 

For output v; 

Using the property of the higher order cumulant of a Gaussian process, the &th-

order cumulant of v(^) equals the Ath-order cumulant of z(k), as w{k) is assumed to 

be a white (or coloured) Gaussian process. 

Note that the following derivation is made easier by working with the more 

general convolution form 

(2.3.7) 

where i ranges from -00 to 0°, instead of the form associated with a causal IR 

(Impulse Response) for which i ranges from 0 to ^ (A: > 3). 

C /c (^1) '^2 ' • •• '~^ (^p ̂ 2^jt-1) 
= CMfM[z(Z), z(/ + ) z(Z + )1 

— C'w/I2[̂ ^ — ZQ )/?(/~ + Tj )/l(Z ~ l + T̂ _j )] /g ox 

= Z Z - " Z Cum[x{i^ )h(l -ig), %(z, )h{l - + z";x(4_, )h{l - )] 

4) '1 4-1 

To arrive at the first line of this derivation we have used cumulant property [CP3]; 

and, to arrive at the last line we have used cumulant property [CPl]. 

In the case of a white sequence input, equation (2.3.8) simphfies considerably to 
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2 (23.9) 
= X''t^A(M)A(M + r J - A(M + f^_,) 

Observe that when k=2, equation (2.3.9) reduces to equation (2.3.1) [subject to the 

addition of crlSik) ]. The generalization of equation (2.3.9) to the case of 

coloured non-Gaussian input x{i) (we will only consider the k=3,A cases) we first 

make the substitution of variables in equation (2.3.8); jo = l-iojx = = 

Z-it-i+Tt-i, so that equation (2.3.8) becomes 

( r ^ A - i ) 
(2.3.10) 

- Cwm[;((Z - ), ;c(Z + r, - ),...,%(/ + )] 

Using the stationarity of xQ), this equation can be expressed as 

( r , ) = Z i Z - - - A-]) 
(2.3.11) 

' (7o - Vl + , Jo - A + 2̂ ' ./o - A-1 + ^t-1) 

Finally, making a second transformation of variables, mi = 71-70, mj = 72-1/0,- ^k-\ 

=jk-i-jo, we obtain the result 

c t ( ̂ ], ̂ 2'"'' ) 

where c \ ( / M ; , ) = Z A ( . / o + wii) " A(7o + ). 
Vo 

For non-Gaussian i.i.d. input signal x{n), by setting =^2 = - = =0 and 

n \ = m 2 = ... = = 0 , we obtain a result similar to (2.3.9) 

(23.13) 
k 

i.e., the zero lag response cumulant of order p is seen to be the product of the 

excitation cumulant of order p with the sum of the linear operator's unit-impulse 

response elements raised to the pth power. 
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2.3.2 Normalisation of cumulants in blind deconvolution problems 

Having established expressions for higher order statistics for stationary inputs and 

outputs of linear filters, we will now introduce the deconvolution problem and in 

particular show the concept of normalised higher order statistics are needed. 

In the blind deconvolution approach that will be developed, a desirable feature is 

that it be invariant to signal. To explain this, Figure 2.3.2 depicts a single input 

single output system in which x{n) is the original input sequence (assumed i.i.d.), 

v{n) is measured sequence, and y{n) is output of the cascade system gn composed 

of hn and fn (i.e. combined convolution-deconvolution operation). From this 

structure, the relationship of the signals in convolutive terms and cumulants are 

again written as 

(2.3.14) 
f=0 

where c j and are the Ath-order cumulant of output and input, respectively. The 

right hand side of the equation (2.3.14) can be explained by the properties of 

cumulant. 

Figure 2.3.2 Single input and single output system with the convolution-
deconvolution form. 

In order to make the concept of the cumulant invariant with respect to scalar 

multiphcation, it is necessary to provide a normalisation of the cumulant. 

Consider the normalised cumulant of order {p, q) associated with random 

variables {%,}, i= 1,2, ... , n, as defined by 
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K^ip,q) = — f o r p>9, 9 is even positive integer (2.3.15) 

in which it is assumed that both cumulant c j and are nonzero (this may reflect 

the hypothesis that the input signal is a non-Gaussian process). Typically, the 

integer parameters are selected so that p> q, although this definition is applicable 

for any choice of those parameters using the definition of a cumulant. It directly 

follows that this normalised cumulant is scalar multiphcation invariant in the 

sense that K^(p,q) = K^{p,q) for any positive scalar a. In many applications, the 

specific selection of q=2 provides a logical choice, since (variance) is 

always nonzero for any non-trivial random variables. This particular selection 

yields the normalised cumulant relationship 

An important inequality condition relating normalised cumulants between the 

input and output signal is now described. 

Denote the p and gth-order normahsed cumulant of the random variables {yj , i = 

1,2,...,#, as Ky{p,q), is expressed from equation (2.3.13) 

(2.3.1?) 

(see Figure 2.3.2 to define gk) 

For a positive even integer q, 

Ky{p,q) <\K^{p,q)\ for all even and odd p > ^ (2.3.18) 

To prove equation (2.3.18), the denominator in equation (2.3.17) can be expressed 

by the standard Iq norm to power p, i.e., 
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piq 

(2.3.19) 

where g = S ( a ) ' 

Mq 

Hence, by taking absolute value of equation (2.3.17), 

'[||g|Li' (2.3.20) 

From the inequality of the rational term for q an even integer and p> q case. 

S ( & ) ' 

{fell}' 
<1 (2.3.21) 

in which the equality holds if and only if only one of the components of g is 

nonzero. 

Using the inequahty of (2.3.21), equation (2.3.20) has a relation as 

(2.3.22) 

This is a very important relationship which essentially says that the normalised 

cumulant of the response of a linearly filtered i.i.d. process is smaller than that of 

the input. In respect to Figure 2.3.2 in which we are trying to make y look like x 

then since h*x is no longer i.i.d. Then the actual inverse filter f (its components 

are expressed by ) is adjusted to make the effect as small as possible, i.e., adjust 

f to maximise the normalised cumulant of the output v. 

In this manner, cumulant based deconvolution problem has been based on the 

inequality relationship given in the equation (2.3.22) and can be said that "the 

required deconvolution operator must generate a response whose normalised 

cumulants have magnitude that are the largest over the class of all linear operators 

for all even q <p and smallest magnitude for all evenp < q" [Cadzow, 1996]. 

This normalised cumulant corresponds to the concept of 'partial order' [Donoho, 

1981] and the maximisation (or minimisation) matches the inequality condition in 
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the blind deconvolution problems, which is introduced in Appendix A. 

For brevity, we shall exclusively consider the case in which q < p with q even, 

whereby it is desired to select g so as to maximise an estimate of {p,q) , that is 

to say, the ideal deconvolution operation is performed by maximising the 

magnitude of the normalised response cumulant K^{p,q-,g) , where q is any 

positive even integer less than p for which cumulant of order q, c j is nonzero (e.g., 

q=2). This maximisation is to be made with respect to the unit-impulse response 

{gnj of the combined convolution-deconvolution operation as shown in Figure 

2.3.2. Since the unit-impulse response of the unknown linear convolution operator 

{hn} is implicitly contained within the observed (measured) data {v(n)}, this 

maximisation must be made with respect to the deconvolution operator's unit-

impulse response {/„}. The required maximisation therefore takes the form 

=mWA:^(p,g)sgn[^y(p,9)]j (2.3.23) 

where f is an appropriately dimensioned vector whose components are the 

elements of the unit-impulse response of the deconvolving operator. In words, we 

desire to find a global maximum of K^(p,q) . Often, the necessary condition 

which gives a local maximum of this value is found by differentiating and 

equating to zero with respect to the filter f, which will be discussed in Chapter 3. 

In addition to the local optimisation approach based on the above maximisation 

scheme, a global optimisation method using the differential evolution method is 

introduced in Chapter 6. 

2.3.3 Properties of higher order statistical parameters (computational 

review) 

Starting from the definitions of moments and cumulants, the explicit relationship 

of cumulants between the input and output signal has been justified. However, the 

justification given in equation (2.3.13) is strictly based on the i.i.d. case, which 

will in general not match the problems dealt with in this thesis. Consequently, this 
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mismatch requires further exploration to justify the use of cumulants in such 

problems. 

This subsection provides computational simulations to observe the statistical 

(higher order) changes of signals along with the convolution and noise 

interference. We now refer to Figure 2.3.1. 

Input signals (x); 

Two types of non-Gaussian input sequences are considered. The first is an i.i.d. 

random signal with exponential distribution denoted as xi and referred to as the 

'zero mean i.i.d. Non-Gaussian signal'. 

The second input sequence chosen to be a signal which contains a series of 

impulses, i.e., 

= (2 3 24) 
= 0, for all other k e [1, A ]̂ 

where is randomly selected non-zero constants, ko is a vector of sample 

numbers (uniformly distributed random integer selected from numbers spanning 

[1,N]) on which the impulses, [0,1,...,5'-1] exist, N is length of the input sequence 

x(k), and is the chosen total number of impulses. This impulse sequence is 

chosen as it can represent mechanical effects or results of a test material in non-

destructive ultrasonic examination [Nandi et al, 1997] or impacting signal from 

machines. 

Linear system (H); 

A simple MA(2) minimum phase system is selected to simplify the calculation of 

statistical values in this simulation described as 

^(z) = l-1.3z-^+0.4z-" (2.3.25) 

which is shown in Figure 2.3.3. 
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-* k 

Figure 2.3.3 The pole-zero map and impulse response of the MA(2) minimum 
phase system used in computational simulation. 

Noise signals (w); 

Two randomly generated (white) Gaussian signals are used as interference signals 

both of which has zero dB signal to noise ratio (SNR), which is expressed as 

SNR =10 log 
10 , dB (2.3.26) 

where is the variance of the output signal (z) of the linear system and a l 

represents that of the noise signal (w). 

Observed signals (v); 

The observed signal is expressed using the non-Gaussian signal (with zero mean 

and unit variance), the linear system and the noise signal as 

v(n) = ^ h{k)x{n -k) + w{n) (2.3.27) 
4=0 

where k represents time sequence of the impulse response of the system. 

Probability density function of each signals (p); 

As an example, the probability density function (pdf) of signal x is estimated as 

number of data in <x<x.+Ax} 
P(%): 

number of total data length (N) 
0 < A%<max X (2.3.28) 

When X has mean and variance as 
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H = E{x} 
(2.3.29) 

The shapes of each signal and statistical distributions (bar graph) are illustrated in 

comparison to Gaussian distribution (solid line) having the same mean and 

variance in the following figures;. 

(a) Time series of input signals 

X l X2 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

(b) Probability density of input signals 

p(xi) 

500 1000 1500 2000 2500 3000 3500 4000 Time Index 

pO%) 

Gaussian [=] :Gianm 

AmpUudeof mignal 

— : Qauwian [3 : Signal 

- 4 - 2 0 2 
Amplitude of signal 

Figure 2.3.4 The input signals and their statistical characteristics; (a): signals in 
time domain and (b): their probability distribution (bar graph) with equivalent 
Gaussian distribution (solid line). 
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(a) Time series of output signals (noise free) 

zi Z2 

500 1000 1500 2000 2500 3000 3500 4000 Time Indmc 

t o 

500 1000 1500 2000 2600 3000 3500 4000 Time Index 

(b) Probability density of output signals (noise free) 

P(zi) P(Z2) 

O : Signaj 

^ - 2 0 2 
Amplitude of signal 

: Gaussian 

[=1 iSignaj 

^ - 2 0 2 
Amplitude of signal 

Figure 2.3.5 The output signals (noise free) and their statistical characteristics; (a): 
signals in time domain and (b): their probability distribution (bar graph) with 
equivalent Gaussian distribution (solid line). 
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(a) Time series of noise signals (Gaussian) 

W i W2 

500 1000 1500 2000 2600 3000 3500 4000 
Time index 500 1000 1500 2000 2500 3000 3500 4000 

Time index 

(b) Probability density of noise signals (Gaussian) 

P(wi) P(W2) 

a iSlgnmj 

Ampl*ud#of mignml 

Qauwmn a rSignal 

0 & 5 1 Amp#lud# of algnal 

Figure 2.3.6 The Gaussian additive noise signals and their statistical 
characteristics; (a): signals in time domain and (b): their probability distribution 
(bar graph) with equivalent Gaussian distribution (sohd line). 
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(a) Time series of measured signals 

V l V2 

600 1000 1500 2000 2500 3000 3500 4000 
Time index 500 1000 1600 a x x ) 2600 3000 3500 4000 

Time index 

(b) Probability density of measured signals 

P(vi) P(V2) 

Gaussian 

- 5 0 5 AmpMudaof mignal 

(̂uMian I yial 

- 4 - 2 0 2 4 6 
Amplitude of signal 

Figure 2.3.7 The measured signals and their statistical characteristics; (a): signals 
in time domain and (b): their probability distribution (bar graph) with equivalent 
Gaussian distribution (solid line). 
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Discussions of the simulation results; 

For each of the two cases, 1000 realisation of the time histories were generated, 

and each time history contains 4000 points. For each realisation the cumulants etc 

were computed. As examples (i.e., the results of averaged values of 1000 

realisations), Figure 2.3.8 depicts the results. 

S i m u l a t ion 

C= 1. J 

Y3= 1-
5 .95 

Y,= 8 .89 

S i g n a l case 1: 
z e r o mean 

i . i . d . Non-Gaussi 
an i npu t s i g n a l 

S i g n a l case 2 ; 
z e r o mean 
impulse t r a i n 
i npu t s i g n a l 

3̂= 
0 .00 
0 .06 
4 . 7 2 

7 ^ 1 8 7 . 6 4 

-2.26 
Yg- -0.46 

23.25 
5 . 8 2 

Output 
( n o i s e f r e e ) 

\ 

-0.00 
0.01 Y3_ 

Y4= 91 .43 
^4= 18.33 

S i m u l a t i o n 2 

^3= 0 .00 
Y3= 0 .00 ^3= 

-0 .02 h= 
4̂= 2 .99 

i t i v e Gauss ian 
i s e , SNR=OdB 
/ 

W, 

4̂ 
74= 2 

-0 .00 
-0.00 

c^=-0.00 

Y4= 

V, 

- 2 . 2 4 
-0J6 
23.28 

3 .70 

\ 
Measured 

s i g n a l 

/ 
— • 

Cg=-0 . 00 

Y3= 0.00 
24=18.43 
Y4= 25.13 

Figure 2.3.8 Statistical changes of signals along the processing. q,(^ = 3,4) 

denotes the A:-th order cumulant of each signal and {k = 3,4) denotes the third 

and fourth order normalised cumulant ('skewness' and 'kurtosis', respectively) of 

each signal. 

From the results of simulation, we focus on the changes in the higher order 

statistical values of each signal considering their closeness to the theoretical 

values and also the effect of data length on the estimation. 

In order to do this, we will define two measures that approximately represent 

offset and variability of the estimated cumulant relative to the values obtained 

from equation (2.3.13). These are not the 'usual' definition of bias and variability 

but are modified for our purpose. 
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Offset error (OE); 

This is expressed as the magnitude of the averaged absolute difference between 

the value given by the theory and the estimation as (the magnitude is chosen as we 

are indifferent to sign) 

OE = Ei 
(Z3J0) 

where 0 and (j) denote the calculated value (higher order statistical value) and 

theoretical estimation (equation (2.3.13)) for each realisation, respectively. Thus 

the bias error justified above can represent the average offset of the 

computationally calculated value from the theoretical value (for i.i.d. signals). 

For example, for two realisations, if the calculated third order cumulant of signal z 

(output of system) is 3.02 and 3.12 in each realisation, respectively and their 

corresponding theoretical estimates from equation (2.3.13) are 2.71 and 2.69, then 

the bias error of this case is 

OE = - r |3 .02 - 2.711 +13.12 - 2.6911 2LI I I U 

= (137 

Variability error (VE); 

This is the mean of squared difference between the theoretical estimate and the 

computational calculation as 

VE = E|(6-(Z>)S (2.3.31) 

This error can represent the spread of the calculated value centred from the 

theoretical estimation. Using the same example above, the VE is 

(X1405 

VE = -{ (3 .02-2 .71) '+ (3.12-2.69) ' j 

35 



Chapter 2, Analysis of Random signals 

Simulation 1: Higher order cumulants (C3, C4) of input (x) and output (z) of 

the system; 

Equation (2.3.13) derived for an i.i.d. input which shows that the response 

cumulant of order p is the product of the excitation cumulant of order p with the 

sum of the linear operator's unit-impulse response elements raised to the pth 

power has been tested. 

The difference between the theoretically estimated value of output signal and 

calculated value is estimated consisting of the average offset (bias from the 

theoretical value) and degree of dispersion (variability of the differences). The 

result is shown in Table 2.3.1 for 4000 points time histories with 1000 realisations. 

It is noticeable that even though the non-Gaussian impulse train signal (%%) may 

not belong to the category of i.i.d signals, the simulation result is consistent with 

the theoretical prediction (estimation). 

Table 2.3.1 Cumulant and linear filtering (input-output relationship) (A^=4000 

Signals and 
order 

Theoretical value, 

k 

Calculated 
value, 

output signal 
wder 

Difference between 
theory and calculation Signals and 

order 

Theoretical value, 

k 

Calculated 
value, 

output signal 
wder O E V E 

Signal 1 

Third 
order 

1.99x(-1.13) 
= - 2 . 2 6 

-2.26 0.00 0.03 

Signal 1 

Fourth 
order 

5.95x3.88 
= 23.12 

23.25 0U2 4^9 

Signal 2 

Third 
order 

1.191g-5x(-1.13) 
= 0 . 0 0 

0.00 0.00 0.00 

Signal 2 

Fourth 
order 

4.72x3.88 
= 1&32 

1833 0.00 4 . 0 6 

The effect of data length; 

Since the use of higher order statistics generally requires more data samples 
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[Nikias and Petropulu, 1993] than the second order case, the effect of data length 

has been considered. This is shown empirically as follows; 

Figure 2.3.9 demonstrates the decrease of VE along with the increase in the data 

length. 

Third order 
c 3 of z (Avg. 1000, Bi-tBr) 

Signaj 1 
Sionmlz 

^0.12 

Fourth order 
c4 of z (Avg. 1000, Bl-dir) 

Smnai 1 

1000 2000 3000 4000 5000 8000 7000 BOOO 8000 10000 
Numbmr of eamptee 

1000 2000 3000 4000 5000 8000 7000 BOOO 9000 10000 
Number of samples 

Figure 2.3.9 Effect of data length on the higher order cumulants of output signals 
(noise free signals). 

Thus, the VE of each cumulant of each signal decreases monotonically as the data 

length increases, which reflects the fact that longer data lengths lead to more 

consistent results for higher order statistics. 

Simulation 2: Higher order cumulants (cs, C4) of output signal (z) and 

observed signal (v) (noise effect); 

The effect of noise corruption has been considered. One of the most important 

properties of the higher order cumulants is their ability to suppress Gaussian 

additive noise. Since the additive noise w (zero mean) is assumed Gaussian, the 

second order moment (autocorrelation, ACR), the fourth order moment, and the 

third order cumulant corresponding to the case of Figure 2.3.8 are described by the 

following relationship (indices of each signal are omitted): 

c ; = 0 , ;, = 3,4 
(2.3.32) 
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The graphical comparison of the autocorrelation and third order cumulant 

sequence of the Gaussian noise is shown in Figure 2.3.10, in which the zero-lag 

second order (correlation) value of Gaussian noise signal retains the value of its 

variance whereas that of third order vanishes. 

ACR of Gaussian signal 

Time lag 

order cumulant of Gaussian signal 

Time lag 

Figure 2.3.10 The second order moment and third order cumulant sequence of a 
white Gaussian noise 

Based on the property of higher order cumulants of Gaussian noise, the theoretical 

relationship expressed in the equation (2.3.32) for the output of the system (noise 

free signal) and observed signal (noise corrupted) is tested. Similar to the 

simulation 1, the difference between the theoretical value of output signal and 

calculated value is estimated consisting of the average offset (bias from theoretical 

value) and degree of dispersion (VE of the differences). The result is shown in 

Table 2.3.2 for 4000 point time histories with 1000 realisations. 
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Table 2.3.2 Cumulant and Gaussian noise interference (N=4000 samples, 1000 

simulation) 

Signals and 
order 

Theoretical value, 
, W _ Z 

order order order 
= r ' 

order 

Calculated 
value, 

observed signal 
order 

Differen( 
theory anc 

ce between 
calculation Signals and 

order 

Theoretical value, 
, W _ Z 

order order order 
= r ' 

order 

Calculated 
value, 

observed signal 
order OE VE 

Signal 1 

Third 
order 

-2.26 -2.24 0.01 0.38 

Signal 1 
Fourth 
order 

23.25 23.28 0.02 24.62 

Signal 2 

Third 
order 

0.00 0.00 0.00 0.02 
Signal 2 

Fourth 
order 18.33 18.43 0.09 4.24 

As in the case of Table 2.3.1 (input-output cumulant relationship), the theoretical 

relationship for the Li.d. non-Gaussian signal xi and Gaussian noise Wi is also 

applicable to the case of the non-Gaussian impulse train signal xi and Gaussian 

noise W2 in Figure 2.3.8. 

The effect of data length; 

In Figure 2.3.11, the variability of the difference between the theoretical and 

calculated higher order statistical values along with the increase of the data length 

as shown. 

Third order 
c3 of V (Avg. 1000, Bl-dir) 

Fourth order 
c4 of V (Avg. 1000, BWfr) 

Signml 1 
SmnaJz 

Signal 1 

1000 2000 3000 4000 5000 6000 7000 8000 8000 10000 
Number of samplaa 

1000 2000 3000 4000 6000 6000 7000 8000 8000 10000 
Number of aanp lee 

Figure 2.3.11 Effect of data length on the higher order cumulants of observed 
signals (noise corrupted signals). 
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Similar to the simulation 1, from Figure 2.3.11, the VE of each cumulant of each 

signal decreases monotonically as the data length increases confirming 

consistency. 

Higher order normalised cumulants relationships for input, output 

(noise free) and measured (noise corrupted) signals; 

Unlike the case of higher order cumulants, the higher order normalised cumulants 

do not necessarily follow the same properties of cumulants of independent i.i.d. 

signals (refer to section 2.2). Instead, from extensive simulations, for the non-

Gaussian i.i.d. input case, we have confirmed that there is a consistent trend 

among the normalised higher order cumulants (y^ or y j of input, output (noise 

free signal, output of linear system alone) and measured signal (Gaussian noise 

corrupted). The magnitude of the normalised cumulants of each signal gradually 

decrease as the signal is first filtered and then suffers noise interference as shown 

in Figure 2.3.1. To be more specific, the linear filtering (convolution) and 

Gaussian noise addition drive the normalised higher order cumulants of the signal 

to smaller magnitudes, i.e., the inequality condition [Cadzow, 1996]. 

A numerical example for this trend is given in Figure 2.3.8 and graphically 

displayed for each realisation (1000 realisations with 4000 points samples) in the 

Figure 2.3.12. 
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Third order (signal case 1) 
Y_ 8*alu# of mignal 1 

: Input X (1.995%, 0.01852) 
: Oulpul z (0.47023,0.00248) 
: Maa#ur#dv(0.1M90.0.00211) 

100 200 300 400 500 600 700 800 900 1000 
Number of eimulallona 

Fourth order (signal case 1) 
Y. alalia of aignal 1 

Inpmx (8.97029,202164) 
OutpU z (5.85964, 0.52728) 
Meaaured v (3.72582,0.05874) 

100 200 300 400 500 600 700 800 900 1000 
Number of almJhUone 

Third order (signal case 2) 
Y, atalum of mlgnal 2 (Bi-dir) 

Inpul X (0.06066, 14.48607) 
0(4)Ul Z (-0.01676, 0.86475) 
Meaaured v (0.00005,0.13881) 

IOC . . . 400 500 600 700 800 900 1000 
Nurrterof simulallona 

Fourth order (signal case 2) 
Ŷ  alalua of aignal 2 (Bi-dr) 

Inpul X (187.64280, 1448.79414) 
Oulpul Z (91.43027, 370.04310) 
Measured V (25.1%67,25.02789) 

At 
100 200 300 400 500 600 700 800 900 1000 

Number of aimi^alkXTa 

Figure 2.3.12 Change of normalised cumulants of each signal for subsequent 
simulations. Values in the ( ) designate the average value and variance of each 
normalised cumulants. 

As can be seen in the above figure, the magnitude of the third order normalised 

cumulant (skewness) and fourth order normalised cumulant (kurtosis) of the 

measured signals (v, signal case 1 and 2) are smaller than those of noise free 

signals (z) and those of z are also smaller than those of x. 

Concerning the deconvolution problem, it can be said that any linear filtering of 

input signal {i.i.d. or impulsive) with or without noise interference makes the 

output signal possess small normalised cumulants. Thus, the deconvolution can be 

applied by incorporating a linear inverse system which can increase those values. 

This is the key to the application of the normalised cumulants in the blind 

deconvolution problem considered in this thesis (Chapter 3). 
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2.4 Concluding Remarks 

The characteristics of higher order cumulants of signals and their properties 

through linear convolution have been explored. Based upon theory and simulation, 

this chapter provides evidence of the validity of the application of higher order 

statistics to the source signal reconstruction problem. A summary of results is as 

follows; 

(a) The effect of convolution 

1. The response cumulant of order p is the product of the excitation cumulant of 

order p with the sum of the linear operator's unit-impulse response elements 

raised to the pih power as cjl for i.i.d. non-Gaussian signal. This 
k 

relationship has been demonstrated (by simulation) as being valid for an impulsive 

signal. 

2. Any linear system tends to make the magnitude of the normalised cumulants 

of output sequence smaller than that of input's when the order of denominator is 

less than that of numerator (refer to the equation (2.3.22), in which q <p with q 

even). This has been proved theoretically for i.i.d. non-Gaussian processes, but we 

have demonstrated further applicability in section 2.3.3. As a result, this is used as 

the basis for design of inversion (see (c) below). 

(b) The effect of noise addition (Gaussian noise) 

The higher order cumulants (order greater than 3) are blind to Gaussian signals, 

hence the observed signal's higher order cumulants are those of the non-Gaussian 

signal alone. 

c / = c / + c / = c / , ;, = 3 , 4 ( c / = 0 ) . 
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(c) Use of higher-order cumulants 

Selecting the value of the normalised cumulant which incorporates the second 

order (g=2) and higher (third or fourth) order (p=3 or 4) cumulant, the inequality 

condition (equation (2.3.22)) is established. This condition now provides the key 

motivation in the blind deconvolution problems and hence these normalised 

cumulants will be extensively employed for the blind reconstruction of source 

signal in subsequent chapters. 

43 



Chapter 3, The deconvolution problem and Higher Order Statistics 

PART II Fundamental considerations of Higher Order 

Statistics (HOS) 

Chapter 3 

The deconvolution problem and Higher Order Statistics 

3.1 Introduction 

In the previous chapter, the basic characteristics of higher-order moments, 

cumulants, and their relation to a linear system's impulse response function were 

introduced. The subject considered here is the restoration of the unknown input 

signal which gives rise to the observed signal. If the distorting system is known it 

is a deconvolution problem for which many approaches exist. For example, in the 

context of communications, system identification, and inverse filtering relating to 

channel equalisation is treated in the book by Proakis [Proakis, 1995]. Related 

work in seismic signal processing is reported in [Peacock and Treitel, 1969; Wood 

and Treitel, 1975; Robinson and Treitel, 1978, 1980], predictive deconvolution for 

seismic signal processing is in classic work [Robinson, 1967] and homomorphic 

deconvolution and its application to speech processing is covered in [Oppenheim 

and Schafer, 1989]. 

The term 'blind' implies that knowledge of the system is not available, and except 

for homomorphic deconvolution (cepstral analysis) these methods are inapplicable. 
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However, in our situation, the term 'blind' is tempered by noting that we will 

make some prior assumptions about the signal structure. These assumptions 

include (i) the input signal (that is to be restored) is 'significantly' non-Gaussian 

and (ideally) independently identically distributed (Lid.), (ii) the additive noise 

has a Gaussian distribution and is independent of the input signal. These two 

conditions lead us to the principle that will be employed for bUnd signal recovery. 

It is known that an input signal (i.i.d.) which is convolved with the unknown LTI 

(Linear Time Invariant) system tends to become closer to a Gaussian distribution 

[Donoho, 1981]. So, to restore the input signal from the measured signal, one 

approach is to process the measured signals through a (constrained) filter so that 

the response is strongly 'non-Gaussian'. In other words, for example, through 

monitoring the cumulant we may adjust the inverse filter coefficients to make the 

output signals of this filter be as "far" from Gaussianity as possible. 

This chapter follows this approach using an objective function [Wiggins, 1978; 

Nandi, 1997] that is optimised to restore the input signal. This function is 

composed of higher order cumulants and moments. The deconvolution is achieved 

through the maximisation of the objective function of the filtered measured signal 

with respect to the corresponding coefficients of the inverse system. 

The major aspects in this chapter are; 

- The definition of deconvolution problem as a (generalised) Wiener optimisation 

problem. 

- Maximisation of the objective function which is performed with respect to the 

coefficients of a linear inverse filter including MA, AR, and ARMA forms and 

their performances are compared. 

- The justification of the preference of the inverse filter as an MA system. 
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3.2 Optimal deconvolution (The "classic" Wiener optimisation 

problem) 

Given a time series v{n) which is a filtered version of an input sequence x{n) as 

shown in Figure 3.2.1, 

v = h*x (3.2.1) 

where represents the convolution operation, the deconvolution problem is to 

find a filter f(n) which recovers (as closely as possible) signal x(n) from v(n), i.e., 

x = f *v (3.2.2) 

A(%) 

v(%) %(») 
A(%) 

Figure 3.2.1 Deconvolution model 

As a step toward addressing the inverse problem, when h{n) is unknown, we 

summarise the minimum mean square error (MMSE) solution for the case when 

h{n) is known and f{n) is an inverse filter of length L. The optimal filter 

coefficients may be obtained on the basis of the least squared error between x(n) 

and a desired signal (in this case this is the input signal). Thus, the deconvolved 

signal is obtained from the estimated FIR inverse filter. A model is shown in 

Figure 3.2.2, from which the optimal deconvolution problem can be stated. 
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x{n) = 5{n) 
• h(n) 

w{n) 

v{n)=h{n)+w{n) 
+ ) H 

y{n)-5{n) 

g(M) 

Figure 3.2.2 Deconvolution model for least-square method; x{n) (=S(n)) is the 
Original input signal to be recovered, h(n) is the impulse response function of 
system, w(n) is the noise interference, v(n) is the measured signal, f(n) is the 
impulse response of the inverse filter, y(n) (=S(n)) is the restored signal (an 
estimate of the original signal), d{n) is the desired signal (=S(n)), and e{n) is the 
error signal 

The sum of squared errors between the desired signal and inverse filter output 

signal is defined as a cost function. 

N-l 

(3.2.3) 
n=0 

where 

&(») = cf (») - (3.2.4) 
4=0 

Minimising the cost function with respect to the filter coefficient f(m), the 

necessary condition is 

dJ 

which leads to 

where 

^ ( m ) 
0, m = 0,1, . . . ,L-1 

A / - 1 

„=Q of(m) 

de(n) 

df(m) 
• -v(n - m) 

(3.2.5) 

(3.2.6) 

(3.2.7) 
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Thus, from equation (3.2.6) and equation (3.2.7) the well known orthogonality 

property between the error signal and the measured signal is 

N-l 
e(n) •v(n - m) = 0 

n=Q 

Substituting equation (3.2.4) into the equation (3.2.8) gives 

N-l L-1 N-l 
v(n - m) = ^ / ( ^ ) ^ v(n - k)v(n - m) 

n=0 t=0 M=0 

(3.2.8) 

(3.2.9) 

which can be expressed in matrix form for M=0, 1,...,7V-1 andm=0, 1,...,L-1, 

^v(n-0)v(K-0) 
n=0 
/V-1 

N-l 

^ v ( n - 0 ) v ( M - L - l ) ^ v ( n - l ) v ( M - L - l ) ^ v(n -L- l)v{n - L - 1 ) 
M=0 

^ v ( n - l ) v ( « - 0 ) 
n=0 

^v(M-l)v(n- l ) 

z 

^v(n-L- l)v{n - 0) 
M=0 

^ v ( n - L - l ) v ( « - l ) 
r /m) " 'A(O)' 

/(I) 0 
(3.2.10) 

/(I) 

= 

(3.2.10) 

_ 0 

I.e., 

R . f = g (3.2.11) 

where g is a vector composed of a first element which is the system's first impulse 

response value and zeros elsewhere (L x 1 column vector), R is an auto correlation 

matrix of the measured signal (Lx L symmetry matrix), and f is the inverse filter 

(L X 1 column vector). 

The required deconvolution which restores the input signal in a least squares sense 

is 

L-1 

)'(») = 2]/rnXM-ZM) (3.2.12) 
m=0 

Note: Since the cost function is quadratic in the coefficients, the necessary 

condition (3.2.5) locates the global minimum. 
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3.3 Higher order deconvolution (Blind Deconvolution, BD) 

Blind deconvolution is the problem of restoring an input signal from the measured 

(observed) signal alone. The measured signal is assumed to be the output of an 

unknown linear system possibly corrupted by noise. A further key assumption is 

that (i) the input signal to be restored is non-Gaussian and (ii) the corrupting 

signal is Gaussian and is independent of the input signal. 

Starting from these assumptions, the restoration of the input signal can be 

addressed by utilising the higher order statistical properties of the signals. The 

method introduced here is based on the maximisation of higher order cumulants of 

the restored signal. This blind deconvolution (BD) process is illustrated in the 

figure below: 

v{n) 

Unknown 

i n p u t , NG, 
Res to red 

s i g n a l 
Observed 

s i g n a l 

I nve rse 
Unknown 

ARMA(p,q) 

System 

Figure 3.3.1 The process of convolution-deconvolution in bhnd source 
reconstruction problem; NG: Non-Gaussian; AGN: Additive Gaussian Noise; 
UCF: Unknown Covariance Function. 

The inverse filter coefficients f,n (denoted f in vector notation) is estimated from 

the maximisation of the higher order cumulant of the output y{n). This results in a 

constrained non-linear optimisation problem which is solved numerically. 

The deconvolution process based on higher order statistics which utilises order >2 

cumulants as discussed in Chapter 2. Also the concept of partial order has been 

used and is summarised in Appendix A. 

We describe the Bhnd Deconvolution process using two approaches, namely (i) 

constrained higher order cumulants and (ii) normalised higher order cumulants. 
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3.3.1 Blind Deconvolution process with a constraint 

Unconstrained maximisation of a function can lead to unhelpful conclusions, i.e., 

unbounded filters. Constraints limit the behaviour of the inverse filter while 

optimising the appropriated objective function with respect to the filter 

coefficients. The chosen constraint is to keep the Frobenius norm of the FIR 

inverse filter coefficient unity. 

IML = 1 (3-3-1) 

which means the variance of the input and output of the inverse system are the 

same. A general form of objective function is expressed as 

Oyit) = Cum[y,y,...,y] 

= c;(o,o,...,o) 
r times 

The integers r designate the order indices whose value is normally taken as the 

integer 3 or 4. 

Incorporating the constraint function as 

= (3.3.3) 

1 = 0 

in which niy and niy is the mean of the signal y and v, respectively and combining 

the above two equations (3.3.6) and (3.3.3), the final cost function for the BD 

process takes the form 

y(f) = o / f ) + ; i g ( f ) (3.3.4) 

where A is a Lagrange multiplier. 

The necessary condition for a local optimum with respect to the inverse filter 

coefficient f(k) is 
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m = (3.3.5) 
^ ^ 

As an example, taking r=^ and zero mean signals, we have a fourth order 

objective function as 

•'* i=0 

1 N-\ 

•'* 1=0 

4/2 (3.3.6) 

where £{•] denotes expectation, my is the mean value of y, N is the number of 

data points. 

The first term on the right hand side of equation (3.3.5) becomes 

do (f) A -̂1 19 -̂1 L-i N-\ 

— y ' 2] - ^)} (3.3.7) 
K/m ^ n=0 n=0 k=Q n=0 

The second term can be expanded as 

.^y(^)^jy(M-A:).v(M-m)} (3.3.8) 
^Jm 1 / 2 = 0 J k=0 n=0 

Combining (3.3.7) and (3.3.8) yields 

3 r/f \ A N-l 19 /V-1 L-\ N-l 

- v(/i - ^ / (^ )^{v(M - A:) - v(M - m)} 
^ ' AT' f%=0 t=0 n=0 

- 2 / l | ^ v ( n ) ^ !> •^ / (A: )^{v(n-A:) -v(n-m)} (3.3.9) 
L«=0 J t=0 n-O 

= 0 

For notational simplicity, let us denote the auto/cross-correlation terms of equation 

(3.3.9) (for m=0,l,...,L-l) as 

N-l 

v(M-m)} = g, 

n=0 

N-l 

^{v(n - k) • v{n - m)] = 
n=0 

Then, the inverse filter coefficient equation becomes 
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AT-l 

n-0 

#-1 
(3.3.1()) 

6^ y(n)^ • ^ v(n)^ + N^ - A 
fi=0 n=0 

To determine the Lagrange multipher X , restructure the constraint condition 

(3.3.1) as 

(3.3.11) 
OT=0 M = 0 71=0 

which means 

( f , f ) = r - f =1 (3.3.12!) 

i.e., (•) denotes the inner product of the inverse filter coefficient vector. 

Substituting (3.3.10) into (3.3.12) yields the Lagrange multiplier 

g / . ( R / ) ' ' . R / . g , 
1/2 

— (3.3.13) 

Using the Lagrange multiplier and restructuring the inverse filter coefficient 

equation (3.3.10) leads to 

1 

g / . ( R / ) ' . R / . g 
l , 2 ' R / ' ' 8 r (3.3.14) 
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3.3.2 Blind Deconvolution process with normalisation 

With reference to Figure 3.3.1, we construct the inverse filters using a normalised 

cumulant (objective function). This objective function takes the form of the r-th 

order cumulant of the output signal y{n) divided by the j-th order (5-th moment) 

of yin) raised to power ris 

r 
i=0 

r! s ' 1 N-l r/j 
(3.3.15) 

where m is the mean of y. Similar to the constrained case, the normalising order s 

is given by 2 which corresponds to the variance of y ( o ^ ) . Commonly, the integer 

r is either 3 or 4. 

The maximisation of the objective function is achieved through the differentiation 

of this objective function with respect to the inverse filter coefficients and 

equating to zero. 

(3.3.16) 

The above equation yields inverse filter coefficients as shown in the following 

equation (3.3.17) which yields multiple solutions. 

The maximisation yields an equation relating the inverse filter coefficient vector, 

the autocorrelation of the measured signal and the higher order cross zero-lag 

cumulant. 

^v(n)v(n) ^v(n)v(n-l) 

^v(«-l)v(n) ^v(«-l)v(«-l) 

^v(w)v(«-L + l) 
n=l 

^ - 1 

^ v(m - l)v()i - L +1) 

JV —1 iV —1 11 ~t 

^v(M-m)v(«) ^v(«-m)v(n-l) • • ^v(n-m)v{n-L + Y) 

/ o 

A 

/ l - 1 . 

11=0 

A-^y^~'{n)v{n-Y) 

\k)v{k-m) 

(3.3.17) 
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where m=L and the term A = ^y^(n)/^y''(n) • For the constrained case (where 

A can be calculated from equation (3.3.13)), we select the multiplier 

2N-^v(nf 
A = — — ^ . The equation (3.3.17) can be written 

— ^ y{n)^ • ^v(n)^ +N^ -A 
^ n-Q n=0 

equivalently as (details can be found in Appendix B) 

f = g 

where Rw denotes the symmetry LxL autocorrelation matrix of the observed 

signal, f is the Lx l inverse filter coefficient vector, and g is the Lx l cross-

correlation vector between the observed signal and the output of the inverse filter 

at each iteration. Note that equation (3.3.18) takes a form similar to equation 

(3.2.11) for the 'conventional' deconvolution problem. 

Using either the constrained or normalised objective function maximisation 

process, the output signal y{n) can yield the input signal restoration through the 

convolution of the measured signal v(n) and the inverse filter f with length L 

k=0 

3.3.3 Example of signal restoration using the constrained and normalised 

objective functions 

With a given impulse signal and a simple system, an example of the restored 

signals the constrained and normalised objective function maximisation are 

compared; 
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Input signal 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.0 
1.0 
3.05 

206.98 
18.41 

Figure 3.3.2 Input signal used in simulation for restoration of impulse signal via 
two different objective function maximisation methods. 

Unknown system 

Pole-zero map Impulse response function 

Real part 
^ M M * K 

Time Index 

Figure 3.3.3 Unknown system's pole-zero map and its impulse response function 

Observed signal (SNR= 10 dB) 

1*$ 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.002 
1.72 
0.875 

91.882 
13.839 

BOO 1 0 0 0 

Figure 3.3.4 Observed signal with Gaussian noise corrupted (SNR = 10 dB) 
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Reconstruction by the constrained objective function (fourth order MA(4) 

inverse filter) 

Pole-zero map Impulse response function 

^ M M 
Time Index 

Restored signal 

WW # 

Results 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.002 
0.864 
2.193 

123.63 
15.926 

800 1000 laoo aooo aaoo 3000 3soo 

Figure 3.3.5 Inverse system and restored signal from the constrained objective 
function maximisation 

Note: Comparing the observed signal (in Figure 3.3.4) and restored signal shown 

in Figure 3.3.5, we can see that the true shapes of the impulses of the input signal 

(shown in Figure 3.3.2) are successfully recovered (i.e., see the smearing 

direction of the impulses in the observed signal are correctly aligned). 
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Reconstruction by the normalised objective function (fourth order MA(4) 

inverse filter) 

Pole-zero map 

R#alpmM 

Impulse response function 

Restored signal Results 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.004 
1.86 
2.193 

123.63 
15.926 

Figure 3.3.6 Inverse system and restored signal from normalised objective 
function maximisation 

Note: Similar to the constrained inverse filtering case, the restored signal is closer 

to the input signal. 

Detailed comparisons of results from two different inverse systems are given in 

the following. 

Discussion 

Whilst the restored signals from two different inverse filters may not appear to be 

very different (from Figure 3.3.5 and Figure 3.3.6) for this example, we compare 

their performance on the basis of the statistics. The inverse filter coefficient and 
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the variance of the restored signals from constrained and normalised objective 

function are summarised in Table 3.3.1. 

Table 3.3.1 Comparison of the inverse filter and restored signal from two different 

Constrained case Normalised case Remarks 

Frobenius norm 

of the inverse 

filter 

L=4, FIR filter 

Variance of the 

restored signal 
0.86(1.72) 1.86(1.72) 

values in ( ) are the 

variance of the 

measured signal 

From these results, it is clear that signal reconstruction from both types of 

objective function give similar (satisfactory) results. In fact, the normalised higher 

order cumulant gives identical results (to the order of accuracy of the 

computation) as for the constrained cumulant when the signal has unit variance 

and zero mean. In fact, can be seen in the table, the inverse filter coefficients 

calculated either from equation (3.3.14) or equation (3.3.18) only differ in the 

magnitude of these values. Specifically; 

The FIR inverse filter coefficients for the constrained objective function is 

f _ c ( m s t n u n t = [ 0.824 0.472 0.270 0.146 0.065]. 

and the FIR inverse filter coefficients for the normalised objective function is 

f _ n o n . a i i s e d = [ 1.210 0.693 0.397 0.215 0.095] 

which is f_constramt multiplied by the norm ratio (=1.47). 
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3.3.4 IIR deconvolution operator 

As noted in the previous section, although the nonrecursive filter ensures a 

satisfactory result for many problems, it is an inappropriate choice when the 

convolving operator's transfer function H{z) is rational (for AR or ARMA 

processes) and in particular has zeros that lie close to the unit-circle. In this case, 

the desired deconvolving operator also has a rational transfer function F{z)=H{z)'^, 

which has poles located close to the unit-circle, thus giving long impulse 

responses. To solve this problem with a nonrecursive deconvolving operator, the 

inverse system's order would need to be long to give an adequate approximation. 

This leads to a large computational burden. Hence, in this section, we introduce a 

recursive deconvolving operator to alleviate this deficiency. The relationship 

between the output {y(»)} of an ARMA inverse system (order p, q) with the 

observed data {v(n)}, n=0,l,...,N-l can be expressed as the linear constant-

coefficient difference equation 

^ a ^ y i n - k ) = ^bi^v(n-k) (3.3.20) 
k=0 k=0 

Similar to the case of MA operation, the normalised cumulant of order {r,s and r>s, 

integers) may be used [Nandi et al, 1997] 

k=0 

1 N-1 r/f 
(3.3.21) 

By optimising this objective function with respect to the filter coefficient 6, 

and aj (j=0,l,...,p-l), the necessary condition is 

dOy{r,s)ldb^ =0 and 

a9y(r,;y)/az^. = 0 (3.3.22) 

The matrix formulation of ARMA inverse filter can be written [Cadzow, 1996] as 

(detailed expressions are found in the Appendix B) 

59 



Chapter 3, The deconvolution problem and Higher Order Statistics 

^s^(k-0)y{k-0) ^s^{k-0)y{k-l) 

^s^{k-m)y{k-Q) ^s^{k-m)y{k-l) • • ^s^{k-m)y(k-p + l) 

^s^{k-Q)v{k -q + \) 
t=0 

^s„{k-Vjv{k-q + V) 

!</ —i 11 —I 11 —1 

Af-l 
where m=p-l and A = ^y'(k)/^y''{k). 

&=0 A:=0 

Or, in a compact form, 

R, . , » = K . v b + 

/I g/- 'W^.( t -0) 

A-^y' \k)s^{k-m) 

(3.3.23) 

(3.3.24) 

3.3.5 Comparison of MA, AR and ARMA deconvolution operators 

The blind deconvolution operators are compared to measure their efficiencies 

depending on the system employed. The MA, AR or ARMA blind deconvolution 

operators described in the previous section will now be demonstrated. Each has 

different characteristics in recovering the source signal. The simulation model is 

shown below. 

w[n) 

Unknown 
System 

Inverse 
Filter 

a , . , 6 ^ . MA, AR, ARMA 

Figure 3.3.7 The signals and deconvolution model 
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This section demonstrates the validity of the deconvolution procedure with 

reference to the objective function and the coefficients of three different inverse 

filters. Using three different inverse systems such as MA(4), AR(2) and 

ARMA(1,1), the observed signal (which is shown in Figure 3.3.4) is deconvolved 

with these systems inverse systems. 

BD process using an MA(4) inverse filter : 

In Figure 3.3.8, the shape and contours of the objective function (kurtosis) are 

shown. To plot this figure, a mesh of objective function values are calculated by 

varying the first two coefficients of in 60 steps of 0.1 and keeping the other 

MA coefficients ( ) fixed. Thus, the inverse filter coefficient 

becomes; 

A 

A 

4 

4 

4 

varying 

varying 

fixed 

fixed 

fixed 

fb„̂ opt fb̂  op, are the first and second MA filter coefficient which are 

optimally calculated and their co-ordinates are marked by 'opt' while a pair of 

coefficients denoted by and that gives the maximum value of the 

objective function among and is marked by 'max' in the figure. 
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Objective function shape Location of first two filter coefficients 

Figure 3.3.8 The Objective function of the 4*̂  order statistics for MA(4) inverse 
filter. Dotted line point: bo and bi value which gives maximum Objective value, 
arrow point: calculated fbo and fbi value. 

Thus, the inverse filter from the 'opt' point consists of two filter coefficients 

( op,, fb̂ _op, ) at the 'opt' point and the three other coefficients are 

( A ' A ' A ) so that 

^b_opt fb^_opt fb2 f • ^ 4 ! ' ^ 

and the inverse filter from 'max' point becomes 

b_max '[̂ -̂ ij_max fbi_ma.x fb2 fb^ -̂ 4 J ' ^ 

The pole-zero maps are shown in the figure below; 

Pole-zero map of 'opt.' point Pole-zero map of 'max.' point 

Real part Real part 

Figure 3.3.9 The MA(4) inverse system obtained by 4th order statistics. 
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We can obtain two different restored signals by convolving these two inverse 

systems with the measured signal v{n), which are plotted in the figure below; 

Restored signal by 'opt.' point filter 

- 1 0 

- 1 5 

- 2 0 

m 

500 1000 1500 2000 2500 3000 3500 4000 

Restored signal by 'max.' point filter 

mm 

500 1000 1500 2000 2500 3000 3500 4000 
Time hdex 

Skewness: 2.193 

Kurtosis : 123.643 

Skewness: 2.226 

Kurtosis : 128.319 

Figure 3.3.10 The restored signals from 4th order MA(4) inverse filter. 

It is noticeable from Figure 3.3.8 that there can be more than one maximum in the 

blind deconvolution problem when using the MA inverse filter. Thus, it is evident 

that the blind deconvolution based on the higher-order statistics could end up at a 

local maximum (see that the intersection of the dotted line does not coincide with 

the arrow point). The inverse systems shown in Figure 3.3.9 differ in the phase 

(e.g., inverse system from the 'opt' point becomes a 'minimum' phase system 

whereas the inverse system from the 'max' point becomes 'non-minimum' phase 

system). For the MA(4) inverse system, the restored signals from the two inverse 

filters including different coefficients, nevertheless, produces similar satisfactory 

impacting signal reconstruction as shown in Figure 3.3.10. 
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BD process using AR(2) inverse filter : 

Like the MA(4) inverse system case, the shape and contours of the objective 

function (kurtosis) are plotted in Figure 3.3.11. Varying the last two coefficients 

of fg in 0.1 steps and keeping the first AR coefficients ( ) fixed as 1, the inverse 

filter coefficients become; 

fa = 
A, 
A, : varying 

f : vaiying 

4 = 1 

A and are the second and third AR filter coefficient which are 

optimally calculated and their co-ordinates are marked by 'opt' while a pair of 

coefficients denoted by and that give the maximum value of the 

objective function are marked by 'max' in the figure. 

Objective function shape Location of first two filter coefficients 

Figure 3.3.11 The Objective function of the 4̂ ^ order AR(2) inverse filter =1). 

Dotted line point: fai and fa2 value which gives maximum Objective value, arrow 
point: calculated fai and fa2 value. 

Thus, the inverse filter from 'opt' point consists of two filter coefficients 

(fa^^opt, fa,__opt) at the 'opt' point and the first AR coefficient are =1), so 

4_opt fa^_opt /flj-OfirJ ' 4 1 
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and the inverse filter from 'max' point becomes 

â_max fai_max /'fl2_maxj ' ~ ^ 

The pole-zero maps are shown in the figure below; 

Pole-zero map of 'opt.' point Pole-zero map of 'max.' point 

Real part AMI p a n 

Figure 3.3.12 The AR(2) inverse system obtained by 4th order statistics. 

As for the MA(4) case, we obtain two different restored signals which are plotted 

in Figure 3.3.13. 

Restored signal by 'opt.' point filter 

10 

I ' •§ 0 W 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Restored signal by 'max.' point filter 

500 1000 1500 2000 2500 3000 3500 4000 
Time Index 

Skewness: 2.220 

Kurtosis : 124,504 

Skewness: -8.84e-4 

Kurtosis : oo 

Figure 3.3.13 The restored signals from 4th order AR(2) inverse filter. 

65 



Chapter 3, The deconvolution problem and Higher Order Statistics 

As for the MA inverse filter case, the AR filter coefficients that give the maximum 

point of the objective function value are different from the calculated coefficients. 

In Figure 3.3.11, the point of the maximum objective function's value 

(intersection of the dotted line) does not match the calculated maximum (arrowed). 

The AR inverse filter coefficients which give massive kurtosis values are fao=1.0, 

fai=1.9206, and fa2=1.0916 (filter coefficients denoted 'max.'), whereas the 

calculated coefficients are fao=l-0, f a i =-0.5794, and fa2=-0.0083 (filter coefficients 

at 'opt.' point) giving the kurtosis as 124.504. As expected, as shown in Figure 

3.3.13, the result of signal restoration from this 'max.' positioned filter 

coefficients is totally unsuccessful. On the other hand, the restored signal from 

that 'opt.' point filter coefficients is slightly better than the case of MA(4) inverse 

filter (since the unknown system shown in Figure 3.3.3 is an MA system, the 

inverse system would preferably select an AR system). It is clear that this inverse 

filter also possesses local maxima. 
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BD process using ARMA(1,1) inverse filter : 

The three dimensional shape and contour of the objective function (kurtosis) is 

plotted in Figure 3.3.14 varying the last coefficient of and in 60 steps of 0.1 

and keeping the first AR coefficient ( ) fixed as 1 while the first MA coefficient 

(/^ ) is also kept constant, the inverse filter coefficients are 

/„ : fixed 
Go 

: varying 
A : fixed 

A : varying 

are the second coefficient of AR and MA, respectively which 

are optimally calculated and their co-ordinates are marked by 'opt' while a pair of 

coefficients denoted by y], and that give the maximum value of the 

objective function marked by 'max' in the figure. 

Objective function shape Location of first two filter coefficients 

. 150 -

Figure 3.3.14 The objective function of the 4̂ ^ order ARMA(1,1) inverse filter. 
Dotted line point: fai and fbi value which gives maximum objective value, arrow 
point: calculated fai and fbi value. 
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Thus, the inverse filter from 'opt' point consists of two filter coefficients 

(/flt.opc the 'opt' point and the first AR coefficient =1) and MA 

coefficient ( ^ ) as 

â_opt ~ _oprJ ' -^i-oprj 

and the inverse filter from 'max' point becomes 

â_max -/a, _max J ' /i, _maxj 

whose pole-zero maps are shown in the figure below; 

Pole-zero map of 'opt.' point Pole-zero map of 'max.' point 

Real p a d Real part 

Figure 3.3.15 The ARMA( 1,1) inverse system obtained by 4th order statistics. 

Similarly, we can obtain two different restored signals which are plotted in Figure 

3.3.16. 
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Restored signal by 'opt.' point filter Restored signal by 'max.' point filter 

f ' 

< - 5 

- 1 0 

- 1 5 

m M 

500 1000 1500 2000 2500 3000 3500 4000 
Thnehxlex 

500 1000 1600 2000 2500 3000 3500 4000 
Time Indax 

Skewness: 2.214 

Kurtosis : 124.375 

Skewness: -0.728 

Kurtosis : 165.562 

Figure 3.3.16 The restored signals from 4th order ARMA(1,1) inverse filter. 

As can be seen in Figure 3.3.14, similar to the AR(2) case, the point of the 

maximum objective function's value (intersection of the dotted line) does not 

match with that of calculated (arrow point). The AR inverse filter coefficients 

which give maximum kurtosis value (165.562) are fao=1.0, fai= 1.0412, and 

fbo=0.9998, f b i = -0.9814 (filter coefficients on 'max.' point) whereas, the 

calculated coefficients are fao=1.0, fa i= -0.558, and fbo=0.9998, f b i = 0.0185 (filter 

coefficients on 'opt.' point) giving the kurtosis value as 124.375. The difference in 

the signal restoration is compared in Figure 3.3.16 and as similar to the AR case, 

the restored signal from the 'max.' point inverse filter coefficient looks 

unsuccessful. 

The reason for this highly unsatisfactory signal restoration arises from the fact that 

the recursive filters becomes unstable. 

Following Table 3.3.2 depicts the results of the restored signal by above three 

different inverse filters. It is noticeable that the variances of the incorrectly 

deconvolved signals reveal large values. 
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Table 3.3.2 The comparison of restored signal and system from MA, AR and 

ARMA inverse filters (summary of the results from Figure 3.3.8 to Figure 3.3.16). 

Inverse 
niter 
type 

(order) 

Points Kurtosis Variance 
Coefficients of inverse 

filter 
Remarks 

MA(4) 

Opt. 123.643 1.862 

fb=tl.209, 0.693, 0.397, 

0.215, 0.095] 
fa=l 

Input signal is 
reconstructed 

MA(4) 

Max. 128.319 0.725 
fb=[-0.091, 0.693, 0.397, 

0.215, 0.095] 
fa=l 

Input signal is 
reconstructed 

AR(2) 

Opt. 124.504 1.276 
fb=l 
fa=[l, -0.5794, - 0.0083] 

Input signal is 
reconstructed 

AR(2) 
Max. OO 1.23e+154 

fb=l 
fa=[l, 1.9206,1.0916] 

Unsuccessful 
input signal 

reconstruction 

ARMA 

(1,1) 

Opt. 124.375 1.270 
fb=[0.9998,0.0185] 
fa=[l, -0.558] 

Input signal is 
reconstructed ARMA 

(1,1) Max. 165.562 1.56e+142 
fb=[0.9998, -0.9814] 
fa=[l, 1.0412] 

Unsuccessful 
input signal 

reconstruction 

It is almost impossible to point out the global maximum of the objective function 

as the observed signal has already been noise corrupted with unknown variance. 

Thus, the 'max.' point in objective function shapes in each figure does not 

guarantee the global maximum. However, from above observations, the MA 

inverse system have a wider range of acceptable filter coefficients resulting in a 

stable inverse system. 

Concerning the instability of the signal restoration for AR, ARMA systems, the 

recursive structure of the inverse filter is mainly influenced by the inversion 

process which is described in the equation (3.3.24). A few methods (Singular 

Value Discarding, regularisation, etc) [Yoon and Nelson, 1995, 1997; Kirkeby et 

al, 1996; Tikhonov and Arsenin, 1977; Lamm, 1993] were considered but the 

results were not satisfactory. Another simple method was considered namely 
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reflecting every pole positions outside of the unit circle into their reciprocal 

position [Hammond and Clarkson, 1989] in each iteration process thus retaining 

stability. This method guarantees the stability of the AR, ARMA inverse system 

in BD process and yields slightly improved restoration results but incurs an 

increase in complexity and computational inefficiency. 

3.4 Concluding remarks 

This section has been devoted to the fundamental consideration of the 

utilisation of the Higher Order Statistics in order to reconstruct an unknown 

impacting signal from only a measured signal. 

Starting from the basic Wiener optimisation approach for the FIR system, the 

blind deconvolution procedure has been justified utilising an objective function 

and its correspondence to 'partial order'. 

In restoring an impacting signal, two different objective functions (constrained 

and normalised higher order cumulant) have been justified from which FIR (non-

recursive, MA inverse system) filter coefficients are calculated. As a result, both 

the constrained and normalised objective function maximisation procedure has 

yielded satisfactory restoration (Table 3.3.1). 

For completeness, the inverse system has been selected as having a recursive 

nature (i.e., AR or ARMA system) with the expectation of improved performance 

over that of the non-recursive system. These three different inverse systems are 

compared with the shapes of each objective function with respect to the filter 

coefficients. The result of signal restoration from each system has been also 

compared. Even though all the systems possess more than one maximum, the MA 

inverse system turned out to be more robust than the recursive systems. 

Accordingly FIR inverse filter will be employed in this study. 

Further practical aspects on the MA inverse system for signal reconstruction 

including the initial inverse filter type and filter length determination will be 

considered in Chapter 5. 
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Since blind deconvolution based on the higher order statistics utilises Wiener 

optimisation (zero gradient search), this process is liable to end up at a local 

maximum. A global optimisation method will be introduced and its performance 

is discussed in Chapter 6. 
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CHAPTER 4 

Higher Order Singular Value Decomposition (HOSVD) 

(Application to detection, classification and reconstruction) 

4.1 Introduction 

An increasing number of signal processing problems involve the manipulation of 

multidimensional matrices in which the vectors and matrices are termed the first 

and the second order tensors, respectively. For many applications involving 

higher-order tensors, the existing framework of vector and matrix algebra is 

insufficient and/or inappropriate. In this chapter, a generalisation of Singular 

Value Decomposition (SVD) extended to the higher-order case is presented. 

The importance of higher-order tensors is largely due to the expansion of interest 

in the field of Higher-Order Statistics (HQS). For the multivariate case the basic 

quantities (higher-order moments, cumulants, spectra and cepstra) are symmetric 

higher-order tensors, just as the covariance of a stochastic vector is a symmetric 

(Hermitian) matrix. Statistical descriptions of random processes are more 

complete when, in addition to first-and second-order statistics, HQS are taken into 

account. In statistical non-linear system theory, HQS are unavoidable (e.g. the 

autocorrelation of is a fourth-order moment). Moreover higher-order 

cumulants and spectra of a random variable are insensitive to additive Gaussian 

perturbation of the variable, thus blind to Gaussian noise. The idea of using 

tensorial decompositions as a basic tool in higher-order signal processing was 

introduced in the work of Cardoso [Cardoso, 1990, 1991, 1992; Cardoso and 

Comon, 1990], Comon [Comon, 1994], and Lathauwer [Lathauwer et al 1994, 

1995,1996a, 1996b, 1999]. 

Applications of these approaches include the following; The tensorial 

decomposition of multichannel system leads to a generalisation of Principal 
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Component Analysis (PCA) [Otte et al 1988; Dunteman, 1989] called 

Independent Component Analysis (ICA) relevant to medical signal monitoring 

[Cardoso and Comon, 1990; De Lathauwer and De Moor, 1996]. 

HOS makes it possible to solve the Source Separation (SS) problem by 

exploitation of the statistical independence of the sources without knowledge of 

the mixing matrix (e.g., multi-channel system, path, etc.). A brief summary for 

source separation from instantaneous mixture processes is given in Appendix C. 

In higher order array processing, blind identiflcation based on a super-symmetric 

decomposition of the fourth order cumulant tensor has been developed [Cardoso, 

1991] and robust identification has been achieved from low rank estimation of the 

third order cumulant tensor [Bradaric and Petropulu, 1999]. 

In this chapter, a pre-diagnosis procedure is introduced which can help the signal 

processor and/or mechanical engineer assess the status of the measured signal even 

from a single channel. To do this, a multilinear generalisation of Singular Value 

Decomposition (SVD), named Higher-Order Singular Value Decomposition 

(HOSVD) is presented. Using HOSVD, bhnd detection of non-Gaussian signals is 

carried out. This detection procedure includes a sub division of single observed 

signal into multiple channels. The matrix constructed from the subdivision can be 

found in the embedding process itself by the 'method of delays' [Takens, 1981]. 

This subdivided matrix is known as a trajectory matrix and has been used for 

example in AR order selection through SVD [Shin, 1996]. 

By constructing the covanance matrix of these multiple, delayed channels 

(trajectory matrix), the second order singular value decomposition (SOSVD) is 

performed. Sequentially, by the construction of the third or fourth order cumulant 

tensors, higher order (third or fourth) singular value decomposition is carried out. 

The magnitudes of each singular value (from SOSVD and HOSVD) are compared. 

The detection of a non-Gaussian signal is based upon computed statistics measured 

against proposed threshold levels. These statistics are estimates of higher order 

(third and fourth) singular values. Classification of inputs and systems through 

which they pass is then relies on properties of these statistics. 
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Examples of the detection procedure using three different input signals (Gaussian 

or non-Gaussian) with two selected systems (highly damped and highly resonant) 

are demonstrated. 

Also, based on HOSVD, procedures for signal classification which can determine 

the status of the signal and the possibility of reconstruction of the non-Gaussian 

impacting signal are proposed and illustrated. 

4.2 SVD and HOSVD 

One of the most significant developments in linear algebra and signal processing 

problems is the concept of the Singular Value Decomposition (SVD) of matrices 

and has a long history of steadily growing success (for a detailed historical survey, 

refer to [Stewart, 1993] and [Horn and Johnson, 1991]). For the second-order case, 

the matrix A can be decomposed in terms of elements of matrices 

I. /, 

(4.2.1) a,, 
¥i hh '1'2 >ih 

Vi A 

where 5.̂  denotes the element of singular value matrix, u _ is the left singular 

vector corresponding to the /i-th column and v is the right singular vector 

corresponding to the i2-th row. Similarly to the second-order case, a decomposition 

of a real )-tensor ^ becomes 

A 4 4 

4A OA aV3 
Vi A 

in which u , u , u are entries of orthogonal matrices (the superscript 

notation indicates a 'mode' to be defined in section 4.2.3), and S is a real 

( / j X/ j X/g )-tensor with the property of "all-orthogonality". As will be discussed 

later, this orthogonality satisfies = 0, 

whenever . It is the aim of this chapter to derive the tensorial 

decomposition in an algebraic context, using SVD-terminology and an SVD-based 

computation scheme, and to present it as a valuable tool relevant to the field of 
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numerical algebra and signal processing. This is called Higher-Order Singular 

Value Decomposition (HOSVD). 

As a preliminary, definitions and basic tensor algebra are introduced followed by 

the higher order cumulant tensor and their properties. A singular value 

decomposition model is proposed for Mh-order tensors [De Lathauwer, 1997] and 

comparison to the structure of matrix SVD show the complete analogy between 

both cases is presented. 

4.2.1 Basic Definitions of Tensor Algebra 

In this section, notation and definitions dealing with some basic concepts of 

multilinear algebra is introduced. 

Definition 1 (Nth order tensor) 

The term 'Nth order' tensor is the generalisation of the dimensions of vector, 

matrix, and tensor, i.e., a vector is a one dimensional signal and equivalent to first 

order tensor, a matrix is a two dimensional signal which is the second order tensor. 

Going further, the Nth order tensor is an N dimensional signal space and the 

general form of N dimensional matrix. 

Let vi, V2, ..., V/v, be Euclidean vector space with finite dimensions I], 1%, ... IN-

Consider # vectors U, e Vj, v^, ..., U ^ e v^. Then U, oUjo. . .oU^ can be 

denoted by the multilinear mapping on v^xv2x. . .xv^, in which 'o'means the 

tensor outer product and vector outer product, respectively. The relationship is 

defined by 

(Ui o Uz o... o )(X^, Xg, " , ) = (Ui, (Ug, X; ... (U^, (4.2.3) 

in which denotes the scalar product in V/v, and X/v is an arbitrary vector 

in Va? (l<n<N). 

The space generated by all the elements U, o o . . . « i s called the tensor 

product space of Vi, V2, ..., Vyv - An element of the tensor product space is called as 

an N-th order tensor (over Vi, V2, ..., ). 
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For = K'" (1 < n < Â ) , the tensor product space is called the space of real-

valued (/jX/jX-.-X/^)-tensors, denoted by . its complex equivalent is N ^ 

represented by C 

Definition 2 (Outer product of tensors) 

The definition of an outer product generalises expressions of the type ab^ in which 

a and b are vectors. 

The outer product A . ° B of a tensor and a tensor ^ 

is defined by 

'fAA Je = (4.2.4) 

for all values of the indices. 

For example, the entries of an Mh-order tensor A , equal to the outer product of N 

vectors u^'\ u®, . . . , u^^, are given by . 

Definition 3 (Scalar product of tensors) 

The definition of an scalar product of two vectors a, b are expressed in well known 

form as a b. 

The scalar product {yi,B^ of two tensors A..,B^ j^/iXAx...x/„ defined as 

{A,S) « I Z - Z i , , , , (4.2.5) 

Definition 4 (Orthogonality) 

Tensors of which the scalar product equals 0, are mutually orthogonal. 

B^ = 0 Tensors A and B are mutually orthogonal (4.2.6) 
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Definition 5 (Frobenius-norm) 

The Frobenius-norm of a tensor ^ is given by 

def (4.2.7) 

In tensor terminology, column vectors, row vectors, third-directional (orthogonal 

to the column and row vectors), etc will be called mode-1 vectors, mode-2 vectors, 

and mode-3 vectors, etc. In general, the mode-n vectors of an Mh-order tensor 

'î '2X. ••></« the /^-dimensional vectors obtained from A. by varying the 

index and keeping the other indices fixed. 

Definition 6 (Multiplication of a higher order tensor and matrix) 

The mode-n product of a tensor by a matrix U e , denoted by 

./4x^ U , is an (/;x72x...x/^_;xy^x/^_^,x...x7^)-tens0r defined by 

for all index values. 

The mode-n product allows one to express the effect of a basis transformation in 

R'" on the tensor A . 

As an example, for the matrix product A = - B ,which involves matrices, 

and . Working with the 

"generalised transposes", in the multilinear case (in which the fact that mode-1 

vectors are transpose-free, would not have an inherent meaning), can be avoided 

by observing that the relationships between and (not ) with B are in 

fact completely similar: in the same way as makes linear combinations of the 

rows of B, makes linear combinations of the columns; in the same way as the 

columns of B are multiplied by , its rows are multiplied by ; in the same 

way as the columns of are associated with the column space of A, the 

columns of are associated with the row space. This typical relationship is 

denoted by means of the -symbol: A = BXj . 

78 



Chapter 4, Higher Order Singular Value Decomposition 

J?. 

U(3) 

Figure 4.2.1 Visualisation of the multiplication of a third-order ^ with 
matrices e ) Ax/, ^ ̂ (2) g : and e 

Figure 4.2.1 visualises the equation ^ for third-order 

tensors A. & ]̂ /|X/2x/3 . Unlike the conventional way of visualising 

second-order matrix products, has not been transposed, for reasons of 

symmetry. Multiplication with involves linear combinations of the 

"horizontal matrices" (index i\ fixed) in B . Stated otherwise, multiplication of B 

with means that every column of B (indices Z2 and is fixed) has to be 

multiplied from the left with . Multiplication with and can be 

explained in a similar way. 

Definition 7 (Higher order moment tensor) 

The Mh-order moment tensor of a real stochastic vector x is defined by the 

element-wise equation; 

/l/((^)=Mom(x^,x.,... ,x,J ^ (4.2.9) 

The first-order moment is the mean of the stochastic vector. The second-order 

moment is the correlation matrix. 
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Definition 8 (Higlier order cumulant tensor) 

The Mh-order cumulant tensor of a real stochastic vector x is defined by the 

element-wise equation: 

[ i e a , J [ i e a j J [ i e a ^ J 

where the summation involves all possible partitions A ^ j , 

(1 < AT < JV) of the integers For ^ real zero-mean stochastic vector x 

the cumulants up to order 4 are explicitly given by: 

=Cum(x,.) 

^ E{%,} 

=Cum(% 
\ ' Vi 

=Cum(% %.,%() 
(4.2.11) 

=Cum(x, X,.) 

Except for the first-order cumulant case, every component x, of x that has a non-

zero-mean, Xi has to be replaced above formulas by x, - E{ Xi}. 

The first-order cumulant is the mean of the stochastic vector. The second-order 

cumulant is the covariance matrix. 
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The particular form of definitions (4.2.9) and (4.2.10) follows from the 

representation of the probability density function of x by means of its first and 

second characteristic function, of which the Taylor series coefficients are 

proportional to the moments and cumulants, respectively [Barrett, 1964; 

McCullagh, 1987]. 

4.2.2 Properties of Moment and Cumulant Tensors 

The higher-order moments in above formulas have a simpler structure than those 

of the cumulant tensor. However, cumulants have a number of important 

properties, that are not shared with higher order moments, such that in practice 

cumulants are more frequently used. In this section, some of the most interesting 

properties of the higher order moment and cumulant tensors [Nikias and Mendel, 

1993; De Lathauwer, 1997] have been introduced. 

• Super-symmetry: moments and cumulants are symmetric in their arguments, i.e., 

(4.2.12) 

(4.2.13) 

in which P is an arbitrary permutation of the indices. 

• Multilinearity: if a real stochastic vector x is transposed into a stochastic vector 

X by a matrix multiplication x = A • x , with A e , then we have; 

= / ( / ( (""^Ax^Ax^.x^A (4.2.14) 

^ <^('~')X;AX2AX3...X^A (4.2.15) 

which represents the homogneity of the moment and cumulant tensor. 
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® Even distribution: if a real random variable x has an even probability density 

function PzW, i.e. p%(%) is symmetric about the origin, then the odd moments and 

cumulants of x vanish. 

• Partitioning of independent variables: if a subset of I stochastic variables 

Xj, Xj,..., X; are independent of the other variables, then we have: 

Cum(XpX2,...,X;) = 0 (4.2.16) 

This property does not hold in general for moments. A consequence of the 

property is that a higher-order cumulant of a stochastic vector having mutually 

independent components, is a diagonal tensor, i.e. only the entries of which all the 

indices are equal can be different from zero. 

• Sum of independent variables: if the stochastic variables x ,̂ x^,..., x̂  are 

mutually independent from the stochastic variables y^,y2,...,y,, then: 

Cum(X] + yi,X2 + )'2,...,Xt + yt) = Ciim(X|,X2 xJ + Cum(y^,)72,...,yJ (4.2.17) 

The cumulant tensor of a sum of independent random vectors is the sum of the 

individual cumulants. Also, this property does not hold in general for moments, 

hence it explains the term "cumulant". 

• Non-Gaussianity: if j is a Gaussian variable with the same mean and variance as 

a given stochastic variablex, then for order, N>3: 

(4.2.18) 

represents the distance from the Gaussian, thus higher-order cumulants of a 

Gaussian variable are 0. With the multilinearity property, the higher-order 

cumulants are blind to an additive Gaussian noise which has been already 

mentioned in Chapter 2. 

Generally speaking, it becomes harder to obtain reliable estimates of HQS from 

sample data as the order increases, i.e. longer data sets are required to retain the 
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same accuracy as for the second order case [Cardoso, 1991; Comon, 1994]. Hence 

in practice the use of HOS is usually restricted to third- and fourth-order cumulants. 

For symmetric distributions, fourth-order cumulants are commonly used. 

4.2.3 Singular Value Decomposition (SVD) and Higher-Order Singular 

Value Decomposition (HOSVD) 

The HOSVD is derived by formulating it in terms of matrix/vector-sub problems. 

Hence, it will be useful to represent higher-order tensors in a matrix format. The 

tensor-matrix relationship is algebraically and geometrically related through 

"matrix unfolding" of a given t enso r^ from which the process of the matrix SVD 

and higher-order SVD is explained, which shows the analogy between them. The 

unfolding of the tensor into the matrix form can yield the conventional SVD 

process from which the higher-order singular values are estimated. To assist 

understanding, visualisation of the HOSVD and unfolding is presented. This is 

followed by examples of HOSVD from a theoretical and computational point of 

view. 

Matrix Singular Value Decomposition 

Every complex (/j xl^) -matrix A can be written as the product 

A = U(^).S'V(^)'' =SX;U('% (4.2.19) 

in which: 

® is a unitary (/j x/,)-matrix, 

• (= V̂ ^̂  ) is a unitary (/^x/^)-matrix, 

• S is an -matrix with the property of; 

- pseudodiagonality: 

S — diag(<7[, (Jj' • • • > '̂ min(/,,/T)) (4.2.20) 

- ordering: 

(4.2.21) 
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The cr. are singular values of A and the vectors C/P and are respectively an 

ith left and an Ah right singular vector. The decomposition is visualised in 

Figure 4.2.2. 

K 
\ l h 

yT 

S 

Figure 4.2.2 Visualisation of the matrix SVD 

Mh-Order Singular Value Decomposition 

Every complex -tensor ^ can be written as the product 

(Af) ( 4 . 2 . 2 2 ) 

in which: 

• is a unitary (7^x7^)-matrix, 

• tS" is a complex (7̂  x 7̂  x. . . x 7^) -tensor of which the subtensors obtained 

by fixing the nth index to a , have the property of: 

- all-orthogonality: 

two subtensors and are orthogonal for all possible values of n, a 

and P subject to p-. 

= 0 when ( 4 . 2 . 2 3 ) 

ordering: 

=1 
> cs; L = 2 

>% > 4 ^ , >0 ( 4 . 2 . 2 4 ) 

for all possible values of n. 
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The Frobenius-norm c5:_,. symbolised by for matrix case, is the Ah n-mode 

singular value of ^ and the vector is the Ah n-mode singular vector. The 

decomposition is visualised for third-order tensors in the Figure 4.2.3. 

/ 

/ 
J' 
/ 

Figure 4.2.3 Visualisation of the HOSVD for a third-order tensor 

From a comparison of the matrix and tensor theorem it is clear that in the higher-

order case the "core matrix" (singular value matrix) S is replaced by the "core 

tensor" S . Instead of being pseudo-diagonal, which would mean that non-zero 

elements could only occur when the indices /, == =. . . = , S is in general a full 

tensor, but it obeys the weaker condition of all-orthogonality instead. The actual 

role of the singular values is taken over by the Frobenius-norms of the (N-l)th-

order subtensors of the core tensor. By definition the n-mode singular values are 

positive and real, as in the matrix case. On the other hand the entries of S are not 

necessarily positive in general; they can even be complex, when ^ is a complex-

valued tensor. 

Matrix representation of a higher-order tensor (unfolding of tensor) 

The HOSVD will be derived by formulating it in terms of matrix/vector-sub 

problems. Hence it will be useful to represent higher-order tensors in a matrix 

form. This tensor-matrix relationship can be geometrically related through "matrix 

unfolding" of a given tensor ^ . 
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The matrix unfolding A,. , G , associated wi± a 
^ ( / p ( l ) X / p ( 2 ) / p ( 3 ) - /p(Ar)) 

permutation (P(1),P(2),...,P(A^)) of (1,2,..., A/") of a Mh-order tensor 

^ ^ (̂ i,xi,x--xif, element • at the position with row number ip f̂(i) 

and column number 1)-̂ p(3)̂ p(4) ' ' ' ^p(n) ('p(3) ^ ) ^ p ( 4 ) ^ p ( 5 ) ' ' ' ^p{N) ^ ^p(N) • 

example of this unfolding is given in later part of this section. 

The unfolding operation involved with the construction of A^^, A^̂ ) and Â ^̂  is 

visualised for the third order case in the following figure. 

X 

X 

/ / 
7 

1 I I j r x ( l 3 I j ) Matrix 

A 

X 

X 

7 

A 

1 1 1 1 

1 1 1 1 1 1 1 1 .Z-x(I, 3̂ ) Matrix 

\i) 

12) 

J I 

X 
/ 

rn rn X x ( l 2 I , ) Matrix 
A 

(̂3) 

A X 

Figure 4.2.4 Unfolding of the -tensor to the (/, x/^ -Z^)-matrix A^^ 

(Mode-1 matrix form), the ^ ^ x ^ -/j)-matrix (Mode-2 matrix form) and the 

( / j x/g ZJ-matrix A^^ (Mode-3 matrix form). Note that (7, = / j = / j = 4). 
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The matrix representation of the HOSVD can be obtained by unfolding A. and S 

in equation (4.2.22): 

A „ „ , . X , - S (4.2.25) 

in which ' ® ' denotes the Kronecker (tensor) product and P represents a 

permutation. 

Derivation of the core tensor S 

The derivation establishes the connection between the HOSVD of a tensor A. and 

the matrix SVD of a matrix unfolding of ^ . It is given in terms of real-valued 

tensors; the complex case is completely analogous but more cumbersome from a 

notational point of view. 

Consider two (7, x 7̂  x.. . x 7^ ) -tensors A and , related by 

^ = ^ X ; x^ . . . x ^ ( 4 . 2 . 2 6 ) 

in which are orthogonal matrices. Equation (4.2.26) can be 

expressed in matrix format as 

« . . . ® »...<» ( 4 . 2 . 2 7 ) 

Now consider the particular case where is obtained from the SVD of as 

( 4 . 2 . 2 8 ) 

in which is orthogonal and = diagjcrf^,erf ' , . . . ,erf | , where 

> frl") > . . . > o-jj) > 0 ( 4 . 2 . 2 9 ) 

The highest index for which erf >0 is called rank . Taking into account that 

the Kronecker factor in equation (4.2.27) is orthogonal, comparing (4.2.27) and 

(4.2.28) yields 

= % ( " ) . y C ) " . [ U ( ' ) ( 4 . 2 . 3 0 ) 

87 



Chapter 4, Higher Order Singular Value Decomposition 

Using equation (4.2.25), (4.2.28) and (4.2.30), the n-mode core tensor thus, can be 

calculated as 

( ' P ( l ) X ' P ( 2 ) ' P ( 3 ) - ' P ( A ' ) ) 

(4.2.31) 

The equations (4.2.30) and (4.2.31) imply, for arbitrary orthogonal matrices 

,... ,..., , that 

= 0 when (4.2.32) 

and 

4=1 = > 
i„=2 

= > . . . > cs: = > 0 (4.2.33) 

and, if /% < 7̂ : 

c5: = <+1 = 4 = r „ + 2 — — 4 = / =o-r )=0 (4.2.34) 

By constructing , . . . , . . . , i n a similar way as , S can 

be made satisfy all the conditions of the HOSVD-theorem. On the other hand, as 

can be seen from (4.2.27)-(4.2.34), all matrices and tensors S 

satisfying the HOSVD-theorem can be found by the SVD of 

where S follows from (4.2.26). 

Computation of the core tensor S from a rank 1 tensor ^ (Example) 

Suppose for a certain tensor with ~ ^ , 

^211 ~ '^123 ~ "'^212 ~ "'^313 ~ ^ ^311 ~ ^22 ~ ^113 ~ ^321 ~ '^322 ~ ^323 ~ "'^213 ~ ~'^222 ~ ^ , 

a 312 : 0, flj2i = 2̂2, = 4 and <3223 = ~5 . The three modes of matrix unfolding A 
(1) • 

A(2) and Aq) are given as (graphical illustration can be found in the Figure 4.2.4) 

(1 1 1 4 2 n 

\ l ) = 1 - 1 —2 4 —2 - 5 

.2 0 —1 2 2 2 . 
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^2) = 

A(3) -

1 1 2 I 1 - 1 0 

^ 4 2 i 2 - 2 2 

1 4 

1 2 

1 1 

— 2 —1 

- 5 2 

1 

- 1 

- 2 

4 1 2 2 

- 2 I 0 2 

- 5 1 - 1 2 

The 1-mode singular vectors are the columns of the left singular matrix of 

. In the same way and can be obtained from SVD of and A,^.. 

u(') = 
& 1 8 9 3 

0 . 9 8 1 6 

0 . 0 2 5 1 

- 0 . 7 5 7 2 

0J^22 

- 0 . 6 3 2 7 

0 . 6 2 5 2 ^ 

-0.1008 

- 0 . 7 7 4 0 

U (2) r 0 . 3 2 5 6 0 . 9 4 5 5 ^ 

0 . 9 4 5 5 - 0 . 3 2 5 6 

U (3) 

- 0 . 6 5 6 4 0 . 7 0 5 5 

0 . 2 5 4 6 0 . 5 4 0 6 

- 0 . 2 6 7 3 ^ 

(18018 

^ 0 . 7 1 0 2 0 . 4 5 8 2 - 0 . 5 3 4 5 y 

The core tensor of the HOSVD then follows from application of equation (4.2.31); 

unfolded in each mode equal to: 

^ - 7 . 1 8 4 6 0 . 2 2 3 5 0 . 0 0 0 0 ! 0 . 0 6 1 5 - 0 . 4 9 0 6 0 . 0 0 0 0 ^ 

'(1) - 0 . 1 7 0 3 

0 . 0 0 3 5 

- 5 . 9 0 2 4 0 . 0 0 0 0 

0 . 2 6 7 5 0 . 0 0 0 0 

0 . 7 6 5 4 - 0 . 0 9 9 1 0 . 0 0 0 0 

2 . 1 0 7 1 0 . 3 3 5 0 O.OOOOy 

-7.1846 -0.1703 0.0035 | 0.2235 -5.9024 0.2675 
0.0615 0.7654 2.1071 -0.4906 -0.0991 0.3350 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 y 

r - 7 . 1 8 4 6 0 . 0 6 1 5 1 - 0 . 1 7 0 3 0 . 7 6 5 4 

0 . 2 2 3 5 

0.0000 

- 0 . 4 9 0 6 I - 5 . 9 0 2 4 - 0 . 0 9 9 1 

0.0000 0.0000 i 0.0000 

From above obtained unfolded core matrices S 

0 . 0 0 3 5 2 . 1 0 7 1 ^ 

0 . 2 6 7 5 0 . 3 3 5 0 

0.0000 0.0000 

(1) S(2) and S(3) it is observed the 

fact that the core tensor is all-orthogonal. For example, the rows of are 

mutually orthogonal and also the matrices formed by the first and the last three 

columns, as well as the three matrices formed by columns 1 and 4, 2 and 5, 3 and 6. 
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The core tensors are ordered: its matrices are put in order of descending Frobenius-

norm. The Frobenius-norms give the singular values of ^ : 

mode 1: 7.2051, 5.9551 and 2.1502 

mode 2: 9.3063 and 2.3221 

mode 3: 7.5284,5.9433 and 0 

The sums of the squared n-mode singular values are all equal to 92, which is the 

squared Frobenius-norm of ^ . The third 3-mode singular value equals 0, since 

the 3-mode singular vectors (the rows of the left and right sub-matrix of A^j) only 

span a two-dimensional space. 

4.3 HOSVD and determination of the presence of a non-Gaussian 

impacting signal 

Since the higher-order cumulant of random signals is blind to Gaussian signals, 

non-Gaussian signals may be detected by constructing the higher-order cumulant 

of the measured signal. The determination of the presence of a non-Gaussian 

impacting signal from the observed signals can be achieved through the use of the 

HOSVD and checking the Frobenius-norm of the n-mode core tensor from the 

constructed higher order cumulant tensor. In this case, the constructed higher-order 

tensor is symmetric hence any mode of the Frobenius-norm will suffice to extract 

the information. Two methods will be discussed and their performances 

demonstrated. 

The major assumptions behind this detection procedure are as follows; 

1. The observed signal is stationary up to fourth order. 

2. The sample size is 'sufficiently large'. 

3. The unknown impacting signal is non Gaussian and has non zero cumulant 

at least to fourth order. 

4. The system through which the impacting signal passes is linear, time 

invariant and stable. 

5. The additive noise is Gaussian and independent of the input signal. 

90 



Chapter 4, Higher Order Singular Value Decomposition 

4.3.1 Construction of the higher order tensor 

Suppose we have single observed signal v(n), n=0,l,...,N, which takes the form of 

v(n) = ^ h(k)x(n -k) + w(n) ( 4 . 3 . 1 ) 
4=0 

in which h(k) is the impulse response of an unknown system, x(n) is the unknown 

input signal (Gaussian or non-Gaussian), and w(n) is additive Gaussian noise. The 

observed signal is assumed to have zero mean and is stationary. The ^-th order 

cumulant tensor of the data matrix v can be constructed from a shifted data matrix 

construction. One sample sequentially shifted data sets are prepared as follows; 

v^(n)-v(n)-S(n-m), m = 0,l , . . . ,r ( 4 . 3 . 2 ) 

where the time lag index m denotes the delay. 

From (4.3.2), the data matrix is constructed as 

, ( f+ l )x(A^-( f+1)) data matrix ( 4 . 3 . 3 ) 

Graphically, the construction of the tensor based on the above formula can be 

illustrated in the following figure; 

w 

V, 

-• V. 

Figure 4.3.1 Construction of the higher order tensor from one sample delayed 
signals from a single measurement 
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From this we can obtain the A:-th order moment tensor as 

v ^ * ^ = v » v ® . . . » v (4.3.4)"^ 

& dmes 

or in matrix form as. 

M , , ( 4 . 3 . 5 ) 

Assuming the signals are zero mean, the construction of the third-order cumulant 

matrix of (4.3.5) takes the form of a three dimensional tensor form, which equals 

the matrix denoted as, 

( 4 . 3 . 6 ) 

Similarly, the fourth-order cumulant tensor ^ can be constructed from equation 

( 4 . 2 . 1 1 ) . 

From these constructed higher order cumulant tensors, the higher order singular 

values are calculated by the method described in the previous section and the 

higher order singular values for any mode (symmetric) can be calculated using 

equation (4.2.30). 

A key aspect of detection considers the variation of the statistical parameters of the 

third and/or fourth order cumulants (before and after the higher order singular 

value decomposition) by considering the variations of the second order singular 

values. 

The tensor constructed from Figure 4.3.1 takes a similar structure to the higher 

order non-zero lag cumulant sequences. The tensor, however, possesses more 

information up to r(r^ - r - 1 ) , T>2 than the matrix form of the cumulant 

sequence. The mapping of the information from the third order cumulant matrix to 

the third order tensor is shown in the Figure 4.3.2 (the bold faced Cg(0,0) and 

Cg (0,0) for T-L correspond to the additional information). 

+ Since the preparation of this thesis the author has been aware of a publication by Rao 
and Wong where a closely related expansion was presented. 
T. Subba Rao and W. K. Wong, Assymptotics, nonparametrices, and time series. Chapter 
8, Some contributions to multivariate nonlinear time series and bilinear models, edited by 
S Ghosh, Marcele Dekker, NY (1999). 
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Cumulant matrix (third order) 

c,(0,2),̂  c,(2.2) 

Cumulant tensor (third order) 

0,(1,2) 

cJ-2,-2) 

/ 
y/c,(l.l) 

/^(l.O) 

y-i.i) y-i.i) 

/ 
\ 

\ 
\ 

:̂ (i.O) 

\ 
\ 
\ 

\ 
yt,(o,o)' 

l^d.-l) 

:̂ (i.O) 

\ 
\ 
\ 

\ 
l^d.-l) 

:̂ (i.O) 

\ 
\ 
\ 

/ 
/ 

4o.-i) ^^^^c,( . l , . l ) / 
/ 

/ 
/ 

/ 

/ 
/ 

4o.-i) 

0,(1.1) 

c#,0)" 

c,(0.-2) 

Figure 4.3.2 Third order cumulant matrix and tensor ( r = 2) 
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Moreover, the singular value decomposition of the third order cumulant matrix 

with lag t is insufficient to reveal significant variation even when there is a non-

Gaussian impacting signal. That is to say, the variation of the singular values of 

the cumulant matrix cannot discriminate the difference between a Gaussian and 

non-Gaussian signal whereas the third order tensor does. To illustrate this, the 

singular values constructed from the cumulant matrix and tensor (from the 

observed signals) for Gaussian and non-Gaussian input cases are plotted in the 

following figure; 

Third order cumulant matrix Third order tensor 

; Gaussian input 
: Non-Qaummian Input 

:Qaumaimn Input 
— : Non-Gaussian input 

5 
Channels 

Figure 4.3.3 The singular values from third order cumulant matrix and tensor 

In the following subsection, the ability of HOSVD for signal detection, 

classification and reconstructability problem is demonstrated through simulations. 

4.3.2 Preliminaries for simulations 

The system for this simulation is shown in the following figure. 

Unknown 
Gaussian no i se 

XA:) 

Observed 
(measured) s i g n a l 

Unknown 
near 

System 

Figure 4.3.4 The signals and system used for non-Gaussian impacting signal 
detection problem with Gaussian measurement noise 
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From only the single observed signal v(k) shown in Figure 4.3.4, the construction 

of higher order (third or fourth) tensor and covanance matrix is carried out using 

delayed signals (channels). The higher order singular value decomposition and 

singular value decomposition of covariance matrix (SOSVD) is then carried out to 

detect non-Gaussian impacting signals, following which the reconstructability of 

the input signal is considered. 

Excitation xjk) 

A Gaussian signal and non-Gaussian impacting signals used in this simulation are 

shown in the Figure 4.3.5. 

(A) Input signal type 1 (Gaussian) 
Mean : 0.017 
Variance : 1.0 
Skewness : 0.009 
Kurtosis : 2.94 
Crest factor: 3.86 

(B) Input signal type 2 (Uni directional impacting signal) 
Mean : 0.068 
Variance : 0.999 
Skewness : 14.72 
Kurtosis : 219.98 
Crest factor : 16.69 

(C) Input signal type 3 (Bi-directional impacting signal) 
Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

r 

1.4e-16 
0.999 
3.05 

206.98 
18.40 

Figure 4.3.5 The input signals 

The above input signals are thus labelled as white input (Gaussian, type 1), uni-

directional impacting signal (non-Gaussian, type 2), and bi-directional impacting 

signal (non-Gaussian, type 3) with 4096 sample points and unit variance. The type 

2 signal (uni-directional impacting signal) is an idealised model for a mechanical 

system containing repetitive faults in its operation and the type 3 signal (bi-
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directional impacting signal) is typical of signals arising in ultra-sonic examination 

(the same signal used in Chapter 2). 

System 

The 'unknown' systems selected for detailed discussion here are as follows; 

(1) System type A (well damped system) 

(a) (b) 

1 

(c) 

llwmWuij Wwne* Plw* — I) 

(2) System type B (highly resonant system) 

(a) (b) (c) 

Figure 4.3.6 The systems used in the simulation, (a): System's pole zero map, (b): 
impulse response, and (c): Frequency Response Function. 

The type A system has a short impulse response function whereas the type B 

system represents a more complex oscillation with a longer impulse response 

function. 

We note that an additional 8 different systems are considered and summarised in 

the Appendix D. 
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Noise free output signal zik) 

The output of systems A and B for each input signal in the absence of noise is 

shown in Figure 4.3.7. 

(1) Output signals (noise free, input type 1) 
From system A From system B 

Mean : 0.151 Mean 0.009 
Variance : 42.430 Variance 4.189 
Skewness : -0.082 Skewness 0.020 
Kurtosis : 2.951 Kurtosis 3.053 
Crest factor : 3.611 Crest factor 4.389 

(2) Output signals (noise free, input type 2) 
From system A From system B 

Mean 
Variance 
Skewness ; 
Kurtosis 
Crest factor 

0.954 
36.897 
4.227 
23.101 
6.663 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.062 
4.301 
1.28 

22.865 
8.064 

(3) Output signals (noise free, input type 3) 
From system A From system B 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

: 8.4e-5 
: 37.585 
: 0.928 
: 23.190 
: 7.345 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.00 
4.308 
0.365 

23.420 
8.935 

Figure 4.3.7 The output signals 

97 



Chapter 4, Higher Order Singular Value Decomposition 

Observed signal v(1c) 

The observed signals are obtained from the output signals including Gaussian 

noise (SNR=-10 dB) interference in Figure 4.3.8. 

(1) Observed signals (SNR=-10dB noise corrupted, input type 1) 
From system A From system B 

Mean 
Variance 
Skewness 
Kurtosis 

0.00 
462.88 
-0.0182 
3.046 

Crest factor : 4.110 

Mean ; -0.052 
Variance : 45.885 
Skewness : -0.013 
Kurtosis : 2.981 
Crest factor : 3.879 

(2) Observed signals (SNR=-10dB noise corrupted, input type 2) 
From system A From system B 

Mean 
Variance 
Skewness 
Kurtosis 

1.155 
403.698 
0.115 
3.228 

Crest factor : 3.839 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

0.386 
47.398 
0.025 
3.102 
3.914 

(3) Observed signals (SNR=-10dB noise corrupted, input type 3) 
From system A From system B 

Mean 
Variance 
Skewness 
Kurtosis 

0.204 
4.12e+2 
0.025 
3.151 

Crest factor: 4.069 

Mean 
Variance 
Skewness 
Kurtosis 

; 0.0795 
46.666 
0.022 

3.106 
Crest factor : 3.599 

Figure 4.3.8 The observed signals 
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4.3.3 Detection and classification of input signal 

Using the three different input signals and two systems, the applicability of 

HOSVD to the signal detection and classification is tested. 

Detection 

From the results of extensive simulation, we now propose an empirical detection 

method. We first compute a threshold level (tr) based on SOSVD. 

tr=(Max(A)-Min(A)) • Var(A^) (4.3.7) 

2 ch 

where in which 'ch' represents the total number of one sample 

delayed signals ( = r + l in Figure 4.3.1), and A denotes the singular values of the 

covanance matrix. 

Next, we compute a detection measure (detector) based on HOSVD where 

D^=(Max(HSJ-Min(HSJ).Var(HSJ, k=3or4 (4.3.8) 

I ch 

where Var(SK^) = — VSK^(0^ and HSk are the singular values of the higher 
ch M 

(third or fourth) order tensor. 

Finally, Dk is compared to tr to decide the presence or other wise of a non-

Gaussian signal (e.g., the magnitude of Dk in comparison of the tr provides us with 

the information concerning the existence of a non-Gaussian signal). 

Classification 

As will be shown very consistent results arise from the previous detection scheme. 

Building on this we propose a classification based on HOSVD to distinguish 

between three types of input (Gaussian, non-Gaussian uni-directional impacting, 

and non-Gaussian bi-directional impacting) and several classes of systems. This 

follows below; 
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Class 1: Only Gaussian input signals exist if 

< tr, k=3 and 4 

Class 2; The input signal is non-Gaussian and uni-directional impulse (type 2 

signal) if 

> tr, k=3 and 4 

Class 3: The input signal is non-Gaussian but either the input signal is bi-

directional impulse (type 3 signal) or the system is highly resonant if 

D3 < tr, 

D4 > tr 

Simulations and results 

The following three examples demonstrate the result of non-Gaussian signal 

detection and classification using this method. For every case, the observed signal 

'looks' white and Gaussian. However, HOSVD will be shown to be able to 

indicate the hidden nature of the input signals. 

In the figures that follow, the dotted line in the figure cell labelled 'detection 

result' represents the threshold (tr) calculated from equation(4.3.7) and detection 

measure (detector) for both third and fourth order is estimated from equation 

(4.3.8). 
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Example 1; Gaussian and non-Gaussian impacting signal (uni-directional) 

with well damped system 

Input signal type 1 (Gaussian) 

4. 

System type A 

Input signal type 2 (non-Gaussian) 

System type A 

Realpaft 

+ Gaussian noise (-lOdB) 

Observed signal 1 (No impact) 

Real part 

+ Gaussian noise (-lOdB) 

Observed signal 1 (Impact) 

Figure 4.3.9 Signals and system for example 1 (type 1 and type 2 signal with well 
damped system) 
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Detection result 

Third order Fourth order 

Detection result 

Third order Fourth order 

Classification Classification 

D3<t r | 

D4<trJ 

Class 1 

Only Gaussian 
input signal exists 

D , > t r , 

D , > t r l 

Class 2 

Input signal is 
non-Gaussian and 

uni-directional 
impulse 

Figure 4.3.10 The detection and classification of signal from HOSVD (type 1 and 
type 2 signal with well damped system) 

In the detection result graph (bar graph), the threshold of detectability calculated 

from the equation (4.3.7) is displayed by the dotted line. Thus, if the height of each 

bar is higher than the dotted line, according to our criterion, a certain type of non-

Gaussian impacting signal is present in the observed signal. It is clear that for a 

Gaussian input, none of the indicators reach the dotted line (left side of Figure 

4.3.10), thus it belong to the class 1. On the other hand, when both the third and 

fourth order detector exceed the dotted line (right side of Figure 4.3.10), the non-

Gaussian signal is detected and we can classify the non-Gaussian input signal as a 

uni-directional impacting signal i.e., class 2. 
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Example 2; Gaussian and non-Gaussian impacting signal (uni directional) 

with highly resonant system 

Input signal type 1 (Gaussian) 

System type B 

Input signal type 2 (non-Gaussian) 

System type B 

Real part 

+ Gaussian noise (-lOdB) 

Observed signal 1 (No impact) 

Real part 

+ Gaussian noise (-lOdB) 

Observed signal 1 (Impact) 

Figure 4.3.11 Signals and system for example 2 (type 1 and type 2 signal with 
highly resonant system) 
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Detection result 

Third order Fourth order 

Detection result 

Third order Fourth order 

Classification 

D3 < tr I 

D,<tr l 

Class 1 

Only Gaussian 
input signal 

exists 

D3 < tr I 

D,>trJ 

Classification 

Class 3 

Input signal is 
non-Gaussian but 

either the input 
—> signal is bi-

directional 
impulse (type 3 

signal) or the 
system is highly 

resonant 

Figure 4.3.12 The detection and classification of signal from HOSVD (type 1 and 
type 2 signal with highly resonant system) 

Even for the non-Gaussian impacting signal, the third order detector cannot spot 

the non-Gaussianity whereas the fourth order does. Since the non-Gaussian 

impacting signal is uni-directional, the reason for the fact that the third order 

HOSVD cannot detect the non-Gaussian component is found from the 

characteristics of unknown system. When a system is highly resonant (type B), 

then the output of the system becomes close to the symmetric distribution, and in 

turn the odd order statistical values tends to be closer to zero (see the shape of the 

output of the system for impacting case in the right column of the Figure 4.3.7). 

Thus, we obtain two different classes; class 1 as before (left figure) and the new 

case is class 3 (right figure). 
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Example 3; Non-Gaussian impacting signal (bi-directional) with well damped 

and highly resonant systems 

Input signal type 3 (non-Gaussian) 

System type A 

Input signal type 3 (non-Gaussian) 

System type B 

RealpaM 

+ Gaussian noise (-lOdB) 

Observed signal 1 (Impact) 

+ Gaussian noise (-lOdB) 

Observed signal 1 (Impact) 

Figure 4.3.13 Signal and systems for example 3 (type 3 signal with well damped 
and highly resonant systems) 
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Detection result 

Third order Fourth order 

Detection result 

Third order Fourth order 

D3 < tr I 

D,>tr l 

Classification 

Class 3 

Input signal is 
non-Gaussian 
but either the 
input signal is 
bi-directional 

impulse (type 3 
signal) or the 

system is highly 
resonant 

D3 < tr I 

D4 >trj 

Classification 

Class 3 

Input signal is 
non-Gaussian but 

either the input 
signal is bi-
directional 

impulse (type 3 
signal) or the 

system is highly 
resonant 

Figure 4.3.14 The detection and classification of signal from HOSVD (type 3 input 
signal with type A and type B systems) 

For the type 3 input signal (bi-directional) case, the third order detector cannot 

determine the impulsive nature of the input signal regardless of the system. This is 

because the noise-free output of the system is symmetric (see the signal shapes in 

the third row of the Figure 4.3.7). However, we do detect the non-Gaussian signal 

through the fourth order detector. The classification is thus given as class 3 (Input 

signal is non-Gaussian but either the input signal is bi-directional impulse or the 

system is highly resonant). As a result, the HOSVD based on the fourth order 

statistics can provide more consistent detection than the third order. 
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The above examples demonstrate the significant difference between third and 

fourth order singular value decomposition in detecting and classifying input 

signals. Since the third order is blind to symmetric distributions, then when the 

non-Gaussian input signal has a symmetric distribution or the unknown system is 

highly resonant (narrow band), the differences of the higher order singular values 

as compared to the third order tensor may not provide correct results. 

4.3.4 Reconstructability assessment from HOSVD 

A method for the detection and classification of unknown input signals has been 

presented. This section is concerned with the next stage of HOSVD application 

which is the reconstruction of the non-Gaussian signal after it has been detected. 

In Chapter 3, we discussed both the Finite Impulse Response (FIR) and Infinite 

Impulse Response (IIR) blind deconvolution operator (inverse filter). However the 

choice of FIR is generally enough for practical application as an IIR system can be 

well approximated by FIR provided the model order L is large enough [Abed-

Meraim et al, 1997]. Moreover, as the FIR often leads to simple development of 

BD process, we restrict ourselves to using FIR inverse filtering leaving the detailed 

discussions of the filter length to Chapter 5. 
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R e c o n s t r u c t a b i l i t y f a c t o r ( R ) e s t i m a t i o n 

1) Highly acceptable signal reconstruction region 

From extensive simulations of calculating the higher order singular values, 

we deduce a relationship between the number of a series of one sample 

delayed signals (channels) and the maximum value of the singular value 

(Max(HS^), k=3 or 4 ) for the non-Gaussian input case. That is to say, 

when a non-Gaussian impacting signal exists, the maximum higher order 

singular value (from the higher order tensor) increases as the number of 

channels (number of one sample sequentially delayed signals) increases. To 

demonstrate this trend, we construct and decompose higher order tensors 

(third and fourth order) from 2 channels ( r = 1) to 9 channels (T = 8) and 

plot the maximum singular values in the Figure 4.3.15. 

T h i r d o r d e r F o u r t h o r d e r 

— : pfacOcalcakulaHon 
— : empMcalpfecBcUon 

Number of channels [T+1] 

— : pfmcbealcmjculabon 
empirical prediction 

Number of channels [T+1] 

Figure 4.3.15 The relationship between the maximum higher order singular value 
and number of channels 

The solid line of the figure represents the maximum value of the higher order 

singular values which increases logarithmically as the number of channels 

increases. The maximum higher order singular value is described 

approximately by 

Max(HS^) oc log [ t ] , k=3 or 4 ( 4 . 3 . 9 ) 

where T corresponds to the number of channels. 

N.B. note that computational constraints limit the number of channels for 
the fourth order case to 9. Considerable computational processing power is 
required to go beyond this. 
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An empirical result (based on equation (4.3.9)), indicates a 'sufficient' 

condition for reconstructability is deduced as 

CHSk=r^.log[T], k=3or4 

where r is the total number of delayed signals (i.e., the number of channels 

= T+1) and the constants are empirically 'fitted' as ms = 0.25 and m4 = 0.85. 

2) Suppression of fluctuation factor (SF) 

This is a parameter that reveals the status of the signal from HOSVD and 

indicate the possibility of signal reconstruction 

• [Max(HS^) - Min(yJ)], k= 3 or 4 

where HS^ is the mean of the higher order singular values and y j is the 

skewness or kurtosis of each delayed signal. 

3) Reconstructabihty factor (R) 

This is a parameter that can predict the 'degree' of signal reconstruction 

using the FIR inverse filter of the same length as the channel and includes 

the current status of the observed signal as 

Rk = , k= 3 or 4 

where yl denotes the skewness or kurtosis of the observed signal. 

Based on this procedure, some simulations have been carried out and the results 

and discussions are given as follows; 
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E x a m p l e 1 ; U n i d i r e c t i o n a l i m p a c t i n g s i g n a l i n p u t w i t h w e l l d a m p e d s y s t e m 

I n p u t a n d o b s e r v e d s i g n a l s 

I n p u t s igna l O b s e r v e d s igna l 

R e c o n s t r u c t a b i l i t y a s s e s s m e n t f r o m 

T h i r d o r d e r F o u r t h o r d e r 

R e s t o r e d s i gna l s f r o m 

T h i r d o r d e r F o u r t h o r d e r 

500 1000 1500 2000 2500 3000 3600 4000 
Time Index 

600 1000 1500 2000 2500 3000 3500 4000 
Time index 

Figure 4.3.16 The reconstructability assessment and restored signals (type 2 input 
signal with type A system) 
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E x a m p l e 2 ; U n i d i r e c t i o n a l i m p a c t i n g s i g n a l i n p u t w i t h h i g h l y r e s o n a n t 

s y s t e m 

I n p u t a n d o b s e r v e d s i g n a l s 

I n p u t s igna l O b s e r v e d s igna l 

R e c o n s t r u c t a b i l i t y a s s e s s m e n t f r o m 

T h i r d o r d e r F o u r t h o r d e r 

R e s t o r e d s i g n a l s f r o m 

T h i r d o r d e r F o u r t h o r d e r 

GOO 1000 1500 2000 2500 3000 3600 4000 
Time Inckx 

Figure 4.3.17 The reconstructability assessment and restored signals (type 2 input 
signal with type B system) 
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E x a m p l e 3 ; B i - d i r e c t i o n a l i m p a c t i n g s i g n a l i n p u t w i t h w e l l d a m p e d s y s t e m 

I n p u t a n d o b s e r v e d s i gna l s 

I n p u t s igna l O b s e r v e d s i g n a l 

R e c o n s t r u c t a b i l i t y a s s e s s m e n t f r o m 

T h i r d o r d e r F o u r t h o r d e r 

R e s t o r e d s i gna l s f r o m 

T h i r d o r d e r F o u r t h o r d e r 

500 1000 1500 2000 2500 3000 3500 4000 
Tlm# ind«x 

500 1000 1600 2000 2800 3000 3600 4000 
Time index 

Figure 4.3.18 The reconstructability assessment and restored signals (type 3 input 
signal with type A system) 
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E x a m p l e 4 ; B i - d i r e c t i o n a l i m p a c t i n g s i g n a l i n p u t w i t h h i g h l y r e s o n a n t s y s t e m 

I n p u t a n d o b s e r v e d s i gna l s 

I n p u t s igna l O b s e r v e d s i g n a l 

R e c o n s t r u c t a b i l i t y a s s e s s m e n t f r o m 

T h i r d o r d e r F o u r t h o r d e r 

}• 

R e s t o r e d s i g n a l s f r o m 

T h i r d o r d e r F o u r t h o r d e r 

500 1000 1500 2000 2500 3000 KOO 4000 
Time index 

500 1000 1500 2000 2600 3000 3500 4000 
Time M m ; 

Figure 4.3.19 The reconstructability assessment and restored signals (type 3 input 
signal with type B system) 

113 



Chapter 4, Higher Order Singular Value Decomposition 

D i s c u s s i o n o f t h e r e s u l t s 

1 ) G e n e r a l d e s c r i p t i o n s ; (Figure 4 . 3 . 1 6 - Figure 4.3.19) 

In the top row of each figure, a non-Gaussian impacting signal and the observed 

signal (SNR=-10 dB, Gaussian noise corruption) are displayed. In the middle row, 

the dotted line in each figure indicates the sufficient condition for the 

reconstructablilty of the non-Gaussian impacting input signal when the FIR 

inverse filter has the same length as the number of delayed signals (channel). 

Relative to the dotted line, the bar graph represents the degree of reconstructability 

of the input signal through blind deconvolution. The larger the magnitude of the 

bar the 'better' the reconstruction of the input signal. To confirm this, each 

restored signal using both the third and fourth order BD process is plotted in the 

bottom of each figure. 

2 ) E x a m p l e 1 ; (Figure 4.3.16) 

When the input signal is an uni-directional impacting signal (type 2 signal in 

Figure 4.3.5) and the system is well damped (type A system in Figure 4.3.6), the 

reconstructability assessment is (relatively) high for both the third and fourth order 

cases. As can be in the bottom row of the figure, both the restored signals certainly 

indicate the impacting and so support this assessment. 

3 ) E x a m p l e 2 ; (Figure 4.3.17) 

When the input signal is an uni-directional impacting signal (type 2 signal in 

Figure 4.3.5) and the system is highly resonant (type B system in Figure 4.3.6), the 

reconstructability assessment is similar to the detection case. That is to say, the 

highly resonant system degrades the potential reconstructability using the third 

order BD process. The assessment and restored signal by the fourth order in 

contrast is less affected and gives reasonably clear indication of impacting. 

4 ) E x a m p l e 3 ; (Figure 4.3.18) 

Unlike the detection case, when the input signal is a bi-directional impacting signal 

(type 3 signal in Figure 4.3.5) and the system is well damped (type A system in 

Figure 4.3.6), the reconstructability criterion for the third order indicates 
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difficulties in reconstruction. However, application of the BD process produced 

encouraging results. In fact, the outcome from the third order is similar to that of 

the fourth order case. This indicates that the reconstructability criterion is too 

severe. 

5 ) E x a m p l e 4 ; (Figure 4.3.19) 

When the input signal is a bi-directional impacting signal (type 3 signal in Figure 

4.3.5) and the system is highly resonant (type B system in Figure 4.3.6), the 

reconstructability assessment for the third order is low and the restored signal is 

unacceptable as compared to the fourth order which does give an indication of 

impacting. 

O b s e r v a t i o n 

From this simulation study, we conclude (i) that the empirically derived criteria for 

input reconstruction perhaps overly restrictive and (ii) that detection, classification 

and reconstruction using HOS is more affected by the system characteristics than 

the nature of non-Gaussian impacting signals. 

4.4 Summary and conclusions 

This chapter describes the application of higher order statistics through the 

construction of higher order tensors and their singular value decomposition. The 

higher order tensor is a multi-dimensional extension of a matrix retaining the same 

properties of a matrix (e.g. multilinearity and symmetry) and additionally 

possesses the merit of suppressing Gaussian signals. 

We have tested the ability of HOSVD for detection, classification and 

reconstructability of non-Gaussian signals through various simulations. The aim of 

this contribution is to put HOSVD/tensors into a practical context. This has 

included computational experiments and the deduction of empirical criteria. 

Specifically, the methods used and results are summarised as follows; 
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From a single measured signal, the sequentially delayed signals (channels) are 

used to construct the higher order tensor (third or fourth order). From the 

constructed tensors, the higher order singular values are estimated. The essence 

of non-Gaussian signal detection is based on the comparison of the second 

order singular values and higher order singular values. 

A threshold and variance comparison of higher order singular values (up to 

fourth order) enables us to detect non-Gaussian signal under various system 

characteristics. Also, the threshold can be useful in implementing the on-line 

automated detection of a non-Gaussian (impacting) signal. 

By comparing the detectability from the third and fourth order, a classification 

of signals and systems is achieved. 

Following this a formulation based on HOSVD provides a guide to input signal 

reconstructability. 

From the simulations with various systems, we conclude that the detection, 

classification and reconstructability assessment using HOSVD can be a useful 

tool for blind processing of impacting process. 

In conclusion, this chapter has demonstrated, through experimental simulation, 

that HOSVD has considerable promise for detecting impacts in high Gaussian 

noise levels. A cautionary note, however, is that the methods are complicated and 

if the presence of impacting can be determined by other means (even visually in 

low noise environments) obviously this should exploited. Furthermore the 

robustness of this method to, for example, non-stationary and other form of non-

Gaussianity needs further investigation. 
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PART III Practical considerations for blind 

deconvolution 

Chapter 5 

Single Channel Blind Deconvolution 

5.1 Introduction 

A single input single output (SISO) Blind Deconvolution (BD) process based on 

cumulant maximisation requires the input signal to be non-Gaussian. The term 

'blind' considerably restricts the 'quality' of the reconstructed impacting signal. 

This results in ambiguities relating to scale and time delay. Another difficulty 

encountered is the selection of the acceptable length of the inverse filter and the 

form of initial inverse filter in the iterative process. The length of inverse filter 

can be very different depending on whether its impulse response is finite (FIR 

system) or infinite (IIR system). However, as already discussed in Chapter 3, 

there are many advantages to using a FIR system, and this is employed here. 

In this chapter, we reconsider FIR blind deconvolution introduced in Chapter 3 

and two specific aspects are considered in detail namely (i) initialisation of the 

filter and (ii) criteria for selection of filter length. 
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5.2 Descriptions of model and performance measures 

This section defines the model used for the study, i.e., the non-Gaussian input 

signal, the unknown system and the noise. 

5 . 2 . 1 M o d e l ( s i n g l e i n p u t s i n g l e o u t p u t s y s t e m ) 

The situation is depicted below: 

Unknown 

Gaussian no ise win) 

Observed 

(measured) 

s i g n a l 

v{n) 

Restored 
s i gna l 

Unknown 
impact ing 

Inverse 
F i l t e r 
(Fm) 

Unknown 
System 

Figure 5.2.1 The model of blind source reconstruction problem (single input 
single output case) 

The observation v(n) is described by 

v(n) = ^ h(k)x(n - k ) + w(n) ( 5 . 2 . 1 ) 

t=0 

where the h(k) designates the impulse response of the unknown system (MA, AR, 

or ARM A), x(n) is the non-Gaussian input and w{n) is Gaussian noise. The 

inversion is achieved by an FIR filter yielding the 'restored' signal y(n) 

)'(») = 
k=0 

= ^ / ( ^ ) ^ M^)x(M - A:) 4- ̂  /(A:)w(» - A:) ( 5 . 2 . 2 ) 

= x(n) 

k=0 

where/(^) represents the impulse response (length L) of the inverse system (called 

as 'BD operator'). As expressed in the equation (5.2.2), the restored signal y(n) 

inevitably contains filtered noise components and these unwanted noise 

118 



Chapter 5, Single Channel Blind Deconvolution 

components cannot be completely eliminated, even if the noise is Gaussian. 

5 . 2 . 2 P e r f o r m a n c e m e a s u r e s f o r t h e b l i n d d e c o n v o l u t i o n p r o c e s s 

In order to assess the results of blind deconvolution (signal reconstruction) we 

define functions related to the status of the restored signals as well as the objective 

function itself. We introduce five performance measures. These are referred to as; 

The Sum of Squared Deviations (SSD), the Spikiness Index (SI), Inverted 

performance index (Ip), Shape parameter ( a coefficient), and Equivalent 

spikiness (Entropy, E) of signal. The last three parameters are also used in the 

determination of the inverse filter length. Each of them is described below. 

S u m o f S q u a r e d D e v i a t i o n s ( S S D ) 

Measures which can represent the performance of blind deconvolution process 

can be introduced in several ways. A simple and obvious measure is Sum of 

Squared Deviations (SSD) which compares the performances of each 

deconvolution method and is expressed as 

^ [);'(A:) - %(A:)]" ( 5 . 2 . 3 ) 
k=l 

where y'(k) is the delay compensated restored signal which can be obtained by 

estimating the cross-correlation of the restored signal y(ri) and input signal x(n). 

However, this requires knowledge of the input signal, and hence is restricted to 

the simulation case only. 

119 



Chapter 5, Single Channel Blind Deconvolution 

I n v e r s e P e r f o r m a n c e (Ip) i n d e x 

B l i n d deconvolution is based on the maximisation of an appropriately selected 

objective function of the output y{n) of an inverse system f. This objective 

function used in this study takes the form of either the normalised third order 

cumulant (skewness) or the fourth order cumulant (kurtosis) expressed as 

N-\ 

0Xr,2) = f=0 

f=0 

V2 
( 5 . 2 . 4 ) 

and r is either 3 or 4. In the same manner, the normalised higher order cumulant of 

the measured signal v(n) is expressed 

N-l 

( = 0 

f=0 

r/2 ( 5 . 2 . 5 ) 

For simplicity these values are denotes as and . 

The inverse performance index is calculated by inverting the absolute difference 

of the above values 

( 5 . 2 . 6 ) 

This index indicates the performance of blind impacting signal reconstruction in 

accordance with the SSD (i.e., a lower Ip implies a better reconstruction result). 
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S h a p e p a r a m e t e r ( a c o e f f i c i e n t ) 

Another measure that can represent the statistical status of a signal is considered 

by using the Generalised Gaussian Distribution [Miller and Thomas, 1972]. 

This Generalised Gaussian Distribution (GGD) of a random signal y{n) is 

expressed via two parameters such as a and P which are defined below 

(X -fM-)" 

where 

-oo < y < oo is a random signal 

r(») is the gamma function 

> 0 is the scale parameter 

> 0 is the shape parameter. 

This GGD includes a wide range of distributions, e.g., 

1 _w 
a = l : f{y,/3,V)-—-e\ -oo< y <oo ; Laplacian 

Zp 

1 —4 

a =2 : = — • j = e , -oo<y<oo ; Gaussian 

a ^ o o : /();,y?,oo) - ; Uniform 

zp 

a —> 0 : a certain event, i.e., the chances of finding an event in a finite 

samples goes to zero ; highly spiky signal case 

Like the performance index, the effectiveness of the deconvolution for a spiky 

signal reconstruction problem can be measured by examining the a value. 

+ The reference. The advanced theory of statistics. Volume 1 Distribution theory, 

by Kendal, M. G. and Stuart, A. give a more comprehensive classification scheme. 
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In fact, the higher order statistical value and the or coefficient of a the random 

signal y, has a close relationship [Gray, 1979] specifically; 

E ly , 
|2f 

i = l 
r 2p+l ]r[i] 

N 
1=1 

r [ ^ ] ' 
(5.2.8) 

p = 2 corresponds to the kurtosis of the random signal y. 

The relationship between the kurtosis and the a coefficient expressed in the 

equation (5.2.8) is plotted in the following figure; 

10 

^ 5 

4 

3 

2 

a - c o e f f i c i e n t 

10 12 

Figure 5.2.2 The relationship between the kurtosis and a coefficient of random 
signal y. 

E q u i v a l e n t s p i k i n e s s ( e n t r o p y o f t h e s i g n a l , E ) 

The observed signal is considered as being linearly filtered through an unknown 

system and is corrupted by Gaussian noise. When seeking an impacting signal 

through an iterative inverse filter calculation, the status of the deconvolved signal 

(the output of the inverse filter) can be monitored by checking the probabilistic 

characteristics of the signal at each iteration. The impacting signal has several 
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randomly located large events separated by many near-zero events that can be 

interpreted as noise. Under the constraint such that the variance of the observed 

signal and its estimated impacting signal (deconvolved signal) are equal, then the 

probability distribution of the deconvolved signal will have less entropy [Gray, 

1979]. The constraint required above can be achieved by setting the variance of 

the measured and restored signal to be unity. 

N-l 

E x t ) : 
= 1 ( 5 . 2 . 9 ) 

\ 2 

4=0 

where v(k) and y(k) designates the measured and restored signals, respectively. 

The entropy of the signal} is calculated from its probability function as. 

( 5 . 2 . 1 0 ) 

For our purpose, we calculate the entropy for a discrete time signal. This 

calculation will be commonly used throughout this thesis. 

Assuming the expected data range is between -3 • cr^ + jU^ < y <3-ay+ jU^, the pdf 

range is split into equal steps of 0.1-cr^. The total number of data falling into each 

step is counted and divided by the number of data N to give 

This value decreases as the deconvolution process approaches the true impacting 

signal, and thus, possesses similar characteristics to that of the a curve. 

The Ip index, -coefficient and Entropy (E) are used as major elements of 

criteria for the inverse filter length determination together with the performance 

measures of the blind reconstruction of impacting signals. 

We first consider the effect of initialisation of the inverse filter coefficients in its 

iterative calculation procedure, and follow this with consideration of inverse filter 

length determination. 

123 



Chapter 5, Single Channel Blind Deconvolution 

5.3 Effect of initial filter impulse response on deconvolution 

As already discussed in Chapter 3, the inverse filter is calculated from 

f = g (5/11) 

where Rw denotes the symmetry LxL autocorrelation matrix of the observed 

signal, f is Lx l inverse filter coefficient vector, and g is L x l cross-correlation 

vector between the observed signal and the output of the inverse filter. Using 

either the constrained or normalised objective function maximisation process, the 

output signal y{n) can yield input signal restoration through the convolution of the 

measured signal v(n) and the inverse filter f with length L 

) ' ( » ) = ( 5 . 3 . 2 ) 
m=0 

The equation (5.3.1) is solved in an iterative manner as the equation is non-linear. 

Thus, at the first stage of maximising the objective function for the bhnd 

deconvolution procedure, an initial inverse filter has to be selected. 

The aim of this study is to see the effect of this initial inverse filter selection. 

Following figure suggests three possible initial inverse filter types (FIR) used in 

the iterative calculation. 

124 



Chapter 5, Single Channel Blind Deconvolution 

Measured 
signal Inverse 

filter, f 

Output 
signal 

(a) f_ini=[Random set of filter coefficients] 
=[0.75 -0.1 0.3 ...-0.12 ... 0.25] 

(b) f_ini=[lmpulse type initial filter coefficient] 
=[1 0 0 0] 

(c) fJni=[Centred impulse initial filter type] 
=[0 0..1..0 0] 

Figure 5.3.1 Different types of initial inverse filter for deconvolution 

According to the central limit theorem and assuming the measured signal is not 

highly non-Gaussian, any arbitrarily selected inverse filter may make the output 

signal closer to Gaussian. Thus, from Figure 5.3.1, if an initial inverse filter is 

chosen randomly, the statistical property of the output of the inverse filter is liable 

to be closer to Gaussian whereas the other initial inverse filters (b) and (c) will 

not change the statistical properties of the output signal at the first stage of 

iteration. 

We now perform simulations to support the above statements. 
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S i m u l a t i o n w i t h t h r e e d i f f e r e n t i n i t i a l i n v e r s e filter t y p e s 

To study the effect of filter initialisation, we select an unknown input signal and 

an ARMA(2,3) system (unknown) as shown in Figure 5.3.2. 

Unknown 
input signal 

Time history Statistics 

Skewness : 5.3531 
Kurtosis : 219.7 
or coefficient : 0.29 
Entropy : 0.072 

Pole-zero map Impulse response function 

Unknown 
system 

Time history 

Observed 
signal 

Statistics 

Skewness : 0.6577 
Kurtosis : 10.050 
a coefficient : 0.73 
Entropy : 2.745 

Figure 5.3.2 Sample problem of BD process (unknown input signal, system and 
observed signal) 

From above observed signal, blind deconvolution was carried out using three 

different initial inverse filter types (the filter length was kept the same). During 
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the iterative calculation of the inverse filters the values of objective function were 

monitored and compared to each other. 

(a) 

Random number 

initial inverse filter 

Number of iterations 

(b) 

Initial impulse 

inverse filter 

4 5 8 7 
N u m b * of hemtlona 

(c) 

Centred impulse 

inverse filter 

Number of iterations 

Figure 5.3.3 A comparison of the objective function values from three different 
initial inverse type. Oyi : Value of the objective function of output of the inverse 
filter at each iteration, Ov: Value of the objective function of the measured signal. 
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As shown in Figure 5.3.3 (a), the objective function value on the first iteration 

(first point of the solid line) is smaller than that of the measured signal (dotted 

line) for the randomly selected initial inverse filter case. Alternatively, if the 

initial inverse filter is chosen as an impulse type (b) or centred impulse type (c) 

[Gray, 1979], the output of the initial inverse filter can be at least not closer to the 

Gaussianity than the measured signal. Hence, choosing the initial inverse filter 

randomly may result in incorrect restoration of the signal or need more 

computational time to achieve the same result as the other types of initial inverse 

filter. 

Simulation with three different initial inverse filter types and length 

Using the same observed signal as in the previous simulation, the values of 

objective function (kurtosis) of the restored signals from three different filter 

types are compared for each length of these inverse filters. 

R a n d o m i n i t i a l f i l t e r 

I n i t i a l i m p u l s e 

C e n t e r i m p u l s e 

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 

F i l t e r l e n g t h ( L ) 

Figure 5.3.4 Comparison of the performance of deconvolution for three different 
initial inverse filter in each filter length 

In Figure 5.3.4, the kurtosis of restored signal using the random initial inverse 

filter is not always consistent with the increase of the filter length. As an example, 

the restored signals and inverse systems for each initial inverse filter type are 

compared in the following figure; 
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(a) Random initial inverse filter 

(b) Initial impulse inverse filter 

Real part 

(c) Centred impulse inverse filter 

Ulih iiLkiJii 

Figure 5.3.5 Pole-zero map of inverse filters and the shape of the restored signals 
from three different initial inverse filter types. 

As can be seen in Figure 5.3.5, the restored signals from the initial impulse type 

inverse filter (middle, right of figure) and the centred impulsive inverse filter 

(bottom, right of figure) give significantly better results compared to the result 
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from the random number initial inverse filter (top, right of figure). The pole-zero 

map of the inverse filter from a randomly selected initial inverse filter type turns 

out to be a non-minimum phase system. The zeros are spread outside the unit 

circle without cancelling out the original system's pole position. In contrast, the 

zeros of the inverse filters obtained from both initial impulse and centred impulse 

initial inverse filters cancel out the original system's pole position. The resulting 

restored signals reflect the important effect of selecting the initial inverse filter 

type. 

The results are summarised in the following table. 

Table 5.3.1 Comparison of restored signal from three different initial inverse 
filters (numerical results of Figure 5.3.5) 

Restored signal by MA(21) 

Random initial 
inverse filter 

Initial impulse 
inverse filter 

Centred impulse 
inverse filter 

a coefficient 0J7 0^2 0.52 

Entropy :1743 2.2443 2.1846 

Skewness 4143702 0.2462 0.76524 

Kurtosis &2378 22.3232 22.847 

SSD 1.05e+4 4.708e+3 4.7017e+3 

Delay 25 7 15 
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5.4 Determination of the inverse filter length 

The inversion formula defined in Chapter 3 (section 3.3) yields the inverse filter 

coefficient vector in a non-linear iterative manner. To solve this, an initial inverse 

filter coefficient vector with a chosen length is selected. This section addresses 

determination of the length of the inverse filter. 

Methods for determining the length based on the statistical parameters of the 

observed and restored signal are introduced and their performances are compared 

based on the restored signals. 

Three performance measures (Ip, a and E) which were introduced in section 5.2 

are used to observe the effect of inverse filter length. As an example, the changes 

of these three performance measures for restored signals from different inverse 

filter length (2 - 200) are plotted in the following figure. 

1 . 4 

1,2 

I 1 

1 
g &8 
g 0.6 

S 
^ 0 . 4 

a 

~°'0.2 

0 

- 0 . 2 

- - • I 
P 

a 
E _ 

Apmiii 

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 

F i l t e r l e n g t h ( L . ) 

Figure 5.4.1 The shape of the inverse performance value (Ip for skewness), a 
coefficient, and entropy curve of restored signals produced from different inverse 
filter length. 

Figure 5.4.1 demonstrates the trend of the three performance indices along with 
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the length of inverse filter (simulations and results are listed in Appendix E). The 

shapes of the performance indices indicate that a certain 'limited' length of 

inverse filter would be sufficient to restore the impacting signal and can avoid 

inefficient computational loads caused from an unnecessarily long inverse filter 

length selection. This is discussed in the following. 

5 . 4 . 1 I n v e r s e p e r f o r m a n c e i n d e x b a s e d l e n g t h d e t e r m i n a t o r 

From the shape of Ip curve in Figure 5.4.1, we resort to the spirit of the Akaike 

Information Criteria (AIC) which determines the orders of an unknown system 

incorporating the performance (improvement) and a penalty term [Akaike, 1974]. 

We note that this has not been arrived at from statistical/probabilistic arguments 

but is empirical. We consider the Ip curve as the performance and select the 

penalty term arising from the increased filter length as, 

( 5 . 4 . 1 ) 

where N designates the number of data points. The optimal filter length selection 

criterion denoted as P i is defined as, 

( 5 / 1 . 2 ) 

Hence, the optimal length of the inverse filter selected from the point where the Pi 

curve reaches its minimum point, which is illustrated in Figure 5.4.3. 

5 . 4 . 2 S h a p e p a r a m e t e r ( a c o e f f i c i e n t ) b a s e d l e n g t h d e t e r m i n a t o r 

The filter length criterion from this parameter is expressed using the same penalty 

term (di) expressed in the equation (5.4.1) as, 

( 5 . 4 . 3 ) 

The optimal length of the inverse filter selected from above equation and the 

shape of the restored signal are illustrated in Figure 5.4.4. 
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5 . 4 . 3 E q u i v a l e n t s p i k i n e s s ( e n t r o p y o f t h e s i g n a l ) b a s e d l e n g t h d e t e r m i n a t o r 

The filter length determination criterion from this parameter takes a similar form 

as the previous methods as, 

= E + ( 5 . 4 . 4 ) 

By this, the optimal length of the inverse filter selected from the point where the 

El curve reaches its minimum point. The shapes of the optimal length selection 

and restored signals from this length of filter are shown in Figure 5.4.5. 

5 . 4 . 4 S i m u l a t i o n r e s u l t s a n d d i s c u s s i o n s 

This section demonstrates the performance of four FIR inverse filter length 

determinators by comparing the status of the filter length selection, their restored 

signals, and the statistical values of the signals. 

The input signal, unknown system and observed signal used in this simulation are 

shown in the following figure; 

Input signal Unknown system 

MOO 3000 aeoo *co 

Observed signal 

Figure 5.4.2 The shape of the unknown input signal, system and observed signal 
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The numerical values of the input and observed signal as well as the shape of the 

impulse response (IR) of unknown system are summarised in the following table. 

Table 5.4.1 Numerical representation of the input signal, unknown system and 
observed signals of Figure 5.4.2. 

Input signal Unknown system Observed signal 

a coefficient a 2 9 0 J 3 

Entropy 0 . 0 7 2 
=5 

2 . 7 4 5 

Skewness 5.351 ) ' 0 . 6 5 7 7 

Kurtosis 219 .7 10 .050 

S S D 
- I S 

5 . 8 9 6 e 3 S S D 5 . 8 9 6 e 3 

Delay -
IR Iength=325 6 

T h e o p t i m a l i n v e r s e filter l e n g t h e s t i m a t e d f r o m t h e i n v e r s e p e r f o r m a n c e (Ip) 

i n d e x 

Third order Fourth order 

Filter length (L) 
00 180 aoo K # M # ^ 1 

FDl#r Immglh (L^ 

' Law 1.1 -L 1l] .lilt. i-llJ. iMNlfiJ H.lllill.lJi .w 1.1 . 

Figure 5.4.3 The optimal length of inverse filter determined from the inverse 
performance index and the res 
order deconvolution methods. 
performance index and the restored signals via 3"̂  (left column), 4"̂  (right column) 

134 



Chapter 5, Single Channel Blind Deconvolution 

T h e o p t i m a l i n v e r s e f i l t e r l e n g t h e s t i m a t e d f r o m t h e « - c o e f f i c i e n t 

Third order 

Filler length (L,) 

FourOiorder 

Filter length <L,) 

Figure 5.4.4 The optimal length of inverse filter determined from or-coefficient 
estimation and the restored signals via S"' (left column), 4^ (right column) order 
deconvolution methods. 

T h e o p t i m a l i n v e r s e filter l e n g t h e s t i m a t e d f r o m t h e e n t r o p y 

Third order Fourth order 

40 e o M 
r i eng lh (L^ 

g o 40 e o 8 0 100 120 140 l e o 1BO 80 
rlmnglh (Lp 

-U ..•••I.I »| 1 " .LL litiL.Ji ^ LI - It ]. -1.1- • 1 J I^wULunJ 

Figure 5.4.5 The optimal length of inverse filter determined from entropy 
estimation and the restored signals via 3"̂  (left column), 4*̂  (right column) order 
deconvolution methods. 
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For this bHnd impacting signal reconstruction problem, there is a consistent abrupt 

change of the inverse performance index (and or-coefficient or entropy) at a 

certain length of inverse filter. As an example, the observed signal shown in 

Figure 5.4.2, the length that the abrupt change occurs is approximately 12 (when 

the initial inverse filter type was selected as impulsive). This implies that for this 

length the results of signal restoration can be acceptable and a longer length 

inverse filter is computationally inefficient. This is confirmed by the shape of Ip, 

the -coefficient or entropy in Figure 5.4.1 with the estimated filter lengths in 

Figure 5.4.3 - Figure 5.4.5. 

It is hard to say that these methods are an unique way of determining the length of 

the inverse filter. However, these length determinators are proposed as methods 

that can help to eliminate one of the ambiguities of the BD process. 

5 . 4 . 5 O b s e r v a t i o n p a r a m e t e r b a s e d p r e d i c t i v e d e t e r m i n a t o r 

This sub-section proposes an alternative approach for the optimal inverse filter 

length determination. Since the methods employed so far require a search 

procedure spanning a range of lengths of the filter, they are not necessarily an 

effective approach. 

Ideally we need a guide to filter length not including deconvolution activities. We 

now seek such a guide. 

As already mentioned, the three parameters of the restored signals along with their 

corresponding length of the inverse filters have been proved to possess a 

consistent trend (e.g., the longer inverse filter length assures the lower Ip index, as 

do the a coefficient and entropy). Based on this, Figure 5.4.6 depicts the 

graphical illustration of an optimal inverse filter selection scheme, which is aimed 

at a predictive inverse filter length determinator. 

In the following figure, we propose two curves which we refer to as the p-curve 

and d-curve. For the blind impacting signal restoration problem, these two curves 

are designed to behave monotonically; The p-curve which is the objective 

function increases, whilst the d-curve {a coefficient and/or entropy) decreases as 

the length of the inverse filter increases. 
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a - curve 

entropy curve 

curve 

Objective 
function curve 

p - curve 

Optimal filter length, L , selection zone 

Lower limit of 
filter length 

Filter length [L] 

Figure 5.4.6 Graphical illustration of optimal inverse filter length selection. 

As shown in Figure 5.4.6, the optimal inverse filter selection range (dotted area) is 

suggested based on the intersection point of the two curves with a lower limit for 

filter length indicated by the hatched area. 

Justification for this predictive approach to filter length determination is now 

presented. The lower limit for inverse filter length is based on the non-zero lag 

higher order cumulant sequence and the result of Higher Order Singular Value 

Decomposition (HOSVD) dealt with in Chapter 4. 
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Reference parameter justification 

To describe the status of the observed signal, the parameters chosen are the 

objective function value (i.e. skewness or kurtosis), shape parameter ( a 

coefficient) and entropy of the observed signal. In order to obtain a reference 

parameter value for the objective function, the objective function value of the 

observed signal is compared to an extreme example of a spike sequence, whereas 

for the shape parameter ( a coefficient) or entropy values, the reference values of 

these parameters are those of a Gaussian signal. These are explained below; 

1) Reference of the objective function value 

The objective function of an extreme non-Gaussian signal is chosen as the 

reference value. This is the normalised higher order cumulant of a single impulse 

of magnitude a in a signal with N samples as shown in the figure below 

a 

•—•—#-

Signal x 

The discrete probabilistic density function can be written 

p{x) = -^(5'(x-0) + -^(^(x-a) 

For a<s: N and N is sufficiently large , the second order and higher order 

cumulants are estimated through the order of data length N as; 
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for covariance of x 

= j^x^p(x)dx 

A ^ y 
2 

a 

N 
r - 3 =^^(N ), order of N 

for r th order (r > 2) cumulant of x (symbols of cumulants are defined in Chapter 

2, equation (2.2.20)) 

jU^ = ^x''p(x)dx 

- j2 X-— p{x)dx 
V Nj 

N' 

order of 

Thus, the r th order normalised cumuant takes the form of 

/^r f , ( r , 2 ) = 
. r / 2 

=* ), for r=4, substract 3 

From this, an approximate normalised third- and fourth-order cumulants are 

calculated as; 

Third-order reference objective function value = 4 n , 

Fourth-order reference objective function value ~ N -3 
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2) Reference for the a coefficient 

The shape parameter for signals of various distributions is categorised in the 

following Agure; 

(% = 10 ; Uniform distribtion 

Observed signal 

or = 2 ; Gaussian signal 

= 0 ; Leptokurtic (spiky signal) 

In this study, the signals considered are assumed to belong to the lower part of the 

a region (i.e., 0< a <2) and so the reference a coefficient is chosen as 2. 

3) Reference for the entropy (for calculation see equation (5.2.11)) 

The entropy region for signals of various distributions is categorised in the 

following figure; 

E = 4.1 ; Uniform distribtion 

Observed signal 

E = 3.5 ; Gaussian signal 

E = 0 ; Leptokurtic (spiky signal) 

As with the a coefficient reference, the entropy region (E region) for the 

observed signal is assumed to belong to the lower part of the region (i.e., 0< E 

<3.5) and the reference entropy is chosen to be 3.5. 

1 4 0 
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In summary, the reference parameters are selected as; 

Oref - ; skewness (third order) 

-N -3; kurtosis (fourth order) 

= 2.0; 

E ^ = 3 . 5 

Lower limit of filter length Ly determination 

This is done by considering two features; (i) the third order cumulant sequence 

and (ii) the reconstructability assessment described in Chapter 4. 

(i) The first estimation comes from a modification of MA order estimation using 

the higher order cumulants [Chow, 1972; Chan and Wood, 1984; Giannakis, 

1986; Giannakis and Mendel, 1990; Kim, 1998]. The use of the diagonal slice of 

the third-order cumulant sequence allows us to obtain an approximate lower 

bound of the inverse filter length. A brief example of the first lower bound L î is 

given in the following figure; 

-max[Ti,-r2] 

diagonal slice of 

m a x [ 7 ^ r a n g e of L 

We take Lb\ as the effective range of unknown system's impulse response which 

has more than 90% energy of diagonal slice of cI{t^,T2) in the figure. 

(ii) For the second approach, the estimated lower bound Lb is adjusted by using 

the parameters involved in the reconstructability assessment namely CHSk and Rk 
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(detailed explanations for these parameters are given in Chapter 4, section 4.3.4). 

Since the impulsive nature estimated from the third order cumulant sequence may 

be degraded by (severe) noise interference, the reconstructability parameter Rk 

and its reference C H S k are used to adjust the length as follows; 

Compare R k and C H S k and select the lower limit of inverse filter length Lb as 

4 = 4 i , 'Rk - CHS^ 

A, - 4,1 + 
C H S , - R , 

CHSk " 
,R,<CHS, 

d-curve design 

Using the above parameters and the lower bound, the first curve (called the d-

curve) is determined which can reflect the status of the observed signal. For a 

given range of the inverse filter length L (e.g., L = 1 ~ 200); 

where Lb is the lower bound of the inverse filter length and m is defined as 

m - e'" (for a coefficient case). 

Using this, the slope of the d-curve reflects the shape parameter of the observed 

signal. For example, when the observed signal is close to Gaussian (large a 

coefficient), then m is smaller. In this case, the roll-off of the curve is slow and 

thus the d-curve extends to the longer filter length region and vice versa. 

p-curve design 

Similar to the d-curve, we introduce the p-curve which describes the status of the 

objective function value of the observed signal as, 

/ = ! 

where L,nax is the maximum range of the inverse filter length under consideration 

and h is calculated as /z = % Ae [1,2.718]. 
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Hence, as the objective function value of the observed signal gets closer to 

Gaussian, then h becomes 1, thus the slope of the ascending curve decreases 

resulting in a longer inverse filter length selection, and vice versa. 

Length determination and examples (the predictive determinator) 

The optimal length of the FIR inverse filter is now predictively determined by 

choosing the intersection point of the two curves (d- and p-curve), which has been 

already illustrated in Figure 5.4.6. 

Third order Fourth order 

FWt#r Imngin (L^ 

Figure 5.4.7 The optimal length of inverse filter determined from observation 
parameter based predictive estimation and the restored signals via 3̂ ^̂  (left 
column), 4̂*̂  (right column) order deconvolution methods. 

The numerical results for four length determinators and their corresponding 

restored signals are summarised in Table 5.4.2. 
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Table 5.4.2 Numerical comparison of the restored signals from four different 

Third-order 

4 or E Predictive 

L_opt 13 12 16 14 

a coefficient &51 &51 &51 0.51 

Entropy 2J^2 2.230 2.219 2.20 

Skewness 1701 lj%8 1.739 L729 

Kurtosis 24.020 23.516 24^16 24.011 

SSD 4.85e3 4.85e3 4.89e3 4.89e3 

Fourth-order 

Ip a E Predictive 

L_opt 12 12 14 15 

a coefficient 0.5 0.5 0.5 &49 

Entropy 2J^6 2J^6 2.121 2J^2 

Skewness 1.578 L578 1X%3 L859 

Kurtosis 24.584 24.584 25.235 25.926 

SSD 4.76e3 4.76e3 4.76e3 4.78e3 

As a result, the filter length determined by this procedure tends to be a little longer 

than any of the other methods mentioned previously. This seems an acceptable 

'price to pay' considering the low risk of poor deconvolution by choice of a 

shorter inverse filter length. Furthermore, the significant merits of this procedure 

are: 

- Unlike the other length determinators, this method can give a reasonable guide 

without doing any deconvolution (which is a major task considering the wide 

range of the candidate inverse filter lengths). 

- The length determinator is rarely affected by the choice of either third or 

fourth order as this procedure includes the additional parameters ( a 

coefficient and/or entropy) and the choice of reference spike signal. 
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Further examples of the signal restoration by the optimal length of the inverse 

filter using this predictive length determinator are given in Figure 5.4.8. 

Measured signal Length determinator Restored signal 

2000 2300 KCO 

ll 

Figure 5.4.8 The performance of the predictive length determinator with different 
status of observed signals (fourth order case). 
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The left column shows four different types of observed signals and the middle 

column gives each estimated FIR inverse filter length. The restored signals 

constructed by the third-order BD process with the estimated filter length are 

displayed in the right column of the figure. 

It is noticeable that as the observed signals become closer to Gaussian, the inverse 

filter length estimated by the predictive determinator also tends to be longer. 

Particularly, comparing the third and fourth row of the Figure 5.4.8, those two 

signals look very similar and close to the Gaussian signal but the estimated 

inverse filter length differs considerably (Lopt = 25 and 39). This is due to the 

difference of the generating system (unknown system); the unknown system for 

the fourth row is in fact more complicated (experimental data from a real 

cantilever beam), thus the effect of the system has been significantly included in 

estimating the inverse filter length. 
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5.5 Summary and conclusion 

This chapter has mainly considered two aspects of the BD process. 

Since the blind deconvolution problem ends up with iterative solution of the non-

linear normal equation as described in the Chapter 3, we need (i) initial filter 

coefficient vector and (ii) we need to determine the length of the inverse filter. 

The initial inverse filter showed generally be chosen so as to make the output of 

the first filter to be at least equal to or further from Gaussian. Based on this, it is 

demonstrated that it becomes natural to take the initial inverse filter as impulsive 

in form. 

Criteria for the selection of optimal inverse filter length have been proposed. 

Four different length determinators have been considered and their performances 

have been compared. Based on this a predictive determinator which utilises an 

objective function (skewness or kurtosis), -coefficient and/or entropy of the 

observed signal has been shown to be an effective length determinator. The 

advantage of the predictive approach is that time consuming extensive 

computation is avoided. 
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C h a p t e r 6 

G l o b a l o p t i m i s a t i o n i n B l i n d D e c o n v o l u t i o n 

6.1 Introduction 

In Chapter 3, calculation of the inverse filter coefficients in Blind 

Deconvolution (BD) was carried out through solution of a (generalised) Wiener 

type equation. This approach has been used and developed by many authors for 

many years [Claerbout, 1977; Wiggins, 1977; Gray, 1979; Donoho, 1981; Cadzow, 

1996; Nandi, 1997]. However, these techniques can only guarantee that global 

minima or maxima will be found if the performance index is convex. If it is non-

convex a local optimisation algorithm may not locate the global optimum and, 

even when it does, there is no indication that the solution is global. In Chapter 3, 

we saw that the selected objective functions (skewness or kurtosis) lead to multi-

modal behaviour with respect to the inverse filter coefficients. Accordingly, it was 

decided to investigate this aspect further. 

This chapter considers a global optimisation scheme with a view to comparing the 

results with the generalised Wiener approach. There are many approaches to 

optimisation and this is not a study of all the various alternatives. We have 

selected a modification of the Genetic Algorithms (GAs) and known as a 

'Differential Evolution (DE)' process. This choice was based on recent literature 

that indicated that DE is relative easy to apply. 
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6.2 Differential Evolution 

This section describes the Differential Evolution (DE) algorithm which uses 

evolving populations of solutions in much the same way as the Genetic 

Algorithms. This algorithm works by making a given number of random guesses 

(called the 'population' and denoted 'P') of D parameters and then imposing 

improvements on the 'cost function' (denoted as ' / ( x ) ' in Figure 6.2.1) 

considered. A number of best guesses from the previous population survive as the 

process continues. This algorithm is a parallel direct search method which utilises 

P D-dimensional parameter vectors x. (denoted a s ' x ' i n Figure 6.2.1). 

x.Q , / = 1,2,...P, and x = - - - % (6.2.1) 

as a population for each generation G. The size P does not change during the 

minimisation/maximisation process. The initial vector population is chosen 

randomly and should cover the entire parameter space. As a rule, a uniform 

probability distribution for all random decisions will be employed unless 

otherwise stated. Evolution is carried out by forming a child population by mating 

pairs of parents, followed by mutation. Differential evolution is basically very 

similar to conventional Genetic Algorithms (GA) [Goldberg, 1989; Ingber and 

Rosen, 1992]. The differences are in the way the mechanisms of mutation and 

crossover are performed using real floating point numbers instead of long strings 

of zeros and ones. In particular, the concept of perturbing a vector with the 

difference of two other parameter vectors is borrowed from the reflection, 

expansion and contraction processes of the Nelder and Mead's downhill simplex 

optimisation algorithm [Nelder and Mead, 1965]. In comparison with GA, the 

basic difference lies in the scheme for generating trial vectors [Stom and Price, 

1997]. The importance of the term trial parameter vector will be evident in the 

following description of the differential evolution method. 
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6.2.1 Global optimisation scheme using Differential Evolution 

Figure 6.2.1 shows schematically the basic operations of DE working on 

optimisation of a hypothetical multi-parameter system. The parameter vectors 

considered here are composed of five parameters x d ; (D=1 ,2 , . . . , 5 and i is the 

index of population up to P). 

1. Target 
s e l e c 

P 

§ 

C: 

vector 2. Random s e l e c t i o r of 2 v e c t o r s 

'+"3GC'- p'b 

3. Gen? 
O i f l 

r a t e the Sca led 

5 . Add t o s c a l e d 
d i f f e r e c e vec t c ( 

> CROSSOVER < 

6. General ion of 
the T r i a l vec tq r 

7. Selection 
the vector with the 
lowest/highest cost 
survives and passes 
to the next generation 

< 

4. Random s e l e c t i o n 

of t h i r d v e c t o r 

P„ 

MUTATION or 
PERMUTATION 

compare 

CROSSOVER or i 
RECOMBINATION 

Xnr 
2̂tr 

X4tr 
X5I, 

Figure 6.2.1 Schematic representation of differential evolution operations 
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In Figure 6.2.1, there are two D x p celled tables (in this case, D=5) at the top and 

bottom of the figure which represent the generations of the parameters. This 

means the algorithm starts with an initial pool of 5 dimensional parameter vectors 

with population P (candidates or ancestors) drawn from a particular probability 

distributions. Normally a uniform probability distribution ensures that the 

parameter vectors generated will span the parameter space equally. The initial 

pool acts as the first generation from which the whole evolution operation starts. 

Thus, the top table represents the generation whose members will evolve 

according to the mechanisms of the differential evolution. 

In the bottom table each newly evolved member will be placed according to the 

positions which its predecessor was holding in the top table. The bottom table is 

called a new generation. 

As can be seen in Figure 6.2.1, the (vector) member of the first 

table (top) is evolved to the descendant that holds the leftmost 

position in the bottom table. The cost function (performance index) for each 

parameter vector is displayed in the corresponding rows of the two tables. The 

detailed processes between the top and bottom table are described as follows; 

Step 1: Target vector selection 

The first left parameter vector of the top table is selected and denoted as the 

Target vector Pt . Note that the steps illustrated in Figure 6.2.1 are applied in 

parallel to all the other vectors of the top table during a single run (one iteration). 

All the (parallel) target vectors form the basis of ancestors that are to be compared 

to the generated descendants and vacate their positions to the new generation that 

fill the bottom table. At the end of each run the improved generation in the bottom 

table is passed to the top table in order to play a role of new ancestors. 

Step 2: Random selection of two vectors 

In the search scheme, a mutation is created by utilising a combination of three 

parameter vectors. Firstly, two parameter vectors denoted Pa, Pb are selected 

1 5 1 



Chapter 6, Global optimisation in Blind Deconvolution 

among the top table which should not be the same as the target vector Pt. 

Step 3: Generate the scaled difference vector 

From the randomly selected parameter vectors Pa and Pb in the previous step, the 

difference of two parameter vectors are multiplied by a user defined constant F 

( F e [0,1]) to create the scaled difference vector. 

Step 4: Random selection of third vector 

The third parameter vector denoted Pb is selected randomly. This vector also 

should not be either the target vector Pt or two randomly selected parameter 

vectors Pa, Pb-

Step 5: Add to scaled difference vector (mutation) 

Differential evolution mutates (perturbs) by using two randomly selected and one 

separately selected vector (i.e. the third vector). This process creates a new 

mutated parameter vector Pm While in Figure 6.2.1 the perturbation process is 

portrayed in the top dashed box, the visual interpretation of this process is shown 

in Figure 6.2.2. 

X :NP Parameter v e c t o r s from g e n e r a t i o n G 
o :Mu ta ted parameter v e c t o r f g 

F(P.̂ -Pb )̂ 
Minimum 

'P-i.G+l -Pp.G+F(Pa.G~Pb,G) 
- • 1̂ 

Figure 6.2.2 Perturbation (mutation) process of differential evolution for two 
dimensional cost function and the process for generating mutated parameter Pm,G+i 
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Step 6: Generation of the Trial vector (crossover) 

The next operation of the differential evolution is crossover. The mutated 

parameter vector Pm recombines with the target vector Ft in order to generate a 

new trial vector Ptr. The Ptr consists of parameters obtained from both Pm and Pt 

In the Genetic algorithm scheme, Pm and Pt are known as the parents and the 

newly generated parameter vector Ptr is known as their child. The actual parameter 

components of every vector P are known as genes. Differential evolution 

implements recombination by using the chance of occurrence applied to the 

selection of the genes from the parents to the child. The likelihood that governs 

the inheritance of the parameter vector Ptr is determined by a constant parameter 

designated as the crossover ratio (CR). The detailed operation of this crossover is 

illustrated and explained in the following; 

'11,0 P|nl,e Ptri 

j=1 

2 

3 

4 

5 

Ta rge t v e c t o r 

c o n t a i n i n g the 

pa rame te rs 

j = 1 , 2 0=5 

j = 1 

2 

3 

4 

5 

r a n d ( 2 ) < = C R 

j = 1 

2 

3 

4 

5 

Mutant v e c t o r T r i a l v e c t o r 

Figure 6.2.3 Illustration of the crossover process for D=5 parameters 

As can be seen in Figure 6.2.3, the process of crossover creates a new parameter 

vector named the trial vector (right) by exchanging the elements (genes) of the 

target parameter vector (left) and the mutant vector (middle). This genetic 

recombination based on the random search from which exploration of creating 

improved generations evolves through the following rules. 

P -
m,ij,G+l if rand(j)|^. < CR or j=perm(l,2,... J))|^. 

Puj.G if:and(j)|^. >CR and j;6perm(l,2,...,D)|^. 
(6.2.2) 
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where rand(j)|^. is the j-th evaluation of a uniform random number generator with 

outcome e [0,1], CR is the crossover constant e [0,1], and perm(l,2,... J))|^ is a 

randomly chosen index between 0,1 which ensures that gets at least one 

parameter Axxn PmjG+i-

Step 7: Selection 

By comparing the cost value of the target parameter vector and that of the trial 

vector obtained from the crossover process, the lowest or highest cost value of 

parameter vector survives and is passed to the next generation depending on the 

optimisation scheme (e.g., minimisation or maximisation). 

The chosen parameter vector and its cost value is then placed in the same position 

of the bottom table as the target vector in the top table. 

Repeating the steps for every target vector in the top table creates a new 

generation which fills the bottom table and takes the role of the previous 

generation for each iteration. Since the selection of the target vector is done from 

the leftmost to the right direction, this procedure as called the parallel search 

method. The iteration halts when a stopping criterion is satisfied. Usually this 

criterion is set as either a user defined cost value or a maximum number of 

iterations or both. 
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6.2.2 Performance test for Differential Evolution method 

To demonstrate the performance of DE in seeking a global minimum/maximum, 

we have used two different multi-modal functions as examples. 

Test function and global optimisation; 

Test function 1 (Rosenbrock's saddle) [Ingber and Rosen, 1992] 

/ ( x ) = 0. ICxj" - ^2)" + 0.001(1 - ; 

IPR:%,e [-1.248,1.248], 

IPRiXzE [-0.848,1.248] 

where IPR implies the initial parameter range. 

The shape of this function is shown in the following figure. 

Cost function shape (function #1) 

(6.2.3) 

X l 

-2 1.5 
x2 

Figure 6.2.4 The shape of test function # 1 

Although / ( x ) has just two parameters, it has the reputation of being a difficult 

minimisation problem as the global minimum of this function is /(Xj) = 0 at 

X;=1.0 (/=1,2) while another comparable minimum /(x^) = 0, / (x^) > /(Xj) 

exists at the opposite side of xi (%i_opp = -1.0, X2 =1.0). 
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Optimisation 

The initial population (the number of candidate parameter vectors) size is taken as 

three times bigger than the dimension of parameter vector (i.e., the number of 

parameters). Thus, from an initially constructed 2 x 10 matrix, the DE search is 

tried. 

Following figures demonstrate the performance of DE. 

Searching status of DE (iteration = 100) 

•<—min 

Figure 6.2.5 Searching status of DE process for Test function 1. 

A 100 stage iteration is given with scale factor (constant) F = 0.7 and cross-over 

ratio CR = 0.5. In the Figure 6.2.5, we can see the result of the iteration in which 

'x' designates the initial population and 'o' identifies the optima in every run. As 

already mentioned, the initial populations of each parameter 'x' are drawn from 

the uniform distribution to cover the entire landscape (co-ordinates xi and xz). The 

identified optima 'o' at each iteration then move toward the minimum value 

position which is marked by 

This track is represented in a 'probabilistic' way in Figure 6.2.6 where the 

performance of DE is demonstrated through a plot of relative frequency of the 

minima that arise from DE. It is noticeable that in Figure 6.2.6 the occurrence of 

parameter values (x] and X2) at each iteration rapidly accumulate in the vicinity of 
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the true minimum position (xi =1.0 and X2=1.0). The behaviour of this bar graph 

also tells us the speed of convergence of DE to the true minimum point. 

Occurance of minima (iteration = 100) 

Figure 6.2.6 Relative frequency of each minima appearing by DE process for Test 
function 1. 

Summary of the parameters and results of the test: 

Scale constant, F= 0.7 

Cross-over Ratio, CR= 0.5 

Number of iterations =100 

xi_opt=0.949 (xi_true =1.0) 

X2_opt=0.901 (x2_true =1.0) 

Opt. value=2.5e-6 (Min. value=0) 

0 is the theoretical minimum points and minimum value. 
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Test function 2 (selected by the author) 

y^(x) — —0.05(Xj — 0.25) — 0.02 • |x2 + 0.01| — Xj • X2 • exp(—Xj —1.15x2) + ! 

IPR:x,E [-2.0,2.0], ; = 1 , 2 
(6.2.4) 

This function has been chosen because it has a similar shape to the objective 

function that we discussed in Chapter 3. 

The shape of this function is shown in the following figure. 

Cost function shape (function #2) 

Figure 6.2.7 The shape of test function # 2 

The global maximum of this function is / ( x ) = 1.15 at x\=0.66, X2= - 0.63, 
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Optimisation 

The initial population is taken the same size as the case of test function 1. The DE 

method is applied to search for the 'maximum' point of the test function 2. Thus, 

from an initially constructed 2 x 10 matrix, the DE search yields results shown in 

the following figures. 

Searching status of DE (iteration = 100) 
2 

1.5 

1 

0.5 

S! 0 

-0.5 

- 1 

-1.5 

- \ 

-

V -
value = 1.152 

- r opt. value = 1,152 

- 2 -1.5 -1 -0.5 0 
x1 

0.5 1 1.5 2 

Figure 6.2.8 Searching status of DE process for Test function 2. 

During 100 iterative parallel searching process with the same F and CR as were 

used in the previous test function 1 case, we can observe that some parameter 

vectors fall into a 'local maximum' point (see the left upper comer of Figure 

6.2.8) and then promptly head to the 'global maximum' point. Their occurrence in 

a 'relative frequency' form is shown in the following figure. 
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Occurance of maxima (iteration = 100) 

Figure 6.2.9 Relative frequency of each minima appearing by DE process for Test 
function 2. 

Similar to the previous test, most of the search results during 100 iteration fall into 

the global maximum. Thus, the occurrence probability is dense around the true 

maximum point. 

Summary of the parameters and results of the test: 

Scale constant, F= 0.7 

Cross-over Ratio, CR= 0.5 

Number of iterations =100 

xi_opt= 0.651 (xi_true = 0.66) 

;c2_opt= -0.629 (x2_true = -0.63) 

Opt. value=1.151 (Max. value=1.152) 

( ) is the theoretical maximum points and maximum value. 

Remarks: 

From two test function tests (one for minimisation and the other for maximisation), 

we can conclude that DE is a potentially useful search tool. 
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The speed of convergence to the global minimum/maximum can be affected by 

the selection of F and CR. As a rule of thumb, normally the scale constant (F) 

ranges from 0.5 to 0.9 and the cross-over ratio (CR) is 0.1 - 0.6. 

6.3 Application of DE to Blind Deconvolution 

In this section, the performance of DE for blind signal reconstruction is 

demonstrated through simulations. 

6.3.1 Preliminaries for simulations 

The system for this simulation is shown in the following figure. 

Unknown 

Gaussian n o i s e 

/(&) 

Observed 
{measured) s i g n a l 

Unknown 
near 

System 

Figure 6.3.1 The signals and system used for non-Gaussian impacting signal 
detection problem with Gaussian measurement noise 

Excitation x(k) 

A non-Gaussian impacting signal used in this simulation is shown in Figure 6.3.2. 

I ' 
I 0 

Mean 
Variance 
Skewness 
Kurtosis 
Crest factor 

1.4e-16 
0.999 
3.05 

206.98 
18.40 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Figure 6.3.2 The input signal 
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System 

The 'unknown' system selected is shown in the following figure; 

(W 

Figure 6.3.3 The system used in the simulation, (a): System's pole zero map, (b): 
impulse response, and (c): Frequency Response Function. 

This system has a very 'short' impulse response function. 

The above input signal and system have already been used in Chapter 3, section 

3.3. They are used again so as to provide a basis for comparison of the Wiener 

approach and DE. 

Observed signal v{k) 

The observed signal is obtained from the output signal including Gaussian noise 

(SNR= 10 dB) interference and shown in Figure 6.3.4. 

-10 

- 1 3 

w* 

Mean 
Variance 
Skewness 
Kurtosis 

-0.004 
1.690 
0.762 
92.83 

Crest factor : 14.32 

500 1000 1500 2000 2500 3000 3600 4000 
Time index 

Figure 6.3.4 The observed signal (SNR= 10 dB) 
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6.3.2 Global maximum searching and restoration of signals 

From only an observed signal v, an inverse system (filter) fk is to be estimated to 

make the output signal y be the unknown input signal x, which is illustrated as 

I Averse f i l t e r 

Measured signal i Restored signal 

V • I • y ~ X 

Figure 6.3.5 The deconvolution system 

The estimation of the inverse system and signal restoration processes are 

extensively discussed in Chapter 3. As a reminder, the objective function (cost 

function) for this estimation takes a higher order normalised value (e.g., kurtosis 

of the restored signal) as 

N 

J_ 
N 

o - ^ (6.3.1) 

1=1 

which is to be maximised with respect to the parameters (inverse filter 

coefficients). The final signal restoration is achieved from the convolution 

between the optimally estimated inverse filter coefficients and the observed signal 

as 

1-1 
= (6.3.2) 

k=0 

where = [/q ... . The DE process for this problem is described in 

the following; 

From the measured (observed) signal of Figure 6.3.4, the fourth order normalised 

cumulant (i.e., kurtosis) is chosen as a cost function from which the coefficients of 

fk are estimated that can give the maximum kurtosis of the output of the inverse 

filter. The shape of the objective function (cost function) is shown in Figure 6.3.6. 
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o 100 

3 80 

Figure 6.3.6 The shape of cost function (kurtosis) 

The global optimality of the DE process is compared to the Wiener Optimisation 

(denoted by 'WO') using a MA(4) inverse filter in the following figure: 

- 2 -

OPMQ 

Figure 6.3.7 Result of the maximum point search using Wiener optimisation and 
DE 
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As can be seen in Figure 6.3.7, the optimal point of DE marked by 'opt. (DE)' 

coincides with the 'max' point whereas the optimal point for the Wiener 

optimisation marked by 'opt. (WO)' is different and is identified as a local 

maximum. 

The restored impacting signals (input signal of Figure 6.3.2, unknown system of 

Figure 6.3.3, and observed signal of Figure 6.3.4) using both Wiener Optimisation 

and Differential Evolution method with MA(4) inverse filter are compared below: 

(a) (b) 

20 

15 

10 

I 5 

* 

.1 
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1 
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-15 
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m 

500 1000 1500 2000 2500 3000 3500 4000 
Time Index 

Figure 6.3.8 Restoration of signal using the Wiener solution and the DE method 
using a MA(4) inverse filter, (a): restored signal by using Wiener optimisation, 
(b): restored signal by using DE optimisation. 

This rather 'simple' example using only an MA(4) filter is used for illustrative 

purposes. The signal restoration results, however, are similar (with a different 

magnitude). We conclude that the Wiener optimisation does indeed seem to offer 

a reasonable and feasible method for blind signal restoration provided that the 

previously considered inverse filter's requirements (i.e. selection of appropriate 

initial filter) are satisfied. This is reassuring considering that the computational 

loads in employing DE become nontrivial for large order filters. 

For completeness a second example is considered; specifically an ARMA(4,2) 

inverse filter is used to restore the input signal using both Wiener Optimisation 

and Differential Evolution. 
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(a) (b) 
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Figure 6.3.9 Restoration of signal from fourth-order Wiener solution and DE 
method using ARMA(4,2) inverse filter, (a): restored signal by using Wiener 
optimisation, (b) : restored signal by using DE optimisation method. 

As with the MA(4) inverse filter, the restored signals using both the Wiener 

approach and the DE method are very similar (with only a different magnitude and 

sign reversal). The two results are compared in numerical form in the following 

table using the parameters defined in Chapter 3 and Chapter 5. 

Table 6.3.1 Comparison of restored signals from Wiener optimisation and DE 
process 

Methods Wiener 
DE process 

Remarks 

Parameters optimisation 
DE process 

(Input/output) 

flr-coefficient a 3 2 032 (0.29/0.35) 

MA(4) Entropy 1.40 L29 (0.07/1.23) 

Inverse Skewness 1.70 L77 (3.05/0.76) 
filter Kurtosis 123J5 128.50 (206.98/92.83) 

CPU time 1 125.5 (normalised) 

or-coefficient 032 032 -

ARMA 
01,2) 

Inverse 
filter 

Entropy L42 132 -
ARMA 

01,2) 

Inverse 
filter 

Skewness 209 -217 -

ARMA 
01,2) 

Inverse 
filter Kurtosis 12030 127.99 -

CPU time 0.8 155.2 (normalised) 
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6.3.3 Computational efficiency of DE optimisation method 

The term 'computational efficiency' used in this blind signal reconstruction 

problem relates to the ability of reaching the global maximum (in terms of the 

performance index and now also includes the convergence speed i.e., CPU time). 

We now compare the computational efficiency of blind signal reconstruction 

between the Wiener optimisation and the DE method. 

(a) (b) 

n ^ ^ u ^ # # # 
FIR f A * length 

9 n ^ 1 5 ^ 1 9 ^ a 25 
FIR filter length 

Figure 6.3.10 Comparison of signal restoration from fourth-order Wiener solution, 
and DE method, (a): kurtosis of restored signal, (b): computational time. 

As can be seen in Figure 6.3.10 (a), the kurtosis of restored signal using Wiener 

optimisation (dotted line) and from DE optimisation method (solid line) for each 

FIR inverse filter length is similar. However, as shown in (b), the computational 

time required to yield similar kurtosis of the restored signal using the DE method 

is significantly greater than the Wiener optimisation. 

The nature of the blind deconvolution involved in this work demands major 

computing power because of the following; 

(i) There exist many local maxima positioned closely. 

(ii) Unlike the Wiener approach which iterates a single parameter vector of 

inverse filter coefficients, DE iterates a set of parameter vectors leading to 

greatly increased computational loads. If the signal restoration using the 

Wiener approach fails then DE is also liable to produce a poor 

reconstruction despite having incurred the computational load. 
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We now reconsider the previous example using different measurement noise. 

Again, the objective is to compare the computation efficiency between the Wiener 

optimisation and the DE method. For the Wiener optimisation the maximum 

number of iterations is restricted to 100 and for the DE method the iteration is 

stopped. 

Performance of signal restoration Computational time 

:DE 

^ 

%0 
gsoo 
2̂S0 
2̂00 
ISO 

: WO : DE 

0 10 S/N rmUo (dB) 

Figure 6.3.11 Comparison of signal restoration from fourth-order Wiener solution, 
and DE method (FIR inverse filter, L=11). 

As can be seen in Figure 6.3.11, again we see the computational load is heavy for 

the DE method. Also, in the severe noise corruption cases (S/N ratio 2 0 - 0 dB), 

we cannot expect 'better' reconstruction from DE method but also incur 

dramatically increased computational time. 

From our extensive simulations and other work [Stom and Price, 1997], it is 

emphasised that three parameters govern the effectiveness of DE method in 

locating the global minimum. These are the population size (Figure 6.2.1), the 

scaling factor F (Figure 6.2.2), and the cross-over ratio CR (Figure 6.2.3). 

Guidance in selecting these parameters is given below; 

The population size should be kept as small as possible so keeping the number of 

trial runs as low as possible. Use a population size P between five and ten times 

longer than the size of the parameter D as; 

P > 5 D ~ 1 0 D . 
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We employ the FIR inverse filter because of its robustness. Confining the 

coefficients of the inverse filter to have unit norm is sufficient to explore the cost 

function (objective function) range as; 

||/^||<1, ^ =0,1, . . . ,L-1. 

The scaling factor F is determined by the constraint on the inverse filter 

coefficients; 

The cross-over ratio CR should be small enough to increase the likelihood of 

'birth' of a new vector with novel characteristics coming from the mutated vector. 

On the other hand, it should be large enough to maintain any existing inheritance. 

In this way, DE ensures the newly created trial vector provides many possibihties 

in the parameter space leading to a promising optimum. The CR is taken as; 

0.1<CR<F. 
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6.4 Summary and conclusion 

In this chapter, we investigated the performance of just one of the numerous 

global optimisation methods in blind restoration of non-Gaussian impacting 

signals. This optimisation is the Differential Evolution (DE) method, which 

utilises an evolutionary process similar to the Genetic Algorithms (GA). The 

performance of signal reconstruction and computational efficiency are considered 

and compared to the Wiener optimisation method discussed in Chapter 3. The 

following conclusions arise; 

1. The DE method can restore the input signal and is thus applicable to the Blind 

Deconvolution process. 

2. Since the Wiener approach is believed to yield only one of the local maxima, 

the restoration of an impacting signal using a global optimisation method has 

been carried out and compared to the Wiener optimisation method. A major 

conclusion is that even through the Wiener optimisation results generally in a 

local maximum, the reconstruction seems very comparable to the global 

optimisation. We note here that in the Wiener approach, the choice of initial 

inverse filter type affects the performance of signal restoration. That is to say, 

by selecting an impulsive type initial inverse filter, the starting point of 

optimisation is initiated near an 'acceptable' local maximum. 

3. Given the equivalence of results, DE scores relative low as a method because 

of its computational overhead. 

To make DE a serious candidate for use in blind inversion, a further study relating 

to choice of filter length and computational efficiency is needed. 
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Chapter 7 

Multiple Channel Signal Processing 

7.1 Introduction 

Multiple Input Multiple Output (MEMO) models arise frequently in signal 

processing (e.g., seismic exploration, digital communications, antenna array 

processing, biomedical signal processing, and multi-channel machine conditioning 

systems). The sensor signals from a p element array are a p-dimensional vector 

process representing the mixture of m different independent source signals. The 

propagation characteristics between m source signals and p sensor signals is often 

modeled as a linear (instantaneous or convolutive) MEMO system. 

The Blind Source Separation (BSS) problem is a basic and difficult problem (e.g., 

[Bar-Ness et al, 1981]). Since then many solutions have been proposed, most of 

which are based on independence criteria which involve higher-order moments 

generated by non-linear functions [Jutten and Herault, 1991], cumulants [Lacoume 

and Ruiz, 1988; Cardoso, 1989; Comon, 1989] or contrast functions [Moreau and 

Macchi, 1993; Comon, 1994; Delfosse and Loubaton, 1995]. Most of these works 

are related to the separation of instantaneous linear mixtures of sources: the 

observation at any time t are a linear superposition (with real coefficients) of the 

sources at time t. For the linear instantaneous mixture model, source separation 

can be achieved by utilising the higher-order based joint diagonalisation of the 

observed signal matrix [Cardoso and Comon, 1990; Comon, 1994; Yellin and 

Weinstein, 1994; Cardoso, 1998a, 1998b; Lathauwer et al, 1999; Zhu et al, 1999]. 

A solution for this problem uses a time-based model in which the source 

separation is achieved through higher-order statistics and independency criteria. 
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This approach utilises the joint-cumulant of output signals. 

Multichannel blind deconvolution (MBD) is an extension of the single channel 

blind deconvolution which utihses an objective function maximisation based on 

the central limit theorem [Donoho, 1981] and already discussed in Chapter 3. For 

this, a variable norm deconvolution method is introduced [Gray, 1979]. This is a 

multichannel technique which iteratively estimates an inverse to the unknown 

system which when convolved with the measured signals yields the unknown 

impacting signals. This inverse is estimated such that the resulting output signals 

are as spiky and non-Gaussian as possible. The proposed method is derived from 

statistical theory and utilises the non-linear optimisation technique discussed in 

Chapter 3 (relevant references are found in that chapter). 

This chapter introduces multichannel blind source separation and multichannel 

blind deconvolution based on higher order statistics of signals from convolutive 

mixtures. In particular, we are concerned with the case that the number of inputs is 

the same as the number of outputs. Simulations for two input two output cases are 

carried out and their performances are assessed. 
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7.2 Model selection and problem formulation 

7.2.1 General 

The model of the convolutive mixture for multi-channel case is shown in Figure 

7.2.1. 

> V, 

> Vn 

Figure 7.2.1 Multi-input multi-output system with unknown system H and 
independent input signals x, unknown white Gaussian noise w, and observed 
signal V. 

In general situations, the observed signal v(k) at the sensor output is a p vector 

with components that result from the unknown m sources x(k) i.e., 

x(A;) = [%,W 
(7.2.1) 

and the input signals are assumed to be independent each other and at least one of 

the input signals is non-Gaussian. 

The system H is a (pxm) matrix of impulse responses (in the time domain) or 

equivalently a ( p x m ) matrix of transfer functions in the z-domain. 
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7.2.2 Two input two output systems and input-output relationship 

The aim of this study focuses on the restoration of impacting signals from 

observed multichannel signals using both source separation and deconvolution. 

We concentrate on a two input two output system based on models of two forms 

of cross coupling referred to as singly coupled (feed forward) and doubly coupled 

(feed back). 

Unknown 
H 21 

+ 
+ 

Hi2 Hi2 

Unknown Mixture H(z) + 

> v.(n) 

Observed 
Signals 

-> vJn) 

(b) 

Unknown 
Sources 

xJ%) 

Unknown 
Mixture 

H(z) 

^22 ^22 

Observed 
Signals 

I 
1 

w. 

Figure 7.2.2 Two-input two-output system, (a): Single-coupled, (b): Double 
coupled model 
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Case (a); 

For Figure 7.2.2, the observed signals are the results of single coupling of two 

input signals modelled as 

L-1 
V, (n) = X, (n) + ̂  (» - (7.2.2) 

•̂=0 

where h^j{k) is the Ath coefficient of filter //y with i j, \/i, je {1,2}. 

The model described in Figure 7.2.2 is noise free (w=0) and Hii=H22=l. These 

simplifications can be thought as representing measurement points near source 

positions with precise instrumentation. The input-output relation is 

T/zCz) = /fzi ():);?, (z) H-JfzCz) 

where H n and H21 are FIR filters satisfying |/iy (A:)| < 1. 

Case (b); 

When the observed signals are the result of 'feed back' as in Figure 7.2.2, they 

may be written as 

4-1 4-1 
(") = 2] (^)4 (" - )̂ + ^ /i,) (»-*) + W; (n) (7.2.4) 

A:=0 k=0 

where hjj(k) is the Mh coefficient of filter Hij with Vz, j e {1,2}. 

In contrast to the case of single coupling, this models the outputs of remote 

measurement points as affecting other outputs. 

In the z-domain 

^(z)=H2i(z)v;(z)+;f22(z);^2(z) 
(7.2.5) 
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7.2.3 Blind Source Separation via joint-cumulant cancellation (nulling) 

The structure of the source separation system is chosen as being of the form in 

Figure 7.2.3 [YeUin and Wei stein, 1994]. Detailed descriptions for this structure 

are listed in Appendix F. 

> Spi) 

FIR filter 

FIR filter 

Observed Inverse Separated 
Signals System Signals 

Figure 7.2.3 Recursive source separation structure 

This is a recursive form [Jutten and Herault, 1991]. Using this recursive separation 

system based on the observed signals Vj (n) and (n), the outputs (n) and 

S2 (n) are calculated as 

4 
(M) = V, (») - ^ (A:)̂ y (» - A;) (7.2.6) 

k=0 

in which the updating of the filter coefficients (of the filters ) are iterated by 

using the fourth-order joint cumulants cancellation of above two outputs which 

takes the form of the steepest descent algorithm as (for example), 

Cj,.(g +1, t ) = (^, A;) + . (M)̂  - (/% - ^)} , z / Vf,; e {1,2} (7.2.7) 

where q represents each iteration step. 

The magnitude of adaptation gain should be in a range that can assure stable 

convergence and computational efficiency. In this study, this value commonly has 
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been used as 0.01 arising from the adaptation gain in the range [Thi and Jutten, 

1995], 

0.005 0.05 

and the threshold tr for the iteration to stop is set to [Cardoso, 1998] 

1 
t> — , . 

' lOOVTV 

where N is the total number of data points. 

7.2.4 Blind deconvolution via multichannel objective function maximisation 

The structure of the multichannel deconvolution operator is similar to the single 

channel blind deconvolution operator discussed in Chapter 3. However, unlike the 

source separation structure, this deconvolution operator uses a single inverse filter 

which shown below. 

f 

• 

Figure 7.2.4 Multichannel blind deconvolution operator 
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As shown in Figure 7.2.4, since the deconvolution operator is commonly applied 

to the input signal to produce the output signal, the number of input signals 

(denoted by p) to the inverse system, which is the same as the number of output 

signals. The output signal coming from each channel {j=l~p) is expressed as 

L - \ 

(7.2.8) 
k=a 

For the restoration of an impacting signal, we introduce a multichannel objective 

function as 

7=1 1 

n = 0 

r / 2 
(7.2.9) 

where y is the output p-vector of the inverse filter and the parameter r governs the 

relative weightings of the nature of an impulsive signal [Claerbout, 1973], which 

is similar to the single channel case. This parameter r is adjusted depending on the 

characteristics of input impacting signals concerned, defining 'variable norm 

deconvolution' [Gray, 1979]. 

The impacting signal reconstruction is achieved by maximising the objective 

function (the summation of normalised variable higher order moments or 

cumulants of each output signal) with respect to the filter coefficients. 

The final equation of the multichannel inverse filter (deconvolution operator) is 

expressed as 

L-l 
z 
1=0 

p 2 N-\ 

j=\ 1^2 j n=0 

• / ( o = E 

k = 0,1, . . . ,L-1 

1 r-l 

^ (») ' SgnCy; (»)) ' Vy ( » - / ) ' V; (" " 
^1} 11=0 

(7.2.10) 

where 

U,j 
N 

Zk(")l 
n = 0 
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2 N-i 

•'V n=0 

Vj (n) : n-th sample of the signal recorded on channel j (N samples per channel 

and p channels) 

/(/): l-th sample of an inverse filter having L length 

y . (n) : n-th sample of the output of the inverse filter coming from channel j (N 

samples per channel and p channels) 

The inverse filter equation (7.2.10) can be expressed in matrix from 

R f =g (7.2.11) 

where R is the autocorrelation matrix of observed signals, f is the inverse filter 

coefficient vector, and g denotes the cross-correlation of the observed signals and 

the output of the inverse filter. 
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7.3 Simulations of source separation and deconvolution for 

impacting signal reconstruction 

The objective of this sub-section is to restore an impacting signal from the 

measured (observed) signals through source separation and blind deconvolution. 

7.3.1 Signals and systems for simulations 

The two input signals consist of an impacting signal and a Gaussian signal 

(normal operating excitation) are shown in Figure 7.3.1. For each input signal, N 

represents the number of samples, andy^ are the skewness and kurtosis of the 

signal, respectively. 

Input signal 1 

N=4096, =14.728, y^ =219.4 

Input signal 2 

A^=4096, ŷ  =0.053, y^ =2.99 

Figure 7.3.1 Input signals 

Using these input signals, examples of the blind source separation from observed 

signals and restoration of the impacting signal procedures are demonstrated in two 

cases as follows; 
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Case (a): Two-input two-output without feedback (single coupling) 

Since with = H - 1 , the observed signals have been generated as in Figure 

7.2.2 (a), which can be redrawn in Figure 7.3.2. 

Unknown 
input signal x1 

[Kr;(2] 
Unknow n 

input signal x2 

Gaussian noise w 1 

ivr 
Gaussian noise w2 

v1 + v1 

Sum3 Observed 
signal v1 

v2 

Observed 
signal v2 

Figure 7.3.2 Simulation model for case (a) 

In this simulation, the unknown system is selected to have a FIR filter length of 10 

(L=10) and one Gaussian and one non-Gaussian impacting signal is filtered under 

noise free conditions (w.(n) =0) . 

Considering a 2-input 2-output MA(IO) system model and m=2 and p=2 in 

equation.(7.2.3). Its 2x2 transfer function H(z) is chosen as 

1 ^12(Z) 
(7.3.1) 

where /̂ ^̂ (z) = [0.03 -0.15 0.35 -0.42 0.2 0.23 0.5 0.48 -0.26 0.08 -O.Oljz' and 

2̂1 (z) = [0.1 -0.34 0.56 -0.57 0.33 -0.02 -0.19 0.23 -0.15 0.06 -0.01k' 
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The unknown systems are shown in the following figure; 

Hi2 

\ 

H21 

'12 [121 

Figure 7.3.3 Unknown systems' pole-zero map and impulse response function 
shape used in simulation case (a) 

The outputs of this system are shown below; 

Channel 1 Channel 2 

=0.144, =3.452, 
a -coefficient=1.66 

=0.077, ŷ  =3.175, 
C!r-coefficient=1.84 

Figure 7.3.4 Two channel observed signal from the simulation case (a) 
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Case (b): Two-input two-output with feed back (double coupling) 

For a more practical situation, the observed signal includes feed back of system 

outputs as in Figure 7.2.2 (b) and illustrated as a simulation model in the 

following figure;. 

Unknovm 
Input signal x1 

ha(z) 

H11 
Sum1 

n i 2 ( z ) 

ha(2) 

H21 

n 
+ 

- w v1 Ir 1 * Sum4 
Gaussian Noise w1 

Signal v1 

h21(z) 

• 

Unknown 
input signal x2 

H22 
Sum2 

•iJW 

h22(z) 

lidiz: 

Gaussian noise w2 
Sum3 

v2 

O b s e r v e d 

s igna l v2 

Figure 7.3.5 Simulation model for case (b) 

We assume that ^ B'22(^) , j?^^z)andj^^^z) have finite impulse 

responses and that we assume noises are zero. The unknown system MA(6) is 

modelled as 

0.2 + 0.8z-'+0.4z"' 

0.3z-'-0.6z-" -0.21z - 1 

0.5-0.3%-' 
0.5%-" +0.72%-^ +0.36%-^ +0.12%-" 

(7.3.2) 

The input signals used in this simulation case are the same signals as those used in 

case (a) (Figure 7.3.1). The system's pole-zero maps and impulse response 

function shapes with their output signals are shown in the following figure; 
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H 11 Hu 

"v 

o ^ 

H 21 H 22 

1112 

»21 h 2 2 

1 I ; 
. 1 

Figure 7.3.6 Unknown systems used in case (b) 
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The outputs of this system are shown below; 

Channel 1 Channel 2 

=0.069, =2.911, 

a-coefficient=2.1 

ŷ  =0.016, ŷ  =2.784, 

a -coefficient=2.25 

Figure 7.3.7 Two channel observed signal from simulation case (b) 

Using two observed signals in each simulation case, we tried to identify the 

impacting signal through Blind Source Separation (BSS) and Multichannel Blind 

Deconvolution (MBD). 

The results are shown in subsequent section with the shapes of the 

separated/restored signals and their statistical parameters summarised in table. 
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7.3.2 Results and discussion 

The impacting signal is restored from both the BSS and MBD process for two 

different simulation cases. The performance of each method is compared. 

Results of signal separation and deconvolution 

Separated signal from BSS (// = 0.01) 

Output 1 

Yj =1.375, Ya =13.82, SSD=4467.518 

Output 2 

3̂ =0.073, ^4 =3.093, SSD=151.018 

Restored signals from multichannel blind deconvolution 

Output 1 Output 2 

Yj =0.549, Y4 =5.784, SSD=5601.237 Yj =0.071, Y4 =3.120, SSD=1135.180 

Figure 7.3.8 Separated and restored signals of simulation case (a) 
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Separated signal from BSS (// = 0.01) 

Output 1 

Yj =0.345, =3.808, SSD=5898.843 

Output 2 

=-0.023, 4̂ =2.874, SSD=13948.460 

Restored signals from multichannel blind deconvolution 

Output 1 Output 2 

=1.532, y^ =9.548, SSD=5377.893 Xa = 0.092, y^ =3.243, SSD=13027.086 

Figure 7.3.9 Separated and restored signals of simulation case (b) 

Overall comparison for impacting signal restoration from both BSS and MBD 

process is given by the following table. 
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Table 7.3.1 summarises the statistical performances and features of each signal to 

compare the impacting signal restoration through the BSS and MBD process. 

Table 7.3.1 Comparison of impacting signal restoration results from BSS and 
MBD process 

Simulation case 1; L=ll 

BSS ( / /=0.()1, tr=1.4e-3) MBD 

skewness L375 0.549 
kurtosis 13.82 5.784 

SSD 4467.518 560L237 

Restored 

impact 

signal 

P P t t " I f (' 

Simulation case 2; L=6 

BSS ( / / =0.01, tr=2.6e-3) MBD 

skewness 0.345 1.532 

kurtosis ia08 &548 
SSD 589&843 5377.893 

Restored 

impact 

signal 
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Discussions 

1) Discussion for source separation process (iteration stopping criteria) 

Restoration of the impacting signal from observed signals through BSS is based 

on the statistical independency of the input signal. Hence, the independency 

criteria represented by the higher order sense are inspected and used as stopping 

criteria for iterative calculation of filter coefficients in equation (7.2.7). The 

various independency measures (higher order joint cumulants) are applied and 

compared in the following table. 

Table 7.3.2 Comparison of impacting signal separation results for both case (a) 
and case (b) simulation 

Simulation case (a); L=ll, //=0.01, tr=1.4e-3 

J2 J3 J4 J3 Jf, J7 

Iteration 32 _ * 218 129 13 168 225 

Skewness 1.375 - 0.021 0.946 0.419 0366 0186 

Kurtosis 13.82 - 3.011 9.983 4.863 5^58 3Jj3 

SSD 4.4e+3 - 9.2e+3 4.8e+3 5.736+3 5.71e+3 &7e+3 

Simulation case (b); L = 6 , j l = 0 . 0 1 , t r = 0 . 0 0 2 6 

Jl J2 J3 J4 J5 Jr, h 

Iteration 183 126 36 209 62 58 458 

Skewness 0.345 0.352 0.230 0.342 0.322 ().398 0.101 

Kurtosis 3.808 3.814 3 j a 3.835 3.731 3.647 3IW3 

SSD 5.89e+3 5.88e+3 &2e+3 5.89e+3 5.93e+3 5.97e+3 6.6e+3 

not converges to the given threshold up to 500 iterations 
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The various higher order joint cumulants expressed in Table 7.3.2 are defined 

below (Cum^j, i+ j = A denotes cross cumulants); 

J i : \^Cumj^[s^{n),S2{n)]\ 

Jz: 

J3: 

J4: E\Cum22{si{n),S2{n-k)]] for A: = 0,1 , . . . ,L-1 and takes minimum value 

Js : E[Cum22[s2{n),s^{n-k)]^ for ^ = 0,1,.. . , L - 1 and takes minimum value 

Jg: E[Cum^^{s^{n),S2{n-k)]^ for ^ = 0,1 , . . . ,L-1 and takes absolute minimum 

value 

J7: E^Cum^^[s2{n),s^{n-k)]^ for A: = 0,1 , . . . ,L-1 and takes absolute minimum 

value 

As a result, with the given adaptation gain // commonly selected as 0.01, and 

each threshold values tr, it has been turned out that the criterion Ji 

(|Cwm22 {'^1W' W j | ) can yield consistent identification for both case (a) and 

case (b) simulation. 
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2) The variable norm parameter selection for the multichannel blind 

deconvolution process 

As expressed in equation (7.2.9), the multichannel objective function contains the 

variable norm value which can be any real value r {r>2). From two different 

simulations, we observed the kurtosis of the restored impacting signal for each r 

value selection. 

Case (a) Case (b) 

4 4 6 
Vahable norm values Variable norm values 

Figure 7.3.10 The effect of variable norm value on the impacting signal restoration 
through MBD process 

For example, when r takes the value 4, the multichannel objective function 

corresponds kurtosis and the algorithm becomes the multichannel 'Minimum 

Entropy Deconvolution (MED)' [Wiggins, 1977]. 

For simulation case (a), the kurtosis of the restored impacting signal varies as the 

selection of r changes, whereas there are consistent results for simulation case (b) 

especially for r>2.4. 

The effect of these r values become less significant when the observed signals are 

close to Gaussian and possess an -coefficient over 2 (see Figure 7.3.7). This 

means that for the problem of impacting signal reconstruction with severe noise 

corrupted observed signals, r can be selected to be greater than 4 (for more 

detailed information about variable r deconvolution, refer to Gray's thesis [Gray, 

1979]). In this study, we selected the r as 5.3 which gives the maximum kurtosis 

value for simulation case (a). 
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7.4 Summary and conclusion 

In this chapter, we have addressed the problem of the blind source separation 

and deconvolution of sources for convolutive mixtures for the reconstruction of an 

impacting signal among a set of observed signals. A theoretical derivations and 

numerical simulations have been carried out assuming that one of the sources are 

non-Gaussian (impacting signal) and the other signals are Gaussian and are 

independent of each other. 

We showed that the cancellation of fourth-order output joint-cumulants leads 

to a satisfactory condition for the source separation and non-Gaussian impacting 

signal reconstruction. Three different types of joint-cumulants have been 

Cum22{s^{n),Sj{n-k)^ , C u m . ^ ^ \ ^ s . { n ) , s , and Cufi\j^s^{n),sj{n-k)^ . In 

fact, the selection of these output joint-cumulants possibly depends on the nature 

of the unknown signals and is not known a priori. Nevertheless, focusing on the 

highly impulsive signal dealt in this study, the Cum.^^^s^{n),sj{n-k)^ is 

considered to be the most effective cost function (updating function), and is thus 

employed here. To check the degree of independency of the separated signal, the 

criterion has been selected as (^)' (^)}| • This factor has shown 

consistency of convergence from numerous simulation results (refer Table 7.3.2). 

The multichannel blind deconvolution process which utilises variable norm 

values as a multichannel objective function is introduced. 

For a complicated system having multi-coupling or heavy noise interference, the 

multichannel blind deconvolution approach turns out to be a more effective 

method (see Table 7.3.1). 

The selection of the variable norm values (r) depending on the status of each input 

and output signal of the inverse system remains to be studied further. 
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CHAPTER 8 

Application to a mechanical impacting problem 

8.1 Introduction 

In this chapter, the behaviour of a randomly excited vertical cantilever beam 

with an endstop is investigated experimentally. The aim of this chapter is the 

practical verification of blind signal separation and recovery of the impacting 

signal. In the context of 'condition monitoring' of a mechanical system, this might 

be a key element related to fault detection. The aim would be to obtain a 

diagnostic tool that avoids false alarms. In a practical system, there may be 

(unexpected) nonlinearities and other hidden effects among the signals and 

structures. Accordingly, in our study, the experimental conditions are controlled 

closely to ensure that the mathematical models used in previous chapters are 

relevant. 

Figure 8.1.1 illustrates a simple schematic view of a mechanical system in which 

an impacting signal arises due to an end stop. In a practical case, we assume the 

detailed form of the system and input sources are unavailable. The impulse signal 

due to the impacting between the moving body and surrounding structure is to be 

identified from the measured data (in this case the acceleration signal). The 

measured signal consists of the response of the mass-spring-damper or beam 

structure when the excitation and the impact signal acting simultaneously on the 

structure. 
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///////////// 

X 
Qv-

///////////// 

(a) Mass-Damper-Spring system (b) Cantilever beam system 

Figure 8.1.1 Mechanical model for blind deconvolution 

8.2 Description of the mechanical impacting system 

This section provides i) detailed descriptions of the experimental equipment used, 

ii) graphical illustration for data acquisition, iii) definitions of signals obtained, iv) 

relationship between the signals and v) pre-examination of the measured signals in 

each impacting or non-impacting test. 
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8.2.1 Instrumentation and experimental layout 

Table 8.2.1 has summarised the details of equipment used in this experiment. 

No, Equipment name Model Serial No. Status and settings 

1 Accelerometer B&K4375 1238990 Sens i t iv i ty : 0.318 pC/ms"^ 

2 Cha rge Ampl i f ie r 1 B&K2635 1575831 

Freq. range : 2Hz-lkHz 
Connec t to force t r ansduce r o n exciter 

O u t p u t : lOOmV/Uni t 

3 Cha rge Ampl i f ie r 2 B&K 2635 1278234 

Freq. Range : 2Hz-lkHz 
Connec t to force t r ansduce r on impact 

O u t p u t : lOOmV/Uni t 

4 Cha rge Ampl i f ie r 3 B&K2635 1690266 

Freq. Range : 2Hz-lkHz 
Connec t to accelerometer 

O u t p u t : l O m V / U n i t 

5 DAT recorder. 
TEAC RD-

135T 
7230701 

Volt r a n g e : 2Volt for 

Chi : Signal generator 
Ch2 : Force transducer on impact point 
C h 3 : Accelerometer 

Ch4 : Force t r ansduce r on exciter 

Tape speed : x l 

M o d e : P G M 

6 Exciter LDS MlOl 9444 3V random excitation from R921IC 

7 Force transducer 1 B&K 8200 1321344 Sensitivity : 4.13 pC/N 

8 Force transducer 2 B&K 8200 1288285 Sensitivity : 3.82 pC/N 

9 Low pass filter 
Kemo 2ch. 

VBF 8 MK4 
810806 

Freq. r a n g e : 400 H z Cut-Off 

to force t r ansducer 

10 Oscilloscope 
Thander 
T0315 

000158 

Scale : 0 .5V/d iv , dc 

Sweep t ime : 5 m s / d i v , impact s ignal 

mon i to r i ng 

11 Power Ampl i f ie r 790 series 139 Normal output: x l Out 

12 Signal analyser 

Advan te s t 

R9211C 22020161 

Random signal output: 3V, offset O.OV 
Time signal sampling rate : 1.95msec (781|J,sec) 
F r ame t ime ; 2048 sample s 

Ch A : Force transducer with sensitivity -
lOdBV 
C h B : Accelerometer w i t h sensit ivity 3dBV 

The experimental layout is shown in Figure 8.2.1 in which a cantilever beam is 

driven from a random source through an exciter. The primary (only) input to the 

system is this exciter and impacting is induced as a consequence. However, as we 
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shall see in Section 8.2.2, we will model this as a two input linear system (the 

inputs being the force and the impacts due the end stop). 

F r a m e 

E x c i t e r 

F o r c e t r a n s d u c e r 1 

C a n t i l e v e r 

B e a m 

A c c e l e r o m e t e r 

F o r c e t r a n s d u c e r 2 

R e s i s t o r L o w p a s s f i l t e r 

P o w e r A m p 

C h a r g e A m p . 1 
8 C h . D A T 

r e c o r d e r 

C h a r g e A m p . 2 

o o o o o o o o 
O s c i l l o s c o p e 

C h a r g e A m p . 3 

A l U ( I S V R ) 

S i g n a l a n a l y s e r 

I B M P C 

Figure 8.2.1 Experimental set-up for blind signal separation 

With reference to Figure 8.2.1, a broad band Gaussian signal is the excitation. 

Impacting is induced by placing an end stop restricting the motion of the beam (at 

the beam tip). The Gaussian excitation signal is produced from a signal analyser 

(Ch.l) and fed to the exciter. The signal from the exciter (Ch.3) is responsible for 

the movement of the beam. The impacting signal (Ch. 2) is generated by the end 

stop incorporating a force transducer which is placed 1.5 mm behind the beam's 

steady state position. The accelerometer is attached at the free end of the 

cantilever beam to collect the signal (Ch. 4) mixed with the vibration signal of the 

beam and impacting signal caused by the end stop. Note the impacting signal (Ch. 

2) is captured so as to assess the performance of the inversion process - normally 

of course this would be unavailable. 
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8.2.2 Definitions and relationship of experimental data 

Model 

The whole structure of Figure 8.2.1 can be thought as a system shown below; 

Measurement 

Measurement 

point 2, V , 
Random Gaussian 

Signal, Xj 
Mechanical 

structure (beam) 

Impacting Signal 

y / / / / / / / / / / / / / . / , 

Exciter 

Impacting Signal 

X, 

Figure 8.2.2 Structural components of beam excitation 

This structure is a complicated system as the impacting signal %% is nonlinearly 

related to the excitation signal Xi, and so the analysis of this situation thus 

becomes a very complex problem. In order to restore the hidden impacting signal 

from measured signals, we intend to reduce this complexity to a simplified linear 

equivalent system modelled as a two input two output system. A simplified 

experimental layout is shown in Figure 8.2.3. 
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Beam 

Exciter 

Figure 8.2.3 Simphfied input-output structure for beam excitation experiment 

The definitions of signals given in the simplified system (Figure 8.2.3) are as 

follows; 

xi : unknown input signal 1 (Gaussian driving signal, recorded in Ch. 1) 

X2 : unknown input signal 2 (non-Gaussian impacting signal, recorded in Ch. 2) 

vi : measured signal 1 (force transducer signal, recorded in Ch. 3) 

V2: measured signal 2 (accelerometer signal, recorded in Ch. 4) 

Note that the force transducer signal v, is the measured at the point where the 

force transducer is in direct contact with the structure (the beam). 

R e l a t i o n s h i p o f s i g n a l s 

Figure 8.2.3 illustrates the situation where the white Gaussian excitation force 

(normal operating signal) acts simultaneously with the impacting signal on the 

beam. The accelerometer signal va is the sum of the beam motion driven by the 

forcing term Vi and the impacting term X2. Due to the motion of the beam, the 

force transducer signal vi is affected by the feed back effect. Hence, the force 

transducer signal contains both the exciter output and beam motion. Suppose we 
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measure both the force transducer signal Vi and accelerometer signal vi in Figure 

8.2.3, the two input and two output system can be arranged as follows 

(8.2.1) 

Inverting this 

1̂ 

H, 

(8.2.2) 

Denoting 

G. = 

1-^/2^4 
G t = 

^3;^4 

1 - ^ 2 ^ 4 

1-^2/^4 

(8.2.3) 

Then, (8.2.2) can be expressed 

% - G1X1+G2X2 
(8.2.4) 

Assuming the accessible signals are Vi (Force transducer signal) and V2 

(Accelerometer signal), and Xi is Gaussian, using the accelerometer signal (V2) 

can provide the reconstruction of X2 and G4, whereas the use of the force 

transducer signal (7%) can provide X2 and G2. 
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8 . 2 . 3 S u r v e y o f t h e s t a t u s o f t h e m e a s u r e d s i g n a l s 

Two experiments are carried out in this study, (i) an impacting case, (ii) a non-

impacting case. Each of these will be discussed below. 

I m p a c t i n g c a s e : the end stop is positioned to ensure that impacting occurs. 

From Figure 8.2.3, we can model the structural components and signals as follows 

Random Gaussian 

Exciter 

Hi 

Exciter 

Hi 

Impacting Signal Impacting Signal 

to Beam 

H3 

to Beam 

H3 
»> 

->{ + 

Force Transducer 
Signal 

Vi to Beam 

Hz 

Accelerometer Signal 

from Beam 

cd 

I 

Figure 8.2.4 Two input two output model 

The measured signals are shown below. 

Xl 

Vi 

* 

X2 

V2 

Figure 8.2.5 Signals from impacting experiment; Xi: unknown Gaussian excitation 
signal, X2: impacting signal, Vi: force transducer signal, v^: accelerometer signal. 
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N o n - i m p a c t i n g c a s e : the end stop is removed to allow the beam move freely. 

When the Gaussian driving signal alone drives the beam. The model becomes, 

Random Gaussian 
Signal Generator 

Exciter 

Not exist 

Force Transducer 
Signal 

V, to Beam 

Accelerometer Signal 

Figure 8.2.6 Single input two outputs model and deconvolution 

from Beam 

I 

The signals are shown below. 

Xl 

Vl 

X2 

V2 

Figure 8.2.7 Signals from the non-impacting experiment; x,: unknown Gaussian 
excitation signal, xa; impacting signal (zero), vi; force transducer signal, \2-
accelerometer signal. 
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From these signals, we assume we can measure (in practice) only two signals (i.e., 

force transducer signal, Vi and accelerometer signal, V2). The statistical properties 

of the signals are summarised in the table below; 

Table 8.2.2 Statistical properties of each signal 
I m p a c t i n g c a s e 

Signals 

Statistical 
parameters 

I n p u t s igna l s ( u n k n o w n ) O b s e r v e d s i gna l s Signals 

Statistical 
parameters Xl X2 Vl V2 

Number of data 
points (N) 

4 0 9 6 4 0 9 6 4 0 9 6 4 0 9 6 

Skewness 4 ) 0 1 8 6 9 . 4 5 4 -0.006 0 . 0 6 6 

Kurtosis 2 . 9 0 0 1 128 .533 2 9 9 4 2 . 9 8 3 

N o n - i m p a c t i n g c a s e 

Signals 

Statistical 
parameters 

I n p u t s igna l s ( u n k n o w n ) O b s e r v e d s i gna l s Signals 

Statistical 
parameters Xl X2 Vl V2 

Number of data 
points ( N ) 

4 0 9 6 4 0 9 6 4 0 9 6 4 0 9 6 

Skewness -0.049 - -0 .005 - 0 . 0 4 9 

Kurtosis 2 9 0 4 - 2 . 9 9 4 2 . 9 2 8 
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I m p a c t i n g s i g n a l d e t e c t i o n 

Using the Higher Order Singular Value Decomposition (HOSVD) described in 

Chapter 4, Section 4.3, detection of the impacting signal is carried out. 

We consider three different cases: (i) using only the force transducer signal (vi), 

(ii) using only the accelerometer signal (vi), (iii) using two signals (multichannel 

approach). 

The results are shown below. 

(i) using only the force transducer signal (vi signals from Figure 8.2.5 and Figure 

8 . 2 . 7 ) 

As a reminder of the terms used in Figure 8.2.8, D3 represents the detection 

parameter originated from the third order cumulant tensor and D4 from the fourth 

order cumulant tensor. The dotted line in each figure is the threshold of detection. 

Thus, when the bar graph exceeds the dotted line, it means that an impacting 

signal exists in the measured signals. 

Impacting case Non-impacting case 

0.4 

•D 4 34 g03 
0.15 

0.2 

0.05 

0.5 

0.6 

Figure 8.2.8 Detection results from HOSVD. 

From the left D4 graph in Figure 8.2.8, we can verify the existence of an 

impacting signal, which corresponds to the situation when the beam is excited 

with the end stop in position. In contrast, the right D3 or D4 graph tells us that 

there is no impacting signal. 
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(ii) using only the accelerometer signal (V2 signals from Figure 8.2.5 and Figure 

8 . 2 . 7 ) 

We see the results in Figure 8.2.9. 

I m p a c t i n g c a s e N o n - i m p a c t i n g c a s e 

0.2 

0.05 

0 3 0 4 03 D4 

Figure 8.2.9 Detection results from HOSVD. 

Unlike the detection results from the force transducer signal, the bar graphs do not 

indicate the existence of the impacting signal. One possible reason for this is that 

the construction of the higher order cumulant tensors from a single signal is liable 

to give inconsistent results. This inconsistency may be corrected when we have 

more than one signal, which is demonstrated next. 
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(iii) using two measurements (multichannel approach) (vi and V2 signals from 

Figure 8.2.5 and Figure 8.2.7) 

Following similar procedure given in Chapter 4, we create a multichannel based 

impacting signal detection algorithm and the result is shown in Figure 8.2.10. 

i.e 
1.4-

F ' 

0.4 
0^. 

I m p a c t i n g c a s e 

I 1 : EVD (covanance) 
^ 0 : HOSVD (3fd tenmof) 

2|-

1.8-

1.8 

1.4-
1) 1.2 " 

I ' 
*08 
06-

04 
0̂  

0 -

N o n - i m p a c t i n g c a s e 

EZ] : EVD(covananc8) ^0 : HOSVD (3fd tensor) 

Figure 8.2.10 Detection results from HOSVD. 

Using two channels, the comparison of values from eigenvalue decomposition 

(EVD) and higher order singular value decomposition (HOSVD) can serve as a 

further detection tool. As a result, we can detect the impacting signal properly 

through this multichannel impacting signal detection procedure. 

We now move to the restoration of the impacting signal using various methods 

(single channel BS, DE, BSS, and MED) in the next section. 
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8.3 Reconstruction of the input signal from measured mechanical 

structure's response 

From the measured motion of the beam at two different points, the impacting 

signal (X2) is to be reconstructed. 

8 . 3 . 1 S i n g l e o b s e r v a t i o n c a s e 

For the ordinary blind deconvolution process, we assume that either the force 

transducer signal (v,) or the accelerometer signal (V2) is available. Two methods 

(Wiener optimisation and DE method) are applied to recover the impacting signal. 

Measured Signal 

Inverse f11te 

Restored impacting Signal 

Figure 8.3.1 Single Input Single Output (SISO) inverse filtering 

R e c o n s t r u c t i o n o f i m p a c t i n g s i g n a l f r o m f o r c e t r a n s d u c e r s i g n a l ( v i ) 

As a first step, the length of inverse filter (FIR) determination is required (using 

the methods of Chapter 5). 

T h i r d o r d e r F o u r t h o r d e r 

0.4 0.4 

20 30 40 50 m M 1W 

42 

10 20 30 40 50 GO 70 10 20 30 40 50 60 70 80 90 100 FIW length (U 

Figure 8.3.2 Result of FIR inverse filter determination 
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W i e n e r o p t i m i s a t i o n a p p r o a c h 

The initial FIR inverse filter is selected as an impulse (initial) type (see Chapter 5) 

with 44 coefficients (for third order case as shown in Figure 8.3.2) as; 

0 0 ••• 0]. 4 = 1 

44 

The shapes of the restored signals using third and fourth order Wiener 

optimisation are shown below. 

T h i r d o r d e r F o u r t h o r d e r 

500 1000 1500 2000 2500 3000 %00 4000 
Tkne Index 

Figure 8.3.3 Restored impacting signals from force transducer signal (Wiener 
optimisation) 

From the above figure, we can see the impulsive nature of signal. The statistical 

performances of each restored signal are summarised in Table 8.3.1. 
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D E m e t h o d ( s e e C h a p t e r 6 ) 

The initial FIR inverse filter is composed of 100 candidates (population) of 44 (for 

third order case) random numbers (having uniform distribution) as; 

f 

1.4 

44 

0.2 -1.2 ... 0.5 -0.1 

-1.7 0.5 

The shapes of the restored signals from the third and fourth order DE method are 

shown below. 

T h i r d o r d e r F o u r t h o r d e r 

< - 0 . 1 

500 1000 1500 2000 2500 3000 %00 4000 
Time index 

Figure 8.3.4 Restored impacting signals from force transducer signal (DE method) 

Unlike the results of Wiener optimisation, the output of the inverse filter 

calculated from DE does not reveal the impulse components. The observed force 

transducer signal (vi) is severely affected by the Gaussian excitation signal and 

the optimisation iteration of DE is probably terminated (500 iterations) before the 
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global maximum is found (a considerably longer iteration allowance may yield 

better results but make this less attractive than Wiener optimisation). 

The statistical performances of each restored signal from DE method are 

summarised in Table 8.3.1 and compared with Wiener optimisation. 

Table 8.3.1 Results of impacting signal reconstruction from the force transducer 
signal (vi) 

Methods 

Statistical 
parameters 

W i e n e r a p p r o a c h D E Methods 

Statistical 
parameters T h i r d o r d e r F o u r t h o r d e r T h i r d o r d e r F o u r t h o r d e r 

Skewness & 8 9 4 a 5 5 4 0 U 8 4 1 0 3 5 

Kurtosis & 3 0 3 %477 3 3 9 1 3.719 

S S D 7 2 0 & 4 2 2 7 1 9 & 7 3 0 7 8 3 L 5 7 0 9 0 1 9 . 9 1 7 

CPU time (sec) 8 ^ 6 2 & 3 8 5 1 8 L 7 8 4 7 8 2 . 9 6 

Referring to the results of Table 8.3.1 and considering the computational time of 

Wiener optimisation and DE, it is clear that Wiener approach is a more efficient 

approach to impacting signal reconstruction. 

For another single channel blind deconvolution, we will next use the 

accelerometer signal (vz) to restore the impacting signal through both the Wiener 

optimisation and DE method. 
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R e c o n s t r u c t i o n o f i m p a c t i n g s i g n a l f r o m a c c e l e r o m e t e r s i g n a l (vz ) 

The length of inverse filter (FIR) determination is carried out and the result is 

shown below. 

T h i r d o r d e r F o u r t h o r d e r 

10 20 30 40 50 60 70 
FKer length (Lp 

10 20 30 40 50 60 70 

Figure 8.3.5 Result of FIR inverse filter determination 

which suggests an FIR inverse filter length of 39 coefficients. Thus, from the 

result of optimal FIR inverse filter length determination given in Figure 8.3.5, the 

impacting signal restoration procedures are carried out. 
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W i e n e r o p t i m i s a t i o n a p p r o a c h 

The initial FIR inverse filter is selected as an impulse (initial) type with 39 

coefficients for both the third and fourth order case as; 

^ 0 0 0], 
39 

The shapes of restored signals from the third and fourth order Wiener optimisation 

are shown below. 

T h i r d o r d e r F o u r t h o r d e r 

500 1000 1500 2000 2500 3000 3500 4000 
Tlmelndmx 

Figure 8.3.6 Restored impacting signals from accelerometer signal (Wiener 
optimisation) 

As the measurement position of the accelerometer (channel 2, signal vi) is quite 

close to the impacting point of the beam, the impulsive nature of each signal in 

Figure 8.3.6 shows a clear contrast to the restored signals from the force 

transducer (channel 1, signal vi). Note that the statistical properties of both vi and 

V2 are similar (refer to Table 8.2.2) 
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DE method 

The initial FIR inverse filter is composed with 100 candidates (population) of 39 

random numbers (having uniform distribution) as; 

39 

fbjni -

0.2 —1.2 ... 0.5 —0.1 

1.4 - L 7 O J 

The restored signals from the third and fourth order DE method are shown below. 

T h i r d o r d e r F o u r t h o r d e r 

5" 0.05 

500 1000 1500 2000 2500 3000 * 0 0 4000 
Time index 

6-0 .05 

500 1000 1500 2000 2500 3000 %00 4000 
Tkne Index 

Figure 8.3.7 Restored impacting signals from accelerometer signal (DE method) 

By using the accelerometer signal, the result of impacting signal restoration by DE 

shows a strong contrast to the result of the force transducer signal (compared to 

the signal of Figure 8.3.4). Also this is now competitive with the result of the 

Wiener optimisation. These results are summarised in Table 8.3.2. 
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Table 8.3.2 Results of impacting signal reconstruction from the accelerometer 
signal (V2) 

Methods 

Statistical 
parameters 

W i e n e r a p p r o a c h D E Methods 

Statistical 
parameters T h i r d o r d e r F o u r t h o r d e r T h i r d o r d e r F o u r t h o r d e r 

Skewness (1482 L 6 4 0 

Kurtosis 2 5 3 5 5 1 3 . 1 8 5 ' 4 ^ 3 0 1 7 . 2 7 5 " 

S S D 4711.445 5 4 5 9 . 3 3 3 6 5 7 4 . 6 6 5 4949.491 

CPU time (sec) 5 . 9 8 2 2 3 0 4 3 1 0 . 7 7 1 2 5 5 5 . 5 8 0 

Table 8.3.2 illustrates that the DE method may be an acceptable approach to 

impacting signal reconstruction. We can see an improvement in the result of the 

fourth order DE (marked by '**') over those of Wiener approach (marked by 

However, it should be noted that the computational time of DE is more than 500 

times greater than the Wiener approach. 
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8 . 3 . 2 M u l t i p l e o b s e r v a t i o n c a s e 

For multi-channel source separation and blind deconvolution process, we assume 

that both the force transducer signal (vi) and the accelerometer signal (vz) are 

available. 

We utilise the multichannel blind signal separation (BSS) and the multichannel 

blind deconvolution (MBD) developed in Chapter 7. The results of both methods 

for impacting signal reconstruction are given below. 

S i g n a l s e p a r a t i o n b y B S S 

O u t p u t 1 O u t p u t 2 

500 1000 1500 2000 2500 3000 3600 4000 
Tims index 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Figure 8.3.8 Separated signals from blind source separation method 

S i g n a l r e c o n s t r u c t i o n f r o m M B D 

O u t p u t 1 O u t p u t 2 

500 1000 1500 2000 2500 3000 3500 4000 
Time Index 

Figure 8.3.9 Separated signals from multichannel blind deconvolution method 

214 



Chapter 8, Application to a mechanical impacting problem 

The statistical properties are compared in following table. 

Table 8.3.3 Comparison of multichannel blind source separation and Wind 
deconvolution for impacting signal reconstruction 

Methods 

Statistical 
parameters 

BSS MBD Methods 

Statistical 
parameters yi y2 yi y2 

Skewness 41022 -0.049 0.028 OL006 

Kurtosis 2.909 2.830 11.208 19.874 

SSD - - 6865.046 6139.029 

As can be seen in Figure 8.3.8, Figure 8.3.9 and Table 8.3.3, it is noticeable that 

the BSS cannot recover this impacting signal, whereas the MBD can. 

A necessary condition for BSS is that the source signals should be independent 

and from the arguments of Section 8.2.2, this is not satisfied in this experiment 

(refer to the simplification of the system from Figure 8.2.2 to Figure 8.2.3 in 

Section 8.2.2). However, in spite of this simplification, the MBD process can 

successfully recover the impacting signal and shows impulsive components in 

both outputs. 
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8.4 Summary and conclusion 

This chapter has demonstrated the practical application of the blind deconvolution 

technique through a simple beam excitation experiment. The signals from single 

channel measurements or two channel measurements have been used to identify a 

fault signal that can hardly be recognised by a simple examination (direct 

observation or for example, crest factor or kurtosis exploration of the signal from 

the pick-up sensor). 

Using any single BD or DE method, the impacting signal has been successfully 

identified in a statistical sense. Among these, the efficiency of BD from the point 

of view of computational time is preferable to DE. 

For a more general approach, two different multichannel signal reconstruction 

procedures are carried out namely; (i) the Blind Source Separation (BSS) and (ii) 

the Multichannel Blind Deconvolution (MBD). 

A comparison for impacting signal reconstruction is summarised below. 

Table 8.4.1 Comparison of the best impacting signal reconstruction results for 
single channel BD, DE and multichannel blind deconvolution 

S i n g l e c h a n n e l B D S ing le c h a n n e l D E M u l t i c h a n n e l B D 

Skewness 2 . 2 8 3 L 6 4 0 0 I W 6 

Kurtosis 2 5 . 3 5 5 17.275 19 .874 

S S D 4 7 1 L 4 4 5 4 9 4 9 . 4 9 1 6 1 3 9 . 0 2 9 

Remarks 

From the third order 
deconvolution 

method using the 
accelerometer signal 

From the fourth order 
DE method using the 
accelerometer signal 

-
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From this table, we can see that the single channel BD process is an effective 

method for restoring the impacting signal. 

The clear impulsive nature of restored signal can help identify the cause of the 

impacts within the mechanical systems. This encourages us to propose single 

channel BD as an effective tool to reveal impacting signals in condition 

monitoring. 

Due to the computational inefficiency, DE can only be used as a reference for 

further comparative works. 

Future work could include the use of cross signal manipulation using the 

reconstructed multichannel signals. 
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Chapter 9 

Conclusions 

9.1 General conclusion 

Based on the study of this thesis, conclusions are presented relating to seven 

stages of the work. 

S t a g e 1 (Chapter 2 ) The thesis begins with the explorations of the characteristics 

of higher order cumulants of signals and their properties through convolution. 

Based upon theory and simulation, this stage provides evidence of the validity of 

the application of higher order statistics to the source signal reconstruction 

problem. 

Selecting the value of the normalised cumulant which incorporates the second 

order and higher (third or fourth) order cumulant, the inequality condition of this 

value is established. This condition now provides the key motivation in the blind 

deconvolution problems and hence is employed for the blind reconstruction of 

source signal. 
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S t a g e 2 (Chapter 3) This stage has been devoted to the fundamental consideration 

of the utilisation of the Higher Order Statistics in order to reconstruct an unknown 

impacting signal from only a measured signal. Starting from the basic Wiener 

optimisation approach for FIR systems, the blind deconvolution procedure has 

been justified utilising the objective function and its correspondence to 'partial 

order'. In restoring the impacting signal, two different objective functions 

(constrained and normalised higher order cumulant) have been justified from 

which FIR (non-recursive, MA inverse system) filter coefficients are calculated. 

For completeness, the inverse system has been selected as having a recursive 

nature (i.e., AR or ARMA system) with the expectation of improved performance 

over that of the non-recursive system. These three different inverse systems are 

compared with the shapes of each objective function with respect to the filter 

coefficients. The result of signal restoration from each system has been also 

compared. Even though all the systems possess more than one maximum, the MA 

inverse system turned out to be more robust than the recursive systems. 

S t a g e 3 (Chapter 4 ) The aim of this contribution is to put HOSVD/tensors into a 

practical context. To do this, applications of higher order statistics through the 

construction of higher order tensors and their singular value decomposition is 

introduced. From this, we have devised the utilisation of HOSVD for detection, 

classification and reconstructability of non-Gaussian signals. From the constructed 

higher order tensors of measured signal, the higher order singular values are 

estimated. The essence of non-Gaussian signal detection is based on the 

comparison of the second order singular values and higher order singular values. 

From the simulations with various systems, we conclude that the detection, 

classification and reconstructability assessment using HOSVD can be a useful tool 

for blind processing of impacting processes. 
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S t a g e 4 (Chapter 5) This stage provides guides to open questions in blind 

deconvolution namely (i) initial filter coefficient vector selection and (ii) choice of 

length of the inverse filter. From this, firstly, it is demonstrated that it becomes 

natural to take the initial inverse filter as impulsive in form. Secondly, criteria on 

the selection of optimal inverse filter length have been proposed resulting a 

predictive determinator which utilises the objective function (skewness or 

kurtosis), or-coefficient and/or entropy of the observed signal that can avoid very 

time consuming computation. 

S t a g e 5 (Chapter 6 ) We investigated the performance of just one of numerous 

global optimisation methods for the blind restoration of non-Gaussian impacting 

signals. This optimisation is the Differential Evolution (DE) method, which 

utilises an evolutionary process similar to the Genetic Algorithms (GA). The 

performance of signal reconstruction and computational efficiency are considered 

and compared to the Wiener optimisation method discussed in Chapter 3. Since 

the Wiener approach is believed to yield only one of the local maxima, the 

restoration of an impacting signal using a global optimisation method has been 

carried out. The restoration of impacting signal from DE has resulted in a 

successful method which is comparable to the Wiener optimisation method. 

However, given the equivalence of the results, DE scores relatively poor method 

because of its computational overhead. 

S t a g e 6 (Chapter 7) In this stage, we have addressed the problem of the blind 

source separation and deconvolution of sources for convolutive mixtures for the 

reconstruction of an impacting signal. The theoretical derivations and numerical 

simulations have been carried out and an approach suggested for the multichannel 

blind non-Gaussian (impacting signal) reconstruction from multipoint 

measurement of a mechanical structure. 
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Chapter 9, Conclusions 

S t a g e 7 (Chapter 8 ) In this stage, we used an experimental impacting cantilever 

beam to validate the blind deconvolution process from computer simulations. 

Firstly, we justified a multichannel model of this experiment and established an 

approach to the practical application of BD process by simplifying the 

experimental model. Secondly, we tried to reconstruct the impacting signal 

through single or multichannel BD process. The experimental results for restoring 

the faulty impacting signal gave acceptable information to identify the cause of 

mechanical system. 

9.2 Further research 

In this final section, aspects of further research are proposed which relate to the 

results of Chapter 6, Chapter 7 and Chapter 8. 

From the results of Chapter 6, possible future research could include; 

(1) Study of stability of the HR (AR and ARMA) inverse filters in DE process 

(2) The search for computational efficiency when the filter length increases 

From the results of Chapter 7 and Chapter 8, enhancement on the restored signal 

using multichannel restored signals through; 

(1) Signal vector splitting based on the SVD 

(2) A cumulant-based adaptive enhancer 
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Chapter 9, Conclusions 

On a more general note relating to applications, the results of this thesis are 

sufficiently encouraging to go forward to a more unified approach to condition 

monitoring. For example, for detection and diagnosis of a faulty impacting 

component of a mechanical system where the signal cannot be measured directly, 

one must identify the signal and characterise the internal state of the system. A 

diagrammatical illustration of this monitoring system is depicted in Figure 9.2.1. 

Transmission signals 

Sensors 

r 

r 

Unknown Mechanical 
system d 

Radiation 
signals 

Data base 

CONDITION 
MONITORING SYSTEM 

Setting off alarm 
or 

shut clown the machine 

Impacting signal 
detection 

Knowledge base 
of 

Impact dynamics 

Impact behaviour 
characterisation 

and 
reconstriction 

Figure 9.2.1 Condition monitoring system based on this thesis 

222 



Chapter 9, Conclusions 

Using the results of this thesis, we could have applied the impacting signal 

detection tool based on the HOSVD and signal identification using BD process. 

However, a pattern recognition of impacting signal may be required in order to 

make a precise diagnosis. To do this, a f r e q u e n c y b a s e d h i g h e r o r d e r s i g n a l 

p r o c e s s i n g (bi-spectrum and tri-spectrum) becomes an essential element as well 

as the time based higher order statistics. 
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Appendix A, Central limit theorem and partial order 

Appendix A 

Central limit theorem and partial order 

This Appendix summarises results relating to the effect of filters on random 

signals and Donoho 's concept of partial order. It includes a brief explanation of 

the central limit theorem and simulations to confirm the validity for our class of 

signals. 

A.l Central Limit Theorem 

Let Xi,X2, .. . , X n be mutually independent random variables whose individual 

distributions are not specified. Denote and as the mean and standard 

deviation of each X;, j = 1, 2, ... , N. Then the sum random variable 

2 - = = ( / 1 1 1 ) 

/ = 1 

will have a mean and standard deviation a ^ , where 

A M * ^ 

f=l f=l 

The central limit theorem states that under certain conditions the sum random 

variable X will be normally distributed as N with the above mean and 

variance. 

(%) = ^ 
a^yJlTZ 

A - 1 



Appendix A, Central limit theorem and partial order 

Proof 

Equation (A.1.3) can be proved as follows [Bendat, 1958]. 

For simplicity, we shall assume that the respective mean values are zero. 

] = 0, ] (A. 1.4) 

Denote the higher (central) moments of Xi as 

(A.1.5) 

For the sum random variable X ='^X. since the Xi are mutually independent, it 

follows that 

f=l 

= 0 , ( 7 ^ = = N f ; , , , etc. (A. 1.6) 

We next normalise Z to a new random variable Y whose variance is unity by 

N 

E x , 
y = — = - ^ 

^ X ^ X 

(A. 1.7) 

Using the characteristic function definition in Chapter 2 (section 2.2), the 

relationship between the probability density function of the random variable Y and 

its characteristic function is given by 

ja^Xi/ax 

(vt.l.S) 

/ = ! 

AT 

i=l 

where (py^{(i)la^) = J. 

Taking the logarithm of (cu) changes the product term in (A. 1.8) into a sum. 

log (fu) = ^ log (m / ) (A. 1.9) 
f=l 
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Appendix A, Central limit theorem and partial order 

By expanding the exponential term into a power series, and using (A. 1.5) and 

( V V . 1 . 6 ) , 

l + y ( m / a ; ^ ) X , 

2! 
- 2 7 - 7 

3! 4! 

= 1 o - - J—— Yxi + -
2! 

1 - - y -

3! 4! 
+ ' 

(A. 1.10) 

/ \ 

2Ar 6 # V # 

0) f - \ 

2 4 A r 

(O 

2]v 
(A.1.11) 

For large values # , and taking the logarithm of (A. 1.10), 

/ 

10g<^y,((U/(T;^) =10g 
V 

Consequently, as approaches infinity, substituting (A.1.11) into (A.1.9) yields 

(A. 1.12) 

I N , 

l o g ( m ) = ^ l0g<^y, ((0 / (7% ) ^ - ^ 

f=l 

Thus, the characteristic function of Y becomes, 

^ y ( m ) = (A. 1.13) 

The relationship between the probability density function Py (y) of the random 

variable Y and the characteristic function is 

(A. 1.14) 

which is a Fourier transform. The inverse Fourier transform of (a)) yields 

2n 

4 ^ 

-J . - /2 

(A.1.15) 

which is a normal probability density function with zero mean and unity variance. 
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Appendix A, Central limit theorem and partial order 

Detraction from the central limit theorem 

Expressing the probability density function of the total sum X as (x) and 

the individual random variable Xi 's densities as (x) , then (x) is the 

convolution of the densities p^ (x) of Xj 

Px (^) = Px, (:̂ ) * (^) (A. 1.16) 

where * means 'convolution'. Thus, the central limit theorem can be viewed as 

property of convolution of positive functions. Because of this, the central limit 

theorem does not hold if only a small number m of the given densities are 

dominant. That is to say, if the densities of the other random variables are 

relatively narrow (leptokurtic) in the sense that, in the evaluation of the total 

convolution, they can be approximated by impulses. In this case, p ^ ( x ) is 

effectively the convolution of only m dominant densities and it need not be close 

to a normal curve. 

Simulation for central limit theorem 

Let /i; and be the mean value and variance of each random variable Xi(k), i = 

1,2, Consider the sum random variable as illustrated in Figure A. 1.1 

(A.1.17) 
i = l 

where a, are arbitrary fixed constants. Now, the mean value m,. and variance a , 

become 

2 

m = E[y{k)] = E 

f=l 
" A/ 

^ a,4 (t) = ^ (A:)] = g 

O"/ = E[{y{k) -myf'\ = E 

- l 2 

f=l f=l 

(A.1.18) 
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Appendix A, Central limit theorem and partial order 

Following figure illustrates the sum of impulsive random variables (signals). 

NG, impu ls i ve s igna l 

Figure A. 1.1 Process of the linear combination of the non-Gaussian impulsive 
signals 

As expressed in equation (A.1.17), the combination (from A^=l to 160) of random 

signals with 2000 sample points (&=2000) are simulated. The statistical changes of 

each output case (denoted by 'Combined signal' in the figure) are then calculated 

and are plotted by a solid line in Figure A. 1.2. Also, the Gaussian distribution in 

each case (denoted by 'Gaussian signal' possessing the same mean and variance 

as expressed in equation (A. 1.18)) are plotted as a dotted line for comparison. 
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Pdl d IndMdual mignml x (Dam » 2000. OmgiiwiO » 10) Pdf of combined signal (Data = 2000 , Segments = 40) 

Combined Signal 
Gaussian s lgn^ 

(AmpMudmolalQnml) (AmpAjdmof mlgnml] 

Pdl of oomMnad algnW (Dam m 2 0 0 0 , ^ 

C o n f i n e d Signal 
Gaussian signal 

Pdf of combined signal (Data = 2000 , Segments = 80) 

Combined Signal "Ausslanslgnfd 

(Amp#lud#o##lgnal| [Amplitude of signal] 

Pdf of combined signal (Data m 2000 , Segments = 10) 

I " 
| 0 . 2 5 -

I 0.2-

I — Combkied signal 
Gmjssian signal 

|o ,05 

Pdf of combined signal (Data = 2000 . Segments = 120) 

Combined Signal 
Gaussian signal 

(Amp#ud# ol mignml] [Amplitude of signal) 

Pdf ofoomhinadmlQnal (Dal* m 2000 . SagrnanWmgO) Pdf of comkxned signal (Data = 2000 , Segments = 160) 

Combined Signal 
Gaussian signal 

[AmpMud#o*#gnal] 

Ibonwinedsiyial 
aussian signal 

[Amplitude of signal] 

Figure A. 1.2 The changes of the statistical property of the linear combination of 
the impulsive random signals 
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A.2 Partial order and BD process 

Given a time series v{n) which is a filtered version of an input sequence x{n) as 

shown in Figure A.2.1 

v = h * x (A.2.1) 

where * means 'convolution'. The deconvolution problem is to f ind a f i l te r / (n) 

which recovers f rom the observed series v (n) ; 

x = f * v (A.2.2) 

:(n) 
• v(«) ^ f n 

i y(n) ~ x(n) 

f n 

f n 

Figure A.2.1 Deconvolution model 

To solve this, we introduce (in Chapter 3) the degree of Gaussianity of a random 

variable (i.e., how close a signal is to the Gaussian distribution in a probabilistic 

sense). The key idea of recovering v{n) is maximise a non-Gaussian parameter 

(expressed in higher order terms) of the output x{n) of an inverse filter fin) with 

respect to the coefficients of the filter provided that x{n) is non-Gaussian. If x{n) is 

Gaussian then v{n) is also Gaussian, thus the recovery procedure given in Figure 

A.2.1 is not applicable. 

The state of Gaussianity of signals in each filtering process is now defined in 

terms of 'partial order ' . 

A.2.1 Partial order in linear combination 

Suppose two random variables X and Y (note that their lower case letters, x and 

} are realisations of each random variable) are related by 7 = a Z + c (a and c are 

non zero constants), these random variables are regarded as equivalent f rom a 

probabilistic point of view and have the same probability distribution and denoted 

as 
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= y ()\.2.3) 

which means the probabilistic characteristics of any random variable is not 

affected by a constant scaling and addition (i.e., the shapes of the probability 

distributions of X and F a r e identical). 

On the other hand, for appropriate constants a„ ((=1,2, with <°°), we 

write 

(A.2.4) 

to mean the linear combination (linear convolution or linear filtering if a, are 

assumed to be filter coefficients) of independent random variable X. Then, output 

yhas a relationship with the X and defined below; 

X . > y (A.2.5) 

The notation • > is now called the partial order of random variables (i.e., Y is 

more Gaussian than X). This is supported by the following two properties: 

a) Transitivity : if X>Y and Y>Z then X - > Z , Z is more Gaussian than X 

b) Asymmetry : L e t X a n d Yhave finite variances. If X->Y and Y->X then 

X = Y .X and Y are equivalent in a probabilistic sense. 

If Z is Gaussian, 

Z- •> Z , for any X (A.2.6) 

meaning that there are no other random variables which are more Gaussian than Z. 

On the other hands, for X having a certain distribution but not exactly Gaussian, 

(A.2.7) 

Equation (A.2.7) is strict unless 

a) X i s Gaussian (then X = ^a^X. = Z ) , i.e., all the random variables are 

equivalent in statistical sense. 

b) Z i s not Gaussian, but the linear combination is trivial (i.e., no two at is non 

zero) (then X > Z ) . Simple scaling of a random variable doesn' t 
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change any statistical properties of itself. 

The case a) implies that the efficiency of the deconvolution process is 

significantly degraded when the input signal to be restored has the form of the 

Gaussian distribution. In a word, relation (A.2.7) says that linear combinations of 

independent random variables are "more nearly" Gaussian than the individual 

components of the combination. Note that X->Y means F i s more Gaussian than 

%. 

A.2.2 Partial order and blind deconvolution (inverse filtering) 

When a non-Gaussian, i.i.d. signal excites a linear system- the output of the linear 

system tends to be closer to Gaussianity due to the linear filtering. In other words, 

the probability density function of the output from the linear combination 

(convolution) is closer to Gaussianity than that of the individual signal. This has 

been already explained through the relationship of Gaussianity to linear filtering -

i.e., the central limit theorem. 

The blind deconvolution scheme aims to find the inverse filter coefficients from 

which the output of the inverse filter should be less Gaussian. The equations used 

in FIR inverse filter coefficient calculation have to take a certain form of 

coefficients with a certain length to solve the equation. 

. i . d . System 
Inverse 
System i . i .d . 

non-Gaussian more Gaussian non-Gaussian 

L L-1 L L-1 

Figure A.2.2 Gaussianity and filtering 

The above figure notes that if an i.i.d., non-Gaussian signal is filtered by a linear 

system, its output tends to be more Gaussian (Donoho, 1981). 

Starting from this idea, a relationship between the partial order and blind 

deconvolution problem will be discussed. To do this, Figure A.2.1 is developed in 

Figure A.2.3 in detailed form 
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(a) 
%(n) C o n v o l u t i o n D e c o n v o l u t i o n 

i h j if J 

(b) 
z ( n ) C a s c a d e sys tem 

Figure A.2.3 Deconvolution: (a) convolution-deconvolution operation; (b) 
equivalent system (for a noise free case) 

A certain statistical value calculated f rom the output of an arbitrarily given inverse 

filter is defined to represent the degree of the Gaussianity (e.g., skewness or 

kurtosis of y). In such a manner that the statistical value can discriminate between 

the distribution of v and that of ^ a . v ( n - i ) (an output of linear filter). In other 

words, this requires the selection of an Objective function O which can be 

equivalent to the partial order •> described in the previous section. Thus, O 

agrees with order • > on v if v- > y implies 

0(v) > 0(y) (A.2.8) 

for every v, y which are filtered white noise sampled f rom random variable in v, 

i.e., if y is more Gaussian than v, then the Objective function on v is larger than 

on y. Hence, making the role of the objective function cope with the partial order 

becomes the basis of the BD process. This objective function can be formed from 

using the characteristics of cumulants, which is defined by the normalised 

cumulant of order {r,s) of v as 

r> s (A.2.9) 

where c / represents the r-th order cumulant of signal v and the order of 

denominator 's cumulant s is even integer greater than or equal 2 less than the 

integer r. If y{n) = ^a.v(n-i), where v(n-i) are independent samples of random 

variable v, 
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(A.2.10) 

So, for r > s and even ^ > 2 , lo^ (r, ^)| < \0^ (r, 6')|. Therefore, v- > y implies 

|C>^(r,5)| >j(9j,(r,i')| even 5 > 2 , and r > , (A.2.11) 

Thus, equation (A.2.11) says that normalised cumulants of order {r,s) for v and y 

are consistent with • > . When v has zero mean, 0^(4,2) thus corresponds to the 

value of 'kurtosis ' of signal v and has been used in Wiggins 's Minimum Entropy 

Deconvolution (MED). This shows that the original MED procedure is consistent 

with equation (A.2.8) when v has a kurtosis greater than 3 (leptokurtic). If v has a 

kurtosis smaller than 3 (platokurtic), minimising, not maximising 0^ (4 ,2 ) is the 

appropriate strategy. 

Also, choosing the order r equals 3 and 5 as 2, the normalised cumulant takes the 

form of 'skewness ' of a signal. 

The input-output relationship in a linear system is usually expressed in a linear 

form 

(A.2.12) 

where y{n) is the output of the inverse system which has an impulse response 

and v(n) indicates the input of the inverse system. Relating (A.2.12) to (A.2.11) 

and denoting the objective function of output O (r,s) then 

' E i f . j 

By taking the absolute value of (A.2.13), 

K f j 

S ( / j ' 
i/j 

(A.2.13) 

(A.2.14) 
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in which the term 

l / s 

designates the standard Is norm / and the 

fll I V 

numerator is | | / | j . From the inequality of the rational term for ^ an even 

integer and r> s case, 

/ 

/ 
< 1 (A.2.15) 

Using (A.2.15) for (A.2.14) yields a bound for a positive even integer 5, 

|(9j,(r,5)j<|0,,(r,6')| for r > ^ (A.2.16) 

The upper bound of Oy{r,s) thus can be interpreted as follows; Any time-

invariant linear operation (non-Gaussian i.i.d. time series input) results in a time 

series whose magnitude of the normalised cumulants is less than or equal to that 

of the excitation for all even s <r. 

Thus, the required deconvolving operator must generate a response whose 

normalised cumulants have magnitudes that are the largest over the class of all 

linear operators for all even s <r. 

The study in this thesis exclusively considers the case in which s < r with 5 

even, whereby it is desired to select g (the impulse response sequence of the 

convolution-deconvolution operator in Figure A.2.3) so as to maximise an 

estimate of That is, the ideal deconvolution operation is performed by 

maximising the magnitude of the normalised response cumulant Oy(r,s;g) , 

where s is any positive even integer less than r for which cumulant of order s, c j 

is nonzero (e.g., use the order s equals 2 meaning the variance of signal). This 

maximisation is to be made with respect to the unit-impulse response {g,„} of the 

combined convolution-deconvolution operator of the Figure A.2.3 (b). Since the 

unit-impulse response of the unknown linear convolution operator {h^} is 

implicitly contained within the output data y(n), this maximisation must be made 

with respect to the deconvolution operator 's unit-impulse response {/„J. The 

required maximisation therefore takes the form 
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max (r, ̂ )| = max (r, f) sgn[Oy (r, ̂ y)]] (A.2.17) 

where f is an appropriately dimensioned vector whose components are the 

elements of the unit-impulse response of the deconvolving operator (inverse filter). 

In this way, the equation (A.2.17) is devised to find a global maximum of 

I(9^ (r, 5)|. Normally, the necessary condition which give a local maximum is done 

by differentiating and equating to zero with respect to the filter coefficients. 

To support this, the restoration of the impacting signals that consist of a few 

impulsive variables can be achieved through the inversion of the system h,n in 

Figure A.2.3 unless there is noise interference. However, the observed signals are 

often contaminated by noise signal (assumed Gaussian) making the observation 

'more Gaussian' . Thus, a simple inversion of the system cannot provide a correct 

restoration of the impulse signal. Focusing on the problem of restoring the highly 

non-Gaussian spiky signals, it would be more general to say that the BD process 

can be achieved by making the inverse system produce an output that is strongly 

non-Gaussian This is the main objective of the Blind deconvolution process. 
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Appendix B 

Numerical expansion of the higher order deconvolution 

operator (part of Chapter 3) 

This Appendix provides numerical solutions for the nonrecursive (MA) and 

recursive (AR or ARMA) inverse filter coefficient calculation which are used in 

Chapter 3. 

B.l Linear Nonrecursive Deconvolution operator (MA inverse 

filter) 

The input-system-output relationship can be expressed as the linear constant-

coefficient difference equation 

= ( B . 1 . 1 ) 
k=0 

w h e r e / i is inverse filter coefficient (^=0,1,...,L-1)- The normalised cumulant of 

order (r,s) is used in which r>s and integers (for example, r=4 and s=2) 

/v-l 

k=0 

N-l 

k=0 

( B . 1 . 2 ) 

Optimising this objective function with respect to the filter coefficient f i 

the necessary condition is 

with the expansion form 
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N r / j 

E / m 
, k=:Q t=0 k=0 

/Af-I 
(B.1.4) 

= 0 

Rearranging the numerator term of equation (B.1.4) and setting to zero becomes 

/V-1 ^(^) 

t=o t=o A:=0 

,dyjk) 
(13.1.5) 

,for s=2 case, 

AT-l N-l N-lf L-l 

k=0 k=0 
(B.1.6) 

Since, ^ ^ ^ 3v(„ - 0) ^ ^ av(„ -1) ^ 3v(„ - 2) 

the term 

% 
dy(k) 

% 

can be written as 

% % % 
+ .... = v(n-0) 

For m=0,l ,2 , . . . ,L-l 

dy(k) 
: v(k-m) (B.1.7) 

Thus, substituting (B.1.6) and (B.1.7) into (B.1.5) yields 

r' N'l N-l \ Af-l 1.-1 w-1 
^fi^v(k-mMk-i)= E / ( ^ ) / E y ' ( ^ ) \k)v{k-m) (B.1.8) 

t=0 t=0 

for m=0,l , . . . , L-1. 

Expressing this in matrix form 

^v{k)v{k) ^v(k)v{k-l) 

^v{k-\)v{k) ^v{k-\)v{k-I) 

^v{k-m)v{k) ^v{k-m)v{k-\) 

^v{k)v{k-q) 
i . 0 

YjV{k-l)v{k-q) 

'YjV{k - m)v{k - q) 

/ o 

/i 

t»0 

A-^y' '{k)v(k-m) 

(B.1.9) 
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Af-l 
where A = ^ y ' { k ) l ^ y ' ' { k ) • equation (B.1.9) can be written equivalently, 

t=o 

Rvv b = g (B.1.10) 

where Rw denotes the symmetry L X L autocorrelation matrix of the observed 

signal, b is L X 1 inverse filter coefficient vector, and g is L X 1 cross-

correlation vector between the observed signal and the output of the inverse filter. 

This is the same equation used in Chapter 3 (equation (3.3.17)). 

B.2 Linear Recursive Deconvolution operator (ARMA inverse 

filter) 

B.2.1 The MA part 

The optimisation condition can be solved for the M A part of the inverse filter 

coefficients 

(%)y(r,j) 
db. 

\rls 

k=0 

f N-\ Y'i-l Af-l 

k=0 

^(t) 

(B.2.1) 

Rearranging the numerator term of equation (B.2.1) and setting to zero becomes 

t=0 

^y{k) 

db. 

W-1 

t=o t=0 db: 
(B.2.2) 

For mathematical brevity, let 's denote 

ob„ 
(B.2.3) 

for m=0, l ,2 , . . . , g - l and n=0,l,...,A^-l. The term % stands for the derivation of the 

output of the inverse filter with respect to the M A part coefficient and is called as 

the elements of the response sensitivity sequence for the M A part. 

Since the output of the AR, M A part can be expressed 
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N-\ 

1=0 i-=0 k=0^ j=0 

y-1 

(B.2.4) 

Setting s=2 and combining (B.2.2), (B.2.3), and (B.2.4) yields (for m=0, l , . . . ,^- l ) 

!]-l N-l p-i N-l (N-\ N-\ \N-\ 

;=o i=o (=0 k=0 

which is the similar formulation to that of FIR estimation, e.g., the filter 

coefficient can be calculated by the between the correlation of x, Sb and correlation 

of }, Sb. To solve the term Sb(k-m) in equation (B.2.3) and (B.2.5), we first 

calculate the term as following - 1 ) 
db. 

For i = 0; a. 

For i = 1; a„ 

dy(n) dy(n-l) dy(n-2) 

dbn ' dh 96n 
- + . . . 

dy{n) dy{n-l) dy{n-2) 
+ Qr, 

db. 

C]-\ 

YjbiV(n-i) 
_ 

A 

YjbiV{n-i) 
t = 0 

3Z?i 

: v ( « - 0 ) 

: V(M - 1) 

(B.2.6) 

For i = q-l; a. 
dy(n) ^ ^ dy{n-l) ^ ^ dy(n-2) _ _ 

—+41 
% 

- + 

g-1 
•+.... = • 

96. 
= V(M - 9 +1) 

<7-1 

Expressing (B.2.6) in compact form with AR part coefficient and the observed 

signal 

p-i 
^ OjS,^ {n-m) = v{n - m) 
y=o 

(B.2.7) 

for m=0, l ,2 , . . . , g - l andn=0,l,... ,A^-l. 

Note that in (B.2.7), when the AR part coefficient is ao=l and a p O for /=l,2, . . . ,p-l 

the sensitivity factor Sb becomes identical to the observed signal v(n). When we 

express (B.2.6) in matrix form for every coefficient of the M A part. 
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For m — O 

ay(O-O) 

A 
8y(l-0) 

W - i ) 

A 
^(1-1) 

dy(N—l—0) dy{N —1 — 1) 

For m = 1 

96i 

3&1 

3 y ( 0 - l ) 

96; 

^(1-1) 
9&1 

dy(N-1—0) dy(N -1-1) 

9&J 9&1 

9 y ( 0 - p + l) 

96o 

dyjl-p + l) 

96n 

dy(N — 1 — p + 1) 

9&n 

9 y ( 0 - / ? + l ) 

9&1 

9 y ( l - p + l ) 

9̂ 1 

9}'(A^ - 1 - p +1) 

dh 

do 

a, 

— 

V(l) 

v{N - 1 ) 

UQ - v ( - l ) ' 

a, 

— 

v(0) 

_ V i . v (A^-2) 

For m-q-l 

&K0-0) 

9 y ( l - 0 ) 

96 
9-1 

9 y ( l - l ) 

—1 —0) 9};(7V —1 — 1) 

96. 

dyi).- p + l) 

96. 9-1 

9-1 

^ ( 7 V - l - p + l) 

v(0 - g + 1 ) 

a. 

== 

v(l-- ^ + 1 ) (B.2.8) 

. V i _ v ( N - 1 — g +1) 
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The Sb terms in equation (B.2.7) are calculated via the matrix form, 

m = 0 m = l m = p-l 

n = 0 J&(0-0) (0-1) JafO-p + l) 

n-l %(l-0) a&(l--P^^l) 

n = N — I %UV-l -0 ) . St (A^- l -p + l) 

Aq ' v(0) 

Oi 
— 

vO) 

_ V i . v(A^ -1) 

(B.2.9) 

Using the obtained sensitivity sequence matrix f rom (B.2.9), equation (B.2.5) can 

be expressed in matrix form 

^s^(k-m)v(k) • • ^s,,(k-m)v(k-q + l) 

^s^(_k-l)y(k-l) ^s,Xk-l)y{k-2) 

t = 0 

^Si,{k-\)y(k-p + \) 

t = 0 

Af-I 

^s^{k-m)y{k-V) ^s^(k-m)y{k-2) • • ^s^(k-m)y{k-p + \) 
p~'. 

tmO 

(B.2.10) 

where m=q-l and {k)l^y'{k) • 

Or, in a compact form 

(B.2.11) 
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B.2.2 The AR part 

The optimisation condition can be solved for the AR part inverse filter coefficient 

t=o y I y k=0 lc=0 
da. /AT-] 

(B.2.12) 

= 0 

Rearranging the numerator term of equation (B.2.12) and setting to zero becomes 

Â-1 
l y - ' ( t ) 
i=0 

dyjk) _ 

da: 

f N-\ N-\ \N-\ N-\ \ 

A = 0 3a. 

Let assume ao=l and denote 

9a _ 
(B.2.14) 

for m=0,l,...,p-l and n=0,2,...,A^-l. The term Sa is called as sensitivity factor for 

AR part coefficient. 

And for s=2 case, the left part of equation (B.2.12) can be written 

i V - l N-lf p-1 q-1 ^ 

2 y'"' (^) = Z " Z - ; ) + Z - 0 
^=0 ^'=0 ^ j-O i=0 ^ 

(B.2.15) 

Thus, combining (B.2.13), (B.2.14), and (B.2.15) yields (for m=0 , l , . . . ,p- l ) 

/ ) - ! iV-1 

j=0 k=0 

p-1 N-i 9-1 N-1 f N-\ N-l 

^^j'^^a(k-m)y(k-j) = YibiYi^aik-rn)vik-i)- Z / ( ^ ) / Z ) ' ' ( ^ ) Z/"'(^)5„(A:-m)(B.2.16) 
yzO t=0 i=0 A=0 &=0 yt=0 

As the same manner to the M A part case, the sensitivity factor for AR part can be 

calculated as following; 

Since, ^ 1,, 
da, da, da. 

(B.2.17) 

The Sa terms in equation (B.2.17) are calculated via the matrix form imposing zero 

initial condition. 
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m — 0 m = l /» = p - 1 
n = 0 a. (0-0) j / O - p + g 
n = l ^.(1-0) j,(l--;?4-l) 

n = N-I a / N - 1 - 0 ) . 5̂  (A^-1-;? + !) 

Qg y(0) 

— 

y(i) 

. V i . ^(yv-i) 

(B.2.18) 

Hence, similarly to the M A part calculation, equation (B.2.16) can be expressed in 

matrix form for AR part coefficient 

^s^(k-0)y{k-Q) ^sJk-O)y(k-l) 
W) 
'^s„(k-\)y(k-p + l) 

^s„(k-m)y(k-0) ^sjk-m)y(k-l} • • ^s^(k-m)y{k-p + l) 

^s„{k-Q)v{k) ^s^{k-Q)v{k-\) 
tmO 

^s^(k-\)v{k-q + \) 

;v —1 II —I 11 —I 

^s^{k-m)v(k) m)v{k -1) • • ^s^{k-m)v{k -q + l) 

/V-1 Â-1 
where m=p-l and A = . 

Or, in a compact form 

-̂1 

\k)s^(k-m) 

(B.2.19) 

(B.2.20) 
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Appendix C 

Scheme of Independent Component Analysis (Blind 

Source Separation, BSS) 

In this section we tackle a fundamental signal processing problem with tools f rom 

Higher Order Statistics (HOS) and multilinear algebra, namely the problem of 

Independent Component Analysis (ICA), which is also known as Blind Source 

Separation (BSS). 

The goal of ICA is the decomposition of a multichannel data set in an a priori 

unknown linear mixture of a priori unknown source signals, relying on the 

assumption that the source signals are mutually statistically independent. This 

concept is in fact a fine-tuning of the more well-known Principal Component 

Analysis (PCA), where one aims at the decomposition in a linear mixture of 

uncorrelated components. PCA involves the Eigenvalue Decomposition (EVD) of 

the covariance matrix and ICA relies on tensorial generalisation of the EVD 

applied to a higher-order cumulant. 

The ICA is based on the tensorial diagonalisation of the higher-ordere cumulant 

tensor (matrix) of the observation signal vector, which is similar to the 

diagonalisation of the covariance matrix in PCA. Hence, H O E V D of a cumulant 

tensor can be used to solve the ICA problem. 
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C.l Basic equation 

The multi-input multi-output linear system can be expressed by following 

equation, 

v = Mx + w (C.1.1) 

where the observed signal ye R' (1 observation channel), the unknown source 

signal xe R'' (J independent source signal), the additive Gaussian noise signal 

w e R ' , and the unknown mixing matrix M e R""^ whose columns jm^ j a r e the 

mixing vectors. From only the observed signal matrix y (whose row consists of N 

samples of a time sequence and I observation channel, i.e., {v. } ), 

the identification of the mixing matrix M or the unknown source signal matrix x is 

to be restored. Hence, this addresses the blind identification/deconvolution 

problem. 

C.l Assumptions 

- The mixing vectors are linearly independent. 

- The components of x are mutually statistically independent. 

- The noise components are Gaussian and uncorrected with the source signal. 

C.3 PCA and pre-whitening 

The mixing matrix M e can be decomposed and written as, 

M = U.S.V^ (C.3.1) 

where U is the left singular vector, V is the right singular vector, S is a matrix 

whose diagonal components are singular values, and T represents the matrix 

transpose [Golub and Van Loan, 1996]. 

Making zero mean of the observed signal of (C.1.1) gives 

v = v-m^ (C.3.2) 
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By considering that the noise is uncorrelated with the source, the output 

(observed) covariance can be written as 

+ C, (C.3.3) 

The pre-whitened covariance matrix is estimated as following; 

((:.3.4) 

For 1>J (more sensors than sources) case, the variance of the noise can be 

estimated by averaging/ - /e igenvalues of [Vaseghi, 1996]. 

Also, by assuming the uncorrelated source signals have unit variance, the pre-

whitened covariance matrix of the observed signal is reduced to 

(C.3.5) 
= u-s'-u' 

This relationship enables to estimate the left singular matrix and the squared 

singular value matrix through the Eigenvalue Decomposition (EVD) of the matrix 

of(C.3.4). 

C.4 Independent Component Analysis (ICA) 

In order to determine the mixing matrix M we further need to know the right 

singular matrix V in (C.3.1). 

Step 1: Projection 

The projection of the observed signal into source signal subspace is done by 

multiplying the left singular matrix and singular value as, 

z = S%U^.v (C.4.1) 

where ^ represents the pseudo inverse. 
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Step 2 : Higher order cumulant matrix construction 

Like the second order (covariance) matrix, the P-th order (P>2) cumulant of the 

projected matrix z can be written by using the P-th order tensor notation 

c y ) = c r X, (U.S)+ Xz (U.S)+ X... (U.S)+ (C.4.2) 

The P-th order cumulant expression of the observed signal becomes as, 

c r = c y ) x̂  (U.S.V^)X2 (U.S .V^)x .. x^ (U'S.V^) + (C.4.3) 

in which the term vanishes when assuming the Gaussian noise. Substituting 

equation (C.4.3) into (C.4.2) yields the relationship of the P-th order cumulant of 

projected signal, source signal and the right singular matrix of the mixing matrix 

M as, 

C j ' ' ) = c r X i V " ' x 2 V ^ x . . x ^ V ^ (C.4.4) 

Step 3 : Higher Order Eigen Value Decomposition (HOEVD) 

The P-th order cumulant of the source signal can be expressed f rom the equation 

(C.4.4), 

c r = c y ) X; Vx^ V X...x^ V (C.4.5) 

The initial matrix V can be obtained by the H O E V D of the P-th order cumulant of 

the projected signal . 
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For example, the fourth-order cumulant tensor can be calculated by 

z = [^i Zgf Z; andzg = A^xl vector, :number of sample points . 

Hence, z is pre-whitened standardised random vector (2 x N matrix, 2 means number of 

channels). 

For p=4 (Fourth-order cumulant matrix), according to the JADE program, is 

calculated as, 

C (4) 
s 
n=l 

X 
n=l 

%(n) 

N 

N 

1 
«=1 

Zi(n) Z2(n) 

N 

N 

- 1 

N 

N 

1 s 
n=l 

I 

n= l N 

n=l N 

Zl(M)̂ Z2(M)̂  

s 
Zl(M)̂ Z2(") 

N 

n=l [ ^ 

N 

71=1 

zi(w)z3(n) 
N 

which is a 2 x 6 matrix. 

Step 4 : Diagonalisation of the tensor product of the projected signal 

cumulant and eigen matrix 

Since the source signal is independent, the P-th order cumulant of the source 

signal must be diagonal. As a result, we can obtain the true left singular 

matrix V when the above tensor algebra can yield a diagonal matrix of . 

This diagonalisation of the right side of equation (C.4.5) can be accomplished 

through the Jacobi method (or Givens rotation) f rom which the matrix V is 

updated. 
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Step 5 : Mixing matrix and source signal reconstruction 

Finally, we can get a matrix F 

F = V.S^.U^ (C.4.6) 

which is the inverse of the mixing matrix M. 

F = M-' (C.4.7) 

The source signal can be obtained by 

X==]f.Tr ((14.8) 
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C.5 Application of ICA for ECG signal separation 

Following figure gives a biomedical example taken from J. F. Carsodo's 

' separation of foetal ECG' titled "Multidimensional Independent Component 

Analysis", listed in Proceedings of ICASSP, 1998., Seattle, USA. The left figure 

(reproduced by permission of the author) displays 3 channels of cutaneous 

potential signals of a pregnant woman. The large pulses correspond to the mother 

electrocardiogram (ECG). The middle figure displays the extracted mother's ECG 

and the right signals represent the baby's ECG separated by the ICA. 

Observed sensor signals Mother's ECG signal Baby's ECG signal 

Figure C.5.1 Example of ICA application for blind biomedical source separation 
problem. Left : 3-channel set of cutaneous potential recordings. Middle : 
Estimated mother's ECG, Right : Estimated baby's ECG obtained via ICA 
[Cardoso, 1998]. 
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Appendix D, Detection, classification and reconstruction of input signals using 
HOSVD 

Appendix D 

Detection, classification and reconstruction of input 

signals using HOSVD (summary of simulation results of 

Chapter 4) 

This appendix summarises the extensive simulation results for detection of non-

Gaussian impacting signal, classifications of signals and/or systems, and 

assessment of the impacting signal reconstructability using Higher Order Singular 

Value Decomposition (HOSVD). These are examples of the work of Chapter 4 

and consider 10 different systems (only two of these are discussed in Chapter 4) 

and three inputs (one is a Gaussian signal and the others are non-Gaussian 

impacting signals). The validity of HOSVD application is supported through 

simulations. All terms used in the figure captions are defined in Chapter 4. 
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D.l Systems used in the simulation 

System 1 
Pole-zeros 

Impulse response 
Frequency response 

System 2 

System 3 

System 4 

System 5 

I k 
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System 6 

System 7 

System 8 

System 9 

System 10 

NormoJiZwl frequency (Wyqubt 

Nomi allied )r»qu»ney (Nyquot »• 
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HOSVD 

D.2 Signals used in the simulation 

Case 1; Gaussian signal input 

Mean 
Variance 
Skewness 
Kurtosis 

0.017 
1.0 
0.009 
2.94 

Crest factor: 3.86 

Case 2; Uni directional impacting signal input 

Mean 
Variance 
Skewness : 
Kurtosis 
Crest factor 

0.068 
0.999 

14.72 
219.98 

16.69 

Case 3; Bi-directional impacting signal input 

Mean 
Variance 
Skewness 
Kurtosis 

1.4e-16 
0.999 
3.05 

206.98 
Crest factor : 18.40 
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D.3 Simulation results of detection, classification and 

reconstruction of input signals (refer to Chapter 4 for notations) 

D.3.1 Gaussian input case 

Unknown system # 1 Observed signal 

Re* pah 500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

Class 1 

D3 < trl Only 
D, < t r j ' Gaussian 

input signal 
exists 

Restored signal by 

3'̂ '̂  order 

4"' order 

NONE 

NONE 

D-5 



Appendix D, Detection, classification and reconstruction of input signals using 
HOSVD 

Unknown system # 2 Observed signal 

Real part 
500 1000 1500 2000 2500 3000 3800 4000 

Time index 

Detection Reconstruction 

0.015 

Classification 

Dj < tr 

D4<trl 

Class 1 

Only 
Gaussian 

input signal 
exists 

Restored signal by 

3'̂ '' order 

4"* order 

NONE 

NONE 
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Unknown system # 3 Observed signal 

Real part 
500 1000 1500 2000 2500 3000 3500 4000 

TIma index 

Detection Reconstruction 

3 5 

.. 3 

^ 2 
i.sj 

1 

m 1 '5| 

Classification 

Class 1 

Restored signal by 

3"̂  order NONE 

D3 < tr 

D,<tr l 
Only 

Gaussian 
input signal 

exists 

4"' order NONE 
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Unknown system # 4 Observed signal 

Rami pan 
600 1000 1500 2000 2500 3000 3500 4000 

Tlm# lnd«x 

Detection Reconstruction 

Classification 

Class 1 

D , < t r l Only 

D4<trj Gaussian 
input signal 

exists 

Restored signal by 

order 

4"* order 

NONE 

NONE 
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Unknown system # 5 Observed signal 

Real part 
500 1000 1500 2000 2500 3000 3500 4000 

Time index 

Detection Reconstruction 

Classification 

D3 < tr 

D4<trl 

Class 1 

Only 
Gaussian 

input signal 
exists 

Restored signal by 

3"" order 

4"' order 

NONE 

NONE 
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Unknown system # 6 Observed signal 

RaalpmM 
500 1000 1500 2000 2500 3000 3600 4000 

Time index 

Detection Reconstruction 

Classification 

D,<tr l 

D, < trj 

Class 1 

Only 
Gaussian 

input signal 
exists 

Restored signal by 

3"" order 

4"* order 

NONE 

NONE 
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Unknown system # 7 Observed signal 

0 M 
Real part 

500 1000 1500 2000 2500 3000 3500 4000 
Tlm# Index 

Detection Reconstruction 

0.007 

gOKB 
P0.005 g*0.005 

Classification 

Class 1 

Da < trl Only 
D, < t r | Gaussian 

input signal 
exists 

Restored signal by 

3"̂"̂  order 

4"" order 

NONE 

NONE 
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Unknown system # 8 Observed signal 

Reajpmrt 
500 1000 1500 2000 KOO 3000 3500 4000 

Time Indax 

Detection Reconstruction 

0.045 0.045 

0.04 0.04 8 
0.035 0.035 7 

0.03 0.03 
* i a 6 

^lOOK g O O B 1 1= 
§ 0,02 1 , | 4 

a m s 0.015 3 

0.01 0.01 2 
0.005 0.005 1 

0 3 04 R3 

Classification Restored signal by 

Class 1 3"̂"̂  order NONE 

D3<trl Only 
D4 < tr J Gaussian 

input signal 
exists 

4"" order NONE 
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Unknown system # 9 Observed signal 

Real part 

Detection 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Reconstruction 

Classification 

Class 1 

Restored signal by 

3'̂ '' order NONE 

D3 < tr I 

D4<trl 
Only 

Gaussian 
input signal 

exists 

4"' order NONE 
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Unknown system # 10 Observed signal 

Real part 
500 1000 1500 2000 2500 3000 3500 4000 

Time index 

Detection Reconstruction 

0.007 

aO.005 
0.004 0.004 

0.003 

Classification 

Class 1 

D3 <trl Only 
D, <trj Gaussian 

input signal 
exists 

Restored signal by 

3"̂"̂  order 

4"* order 

NONE 

NONE 
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D.3.2 Non-Gaussian input (uni-direction impacting signal) case 

Unknown system # 1 Observed signal 
Ob##fved mlgnal, v 

Real pari 500 1000 1600 2000 2500 3000 3500 4000 
Tim# ind#x 

Detection Reconstruction 

Classification 

D3>tr| 

D4 ^ tr I 

Class 2 

Input signal 
is non-

Gaussian 
and uni-

directional 
impulse 

Restored signal by 

3'̂ '' order 

4"̂  order : P 
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Unknown system # 2 Observed signal 

Real part 

Observed signal. \ 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

D3 > tr I 

D4>trl 
- > 

Class 2 

Input signal 
is non-

Gaussian 
and uni-

directional 
impulse 

Restored signal by 

3"̂"̂  order 

4"* order 
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Unknown system # 3 

Real part 

Detection 

Observed signal 
Obsanwd aignal, V 

500 1000 1500 2000 2500 3000 3500 4000 
Time Index 

Reconstruction 

a 
3 

2 

1 

0 

Classification 

D3<tr 

D4 > tr I 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3'̂ '' order : 

4"* order : 
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Unknown system # 4 Observed signal 
Observed signal, v 

600 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

° D3 ° D4 R3 " R4 

Classification Restored signal by 

Class 2 

Input signal 
D3 > trl is non-

> tr j ^ Gaussian 
and uni-

directional 
impulse 

H I = 
3"̂  order : | j: 

Class 2 

Input signal 
D3 > trl is non-

> tr j ^ Gaussian 
and uni-

directional 
impulse 

Class 2 

Input signal 
D3 > trl is non-

> tr j ^ Gaussian 
and uni-

directional 
impulse 

I ' 
4 order : | ° 

Class 2 

Input signal 
D3 > trl is non-

> tr j ^ Gaussian 
and uni-

directional 
impulse 

bOO 1000 1E.OO ..UUU 



Appendix D, Detection, classification and reconstruction of input signals using 
HOSVD 

Unknown system # 5 Observed signal 
Obeefved elgnml, v 

Real part 
500 1000 1500 2000 2500 3000 3500 4000 

Time index 

Detection Reconstruction 

Classification 

D3>tr| 

D,>tr l 

Class 2 

Input signal 
is non-

Gaussian 
and uni-

directional 
impulse 

Restored signal by 

3'̂ '' order : 

4"' order : 
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Unknown system # 6 

RaalpmM 

Observed signal 
Obwwedaignml, V 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

D3<tr 

D, > tr I 

C l a s s 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂  order : 

4"* order : 
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Unknown system # 7 Observed signal 
Obawved slgnaj, v 

Rami part 
500 1000 1500 2000 2500 3000 3600 4000 

TIma lnd«( 

Detection Reconstruction 

Classification 

D3 > tr I 

D.>tr l 

Class 2 

Input signal 
is non-

Gaussian 
and uni-

directional 
impulse 

Restored signal by 

3'̂ '' order 

4"̂  order 
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Unknown system # 8 

Real part 

Observed signal 
ObMnf#d migmml, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Z am 

K0.04 

Classification 

D3 < tr I 

D4 ^ trj 
> 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂  order : 

4"* order : 
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Unknown system # 9 

ReajpaM 

Observed signal 
Observed signal, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

0.036 

0.015 

0.005 

Classification 

D3 < tr I 

D4>trl 
— > 

C l a s s 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3'̂ '' order : 

4"* order : 
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Unknown system # 10 

Real part 

Observed signal 
Obaefved signal, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

D3<tr 

D,>tr l 
— > 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3'̂ '' order: 

4"' order : | : 
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D.3.3 Non-Gaussian input (bi-direction impacting signal) case 

Unknown system # 1 Observed signal 
Observed signal, v 

Real pah 

Detection 

500 1000 1500 aXX) 2500 3000 3500 4000 
Time Index 

Reconstruction 

Classification 

Class 3 

Input signal 
is non-

Gaussian but 

D3 
^ either the 

D3 ^ input signal 
D4 ^ tr J is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

order : | 

4"' order : • 
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Unknown system # 2 

Real part 

Observed signal 
Obaefved sfgnml, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time Index 

Detection Reconstruction 

0.025 

0.015 

Classification 

Class 3 

Input signal 
is non-

Gaussian but 

D3 
^ either the 

D3 I input signal 
D4 ^ tr J is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

S"' order 

4"̂  order : 
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Unknown system # 3 

Real pari 

Detection 

Observed signal 
Obwfved signal, v 

500 1000 1500 2000 a O O 3000 3500 4000 
Time index 

Reconstruction 

Classification 

D3 < tr 

D4>trj 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

S"' order : 

4"" order : 
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Unknown system # 4 

Real pan 

Observed signal 
O b w f v e d elgnal, v 

800 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

? 0 . 2 5 

Classification 

D3 < tr I 

D,>tr l 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3*̂*̂  order 

4"' order : 
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Unknown system # 5 

Real part 

Observed signal 
Obaefved signal, v 

800 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

D3 < tr I 

D , > t r l 
- » 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂ '' order : 

4"" order : 
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Unknown system # 6 

Real p a d 

Observed signal 
Observed signal, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

Dg < tr, 

D4>tr l 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂  order 

4"* order 
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Unknown system # 7 

Real part 

Observed signal 
Obmarved algnal, v 

500 1000 1G00 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

Classification 

Class 3 

Input signal 
is non-

Gaussian but 

Dg 
^ 1 either the 

Dg ^ I _> input signal 
D4 ^ tr] is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂'̂  order 

4"* order 
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Unknown system # 8 

Real part 

Observed signal 
C^served signal, v 

500 1000 1500 2000 2500 3000 3600 4000 
Tlm#lnd«x 

Detection Reconstruction 

Classification 

D3<tr , 

D4>tr l 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3'̂ '' order 

4"̂  order 
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Unknown system # 9 

Real part 

Observed signal 
Obaerved aqpal , v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

0.016 

5 0.04 ZOOM 
0.006 

Classification 

D3<t r j 

D,>tr l 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂"̂  order 

4"' order 
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Unknown system # 10 

RealpaM 

Observed signal 
Ob##fved signal, v 

500 1000 1500 2000 2500 3000 3500 4000 
Time index 

Detection Reconstruction 

T) 0.05 

M . 0 0 5 

0.003 

Classification 

D3 < tr I 

D,>tr l 

Class 3 

Input signal 
is non-

Gaussian but 
either the 

input signal 
is bi-

directional 
impulse or 

the system is 
highly 

resonant 

Restored signal by 

3"̂"̂  order : 

4"* order : 
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Appendix E 

Determination of the inverse filter length (simulation 

results for Chapter 5) 

This Appendix provides details in connection with the task of inverse filter length 

determination carried out in Chapter 5, section 5.4. Using various length of 

impulse response and degree of noise interference simulations, the effect of an 

inverse filter length is considered by comparing signals reconstructed by different 

length filters. 

E.l Preliminaries 

This subsection examines the effect of the length of unknown system's impulse 

response and noise interference on the performance of signal reconstruction when 

the length of the inverse filter is fixed. Thus, the parameters which play dominant 

roles in the determination of the inverse filter length are explored. 

E.1.1 Impacting signals used in simulation 

Two different impacting signal has been used in this simulation. One is an 

impacting signal with regular uni-directional impulse sequence and the other is an 

irregular bi-directional impulse signal both of which have large high order 

statistical values (e.g. skewness and kurtosis). The two different types of the 

impacting signals are shown in the following figure. 
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Input signal type 1 

Appendix E, Determination of the inverse filter length 

Input signal type 2 

Variance=1.0 
Skewness=14.728 
Kurtosis=219.38 

Variance=1.0 
Skewness=3.05 
Kurtosis=206.98 

Figure E.1.1 Input signals used for simulation 

E.1.2 Model of unknown system for simulation 

To generate the variable length of the impulse response, an AR(2) system (an 

unknown system) is selected whose pole positions are at with the radius (?;.) and 

angle (8,). 

Imag 

> Real 

Z-plane 

Figure E.1.2 The AR(2) system generating the variable length of impulse response, 
'o' : zero of the system and 'x'; poles of the system. 

For this AR(2) system, its impulse response denoted as h{k) can have different 

values and length by changing the and 0,.. The following figure shows one 

example of the impulse response with pole position at r. = 0.9 and 8, =;r/4. 
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z-plane 
Time index 

Figure E.1.3 Pole-zero maps and impulse responses of selected system 

Even though we select the system as AR, the length of the impulse response 

(denoted by IR) of the system is assumed to be a finite length truncating the 

impulse response function at the point when its magnitude is less than 0.001 (this 

is done for only for simulation). Thus, for the system shown in Figure E.1.3, the 

length of IR becomes 74 (i.e., equivalent length of the system L=74). 

Now, the output of this system can be expressed as convolution process 

z(%) = ^ h ( k ) x ( n - k ) (E.1.1) 

z(n) is thought as 'noise free' output of the unknown system H(z). 

E.1.3 Noise signal generation 

The Signal to Noise ratio (S/N ratio) of the (unknown) additive Gaussian noise 

w(n) is defined as 

SNR=101og'^, dB (E.1.2) 

where and al represent the variance of the noise free output of the system and 

additive Gaussian noise signal, respectively. The observed signal can be obtained 

by adding the noise free output signal and noise signal as 

v(n) = ^ h(k)x(n -k) + w{n) (E.1.3) 
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E.2 Simulation 1: Effects of the length of unknown system's 

impulse response and noise interference on the inverse filter 

The change of higher-order statistical properties for each length of unknown 

system's impulse response and the degree of Gaussian noise interference for the 

measured and the restored signal with fixed length of the inverse filter has been 

monitored. 

Third-order case, 0, =nlA 

Sk*wn### of m#a#ured #ignal (e1p45) 
reatorod dgnal (»1p45 ,Lm 11) 

8/NraUo(dB) Length ol 10 of unknown ayal 

1 4 . 

1 2 . 

Length of IR of unknown 

Fourth-order case, 8. = tt / 4 

Kufto#i# of m#a#ur#d #ignal (#1 p45) KuMoaleof realored eignml (e1p45 ,L" 11) 

200 

150, 
§100-

5 0 . 

100 

Length of IR of unknown syst 

200 

150. 
5 1 0 0 . 

5 0 . 

S/N ratio (dB) Length of IR of ifiknown 

Figure E.2.1 Skewness and kurtosis changes in measured and restored signal (for 
type 1 input signal) 
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Third-order case, 0, = n IA 

Skewnew of meamufed mignal (m3p45) 
S(#wn#eaof realoredaignal(83p46,L" 11) 

3^ 

2.5. 

1: 
0.5. 

Length of IR of unknown s 

Fourth-order case, 6. = n IA 

S/N rabo (dB) L#nglh of IR of unknown my«l 

Kuftoah of m#a#ured aignaj (a3p46) KuMoab of r#ak)r#d mignml (m3p45 ,L" 11) 

150^ 

glOÔ  

Lmnglh of IR of unknown #ym( 

100 

Length of IR (d unknown ey«( 

Figure E.2.2 Skewness and kurtosis changes in measured and restored signal (for 
type 2 input signal) 

Figure E.2.1 (type 1 input signal case) and Figure E.2.2 (type 2 input signal case) 

demonstrate a three dimensional view of the third- and fourth-order statistical 

values (i.e. skewness and kurtosis) of the measured (left column of the figures) 

and restored signal (right column of the figures) with different length of the 

impulse responses (/;. varying from 0 to 0.95) and noise interference (S/N ratio 

varying from -10 to oo dB). Each row of figures is divided into the plots of higher 

order statistical values of measured and restored signals for unknown system's 8, 

is varying from nl\2 to Stt/12. As shown in Figure E.1.3, by varying the pole 

position of AR(2) system, the different impulse response sequence is acquired and 

its corresponding length is marked in the right axis of each graph. Also, the 

different Signal to Noise ratio (SN ratio) interfering on the measured signal is 

plotted in the left axis of the graph. Thus, starting from those varying parameters, 
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the higher order statistical values of the measured and restored signal are plotted 

in the vertical axis of each graph. 

The signal reconstruction has been achieved using MA(l l ) inverse system (i.e. 

FIR, L= l l ) with a normalised objective function in this simulation. 

E.3 Simulation 2: Effects of the length of inverse filter and noise 

interference on the performance of impacting signal 

reconstruction for system with a long impulse response (?; = 0.9 and 

e, =niA as shown in the second row of Figure E.2.1) 

In previous section, we have observed the change of skewness and kurtosis of the 

restored signal from various measured signals. The signal restoration has been 

only achieved through a FIR inverse system in which L is fixed as 11. 

In conjunction with the previous simulation, the length L of the FIR inverse filter 

is changed to trace the higher order statistical values in each reconstructed signal. 

Third-order case, 

Input signal type 1 (/; = 0.9, e.=nlA) 

Fourth-order case 

%#wn#M ol r0#*of#d mignal (ml K19p46) 

8/N ratio (dB) - 1 ° Length of FIR inverse filter (L (L) 
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Third-order case 

Appendix E, Determination of the inverse filter length 

Input signal type 2(^ =0.9, 6U=%/4) 

Fourth-order case 

Kunoab of realored signal (83i0.8p45) 

Lmngth of FIR imwae Re r (L 

Figure E.3.1 Skewness and kurtosis changes in restored signals with different 
length of FIR inverse filter 

In Figure E.3.1, another three dimensional view of the skewness (left column of 

the figures) and kurtosis (right column of the figures) of the signal restored from 

the inverse filter of different length (L varying from 1 to 200) is demonstrated. 

The selected AR(2) system is selected as and 0,. to be 0.9 and %/4, respectively 

(shown in the second row of Figure E.2.1). Again, two different types of 

impacting signal used in the previous simulation (shown in Figure E.1.1) have 

been used as inputs to the system and plotted in separate rows. 

The length of the inverse filter is marked in the right axis of each graph and the 

Signal to Noise ratio varying from -10 to oo dB interfering on the output of the 

system is plotted in the left axis of the graph. Thus, with those varying parameters 

(L and SN ratio), the higher order statistical values of the restored signals are 

plotted in the vertical axis of each graph. 

From the results of restored signal's higher-order statistical values, the minimum 

upper bound of inverse filter length is calculated for each condition of the 

measured signal (different S/N ratio). 
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Input signal type 1 (7; = 0.9, 6, = ;r/4) 

Third-order case, Fourtb-order case 

Input signal type 2 (?; = 0.9, 8, = ;r/4) 

Third-order case Fourth-order case 

Figure E.3.2 Selection of minimal inverse filter length for different measured 
signal 

The points marked as 'o' in each graph indicate the lower bound of the length of 

FIR inverse filter from which the reconstructed signal can be considered as to be 

satisfactory result (for the literal convenience, the terminology of 'minimal' 

length of inverse filter is reserved to this length). 

For example, let us compare the result of restored signals with minimal length of 

FIR inverse filter and with arbitrarily selected length (L^ using the 

third-order deconvolution filter, type 1 input and measured signal having 10 dB 

S/N ratio. 

The shape of each restored signal and its statistical values are compared in the 

following figure. 
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L=7 
(a) 

L=14 

Skewness=7.24 
Kurtosis=70.02 

L=15 

Skewness=7.26 
Kurtosis=70.56 

(b) 
L=30 

f ° 

Skewness=7.05 
Kurtosis=73.40 

L=100 

Skewness=7.06 
Kurtosis=73.71 

(c) 
L=200 

II 1,1 

Skewness=3.99 
Kurtosis=58.11 

L=9 
(d) 

Skewness=4.65 
Kurtosis=62.93 

L=18 

4* lIJ 

Skewness=1.53 Skewness=1.55 
Kurtosis=69.76 Kurtosis=70.07 

Figure E.3.3 Restored input signals with different inverse filter length when 
unknown system is simulated by AR(2) system (/; =0.9, 0,. = nlA), and S/N ratio 
= 10 dB. (a): restored signal type 1 from third-order method, (b): restored signal 
type 1 from fourth-order method, (c): restored signal type 2 from third-order 
method, (b): restored signal type 2 from fourth-order method 
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From the comparison of restored signals in Figure E.3.3, we notice the higher 

order statistical values (skewness and kurtosis) of each signal are slightly 

increased when the length of the inverse filter is doubled. Due to the increased 

FIR filter coefficients, the components of noise signal takes the form of impacting 

components (signals possessing the amplitudes beyond the threshold) and thus 

becomes highly possible to give incorrect reconstruction of the impacting signal 

when the length of inverse filter is too excessive. 

It has been observed from simulation 1 that both the skewness and kurtosis has 

similar trends, which are changing with the variations of impulse response length 

and noise power for measured and restored signal. In fact, the type of impacting 

signal gives little differences in this simulation. 

For the measured signal, a significant decrease of higher order statistical values 

(skewness and kurtosis) have been observed as the length of the impulse response 

of the unknown system is increased for both noise free (S/N ratio is co dB) and 

noise interference case. On the other hand, however, for the restored signal, it is 

noticeable for noise free case that the performance of reconstruction is unaffected 

by the length of the impulse response of unknown system. Thus, the measured 

signal coming from the filtering of impacting signal without noise interference 

provides the results of reconstruction identical regardless of the length of the 

impulse response of the system (i.e. system independent for noise free observed 

signal). 

Throughout the simulation 2, we can see a certain trend on the length of the FIR 

inverse filter coping with the statistical status of the measured signal. 

Above a certain range of inverse filter length in Figure E.3.1, the performance 

(higher order statistical values) of the restored signal becomes independent of the 

length of the inverse filter, which infers the existence of compact FIR inverse 

filter length. This is also supported from the comparison of restored signals from 

the minimal inverse filter which is coming from the results of Figure E.3.2 and 

from any long inverse filter illustrated in Figure E.3.3. The results of restored 

signals given in Figure E.3.3 demonstrate the fact even the longer inverse filters 

cannot guarantee the better restoration. 
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From these simulations, we conclude the following; 

The performance of impacting signal reconstruction based on the higher order 

statistical method strongly depends on the degree of noise interference. 

The results given in simulation 2 supports the fact that the blind reconstruction of 

an impacting signal from a measured signal can be acceptable for a certain range 

of length of inverse filter. Hence, a criterion for the selection of optimal inverse 

filter length is required, which is carried out in Chapter 5. 
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Appendix F 

Independence and source separation structure (part of 

Chapter 7) 

In this section we prove the fact that independence criteria based on the nulling of 

the fourth-order output joint-cumulant is a sufficient condition to separate the 

sources for statistically independent input signal. 

Based on this, a blind source separation structure is introduced which can separate 

the observed signals into statistically independent ones from which the restoration 

of the input signals is achieved. 

F.l Independence using higher order statistics 

The random signals {i.i.d) x,(n) and X j { n ) are said to be mutually statistically 

independent if the joint probability density function is separable. 

The higher-order (order > 3) joint-cumulants equal zero. Let x.{n) be the zero-

mean signals, then the (Z+m)-th order joint-moments can be expressed as, 

/kfb, (;%,.%,) = OF. 1.2) 

where l + m>2, 1^0, m # 0 . 

For the fourth-order, the joint-cumulants of two independent signals satisfy 

[Nikias and Petropulu, 1993], 
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(%,, Xy ) = Mg; (%,., ) - 3^20 (%., )M 11 (z,., ) = 0 

CM7M22 ) = M22 (%,, ) - M20 (x,, )Mo2 (x,, (%,, ) = 0 (F. 1.3) 

Cwm,) (X;, (x,, - 3Mo2 )Mi, , Zy) = 0 

Also, x . ( n - k ) and X j ( n - p ) with any delays k , p are also independent. Therefore, 

to fourth-order, 

C u m i ^ ( x . ( n - k ) , x j ( n - p)) = 0, with l+m=4 andl=m^O (F.1.4) 

Moreover, if the signals x. and Xj are statistically independent, then x,. and 

3(x ) , where 3(x^ ) is the signal Xj filtered by linear operator 3 , are also 

independent. 

F.2 Source Separation structure 

F.2.1 Blind Source Separation via joint-cumulant cancellation 

In the context of multichannel blind deconvolution, the observation vector v(k) is 

assumed to be generated from an unknown source vector x(k) through the 

unknown multivariate filter//(z) i.e., 

y(z) = H(z)%(z)+W(z) (F.2.1) 

where W{z) is a p dimensional additive white Gaussian noise that is assumed to be 

statistically independent of the source vector x(k) and the elements of the matrix 

H{z) are given by 

= (F.2.2) 
k=a 

where Lij represents the length of FIR filter length (we assume the unknown 

systems have finite impulse response functions). 

Equation (F.2.1) may be expanded in the time domain, and the output of the z-th 

sensor is 
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m 
= + (F.2.3) 

j=\ k=0 

The task of multichannel blind deconvolution is to restore the source vector x(k) 

from the observation vector v(k), up to possibly scaled, reordered, and delayed 

estimates, i.e., x{k) = PAD(z)x(k) , where PeE"""" is a permutation matrix, 

A 6 is a nonsingular diagonal matrix, and D(z) is a diagonal matrix given by 

= z-""} (F.2.4) 

which implies the existence of delays in each estimated signal x(A:). 

In other words, the objective of multichannel blind deconvolution is to design a 

multichannel inverse system so that the global system G(z) (which combines the 

effect of unknown system and inverse system) has a decomposition of the 

following form: 

G(z) = fAD(z) (F.2.5) 

The structure of source separation is a set of linear filters through which the 

observed signal is filtered to yield the source signals as 

^(z) = F(z)y(z) (F.2.6) 

where F(z) is a matrix of filters. 

Combining (F.2.1) with noise free condition, we obtain 

^(z) = F(z)H(z)X(z) = G(z)%(z) (F.2.7) 

where G(z) is a matrix form of system-inverse system combined filters, which is 

shown in Figure F.2.1. 
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(a) 
X 

H 
y 

F 
S 

H F 

(b) 
X G S 

Figure F.2.1 Source separation structure, (a): convolution-deconvolution system, 
(b): cascade system 

Using simplifications mentioned above, matrix G{z) becomes 

( z ) + ( z ) ; / 2 i (z) f; , (z)+fiz(z) 

(z) + (z) (z) + 7̂ 1 (z)^i2 (z)_ 
(F.2.8) 

The separation will be achieved if matrix F{z) is such that G{z) becomes diagonal 

up to a permutation: 

F (z )^ (z ) 
Gu(z) 0 

or 

F(z )^ (z ) = 

0 G^̂ Cz) 

0 G,2(z) 

G îCz) 0 

(F.2.9) 

(F.2.10) 

Combining (F.2.9) or (F.2.10) with (F.2.8) leads to the two separating conditions, 

respectively, 

or 

fl2(z)/fl i(z) = - /7n(z) 

f^ i (z) / J^(z) = -/f2i(z) 

f ; i (z) / f ;2(z)=-; /2i(z) 

f;:,(z)/f^,(z) = -^ i2(z) 

(F.2.11) 

(F.2.12) 

When we consider the system Hij are assumed to be FIR filters, the inverse system 

Fij may be considered so that solutions (F.2.11) and (F.2.12) leads to FIR filters. 
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F.2.2 Blind Source Separation via joint-cumulant cancellation 

v , ( n ) 

O b s e r v e d 
S ignals 

W-K 

> 5j(«) 

FIR f i l ter 

FIR f i l ter 

Inverse S e p a r a t e d 
Sys tem Signals 

Figure F.2.2 Recursive source separation structure 

In the z-domain, provided (/ - C(z)) ' exists, the matrix equation is 

^(z) = (7 + C(z))-V(z) 

where C(z) is the matrix of inverse filters Q(z). 

Combining (F.2.10) and (F.2.13) leads to 

F(z) = (7 + C(z))-

1 1 

1 

and matrix G(z) in (F.2.8) becomes 

G(z) 
1 

^ 2 i W - Q i ( z ) 

Then, combining (F.2.9) and (F.2.10), we derive the two solutions. 

Q ( z ) = //,.(z) 

(F.2.13) 

(F.2.14) 

(F.2.15) 

(F.2.16) 

or 

Q ( z ) = i / ; f „ ( z ) (F.2.17) 
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with outputs, respectively 

or 

(F.2.18) 

(F.2.19) 

If we constrain Q(z) in Figure F.2.2 to be FIR filters, only solution (F.2.16) can 

be achieved under the condition such that the Hij{z) are FIR filters. 

With the condition F,-,(z)=l, equation (F.2.8) becomes 

G(Z): 
^ 2 i W + f2 iW l + 

(F.2.20) 

Let L be the maximum order of filters Hij, then Fy, and G,y, must also be Lth-order 

FIR filters and G,, becomes 2Lth-order FIR filter; 

'̂=0 

G„ ( z ) = 1 + ( S y;, ( t ) z - ' KSA , (*)z"') 

(F.2.21) 

t=0 

From the relation S{z) = G{z)X{z), we utilise the fourth-order joint-cumulants 

between the outputs at different times: and s^ in -k ) , and use the linearity 

properties of these cumulants [Nikias and Petropulu, 1993] with the assumption of 

source independency. Thus, as already described in sub-section 7.2.2, all the joint-

cumulants involving xi and are zero, and the expression is expanded as (using 

the cascade structure of Figure F.2.1) 

(»), j: (» - *)) = 

= Cum, 
2 L - I L-1 
E Z (n - A: - g) 

Cum, Im 

p=0 
L - 1 

9=0 
2D4 

(F.2.22) 

Z Z (» - A: - p) 
< 7 = 0 p=0 

l + m = 4, I j ^ m ^ O 

If signal x(n) is a zero-mean independent, identically distributed (i.i.d.) and non-

Gaussian process, then 
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= Cum[x{n),xin-k{},...,x{n-kp^^)^ (F.2.23) 

i f ^ = t 2 = . . . = A;p_i=0 

0, otherwise 

y;=CMmX0,0,...,0) (F.2.24) 

If the signal x{n) is not i.i.d., but relation (F.2.23) holds up to pth-order, x{n) is 

said to be a to /?th-order white signal [Nikias and Mendel, 1993]. Expanding the 

equation (F.2.22), the joint-cumulants between outputs at different delays 

Q<k<L-l and for /, j 6 {1,2}, are expressed as 

CwTMg; (»), (n - ^)) 

= Z -Z) (F.2.25) 
/ = 0 

+ ^ & j/ (Og,/ (z+^)y4' ^ - 0 
1=0 

{s. (n), Sj (n - k)) 

= + (F.2.26) 
/=0 

+ 2 (Og,y (/ + (M - A: - Z) 
1=0 

L-l 

= + (F.2.27) 
/=0 

+ X s/(l)8i/'Q + k)Y4 (n-k~l) 

Using the assumption that Hij are FIR filters and the constraint on Fy are FIR 

filters with F.̂  = = 1, it can be deduced that Gjj = 1 + Fj.Hy cannot be zero. 

Also assuming \hy (0) < 1 and at least one of the input signal is non-Gaussian, we 
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derive (0) = 1 + ( 0 ) ( 0 ) 9̂  0 . Thus, the terms in equations (F.2.25), 

(F.2.26), and (F.2.27) should be zero to satisfy the separation condition. 

In this section, we utilise the cancellation of Cumj^(s.(n),sj(n-k)) to derive the 

CijS in an iterative manner, i.e., 

For t e 
(F 2 28) 

where q represents each iteration point and ju designates a positive adaptation 

step. 

F.2.3 Other considerations on the blind source separation structure 

The effect of length of the FIR separation system 

The orders of the separation systems in these simulations have been selected as 

the same length of the unknown system's maximum MA order. However, from a 

practical point of view, this cannot be achieved. For simulation case (a) in Chapter 

7 - which allows tight margin of FIR separation filter length only - requires an 

estimation of the unknown systems' MA order to yield a reasonable selection of 

the length of the FIR separation system. This task can be realised using various 

methods of MA order and parameter determination using higher order cumulant 

as mentioned in Chapter 5. 
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Simulation case (a); }1 =0.01, tr=1.4e-3 

Skewness 

Simulation case (b); jJ, = 0 . 0 1 , t r = 0 . 0 0 2 6 

Skewness 

Figure F.2.3 The effect of FIR separation system length. Dotted line represents the 
maximum MA order of unknown system. 

Note that the performance of impacting signal reconstruction for simulation case 

(b) in Chapter 7 is less severe in selection of the length of FIR separation system 

than the case (a). This fact is relieving aspect that the practical systems are mostly 

takes the form of the case (b) types. Thus, once the length of the FIR filter length 

can be above a maximum length of the unknown systems' impulse response 

function, the separation task will not be severely affected by the length of the 

separation system. 
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The effect of Gaussian noise interference on each channel output 

The simulations performed here do not consider the effect of noise. However, in 

practice, there could be external disturbances such as noise interference or 

measurement error. To cope with this, Gaussian noise which is independent of any 

other signals are introduced to the output of each channel and the source 

separation is carried out using the same factors (L, f i , Q as the noise free case. 

Simulation case (a); L=ll, f i = 0 . 0 1 , tr=1.4e-3 

Skewness 

SNRfdB) 

SNR= 0 dB SNR= 10 dB 

73 =0.397, 74 =4.809, SSD=5733.321 =1.375, Y4 =13.82, SSD=4467.518 

Figure F.2.4 The effect of Gaussian noise interference 
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Simulation case (b); L = 6 , / i = 0 . 0 1 , t r = 0 . 0 0 2 6 

Skewness 

SNR= 0 dB 

73 =0.154, 74 =3.284, SSD=6417.066 

SNFI(d8) 

SNR= 10 dB 

73 =0.345, 74 =3.808, SSD=5898.843 

Figure F.2.5 The effect of Gaussian noise interference 
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