Blind fault detection and source identification

using Higher Order Statistics for impacting systems

Jong-Soo Seo

A thesis submitted for the degree of
Doctor of Philosophy

University of Southampton
Faculty of Engineering and Applied Science

Institute of Sound and Vibration Research

November 2000



Acknowledgements

I would like to thank Professor Joe Hammond, for his continual guidance and
encouragement since I started my study in ISVR. He is not only an excellent
supervisor but also is a good friend to open my eyes in this blind world.

I am also grateful to Professor Steve Elliott and Dr. Paul White for their
constructive advice.

In particular, I would like to thank Maureen Strickland who was always there to
offer help in various ways.

Many thanks go to all the members of the Signal Processing and Control Group
for their friendly environment and encouragement throughout this study.
In addition I would like to thank Joyce Shotter who has never hesitate to offer help.

Also T am deeply indebted to Korean student members in Southampton University

who have helped me during these days.
Special thanks go to Young-Sup Lee and his wife for their warm tenderness

toward me from the first living in UK.

Many thanks also go to Dr. R. J. Green and his team who have helped me to
continue my study.

I would like to thank the encouragement and precious sacrifices from my family
members, my wife Suk-Kyung You, elder daughter Eun-Joo, younger daughter
Min-Jee, and son Min-Sung.

With all my heart and the greatest thanks, I am definitely obliged to say that my
achievements are originated from the financial supports, sacrifices and forgiveness
of my mother who has been left alone since I decided to leave my country to study
in this place. Of course there has been enormous tenderness from my relatives and
friends for her and me for which I appreciate so much.

Thank you for all.



UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

Blind fault detection and source identification
using Higher Order Statistics for impacting systems

By Jong-Soo SEO
Classical deconvolution methods for source identification can only be used if the
transfer function of the system is known. For many practical situations, however,
this information is not accessible and/or is time varying. The problem addressed is
that of reconstruction of the original input from only the measured signal. This is
known as ‘blind deconvolution’. By using Higher Order Statistics (HOS), the
restoration of the input signal is established through the maximisation of higher
order moments (cumulants) with respect to the characteristics of the signals
concerned.
This paper demonstrates the restoration of input signals that have a pulse-like
form. From only the measured signal (an output of the unknown system), its
normalised cumulant is constructed and employed to calculate the coefficients of
the inverse filter through both a Wiener approach and global optimisation. This
filter is then convolved with the measured signal to give the restored signal.
The inverse filter is determined iteratively and aspects affecting convergence and
performance that are investigated include: The choice of the initial inverse filter
and, order determination of the filter for both nonrecursive and recursive
deconvolution operators. An experimental verification is carried out for the
restoration of our impacting signal arising in the response of a cantilever beam
with an end stop when randomly excited.
Technique for the detection of non-Gaussian impacting signal from the observed
signal through the higher order (>2) cumulant tensor (known as ‘Higher Order

Singular Value Decomposition, HOSVD’) are introduced and discussed.
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Chapter 1, Introduction

PART I Introduction and basic statistical foundations

Chapter 1

Introduction

1.1 The aim of the research

For many mechanical systems undergoing normal operation, indications of
malfunctions and advance warning of system failure may be contained in
measurements of physical characteristics. Similar situations arise in seismic
information, characterising earthquake symptoms or monitoring of ECG
(electrocardiograph) and other signals for heart conditions. The problems
addressed here relate to obtaining more reliable and consistent detection of the so-
called “hidden” signals which are the causes of system malfunctioning. These
hidden signals are not directly measurable. The determination of these ‘causes’
from output variables is an inverse problem. These problems can sometimes be
straightforward when the system through which the causes pass is known. For
many physical situations, however, where it is impractical to assume the
availability of the system characteristics we require restoration of the original
input signal solely from the measured (observed) signal. In this case, the

restoration is called blind inversion.
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As can be seen in Figure 1.1.1, suppose a process consists of an input signal
(which cannot be observed) and an unknown linear system producing a measured

signal which is often noise corrupted.

Linear Noise

system signal
Input , H Measured
signal signal

Figure 1.1.1 Linear Time-Invariant (LTT) system and signals

The aim here is to find the input signal from the measured signal alone. One
practical representative example of the above situation can be found in condition
monitoring, which may require the identification of the ‘cause’ of a mechanical
imbalance or impacting phenomenon which can arise in rotating machinery. For
the retrieval of this cause, the statistical properties of the measured signal and their
relationships with the unknown linear system are considered; Specifically, higher
order statistics (more than second order) are the key to possible solutions and are

the focus of this work.

1.2 Review of theoretical analysis and practical applications

1.2.1 Theoretical background to blind deconvolution

If the input (original) signal cannot be observed, we may be able to utilise its
statistical characteristics as the basis of its restoration. In this work, the structure
of system responding to the input is assumed to be linear and time invariant (LTT)
characterised by the time-domain impulse response sequence. Recently, Higher-
Order (= 3) Statistics (HOS) [Mendel, 1991; Nikias and Petropulu, 1993] have
been considered in various signal processing areas, and used to find optimum
inverse filters to restore the original input signal. In particular, cumulants display
the degree of higher-order correlation and also provide a measure of the

2



Chapter 1, Introduction

“departure” from the Gaussianity. The advantages of HOS are due to their ability
to carry the phase information of a signal or a system and to suppress any (white
or coloured) Gaussian additive noise [Nikias and Raghuveer, 1987].

Under certain conditions, such as for non-Gaussian, independent, identically,
distributed (i.i.d.) signals, Donoho [Donoho, 1981] has shown that the probability
distribution of a linear combination of these signals tend to become ‘closer’ to
Gaussian (this is sometimes referred to as partial order) than that of the individual
components before the linear combination (e.g., input signals). Based on this, the
idea of blind deconvolution is approached by selecting an inverse system that can
decrease the Gaussianity of the output of the inverse system. Thus, maximising an
appropriately selected function (which can represent the degree of the Gaussianity)
with respect to the parameters (coefficients of the linear inverse filter) of the
inverse system achieves blind deconvolution. Concerning this ‘appropriate’
function, Wiggins [Wiggins, 1978] has proposed an objective function which
consists of two cumulants (i.e., the fourth-order cumulant divided by the squared
second-order cumulant), which is called ‘Minimum Entropy Deconvolution
(MED)’. This objective function is called the kurtosis and can be related to the
partial order described by Donoho. When the kurtosis of any signal is greater than
3 (or greater than zero, according to another widespread definition of kurtosis),
this is referred to the ‘super-Gaussianity’ or when smaller than 3 it is known as
‘sub-Gaussianity’. For both cases, maximisation of the absolute value of the
objective function has been used to yield the reconstruction of the input signal.
Other criteria have been proposed. For example, another objective function,
namely entropy has been suggested by Claerbout [Claerbout, 1977] leading to
‘parsimonious deconvolution’. He considered that MED is excessively biased
towards the larger events and a method which ‘sees more’ of the data would result
in a better deconvolution. It was essentially a generalisation of Wiggins’ work
[Wiggins, 1978]. Ooe and Ulrych [Ooe and Ulrych , 1978] proposed maximising a
modified ratio with the application of an exponential transformation of the
measured data, which lead to faster convergence relative to MED. These have

been a variety of attempts on the problem and Figure 1.2.1 illustrates the various
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objective functions that have been used.

For any of the methods described above, by pushing the objective functions
toward their maximum (by adjusting the inverse filter coefficients) one attains
blind deconvolution (sometimes referred to as equalisation). The procedure of
obtaining the coefficients of the inverse filter from which we can reconstruct the
unknown input signal may be achieved by (i) (nonlinear) iterative methods using a
matrix equation (e.g., [Nandi and Mampel, 1997]) or (ii) a stochastic gradient
method using an updating parameter to maximise/minimise the objective function

(e.g., [Cadzow, 1996]).

Multichanne!
Variable

General ised
Form of order r, s Norm ratio
Qoe and Ulrych (1978) Gray (1979)

!: 1 i! ‘zx1:|N/al
m N “~ ¥
1 & . \ O(yjN’al’a2)=10gH'—_L—_WZ
P Z yi Jj=t l il 223
_ N3 [ﬁzly” ]
——_‘1 v N i=1

Entropy
Minimisation
Claerbout (1977)
and Godfrey (1978

Skewness Gontrol
Cadzow {1996) and
Nandi {(1997)

“ Kurtosis Control
Wigains (1978) and
. Cadzow (1996)

2 2

‘ 1 & Y, b
NI N —— 1 1
@@0:77473 %Zﬁ QMM)NZ;i§y2<lif
[”]‘\,”ZY.ZJ 0;()’1\/)=——i‘:1__{ NI ‘ N '
1y,
73]

Figure 1.2.1 The objective functions
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1.2.2 Practical applications of blind deconvolution

As practical motivation for blind deconvolution (and equalisation), these methods
have been applied in different fields. The name blind deconvolution was first used
by Stockham [Stockham et al, 1975] for the restoration of old recordings based on
a model of the signal. We note a few of these applications.

A high speed data transmission over a communication channel (e.g., telephone
channel) relies on the use of adaptive equalisation. In its traditional form, adaptive
equalisation requires the transmission of a training sequence, the exact form of
which is known at the receiver. The training sequence provides the “desired
response” for the adjustment of the tap weights (filter coefficients) of a linear
transversal filter (i.e., Finite Impulse Response, FIR filter), so as to minimise the
mean-square value of the error signal. There are, however, practical situations
where it is not feasible to use a training sequence. For example, in a digital radio
system the received signal suffers from a phenomenon known as multipath, which
arises from the fact of the transmitted signal reaches the receiver via a multiplicity
of paths. This presence of multipath can produce severe channel fading [Pozidis
and Petropulu, 1997; Tsatsanis and Giannakis, 1997] and therefore system outage,
characterised by a significant reduction in the received signal power. If the outage
occurs during the training process, the adaptive equaliser in the receiver is
deprived of its desired response, and the adaptive filtering process is thereby
seriously impaired. In such a situation, one is compelled to use some form of blind
equalisation which does not require the use of a training sequence for the
adjustment of the equaliser’s tap weights. In multilevel digital transmission
systems, blind deconvolution techniques are required to equalise dispersive
channels (systems) when equaliser convergence is not guaranteed due to high
channel distortion, and the simple solution of transmitting a training sequence
known to the receiver is not feasible. This may occur, for instance, in multipoint
networks for computer communication [Godard, 1980], in microwave digital radio

after deep fades [Foschini, 1985].
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In a speech quality enhancement problem, elimination of acoustic reverberation
components produced by the surrounding environment of a talker (adaptive
cancellation of this reverberation) is a blind deconvolution problem [Juang et al,
1995]. In a typical situation, the original speech is unobservable and the multipath
channel responsible for the generation of the reverberation is unknown.

In seismic deconvolution, the usual procedure is to assume a layered earth model,
and the requirement is to use the received signal to estimate the sequence of
reflection coefficients corresponding to the various layers of the model. The
received signal is itself made up of echoes produced at the different layers of the
model in response to the excitation which is ordinarily in the form of a short-
duration pulse. The equally spaced time sequence of reflection coefficients may be
viewed as the impulse response of the layered earth model. In this case, the
deconvolution problem is complicated by the fact that the exact waveform of the
excitation responsible (called a wavelet) for the generation of the received signal
is usually unknown. Wiggins [Wiggins, 1977] introduced minimum entropy
deconvolution (MED) in seismic data analysis, seeking the phase and amplitude of
that transfer function of the inverse channel (system) that maximises the kurtosis
of the deconvolved data. The restoration of seismic reflectivity series is often
achieved by multichannel deconvolution. Gray [Gray, 1979] has introduced a
variable norm deconvolution from which appropriate objective functions are
selected depending on the statistical characteristics of each channel by assuming
one of a generalised Gaussian function family. As shown in Figure 1.2.1, the
coefficients ¢; and «, are adjustable to characterise the data. Ideally, the setting
of these coefficients can be made in each calculation by inspecting the probability
distribution of the currently estimated reflectivity series on each channel.

For Non-destructive Evaluation (NDE) of materials problems, which aims to
restore the impulsive spikes leaving the material under examination [Nandi and
Mampel, 1997], the scheme of the objective function is applied as for the problem
of seismic deconvolution.

A similar problem arises in image restoration. In this application, an unknown

system represent the blurring effects [Kundur and Hatzinakos, 1996] caused by

6



Chapter 1, Introduction

photographic or electronic imperfections or both. An original image or scene of
interest constitutes the system input. The system output is a blurred version of the
original image. Given the blurred image, the requirement is to restore the original
image.

Among the above applications of the deconvolution problems, mechanical system
diagnosis and condition monitoring is an important issue in engineering. The
identification of defects inducing periodic [Pachaud et al, 1997] or non-periodic
impulsive forces from measured signals can be achieved through the utilisation of
the higher order statistical values (e.g. skewness and kurtosis) of the available data.

It is this notion that is investigated in what follows.
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1.3 Structure of the thesis

This thesis is presented in three parts:

Part I (Chapters 1, 2); This is a general introduction to blind deconvolution
techniques and higher order statistical properties of random signals, Part II
(Chapters 3, 4); These describe fundamental concepts of blind deconvolution
problems using higher order (normalised) cumulants and the application of higher
order singular value decomposition, and Part III (Chapters 5, 6, 7 and 8); This
includes the practical application of higher order statistics with detailed
descriptions of blind deconvolution and includes experimental verification. The

contents of the chapters is summarised below, emphasising the novel contribution

contained in each.

Chapter 2: This is a theoretical background to Higher Order Statistics (HOS),
and defines moments and cumulants. The merits of higher-order cumulants are
explained and the justification for the use of normalised higher order cumulants in
deconvolution problem is provided. To verify the theoretical properties of
independent, identically distributed (i.i.d.) signals in higher order statistics and to
validate the use of higher order cumulants for impacting signals restoration, some
computational simulations are carried out using two different types of random
signals namely exponentially distributed i.i.d. and a random impulse train signal.
This chapter focuses on the theme of this thesis emphasising the validity of the

application of higher order statistics to the source signal reconstruction problem.
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Chapter 3 deals with the formulations and procedures of blind deconvolution
using constrained and normalised cumulants as the objective functions and their
use in blind deconvolution problems. Discussions of three different inverse filter
types (MA, AR, and ARMA systems) are provided and their performances in
restoring source signals are compared. The behaviour of the objective functions
for each type of inverse filter is tested. This chapter justifies a fundamental

procedure for blind deconvolution based on a local optimisation.

Chapter 4 introduces the concept of Singular Value Decomposition (SVD) of
random signals and Higher-Order Singular Value Decomposition (HOSVD) via
the construction of higher-order tensors of measured signals. The singular values
from this tensorial decomposition become essential parameters for checking the
existence of non-Gaussian impacting signals and also provide an approximate
guide to the classification of measured signals which are appropriate for impacting
signal reconstruction. The ability of HOSVD for detection, classification and
reconstructability of non-Gaussian signals through various simulations are
provided. The aim of this contribution is to put HOSVD/tensors into a practical
context. This has included computational experiments and from this the deduction

of empirical criteria for detection.

Chapter 5 describes a blind deconvolution procedure to restore an input signal
using the third- and fourth-order cumulants in which the effect of initial inverse
filter selection and determination of the appropriate length of the FIR inverse filter
is investigated. Since the blind deconvolution problem inherently suffers from a
lack of information, this chapter gives a guide to practical signal reconstruction,
especially with respect to the selection of inverse filter type and inverse filter

length determination.
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In Chapter 6, a generalised Wiener optimisation scheme is described and
contrasted with an optimisation method known as Differential Evolution (DE)
(similar to the Genetic Algorithm) used for seeking a global optimum. Signal

restoration is demonstrated using both the generalised Wiener approach and DE

method.

Chapter 7 deals with multichannel signal processing for source signal
identification problems; including Blind Source Separation (BSS) for convolutive
channels and a multichannel blind deconvolution process. The results provide

practical tools for impacting signal reconstruction.

Chapter 8 concludes the research with an experimental verification of blind
deconvolution. We demonstrate a reconstruction of an impacting signal under

controlled experimental, but reasonably realistic conditions.

Conclusions and future research paths are described in Chapter 9.

10



Chapter 2, Analysis of Random signals

Chapter 2

Analysis of Random signals

2.1 Introduction

In signal processing, signals may be broadly classified into two types —
deterministic and random. A deterministic signal is one that may be reproduced
exactly in repeated measurements. The unit impulse response of a linear time
invariant filter is an example of a deterministic signal. A random signal, or
random process, is a signal that is not exactly repeatable. Tape hiss or background
clutter in radar images, speckle noise in synthetic aperture radar (SAR) images,
and engine noise in speech transmission from the cockpit of an aircraft are
examples. In general practical signals are a mixture of the two. This thesis
emphasises the modelling of signals as random process.

In this chapter, the background that is necessary to understand how a random
process may be described and how its statistical properties are affected by a linear
time-invariant system is presented. This includes the introduction of cumulants
and their relationship to moments, how changes occur as a result of linear filtering
and noise corruption, leading to justification of the use of normalised higher order

cumulants for the deconvolution problem (in Chapter 3).

11



Chapter 2, Analysis of Random signals

2.2 Moments and cumulants

In signal processing, we often express a random variable as X(n) and its realisation
as x(n), where the indexing variable, n, takes on integer values and is frequently
associated with time. This discrete random variable sequence is often referred to
as a random time series. These random variables are described by the probability
density function px(x). For convenience, the simple notation p(x) will be employed
as a probability density function (p.d.f.) of a random variable X. The probability
density function is analogous to a unit mass distributed along the x-axis. If this
mass is distributed in a continuous fashion, then X is said to be a continuous
random variable and p(x) is a continuous function of x. On the other hand, if the
mass is located at only a finite or a countably infinite number of points on the x-
axis, X is said to be a discrete random variable and p(x) is composed of a sum of
weighted displaced Dirac delta functions [Bendat and Piersol, 1986]. When the
unit mass is distributed in both a continuous and a discrete fashion, the random
variable is mixed and the associated probability density function contains both

continuous and Dirac delta components.

Moments and the moment generating function

Moments are introduced to summarise the manner in which the unit mass is
distributed in terms of a set of discrete parameters. In particular, the nth order

moment of random variable X is specified by
E{X"})= fx"p(x)dx, forn=1,2,... (2.2.1)

where the symbol E denotes the expected value operator. If the nth order moment
exists, it then follows that all moments of order smaller than # also exist. The first-
order moment is commonly referred to as the mean value of random variable X
and corresponds to the centre of gravity of the unit mass distribution. To
emphasise its importance, the symbol m,* = E{ X} denotes the mean value.

The Fourier transform serves as an important analysis and synthesis tool in

12
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mathematically based disciplines. It is therefore quite natural that its use in the
study of random variables be considered. In particular, the Fourier transform of

the probability density function of the random variable X is

6 (@= [ e poae 22.2)

= E{e’™)}
This Fourier transform is referred to as the moment generating function of random

variable X [Cadzow, 1996].

For two random variables X and Y related as below, properties of the moment

generating functions include;

Translation
Y=X+a & ¢,(w)=e""¢,(w) (2.2.3)
Scaling
Y=aX & ¢,(0)=9¢,(aw) (2.2.4)
Addition
Y=X+X, & ¢, (0)=0¢(0)¢y,(®) (2.2.5)

where X; and X, are mutually independent random variables and a is a scalar.
Since a probability density function has unit area and is real, the moment
generating functions properties follow as;

8,0 =1, |p, (@)|<1 forall

¢X*(a)) = ¢, (—w), where “*‘ means complex conjugate
We now explain why this function is called the moment generating function.

Applying Taylor series to the equation (2.2.2), the term E{e’* } can be expanded

- . & o Nk
E{eij}=E{Z£Lwyc}-'Q—}:Z{(J o E{X"}} 226
=0 :

o K

13
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If we denote E{X"} Eka, the moment generating function and moments are

related as follows (omitting the symbol ‘X’ in ka for brevity);

. N2 Y
¢X(a))=1+jwml+(];)') mz”"+(J/iUv) m, +ee 2.2.7)

The kth coefficient of this expansion is obtained by evaluating kth derivative of
the moment generating function and equating @ =0, which corresponds to the

kth moment of the random variable,

k
d—ﬁ)—ﬁ—a—)z = () E{X*} fork=1273, ..., (2.2.8)

w=0

Thus, the above equation (2.2.8) finally yields the moments up to kth order. The

moments up to fourth order (k=1,2,3,4) are written as

m, = Mom[X]=E{X}, m, = Mom[X,X]=E{X?} (2.2.9)
m, = Mom[X,X,X]=E{X®}, m, =Mom[X,X,X,X]=E{X*} =

The central moments can be considered as a random variable’s unit-mass

distribution about its mean value. The nth order central moment of random

variable X is defined by

ut =E{[X -m" 1)

(2.2.10)
= [[[X -m" Y p(x)dx fork=1,23,..

Clearly, a random variable’s moments and central moments are identical when its

mean value is zero. The second-order central moment is commonly referred to as
. . . 2 .
the variance of random variable X and specially denoted as o,” = ;' . Variance

provides a measure of how dispersed the mass is about its centre of gravity (mean).

The third-order central moment is typically used to measure the skewness of the

density function about its mean value and denoted as ; i.e.,

p =E{[X -m" T} (2.2.11)

14
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For example, the skewness measure is zero if the density function is symmetric
about its mean value (and further all odd central moments other than 3 are zero as
well in this case). The fourth-order central moment is often used to measure the
excess [Cadzow, 1996] or flatness (i.e., kurtosis) [Braun and Hammond, 1986] of

the probability density function about its mean. This is expressed as

Hy = E{[X -m" ]} (2.2.12)

Cumulant generating function and cumulants

By taking the natural logarithm of the moment generating function defined in
equation (2.2.2), another characteristic function is introduced. This logarithm is
commonly referred to as the cumulant generating function (also called the second

characteristic function) [Nikias and Petropulu, 1993; Barrett, 1964; Rice, 1944]

and is formally specified as
Yy (@) =In[@, ()] = In[E{e™ }] (2.2.13)

This possesses the following properties;

Translation
Y=X+a & y,(@="+y, (o) (2.2.14)
Scaling
Y=aX & y,(0)=y,(aw) (2.2.15)
Addition
Y=X,+X, & y(o)=y,(w)+y,,(w) (2.2.16)

where X; and X, are mutually independent random variables and a is a scalar.
Note that comparing (2.2.16) to (2.2.5), the addition of the two random variables
turns out to be simple addition of the cumulant generating function rather than

multiplication as for moments.
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From the relationship (2.2.7) and (2.2.13), a Taylor series expansion of the

cumulant generating function can be written as

L N2 . Nk
wx(a))zlnwx(w)]:ln[ijml +—(J§"—)m2--~-+(]]f") mk+-] 2.2.17)

and as with the same relationship between the moment generating function and
moment, we define the kth order cumulant of the random variable by

differentiating the cumulant generating function with respect to @ k times and
equating @=0 as

.
o = (—j)kil?;—,@ fork=123, ..., (2.2.18)

w=0
from which the cumulants are expressed in terms of the moments as,

¢ =Cum[X]=m,

c, =Cum[X,X]=m2-mf,

c;=Cum[X,X,X]=m;-3m,m, +2m,

¢, =Cum[X,X,X,X]=m,—4mm, —3m> +12mm’ —6m'.  (2.2.19)

Also, the cumulants of the random variable are functions of the moments and
central moments can be expressed by using (2.2.18). The first eight cumulants as

functions of the central moments are

G =m

¢, =l =0"

Cy = Uy

Cy = My _Sﬂzz

Cs = Hs =104, (2.2.20)

Cq = Mg — 150,14, — 104> +308,°

¢, =ty — 21 gty = 35,00, +21040,11,°

Co = Uy — 2814t — SO L1y —35,” +420 1,40
+5604," 1, —63041," )

Note that,

(1) For the symmetric probability density functions, all central moments £, and

16
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cumulants ¢ for k odd are zero.

(i1) For the Gaussian case, all cumulants ¢ of order greater than second (k>2) are

zero [Nikias and Petropulu, 1993].

This is the key for recognising that cumulants are indications of non-Gaussianity

of signals.

Moment generating function and cumulant generating function for a

multivariate process

Given a set of n real random variables {Xj, Xy, ... , Xy}, their joint moments of

order r= ki+ ky + ... + ky are given by [Papoulis, 1991]

Mom[X ", X,%,... X, 1= E{(X" - X,* .- X ™}

, 00y (W, ,,...0,)

& &y k,
dw 0w,”,...,0m, oy <0

(2.2.21)

=(=))

where
o, (0, m,,....0 )= E{exp(jlox, + w,x, +..+ w,x,))} (2.2.22)

is their joint characteristic function. In the same way, the joint cumulants of order

r are defined as the differentiation of the natural logarithm of joint moments i.e.,

LYy (W, w,,....0,)

Cum[X,", X, X, 1= (- ) —= (2.2.23)
o P dwtomt dwb|
n o woy=w,=..=0,=0
where
vy (,0,,...0)=hl¢, (0,a0,,..,a0,)] (2.2.24)

The above may be applied to time series. If {X;} is a real stationary random

process, cumulant sequences are described using the relations with the moments
(if their moments exist up to nth order)

1st-order cumulants ;

¢ =Cum[X,]1=m = E{X,(k)}, (mean value) (2.2.25)
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2nd-order cumulants ;
CZXl (r)=Cum[X,,X,]= m;' () - (mlx1 y*, (covariance sequence) (2.2.26)

where m}"(z,) is the autocorrelation sequence and 7; is the time lag
along the sequence X; (assuming X; is a discrete time series, then 7, is an
integer).
3rd-order cumulants ;

¢l (1,1,) = Cum[ X, X,, X,]

(2.2.27)
=m}'(z,,7,) —m" [m;‘ (7)) +m) (7)) +m) (g, -1, )]+2(mf1 )

4th-order cumulants ;

i (r,7,,1,) = Cum[ X,, X, X,, X, ]
=m) (7,,7,,Ty) —my (7)) (7, — 7,) —m (7,)m (7, — T,)
+m (z)m (7, — 1) —m [ (z, - 7,7, — 1) +m (7,7,)  (2.2.28)
+m (T, T,) + gy (7, 7))+ (m ) [m (1) + m) (2,) + m) (7,)

X X X . XN\4
+m; (T, — 7)) +my (T, —7,) +my (T, — 7)) — 6(m; ")

which are similar expressions to (2.2.19) except now including the time lags.

Properties of cumulants
The following are some important properties of cumulants ;
[CP1]1If A;, i = 1,2,... .k, are constants, and X;, { = 1,2,... .k, are random variables,

then

k
Cum(A X, 4%, A, X,) = (Hﬂ[qum(X],Xz,..., X,).

i=1

[CP2] Cumulants are symmetric in their arguments, i.c.,

Cum(X,, X,,... X, )=Cum(X,, X, ,.... X, ),
where (i,,i,,...,i, ) is a permutation of (1,2,....k).
[CP3] Cumulants are additive in their arguments, i.e.,

Cum(X,+Y,,Z2,,2,,...2,)=Cum(X,,Z,,Z,,....2, )+ Cum(Yy,Z,, Z,,....,Z,)
18
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This means that cumulants of sums equal sums of cumulants (hence, the name

“cumulant”).

[CP4] If atis a constant, then

Cum(a+Z2,,2,,...2,)=Cum(Z,,Z,,...,Z,).

[CP5] If the random variables {X;} are independent of the random variables {Y;}, i
=1,2,...,k, then
Cum(X, +Y, X, +Y,,... X, +Y)=Cum(X, X,,... X, )+ Cum(1},Y,,...1,).

[CP6] If a subset of the k random variables {X;} is independent of the rest, then

Cum(X,,X,,...X,)=0.

Suppose v(n)=z(n)+w(n) where z(n) and w(n) are independent ; then from [CP5],

(T, Ty T, ) = (T, Ty s T )+ (7, 05000 T, y) - I w(n) is Gaussian
(coloured or white) and k=3 then, ¢’x (7,755, Ty) =% (T, Thsees Tiy)
whereas ¢’ (7)=c*(7)+c"2(7) . In essence, cumulants can draw non-Gaussian

signals out of Gaussian noise, thereby boosting their signal-to-noise ratios.
Cumulants of an independent, identically distributed (i.i.d.) random sequence are
delta (Kroneckor) functions (the same is not true for joint moments), i.e., if w(n) is

an i.i.d. process, then [Brillinger, 1965; Giannakis and Mendel, 1989; Nikias and
Petropulu, 1993]

ka(TpTZ""’Tk—l) = ywké‘(q)é‘(z—z)”' J(Tk—l) 4

where ¥ "y is the kth-order cumulant of the stationary random sequence w(n).
The nth-order cumulant function of a non-Gaussian stationary random process

{X(k)} can be written as (for n=3,4 only) ;

(T, Ty Ty ) =T, Ty T, )~ (T, Ty T, ) (2.2.29)

where m*,(7,,7,,...,7,;) is the nth-order moment function of {X(k)} and
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m%,(7,,7,,...,T,,) is the nth-order moment function of an equivalent Gaussian
process that has the same mean value and autocorrelation sequence as {X(k)}.
Clearly, if {X(k)} is Gaussian, m"n(q,rz,...,rn_l):mGn(TI,TZ,...,Tn_I) and thus
(7, 7,,...,7,_,) = 0. Note, however, that this is only true of orders n=3 and 4.

By putting 7, =7, =7, =0 and for zero mean (m"1 =0) we get

y; = E{x(k)*} =¢; (0) (variance)
y; = E{x(k)’} =¢;(0,0) (skewness) (2.2.30)
yi = E{x(k)*}-3y;T =¢;(0,0,0) (kurtosis)

The normalised kurtosis is defined as y; /[y;]°, which is widely used in machine

condition monitoring [Braun and Hammond, 1986; Dyer and Stewart, 1978].

2.3 Linear filtering and statistical properties of random signals

This section explains the properties of the higher order statistics during the linear

filtering process, leading to the use of normalised cumulants in the blind

deconvolution problem.

2.3.1 Relationship between input and output cumulants in linear filtering

A familiar starting point for many problems in signal processing and system
theory is the single-input single-output (SISO) linear and time-invariant (LTT)

model depicted in the Figure 2.3.1.

»  h) ) >

Figure 2.3.1 Single-channel system
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Second order properties;

In Figure 2.3.1, in which x(k) is a white sequence input with finite variance o7 ;
H(z)(=Z{h(k)}) is the transfer function of a causal stable system (channel) having
impulse response sequence A(k); w(k) is white Gaussian noise with variance o ;
x(k) and w(k) are statistically independent and so therefore are z(k) and w(k) ; z(k)
is the output of the system that is assumed noise free ; and, v(k) is the output of the
system corrupted by Gaussian noise. Letting r(e) and S(e) denote the correlation
function and Fourier transform of the correlation function (i.e., the spectrum),

respectively, then

r(k)=r,(k)+r,(k)= a%i h(Dh(i+ k) + 026 (k) (2.3.1)
S, (@) =% |H () +0? (23.2)
r, (k)= E{x(n)v(n+k)}= o> h(k) (2.3.3)

From equation (2.3.2) we see that all phase information has been lost in the
spectrum (or in the autocorrelation) ; hence, we say that correlation or power

spectrum is phase blind.

Higher order properties;

We now construct the higher order statistics of the input x and the output v.

For input x;
The system in Figure 2.3.1 is assumed to be causal and stable, and {x(i)} is

assumed to be independent, identically, distributed (i.i.d.), and non-Gaussian, i.e.,
(T, Ty T )=y if 7=7,=-=7,,=0 (2.34)
e (7,,7,,.., T, ) =0  otherwise (2.3.5)

where y*; denotes the kth-order cumulant of x(i). The additive noise w(k) is
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assumed to be Gaussian.
To justify the equation (2.3.4), we note that
Cum[x(iy), x(i,),..., x(i,_ )] = Cum[x(iy ), x(iy +i; —iy)sees x(ig +1,_, —ig)]
=% (] =g,y = lgseens by — 1) (2.3.6)

A, X : o . s
=y* onlyif i =iy,..,i,_ =1,

To show equation (2.3.5), we have made a substitution of variables and invoked
the stationarity of z(k) and the causality of h(k). The former tells us that

c k(T Ty ) =¢"i (7,50, T,_,) Will not depend upon time £; the latter tells us that

h(k) =0 for k <O0.

For output v;

Using the property of the higher order cumulant of a Gaussian process, the kth-
order cumulant of v(k) equals the kth-order cumulant of z(k), as w(k) is assumed to
be a white (or coloured ) Gaussian process.

Note that the following derivation is made easier by working with the more

general convolution form

()= S x(ihik—i) 2.3.7)

Fa—

where 7 ranges from -0 to oo, instead of the form associated with a causal IR

(Impulse Response) for which i ranges from 0 to k& (k =3).

T, Ty Ty ) = Ch (T, Ty ey Ty y)
= Cumlz(1), 21+ 7)o 21+ T,))]
:Cum[Zx(io)h(l—io),Zx(il)h(I—il + 7)o 21, AU =i +7,)] (23.8)

-y

=22 2 Cumlxiy Ya(l — iy ), %G Yl =iy + 7)oty (L =iy + 7, )]

o i [/

=2 > 2k —i)h(l—i, + 7)) h( =i + 7,

o g k-1

<Cum[x(iy ), x (i )y x(0 )]

To arrive at the first line of this derivation we have used cumulant property [CP3];
and, to arrive at the last line we have used cumulant property [CP1].

In the case of a white sequence input, equation (2.3.8) simplifies considerably to
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k(T Ty ) =Y =i =iy + 1) (U =i + 7, )
. (2.3.9)
=y 5 D h(h(n+ 7)) h(n+T,,)
n=0

Observe that when k=2, equation (2.3.9) reduces to equation (2.3.1) [subject to the
addition of ajﬁ(k) J. The generalization of equation (2.3.9) to the case of
coloured non-Gaussian input x(i) (we will only consider the k=3,4 cases) we first
make the substitution of variables in equation (2.3.8): jo = l-iy, j1 = I-i1+T1,..., i1 =

l-ix.1+Tx.1, SO that equation (2.3.8) becomes

T T )= D00 2hCi (GG h(y)
Jo h o ea (2.3.10)

Cum[x({ = jo), x(U+ 7, = j)sor, x(A+ 7T — )]
Using the stationarity of x(/), this equation can be expressed as

L (T Ty ) = a2 2GR+ Ry
Jo ke (2.3.11H

Cx (jo _jl +T1ajo _jz + Z-2’“-7]‘0 “jk—l + Tk~l)
Finally, making a second transformation of variables, m; = ji-jo, M2 = j2-jo,.. ., M.

= jx-1-jo, W€ obtain the result

(T, Ty Tyy)

h
= ZZ Zc"k(r1 =My, Ty =My Ty =My ) C (M, My, )

my Mg Mgy

(2.3.12)

where ¢ (my 1y e.omy ) = 2oy +m) - hjy +m ).

Jo

For non-Gaussian i.i.d. input signal x(n), by setting 7, =7,=...=7,,=0 and
m, =m, =...=m,_; =0, we obtain a result similar to (2.3.9)
ch =ci > h(k)? (2.3.13)
k

i.e., the zero lag response cumulant of order p is seen to be the product of the
excitation cumulant of order p with the sum of the linear operator’s unit-impulse

response elements raised to the pth power.
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2.3.2 Normalisation of cumulants in blind deconvolution problems

Having established expressions for higher order statistics for stationary inputs and
outputs of linear filters, we will now introduce the deconvolution problem and in
particular show the concept of normalised higher order statistics are needed.

In the blind deconvolution approach that will be developed, a desirable feature is
that it be invariant to signal. To explain this, Figure 2.3.2 depicts a single input
single output system in which x(n) is the original input sequence (assumed i.i.d.),
v(n) is measured sequence, and y(n) is output of the cascade system g, composed
of h, and f, (i.e. combined convolution-deconvolution operation). From this
structure, the relationship of the signals in convolutive terms and cumulants are

again written as

y=g*x=cl =c Y, g@) (2.3.14)
i=0

where ¢ and ¢, are the kth-order cumulant of output and input, respectively. The

right hand side of the equation (2.3.14) can be explained by the properties of

cumulant.

y(n) = x(n)
> v(n) —> 1, >

Y
ol

gn :hn*f;’l

Figure 2.3.2 Single input and single output system with the convolution-
deconvolution form.

In order to make the concept of the cumulant invariant with respect to scalar
multiplication, it is necessary to provide a normalisation of the cumulant.
Consider the normalised cumulant of order (p, g) associated with random

variables {x;},i=1,2, ..., n, as defined by
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CX
K .(p,q)=—=:—, forp>q, q is even positive integer (2.3.15)

plq
X
<3

in which it is assumed that both cumulant ¢, and ¢, are nonzero (this may reflect

the hypothesis that the input signal is a non-Gaussian process). Typically, the
integer parameters are selected so that p > g, although this definition is applicable
for any choice of those parameters using the definition of a cumulant. It directly
follows that this normalised cumulant is scalar multiplication invariant in the
sense that K (p,q)= K, (p,q) for any positive scalar a. In many applications, the
specific selection of g=2 provides a logical choice, since ¢} =o? (variance) is
always nonzero for any non-trivial random variables. This particular selection
yields the normalised cumulant relationship
¢

K.(p,2)= )" (2.3.16)

An important inequality condition relating normalised cumulants between the

input and output signal is now described.
Denote the p and gth-order normalised cumulant of the random variables {y;}, i =

1,2,...,N, as K,(p,q), is expressed from equation (2.3.13)

Z(gk)”

K, (p,q)=—"—-K,(p.9) (2.3.17)

2.(8,)
k

(see Figure 2.3.2 to define g)

For a positive even integer g,

&, (p.9)|<|K,(p.g)| forallevenand odd p>g (2.3.18)

To prove equation (2.3.18), the denominator in equation (2.3.17) can be expressed

by the standard /, norm to power p, i.e.,

25



Chapter 2, Analysis of Random signals

plq

={]lgf,1” (2.3.19)

D (8"
k

1/q

were el =[5 (s,

k

Hence, by taking absolute value of equation (2.3.17),

/llef, 17 (2.3.20)

&, (p.9)| = }Kx(p,q)l'z (8

From the inequality of the rational term for g an even integer and p > g case,

D (g

— <] (2.3.21)

{lel.}

in which the equality holds if and only if only one of the components of g is

nonzero.

Using the inequality of (2.3.21), equation (2.3.20) has a relation as
K, (p.q)|<|K.(p.9)| 2.3.22)

This is a very important relationship which essentially says that the normalised
cumulant of the response of a linearly filtered i.i.d. process is smaller than that of
the input. In respect to Figure 2.3.2 in which we are trying to make y look like x
then since A*x is no longer i.i.d. Then the actual inverse filter f (its components

are expressed by f, ) is adjusted to make the effect as small as possible, i.e., adjust

f to maximise the normalised cumulant of the output v.

In this manner, cumulant based deconvolution problem has been based on the
inequality relationship given in the equation (2.3.22) and can be said that “the
required deconvolution operator must generate a response whose normalised
cumulants have magnitude that are the largest over the class of all linear operators
for all even g < p and smallest magnitude for all even p < g” [Cadzow, 1996].

This normalised cumulant corresponds to the concept of ‘partial order” [Donoho,

1981] and the maximisation (or minimisation) matches the inequality condition in
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the blind deconvolution problems, which is introduced in Appendix A.

For brevity, we shall exclusively consider the case in which g < p with g even,
whereby it is desired to select g so as to maximise an estimate of ’K ,( p,q)} , that is

to say, the ideal deconvolution operation is performed by maximising the

magnitude of the normalised response cumulant K (p,q;g) ., where g is any

positive even integer less than p for which cumulant of order g, ¢ is nonzero (e.g.,

g=2). This maximisation is to be made with respect to the unit-impulse response
{gn} of the combined convolution-deconvolution operation as shown in Figure
2.3.2. Since the unit-impulse response of the unknown linear convolution operator
{h,} is implicitly contained within the observed (measured) data {v(n)}, this
maximisation must be made with respect to the deconvolution operator’s unit-

impulse response {f,}. The required maximisation therefore takes the form
mfaXlK y (p,q)i = mfaX[K ,(P.g)sgnlK, (p,q)]] (2.3.23)

where f is an appropriately dimensioned vector whose components are the

elements of the unit-impulse response of the deconvolving operator. In words, we
desire to find a global maximum of lK y (p,q)’. Often, the necessary condition

which gives a local maximum of this value is found by differentiating and
equating to zero with respect to the filter f, which will be discussed in Chapter 3.
In addition to the local optimisation approach based on the above maximisation
scheme, a global optimisation method using the differential evolution method is

introduced in Chapter 6.

2.3.3 Properties of higher order statistical parameters (computational
review)

Starting from the definitions of moments and cumulants, the explicit relationship
of cumulants between the input and output signal has been justified. However, the
justification given in equation (2.3.13) is strictly based on the i.i.d. case, which

will in general not match the problems dealt with in this thesis. Consequently, this
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mismatch requires further exploration to justify the use of cumulants in such

problems.

This subsection provides computational simulations to observe the statistical
(higher order) changes of signals along with the convolution and noise

interference. We now refer to Figure 2.3.1.

Input signals (x);
Two types of non-Gaussian input sequences are considered. The first is an i.i.d.
random signal with exponential distribution denoted as x; and referred to as the

‘zero mean i.i.d. Non-Gaussian signal’.

The second input sequence chosen to be a signal which contains a series of
impulses, i.e.,

{x(k)}=a, - 6(k —k,),

(2.3.24)
=0, for all other k € [1, N]

where a; is randomly selected non-zero constants, ky is a vector of sample
numbers (uniformly distributed random integer selected from numbers spanning
[1,N]) on which the impulses, [0,1,...,s-1] exist, N is length of the input sequence
x(k), and s is the chosen total number of impulses. This impulse sequence is
chosen as it can represent mechanical effects or results of a test material in non-
destructive ultrasonic examination [Nandi et al, 1997] or impacting signal from

machines.

Linear system (H);

A simple MA(2) minimum phase system is selected to simplify the calculation of

statistical values in this simulation described as

H(z)=1-137"4+04z77 (2.3.25)

which is shown in Figure 2.3.3.
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w@®
3
=

MA(2)

-1.3

Figure 2.3.3 The pole-zero map and impulse response of the MA(2) minimum
phase system used in computational simulation.

Noise signals (w);

Two randomly generated (white) Gaussian signals are used as interference signals

both of which has zero dB signal to noise ratio (SNR), which is expressed as

2
SNR =10log,, (”—2] dB (2.3.26)
O

w

where o is the variance of the output signal (z) of the linear system and ol

represents that of the noise signal (w).

Observed signals (v);

The observed signal is expressed using the non-Gaussian signal (with zero mean

and unit variance), the linear system and the noise signal as
v(n)= Zh(k)x(n—k)+ w(n) (2.3.27)
k=0

where & represents time sequence of the impulse response of the system.

Probability density function of each signals (p);
As an example, the probability density function (pdf) of signal X is estimated as

number of data in {x, <x <x, +Ax}
number of total data length (V)

p(x)= 0<Ax<max|x| (2.3.28)

When x has mean and variance as
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= E{x
H=Eix) (2.3.29)
o, =E{(x-u)’}

The shapes of each signal and statistical distributions (bar graph) are illustrated in
comparison to Gaussian distribution (solid line) having the same mean and

variance in the following figures;.

(a) Time series of input signals
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(b) Probability density of input signals
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Figure 2.3.4 The input signals and their statistical characteristics; (a): signals in
time domain and (b): their probability distribution (bar graph) with equivalent
Gaussian distribution (solid line).
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(a) Time series of output signals (noise free)
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Figure 2.3.5 The output signals (noise free) and their statistical characteristics; (a):
signals in time domain and (b): their probability distribution (bar graph) with
equivalent Gaussian distribution (solid line).

31



Chapter 2, Analysis of Random signals

(a) Time series of noise signals (Gaussian)
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Figure 2.3.6 The Gaussian additive noise signals and their statistical
characteristics; (a): signals in time domain and (b): their probability distribution
(bar graph) with equivalent Gaussian distribution (solid line).
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(a) Time series of measured signals
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Figure 2.3.7 The measured signals and their statistical characteristics; (a): signals
in time domain and (b): their probability distribution (bar graph) with equivalent
Gaussian distribution (solid line).
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Discussions of the simulation results;

For each of the two cases, 1000 realisation of the time histories were generated,
and each time history contains 4000 points. For each realisation the cumulants etc
were computed. As examples (i.e., the results of averaged values of 1000
realisations), Figure 2.3.8 depicts the results.

Simulation 1 Simulation 2

[
I c=0.00 i
c,= 1.99 c=-2.26 | y= 0.00 c= —2.24
: : - -0.16
1,= 1.99 v=-046 | ¢=-000 1= 0.
C,= 5.95 C,= 23.25 | V= 2 .99 C4= 23.28
e 8.89 Y= 5.82 | Y= 3.70
Signal case 1; z, | )\W1 v,
zero mean X » l >
i.i.d. Non-Gaussi Hi / | s N
an input signal /\ '\
Output l Additive Gaussian Measured
(noise free) | noise, SNR=0dB signal
[
Signal case 2: 7 ] W, v
zero mean X R H 2 +—»{ + 2;
impulse train 2 1 1
input signal | B
c,= 0.00 ¢,= —0.00 | ¢,= -0.00 ¢,==0.00
y.= 0.06 v.= —0.01 | v.= =0.00 = (.00
; ; : ~18.43
c= 4.72 ¢, 18.33 | ¢,=-0.00 c,=18.
Y4=187.64 Y= 91.43 l Y= 299 Y4~ 25.13
|

Figure 2.3.8 Statistical changes of signals along the processing. c,(k =3,4)
denotes the k-th order cumulant of each signal and y, (k =3,4) denotes the third

and fourth order normalised cumulant (‘skewness’ and ‘kurtosis’, respectively) of
each signal.

From the results of simulation, we focus on the changes in the higher order
statistical values of each signal considering their closeness to the theoretical
values and also the effect of data length on the estimation.

In order to do this, we will define two measures that approximately represent
offset and variability of the estimated cumulant relative to the values obtained

from equation (2.3.13). These are not the ‘usual’ definition of bias and variability

but are modified for our purpose.

34



Chapter 2, Analysis of Random signals

Offset error (OE);

This is expressed as the magnitude of the averaged absolute difference between
the value given by the theory and the estimation as (the magnitude is chosen as we

are indifferent to sign)

OE:E{cﬁ—¢]}

=|E{®}-£{o)

(2.3.30)

where @ and ¢ denote the calculated value (higher order statistical value) and
theoretical estimation (equation (2.3.13)) for each realisation, respectively. Thus
the bias error justified above can represent the average offset of the
computationally calculated value from the theoretical value (for i.i.d. signals).

For example, for two realisations, if the calculated third order cumulant of signal z
(output of system) is 3.02 and 3.12 in each realisation, respectively and their
corresponding theoretical estimates from equation (2.3.13) are 2.71 and 2.69, then
the bias error of this case is

OE = %[]3.02— 2.71]+[3.12-2.69]|

=0.37

Variability error (VE);

This is the mean of squared difference between the theoretical estimate and the

computational calculation as
A 2
VE=E{(<I>—¢) } (2.3.31)

This error can represent the spread of the calculated value centred from the

theoretical estimation. Using the same example above, the VE is

VE = %{(3.02-—2.71)2 +(3.12-2.69)’}

=0.1405
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Simulation 1: Higher order cumulants (c3, ¢4) of input (x) and output (z) of

the system;

Equation (2.3.13) derived for an iid. input which shows that the response
cumulant of order p is the product of the excitation cumulant of order p with the
sum of the linear operator’s unit-impulse response elements raised to the pth
power has been tested.

The difference between the theoretically estimated value of output signal and
calculated value is estimated consisting of the average offset (bias from the
theoretical value) and degree of dispersion (variability of the differences). The
result is shown in Table 2.3.1 for 4000 points time histories with 1000 realisations.
It is noticeable that even though the non-Gaussian impulse train signal (x;) may
not belong to the category of i.i.d signals, the simulation result is consistent with

the theoretical prediction (estimation).

Table 2.3.1 Cumulant and linear filtering (input-output relationship) (N=4000
samples, 1000 simulation)

Theoretical value, Calculated Difference between
Signa(lls and cinputsignal z h(k)> value, theory and calculation
order k C::;:;s:n signal OE VE
Third | 1.99%(71.13) 2,26 0.00 0.03
order =-2.26
Signal 1
Fourth 5.95%3.88
order “9312 23.25 0.12 4.59
Third | 1.191e —5%x(-1.13) 0.00 0.00 0.00
order =0.00
Signal 2
Fourth 4.72x3.88
order 1842 18.33 0.00 4.06

The effect of data length;

Since the use of higher order statistics generally requires more data samples
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[Nikias and Petropulu, 1993] than the second order case, the effect of data length
has been considered. This is shown empirically as follows;
Figure 2.3.9 demonstrates the decrease of VE along with the increase in the data

length.

Third order Fourth order

c3 of z (Avg. 1000, Bi-dir ) ¢4 of z (Avg. 1000, Bi-dir )

018 —  Signal 1 —-— : Signal 1
g - : Signal 2 -+ Signal 2

23 @ ~
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o
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&

Magnitude [MSE}
[=]
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o

o

&
)
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|
/

002} I 10

e e

0 : : A a
1000 2000 3000 4000 S000 6000 7000 BOCO 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 SOOO 10000
Number of samples Number of samples

Figure 2.3.9 Effect of data length on the higher order cumulants of output signals
(noise free signals).

Thus, the VE of each cumulant of each signal decreases monotonically as the data
length increases, which reflects the fact that longer data lengths lead to more

consistent results for higher order statistics.

Simulation 2: Higher order cumulants (c3, ¢4) of output signal (z) and

observed signal (v) (noise effect);

The effect of noise corruption has been considered. One of the most important
properties of the higher order cumulants is their ability to suppress Gaussian
additive noise. Since the additive noise w (zero mean) is assumed Gaussian, the
second order moment (autocorrelation, ACR), the fourth order moment, and the
third order cumulant corresponding to the case of Figure 2.3.8 are described by the

following relationship (indices of each signal are omitted):

n=ntn, n#0 } (2.3.32)

v _ .2 w wo_ —
c,=c,tc,, ¢, =0, p=34
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The graphical comparison of the autocorrelation and third order cumulant
sequence of the Gaussian noise is shown in Figure 2.3.10, in which the zero-lag
second order (correlation) value of Gaussian noise signal retains the value of its

variance whereas that of third order vanishes.

ACR of Gaussian signal 3" order cumulant of Gaussian signal

=4
o

Amplitude
Ampiitude

S

w» o

-0.2

20 -10 Timg g 10 20 Time lag Time lag

Figure 2.3.10 The second order moment and third order cumulant sequence of a
white Gaussian noise

Based on the property of higher order cumulants of Gaussian noise, the theoretical
relationship expressed in the equation (2.3.32) for the output of the system (noise
free signal) and observed signal (noise corrupted) is tested. Similar to the
simulation 1, the difference between the theoretical value of output signal and
calculated value is estimated consisting of the average offset (bias from theoretical
value) and degree of dispersion (VE of the differences). The result is shown in

Table 2.3.2 for 4000 point time histories with 1000 realisations.
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Table 2.3.2 Cumulant and Gaussian noise interference (N=4000 samples, 1000

simulation)
Theoretical value, Calculated Difference between
Signa(lli and oo O = Choer value, theory and calculation
oracr observed signal
¢ | o OE VE
Third -2.26 2.24 0.01 0.38
order
Signal 1
Fourth 23.25 23.28 0.02 24.62
order
Third 0.00 0.00 0.00 0.02
) order
Signal 2
Fourth 18.33 18.43 0.09 4.24
order

As in the case of Table 2.3.1 (input-output cumulant relationship), the theoretical

relationship for the i.i.d. non-Gaussian signal x; and Gaussian noise w; is also

applicable to the case of the non-Gaussian impulse train signal x, and Gaussian

noise w; in Figure 2.3.8.

The effect of data length;

In Figure 2.3.11, the variability of the difference between the theoretical and

calculated higher order statistical values along with the increase of the data length

as shown.

Third order
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Figure 2.3.11 Effect of data length on the higher order cumulants of observed
signals (noise corrupted signals).
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Similar to the simulation 1, from Figure 2.3.11, the VE of each cumulant of each
signal decreases monotonically as the data length increases confirming

consistency.

Higher order normalised cumulants (y,,7,) relationships for input, output
(noise free) and measured (noise corrupted) signals;

Unlike the case of higher order cumulants, the higher order normalised cumulants
do not necessarily follow the same properties of cumulants of independent i.i.d.
signals (refer to section 2.2). Instead, from extensive simulations, for the non-
Gaussian i.i.d. input case, we have confirmed that there is a consistent trend

among the normalised higher order cumulants (7, or y,) of input, output (noise

free signal, output of linear system alone) and measured signal (Gaussian noise
corrupted). The magnitude of the normalised cumulants of each signal gradually
decrease as the signal is first filtered and then suffers noise interference as shown
in Figure 2.3.1. To be more specific, the linear filtering (convolution) and
Gaussian noise addition drive the normalised higher order cumulants of the signal
to smaller magnitudes, i.e., the inequality condition [Cadzow, 1996].

A numerical example for this trend is given in Figure 2.3.8 and graphically
displayed for each realisation (1000 realisations with 4000 points samples) in the

Figure 2.3.12.
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Third order (signal case 1) Fourth order (signal case 1)
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Figure 2.3.12 Change of normalised cumulants of each signal for subsequent
simulations. Values in the ( ) designate the average value and variance of each

normalised cumulants.

As can be seen in the above figure, the magnitude of the third order normalised
cumulant (skewness) and fourth order normalised cumulant (kurtosis) of the
measured signals (v, signal case 1 and 2) are smaller than those of noise free
signals (z) and those of z are also smaller than those of x.

Concerning the deconvolution problem, it can be said that any linear filtering of
input signal (i.i.d. or impulsive) with or without noise interference makes the
output signal possess small normalised cumulants. Thus, the deconvolution can be
applied by incorporating a linear inverse system which can increase those values.
This is the key to the application of the normalised cumulants in the blind

deconvolution problem considered in this thesis (Chapter 3).
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2.4 Concluding Remarks

The characteristics of higher order cumulants of signals and their properties
through linear convolution have been explored. Based upon theory and simulation,
this chapter provides evidence of the validity of the application of higher order

statistics to the source signal reconstruction problem. A summary of results is as

follows;

(a) The effect of convolution

1. The response cumulant of order p is the product of the excitation cumulant of

order p with the sum of the linear operator’s unit-impulse response elements

raised to the pth power as c, :C;Z(hk)" for i.i.d. non-Gaussian signal. This
k

relationship has been demonstrated (by simulation) as being valid for an impulsive

signal.

2. Any linear system tends to make the magnitude of the normalised cumulants
of output sequence smaller than that of input’s when the order of denominator is
less than that of numerator (refer to the equation (2.3.22), in which g < p with ¢
even). This has been proved theoretically for i.i.d. non-Gaussian processes, but we
have demonstrated further applicability in section 2.3.3. As a result, this is used as

the basis for design of inversion (see (c) below).

(b) The effect of noise addition (Gaussian noise)

The higher order cumulants (order greater than 3) are blind to Gaussian signals,

hence the observed signal’s higher order cumulants are those of the non-Gaussian
signal alone.

V_ Fe W_ Z — W__'
¢, =c, +c, =¢,7, p=3,4 (cp =0).
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(c) Use of higher-order cumulants

Selecting the value of the normalised cumulant which incorporates the second
order (g=2) and higher (third or fourth) order (p=3 or 4) cumulant, the inequality
condition (equation (2.3.22)) is established. This condition now provides the key
motivation in the blind deconvolution problems and hence these normalised
cumulants will be extensively employed for the blind reconstruction of source

signal in subsequent chapters.
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PART II Fundamental considerations of Higher Order
Statistics (HOS)

Chapter 3

The deconvolution problem and Higher Order Statistics

3.1 Introduction

In the previous chapter, the basic characteristics of higher-order moments,
cumulants, and their relation to a linear system’s impulse response function were
introduced. The subject considered here is the restoration of the unknown input
signal which gives rise to the observed signal. If the distorting system is known it
is a deconvolution problem for which many approaches exist. For example, in the
context of communications, system identification, and inverse filtering relating to
channel equalisation is treated in the book by Proakis [Proakis, 1995]. Related
work in seismic signal processing is reported in [Peacock and Treitel, 1969; Wood
and Treitel, 1975; Robinson and Treitel, 1978, 1980], predictive deconvolution for
seismic signal processing is in classic work [Robinson, 1967] and homomorphic
deconvolution and its application to speech processing is covered in [Oppenheim
and Schafer, 1989].

The term ‘blind’ implies that knowledge of the system is not available, and except

for homomorphic deconvolution (cepstral analysis) these methods are inapplicable.
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However, in our situation, the term ‘blind’ is tempered by noting that we will
make some prior assumptions about the signal structure. These assumptions
include (i) the input signal (that is to be restored) is ‘significantly’ non-Gaussian
and (ideally) independently identically distributed (i.i.d.). (ii) the additive noise
has a Gaussian distribution and is independent of the input signal. These two
conditions lead us to the principle that will be employed for blind signal recovery.
It is known that an input signal (i.i.d.) which is convolved with the unknown LTI
(Linear Time Invariant) system tends to become closer to a Gaussian distribution
[Donoho, 1981]. So, to restore the input signal from the measured signal, one
approach is to process the measured signals through a (constrained) filter so that
the response is strongly ‘non-Gaussian’. In other words, for example, through
monitoring the cumulant we may adjust the inverse filter coefficients to make the
output signals of this filter be as “far” from Gaussianity as possible.
This chapter follows this approach using an objective function [Wiggins, 1978;
Nandi, 1997] that is optimised to restore the input signal. This function is
composed of higher order cumulants and moments. The deconvolution is achieved
through the maximisation of the objective function of the filtered measured signal
with respect to the corresponding coefficients of the inverse system.

The major aspects in this chapter are;
- The definition of deconvolution problem as a (generalised) Wiener optimisation
problem.
- Maximisation of the objective function which is performed with respect to the
coefficients of a linear inverse filter including MA, AR, and ARMA forms and
their performances are compared.

- The justification of the preference of the inverse filter as an MA system.
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3.2 Optimal deconvolution (The “classic’” Wiener optimisation
problem)

Given a time series v(n) which is a filtered version of an input sequence x(n) as
shown in Figure 3.2.1,

v=h*x 3.2.1)
where “*’ represents the convolution operation, the deconvolution problem is to

find a filter f(n) which recovers (as closely as possible) signal x(n) from v(n), i.e.,

= f*y (3.2.2)

x(n) v(n) x(n)
I h(n) Sin) —_— >

Figure 3.2.1 Deconvolution model

As a step toward addressing the inverse problem, when A(n) is unknown, we
summarise the minimum mean square error (MMSE) solution for the case when
h(n) is known and f(n) is an inverse filter of length L. The optimal filter
coefficients may be obtained on the basis of the least squared error between x(n)
and a desired signal (in this case this is the input signal). Thus, the deconvolved
signal is obtained from the estimated FIR inverse filter. A model is shown in

Figure 3.2.2, from which the optimal deconvolution problem can be stated.
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d(n)=06(n)

w{n)

x(n) =0(n) v(n)=h(n)+w(n) y(n)= 8 (m)
E— R 10 + Sfin) y

[

6(71)

Figure 3.2.2 Deconvolution model for least-square method; x(n) (=0(n)) is the

Original input signal to be recovered, A(n) is the impulse response function of
system, w(n) is the noise interference, v(n) is the measured signal, f(n) is the

impulse response of the inverse filter, y(n) (= S(n)) is the restored signal (an
estimate of the original signal), d(n) is the desired signal (=d(n)), and e(n) is the
error signal

The sum of squared errors between the desired signal and inverse filter output

signal is defined as a cost function,

7= ey (3.2.3)
n=0
where
emy=d(m)-Y. f(kw(n—k) (3.2.4)
=0

Minimising the cost function with respect to the filter coefficient f{m), the

necessary condition is

—aJ—:o, m=0,1,...,L-1 (3.2.5)
dof (m)
which leads to
= de(n)
2 . =0 3.2.6
;e(n) 2 om (3.2.6)
where
de(n)
o) =—v(n—m) (3.2.7)
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Thus, from equation (3.2.6) and equation (3.2.7) the well known orthogonality

property between the error signal and the measured signal is

=

=1

e(myvin-m)=0 (3.2.8)

]
<

n

Substituting equation (3.2.4) into the equation (3.2.8) gives

S dm)-vin-m)=Y £(0)Y v(n—kw(n-m) (3.2.9)
n=0 k=0 n=0

which can be expressed in matrix form for »=0, 1,...,N-1 and m=0, 1,..., L-1,

N_lv(n—O)v(n—O) Afv(n—l)v(n—O) NAlv(n—L—l)v(n—O)
[ fO T [hO)]
2 v(in—-0yw(n-1) "Z:;v(n—l)v(n—l) 2 vin—L-Lv(n-1) fFl) O (3.2.10)
N-l N-1 N-1 _f(L_l).J L 0 J
Y v(r—-0wn—-L-1) > v(n—-Dy(n-L-1) > v(n—L-1v(n—L-1)
La=0 n=0 n=0 n
1.e.,
Rf=g (3.2.11)

where g is a vector composed of a first element which is the system’s first impulse
response value and zeros elsewhere (L X 1 column vector), R is an auto correlation
matrix of the measured signal (L X L symmetry matrix), and f is the inverse filter
(L X 1 column vector).

The required deconvolution which restores the input signal in a least squares sense

is
y(n) = ifmv(n—m) (3.2.12)
m=0

Note: Since the cost function is quadratic in the coefficients, the necessary
condition (3.2.5) locates the global minimum.
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3.3 Higher order deconvolution (Blind Deconvolution, BD)

Blind deconvolution is the problem of restoring an input signal from the measured
(observed) signal alone. The measured signal is assumed to be the output of an
unknown linear system possibly corrupted by noise. A further key assumption is
that (i) the input signal to be restored is non-Gaussian and (ii) the corrupting
signal is Gaussian and is independent of the input signal.

Starting from these assumptions, the restoration of the input signal can be
addressed by utilising the higher order statistical properties of the signals. The
method introduced here is based on the maximisation of higher order cumulants of

the restored signal. This blind deconvolution (BD) process is illustrated in the

figure below:

n(n), AGN/UCF

v(n) (n)
» ARMA(p,q) 7,
Unknown System Filter
input, NG, Observed Regtoraald
i.i.d. signal . signa
h m

l I
l I
| I
i [
l I
x(n) ! Unknown I
I Inverse l
I [
l I
! l
! I
I !

Figure 3.3.1 The process of convolution-deconvolution in blind source
reconstruction problem; NG: Non-Gaussian; AGN: Additive Gaussian Noise;
UCF: Unknown Covariance Function.

The inverse filter coefficients f,, (denoted f in vector notation) is estimated from
the maximisation of the higher order cumulant of the output y(n). This results in a
constrained non-linear optimisation problem which is solved numerically.

The deconvolution process based on higher order statistics which utilises order >2
cumulants as discussed in Chapter 2. Also the concept of partial order has been
used and is summarised in Appendix A.

We describe the Blind Deconvolution process using two approaches, namely (i)

constrained higher order cumulants and (ii) normalised higher order cumulants.
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3.3.1 Blind Deconvolution process with a constraint

Unconstrained maximisation of a function can lead to unhelpful conclusions, i.e.,
unbounded filters. Constraints limit the behaviour of the inverse filter while
optimising the appropriated objective function with respect to the filter
coefficients. The chosen constraint is to keep the Frobenius norm of the FIR

inverse filter coefficient unity.

e[, =1 (3.3.1)

which means the variance of the input and output of the inverse system are the

same. A general form of objective function is expressed as

O,(f)=Cuml[y,y,..., y]

r times
=C?(0,0,...,0) G3.2)
r &.—...V__.__..J

r times

The integers r designate the order indices whose value is normally taken as the

integer 3 or 4.

Incorporating the constraint function as

1 N-~1 )
ﬁZ(yi _my)
g)=1-"4% (3.3.3)
N’ (V,‘ ”mv)z
i=0

in which m, and m, is the mean of the signal y and v, respectively and combining

the above two equations (3.3.6) and (3.3.3), the final cost function for the BD

process takes the form

JE)=0,(F)+Ag(f) (3.3.4)

where A is a Lagrange multiplier.

The necessary condition for a local optimum with respect to the inverse filter

coefficient f{k) is
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oJ(f) 90,(f)  dg(f) _ _ _
7o +A 7 =0 , m=0,1,..L-1 (3.3.5)

As an example, taking r=4 and zero mean signals, we have a fourth order

objective function as
0,t)=E{y*}-3E{y*}"

1 = ) 1 v , 412
=— —my) =3 — . —m
N;(y, )Y [Ni;(y, ) J

(3.3.6)

where E{e}denotes expectation, m, is the mean value of y, N is the number of

data points.

The first term on the right hand side of equation (3.3.5) becomes

90,(f) 4!
afm NnO

N-1 L-1 N-1

{y()’ v(n—m)}- 7 Z y(m)?*- Y FR)D {v(n—k)-v(n—m)} (3.3.7)
n=0 k=0 n=0

The second term can be expanded as

ﬂag(f) N-1 , R N-i
T:——Zﬂ gov(n) 2 f(k)ZO{V(n k)-vin— m)} (3.3.8)

Combining (3.3.7) and (3.3.8) yields

a;;f) ; {Y(n) v(n— m)}“-“zy(n) Zf(k)Z{v(n k)-v(n—m)}
m n=0

L

N-1
—24 {ZV(”) } Zf (k)Z{V(n k)-v(n—m)} (3.3.9)
n=0
=0
For notational simplicity, let us denote the auto/cross-correlation terms of equation

(3.3.9) (for m=0,1,...,L-1) as

2

-y v(in-m)) =g,

il
<

n

N-1
Z{v(n —k)-v(n— m)} =R,
n=0
Then, the inverse filter coefficient equation becomes
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N-1
2N-> v(n)* R,
f=—tt (3.3.10)

-1 N-1
62 y(n)*- Zv(n)2 +N*- A
n=0 n=0

To determine the Lagrange multiplier A, restructure the constraint condition

(3.3.1) as

Zf(m) Zv(n m)* -Z y(n)* (3.3.11)

n=0

which means

(£.£)=f7 -f=1 (3.3.12)

ie., <-> denotes the inner product of the inverse filter coefficient vector.

Substituting (3.3.10) into (3.3.12) yields the Lagrange multiplier

5 b Zy(n) Zv(n)
== v(n)[ 1)T-Rw‘l.gr] n=0 (3.3.13)

N4 N?

Using the Lagrange multiplier and restructuring the inverse filter coefficient

equation (3.3.10) leads to

R, g (3.3.14)
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3.3.2 Blind Deconvolution process with normalisation

With reference to Figure 3.3.1, we construct the inverse filters using a normalised
cumulant (objective function). This objective function takes the form of the r-th
order cumulant of the output signal y(n) divided by the s-th order (s-th moment)

of y(n) raised to power r/s

1N—1 ,
Ey-my] N0 ™)

={ 7 - _ (3.3.15)
El(y-m,)’] LN_I s
[N ;(yi m,) }

o, ()

y

where m, is the mean of y. Similar to the constrained case, the normalising order s
is given by 2 which corresponds to the variance of y (O'j ). Commonly, the integer

ris either 3 or 4.

The maximisation of the objective function is achieved through the differentiation

of this objective function with respect to the inverse filter coefficients and

equating to zero.

20,(£)/2f, =0 (3.3.16)

The above equation yields inverse filter coefficients as shown in the following
equation (3.3.17) which yields multiple solutions.
The maximisation yields an equation relating the inverse filter coefficient vector,

the autocorrelation of the measured signal and the higher order cross zero-lag

cumulant.
— -
roae Net . Ay myv(n)
> v(mv(n) Svmvn=1) - - Y vmvn-L+1) o
| v fo| | A Xy oD [(3.3.17)
vin=v(n) Y va-Dy-1) - - DYve-Dv(n-L+D) || f "=
n=0 n=0 n=0 _
N-1 N-1 N-1 fL-l
v{n-m)v(n) ZV(n—m)v(n—l) . Zv(n—m)v(n-—L+l) et
| n=0 n=0 n=l _ Az yr—l(k)v(k _m)
n=0 J
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N-1 N-1
where m=L and the term A :Z y*(n) /Z y"(n) . For the constrained case (where

n=0 n=0

A can be calculated from equation (3.3.13)), we select the multiplier

N-1
2N Y v(n)?
A= 220 The equation (3.3.17) can be written

= 3, N N-1
?Z y(n)® ~Z:v(n)2 +N*-A
n=0 n=0

equivalently as (details can be found in Appendix B)

R f=¢g (3.3.18)

144

where Ry, denotes the symmetry LXL autocorrelation matrix of the observed
signal, f is the Lx1 inverse filter coefficient vector, and g is the Lx1 cross-
correlation vector between the observed signal and the output of the inverse filter
at each iteration. Note that equation (3.3.18) takes a form similar to equation
(3.2.11) for the ‘conventional’ deconvolution problem.

Using either the constrained or normalised objective function maximisation
process, the output signal y(n) can yield the input signal restoration through the

convolution of the measured signal v(r) and the inverse filter f with length L

¥ =Y fkwn—k) (3.3.19)
£=0

3.3.3 Example of signal restoration using the constrained and normalised

objective functions

With a given impulse signal and a simple system, an example of the restored

signals the constrained and normalised objective function maximisation are

compared:
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Input signal
1o} - Mean : 00
I I Y T B~
E"Zf I { l ‘| |’ )] Skewness : 3.05
ol Kurtosis  : 206.98
st Crest factor : 18.41

Figure 3.3.2 Input signal used in simulation for restoration of impulse signal via
two different objective function maximisation methods.

Unknown system

Pole-zero map Impulse response function

0.5-

Imaginary part
o
*
o
Ampiitude

0.5 1 0 5 10 15 20 25 30 35

~1 ~-0.5
Time index

[}
Real part

Figure 3.3.3 Unknown system’s pole-zero map and its impulse response function

Observed signal (SNR= 10 dB)

Mean : 0.002
Variance : 1.72
Skewness : 0.875
Kurtosis : 91.882
Crest factor : 13.839

Arplitude [mV]

500 1000 1500 2000 2500 3000 3500 4000
Time index

Figure 3.3.4 Observed signal with Gaussian noise corrupted (SNR = 10 dB)
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Reconstruction by the constrained objective function (fourth order MA(4)

inverse filter)

Pole-zero map Impulse response function
1
1
0.9+
E 08
05 S ° 07
§ ° éove
g ok % os
E o <(0,4
-0.5 o Q0.3
0.2r
T RS 0.1
-1 -05 0 0.5 1 GO 5 10 15 2‘0 2}: éO 35
Real part Time index
Restored signal Results
Mean : 0.002
g : Variance : 0.864
g . Skewness : 2.193
= s Kurtosis : 123,63
Crest factor :  15.926
-15

500 1000 1500 2000 2500 3000 3500 4000
Time index

Figure 3.3.5 Inverse system and restored signal from the constrained objective
function maximisation

Note: Comparing the observed signal (in Figure 3.3.4) and restored signal shown
in Figure 3.3.5, we can see that the true shapes of the impulses of the input signal
(shown in Figure 3.3.2) are successfully recovered (i.e., see the smearing

direction of the impulses in the observed signal are correctly aligned).
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Reconstruction by the normalised objective function (fourth order MA(4)

inverse filter)

Pole-zero map Impulse response function
1.5
i
0.5F °
= =] !
= g
g of * z
2 H
E o
05
-0.5F o
-1 -05 Q 05 1 00 5 1‘0 1‘5 2‘0 2‘5 3‘0 35
Real part Time index
Restored signal Results
* ' Mean : 0.004
o U[ | { ” Variance : 1.86
A ii,,* Skewness : 2.193

Kurtosis : 123.63
Crest factor : 15.926

BOG 1006 1800 _ 2000 @500 3000 3800 4000
Time index

Figure 3.3.6 Inverse system and restored signal from normalised objective
function maximisation

Note: Similar to the constrained inverse filtering case, the restored signal is closer

to the input signal.

Detailed comparisons of results from two different inverse systems are given in

the following.

Discussion

Whilst the restored signals from two different inverse filters may not appear to be
very different (from Figure 3.3.5 and Figure 3.3.6) for this example, we compare

their performance on the basis of the statistics. The inverse filter coefficient and
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the variance of the restored signals from constrained and normalised objective

function are summarised in Table 3.3.1.

Table 3.3.1 Comparison of the inverse filter and restored signal from two different
optimisation methods

Constrained case Normalised case Remarks

Frobenius norm
of the inverse ], =1 If], =147 | =4, FIR filter

filter

values in () are the

Variance of the _
0.86(1.72) 1.86(1.72) variance of the

restored signal

measured signal

From these results, it is clear that signal reconstruction from both types of
objective function give similar (satisfactory) results. In fact, the normalised higher
order cumulant gives identical results (to the order of accuracy of the
computation) as for the constrained cumulant when the signal has unit variance
and zero mean. In fact, can be seen in the table, the inverse filter coefficients
calculated either from equation (3.3.14) or equation (3.3.18) only differ in the
magnitude of these values. Specifically:
The FIR inverse filter coefficients for the constrained objective function is

f constraint = [ 0.824 0.472 0.270 0.146 0.065].
and the FIR inverse filter coefficients for the normalised objective function is

f normatisea = [ 1.210 0.693 0.397 0.215 0.095]

which is £ congiraine multiplied by the norm ratio (=1.47).
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3.3.4 IIR deconvolution operator

As noted in the previous section, although the nonrecursive filter ensures a
satisfactory result for many problems, it is an inappropriate choice when the
convolving operator’s transfer function H(z) is rational (for AR or ARMA
processes) and in particular has zeros that lie close to the unit-circle. In this case,
the desired deconvolving operator also has a rational transfer function F(z)=H(z)",
which has poles located close to the unit-circle, thus giving long impulse
responses. To solve this problem with a nonrecursive deconvolving operator, the
inverse system’s order would need to be long to give an adequate approximation.
This leads to a large computational burden. Hence, in this section, we introduce a
recursive deconvolving operator to alleviate this deficiency. The relationship
between the output {y(n)} of an ARMA inverse system (order p, g) with the
observed data {v(n)}, n=0,1,...,N-1 can be expressed as the linear constant-

coefficient difference equation

p-1 g-1
a,y(n—k)=>Y by(n—k) (3.3.20)
0 k=0

k=

Similar to the case of MA operation, the normalised cumulant of order (r,s and r>s,

integers) may be used [Nandi et al, 1997]
1 N-1 1 N-1 , rls
0,(r,s)==>" y”(k)/[—z y’ (k)} (3.3.21)
Ni= Nis

By optimising this objective function with respect to the filter coefficient b;

(i=0,1,...,¢-1) and g; (j=0,1,...,p-1), the necessary condition is

A0, (r,s)/ db, =0 and
A0, (r,s)/ca; =0 (3.3.22)

The matrix formulation of ARMA inverse filter can be written [Cadzow, 1996] as

(detailed expressions are found in the Appendix B)
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M- N-1 N-1 T
> s, (k=0)y(k=0) > s5,(k-0)y(k—-1) s, (k=0)y(k—p+1)
k=0 k=0 k=0 al
Nl Nl N=1
Y s k=Dyk=0) > s, (k=Dyk=1) - - > s(k=Dyk-p+D) ||a
k=0 k=0 k=0 _
N-1 N-1 N-1 aP
> s, (k=m)y(k=0) Y s, (k=m)ytk=1) - - > s,(k—m)ytk-p+1)
L k=0 £=0 k= i
— }
Fye yo 1 Ay (ks (k—0)
S k=0wk) s, (k=0wk-1) - - s, (k-0v(k—g+1) -
k=0 k=0 k=0 r-1
N-1 N-1 N1 by A- Z Y k)s, (k-1
s(k=1v(k) Y s, (k=Dwk-1) - - k=Dy(k—g+1) || b k=0
k=0 k=0 k=0 11y
N-1 N-1 N-l bq‘l . (3 3 23)
s, (k=mwk) s, (k—mpvk=1) - - s, (k—mvk—gq+1) s "~
L k=0 k=0 k=0 ‘ A z y"l(k)sa (k—m)
L k=0 m
N-1 N-1
where m=p-1 and A=>"y"(k)/> y'(k)-
k=0 k=0
Or, in a compact form,
R, -a=R  -b+r (3.3.24)

3.3.5 Comparison of MA, AR and ARMA deconvolution operators

The blind deconvolution operators are compared to measure their efficiencies
depending on the system employed. The MA, AR or ARMA blind deconvolution
operators described in the previous section will now be demonstrated. Each has
different characteristics in recovering the source signal. The simulation model is

shown below.

w(n)
x(n) Unknown z(n) v(n) Inverse y(n)
Vi
’ System Filter
a,, bj MA, AR, ARMA

Figure 3.3.7 The signals and deconvolution model
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This section demonstrates the validity of the deconvolution procedure with
reference to the objective function and the coefficients of three different inverse
filters. Using three different inverse systems such as MA(4), AR(2) and
ARMA(1,1), the observed signal (which is shown in Figure 3.3.4) is deconvolved

with these systems inverse systems.

BD process using an MA(4) inverse filter :

In Figure 3.3.8, the shape and contours of the objective function (kurtosis) are
shown. To plot this figure, a mesh of objective function values are calculated by

varying the first two coefficients of f, in 60 steps of 0.1 and keeping the other

MA coefficients ( sz, fba, fm ) fixed. Thus, the inverse filter coefficient

becomes;
[ Jo varying |
Jy, 1 varying
f,=|f, :fixed |, f =1
fb : fixed
f, fixed

Jo_om and f, ,, are the first and second MA filter coefficient which are

optimally calculated and their co-ordinates are marked by ‘opt’ while a pair of

coefficients denoted by f, ... and f, .. that gives the maximum value of the

objective function among f, and f, is marked by ‘max’ in the figure.
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Location of first two filter coefficients

Figure 3.3.8 The Objective function of the 4™ order statistics for MA(4) inverse
filter. Dotted line point: by and b; value which gives maximum Objective value,
arrow point: calculated fy and fp; value.

Thus, the inverse filter from the ‘opt’ point consists of two filter coefficients

( Joop> Ju_om ) @t the ‘opt’ point and the three other coefficients are

(f» [y [, )sothat

T
fb,,opt = [fbo_opt f;;,_apt ﬁ)z f;@ fb4 :l ’ fa =1

and the inverse filter from ‘max’ point becomes

fb_max:[fbo_max Jomae S, T, beT, f =1

The pole-zero maps are shown in the figure below;

Imaginary part

Pole-zero map of ‘opt.” point

0.5

-1

Pole-zero map of ‘max.’ point

4k
3
o 2 B
o R
g o
of X - g0 o X °
2 °
o £ i
° 2
3 :
4} :
H
-1 -0.5 0 05 1 0 4 6 8
Real part Real part

Figure 3.3.9 The MA(4) inverse system obtained by 4th order statistics.
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We can obtain two different restored signals by convolving these two inverse

systems with the measured signal v(rn), which are plotted in the figure below;

Restored signal by ‘opt.” point filter Restored signal by ‘max.’ point filter

Amplitude [mV]

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

Time index Time index
Skewness: 2.193 Skewness :  2.226
Kurtosis : 123.643 Kurtosis : 128.319

Figure 3.3.10 The restored signals from 4th order MA(4) inverse filter.

It is noticeable from Figure 3.3.8 that there can be more than one maximum in the
blind deconvolution problem when using the MA inverse filter. Thus, it is evident
that the blind deconvolution based on the higher-order statistics could end up at a
local maximum (see that the intersection of the dotted line does not coincide with
the arrow point). The inverse systems shown in Figure 3.3.9 differ in the phase
(e.g., inverse system from the ‘opt’ point becomes a ‘minimum’ phase system
whereas the inverse system from the ‘max’ point becomes ‘non-minimum’ phase
system). For the MA(4) inverse system, the restored signals from the two inverse
filters including different coefficients, nevertheless, produces similar satisfactory

impacting signal reconstruction as shown in Figure 3.3.10.
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BD process using AR(2) inverse filter :

Like the MA(4) inverse system case, the shape and contours of the objective
function (kurtosis) are plotted in Figure 3.3.11. Varying the last two coefficients

of f, in 0.1 steps and keeping the first AR coefficients ( f, ) fixed as 1, the inverse

filter coefficients become;

S, fixed
f,=|f, :varying|, f,=1
f,, varying
Ju om and f, ,, are the second and third AR filter coefficient which are

optimally calculated and their co-ordinates are marked by ‘opt’ while a pair of

coefficients denoted by f, ., and f, ., that give the maximum value of the

objective function are marked by ‘max’ in the figure.

Objective function shape Location of first two filter coefficients

[S)
=3
=3

Y

a
k=

=}
=

3
=

Objective function, O

Y=Y

Figure 3.3.11 The Objective function of the 4™ order AR(2) inverse filter ( fo, =1
Dotted line point: f,; and f,; value which gives maximum Objective value, arrow
point: calculated f,; and f;; value.

Thus, the inverse filter from ‘opt’ point consists of two filter coefficients

(foopt>  Jay_om ) @t the “opt’ point and the first AR coefficient are ( f, =1), so

£y =[S o S o fo=1
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and the inverse filter from ‘max’ point becomes

A R AN B

The pole-zero maps are shown in the figure below;

Pole-zero map of ‘opt.’ point Pole-zero map of ‘max.’ point

: - 0.5 7
05 ) ; . X

Imaginary part
(=
P
X
Imaginary part
(=)
o

-1 -0.5 05 1 -1 -0.5 0.5 1

0 0
Real part Real part

Figure 3.3.12 The AR(2) inverse system obtained by 4th order statistics.

As for the MA(4) case, we obtain two different restored signals which are plotted

in Figure 3.3.13.

Restored signal by ‘opt.’ point filter Restored signal by ‘max.’ point filter
%107
2.5F
Al
1.5+
1
E E 0.5
[} 3
2 29
? §~o.5
-1
-1.5+
-2
560 1(;00 1500 20’00 2500 3600 3500 40‘00 28 5(‘)0 10‘00 15})0 20‘00 25;00 302)0 35‘00 40‘(;0
Time index Time index
Skewness :  2.220 Skewness : -8.84e-4
Kurtosis : 124.504 Kurtosis : oo

Figure 3.3.13 The restored signals from 4th order AR(2) inverse filter.
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As for the MA inverse filter case, the AR filter coefficients that give the maximum
point of the objective function value are different from the calculated coefficients.
In Figure 3.3.11, the point of the maximum objective function’s value
(intersection of the dotted line) does not match the calculated maximum (arrowed).
The AR inverse filter coefficients which give massive kurtosis values are f,0=1.0,
f,1=1.9206, and f,,=1.0916 (filter coefficients denoted °‘max.’), whereas the
calculated coefficients are f0=1.0, f,;=-0.5794, and f,,=-0.0083 (filter coefficients
at ‘opt.’ point) giving the kurtosis as 124.504. As expected, as shown in Figure
3.3.13, the result of signal restoration from this ‘max.” positioned filter
coefficients is totally unsuccessful. On the other hand, the restored signal from
that ‘opt.” point filter coefficients is slightly better than the case of MA(4) inverse
filter (since the unknown system shown in Figure 3.3.3 is an MA system, the
inverse system would preferably select an AR system). It is clear that this inverse

filter also possesses local maxima.
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BD process using ARMA(1,1) inverse filter :

The three dimensional shape and contour of the objective function (kurtosis) is

plotted in Figure 3.3.14 varying the last coefficient of f, and f, in 60 steps of 0.1
and keeping the first AR coefficient ( f, ) fixed as 1 while the first MA coefficient

(f,,) is also kept constant, the inverse filter coefficients are

fo,  ifixed f,  :fixed
f, = | B= .
f, :varying fy, @ varying
Ju_om and f, . are the second coefficient of AR and MA, respectively which

are optimally calculated and their co-ordinates are marked by ‘opt’ while a pair of

coefficients denoted by f, ., and f, ... that give the maximum value of the

objective function marked by ‘max’ in the figure.

Objective function shape Location of first two filter coefficients

200

Y

@
=}

Q
S

3
=}

Sl

Obijective function, O

0
fa, b b

s L
-2 -1

Figure 3.3.14 The objective function of the 4™ order ARMA(1,1) inverse filter.
Dotted line point: f,; and f,; value which gives maximum objective value, arrow
point: calculated f,; and fp; value.
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Thus, the inverse filter from ‘opt’ point consists of two filter coefficients

(S opt> Jo_om ) at the “opt” point and the first AR coefficient (f, =1) and MA

coefficient ( f, ) as

foon =[S Fow] » B=[fa o]

and the inverse filter from ‘max’ point becomes

R A A I A R A

whose pole-zero maps are shown in the figure below;

Pole-zero map of ‘opt.” point Pole-zero map of ‘max.’ point
1 1
05 . ) 0.5}
T ’ h=4
H E
el e
E 0 aQ X AE 0 pas G
E £
-0.5 -0.5
-1 -1
-1 -0.5 [ 05 1 —1l —0?5 )} 0:5 1
Real part Real part

Figure 3.3.15 The ARMAC(1,1) inverse system obtained by 4th order statistics.

Similarly, we can obtain two different restored signals which are plotted in Figure

3.3.16.
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Restored signal by ‘opt.’ point filter Restored signal by ‘max.’ point filter

x10”

Amplitude [mV]
IO (=3
[l o [+

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

Time index Time index
Skewness : 2.214 Skewness : -0.728
Kurtosis : 124.375 Kurtosis : 165.562

Figure 3.3.16 The restored signals from 4th order ARMAC(1,1) inverse filter.

As can be seen in Figure 3.3.14, similar to the AR(2) case, the point of the
maximum objective function’s value (intersection of the dotted line) does not
match with that of calculated (arrow point). The AR inverse filter coefficients
which give maximum kurtosis value (165.562) are fap=1.0, fa;= 1.0412, and
fbp=0.9998, fb;= -0.9814 (filter coefficients on ‘max.” point) whereas, the
calculated coefficients are fag=1.0, fa;= -0.558, and fby=0.9998, tb;= 0.0185 (filter
coefficients on ‘opt.” point) giving the kurtosis value as 124.375. The difference in
the signal restoration is compared in Figure 3.3.16 and as similar to the AR case,
the restored signal from the ‘max.” point inverse filter coefficient looks
unsuccessful.

The reason for this highly unsatisfactory signal restoration arises from the fact that
the recursive filters becomes unstable.

Following Table 3.3.2 depicts the results of the restored signal by above three
different inverse filters. It is noticeable that the variances of the incorrectly

deconvolved signals reveal large values.
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Table 3.3.2 The comparison of restored signal and system from MA, AR and
ARMA inverse filters (summary of the results from Figure 3.3.8 to Figure 3.3.16).

Inverse
filter Points | Kurtosis | Variance Coefflclel_lts of inverse Remarks
type filter
(order)
fb=[1.209, 0.693, 0.397, I ol
nput signal is
Opt. 123.643 1.862 i 3_215’ 0.095] reconstructed
Q=
MA@)
fb=[-0.091, 0.693, 0.397, Input sienal i
Max. | 128.319 0.725 0.215, 0.095] put signat1s
fa=1 reconstructed
fb=1 Input signal is
Opt. | 124504 | 1.276 fa=[1, -0.5794, - 0.0083] | reconstructed
ARQ2) fb=1 Unsuccessful
Max. oo 1.23e+154 fa=[1, 1.9206, 1.0916] input 51gnz.11
reconstruction
Opt. 124.375 1.270 fb=[0.9998, 0.0185] Input signal is
ARMA : fa=[1, -0.558] reconstructed
11 - i Unsuccessful
’ Max. | 165.562 | 1.56e+142 g={1091 9 (9) 2’12(])'9814] input signal
’e reconstruction

It is almost impossible to point out the global maximum of the objective function
as the observed signal has already been noise corrupted with unknown variance.
Thus, the ‘max.” point in objective function shapes in each figure does not
guarantee the global maximum. However, from above observations, the MA
inverse system have a wider range of acceptable filter coefficients resulting in a
stable inverse system.

Concerning the instability of the signal restoration for AR, ARMA systems, the
recursive structure of the inverse filter is mainly influenced by the inversion
process which is described in the equation (3.3.24). A few methods (Singular
Value Discarding, regularisation, etc) [Yoon and Nelson, 1995, 1997; Kirkeby et
al, 1996; Tikhonov and Arsenin, 1977; Lamm, 1993] were considered but the

results were not satisfactory. Another simple method was considered namely
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reflecting every pole positions outside of the unit circle into their reciprocal
position [Hammond and Clarkson, 1989] in each iteration process thus retaining
stability. This method guarantees the stability of the AR, ARMA inverse system
in BD process and yields slightly improved restoration results but incurs an

increase in complexity and computational inefficiency.

3.4 Concluding remarks

This section has been devoted to the fundamental consideration of the
utilisation of the Higher Order Statistics in order to reconstruct an unknown
impacting signal from only a measured signal.

Starting from the basic Wiener optimisation approach for the FIR system, the
blind deconvolution procedure has been justified utilising an objective function
and its correspondence to ‘partial order’.

In restoring an impacting signal, two different objective functions (constrained
and normalised higher order cumulant) have been justified from which FIR (non-
recursive, MA inverse system) filter coefficients are calculated. As a result, both
the constrained and normalised objective function maximisation procedure has
yielded satisfactory restoration (Table 3.3.1).

For completeness, the inverse system has been selected as having a recursive
nature (i.e., AR or ARMA system) with the expectation of improved performance
over that of the non-recursive system. These three different inverse systems are
compared with the shapes of each objective function with respect to the filter
coefficients. The result of signal restoration from each system has been also
compared. Even though all the systems possess more than one maximum, the MA
inverse system turned out to be more robust than the recursive systems.
Accordingly FIR inverse filter will be employed in this study.

Further practical aspects on the MA inverse system for signal reconstruction
including the initial inverse filter type and filter length determination will be

considered in Chapter 5.
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Since blind deconvolution based on the higher order statistics utilises Wiener
optimisation (zero gradient search), this process is liable to end up at a local

maximum. A global optimisation method will be introduced and its performance

is discussed in Chapter 6.
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CHAPTER 4

Higher Order Singular Value Decomposition (HOSVD)

(Application to detection, classification and reconstruction)

4.1 Introduction

An increasing number of signal processing problems involve the manipulation of
multidimensional matrices in which the vectors and matrices are termed the first
and the second order tensors, respectively. For many applications involving
higher-order tensors, the existing framework of vector and matrix algebra is
insufficient and/or inappropriate. In this chapter, a generalisation of Singular
Value Decomposition (SVD) extended to the higher-order case is presented.

The importance of higher-order tensors is largely due to the expansion of interest
in the field of Higher-Order Statistics (HOS). For the multivariate case the basic
quantities (higher-order moments, cumulants, spectra and cepstra) are symmetric
higher-order tensors, just as the covariance of a stochastic vector is a symmetric
(Hermitian) matrix.  Statistical descriptions of random processes are more
complete when, in addition to first-and second-order statistics, HOS are taken into
account. In statistical non-linear system theory, HOS are unavoidable (e.g. the
autocorrelation of x*> is a fourth-order moment). Moreover higher-order
cumulants and spectra of a random variable are insensitive to additive Gaussian
perturbation of the variable, thus blind to Gaussian noise. The idea of using
tensorial decompositions as a basic tool in higher-order signal processing was
introduced in the work of Cardoso [Cardoso, 1990, 1991, 1992; Cardoso and
Comon, 1990], Comon [Comon, 1994], and Lathauwer [Lathauwer et al 1994,
1995, 1996a, 1996b, 1999].

Applications of these approaches include the following; The tensorial

decomposition of multichannel system leads to a generalisation of Principal
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Component Analysis (PCA) [Otte et al 1988; Dunteman, 1989] called
Independent Component Analysis (ICA) relevant to medical signal monitoring
[Cardoso and Comon, 1990; De Lathauwer and De Moor, 1996].

HOS makes it possible to solve the Source Separation (SS) problem by
exploitation of the statistical independence of the sources without knowledge of
the mixing matrix (e.g., multi-channel system, path, etc.). A brief summary for
source separation from instantaneous mixture processes is given in Appendix C.

In higher order array processing, blind identification based on a super-symmetric
decomposition of the fourth order cumulant tensor has been developed [Cardoso,
1991] and robust identification has been achieved from low rank estimation of the
third order cumulant tensor [Bradaric and Petropulu, 1999].

In this chapter, a pre-diagnosis procedure is introduced which can help the signal
processor and/or mechanical engineer assess the status of the measured signal even
from a single channel. To do this, a multilinear generalisation of Singular Value
Decomposition (SVD), named Higher-Order Singular Value Decomposition
(HOSVD) is presented. Using HOSVD, blind detection of non-Gaussian signals is
carried out. This detection procedure includes a sub division of single observed
signal into multiple channels. The matrix constructed from the subdivision can be
found in the embedding process itself by the ‘method of delays’ [Takens, 1981].
This subdivided matrix is known as a trajectory matrix and has been used for
example in AR order selection through SVD [Shin, 1996].

By constructing the covariance matrix of these multiple, delayed channels
(trajectory matrix), the second order singular value decomposition (SOSVD) is
performed. Sequentially, by the construction of the third or fourth order cumulant
tensors, higher order (third or fourth) singular value decomposition is carried out.
The magnitudes of each singular value (from SOSVD and HOSVD) are compared.
The detection of a non-Gaussian signal is based upon computed statistics measured
against proposed threshold levels. These statistics are estimates of higher order
(third and fourth) singular values. Classification of inputs and systems through

which they pass is then relies on properties of these statistics.
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Examples of the detection procedure using three different input signals (Gaussian
or non-Gaussian) with two selected systems (highly damped and highly resonant)
are demonstrated.

Also, based on HOSVD, procedures for signal classification which can determine
the status of the signal and the possibility of reconstruction of the non-Gaussian

impacting signal are proposed and illustrated.

4.2 SVD and HOSVD

One of the most significant developments in linear algebra and signal processing
problems is the concept of the Singular Value Decomposition (SVD) of matrices
and has a long history of steadily growing success (for a detailed historical survey,

refer to [Stewart, 1993] and [Horn and Johnson, 1991]). For the second-order case,

the matrix A (I, X1,) can be decomposed in terms of elements of matrices

L L

ailiz = Z Z u,m Silizv,-zj2 (42 1)

Ji b
where s, denotes the element of singular value matrix, u is the left singular
2 i

vector corresponding to the ij-th column and v is the right singular vector

2

corresponding to the i>-th row. Similarly to the second-order case, a decomposition

of a real (1, x1,xI,)-tensor .4 becomes

L L, I

@ @ 3 4 2 2
ailizia - Z Z Z Sixizizui,j, uiy_jz ui3j3 ( - )

h h 5

. . (8] 2) 3 . . .
in which  u , u u_are entries of orthogonal matrices (the superscript

ip ap ’ 33
notation indicates a ‘mode’ to be defined in section 4.2.3), and S is a real

(I, xI,xI;)-tensor with the property of “all-orthogonality”. As will be discussed

S, Sg. =0,
is tiziy Y Pisiy

later, this orthogonality satisfies Z,-,,-z SiiaSiip =Z% 8, i, S i, =Z
whenever a#f . It is the aim of this chapter to derive the tensorial

decomposition in an algebraic context, using SVD-terminology and an SVD-based

computation scheme, and to present it as a valuable tool relevant to the field of
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numerical algebra and signal processing. This is called Higher-Order Singular
Value Decomposition (HOSVD).

As a preliminary, definitions and basic tensor algebra are introduced followed by
the higher order cumulant tensor and their properties. A singular value
decomposition model is proposed for Nth-order tensors [De Lathauwer, 1997] and

comparison to the structure of matrix SVD show the complete analogy between

both cases is presented.

4.2.1 Basic Definitions of Tensor Algebra

In this section, notation and definitions dealing with some basic concepts of

multilinear algebra is introduced.

Definition 1 (Nth order tensor)

The term ‘Nth order’ tensor is the generalisation of the dimensions of vector,
matrix, and tensor, i.e., a vector is a one dimensional signal and equivalent to first
order tensor, a matrix is a two dimensional signal which is the second order tensor.
Going further, the Nth order tensor is an N dimensional signal space and the

general form of N dimensional matrix.

Let vy, vy, ..., vy, be N Euclidean vector space with finite dimensions Ij, I, ... Iy.

Consider N vectors U, e v,, U,€v,, ..., Uyev,. Then U oU,o...ocU, can be

denoted by the multilinear mapping on v, Xv, X...XVv,, in which ‘o’means the

tensor outer product and vector outer product, respectively. The relationship is

defined by

(U]oU2o...oUN)(Xl,XZ,...,XN):<U1,X1>Vl<U2,X2>V2...<UN,XN)VN (4.2.3)

in which (U,,, X denotes the scalar product in vy, and Xy is an arbitrary vector
N AN )y, p Y

invy ISn<N).
The space generated by all the elements U, oU,o...cU, is called the rensor

product space of vy, vy, ..., vy . An element of the tensor product space is called as

an N-th order tensor (over vy, v, ..., V).
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For v, =R (1<n<N), the tensor product space is called the space of real-

XX XDy

valued (I, XI,X...x1,)-tensors, denoted by R" . Its complex equivalent is

represented by Qlixtx-Xly

Definition 2 (Outer product of tensors)

The definition of an outer product generalises expressions of the type ab’ in which
a and b are vectors.
LxLx. Xl

The outer product A4 <2 of a tensor A& R > and a tensor e R ,

is defined by

(A-B) (4.2.4)

iieipiirg S @iy Disy iy

for all values of the indices.

For example, the entries of an Nth-order tensor .4 , equal to the outer product of N

vectors u”, u®, .. u®™ are givenby a,, . =ulu®?-ul™.

4 iyl dy i i,

Definition 3 (Scalar product of tensors)
The definition of an scalar product of two vectors a, b are expressed in well known

form as a’b.

The scalar product </l, 5 > of two tensors A, B e R ig defined as

<'4’B> gef Z Z '”Zbiliz..‘i,,ailiz...i,\, 4.2.5)

Definition 4 (Orthogonality)

Tensors of which the scalar product equals 0, are mutually orthogonal.

<./l, 5 > =0 = Tensors .4 and & are mutually orthogonal  (4.2.6)
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Definition 5 (Frobenius-norm)

The Frobenius-norm of a tensor .4 is given by
A gt (A A) @.2.7)

In tensor terminology, column vectors, row vectors, third-directional (orthogonal
to the column and row vectors), etc will be called mode-1 vectors, mode-2 vectors,

and mode-3 vectors, etc. In general, the mode-n vectors of an Nth-order tensor
Ae R are the I,-dimensional vectors obtained from .4 by varying the

index i, and keeping the other indices fixed.

Definition 6 (Multiplication of a higher order tensor and matrix)

The mode-n product of a tensor 4 € R ™ by a matrix Ue R’ | denoted by

Ax, U, isan (I, xI,x..xI _xJ XxI . %...xI,)-tensor defined by

<"4xn U>ili2.A.jnA..iN = Zailiz...i,,.ui,\, u;. 4.2.8)

for all index values.

The mode-n product allows one to express the effect of a basis transformation in
R" on the tensor A .

As an example, for the matrix product A =U®-B-U®" which involves matrices,
Be R | UPeR™ |, UPeR””™ and AeR’™: . Working with the
“generalised transposes”, in the multilinear case (in which the fact that mode-1
vectors are transpose-free, would not have an inherent meaning), can be avoided
by observing that the relationships between U® and U® (not U®") with B are in
fact completely similar: in the same way as U makes linear combinations of the
rows of B, U® makes linear combinations of the columns; in the same way as the
columns of B are multiplied by U?, its rows are multiplied by U ; in the same
way as the columns of U" are associated with the column space of A, the
columns of U” are associated with the row space. This typical relationship is

denoted by means of the X -symbol: A =Bx, U x, U? .
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A
3

N

LN

Figure 4.2.1 Visualisation of the multiplication of a third-order &€ R"*>*", with
matrices U(l) e R11X11 U(2) e J“RJZXI2 and U(3) e R]3X13 )

Figure 4.2.1 visualises the equation .4 =2Zx, U"x, U®x, U® for third-order

tensors 4 € R and e R Unlike the conventional way of visualising
second-order matrix products, U® has not been transposed, for reasons of

symmetry. Multiplication with U® involves linear combinations of the

“horizontal matrices” (index i#; fixed) in & . Stated otherwise, multiplication of &
with U® means that every column of & (indices i, and i3 fixed) has to be
multiplied from the left with U® . Multiplication with U® and U® can be

explained in a similar way.

Definition 7 (Higher order moment tensor)

The Nth-order moment tensor A4 of a real stochastic vector x is defined by the

element-wise equation:
M =Mom(x,,x, ,....x,) def E{xx x| (4.2.9)

The first-order moment is the mean of the stochastic vector. The second-order

moment is the correlation matrix.
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Definition 8 (Higher order cumulant tensor)

The Nth-order cumulant tensor G of a real stochastic vector x is defined by the

element-wise equation:

™
C =Cum(x,, x,,...Xy)

def Z('DN(N'D!E{Hxi}E{Hxi}---E{Hx,} (4.2.10)

ieA, €A, €Ay

where the summation involves all possible partitions {A,A,,...,A.} ,
(1<K < N)of the integers {i,i,,...,iy } . For a real zero-mean stochastic vector x

the cumulants up to order 4 are explicitly given by:

(g )i = Cum(x,)
def E{x}

(C;(z)) ~=Cum(x,,x, )

hia

g E{xl} X, }

(&)

. =Cum(x,,x_,x, )
o ) (4.2.11)
g E{xil xiz xi3 }

(&)

i Cum(x, , %, , %, X, )

def E{xx, x,x,}
-E{xx, JE{x,x,}
-E{x,x, JE{xx }
- E{x,.1 X, }E{xizx%}

Except for the first-order cumulant case, every component x; of x that has a non-

zero-mean, x; has to be replaced above formulas by x; — E{ x; }.

The first-order cumulant is the mean of the stochastic vector. The second-order

cumulant is the covariance matrix.
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The particular form of definitions (4.2.9) and (4.2.10) follows from the
representation of the probability density function of x by means of its first and
second characteristic function, of which the Taylor series coefficients are

proportional to the moments and cumulants, respectively [Barrett, 1964;

McCullagh, 1987].

4.2.2 Properties of Moment and Cumulant Tensors

The higher-order moments in above formulas have a simpler structure than those
of the cumulant tensor. However, cumulants have a number of important
properties, that are not shared with higher order moments, such that in practice
cumulants are more frequently used. In this section, some of the most interesting
properties of the higher order moment and cumulant tensors [Nikias and Mendel,

1993; De Lathauwer, 1997] have been introduced.

e Super-symmetry: moments and cumulants are symmetric in their arguments, i.e.,

= (/14;N>) (4.2.12)

Py dy)

()

iy

(CX(N)) (C;(N) )P(ii,...i ) (4.2.13)

iy dy

in which P is an arbitrary permutation of the indices.

e Multilinearity: if a real stochastic vector x is transposed into a stochastic vector

% by a matrix multiplication X = A -x, with Ae R’ then we have:

M(N) — M(N) X, sz AX3 Xy A (4.2.14)

C;K(N) - C;(N) X, Ax, AX; %, A 4.2.15)

which represents the homogneity of the moment and cumulant tensor.

81



Chapter 4, Higher Order Singular Value Decomposition

e Even distribution: if a real random variable x has an even probability density
function px(x), i.e. px(x) is symmetric about the origin, then the odd moments and

cumulants of x vanish.

e Partitioning of independent variables: if a subset of I stochastic variables

X, X,,...,x, are independent of the other variables, then we have:
Cum(x, x,,...,x,) =0 (4.2.16)

This property does not hold in general for moments. A consequence of the
property is that a higher-order cumulant of a stochastic vector having mutually
independent components, is a diagonal tensor, i.e. only the entries of which all the

indices are equal can be different from zero.

e Sum of independent variables: if the stochastic variables x,x,,...,x, are

mutually independent from the stochastic variables y,,y,,..., ¥, , then:
Cum(x, + y, X, + ¥y,e .0 % + ) =Cum(x,, X,,..., %, )+ Cum(y,, ¥,,..., ¥,)  (4.2.17)

The cumulant tensor of a sum of independent random vectors is the sum of the
individual cumulants. Also, this property does not hold in general for moments,

hence it explains the term “cumulant”.

e Non-Gaussianity: if y is a Gaussian variable with the same mean and variance as

a given stochastic variable x, then for order, N >3:
c o= MY - M (4.2.18)

represents the distance from the Gaussian, thus higher-order cumulants of a
Gaussian variable are 0. With the multilinearity property, the higher-order

cumulants are blind to an additive Gaussian noise which has been already

mentioned in Chapter 2.

Generally speaking, it becomes harder to obtain reliable estimates of HOS from

sample data as the order increases, i.e. longer data sets are required to retain the

82



Chapter 4, Higher Order Singular Value Decomposition

same accuracy as for the second order case [Cardoso, 1991; Comon, 1994]. Hence
in practice the use of HOS is usually restricted to third- and fourth-order cumulants.

For symmetric distributions, fourth-order cumulants are commonly used.

4.2.3 Singular Value Decomposition (SVD) and Higher-Order Singular
Value Decomposition (HOSVD)

The HOSVD is derived by formulating it in terms of matrix/vector-sub problems.
Hence, it will be useful to represent higher-order tensors in a matrix format. The
tensor-matrix relationship is algebraically and geometrically related through
“matrix unfolding” of a given tensor.4 from which the process of the matrix SVD
and higher-order SVD is explained, which shows the analogy between them. The
unfolding of the tensor into the matrix form can yield the conventional SVD
process from which the higher-order singular values are estimated. To assist
understanding, visualisation of the HOSVD and unfolding is presented. This is

followed by examples of HOSVD from a theoretical and computational point of

View.

Matrix Singular Value Decomposition

Every complex (I, X1,)-matrix A can be written as the product
A=U".8.- VP =8x UVx, V¥ =8x UV x, U? (4.2.19)

in which:
e UV =[U U --UP | is a unitary (I,x1,) -matrix,
e U® = [UI‘Z)UQZ) ¥ -U,(j‘)] (= V") is a unitary (I,xI,)-matrix,
e Sis an (I, x1,)-matrix with the property of:
- pseudodiagonality:
S =diag(0,,0,- -+, Oping, 1)) (4.2.20)
- ordering:

0,20,2...20

min(/;,

120 4.2.21)
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The o, are singular values of A and the vectors U and U are respectively an

ith left and an ith right singular vector. The decomposition is visualised in

Figure 4.2.2.

Figure 4.2.2 Visualisation of the matrix SVD

Nth-Order Singular Value Decomposition

Every complex (I, x1I,x...xI,)-tensor .4 can be written as the product
A=5xU"x, U?...x, UM (4.2.22)

in which:

e U = [Uf’”Ué’” U,(”’] is a unitary (I, x I )-matrix,

* & is acomplex (I, XI,X...x1,)-tensor of which the subtensors <, _,, obtained

by fixing the nth index to ¢, have the property of:
- all-orthogonality:

two subtensors &, _, and & _, are orthogonal for all possible values of n, &

and [ subjectto o # f:

(S8 55)=0 when a=p (4.2.23)
- ordering:
EREEN TN 422

for all possible values of n.
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The Frobenius-norm “‘S:; ”, symbolised by o™ for matrix case, is the ith n-mode

singular value of .4 and the vector U is the ith n-mode singular vector. The

decomposition is visualised for third-order tensors in the Figure 4.2.3.

Figure 4.2.3 Visualisation of the HOSVD for a third-order tensor

From a comparison of the matrix and tensor theorem it is clear that in the higher-
order case the “core matrix” (singular value matrix) S is replaced by the “core
tensor” & . Instead of being pseudo-diagonal, which would mean that non-zero
elements could only occur when the indices i =i, =...=i,, & is in general a full
tensor, but it obeys the weaker condition of all-orthogonality instead. The actual
role of the singular values is taken over by the Frobenius-norms of the (N-1)th-
order subtensors of the core tensor. By definition the n-mode singular values are
positive and real, as in the matrix case. On the other hand the entries of & are not
necessarily positive in general; they can even be complex, when .4 is a complex-

valued tensor.

Matrix representation of a higher-order tensor (unfolding of tensor)

The HOSVD will be derived by formulating it in terms of matrix/vector-sub
problems. Hence it will be useful to represent higher-order tensors in a matrix
form. This tensor-matrix relationship can be geometrically related through “matrix

unfolding” of a given tensor .4 .
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- . IpeyXdpeylpesye : :
The matrix unfolding A(,P(l)xlp(q),m)M,P(N))eC‘”"x”””” ) associated with a

permutation  (P(1),P(2),..., P(N)) of (1,2,....N) of a Nth-order tensor

5 5

I, % %I . o . .
A € C" contains the element a,; , at the position with row number i,

oy

and column number (i, ~ DI o lpy - Loy + oy =Dl paydpes) - Ipy T+ ipyy - AN

example of this unfolding is given in later part of this section.

The unfolding operation involved with the construction of A, A, and A is

visualised for the third order case in the following figure.

— : Z
3
% I —— Z x(Z, T,) Matrix

144 A

QN

N

Z x(Z, I,) Matrix

1

WN

e Z Ap)

E

I,

Zx (Z, Z,) Matrix

N
LY
[

N
>

(©)

i | 1

Figure 4.2.4 Unfolding of the (I, X1,Xx1;)—tensor to the (I, XI;-1,)-matrix A
(Mode-1 matrix form), the (I, X1, -1,)—matrix A , (Mode-2 matrix form) and the
(I; X1, I)-matrix A ; (Mode-3 matrix form). Note that (I, =1,=1,=4).
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The matrix representation of the HOSVD can be obtained by unfolding .4 and &
in equation (4.2.22):

_Uem.g _[Um(z» s UP® g o [PW ]T (4.2.25)

Tpay<lpylpaye-Toewy) UpayIpasley--Ipvy)

in which ‘® ’ denotes the Kronecker (tensor) product and P represents a

permutation.

Derivation of the core tensor &

The derivation establishes the connection between the HOSVD of a tensor .4 and
the matrix SVD of a matrix unfolding of .4. It is given in terms of real-valued
tensors; the complex case is completely analogous but more cumbersome from a
notational point of view.

Consider two (I, xI,X...xI,)-tensors .4 and &, related by
S = Ax, UV x, U ...x, UM (4.2.26)

in which U®,U®,...,U" are orthogonal matrices. Equation (4.2.26) can be

expressed in matrix format as

Aw=U"S, [U"eU?e..0U el e..0UV]  (4.227)
Now consider the particular case where U is obtained from the SVD of A, as
A, =U" 3.y (4.2.28)
in which V* is orthogonal and =" = diag{af”),aé"),...,aff)} , where
o’ 20"2..20" 20 (4.2.29)

The highest index for which ¢ >0 is called rank r,. Taking into account that

the Kronecker factor in equation (4.2.27) is orthogonal, comparing (4.2.27) and
(4.2.28) yields

S =Z(”’-V(”)T-[U“’®U‘2>®..,®U("‘”®U("“)®...®U(N)] (4.2.30)

(n)
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Using equation (4.2.25), (4.2.28) and (4.2.30), the n-mode core tensor thus, can be

calculated as

T
—geo’ A _[U@(z» U g o U“"N”]

UPYIPRYIP Gy IP(V)) UpyXIpayle sy Ipony)

(4.2.31)
The equations (4.2.30) and (4.2.31) imply, for arbitrary orthogonal matrices

U®,u®,.. o, umr, .., U™, that

(8 0r5,.5)=0 when o=pf (4.2.32)

tll =
and

|54 =0 2|8 L) =08 2. 2|5, | = 0 20 (4.2.33)
and, if r, <1,

— n) _ _ 1) _

|

— )
=0, _“‘S;fwl

By constructing U®,U®,... U™, U ... ;U™ in a similar way as U”, & can
be made satisfy all the conditions of the HOSVD-theorem. On the other hand, as
can be seen from (4.2.27)-(4.2.34), all matrices U®,U®,..., U™ and tensors &

satisfying the HOSVD-theorem can be found by the SVD of A(D,A(Z),...,A(N),

where & follows from (4.2.26).

Computation of the core tensor & from a rank 1 tensor .4 (Example)

. 3x2x3 ; — — -
Suppose for a certain tensor AeR with a,, =a,,=a,;=1 ,
Aoy = gy = =0y = =03 =1 gy = hyy = 3 = Uy = gy = Uy =~ 3 =~y =2,
a3, =0, a, =a,, =4 and a,, =-5. The three modes of matrix unfolding A,

A, and A ; are given as (graphical illustration can be found in the Figure 4.2.4)

1 1 114 2 1
=1 -1 214 -2 -5|,
2 0 -1i2 2 2

A(l)
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1 1 21 -1 01 =2 -1
Ay = | x ,
4 4 212 2 211 -5 2
2 2
IO 2.
)

14
-1 21
_2_

A

1 4
o=l 2
11

1
[
|
|
!

W N

The 1-mode singular vectors U" are the columns of the left singular matrix of

A, . In the same way U® and U can be obtained from SVD of A ,, and A ;.

0.1893 —0.7572 0.6252
U® =/09816 0.1622 -0.1008 |,
0.0251 -0.6327 -0.7740

_— 0.3256 0.9455
109455 -0.3256)°

-0.6564 0.7055 -0.2673
UY =| 02546 0.5406 0.8018
0.7102 0.4582 -0.5345
The core tensor of the HOSVD then follows from application of equation (4.2.31);
unfolded in each mode equal to:

—-7.1846 0.2235 0.0000 { 0.0615 -0.4906 0.0000)
Sy =| —0.1703  -5.9024 0.0000 i 0.7654 -0.0991 0.0000 |,
0.0035 0.2675 0.0000 ; 2.1071 0.3350 0.0000

~7.1846 -0.1703 0.0035] 0.2235 -5.9024 0.2675 | 0.0000 0.0000 0.0000
= | |
@ 100615 07654 2.1071|-0.4906 -0.0991 0.3350 ! 0.0000 0.0000 0.0000

—7.1846  0.0615 !—0.1703 0.7654 I0.0035 2.1071)

S, =| 02235 -0.4906 | -5.9024 -0.0991§o.2675 0.3350 |.

0.0000  0.0000 | 0.0000 0.0000 | 0.0000 0.0000
From above obtained unfolded core matrices S, , S.,, and S ;, it is observed the

fact that the core tensor is all-orthogonal. For example, the rows of S(l) are

mutually orthogonal and also the matrices formed by the first and the last three

columns, as well as the three matrices formed by columns 1 and 4, 2 and 5, 3 and 6.
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The core tensors are ordered: its matrices are put in order of descending Frobenius-
norm. The Frobenius-norms give the singular values of 4 :

mode 1: 7.2051, 5.9551 and 2.1502

mode 2: 9.3063 and 2.3221

mode 3: 7.5284, 5.9433 and 0
The sums of the squared n-mode singular values are all equal to 92, which is the
squared Frobenius-norm of .4 . The third 3-mode singular value equals 0, since

the 3-mode singular vectors (the rows of the left and right sub-matrix of A ) only

span a two-dimensional space.

4.3 HOSVD and determination of the presence of a non-Gaussian
impacting signal

Since the higher-order cumulant of random signals is blind to Gaussian signals,
non-Gaussian signals may be detected by constructing the higher-order cumulant
of the measured signal. The determination of the presence of a non-Gaussian
impacting signal from the observed signals can be achieved through the use of the
HOSVD and checking the Frobenius-norm of the n-mode core tensor from the
constructed higher order cumulant tensor. In this case, the constructed higher-order
tensor is symmetric hence any mode of the Frobenius-norm will suffice to extract
the information. Two methods will be discussed and their performances
demonstrated.
The major assumptions behind this detection procedure are as follows;
1. The observed signal is stationary up to fourth order.
2. The sample size is ‘sufficiently large’.
3. The unknown impacting signal is non Gaussian and has non zero cumulant
at least to fourth order.
4. The system through which the impacting signal passes is linear, time
invariant and stable.

5. The additive noise is Gaussian and independent of the input signal.
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4.3.1 Construction of the higher order tensor

Suppose we have single observed signal v(n), n=0,1,...,N, which takes the form of
L

v(n) =Y h(k)x(n—k)+w(n) (4.3.1)
k=0

in which A(k) is the impulse response of an unknown system, x(#) is the unknown
input signal (Gaussian or non-Gaussian), and w(n) is additive Gaussian noise. The
observed signal is assumed to have zero mean and is stationary. The k-th order
cumulant tensor of the data matrix v can be constructed from a shifted data matrix

construction. One sample sequentially shifted data sets are prepared as follows;
v,(n)=v(n)-d(n-m), m=0,1,...,7 4.3.2)

where the time lag index m denotes the delay.

From (4.3.2), the data matrix is constructed as

k4

v= j (7+1)X(N —(z+1)) data matrix (4.3.3)

Graphically, the construction of the tensor based on the above formula can be

illustrated in the following figure;

L D o vy
Figure 4.3.1 Construction of the higher order tensor from one sample delayed
signals from a single measurement

1
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From this we can obtain the k-th order moment tensor as

m, =E{v?}, vW=veve..ov 4.3.4)"
’ k times
or in matrix form as,
M, , =E{v¢Vev’} (4.3.5)

Assuming the signals are zero mean, the construction of the third-order cumulant

matrix of (4.3.5) takes the form of a three dimensional tensor form, which equals
the matrix denoted as,

G, =M,, (4.3.6)

,V

Similarly, the fourth-order cumulant tensor £, , can be constructed from equation

4.2.11).

From these constructed higher order cumulant tensors, the higher order singular

values S;,, are calculated by the method described in the previous section and the

higher order singular values for any mode (symmetric) can be calculated using

equation (4.2.30).
A key aspect of detection considers the variation of the statistical parameters of the
third and/or fourth order cumulants (before and after the higher order singular

value decomposition) by considering the variations of the second order singular

values.

The tensor constructed from Figure 4.3.1 takes a similar structure to the higher

order non-zero lag cumulant sequences. The tensor, however, possesses more
information up to 7(¢z*-7-1), 7>2 than the matrix form of the cumulant
sequence. The mapping of the information from the third order cumulant matrix to

the third order tensor is shown in the Figure 4.3.2 (the bold faced ¢, (0, 0) and

¢,(0,0)" for =2 correspond to the additional information).

+ Since the preparation of this thesis the author has been aware of a publication by Rao

and Wong where a closely related expansion was presented.
T. Subba Rao and W. K. Wong, Assymptotics, nonparametrices, and time series, Chapter
8, Some contributions to multivariate nonlinear time series and bilinear models, edited by

S Ghosh, Marcele Dekker, NY (1999),
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Figure 4.3.2 Third order cumulant matrix and tensor (7=2)
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Moreover, the singular value decomposition of the third order cumulant matrix
with lag 7 is insufficient to reveal significant variation even when there is a non-
Gaussian impacting signal. That is to say, the variation of the singular values of
the cumulant matrix cannot discriminate the difference between a Gaussian and
non-Gaussian signal whereas the third order tensor does. To illustrate this, the
singular values constructed from the cumulant matrix and tensor (from the
observed signals) for Gaussian and non-Gaussian input cases are plotted in the

following figure;

Third order cumulant matrix

- Gaussian input
~-= : Non-Gaussian input

Third order tensor

— : Gaussian input
--- : Non-Gaussian input

@
0

Magnitude (SOSVD}

Magnitude (HOSVD)

=)
o
ed
o

o T . : L "
1 2 3 4 5 [ 7 8 9 C1 2 3 4 3 8 7 8 9
Channels Channels

Figure 4.3.3 The singular values from third order cumulant matrix and tensor

In the following subsection, the ability of HOSVD for signal detection,

classification and reconstructability problem is demonstrated through simulations.

4.3.2 Preliminaries for simulations

The system for this simulation is shown in the following figure.

Unknown
Gaussian noise
wik)
Observed
(measured) signal
x(k) Unknown v(k)

—P | inear
System

Figure 4.3.4 The signals and system used for non-Gaussian impacting signal
detection problem with Gaussian measurement noise
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From only the single observed signal v(k) shown in Figure 4.3.4, the construction
of higher order (third or fourth) tensor and covariance matrix is carried out using
delayed signals (channels). The higher order singular value decomposition and
singular value decomposition of covariance matrix (SOSVD) is then carried out to
detect non-Gaussian impacting signals, following which the reconstructability of

the input signal is considered.

Excitation x(k)

A Gaussian signal and non-Gaussian impacting signals used in this simulation are

shown in the Figure 4.3.5.

(A) Input signal type 1 (Gaussian)

‘ Mean : 0.017
i Variance : 1.0
Skewness : 0.009
il Kurtosis : 294
Crest factor : 3.86

(B) Input signal type 2 (Uni-directional impacting signal)

N : ] Mean : 0.068

H‘IJHHEH]IJE Variance : 0.999
| i Skewness : 14.72

o Kurtosis : 219.98

Crest factor :  16.69

L

|
|

Angitsde o]
i

rrrrrrrrr

(C) Input signal type 3 (Bi-directional impacting signal)

L1 Mean : 14e-16
- l ]" n I! } w N l Variance : 0.999
i I ]rl | [“ 't ']1 l[ tl'} } Skewness : 3.05

Kurtosis : 206.98
Crest factor : 18.40

P
° o

@

500 1000 7560 _B000 - FH00 G000 | 8600 AGG

Figure 4.3.5 The input signals

The above input signals are thus labelled as white input (Gaussian, type 1), uni-
directional impacting signal (non-Gaussian, type 2), and bi-directional impacting
signal (non-Gaussian, type 3) with 4096 sample points and unit variance. The type
2 signal (uni-directional impacting signal) is an idealised model for a mechanical

system containing repetitive faults in its operation and the type 3 signal (bi-
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directional impacting signal) is typical of signals arising in ultra-sonic examination

(the same signal used in Chapter 2).

System

The ‘unknown’ systems selected for detailed discussion here are as follows;

(1) System type A (well damped system)

| imagioary pan

(@)

(b)

f
4

.

4
\
of e —
{
s
£ @ E] E)
Tions ndex

(2) System type B (highly resonant system)

| imaginary par

(a)

(b)

(©)

a8

Magritude Rasporsss (d8)
3.

b o o

g

=

e

o

a2 0.4 0.6
Normalized fraquency (Nyquist ==

(©)
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)
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Magnitude Resporse (98)
o
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o
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——
e
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Figure 4.3.6 The systems used in the simulation. (a): System’s pole zero map, (b):

impulse response, and (c): Frequency Response Function.

The type A system has a short impulse response function whereas the type B

system represents a more complex oscillation with a longer impulse response

function.

We note that an additional 8 different systems are considered and summarised in

the Appendix D.
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Noise free output signal z(k)

The output of systems A and B for each input signal in the absence of noise is

shown in Figure 4.3.7.

(1) Output signals (noise free, input type 1)
From system A From system B

PO
0

z e [

Mean : 0.151 Mean : 0.009
Variance : 42,430 Variance : 4.189
Skewness : -0.082 Skewness : 0.020
Kurtosis : 2951 Kurtosis . 3.053
Crest factor : 3.611 Crest factor : 4.389

(2) Output signals (noise free, input type 2)
From system A From system B

A NCHEREEREIRE o2 A
Mean : 0954 Mean : 0.062
Variance : 36.897 Variance : 4.301
Skewness : 4.227 Skewness : 1.28
Kurtosis : 23.101 Kurtosis : 22.865
Crest factor : 6.663 Crest factor :  8.064

(3) Output signals (noise free, input type 3)

From system A From system B
E*WFLTJ#M{W%L%
Mean : 8.4e-5 Mean : 0.00
Variance :37.585 Variance :4.308
Skewness : 0.928 Skewness : 0.365
Kurtosis :23.190 Kurtosis :23.420
Crest factor : 7.345 Crest factor : 8.935

Figure 4.3.7 The output signals
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Observed sisnal v(k)

The observed signals are obtained from the output signals including Gaussian

noise (SNR=-10 dB) interference in Figure 4.3.8.

(1) Observed signals (SNR=-10dB noise corrupted, input type 1)
From system A From system B

Mean : 0.00 Mean : -0.052
Variance : 462.88 Variance :45.885
Skewness : -0.0182 Skewness : -0.013
Kurtosis : 3.046 Kurtosis : 2981
Crest factor : 4.110 Crest factor : 3.879
(2) Observed signals (SNR=-10dB noise corrupted, input type 2)
From system A From system B
%% i g ‘t il ey ‘ "
oo : il dii i i
o ’ 2 P i
Mean : 1.155 Mean : 0.386
Variance : 403.698 Variance : 47.398
Skewness : 0.115 Skewness : 0.025
Kurtosis : 3.228 Kurtosis : 3.102
Crest factor : 3.839 Crest factor : 3.914
(3) Observed signals (SNR=-10dB noise corrupted, input type 3)
From system A From system B
5 :g ! | | TR W ; = :E il !" ¥ l A
%zg I ) i ] it | | %;E Fl L lll, it i :
- = e !

Mean : 0.204 Mean : 0.0795
Variance : 4.12e+2 Variance :46.666
Skewness : 0.025 Skewness : 0.022
Kurtosis : 3.151 Kurtosis :3.106
Crest factor : 4.069 Crest factor : 3.599

Figure 4.3.8 The observed signals
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4.3.3 Detection and classification of input signal

Using the three different input signals and two systems, the applicability of

HOSVD to the signal detection and classification is tested.

Detection

From the results of extensive simulation, we now propose an empirical detection

method. We first compute a threshold level (tr) based on SOSVD.

tr=(Max(A)-Min(A)) - Var(A?) @.3.7)

—— ch
where A% = —1—-Z:A(i)2 in which ‘ch’ represents the total number of one sample
i=1

delayed signals (=7+1 in Figure 4.3.1), and A denotes the singular values of the

covariance matrix.

Next, we compute a detection measure (detector) Dy based on HOSVD where

D, =(Max(HS, )-Min(HS, ))- Var(HS, ), k=3 or 4 (4.3.8)

ch
where Var(SK,) =ihZSKk (/)* and HSy are the singular values of the higher
c

i=1
(third or fourth) order tensor.
Finally, Dy is compared to tr to decide the presence or other wise of a non-
Gaussian signal (e.g., the magnitude of Dy in comparison of the tr provides us with

the information concerning the existence of a non-Gaussian signal).

Classification

As will be shown very consistent results arise from the previous detection scheme.
Building on this we propose a classification based on HOSVD to distinguish
between three types of input (Gaussian, non-Gaussian uni-directional impacting,
and non-Gaussian bi-directional impacting) and several classes of systems. This

follows below;
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Class 1: Only Gaussian input signals exist if

D, <tr, k=3 and4

Class 2: The input signal is non-Gaussian and uni-directional impulse (type 2
signal) if
D, 2tr, k=3 and4

Class 3: The input signal is non-Gaussian but either the input signal is bi-
directional impulse (type 3 signal) or the system is highly resonant if

D, <« tr,
D,2tr

Simulations and results

The following three examples demonstrate the result of non-Gaussian signal
detection and classification using this method. For every case, the observed signal
‘looks’ white and Gaussian. However, HOSVD will be shown to be able to
indicate the hidden nature of the input signals.

In the figures that follow, the dotted line in the figure cell labelled ‘detection
result’ represents the threshold (tr) calculated from equation(4.3.7) and detection

measure (detector) Dg for both third and fourth order is estimated from equation

(4.3.8).
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Example 1: Gaussian and non-Gaussian impacting signal (uni-directional)

with well damped system

Input signal type 1 (Gaussian)

InpUt stgnal x

Boo 1656
B

l
System type A

0.5

Imaginary past

-1

-1 -0.5 0.5 1

o}
Real part

\J

+ Gaussian noise (-10dB)

\’
Observed signal 1 (No impact)

Input signal type 2 (non-Gaussian)

i

Imaginary part

Goo 1000 3600 2000 2800 9000 G506 | AGo

@ INCox

\
System type A

0.5

-1 -0.5 0.5 1

0
Real part

\J

+ Gaussian noise (-10dB)

\J

Observed signal 1 (Impact)

GG 1060

nnnnnnnnn

Figure 4.3.9 Signals and system for example 1 (type 1 and type 2 signal with well
damped system)
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Detection result Detection result

Third order Fourth order Third order Fourth order

0.015 0.015

—

N
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N
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°©
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Magnitude
Magnitude
Magnitude
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w
Magnitude
@

0.005 0.005
0.1 5
° D3 0 0 - 0
Classification Classification
Class 2
Class 1
D, <tr D, 2tr Input signal is
D, <tr Only Gaussian D,>tr non-Gaussian and
input signal exists uni-directional

impulse

Figure 4.3.10 The detection and classification of signal from HOSVD (type 1 and
type 2 signal with well damped system)

In the detection result graph (bar graph), the threshold of detectability calculated
from the equation (4.3.7) is displayed by the dotted line. Thus, if the height of each
bar is higher than the dotted line, according to our criterion, a certain type of non-
Gaussian impacting signal is present in the observed signal. It is clear that for a
Gaussian input, none of the indicators reach the dotted line (left side of Figure
4.3.10), thus it belong to the class 1. On the other hand, when both the third and
fourth order detector exceed the dotted line (right side of Figure 4.3.10), the non-
Gaussian signal is detected and we can classify the non-Gaussian input signal as a

uni-directional impacting signal i.e., class 2.
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Example 2: Gaussian and non-Gaussian impacting signal (uni-directional)

with highly resonant system

Input signal type 1 (Gaussian)

Input sigral x1

d
System type B
-1 ~0.5 0 0.5 1
Real part
J
+ Gaussian noise (-10dB)
\2

Observed signal 1 (No impact)

25

B66T oos  mo | BOGG BEG6 G000  oso0 | 4000
Tifme IAdox

Input signal type 2 (non-Gaussian)

NERRE §
L
]

1 !
2
System type B
0.5] ‘
H
- 08 Heacl)pan !
\!
+ Gaussian noise (-10dB)
l

Observed signal 1 (Impact)

860 1000 1e00 _EEGG | mH00 G0 GEOO 4000

Figure 4.3.11 Signals and system for example 2 (type 1 and type 2 signal with
highly resonant system)
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Detection result

Third order Fourth order
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resonant

D, <tr
%
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Figure 4.3.12 The detection and classification of signal from HOSVD (type 1 and
type 2 signal with highly resonant system)

Even for the non-Gaussian impacting signal, the third order detector cannot spot

the non-Gaussianity whereas the fourth order does. Since the non-Gaussian

impacting signal is uni-directional, the reason for the fact that the third order

HOSVD cannot detect the non-Gaussian component is found from the

characteristics of unknown system. When a system is highly resonant (type B),

then the output of the system becomes close to the symmetric distribution, and in

turn the odd order statistical values tends to be closer to zero (see the shape of the

output of the system for impacting case in the right column of the Figure 4.3.7).

Thus, we obtain two different classes; class 1 as before (left figure) and the new

case is class 3 (right figure).
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Example 3: Non-Gaussian impacting signal (bi-directional) with well damped

and highly resonant systems

Input signal type 3 (non-Gaussian) Input signal type 3 (non-Gaussian)
: ‘ ! ‘ 1 ; i
£ ) L f L
s!sil ' ' ENimE ! é‘f“{ | ) L l? L ’
System type A System type B
1 1
o
0.5 05
tg ><  E
E 0 & E 0 X ]
-0.5 ‘ -0.5
- -1
-1 -05 [ 0.5 1 -1 ~0.8 0 0.5 1
Real part Reat part
+ Gaussian noise (-10dB) + Gaussian noise (-10dB)
Observed signal 1 (Impact) Observed signal 1 (Impact)
" , S A
g;‘i | ! il % i Ufiu ' ' ! ;
§,2: g ] & g 4 ' < Lt : *: 3 k i i N
T AT R R i i ol T kil b ‘ ‘

Figure 4.3.13 Signal and systems for example 3 (type 3 signal with well damped
and highly resonant systems)
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Detection result Detection result

Third order Fourth order Third order Fourth order
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input signal is signal is bi-
D,ztr bi-directional D,z directional
impulse (type 3 impulse (type 3
signal) or the signal) or the
system is highly system is highly
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Figure 4.3.14 The detection and classification of signal from HOSVD (type 3 input
signal with type A and type B systems)

For the type 3 input signal (bi-directional) case, the third order detector cannot
determine the impulsive nature of the input signal regardless of the system. This is
because the noise-free output of the system is symmetric (see the signal shapes in
the third row of the Figure 4.3.7). However, we do detect the non-Gaussian signal
through the fourth order detector. The classification is thus given as class 3 (Input
signal is non-Gaussian but either the input signal is bi-directional impulse or the
system is highly resonant). As a result, the HOSVD based on the fourth order

statistics can provide more consistent detection than the third order.
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The above examples demonstrate the significant difference between third and
fourth order singular value decomposition in detecting and classifying input
signals. Since the third order is blind to symmetric distributions, then when the
non-Gaussian input signal has a symmetric distribution or the unknown system is
highly resonant (narrow band), the differences of the higher order singular values

as compared to the third order tensor may not provide correct results.

4.3.4 Reconstructability assessment from HOSVD

A method for the detection and classification of unknown input signals has been
presented. This section is concerned with the next stage of HOSVD application
which is the reconstruction of the non-Gaussian signal after it has been detected.

In Chapter 3, we discussed both the Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) blind deconvolution operator (inverse filter). However the
choice of FIR is generally enough for practical application as an IIR system can be
well approximated by FIR provided the model order L is large enough [Abed-
Meraim et al, 1997]. Moreover, as the FIR often leads to simple development of
BD process, we restrict ourselves to using FIR inverse filtering leaving the detailed

discussions of the filter length to Chapter 5.
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Reconstructability factor (R) estimation

1) Highly acceptable signal reconstruction region

Magnitude

From extensive simulations of calculating the higher order singular values,
we deduce a relationship between the number of a series of one sample
delayed signals (channels) and the maximum value of the singular value
(Max(HS,), k=3 or4) for the non-Gaussian input case. That is to say,
when a non-Gaussian impacting signal exists, the maximum higher order
singular value (from the higher order tensor) increases as the number of
channels (number of one sample sequentially delayed signals) increases. To
demonstrate this trend, we construct and decompose higher order tensors
(third and fourth order) from 2 channels (7 =1) to 9 channels (7=8) and
plot the maximum singular values in the Figure 4.3.15.

Third order Fourth order

— ¢ practical calculation 7

— : practical calculation
--: empirical prediction

-~ . empirical prediction

® N o @

Magnitude
& el

- N W

o
@

5 [} 8 4 5 6
Nurnber of channels [T+1] Number of channels [T+1]

Figure 4.3.15 The relationship between the maximum higher order singular value

and number of channels

The solid line of the figure represents the maximum value of the higher order
singular values which increases logarithmically as the number of channels

increases. The maximum higher order singular value is described

approximately by
Max(HS, ) o< log[7], k=3 or4 4.3.9)

where 7 corresponds to the number of channels.

N.B. note that computational constraints limit the number of channels for
the fourth order case to 9. Considerable computational processing power is
required to go beyond this.
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An empirical result (based on equation (4.3.9)), indicates a ‘sufficient’
condition for reconstructability is deduced as

CHS, =7™ -log[7], k=3or4

where 7 is the total number of delayed signals (i.e., the number of channels

=7+1) and the constants are empirically ‘fitted’ as ms = 0.25 and m4 = 0.85.

2) Suppression of fluctuation factor (SF)
This is a parameter that reveals the status of the signal from HOSVD and

indicate the possibility of signal reconstruction

SE, =|HS, - 7| [Max(HS,)-Min(3})], k=3 or4

where HS, is the mean of the higher order singular values and }/_}Z is the

skewness or kurtosis of each delayed signal.

3) Reconstructability factor (R)
This is a parameter that can predict the ‘degree’ of signal reconstruction
using the FIR inverse filter of the same length as the channel and includes
the current status of the observed signal as
R, =SE +7,, k=3or4

where y, denotes the skewness or kurtosis of the observed signal.

Based on this procedure, some simulations have been carried out and the results

and discussions are given as follows;
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Example 1; Uni-directional impacting signal input with well damped system

Input and observed signals
Input signal Observed signal
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Figure 4.3.16 The reconstructability assessment and restored signals (type 2 input
signal with type A system)
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Example 2: Uni-directional impacting signal input with highly resonant

system

Input and observed signals

Input signal Observed signal
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Figure 4.3.17 The reconstructability assessment and restored signals (type 2 input
signal with type B system)
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Example 3: Bi-directional impacting signal input with well damped system

Input and observed signals
Input signal Observed signal
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Figure 4.3.18 The reconstructability assessment and restored signals (type 3 input
signal with type A system)
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Example 4: Bi-directional impacting signal input with highly resonant system

Input and observed signals
Input signal Observed signal
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Figure 4.3.19 The reconstructability assessment and restored signals (type 3 input
signal with type B system)
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Discussion of the results

1) General descriptions; (Figure 4.3.16 - Figure 4.3.19)

In the top row of each figure, a non-Gaussian impacting signal and the observed
signal (SNR=-10 dB, Gaussian noise corruption) are displayed. In the middle row,
the dotted line in each figure indicates the sufficient condition for the
reconstructablilty of the non-Gaussian impacting input signal when the FIR
inverse filter has the same length as the number of delayed signals (channel).
Relative to the dotted line, the bar graph represents the degree of reconstructability
of the input signal through blind deconvolution. The larger the magnitude of the
bar the ‘better’ the reconstruction of the input signal. To confirm this, each

restored signal using both the third and fourth order BD process is plotted in the

bottom of each figure.

2) Example 1; (Figure 4.3.16)

When the input signal is an uni-directional impacting signal (type 2 signal in
Figure 4.3.5) and the system is well damped (type A system in Figure 4.3.6), the
reconstructability assessment is (relatively) high for both the third and fourth order
cases. As can be in the bottom row of the figure, both the restored signals certainly

indicate the impacting and so support this assessment.

3) Example 2; (Figure 4.3.17)

When the input signal is an uni-directional impacting signal (type 2 signal in
Figure 4.3.5) and the system is highly resonant (type B system in Figure 4.3.6), the
reconstructability assessment is similar to the detection case. That is to say, the
highly resonant system degrades the potential reconstructability using the third
order BD process. The assessment and restored signal by the fourth order in

contrast is less affected and gives reasonably clear indication of impacting.

4) Example 3; (Figure 4.3.18)
Unlike the detection case, when the input signal is a bi-directional impacting signal
(type 3 signal in Figure 4.3.5) and the system is well damped (type A system in

Figure 4.3.6), the reconstructability criterion for the third order indicates
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difficulties in reconstruction. However, application of the BD process produced
encouraging results. In fact, the outcome from the third order is similar to that of

the fourth order case. This indicates that the reconstructability criterion is too

severe.

5) Example 4; (Figure 4.3.19)

When the input signal is a bi-directional impacting signal (type 3 signal in Figure
4.3.5) and the system is highly resonant (type B system in Figure 4.3.6), the
reconstructability assessment for the third order is low and the restored signal is

unacceptable as compared to the fourth order which does give an indication of

impacting.

Observation

From this simulation study, we conclude (i) that the empirically derived criteria for
input reconstruction perhaps overly restrictive and (ii) that detection, classification
and reconstruction using HOS is more affected by the system characteristics than

the nature of non-Gaussian impacting signals.

4.4 Summary and conclusions

This chapter describes the application of higher order statistics through the
construction of higher order tensors and their singular value decomposition. The
higher order tensor is a multi-dimensional extension of a matrix retaining the same
properties of a matrix (e.g. multilinearity and symmetry) and additionally
possesses the merit of suppressing Gaussian signals.

We have tested the ability of HOSVD for detection, classification and
reconstructability of non-Gaussian signals through various simulations. The aim of
this contribution is to put HOSVD/tensors into a practical context. This has
included computational experiments and the deduction of empirical criteria.

Specifically, the methods used and results are summarised as follows;

115



Chapter 4, Higher Order Singular Value Decomposition

e From a single measured signal, the sequentially delayed signals (channels) are
used to construct the higher order tensor (third or fourth order). From the
constructed tensors, the higher order singular values are estimated. The essence
of non-Gaussian signal detection is based on the comparison of the second

order singular values and higher order singular values.

e A threshold and variance comparison of higher order singular values (up to
fourth order) enables us to detect non-Gaussian signal under various system
characteristics. Also, the threshold can be useful in implementing the on-line

automated detection of a non-Gaussian (impacting) signal.

e By comparing the detectability from the third and fourth order, a classification

of signals and systems is achieved.

e Following this a formulation based on HOSVD provides a guide to input signal

reconstructability.

o From the simulations with various systems, we conclude that the detection,
classification and reconstructability assessment using HOSVD can be a useful

tool for blind processing of impacting process.

In conclusion, this chapter has demonstrated, through experimental simulation,
that HOSVD has considerable promise for detecting impacts in high Gaussian
noise levels. A cautionary note, however, is that the methods are complicated and
if the presence of impacting can be determined by other means (even visually in
low noise environments) obviously this should exploited. Furthermore the
robustness of this method to, for example, non-stationary and other form of non-

Gaussianity needs further investigation.
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PART 1III Practical considerations for blind

deconvolution

Chapter 5

Single Channel Blind Deconvolution

5.1 Introduction

A single input single output (SISO) Blind Deconvolution (BD) process based on
cumulant maximisation requires the input signal to be non-Gaussian. The term
‘blind’ considerably restricts the ‘quality’ of the reconstructed impacting signal.
This results in ambiguities relating to scale and time delay. Another difficulty
encountered is the selection of the acceptable length of the inverse filter and the
form of initial inverse filter in the iterative process. The length of inverse filter
can be very different depending on whether its impulse response is finite (FIR
system) or infinite (IIR system). However, as already discussed in Chapter 3,
there are many advantages to using a FIR system, and this is employed here.

In this chapter, we reconsider FIR blind deconvolution introduced in Chapter 3
and two specific aspects are considered in detail namely (i) initialisation of the

filter and (ii) criteria for selection of filter length.
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5.2 Descriptions of model and performance measures

This section defines the model used for the study, i.e., the non-Gaussian input

signal, the unknown system and the noise.

5.2.1 Model (single input single output system)

The situation is depicted below:

Unknown
Gaussian noise win)

Observed
(measured)
signal
x(n) Unknown vin) Inverse y(n) = Jf(n)k
System Filter »
Unknown (FIR) Restored
impacting signal
signal H F

Figure 5.2.1 The model of blind source reconstruction problem (single input
single output case)

The observation v(n) is described by

v(n) = i h(k)x(n—k)+w(n) (5.2.1)
k=0

where the h(k) designates the impulse response of the unknown system (MA, AR,
or ARMA), x(n) is the non-Gaussian input and w(n) is Gaussian noise. The

inversion is achieved by an FIR filter yielding the ‘restored’ signal y(n)

y() =Y flkyv(n-k)

k=0
=>f (k)i h(k)x(n—k)+_ f (k)w(n—k) (5.2.2)
k=0 k=0 k=0
= x(n)

where f{k) represents the impulse response (length L) of the inverse system (called
as ‘BD operator’). As expressed in the equation (5.2.2), the restored signal y(n)

inevitably contains filtered noise components and these unwanted noise
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components cannot be completely eliminated, even if the noise is Gaussian.

5.2.2 Performance measures for the blind deconvolution process

In order to assess the results of blind deconvolution (signal reconstruction) we
define functions related to the status of the restored signals as well as the objective
function itself. We introduce five performance measures. These are referred to as;
The Sum of Squared Deviations (SSD), the Spikiness Index (SI), Inverted
performance index (I,), Shape parameter ( « coefficient), and Equivalent
spikiness (Entropy, E) of signal. The last three parameters are also used in the

determination of the inverse filter length. Each of them is described below.

Sum of Squared Deviations (SSD)

Measures which can represent the performance of blind deconvolution process
can be introduced in several ways. A simple and obvious measure is Sum of
Squared Deviations (SSD) which compares the performances of each

deconvolution method and is expressed as
N
SSD = "[y'(k)~ x(k)]* (5.2.3)
k=1

where y'(k) is the delay compensated restored signal which can be obtained by

estimating the cross-correlation of the restored signal y(n) and input signal x(n).
However, this requires knowledge of the input signal, and hence is restricted to

the simulation case only.
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Inverse Performance (I,) index

Blind deconvolution is based on the maximisation of an appropriately selected
objective function of the output y(n) of an inverse system f. This objective
function used in this study takes the form of either the normalised third order

cumulant (skewness) or the fourth order cumulant (kurtosis) expressed as

Y vy

0,(r,2)=—=——p (5.2.4)
{ ﬂmﬂ

and r is either 3 or 4. In the same manner, the normalised higher order cumulant of

the measured signal v(r) is expressed

S vy

o,(r,2)=—"—— (5.2.5)

S

For simplicity these values are denotes as O, and O, .

The inverse performance index is calculated by inverting the absolute difference
of the above values

-1

1,=|0,-0, (5.2.6)

This index indicates the performance of blind impacting signal reconstruction in

accordance with the SSD (i.e., a lower I, implies a better reconstruction result).
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Shape parameter (o coefficient)

Another measure that can represent the statistical status of a signal is considered
by using the Generalised Gaussian Distribution [Miller and Thomas, 1972].
This Generalised Gaussian Distribution (GGD) of a random signal y(n) is

expressed via two parameters such as & and £ which are defined below

o ~(

4
280(3)

ol

[, B.a)= : .27y

where

—oco < y < oo ig a random signal
I'(s) is the gamma function
£ >0 is the scale parameter

o >0 is the shape parameter.

This GGD includes a wide range of distributions, e.g.,

bl
a=1 : f(y,ﬂ,1)=i-e ﬂ, —coly<oo ;Laplacian
2p
a=2 : f(y.5.2)= : 6—2_)‘% —00 L Yy < oo ; Gaussian
' M o2 ’ ’
1 .
O —oo f(y,ﬂ,‘”)=ﬁ, -f<y<pf ; Uniform
oa—>0 a certain event, i.e., the chances of finding an event in a finite

samples goes to zero ; highly spiky signal case

Like the performance index, the effectiveness of the deconvolution for a spiky

signal reconstruction problem can be measured by examining the ¢ value.

+ The reference, The advanced theory of statistics, Volume 1 Distribution theory,

by Kendal, M. G. and Stuart, A. give a more comprehensive classification scheme.

121



Chapter 5, Single Channel Blind Deconvolution

In fact, the higher order statistical value and the «acoefficient of a the random

signal y, has a close relationship [Gray, 1979] specifically;

(5.2.8)

© =2 corresponds to the kurtosis of the random signal y.
The relationship between the kurtosis and the ¢ coefficient expressed in the

equation (5.2.8) is plotted in the following figure;

Kurtosis

a~coefficient

Figure 5.2.2 The relationship between the kurtosis and « coefficient of random
signal y.

Equivalent spikiness (entropy of the signal, E)

The observed signal is considered as being linearly filtered through an unknown
system and is corrupted by Gaussian noise. When seeking an impacting signal
through an iterative inverse filter calculation, the status of the deconvolved signal
(the output of the inverse filter) can be monitored by checking the probabilistic
characteristics of the signal at each iteration. The impacting signal has several
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randomly located large events separated by many near-zero events that can be
interpreted as noise. Under the constraint such that the variance of the observed
signal and its estimated impacting signal (deconvolved signal) are equal, then the
probability distribution of the deconvolved signal will have less entropy [Gray,
1979]. The constraint required above can be achieved by setting the variance of

the measured and restored signal to be unity.

=1 (5.2.9)

where v(k) and y(k) designates the measured and restored signals, respectively.

The entropy of the signal y is calculated from its probability function as,

E=—[ fO)Inf(ydy (5.2.10)

For our purpose, we calculate the entropy for a discrete time signal. This
calculation will be commonly used throughout this thesis.

Assuming the expected data range is between —3-0, + 4, < y<3-0 + 4, , the pdf
range is split into equal steps of 0.1-a,. The total number of data falling into each

step is counted and divided by the number of data N to give
B=-Y[f(Minf()] (5:2.11)

This value decreases as the deconvolution process approaches the true impacting
signal, and thus, possesses similar characteristics to that of the & curve.

The I, index, «-coefficient and Entropy (E) are used as major elements of
criteria for the inverse filter length determination together with the performance
measures of the blind reconstruction of impacting signals.

We first consider the effect of initialisation of the inverse filter coefficients in its
iterative calculation procedure, and follow this with consideration of inverse filter

length determination.
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5.3 Effect of initial filter impulse response on deconvolution

As already discussed in Chapter 3, the inverse filter is calculated from

R, f=¢g (5.3.1)

v

where R,, denotes the symmetry LX L autocorrelation matrix of the observed
signal, f is Lx1 inverse filter coefficient vector, and g is Lx1 cross-correlation
vector between the observed signal and the output of the inverse filter. Using
either the constrained or normalised objective function maximisation process, the
output signal y(n) can yield input signal restoration through the convolution of the

measured signal v(n) and the inverse filter f with length L
L-1
ym)y=Y. fv(n—m) (5.3.2)
m=0

The equation (5.3.1) is solved in an iterative manner as the equation is non-linear.
Thus, at the first stage of maximising the objective function for the blind
deconvolution procedure, an initial inverse filter has to be selected.

The aim of this study is to see the effect of this initial inverse filter selection.
Following figure suggests three possible initial inverse filter types (FIR) used in

the iterative calculation.
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Measured FIR Output
signal l;:l‘; z::s? signal

T

(a) f_ini=z[Random set of filter coefficients]
=[0.75 -0.1 0.3 ... -0.12 ... 0.25]

(b) f_ini=[Impulse type initial filter coefficient]
=[100....0]

(c) f_ini=[Centred impulse initial filter type]
=[0 0..1..0 0]

Figure 5.3.1 Different types of initial inverse filter for deconvolution

According to the central limit theorem and assuming the measured signal is not
highly non-Gaussian, any arbitrarily selected inverse filter may make the output
signal closer to Gaussian. Thus, from Figure 5.3.1, if an initial inverse filter is
chosen randomly, the statistical property of the output of the inverse filter is liable
to be closer to Gaussian whereas the other initial inverse filters (b) and (c) will
not change the statistical properties of the output signal at the first stage of
iteration.

We now perform simulations to support the above statements.

125



Chapter 5, Single Channel Blind Deconvolution

Simulation with three different initial inverse filter types

To study the effect of filter initialisation, we select an unknown input signal and

an ARMA(2,3) system (unknown) as shown in Figure 5.3.2.

Unknown
input signal

Unknown
system

Observed
signal

Time history

uiﬁ

Amplitude

Ll n
I H]iw{

Imaginary pant

-0.8

500 1000 1500 2000 2500 3000 3500 4000
Time index

Pole-zero map

05

-1 ~0.5 0.5 1

o
Real part

Time history

500 1000 1500 2000 2500 3000 3500 4000
Time index

Statistics
Skewness 5.3531
Kurtosis : 219.7
o coefficient :  0.29
Entropy 0.072

Amplitude

Impulse response function

o 50 100 150 200 250 300
Time index

Statistics
Skewness 0.6577
Kurtosis 10.050
o coefficient :  0.73
Entropy 2.745

Figure 5.3.2 Sample problem of BD process (unknown input signal, system and

observed signal)

From above observed signal, blind deconvolution was carried out using three

different initial inverse filter types (the filter length was kept the same). During
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the iterative calculation of the inverse filters the values of objective function were

monitored and compared to each other.

(a)

Random number

initial inverse filter

(b)
Initial impulse

inverse filter

(©)
Centred impulse

inverse filter

Kurlosis

n
o 8

n
=3

Kurtosis

3

4 5
Number of iterations

Kurtosis

6 8
Number of iterations

10

14

Figure 5.3.3 A comparison of the objective function values from three different
initial inverse type. O,; : Value of the objective function of output of the inverse
filter at each iteration, O, : Value of the objective function of the measured signal.
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As shown in Figure 5.3.3 (a), the objective function value on the first iteration
(first point of the solid line) is smaller than that of the measured signal (dotted
line) for the randomly selected initial inverse filter case. Alternatively, if the
initial inverse filter is chosen as an impulse type (b) or centred impulse type (c)
[Gray, 1979], the output of the initial inverse filter can be at least not closer to the
Gaussianity than the measured signal. Hence, choosing the initial inverse filter
randomly may result in incorrect restoration of the signal or need more

computational time to achieve the same result as the other types of initial inverse

filter.

Simulation with three different initial inverse filter types and length

Using the same observed signal as in the previous simulation, the values of
objective function (kurtosis) of the restored signals from three different filter

types are compared for each length of these inverse filters.

40’» — Random initial filter ~
vvvvvv Initial impuise
-—-— Center impulse

200 40 60 80 100 120 140 160 180 200
Filter length (Li)

Figure 5.3.4 Comparison of the performance of deconvolution for three different
initial inverse filter in each filter length

In Figure 5.3.4, the kurtosis of restored signal using the random initial inverse
filter is not always consistent with the increase of the filter length. As an example,
the restored signals and inverse systems for each initial inverse filter type are

compared in the following figure;
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(a) Random initial inverse filter

1 [ o 5
ar
o
. E o 3
5
0 2
= :
Q. ; o 1
> e z
& Op e o X El
P -
E . o
-05 Q
.. ] -3
o,
o ~4
o
-1 o 5 [} o -5
500 1000 1500 2000 2500 3000 3500 4000
-1 -0.5 0 0.5 1 1.5 Time index
Real part

(b) Initial impulse inverse filter
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Figure 5.3.5 Pole-zero map of inverse filters and the shape of the restored signals
from three different initial inverse filter types.

As can be seen in Figure 5.3.5, the restored signals from the initial impulse type
inverse filter (middle, right of figure) and the centred impulsive inverse filter

(bottom, right of figure) give significantly better results compared to the result
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from the random number initial inverse filter (top, right of figure). The pole-zero

map of the inverse filter from a randomly selected initial inverse filter type turns

out to be a non-minimum phase system. The zeros are spread outside the unit

circle without cancelling out the original system’s pole position. In contrast, the

zeros of the inverse filters obtained from both initial impulse and centred impulse

initial inverse filters cancel out the original system’s pole position. The resulting

restored signals reflect the important effect of selecting the initial inverse filter

type.

The results are summarised in the following table.

Table 5.3.1 Comparison of restored signal from three different initial inverse
filters (numerical results of Figure 5.3.5)

Restored signal by MA(21)

Random initial
inverse filter

Initial impulse
inverse filter

Centred impulse
inverse filter

« coefficient 0.77 0.52 0.52
Entropy 2.743 2.2443 2.1846
Skewness -0.43702 0.2462 0.76524
Kurtosis 9.2378 22.3232 22.847
SSD 1.05e+4 4.708e+3 4.7017e+3

Delay 25 7 15
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5.4 Determination of the inverse filter length

The inversion formula defined in Chapter 3 (section 3.3) yields the inverse filter
coefficient vector in a non-linear iterative manner. To solve this, an initial inverse
filter coefficient vector with a chosen length is selected. This section addresses
determination of the length of the inverse filter.

Methods for determining the length based on the statistical parameters of the
observed and restored signal are introduced and their performances are compared
based on the restored signals.

Three performance measures (I,, & and E) which were introduced in section 5.2
are used to observe the effect of inverse filter length. As an example, the changes
of these three performance measures for restored signals from different inverse

filter length (2 — 200) are plotted in the following figure.

1.4r p
,,,,,, o

1.2F — E |

(=)

3 1

g

5 08

£

0

S 0.6f

[

>

W o4

3

\\—.—_
] Tam*."‘:

20 40 60 80 100 120 140 160 180 200
Hheﬂengm(LQ

Figure 5.4.1 The shape of the inverse performance value (I, for skewness),
coefficient, and entropy curve of restored signals produced from different inverse
filter length.

Figure 5.4.1 demonstrates the trend of the three performance indices along with
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the length of inverse filter (simulations and results are listed in Appendix E). The
shapes of the performance indices indicate that a certain ‘limited’ length of
inverse filter would be sufficient to restore the impacting signal and can avoid
inefficient computational loads caused from an unnecessarily long inverse filter

length selection. This is discussed in the following.

5.4.1 Inverse performance index based length determinator

From the shape of I, curve in Figure 5.4.1, we resort to the spirit of the Akaike
Information Criteria (AIC) which determines the orders of an unknown system
incorporating the performance (improvement) and a penalty term [Akaike, 1974].
We note that this has not been arrived at from statistical/probabilistic arguments
but is empirical. We consider the I, curve as the performance and select the

penalty term arising from the increased filter length as,
d,=2-L-logN/N (54.1)
where N designates the number of data points. The optimal filter length selection
criterion denoted as P; is defined as,
P =1,+d, (54.2)

Hence, the optimal length of the inverse filter selected from the point where the Py,

curve reaches its minimum point, which is illustrated in Figure 5.4.3.

5.4.2 Shape parameter (« coefficient) based length determinator

The filter length criterion from this parameter is expressed using the same penalty

term (dy) expressed in the equation (5.4.1) as,
o, =a+d, (54.3)

The optimal length of the inverse filter selected from above equation and the

shape of the restored signal are illustrated in Figure 5.4.4.
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5.4.3 Equivalent spikiness (entropy of the signal) based length determinator

The filter length determination criterion from this parameter takes a similar form

as the previous methods as,
E, =E+d, (5.4.4)

By this, the optimal length of the inverse filter selected from the point where the
E; curve reaches its minimum point. The shapes of the optimal length selection

and restored signals from this length of filter are shown in Figure 5.4.5.

5.4.4 Simulation results and discussions

This section demonstrates the performance of four FIR inverse filter length
determinators by comparing the status of the filter length selection, their restored

signals, and the statistical values of the signals.

The input signal, unknown system and observed signal used in this simulation are

shown in the following figure;

Input signal Unknown system Observed signal

Ampltude

Ampiitude

Wbl 4
L L.

.......

Figure 5.4.2 The shape of the unknown input signal, system and observed signal
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The numerical values of the input and observed signal as well as the shape of the

impulse response (IR) of unknown system are summarised in the following table.

Table 5.4.1 Numerical representation of the input signal, unknown system and
observed signals of Figure 5.4.2.

Input signal Unknown system Observed signal
o coefficient 0.29 0.73
Entropy 0.072 2.745
Skewness 5.351 i 0.6577
Kurtosis 219.7 - 10.050
SSD ) g 5.896¢3
Delay ) IR length=325 6

The optimal inverse filter length estimated from the inverse performance (I,,)

index

Third order Fourth order

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Fiter length (L) Filter fength (L)

: :
i i
-

»

7666 | Bbon mhop  BOGO | BE00 | 4000
e Tndes

N o

:
98 380

TTTTTTTTT

Figure 5.4.3 The optimal length of inverse filter determined from the inverse
performance index and the restored signals via 3" (left column), 4™ (right column)
order deconvolution methods.
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The optimal inverse filter length estimated from the ¢ -coefficient

Third order Fourth order
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Figure 5.4.4 The optimal length of inverse filter determmed from o -coefficient
estimation and the restored signals via 3™ (left column), 4™ (right column) order
deconvolution methods.

The optimal inverse filter length estimated from the entropy
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Figure 5.4.5 The optimal length of inverse filter determined from entropy
estimation and the restored signals via 3" (left column), 4™ (right column) order
deconvolution methods.
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For this blind impacting signal reconstruction problem, there is a consistent abrupt
change of the inverse performance index (and « -coefficient or entropy) at a
certain length of inverse filter. As an example, the observed signal shown in
Figure 5.4.2, the length that the abrupt change occurs is approximately 12 (when
the initial inverse filter type was selected as impulsive). This implies that for this
length the results of signal restoration can be acceptable and a longer length
inverse filter is computationally inefficient. This is confirmed by the shape of I,
the «-coefficient or entropy in Figure 5.4.1 with the estimated filter lengths in
Figure 5.4.3 - Figure 5.4.5.

It is hard to say that these methods are an unique way of determining the length of
the inverse filter. However, these length determinators are proposed as methods

that can help to eliminate one of the ambiguities of the BD process.

5.4.5 Observation parameter based predictive determinator

This sub-section proposes an alternative approach for the optimal inverse filter
length determination. Since the methods employed so far require a search
procedure spanning a range of lengths of the filter, they are not necessarily an

effective approach.

Ideally we need a guide to filter length not including deconvolution activities. We
now seek such a guide.

As already mentioned, the three parameters of the restored signals along with their
corresponding length of the inverse filters have been proved to possess a
consistent trend (e.g., the longer inverse filter length assures the lower I, index, as
do the a coefficient and entropy). Based on this, Figure 5.4.6 depicts the
graphical illustration of an optimal inverse filter selection scheme, which is aimed
at a predictive inverse filter length determinator.

In the following figure, we propose two curves which we refer to as the p-curve
and d-curve. For the blind impacting signal restoration problem, these two curves
are designed to behave monotonically; The p-curve which is the objective
function increases, whilst the d-curve (& coefficient and/or entropy) decreases as

the length of the inverse filter increases.
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Figure 5.4.6 Graphical illustration of optimal inverse filter length selection.

As shown in Figure 5.4.6, the optimal inverse filter selection range (dotted area) is
suggested based on the intersection point of the two curves with a lower limit for
filter length indicated by the hatched area.

Justification for this predictive approach to filter length determination is now
presented. The lower limit for inverse filter length is based on the non-zero lag

higher order cumulant sequence and the result of Higher Order Singular Value

Decomposition (HOSVD) dealt with in Chapter 4.
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Reference parameter justification

To describe the status of the observed signal, the parameters chosen are the
objective function value (i.e. skewness or kurtosis), shape parameter ( o
coefficient) and entropy of the observed signal. In order to obtain a reference
parameter value for the objective function, the objective function value of the
observed signal is compared to an extreme example of a spike sequence, whereas
for the shape parameter (¢ coefficient) or entropy values, the reference values of

these parameters are those of a Gaussian signal. These are explained below;

1) Reference of the objective function value
The objective function of an extreme non-Gaussian signal is chosen as the
reference value. This is the normalised higher order cumulant of a single impulse

of magnitude a in a signal with N samples as shown in the figure below

A
=
\ 4

The discrete probabilistic density function can be written
p(x)=22L0(x-0)++0(x—a)
For a< N and N is sufficiently large , the second order and higher order

cumulants are estimated through the order of data length N as;
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for covariance of x

O')f = E x° p(x)dx

= E(x——j%—) p(x)dx
2

=—]%—3{N-—1+(N—1)2}

= @(N7), orderof N

for r th order (r >2) cumulant of x (symbols of cumulants are defined in Chapter

2, equation (2.2.20))

p= [ ¥ pxr)dx

= J: (x —%)r p(x)dx

:;r {N—H—(N—l)r}

r+l

= p(N™"*), order of N

Thus, the r th order normalised cumuant takes the form of

Hy

ri2
(e7)

= @(N"*™), for r=4, substract 3

K. (r,2)=

From this, an approximate normalised third- and fourth-order cumulants are
calculated as;
Third-order reference objective function value =+ N ,

Fourth-order reference objective function value = N -3
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2) Reference for the o coefficient

The shape parameter for signals of various distributions is categorised in the

following figure;

A
& =10 ; Uniform distribtion
x o =2 ; Gaussian signal
. Observed signél
l J & =0 ; Leptokurtic (spiky signal)

In this study, the signals considered are assumed to belong to the lower part of the

o region (i.e., 0< & <2) and so the reference « coefficient is chosen as 2.

3) Reference for the entropy (for calculation see equation (5.2.11))

The entropy region for signals of various distributions is categorised in the

following figure;

E =4.1 ; Uniform distribtion

E = 3.5 ; Gaussian signal

)

Observed signal

l E =0 ; Leptokurtic (spiky signal)

As with the o coefficient reference, the entropy region (E region) for the
observed signal is assumed to belong to the lower part of the region (i.e., O< E

<3.5) and the reference entropy is chosen to be 3.5.
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In summary, the reference parameters are selected as;

O,L,f = \/_]\7 ;  skewness (third order)

0,, =N —3; kurtosis (fourth order)
O, =2.0;
E,=35

Lower limit of filter length L; determination

This is done by considering two features; (i) the third order cumulant sequence

and (ii) the reconstructability assessment described in Chapter 4.

(i) The first estimation comes from a modification of MA order estimation using
the higher order cumulants [Chow, 1972; Chan and Wood, 1984; Giannakis,
1986; Giannakis and Mendel, 1990; Kim, 1998]. The use of the diagonal slice of
the third-order cumulant sequence allows us to obtain an approximate lower
bound of the inverse filter length. A brief example of the first lower bound L;; is

given in the following figure;

diagonal slice of ¢ (z;,7,)

Ny
~max[7,,7,] \_/ max([7,,7,] < range of L

We take Lj; as the effective range of unknown system’s impulse response which

has more than 90% energy of diagonal slice of ¢;(7,,7,) in the figure.

(ii) For the second approach, the estimated lower bound L; is adjusted by using

the parameters involved in the reconstructability assessment namely CHSy and Ry
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(detailed explanations for these parameters are given in Chapter 4, section 4.3.4).
Since the impulsive nature estimated from the third order cumulant sequence may
be degraded by (severe) noise interference, the reconstructability parameter Ry
and its reference CHSy are used to adjust the length as follows;

Compare R and CHSy and select the lower limit of inverse filter length L; as

L=L, R, >CHS,

CHS, -R
L=1I,+ {——-k———k—-LM} R, <CHS,
Y.L cHS,

d-curve design

Using the above parameters and the lower bound, the first curve (called the d-
curve) is determined which can reflect the status of the observed signal. For a
given range of the inverse filter length L (e.g., L =1~ 200);
L 2
Lol
d=—1Ilog*"’ ,
Lm g
where Lj is the lower bound of the inverse filter length and m is defined as

|ee

m = "ol (for o coefficient case).

Using this, the slope of the d-curve reflects the shape parameter of the observed
signal. For example, when the observed signal is close to Gaussian (large o
coefficient), then m is smaller. In this case, the roll-off of the curve is slow and

thus the d-curve extends to the longer filter length region and vice versa.

p-curve design

Similar to the d-curve, we introduce the p-curve which describes the status of the

objective function value of the observed signal as,

Loy /3
p=2e¢",
I=1

where L, is the maximum range of the inverse filter length under consideration

[_ 00| "

and & is calculated as h=¢e' ™7 ], he[l,2.718].
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Hence, as the objective function value of the observed signal gets closer to
Gaussian, then ~ becomes 1, thus the slope of the ascending curve decreases

resulting in a longer inverse filter length selection, and vice versa.

Length determination and examples (the predictive determinator)

The optimal length of the FIR inverse filter is now predictively determined by

choosing the intersection point of the two curves (d- and p-curve), which has been

already illustrated in Figure 5.4.6.

Third order Fourth order
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Figure 5.4.7 The optimal length of inverse filter determined from observation
parameter based predictive estimation and the restored signals via 3" (left
column), 4™ (right column) order deconvolution methods.

The numerical results for four length determinators and their corresponding

restored signals are summarised in Table 5.4.2.
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Table 5.4.2 Numerical comparison of the restored signals from four different
inverse filter length determination criteria)

Third-order

L o E Predictive
L_opt 13 12 16 14
o coefficient 0.51 0.51 0.51 0.51
Entropy 2.182 2.230 2.219 2.20
Skewness 1.701 1.648 1.739 1.729
Kurtosis 24.020 23.516 24.116 24.011
SSD 4.85¢3 4.85e3 4.89¢3 4.89¢3

Fourth-order

I o E Predictive
L_opt 12 12 14 15
o coefficient 0.5 0.5 0.5 0.49
Entropy 2.186 2.186 2.121 2.122
Skewness 1.578 1.578 1.643 1.859
Kurtosis 24.584 24.584 25.235 25.926
SSD 4.76e3 4.76e3 4.76e3 4.78e3

As a result, the filter length determined by this procedure tends to be a little longer
than any of the other methods mentioned previously. This seems an acceptable
‘price to pay’ considering the low risk of poor deconvolution by choice of a
shorter inverse filter length. Furthermore, the significant merits of this procedure

are:

- Unlike the other length determinators, this method can give a reasonable guide
without doing any deconvolution (which is a major task considering the wide
range of the candidate inverse filter lengths).

- The length determinator is rarely affected by the choice of either third or
fourth order as this procedure includes the additional parameters ( &

coefficient and/or entropy) and the choice of reference spike signal.
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Further examples of the signal restoration by the optimal length of the inverse

filter using this predictive length determinator are given in Figure 5.4.8.

Measured signal Length determinator Restored signal
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Figure 5.4.8 The performance of the predictive length determinator with different
status of observed signals (fourth order case).
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The left column shows four different types of observed signals and the middle
column gives each estimated FIR inverse filter length. The restored signals
constructed by the third-order BD process with the estimated filter length are
displayed in the right column of the figure.

It is noticeable that as the observed signals become closer to Gaussian, the inverse
filter length estimated by the predictive determinator also tends to be longer.
Particularly, comparing the third and fourth row of the Figure 5.4.8, those two
signals look very similar and close to the Gaussian signal but the estimated
inverse filter length differs considerably (Lop = 25 and 39). This is due to the
difference of the generating system (unknown system); the unknown system for
the fourth row is in fact more complicated (experimental data from a real
cantilever beam), thus the effect of the system has been significantly included in

estimating the inverse filter length.
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5.5 Summary and conclusion

This chapter has mainly considered two aspects of the BD process.
Since the blind deconvolution problem ends up with iterative solution of the non-
linear normal equation as described in the Chapter 3, we need (i) initial filter

coefficient vector and (ii) we need to determine the length of the inverse filter.

The initial inverse filter showed generally be chosen so as to make the output of
the first filter to be at least equal to or further from Gaussian. Based on this, it is

demonstrated that it becomes natural to take the initial inverse filter as impulsive

in form.

Criteria for the selection of optimal inverse filter length have been proposed.
Four different length determinators have been considered and their performances
have been compared. Based on this a predictive determinator which utilises an
objective function (skewness or kurtosis), ¢ -coefficient and/or entropy of the
observed signal has been shown to be an effective length determinator. The
advantage of the predictive approach is that time consuming extensive

computation is avoided.
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Chapter 6

Global optimisation in Blind Deconvolution

6.1 Introduction

In Chapter 3, calculation of the inverse filter coefficients in Blind
Deconvolution (BD) was carried out through solution of a (generalised) Wiener
type equation. This approach has been used and developed by many authors for
many years [Claerbout, 1977; Wiggins, 1977; Gray, 1979; Donoho, 1981; Cadzow,
1996; Nandi, 1997]. However, these techniques can only guarantee that global
minima or maxima will be found if the performance index is convex. If it is non-
convex a local optimisation algorithm may not locate the global optimum and,
even when it does, there is no indication that the solution is global. In Chapter 3,
we saw that the selected objective functions (skewness or kurtosis) lead to multi-
modal behaviour with respect to the inverse filter coefficients. Accordingly, it was
decided to investigate this aspect further.

This chapter considers a global optimisation scheme with a view to comparing the
results with the generalised Wiener approach. There are many approaches to
optimisation and this is not a study of all the various alternatives. We have
selected a modification of the Genetic Algorithms (GAs) and known as a
‘Differential Evolution (DE)’ process. This choice was based on recent literature

that indicated that DE is relative easy to apply.
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6.2 Differential Evolution

This section describes the Differential Evolution (DE) algorithm which uses
evolving populations of solutions in much the same way as the Genetic
Algorithms. This algorithm works by making a given number of random guesses
(called the ‘population’ and denoted ‘P’) of D parameters and then imposing
improvements on the ‘cost function’ (denoted as ‘ f(x) ’ in Figure 6.2.1)
considered. A number of best guesses from the previous population survive as the
process continues. This algorithm is a parallel direct search method which utilises

P D-dimensional parameter vectors X, (denoted as ‘x’ in Figure 6.2.1).
X » i=12..P,and x=[xx,..x] (6.2.1)

as a population for each generation G. The size P does not change during the
minimisation/maximisation process. The initial vector population is chosen
randomly and should cover the entire parameter space. As a rule, a uniform
probability distribution for all random decisions will be employed unless
otherwise stated. Evolution is carried out by forming a child population by mating
pairs of parents, followed by mutation. Differential evolution is basically very
similar to conventional Genetic Algorithms (GA) [Goldberg, 1989; Ingber and
Rosen, 1992]. The differences are in the way the mechanisms of mutation and
crossover are performed using real floating point numbers instead of long strings
of zeros and ones. In particular, the concept of perturbing a vector with the
difference of two other parameter vectors is borrowed from the reflection,
expansion and contraction processes of the Nelder and Mead’s downbhill simplex
optimisation algorithm [Nelder and Mead, 1965]. In comparison with GA, the
basic difference lies in the scheme for generating trial vectors [Storn and Price,
1997]. The importance of the term trial parameter vector will be evident in the

following description of the differential evolution method.
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6.2.1 Global optimisation scheme using Differential Evolution

Figure 6.2.1 shows schematically the basic operations of DE working on
optimisation of a hypothetical multi-parameter system. The parameter vectors
considered here are composed of five parameters xp; (D=1,2,...,5 and i is the

index of population up to P).

)(11 X12 )(13 ........ X“ ........ Xw-: )(‘P
X21 )(22 XZG ........ X2i ....... XZM X2P
X )(31 X32 X33 ........ X3i ....... X‘,”M XaP G ; e ——
Xg4 Xep | Xag | oreee e Xgp | e Xepor | Xap
Xer | Xep | Xy | Xi | Xo | %er
f(x).._g I c, ] C, l Cy I ........ | c; | ....... }cp_] ' Cp I
1. Targel vector 2. Random selection of 2 vectors .
. 4.| Random selection
selection X
P P of third vector
t

P

P

5. Add to scaled
differece vectaf

regeneration (new iteration)

W MUTATION or
» CROSSOVER PERMUTATION
| Xy
- x2tr
L 6. Generation of Xatr
*é the Trial vectqw“ Xt
[b]
S X5
o CROSSOVER or
Gy RECOMBINATION

7. Selection

the vector with the
lowesthighest cost
survives and passes
to the next generation

i+1

Figure 6.2.1 Schematic representation of differential evolution operations
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In Figure 6.2.1, there are two D x p celled tables (in this case, D=5) at the top and
bottom of the figure which represent the generations of the parameters. This
means the algorithm starts with an initial pool of 5 dimensional parameter vectors
with population P (candidates or ancestors) drawn from a particular probability
distributions. Normally a uniform probability distribution ensures that the
parameter vectors generated will span the parameter space equally. The initial
pool acts as the first generation from which the whole evolution operation starts.
Thus, the top table represents the generation whose members will evolve
according to the mechanisms of the differential evolution.

In the bottom table each newly evolved member will be placed according to the

positions which its predecessor was holding in the top table. The bottom table is

called a new generation.

As can be seen in Figure 6.2.1, the (vector) member [X,;,X,,,-.., Xy, ]T of the first

table (top) is evolved to the descendant [xm,x2,r,...,x5,r]T that holds the leftmost

position in the bottom table. The cost function (performance index) for each
parameter vector is displayed in the corresponding rows of the two tables. The

detailed processes between the top and bottom table are described as follows;

Step 1: Target vector selection

The first left parameter vector of the top table is selected and denoted as the
Target vector P; . Note that the steps illustrated in Figure 6.2.1 are applied in
parallel to all the other vectors of the top table during a single run (one iteration).
All the (parallel) target vectors form the basis of ancestors that are to be compared
to the generated descendants and vacate their positions to the new generation that
fill the bottom table. At the end of each run the improved generation in the bottom

table is passed to the top table in order to play a role of new ancestors.

Step 2: Random selection of two vectors

In the search scheme, a mutation is created by utilising a combination of three
parameter vectors. Firstly, two parameter vectors denoted P,, Py, are selected
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among the top table which should not be the same as the target vector Py.

Step 3: Generate the scaled difference vector

From the randomly selected parameter vectors P, and Py, in the previous step, the
difference of two parameter vectors are multiplied by a user defined constant F

(Fe [0,1] ) to create the scaled difference vector.

Step 4: Random selection of third vector

The third parameter vector denoted Py is selected randomly. This vector also

should not be either the target vector Py or two randomly selected parameter

vectors P, Py.

Step 5: Add to scaled difference vector (mutation)

Differential evolution mutates (perturbs) by using two randomly selected and one
separately selected vector (i.e. the third vector). This process creates a new
mutated parameter vector Pp. While in Figure 6.2.1 the perturbation process is
portrayed in the top dashed box, the visual interpretation of this process is shown
in Figure 6.2.2.

X2

x NP Parameter vectors from generation G
o ‘Mutated parameter vector Pe

Minimum

F(Pa,e"P b,G)

Figure 6.2.2 Perturbation (mutation) process of differential evolution for two
dimensional cost function and the process for generating mutated parameter P, .1
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Step 6: Generation of the Trial vector (crossover)

The next operation of the differential evolution is crossover. The mutated
parameter vector Py, recombines with the target vector P¢ in order to generate a
new trial vector Py.. The Py consists of parameters obtained from both Py, and P;.
In the Genetic algorithm scheme, Py, and P; are known as the parents and the
newly generated parameter vector Py is known as their child. The actual parameter
components of every vector P are known as genes. Differential evolution
implements recombination by using the chance of occurrence applied to the
selection of the genes from the parents to the child. The likelihood that governs
the inheritance of the parameter vector Py is determined by a constant parameter
designated as the crossover ratio (CR). The detailed operation of this crossover is

illustrated and explained in the following;

ptri.GH

rand(2)<=CR

rand(5)<=CR

Target vector Mutant vector Trial vector

containing the
parameters
. Xii 6
=1,2,..., D=5

Figure 6.2.3 Illustration of the crossover process for D=5 parameters

As can be seen in Figure 6.2.3, the process of crossover creates a new parameter
vector named the trial vector (right) by exchanging the elements (genes) of the
target parameter vector (left) and the mutant vector (middle). This genetic
recombination based on the random search from which exploration of creating

improved generations evolves through the following rules.

Pyon ifrand()| <CR or j=perm(l,2,....D)

G ifrand(j)latj>CR and j#perm(1,2,...,.D)

“I6.22)

Iin@G+l:: p
atj

t
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where rand(j)LtJ, is the j-th evaluation of a uniform random number generator with

outcome € [0,1], CR is the crossover constant € [0,1], and perm(1,2,...,D) ] is a

randomly chosen index between 0,1 which ensures that P, ;;,, gets at least one

parameter from P, ;..

Step 7: Selection

By comparing the cost value of the target parameter vector and that of the trial
vector obtained from the crossover process, the lowest or highest cost value of
parameter vector survives and is passed to the next generation depending on the
optimisation scheme (e.g., minimisation or maximisation).

The chosen parameter vector and its cost value is then placed in the same position

of the bottom table as the target vector in the top table.

Repeating the steps for every target vector in the top table creates a new
generation which fills the bottom table and takes the role of the previous
generation for each iteration. Since the selection of the target vector is done from
the leftmost to the right direction, this procedure as called the parallel search
method. The iteration halts when a stopping criterion is satisfied. Usually this

criterion is set as either a user defined cost value or a maximum number of

iterations or both.
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6.2.2 Performance test for Differential Evolution method

To demonstrate the performance of DE in seeking a global minimum/maximum,

we have used two different multi-modal functions as examples.

Test function and global optimisation:

Test function 1 (Rosenbrock’s saddle) [Ingber and Rosen, 1992]

2,

f(x)=0.1(x? — x,)* +0.001(1 - x, )*;
IPR : x, € [-1.248,1.248], (6.2.3)
IPR : x, € [-0.848,1.248]

where IPR implies the initial parameter range.

The shape of this function is shown in the following figure.

Cost function shape (function #1)
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Figure 6.2.4 The shape of test function # 1

Although f(x) has just two parameters, it has the reputation of being a difficult
minimisation problem as the global minimum of this function is f(x;)=0 at
x=1.0 (j=1,2) while another comparable minimum f(x,)=0, f(x,)> f(X))

exists at the opposite side of x1 (x1_opp = -1.0, x2 =1.0).
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Optimisation

The initial population (the number of candidate parameter vectors) size is taken as
three times bigger than the dimension of parameter vector (i.e., the number of
parameters). Thus, from an initially constructed 2 x 10 matrix, the DE search is
tried.

Following figures demonstrate the performance of DE.

Searching status of DE (iteration = 100)

1.2

0.8r
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Figure 6.2.5 Searching status of DE process for Test function 1.

A 100 stage iteration is given with scale factor (constant) F = 0.7 and cross-over
ratio CR = 0.5. In the Figure 6.2.5, we can see the result of the iteration in which
‘x’ designates the initial population and ‘o’ identifies the optima in every run. As
already mentioned, the initial populations of each parameter ‘x’ are drawn from
the uniform distribution to cover the entire landscape (co-ordinates x; and x;). The
identified optima ‘o’ at each iteration then move toward the minimum value
position which is marked by 'e’.

This track is represented in a ‘probabilistic’ way in Figure 6.2.6 where the
performance of DE is demonstrated through a plot of relative frequency of the
minima that arise from DE. It is noticeable that in Figure 6.2.6 the occurrence of

parameter values (x; and x,) at each iteration rapidly accumulate in the vicinity of
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the true minimum position (x; =1.0 and x,=1.0). The behaviour of this bar graph

also tells us the speed of convergence of DE to the true minimum point.

Occurance of minima (iteration = 100)
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=
S
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Figure 6.2.6 Relative frequency of each minima appearing by DE process for Test
function 1.

Summary of the parameters and results of the test:
Scale constant, F=0.7

Cross-over Ratio, CR=0.5

Number of iterations =100

x1_opt=0.949 (x;_true =1.0)

x_opt=0.901 (x_true =1.0)
Opt. value=2.5¢e-6 (Min. value=0)

() is the theoretical minimum points and minimum value.
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Test function 2 (selected by the author)

f(%) =-0.05(x, —0.25)> =0.02-|x, + 0.01* = x, - x, -exp(—x} —~1.15x3) +1;
IPR : x, € [-2.0,2.0], j=12

(6.2.4)

This function has been chosen because it has a similar shape to the objective
function that we discussed in Chapter 3.

The shape of this function is shown in the following figure.

Cost function shape (function #2)
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Figure 6.2.7 The shape of test function # 2

The global maximum of this function is f(x)=1.15 at x;=0.66, x,= - 0.63,
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Optimisation
The initial population is taken the same size as the case of test function 1. The DE
method is applied to search for the ‘maximum’ point of the test function 2. Thus,

from an initially constructed 2 x 10 matrix, the DE search yields results shown in

the following figures.

Searching status of DE (iteration = 100)
2 T : . T . . T

ES

Figure 6.2.8 Searching status of DE process for Test function 2.

During 100 iterative parallel searching process with the same F and CR as were
used in the previous test function 1 case, we can observe that some parameter
vectors fall into a ‘local maximum’ point (see the left upper corner of Figure
6.2.8) and then promptly head to the ‘global maximum’ point. Their occurrence in

a ‘relative frequency’ form is shown in the following figure.
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Occurance of maxima (iteration = 100)
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Figure 6.2.9 Relative frequency of each minima appearing by DE process for Test
function 2.

Similar to the previous test, most of the search results during 100 iteration fall into

the global maximum. Thus, the occurrence probability is dense around the true

maximum point.

Summary of the parameters and results of the test:
Scale constant, F=0.7

Cross-over Ratio, CR=0.5

Number of iterations =100

x1_opt=0.651 (x;_true = 0.66)

Xp_opt=-0.629 (x,_true = -0.63)
Opt. value=1.151 (Max. value=1.152)

() is the theoretical maximum points and maximum value.

Remarks:
From two test function tests (one for minimisation and the other for maximisation),

we can conclude that DE is a potentially useful search tool.
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The speed of convergence to the global minimum/maximum can be affected by
the selection of F and CR. As a rule of thumb, normally the scale constant (F)

ranges from 0.5 to 0.9 and the cross-over ratio (CR) is 0.1 — 0.6.

6.3 Application of DE to Blind Deconvolution

In this section, the performance of DE for blind signal reconstruction is

demonstrated through simulations.

6.3.1 Preliminaries for simulations

The system for this simulation is shown in the following figure.

Unknown
Gaussian noise

wik)

Observed
(measured) signal

x(k) Unknown vik)
—» | inear
System

Figure 6.3.1 The signals and system used for non-Gaussian impacting signal
detection problem with Gaussian measurement noise

Excitation x(k)

A non-Gaussian impacting signal used in this simulation is shown in Figure 6.3.2.

) 1 ] Mean : 1lde-16
E° ‘ ‘ | ’ | ’ l ] Variance : 0.999
Kurtosis  : 206.98

5' ]‘ ' l} ’{ ]( “ _ Skewness : 3.05
» t , Crest factor : 18.40

500 1000 1500 2000 2500 3000 3500 4000
Time index

Figure 6.3.2 The input signal
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System

The ‘unknown’ system selected is shown in the following figure;

() (b) (c)

tmaginary part
& °
Amgitude
, Magnitode Responsa (08)
Lo

o o2 04 06 08
fieal pan Time indax Normalized requency {Nyquist == 1)

Figure 6.3.3 The system used in the simulation. (a): System’s pole zero map, (b):
impulse response, and (c): Frequency Response Function.

This system has a very ‘short’ impulse response function.
The above input signal and system have already been used in Chapter 3, section
3.3. They are used again so as to provide a basis for comparison of the Wiener

approach and DE.

Observed signal v(k)

The observed signal is obtained from the output signal including Gaussian noise

(SNR= 10 dB) interference and shown in Figure 6.3.4.

Mean : -0.004
Variance : 1.690
Skewness : 0.762
Kurtosis : 92.83
Crest factor : 14.32

Amplitude {mV)

500 1000 1500 2000 2500 3000 3500 4000
Time index

Figure 6.3.4 The observed signal (SNR= 10 dB)
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6.3.2 Global maximum searching and restoration of signals

From only an observed signal v, an inverse system (filter) fy is to be estimated to

make the output signal y be the unknown input signal x, which is illustrated as

Inverse filter

Measured signal Restored signal

A% y=Xx

Figure 6.3.5 The deconvolution system

The estimation of the inverse system and signal restoration processes are
extensively discussed in Chapter 3. As a reminder, the objective function (cost
function) for this estimation takes a higher order normalised value (e.g., kurtosis
of the restored signal) as

N

>y

0,=—"—— (6.3.1)

[%VZ y(ﬂ
i=]

which is to be maximised with respect to the parameters (inverse filter
coefficients). The final signal restoration is achieved from the convolution

between the optimally estimated inverse filter coefficients and the observed signal

as
L-1
ym)=2 f,-v(n=k) (6.32)
k=0
where f, =[f, f ... f.,1".The DE process for this problem is described in

the following;

From the measured (observed) signal of Figure 6.3.4, the fourth order normalised
cumulant (i.e., kurtosis) is chosen as a cost function from which the coefficients of
fx are estimated that can give the maximum kurtosis of the output of the inverse

filter. The shape of the objective function (cost function) is shown in Figure 6.3.6.
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Figure 6.3.6 The shape of cost function (kurtosis)

The global optimality of the DE process is compared to the Wiener Optimisation
(denoted by “WO’) using a MA(4) inverse filter in the following figure:

Figure 6.3.7 Result of the maximum point search using Wiener optimisation and
DE
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As can be seen in Figure 6.3.7, the optimal point of DE marked by ‘opt. (DE)’
coincides with the ‘max’ point whereas the optimal point for the Wiener
optimisation marked by ‘opt. (WO)’ is different and is identified as a local
maximum.

The restored impacting signals (input signal of Figure 6.3.2, unknown system of
Figure 6.3.3, and observed signal of Figure 6.3.4) using both Wiener Optimisation
and Differential Evolution method with MA(4) inverse filter are compared below:

(@ (b)

Amplitude [mV}
(=] o

~10

Amplitude [mV}
S w N L (=1 - N w F

[
o

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Time index Time index

Figure 6.3.8 Restoration of signal using the Wiener solution and the DE method
using a MA(4) inverse filter. (a): restored signal by using Wiener optimisation,
(b): restored signal by using DE optimisation.

This rather ‘simple’ example using only an MA(4) filter is used for illustrative
purposes. The signal restoration results, however, are similar (with a different
magnitude). We conclude that the Wiener optimisation does indeed seem to offer
a reasonable and feasible method for blind signal restoration provided that the
previously considered inverse filter’s requirements (i.e. selection of appropriate
initial filter) are satisfied. This is reassuring considering that the computational
loads in employing DE become nontrivial for large order filters.

For completeness a second example is considered; specifically an ARMA(4,2)
inverse filter is used to restore the input signal using both Wiener Optimisation

and Differential Evolution.
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Time index
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Figure 6.3.9 Restoration of signal from fourth-order Wiener solution and DE
method using ARMA(4,2) inverse filter. (a): restored signal by using Wiener
optimisation, (b) : restored signal by using DE optimisation method.

As with the MA(4) inverse filter, the restored signals using both the Wiener

approach and the DE method are very similar (with only a different magnitude and

sign reversal). The two results are compared in numerical form in the following

table using the parameters defined in Chapter 3 and Chapter 5.

Table 6.3.1 Comparison of restored signals from Wiener optimisation and DE

process
Methods Wiener Remarks
L DE process
Parameters optimisation (Input/output)
o -coefficient 0.32 0.32 (0.29/0.35)
MA(4) Entropy 1.40 1.29 (0.07/1.23)
Inverse Skewness 1.70 1.77 (3.05/0.76)
filter Kurtosis 123.15 128.50 (206.98/92.83)
CPU time 1 125.5 (normalised)
o -coefficient 0.32 0.32 -
A(I}LI\Z/[)A Entropy 1.42 1.32 -
’ Skewness 2.09 2.17 -
Inverse
filter Kurtosis 120.30 127.99 -
CPU time 0.8 155.2 (normalised)
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6.3.3 Computational efficiency of DE optimisation method

The term ‘computational efficiency’ used in this blind signal reconstruction
problem relates to the ability of reaching the global maximum (in terms of the
performance index and now also includes the convergence speed i.e., CPU time).
We now compare the computational efficiency of blind signal reconstruction

between the Wiener optimisation and the DE method.

(@) (b)

n

CPU time log[sec]
P »

o
o

N e o o
3 5 7 g 11 13 15 17 18 21 23 25
8 5 7 9 11 13 15 17 19 21 23 25 "
FIR fiter fength FiR filter length

Figure 6.3.10 Comparison of signal restoration from fourth-order Wiener solution,
and DE method. (a): kurtosis of restored signal, (b): computational time.

As can be seen in Figure 6.3.10 (a), the kurtosis of restored signal using Wiener

optimisation (dotted line) and from DE optimisation method (solid line) for each

FIR inverse filter length is similar. However, as shown in (b), the computational

time required to yield similar kurtosis of the restored signal using the DE method

is significantly greater than the Wiener optimisation.

The nature of the blind deconvolution involved in this work demands major

computing power because of the following;

@) There exist many local maxima positioned closely.

(i))  Unlike the Wiener approach which iterates a single parameter vector of
inverse filter coefficients, DE iterates a set of parameter vectors leading to
greatly increased computational loads. If the signal restoration using the
Wiener approach fails then DE is also liable to produce a poor

reconstruction despite having incurred the computational load.
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We now reconsider the previous example using different measurement noise.
Again, the objective is to compare the computation efficiency between the Wiener
optimisation and the DE method. For the Wiener optimisation the maximum

number of iterations is restricted to 100 and for the DE method the iteration is

stopped.
Performance of signal restoration Computational time
"o 1DE 500 o
<t WO 450 E
400
350,

J § ¢

CPU time [sec]
n
o
o

20 int

: - 20 o o 0
20 int SN ratio (dB)

0 10
SN ratio {(dB)

Figure 6.3.11 Comparison of signal restoration from fourth-order Wiener solution,
and DE method (FIR inverse filter, L=11).

As can be seen in Figure 6.3.11, again we see the computational load is heavy for
the DE method. Also, in the severe noise corruption cases (S/N ratio 20 ~ 0 dB),
we cannot expect ‘better’ reconstruction from DE method but also incur
dramatically increased computational time.

From our extensive simulations and other work [Stormn and Price, 1997], it is
emphasised that three parameters govern the effectiveness of DE method in
locating the global minimum. These are the population size (Figure 6.2.1), the
scaling factor F (Figure 6.2.2), and the cross-over ratio CR (Figure 6.2.3).
Guidance in selecting these parameters is given below;

The population size should be kept as small as possible so keeping the number of
trial runs as low as possible. Use a population size P between five and ten times

longer than the size of the parameter D as;
P>5D~10D.
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We employ the FIR inverse filter because of its robustness. Confining the
coefficients of the inverse filter to have unit norm is sufficient to explore the cost
function (objective function) range as;

I£]<t, k=01...,L-1.

The scaling factor F is determined by the constraint on the inverse filter

coefficients;

0<F<|f]-

The cross-over ratio CR should be small enough to increase the likelihood of
‘birth’ of a new vector with novel characteristics coming from the mutated vector.
On the other hand, it should be large enough to maintain any existing inheritance.
In this way, DE ensures the newly created trial vector provides many possibilities
in the parameter space leading to a promising optimum. The CR is taken as;

0.1<CR<F.
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6.4 Summary and conclusion

In this chapter, we investigated the performance of just one of the numerous
global optimisation methods in blind restoration of non-Gaussian impacting
signals. This optimisation is the Differential Evolution (DE) method, which
utilises an evolutionary process similar to the Genetic Algorithms (GA). The
performance of signal reconstruction and computational efficiency are considered
and compared to the Wiener optimisation method discussed in Chapter 3. The

following conclusions arise;

1. The DE method can restore the input signal and is thus applicable to the Blind
Deconvolution process.

2. Since the Wiener approach is believed to yield only one of the local maxima,
the restoration of an impacting signal using a global optimisation method has
been carried out and compared to the Wiener optimisation method. A major
conclusion is that even through the Wiener optimisation results generally in a
local maximum, the reconstruction seems very comparable to the global
optimisation. We note here that in the Wiener approach, the choice of initial
inverse filter type affects the performance of signal restoration. That is to say,
by selecting an impulsive type initial inverse filter, the starting point of
optimisation is initiated near an ‘acceptable’ local maximum.

3. Given the equivalence of results, DE scores relative low as a method because

of its computational overhead.

To make DE a serious candidate for use in blind inversion, a further study relating

to choice of filter length and computational efficiency is needed.
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Chapter 7

Multiple Channel Signal Processing

7.1 Introduction

Multiple Input Multiple Output (MIMO) models arise frequently in signal
processing (e.g., seismic exploration, digital communications, antenna array
processing, biomedical signal processing, and multi-channel machine conditioning
systems). The sensor signals from a p element array are a p-dimensional vector
process representing the mixture of m different independent source signals. The
propagation characteristics between m source signals and p sensor signals is often
modeled as a linear (instantaneous or convolutive) MIMO system.

The Blind Source Separation (BSS) problem is a basic and difficult problem (e.g.,
[Bar-Ness et al, 1981]). Since then many solutions have been proposed, most of
which are based on independence criteria which involve higher-order moments
generated by non-linear functions [Jutten and Herault, 1991], cumulants [Lacoume
and Ruiz, 1988; Cardoso, 1989; Comon, 1989] or contrast functions [Moreau and
Macchi, 1993; Comon, 1994; Delfosse and Loubaton, 1995]. Most of these works
are related to the separation of instantaneous linear mixtures of sources: the
observation at any time ¢ are a linear superposition (with real coefficients) of the
sources at time ¢. For the linear instantaneous mixture model, source separation
can be achieved by utilising the higher-order based joint diagonalisation of the
observed signal matrix [Cardoso and Comon, 1990; Comon, 1994; Yellin and
Weinstein, 1994; Cardoso, 1998a, 1998b; Lathauwer et al, 1999; Zhu et al, 1999].
A solution for this problem uses a time-based model in which the source

separation is achieved through higher-order statistics and independency criteria.
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This approach utilises the joint-cumulant of output signals.

Multichannel blind deconvolution (MBD) is an extension of the single channel
blind deconvolution which utilises an objective function maximisation based on
the central limit theorem [Donoho, 1981] and already discussed in Chapter 3. For
this, a variable norm deconvolution method is introduced [Gray, 1979]. This is a
multichannel technique which iteratively estimates an inverse to the unknown
system which when convolved with the measured signals yields the unknown
impacting signals. This inverse is estimated such that the resulting output signals
are as spiky and non-Gaussian as possible. The proposed method is derived from
statistical theory and utilises the non-linear optimisation technique discussed in
Chapter 3 (relevant references are found in that chapter).

This chapter introduces multichannel blind source separation and multichannel
blind deconvolution based on higher order statistics of signals from convolutive
mixtures. In particular, we are concerned with the case that the number of inputs is
the same as the number of outputs. Simulations for two input two output cases are

carried out and their performances are assessed.
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7.2 Model selection and problem formulation

7.2.1 General

The model of the convolutive mixture for multi-channel case is shown in Figure

7.2.1.

Figure 7.2.1 Multi-input multi-output system with unknown system H and
independent input signals x, unknown white Gaussian noise w, and observed

signal v.

In general situations, the observed signal v(k) at the sensor output is a p vector

with components that result from the unknown m sources x(k) i.e.,

v(k) =[w(k)-v, (T
x(k) =[x (k) x,, ()T

(7.2.1)

and the input signals are assumed to be independent each other and at least one of

the input signals is non-Gaussian.

The system H is a ( pXm ) matrix of impulse responses (in the time domain) or

equivalently a ( pxm ) matrix of transfer functions in the z-domain.
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7.2.2 Two input two output systems and input-output relationship

The aim of this study focuses on the restoration of impacting signals from
observed multichannel signals using both source separation and deconvolution.
We concentrate on a two input two output system based on models of two forms

of cross coupling referred to as singly coupled (feed forward) and doubly coupled

(feed back).

(a)
x,(n) =® » v, (n)
+
+
> H,
Unknown Observed
Sources Signals
H,,
_*_
Unknown Mixture H(z) +
x,(n) >(2) >v,(n)
(b)
X ———»  H, H,, A
4
[#]
3
Observed =
Unknown Unknown Wy Signals &
Sources Mixture
H(z)
vy(n)
x,)(n) > H), H, —
w

2

Figure 7.2.2 Two-input two-output system, (a): Single-coupled, (b): Double
coupled model
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Case (a);

For Figure 7.2.2, the observed signals are the results of single coupling of two

input signals modelled as
L-1
v,(n)=x,(n)+ > b (k)x,(n—k) (7.2.2)
k=0

where hl.j (k) isthe kth coefficient of filter H;; with i# j, Vi, je {1,2}.

The model described in Figure 7.2.2 is noise free (w=0) and Hj;=Hj;=1. These
simplifications can be thought as representing measurement points near source

positions with precise instrumentation. The input-output relation is

Vi(z) =X, (z2)+ H,,(2)X,(2)

(7.2.3)
Vo(2) =H, ()X, (2) + X,(2)

where Hj; and Hy; are FIR filters satisfying ‘hl.j (k)‘ <1.

Case (b);
When the observed signals are the result of ‘feed back’ as in Figure 7.2.2, they

may be written as
Li-1 L1
vi(n)= Y h()x,(n=k)+ > b (k)x,(n—k)+w,(n) (7.2.4)
k=0 k=0

where h; (k) is the kth coefficient of filter H; with Vi, je {1,2}.

In contrast to the case of single coupling, this models the outputs of remote
measurement points as affecting other outputs.

In the z-domain

Vi(z)=H; ()X, (2) + H |, (2)V,(2)

(7.2.5)
V,(2) = Hy, (2)V(2)+ H,, (2) X, (2)
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7.2.3 Blind Source Separation via joint-cumulant cancellation (nulling)

The structure of the source separation system is chosen as being of the form in
Figure 7.2.3 [Yellin and Weistein, 1994]. Detailed descriptions for this structure

are listed in Appendix F.

vy(n) >+ > S, (n)
FIRCﬁlter «
12
FIR filter -«
Cu
v,(n) >+ > S,(n)
Observed Inverse Separated
Signals System Signals

Figure 7.2.3 Recursive source separation structure

This is a recursive form [Jutten and Herault, 1991]. Using this recursive separation

system based on the observed signals v,(n) and v,(n), the outputs s,(n) and

s,(n) are calculated as
Ly
5;(n) =v,(n) =Y ¢, (k)s;(n—k) (7.2.6)
k=0

in which the updating of the filter coefficients (of the filters ¢, ) are iterated by

using the fourth-order joint cumulants cancellation of above two outputs which

takes the form of the steepest descent algorithm as (for example),
¢;(@+ LK) =c (q. k) + E{s,(n)’-s,(n—k)} , i#j, Vi je{l,2} (7.2.7)

where g represents each iteration step.
The magnitude of adaptation gain should be in a range that can assure stable

convergence and computational efficiency. In this study, this value commonly has
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been used as 0.01 arising from the adaptation gain g, in the range [Thi and Jutten,

1995],
0.005 < 4z, <0.05

and the threshold ¢, for the iteration to stop is set to [Cardoso, 1998]

1
S
" 100-JN

where N is the total number of data points.

7.2.4 Blind deconvolution via multichannel objective function maximisation

The structure of the multichannel deconvolution operator is similar to the single
channel blind deconvolution operator discussed in Chapter 3. However, unlike the
source separation structure, this deconvolution operator uses a single inverse filter

which shown below.

v,(n) > y,(n)
v, (1) > y,(n)

Figure 7.2.4 Multichannel blind deconvolution operator
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As shown in Figure 7.2.4, since the deconvolution operator is commonly applied
to the input signal to produce the output signal, the number of input signals
(denoted by p) to the inverse system, which is the same as the number of output

signals. The output signal coming from each channel (j=1~p) is expressed as
L-1
y;(n)=>"v,(n—k)- f(k) (7.2.8)
k=0

For the restoration of an impacting signal, we introduce a multichannel objective

function as

(7.2.9)

where y is the output p-vector of the inverse filter and the parameter r governs the
relative weightings of the nature of an impulsive signal [Claerbout, 1973], which
is similar to the single channel case. This parameter r is adjusted depending on the
characteristics of input impacting signals concerned, defining ‘variable norm
deconvolution’ [Gray, 1979].

The impacting signal reconstruction is achieved by maximising the objective
function (the summation of normalised variable higher order moments or
cumulants of each output signal) with respect to the filter coefficients.

The final equation of the multichannel inverse filter (deconvolution operator) is

expressed as

‘{:Z_I’Z_:Vf(n“l)’vf(n"k)} f)= Zl: Zly](n)| -sgn(y,;(n))-v,(n=1)-v,(n— k)}

1=0| j=1 U3 n=0 1j n=0

k=01,..,L-1
(7.2.10)

where

1 N-1 ,
U :ﬁ;b}](n)l
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1 N-1 )
Uy; = "ﬁ; Y (I’l)
v,(n) : n-th sample of the signal recorded on channel j (N samples per channel

and p channels)
S : I-th sample of an inverse filter having L length

y,;(n) : n-th sample of the output of the inverse filter coming from channel j (¥

samples per channel and p channels)

The inverse filter equation (7.2.10) can be expressed in matrix from

Rf=g (7.2.11)

where R is the autocorrelation matrix of observed signals, f is the inverse filter
coefficient vector, and g denotes the cross-correlation of the observed signals and

the output of the inverse filter.
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7.3 Simulations of source separation and deconvolution for
impacting signal reconstruction

The objective of this sub-section is to restore an impacting signal from the

measured (observed) signals through source separation and blind deconvolution.

7.3.1 Signals and systems for simulations

The two input signals consist of an impacting signal and a Gaussian signal

(normal operating excitation) are shown in Figure 7.3.1. For each input signal, N

represents the number of samples, 7, andy, are the skewness and kurtosis of the

signal, respectively.

Input signal 1 Input signal 2

JLTTTITCTL

BG6 7006 1500 |, B0GD_F800  BO06 | BBG6 | 400

N=4096, ¥, =14.728, ¥, =219.4 N=4096, 7, =0.053, ¥, =2.99
Figure 7.3.1 Input signals

Using these input signals, examples of the blind source separation from observed
signals and restoration of the impacting signal procedures are demonstrated in two

cases as follows;
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Case (a): Two-input two-output without feedback (single coupling)

Since with H;, = H ; =1, the observed signals have been generated as in Figure

7.2.2 (a), which can be redrawn in Figure 7.3.2.

A A

vy

Unknow n
input signal x1 Sumi

Sum3 Observed

H‘l signal v1

Gaussian noise w 1

=

Gaussian noise w2

H12

A\ A 4
A A 4

Sume Sumd Observed
signal v2

input signal x2

Figure 7.3.2 Simulation model for case (a)

In this simulation, the unknown system is selected to have a FIR filter length of 10
(L=10) and one Gaussian and one non-Gaussian impacting signal is filtered under
noise free conditions (w,(n) =0).

Considering a 2-input 2-output MA(10) system model and m=2 and p=2 in

equation.(7.2.3). Its 2x2 transfer function H(z) is chosen as

1 le(Z)jl 73.1)

H =
@ l:H2l(Z) 1

where H,(z) =[0.03 -0.15 0.35 -0.42 0.2 0.23 0.5 0.48 -0.26 0.08 -0.01]z" and

H, (z)=[0.1-0.340.56 -0.57 0.33 -0.02 -0.19 0.23 -0.15 0.06 -0.01]z"
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The unknown systems are shown in the following figure;

H12 H21
Im(z) Im(z)
unit circle R wntoile
E e N -
. o, » .
e o Re(z) J T { Ro(z)
i o
° o -
2-piane z-plane
h12 h21

ézluwlhx gilu[lu,

ol

—o.e

B = G & To e &
nnnnnnnnnn TFime incex

Figure 7.3.3 Unknown systems’ pole-zero map and impulse response function
shape used in simulation case (a)

The outputs of this system are shown below;

Channel 1 Channel 2

7, =0.144, y, =3.452, v, =0.077, y,=3.175,
o -coefficient=1.66 ¢ -coefficient=1.84

Figure 7.3.4 Two channel observed signal from the simulation case (a)
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Case (b): Two-input two-output with feed back (double coupling)

For a more practical situation, the observed signal includes feed back of system

outputs as in Figure 7.2.2 (b) and illustrated as a simulation model in the

following figure;.

= ua‘é%
Unknown H11
input signal x1

A A 7

.

—}} vi l
Sum4 Observed
signal v1

k]

A A 2
v

input signal x2

+

M Bl v2

P+ >
Gaussannoise w2 UM Observed
signal v2

Figure 7.3.5 Simulation model for case (b)

We assume that H,,(z)# H,(z)#0 , ﬁlz(z) and H,,(z) have finite impulse
responses and that we assume noises are zero. The unknown system MA(6) is

modelled as

0.2+0.8271+0.4772 0.5-0.3z7"
H(z)= § i y . . . L1732
0.3z71-0.67 —0.21771=0.5z2+0.727 +0.367* +0.12z

The input signals used in this simulation case are the same signals as those used in
case (a) (Figure 7.3.1). The system’s pole-zero maps and impulse response

function shapes with their output signals are shown in the following figure;
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Figure 7.3.6 Unknvown systems used in case (b)
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The outputs of this system are shown below;

Channel 1 Channel 2

X
Tifme incdox

7, =0.069, v, =2.911, v, =0.016, y, =2.784,
o -coefficient=2.1 o -coefficient=2.25

Figure 7.3.7 Two channel observed signal from simulation case (b)

Using two observed signals in each simulation case, we tried to identify the
impacting signal through Blind Source Separation (BSS) and Multichannel Blind
Deconvolution (MBD).

The results are shown in subsequent section with the shapes of the

separated/restored signals and their statistical parameters summarised in table.
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7.3.2 Results and discussion

The impacting signal is restored from both the BSS and MBD process for two

different simulation cases. The performance of each method is compared.

Results of signal separation and deconvolution

Separated signal from BSS ( « =0.01)

QOutput 1 QOutput 2

5GG T TG0G | TEGG [ BB00 T EEG0 300G | BEGG 4000

Vs =1.375, ¥, =13.82, SSD=4467.518 ¥, =0.073, ¥, =3.093, SSD=151.018

Restored signals from multichannel blind deconvolution

Output 1 Output 2

bttt b i il i

02UN+0CaBu s

1

BOG T0GG 7500 2000 -~ Be00  B000 G500 4000 BGG 1060 1606 2000 5660 5000 | BEG0  AGG0

¥, =0.549, y, =5.784, SSD=5601.237 V5 =0.071, ¥, =3.120, SSD=1135.180

Figure 7.3.8 Separated and restored signals of simulation case (a)
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Separated signal from BSS (1 =0.01)
QOutput 1 QOutput 2

¥, =0.345, ¥, =3.808, SSD=5898.843 V3 =-0.023, ¥, =2.874, SSD=13948.460

Restored signals from multichannel blind deconvolution

QOutput 1 Output 2

566 7000 1600 | 2000 @600 G000 G600 400

¥, =1.532, ¥, =9.548, SSD=5377.893 V5 =0.092, ¥, =3.243, SSD=13027.086

Figure 7.3.9 Separated and restored signals of simulation case (b)

Overall comparison for impacting signal restoration from both BSS and MBD

process is given by the following table.
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Table 7.3.1 summarises the statistical performances and features of each signal to

compare the impacting signal restoration through the BSS and MBD process.

Table 7.3.1 Comparison of impacting signal restoration results from BSS and

MBD process

Simulation case 1; L=11

BSS (1 =0.01, t;=1.4e-3) MBD
skewness 1.375 0.549
kurtosis 13.82 5.784
SSD 4467.518 5601.237
Restored
impact
signal

nnnnnnnnnn

Simulation case 2; =6

BSS ( 1£=0.01, t,=2.6e-3) MBD
skewness 0.345 1.532
kurtosis 3.808 9.548
SSD 5898.843 5377.893
Restored
impact l
signal
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Discussions

1) Discussion for source separation process (iteration stopping criteria)

Restoration of the impacting signal from observed signals through BSS is based
on the statistical independency of the input signal. Hence, the independency
criteria represented by the higher order sense are inspected and used as stopping
criteria for iterative calculation of filter coefficients in equation (7.2.7). The
various independency measures (higher order joint cumulants) are applied and

compared in the following table.

Table 7.3.2 Comparison of impacting signal separation results for both case (a)
and case (b) simulation

Simulation case (a); L=11, 4 =0.01, t;=1.4e-3

i Iz I3 4 Js J6 I7

Iteration 32 - 218 129 13 168 225
Skewness 1.375 - 0021 | 0946 | 0419 | 0366 | 0.096
Kurtosis 13.82 - 3011 | 9983 | 4863 | 5258 | 3.153
SSD 4.4e+3 - 9.2e+3 | 4.8e+3 | 5.73e+3 | 5.71e+3 | 6.7e+3

Simulation case (b); L=6, 1 =0.01, t=0.0026

I I I3 4 Is Jo J7

Iteration 183 126 36 209 62 58 458
Skewness 0.345 0.352 0.230 0.342 0.322 0.398 0.101

Kurtosis 3.808 3.814 3.48 3.835 3.731 3.647 3.003

SSD 5.89¢+3 | :5.88e+3 | 6.2e+3 | 5.89e+3 | 5.93e+3 | 5.97e+3 | 6.6e+3

“?: not converges to the given threshold up to 500 iterations
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The various higher order joint cumulants expressed in Table 7.3.2 are defined

below (Cum,, i+ j=4 denotes cross cumulants);

Ji: ICumZZ{sl(n),sz(n)}l
T ‘Cumﬁ{sl(n),sz(n)}l

Js: ICum31{s2(n),S1(n)}1

w

Js: E{Cum22 {5,(n),5,(n —k)}} for k=0,1,...,L—1 and takes minimum value
Js: E{Cum22 {s,(n),s,(n ——k)}} for k=0,1,...,L -1 and takes minimum value
Jo: E{Cum31 {s1 (n),s,(n -k)}} for k=0,1,...,L—1 and takes absolute minimum

value

J7: E{Cum31 {sz(n),sl(n—k)}} for £=0,1,...,L -1 and takes absolute minimum

value

As a result, with the given adaptation gain # commonly selected as 0.01, and
each threshold wvalues t, it has been turned out that the criterion Jy

(lCumzz{SI(n),s2(n)}|) can yield consistent identification for both case (a) and

case (b) simulation.
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2) The variable norm parameter selection for the multichannel blind

deconvolution process

As expressed in equation (7.2.9), the multichannel objective function contains the
variable norm value which can be any real value r (r>2). From two different
simulations, we observed the kurtosis of the restored impacting signal for each r

value selection.

Case (a) Case (b)

8.2 28 34 4 4.6 52 58 8.2 28 34 4 46 52 58
Variable norm vaiues Variable norm values

Figure 7.3.10 The effect of variable norm value on the impacting signal restoration
through MBD process

For example, when r takes the value 4, the multichannel objective function
corresponds kurtosis and the algorithm becomes the multichannel ‘Minimum
Entropy Deconvolution (MED)’ [Wiggins, 1977].

For simulation case (a), the kurtosis of the restored impacting signal varies as the
selection of r changes, whereas there are consistent results for simulation case (b)
especially for r>2.4.

The effect of these r values become less significant when the observed signals are
close to Gaussian and possess an ¢ -coefficient over 2 (see Figure 7.3.7). This
means that for the problem of impacting signal reconstruction with severe noise
corrupted observed signals, » can be selected to be greater than 4 (for more
detailed information about variable r deconvolution, refer to Gray’s thesis [Gray,
1979]). In this study, we selected the r as 5.3 which gives the maximum kurtosis

value for simulation case (a).
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7.4 Summary and conclusion

In this chapter, we have addressed the problem of the blind source separation
and deconvolution of sources for convolutive mixtures for the reconstruction of an
impacting signal among a set of observed signals. A theoretical derivations and
numerical simulations have been carried out assuming that one of the sources are
non-Gaussian (impacting signal) and the other signals are Gaussian and are

independent of each other.

We showed that the cancellation of fourth-order output joint-cumulants leads
to a satisfactory condition for the source separation and non-Gaussian impacting
signal reconstruction. Three different types of joint-cumulants have been
Cumzz{si (n),sj(n-k)} , Cumn{si (n),sj(n~k)} , and Cumn{si (n),sj(n—k)} . In
fact, the selection of these output joint-cumulants possibly depends on the nature
of the unknown signals and is not known a priori. Nevertheless, focusing on the
highly impulsive signal dealt in this study, the Cum31{Si (n),s; (n—k)} is

considered to be the most effective cost function (updating function), and is thus

employed here. To check the degree of independency of the separated signal, the

criterion has been selected as ICum22 {sl(n),sz(n)}l . This factor has shown

consistency of convergence from numerous simulation results (refer Table 7.3.2).

The multichannel blind deconvolution process which utilises variable norm
values as a multichannel objective function is introduced.
For a complicated system having multi-coupling or heavy noise interference, the
multichannel blind deconvolution approach turns out to be a more effective
method (see Table 7.3.1).
The selection of the variable norm values (7) depending on the status of each input

and output signal of the inverse system remains to be studied further.
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CHAPTER 8

Application to a mechanical impacting problem

8.1 Introduction

In this chapter, the behaviour of a randomly excited vertical cantilever beam
with an endstop is investigated experimentally. The aim of this chapter is the
practical verification of blind signal separation and recovery of the impacting
signal. In the context of ‘condition monitoring’ of a mechanical system, this might
be a key element related to fault detection. The aim would be to obtain a
diagnostic tool that avoids false alarms. In a practical system, there may be
(unexpected) nonlinearities and other hidden effects among the signals and
structures. Accordingly, in our study, the experimental conditions are controlled
closely to ensure that the mathematical models used in previous chapters are
relevant.

Figure 8.1.1 illustrates a simple schematic view of a mechanical system in which
an impacting signal arises due to an end stop. In a practical case, we assume the
detailed form of the system and input sources are unavailable. The impulse signal
due to the impacting between the moving body and surrounding structure is to be
identified from the measured data (in this case the acceleration signal). The
measured signal consists of the response of the mass-spring-damper or beam
structure when the excitation and the impact signal acting simultaneously on the

structure.
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-
7 5

V4

(a) Mass-Damper-Spring system (b) Cantilever beam system

Figure 8.1.1 Mechanical model for blind deconvolution

8.2 Description of the mechanical impacting system

This section provides i) detailed descriptions of the experimental equipment used,
ii) graphical illustration for data acquisition, ii1) definitions of signals obtained, iv)
relationship between the signals and v) pre-examination of the measured signals in

each impacting or non-impacting test.
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8.2.1 Instrumentation and experimental layout

Table 8.2.1 has summarised the details of equipment used in this experiment.

Table 8.2.1 Equipment list and settings

No. Equipment name Model Serial No. Status and settings
1 Accelerometer B&K 4375 1238990 | Sensitivity : 0.318 pC/ ms™
Freq. range : 2Hz-1kHz
o | Charge Amplifier 1 B&K 2635 1575831 Connect to force transducer on exciter
Output : 100mV/Unit
Freq. Range : 2Hz-1kHz
3 | Charge Amplifier 2 B&K 2635 1278234 Connect to force transducer on impact
Output : 100mV /Unit
Freq. Range : 2Hz-1kHz
4 | Charge Amplifier 3 B&K 2635 1690266 Connect to accelerometer
Output : 10mV/Unit
Volt range : 2Volt for
Ch1 : Signal generator
Ch2 : Force transducer on impact point
_ Ch3 : Accelerometer
5 | DAT recorder. TEACRD- | 7530701
135T Ch4 : Force transducer on exciter
Tape speed : x1
Mode : PGM
6 Exciter LDS M101 9444 3V random excitation from R9211C
7 Force transducer 1 B&K 8200 1321344 | Sensitivity : 4.13 pC/N
8 | Force transducer 2 B&K 8200 1288285 | Sensitivity : 3.82 pC/N
Freq. range : 400 Hz Cut-Off
9 Low pass filter Kemo 2ch. 810806
VBF 8§ MK4 to force transducer
Scale : 0.5V /div, dc
10 | Oscilloscope T%‘g;‘fgr 000158 | Sweep time : 5ms/div, impact signal
monitoring
11 | Power Amplifier 790 series 139 Normal output : x1 Out
Random signal output : 3V, offset 0.0V
Time signal sampling rate : 1.95msec (781psec)
Advantest Frame time : 2048 samples
12| Signal analyser R9211C 22020161 Ch A : Force transducer with sensitivity —
10dBV
Ch B : Accelerometer with sensitivity 3dBV

The experimental layout is shown in Figure 8.2.1 in which a cantilever beam is

driven from a random source through an exciter. The primary (only) input to the

system is this exciter and impacting is induced as a consequence. However, as we
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shall see in Section 8.2.2, we will model this as a two input linear system (the

inputs being the force and the impacts due the end stop).

Frame

Exciter

Force transducer 1

Cantilever T
Beam ]

Accelerometer

Force transducer 2

I

Resistor

Charge Amp. 1

I~

Charge Amp. 2

=

IBM PC

1 ’}"’T_—_:P Charge Amp. 3

nooo Low pass filter
P Amp.
ower Amp ch. 1
Ch. 3

8 Ch. DAT

Ch. 2 recorder
O0000O000| §
Oscmoscope .:33
g
[}
s
e
@
=
[
.-_—j/ @
2
=
y v =
- E [0o] E I

==
AlU (ISVR)

Signal analyser

Figure 8.2.1 Experimental set-up for blind signal separation

With reference to Figure 8.2.1, a broad band Gaussian signal is the excitation.

Impacting is induced by placing an end stop restricting the motion of the beam (at

the beam tip). The Gaussian excitation signal is produced from a signal analyser

(Ch.1) and fed to the exciter. The signal from the exciter (Ch.3) is responsible for

the movement of the beam. The impacting signal (Ch. 2) is generated by the end

stop incorporating a force transducer which is placed 1.5 mm behind the beam’s

steady state position. The accelerometer is attached at the free end of the

cantilever beam to collect the signal (Ch. 4) mixed with the vibration signal of the

beam and impacting signal caused by the end stop. Note the impacting signal (Ch.

2) is captured so as to assess the performance of the inversion process — normally

of course this would be unavailable.
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8.2.2 Definitions and relationship of experimental data

Model

The whole structure of Figure 8.2.1 can be thought as a system shown below;

Measurement
point 1, A

Measurement

Mechanical point 2, V,
structure (beam)

Random Gaussian

Signal, X
» 1 Exciter

Figure 8.2.2 Structural components of beam excitation

This structure is a complicated system as the impacting signal X, is nonlinearly
related to the excitation signal x;, and so the analysis of this situation thus
becomes a very complex problem. In order to restore the hidden impacting signal
from measured signals, we intend to reduce this complexity to a simplified linear
equivalent system modelled as a two input two output system. A simplified

experimental layout is shown in Figure 8.2.3.
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v

Exciter ——»®

Beam

Figure 8.2.3 Simplified input-output structure for beam excitation experiment

The definitions of signals given in the simplified system (Figure 8.2.3) are as
follows;
x; : unknown input signal 1 (Gaussian driving signal, recorded in Ch. 1)
X, : unknown input signal 2 (non-Gaussian impacting signal, recorded in Ch. 2)
v; : measured signal 1 (force transducer signal, recorded in Ch. 3)

v, : measured signal 2 (accelerometer signal, recorded in Ch. 4)

Note that the force transducer signal v; is the measured at the point where the

force transducer is in direct contact with the structure (the beam).

Relationship of signals

Figure 8.2.3 illustrates the situation where the white Gaussian excitation force
(normal operating signal) acts simultaneously with the impacting signal on the
beam. The accelerometer signal v, is the sum of the beam motion driven by the
forcing term v; and the impacting term X,. Due to the motion of the beam, the
force transducer signal v; is affected by the feed back effect. Hence, the force

transducer signal contains both the exciter output and beam motion. Suppose we
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measure both the force transducer signal v; and accelerometer signal v, in Figure

8.2.3, the two input and two output system can be arranged as follows

V, = HX,+HV,

(8.2.1)
V, = HV,+H.,X,
Inverting this
H, H.H,
Vi _ 1-H,H, 1-H,H, | X, (82.2)
V2 HIHZ H3 X2
1-H,H, 1-H,H,
Denoting
H H.H
G1= 1 , G2 - 3774
1-H,H, 1-H,H,
(8.2.3)
- A o H
* 1-HH, ' 1-HH,
Then, (8.2.2) can be expressed
= GX, +G,X
e (8.2.4)

|4
V, = G,X,+G,X,

Assuming the accessible signals are V; (Force transducer signal) and V;
(Accelerometer signal), and X; is Gaussian, using the accelerometer signal (V5)
can provide the reconstruction of X, and Gy, whereas the use of the force

transducer signal (V1) can provide X, and G».
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8.2.3 Survey of the status of the measured signals

Two experiments are carried out in this study, (i) an impacting case, (ii) a non-

impacting case. Each of these will be discussed below.

Impacting case: the end stop is positioned to ensure that impacting occurs.

From Figure 8.2.3, we can model the structural components and signals as follows

Ra:ndom Gaussian Force Transducer
Signal Generator Signal
X | Exciter + Vi o toBeam
H, H, —] V]
3
A2
=
]
o5
Impacting Signal Accelerometer Signal
X, to Beam n ) .| from Beam
H, H,

Figure 8.2.4 Two input two output model

The measured signals are shown below.

X1 X2

0.8

0.4

Argiude (Y]
°
»
s
—
—
—
3
R A—
-—
F=
T
-+
——

-2}

—o.a

—o.ef

BOG 1006 TG 600 #2600 G000 GBOO | AGO!
Time incax

Vi V2

1666 1800 BO00  BE00 | 8000 | BB0D 4000 855777056 1800 _ 2000 366G 5G06 | GR00  AGGO
Tifme ndox Mo INdox

Figure 8.2.5 Signals from impacting experiment; X;: unknown Gaussian excitation
signal, x,: impacting signal, v;: force transducer signal, v,: accelerometer signal.
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Non-impacting case: the end stop is removed to allow the beam move freely.

When the Gaussian driving signal alone drives the beam. The model becomes,

Rapdom Gaussian Force Transducer
Signal Generator Signal
X .| Exciter + v to Beam
H H, 4
o
A S
=
Q
__________ (5]
r l .
| : Accelerometer Signal
] v, from Beam)
| , H

Not exist

Figure 8.2.6 Single input two outputs model and deconvolution

The signals are shown below.

Xy

Ayl o

1000 1600 _ PO0C #6506 3600 T BEeS | 4060
Tima indox

Vi

8367 7606 166G | 2000 2600 G000 G800 4000

X2

856 1000 1600 _ 2000 FE06 500G 0800 400

\¢)

X: i

o.ald i
Eovz [ 13 . ket F [L
3 o :

2o -7 ilif it 4 bk i At it
—a.affl I ki it 1] |
—oa

—o.s

505 1000 1600 | Z0GG FEGG 500G | 060G | 4000

Figure 8.2.7 Signals from the non-impacting experiment; X;: unknown Gaussian
excitation signal, x,: impacting signal (zero), v;: force transducer signal, vu:

accelerometer signal.
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From these signals, we assume we can measure (in practice) only two signals (i.e.,
force transducer signal, v; and accelerometer signal, v2). The statistical properties

of the signals are summarised in the table below;

Table 8.2.2 Statistical properties of each signal

Impacting case

Signals Input signals (unknown) Observed signals
Statistical
parameters X X2 Vi V2
Number of data 4096 4096 4096 4096
points (N)
Skewness -0.0186 9.454 -0.006 0.066
Kurtosis 2.9001 128.533 2.994 2.983

Non-impacting case

Signals Input signals (unknown) Observed signals
Statistical
parameters X X2 Vi V2
Number of data 4096 4096 4096 4096
points (N)
Skewness -0.049 - -0.005 -0.049
Kurtosis 2.904 - 2.994 2.928
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Impacting signal detection

Using the Higher Order Singular Value Decomposition (HOSVD) described in
Chapter 4, Section 4.3, detection of the impacting signal is carried out.

We consider three different cases: (i) using only the force transducer signal (vy),
(i) using only the accelerometer signal (vy), (iii) using two signals (multichannel

approach).

The results are shown below.

(i) using only the force transducer signal (v; signals from Figure 8.2.5 and Figure
8.2.7)

As a reminder of the terms used in Figure 8.2.8, D3 represents the detection
parameter originated from the third order cumulant tensor and D4 from the fourth
order cumulant tensor. The dotted line in each figure is the threshold of detection.
Thus, when the bar graph exceeds the dotted line, it means that an impacting

signal exists in the measured signals.

Impacting case Non-impacting case
0.6 7 ]
0.35
0.5 & 6

5]
o

Ny
B

w
[N

Magnitude
Magnitude
Magnitude

o
o
)
n

T
|
|

D3 D4 D3 D4

Figure 8.2.8 Detection results from HOSVD.

From the left D4 graph in Figure 8.2.8, we can verify the existence of an
impacting signal, which corresponds to the situation when the beam is excited
with the end stop in position. In contrast, the right D3 or D4 graph tells us that

there is no impacting signal.
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(ii) using only the accelerometer signal (v, signals from Figure 8.2.5 and Figure

8.2.7)
We see the results in Figure 8.2.9.

Impacting case Non-impacting case

7 7
0.2 02
8 [}
gl gl ] PP Bl
o o o o
2 E 34 24
E C kS =
& & & g
= 01 = 01 ES 23
2 2
0.05; 0.05
1 1
o 0
D3 D4 0 D3 0 D4

Figure 8.2.9 Detection results from HOSVD.

Unlike the detection results from the force transducer signal, the bar graphs do not
indicate the existence of the impacting signal. One possible reason for this is that
the construction of the higher order cumulant tensors from a single signal is liable
to give inconsistent results. This inconsistency may be corrected when we have

more than one signal, which is demonstrated next.
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(1ii) using two measurements (multichannel approach) (v; and v, signals from

Figure 8.2.5 and Figure 8.2.7)

Following similar procedure given in Chapter 4, we create a multichannel based

impacting signal detection algorithm and the result is shown in Figure 8.2.10.

Impacting case

e
Iy

Magnitud:

il
@

,EVD {covariance)
HOSVD (3rd tensor)

value 1 value 2

Non-impacting case

e
L)

Magnituds

o
@

£ EVD (covariance)
2% . HOSVD (3rd tensor) 4

value 1 value 2

Figure 8.2.10 Detection results from HOSVD.

Using two channels, the comparison of values from eigenvalue decomposition

(EVD) and higher order singular value decomposition (HOSVD) can serve as a

further detection tool. As a result, we can detect the impacting signal properly

through this multichannel impacting signal detection procedure.

We now move to the restoration of the impacting signal using various methods

(single channel BS, DE, BSS, and MBD) in the next section.
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8.3 Reconstruction of the input signal from measured mechanical
structure’s response

From the measured motion of the beam at two different points, the impacting

signal (x7) is to be reconstructed.

8.3.1 Single observation case

For the ordinary blind deconvolution process, we assume that either the force
transducer signal (v) or the accelerometer signal (vs) is available. Two methods

(Wiener optimisation and DE method) are applied to recover the impacting signal.

Measured Signal Restored impacting Signal
v, Orv, y,ory,

- Inverse filtqr
" F

\4

Figure 8.3.1 Single Input Single Output (SISO) inverse filtering

Reconstruction of impacting signal from force transducer signal (v;)

As a first step, the length of inverse filter (FIR) determination is required (using

the methods of Chapter 5).
Third order Fourth order

Magnitude
[=] o
S [
Magnitude
o o
» o

o
N

0.2r

o

10 20 30 40 50 680 70 80 90 100 1b Zb 3‘0 4‘0‘ 50 60 70 80 90 100
Fiiter length (Ls) Filter length (Li)

Figure 8.3.2 Result of FIR inverse filter determination
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Wiener optimisation approach

The initial FIR inverse filter is selected as an impulse (initial) type (see Chapter 5)

with 44 coefficients (for third order case as shown in Figure 8.3.2) as;

f

b_ini

=[1 0 0 ... 0], £, =1

44

The shapes of the restored signals using third and fourth order Wiener
optimisation are shown below.

Third order Fourth order

(=] N R [ (=]
Amplitude [mV]
o N =y [} o

|
)

Amplitude [mV]
&

¢
IS

|
o)

|
™

500 1000 1500 2000 2500 8000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Time index Time index

Figure 8.3.3 Restored impacting signals from force transducer signal (Wiener
optimisation)

From the above figure, we can see the impulsive nature of signal. The statistical

performances of each restored signal are summarised in Table 8.3.1.
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DE method (see Chapter 6)

The initial FIR inverse filter is composed of 100 candidates (population) of 44 (for

third order case) random numbers (having uniform distribution) as;

02 -12 ... 05 -0.1]

b_ini —

14 ... -1.7 ... 05

The shapes of the restored signals from the third and fourth order DE method are
shown below.

Third order Fourth order

)
B
)
3
2
£
E
<

Ampiitude fmV]
|
!
©

500 1000 1500 _ 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
Time index Time index

Figure 8.3.4 Restored impacting signals from force transducer signal (DE method)

Unlike the results of Wiener optimisation, the output of the inverse filter
calculated from DE does not reveal the impulse components. The observed force
transducer signal (v;) is severely affected by the Gaussian excitation signal and

the optimisation iteration of DE is probably terminated (500 iterations) before the
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global maximum is found (a considerably longer iteration allowance may yield

better results but make this less attractive than Wiener optimisation).

The statistical performances of each restored signal from DE method are

summarised in Table 8.3.1 and compared with Wiener optimisation.

Table 8.3.1 Results of impacting signal reconstruction from the force transducer

signal (v1)

Methods Wiener approach DE
Statistical
parameters Third order Fourth order Third order Fourth order
Skewness 0.894 0.554 0.18 -0.035
Kurtosis 9.303 7.477 3.391 3.719
SSD 7206.422 7190.730 7831.570 9019.917
CPU time (sec) 8.56 29.38 5181.78 4782.96

Referring to the results of Table 8.3.1 and considering the computational time of

Wiener optimisation and DE, it is clear that Wiener approach is a more efficient

approach to impacting signal reconstruction.

For another single channel blind deconvolution, we will next use the

accelerometer signal (v2) to restore the impacting signal through both the Wiener

optimisation and DE method.
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Reconstruction of impacting signal from accelerometer signal (v3)

The length of inverse filter (FIR) determination is carried out and the result is

shown below.
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Figure 8.3.5 Result of FIR inverse filter determination

which suggests an FIR inverse filter length of 39 coefficients. Thus, from the
result of optimal FIR inverse filter length determination given in Figure 8.3.5, the

impacting signal restoration procedures are carried out.

210



Chapter 8, Application to a mechanical impacting problem

Wiener optimisation approach

The initial FIR inverse filter is selected as an impulse (initial) type with 39

coefficients for both the third and fourth order case as;

f

b_ini

=1 0 0 ... 0], £, =1

3
The shapes of restored signals from the third and fourth order Wiener optimisation

are shown below.
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Figure 8.3.6 Restored impacting signals from accelerometer signal (Wiener
optimisation)

As the measurement position of the accelerometer (channel 2, signal v;) is quite
close to the impacting point of the beam, the impulsive nature of each signal in
Figure 8.3.6 shows a clear contrast to the restored signals from the force
transducer (channel 1, signal v;). Note that the statistical properties of both v; and

v, are similar (refer to Table 8.2.2)
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DE method

The initial FIR inverse filter is composed with 100 candidates (population) of 39

random numbers (having uniform distribution) as;

02 -12 ... 05 -0.1]

b_ini —

14 .. -1.7 ... 05

The restored signals from the third and fourth order DE method are shown below.
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Figure 8.3.7 Restored impacting signals from accelerometer signal (DE method)

By using the accelerometer signal, the result of impacting signal restoration by DE
shows a strong contrast to the result of the force transducer signal (compared to
the signal of Figure 8.3.4). Also this is now competitive with the result of the

Wiener optimisation. These results are summarised in Table 8.3.2.
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Table 8.3.2 Results of impacting signal reconstruction from the accelerometer

signal (v2)

Methods Wiener approach DE
Statistical
parameters Third order | Fourth order Third order Fourth order
Skewness 2.283 1.066 0.482 1.640
Kurtosis 25.355 13.185" 4.930 17.275"
SSD 4711.445 5459.333 6574.665 4949.491
CPU time (sec) 5.98 22.30 4310.77 12555.580

Table 8.3.2 illustrates that the DE method may be an acceptable approach to

impacting signal reconstruction. We can see an improvement in the result of the

fourth order DE (marked by ‘**’) over those of Wiener approach (marked by “*’).

However, it should be noted that the computational time of DE is more than 500

times greater than the Wiener approach.
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8.3.2 Multiple observation case

For multi-channel source separation and blind deconvolution process, we assume

that both the force transducer signal (v;) and the accelerometer signal (vy) are

available.
We utilise the multichannel blind signal separation (BSS) and the multichannel

blind deconvolution (MBD) developed in Chapter 7. The results of both methods

for impacting signal reconstruction are given below.

Signal separation by BSS
Output 1 Output 2

Amplitude
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Figure 8.3.8 Separated signals from blind source separation method

Signal reconstruction from MBD
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Figure 8.3.9 Separated signals from multichannel blind deconvolution method
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The statistical properties are compared in following table.

Table 8.3.3 Comparison of multichannel blind source separation and blind
deconvolution for impacting signal reconstruction

Methods BSS MBD
Statistical
parameters Y1 Y2 yi Y2
Skewness -0.022 -0.049 0.028 0.006
Kurtosis 2.909 2.830 11.208 19.874
SSD - - 6865.046 6139.029

As can be seen in Figure 8.3.8, Figure 8.3.9 and Table 8.3.3, it is noticeable that
the BSS cannot recover this impacting signal, whereas the MBD can.

A necessary condition for BSS is that the source signals should be independent
and from the arguments of Section 8.2.2, this is not satisfied in this experiment
(refer to the simplification of the system from Figure 8.2.2 to Figure 8.2.3 in
Section 8.2.2). However, in spite of this simplification, the MBD process can
successfully recover the impacting signal and shows impulsive components in

both outputs.
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8.4 Summary and conclusion

This chapter has demonstrated the practical application of the blind deconvolution
technique through a simple beam excitation experiment. The signals from single
channel measurements or two channel measurements have been used to identify a
fault signal that can hardly be recognised by a simple examination (direct
observation or for example, crest factor or kurtosis exploration of the signal from
the pick-up sensor).

Using any single BD or DE method, the impacting signal has been successfully
identified in a statistical sense. Among these, the efficiency of BD from the point
of view of computational time is preferable to DE.

For a more general approach, two different multichannel signal reconstruction
procedures are carried out namely; (i) the Blind Source Separation (BSS) and (ii)
the Multichannel Blind Deconvolution (MBD).

A comparison for impacting signal reconstruction is summarised below.

Table 8.4.1 Comparison of the best impacting signal reconstruction results for
single channel BD, DE and multichannel blind deconvolution

Single channel BD Single channel DE Multichannel BD

Skewness 2.283 1.640 0.006
Kurtosis 25.355 17.275 19.874
SSD 4711.445 4949.491 6139.029

From the third order
deconvolution
method using the
accelerometer signal

From the fourth order
DE method using the -
accelerometer signal

Remarks
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From this table, we can see that the single channel BD process is an effective
method for restoring the impacting signal.

The clear impulsive nature of restored signal can help identify the cause of the
impacts within the mechanical systems. This encourages us to propose single
channel BD as an effective tool to reveal impacting signals in condition
monitoring.

Due to the computational inefficiency, DE can only be used as a reference for
further comparative works.

Future work could include the use of cross signal manipulation using the

reconstructed multichannel signals.
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Chapter 9

Conclusions

9.1 General conclusion

Based on the study of this thesis, conclusions are presented relating to seven

stages of the work.

Stage 1 (Chapter 2) The thesis begins with the explorations of the characteristics
of higher order cumulants of signals and their properties through convolution.
Based upon theory and simulation, this stage provides evidence of the validity of
the application of higher order statistics to the source signal reconstruction
problem.

Selecting the value of the normalised cumulant which incorporates the second
order and higher (third or fourth) order cumulant, the inequality condition of this
value is established. This condition now provides the key motivation in the blind
deconvolution problems and hence is employed for the blind reconstruction of

source signal.
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Stage 2 (Chapter 3) This stage has been devoted to the fundamental consideration
of the utilisation of the Higher Order Statistics in order to reconstruct an unknown
impacting signal from only a measured signal. Starting from the basic Wiener
optimisation approach for FIR systems, the blind deconvolution procedure has
been justified utilising the objective function and its correspondence to ‘partial
order’. In restoring the impacting signal, two different objective functions
(constrained and normalised higher order cumulant) have been justified from
which FIR (non-recursive, MA inverse system) filter coefficients are calculated.
For completeness, the inverse system has been selected as having a recursive
nature (i.e., AR or ARMA system) with the expectation of improved performance
over that of the non-recursive system. These three different inverse systems are
compared with the shapes of each objective function with respect to the filter
coefficients. The result of signal restoration from each system has been also
compared. Even though all the systems possess more than one maximum, the MA

inverse system turned out to be more robust than the recursive systems.

Stage 3 (Chapter 4) The aim of this contribution is to put HOSVD/tensors into a
practical context. To do this, applications of higher order statistics through the
construction of higher order tensors and their singular value decomposition is
introduced. From this, we have devised the utilisation of HOSVD for detection,
classification and reconstructability of non-Gaussian signals. From the constructed
higher order tensors of measured signal, the higher order singular values are
estimated. The essence of non-Gaussian signal detection is based on the
comparison of the second order singular values and higher order singular values.

From the simulations with various systems, we conclude that the detection,
classification and reconstructability assessment using HOSVD can be a useful tool

for blind processing of impacting processes.
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Stage 4 (Chapter 5) This stage provides guides to open questions in blind
deconvolution namely (i) initial filter coefficient vector selection and (ii) choice of
length of the inverse filter. From this, firstly, it is demonstrated that it becomes
natural to take the initial inverse filter as impulsive in form. Secondly, criteria on
the selection of optimal inverse filter length have been proposed resulting a
predictive determinator which utilises the objective function (skewness or
kurtosis), ¢ -coefficient and/or entropy of the observed signal that can avoid very

time consuming computation.

Stage S (Chapter 6) We investigated the performance of just one of numerous
global optimisation methods for the blind restoration of non-Gaussian impacting
signals. This optimisation is the Differential Evolution (DE) method, which
utilises an evolutionary process similar to the Genetic Algorithms (GA). The
performance of signal reconstruction and computational efficiency are considered
and compared to the Wiener optimisation method discussed in Chapter 3. Since
the Wiener approach is believed to yield only one of the local maxima, the
restoration of an impacting signal using a global optimisation method has been
carried out. The restoration of impacting signal from DE has resulted in a
successful method which is comparable to the Wiener optimisation method.
However, given the equivalence of the results, DE scores relatively poor method

because of its computational overhead.

Stage 6 (Chapter 7) In this stage, we have addressed the problem of the blind
source separation and deconvolution of sources for convolutive mixtures for the
reconstruction of an impacting signal. The theoretical derivations and numerical
simulations have been carried out and an approach suggested for the multichannel
blind non-Gaussian (impacting signal) reconstruction from multipoint

measurement of a mechanical structure.
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Stage 7 (Chapter 8) In this stage, we used an experimental impacting cantilever
beam to validate the blind deconvolution process from computer simulations.
Firstly, we justified a multichannel model of this experiment and established an
approach to the practical application of BD process by simplifying the
experimental model. Secondly, we tried to reconstruct the impacting signal
through single or multichannel BD process. The experimental results for restoring
the faulty impacting signal gave acceptable information to identify the cause of

mechanical system.

9.2 Further research

In this final section, aspects of further research are proposed which relate to the

results of Chapter 6, Chapter 7 and Chapter 8.

From the results of Chapter 6, possible future research could include;

(1) Study of stability of the IIR (AR and ARMA) inverse filters in DE process
(2) The search for computational efficiency when the filter length increases
From the results of Chapter 7 and Chapter 8, enhancement on the restored signal

using multichannel restored signals through;

(1) Signal vector splitting based on the SVD

(2) A cumulant-based adaptive enhancer
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On a more general note relating to applications, the results of this thesis are
sufficiently encouraging to go forward to a more unified approach to condition
monitoring. For example, for detection and diagnosis of a faulty impacting
component of a mechanical system where the signal cannot be measured directly,
one must identify the signal and characterise the internal state of the system. A

diagrammatical illustration of this monitoring system is depicted in Figure 9.2.1.

Transmission signals

Sensors

N m-—T-- -—--

l y
|
] . .
Unknown Mechanical Q | Impactmg. signal
detection
system |
Radiation
signals I
I
I
—————————————— -
| > Knowledge base
| Data base of
l Impact dynamics
| CONDITION
l MONITORING SYSTEM
I
I -
| Setting off alarm Impact behaviour
| ar characterisation
[ shut down the machine and. .
l reconstriction

Figure 9.2.1 Condition monitoring system based on this thesis
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Using the results of this thesis, we could have applied the impacting signal
detection tool based on the HOSVD and signal identification using BD process.
However, a pattern recognition of impacting signal may be required in order to
make a precise diagnosis. To do this, a frequency based higher order signal
processing (bi-spectrum and tri-spectrum) becomes an essential element as well

as the time based higher order statistics.

223



References

[1] Abed-Meriam, K., Qui, W. and Hua, Y., “Blind System Identification”,
Proceedings of the IEEE, Vol. 85, No. 8§, pp 1310-1322, Aug. 1997.

[2] Akaike, H., “A New Look at the Statistical Model Identification”, IEEE
Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723, Dec. 1974.

[3] Bar-Ness, Y. and Rokach, J., “Cross coupled boot-strapped interference
canceller,” Proc. International Conference on Antennas and Propagation, USA,

June 1981, pp 292-295, 1981.

[4] Barrett, J. F., “The use of characteristic functionals and cumulant-generating
functionals to discuss the effect of noise in linear systems,” Journal of Sound and

Vibration Vol I, No.3, pp229-238, 1964.

[5] Bendat, J. S. and Piersol, A. G., Random Data - Analysis and Measurement
Procedures, John Wiley & Sons, Inc., 1986.

[6] Bradaric, I. and Petropulu, A. P., “Design of low rank estimators for higher
order statistics based on the second order statistics”, Proceedings, IEEE Signal
Processing Workshop on Higher-Order Statistics, June 14-16, Caesarea, Israel,

1999.

[7] Braun, S. and Hammond, J. K., Mechanical Signature Analysis -Theory and
Applications- Chapter 5, Academic Press, 1986.

[8] Brillinger, D. R, “An Introduction to Polyspectra”, Annaual Mathematics and
Statistics, Vol. 36, pp 1351-1374, 1965.

[9] Cadzow, J. A., “Blind Deconvolution via Cumulant Extrema”, IEEE Signal
Processing Magazine, pp 24-42, May. 1996.

[10] Cardoso, J. F. and Comon, P., “Tensor-based independent component
analysis, in Signal Processing V: Theories and Applications”, Proceedings
EUSIPCO-90, L. Torres, ed., Elsevier, Amsterdam, pp. 673-676, 1990.

224



[11] Cardoso, J. F., “ Eigen-strucure of the fourth-order cumulant tensor with
application to the blind source separation problem”, Proc. ICASSP-90,
Albuquerque, NM, pp. 2655-2658, 1990.

[12] Cardoso, J. F., “Super-symmetric decomposition of the fourth-order cumulant
tensor. Blind identification of more sources than sensors”, Proceedings ICASSP-
91, Toronto, Canada, pp. 3109-3112, 1991.

[13] Cardoso, J. F., “Fourth-order cumulant structure forcing. Application to
blind array processing”, Proceedings SSAP-92, pp. 136-139, 1992.

[14] Cardoso, J. F., “Multidimensional Independent Component Analysis”,
Proceedings, ICASSP-98, Seattle, USA, 1998 (a).

[15] Cardoso, J. F., “Blind signal separation: Statistical principles”, Proceedings
of the IEEE, Vol. 9, No. 10, pp 2009-2025, Oct. 1998 (b).

[16] Cardoso, J. F., ”Blind Identification of independent signals,” Workshop on
Higher-Order Spectral Analysis, Vail, CO, June 1989.

[17] Chan, Y.T. and Wood, J. C., A New Order Determination Technique for
ARMA Processes,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. 32, No. 3, pp 517-521,Jun. 1984.

[18] Chow, J. C., ”On Estimating the Orders of an ARMA Process with Uncertain
Observations”, IEEE Transactions on Automatic Control, Vol. 17, pp 707-
709,0ct. 1972.

[19] Claerbout, J. F. and Muir, F., “Robust Modeling with Erratic Data”,
Geophysics, Vol. 38, pp 826-847, 1973.

[20] Claerbout, J. F., “Parsimonious deconvolution”, Stand. Exploration Project,
Vol. 13, pp 1-9, 1977.

[21] Comon, P., “Independent component analysis, a new concept?”’, Signal
Processing, Special Issue on Higher Order Statistics, Vol. 36, pp. 287-314, 1994.

[22] Comon, P., ”Separation of sources using higher-order cumulants,” in: SPIE
Vol. 1152, Advanced Algorithms and Architectures for Signal Processing, Vol.
1V, San Diego, CA, 8-10 August 1989.

[23] Delfosse, N. and Loubaton, P., “Adaptive blind separation of independent
sources: A deflation approach”, Signal Processing, Vol. 45, No. 1, pp 59-83, July
1995.

[24] Donoho, D., On minimum entropy deconvolution, In Applied Time series
Analysis I ed., D. Findley, Academic Press, New York, pp 556-608, 1981.
225



[25] Dunteman, G. H., Principal Component Analysis, SAGE Publications Inc.,
1989,

[26] Dyer, D. and Stewart, R. M., “Detection of rolling element bearing damages
by statistical vibration analysis”, Trans. ASME, J. Mech. Design, Vol. 100, No. 2,

pp 229-235, 1978.

[27] Foschini, G. J., “Equalising without altering or detecting data”, AT&T
Technical Journal, Vol. 64, pp 1885-1911, 1985.

[28] Giannakis, G. B. and Mendel, J. M., “Identification of Nonminimum Phase
Systems Using Higher Order Statistics”, IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol. 37, No. 3, pp 360-377, Mar. 1989.

[29] Giannakis, G. B. and Mendel, J. M., “Cumulant-Based Order Determination
of Non-Gaussian ARMA Models”, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. 38, No. &, pp 1411-1423, Aug. 1990.

[30] Giannakis, G. B., “Signal processing via higher order statistics”, Ph.D.
dissertation, Univ. Southern California, Los Angeles, CA, 1986.

[31] Godard, D. N., “Self-recovering equalisation and carrier tracking in two-
dimensional data communication systems”, [EEE  Transactions on
Communications, Vol. COM-28, pp 1867-1875, 1980.

[32] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, 1989.

[33] Gray, W., “Variable norm deconvolution”, PhD. Dissertation, Stanford
University, Stanford, CA, 1979.

[34] Hammond, J. K. and Clarkson, P. M., “Lecture notes on Signal Processing”,
ISVR, University of Southampton, UK, 1989.

[35] Hom, R. A. and Johnson, C. R., Topics in Matrix Analysis, Cambridge
University Press, N.Y., 1991.

[36] Ingber, L. and Rosen, B.,” Genetic Algorithms and Very Fast Simulated
Reannealing: A Comparison,” Journal of Mathematical and Computer Modelling

16 (11), pp 87-110, 1992.

[37] Juang, B., Perdue, R. J. Jr., and Thomson, D.L., “Deployable automatic
speech recognition systems: Advances and challenges,” AT&T Technical Journal,
pp 45-55, Mar./Apr. 1995.

226



[38] Jutten, C. and Herault, J., ”Blind separation of sources, Part I: An adaptive
algorithm based on neuromimetic architecture,” Signal Processing Vol. 24, No. 1,
pp 1-10, 1991, July 1991.

[39] Kendal, M. G. and Stuart, A., The advanced theory of statistics, Volume 1
Distribution theory, Ch. 2, Charles Griffin & Company Limited, London, 1958.

[40] Kim, Donghae, “Identification of Nonstationary Parametric Models Using
Higher-Order Statistics”, PhD Thesis, Univ. Southampton, ISVR, UK, 1998.

[41] Kirkeby, O., Nelson, P A, H. Hamada and F. Orduna-Bustamante (1996) Fast
Deconvolution of Multi-Channel Systems using Regularisation. ISVR Technical

Memorandum, No. 255 April 1996.

[42] Kundur, D. and Hatzinakos, D., “Blind image deconvolution”, IEEE Signal
processing Mag., Vol. 13, pp 43-64, May 1996.

[43] Lacoume, J. L. and Ruiz, P., “Source identificatiion: A solution based on
cumulants"” IEEE Acoust. Speech Signal Process. Workshop V, Mineapolis, USA,
August 1988.

[44] Lamm P K (1993) Inverse problems and Ill-Posedness’, in ‘Inverse Problem
in Engineering : Theory and Practice. The American Society of Mechanical

Engineers, 1993.

[45] Lathauwer, De L., De Moor, B. and Vandewalle, J., “Blind source separation
by higher-order singular value decomposition, in Signal Processing VII: Theories
and Applications”, Proceedings EQSIPCO-94, Edinburgh, UK., pp. 175-178,
1994.

[46] Lathauwer, De L., Comon, P., De Moor, B. and Vandewalle, J., “Higher-
order power method — application in independent component analysis”,
Proceedings NOLTA’95, Las Vegas, UT, 1995, pp,91-96, 1995.

[47] Lathauwer, De L., De Moor, B. and Vandewalle, J., “Blind Source separation
by simultaneous third-order tensor diagonalisation, in Signal = Processing VIII:
Theories and Applications”, Proceedings EUSIPCO-96, Trieste, Italy, 1996 (a).

[48] Lathauwer, De L., De Moor, B. and Vandewalle, J., “Independent Component
Analysis based on higher-order statistics only”, Proc. SSAP-96, Corfu, Greece,

1996 (b).

[39] Lathauwer, De L., “Signal Processing based on Multilinear Algebra”, PhD.
Dissertation, Dept. of Electrical Engineering (ESAT), Katholieke Universiteit
Leuven, Belgium, 1997.

227



[50] Lathauwer, De L., De Moor, B., ” Orthogonal Super-Symmetric Tensor
Decompositions and Independent Component Analysis”, Journal of Chemometrics
Special Issue on Multi-Way Analysis, May 1999 (a).

[51] Lathauwer, De L., Comon, P., De Moor, B. and Vandewalle, J., "ICA
algorithms for 3 sources and 2 sensors”, Proceedings, IEEE Signal Processing
Workshop on Higher-Order Statistics, pp 116-120, Caesarea, Israel, June 14-16,
1999 (b).

[52] McCullagh, P., “Tensor Methods in Statistics,” Chapman and Hall, L.ondon,
1987.

[53] Mendel, J. M., “Tutorial on Higher-Order Statistics (Spectra) in Signal
Processing and System Theory : Theoretical Results and Some Applications,”
Proceedings of IEEE, Vol 79, No. 3, pp 278-305, March 1991.

[54] Miller, J. H. and Thomas, J. B., ”Detector for Discrete-Time Signals in non-
Gaussian Noise”, IEEE Trans. On Information Theory, 1T-18, 2, pp 241-250,
March 1972.

[55] Moreau, E. and Macchi, O., “New self-adaptive algorithms for source
separation based on contrast functions”, IEEE Signal Processing Workshop on
Higher-Order Statistics, South Lac Tahoe, CA, USA, pp 215-219, June 1993.

[56] Nandi, A.K., Mampel, D. and Roscher, B., “Blind Deconvolution of
Ultrasonic Signals in Nondestructive Testing Applications”, IEEE Transactions
on Signal processing, Vol 45, No. 5, May, 1997.

[57] Nelder, J. A. and Mead, R., A Simplex method for function optimisation”,
Computer J. T pp 308-313, 1965.

[58] Nikias, C. L. and Mendel, J. M., “Signal Processing with Higher-Order
Spectra”, IEEE Signal Processing Magazine, Vol. 10, No. 3, pp 10-37, 1993.

[59] Nikias, C. L. and Petropulu, A. P., Higher-Order Spectra Analysis, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[60] Nikias, C. L. and Raghuveer, M. R., “Bispectrum estimation : A digital signal
processing frame work,” Proceedings of IEEE Vol. 75, pp 869-891, July 1987.

[61] Ooe, M. and Ulyrych, T. J., “Minimum entropy deconvolution with an
exponential transformation”, Annual Meeting of European Association of
Exploration Geophysicists, Dublin, Scotland, 1978.

[62] Oppenheim, A. V., Schafer, R.-W., Discrete-Time Signal Processing, Prentice
Hall, Englewood Cliffs, N.J., 1989.

228



[63] Otte, D., Fyfe, K., Sas, P. and Leuridan, J., “Use of Principal Component
Analysis for dominant noise source Identification”, ImechE, C21/88, pp 123-132,
1988.

[64] Pachaud, C., Salvetat, R. and Fray, C., “Crest factor and Kurtosis
contributions to identify defects inducing periodical impulsive forces”,
Mechanical Systems and Signal Processing (MSSP), vol.11, No. 6, pp 903-916,
Jun. 1997

[65] Papoulis, A., Probability, Random Variables, and Stochastic Process, Ch. 15,
McGraw-Hill International Editions 1991.

[66] Peacock, K. L. and Treitel, S., “Predictive Deconvolution — Theory and
Practice”, Geophysics, Vol. 34, pp. 155-169, June 1969.

[67] Pozidis, H. and Petropulu, A. P., “Cross-Spectrum Based Blind Channel
Identification”, IEEE Transactions on Signal processing, Vol. 45, No. 12, pp
2977-2992, Dec. 1997.

[68] Proakis, J. G., “Digital Communications, 3 ed.”, McGraw-Hill New York,
1995.

[69] Rice, S. O., “Mathematical Analysis of Random Noise,” Bell System
Technical Journal, Vol 23, pp 282-332, 1944.

[70] Robinson, E., “Predictive Decomposition of Time Series with Application to
Seismic Exploration”, Geophysics, Vol. 32, no. 3, pp. 418-484, June 1967.

[71] Roblinson, E. A. and Treitel, S., “Digital Signal Processing in Geophysics”,
in Application of Digital Signal Processing, A.V. Oppenheim, ed., Prentice Hall,
Englewood Cliffs, N.J., 1978.

[72] Roblinson, E. A. and Treitel, S., Geophysical Signal Analysis, Prentice Hall,
Englewood Cliffs, N.J., 1980.

[73] Shin K., “Characterisation and identification of chaotic dynamical systems”,
ISVR 1996 PhD Thesis, 1996.

[74] Stockham, T., Cannon, T. and Ingerbretsen, R., “Blind deconvolution through
digital signal processing”, Proceedings of the IEEE, Vol. 63, pp 678-692, 1975.

[75] Storn, R. and Price, K.,” Differential Evolution — A Simple and Efficient
Heuristic for Global Optimisation over Continuos Spaces,” Journal of Global
Optimizatiion 11 pp 341-359, 1997.

[76] Takens, F., “Detecting strange attractors in turbulence”, Lecture notes in

mathematics, 898, pp 365-381, 1981.
229



[77] Thi, Hoang-Lan Nguyen and Jutten, C., ”Blind source separation for
convolutive mixtures,” Signal Processing Vol. 45, pp 209-229, 1995.

[78] Tikhonov A N and Arsenin V'Y (1977) Solutions of ill-posed problems. John
Wiley & Sons.

[79] Tsatsanis, M. K. and Giannakis, G. B., “Subspace Methods for Blind
Estimation of Time-Varying FIR Channels”, IEEE Transactions on Signal
processing, Vol. 45, No. 12, pp 3084-3093, Dec. 1997.

[80] Wiggins, R. A., "Minimum entropy deconvolution”, Thirty-ninth Meeting of
the European Association of the Exploration Geophysicists, 1977.

[81] Wiggins, R. A., Minimum entropy deconvolution, Elsevier Scientific
publishing Geoexploration, 16, pp 21-35, 1978.

[82] Woods, L. C. and Treitel, S., “Seismic Signal Processing”, Proc. IEEE, Vol.
63, pp. 649-661, April, 1975.

[83] Yellin, D. and Weinstein, E., “Criteria for multichannel signal processing”,
IEEE Transactions on Signal processing, Vol. 42, No. 8, pp 2158-2168, Aug.
1994.

[84] Yoon, S H and Nelson, P A (1995) Some techniques to improve stability in
identifying acoustic source strength spectra. ISVR Technical Memorandum, No.

779 Nov. 1995.

[85] Yoon S H and Nelson P A (1997) On the condition number of the matrix to
be inverted in an acoustic inverse problem. ISVR Technical Memorandum, No.

817 April 1997.

[86] Zhu, Jie, Cao, Xi-Ren and Ding, Zhi, “An Algebraic Principle for Blind
Separation of White non-Gaussian Sources”, Signal processing, Vol. 76, pp 105-
115, 1999.

230



Appendix A, Central limit theorem and partial order

Appendix A

Central limit theorem and partial order

This Appendix summarises results relating to the effect of filters on random
signals and Donoho’s concept of partial order. It includes a brief explanation of

the central limit theorem and simulations to confirm the validity for our class of

signals.

A.1 Central Limit Theorem

Let X1, Xz, ... , Xy be mutually independent random variables whose individual

distributions are not specified. Denote m,, and o,, as the mean and standard

deviation of each X;, i =1, 2, ... , N. Then the sum random variable

X=X, (A.L1)
will have a mean m, and standard deviation o, , where

N N
my =Y my,, oy =204 (A.1.2)
j=1 i=1

The central limit theorem states that under certain conditions the sum random
variable X will be normally distributed as N — oo with the above mean and

variance.

py(x)= L_ ptemorraoy (A.1.3)

o \om
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Proof

Equation (A.1.3) can be proved as follows [Bendat, 1958].

For simplicity, we shall assume that the respective mean values are zero.
my, = E[X,]1=0, o2 =E[X]] (A.14)

Denote the higher (central) moments of X; as

Yo =EIX]1, 7, =EX}] (A.1.5)

N
For the sum random variable X = ZX ; since the X; are mutually independent, it
i=1

follows that

2

m,=0, 0 =Nos, vy =Ny,, T, =Nt1,, etc. (A.1.6)

We next normalise X to a new random variable ¥ whose variance is unity by

N
x &5

=i (A.1.7)

o)

]

Using the characteristic function definition in Chapter 2 (section 2.2), the

relationship between the probability density function of the random variable Y and

its characteristic function is given by

¢y (W) = E[e”"]

N
ja)z X;/loyg
i=t

=Fe
(A.1.8)

N
_ HE[ej(a)/ox)Xi]
=1

=[1¢n@/oy)

where ¢, (/0 ) = Ele’®'70% |,

Taking the logarithm of ¢, (w) changes the product term in (A.1.8) into a sum,
N
logg, (@) =Y log¢, (/o) (A.1.9)
i=1
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By expanding the exponential term into a power series, and using (A.1.5) and

(A.1.6),

2 / 3 / 4
¢Yl(w/o.x):E'i1+](w/O_X)X'_(w/;){) X,z—](w ;);X) X,3+(a) Zx) Xi4+"'
L wloy)? ,  (wloy) (/o) (A.1.10)
=1- o Oy —J 3 Yut 2 Ty T

2 3 4
2N “6NJN| o0l | 24N*| o}

For large values N, and taking the logarithm of (A.1.10),

> w*
| (w/oc,)=1log | —— |=—— A.l.11
0g 9y, ( x) Og( ZN] N ( )

Consequently, as N approaches infinity, substituting (A.1.11) into (A.1.9) yields

2

log9, (@) =ilog¢n(w/ax)—>-—% (A.1.12)

Thus, the characteristic function of Y becomes,
¢, (@) ="' (A.1.13)

The relationship between the probability density function P, (y) of the random

variable Y and the characteristic function is

0y (@)= E[e" 1= &' p,(y)dy (A.1.14)

—o0

which is a Fourier transform. The inverse Fourier transform of ¢, (@) yields

_ 1 ~joY
Py =o—f 0y @) do

- L T e 20 oy (A.1.15)

27 I

which is a normal probability density function with zero mean and unity variance.
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Detraction from the central limit theorem

Expressing the probability density function of the total sum X as p, (x) and

the individual random variable X; ‘s densities as p, (x), then p,(x) is the

convolution of the densities p, (x) of X;
P (0= py, ()* py, (0*++* Py, () (A.1.16)

where * means ‘convolution’. Thus, the central limit theorem can be viewed as
property of convolution of positive functions. Because of this, the central limit
theorem does not hold if only a small number m of the given densities are
dominant. That is to say, if the densities of the other random variables are
relatively narrow (leptokurtic) in the sense that, in the evaluation of the total
convolution, they can be approximated by impulses. In this case, p,(x) is
effectively the convolution of only m dominant densities and it need not be close

to a normal curve.

Simulation for central limit theorem

Let u, and 0, be the mean value and variance of each random variable x,(k), i =

1,2, ...., N. Consider the sum random variable as illustrated in Figure A.1.1
N
y(k) =Y a,x, (k) (A.1.17)
j=1

. . . 2
where a; are arbitrary fixed constants. Now, the mean value m, and variance o,
become

m, = E[y(k)] = E[Z a,x, (k):l = D aElx()]=Y am,
- - - (A.1.18)

O'yz — E[(y(k)—my)z] = E[Zai(xi(k)—my)} :zaiz(yiz
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Following figure illustrates the sum of impulsive random variables (signals).

NG, impulsive signal

Figure A.1.1 Process of the linear combination of the non-Gaussian impulsive
signals

As expressed in equation (A.1.17), the combination (from N=1 to 160) of random
signals with 2000 sample points (k=2000) are simulated. The statistical changes of
each output case (denoted by ‘Combined signal’ in the figure) are then calculated
and are plotted by a solid line in Figure A.1.2. Also, the Gaussian distribution in
each case (denoted by ‘Gaussian signal’ possessing the same mean and variance

as expressed in equation (A.1.18)) are plotted as a dotted line for comparison.
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A.2 Partial order and BD process
Given a time series v(n) which is a filtered version of an input sequence x(n) as
shown in Figure A.2.1

v=h*x (A.2.1)
where * means ‘convolution’. The deconvolution problem is to find a filter f{n)

which recovers from the observed series v(n) ;

K=f*y (A.2.2)

y(n) = x(n)

» Ok — v (n) —> 1y

g, =h*/,

Figure A.2.1 Deconvolution model

To solve this, we introduce (in Chapter 3) the degree of Gaussianity of a random
variable (i.e., how close a signal is to the Gaussian distribution in a probabilistic
sense). The key idea of recovering v(n) is maximise a non-Gaussian parameter
(expressed in higher order terms) of the output X(n) of an inverse filter f{n) with
respect to the coefficients of the filter provided that x(n) is non-Gaussian. If x(n) is
Gaussian then v(n) is also Gaussian, thus the recovery procedure given in Figure

A.2.1 is not applicable.

The state of Gaussianity of signals in each filtering process is now defined in

terms of ‘partial order’.

A.2.1 Partial order in linear combination

Suppose two random variables X and Y (note that their lower case letters, x and
y are realisations of each random variable) are related by ¥ =aX +c¢ (a and ¢ are
non zero constants), these random variables are regarded as equivalent from a

probabilistic point of view and have the same probability distribution and denoted

as
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X=Y (A.2.3)

which means the probabilistic characteristics of any random variable is not
affected by a constant scaling and addition (i.e., the shapes of the probability

distributions of X and Y are identical).

On the other hand, for appropriate constants a;, (i=1,2,....... with Zaiz <o), we
write

Y=YaX, (A.2.4)
to mean the linear combination (linear convolution or linear filtering if a; are

assumed to be filter coefficients) of independent random variable X. Then, output

Y has a relationship with the X and defined below;

X-z2Y (A.2.5)

The notation - > is now called the partial order of random variables (i.e., ¥ is

more Gaussian than X). This is supported by the following two properties:

a) Transitivity : if X->Y and Y->Z then X->Z, Z is more Gaussian than X
b) Asymmetry : Let X and Y have finite variances. If X-2Y and Y-2 X then

X =Y. X and Y are equivalent in a probabilistic sense.

If Z is Gaussian,
Z-=>X, foranyX (A.2.6)

meaning that there are no other random variables which are more Gaussian than Z.

On the other hands, for X having a certain distribution but not exactly Gaussian,
X=YaX 22 (A2.7)
Equation (A.2.7) is strict unless

a) Xis Gaussian (then X = ZaiX,. =7), i.e., all the random variables are

equivalent in statistical sense.

b) X is not Gaussian, but the linear combination is trivial (i.e., no two a; is non

zero) (then X = ZaiX ;+=Z ). Simple scaling of a random variable doesn’t
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change any statistical properties of itself.

The case a) implies that the efficiency of the deconvolution process is
significantly degraded when the input signal to be restored has the form of the
Gaussian distribution. In a word, relation (A.2.7) says that linear combinations of
independent random variables are “more nearly” Gaussian than the individual

components of the combination. Note that X->Y means Y is more Gaussian than

X.

A.2.2 Partial order and blind deconvolution (inverse filtering)

When a non-Gaussian, i.i.d. signal excites a linear system- the output of the linear
system tends to be closer to Gaussianity due to the linear filtering. In other words,
the probability density function of the output from the linear combination
(convolution) is closer to Gaussianity than that of the individual signal. This has
been already explained through the relationship of Gaussianity to linear filtering —
i.e., the central limit theorem.

The blind deconvolution scheme aims to find the inverse filter coefficients from
which the output of the inverse filter should be less Gaussian. The equations used
in FIR inverse filter coefficient calculation have to take a certain form of

coefficients with a certain length to solve the equation.

Inverse
i.i.d. System System ii.d.
non—Gaussian more Gaussian non-Gaussian
L L1 >

Figure A.2.2 Gaussianity and filtering

The above figure notes that if an i.i.d., non-Gaussian signal is filtered by a linear
system, its output tends to be more Gaussian (Donoho, 1981).

Starting from this idea, a relationship between the partial order and blind
deconvolution problem will be discussed. To do this, Figure A.2.1 is developed in

Figure A.2.3 in detailed form
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) x(n) Convolution | "™ | Deconvolution y(n)
th,) {f,)
(b) x(n) Cascade system y(n) N
{gm}:{hm}*{fm}

Figure A.2.3 Deconvolution: (a) convolution-deconvolution operation; (b)
equivalent system (for a noise free case)

A certain statistical value calculated from the output of an arbitrarily given inverse
filter is defined to represent the degree of the Gaussianity (e.g., skewness or

kurtosis of y). In such a manner that the statistical value can discriminate between
the distribution of v and that of Eaiv(n—i) (an output of linear filter). In other

words, this requires the selection of an Objective function O which can be
equivalent to the partial order -> described in the previous section. Thus, O

agrees with order -2 on v if v->y implies
O(v) > 0(y) (A.2.8)

for every v, y which are filtered white noise sampled from random variable in v,
i.e., if y is more Gaussian than v, then the Objective function on v is larger than
on y. Hence, making the role of the objective function cope with the partial order
becomes the basis of the BD process. This objective function can be formed from
using the characteristics of cumulants, which is defined by the normalised

cumulant of order (r,s) of v as
O,(r,s)=c,’ 1(c,")"”, r>s (A.2.9)
where ¢, represents the r-th order cumulant of signal v and the order of

denominator’s cumulant s is even integer greater than or equal 2 less than the

integer r. If y(n) = Ea,.v(n —1), where v(n-i) are independent samples of random

variable v,
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0,(r,s)=0,(r, S)__M (A.2.10)

(2 ais)r/x

O,(r, s)| . Therefore, v->y implies

So, forr>sandeven s> 2, ‘OY(r, s)’ <

0,(r,9)|2]0,(r,5) evens=2, and r>s (A2.11)

Thus, equation (A.2.11) says that normalised cumulants of order (r,s) for v and y
are consistent with -=. When v has zero mean, O,(4,2) thus corresponds to the
value of ‘kurtosis’ of signal v and has been used in Wiggins’s Minimum Entropy

Deconvolution (MED). This shows that the original MED procedure is consistent
with equation (A.2.8) when v has a kurtosis greater than 3 (Ieptokurtic). If v has a

kurtosis smaller than 3 (platokurtic), minimising, not maximising 0y (4,2) is the
appropriate strategy.
Also, choosing the order r equals 3 and s as 2, the normalised cumulant takes the

form of ‘skewness’ of a signal.

The input-output relationship in a linear system is usually expressed in a linear

form

y(n)=Y, f,v(n—m) (A2.12)

where y(n) is the output of the inverse system which has an impulse response {f,,}
and v(n) indicates the input of the inverse system. Relating (A.2.12) to (A.2.11)

and denoting the objective function of output O, (r,s) then

Y ()

0,(r,s) = —2——~-0,(r,5) (A.2.13)

{2<fm>s

By taking the absolute value of (A.2.13),

N ()

m

{Z(f,,,f‘ }

{Oy(r, s)] = 0,(r,s) (A.2.14)
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and the

1/s
in which the term 2 ( fm)s' designates the standard [/, norm ” i

} . From the inequality of the rational term for s an even
,

numerator is {” f

integer and r > s case,

lal, <1 (A2.15)
1],

Using (A.2.15) for (A.2.14) yields a bound for a positive even integer s,

0, (r,9)|<

O,(r,s)| for r>s (A.2.16)

The upper bound of O (r,s) thus can be interpreted as follows; Any time-

invariant linear operation (non-Gaussian i.i.d. time series input) results in a time
series whose magnitude of the normalised cumulants is less than or equal to that
of the excitation for all even s < r.
Thus, the required deconvolving operator must generate a response whose
normalised cumulants have magnitudes that are the largest over the class of all
linear operators for all even s < r.

The study in this thesis exclusively considers the case in which s < r with s
even, whereby it is desired to select g (the impulse response sequence of the

convolution-deconvolution operator in Figure A.2.3) so as to maximise an

estimate of ny (r,s){. That is, the ideal deconvolution operation is performed by
maximising the magnitude of the normalised response cumulant O (r,s;g) ,

where s is any positive even integer less than r for which cumulant of order s, c]

is nonzero (e.g., use the order s equals 2 meaning the variance of signal). This
maximisation is to be made with respect to the unit-impulse response {g,,} of the
combined convolution-deconvolution operator of the Figure A.2.3 (b). Since the
unit-impulse response of the unknown linear convolution operator {4,} is
implicitly contained within the output data y(n), this maximisation must be made
with respect to the deconvolution operator’s unit-impulse response {f,,}. The

required maximisation therefore takes the form
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max|O, (r,s)| = max [ 0, (r,s)sgnlO, (r, )] | (A.2.17)

where f is an appropriately dimensioned vector whose components are the
elements of the unit-impulse response of the deconvolving operator (inverse filter).

In this way, the equation (A.2.17) is devised to find a global maximum of

‘0y (r, s)l. Normally, the necessary condition which give a local maximum is done

by differentiating and equating to zero with respect to the filter coefficients.

To support this, the restoration of the impacting signals that consist of a few
impulsive variables can be achieved through the inversion of the system #,, in
Figure A.2.3 unless there is noise interference. However, the observed signals are
often contaminated by noise signal (assumed Gaussian) making the observation
‘more Gaussian’. Thus, a simple inversion of the system cannot provide a correct
restoration of the impulse signal. Focusing on the problem of restoring the highly
non-Gaussian spiky signals, it would be more general to say that the BD process
can be achieved by making the inverse system produce an output that is strongly

non-Gaussian This is the main objective of the Blind deconvolution process.
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Appendix B

Numerical expansion of the higher order deconvolution

operator (part of Chapter 3)

This Appendix provides numerical solutions for the nonrecursive (MA) and

recursive (AR or ARMA) inverse filter coefficient calculation which are used in

Chapter 3.

B.1 Linear Nonrecursive Deconvolution operator (MA inverse

filter)

The input-system-output relationship can be expressed as the linear constant-

coefficient difference equation
L-1
yn)=Y fv(n—k) (B.1.1)
k=0

where f; is inverse filter coefficient (k=0,1,...,L-1). The normalised cumulant of

order (r,s) is used in which r>s and integers (for example, =4 and s=2)
N-1 N-l rls
0,(r,s)=Y, y’(k)/[Z y%k)} (B.1.2)
k=0 k=0

Optimising this objective function with respect to the filter coefficient f;

(i=0,1,...,L-1), the necessary condition is

d0,(r,s)/d f;=0 (B.1.3)

with the expansion form

B-1
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O Y (E YT & IR
aO),(r,s)_ % (k) —— o (2 (k)) —r(gy(k)) E k)- zy k)

of, £
o g ) L2 (g4
’ (Zy“'(m)
k=0
=0

Rearranging the numerator term of equation (B.1.4) and setting to zero becomes

N-1 ) a N-1
1 (1) 2 (Zy (k)/Zy <k>)2 =iy 2E) (B.15)
=0 o 9,
Jfor s=2 case,
N-1 ] N-1 N-1/ L-1
Yk =Y yk) = ( Jiv(k —i)) (B.1.6)
k=0 k=0 k=0\ i=0
ifiv(n—k)
Since, Oy (n) =0 =f dv(n-0) + £ dv(n—1) + 1, dv(n-2) +..=v(n-0) ,
oy f; fy oy I,
the term Mcan be written as
For m=0,1,2,....L-1
DE) ) (B.1.7)
df,,

Thus, substituting (B.1.6) and (B.1.7) into (B.1.5) yields

L-1  N-1

N-1 N-1 N-1
£ vk —mvk—i) =(Z Y)Y y’(k)]z Yy kw(k-m)  (B.1.8)
=0 k=0 k=0 k=0

k=0

for m=0,1,..., L-1.

Expressing this in matrix form

B N-1

- v - Ay kvk)

zv(k)v(k) Svtowk- - - Y vlkvk—g) k=0

k=i =0 k=0 -

N-1 le N“l Jo A'Ey l(k)V(k"l) (B19)

vk=Dv(k)  Dvk—Dvk=1) - - Dvk-Dvk—q) || f; k=0
k=0 k=0 k=0 _
N-1 . fL—l
ZV(k m)v(k) ZV(k mywvk-1) - - Zv(k =m)v{k-q) N1
: A-Y ™ (kv =m)
. k=0 |
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N-1 N-1
where A = Z y' (k) /Z y" (k) . equation (B.1.9) can be written equivalently,

k=0 k=0

R, -b=g (B.1.10)

v

where R,y denotes the symmetry L X L autocorrelation matrix of the observed
signal, b is L X 1 inverse filter coefficient vector, and g is L X 1 cross-
correlation vector between the observed signal and the output of the inverse filter.

This is the same equation used in Chapter 3 (equation (3.3.17)).

B.2 Linear Recursive Deconvolution operator (ARMA inverse

filter)

B.2.1 The MA part

The optimisation condition can be solved for the MA part of the inverse filter

coefficients
z r»l(k)ay(k) 2 ( ) - ~ yS(k) .Z_ys—l( ( 2
d0,(r,s) & =0 k=0 ob, i
= R (B.2. 1)
ob, ikl
( y’ (k))
=0

Rearranging the numerator term of equation (B.2.1) and setting to zero becomes

3 28 =[ IACHHY (k))z “o2D @22
k=0 i k=0 k=0

For mathematical brevity, let’s denote

o
gb(n) Esb(n——m) (B.2.3)

m

for m=0,1,2,...,g—1 and n=0,1,...,N-1. The term s, stands for the derivation of the
output of the inverse filter with respect to the MA part coefficient and is called as
the elements of the response sensitivity sequence for the MA part.

Since the output of the AR, MA part can be expressed

B-3
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= N1 p-l -1 s-1
Yy k) = 2[ Y ayk-j)+ Y by(k- i)] (B.2.4)
k=0 k=0{  j=0 i=0
Setting s=2 and combining (B.2.2), (B.2.3), and (B.2.4) yields (for m=0,1,...,g-1)
g-1 N-1 p— N-1 N-1 ] N-1 N-1
Nb s, k—mywk i)=Y a,y s,(k—m)yk— j)+(2yé (k)/Zy’(k))Zy"l (k)s,(k—m)(B.2.5)
=0 k=0 j=0 k=0 k=0 k=0 k=0

which is the similar formulation to that of FIR estimation, e.g., the filter
coefficient can be calculated by the between the correlation of x, s, and correlation

of y, sp. To solve the term s,(k-m) in equation (B.2.3) and (B.2.5), we first

calculate the term 8; }()k) as following (a, =1)

i

g-1

Y by(n-i)

dy(n)  dyn-1)  dy(n-2) =
F =(; + + fo=e—e—=y(n-0
o YT T on T op, o, Y
g-1
Y by(n—i)
For =] a, () +aq, Iy =) +a, y(n=2) Fo=E——=y(n-1)
ob, ob, b, b,
(B.2.6)
QZ_l
by(n-1i)
For i=q-1; a, ay<n)+a1 ay(n—1)+a2 a))(’1_2)+....=“=° =v(n—g+1)
b,, ' b, b, , b, ,

Expressing (B.2.6) in compact form with AR part coefficient and the observed
signal

pz_lajsb(n—m) =v(n-m) (B.2.7)

.

for m=0,1,2,...,q—1 and n=0,1,...,N-1.
Note that in (B.2.7), when the AR part coefficient is ap=1 and a;=0 for i=1,2,...,p-1
the sensitivity factor s, becomes identical to the observed signal v(n). When we

express (B.2.6) in matrix form for every coefficient of the MA part,
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For m=0
[ 9y(0-0) dy(0-1)
ob, ob,
dy(1-0) dy(1-1)
b, db,
Oy(N-1-0) dy(N-1-1)
i db, ob,
For m=1
- 0y(0-0) dy(0-1)
b, b,
dy(1-0) ay(1-1)
b, b,
dy(N—-1-0) dy(N-1-1)
i ob, ob,
For m=qg-1
- 9y(0-0) dy(0-1)
ob,_, ob,,
dy(1-0) dy(1-1)
ob,_, ob

(N -1-0) dy(N-1-1)

ob, . ob, .

q-

dy(0-p+1) |

o,

doy(l-p+1)
o5,

dy(N—1-p+1)

b,

y(O0-p+1) ]

b,

oy(l-p+1)
ob,

(N -1-p+1)

b,

dy(0—p+1) )
ob

q-1
Ya-p+Dh
b, ,

q

oy(N-1-p+1) | -

g-1 .

B-5

-

[ v(0-g+1) ]|

w0 ]
v(l)

V(N —1) |

D T
v(0)

V(N -2) ]

v(l—-g+1)

_v(N—l-—q+l)_
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The s;, terms in equation (B.2.7) are calculated via the matrix form,

- m=0 m=1 L. m:p—l 7 Fa - V(O)
n=0 5,(0-0) 5,(0-1) .o 5,(0-p+1) a(l) WD
n=1 5,(1-0) s,(1-1) .. s5;d-p+1) . _ (B.2.9)
. . .o . . V(N—l)
(n=N-1|5(N-1-0) s,(N-1-1) . . s(N-1-p+D|="- ~ .

Using the obtained sensitivity sequence matrix from (B.2.9), equation (B.2.5) can

be expressed in matrix form

F N-1 N-1 N-1 T
s, (kyv(k) N, (ovk=1) - - Y s, (kvk-g+D)
= k=0 k=0
Nt N=1 N=t by
s,(k=Dv(k) Y5, (k=Dy(k=1) - - s,(k=Dv(k—g+1) || b
k=0 k=0 k=0 _
N-1 N-1 N-1 bq-l
Yos,(k=mwk) Y5, k=mywk=1 - - 3 s,(k—mpwk—q+1)
L k=0 k=0 k=0 i
r N-1 9
[ owot N-1 Nt 7 A-Zy'_l(k)sb(k)
2n®yk-0  Ys,kytk-2 - - YsEyk-p+) 2
N—TO N—kI:O N_kl=0 ’ % A 2 yH (k)s, (k1)
stk=Dytk=1) Y s,(k=Dytk=2) - - Ds,(k=Dytk-p+D) || &
k=0 k=0 k=0
. +
N-1 N-1 N-1 aP'l ’ (B 2 10)
s,(k=m)y(k=1) Y s,(k=m)y(k=2) - - Y s,(k=m)yk—p+1) -
. A Xy R)s, (k=m)
L k=0 i
N-1 N-1
where m=g-1and A=Y y (k)/Y, y" (k).
k=0 k=0
Or, in a compact form
R,,-b=R  -a+r, (B.2.11)
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B.2.2 The AR part
The optimisation condition can be solved for the AR part inverse filter coefficient
N-1

Yy (k)ay(’_‘)(z (k)) ~r(2y(k)] Ny ay(")z (k)

90,(r.5) 15 a; &0 o0, i (B.2.12)

a ) 2ris
“ [ D yf(k))
k=0

=0

Rearranging the numerator term of equation (B.2.12) and setting to zero becomes

N-1 a N-1 N-1 a
37w yflk) (2 (k)/Zy (k)JZy' 1) 2K y(") (B.2.13)
k=0 i k=0 j
Let assume ag=1 and denote
?W”ssgn—m) (B.2.14)
a

m

for m=0,1,...,p-1 and n=0,2,...,N-1. The term s, is called as sensitivity factor for

AR part coefficient.
And for s=2 case, the left part of equation (B.2.12) can be written

N-1 N-1f p-l g-1
>y = 2( 2 a,y(k=jy+ X btk “i)] B.215)
k=0 k=0{ =0 i=0
Thus, combining (B.2.13), (B.2.14), and (B.2.15) yields (for m=0,1,...,p-1)
p-1 g-1  N-1 N-1 N-1 N-1
Za,Zs,,<k k=)= 36 3s, <k—m)v<k—i>—[ zy‘(k)/Zy'(k))Zyr_l(k)sa(k—m) (B.2.16)
=0 =0 k=0 k=0 k=0 k=0

As the same manner to the MA part case, the sensitivity factor for AR part can be

calculated as following:

Since, q, dy(n) +a, dy(n—1) ta dy(n —2) .

= "1 ’
da, da, > %a, yn=1)

=1

a;s,(n—j)=yn-1 (B.2.17)

L

.
#
<

The s, terms in equation (B.2.17) are calculated via the matrix form imposing zero
initial condition,
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i m=0 m=1 . m=p-1 |- - -
@ y(0)
n=0 5,(0-0) 5,(0-1) . 5,(0-p+1) . O
n=l | s1-00  sdA-D . . s,(1-p+l) e ™ B218)
n=N-1]s5,(N-1-0) s,(N-1-1) . . s,(N-1-p+1) |- YN =)

Hence, similarly to the MA part calculation, equation (B.2.16) can be expressed in

matrix form for AR part coefficient

N-1 &l iy 1
S a-oyt-0 Sow-0pu-n - - Sot-0yw-pen
k=0 k=0 k=0
N-1 N-1 N-l 4
Y k=Dy(k=0) Y5, k=Dyk=1 - - Y s,k=Dyl—p+D || a
pard o k=0 _
-1 N-1 Nl i
s, (k=m)y(k=0) ¥s,(k=my(k=1) - - D5, (k=m)y(k—p+1)
= %0 k=0 i
r - ]
( Nl N-1 N-1 7 A E yr-l (k)s,(k—0)
25 k=0(k) X5, (k=0k=1) - - Y5, (k=0k-gq+]) -
g 5 g W] 4w
ZSG(k—l)V(k) Zsu(/(_l)v(k—l) s, (k=1pwlk—q+1) b =0
k=0 k=0 k=0 . +
e | (B.2.19)
Yo k—myk) s, k=mvk=1) - - X5,(k-mv(k=q-+1) o
L= i k=0 - ANy (ks (k—m)
| k=0 i
N-1 N-1
where m=p-land A=Y y*(k)/ Y, y" (k).
k=0 k=0
Or, in a compact form
R, -a=R_, -b+r, (B.2.20)
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Appendix C, Scheme of Independent Component Analysis

Appendix C

Scheme of Independent Component Analysis (Blind

Source Separation, BSS)

In this section we tackle a fundamental signal processing problem with tools from
Higher Order Statistics (HOS) and multilinear algebra, namely the problem of
Independent Component Analysis (ICA), which is also known as Blind Source
Separation (BSS).

The goal of ICA is the decomposition of a multichannel data set in an a priori
unknown linear mixture of a priori unknown source signals, relying on the
assumption that the source signals are mutually statistically independent. This
concept is in fact a fine-tuning of the more well-known Principal Component
Analysis (PCA), where one aims at the decomposition in a linear mixture of
uncorrelated components. PCA involves the Eigenvalue Decomposition (EVD) of
the covariance matrix and ICA relies on tensorial generalisation of the EVD
applied to a higher-order cumulant.

The ICA is based on the tensorial diagonalisation of the higher-ordere cumulant
tensor (matrix) of the observation signal vector, which is similar to the
diagonalisation of the covariance matrix in PCA. Hence, HOEVD of a cumulant

tensor can be used to solve the ICA problem.
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C.1 Basic equation
The multi-input multi-output linear system can be expressed by following
equation,

v=Mx+w (C.1.1)

where the observed signal ve R’ (I observation channel), the unknown source
signal xe R’ (J independent source signal), the additive Gaussian noise signal
we R', and the unknown mixing matrix Me R™ whose columns {m j}are the
mixing vectors. From only the observed signal matrix y (whose row consists of N

samples of a time sequence and / observation channel, i.e., {Vin} L2 N& =121 ),
M Ip=12,.., i=12,...,

the identification of the mixing matrix M or the unknown source signal matrix x is

to be restored. Hence, this addresses the blind identification/deconvolution

problem.

C.2 Assumptions

- The mixing vectors are linearly independent.
- The components of x are mutually statistically independent.

- The noise components are Gaussian and uncorrelated with the source signal.

C.3 PCA and pre-whitening
The mixing matrix M€ R” can be decomposed and written as,
M =U-S.V' (C.3.1)

where U is the left singular vector, V is the right singular vector, S is a matrix
whose diagonal components are singular values, and T represents the matrix
transpose [Golub and Van Loan, 1996].

Making zero mean of the observed signal of (C.1.1) gives

(C3.2)



Appendix C, Scheme of Independent Component Analysis
By considering that the noise is uncorrelated with the source, the output
(observed) covariance can be written as

C? =M-C”-M" +C, (C.3.3)

The pre-whitened covariance matrix is estimated as following;
CP =[CP 0,1} (C.3.4)

For I>J (more sensors than sources) case, the variance of the noise can be
estimated by averaging I-J eigenvalues of C\” [Vaseghi, 1996].

Also, by assuming the uncorrelated source signals have unit variance, the pre-

whitened covariance matrix of the observed signal is reduced to

C® =M-M"
=U-8%.U"

(C.3.5)

This relationship enables to estimate the left singular matrix and the squared

singular value matrix through the Eigenvalue Decomposition (EVD) of the matrix

of (C.3.4).

C.4 Independent Component Analysis (ICA)

In order to determine the mixing matrix M we further need to know the right

singular matrix V in (C.3.1).

Step 1: Projection

The projection of the observed signal into source signal subspace is done by

multiplying the left singular matrix and singular value as,
z=S"U"ev (C4.1)

where " represents the pseudo inverse.
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Step 2 : Higher order cumulant matrix construction

Like the second order (covariance) matrix, the P-th order (P>2) cumulant of the

projected matrix z can be written by using the P-th order tensor notation
CZ(P) - C‘(,P) X, (U‘S)+ X, (I_],S)+ XX (U.S)+ (C4.2)
The P-th order cumulant expression of the observed signal becomes as,

CP =CP %, (Us8eVT)X, (Us8eV)x---x, (UsS V) +CP  (C4.3)

in which the C'” term vanishes when assuming the Gaussian noise. Substitutin
w g g

equation (C.4.3) into (C.4.2) yields the relationship of the P-th order cumulant of

projected signal, source signal and the right singular matrix of the mixing matrix

M as,

CP =CPx V%,V x-.x, V' (C4.4)

Step 3 : Higher Order Eigen Value Decomposition (HOEVD)

The P-th order cumulant of the source signal can be expressed from the equation

(C.4.4),
CP =CPx Vx, Vx---x, V (C4.5)

The initial matrix V can be obtained by the HOEVD of the P-th order cumulant of

the projected signal C.”.

c4
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For example, the fourth-order cumulant tensor can be calculated by

z=[z, z,]' and zy andz,=Nx1 vector, N :number of sample points .

Hence, z is pre-whitened standardised random vector (2 x N matrix, 2 means number of
channels).

For p=4 (Fourth-order cumulant matrix), according to the JADE program, C.” is
calculated as,

i[z&n)“} ; ﬁ:[z(m zz(nq z’“:{zl(m z2<n>} . i{z(n)zz(n)J

C(4) _ n=1 N n=1 n=1 n

’ Z[zl(n) Zz(”):] 2”:[2,(}1) 2,(n)? } i[zl(n)zz(n) } EN: 7,(n)* } 3

n=1 n=1 n=l1 n=1

ﬁi[ a(n)/Bsz(n)} [END 2’ zz(n) } 1}

n=1 n=l1

o Jam’ LM | & z(m)z, ()’
D e N I

n=1 N n=1

which is a 2 x 6 matrix.

Step 4 : Diagonalisation of the tensor product of the projected signal

cumulant and eigen matrix

Since the source signal is independent, the P-th order cumulant of the source

signal C{” must be diagonal. As a result, we can obtain the true left singular

matrix V when the above tensor algebra can yield a diagonal matrix of C{”.

This diagonalisation of the right side of equation (C.4.5) can be accomplished
through the Jacobi method (or Givens rotation) from which the matrix V is

updated.
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Step 5 : Mixing matrix and source signal reconstruction

Finally, we can get a matrix F
F=V.S.U" (C.4.6)
which is the inverse of the mixing matrix M.
F=M" (C4.7)

The source signal can be obtained by

% =Fey (C.4.8)

C-6



Appendix C, Scheme of Independent Component Analysis

C.5 Application of ICA for ECG signal separation

Following figure gives a biomedical example taken from J. F. Carsodo’s
‘ separation of foetal ECG’ titled "Multidimensional Independent Component
Analysis", listed in Proceedings of ICASSP, 1998., Seattle, USA. The left figure
(reproduced by permission of the author) displays 3 channels of cutaneous
potential signals of a pregnant woman. The large pulses correspond to the mother
electrocardiogram (ECG). The middle figure displays the extracted mother’s ECG
and the right signals represent the baby’s ECG separated by the ICA.

Observed sensor signals Mother’s ECG signal Baby’s ECG signal

Figure C.5.1 Example of ICA application for blind biomedical source separation
problem. Left : 3-channel set of cutaneous potential recordings, Middle :
Estimated mother’s ECG, Right : Estimated baby’s ECG obtained via ICA

[Cardoso, 1998].

o
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Appendix D, Detection, classification and reconstruction of input signals using
HOSVD

Appendix D

Detection, classification and reconstruction of input

signals using HOSVD (summary of simulation results of

Chapter 4)

This appendix summarises the extensive simulation results for detection of non-
Gaussian impacting signal, classifications of signals and/or systems, and
assessment of the impacting signal reconstructability using Higher Order Singular
Value Decomposition (HOSVD). These are examples of the work of Chapter 4
and consider 10 different systems (only two of these are discussed in Chapter 4)
and three inputs (one is a Gaussian signal and the others are non-Gaussian
impacting signals). The validity of HOSVD application is supported through

simulations. All terms used in the figure captions are defined in Chapter 4.
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D.1 Systems used in the simulation
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HOSVD

D.2 Signals used in the simulation

Case 1; Gaussian signal input

Mean : 0.017
Variance : 1.0
Skewness : 0.009
Kurtosis : 294
Crest factor : 3.86

Case 2; Uni-directional impacting signal input

T , ] Mean ¢ 0.068
DL e 9

' Skewness : 14.72
Kurtosis : 219.98
Crest factor : 16.69

L

| iy

TTTTTTTTT

Case 3; Bi-directional impacting signal input

Wy Variance 1 0999
- !! '[ I[Il I[}" - Skewness : 3.05

Kurtosis : 206.98
Crest factor : 18.40

L, Al
P
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HOSVD

D.3 Simulation results of detection, classification and

reconstruction of input signals (refer to Chapter 4 for notations)

D.3.1 Gaussian input case

Unknown system # 1 Observed signal
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Unknown system # 2

HOSVD

Observed signal
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HOSVD
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Unknown system # 6 Observed signal
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Unknown system # 9 Observed signal
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D.3.2 Non-Gaussian input (uni-direction impacting signal) case
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D.3.3 Non-Gaussian input (bi-direction impacting signal) case
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Appendix E

Determination of the inverse filter length (simulation

results for Chapter 5)

This Appendix provides details in connection with the task of inverse filter length
determination carried out in Chapter 5, section 5.4. Using various length of
impulse response and degree of noise interference simulations, the effect of an

inverse filter length is considered by comparing signals reconstructed by different

length filters.

E.1 Preliminaries

This subsection examines the effect of the length of unknown system’s impulse
response and noise interference on the performance of signal reconstruction when
the length of the inverse filter is fixed. Thus, the parameters which play dominant

roles in the determination of the inverse filter length are explored.

E.1.1 Impacting signals used in simulation

Two different impacting signal has been used in this simulation. One is an
impacting signal with regular uni-directional impulse sequence and the other is an
irregular bi-directional impulse signal both of which have large high order
statistical values (e.g. skewness and kurtosis). The two different types of the

impacting signals are shown in the following figure.
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Input signal type 1 Input signal type 2
S ?;)‘IJ) z il} !i'nl:,‘lwml |
Variance=1.0 Variance=1.0
Skewness=14.728 Skewness=3.05
Kurtosis=219.38 Kurtosis=206.98

Figure E.1.1 Input signals used for simulation

E.1.2 Model of unknown system for simulation

To generate the variable length of the impulse response, an AR(2) system (an

unknown system) is selected whose pole positions are at with the radius () and

angle (6,).

Z-plane

Figure E.1.2 The AR(2) system generating the variable length of impulse response.
‘0’ : zero of the system and ‘x’: poles of the system.

For this AR(2) system, its impulse response denoted as h(k) can have different

values and length by changing the » and 6,. The following figure shows one

1

example of the impulse response with pole position at » =0.9 and 6, =z /4.
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H(z) h(k)

Im{z)

o
o

® : . Re(®)

o
E————
==
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Amplitude

1
o
4]

- 40 80 80
z-plane Time index

Figure E.1.3 Pole-zero maps and impulse responses of selected system

Even though we select the system as AR, the length of the impulse response
(denoted by IR) of the system is assumed to be a finite length truncating the
impulse response function at the point when its magnitude is less than 0.001 (this
is done for only for simulation). Thus, for the system shown in Figure E.1.3, the
length of IR becomes 74 (i.e., equivalent length of the system L=74).

Now, the output of this system can be expressed as convolution process

L-1
2(n) = Y h(k)x(n—k) (E.1.1)
k=0

z(n) is thought as ‘noise free’ output of the unknown system H(z).

E.1.3 Noise signal generation

The Signal to Noise ratio (S/N ratio) of the (unknown) additive Gaussian noise
w(n) is defined as

2
o

SNR =10log®™ , dB (E.1.2)

where ¢? and o’ represent the variance of the noise free output of the system and

additive Gaussian noise signal, respectively. The observed signal can be obtained

by adding the noise free output signal and noise signal as

v(n) = Sh(k)x(n——k)-i—w(n) (E.1.3)
k=0
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E.2 Simulation 1: Effects of the length of unknown system’s

impulse response and noise interference on the inverse filter

The change of higher-order statistical properties for each length of unknown

system’s impulse response and the degree of Gaussian noise interference for the

measured and the restored signal with fixed length of the inverse filter has been

monitored.

Third-order case, 0, =7 /4

Skewness of measured signal (s1p45)

-1e Length of IR of unknown syst

S/N ratio (dB)
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Figure E.2.1 Skewness and kurtosis changes in measured and restored signal (for

type 1 input signal)
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Third-order case, 6, =7 /4

1
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»
oo e w
AR S
I
o
|

Skewness
Skewness
- [S. 0 ]

o
P

inf

10

-0

’ -0
SIN ratio (dB) Length of IR of unknown syst S/N ratio (dB) Length of IR of unknown syst

Fourth-order case, 0, =7 /4

Kurlosis of measured signal (s3p45) Kurtosis of !esloredsi/gnal (s3pd5 L= 11)

~10

! -10
SIN ratio (dB) tength of IR of unknown syst SIN ratio (dB) Length of IR of unknown syst

Figure E.2.2 Skewness and kurtosis changes in measured and restored signal (for
type 2 input signal)

Figure E.2.1 (type 1 input signal case) and Figure E.2.2 (type 2 input signal case)
demonstrate a three dimensional view of the third- and fourth-order statistical
values (i.e. skewness and kurtosis) of the measured (left column of the figures)
and restored signal (right column of the figures) with different length of the

impulse responses (r varying from O to 0.95) and noise interference (S/N ratio

varying from —10 to « dB). Each row of figures is divided into the plots of higher

order statistical values of measured and restored signals for unknown system’s 6,

is varying from /12 to 57/12. As shown in Figure E.1.3, by varying the pole
position of AR(2) system, the different impulse response sequence is acquired and
its corresponding length is marked in the right axis of each graph. Also, the
different Signal to Noise ratio (SN ratio) interfering on the measured signal is
plotted in the left axis of the graph. Thus, starting from those varying parameters,
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the higher order statistical values of the measured and restored signal are plotted

in the vertical axis of each graph.

The signal reconstruction has been achieved using MA(11) inverse system (i.e.

FIR, IL=11) with a normalised objective function in this simulation.

E.3 Simulation 2: Effects of the length of inverse filter and noise
interference on the performance of impacting signal

reconstruction for system with a long impulse response ( =09 and

6, =n/4 as shown in the second row of Figure E.2.1)

In previous section, we have observed the change of skewness and kurtosis of the
restored signal from various measured signals. The signal restoration has been
only achieved through a FIR inverse system in which L is fixed as 11.

In conjunction with the previous simulation, the length L of the FIR inverse filter

is changed to trace the higher order statistical values in each reconstructed signal.

Input signal type 1 (5, =09, 6,=7n/4)

Third-order case, Fourth-order case

Kurlosls of restored sigrial {5110, 9945

Skewness of restored signal (s1r0.9p45)

Skewness
<}

(SIS TS

5

" R
SN ratio (dB) Length of FIR inverse filter (L SN ratio () Lerghot iR inverse iar ()
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Input signal type 2 (r,=09, 6,=7/4)
Third-order case Fourth-order case

Kurtosis of restored signal {s3r0.Sp45)

‘Skawness of restored signal (530 9p45)

Length of FIR invorse fitar (L) S/N ratio (dB) -10 Length of FIR inverse filter (L

Figure E.3.1 Skewness and kurtosis changes in restored signals with different
length of FIR inverse filter

In Figure E.3.1, another three dimensional view of the skewness (left column of
the figures) and kurtosis (right column of the figures) of the signal restored from
the inverse filter of different length (L varying from 1 to 200) is demonstrated.
The selected AR(2) system is selected as r, and 6, to be 0.9 and /4, respectively
(shown in the second row of Figure E.2.1). Again, two different types of
impacting signal used in the previous simulation (shown in Figure E.1.1) have
been used as inputs to the system and plotted in separate rows.

The length of the inverse filter is marked in the right axis of each graph and the
Signal to Noise ratio varying from —10 to « dB interfering on the output of the
system is plotted in the left axis of the graph. Thus, with those varying parameters
(L and SN ratio), the higher order statistical values of the restored signals are
plotted in the vertical axis of each graph.

From the results of restored signal’s higher-order statistical values, the minimum

upper bound of inverse filter length is calculated for each condition of the

measured signal (different S/N ratio).
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Input signal type 1 (1, =09, 6,=7/4)

Third-order case, Fourth-order case

160

4 100

sof

3G 26 T 5
BN rastio ()

Input signal type 2 (5, =09, 6,=7n/4)

Third-order case Fourth-order case

© [ o B -

20 3G
SN emtle o5y

35
SN entio (@)

Figure E.3.2 Selection of minimal inverse filter length for different measured
signal

The points marked as ‘0’ in each graph indicate the lower bound of the length of
FIR inverse filter from which the reconstructed signal can be considered as to be
satisfactory result (for the literal convenience, the terminology of ‘minimal’
length of inverse filter is reserved to this length).

For example, let us compare the result of restored signals with minimal length of
FIR inverse filter L, and with arbitrarily selected length L, (L, > L, ) using the
third-order deconvolution filter, type 1 input and measured signal having 10 dB

S/N ratio.

The shape of each restored signal and its statistical values are compared in the

following figure.
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(a)
L=7 L=14
Jmnmm L
gl ; ST O RN O W8 R e ', g O WRHRTAR P NERGS o TM
Skewness=7.24 Skewness=7.26
Kurtosis=70.02 Kurtosis=70.56
(b)
L=18 L=30
UL LI
Skewness=7.05 Skewness=7.06
Kurtosis=73.40 Kurtosis=73.71
(¢
L=1060 L=200

Skewness=3.99 Skewness=4.65
Kurtosis=58.11 Kurtosis=62.93
(d)
L:9 L=18

=N R S ]
E:‘E |-} ! [ L“ r] " |.,_‘W §Z§ ;] v ‘ ’ lTI qr.mnwln o

Skewness=1.53 Skewness=1.55

Kurtosis=69.76 Kurtosis=70.07

Figure E.3.3 Restored input signals with different inverse filter length when
unknown system is simulated by AR(2) system (7 =09, 6, =n/4), and S/N ratio
= 10 dB. (a): restored signal type 1 from third-order method, (b): restored signal
type 1 from fourth-order method, (c): restored signal type 2 from third-order
method, (b): restored signal type 2 from fourth-order method
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From the comparison of restored signals in Figure E.3.3, we notice the higher
order statistical values (skewness and kurtosis) of each signal are slightly
increased when the length of the inverse filter is doubled. Due to the increased
FIR filter coefficients, the components of noise signal takes the form of impacting
components (signals possessing the amplitudes beyond the threshold) and thus
becomes highly possible to give incorrect reconstruction of the impacting signal
when the length of inverse filter is too excessive.

It has been observed from simulation 1 that both the skewness and kurtosis has
similar trends, which are changing with the variations of impulse response length
and noise power for measured and restored signal. In fact, the type of impacting
signal gives little differences in this simulation.

For the measured signal, a significant decrease of higher order statistical values
(skewness and kurtosis) have been observed as the length of the impulse response
of the unknown system is increased for both noise free (S/N ratio is = dB) and
noise interference case. On the other hand, however, for the restored signal, it is
noticeable for noise free case that the performance of reconstruction is unaffected
by the length of the impulse response of unknown system. Thus, the measured
signal coming from the filtering of impacting signal without noise interference
provides the results of reconstruction identical regardless of the length of the
impulse response of the system (i.e. system independent for noise free observed
signal).

Throughout the simulation 2, we can see a certain trend on the length of the FIR
inverse filter coping with the statistical status of the measured signal.

Above a certain range of inverse filter length in Figure E.3.1, the performance
(higher order statistical values) of the restored signal becomes independent of the
length of the inverse filter, which infers the existence of compact FIR inverse
filter length. This is also supported from the comparison of restored signals from
the minimal inverse filter which is coming from the results of Figure E.3.2 and
from any long inverse filter illustrated in Figure E.3.3. The results of restored
signals given in Figure E.3.3 demonstrate the fact even the longer inverse filters

cannot guarantee the better restoration.
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From these simulations, we conclude the following;

The performance of impacting signal reconstruction based on the higher order
statistical method strongly depends on the degree of noise interference.

The results given in simulation 2 supports the fact that the blind reconstruction of
an impacting signal from a measured signal can be acceptable for a certain range
of length of inverse filter. Hence, a criterion for the selection of optimal inverse

filter length is required, which is carried out in Chapter 5.
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Appendix F

Independence and source separation structure (part of

Chapter 7)

In this section we prove the fact that independence criteria based on the nulling of
the fourth-order output joint-cumulant is a sufficient condition to separate the

sources for statistically independent input signal.
Based on this, a blind source separation structure is introduced which can separate

the observed signals into statistically independent ones from which the restoration

of the input signals is achieved.

F.1 Independence using higher order statistics

The random signals (i.i.d) x,(n) and x;(n) are said to be mutually statistically

independent if the joint probability density function is separable,
Py, (@ B)=p, (@) p, (B) (F.1.1)
The higher-order (order > 3) joint-cumulants equal zero. Let x,(n) be the zero-
mean signals, then the (I+m)-th order joint-moments can be expressed as,
M, (x;,x;) = E[xx"] (F.1.2)
where [+m>2, [#0, m#0.

For the fourth-order, the joint-cumulants of two independent signals satisfy

[Nikias and Petropulu, 1993],
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Cumy, (x,,x;) = My, (x,,%;) =3M 5 (x,, x )M, (%, ;) =0
Cumy, (x,,%,) = My, (x,,%,) = M o (%, %, )M oy (x,, x,) = 2M [ (%, x;) = 0 (F.1.3)
Cumm(xl.,xj) = M13(xi,xj)—3Moz(x,-,xj)M11(xivxj) =0
Also, x,(n—k) and x;(n— p) with any delays , p are also independent. Therefore,
to fourth-order,

Cum,, (x,(n—k),x;(n—p))=0, with [+m=4 and [=m #0 (F.1.4)

Moreover, if the signals x; and x; are statistically independent, then x, and
3(x;), where 3(x,) is the signal x; filtered by linear operator 3, are also

independent.

F.2 Source Separation structure

F.2.1 Blind Source Separation via joint-cumulant cancellation

In the context of multichannel blind deconvolution, the observation vector v(k) is
assumed to be generated from an unknown source vector x(k) through the

unknown multivariate filter #(z) i.e.,
V(z2)=H(z)X(2)+W(2) (F.2.1)
where W(z) is a p dimensional additive white Gaussian noise that is assumed to be

statistically independent of the source vector x(k) and the elements of the matrix

H(z) are given by
Ly
Hy(2)= h,(k)z™ (F.2.2)
k=0

where L; represents the length of FIR filter length (we assume the unknown
systems have finite impulse response functions).

Equation (F.2.1) may be expanded in the time domain, and the output of the i-th

sensor is
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0

Iy
v =3 Y b (0)x, (- k) +w,(n), 1<i<p (F.2.3)
2, 2

j=1

The task of multichannel blind deconvolution is to restore the source vector x(k)

from the observation vector v(k), up to possibly scaled, reordered, and delayed
estimates, i.e., X(k)= PAD(z)x(k), where P R™" is a permutation matrix,

A e R™" is anonsingular diagonal matrix, and D(z) is a diagonal matrix given by
D(x)=diag{z™", 2% ...z} (F.2.4)

which implies the existence of delays in each estimated signal X(k).

In other words, the objective of multichannel blind deconvolution is to design a
multichannel inverse system so that the global system G(z) (which combines the
effect of unknown system and inverse system) has a decomposition of the

following form:

G(z)=PAD(z) (F.2.5)

The structure of source separation is a set of linear filters through which the

observed signal is filtered to yield the source signals as
S(z2)=F(2)V(2) (F.2.6)

where F(z) is a matrix of filters.

Combining (F.2.1) with noise free condition, we obtain
S(z)=F(2)H(2)X(2) =G(2) X (2) (F.2.7)

where G(z) is a matrix form of system-inverse system combined filters, which is

shown in Figure F.2.1.
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X v d
(a) ———— H F -

X G d
(b) {gm}z{hm}*{fm}

Figure F.2.1 Source separation structure. (a): convolution-deconvolution system,
(b): cascade system

Using simplifications mentioned above, matrix G(z) becomes

F(2)+ F,(2)Hy, (z) F(2)H,(2)+ Ez(z)

(F.2.8)
Fp(D)Hy (2)+ Fy(2)  Fp()+ le(Z)le(Z)jl

G(z)=F(2)H(z) =[

The separation will be achieved if matrix F(z) is such that G(z) becomes diagonal

up to a permutation:

G, (2) 0 :’
F(2)H(z)= (F.2.9)
{ 0 Gy (2)
or
0 Gy, (2)
F(2)H(z)= (F.2.10)
[Gm(z) 0 :I
Combining (F.2.9) or (F.2.10) with (F.2.8) leads to the two separating conditions,
respectively,
Fy(2) F(2) =—H},(2) (F.2.11)
Fy(2)] Fy(2) =—H,(2)
or
F ()] F,(2) =—Hy(z) (F.2.12)

FZl(Z)/ F21(Z) = "le(z)

When we consider the system H; are assumed to be FIR filters, the inverse system

F;; may be considered so that solutions (F.2.11) and (F.2.12) leads to FIR filters.
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F.2.2 Blind Source Separation via joint-cumulant cancellation

v,(n) >+ > S, (n)
FIR filter
12
FIR filter
Cll
vy(n) -+ > S§,(n)
Observed Inverse Separated
Signals System Signals

Figure F.2.2 Recursive source separation structure

In the z-domain, provided (I —C(z))™" exists, the matrix equation is
S(z)=(I+C(2))"'V(2) (F.2.13)

where C(z) is the matrix of inverse filters Cy(z).

Combining (F.2.10) and (F.2.13) leads to

F(2)=(I+C(2)"

_ 1 { 1 —Clz(z:)} (F.2.14)
1-C,(2)Cyy (2) [ —C,(2) 1
and matrix G(z) in (F.2.8) becomes
G- 1 {1— CoHy(@) Ho(-C@ ] ) o
1= Co (0o, (2) | Hau(2)~Cy(2) 1= Coy(2)Hyp(2) |
Then, combining (F.2.9) and (F.2.10), we derive the two solutions,
C,(2)=H,(2) (F.2.16)
or
C;(2)=1/H ;(2) (F.2.17)
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with outputs, respectively

S,(z2)=X,(2) (F.2.18)

or

S, (z2)=H;(2)X,(2) (F.2.19)

If we constrain Cy(z) in Figure F.2.2 to be FIR filters, only solution (F.2.16) can
be achieved under the condition such that the Hj;(z) are FIR filters.

With the condition Fj;(z)=1, equation (F.2.8) becomes

1+ Fy(2)H,(2)  Hpy(2)+ F,(2) } (F.2.20)

o= [ H, (2)+ Fy(z) 1+ Fy(2)H ()

Let L be the maximum order of filters Hj;, then Fy;, and Gy, must also be Lth-order

FIR filters and G;; becomes 2Lth-order FIR filter;

G,(2)= ¥ (h, (k) + £, (kD)2 ™,
= (F.2.21)

G;(z)=1+ (Z 1 (k)z'k)(z h,(k)z™)
k=0 k=0

From the relation S(z) =G(z)X(z), we utilise the fourth-order joint-cumulants

between the outputs at different times: s,(n) and s,(n—k), and use the linearity
properties of these cumulants [Nikias and Petropulu, 1993] with the assumption of
source independency. Thus, as already described in sub-section 7.2.2, all the joint-
cumulants involving x; and x; are zero, and the expression is expanded as (using

the cascade structure of Figure F.2.1)

Cumlm (S[. (n), S; (n-k))=

= Cumy,, ( 2 8:(p)x,(n—p), 2_ g (qx,(n—k —q))
o = (F.2.22)
L-1 2L-1

= Cumlm(z gij(q)xj(n—q)’ 2 gjj(P)xj(l”l—k —p)
=0 p=0

l+m=4, I#m=#0

If signal x(n) is a zero-mean independent, identically distributed (i.i.d.) and non-

Gaussian process, then
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Cum, (k; ky,..0k, )

= Cum(x(n), x(n—k,),...,x(n -k, ) (F.2.23)
|y ik =k =...=k,, =0
0, otherwise

where

¥, = Cum(0,0,...,0) (F.2.24)

If the signal x(n) is not i.i.d., but relation (F.2.23) holds up to pth-order, x(n) is
said to be a to pth-order white signal [Nikias and Mendel, 1993]. Expanding the
equation (F.2.22), the joint-cumulants between outputs at different delays

0<k<L-1 andfor i, je {1,2}, are expressed as
Cumy, (s;(n),s;(n—k))

g, (I+h)g, Dy (n—k-1) (F.2.25)

I
[ ygh

L-k-1
+Y g,0g, U+k)yy (n—k~1)

1=0

|
2

Cumy; (s,(n),s;(n—k))
=3 8,1+ 008, O (n-k-1) (F2.26)
1=0

L-k-1

+Y, & Dg;U+kyyy (n—k~1)
=0

Cumy, (s,(n),s;(n—k))

L-1

=Y g, U+k)g, Dyy(n-k-1) (B2.27)
=0
L-k-1

+Y g, (Dg, U+kyy (n—k=1)
1=0

Using the assumption that Hj; are FIR filters and the constraint on F;; are FIR

filters with F, =F, =1, it can be deduced that G, =1+ F,H cannot be zero.

Also assuming lhi/' (O)[ <1 and at least one of the input signal is non-Gaussian, we
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derive g,(0)=1+ f,(0),(0)#0. Thus, the terms g, (k) in equations (F.2.25),

(F.2.26), and (F.2.27) should be zero to satisfy the separation condition.

In this section, we utilise the cancellation of Cumy, (s,(n),s;(n—k)) to derive the
cys in an iterative manner, i.€.,

For ke[0,L]

¢y (q +1, k) = Cij (q, k) - ,LLCum31 (Si (n), Sj (n — k)) (F228)

where ¢ represents each iteration point and u designates a positive adaptation

step.

F.2.3 Other considerations on the blind source separation structure

The effect of length of the FIR separation system

The orders of the separation systems in these simulations have been selected as
the same length of the unknown system’s maximum MA order. However, from a
practical point of view, this cannot be achieved. For simulation case (a) in Chapter
7 - which allows tight margin of FIR separation filter length only - requires an
estimation of the unknown systems’ MA order to yield a reasonable selection of
the length of the FIR separation system. This task can be realised using various
methods of MA order and parameter determination using higher order cumulant

as mentioned in Chapter 5.
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Simulation case (a); 1 =0.01, t=1.4e-3

Skewness

Skewnass
o

-0.5

Simulation case (b); u =0.01, t=0.0026

Skewness

o
o

Skewness
=

-0.5,

Figure F.2.3 The effect of FIR separation system length. Dotted line represents the
maximum MA order of unknown system.

Note that the performance of impacting signal reconstruction for simulation case
(b) in Chapter 7 is less severe in selection of the length of FIR separation system
than the case (a). This fact is relieving aspect that the practical systems are mostly
takes the form of the case (b) types. Thus, once the length of the FIR filter length
can be above a maximum length of the unknown systems’ impulse response
function, the separation task will not be severely affected by the length of the

separation system.
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The effect of Gaussian noise interference on each channel output

The simulations performed here do not consider the effect of noise. However, in
practice, there could be external disturbances such as noise interference or
measurement error. To cope with this, Gaussian noise which is independent of any
other signals are introduced to the output of each channel and the source

separation is carried out using the same factors (L, i, t,) as the noise free case.

Simulation case (a); L=11, u =0.01, t;=1.4e-3

Skewness

1.5¢
1
0.5¢
m—O‘S
—1f
-1.5

-10 C 10 20 inf

SNR (dB)
SNR=0dB SNR=10dB
¥, =0.397, 7, =4.809, SSD=5733.321 ¥, =1.375, v, =13.82, SSD=4467.518

Figure F.2.4 The effect of Gaussian noise interference
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Simulation case (b); L=6, u =0.01, t,=0.0026

Skewness

Skewness
j=)

10 20 inf
SNR (dB)}

SNR= 0 dB SNR=10dB

TG IG60  TE00 L B060 - BE00 000 | BBG0 A0 =3 TESE e —— e e =

¥, =0.154, 7y, =3.284, SSD=6417.066 ¥, =0.345, y, =3.808, SSD=5898.843

Figure F.2.5 The effect of Gaussian noise interference
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