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This thesis is concerned with the development of systems for active structural acoustic control 

(ASAC) of soimd transmission through a plate. 

The theory of plate vibrations and the subsequent sound radiation are described. Plate 

vibrations are analysed in terms of the conventional structural mode approach, and in terms 

of radiation modes, which are a set of independently radiating velocity distributions. The 

Erst radiation mode is much more eScient than the others at low frequencies and hag a shape 

approximately corresponding to the volume velocity of the plate. This is thus chosen as the 

variable to be controlled in later parts of the thesis. 

A comparison of diSerent actuators and senaors follows. Ideally, a uniform force actua-

tor would be used with a volume velocity sensor. There are inherent problems with using a 

distributed uniform force actuator with a distributed volume velocity sensor, so in this work 

piezoceramic actuators are used instead. The placing of the actuators and sensors should be 

such that the frequency response function between them has aa little phase loss as possible for 

the purposes of feedback control. 

Feedback control and a number of related issues are discussed. One control architecture 

called Internal Model Control (IMC) is analysed in more detail and is then used in a real-time 

experiment to cancel the output of a volume velocity sensor using piezoceramic actuators. 

The distributed volume velocity sensor is then replaced by a number of accelerometers on 

the plate and several diSerent cost functions are investigated, including summing their inte-

grated outputs to estimate volume velocity, multi-channel cost functions, such as the control of 

higher order radiation modes and control of the frequency dependent shape of the Arst radia-

tion mode, and a configuration using multiple local control systems on a structure. A control 

architecture is also outlined which uses structural reference sensors and acoustic error sensors. 

This method is then tested in real-time experiments. 
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Chapter 1 

In t roduct ion 

1.1 Object ives and cont r ibut ion of thesis 

This thesis describes the development of several active structural acoustic control (ASAC) 

systems for reducing the transmission of sound through a plate. This development has two 

major stages; in the hrst stage, the structure to be controlled is modelled and an understanding 

of the physical processes which give rise to the sound radiation is used to provide insight into 

which control strategies might work best for the purposes of controlling sound transmission. 

The second stage is to implement the chosen control system, and in order to do this successfully 

a number of practical issues need to be considered. 

ASAC is a subject which has developed largely within the last ten to Efteen years. It combines 

the fields of active sound control and active vibration control to create a more subtle control 

system which reduces sound transmission through, or equivalently the radiation &om, structures 

by altering their vibrations in such a way that the overall radiation e&ciency of the structure 

is reduced. 

ASAC brings together a number of engineering disciplines. In the Erst place, an understanding 

of the physical processes which give rise to sound radiation or transmission through a plate 

is needed, involving the fields of acoustics and of structural vibrations. Once these physical 

processes are well understood, the development of an appropriate controller involves signal 

processing, control systems design, and in a more practical sense, a knowledge of transducers 
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and of Digital Signal Processing (DSP) chip programming. 

The four main objectives of the thesis are 

1. To compare the physical limitations of diEerent actuators and sensors and their placement 

for active structural acoustic control purposes. 

2. To investigate the use of Internal Model Control (IMC) and its implementation for active 

structural acoustic control purposes. 

3. To compare the physical limitations of diSerent cost functions for active structural acoustic 

control. 

4. To investigate the interaction between the physical limitations and control limitations of 

active structural acoustic control. 

In relation to these, the main contributions to research in the field of ASAC from this thesis 

are 

1. In the comparison of transducers for ASAC; particular attention is brought to the use of 

multiple accelerometers as structural sensors compared to the distributed volume velocity 

sensor. 

2. An extension to the IMC algorithm is also developed which includes separate structural 

reference sensors and acoustic error sensors, as opposed to normal IMC systems which 

only use one set of sensors. 

3. A discussion of important implementation issues, especially robustness and controller 

delay. 

4. A discussion of the interaction between physical limitations and control limitations of 

ASAC. 



1.2 S t ruc tu re of thesis 

In this thesis a plate is chosen to be the structure on which active structural acoustic control 

is demonstrated, as this gives a clear physical understanding of the concepts but avoids the 

details of larger, more comphcated structures which are ultimately the ones which need to be 

controlled if the technique is to have any practical use. The broad steps in the thesis are Erstly 

to understand and model the physical system and the processes giving rise to sound radiation. 

This gives some insight into which cost or error functions might work best to reduce sound 

power radiation through physical reasoning. These cost functions are 5rst of all tested using 

feedforward control simulations as these give an indication of the best possible attenuation that 

could be achieved for a given physical system. Feedforward control is fairly well understood and 

works for tonal or predictable disturbances where an external reference signal can be measured 

easily. This thesis however, focuses on the control of more random or broadband disturbances 

and hence feedback control is used. The lack of a time-advanced reference signal and the need 

for robust stability inevitably lead to a decrease in performance with respect to feedforward 

control. The aim, however, is to get as close as possible to the attenuations obtained through 

feedforward control by using feedback control with appropriate actuators and sensors. After 

these control simulations, the final stage is implementation and again, there are inevitable losses 

in performance at this stage but the aim is to achieve attenuations as close to those predicted 

through simulations as possible. Some of this work has been reported at conferences [1, 2] and 

in a journal paper [3]. 

Going through these stages of development, the thesis is divided into nine chapters. 

Chapter 2 gives the background and context to the thesis and a short history of active control 

and ASAC. The hterature relevant to the thesis is reviewed and the current state of research in 

ASAC is described. 

Chapter 3 is concerned with modelling the sound radiation from plates. Plate vibrations and 

sound radiation are described in terms of the standard method of structural modes and the 

Rayleigh integral respectively and then, in terms of a set of independently radiating velocity 

distributions, called radiation modes. It is shown that, at low frequencies, the shape of the first 

radiation mode is proportional to the volume velocity of the plate. As the first radiation mode 

accounts for most sound radiation at low frequencies, it follows that if it can be controlled, then 



the overall sound radiation is reduced and this provides the motivation for much of the rest of 

the thesis. The relationships between the two approaches of structural and radiation modes are 

then discussed. 

Chapter 4 describes the different actuators and sensors which can be used for ASAC. Three 

different types of structural actuator are considered; the point force actuator, the piezoceramic 

actuator, and a uniform force actuator. In direct analogy, three corresponding structural seniors 

are modelled; the ax:celerometer, the piezoceramic patch sensor, and the distributed volume 

velocity sensor. Plate excitation by an acoustic plane wave, an enclosed source, and the use of 

microphones, to measure the far Eeld radiated sound power are also covered in this chapter. 

The placement of transducers on a structure for ASAC is also an important consideration 

and this is also discussed. Feedforward simulations are used to demonstrate the effectiveness 

of the different transducers and various transducer locations for ASAC purposes. The best 

combination of transducers is found to be a uniform force actuator used with a distributed 

volume velocity sensor but, as a practical uniform force actuator has not yet been developed, 

a design using piezoceramic actuators and a distributed volume velocity sensor is used in the 

following chapters of the thesis. 

In chapter 5 feedback control is used in an application where no suitable reference signal is easily 

measurable. A number of issues which arise when using feedback controllers are introduced. 

One particular method of designing feedback controllers is called Internal Model Control (IMC) 

and this is reviewed in more detail. Using the transducer conBguration developed above, an 

experimental rig is designed with a distributed volume velocity sensor and piezoceramic actua-

tors. Measured frequency response functions between the actuators and sensors are then used 

to conduct simulations of IMC. After these simulations, the implementation of a real-time IMC 

controller and the resulting implementation issues are described. 

Chapter 6 then considers a number of diSerent cost functions for ASAC purposes, ail using 

accelerometers. Active structural acoustic control aims to reduce sound transmission or ra-

diation from a structure by altering the structural vibrations. The goal is then to design a 

structural sensor whose output is strongly related to radiated sound pressure so that minimiz-

ing the magnitude of the sensor output signal will also minimize the total radiated sound power 

[4]. Summing the output of an increasing number of accelerometers is compared with measur-

ing the true volume velocity and, as the number of accelerometers is increased, their output 



approximates the true volume velocity more and more closely. Other cost functions using ac-

celerometers considered are multi-channel feedforward control, control of higher order radiation 

modes, which does not give significant improvements over controlling the volume velocity, and 

controlling the changing shape of the Erst radiation mode, which does give a slight increase in 

performance. Another configuration which uses a large number of local control systems on the 

structure, each with its own actuator, sensor, and controller is also considered and may hold 

some promise for future applications. In this chapter, feedforward simulations are again used to 

compare the best possible performance which can be obtained with each diSerent cost function. 

In chapter 7, an extension to the normal IMC algorithm is also developed which uses separate 

reference sensors and error sensors. This has particular relevance to ASAC as it enables reference 

sensors to be placed on the structure and error sensors to be placed in the far-Held. Again, 

simulations using modelled frequency response functions are performed. 

Chapter 8 then considers the implementation of a real-time ASAC system using a modified 

experimental rig and the new cost function with structural reference sensors and acoustic error 

sensors. A new experimental arrangement, using multiple accelerometers in place of the dis-

tributed volume velocity sensor, is described and, using measured responses, the performance 

of a real-time control system is predicted. This real-time IMC system is then implemented and 

the results are presented. During the implementation new issues arise and these are discussed. 

Finally, chapter 9 presents the conclusions and a number of possible directions for future work. 

Two appendices are included the first of which compares the different plate boundary condi-

tions which are used in this thesis and the second of which describes a common mathematical 

formulation for analysing two of the different cost functions which are used in the thesis. 



Chapter 2 

Background and historical 

perspect ive 

2.1 An in t roduct ion to active control 

2.1 .1 W h y ac t ive contro l? 

Reducing noise, or noise control, has always been one of the main reasons for developing an 

understanding in acoustics. Conventional noise control techniques typically require the addition 

of mass or damping to the system to be controlled or system modihcation through re-design. 

These techniques usually imply a significant mass increase and it can be difficult to predict 

their precise eSect. They also tend to be ineSective at low frequencies. For example, conaider 

an anechoic room which is required to stop reflections down to a frequency of around lOOffz. 

At these frequencies, the wavelength of sound in air is around 3.43m and, in order for porous 

materials to be elective they need to be of a thickness around a quarter of the wavelength 

of the incident sound [5]. Foam wedges of approximately 0.85m length are then required on 

the walls, floors and ceilings of the room. Obviously, these passive techniques are impractical 

in many circumstances and an alternative technology which is becoming popular is the use of 

active noise control techniques. An excellent review of passive control techniques is given by 

Bies and Hansen [6]. 
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By definition, active control can be said to be a method of altering the behaviour of a system by 

the introduction of an energy source whose output is dependent on the response of the system. 

Conversely then, passive control is when no energy is introduced to the system to alter its 

behaviour [7]. Active control processes can range from the small scale, for example control of 

chemical reactions, to the large scale where active methods are used to control the vibrations of 

buildings subject to seismic vibrations for example. There are also examples of active control 

seen in natural biological systems such as in the human ear or in the central nervous system. 

This thesis is however concerned speciBcally with controlling sound radiation using active meth-

ods. Active control of sound thus refers to the reduction of noise using some type of sound-

generating actuator and some type of sensor which can measure the sound field or sound-related 

variables. Normally, this refers to the use of loudspeakers as actuators, and microphones as sen-

sors which measure the response of the system. 

A number of applications in which active noise control is used are outlined in the next section. 

These tend to be in situations where space and weight are important considerations such as in 

aircraft or other forms of transportation. The cost of active control is often large compared to 

passive control but, as the price of fast DSP chips and transducers fall, active control should 

become an increasingly attractive solution to noise control problems in the future. A brief 

comparison of active control and passive control is given in table 2.1. 

Passive control Active control 

Most effective at high frequency 

Adds extra mags and damping 

May involve large-scale changes to system 

Low-cost to implement 

Most effective at low frequency 

Uses compact and lightweight transducers 

Only minor changes to system may be needed 

Relatively expensive to implement 

Table 2.1: Comparison of paasive control and active control 

Figure 2.1 shows a feedback control system but has the essential components of any active 

control system. The disturbance is the response of the physical system under control, to the 

original, or primary, excitation. The three blocks which make up the control system can take 

many different forms, the most important of which for active control of sound (ACS) and ASAC 

will be covered in the following sections, but the structure essentially remains the same for any 

active control system. The Erst element, the sensors, measure the response of the system in some 

way. The measured signal is then fed to a controller which processes the information in some 
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way to produce a control signal. There are various ways of processing the measured signals dealt 

with in control systems theory. This thesis will deal mainly with one possible method called 

internal model control. The control signals are then fed to the secondary actuators which affect 

the total response of the system. The hnal, altered, response of the system is a superposition 

of the effects from the primary disturbance and the effects of the secondary actuators. An 

additional definition used in describing active control systems is the plant. This is defined as 

the complete system between the electrical input to the control actuators and the electrical 

ouputs from the sensors. This includes the response of the transducers and that of the physical 

system under control. 

Disturbance 

Controller -*l Sensors Actuators 
Physical system 
under control 

Figure 2.1: Block diagram of an active control system 

Although this thesis deals with a specific type of active control, namely ASAC feedback control, 

some of the latest research in active control technology is into hybrid active-passive methods 

which take the advantages of both active and passive control which are combined to give ma-

terials with good noise control performance over a large frequency range [5,8]. 

2 .1 .2 A brief h i s tory of ac t ive contro l of s o u n d 

The concept of active control applied to noise control problems is not a new one and as early 

as 1934, Paul Lueg had filed a patent which described a technique for controlling sound using 

the introduction of additional sound [9]. He suggested using out-of-phase sound radiation 

from a secondary source to cancel a one-dimensional wave in a duct using the principle of 

superposition. His method used a microphone to measure a plane wave travelling along the 

duct. This microphone signal was fed through an electronic controller to a loudspeaker. The 

task of the electronic controller was to send the correct signal to the loudpseaker so that it 

produced a sound wave in anti-phase to the original primary wave and cancellation would 

then take place due to the principle of superposition. It is interesting to note that, although the 

technology to implement this system was not available at the time, mainly in terms of producing 



an electronic controller which could change the amplitude and phase of the measured signal by 

the appropriate amounts, almost all the components which are now viewed as being essential 

in modern control systems were present. These are the primary source or disturbance (plane 

wave in duct), the reference sensor (microphone), the secondary actuator (loudspeaker), and the 

controller (see figure 2.1). These components are arranged for feedforward control, which can 

be used when an external reference signal or the excitation is easily measured before the point 

of control. However Lueg included neither an error sensor nor adaptation in his method. The 

error sensors in this case could be a second microphone downstream of the secondary actuator 

to check that the primary wave had indeed been cancelled or to adapt the controller to track 

changes in the system. 

Another classic paper which was published well before the current digital technologies were 

available, was written in 1953 by Olson and May [10]. Using analogue equipment available at the 

time, they described an 'electronic sound absorber' and some possible applications lor it. The 

sound absorber works by measuring the sound with a microphone and feeding it back through 

an electronic controller to a loudspeaker to produce sound in anti-phaae with the disturbance. 

By making sure the phase shift between the input to the microphone and the output from the 

loudpseaker is minimised and by using negative feedback, a simple 180° phase shift between 

the loudspeaker output and the microphone input is achieved and perfect cancellation takes 

place. A major diEerence between this formulation and that of Lueg is that in this case, there 

is no reference sensor and so the control is termed feedback control. However, Olson and May 

again foresaw the essential parts of a feedback control system and also predicted many of the 

applications which feedback control is currently being used in, such as to produce zones of 

quiet in headrests of chairs or in ear defenders where active components are mixed with passive 

hearing protection to provide an increased frequency range of attenuation. 

However, it is only due to the recent advance in a number of technologies that active control 

has become a viable technique for controlling noise in real applications. 

The first technology which has developed over recent years is the production of cheaper, more 

reliable and faster DSP chips, which allow rapid processing of the reference or error signals to 

calculate the necessary control signals. Coupled with this has been progress in the mathematics 

of control engineering. New and eScient techniques for calculation of the control signals have 

been developed. The final technology, which has been an area of increased research more 



recently is transducer technology which has led to the development of new actuators and sensors 

that allow control systems to be used in increasing numbers of applications with increasing 

effectiveness. This is especially important for active structural acoustic control (section 2.2). 

Active control thus brings together a number of disciplines: control theory, acoustics, structural 

vibrations, and knowledge of which transducers would be the most suitable for diSerent appli-

cations. Even though the principles of active control are not new and may be well understood, 

technological feasibility can rely on novel methods which have only recently become available. 

Since the middle of the 1980's applications of active noise control have started to appear in 

commercial products and, corresponding to the increasing number of applications, greater in-

sight into its possibilities has developed. The next few paragraphs describe the general trends 

of active control research. An excellent overview of active control of sound is given by Nelson 

and Elliott [11]. 

Following Lueg's first suggestion of controlling a plane wave travelling along a duct, the first 

applications of active noise control were the feedforward control of sound in an air-duct. The 

main reason for this is the simplicity of the problem both in terms of its physical modelling 

and in terms of the control techniques which are required for single frequency plane waves. 

This particular application of active control had the additional advantage of achieving large 

reductions for tonal disturbances at low frequencies in an important problem where passive 

techniques had proved to be difficult and did not achieve very large reductions. Although some 

systems which worked under very specific conditions had been developed around 1970 (see [12] 

for example), the Erst system which could be apphed to reduce sound over a wider frequency 

range and which was useful in many real situations, as well as being self-adaptive and robust, 

was developed by Roure [13]. 

The next steps were to develop sytems which had more than one input and output i.e. a 

move from Single-Input Single-Output (SISO) to Multi-Input Multi-Output (MIMO) and a 

corresponding move to control in two and three dimensional spaces. These spaces could either 

refer to small areas of the free-Eeld or enclosed spaces. The analogue systems suggested by 

Olson and May [10] are also generally converted to digital systems which requires the use of 

anti-aliasing and reconstruction filters, DSP programming, and Analogue to Digital and Digital 

to Analogue convertors (ADC/DAC). Moving to three-dimensional enclosures allowed more 
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applications such as controlling the sound in aircraft cabins and inside cars. As the transport 

industries give rise to applications where space and weight are at a premimum, active control 

has been largely funded by aerospace, automotive, and nautical industries but other uses have 

followed. For example, an increasing problem is due to noise carried between neighbouring 

houses and active control offers a possible solution in this area [14]. 

Another general trend in active control research has been from the control of tonal or predictable 

disturbances to more random and broadband ones. There has been a corresponding move from 

feedforward control to feedback control. Feedforward control requires a reference signal and 

relies heavily on Wiener filtering and Least Mean Square (LMS) methods. Applications which 

use feedback control include hearing protectors or active headphones which reduce unwanted 

signals but leave important signals (these are especially important to prevent fatigue for pilots 

for example), and headrests with zones of quiet. A final area of development has been in 

transducer technology. This has been of use mainly in active vibration control (ACV) and 

in ASAC which are dealt with in section 2.2. In active noise control, the loudspeakers and 

microphones which are conventionally used have changed little over the last fifteen years apart 

from a fall in their prices. 

An overview of the development of active control application developments shows five main 

trends for research: 

1. From control at a single spatial point to control at a number of points or over a region 

of space (Curtis [15] shows that complete global control could be achieved in theory if an 

infinite number of control sources were available). 

2. An increase in the number of control channels from SISO (one actuator and one sensor) to 

MIMO control (control with a number of actuators for a number of measurement points) 

3. From feedforward to feedback control. Feedback control, which can be used in a broader 

range of applications, is generally more di@cult to implement in distributed-parameter 

systems such as those which support acoustic disturbances. 

4. Corresponding to the move from feedforward control to feedback control is a move from 

the control of tonal or predictable sound to the control of more random and broadband 

sounds. 
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5. The degree of integration of the control system components with the system to be con-

trolled. Initially far-field acoustic actuators and sensors have been used. There has been 

a movement to more integrated systems where actuators and sensors are integrated with 

the vibrating structure generating the noise and thereby tackling the source of the noise 

instead of the radiated noise itself. 

Figure 2.2, taken from Fuller and von Flotow [16], summarises these trends in active sound 

control research and the increasing complexity of control. The three variables shown are spatial 

extent, corresponding to the Brst development listed above, spectral extent, corresponding to 

the fourth development listed above, and the level of passive damping in the system to be 

controlled. The amount of damping has two eEects which are important for active control 

purposes. On the one hand, a lightly-damped structure may allow larger attenuations than a 

similar heavily-damped one. The same light damping however, also results in more uncertainty 

in the true position of resonant frequencies and so more care must be taken to ensure stability of 

feedback systems. An increase in the number of channels or a move from feedforward to feedback 

control generally increases the amount of computer processing required to perform the control. 

The simplest control of SISO feedforward control of single-point, narrowband disturbances 

is, by now, fairly straightforward and well-understood and can be implemented with some 

success. The movement is more and more into the most complex corner of the figure which 

encompasses MIMO feedback control of broadband, spatially-distributed disturbances. This is 

the area of the graph which also imposes the greatest physical limitations on the maximum 

attenuation possible. The search is thus getting harder and harder to achieve smaller and 

smaller attenuations. 

References which provide a good overview of active control including its history and the major 

developments outlined above include [11,16-18]. Berkman and Bender [18] in particular draw 

attention to the major achievements in the implementation of active control technologies. 

2.2 Active s t ruc tu ra l acoustic control (ASAC) 

Section 2.1.2 gave an overview of the history of active control of sound and the aim of this 

thesis is to describe one method of achieving such active sound control. However, instead of 
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Figure 2.2: General trends in progression of active control research (from [16]) 

using the loudspeakers and microphones which would be used in conventional ACS, a subset of 

active sound control called Active Structural Acoustic Control will be used. This is a mixture 

between ACS and Active Vibration Control (ACV) in which the vibrations of a structure are 

altered in such a way that its overall sound radiation is reduced. 

Applications where controlling sound transmission would be desirable include the control of 

boundary layer noise through an aircraft fuselage, reducing road and tyre noise inside a car, 

and even reducing noise transmitted through walls from neighbours. 

2.2 .1 W h a t is ac t i ve s t ruc tura l a c o u s t i c contro l? 

Active structural acoustic control (ASAC) refers to the process of reducing sound power trans-

mission or radiation from a structure using actuators integrated with the structure itself 

In reducing the sound radiation from structures, there are generally two types of control sources 

or actuators which can be used. The Erst of these is the use of acoustic control sources within 

the region where control is required. Control of sound using these control sources, loudspeakers 

for instance, is termed as Active Control of Sound (ACS) [11]. However, it is found that when 
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the primary sound source is complex or distributed over multiple surfaces, many acoustic control 

sources are required in order to provide global control [19]. ASAC then takes advantage of the 

nature of the structural-acoustic coupling and allows a reduction in the dimensionality of the 

controller and this will be seen to be important both in terms of the performance of a control 

system and in terms of the overall cost of the control system. Furthermore, it is often impractical 

to have secondary acoustic sources located away from the radiating structure. Using acoustic 

transducers can also lead to unwanted noise in positions between the sensors [20]. This is one 

example of spillover, a process which results in unwanted increases in some variable as a result 

of some control process. 

The second type of control source is integrated with the struture itself and in this case, the aim 

is to change the vibration distribution of the structure such that the overall sound radiation 

is reduced. This method was first introduced by Fuller and his co-workers . It differs slightly 

from conventional active vibration control (ACV, reviewed by Fuller et al. in [19]) in that it 

attempts to control only the vibrations which are important to sound radiation or which radiate 

sound efficiently. Pure vibration control on the other hand, attempts to reduce the vibrations 

of a structure as much as possible with no concern for the result on the sound radiated by 

the structure. Obviously, if the vibrations of a structure are completely eliminated, then the 

structure will cease to radiate sound. It will be shown later, in section 4.5 however, that there is 

a subtle diSerence between these two techniques and this type of control has been called active 

structural acoustic control (ASAC). ASAC takes into account the fact that different modes 

of vibration contribute by different amounts to the noise radiation and the object of ASAC 

is to create a reduced order controller which only focuses on these important sound radiating 

modes. The effect is thus to reduce the radiation efficiency of the structure rather than the 

actual vibrations. A side effect of this is that AVC can actually lead to increases in radiated 

sound levels and conversely, a reduction in radiated sound power can lead to an increase in 

structural vibration levels. The effects of spillover in the radiated acoustic field are generally 

reduced when using structural actuators. 

A block diagram of an ASAC system is shown in figure 2.3 and falls within the framework 

of active control systems in general (c.f. figure 2.1). The three essential components are the 

structure to be controlled, the transducers (actuators and sensors), and the controller, which 

commonly includes the digital-to-analogue converter (DAC) and analogue-to-digital converter 

(ADC). These will all be dealt with separately in the thesis, the structure being dealt with in 

14 



chapter 3, the transducers in chapter 4, and the controller in chapters 5 to 7. 

Control signals, u 

Error signals, y 

DAC 

ADC 

Actuators 

Structure to 

Sensors 

Controller 

Figure 2.3: Block diagram of an active structural acoustic control system 

Although ASAC normally refers to applications in which control inputs are applied directly to 

the structure rather than ANC where control inputs would be in the acoustic field, the error 

information is conventionally also measured in the radiated acoustic Beld, with microphones for 

instance. Evidently, after changing from acoustic actuators to integrated actuators, a further 

step can be taken by integrating the sensors with the structure itself rather than using far-field 

sensors. In this case, it is important to measure a variable which is strongly related to the 

radiated acoustic power. 

2 .2 .2 A brief h i s t o r y of ac t ive s t ruc tura l acous t i c contro l 

The first references to ASAC were by Fuller and his co-workers in around 1985 [21] and at the 

same time by Vyalyshev e( oZ. [22]. They Srst suggested using structural actuators instead of 

acoustic actuators in order to reduce spillover which arises with the latter and the possibility 

of a reduced order controller when using structural actuators. Initially, point force actuators 

were used and the radiated sound power was measured using microphones. Initial experiments 

comparing the use of vibration inputs and sound sources were also conducted by Fuller [23]. 

These also concluded that in general, the control by structural inputs was more effective than 

control using far-field acoustic sources. 
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The main developments which have allowed more successful implementations of ASAC systems 

have been in new transducers. Piezoelectric materials which are lightweight, are cheap to 

manufacture, and can be integrated into the structure, were found to be more practical than the 

point sources used in the intial simulations and experiments, which would require cumbersome 

reaction mounts [24]. 

Rather than using microphones in the far field to measure the radiated sound, a natural pro-

gression was then made to integrate sensors with the structure to be controlled as well as the 

actuators. A major advantage when both actuators and sensors are integrated is that the sys-

tem can be used when it would be impractical to have transducers placed in the far field. Again, 

the development of piezoelectric materials enabled new sensors to be designed. Many of these 

focused on the use of PVDF film which could be shaped eaaily to target the control of individual 

modes although there are significant practical problems with their implementation [25, 26]. 

The developments in transducers have been coupled with more research into the most eScient 

way of controlling structural vibrations such that the radiated sound power is reduced. These 

control strategies have included controlling single structural modes, the development of the 

radiation mode approach, and more elaborate methods of trying to predict the radiated sound 

power using structurally-measured variables measured at a number of points [27]. 

A number of other materials which have useful transducer properties have also been developed 

recently. These include magnetostrictive materials [28] and Shape Memory Alloys (SMA's) [29] 

for example and a good overview of these materials is given in [19]. Electrorheological fluids 

and magnetorheological fluids can be used in semi-active systems. A semi-active actuator is a 

passive element which can store or dissipate energy but whose mechanical properties can be 

changed by the application of a control signal. 

2.3 Feedback control 

One of the essential blocks of an ASAC system is the controller itself as shown in figure 2.3. The 

controller receives information from the various sensors available and processes this information 

to calculate control signals which are fed to the actuators, which then alter the state of the 

system. Controllers are generally considered to be either feedforward or feedback. The choice of 
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controller type depends mainly on whether a suitable external reference signal can be measured 

close to the disturbance source or suSSciently downstream of the secondary source to allow the 

controller time to make the necessary calculations. Feedforward control can also be used for 

tonal or predictable disturbances, due to engine noise or rotational machinery noise for example, 

where a tachometer can be used to generate a reference signal, whereas feedback control must 

be used when no external reference is available. This thesis concentrates on feedback control 

used for ASAC applications, which is still a relatively new area of research. 

A further comparison of feedforward and feedback control is outlined below and diagrams of 

both methods are shown in figure 2.4. 

Feedforward control in which the controller has two types of inputs. Reference sensors 

measure the disturbance downstream of the controller and are fed-forward to cancel the 

signal at error sensors which measure the overall performance of the controller. The 

reference signals are commonly measured close to the source of the disturbance and are 

mostly unaffected by the action of the controller and actuators. The error signals adapt the 

way in which the controller works. Wiener techniques or Least Mean Square techniques 

are commonly used. An example would be to use a tachometer on an engine to measure 

the RPM which could be used as a reference signal. 

Feedback control is used where obtaining a reference signal is unsuitable. This is normally 

when the disturbance is more broadband or there are multiple disturbance sources or, 

if the disturbance is not sufficiently upstream of controller. The signals from the error 

sensors are used directly in the controller and this can give rise to the phenomenon of 

instability. 

This thesis works mainly with a particular type of feedback control called Internal Model Control 

(IMC). IMC is one of several possible feedback control methods and the reasons for focusing on 

this technique are outlined in chapter 5. 

Feedforward control, by calculating the control at individual frequencies, gives the best possible 

control that can be achieved from a given physical system and for this reason, it is used as 

a reference control case in this thesis. Feedback control introduces new control issues such as 

stability and robustness which make it more complex than feedforward control. These issues 
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Figure 2.4: Diagrams of feedforward and feedback control systems 

will be dealt with in section 5.1. Examples of feedback control go back many centuries and the 

history of feedback is described by [17,30]. 

Although feedforward and feedback control have been dealt with as two distinct cases, the only 

difference between the two is the location of sensors. More recent control systems include both 

feedforward and feedback paths ([31, 32]) and the IMC feedback control used in this report 

reformulates the feedback problem as a feedforward one. There is thus a range of configurations 

in between these two extremes. This will become clearer as the use of diSerent sensors are 

discussed. 
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Chapter 3 

Modelling sound radia t ion f rom 

plates 

3.1 In t roduc t ion to plate vibrat ions 

The Erst step in designing any type of control system is to understand the physical processes 

which need to be controlled. In active structural acoustic control, this corresponds to the struc-

ture to be controlled and its resulting sound radiation. In this thesis, the structure considered 

is a thin rectangular plate. One of the most common problems in ASAC research is reducing 

the radiated or transmitted sound from such a vibrating panel as this represents the simplest 

idealisation of a whole class of problems of practical interest involving the radiation from some 

form of structure. Some examples are sound radiation from the hull of a submarine, the trans-

mission of sound through the fuselage of an aircraft, through the shell of a car, or even through 

walls between neighbouring houses. There are good reasons for analysing a simple system like 

this, including the fact that plates are fairly easy to model and the theory of their vibrations is 

well understood. Furthermore, larger structures can often be considered as being made up of a 

number of small plates. 

The vibrations and sound radiation from such a rectangular plate are considered in this chapter 

and most of this is established theory. 
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In the first place, the plate vibrations are analysed in terms of structural modes. This approach 

to analysing structural vibrations is the conventional approach and the basis of most structural 

vibration analysis. After considering the form of the vibrations themselves, the sound radiation 

due to these structural modes is considered by using the Rayleigh integral and it is shown that 

there is a complex interaction between the structural modes as a result of which they do not 

radiate sound independently of each other. There are many books which deal with this sound 

radiation from structures and amongst the best of these are by Cremer et al. [33] and by Fahy 

[34]. 

Radiation modes are another, fairly recent, way of analysing plate vibrations and the subsequent 

sound radiation and these are then described. Unlike the structural modes, these radiate sound 

independently of each other and this proves to be an important concept used during the rest 

of the thesis. Both formulations use diEerent ways of describing the vibrations in terms of 

orthogonal eigenvectors. There are a number of other ways in which the vibrations could be 

expressed, but these two methods provide good physical insight to the vibrational patterns and 

the subsequent sound radiation. The mathematical relationship between the two approaches is 

also described. 

3.2 Theory of plate vibrat ions 

3.2 .1 S t r u c t u r a l m o d e s 

When a plate is subjected to a mechanical excitation it begins to vibrate. The resulting vi-

brations can be mathematically modelled in a number of different ways. The most common of 

these methods, using structural modes, is described in this section. 

Consider a plate whose co-ordinate system is shown in figure 3.1. The lengths of the sides in 

the z; and directions are given by /g; and respectively. Movement in the direction of the z 

axis is denoted by w and only this form of vibration will be considered here since it is the out 

of plane vibration which gives rise to sound radiation. 

Free vibrations of the plate can be derived by first considering the equation of motion for the 

transverse displacement of a thin plate [19, 33, 35]. The equation of motion is an extension of 
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Figure 3.1: Coordinate system of a thin rectangular plate 

the equation of motion of a beam and is given by Leissa [35] aa the function of and 

time t as 

(3.1) 

where p is the density of the plate material, A is the plate thickness, is the Laplacian 

operator, and D is the bending stiffness given by 

D = 
12(1 - 1/2) 

(3.2) 

where ^ is the Young's modulus, and 1/ is Poisson's ratio. 

In this model, Euid loading, which takes into account the effect of the Huid, or acoustic medium, 

on the vibrations of the structure are neglected. For a discussion of fluid loading effects, the 

reader is referred to Fahy [34] for instance. The equation of motion (3.1) is derived under 

the assumptions that the plate is homogeneous through its thickness, isotropic, and that there 

are no in-plane forces. It is furthermore assumed that the plate is thin with respect to the 

wavelength and transverse shear and rotary inertia of the plate motion are also ignored. These 

assumptions are only vahd at low frequencies, which is however, the frequency range of interest 
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for ABAC applications. The derivation of the equation of motion itself arises from a combination 

of equilibrium equations for small deflections in the plate, stress-strain relationships between 

principal axes of the plate and, force and moment integrals. The derivation is discussed by 

Leissa [35] and by Cremer [33]. 

The Laplacian operator allows the waves on the plate to be mathematically described in a 

number of diEerent coordinate systems but, when using the cartesian, or rectangular, coordinate 

system which is used above in figure 3.1, it becomes 

and the equation of free motion (3.1) becomes 

the implicit dependence of w on x,y and t has been suppressed here and, as the motion with 

no applied pressure is being considered, this is termed as &ee motion. 

It should be noted that all real systems possess mechansims by which energy is dissipated 

i.e. damping, although these are not taken into account in the differential equation of motion 

above (3.4). The free waves considered here, without damping, are able to travel continuously 

whereas, if damping were present, this would not be the case and the waves would attenuate 

with distance from the point of excitation. 

Although difi'erent types of wave motion can take place in a solid structure, for example longi-

tudinal, quasi-longitudinal, shear waves, all of which are discussed by Fahy [34], it is flexural, or 

transverse waves which are of greatest significance when structure-fluid interaction is considered 

at audio frequencies because they involve substantial displacements in directions transverse to 

the direction of propagation, i.e. in the direction of the z-axis, which can effectively disturb the 

adjacent fluid. The other types of wave motion do not give rise to signlBcant displacements 

in the direction of the z-axis. Additionally, the transverse impedance of structures carrying 
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bending waves can be of a similar magnitude to sound waves in the adjacent fluid facilitating 

energy exchange between the two media. 

A flexural structural wave of amplitude A and frequency u can be described by the equation 

w (3.5) 

A;a;, A;/ are the component wavenumbers in the directions of the two ajces and can also be com-

bined to give a single free wavenumber Ay such that 

Ay — (3.6) 

The component wavenumbers are then given by 

/ci = Ay cos a 

ky = kf sin a 
(3.7) 

where a is the angle which the waves makes with the x axis as shown in figure 3.2. 

Figure 3.2: Direction of travel of a flexural wave on a plate 

As the plate considered so far is unbounded, and no damping has been considered, the wave 

described by equation (3.5) can propogate freely and endlessly away from the point of excitation. 
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However, all real physical systems are spatially bounded and, when these boundaries are taken 

into consideration, the plate flexural waves become subject to the effects of refraction, diffraction 

and reflection. Reflection is the most important of these as it gives rise to a set of frequencies and 

corresponding spatial patterns of vibration which are the eigenfunctions and eigenfrequencies 

of the plate, more commonly known as the mode shapes and natural frequencies respectively 

[34]. These tcike place due to the superposition of reflected waves on incident waves setting up 

pure standing waves. An infinitely large plate can thus vibrate freely at any frequency however, 

a bounded plate can only vibrate freely at its natural frequencies and with the vibrational 

patterns given by the eigenfunctions. 

Boundary conditions thus impose a constraint on the equation of motion whose solutions then 

give the eigenfrequencies and eigenfunctions of the plate which can be used to describe the 

vibrational patterns. In general though, a solution to the equation of motion (3.4) with the 

appropriate boundary conditions cannot be found analytically. A number of approximation 

methods exist for solving these equations with arbitrary boundary conditions and these are 

reviewed by Leissa [35] and Meirovitch [36]. However, one set of boundary conditions does give 

rise to analytical solutions and these are for the simply-supported plate. Further discussion of 

different plate boundary conditions is given in appendix A, but the simply-supported boundary 

gives rise to very simple mode shapes and will be used as an example to demonstrate vibrational 

patterns. 

Simply-supported boundary conditions allow rotation of the plate at the edges but no displace-

ment or moment. The transverse modal displacement for a simply-supported plate is given by 

the solution to equation (3.1) with the suitable boundary conditions and is given by 

!/, ̂ ) = Wmn 8in(A;nia:) 8in(A;n!/)e')'̂ * (3.8) 

where is the modal amplitude and m and n give the mode number and are called modal 

indices. The values of km and depend on the modal indices and are given by 
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Tra; 

kn — J 

So far, only free vibrations have been considered. No input forces to the plate have been present. 

Now consider the response of a structure to a disturbance by including a forcing term in the 

equation of motion (3.4). Equation (3.4) can be altered slightly to give the response of a plate 

to a two dimensional distributed forcing function such that 

where F{x,y)e^'^^ is the two-dimensional forcing function. 

The total response of the plate to such a force is given by the superposition of the individual 

eigensolutions or modes i.e. 

?v;(3;,3/,t) = ^ (3.11) 
m=l n=l 

where y) represents the two-dimensional mn ' th mode shape. This is normally truncated 

to a Enite number of modes so that 

11,(3;, ^ ^ (3.12) 
m=l n=l 

where M and JV are the number of modes used in the plate model. 

Returning to the example of the plate with simply-supported modes, the response of the plate 

can then be written in terms of a sum of modes of the free response of the plate vibrating at 

the forcing frequency 
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w ( a ; , ^ ^ (3.13) 
m—l n=l 

The amplitude of each mode, in turn, can be described by the equation 

(3.14) 

where the two terms are 

i) The forcing of the mode Fmn due to the coupling between the acoustic or structural excitation 

and the structural waves. 

F-mn — J '^mn{^iy)P{xTy)dxdy (3.15) 

where S is the surface of the plate. 

ii) A complex resonance term Amni^) which takes into account the dynamics of the plate and 

the frequency of excitation, 

where S is the area of the plate, uimn is the natural frequency of the mn ' th mode, which can 

be calculated using standard plate theory [35, 37], and Dmn is the damping of the mn' th mode 

given by Dmn = where ( is the viscous damping ratio, which is assumed here to be the 

same for each mode. There are a number of different models of damping outlined by Cremer et 

aZ. [33] for example. This particular model, using viscous damping, is the most commonly used 

and the simplest. The effects of damping are to dissipate energy from the vibrating structure 

and the eEects on the frequency response function are to broaden the sharp resonance peaks 

and to reduce their amphtude. 
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3.2.2 Sound radiation from structural modes 

The Snal aim of an ASAC system is to control the sound radiated from a structure rather than 

the vibrations of the structure themselves and so, an understanding of the sound radiation due 

to a given vibration distribution is required. 

In this section, the sound radiation from a plate will be considered. The simply-supported plate 

analysed above will again be used as an example due to its simple solutions to the equation of 

motion and because it provides a physical interpretation which is easy to understand but the 

approach is entirely analogous for other sets of boundary conditions. The sound radiation can 

be analysed by considering the interaction between the vibrating structure and the acoustic 

Eeld or adjoining fluid. Some books which give a good overview of the sound Eeld radiated by 

structures include Fahy [34], Cremer et al. [33], and Junger and Feit 

The Rayleigh integral ([19, 34,38,39]) can be used to calulate the radiation from a baSed planar 

surface with an arbitrary velocity distribution w{x,y) under anechoic conditions i.e. where no 

reflections are present in the sound field. The pressure at a given field point in spherical 

coordinates p(r) = p{r, 9, (p) can be calculated by integrating the velocity distribution over the 

surface 5̂  of the plate and by considering the source strength at the position on the plate 

to be proportional to the amplitude of vibration at that point. If the time dependence is 

suppressed for notational simplicity, 

where R = \r — rs\ and po is the density of the acoustic medium. Provided R lx,ly ap-

proximations to R are usually made [19] such that E % r — a; sin ^ cos ^ — y sin9 s'mcf) in the 

exponential term, and i? « r in the denominator. The first approximation is always justified 

if the smallest distance between the sound source and the observation point is much larger 

than the dimension of the source. The second approximation is less stringent than this. The 

geometry for the Rayleigh integral is shown graphically in figure 3.3. 

The total radiation consists of a superposition of radiation from structural modes and their 

interference in this radiated field is discussed below. First though, consider an individual 
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simply-supported mode. The velocity distribution due to the mm'th mode of the simply-

supported plate is given 

J = Wmn sin(A;ma;) sin(A;n2/) (3.18) 

Figure 3.3: Geometry for computing the Rayleigh integral (vibrations of (2,3) mode shown) 

and, after substituing this into (3.17), the far-Eeld pressure from the mn,'th mode is found to 

be 

27rr Jo Vo 
(3.19) 

where 
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a = /c/r sin ^ cos 
(3.20) 

sin ^ sin 

Wallace [39] has evaluated this integral analytically and found that the pressure at the far-6eld 

point r due to a single mode of a simply-supported plate is given by 

p( r ) = 
27rr mnTT^ [ {a/mir)'^ — 1 

- 1 

(/3/n7r)^ — 1 
(3.21) 

The sound intensity, which gives a measure of the radiated sound power per unit area, is then 

given by 

' '" ' '• ' 'I = 2p„c„|W,„„p ( i i i t V / (3^22) 
2poCo \7r^rmm/ ^[(a/mTr)^ —l][(/3/M7r)^ —1] 

where co is the speed of sound in air, /%(§) is replaced by cos(^) when m is an odd integer and 

by sin(^) when m is an even integer and /7i(^) is replaced by cos(^) when M is an odd integer 

and by sin(^) when n, is even. 

Once the pressure field radiated by the plate is known, a single global measure of the radiated 

sound is given by the total radiated acoustic power. This value will later be used as the one 

which must be minimised through the use of ASAC. The acoustic power is defined as the integral 

of the acoustic intensity over a surface surrounding the source [6]. For a baffled planar surface, 

this surface could be a hemisphere surrounding the plate for example. 

The total radiated power from the mn ' t h mode is given by 

w = r " r (3.23) 

Vo Vo 2poco 

To allow the radiation from diSerent mode orders to be compared more directly, Wallace [39] 

has defined the modal radiation efficiency to be 
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0"mn = Tj [2T TY~ (3.24) 
I iPQC-Qlxl-y 

where (jiUmnP) is the spatial and temporal average modal velocity of the plate and for the 

velocity distribution given by equation (3.8) is . These modal eSciencies can only be 

used in isolation when the structure is driven at frequencies which are close to the relevant 

resonance so that only one mode is dominant. 

In general, however, to describe the sound radiation from a structure, the multimodal response 

must be taken into account as the sound power radiated by any one structural mode is dependent 

on the amplitude and phase of every other structural mode. Hence for multimode excitation, 

the total radiated power is given by 

, , IwAJ LAU 

^ ^ E E Z E (3.25) 
k=l Z=1 m = l n—l 

where the self-radiation (when = mn) or cross-radiation (when /cZ ^ mm) e@-

ciencies [19]. These structural mode efficiencies are shown in figure 3.4 as functions of non-

dimensional frequency Q. which is defined by 

(3.26) 

and are calculated using an elemental approach which is described below. For the plate used 

throughout the thesis, klx = 1 corresponds to a frequency of approximately 2QQHz. 

For the purposes of control, it is the cross-radiation efficiencies which cause difficulties as re-

ducing the amplitude of one structural mode does not necessarily give rise to a decrease in the 

total radiated power. This effect is called spillover and is discussed in chapter 4. 

A second way of examining the sound power which is radiated from the plate in terms of 

structural modes is by using the near-field or elemental radiator approach [7,40,41]. 
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Figure 3.4: Radiation efficiencies of low order structural modes of a simply-supported plate 

In this approach, the vibration of the plate is approximated by dividing the surface into a large 

nmnber, 7, of elemental som-ces which are small compared with the acoustic wavelength and 

which oscillate harmonically. The power radiated, Weu by a single element el is given by the 

element's complex velocity, fg/, and the complex pressure, pg/, at the elemental position 

'S'gf 
(3.27) 

where ĝf is the elemental area, % denotes the real part, and + denotes conjugation. 

The total power, W, radiated by the panel can then be calculated by defining vectors v and p 

whose elements are the velocities and pressures of each element and the total power output can 

be written 

= I ^ I (3.28) 

The pressure at each elemental position can also be expressed as a function of the velocity of 

each of the elemental som-ces 
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p = Zv (3.29) 

where Z is a matrix of acoustic transfer impedances which relates the pressure at each element 

to the velocity at each element and, the total acoustic power radiated is thus 

l y = ( & I (3.30) 

where 

jR = ( )!%(;;) (3.31) 

and the symmetry of Z due to reciprocity has been used. 

Here, -R is a purely real, symmetric and positive definite matrix which has orthogonal real 

eigenvectors with positive real eigenvalues. The matrix must be positive definite on physical 

grounds as the power output of the plate must be greater than zero unless the velocity is zero. 

The velocity distribution of the plate can be calculated from a summation of the structural 

modes, and by dividing the plate into a sufficiently large number of elements, the power radiated 

from the plate can then be calculated using equation (3.30). Only variables local to the surface 

are used to calculate the net power output, with no need to explicitly calculate the far field 

pressure [40]. For planar surfaces in an infinite baffle, the radiation resistance matrix R can 

also be calculated analytically. 

The specific acoustic transfer impedance between elements i and j (which is the i , j ' th element 

of Z) is given by [7,42] 

_ (3 32) 
ZTrn ' u 
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Tij is the distance between elements i and j. This equation is derived from the equation for 

radiation from a baffled, pulsating half sphere [7]. The elements of R are then given by 

Rij — 
LO' el 

47rco 

8in(A:rij) 
(3.33) 

so that 

R 
4%'Co 

1 smkri2 
kri2 

sinkr?.! i 
kr2i 

s in /c r j i 
tr/i 

sin fcri f 
krii 

(3.34) 

Two approaches to examining the sound power radiated from plates have been presented above; 

a far field method, using Rayleigh's integral, and a near field, or elemental, method. These are 

diSerent mathematical representations of the radiated power and must be equivalent. This can 

be shown if, in the near-field or elemental approach, the vibrations of the structure are described 

as a summation of structural modes. An infinite number of modes would need to be considered 

to model the vibrations of the plate exactly but normally, this inifinite sum is truncated to 

include a finite number of modes MN (equation 3.12). This approximation works especially 

well at low frequencies where the modal density is relatively low. 

The amplitudes of the MAT modes can be represented in a vector a and then, the sound power 

radiated by the modes can be written in terms of a matrix M of radiation resistances. In this 

matrix, the diagonal terms represent self-radiation resistances and the off-diagonal terms repre-

sent mutual-radiation resistances which take into account the cross coupling between structural 

modes. 

(3.35) 

Now, the near field and far field approaches described above can be unified as the elements of 
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M can be calculated using the near field method and compared to the radiation efficiencies 

used in the far field or Rayleigh method, 

First of all consider the self-radiation resistances which describe the sound radiation due to a 

single mode. In the far field method these can be derived from equation (3.23) [7, 39] and 

W „ = r f ' (3,36) 
./o Jo P̂oCq 

Pmn,mn is the far-field pressure due to the mn ' t h structural mode excited with unit ampli-

tude and can be calculated using equation (3.19) with "^rnn{x,y), the relevant mode shapes, 

substituted for the sinusoidal terms. 

In the near field method, the diagonal terms of M can be calculated using the velocities of each 

element due to each mode 

Vi) (3.37) 

where (xi,yi) is the coordinates of the centre of element i. The diagonal terms of M , which 

give the self-radiation efiSciencies, are then given by equation 3.30 aa 

^mn,mn — '^mn^'^Tnn (3.38) 

Vmn is the I length vector of elemental velocities (where I is the total number of elements) 

due to the mn ' t h structural mode. The radiated power from this mode alone is then given by 

equation (3.35). 

For the off-diagonal terms or cross-radiation efficiencies, in the far field method, equation (3.23) 

can again be used 

(3.39) 
JO Jo 2poco 
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Pmn and Pit the pressures due to the modes mzi and ZA respectively where mn, ^ Z/c. 

The near Eeld approach, in an analogous way to above, gives 

^mn,lk — (3.40) 

As all the elements of Af can be calculated as illustrated above and, if the modal amphtudes 

are known, equation (3.35) can be used to calculate the total radiated power. This should 

evidently give a value which is the same as that obtained when calculating the radiated power 

by equation (3.23) or (3.25). 

The off-diagonal, or cross-radiation efficiency, terms in M mean that the radiated power due 

to any one structural mode is influenced by other structural modes [40]. It will be shown later 

that in terms of both analysing and controlling sound radiation, it would be useful to have a 

set of velocity distributions which radiate sound power independently of each other. These are 

termed radiation modes and are dealt with in the next section. 

An I by NM matrix # can also be defined whose rows are equal to the elemental velocities due 

to each mode such that 

$ = ['uf (3.41) 

The vector of velocities at each of the elements can then be written 

V = (3.42) 

and so, using equation (3.30) 

I f = (3.43) 
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When this is compared to equation (3.35) it is evident that the matrix of modal radiation 

resistances is 

M = (3.4^ 

As an example of the power of this elemental technique, self and mutual radiation efficiencies 

of the modes of a clamped panel have been calculated, which would be very difficult to do 

analytically. These are shown in figure 3.5 and seen to be very similar to the radiation efficiencies 

of the simply-supported structural modes shown in figure 3.4. In this thesis, most of the 

simulations assume simply-supported boundary conditions whereas the experimental rigs have 

clamped boundary conditions, but due to the similarity between the modal radiation efficiencies, 

this should not cause a significant difference in the radiated sound power. 
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Figure 3.5: Radiation efficiencies of low order structural modes of a clamped plate 

A few further points about the elemental method and modelling accuracy are worth pointing 

out. The method assumes that the elements are each oscillating harmonically and that they 

are small compared to the acoustic wavelength. Evidently then, the higher the frequency range 

required for accurate modelling, the greater number of elements required. As an example, 

the plate considered in this thesis has dimensions 0.278m by 0.247m. If this is split into 20 

elements along each side, then the smallest element has dimensions of approximately 0.013m. At 

frequencies of IkHz which corresponds to the highest frequency of interest for control during 
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this thesis, the wavelength of sound in air is 0.343m. It is evident that even at the highest 

frequency of interest, the elemental dimensions are an order of magnitude less than the acoustic 

wavelength. The second consideration in using the elemental approach is that, in order to 

prevent spatial aliasing, the number of elements used in the model should be greater than the 

number of modes to be modelled and, preferably more than twice this value. This is analogous 

to the normal aliasing which occurs when a signal is not sampled at a suSciently high rate. With 

20 by 20 elements, most simulations in this report generally use M = N = 7 i.e. a maximum of 

49 modes and any spatial aliasing is clearly avoided. Increasing the frequency range of interest 

would also require a larger number of modes in the model. 

3.2.3 Radiation modes 

A technique for analysing sound radiation due to plate vibrations which has been developed 

more recently is to use a summation of radiation modes instead of the structural modes described 

above. 

There are a number of ways of considering radiation modes but in this section the near field or 

elemental approach which has been used in the previous section will be used. Other approaches 

are outlined in references [7,19,40,41]. The link between structural and radiation modes is 

discussed in section 3.2.4 below. 

Looking back at equation (3.30), the matrix R is found to be symmetric (due to reciprocity), 

real (proportional to 3?(Z)), and positive definite (as the power output of the plate must be 

greater than zero unless velocity is zero). This means that it can be decomposed into a set of 

orthogonal real eigenvectors with positive real eigenvalues. 

A = (3.45) 

where is a real and unitary matrix of orthogonal eigenvectors, and A is a diagonal matrix 

whose elements Xi are the eigenvalues and are positive real numbers. 

If this eigenvector/eigenvalue decomposition (equation 3.45) is substituted into the equation 

representing radiated power for the elemental radiator approach, equation (3.30) 
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W = v^Rv = AQv Hr^T, (3.46) 

Now deSne 2/ = Qi;, as the vector of radiation mode amplitudes, in terms of the velocities of 

individual elements so that 

W = y^Ay = (3.4n 
1=1 

where the final form follows from the fact that A is diagonal. 

The power output due to any one of these eigenvectors is then equal to its amplitude squared 

multiplied by its corresponding eigenvalue. This equation also shows that the modes are radi-

ating independently (due to the diagonal nature of matrix A, i.e. no cross terms), in contrast 

to the structural modes described above, hence the term radiation modes. The total radiated 

sound power can be calculated as a sum of individual mode amplitudes squared multiplied by 

their corresponding eigenvalues. 

It hag already been shown in equation (3.34) above that for sources mounted in an infinite baSe 

the matrix R takes the form 

R = 
47rco 

1 sin tr i2 
A:ri2 

sinfcr^i 1 

s infcr j i 
krji 

sin kr-\ j 
krii 

The eigenvalue/eigenvector decomposition of this matrix thus gives the radiation mode shapes 

and radiation e&ciencies. 

Figure 3.6 shows the radiation efficiencies of the first few radiation modes as a function of 

non-dimensional frequency obtained by the eigenvalue/eigenvector decomposition. It is clear 

that, at low frequencies, the radiation eSciency of the Brst radiation mode is very large in 
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comparison with the efficiencies of the other modes which would suggest that controlling this 

radiation mode would be a good strategy and this is much of what the remainder of this thesis 

focuses on. Figure 3.7 shows the shapes of the Erst six radiation modes at a low &equency of 

IQQHz. The first radiation mode shows each element of the plate vibrating with almost the 

same phase and amplitude, and this is the volume velocity of the plate. The changing shape 

of the first radiation mode with frequency will also be considered for control purposes in later 

chapters. The shape of the first radiation mode, obtained from the eiegenvectors of A, at lOQHz 

and IkHz are shown in figure 3.8. There is clearly a significant difference in this shape over 

this frequency range. 

O/.Oc.O 

- 1 0 1 
10 10 10 

Non-dimensional frequency (kl^) 

Figure 3.6: Radiation efficiencies of low order radiation modes 

Although the matrix A is a function of geometry of the surface, it is independent of the dynamic 

properties of the surface. The structural mode content of a vibrating structure will therefore 

affect the amplitudes of the radiation modes but will not affect their shapes or radiation effi-

ciencies. 

These radiation modes are found to have a number of advantages when it comes to active 

structural acoustic control. First of all, the fact that they radiate sound independently means 

that reducing the amplitude of any one radiation mode without affecting the others is sure to 

cause a reduction in the total radiated sound power. This is in contrast to the control of a single 

structural mode outlined above. Furthermore, the first radiation mode is seen to have a much 

larger radiation eSciency than the other radiation modes at low frequencies. The shape of this 

first radiation mode is found to have a very simple form. At very low frequencies, it corresponds 
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Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Figure 3.7: Shapes of Erst six radiation modes at lOOHz 

Frequency = 100Hz 

Frequency = 1kHz 

Figure 3.8: Shape of first radiation mode at IQQHz and IkHz (normalised amphtudes) 

40 



to the volume velocity of the plate. This is the motivation for looking at the control of volume 

velocity during the rest of the thesis; by reducing the volume velocity, the total radiated power 

should also be reduced. 

3.2.4 Relationship between radiation modes and structural modes 

The two methods of describing plate vibrations outlined above, using either structural or radi-

ation modes, are only two of the many different ways of describing the same plate vibrations. 

Although the two approaches have already been dealt with under the same framework of the 

near field approach above, this section is intended to show further how the two types of modes 

can be dealt with in a unified approach. Although this is mostly taken from [7] and [40], there 

are many other references, [43, 44] for example, which have dealt with this topic in some detail 

and using slightly different mathematical representations and interpretations. 

In section 3.2.2 the radiation resitance matrix M was introduced and two methods of how the 

individual elements of this matrix could be calculated were shown. The matrix is real, sym-

metric and positive definite and, as with the matrix R above, it has an eigenvalue/eigenvector 

decomposition 

M = f n f (3.48) 

where is an orthogonal matrix of eigenvectors (c.f. Q) and O is a diagonal matrix whose 

elements Q,i are the real, positive eigenvalues (c.f. A). 

Using equation (3.35) the power output can then be written 

o (3.49) 

and, if a vector of transformed radiation mode amplitudes is now defined b = Pa, then the 

expression for the radiated power can be written 
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NM 
= (3.50) 

71=1 

The diagonal nature of the matrix Q allows the radiation to be expressed as a sum of modulus 

squared amplitudes of the elements of the vector 6 times their corresponding eigenvalues. The 

structural mode amplitudes given in a are combined with the eigenvectors of P to give velocity 

distributions which radiate sound independently and these are again termed radiation modes. 

The o5-diagonal terms in Af which give rise to the interdependence between structural modes 

are not present in the matrix Q which means that the new velocity distributions are orthogonal 

and the radiation of each one is unaffected by the amplitudes of the other radiation modes. 

This formulation is seen to be very similar to the previous radiation mode formulation given 

in equation (3.47). Both methods result in eigenfunctions which radiate independently. When 

the radiation modes are determined from the structural mode amplitudes, then NM modes are 

required to describe the sound radiation fully and when the radiation modes are determined 

from the decomposition of R then I modes are needed to describe the sound radiation. 

This formulation was also used by Cunefare [43] and is similar to the analysis of Baumann ef 

al. [45]. Other variations on the radiation mode approach include designing a set of frequency-

independent basis functions which are recombined with frequency-dependent weighting matrices 

to give the radiated power as described by Borgiottl and Jones [46] for example or dividing a 

structure into sections and controlling local volume velocity instead of global volume velocity 

[47-49]. 

3.3 Conclusions 

This chapter has covered the modelling of plate vibrations and the subsequent sound radiation 

from the vibrating plates. Structural modes were described which is the common method of 

describing plate vibrations. The sound radiation was then calculated using both the Rayleigh 

integral and with a near-field or elemental approach. The advantage of the elemental approach 

is that only variables local to the plate need to be measured to calculate the radiated power. 

Radiation modes were then used to describe the plate vibrations and the sound power radiated. 
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The advantage of the radiation modes is that they radiate sound independently of each other 

and so, by reducing the amplitude of one radiation mode, the total radiated power is sure to be 

decreased. This is not the case with structural modes which have a complex interaction with 

each other. The first radiation modes also turns out to radiate sound far more efficiently than 

the other modes at low frequencies and is found to have a shape similar to the volume velocity 

of the plate. This provides the basis for the rest of the thesis; that by reducing the volume 

velocity of the plate, the sound radiation should also be reduced. 

Although this chapter has mostly covered established theory it is important to the rest of the 

thesis as controlling the radiation modes, and especially the volume velocity, is one of the major 

aims of the thesis. 

43 



Chapter 4 

Transducers for active s t ruc tu ra l 

acoustic control 

4.1 In t roduc t ion to t r ansducers 

There are several areas of research, outlined in the introduction, which are brought together in 

studying AS AC. One field which is allowing rapid progress in AS AC is the development of new 

transducers which allows new and efficient methods of applying control forces to structures and 

new ways of sensing appropriate structural error signals. 

The piezoelectric materials used for ASAC purposes combine good performance as well as rela-

tively low prices and ease of manufacture. They can also be shaped easily during manufacture 

and this will be shown to be important for the control of selected modes. The shaping can be 

performed to correspond either to structural or radiation modes. 

In this chapter, mathematical models for the various transducers are developed. For more 

details on how the piezoelectric materials work, the reader is referred to Lee [50]. 

The Srst section of this chapter looks at general models of actuators and sensors and how these 

transducers models can be combined into the models and equations developed in chapter 3 by 

means of relevant forcing and sensing functions. Three specific types of actuator are then dis-

cussed in more detail and then, three sensors, which are seen to have direct analogies with these 
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actuators, are also described. The transducer models are then used to compare the performance 

of various transducer arrangements for ASAC applications. Feedforward simulations are used 

as they provide the best possible control performance which can be obtained from a given set of 

transducers. Control performance is measured in terms of the amount of attenuation achieved 

in the power transmission ratio after feedforward control. 

Another important consideration which has significant effects on performance is the position-

ing of the transducers on the structure. Although there are various methods of positioning 

the transducers in an optimal way, such as numerical optimization methods [51], exhaustive 

searches, and natural algorithms [52] (all of which are reviewed by [53]), these tend to be highly 

computationally intensive and in this chapter an approach based more on physical arguments 

will be used to place them. 

4.2 IVEodelling of t r ansducers 

In chapter 3, it was shown that the complex vibrations of a simply-supported plate can be 

described by the equation 

w(a;, 3/, ^ ^ sin(A;ma:) sin(A;n2/) (4.1) 
m=l n=l 

which shows a summation of structural modes, each with a frequency dependent amplitude 

Wmn(w) and where a time dependence of the form has been assumed. Where several sources 

of excitation are present, the overall vibration of the plate can be calculated by superposition 

of the forcing coe&cients. For example, if four sources of excitation are present, say an incident 

wave and three control actuators 

Wmni^) — mnl 4" ^mn2 4" -FmraS ~l~ Pmn^] (4.2) 

where is the excitation from the i'th source. The plate vibrations are then given by 
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oo oo 7 
w ( a ; , ^ Y ] ^ sm(A:nia:) sm(A;n3/) (4.3) 

?T1=:1 ?%=1 2=1 

where I is the total number of sources of excitation. 

Equation (4.2) clearly shows the effect of different sources of excitation on the plate vibrations 

and in section 4.3, the forcing coeScients will be derived for diSerent actuators and sources 

of excitation. 

A similar method can be used to model sensors through the use of a sensitivity coefficient Smn 

which gives the sensitivity of a sensor to each mode so that the sensor output is given by 

OO 00 

(4.4) 
m=l n=l 

If instead of having a direct measurement of the full velocity distribution of the plate, some type 

of sensors, which each have their own characteristics or frequency response functions are used, 

then the whole frequency response function between the input to the actuators and the output 

from the sensors must be considered. This can be considered to be a combination of three 

separate frequency response functions; that due to the actuators G/(c<;), due to the structure 

itself Gp(w), and due to the sensors (7a(w). These are combined such that 

^(w) = Gto((w)ii(w) (4.5) 

where u{ij) is the input voltage to the actuators and 

— Gf{uj)Gp{uj)Gs{u>) (4.6) 

When using the modal methods outlined above, this can be written 
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^ (4.7) 
m=ln=l 

These sensitivity coe&cients are described, for a variety of sensors, in section 4.4. The combi-

nation of actuators and sensors, as shown in equation (4.7), is discussed in section 4.5. 

4.3 Ac tua to r s 

Actuators are used to apply control signals in order to change the system response in the 

required manner and this section deals with actuators and various sources of excitation. In the 

first place, a point force is modelled. This is the most simple type of actuator. The second 

and third actuators use piezoceramic materials whose uses are becoming widespread and allow 

spatially-distributed excitation which will be seen to be an important property. As incident 

plane waves are used as a source of primary disturbance in this thesis, the response of the 

plate to an incoming plane wave is also calculated and finally, the response of the plate to an 

excitation within an enclosure is derived. 

For each different actuator, a short discussion is given outlining the basic mechanisms by which 

the actuators excite the structure and the relevant forcing coeScient is given. 

4.3.1 Point force actuators 

Point force actuators are fairly straightforward to model and so they have been used often 

in active control simulations. In this section, the forcing function of a point force is 

derived from the equations of motion of the plate. A thin rectangular plate is again considered 

for simplicity and to continue with previous examples, this is again assumed to be simply-

supported. Other boundary conditions would not give rise to the exact solutions which follow 

but the method of solution is the same. 

Referring to the equation of motion due to a force, the excitation due to a point force with 

coordinates and amphtude can be expressed 
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- a:p)^(i/ - 3/p)e)'̂ * (4.8) 

To demonstrate how this would excite a simply-supported plate for example, this expression 

is substituted into equation (3.15) and then, using the orthogonality property of the plate 

structural modes and the sifting property of the dirac delta function. 

sin sin (4.9) 

Fuller was one of the first to consider using these structural point forces for controlling sound 

radiation [54, 55]. He found this to be quite a successful strategy requiring only a small number 

of control channels. Using point forces resulted in higher order mode vibration distributions 

with lower radiation efficiencies and the overall sound radiation from the plate was reduced. 

Although the location of actuators is dealt with in detail below, it is evident that the placement 

of the point force is critical. A central point force for example, would only be able to excite 

odd-odd modes as it is located on the nodal line for even modes. Similarly, in the centre it is 

at a point of maximum amplitude for odd-odd modes and so this would be the best position to 

excite these modes. 

4.3.2 Piezoceramic actuators 

The point force actuators described in 4.3.1 were the first actuators used for AS AC but the use 

of distributed piezoceramic actuators has recently become more common. One disadvantage of 

the point forces is in their practical implementation. Electromagnetic shakers, for example, are 

heavy and cumbersome and, most importantly, they require a reaction mount. As ASAC is often 

intended for lightweight structures, these point forces are normally impractical. In contrast, the 

piezoelectric transducers available are low cost, lightweight, and are easy to incorporate into 

the structures to be controlled. Another advantage of these distributed piezoceramic actuators 

is the fact that they can be easily shaped. Merovitch and Norris [56] first describe a move 

from using single point force actuators towards using distributed actuators. The most complete 

comparison of point force actuators and piezoceramic actuators is given by Wang et al. [24]. 



Further discussions of the relative performance of point forces and distributed actuators is 

left to section 4.5. In this section, a brief introduction to piezoelectric materials is given and 

then, following an analogous approach to the point force, the forcing function due to a 

piezoceramic patch is derived. Piezoelectric transducers rely on the piezoelectric effect, which 

was Erst discovered by Pierre and Jacques Curie in 1880 and causes piezoelectric materials 

to produce an electric polarization when mechanically stressed and, reciprocally, the same 

materials produce a mechanical strain when an electrical current is applied. 

There are many of these piezoelectric materials, most of them having crystalline structures and, 

being brittle, are di@cnlt to manufacture and shape. However, some piezoelectric materials in 

the form of ceramics have also been developed and these have a number of advantages over 

their crystal counterparts including that they are hard, dense, have high stiffness, and can be 

manufactured to almost any shape or size. Furthermore, the electrical properties of the ceramic 

can be controlled during the poling process. An example of these piezoceramic materials which is 

commonly used for actuators is PZT or Lead Zirconate Titanate [7,19]. Some typical properties 

for PZT are shown in table 4.1. 

Property Symbol Value 

Young's modulus E^f, 6.3xlO^°A^/m^ 

density Ppe 7650A:g/m^ 

Poisson's ratio fpe 0.30 

piezoelectric strain constant (f3i=c(32 — 166xlO"^^m/y 

piezoelectric strain constant dgg 0 

Table 4.1: Properties of PZT, G1195 

For each piezoelectric material, there is a relationship between the electric voltage applied to 

the material and its subsequent change in shape. This relationship depends on the material of 

the actuator, its size, shape, and how it is oriented with respect to the structure it is bonded 

to. The piezoceramic is described in terms of its three axes termed 1, 2 and 3 in the x, y and, z 

directions respectively (indices 4, 5 and 6 represent negative changes in the directions of these 

principal axes). These axes are set during the poling process. Piezoelectric coe&cients then give 

the relationships between the electrical properties (voltage applied or charge produced) in one 

axis direction and the mechanical strain produced or measured in another direction, represented 

by subscripts in the coefficients. For example, the piezoelectric strain constant d is the ratio of 

49 



developed free strain, E, to the applied electric Eeld y . The coe@cient dgi then implies that the 

voltage is applied in the 3 (positive z) direction and the resulting displacement or force is in 

the 1 (positive x) direction. This is found to be the most important piezoelectric coefficient for 

the purposes of this project and the relationship between the applied voltage and the resulting 

strain is given by 

^ (4.10) 

£pe is the strain in the x direction, ha is the piezoceramic thickness, and V is the applied voltage. 

When such a voltage is applied, the resulting force on the structure itself is calculated by 

assuming the piezoceramic behaves linearly and by coupling the piezoceramic strain-voltage 

equations (equation (4.10) for example) with equation (3.10) governing the deflection of the 

structure under a given applied force. The equivalent static force or moment due to the actuator 

is then calculated and used as a frequency-independent amplitude for harmonic input to the 

system. This model is accurate well below the internal resonant frequency of the piezoceramic, 

typically I M H z , which covers the frequency range of interest for this thesis. 

To derive the forcing coe@cient, consider a piezoelectric patch with edges deSned by a;i, 2:2, 

yi, j/2, as shown in figure 3.1, which produces a strain over its area. It is assumed that purely 

bending waves are generated and in-plane forces are ignored. On a thin, Eat, isotropic plate, 

the strain produced by this actuator is proportional to the second derivative of the out of plane 

displacement with respect to x and y. The forcing of each mode is then obtained by taking the 

integral, over the area of the piezoelectric, of the second derivative of the displacement due to 

that mode. The modal forcing coefficient can then be calculated using the same equations as 

developed above for the point force. 

Consider the harmonic excitation of a simply-supported thin plate by a single actuator. The 

actuator produces line moments along its edges such that 

f'(a;,i/) = CoEpe[H(a; - a;i) - j:f(a; - a:2)][-H (̂!/ - m) - 'H'(?/ - 1/2)] (4.11) 
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CoEpe are constants of the piezoelectric material and (a;) is the Heaviside fmiction. 

The actuator is assumed to be driven by a harmonically oscillating voltage and inertial and 

end eEects of the actuator are ignored. This is the static model of piezoceramics as outhned by 

Crawley and de Luis [57] for example. The actuator is also assumed to be perfectly bonded to 

the plate but not to change its mode shapes or modal frequencies. Then, by substituting the 

forces due to the actuator (4.11) into the equation of motion (3.10) 

= Co6pe[< '̂(:z; - a;i) - ^(a; - 2:2)] 
(4.12) 

- m) - ^(1/ - 2/2)] + CoE^e[a^(a; - a;i) - ^ (a : - a:2)][( '̂(!/ - Z/i) - <̂ '(!/ - 2/2)] 

Turning again to the example using the simply-supported plate 

00 00 / \ / \ 

w ( a ; , ^ sm ^ - y — j sm ' 
m=l n=l 

Ix J \ J 

then, after substituting this form of vibration back into the equation of motion (4.12) and again 

using the orthogonality property of the structural modes, the modal amplitudes are found to 

be given by 

(4.13) 

cos AmA:! - COS A;ma;2)(cos /jnZ/i - cos =̂̂ 2/2) 

when this is compared with the equation for the modal coeScients (3.14), the modal forcing 

function is found to be given by 

= ^ (cos - cosA;ma;2)(cos/cnZ/i - cosA;ni/2) (4.14) 

A similar analysis has been performed for circular actuators by Sonti et al. [58]. In terms of 

the way in which a piezoelectric actuator excites a structure there seems to be little diSerence 
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between circular and rectangular actuators. However, it haa been suggested that circular actu-

ators may be slighty less brittle than rectangular ones, which can produce defects around their 

edges and corners after long-term usage. For a more complete description of how piezoelectric 

materials can be used aa actuators and sensors see [19,25, 50,57,59]. 

4.3.3 Uniform force actuators 

Section 3.2.3 introduced the concept of radiation modes and went on to show that the first radi-

ation mode, which accounts for most of the sound power radiated by a plate at low frequencies, 

is the volume velocity of the plate. This corresponds to the piston motion of the plate or, in the 

elemental approach, to the sum of the elemental velocities. Johnson [7] investigated the control 

of volume velocity of a structure to reduce sound radiation and showed it to be an effective 

and simple control strategy. It is also shown below (section 4.6) that collocated and matched 

transducers have advantages in feedback control systems. By matched, it is meant that the 

spatial distribution of the forcing function should be the same as the spatial distribution of the 

sensing function. It would then make sense to develop some kind of actuator which forces the 

volume velocity or piston motion of the plate. In the elemental approach, this would correspond 

to forcing each element with the same amplitude. 

The modal forcing coefficient for a uniform force actuator with amplitude Au, and with edges 

3=1,372,1/1,2/2 as shown in figure 3.1 is given by integrating the force due to the actuator over the 

plate and by equating with the equation of motion of the plate (3.1) as shown by Fuller et al. 

[19] such that 

n (cos - COS A:ma:2)(cos - cos ^^3/2) (4.15) 

In principle, since a volume velocity sensor has already been developed and using the reciprocity 

eff'ects of piezoelectric materials, it should be fairly straightforward to develop a uniform force 

actuator. However, current eSorts to develop a matched actuator/sensor pair have been unsuc-

cessful and, at the time of writing this thesis, a reliable uniform force actuator has not yet been 

developed. One of the major problems is that the uniform force actuators currently available 
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produce in-plane as well as bending forces. The design of a uniform force actuator and the 

problems involved in its implementation are discussed by Gardonio et al. [26]. 

On the subject of shaped actuators, it would in principle be possible to design an actuator 

which only excites a particular structural mode of a beam or plate. On a simply-supported 

beam, this would take the form 

(416) 

The orthogonality of the structural modes means that the response of other modes to this form 

of excitation would be zero and this would prevent spillover. This type of modal excitation has 

been investigated by a number of people [19,25]. 

4.3.4 Plate excitation by an acoustic plane wave 

Excitation of the plate by an acoustic plane wave can be dealt with under the same framework 

as above i.e. by calculating its contribution to plate vibrations due to a forcing factor F, I 
ma' 

The plane wave is assumed to have angles of incidence 9, ^ as shown in figure 3.1 and when the 

plate is simply-supported, and light fluid loading is assumed so that radiation loading effects 

on plate dynamics can be neglected, the excitation can be calculated analytically. This analysis 

has been performed by Roussos [60] and is also covered by Wang [61] and by Fuller et al. [19]. 

As above, the mode shapes and forcing function are put into the diSerential equation of motion 

of the plate, equation (3.10). When the simply-supported boundary conditions are used, the 

integration can be carried out in closed form to obtain the generalized forcing pressure for each 

mode. 

A harmonic wave incident on the plate with angles 6, cj) and amplitude Pj will create a pressure 

field in the plane of the plate given by 

f) = (4.17) 
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where the wavenumbers in the x and y directions are given by 

/bz = A sin 0 cos ^ 
(4.18) 

Ag, = A; sin ̂  sin ^ 

The modal forcing coefficient due to this pressure is calculated by Roussos [60] and is given by 

^mn ^ (4.19) 

where 7^ Emd 7^ due to the geometric coupling between the plane wave and the mn'th 

mode shape and are given by 

[mTr]̂  —[sin^cos(^(wZ3;/co)]^ 

if (4.20) 

m,7r ^ j: sin 0 cos | 
\ Co 

or 

mn — sgn{sin0 cos (p) 

if (4.21) 

mn = ± sin 0 cos (p [ 
\ Co 

and 

—[8in^sin<^(a;Z^/co)]^ 

if (4.22) 

nvr / j: sin 0 sin ^ | 
\ Co 
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or 

nTT = I - ) s^n (sin 0 sin (̂ ) 

if 

nvr = ± sin ^ sin 
Co 

(4.23) 

where agn() implies taking the sign of the term in brackets. 

4.3.5 Plate excitation by an enclosed source 

This section derives the plate vibrations due to a loudspeaker within an enclosure. The plate 

is assumed to replace one wall of the enclosure, which is otherwise assumed to be rigid-walled. 

A weakly-coupled model is used which does not take into account the effects of the vibrating 

plate on the pressure in the enclosure. This model is suitable if the pressure produced by the 

vibrating plate is neglibile compared to the pressure produced by the primary disturbance. For 

details of the fully-coupled model, see [62]. The following analysis can be found in [11,63,64]. 

The enclosure, shown in figure 4.1 has dimensions Lx,Ly,Lz in the {x,y,z) directions. 

L, 

L. 

Figure 4.1: Figure of enclosure on which plate (shaded) is mounted. X marks position of 

disturbance loudspeaker. 

The pressure at a point a; in a rigid walled enclosure can be written as the sum of a series of 
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acoustic modes which are given by the eigenfunctions of the Helmholtz equation such that 

= 0 (4.24) 

where is the eigenfunction or mode shape and is the eigenvalue corresponding to the 

Ti'th eigenfunction which can be expressed aa 

2̂ _ ^ MlTT + M'27r 
Lif 

+ 713 TT 
L.. 

1 2 
(4.25) 

where n i ,n2 ,n3 are modal indices which must be integers. 

The eigenfunctions must also satisfy the rigid walled boundary condition 

V<j)n{x).n = 0 (4.26) 

on the surface of the enclosure where n is the unit vector on the surface of the enclosure pointing 

outwards. The solution to the equations for a rectangular enclosure is given by 

<̂ n(a:) = VEnien2en3 COS — cos COS 
niTrZi 

(4.27) 

The e* are normalisation factors derived below. 

As the modes must be orthonormal the product of two modes over the enclosure volume must 

be zero 

Vv 
(4.28) 

and 
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if s6%(:c)on/ = 1/ (4.290 
Jv 

which requires = 1 if %* = 0 or = 2 if M* > 0. These orthonormality equations can be 

summarised with the equation 

/ (4.30) 
Iv 

where is the delta function. 

Now the mode shapes of the rigid walled enclosure are known, they can be used to calculate the 

sound pressure field inside a lightly damped enclosure due to a primary disturbance as given in 

[19] for example. The pressure at a point a; = (a;, ?/, z) in the enclosure is given by 

p{x) — ^ ^ 0'n4'n {x) (4.31) 
n=0 

The enclosure mode shapes are already given above in equation (4.27) and the modal amplitudes 

On can be calculated by 

/ '?!'7i(a;a)%o((3:a)Gn/ (4.32) 
Jv y[2(n^n:«^ +_;(w^ — w^)] 

for a given source distribution in the enclosure given by gt,o;(a:a). Here viscous damping has 

been included in the model by the coefficient C„. This equation is seen to have a very similar 

form to the complex resonance term Amn in equation (3.16) and so equation (4.32) can be 

rewritten 

= <;6n(a:a)gw(a:a)c(l̂  (4.33) 
Jv 
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where 

For a monopole source within the enclosure of strength qp at position Xs 

(4.35) 

and so the modal amplitudes become 

CLn — AnQs4'niS^ s) (4.36) 

The loudspeaker in the enclosure can be modelled as such a monopole source and it is clear that 

the way in which the primary source excites the modes of the enclosure is very dependent on 

the position of the source. The plate is assumed to be positioned at a height of (see Bgure 

4.1) and to calculate the vibration distribution of the plate, due to this primary disturbance, 

the pressure field in the plane of the plate is calculated: ]9(a;, y, w). This is equivalent to the 

spatial forcing distribution of the plate. The resulting vibration distribution is calculated by 

integrating this force over the area of the plate to calculate the amplitude of each plate mode by 

using equation (4.9). The modal forcing coefficient (for a simply-supported plate for example) 

can then be calculated to be 

= y 4p(a;,2/,iLz)sinA;nia;sin/i;n%/d5' (4.37) 

Further information on excitations within enclosures can be found in [63] or [64]. The fully-

coupled (c.f. weakly-coupled used here) case is described by [62] and [65]. 

Enclosure natural frequencies, based on the physical properties of the enclosure used in exper-

iments later in the thesis, are given in table 4.2 and can be compared with the plate natural 
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frequencies given in tables A.l and A.3. Apart from the volumetric (0,0,0) mode of the en-

closure, the natural frequencies are relatively high compared to the low-order plate natural 

frequencies which helps to justi^ the use of the weakly-coupled model. 

X y z frequency (Hz) 

0 0 0 0 

1 0 0 429 

0 1 0 490 

0 0 1 572 

1 1 0 651 

1 0 1 715 

0 1 1 753 

2 0 0 858 

1 1 1 866 

2 1 0 988 

Table 4.2: Enclosure natural frequencies 

4.4 Sensors 

Sensors are needed in control systems for measurements which give important disturbance 

information and system variables [19]. There are two basic types of sensor which will be dealt 

with in this thesis; acoustic sensors, such as microphones in the far-field, or sensors which are 

integrated with the structure itself. The aim when using a structural sensor, as opposed to a 

far-field acoustic sensor, is to measure a variable which gives a good indication of the radiated 

power which has to be controlled. By only sensing important sound-radiating modes of the 

structure, it may also be possible to reduce the number of channels relative to the case where 

acoustic sensors are used. A further advantage in using structural sensors is that for feedback 

control, it will be shown that the phase in the plant frequency response function (FRF) must 

be as small as possible and, this is seen to be the case when structural actuators are used with 

structural sensors. 

This section deals with three speciSc types of structural sensor and the use of microphones. The 

three structural sensors discussed are accelerometers, piezocelectric sensors, and the distributed 
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volume velocity sensor. These are reciprocal sensors to the actuators considered in section 4.3 

and this spatial matching will be seen to be important (section 4.6). 

The sensors will also be modelled by analogy with section 4.3 and by modelling the sensing 

functions introduced in equation (4.4). This equation shows that, just as each actuator forces a 

given mode by a certain amount, Fmn, so each sensor measures the mode by a certain amount 

given by its sensing coeScient S'mn-

4.4.1 Accelerometers 

The accelerometer is the sensor equivalent to the point force, measuring the response (acceler-

ation) of a structure at a single point. 

Accelerometers are the most common devices for measuring vibrations and come in a variety of 

sizes, different specifications, and costs. Various experimental handbooks are available for the 

correct use of accelerometers in practice [66, 67]. 

The output of an accelerometer placed at a point (a;a,3/a) is proportional to the acceleration 

at that point on the plate. In contrast to the point force however, which has limited practical 

applications due to the requirement of a reaction mount, the accelerometer is one of the most 

practical and easy methods of measuring structural variables. The modal sensitivity is given by 

Smn — ^ {XaiUa) (4.38) 

which, for the case of a simply-supported plate, is 

Smn — kjnXd sixi k^ya (4.39) 

If, instead of the acceleration, the velocity of the points on the plate are required, then the 

relationship between acceleration a, velocity t;, and displacement d of a point is given by 
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The points on the plate are assumed to vibrate harmonically and hence are proportional to 

so that 

a = jujv = = —Lo'^d (4.41) 

4.4.2 Piezoelectric sensors 

Piezoelectric materials which were introduced in section 4.3.2 can also be used as sensors due to 

the reciprocity effect described by Lee [25,50]. However, distributed piezoelectric sensors tend 

to be made from the more flexible polyvinyhdene Euoride (PVDF) Elm rather than the stiSer 

and more brittle piezoceramic PZT. Advantages of PVDF include its flexibility, light weight 

and, its high piezoelectric charge constant resulting in large charge ouputs for small strains. 

The equations used to derive the output of a sensor can be derived in analogy with the cor-

responding actuator equations and by using the properties of the piezoelectric ([19,25,50] for 

further details). 

For a deflection of the plate surface, the strain produced in the x direction at the surface of the 

sensor is 

. k , ) . % : ( ! + , . I (442) 

hs is the thickness of the sensor. This deformation of the sensor produces a charge across its 

electrodes which is proportional to the second derivative of displacement with respect to x and 

?/. By integrating over the area of the sensor, the charge output of the sensor is given by 
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M AT 

2 
m=la=l 

mix nix 

(4-43) 

COS A;ma:2 — cos A;ma;i)(cos A;n%/2 - cos Ani/i) 

where {xi,yi) are the coordinates of the lower left hand corner of the piezoceramic element and 

(3:2,3/2) are the coordinates of the upper right hand corner and 631 and 632 are piezoelectric 

stress constants. The sensing coeScient, 5'mn is then given by 

_ , h 
^mn — I ^ e 3 i - r + e 3 2 - f (cos Am3:2 - COS (cos ^̂ 1/2 - cos Ani/i) (4.44) 

4.4.3 Distributed volume velocity sensor 

Chapter 3 introduced radiation modes and showed that, at low frequencies, the first radiation 

mode is a much more efficient radiator of sound than higher order radiation modes. Furthermore, 

at these low frequencies, this radiation mode was found to have a shape corresponding to the 

volume velocity of the plate. It thus makes sense to try and control the volume velocity of a 

plate and this section deals with a sensor which can measure the volume velocity of the plate. 

In simulations, when using the neaz-Eeld approach, this is fairly straightforward. The volume 

velocity, Q, of a structure can be found by taking the sum of complex velocities at each of the 

elemental positions and so the charge output of a volume velocity sensor is also proportional to 

this value. 

Q = g f r (4.45) 

where gi is a vector in which every element is equal to the elemental area. 

Due to the easy shaping of PVDF film during manufacture, it has also recently become possible 

to produce a sensor which measures the volume displacement of the plate. The net volume 

displacement of the plate is given by 
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(7 = / / -{//(a;, (4.46) 
JQ JO 

The volume velocity of the plate can then be inferred by diSerentiating the output of the volume 

displacement sensor. 

The PVDF film sensitivity 5'(z, y) can be controlled by shaping the PVDF film. The shaping 

required to build a volume velocity sensor is discussed in [7,68-70]. The total charge output of 

the film is then [7] 

fly fix 
9 = / / '9(a:,2/) 

JO JQ 

631 1- egg- h 636 T; H TT- — "631-—^ — 11632-TT^— 
^2; 9a;/ 9;/^ 9a; 9?/ 

(4.47) 

This equation can be interpreted in two parts. The first part of the equation gives the charge 

due to the strain caused by the stretching of the midplane of the plate. For a plate fixed at 

its edges, there may be a contribution due to the elongation of the plate when some modes are 

excited. This is generally neglected as it is small in comparison to the other terms [50]. The 

second part of the equation ( ^ ^ , and ^ ^ ) is caused by the bending of the plate and is 

dependent on the distance between the film and the neutral axis of the plate. As egg is zero, 

the equation for the closed circuit charge output can be written 

fly fix 
9 = / / -/i5'(a;,y) 

Jo Jo 
— 632 dzd?/ (4.48) 

A beam with fixed ends is first considered, as these boundary conditions prevent whole body 

displacements which do not cause surface strain and so could not be measured with strain 

sensors such as the PVDF film even though they could be considered to be volumetric and 

would give rise to significant sound radiation. 

In a beam, the displacement w is purely a function oix and so, equation (4.48) can be simplified 

to 
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0 
(4.49) 

Integrating by parts gives 

+ 
a ^ ) 

^2; 
-w 

0 ^0 

Zz A2 
(4.50) 

Now deSne the sensitivity 5'(a;) to be quadratic in the ^-direction so that it equals zero at the 

two ends of the beam 

S{x) = a{lxX — x^) (4.51) 

where a is a constant. This quadratic shaping was Erst suggested by Rex [68]. By substituting 

this sensitivity into equation (4.50) and taking into account that, as 5'(a;) is dehned to be zero 

at the two ends, so the first term in equation (4.50) must also be zero, also as the ends are fixed, 

the displacement w(a;) = 0 at the two ends and so the second term must also be zero. Then 

g = / g 2 'w(a;)d2; = 2M^e3ia / w(a;)da; = 2Ae3iO!D' (4.52) 

So it is seen that choosing a quadratic sensitivity gives rise to charge output which is proportional 

to the volume displacement, {7, of the beam. 

If a plate is now considered where lu varies with both a: and 1/ then equation (4.48) can be split 

into two separate parts in these directions and the total charge output is the sum of the two 

charge outputs in the two directions 

= y -A5:(a;,2/)e3i^-^^^da;G(i/ 

= / -A5:(a;,2/)e32^ 
/Q Vo 

(4.53) 

8^2 
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Again, integrating by parts gives 

Qx — he^i + -w di/ (4.54) 

and defining the sensitivity S{x, y) to be quadratic in the x-direction and zero at the two ends 

of the plate and independent of y 

•5(^5 y) — o:(^lxX X ) (4.55) 

As 5'(a;,^) is zero at a; = 0 and a; = the Arst component of (4.54) is zero. If the plate is 

clamped then '̂ (Za;,;/) and 10(0,^) will also be zero and so the second term of (4.54) will also 

be zero. Then, after substituing the sensitivity, 

2̂; = 2/16310: / / w(a;, 2/)da;(f2/ = 2/ie3io;(7 
/o Jo 

(4.56) 

This is seen to be proportional to the volume displacement of the whole plate. The output due 

to the bending in the ^-direction should thus be zero. This is shown to be the case by Johnson 

[69]. 

This shows that, for the clamped plates used in the experiments, the PVDF sensor should be 

quadratically shaped in one direction. This has been achieved by etching in the PVDF film. 

This is a fairly simple process and described by Johnson [7] which also includes a discussion 

of the possible errors in the manufacture of the sensor. The template used for generating the 

volume velocity sensor is shown in figure 4.2. 

For a simply-supported plate, this calculation is slightly more complicated as the gradients of 

the plate at its edges are not zero and so the g,, component is not zero. It has been suggested 

that this can be overcome by placing two quadratically shaped PVDF sensors perpendicular to 

each other as described by Johnson [7]. 
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Figure 4.2: Quadratic strip shaping for a volume velocity sensor. Shaded area shows remaining 

electrode and white area shows where electrode has been stripped away. 
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4.4.4 Microphones 

Conventional ACS and the first ASAC systems used microphones in the far-field to measure 

the radiated sound field. Although this gives the best measure of radiated power if a sufficient 

number of microphones are available, there a number of disadvantages: 

1. A large number of microphones are needed to give an accurate representation of the 

radiated sound power. This is in contrast to the measurement of structural variables 

where it is hoped that as little as one variable, for example volume velocity, needs to be 

measured to give a good approximation to the radiated sound power. However, it has 

also been shown that a single microphone located normal to a finite planar structure in 

the far field will give a signal proportional to the volume velocity of the structure [71]. 

2. Even with a large number of sensors, spillover can take place at the intermediate positions 

where the sound pressure can be significantly increased. 

3. Microphones in the far-field may be impractical in some applications especially where the 

space is needed for movement of a head or body for example. 

The Rayleigh integral (section 3.2.2) for calculating the radiated pressure from a vibrating 

structure can be used to predict the signal at the microphone positions. 

4.5 Compar i son of t ransducers for ASAC 

This section compares different combinations of actuators and sensors and their use in control 

systems. The performance of each actuator-sensor combination is compared through the use of 

feedforward simulations, which work at a single frequency and give the maximum attenuation 

which could be achieved using a given physical system and thus provide a reference set of results. 

The block diagram for the feedforward simulations is shown in figure 4.3. In the diagram, G 

represents the plant and l y represents the controller. It is assumed that a reference signal r 

can be obtained upstream of the controller. For each simulation, only the actuator and sensor 

is changed, the control algorithm remains the same in each case. 
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G H- e 

Error 

Figure 4.3: Block diagram of feedforward control 

The properties of the modelled plate used are shown in table 4.3 and the frequency response 

function (FRF) is calculated using the modal methods of chapter 3 

Property Value 

length (x-direction) 0.278m 

length (y-direction) 0.247m 

thickness 1mm 

Young's modulus 71x10^ 

Poisson's ratio 0.33 

density 2720A;g.m"^ 

damping ratio 0.2% 

unity non-dimensional frequency 

(i.e. when A;Z2;=1) 

Table 4.3: Material properties of plate 

In each simulation, the primary excitation was assumed to be a plane wave with angles of 

incidence 0 — ^ = 45° which was chosen to excite ail structural modes. Some angles of 

incidence only excite a selection of modes of the plate and so, for the purposes of analysing 

control methods, are not as good. 

Two different feedforward control strategies are examined below. Both strategies involve min-

imisation at a single known frequency of excitation. In the first strategy, the total radiated 

power will be minimised. In practice, this method would require the use of a large number of 

error microphones in the far-field. This is often impractical and so error sensors bonded directly 

to the structure itself are used in the second control strategy which minimises the output of such 

an error sensor either in the form of an accelerometer, a piezoceramic patch or, a distributed 

volume velocity sensor. The aim is to get as close to the ideal control, given by the minimum 
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radiated power, as possible. 

For the first control strategy of controlling radiated sound power, the complex velocity distrib-

ution of the plate due to tonal excitation can be expressed as a combination of velocities due 

to primary (disturbance) and secondary (control) forces. Furthermore, the velocity distribution 

due to secondary actuators can be expressed as the velocity vector due to a unit input voltage, 

g, multiplied by a complex control signal u, such that 

V = Vp + gu (4.57) 

where Vp is the velocity distribution due to the primary incident wave. 

By substituting this into the equation for sound radiation, (3.30), it can be rearranged into the 

well-known Hermitian quadratic form. 

= 12*Alt +1/*;, + -I- c (4.58) 

where 

A = g Rg 

b = g^Rvp (4.59) 

c = VpRvp 

which is minimised by using the complex control voltage, Um, given by 

Um = —A b (4.60) 

The second control strategy focuses on the cancellation of the error sensor output and can be 

calculated in a similar way to that above. The aim is to cancel the total charge output of the 

sensors attached to the panel. 
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The charge output can be written as a combination of contributions from primary and secondary 

sources 

Qtot — (4.61) 

where % is the charge output due to a unit input voltage to the actuator. 

To set gtot to zero, the control voltage is 

Ue = — — (4.62) 
% 

Using the different transducers and control strategies described above, simulations were per-

formed to find the combination of actuators and sensors which give the best acoustic perfor-

mance. As the excitation of the plate is assumed to be tonal, with a known frequency, the 

control problem reduces to adjustment of the amplitude and phase of the complex control in-

put, u, at that frequency. In each case which follows, corresponding to different combinations 

of actuators and sensors, the following curves are shown: 

1. The power transmission ratio before control is defined to be 

T = ^ (4.63) 

where Wr is the sound power radiated by the panel and the incident acoustic power is 

defined by Roussos [60] to be 

W, = I''?!'-"'"'"" (4.64) 
2poCo 

2. The power transmission ratio after the input to the actuator has been adjusted at each 

frequency to minimise the radiated sound power 
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3. The power transmission ratio after the input to the actuator has been adjusted at each 

frequency to cancel the sensor output whether that is an accelerometer, piezoceramic 

sensor or, volume velocity sensor. 

For the Erst simulation, consider a point force actuator positioned at the centre of the plate. 

Figure 4.4 shows the calculated results when a single centrally-placed point force is used as an 

actuator and a single, centrally-placed, accelerometer, and a volume velocity sensor are used as 

error sensors. 

The ideal control curve, obtained by minimising sound radiation, is lower than the curve which 

shows the power transmission ratio before control at all frequencies as would be expected. This 

is the reference curve which shows the best possible attenuation which can be achieved using the 

given transducer configuration. The total attenuation over the IkHz frequency range is 7.MB 

but at any single frequency can be very large. The value for overall attenuation is weighted 

towards high frequencies where the overall sound power radiation is increased. However, this 

is the frequency region with the lowest attenuation so the overall attenuation does not give a 

good indication of the control performance at low frequencies. 

The dash-dot curve in figure 4.4, which shows the power transmission ratio after the output 

of the accelerometer has been cancelled, shows poor control at many low frequencies and the 

overall level of sound radiation is significantly increased (5.5dB). This eSect can be understood 

by considering the change in the dynamics of the plate when using this actuator sensor con-

figuration. As an example, consider the (1,1) mode which is shown after control in figure 4.5. 

It might be expected that, since the actuator excites the centre of the plate, the accelerometer 

should also couple into the (1,1) mode and drive the amplitude of the mode to zero. It is 

evident from the figure however that the displacement or acceleration at the position of the ac-

celerometer is driven to zero, but the general velocity is not being controlled. The efi'ect of the 

sensor is to pin that part of the plate and the dynamics of the plate are thus changed and the 

structure displays a new frequency response function with a new set of resonances. The overall 

efi'ect is similar to imposing an additional boundary condition or constraint on the equation of 

motion. Controlling the output of a single accelerometer turns out to be closer to AVC than 

AS AC as shown in chapter 6. 

Using the point force actuator in conjunction with a volume velocity sensor also provides good 
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control up to about TOOJifz. The total attenuation over the bandwidth however is reduced 

compared to the ideal control caae aa there is some loss of attenuation at higher frequencies. 

As the frequency is increased, the radiation efEciency of the first mode relative to the radiation 

efficiencies of other radiation modes is decreased and so control of volume velocity only works 

well at low frequencies. This is another form of spillover which is discussed in chapter 6. 

400 600 800 1000 
Frequency (Hz) 

Figure 4.4: Power transmission ratio before and after control using feedforward control with a 

centrally-placed point force actuator and a variety of sensors, a) Before control (solid line) b) 

After control of radiated sound power (dotted line) c) After control of volume velocity (dashed 

line) d) After control of the output of a centrally-placed accelerometer (dash-dot line) 

In the second set of simulations, a 25mm by 25mm piezoceramic patch at the centre of the panel 

was used with the diSerent types of sensors including a 25mm, by 25mm collocated piezoceramic 

sensor. The control results are shown in figure 4.6. 

It is again evident that the control of sound power and the control of volume velocity are good 

control strategies. However, control of the collocated piezoelectric sensor does not result in 

attenuation. As above, this can be explained by examining the vibration distribution of the 

plate before and after control and by analysing the action of the piezoelectric sensors in more 

detail. Again, consider control of the (1,1) mode as an example. It might be expected that, 

since the actuator excites the plate in the centre, so the sensor should perfectly couple into 

this mode and drive the displacement of the centre of the plate to zero, thus controlling the 

mode. However, the behaviour of the sensor prevents this from happening. The sensor cannot 
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Figure 4.5: Vibration distribution of plate after control of the (1,1) mode using a centrally-

placed point force and collocated accelerometer (and a symmetric disturbance) a) Whole plate 

b) Section through mid-plane of plate 

measure the absolute displacement from the equilibrium plane of the plate. Instead, the charge 

output of the sensor is proportional to the second derivative of the out of plane displacement 

with respect to z and ^ i.e. the bending of the plate. If the sensor is assumed to be perfectly 

bonded to the plate then its charge output will be zero when the integral of the gradient of the 

plate around the edges of the piezoceramic patch is zero. The vibration distribution of the plate 

after control of the (1,1) mode is shown in figure 4.7 and it is clear that the effect of cancelling 

the output of the sensor is to flatten the top of the plate resulting in a vibration distribution 

in which the gradient at the edges of the piezoelectric patch is zero as required (for this figure, 

the piezoelectric actuator and sensor were chosen to be 82mm by 82mm to demonstrate this 

flattening effect more clearly). The amplitude of vibration is also reduced slightly after control. 

The effect of controlling the collocated sensors is thus again to change the dynamics of the plate 

and to change the resonant frequencies of the plate. The eSect of minimising sound power and 

volume velocity using the piezoceramic patch actuator are seen to be remarkably similar to that 

achieved with the point force actuator and this is expected as the piezoceramic patch actuator 

also acts on only a local part of the plate. 
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400 600 800 1000 
Frequency (Hz) 

Figure 4.6; Power transmission ratio before and after control using feedforward control with a 

centrally-placed piezoceramic patch actuator and a variety of sensors, a) Before control (solid 

line) b) After control of radiated sound power (dotted line) c) After control of volume velocity 

(thin dashed line) d) After control of the output of a centrally-placed piezoceramic patch sensor 

(dash-dot line) e) After control of the output of a centrally-placed accelerometer (thick dashed 

line) 
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Figure 4.7: Vibration distribution of plate after control of the (1,1) mode using a centrally-

placed piezocerainic actuator and collocated sensor. Note that the actuators used here are 

slightly larger than in previous simulations and the disturbance is symmetric, a) Whole plate 

b) Section through mid-plane of plate 
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The final control graph 4.8 shows the results where a uniform force actuator and various sensors 

are used. The dash-dot line, representing control of a piezoelectric patch sensor using a uniform 

force actuator, can be thought of as the reciprocal caae to the single piezoceramic patch actuator 

and volume velocity sensor as shown in figure 4.6 and, the results are found to be quite similar. 

The combination of uniform force actuator and volume velocity sensor also give rise to control 

performance which is close to that obtained by minimising radiated sound power. This gives 

the best performance when constrained to the use of structural sensors. 

Prom the simulations described above, a few general conclusions on the choice of transducers 

can be drawn 

1. Using a uniform force actuator with a volume velocity sensor is almost as good a control 

strategy as minimising the total radiated power using far-field error sensors for frequencies 

up to around SOO^z. 

2. Using a uniform force actuator and piezoelectric sensors, or, a volume velocity sensor and 

piezoceramic actuators provide similar results to each other and which are quite close to 

(1) above. 

3. Using discrete actuators and sensors together does not provide good control of radiated 

sound power (but may result in good vibration control). 

The conclusions above would suggest that the desired configuration of transducers is a uniform 

force actuator and a volume velocity sensor. At the time of writing, no uniform force actuator 

was available and so, the second best configuration, using piezoceramic patch actuators and a 

volume velocity sensor was chosen for a first experimental arrangement. 

Although the results of different control simulations have been given here, a more detailed 

discussion on the actual control mechanisms, spillover, and the effect on plate vibrations is 

given in chapter 6. 
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Figure 4.8: Power transmission ratio before and after control using uniform force actuator and 

a variety of sensors, a) Before control (solid line) b) After control of radiated sound power 

(dotted line) c) After control of volume velocity (crosses) almost indistinguishable from (b) up 

to d) After control of the output of a centrally-placed accelerometer (dash-dot line) e) 

After control of a centrally-placed piezoceramic patch sensor (thick dashed line) 

4.6 P lacement of t r ansducers 

The previous section compared the performance of different actuator-sensor combinations but, 

in general, the discrete transducers were all placed in the middle of the plate. The actual 

position of a given transducer on the plate also has signiScant eSects on the control system and 

this is discussed in this section. 

That the position of the transducers is important can first be explained using an intuitive 

argument: An actuator placed in the centre of the plate for instance caimot excite any even 

modes. Similarly, a sensor placed one third of the way along the plate for example, would not 

be able to measure any (3, *) modes which are important to sound radiation (* refers to any 

integer). 

Although there are many different techniques for calculating the best position of transducers, 

such as Genetic Algorithms (GA's) or exhaustive searches [51-53], these normally rely on inten-

sive computing techniques and can be time-consuming. In this thesis, more practical arguments 
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will be used to arrive at transducer positions which may not necessarily be optimal, but will have 

a good enough performance for the purposes of this thesis. This is offset with the progression 

from feedforward to feedback control and then to implementation which all result in inevitable 

performance losses. These performance losses would eventually outweigh the small performance 

increases which could be obtained by making improvements to the transducer positions. 

The argument presented below is based on the fact that the performance of a feedback controller 

is dependent on the phase of the plant frequency response function. The aim of the controller 

in feedback control will later be shown to be to come as close as possible to inverting the plant 

response and this is only successful when no phase accumulation is present in the frequency 

response function (FRF) of the plant. This section shows how the phase accumulation can be 

kept to a minimum by repositioning of the transducers on the plate. This follows the analysis 

given by Johnson et al. [1] and Sors and Elliott [3]. 

The frequency response of the entire plant, including sensors, has been shown to be given by 

G(lo) — ^ ^ ] -^mn (j-^)FmnSr] 
71=1 

Each mode can now be considered to be associated with a pole which acts with a given gain or 

residue [72]. The residue is defined by 

Rmn — PmnSmn (4.65) 

and this is determined by the position and type of the actuator and sensor used. 

In between the poles, zeros are created and their positions depend on the values of the residues; 

if two consecutive residues have the same sign, then a zero will be created between them. The 

phase response of the zero then compensates for the phase response of the poles and no phase 

accumulation takes place. If there is a change in sign between two consecutive residues, the zero 

will be created somewhere else in the s-plane and phase accumulation will take place. The aim 

of changing the configuration of the transducers is thus to position them such that the residues 

all have the same sign. 
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A detailed description of the residue technique is described in [1, 27] and in this thesis, it will 

be demonstrated by means of a simple example: Consider the (1,1) mode and (3,1) modes of a 

plate and the sensitivity of a volume velocity sensor to each mode. The sensitivity to the mm'th 

structural mode is 

Sm.n — ̂  I (4.66) 

where B is a sensitivity constant, 5" implies integration over the area of the plate, and 2/) 

is the velocity profile of the structural mode, which, for a simply-supported plate, is given by 

y) — siu sin 

It turns out that the volume velocity sensor is only sensitive to odd-odd structural modes and 

that in these cases 5'̂ ^̂  oc l /m/i . The table of resulting sensitivity coe&cients is shown in table 

4.4 and it is clear that all coefficients are either positive or zero. The coefficients are normalised 

such that the sensitivity to the (1,1) mode is 1. 

n/m 1 2 3 4 5 

1 1 0 1/3 0 1/5 

2 0 0 0 0 0 

3 1/3 0 1/9 0 1/15 

4 0 0 0 0 0 

5 1/5 0 1/15 0 1/25 

Table 4.4: Normalised sensitivity coefficients for a volume velocity sensor on a simply-supported 

plate. 

Now, examine the forcing coe&cients for two different conEguration of piezoceramic actuators, 

Fmn as calculated from equation (4.14). The coefficients for a centrally-placed actuator are 

shown in table 4.5, normalised such that the forcing coefficient for the first mode is 1. 

The residues are obtained by multiplying the forcing and sensitivity coefficients for each mode, 

as shown by equation (4.65), and the results are also shown in table 4.6. It is clear that the 
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n /m 1 2 3 4 5 

1 1 0 -4.06 0 8.21 

2 0 0 0 0 0 

3 -4.76 0 7.02 0 -9.89 

4 0 0 0 0 0 

5 9.22 0 -10.29 0 11.33 

Table 4.5: Normalised forcing coefficients for a centrally-placed piezoelectric actuator on a 

simply-supported plate. 

signs of the residues change between consecutive modes and so phase loss will occur. The origin 

of the signs in table 4.5 can be seen more clearly by examining Egure 4.9. For the (1,1) mode, 

the central actuator is in a positive cell and for the (3,1) mode, the actuator is in a negative 

cell thus changing the sign of the forcing coefficient in between modes. 

n /m 1 2 3 4 5 

1 1 0 -1.35 0 1.64 

2 0 0 0 0 0 

3 -1.59 0 0.78 0 -0.66 

4 0 0 0 0 0 

5 1.84 0 -0.69 0 0.45 

Table 4.6: Normalised residues for a centrally-placed piezoelectric actuator on a simply-

supported plate with a volume velocity sensor. 

If five actuators, all driven in phase, are now used as shown in figure 4.10(b), then actuators are 

placed closer to the corners. Figure 4.9 then shows that the corner actuators are in positive cells 

for both the (1,1) and (3,1) modes and so there is no change of sign between the two modes. 

The tables of forcing coefficients and resulting residues for this particular actuator configuration 

are shown in tables 4.7 and 4.8 respectively. 

It is evident that the mode at which the first negative sign appears in the forcing coefficients 

depends on the positions of the actuators relative to nodal lines. The actuators should be 

placed as close to the corners as possible. There is then a trade-off between the minimum phase 

properties of the frequency response function and the amount of force which the actuators can 

provide to the plate, which decreases as the actuators are placed closer to the corners. Bearing 
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a) 111=1,11=1 mode 
Piezoceramic 

actuators 

W 111=10=1 nil 

Figure 4.9: Mid-plane view of (1,1) and (3,1) modes of a simply-supported plate 

b ) 

Figure 4.10: Different configurations of transducers on the plate a) Single, centrally-placed, 

transducer b) Five transducers; one centrally-placed, one placed a sixth of the way into each 

corner of the plate 
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n /m 1 2 3 4 5 

1 1 0 2.04 0 8.21 

2 0 0 0 0 0 

3 2.37 0 17.55 0 4.95 

4 0 0 0 0 0 

5 9.22 0 5.15 0 11.33 

Table 4.7: Normalised forcing coefficients for five actuators on a simply-supported plate. (First 

negative forcing coe&cient occurs at 1600^z for (7,1) mode) 

n /m 1 2 3 4 5 

1 1 0 0.68 0 1.64 

2 0 0 0 0 0 

3 0.79 0 1.95 0 0.33 

4 0 0 0 0 0 

5 1.84 0 0.34 0 0.45 

Table 4.8: Normalised residues for five actuators on a simply-supported plate with a volume 

velocity sensor. 
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in mind the limited frequency range over which control of volume velocity works, placing the 

actuators one sixth of the way into each corner was chosen as a compromise between these two 

factors. This led to two experimental configurations shown in figure 4.10 which are examined 

further in the next chapter. In the configuration using the actuators in the corners, the central 

actuator is kept to increase the control force, especially on the odd-odd modes which give rise 

to the volumetric plate vibrations and cause the most sound power radiation. 

The simulated frequency response functions of the plant using a distributed volume velocity 

sensor and the two configurations of piezoceramic actuators (figure 4.10) are shown in figure 

4.11. The phase lag for the five actuator configuration is much less than for the single actuator 

configuration as expected. An increase in amplitude for the five actuator case relative to the 

single actuator case can also be seen and is due to the fact that the four corner actuators are 

driven in addition to the central one. Driving the four corner actuators alone would result in a 

lower amplitude than for the single actuator. 

Mathematically, the phase loss due to the signs of the residues can be treated more rigorously 

as described in [72]. As an example, consider the addition of poles pi and pg 

( P i - a ) ( p 2 - a ) ( P i - 8 ) ( P 2 - a ) 

This equation shows that although the poles stay in the same place, a zero will be created whose 

position is dependent on the residues Ri and R2 i.e. when 

The zero is created at a point where the contribution from the two adjacent poles cancel each 

other. When the residues have the same sign, the position of the zero in between the poles 

compensates for the added phase due to each pole and so the system does not accumulate 

phase or create non-minimum phase zeros [72]. 

Taking the concept of reducing the phase in the FRF of the plant a step further results in 

the use of matched and collocated transducers. These give a minimum phase plant FRF. A 
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Figiire 4.11: Calculated frequency response functions a) Using a centrally-placed piezoceramic 

patch actuator and a distributed volume velocity sensor b) Using piezoceramic actuators placed 

as shown in figure 4.10(b) and a distributed volume velocity sensor 



minimum phase FRF is one which has all its zeros on the left hand side of the s-plane. A 

matched sensor-actuator pair is one in which the spatial distribution of the force input to the 

structure is the same as that of the spatial sensitivity of the response from the structure at the 

sensor. In some cases, a transducer can be used as both an actuator and a sensor as described 

in [73,74] for example, and these would quah^ as a matched pair. A perfect uniform force 

actuator and volume velocity sensor would also create a matched pair if the problems described 

in [26] could be avoided. 

The following discussion of matched transducers follows Johnson and Elliott [41] and the concept 

of collocation is described in more detail by [74]. If the actuator is assumed to have force 

distribution ri{x,y) with an input voltage U{LO) then the resulting amplitude of the mn' th mode 

is 

(4.69) 

If a sensor is now implemented having exactly the same sensitivity distribution rj{x^ y) then the 

output of the sensor will be 

2/(w)= y (4.70) 

and using equations (4.69) this can be written 

oo oo r r r 

m = l m=l 

2 

(4.71) 

The term in square brackets must be positive and real for all structural modes and can be 

represented by Cmn so the FRF of the transducer pair can be written 

G(w) == ^ y]^mn(^)Cmn (4.72) 
m=:l n = l 
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The phase of each modal contribution to the FRF will thus be equal at their respective natural 

frequencies. This has been expressed in the Laplace domain by [72] and gives rise to a minimum 

phase pole-zero structure. As no phase accumulation occurs with frequency, this minimum phase 

FRF has a stable and causal inverse. In principle it would then be possible to create a feedback 

system which performs as well as its feedforward counterpart. An example of a minimum phase 

FRF, modelled between a uniform force actuator and a volume velocity sensor is shown in figure 

2000 

500 1000 1500 
Frequency (Hz) 

2000 

Figure 4.12: Minimum phase FRF modelled between uniform force actuator and a distributed 

volume velocity sensor 

The positioning of actuators and sensors is also linked to the concepts of controllability and 

observability which are used widely in state-space control. A point force placed in the centre 

of a simply-supported plate for example, would not be able to control any even modes of the 

plate. A similar analysis applies to sensors. Controllability and observability are treated more 

rigorously by Franklin and Powell [75] for example. 

These give rise to some conclusions on the choice of transducers further to those listed at the 

end of section 4.5 above. 

1. By changing the position of actuators on the plate, the phase loss in the plant frequency 

response function can be kept to a minimum and hence increased control performance 

can be obtained. In particular, the five actuator configuration shown in figure 4.10(b) 
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performs better than the single actuator configuration, figure 4.10(a). 

2. Collocated transducers give rise to a minimum phase plant FRF which is an important 

consideration for feedback control. Simulations were also made using other positions for 

actuators and sensors but the results were not found to be significantly better than those 

presented here. 

4.7 Conclusions 

The plate models derived previously have been used in this chapter and the various different 

integrated actuators and sensors which could be used for ASAC have been analysed in terms of 

their forcing functions and sensing functions. Special focus has been on piezoelectric materials 

which have advantages for ASAC such as their cost and physical properties. 

An analysis of the plant frequency reponse functions shows that, as well as choosing the types of 

actuators, their positions must be chosen carefully to maJce the frequency response as minimum 

phase as possible. This can also be achieved by using matched and collocated transducers. 

It is found that the ideal combination for ASAC would be to use a uniform force actuator 

and a volume velocity sensor. However, the uniform force actuator still has some problems 

in its development and so instead, 5ve piezoceramic actuators are used in an experimental 

arrangement which will be tested further in the next chapter. 
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Chapter 5 

Feedback control for active 

s t ruc tu ra l acoustic control 

5.1 In t roduc t ion to feedback control 

Chapter 2 included a brief comparison of feedforward and feedback control and their respective 

advantages and disadvantages. Simulations in the previous chapters used feedforward control, 

which gives the best performance which can be obtained from a given physical system and thus 

give a set of benchmark results against which other control strategies can be gauged. This 

chapter will now deal with feedback control. 

The use of feedback control introduces some important issues such as controller stability and 

robustness. A fundamental requirement from a control system is that it should maintain closed-

loop stability during operation i.e. the closed-loop system should remain stable for all perturbed 

plants around a nominal model. The performance of a feedback control system is always less 

than its feedforward counterpart, assuming that a suitable time-advanced external reference 

signal is available, because of these factors. The aim then, is to design a feedback controller 

which is robustly stable and has a performance which is as close to its feedforward counterpart 

as possible. 



5.1.1 Feedback control issues: Performance, robustness, and stability 

There are many references which describe feedback control in detail for example [11,17,19, 30]. 

This section outlines the compromise between performance and stability which arises due to 

the feedback loop. Stability normally implies that for any Bounded Input to the system there 

should be a Bounded Output (BIBO stability). This section will consider Single Input-Single 

Output (SISO) control but the same general rules apply for Multiple Input-Multiple Output 

(MIMO) control. 

Disturbance 

Plant 

Controller 
Error 

Figure 5.1: Block diagram of a feedback control system 

The block diagram of a feedback system is shown in figure 5.1 and control theory provides a 

variety of methods of designing the controller, H{jLu), which generates control signals u{juj) 

from the error signals e{juj). The error signal e{juj) is a combination of contributions due to 

the primary disturbance d{juj) and due to the output of the control system and plant y{juj). 

The feedback is assumed to be negative so that the controller and plant output is subtracted 

from the primary disturbance. This is consistent with most of the control literature and means 

that if y{jLo) is similar to d{ju)) then the error ouput will be small and large attenuations are 

achieved. The error is given by 

e(;w) = d(;w) - 3/(;w) = d(;w) - G(;w)a'(;w)e(_7w) (5.1) 

which can be rearranged to give the frequency response function of the overall feedback system 

measured between the disturbance and the error 
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'5 'W = 
e(i^) ^ 1 
d W 1 + G(;w)#(jw) 

(5.2) 

This is called the sensitivity function and is a measure of the overall attenuation of the distur-

bance in the system. It is desirable to have this value as low as possible which is achieved by 

making the open loop gain as large as possible. 

Disturbance 

Plant 

Controller 
EiTor 

Figure 5.2: Block diagram of a feedback control system including command signal 

A command signal r{juj) can also be included as an input to the feedback control system as 

shown in figure 5.2. In this case, the error signal is required to track the command signal. 

However, for sound and vibration or ASAC problems, it is normally required to eliminate the 

disturbance as far as possible in which case the command signal is zero. The frequency response 

function between the commmand signal and the error signal is given by 

(5.3) 

this is called the complementary sensitivity function and it is related to the sensitivity function 

equation (5.2), which describes the performance of the system, by 

g ( ; w ) + r ( ; w ) = 1 (5.4) 

It is desirable for this complementary sensitivity function to be as close to unity as possible 

which again requires making the open loop gain as large as possible. However, the complemen-

tary sensitivity function also expresses the eSect of measurement noise, also called sensor or 
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observation noise, on the output which should be as small as possible. From this point of view, 

the open loop gain should be as small as possible. There is thus a compromise between rejection 

of disturbances and good command tracking, which require large loop gains, and rejection of 

sensor noise, which requires low loop gains. 

Returning to equation (5.2) it is evident that if, at some frequency, \G{ju))H{jijj)\ = 1 and the 

open loop response has exactly 180° degrees of phase shift, then the denominator would be zero 

and the output would become unbounded. This is when instability occurs. To describe this 

more formally, the closed loop system is stable if none of the poles of ij^g{1)h{s) (equivalent to 

the roots of the characteristic equation 1 + G{s)H{s) = 0) are in the right hand half (within 

the Nyquist contour) of the s plane as shown in figure 5.3. 

Im(s) 

Stable U n s t a b l e 

Re(s) 

Figure 5.3: Stable and unstable regions of the s plane 

This stability criterion can also be represented graphically by using the Nyquist plot of the open 

loop frequency reponse G{ju})H{juj). This Nyquist plot must not enclose the point (—1,0) from 

w = —CO to oo if the controller is to be stable, as dealt with in more detail by [30, 76] for example. 

Figure 5.4 shows the Nyquist plot of a stable and an unstable system when the feedback loop is 

closed. The gain and phase margins both give an indication of how robust the stability of the 

controller is to changes. This is important as frequency response functions are normally subject 

to some uncertainty in the measurement process and can often change with time. 
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Im{G(jco)H(jm)} 

(-1,0) e { G 0 w ) H 0 m ) ) 

Figure 5.4: Nyquist plot in the juj plane showing point of instability. Solid line shows stable 

FRF, dashed line shows unstable FRF. 

The gain margin is defined by 

Gain margin{dB) = — 201og^Q \ GH\ (5.5) 

where \GH\ is the open loop response when the phase is 180° i.e. when the Nyquist plot crosses 

the negative s-axis. As an example, when \GH\ = 0.5, the gain margin is &dB which allows 

relatively large chajiges to the open loop response before instability and so could be considered 

to be a very robust system. A similar definition applies for the phase margin, which is the 

amount of additional open loop phase lag which would be required to destabilise the system. 

As an example of how plant FRF's can change, figure 5.5 shows the FRF of the experimental 

plant described in section 5.3.1, measured every hour over two days. Figure 5.6 then shows the 

variation in the second resonant frequency over this period which is seen to vary by approxi-

mately 10% over a 5 degree variation in temperature. This variation in natural frequency is 

greater than one would expect in a free plate and is probably due to the variations in temper-

ature causing a change in the in-plane tension within the plate. 

Robust stability is a more formal requirement that the closed loop feedback system must remain 

stable for a given range of changes in the plant frequency response function. For the case of 

the plate considered in this thesis for instance, this could be due to temperature changes or 

other changes in environmental variables. Other sources of differences between the plant model 
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Figure 5.5: Effects of temperature on FRF's 
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Figure 5.6: Effects of temperature on second resonant frequency. Best fit line shown. 
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and the true plant could be due to measurement errors or high frequency dynamics which are 

missed out in low-order models. These plant uncertainties can be modelled in many different 

ways such as bounds on a parameter of a linear model, bounds on nonlinearities in the models 

or, bounds in the frequency domain models [77]. These are defined as parametric uncertainties 

as a given parameter in the plant model can take a given range of values. Another type of 

uncertainty is unstructured uncertainty, which defines a general set of plants around a nominal 

value. Again, different types of unstructured uncertainty exist but multiplicative uncertainty 

will be considered here in which the plant is considered by means of variations from a nominal 

plant response described by 

G(;w) = Go(;w)[l + Acfjw)] (5.6) 

where is the frequency response of the nominal plant and AG(_;'w) is the fractional 

uncertainty in the plant response. Multiplicative uncertainty normally increases with frequency 

and exceeds or becomes equal to unity at high frequencies. This is because (7o(jw) tends to 

become small at high frequencies so any change in absolute value gives rise to large values of 

Acijuj) . A typical variation of multiplicative uncertainty over frequency is shown in figure 5.7 

and the block diagram of a feedback controller with multiplicative uncertainty is shown in 5.8. 

200 400 600 800 1000 
Frequency (Hz) 

Figure 5.7: Typical form of multiplicative uncertainty bound 
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Figure 5.8: Block diagram of multiplicative uncertainty 
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Figure 5.9: Nyquist plot of circle of uncertainty around nominal point 
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The modulus of AG(_yw) is assumed to be less than some upper bound B. This bound is 

generally frequency dependent so that 

l A c W I < (5.7) 

The Nyquist diagram represents this by a ring of uncertainty around each point of the open 

loop frequency response. This ring has radius \GQ{iuj)H{jLo)\B{jLo) and is shown in figure 5.9. 

It is clear from the figure that the distance from the open loop frequency response to the Nyquist 

point ( -1 ,0 ) is 

|l + Go(;w)j!r(j(^)| (5.8) 

For the stabihty condition to hold at any given frequency, this circle must not enclose the 

Nyquist point and so, 

|1 + G'o(;w)^(;cj)| > |Go(;w)^(;w)|B(;L;) (5.9) 

The condition for robust stability is then 

\l+G„{ju)H(]ui)\ B(]w) 

The left hand side of this equation is seen to be equal to the complementary sensitivity function, 

equation (5.3), and so 

m,.)\ < ^ (5.11) 

96 



or 

| r ( ; w ) B W | < l for all w (5.12) 

This means that for robust stability, the complementary sensitivity function weighted by the 

fractional uncertainty in the plant frequency response should have a magnitude less than unity. 

Other types of unstructured uncertainty are described in [77], The stability of MIMO systems 

can also be considered using unstructured uncertainty. This is especially straightforward using 

the generalised feedback control framework introduced in the next section. 

The performance of a feedback control system is also dependent on the frequency response of 

the plate and the autocorrelation, or predictability, of the disturbance signal. 

The autocorrelation of the disturbance signal is given by 

= + (5.13) 

.6' is the expectation operator, t is time, and T is the time delay between points. Autocorrelation 

is discussed in more detail in signal-processing textbooks [78, 79] but provides a measure of how 

well the signal can be predicted in the future using present and past values of the signal. The 

two extremes of these are completely periodic or predictable signals or, completely random 

signals. All real signals fall somewhere in between these two extremes and, the larger the 

autocorrelation, the more predictable, and hence controllable, the signal. 

Another factor which affects the performance of a feedback control system is the phase of the 

plant frequency response function. In section 4.6 actuator positions were chosen to give a plant 

FRF as minimum phase as possible. Any delay or phase lag becomes an univertible part of the 

plant and reduces the performance of feedback control. Additionally, time delay in the plant 

reduces the bandwidth of control as described by [17, 80] for example. 

There is thus an additional trade-off between performance (attenuation), robust stability, and 
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the delay in the plant FRF which arises as an inherent part of the digital controller and signal 

conditioning equipment. This speciEc trade-oE is investigated in detail in sections 7.2 and 8.2.2. 

Other limitations to performance are discussed in [17] and include the waterbed effect, which 

means that if good control performance is obtained over a certain frequency range then there 

will be poor performance over another frequency range and is a consequence of the Bode integral 

[17, 80]. 

5.1.2 Generalised feedback control framework 

Multi-channel control systems are considered later in this thesis where several actuators, several 

sensors, or both are present and can be used independently of each other. These are referred to 

as multi-input multi-output or MIMO control systems as opposed to single-input single-output 

SISO control systems which have been used up to this point. 

A method of describing these MIMO control systems (or SISO control systems) in a convenient 

way is by using the generalised control framework [80]. The block diagram is shown in 5.10 and 

shows three blocks, the generalised plant P , the generalised controller K , and the generalised 

uncertainty A: 

P generalized plant matrix, which includes the plant model, the disturbance model, and the 

interconnection between the plant and controller. 

K controller matrix. 

w exogenous (external) inputs including disturbances, command signals and noise. 

z regulated outputs (error signal). 

V sensor outputs (measured values and command signals). 

u control signals. 

1/^ input to the uncertainty block 

ua output from the uncertainty block 

A uncertainty matrix 
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The control system can then be described using the equations 

z w 
= p 

V u 

u = Kv, wa = A 2/A (5.14) 

regulated outputs exogenous inputs 

sensed outputs control signals 

Figure 5.10: General control configuaration with model uncertainty 

As an example of the power of this approach, the plant matrix P can be conveniently partitioned 

as 

P = 
f l l f l 2 

f 21 -P22 
(5.15) 

In the experiments described below the primary disturbance is provided by a loudspeaker, whose 

input signal may be taken to be w, and the secondary actuator is a piezoelectric device whose 

input may be taken to be u. The actuator is driven via the feedback loop from accelerometer 

signals, u, and the object is to control or regulate the outputs of a set of far-field microphones, 

z. A simple physical interpretation can thus be given to the different FRF's in equation (5.15) 

betweeen the diEerent actuators (disturbance loudspeakers and piezoceramic actuators) and 

sensors (accelerometers and microphones). This is shown in figure 5.11 where 

P i i represents the transfer functions between the disturbance loudspeakers and microphones 
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f 21 represents the transfer functions between the disturbance loudspeakers and accelerometers 

f 12 represents the transfer functions between the piezoceramic actuators and microphones 

f 22 represents the transfer functions between the piezoceramic actuators and accelerometers 

W 

(loudspeaker) (microphones) 

(structural 
actuators) 

(structural sensors) 

Figure 5.11: Block diagram showing transfer functions between various actuators and sensors 

used in experiments 

This generalised control framework has many uses which simplify the analysis of MIMO control 

systems. Reduced formats of the block diagram allow analysis of robust performance or robust 

stability analysis [17, 80]. It is found that almost any linear control problem can be formulated 

using the generalised control framework block diagram. 

5.2 In te rna l model control 

There are many methods of designing the feedback controller H in the feedback control block 

diagram 5.1. The most common of these, for the purposes of feedback control in acoustics and 

vibrations problems is called Linear Quadratic Guassian (LQG) control and is usually based 

on state-space methods [81]. In this approach time domain equations governing the system 

response are set-up in a standard form in terms of internal state variables of the system. Using 
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well-established matrix methods, these state variables can be manipulated to derive properties 

of the system such as controllability, observability, and the effects of various feedback control 

strategies [81]. 

A more recent approach has been to use a feedback control method called Internal Model Control 

(IMC). Reviews of IMC controllers include [17, 77, 82] and this method assumes that a model of 

the plant frequency response function is available and the feedback controller H is then split up 

into two parts as shown in figure 5.12. The effect of the parallel path with the plant model within 

the IMC feedback controller, aa shown in the block diagram Bgure 5.12, is to subtract the eSFect 

of the manipulated variables from the process output. If the model is a perfect representation 

of the plant then the feedback signal is equal to the influence of the disturbance and is not 

affected by the manipulated variables. In this case, the IMC block diagram can be rearranged 

into the feedforward diagram shown in 5.13 and the controller and plant model block can then 

be changed (assuming linear, time-invariant systems) to give the block diagram 5.14. The H2 

control problem can then be solved using conventional Wiener techniques. This block diagram 

also shows that for perfect control, the controller would be an exact inverse of the plant, as 

described in section 4.6, W = The IMC method was developed in the 1970's [83-86] and 

is a particularly convenient form of controller parameterization. This parameterization, also 

called Q-parameterization or Youla-parameterization, parameterizes all stabilizing controllers 

for a given plant. The IMC formulation turns out to be identical to Youla parameterization 

for a stable plant. More recently, IMC has been used in ACS, ACV, and ASAC applications, 

especially by Elliott [82,87-89]. Comparisons between IMC and other control techniques are 

given in [17,90]. M0rkholt [90] shows that, although the IMC and conventional state-space 

LQG methods of designing feedback controllers have difi'erent approaches to solving the control 

problem and have varying degrees of computational complexity, the different design methods 

yield controllers with almost identical performance. These conclusions are expected because all 

these methods have essentially the same cost function to minimise. These are all known as 

or minimum variance, control as they minimise the mean square value of a given error signal. 

Another recent feedback controller design approach is the Hoo approach [80]. In SISO systems 

the Hoo approach minimises the maximum error at any frequency instead of the mean-square 

error but for active control it is the mean-square pressure which determines the subjective 

loudness of a sound and so H2 control is the most applicable. 

Although each feedback controller design method has its own advantages and disadvantages, 
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IMC is used in this thesis for the following reasons: 

1. The plant response at frequencies important for AS AC is high order (theoretically infi-

nite since the plate is actually a distributed parameter system), well damped, and has 

significant delays due to the reconstruction and anti-aliasing filters essential to stop high 

frequency noise in digital systems for acoustic applications. Additionally, the plant is 

uncertain, due to the boundary conditions and in-plane stresses for example. All these 

factors make state space modelling difficult. Using IMC it is possible to use measured 

data directly to calculate the controller with an FIR filter to model the plant and so these 

factors are less important. 

2. Due to the plant model within the IMC controller, insight and analytical techniques 

previously obtained with feedforward techniques can be used, which can then be compared 

within the same framework. 

3. The IMC formulation is relatively easy to reconfigure as an adaptative controller which 

can be a difficult task for other types of feedback control. 

4. Assuming the plant is stable, the overall closed-loop feedback system is stable if and only 

if the IMC controller filter W is stable as shown below. As the plant is stable for all 

structures considered in this thesis, only the stability of the control filter then needs to 

be considered and assuming W to be stable ensures the closed-loop stability of the IMC 

controller under nominal conditions. 

5. Whereas an analysis of robustness can be difficult when using LQG methods, it is relatively 

straightforward using the IMC formulation. 

Two different approaches for calculating the optimum controller are outlined below but the 

basic steps for the design and implementation of an IMC controller are as follows: 

1. Obtain a plant model G. In this thesis, this is achieved by fitting an FIR filter to measured 

data. 

2. Calculate the feedforward controller W in figure 5.14 by using one of the methods outlined 

in sections 5.2.1 or 5.2.2. This controller is dependent on the primary disturbance. 
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3. Calculate the feedback controller H using equation (5.18) and implement as an FIR con-

troller. 

Disturbance 

Plant 

Error 

Plant model 

Figure 5.12: Block diagram of an internal model control system 

Disturbance 
d 

Controller Plant 

d , G 
y 

G 
Error 

Figure 5.13: Block diagram of IMC reformulated as a feedforward problem 

Disturbance 
d 

Plant Controller 
d G G 4) 

Error 

Figure 5.14: Rearranged block diagram of IMC reformulated as a feedforward problem 

5 .2 .1 O p t i m u m leas t - square contro l ler 

To derive the optimum controller after IMC has been reformulated into the feedforward problem 

shown in figure 5.14, consider the general discrete feedback control equation in the sampled time 

case 
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e(z) = d(z) — G(z)j7(z)e(z) (5.16) 

where e(z) is the z-transform of the error signal, d(z) is the z-transform of the disturbance signal, 

G{z) is the transfer function of the plant, and H{z) is the transfer function of the feedback 

controller. The plant response in the sampled-time case includes ADC and DAC convertors 

and anti-aliasing and reconstruction filters as well as the actuator and sensor responses and the 

structural response of the system under control. 

This equation can be rearranged to 

e(z) 
Li + G(z)j:f(z) 

d(z) (5.17) 

which can be compared to its continuous counterpart, equation (5.2). The internal model 

controller is formulated such that 

^ ( z ) = 
M:(z) 

1 - G(z)#^(z) 
(5.18) 

and the error can then be written 

e(z) 
1 - G(z)Ty(z) 

1 + [G(z) - G(z)];y(z) 
(f(z) (5.19) 

if the plant model is an exact model of the plant so that G{q) = G{q) then 

e(z) = [1 — (9(z)W(z)]d(z) (5.20) 

as shown in figure 5.13. 
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If W{z) is assumed to be an FIR filter, the mean square error is a quadratic function of the 

coefficients of W{z) which allows easy calculation of the optimum performance using standard 

Wiener techniques. An FIR filter is also unconditionally stable, so that the closed loop is also 

guaranteed to be stable under nominal conditions. There are many different techniques for 

solving this least-squares problem and two are outlined below and are used in this thesis. These 

are a fixed solution to the Wiener-Hopf equation in this section, and the filtered-a; LMS which is 

an adaptive method to solve the same quadratic problem, described in the next section. These 

methods are reviewed in 

Considering first the fixed solution, the error can be written from figure 5.14 as 

e(z) = — ty(z)r(z) (5.21) 

so that 

7 - 1 

— ( 5 . 2 2 ) 
i=0 

where r(z) = G(z)(f(z) is the reference signal given by the disturbance filtered by the plant 

reponse and wq to wj-i are the coefficients of the FIR control filter W{z). 

The control coefficients are optimally adjusted to minimise a cost function given by the expected 

value of the error squared i?[e^(n)] which is equivalent to minimising the total power of the 

signal. After this optimisation the error signal will be completely uncorrelated with the reference 

signal for I samples so that 

Ble(n)r(n — k)] = 0 for 0 < A: < / — 1 (5.23) 

Substituting equation (5.22) into equation (5.23) gives an expression for the optimal filter 

coefficients Wi{opt) 
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1-1 
E[d{n)r{n — k)] - ^ Wi{opt)E[r{n — i)r{n — A;)] = 0 for 0 < k < I — 1 (5.24) 

i=0 

The first term of this equation is the expected value of the present disturbance multiplied by 

the {n — ky^ filtered reference signal. To include all values of k this term is represented by an 

I length vector p which is the cross-correlation function between d{n) and r(n) 

p = [ E[d{n)r{n)] E[d{n)r{n - 1)] • • • E[d{n)r{n - I + 1)]] T (5.25) 

Also defining the / by J auto-correlation matrix R as 

E[r(M)r(M)] E[r(M)r(n — 1)] 

E[r{n — l)r(n)] E[r{n — l)r{n — 1)] 
R = 

^[r(M)r(m — 7 + 1)] 

E[r{n - l ) r (n - / + !)] 

E[r{n - I + l)r{n)] E[r{n - I + l)r{n - 1)] ... E[r{n - I + l)r{n - I + 1)] 

and the vector of control coeSScients as 

(5.26) 

W = [wq Wl • • • Wl-l] T (5.27) 

Equation (5.24) can be expressed in matrix form for /c = 0 to / — 1 

P RWgpl 0 (5.28) 

The optimal Wiener control filter coefficients are then given by 

Wopt — R P (5.29) 
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A direct solution is possible if the matrix R is positive definite which is assumed to be the case 

if the filtered reference signal persistently excites the control filter [82] and this solution shows 

that if the plant response and disturbance signals are known, then it is possible to calculate the 

optimal filter coefficients, and hence the resulting error signal. 

For a minimum phase plant, a controller can be designed which perfectly compensates for the 

plant and drives the error to zero. However, if the plant has jiT samples delay in it, then r(n) is 

delayed by K samples with respect to d{n) and so the cross-correlation vector p will not include 

all the correlated information as E[d{n)r{n + 1)] to E[d{n)r{n + K)] will be non-zero. The 

performance of the control system is thus adversely affected by any delay in the plant. This 

gives a mathematical interpretation of the need for minimum phase plant FRF's, as introduced 

in section 4.6. 

Returning to the trade-off between robust performance and robust stability, there are various 

methods of designing controllers which are not necessarily optimal but which provide a good 

approximation to the optimal solution. A typical cost function in LQG control for example is 

to minimise 

J = (5.30) 

where E[u'^] is the expectation value of the mean square input signal to the plant and p is an 

effort weighting parameter. The effect of the effort term is to make the feedback control system 

more robust to plant changes. 

A similar technique can be used for IMC by designing the controller to minimise the cost 

function 

i - i 
J = + (5.31) 

1=1 

where /? is called a regularisation term as it regularises or improves the condition number of 

the matrix to be inverted. The optimal controller is then given by 
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tUopt = -G'[r^(n)r(7i)+;8f] ^^[r(n,)d(M)] (5.32) 

which reduces to equation (5.29) if /3 = 0. This technique is outlined in more detail in [82]. 

5.2.2 Adaptive controller 

One of the advantages of IMC listed above is that it allows easy adaptive implementations 

which can be difficult using other feedback control techniques. This is because the feedback 

control is rearranged as a feedforward problem. One such adaptive technique is the filtered-z 

LMS algorithm [91]. This method updates the coefficients in the FIR control filter after each 

measured sample so that they converge to the optimal filter Wopt- The FIR control filter has a 

quadratic error surface with a unique minimum and so a gradient descent algorithm is used. 

The LMS algorithm estimates the current gradient of the error surface using the most recent 

error sample multiplied by the previous I reference signals, to update the coefficients of the 

control filter. The f th filter coefficient at sample n + 1 is given by the equation 

iui(n + 1) = 'u;i(M) — o:e(M,)a;(?i — %) (5.33) 

a is a convergence coefficient which determines the rate of convergence. The block diagram for 

this adaptation is shown in figure 5.15 

If the output of the filter is filtered by the plant response, as is the case in IMC, then it is also 

necessary to filter the reference signal by a model of the plant to produce an unbiased estimate 

of the gradient and this is known as the filtered-z LMS algorithm which is depicted in figure 

5.16. 

The update equation is then given by 

+ 1) — 'Wi(M) -t- 0!e(M)r(7i — 2) (5.34) 
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» e(n) 

Figure 5.15: Adaptive LMS control system. 

d(n) 

x(n) 

r(n) 

W(q) G(q) ^ e(n) 

Figure 5.16: Adaptive control system: Filtered-a; LMS 

109 



r{n — i) is the filtered reference signal given by 

- 1) + - 2) + - J + 1) (5.35) 

Once again, the controller can be made more robust to plant changes by using the leaky version 

of the filtered-x LMS algorithm which includes a term /3 as above. This is discussed in [92] for 

example. 

5.3 Active s t ruc tu ra l acoustic control using a d is t r ibuted vol-

ume velocity sensor 

An intial set of experiments was carried out using the experimental configuration described in 

chapter 4 i.e. on a plate with Eve piezoceramic actuators, a distributed volume velocity sensor, 

and using an IMC controller. This section describes those experiments and the conclusions 

which resulted from this set of experiments. 

5.3.1 Apparatus 

The experimental set-up is shown in figure 5.17. The plate with sensors and actuators is 

mounted on a heavy, rockwool-filled box with a loudspeaker inside which generates the primary 

disturbance. The dimensions of the plate are 278mm by 247mm and 1mm thickness and the 

purpose of the rockwool is to prevent flanking so that the disturbance is only transmitted 

through the plate. An etched PVDF film is bonded to one side of the plate forming the volume 

velocity sensor and five piezoceramic patches, arranged as shown in figure 4.10(b), are bonded 

to the other side of the plate. The signal conditioning components are also shown in figure 

5.17. A host PC with a TMS320C30 digital signal processing card was used to measure the 

necessary FRF's and implement the controller. The two different configurations of actuators are 

discussed in section 4.6 and shown in figure 4.10. It was expected from the simulations reported 

in chapter 4 that the five actuator configuration would provide a more minimum phase frequency 
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response and hence better performance, than the single actuator configuration. Photos of the 

experimental arrangement are shown in figure 5.18. 

host PC 

Actuators 

Sensor ADC Charge amplifier 

TMS320C30 DSP Card 

PVDF volume 
velocity sensor 

Aluminium plate 
1mm thick 

Rockwool 
filling 

/ 
Actuators 

Loudspeaker 

Heavy box 

Figure 5.17: Experimental set-up a) Block diagram b)Plate mounting 

It should be noted that a major difference between the simulations and the experiments is 

the different boundary conditions of the plate. In the simulations, simply-supported boundary 

conditions were assumed, giving rise to purely sinusoidal mode shapes which provide a clear 

understanding of the plate dynamics. In the experiments, the boundary conditions approximate 

clamped boundary conditions, simply-supported boundary conditions being very difficult to 

replicate experimentally. The major diSerence between the responses of plates with the two 

types of boundary conditions is that the natural frequencies of the plate were slightly higher 

when the edges of the plate were clamped as described in appendix A. There was also a 

slight difference in mode shapes but this is concentrated to the edges of the plate and so 

these differences were ignored in comparing simulated and experimentally-measured results. 

I l l 



(a) 

(b) 

Figure 5.18: Photographs of the experimental arrangement, a) Loudspeaker generating distur-

bance and piezoceramic actuators, b) Volume velocity sensor. 
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The difference in boundary conditions is thus not expected to significantly affect the control 

strategy used on the plate 

5 .3 .2 S imula t ions of control us ing m e a s u r e d frequency re sponse funct ions 

In this section, IMC simulations are used with data measured on an experimental rig to predict 

the performance of a real control system. 

The experimental system is shown in figure 5.17. Where five actuators are used, they are driven 

in a single channel configuration i.e. they are all driven with the same amplitude and phase. 

Microphones would also be required to measure the actual attenuation in transmitted sound 

power after control but below, error measurements are made on the plate itself. 

The relevant FRF's which are required for the control predictions are (c.f. figure 5.11) 

1. f 21, the effect of the disturbance on the volume velocity sensor. 

2. f 22, the plant. This is the FRF between a unit input voltage to the five piezoceramic 

actuators and the output from the distributed volume velocity sensor. 

A frequency range Q—lkHz is chosen to simulate broadband sound and experimentally measured 

frequency response functions are used in IMC simulations in this section. These frequency 

responses were initially measured with an Advantest R9211C FFT Servo Analyzer and the 

anti-aliasing and reconstruction filters were removed to allow a more direct comparison of the 

results with simulated transfer functions. 

The measured frequency response functions between the PZT sensors and PVDF sensor are 

shown in figure 5.19 and, apart from a constant factor in the amplitudes due to the callibration of 

the measurement equipment, are seen to be very similar to the ones obtained in the simulations 

described in chapter 4 and shown in figure 4.11, especially for the single actuator case. In the 

five actuator case, there is more phase loss in the experimental system than was predicted from 

the simulations. One problem seems to be in the way in which the phase is unwrapped. In figure 

5.19(b) at around 2QQHz for example, there is a zero shown in the response of the amplitude 

but a corresponding loss of 90° is shown in the phase response, rather than a corresponding 
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gain of 90° which would be expected. The transfer function of the plant is also very sensitive 

to the positioning of the secondary actuators. Whereas in the simulations, the position of the 

actuators is known perfectly, in a practical system, small deviations from these positions will 

result in the unexpected excitation of modes which could change the results dramatically. This 

is especially the case when an actuator is placed close to a nodal line for a given node as a small 

error in the actuator position would then cause it to be on the other side of the nodal line and 

to excite that particular mode 180 degrees out of phase. Similarly, an imperfect volume velocity 

sensor will have some response to modes which are not odd-odd, and which do not contribute 

to the volume velocity. The natural frequencies in the experimental system are also slightly 

higher than in the simulated system, probably because of the clamped boundary conditions 

in the experimental system, but otherwise the simulations predict experimental measurements 

reasonably well. 

A further set of plant FRFs as measured by the DSP card is shown in figure 5.20. For calculation 

of the feedback controller, the complete plant FRF as measured by the DSP card is required, 

as there are delays inherent to the ADC/DAC processes which need to be included in the plant 

model. The frequency response functions as measured by the DSP card also include anti-aliasing 

and reconstruction filters which are required to prevent aliasing. 

Approximately one and a half samples delay is inherent to sampling using digital controllers 

in the ADC/DAC process [93]. This includes a one sample delay for the measured sample to 

be transmitted between the ADC and the DAC and a one half sample delay corresponding to 

the phase introduced by the sample and hold operation of the DAC. Other reasons for delay 

include the anti-aliasing and reconstruction Slters. These analogue Slters add about 45 degrees 

of phase lag for each pole. A typical Elter will have 8 poles and cause one cycle of delay. The 

total group delay shown in the PC measurements is approximately 2000 degrees at the Nyquist 

frequency of 2kHz, which corresponds to approximately 5.5 samples or 1.4ms delay. 

A comparison between the plant FRF's as measured by the analyser and by the PC is shown 

in figure 5.21. These are seen to be similar as expected, except for the extra phase loss in the 

FRF measured by the PC due to the reasons outlined above. 

Using the plant and disturbance frequency response functions, measured by the DSP card in 

the host PC, MATLAB programs were then used to simulate an off-line IMC controller. The 
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Figure 5.19: Measured frequency response functions for two actuator configurations (measured 

using the analyser) a) single central actuator b) 5 actuators driven in phase 
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Figure 5.20: FRF's as measured using PC and TMS20C30 card, a) single centrally-placed 

actuator b) 5 piezoceramic actuators driven in phase 
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Figure 5.21: Comparison of FRF's measured by analyser (solid line) and by DSP card (dashed 

line), a) single centrally-placed actuator b) 5 piezoceramlc actuators driven in phase 
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advantage of the simulations is that there were no restrictions on filter lengths due to lack of 

processing power and so the effect of large filters with many coefRcients could be calculated. 

The plant and the control filter W were modelled using 512 coefficients. The controller was also 

designed to be robust to uncertainties in the plant of up to 35 percent by adding regularisation 

as described in section 5.2.1 and by examining the distance of the Nyquist plot of the open 

loop frequency response from the point (—1,0). Figure 5.22(a) shows the results for a single, 

centrally-placed actuator, where the excitation was band-passed white noise between 200-ffz 

and I k f f z from the loudspeaker. A total attenuation of 5.8dB is obtained and it is clear that 

the spectrum of the error is whiter after control than before control as would be expected since 

the predictable parts of the signal have been removed. Some losses in performance are also seen 

between resonances due to the waterbed effect [94]. Figure 5.22(b) shows the results for the 

configuration with all five actuators, which gives an overall attenuation of Q.ldB. 

The total attenuation for the five actuator case is greater than for the single actuator case, as 

expected due to the more minimum phase frequency response, but the difference between the 

two is not large. It is expected that the performance of the five actuator system would get 

better relative to the single actuator case, as the sampling rate increases and the delay due to 

the anti-aliasing filter is reduced. 

5.3 .3 Rea l t i m e I M C control 

This section outlines some real-time control experiments which were carried out using the 

experimental rig which has already been presented. The results show that feedback control 

of both tonal and broadband disturbances can be achieved. However, there are a number of 

problems which arise in the implementation of the IMC controller which limit the performance. 

The disturbance loudspeaker, was driven with band-passed white noise between 200Hz and 

IkHz. The sampling rate was 5kHz and cut-off frequencies of the anti-aliasing and reconstruc-

tion filters were set to 2kHz. 

A real-time adaptive controller was then implemented on the DSP card. Limits on processing 

power meant that the same number of filter coefficients for the plant model, G, and the control 

filter, W, could not be used as in simulations. The best that could be implemented at the 
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Figure 5.22: Simulations of IMC feedback control using measured plant and disturbance fre-

quency response functions. Solid line shows error, measured at volume velocity sensor, before 

control and dashed line shows error after control, a) Single, centrally-placed actuator. b.MB 

attenuation, b) Actuators placed as shown in figure 4.10(b). Q.ldB attenuation. 
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chosen sample rate was 195 coefficients for the plant model and 110 coefRcients for the control 

filter, W. Another difference between simulations and real-time control is that in the former, a 

fixed controller is calculated but in the latter, an adaptive filter was used. This was calculated 

using the filtered-a; LMS algorithm to minimise the volume velocity. A regularisation term was 

also added to this algorithm to ensure stability of the controller. 

It had previously been shown [69] that the volume velocity sensor could be used to control tonal 

disturbances using feedforward control and figure 5.23 shows the attenuation obtained with 

feedback control when the disturbance signal was a 380^z sine wave fed into the loudspeaker 

and a single actuator was used (this disturbance signal was chosen to be close to the (3,1) 

mode of the plate). A total attenuation of 24d_B is obtained and the main tone and its second 

harmonic cire well controlled. 

Figure 5.24 shows the results of real-time control when the disturbance was band-passed (200B'z 

to IkHz) white noise and a single actuator was used. A 4.2dB overall attenuation was obtained, 

in contrast to the 5.8dB expected with long control filters. As with the simulations, control 

performance at some frequencies is seen to be far better than at others. The (1,1), (3,1), (1, 3) 

modes at 370]7z, and 473^z respectively, are controlled especially well, as expected, 

since these are the dominant volumetric modes. 

The performance of the system with five actuators was also tested. It was found that a more 

accurate plant model was required for stability and hence more coeScients were needed in the 

FIR plant modelling filter, which it was not possible to implement in real-time due to limitations 

in computing power. It is expected that if a more powerful computer were available, the five 

actuator configuration would achieve better results than the single actuator configuration. 

5.3 .4 I m p l e m e n t a t i o n issues 

A significant problem encountered with the experimental system described in this chapter is 

the lack of available computer processing power. This manifests itself in two ways: 

1. It limits the number of filter coefficients that can be used in the experimental system. A 

major difference between simulations and experiments is that, where no time constraints 
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Figure 5.23: Experimental IMC results: Tonal disturbance. Single, centrally-placed actuator. 

24dB attenuation. Solid line shows error before control and dashed line shows error after control. 
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Figure 5.24: Experimental IMC results: Broadband disturbance. Single, centrally-placed actu-

ator. 4.2dB attenuation. Solid line shows error before control and dashed line shows error after 

control. 
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were imposed, the plant model and control filter can have large numbers of filter coeffi-

cients. This results in accurate plant models and long filters. In practice, once a sampling 

rate and processor have been chosen, the number of filter coefficients for both plant model 

and controller is limited. 

2. More importantly, section 4.6 describes work which was carried out to obtain minimum 

phase transfer functions by changing the positions of actuators on the plate. In practice, 

once anti-aliasing and reconstruction filters are incorporated to the signal conditioning 

circuitry, the advantages obtained with the five actuator configuration over the single 

actuator configuration (400° of phase at the Nyquist frequency) is small compared to the 

phase loss in the two filters (which accumulate 720° of phase at the Nyquist frequency). 

There are two possible solutions to the latter problem: 

1. Depending on the application, it may be possible to reduce the order of, or even to remove, 

one or both of these analogue filters. For example, where the disturbance is low frequency, 

it may not be necessary to include a low-pass anti-aliasing filter. 

2. Alternatively, if more computing power were available, the sampling frequency could be 

increased. This would make the effects of the phase loss in the filters smaller relative to 

the phase advantages gained in changing actuator positions and would eventually result 

in better performance. 

Another option to consider, especially regarding the first problem due to a requirement for 

large numbers of filter coefficients, would be to use IIR filters instead of FIR filters in the 

design process. 

5.4 Conclusions 

Whereas previous chapters have used feedforward simulations to predict the best possible per-

formance which can be achieved using a given experimental set-up, this chapter has considered 

feedback control which is generally used when the disturbance is broadband. 
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Using feedback control gives rise to a number of new issues which result in a loss of performance 

relative to feedforward control. These are considered under the framework of robust stability. 

One particular type of feedback control, IMC, has been considered in more detail. This has some 

advantages over other methods of feedback control including its simple physical interpretation 

and the fact that it is easy to implement adaptive solutions. 

Using IMC and the experimental rig designed in chapter 4, a number of feedback simulations 

were performed. First, these used modelled FRF's and then measured FRF's were used. 

Finally, a real-time adaptive IMC controller to reduce the volume velocity of a plate was imple-

mented. The controller generated for tonal disturbances was found to have good performance. 

However, the performance was not as good as predicted when using broadband disturbances 

and this was mainly due to lack of processing power. 
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Chapter 6 

Accelerometer cost functions for 

active structural acoustic control 

6.1 In t roduc t ion to accelerometer cost funct ions 

In chapter 4 the coupling of various different transducers into the vibrations of a panel was 

introduced. The advantages/disadvantages of each type of transducer and their placement was 

also examined. 

Chapters 4 and 5 used a distributed volume velocity sensor for ASAC purposes, following earlier 

work by Johnson [7]. In this chapter using an array of accelerometers to derive cost functions 

is discussed. One disadvantage of distributed sensors is that they cannot detect whole-body 

vibration but accelerometers can. 

The basic requirements of the cost functions are 

1. The cost function should be measurable on the structure itself 

2. The cost function should give a good representation of the total radiated sound power 

which is the quantity most relevant for subjective performance 

In this chapter radiated power itself will initially be considered as the cost function being 
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minimised. This would, in practice, require far-field microphones which does not meet the first 

requirement outlined above. However, the control of radiated power will act as a reference case. 

The aim of using other, structural sensors, will be to get as close to this radiated power curve as 

possible. Turning to structurally measured cost functions, single localised structural sensors will 

then be examined i.e. accelerometers. It turns out that the action of these accelerometers can 

be best understood in terms of vibration control, and may or may not give control of radiated 

sound. Volume velocity is then used as an error signal. This has been used widely over recent 

years [1,3,69] and relies on a distributed sensor as described in chapter 4. Although these 

different cost functions have already been introduced in chapter 4, a more in-depth analysis is 

used in this chapter to investigate the control mechanisms in more detail. 

The use of several localised structural sensors will then be investigated and, in particular, the 

use of a number of accelerometers to approximate volume velocity. The multiple sensors are then 

used in a number of multi-channel configurations (i.e. independently, where the accelerometer 

outputs are manipulated in some way other than by a simple summation). A further strategy 

investigated is the use of a large number of single chaimel control systems on the plate. 

6.2 Rad ia t ed power as a cost funct ion 

Trying to reduce the radiated sound power is the overall aim of the various control strategies 

and so the practical aspects of the measurement and control of radiated sound are described in 

this section. 

The calculation of the sound power radiated by a plate has been described in section 3.2.2 and 

normally uses the Rayleigh integral (equation 3.17). The sound pressure at a point or total 

radiated sound power can then be calculated analytically for simply-supported plates or using 

numerical methods if the plate has other types of boundary conditions. 

There are many tried and tested techniques for the measurement of sound power and these are 

outlined in [6, 67, 95] for example. The different techniques available for measuring sound power 

depend on the measuring environment (anechoic room/reverberation room/free-field etc), the 

required precision, the mechanical 'mobility' of the noise source, and the presence of other noise 

sources. Other, more modern sound power measurement techniques, use lasers to measure 
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surface vibration or intensity meters. 

The most accurate standard method of determining the radiated sound power is outlined in 

ISO 3745 [95] and is realized in an anechoic or semi-anechoic room with a number of micro-

phones surrounding the sound source. The technique thus uses pressure measurements alone 

and obtains the total radiated power from the mean-squared sound pressure averaged over a 

hypothetical spherical surface surrounding the sound source, the centre of the sphere corre-

sponding to the geometrical centre of the machine. The sphere should be in the far-field of the 

source. 

Microphone number r 
u. 
r 

2 
r 

1 -&99 0 OJ^ 

2 0.50 -&86 0J5 

3 0.50 0.86 OJ^ 

4 -0.45 0.77 0.45 

5 -0.45 -&77 0.45 

6 0.89 0 o j a 

7 0.33 0.57 0J5 

8 -0.66 0 0J5 

9 0.33 -0.57 0J5 

10 0 0 1.0 

Table 6.1: Microphone positions from ISO 3745 [95]. In terms of Cartesian coordinates where 

z-axis is perpendicular (upwards) from horizontal plane and r is radius of measurement hemi-

sphere. 

In this thesis the sound power radiated by a small plate needs to be measured. The plate can 

be considered to be mounted in an infinite reflective half plane. ISO 3745 gives the required 

positions of the microphones and measurements procedure as shown in table 6.1 and figure 6.1. 

The surface sound pressure is then given by 

jp — lOZogio ̂  
N 

^ iqo.llp 
.1=1 

(6.1) 

where lp is the surface sound pressure in decibels (re 20fipa), lpi is the pressure level from 
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Figure 6.1: Microphone positions for sound power measurement in a free Seld over a rejecting 

plane (from [95]) 
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the measurement in decibels and N is the number of measurements (10 for measurements 

made in a half-plane). This can be used to calculate the free-field sound power level using 

the equation 

Lw — Lp -f- 10logio{Si/Sq) 4- C (6.2) 

where Si is the area of the test hemisphere 27rr^ and S'o = and, C is a correction term, 

in decibels, due to the influence of temperature and pressure which is only considered to be 

necessary if the conditions are very different to standard room temperature and pressure [95]. 

6.3 Cost funct ions with a single s t ruc tu ra l sensor 

In chapter 4 the use of different sensors in active control systems has been examined and the 

performance of these sensors in terms of reductions in radiated sound power were compared. 

This section takes this analysis further by also considering the control mechanisms which take 

place for each individual type of sensor. A number of new concepts are introduced including 

spillover, an effect which causes an unwanted increase in some variable accompanying the control 

of some other variable (for example increases in kinetic energy due to accompanying decreases 

in sound power transmission or even increases in some modal amplitudes due to the control of 

others). Structural and radiation modal amplitudes will also be considered as will the kinetic 

energy of the plate, which gives a measure of the plate vibration levels before and after control. 

The effects of using a single point force actuator to cancel the output of a single accelerometer 

placed in the centre of the plate were discussed in chapter 4 (Egure 4.6). Figure 6.2 shows the 

vibration distribution of the plate after control of a pure tone disturbance at 72Hz, the natural 

frequency of the (1,1) mode of the plate, using a piezoceramic patch actuator with a centrally-

placed accelerometer. Before control, the vibration of the plate takes a sinusoidal form. The 

eEect of the actuator cancelling the output of the accelerometer, as described in section 4.5, is 

to pin that part of the plate. The dynamics of the plate are thus changed and the structure 

displays a new frequency response function with a new set of resonances as discussed in chapter 

4. 
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X 

Figure 6.2; First structural mode after control using a single piezoceramic actuator and single 

accelerometer. a) Whole plate b) Section through mid-plane of plate 

Figure 6.3 shows the amplitudes of both structural and radiation modes before and after control 

of the accelerometer output by the piezoceramic actuator at the natural frequency of the (3,1) 

mode i.e. 326Hz, and at a higher frequency of 450Hz. The figures show the kinetic energy 

of each structural mode before and after control calculated as v f v i or the radiation mode 

sound power outputs relative to the total sound power radiated before control. These graphs 

demonstrate two different forms of control known as modal suppression and modal restructuring 

[7,20,41]. These two control mechanisms can be used to understand the different methods of 

control found in this thesis. 

At the frequency of the (3,1) mode of the plate, it is clear that the vibrations of the plate before 

control are dominated by a single mode and this mode of vibration will account for most of 

the radiated sound power. After control, figure 6.3(a) shows that the amplitude of that mode 

is reduced and that there is little effect on the other modes. This type of control, where a 

dominantly radiating mode (or modes) is reduced in amplitude, is called modal suppression. 

Modal restructuring is shown in figure 6.3(c). In this case, a number of modes contribute 

significantly to the sound radiation before control. After control of the accelerometer output by 

the piezoceramic patch actuator though, not all of the structural mode amplitudes are reduced 
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Figure 6.3: Effects of control on structural mode amplitudes, (a) and (c), and radiation mode 

amplitudes (dB relative to total power radiated before control), (b) and (d), using a single 

piezoceramic actuator and accelerometer at an excitation frequency of 2>2&Hz close to the 

natural frequency of the (3,1) mode, (a) and (b), where total attenuation is 27.MB, and away 

from any resonances 450Hz, (c) and (d), where total attenuation is 3.8dB. 
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and many are even increased. With modal restructuring, instead of reducing the amplitude of 

the dominant mode(s), the secondary sources alter the amplitudes and phases of the modes in 

such a way that their overall radiation efficiency is reduced. The complex interaction of the 

structural modes, which has been described in chapter 3, results in the modes cancelling each 

other in the far field such that the overall radiated sound power is reduced. 

The figures showing the amplitudes of the radiation modes before and after control give a 

more intuitive representation of the control process. As these radiation modes radiate sound 

independently, it has already been shown (section 3.2.3) that by reducing the amplitude of any 

one radiation mode, the overall sound radiation from the plate is reduced. Thus in figure 6.3(b) 

the first radiation mode is reduced by approximately 27dB after control ensuring that the total 

radiated sound power is reduced. 

A final tool which is used below to analyse the control mechanisms is an estimate of the kinetic 

energy or vibration levels of the plate. The estimate is given by the sum of the squared velocities 

of the elemental radiators, and will be discussed later. 

y = (6.3) 

The control of volume velocity can be analysed in the same way as the control of sensor output 

described above. However, volume velocity control works only by modal restructuring as the 

volume velocity itself is due to a combination of all odd-odd modes. During control the vibration 

distribution is changed to less efficiently radiating modes. 

6.4 Cost funct ions with mult iple accelerometers 

The remainder of the thesis concentrates on arrangements where there are multiple structural 

sensors, instead of the single distributed volume velocity sensor used in previous chapters. In 

the first place, a number of accelerometers placed on the plate will be used with their outputs 

summed to give an approximation to the volume velocity. MIMO control systems are then 

investigated where the different actuators and sensors can be used as independent input and 
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output channels respectively. Finally, an arrangement is analysed in section 6.5 which consists 

of a number of single channel control systema on a plate. 

6 .4 .1 A p p r o x i m a t i o n t o v o l u m e ve loc i ty us ing mul t ip l e acce lerometers 

In this section, increasing numbers of accelerometers are placed on a plate and their outputs 

are summed to give a single error signal which is minimised by the feedforward control strategy 

outlined in section 4.5. This control method has relevance to the elemental approach used to 

model the plate; in the limit, where the number of accelerometers is equal to the number of 

elements used in the model, the sum of the accelerometer outputs should be equivalent to the 

volume velocity and this is found to be the case below. A similar approach, where multiple 

piezoelectric patch sensors are used instead of accelerometers is described by [96]. 

The results of cancelling the summed output of different numbers of sensors, as an estimate of the 

volume velocity are shown in figure 6.4. Each subfigure shows the configuration of piezoceramic 

actuators and accelerometers, although the x and y dimensions of the plate are not to scale. A 

single piezoceramic patch actuator is again used for simplicity and is modelled using the forcing 

coefficient given by equation 4.14. Each figure shows four curves; the power transmission 

ratio before control (solid), using control of radiated sound power (dotted), using control of 

true volume velocity (dashed), and using control of the summed accelerometer outputs (dash-

dotted). 49 structural modes were used in the model with natural frequencies up to 3b27Hz. 

The number of elements in the grid was around 20 by 20 but was varied slightly depending on 

the number of accelerometers such that they were all positioned at centres of elements. 

The figures for attenuation, given in table 6.2 are average figures over a 0 — 500Hz frequency 

range which is where the best control performance is achieved. It is evident from examining the 

figures that large reductions in radiated sound power can be achieved at low frequencies and 

that at high frequencies, there may even be some increase in the radiated power i.e. spillover, as 

controlling volume velocity may result in a significant amplification in other radiation modes. 

This is shown, for example, by an increase in the power transmission ratio at around 950Hz for 

the control of volume velocity. However, the low frequency region is the region of most interest 

in active control applications and techniques which can be used to reduce the high frequency 

amplification, which also result in increased robustness, are discussed in [17]. 
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Figure 6.4: Results of SISO simulations of feedforward active control showing power trans-

mission ratio, T, of radiated sound power to incident sound power for plane wave excitation 

sX 9 = (j) = 45": A single actuator is used to cancel the summed output from a number of 

accelerometers or true volume velocity or radiated power. Solid line is power transmission ratio 

before control, dotted after control of radiated power, dashed after control of volume velocity 

and dash-dot after control of summed accelerometer output. 
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Figure 6.4: Results of SISO simulations of feedforward active control showing power transmis-

sion ratio, T, of radiated sound power to incident sound power for plane wave excitation at 

0 = (j) = 45" (con't): A single actuator is used to cancel the summed output from a number of 

accelerometers or true volume velocity or radiated power. Solid line is power transmission ratio 

before control, dotted after control of radiated power, dashed after control of volume velocity 

and dash-dot after control of summed accelerometer output. 
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Sensor Attenuation in transmitted sound power (dB) 

Sound power 20.2 

True volume velocity 19.1 

Volume velocity estimated with: 

1 -3.8 

9 14.0 

16 18.1 

25 18.3 

400 19.1 

Table 6.2: Table of attenuations in sound power over a SOOffz bandwidth for different control 

strategies and diSerent arrangements of accelerometers used in the estimate of volume velocity. 

The results for the control of radiated power and the control of volume velocity with a single 

piezoceramic actuator remain constant in Egures 6.4(a) through to 6.4(d), as these two strategies 

depend only on the actuator configuration which remains the same. The aim of these figures 

is to see if, by increasing the number of accelerometers, a good estimate of the volume velocity 

can be obtained. 

The first subfigure 6.4(a) shows the results where only a single accelerometer is used. The 

curve showing the sound transmission after control using the accelerometer differs greatly from 

that showing the sound transmission before control but no significant reduction in the power 

transmission ratio takes place. It has been shown above that the single accelerometer alters the 

dynamics of the plate. Although this is straightforward to interpret physically with a single 

accelerometer, when multiple accelerometers are used, the changed dynamic properties are not 

so easy to predict. The use of 4 equally-spaced accelerometers was also tested in simulations and 

had a similar effect to the single accelerometer i.e. the dynamics of the plate being completely 

changed. The sum of the charge outputs of the four accelerometers after control is always zero 

but the output of any individual sensor is not zero. When the disturbance on the plate is 

symmetric (for instance an incident wave travelling along the normal to the plate), then the 

output from each individual sensor is also zero. However, this is not normally the case and so 

the plate is forced to vibrate in ways which are difficult to predict. 

The next subfigure, 6.4(b), shows the use of 9 equally-spaced accelerometers. Figure 6.5 shows 

the amplitudes of the radiation and structural modes before and after control at two frequencies 
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(326^z and 820ffz) with nine accelerometers, and these graphs can be again used to explain 

the physical mechanisms of control when different cost functions are minimised. Figure 6.5(a) 

shows the amplitudes of the structural modes of the plate when driven at 32QHz, the natural 

frequency of (3,1) mode, before and after control using the various control strategies. It is 

evident that all three control strategies reduce the amplitude of the (3,1) mode (structural 

mode number 5). This is modal suppression as described above. Figure 6.5(b) shows the 

attenuation in the power ra<liated by each individual radiation mode at the same frequency 

after the diEerent types of control. Control of volume velocity is again seen to reduce the 

amplitude of the first radiation mode very efficiently. Controlling the radiated sound power is 

seen to give very similar reductions in the amplitudes of the radiation modes and results in a 

slightly increased attenution relative to the control of volume velocity. The other two subEgures 

show the same graphs for a higher frequency of 820]7z. It is clear from Egure 6.5(c) that at 

these high frequencies, the diSerent control strategies have little eSect on the structural mode 

amplitudes and there is little attenuation at these frequencies. Figure 6.5(d) shows spiUover in 

the radiation modes after control. For example, in reducing the volume velocity at 820Hz, the 

power radiated by some higher order radiation modes is increased. 

With the use of sixteen or twenty-Ave accelerometers, figure 6.4(c) or 6.4(d), it becomes clear 

that a variable similar to the volume velocity is being controlled. The graphs show that at low 

frequencies, the control of volume velocity is still working better. At high frequencies, there is 

somewhat less spillover using the accelerometers. Figure 6.6 shows the vibration distributions 

at QOOHz after the control of various cost functions, and the effects of spillover can be seen 

clearly; in each case, the velocity distribution of the plate after control shows much larger 

amplitudes than before control. An estimate of the kinetic energy of the plate, equation (6.3), 

before and after the different types of control is shown in figure 6.7. The figure again shows 

that after each of the different control strategies, there is a large amount of spillover in the 

vibration levels of the plate and this indicates the diSerence between pure vibration control 

and active structural acoustic control; instead of simply reducing the vibrations, in ASAC, the 

plate is made to vibrate in a less efficient way. For example, at a frequency of 600Hz, for the 

single actuator and 16 accelerometer case described above and shown in figures 6.6 and 6.7, the 

vibrational energy levels are seen to be increased for all three control strategies. At the same 

frequency the radiated sound power after each control strategy is reduced and so it is evident 

that modal restructuring is taking place. 
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Figure 6.5: ESects of control on structural mode amplitudes and radiation mode amplitudes 

using a single actuator and nine accelerometers. a) Structural mode amplitudes before and 

after control at 326Hzi (KE is kinetic energy), b) Amplitudes of radiation mode powers before 

and after control at 326Hz (dB relative to total power radiated before control), c) Structural 

mode amplitudes before and after control at 820Hz. d) Amplitudes of radiation mode powers 

before and after control at 820Hz. 
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Figure 6.6: Vibration distribution of plate before and after cancellation of various sensor outputs 

at 600_ffz with a single actuator, a) before control b) after feedforward control of volume velocity 

c) after feedforward control of sound power d) after feedforward control of summed outputs of 

16 accelerometers 
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Figure 6.7: Kinetic energy of the plate before and after different types of feedforward control 

with a single actuator. The solid line shows the kinetic energy before control, the dashed line 

after control of volume velocity, the dotted line after control of sound power, and the dash-dot 

line after control of sum of sixteen accelerometer outputs. 
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Figure 6.8 shows the attenuation in radiated sound power as a function of the number of 

accelerometers for one particular incident wave and configuration of actuators (a single actuator 

and a plane wave incident with angles 6 = (/) = 45° averaged over a 500Hz and IkHz frequency 

range). It is evident that by increasing the number of accelerometers, the attenuation tends to 

the use of a true volume velocity sensor. In the limit, where the number of accelerometers is 

equal to the number of elements used in the plate model, the attenuations for the two methods 

are the same. Although there are differences in the attenuations over these two frequency ranges, 

the configuration using 16 accelerometers works particularly well. Over a IkHz bandwidth, high 

frequency enhancements are reduced by having fewer accelerometers and hence there is more 

overall attenuation than with a larger number of accelerometers as shown in figure 6.8(b) and 

discussed by Sors and Elliott [2]. 

An estimate of the number of accelerometers required to give a reasonable practical estimate 

of volume velocity can be obtained by calculating the number of structural modes with natural 

frequencies below the frequency for which the radiation efficiency of all the radiation modes 

becomes similar. Figure 3.6 shows that the radiation efficiencies of the radiation modes become 

similar at around klx = 10, which thus sets the upper frequency limit for which volume velocity 

control alone can be used, and figure 6.9 shows that for the plate considered above, the number 

of structural modes with a natural frequency below kl^ = 10 is in the region of 20 to 25. In 

order to estimate the volume velocity for the JV'th mode, approximately n accelerometers are 

required, which explains why around 16 to 25 is a good estimate for the number of required 

accelerometers to estimate volume velocity in this case. 

In general, the number of modes with natural frequencies below w for a flat homogeneous plate 

of dimensions lx,ly, mass per unit area m, and bending stiffness D is approximately [97] 

If the number of accelerometers is equal to the number of modes when kl^ = 10 i.e. lo = 

where co is the speed of sound, then the required number of accelerometers is 
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Figure 6.8: Attenuation in sound power radiated as a function of number of accelerometers for 

a feedforward active control system using a single central piezoceramic patch actuator to cancel 

the summed output of increasing numbers of accelerometers. Dashed line represents control of 
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Figure 6.9: Number of structural modes with natural frequency under a given frequency for the 

simply-supported plate considered above. 

6.4 .2 Other cost funct ions w i t h mul t ip l e acce l erometers 

The previous sections have focused on SISO control where all actuators were driven with the 

same voltage and where the outputs of multiple sensors were summed to give a single error 

signal. The investigations using a number of accelerometers have also shown their potential as 

sensors and that they can provide a signal which approximates that of a volume velocity sensor. 

With multiple structural sensors, there is the possibility of other multi-channel control strategies 

where the outputs of the accelerometers are not simply summed but manipulated in some other 

way to obtain the error or reference signal. Similarly, each of the actuators on the plate can 

be driven with a separate control signal rather than driving all with the same control voltage. 

This then leads to MIMO control which has not been considered previously in this thesis. 

The subject of MIMO control is reviewed in a number of books [11, 80]. Many of the control 

algorithms are beyond the scope of this thesis and so, only some basic methods are outlined 

below. The methods described include MIMO feedforward control which can be solved using 

conventional Wiener techniques. This leaat squares method of control is found to be better 
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suited to vibration control than ASAC. Another control method used below is the control of 

multiple radiation modes, rather than just the volume velocity. As the volume velocity of the 

plate is so dominant in the frequency ranges used in this thesis, these methods are shown to 

have little advantage. Considering the changing shape of the first radiation mode results in 

minor improvements in performance relative to the control of volume velocity. A third MIMO 

approach is discussed in section 6.5 where a number of local control systems are used on the 

plate. 

Multi-channel feedforward control is described in [11]. The system response can be represented 

by 

e = d + Gu (6.6) 

(c.f. equation 4.57), where e is a vector of L error signals where each component relates to a 

different, independent sensor, d is the vector of sensor outputs due to the primary disturbance 

only, G is an LxM matrix of transfer responses between the M actuators and the L sensors and 

u is the vector of input voltages to the actuators. The disturbance is again assumed to be at 

a single frequency and all acoustic and electroacoustic parts of the control system are assumed 

to be linear. It is assumed that a reference signal at the excitation frequency, w, is available. 

The complex input voltages to the M actuators are then adjusted to minimise the sum of 

squared outputs from the L sensors. The cost function in this case is given by 

J = |e;|^ = e (6.7) 
1 = 1 

which, after substituting equation (6.6) results in the Hermitian quadratic form 

J = + + + (6.8) 

(c.f. equation 4.58). 
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The error surface is a 2M + 1 dimensional surface with a unique minimum which can be found 

by varying the real and imaginary parts of all the complex control voltages 

Three cases of solution exist depending on the number of independent actuators and sensors: 

fully determined where L = M. The matrix G is assumed to be non-singular and the optimal 

set of control voltages is given by 

Uopt = —G (6.9) 

This solution drives each of the individual error signals to zero. In practice however, 

this may result in large increases in the controlled field away from the control points i.e. 

spillover. 

overdetermined where there are more sensors than actuators i.e. L > M. There are more 

equations to solve than unknowns and, provided that G is positive definite, then the 

vector of secondary control voltages which minimises the cost function is given by 

(6.10) 

This case is the most commonly occuring in practice and results in the maximum amount 

of minimisation of the error which can be achieved with the system, but not complete 

cancellation. 

underdetermined where the number of error sensors is less than the number of secondary 

controllers i.e. L < M. In this case, there are more unknowns than there are equations 

to solve and as a result of this, there are an infinite number of solutions. A constraint 

is normally then included in the cost function and this is often chosen to be the control 

effort calculated as the sum of the squared input voltages. The problem becomes one of 

constrained optimisation which can be solved using Lagrange multipliers [11]. A new cost 

function is formed such that 

J = u ^ u + (d + Gw)^A + A^(d + Gu) (6.11) 

where A is a vector of complex Lagrange multipliers, the solution to this problem is given 

by 

d (6.12) 
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This type of constrained optimisation problem is rarely encountered in practice but can 

have advantages if cost, as well as performance, is an important consideration. As an ex-

ample, the total power required by two loudspeakers to cancel the sound at an equidistant 

point is half the power required from a single loudspeaker to achieve the same control. If 

the control effort is expressed in terms of the total power dissipated in the loudspeakers 

(or equivalently, piezoceramic actuators), the power dissipated in each individual actuator 

being given by u f r , where r is the impedance and is assumed to be the same for each 

actuator, the total power dissipated can be expressed aa 

Effort (=power) = (6.13) 
i=l 

where Mac is the number of actuators. For a large number of symmetric actuators, the 

individual input forces, /%, must be the same and their sum must be equal to the total 

force, so that 

Pfot — f^acfi (6.14) 

the control signals are proportional to the input forces and are thus 

oc /i = —^ (6.15) 

After substituting equation (6.15) into (6.13), the total effort is seen to reduce with an 

increasing number of actuators (for example the total effort is halved for two symmetric 

actuators). This is described further in [11]. 

Examples of the three different types of feedforward control problem described above (fully-

determined, overdetermined, and underdetermined) are shown in figure 6.10. The first subfigure, 

6.10(a), shows the results when four actuators are independently controlled to minimise the sum 

of the mean squared errors from four accelerometers i.e. the fully-determined case. The results 

resemble those in figure 6.4(a) and it is seen that the dynamics of the plate are again changed and 

no advantage is to be gained by controlling the actuators independently. Note that minimising 

the sum of squared outputs of the accelerometers is not equivalent to minimising the sum of 
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the outputs squared (i.e. the approximation to the volume velocity), as described in appendix 

B which gives a common formulation for comparing these two methods. In figure 6.10(b) 

which shows the results for nine independent accelerometers and four independent piezoceramic 

actuators, the cost function (sum of squared errors) is being minimised but the reduction in 

radiated sound power is relatively small. The mean square error is not a good representation of 

the radiated sound power. Finally, figure 6.10(c) shows the underdetermined case where four 

actuators are used to minimise the mean squared output of one accelerometer with mimimum 

effort. Figure 6.11 shows an estimate of the kinetic energy of the plate, equation (6.3), before 

and after feedforward control in the overdetermined case compared to the feedforward control 

of radiated sound power or volume velocity. Control of volume velocity and of radiated power 

lead to large amounts of spillover in the vibration levels of the plate indicating the difference 

between active structural acoustic control and vibration control as shown in figure 6.7. In the 

overdetermined case however, where four actuators are used to minimise the sum of squared 

outputs from nine accelerometers, there is hardly any spillover in the vibration levels of the 

plate which would indicate that the latter technique is in fact, a form of vibration control. 

Figure 6.12 shows the attenuations in radiated sound power from an additional feedforward 

MIMO control strategy. It shows the control of sound power for a MIMO system in which 

five independently controlled actuators are used to minimise the far-field pressure, where it is 

assumed that this can be measured perfectly with microphones. The equations used are similar 

to those in equation (4.57) where, this time, g is an M by (/lumber o / e/ementa w modeZ) 

matrix (instead of a vector), and u contains the M complex control voltages. This equation 

can then be solved in the same way equation (4.60) (provided the matrix A = g^Rg is well-

conditioned). This graph shows that substantial improvements can be gained in MIMO control 

if the proper cost function is chosen and if complete knowledge of the radiated pressure field is 

available. 

A modified sensing strategy could involve the control of multiple radiation modes and table 

6.3 gives the additional reductions in sound power radiation up to IkHZ obtained when other 

higher order radiation modes are controlled with a feedforward control system with a single 

centrally-placed piezoceramic actuator. These can be calculated easily using equation (3.47) in 

section 3.2.3 where the eigenvalue A, can be found from the relevant value of the decomposition 

of the matrix R (see equation 3.34) and gives the power radiated by the corresponding radiation 

mode. The small values indicate that, at the frequencies considered, it is far more important 
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Figure 6.10: Examples of three different types of feedforward MIMO control problems in which 

sum of squared outputs of accelerometers are minimised by different numbers of actuators. Solid 

line shows power transmission ratio (T) before control, dotted line after control of sound power, 

dashed line shows control of volume velocity and dash-dot hne shows control of accelerometer 

outputs, a) Fully-determined; Four actuators and four sensors, b) Overdetermined: Four 

actuators and nine sensors. 
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200 400 600 800 1000 
Frequency (Hz) 

(c) 

Figure 6.10: (con't) Examples of three di&rent types of feedforward MIMO control problems 

in which sum of squared outputs of accelerometers are minimised by different numbers of actu-

ators. Solid line shows power transmission ratio (T) before control, dotted line after control of 

sound power, dashed line shows control of volume velocity and dash-dot line shows control of 

accelerometer outputs, c) Underdetermined: Four actuators and one centrally-placed sensor 
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Figure 6.11: Kinetic energy of plate before and after diGerent types of control (four actuators 

and nine accelerometers). Solid line show kinetic energy before control, dotted line after control 

of sound power, dashed line after control of volume velocity and dash-dot after control of nine 

accelerometers. 

200 400 600 
Frequency (Hz) 

800 1000 

Figure 6.12: Improved MIMO control strategy using a MIMO feedforward system with 5 actu-

ators to reduce radiated power directly (assuming this can be measured). SIMO (dashed line) 

refers to all actuators driven with same amplitude and phase. MIMO (dotted line) refers to 

actuators driven independently. 
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to control the first radiation mode as well as possible than to consider higher order radiation 

modes. 

Radiation mode Order Additional reduction in sound power (dB) 

1 1 11.3 

2 2 0.1 

3 2 0.1 

4 2 < 0.1 

5 3 < 0.1 

6 3 < 0.1 

7 3 < 0.1 

Table 6.3: Reduction in the average power radiated below IkHz when different numbers of 

radiation modes are controlled. 

A Snal strategy thus examines controlling the frequency-dependent shape of the Erst radiation 

mode instead of the volume velocity which is an approximation to the shape of the first radiation 

mode at low frequencies. The shape was seen to change signlBcantly over a frequency 

range in figure 3.8. The following analysis deals with how the multiple accelerometers can best 

be used to control the first radiation mode in practice and relies on the fact that the radiation 

mode shapes can be obtained from the eigenvalue/eigenvector decomposition of the matrix R. 

The position of each accelerometer for a given radiation mode at a given frequency can then 

be calculated and stored in a frequency dependent weighting for the accelerometer instead of 

using a weighting of unity for each accelerometer, which would be equivalent to minimising 

the approximation to the volume velocity. As an example, consider an arrangement with four 

accelerometers used to calculate the ampltiude of the first radiation mode : the weightings 

for each of the accelerometers at each frequency can be found from the relevant elements of the 

first eigenfunction of R that 

2/1 (w) = - + Q2(w)i;2 + + Q4(w)u4) (6.16) 

where Qi{uj) refers to the element of the first eigenfunction of R corresponding to the position 

of the first accelerometer, corresponds to the velocity at the point of the first acceleromter, 

etc. 
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A comparison of the control of volume velocity, an approximation to the volume velocity using 

sixteen accelerometers, and an approximation to the first radiation mode using sixteen ac-

celerometers, is shown in figure 6.13. Controlling an approximation to the first radiation mode 

using the sixteen accelerometers rather than an approximation to the volume velocity itself 

using sixteen accelerometers is seen to give some performance increase in the mid-frequency 

range, particularly at frequencies away from resonances. 

200 400 600 800 1000 
Frequency (Hz) 

Figure 6.13: Simulations of feedforward control in which a single actuator is used to minimise 

the output of either a true volume velocity sensor (dashed line), summed output of sixteen 

accelerometers i.e. approximation to volume velocity (dotted line), or approximation to Erst 

radiation mode using sixteen accelerometers (dash-dot line). 

6.5 Mul t ip le single channel control sys tems 

This section describes a new configuration for active control with a number of local control sys-

tems on a plate. Each control system consists of either a collocated force actuator and velocity 

sensor, or a piezoceramic patch actuator and a collocated velocity sensor as shown in figure 

6.14. In practice a velocity estimate can be obtained by integrating an accelerometer output. 

A number of these local control systems can be placed on the plate as shown in figure 6.15 and 

the results can be consistently compared with the control strategy used above by summing the 

outputs of the sensors and driving the actuators in phase with a SISO controller. This configu-

ration of actuators and sensors could potentially be implemented using microelectromechanical 
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systems (MEMS) which is currently an area of rapid development [98, 99]. These MEMS could 

offer a low-cost and practical method of implementing this sort of control arrangement. 

Care must first be taken to ensure modal convergence in the plate models as the sensors are 

very close to the actuators and so subject to their near field effects. Figure 6.16 shows the 

amplitude of the frequency response measured between a point force or piezoceramic actuator 

and a collocated velocity sensor at the centre of the plate for a frequency of 300Hz as a function 

of the number of modes used in the model of the plate. With around 300 modes, which could 

be obtained by setting M = iV" = 17 for example, both sets of frequency responses are seen to 

be within around 1% of their convergence value. 

Signal to controller 

Section of plate 

Accelerometer 
J / 7 
Piezpceramic patch actuator 
or force actuator 

Control signal from controller 

Figure 6.14; A single local control system 

9 10 11 

Figure 6.15: Multiple single channel control systems on a plate with numbering system 

The plate models described previously (chapter 3) are used to determine the response of the 

sensors due to excitation by either the primary disturbance or the secondary actuators. The 
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Figure 6.16: Normalised amplitude of frequency response function at SOOiJz between a central 

point force (solid line) or piezoceramic actuator (dashed line) and a collocated velocity sensor 

as a function of number of modes in the simulation. The responses are seen to converge at 

around 300 modes. 

disturbance is again assumed to be a plane wave with angles of incidence ^ ^ = ;r/4. The 

multiple control systems are designed to minimise the output of the collocated velocity sensors. 

The frequency response between a single force actuator and a collocated velocity sensor must 

have an entirely positive real part since the plate itself is a passive system. If a constant gain 

feedback controller is used then this is unconditionally stable [27], and this property extends to 

multiple collocated force actuators and velocity sensors [100]. 

Two sets of figures are shown below, but in each case, the same plate is used and 16 collocated 

actuator and sensors are positioned on the plate. In the first set of figures, point forces are 

assumed and in the second set, piezoceramic patch actuators are assumed. The 16 local control 

systems are then grouped into the following configurations as shown in figure 6.17: 

Single channel equivalent to controlling the approximation to the volume velocity with all 

the actuators driven by the same control system so that ui = u2 = • • • = un are driven 

to cancel + 62 + - - + ejv-

Four channels Actuators and sensors are grouped together in four groups: group 1 (1,2,5,6), 

group 2 (3,4,7,8), group 3 (9,10,13,14) and group 4 (11,12,15,16) and each set of actuators 
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is driven in phase to cancel the sum of the outputs of the corresponding sensors. 

Sixteen channels Where all the actuators control their corresponding collocated accelerome-

ter so that actuator 1 controls accelerometer 1, etc. 

The power transmission ratio and kinetic energy resulting from these control strategies are 

shown for the two different sets of actuators i.e. the point force actuators and the piezoceramic 

patch actuators in figures 6.18 and 6.19. 

The case where point force inputs are used is first considered. At low frequencies (up to around 

GOOff-g), the performance of the system increases with the number of independent channels, 

both in terms of vibration control, measured by kinetic energy, and in terms of the sound power 

transmission ratio. Figure 6.18(b) shows that with one or four independent control systems, 

there is some spillover in the kinetic energy starting with the (2,1) mode at l^QHz for the 

single channel control system or with the (2, 2) mode of the plate at 290Hz for the four channel 

system. This is due to a similar effect seen when using a single point force actuator with a single 

accelerometer; the plate is pinned and exhibits a new set of resonances. This is actually also 

the case for the sixteen independent channels but this effect occurs at a much higher frequency 

of around 600hz. 

Where piezoceramic actuators are used, the effects are changed slightly but using the single 

channel system, with all the actuators driven together and all velocity outputs summed, works 

particularly well for controlling the sound power transmission. It is, however, unclear why 

controlling the sixteen velocities with sixteen piezoelectric actuators should give rise to such 

large increases in vibration and radiation at about 200Hz, although the control effort, given by 

the sum of the squared actuator signals as shown in figure 6.20, is also large at this frequency. 

The frequency response functions for the two different sets of actuators and sensors when wired 

as a single channel system are shown in figure 6.21. Although the FRF between the point force 

and the velocity sensor is guaranteed to have a positive real part i.e. within ±90°, this feature 

is also found for the piezoceramic patch actuator and the velocity sensor and was found to do 

so up to a frequency of at least lOkHz. This is important for feedback control where the plant 

frequency response function should have as little phase loss as possible as described in chapter 

5. 
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Figure 6.17: Configurations of SISO control systems used on the plate 
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Figure 6.18: Simulations of controlling the output of 16 velocity sensors with 16 collocated 

point force inputs. In each case, solid line is before control, dot-dash line is after single channel 

control case, dashed line is after four channel control case, and dotted line is after sixteen 

channel control case, a) Transmission ratio, b) Kinetic energy. 
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Figure 6.19: Simulations of controlling the output of 16 velocity sensors with 16 collocated 

piezoceramic patch actuators. In each case, solid line is before control, dot-dash line is after 

single channel control case, dashed line is after four channel control case, and dotted Hne is 

after sixteen channel control case, a) Transmission ratio, b) Kinetic energy. 
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Figure 6.20: Control effort measured as sum of squared control forces. In each case, solid line is 

before control, dot-dash line is after single channel control case, dashed line is after four channel 

control case, and dotted line is after sixteen channel control case, a) 16 point forces, b) 16 

piezoceramic patch actuators. 
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Figure 6.21: Frequency response function measured by sum of 16 accelerometer outputs, a) 

With 16 point forces all driven in phase, b) With 16 piezoceramic patch actuators all driven in 

phase. 
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The multiple single-channel approach is an idea which holds some potential for the future, 

especially as microengineered actuators and seniors become more readily available. However, 

some work is still needed to understand the exact control mechanisms and to work out how 

best to implement the method [101]. 

6.6 Conclusions 

This chapter has examined a number of possible cost functions which can be used for ASAC 

purposes. The first of these were simple SISO cost functions which have been examined briefly 

in previous chapters. These included the control of sound power, volume velocity or an ac-

celerometer output. A more in-depth examination of these control strategies in this chapter 

showed the actual mechanisms of control and how spillover can effect their performance. 

Cost functions with more than one structural sensor were then investigated. In particular, a 

number of accelerometers were used to give an approximation to the volume velocity. This 

control strategy was found to result in good performance and also allowed MIMO control 

strategies to be investigated. A number of MIMO strategies were tested but at the frequencies 

considered in this thesis, it was found that none of these results in a significant performance 

increase compared to the approximation to the volume velocity except controlling the frequency 

dependent first radiation mode rather than true volume velocity. However, some of these 

strategies did result in good vibration control and one strategy which holds some promise for 

the future is to use a number of local control systems on a a structure with a simple controller 

on each one. 
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Chapter 7 

Simulations of feedback control using 

separa te reference and error sensors 

This chapter considers a final set of control algorithms which use both structural and far-field 

sensors. These have been used separately so far, either to control an approximation to the 

volume velocity (or other related structural variable) or, with the far-field sensors, to control 

the radiated power directly. This section now considers their combined use and specifically, a 

feedback control system in which the structural sensors are used to provide reference signals and 

the microphones are used as error sensors. This approach to ASAC was suggested previously 

in [89] but a more in-depth analysis is presented here. A related approach is presented by 

Maillard and Fuller [102-106] in which the outputs of a number of structural point sensors (i.e. 

accelerometers) are filtered to give an estimate of the radiated sound power in a given direction 

or a given wave-number component over a broad frequency range. The technique described 

below however results in a more general control of the radiated sound power. 

7.1 Development of control a lgor i thm using separa te reference 

and error sensors 

Three main issues can be addressed in choosing suitable sensors for an ASAC system: 
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1. The choice of reference sensors for feedback control (this has already been considered in 

some detail) 

2. The choice of error sensors for feedback control 

3. The combinations of reference and error sensors 

This chapter concentrates on the third of these issues and a number of control algorithms which 

could arise are shown in figure 7.1, which use Internal Model Control (IMC) to explicitly 

distinguish between reference sensors, which drive the controller, and error sensors, whose 

output is being controlled. 

In each of the block diagrams shown, the purpose is to monitor the change, due to the controller, 

in the radiated pressure estimated by the Umic microphones 

14/ = f (7.1) 
Z=:l 

The different formulations shown are: 

1. Microphones used as both the reference and error sensors in a feedback arrangement. 

(Blocks P i i and P12 in figure 5.11). The normal IMC arrangement as shown in figure 

7.1(a) and explained in chapter 5. It is expected that control using this method will result 

in poor performance due to large delays in the frequency response functions between the 

actuators and the microphones (due to the physical time delay for the sound to travel 

between the two). 

2. Accelerometers used as both the reference and error sensors in a feedback arrangement. 

(Blocks p21 and p22 in figure 5.11). Same block diagram as above i.e. 7.1(a). Although 

this configuration is expected to have small amounts of delay, the performance is limited 

by only measuring a structural variable. This kind of control has been considered in 

chapter 6. 

3. Using the accelerometers as reference sensors and the microphones as error sensors. (All 

parts of partitioned plant in figure 5.11 are used). The block diagram is shown in figure 
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Figure 7.1: Control block diagrams, a) Normal IMC arrangement, b) Accelerometers used as 

reference sensors, microphones used as error sensors. Gyy represents FRF between actuator and 

summed accelerometer output and Gm represents FRF between actuator and sum of square 

microphone outputs. 
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Figure 7.1: Control block diagrams (con't) c) Figure 7.1(b) rearranged as a feedforward problem, 

d) Accelerometers used as reference sensors, models of microphone outputs used as error signals. 
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7.1(b) and uses both frequency response functions between the piezoceramic actuators and 

the accelerometers and those between the piezoceramic actuators and the microphones. 

The block diagram can then be rearranged as a feedforward problem shown in figure 

7.1(c). It is expected that this combination might result in good reduction of total squared 

pressure and this will be the technique which is analysed in detail below. 

4. This could eventually lead to a final configuration (figure 7.1(d)) which starts to address 

the problem of practical implementation and instea.d of using microphones as error sensors, 

uses models of the frequency response functions between the actuators and microphones. 

This assumes that these frequency response functions can be measured once before imple-

mentation but that afterwards, the microphones are not available. Robust performance 

would be an important issue in this configuration. 

The third technique, where separate reference and error sensors are used, is of particular inter-

est. This technique has a similar block diagram to the conventional IMC but, in the simplified 

feedforward block diagram, figure 7.1(c) (c.f. figure 5.13), the plant measured between the piezo-

ceramic actuators and the accelerometers is substituted by the plant between the piezoceramic 

actuators and the microphones and the aim is to design a controller W which manipulates the 

disturbance measured at the reference sensors d to be equal to the disturbance at the micro-

phones pj. The new control technique is considered using simulated FRFs in this chapter and 

using measured data in the next chapter. In the first place, the effect of controlling the summed 

output of the accelerometers, as described in the previous chapter, on the microphone signals 

is derived. Feedback control of the summed output of accelerometers is then compared with 

control using separate reference and error sensors. 

The experimental arrangement used in chapter 8 and simulated here is shown in figure 7.2 and 

the physical details are given in table 7.1. The disturbance is generated by a loudspeaker within 

the enclosure. Sixteen accelerometers are fixed to the plate and nine microphones are arranged 

in the far-field in the positions given in table 7.2. Although these positions do not correspond 

to IS03745, they can still be used to calculate the radiated sound power. 

The arrangement can be represented with the generalised control framework shown in figure 7.3 

which is a revised version of figure 5.11. In this diagram, the small blocks represent frequency 

respose functions between different sets of actuators and sensors. 
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Property Value 

box length 0.35m 

box width 0.3m 

box height 

plate length 0.278m 

plate width 0.247m 

plate thickness 1mm 

disturbance loudspeaker placed one tenth of the 

way into the corner of the enclosure 

secondary actuators 5 piezoceramic patch actuators 

structural sensors 16 accelerometers regularly spaced on plate 

acoustic sensors 9 microphones placed as shown in table 7.2 

Table 7.1: Details of second experimental arrangement which is simulated in this chapter. 

6 

6 

6 
6 

u 

6 

X 

Figure 7.2; Diagram of experimental set-up. The position of the loudspeaker generating the 

intial disturbance is also shown. 
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Microphone r X y z 

1 VTs 0.5 0.5 1 

2 Vl.25 0 0.5 0.5 

3 Vl.25 -0.5 0 0.5 

4 VTs -0.5 0.5 1 

5 1 0 0 1 

6 y r s 0.5 -0.5 1 

7 \ / l .25 0.5 0 0.5 

8 Vl.25 0 -0.5 0.5 

9 VLB -0.5 -0.5 1 

Table 7.2: Microphone positions for second set of experiments 

Djn represents the frequency response function between the disturbance loudspeaker and the 

error sensors (microphones) 

Dyy represents the frequency response function between the disturbance loudspeaker and the 

sum of the accelerometer outputs 

Gm represents the frequency response function between the secondary piezoceramic actuator 

and the error sensors (microphones) 

Gyy represents the frequency response function between the secondary piezoceramic patch ac-

tuator and the sum of the accelerometer outputs 

h represents the feedback controller which is implemented by IMC 

The effect of feedforward control of the summed accelerometer output on the radiated power is 

considered first. The total signal at the reference sensor, in this case the sum of the accelerometer 

signals, is given by a summation of the effects due to the disturbance DyyX and due to the control 

actuator 

y DyyX -f- GyyZl (7.2) 
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Figure 7.3: Generalised control framework block diagram 

and it is evident that to cancel the error signal vv at a given frequency the control input must 

be set to 

n = —• 
DyyX 

(7.3) 

The signal at the reference sensors (sum of accelerometer signals) is driven to zero but the 

effects on radiated power are of more interest. The signal at each of the microphone positions 

after feedforward control can be calculated by substituting the control voltage, equation (7.3), 

into the equation 

djyilx + gfjllu (7.4) 

where I is the microphone number. This can be represented for all the microphones by the 

vector equation 
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e = DraX + GmU (7.5) 

which gives the signal at the microphones as a superposition of contributions from the primary 

and secondary sources. 

Then, for a single microphone 

7-1 gfyildyyx 
— djjilx — g. vv 

= (7.6) 

\ ^ml ^vv J 

Good control of the radiated sound power at a given microphone position can thus only take 

place when 

^ ^ = 1 ( 7 . 7 ) 

or when 

gml ^ml o\ 
iFT-- -- I' 

1̂/1/ 

This means the ratio of the plant responses measured between the secondary actuator and the 

error and reference sensors must be equal to the ratio between the disturbance and the error and 

reference sensors i.e. the secondary actuator must couple into the error and reference sensors in 

a similar way to the primary source. An example simulation is shown in the next section. 

As an example of when good control does not occur consider the situation shown in figure 7.4. 

A flanking path is shown between the disturbance loudspeaker and the microphones and so 

the sound at the microphone is not all a result of plate vibrations. In this case, equation (7.7) 
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will not be satisfied and so the performance of any control sytems on the plate will be low. 

This problem was experienced in an initial set of experiments in which a 278mm by 247mm by 

1mm plate was mounted in the floor of a semi-anechoic room. A loudspeaker beneath the room 

was used to generate a primary disturbance and piezoceramic actuators, accelerometers, and 

microphones were placed in the same positions as in the experiments finally carried out and 

described in this chapter. However, the arrangement by which the plate was mounted into the 

floor of the semi-anechoic room - by clamping it to a wooden frame which was then fitted into 

the floor - allowed a large amount of flanking transmission and so simulations of feedforward 

and feedback control using the measured frequency response functions, could not be conducted 

successfully. 

Flanking path (through baffle) 

, Fbth through plate 

n 

Figure 7.4; Direct and flanking paths between disturbance loudspeaker and error microphones 

The reduction at the microphones when an IMC feedback controller is used to minimise the 

sum of the accelerometer outputs is now derived. The effect for the feedback problem can be 

calculated from the generalised block diagram, figure 7.3, aa 

DYY X 

1 + 
(7.9) 
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The control signal u output by the control loop is 

u = —Hy (7.10) 

which, after using equation (7.9) is 

Finally, substituting this value back into the expression for the error signal at a single micro-

phone (equation 7.5) gives 

The cost function which should be minimised before and after control is the power spectrum of 

the signal at the microphones and for a single microphone is given by 

Ji{no control) = \Dmi\'^ 

2 (7^3) 
(comtroZ) 

J-) dyyhg^l 
^ral 1 + GyyH 

The controller for the case where structural reference seniors and acoustic error sensors are used, 

as shown in figure 7.1(b), can now be derived in analogy with the discussion of the conventional 

IMC algorithm given in section 5.2. A comparison of the block diagram for normal IMC (figures 

5.12 and 5.13) and for this new algorithm show that the only block which needs changing is the 

plant, from that measured between the input to the piezoceramic actuators and the output from 

the sum of accelerometers, to that measured between the input to the piezoceramic actuators 

and the output from the microphones. The desired signal is also changed from the disturbance 

measured at the accelerometers to that measured at the microphones. In this case, equation 

(5.22) becomes 
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i~l 
(m) - ^ Wir(M - %) 

i=0 
(7.14) 

where this time r{n) is the reference signal given by the disturbance filtered by the plant response 

measured at the microphones (rather than at the accelerometers). The cost function is again 

given by the expected value of the error squared i?[e^(n)]) and the expression for the optimal 

niter coeScients 'u;i(op )̂, c.f. equation (5.24), becomes 

/ - I 

E\pd{n)r{n - A)] - ^ Wi{opt)E[r{n — i)r{n - A:)] = 0 for G < k < I — I (7.15) 
1 = 0 

p is then deSned as the cross-correlation function between Pd(M) and r(vi) 

P = [ -E7[pd(H)r(Ti)] E[pj(M)r(n - 1)] - - - ^[pj(7i)r(M - 7 + 1)]]^ (7.16) 

and R given by 

R = 

E[r{n)r{n)\ E[r{n)r{n — 1)] 

E[r{n — l)r(n)] E[r{n - l)r{n — 1)] 

E[r{n)r{n — / + !)] 

E[r{n - l)r{n - 7 + 1)] 

E[r{n - I + l)r{n)] E[r{n - I + l)r{n - 1)] ... E[r{n ~ I + l)r{n - I + 1)] 

(7.17) 

The optimal Wiener control filter coefficients are again given by 

Wopt — R p (7.18) 

The calculation of the control filter is thus seen to be essentially the same as for the normal 

IMC case. 
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7.2 Simulations of the control a lgor i thm using modelled fre-

quency response funct ions 

This section presents control results for the new control algorithm developed above using sim-

ulated frequency response functions. 

The experimental arrangement is shown in figure 7.2 and all the necessary FRF's are modelled 

using the techniques described in chapter 3. A disturbance loudspeaker is modelled at position 

(Lx/lO, Zy/10, fz/10) in an enclosure of dimension 0.4m by 0.35m by 0.3m. A 278mm by 247mm 

aluminium plate is placed on top of the enclosure and attached to the plate are 5 piezoceramic 

actuators and 16 accelerometers. Nine microphones are also placed in the far-field in the 

positions given by table 7.2. Examples of the four different sets of simulated FRFs are shown 

in figure 7.5. Figure 7.6 shows the effects of feedforward control of the summed accelerometer 

outputs on the sum of the square microphone outputs, which is seen to give almost as good 

performance as controlling the sum of the squared pressures directly. Figure 7.6(b) furthermore 

shows the ratio given by the left hand side of equation (7.7), which should be as close to 1 as 

possible for good control to occur. The simulations show good control over the whole frequency 

range as would be expected as feedforward control is being used. The effect of the enclosure is to 

amplify the first plate structural mode. This makes this structural mode even more important 

in terms of its sound power radiated, than before. Only the central actuator was used for this 

simulation. 

Figure 7.7 then shows the same results where feedback control of the summed accelerometer 

output has been used instead of feedforward control and these are compared with the results 

obtained using the control algorithm with separate reference and error sensors. The figures show 

the eSect at either the sum of the accelerometer outputs (reference signal in Egure 7.7(a)) or the 

sum of the square microphone outputs (error signal figure in 7.7(b)). In each graph, the solid 

line shows the measured signal before control, the dashed line shows control of accelerometer 

outputs and the dotted line shows the effects of the control algorithm using separate reference 

and error signals. No robustness has been included in the feedback control but in practice, this 

would be required and would result in a loss in performance compared to the case presented 

here. 
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Figure 7.5; Examples of simulated FRFs using a central actuator, almost central accelerom-

eter and central microphone, a) Dyy, FRF between disturbance loudspeaker and a reference 

accelerometer. b) FRF between piezoceramic actuator and a reference accelerometer. c) 

Dm, FRF between disturbance loudspeaker and an error microphone, d) Gm, FRF between 

piezoceramic actuator and an error microphone. 
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Figure 7.6; Feedforward control simulations with simulated FRFs. a) The effect of feedforward 

control on radiated sound. Error signal measured at microphones after feedforward control of 

summed accelerometer output. Solid line shows signal before control, dashed line shows signal 

after the control of accelerometer outputs, and dotted line shows signal after controlling sum 

of squared pressures directly, b) Ratio given by equation (7.7) for each of the 9 microphones. 

Should be equal to 1 for good control. 
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Figure 7.7: Simulated performance of feedback control, using simulated FRFs. Structural sen-

sors, whose summed output is shown in (a) are used to give a reference signal and microphones 

whose sum of squared output is shown in (b) are used to give an error signal. The solid 

line shows the measured signal before control, dashed line shows the result of controlling the 

summed accelerometer outputs and dotted line shows the eSects of the control architecture 

using separate reference and error signals. 
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The control architecture using structural reference sensors and acoustic error sensors results in 

a very shghtly improved attenuation at the microphones but slightly decreased performance at 

the accelerometers, as would be expected. This simulation strongly supports the use of volume 

velocity as an error signal for the control system. 

Using this new feedback approach with remote error sensors, some further simulations were 

carried out to check the feasibilty of using a reduced number of sensors. Many different vari-

ations were tried, initially using the summed output from a reduced number of accelerometers 

as a reference sensor. An example of this is shown in figure 7.8, when only a single almost 

centrally-placed accelerometer is used as a reference sensor. The results show that although 

using a single accelerometer on its own to try and cancel the radiated sound power does not 

work, when the single accelerometer is used with the microphones as error sensors, good control 

of the first mode is seen and this could be an important factor during implementation when the 

number of control channels must be kept to a minimum. 
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Figure 7.8: Simulated performance of feedback control, using simulated FRFs. A single ac-

celerometer is used to give a reference signal and microphones are used to give an error signal. 

The solid line shows the measured signal before control, dashed line shows the result of con-

trolling the accelerometer output and dotted line shows the effects of the control architecture 

using separate reference and error signals. 
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7.3 Effects of delay and robustness 

These simulations have been performed with no robustness/stability included in the plant and 

assuming no additional delay in the plant response due to controller delay or signal conditioning 

filters. In practice, a certain amount of stability is required (see section 5.1.1 for example), and 

a certain fixed amount of delay is inherent to the plant response (section 5.3.2). A further 

set of simulations was thus carried out to look at the trade-off between these three factors 

(performance, stability, and delay) and to predict the performance of a real feedback control 

system. 

7.3.1 Effect of delay 

Delay can be included by multiplying the plant phase response by where At is the delay. 

An example of the effect of delay on the controller performance as measured by the microphones 

is shown in figure 7.9. After each delay is introduced the optimal control filter is recalculated 

using equation (7.18). 
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Figure 7.9: Performance of feedback control of summed accelerometer output as a function of 

delay. No regularisation term is included in the calculation of the feedback controller to ensure 

robust stability. Performance is measured by sum of square microphone outputs. 
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7.3.2 Effect of robustness 

Robustness is included, as described in section 5.2.1 by using the (3 term and adding regular-

isation to the auto-corellation matrix which is required to calculate the controller coefficients. 

The effect of adding this regularisation term can be measured in two ways (both through the 

Nyquist plot of the open loop system). 

1. The stability measured as A g from equation (5.6) which gives the maximum fractional 

change in the plant before instability occurs 

2. As the loop of the Nyquist plot which comes closest to the point of instability ( - 1 , 0 ) is 

in the left-hand plane, it corresponds to an enhancement in the controlled variable (due 

to the waterbed effect, section 5.1.1) and the point of the Nyquist plot closest to (—1,0) 

gives the maximum enhancement. 

An example of the effect of designing a controller with robust stability on performance is 

shown in figure 7.10. 
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Figure 7.10: Performance of feedback control of summed accelerometer output as a function 

of maximum uncertainty. No delay is included in the calculation of the feedback controller. 

Performance is measured by sum of square microphone outputs. 

There are then two variables /3 and At which have an effect on three measurable quantities; 

attenuation, stability (or maximum enhancement), and delay. This can be shown as a single 

178 



plot as shown in figure 7.11 for example. As an example, stability of 30% is typically sufficient 

and the typical delay in a control system due to filters and ADC/DAC processes would be 

about 5 samples as described in section 5.3.2. With these two values, figure 7.11 shows that 

approximately 12dB of reduction at the sum of the squared microphone outputs could be 

expected from a real system. This is a useful tool which allows the expected performance of a 

control system to be predicted from only the plant FRF. 

Delay (samples) 0 30 Uncertainty (%) 

Figure 7.11: Performance of a feedback controller designed to minimise radiated sound power 

using structural reference sensors and acoustic error sensors as a function of delay in controller 

and maximum percentage uncertainty. Attenuation is measured by sum of square microphone 

outputs. 

7.4 Conclusions 

In this chapter, a control algorithm has been developed in which both structural sensors and 

far-field sensors were used, the former giving a reference signal and the latter giving the error 

signal. This was found to have some advantages over the control of the summed accelerometer 

output, and was tested using simulated FRFs of the plant and disturbance. Predictions of the 

performance of a real controller were then made by including robust stability and controller 

delay in the simulations. The final chapter will describe how this new control algorithm is 
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implemented experimentally. 
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Chapter 8 

Implementation of a real-time active 

structural acoustic control system 

8,1 In t roduc t ion to the new exper imenta l sys tem 

Chapter 5 described a set of real-time experiments carried out on a plate using a distributed 

volume velocity sensor and piezoelectric actuators. A number of implementation problems 

were identified which prevented the control system from achieving the performance that was 

predicted from simulations. The most significant of these problems was due to delays in the 

control loop associated with the processor used to implement the digital controller. Chapters 

6 and 7 then described a number of different cost functions which could be used for ASAC 

purposes and focused on those where an array of accelerometers were placed on the plate. 

Using multiple accelerometers allowed a number of diEerent cost functions to be investigated 

and, in this chapter, the cost functions developed in chapter 7 are tested experimentally. 

The new experimental rig is first described and then, using measured frequency response func-

tions, the expected performance of the control algorithms developed in the previous chapter are 

presented. Finally, a real time control experiment is described. 
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8,2 Control using mult iple accelerometers 

8.2.1 Apparatus (II) 

The new experimental apparatus was designed by TNO to overcome some of the problems of 

the system used in chapter 5. One of the main problems with the previous system was that the 

controller was implemented on a TMS320C30 card on a host PC, which was unable to implement 

the necessary high order controllers at the required frequency. There were also large delays due 

to the chosen reconstruction and anti-aliasing filters which limited the performance. This was 

overcome in the new arrangement by using a dedicated control unit based on a Pentium PC 

with real-time Linux and 24 input channels. 

A diagram of the experimental apparatus is shown in Egure 7.2 and photographs of the com-

pleted system are shown in figure 8.1. This is similar to the previous experimental arrangement 

used in chapter 5 except for the mounting arrangements of the plate and the sensors on the 

plate. The plate, which has the same dimensions (278mm by 247mm with 1mm thickness) 

and is made of aluminium as in the previous experiments, is bolted to a 350mm by 400mm 

by 300mm perspex box whose walls are 40mm thick so as to prevent flanking paths as far as 

possible. The arrangement of the accelerometers and piezoceramic patches is shown in figure 

8.2. The enclosure is placed in an anechoic room and a loudspeaker is placed inside the enclo-

sure to generate the primary disturbance. Instead of the distributed volume velocity sensor, 

16 equally-spaced acccelerometers are placed on the plate in the arrangement shown in figure 

8.2. B&K type 4375 accelerometers were used which have a weight of 2.4g each and a charge 

sensitivity of 0.316pC/ms~^. Each accelerometer was connected to a separate charge amplifier 

and voltage amplifier before input to the control unit. The five piezoceramic patch actuators 

were driven by a single Quad amplifier. Microphones are placed in the far-field in the positions 

given by table 7.2. The accelerometers and microphones are all connected to separate channels 

of the control system. 
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(a) 

(b) 

Figure 8.1: Photographs of the new experimental arrangement, a) Overview of experimental 

arrangement, b) Close-up of plate. 
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Figure 8.2: Arrangement of transducers on plate for the new experimental apparatus 

8.2.2 Simulations of control using measured frequency response functions 

(II) 

In section 7.2 the control performance calculated for simulated data using the summed ac-

celerometer output (as an approximation to the volume velocity) as an error signal was com-

pared with a control strategy using acoustic error sensors and structural reference sensors. 

Simulated FRFs were used in both feedforward and feedback cases. 

FRFs were measured on the experimental rig described above and in this section, these FRFs 

are presented and compared with the simulated ones. The measured FRFs are then used 

in feedforward and feedback control simulations to predict the effect of implementing a real 

controller. The actual implementation is dealt with in the next section. 

Comparison between the simulated and measured FRFs are shown in figures 8.3 through to 

8.6. Four different sets of FRFs need to be considered; those between the loudspeaker acting 

as the source of disturbance and the accelerometers, those between the loudspeaker and the 

microphones, those between the piezoceramic actuators and the accelerometers, and those be-

tween the piezoceramic actuators and the microphones. The calibration factors of the actuators 

and sensors were unknown in the experiment and so an arbitrary factor has been added to the 

levels of the measured FRFs to allow comparison with the theoretical results. Otherwise, the 

amplitudes of the simulated and measured results are seen to have similar features, although 

the natural frequencies for the simulated responses are higher than those for the measured 

responses. The phase response of the FRFs are less similar and as with the previous sets of 
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measured FRFs, this seems to be largely due to problems in unwrapping the phase. The fre-

quency response functions measured from the disturbance loudspeaker to the accelerometers or 

microphones, also include an additional part given by the frequency response of the loudspeaker, 

which has been modelled as a simple monopole source, and this may account for some extra 

phase loss. The coherences for the measurements are also shown in figure 8.7 which shows good 

coherence for the measured results above a frequency of around SOJfz. 

Figure 8.8 shows the effects of feedforward control of the summed accelerometer output on the 

microphone outputs as given by equation (7.6) using the measured FRFs. The ratio, given 

by equation (7.7) (c.f. Sgure 7.6(b)), is also shown. The feedforward control predictions show 

good levels of attenuation at the microphones, as with the simulated results in figure 7.6(a). A 

large amount of measurement noise is also present at very low frequencies and so the results 

are unreliable below about SOJifz. This is a result of the poor coherence in the measurements 

at these frequencies. As feedforward control is being used, the summed accelerometer output 

can be assumed to be driven to zero. 

Figure 8.9 then compares the results of feedback control of the summed accelerometer output, 

and the control architecture which uses separate reference and error sensors. In each feedback 

simulation, the plants are modelled using 4097 point filters and the control filters have 256 

coefficients at an assumed sample rate of 2.5kHz where no anti-aliasing and reconstruction 

filters have been used. The effects of the two control algorithms are shown at the reference 

sensors (accelerometers, Egure 8.9(a)) and at the error sensors (microphones, Egure 8.9(b)). 

The attenuations seen with both strategies are similar to those predicted from the simulated 

FRFs (figure 7.7). As was the case with the simulated FRFs, using structural reference sensors 

and acoustic error sensors results in slight performance improvements at the sum of the square 

microphones and a slight loss in performance at the summed accelerometer outputs relative to 

the control of the summed accelerometer output. 

The results in figure 8.9 represent the case where no stability or robustness term has been 

added and this gives rise to the maximum attenuation which could be achieved using feedback 

control. However, in practice, a degree of stability is required, depending on the application, 

and there is also additional delay in the plant FRF due to delays inherent to the controller 

and signal-conditioning equipment. The trade-off between these three factors has already been 
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Figure 8.3: Comparison of simulated (solid) and measured (dashed) FRFs for TNO experimental 

system: Between disturbance loudspeaker and sum of accelerometer outputs, a) Amplitude, b) 

Phase. 
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Figure 8.4: Comparison of simulated (solid) and measured (dashed) FRFs for TNO experi-

mental system: Between the five piezoceramic actuators driven in phase and the sum of the 

accelerometer outputs, a) Amplitude, b) Phase. 
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Figure 8.5; Comparison of simulated (solid) and measured (dashed) FRFs for TNO experi-

mental system: Between disturbance loudspeaker and sum of squared microphone outputs, a) 

Amplitude, b) Phase. 
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Figure 8.6: Comparison of simulated (solid) and measured (dashed) FRFs for TNO experimental 

system: Between the five piezoceramic actuators driven in phase and the sum of the squared 

microphone outputs, a) Amplitude, b) Phase. 
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Figure 8.7: Typical coherence for measured results, a) between disturbance loudspeaker and an 

almost central accelerometer. b) between central actuator and an almost central accelerometer. 

c) between disturbance loudspeaker and a central microphone, d) between central actuator and 

a central microphone. 
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Figure 8.8: Feedforward control simulations with measured FRFs. a) The e&ct of feedforward 

control on radiated sound using measured FRFs. Error signal is measured at microphones after 

feedforward control of summed accelerometer output. Solid line shows signal before control 

and dashed line shows signal after control, b) Ratio given by equation (7.7) for each of 9 

microphones. Should be equal to 1 for good control. 
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Figure 8.9: Simulated performance of feedback control, using measured FRFs. Structural sen-

sors, whose summed output is shown in (a) are used to give a reference signal and microphones 

whose summed output is shown in (b) are used to give an error signal. The solid line shows 

the measured signal before control, dashed line shows the result of controlling the summed ac-

celerometer outputs and dotted line shows the effects of the control architecture using separate 

reference and error signals. 
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discussed for simulated FRFs in section 7.2 and is shown in figure 7.11. The same trade-off is 

shown for the measured data in figure 8.10. This figure then gives an estimate of the amount 

of attenuation which could be expected from a control system with a given delay and required 

stability calculated using only measured FRFs. This is a useful tool and using these figures, it 

was chosen to implement a feedback controller on the experimental system as described in the 

next section. 

8.2.3 Real t ime IMC control (II) 

A final set of experiments was carried out to verify the results obtained during the simulations 

using measured FRFs presented in this chapter. 

The experimental arrangement was as shown in figure 8.1 and the accelerometers and micro-

phones were all connected to input channels of the control unit. The actuators were driven with 

a single control voltage. In the final experiments, only 14 accelerometers and 3 microphones 

were used, due to problems with some of the conditioning amplifiers, which corresponds to a 

slightly reduced set of sensors compared to simulations. 

A 300 coefficient model of the plant, measured between the voltage output from the control 

unit to the amplifier driving the five piezoceramic and the summed output of the sixteen ac-

celerometers (after charge and voltage amplification), was first identified with the control unit, 

with a sampling rate of 5kHz, and this is shown in figure 8.11. The first few samples of the 

impulse response show only 2 samples delay, or 0.4ms at this sampling rate. This is a drastic 

improvement over the controller used in previous experiments and, comparing this to figure 8.10 

shows that an attenuation of around 5.5dB with 40% maximum uncertainty could be expected, 

at the microphones, for control of broadband disturbances using structural reference sensors 

and acoustic error sensors. The response measured by the controller has similar features to the 

previous measured FRFs shown in figure 8.9(a) for example but is contaminated by the 50Hz 

line frequency and 

Control experiments were then conducted on a tonal disturbance generated by the loudspeaker 

at a frequency of the first measured plate mode at llOHz. A 300 coefficient adaptive IMC 

controller, with regularisation included to ensure robustness, was used to control the tone, 
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Figure 8.10: Traxle-oE between performance, majcimum percentage uncertainty, and delay for 

control using structural reference sensors and acoustic error sensors as calculated from measured 

data, a) At reference sensor (sum of accelerometer outputs), b) At error sensor (sum of squared 

microphone outputs). 
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Figure 8.11: Response of plant between 5 piezoceramic actuators driven in phase and sum 

of accelerometer outputs as measured by control unit, a) Impulse response (sampling rate = 

5kHz). b) First few samples of impulse response showing controller delay, c) Amplitude of 

frequency response 
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using the sum of the accelerometer outputs as an error signal. Feedforward simulations, as 

shown in figure 8.8(a), show that an attenuation of around 40dB in the radiated sound power 

could be expected. Attenuations of up to 17.4dB were obtained at the summed accelerometer 

outputs and 13.7dB attenuation was achieved at a single microphone placed directly above 

the plate. The results are shown in figure 8.12. The main factor which limited the amount 

of attenuation was that the control actuators could not be driven with enough amplitude to 

counteract the eEect of the disturbance. Unfortunately during the short time available for these 

control experiments, it was not possible to implement a controller for broadband disturbances. 
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Figure 8.12: Control of a tonal disturbance at llOHz using an adaptive IMC controller to 

minimise sum of accelerometer outputs, a) At reference sensor, sum of accelerometer outputs, 

ATT=17.4di?. b) At error sensor, microphone placed Im above plate, ATT=13.7di?. 

Some recommendations for the development of a realisable real-time controller are given in the 

conclusions, chapter 9. 

8.3 Conclusions 

This chapter has described the development of a real-time control system using cost functions 

and control techniques described in the previous chapter. 
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The experimental rig is similar to the one used in chapter 5 but, instead of using a distributed 

volume velocity sensor, 16 accelerometers are placed on the plate and their summed output, 

which gives an approximation to the volume velocity, is used as a reference signal. 

The measured frequency responses are seen to be very similar to those predicted from simu-

lations and these are used to give predictions of control performance from a real-time control 

system including delay in the plant FRF and the requirement for robust stability. 

Some experiments were carried out with the experimental rig to control tonal disturbances. 

The results were similar to those predicted from simulations. 
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Chapter 9 

Conclusions 

In this thesis a number of aspects in the development of an ASAC system have been described. 

Four main objectives were set out at the beginning of the thesis: 

1. To compare the physical limitations of different actuators and sensors and their placement 

for active structural acoustic control purposes. 

2. To investigate the use of Internal Model Control (IMC) and its implementation for active 

structural acoustic control purposes. 

3. To compare the physical limitations of different cost functions for active structural acoustic 

control. 

4. To investigate the interaction between the physical limitations and control limitations of 

active structural acoustic control. 

9.1 Conclusions on ac tua tors , sensors, and thei r placement 

The thesis begins with the development of physical models of the plate vibrations and sub-

sequent sound radiation (chapter 3) which are based largely upon previous work. Radiation 

modes were discussed, which are a form of decomposing the plate vibration into modes which 
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radiate sound independently. This is in contrast to the normal method of analysing plate vi-

brations using structural modes. It turns out that the first radiation mode accounts for most 

of the sound power radiated at low frequencies and furthermore that at these frequencies, the 

first radiation mode approximates the volume velocity of a plate. This is the motivation for 

controlling volume velocity and this thesis starts of as a continuation of previous work in which 

a distributed volume velocity sensor was developed and used for feedback control experiments. 

The next section compared a number of different transducers for the purposes of ASAC. The 

performance of different combinations of these actuators and sensors was compared and then 

the placement of these transducers was investigated. Point forces, piezoceramic patch actuators 

and uniform force actuators were all investigated and their sensor counterparts; accelerometers, 

piezoelectric patch sensors, and distributed volume velocity sensors. Theoretical models of each 

actuator and sensor were developed using the elemental model introduced for modelling the 

plate vibrations and sound radiation. 

Point force actuators are largely impractical due to the requirement for reaction mounts. The 

development of piezoceramic material technology has introduced a number of new actuators 

which are highly suitable for ASAC since they do not need a reaction mount and because of 

their low weight, their high control authority, and low cost. The final actuator considered is the 

uniform force actuator. Although this type of actuator should result in high control performance 

as it is the reciprocal actuator to the volume velocity sensor, practical problems with control 

authority and in-plane coupling have been observed by other authors and so it was not used 

here. Bach of these actuators has a spatially-matched sensor. The accelerometers measure 

structural response at a point. Due to the reciprocal nature of the piezoelectric effect, the same 

piezoceramic patches which were used ag actuators could also be used as sensors. Finally, a 

distributed volume velocity sensor was considered. 

Following the modelling of the various transducers, different combinations of them are tested in 

feedforward control simulations. Feedforward control assumes that a reference signal is available 

and gives the best control performance that could be achieved from a given physical system. 

AH the control strategies using structural transducers are compared with the control of radiated 

power which acts as a reference curve, but would require the use of far-field microphones in 

practice. The feedforward control simulations show that the cancellation of volume velocity 

using a uniform force actuator results in almost as good control performance as minimising the 
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total radiated power. As the uniform force actuator is not currently available, the next best 

strategy is to use piezoceramic actuators and a volume velocity sensor. Certain combinations 

of actuators and sensors are also found to be better suited to vibration control than to ASAC. 

After choosing suitable actuators and sensors, the next issue is to choose the position of these 

transducers on the plate. The choice of transducer positions is based upon physical arguments 

(rather than using exhaustive search methods or genetic algorithms for example). The perfor-

mance of a feedback control system depends on the frequency response function of the plant 

and should be made as minimum phase as possible. The actuators can be placed in such a way 

as to minimise the phase loss in this frequency response function. To do this the spatial forcing 

functions of the actuators should match the spatial sensitivity of the sensor as much as possible. 

As an example, when using a volume velocity sensor and piezoceramic actuators, the actuators 

should be placed as close to the corners of the plate as possible. A trade-off then arises between 

keeping the phase of the plant frequency response function to a minimum for feedback control 

performance and control authority as it becomes more difficult for the actuators to drive the 

plate the closer they are placed to clamped corners. In the thesis a compromise is chosen as 

one sixth of the way from each of the corners. The concept of matching the spatial forcing 

function of the actuators and spatial sensitivity of the sensors can be taken a step further by 

considering collocated transducers in which these two functions are exactly equal. In this case, 

the frequency response function of the plant is minimum phase which results in good feedback 

control performance. Care must be taken however that the placement of these transducers does 

not result in situations where the actuators cannot force an important mode and the sensors 

cannot measure that mode. 

9.2 Conclusions arising f rom exper iments using a d is t r ibuted 

volume velocity sensor 

Active control systems to control tonal sound and vibration in aircraft are now in mass produc-

tion. The challenge now is to cancel more broadband disturbances, and this normally requires 

the use of feedback control as opposed to feedforward control. The use of feedback control 

introduces a number of further issues which affect the performance relative to their feedforward 

counterparts. A major issue is the need for robust stability which causes a decrease in the 
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performance. Phase lag in the plant frequency response also becomes important in contrast to 

feedforward control where a reference signal can be measured. There is generally a trade-oS" 

between these three factors; the performance, required stability, and phase lag in the plant, 

which can be altered slightly through the use of appropriate signal conditioning equipment. 

A number of techniques or algorithms are available for designing feedback controllers ranging 

from the very simple, such as direct displacement, velocity or acceleration control, through to 

the more complex, such as the LQG method. In this thesis Internal Model Control (IMC) is 

used which has some advantages under certain conditions. A generalised control framework 

is also introduced which provides an analysis tool which can be used on any feedback control 

method. 

An initial experimental apparatus was also designed to test the feedback approach which con-

sisted of a plate with five piezoceramic actuators and a distributed volume velocity sensor 

mounted on a box. The box contains a loudspeaker which generates the disturbance and the 

aim is to design and implement a controller that reduces the transmission of sound through the 

plate. 

Frequency response functions of the plant and disturbance were measured and used to give pre-

dictions of the control performance using an IMC controller. The measured frequency response 

functions were found to be very similar to the simulated ones and control simulations showed 

that an attenuation of around 7dB could be expected. One advantage of the simulations though 

is that controllers with a large number of coefficients can be used. In practice, implementation 

of these high order controllers is difficult and, with the controller used in these experiments, a 

TMS20C30, it was not possible to implement these controllers with this number of coefficients. 

During the real-time control experiments good control of tonal disturbances was achieved with 

a total attenuation of 2AdB. For the control of more broadband disturbances, the total attenu-

ation was slightly less than predicted at around AdB although the same control filters were not 

implemented for the reasons described above. 

A number of practical issues were identified after these first set of experiments which were 

addressed at later stages in the thesis. These mainly arose due to the lack of computing power 

available during these experiments which manifested itself in two ways; by limiting the number 

of filter coefficients which could be used as described above, and by introducing a delay due 
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to the signal-conditioning equipment which is larger than the improvements in delay achieved 

by using an almost minimum phase plant. Possible solutions to these problems include the 

removal or lowering the order of the anti-aliasing and reconstruction filters to minimise delay 

in the plant and increasing the sampling frequency to reduce the relative effects of the filters. 

This second solution would however require a more powerful controller. 

9.3 Conclusions on cost funct ions using accelerometers 

The next chapter of the thesis considered a number of different cost functions for AS AC purposes 

using accelerometers on the plate. Two mechanisms by which ASAC actually takes place were 

identified; modal suppression and modal restructuring, which is the dominant mechanism when 

controlling volume velocity related variables. 

The aim of each of the different cost functions is to be as close to the control of radiated sound 

power as possible. The summed outputs of increasing number of accelerometers placed on the 

plate was compared with the distributed volume velocity sensor and was found to tend towards 

the results obtained with a true volume velocity sensor. Some configurations of accelerometers 

on the plate were found to work particularly well and sixteen accelerometers were chosen to be 

used in further experiments. 

Multi-channel control configurations were investigated next using standard feedforward control 

techniques. When minimising the sum of the squared accelerometer outputs, these were found 

to work well as vibration controllers but to have little effect on the radiated sound power. Some 

further multi-channel control algorithms were tested taking into account the nature of radiation 

modes. These included looking at higher order radiation modes, which was found to have little 

effect at the frequencies considered in this thesis, and looking at the frequency dependent shape 

of the first radiation mode which did provide an improvement to the control of volume velocity. 

A final multi-channel technique which was introduced was to use multiple single channel control 

systems on a plate each with a piezoceramic patch actuator or point ibrce actuator and a 

collocated accelerometer. This technique holds some promise for the future as MEMS systems 

become more common and cheaper to manufacture. Some plans for future work on the topic 

are outlined below. 
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Finally, a control architecture was outlined which uses both structural reference sensors and 

acoustic error sensors i.e. accelerometers on the plate and microphones in the far-field. This 

architecture was compared to control of the approximation to the volume velocity using sixteen 

accelerometers and found to give a small improvement in performance. 

A second experimental arrangement was then designed consisting of a plate mounted on a per-

spex enclosure housing the disturbance loudspeaker. Five actuators and sixteen accelerometers 

were mounted on the plate and microphones were placed in the far-Held. 

Plant and disturbance frequency response functions were measured on this new experimental 

rig and used to conduct simulations of the new control algorithm using separate reference and 

error sensors. This control algorithm was only found to perform slightly better than control of 

the approximation to the volume velocity. 

9.4 Conclusions on internal model control and implementa t ion 

Although there are several different feedback control techniques of varying complexity, the IMC 

architecture was used in most cases in this thesis. The IMC algorithm calculates the feedback 

controller by assuming a model of the plant is available and then the control problem can be 

reformulated as a feedforward one and standard Wiener techniques can be used to calculate the 

controller. 

Some advantages of the IMC architecture include its ease in physical interpretation, the fact 

that it guarantees a stable closed loop for a stable controller for the structures considered in this 

thesis, the fact that it can be reformulated into a feedforward problem, and that it is relatively 

easy to implement as an adaptive controller. However, for ASAC purposes, the required con-

trollers are high order due to the nature of the plant FRF. These high order controllers can be 

difficult to implement in practice and require the use of very fast DSP chips which are however 

becoming more readily available. 

Another problem in implementation is the inherent delay in the controller, ADC/DAC conver-

ters, and the filters required to prevent aliasing problems. These additional delays in the plant 

FRF outweigh the improvements in the phase response of the plant FRF obtained by careful 

203 



positioning of the transducers and, along with the requirement for robust stability, limit the 

overall performance of the control system. 

9.5 Recommenda t ions for f u t u r e work 

A major part of this thesis has outlined the theory of plate vibrations, the subsequent sound 

radiation, feedback control, and various possible cost functions. The experimental part of the 

thesis was limited to two validation experiments to confirm some of the theories outlined. How-

ever, there were some problems with both these sets of experiments, especially in implementing 

the digital controllers, and in the second set of experiments, due to time constraints. With more 

time available, experimental and practical issues should be examined in more detail. This could 

be through the development of the second test-rig which is well built and prevents flanking 

paths, due to the thickness of the enclosure walls, which have been a problem with previous 

prototype arrangements. The actuators on the plate seem to be suitable and weU-positioned, 

but care must be taken in the choice of amplifiers used to drive these piezoceramic actuators as 

control authority was a problem in the second set of experiments. Similarly, the accelerometers 

seem to be a good choice of sensor but the need for separate charge and voltage ampliSers 

for each one could cause some practical problems. This could be solved to a degree by using 

dedicated sensors and a dedicated control system and this should become a more realistic solu-

tion with the continued development of transducer technology. The weight of the commercial 

accelerometers used here was also significant compared with that of the plate, and it could 

be argued that their cost would also prohibit the practical implementation of such a strategy. 

The rapid development of vibration sensors using micro electromechanical machine technology 

(MEMS), however, suggests that both of these problems may be overcome in the not-too-distant 

future and research into the physical limitations of control systems which use such devices is 

still worthwhile. 

The control architecture with a number of local control systems all working independently is 

also a concept which is based on the devlopment of MEMS and holds promise for the future. 

Again, with more time available, it would be of interest to look at implementation issues and 

also at reducing the number of channels. 

A further point concerns the control architecture using structural reference sensors and acoustic 
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error sensors which is currently implemented using measured microphone signals. It would be 

advanatageous to remove the microphones in real applications and this would require a model 

of the FRFs between the actuators and the microphones. The implementation would however 

still be very similar to the normal IMC algorithm. 

ASAC is set to be used in more applications over the next few years, especially with the 

continued development of actuators, sensors, and faster DSPs. 
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Appendix A 

Boundary conditions for p la te 

vibrat ions 

The equation of motion (3.1) is a general one which does not take into account the boundary 

effects on a plate. However, it was shown in chapter 3 that, by imposing different boundary con-

ditions, the eigenvalues and eigenvectors, or natural frequencies and mode shapes, can change. 

Simply-supported boundary conditions were outlined briefly as they give the only analytical 

solution to the equation of motion. In this appendix, a more in-depth analysis of the effects 

of different boundary conditions is given. A more complete discussion of different boundary 

conditions is given by Leissa [35]. 

There are three types of boundary conditions which can be modelled fairly easily mathematically 

[19] 

Simply supported In this case the beam end is free to rotate but is constrained to have zero 

displacement and moment. 

(9^71) ( 
%,(%)= 0 and (VLl) 

Clamped The displacement and rotation are constrained to be zero. 

%,(%)= 0 and (VL2) 
9% 
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Free The shear force and the internal bending moment must dissapear 

^ . 0 and ^ = 0 (A,3) 

In practice however, any of these idealisations are very hard to achieve perfectly and true 

boundary conditions lie somewhere in between these. 

If the three of these boundary conditions are considered and it is assumed that each of the 

four edges of the plate can have one of these three boundary conditions then there are 21 

combinations of simple boundary conditions for rectangular plates. These are all dealt with 

separately by Leissa [35] and the plate with all four edges simply-supported or with all four 

edges clamped are described below. These two particular sets of boundary conditions are 

covered in more detail because initial simulations in the thesis used simply-supported boundary 

conditions but later experiments used clamped boundaries. It is also confirmed below that, 

as far as the radiation properties of the plate are concerned, there is little difference between 

the two sets of boundary conditions, as shown by a comparison of the radiation efficiencies 

of the structural modes of simply-supported and clamped plates shown in figures 3.4 and 3.5 

respectively. 

For each set of boundary conditions, the eigenfunctions are first given for a beam. The plate 

eigenfunctions are then assumed to be created using the Rayleigh-Ritz method which states that 

the eigenfunction of a plate is simply the product of eigenfunctions in the x and y directions 

[35, 37]. The total deflection of the plate at a point (z, y) is then 

!/) = (^) (A.4) 

where X{x) and Y{y) are the fundamental mode shapes of beams with the same boundary 

conditions. 

The shapes of the plate eigenfunctions or modes and natural frequencies are then compared, 

and an analysis of the sound radiation due to these two types of mode shapes is given. 
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A . l S imply-suppor ted bounda ry condit ions 

Simply-supported boundary conditions have been considered briefly above. They are the only 

set of boundary conditions which give analytic solutions to the plate equation of motion (3.1) 

and give rise to pure sinusoidal mode shapes. 

The solution to the equation of motion is reviewed below: Consider a simply-supported beam 

of length L. The beam response is written as the superposition of two travelling waves in the 

positive and negative directions with unknown coeScients A and B 

w (i , (A.5) 

Now, removing the time dependence and, imposing the simply-supported boundary conditions 

means that there is zero displacement at the ends and so at a; = 0 

'w(2;)|a;=o = 0 (A.6) 

and so 

A = - B (A.7) 

Imposing the same rule sX x = L 

w(z)|a;=f,=0 (A.8) 

and so 
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and, substituting this equation back into equation (A.7) results in the displacement field 

w{x,t) = —2Ajs'mkfxe^'^* (A.10) 

Again applying the boundary condition of zero displacement at x = L results in the mode 

shapes 

s'mkfL = 0 (A.11) 

with the eigenvalues 

kf = — n = 1 ,2 ,3 , . . . (A.12) 

The beam can only resonate at the frequencies given by these wavenumbers. Using these values, 

the resonance frequencies of the beam can be calculated to be 

= nvr j , n = 1 ,2 ,3 , . . . (A.13) 

The first six mode shapes of a beam with both ends simply supported are shown in figure A.l 

Once the beam functions have been derived, the total plate vibration pattern can be calculated 

using Rayleigh's principle. For the simply-supported plate, this is simply the product of sine 

functions. The shape of a single mode (m, n) is thus given by the equation 

where Wmn is a constant giving the amplitude of the mode. 
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mode 1 mode 2 mode 3 

mode 4 mode 5 mode 6 

Figure A.l; First six mode shapes for a simply-supported beam 

An example of the first six modes of the plate is shown in figure A.2. The equation giving the 

resonant frequencies of these modes is similar to (A. 13) 

^m,n — CI 
' (n'n\^ ^ ^ 

V h 
+ 

\ h J 
(A.14) 

Any vibration distribution caused by a disturbance will be a summation of these modes as given 

by equation (3.13). 

As an example to demonstrate the effect of different boundary conditions on the response of 

a plate, it will be considered to be excited by an acoustic plane wave with angles of incidence 

6 = (p = 45°. Figure A.3 then shows the power transmission ratio of the aluminium plate with 

simply-supported boundary conditions and excited by an acoustic plane wave. 

The natural frequencies of the plate are calculated using equation (A.14) and are tabulated in 

table A.l 
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(1,1) mode (1,2) mode (2,1) mode 

(2,2) mode (3,1) mode (3,2) mode 

Figure A.2: Six mode shapes for a simply-supported plate 

400 600 
Frequency (Hz) 

1000 

Figure A.3: Power transmission ratio for a simply-supported plate 

n/m(Hz) 1 2 3 

1 72 193 394 

2 167 288 489 

3 326 447 648 

Ikble A.l: Natural frequencies of a simply-supported aluminium plate 
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A.2 Clamped bounda ry condit ions 

Unlike with the simply-supported boundary conditions, for beams which are clamped at both 

ends, the mode shapes and frequencies cannot be calculated analytically 

This means that for a simply-supported beam, the eigenvectors can be de&ned exactly, whereas 

for a clamped beam, no exact solution can be formulated and hence approximate solutions must 

be used. There are a number of different approximate solutions and those of Warburton [37] 

will be used below. Other approximate methods are given in [35,107-110] for example. 

Warburton gives the eigenfunctions for the two sets of boundary conditions as 

Simply-supported 

C l a m p e d 

^ M = 8 i n ^ (A.15) 
/a; 

^(a;) = c o s ' y ^ ^ — ^ ^ 4 - A : c o s h ' y ^ ^ — f o r m even 

where 

sin ? , 7 , 7 „ 
k = . ^ _ and tan - + tanh - = 0 

sinh ^ 2 2 
/a ; 1 \ (A.16) 

^'(x) = cos 7 ' \ - I + /c'cosh7' f - J for m odd 

where 

sin ^ 'ŷ  'ŷ  
y = and tan —— tanh — — 0 

sinh:^ 2 2 

(successive roots of equations are taken for increasing modal indices) 

The first six modes shapes of a clamped beam are shown in figure A.4. A more direct comparison 

of the mode shapes for beams with the two different sets of boundary conditions is then shown 

in figure A.5 

The diEerences between the two sets of mode shapes are seen to be local to the edges of the 

beam which are slightly Battened in the case of clamped boundary conditions. 
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The two-dimensional plate eigenfunctions are obtained using the Rayleigh method i.e. by the 

product of eigenfunctions in the x and y directions. The modal frequencies as well as the 

eigenfunctions of the clamped plate cannot be calculated analytically and again, approximation 

methods are used as outlined by Warburton [37] for example. These are quoted by Gardonio 

and Elliott [111] as 

/ ^#,2 

° V 12p(l - f ' ) V J ® 

where i = m + l,k = n + l and 

Qik —'\jGtii) + Gy{k) + 2 ^ ^ ^ [ljHx{i)Hy{k) + {1 — n)Jx{i)Jy{k)] (A.18) 

The constants Gz, Gy, are given in table A.2. 

A comparison of the first mode shape for the simply-supported and clamped plates is shown in 

figure A.6. 

i or k Gx or Gy or Hy Jx or Jy 

2 1.506 1.238 L248 

3,4,5,... - (2A)7r) - ( 2 A ) , ) 

Table A.2: Constants to calculate natural frequencies of a clamped plate 

A table of natural frequencies for the clamped plate is given in A.3. 

Figure A.7 then shows the power transmission ratio for a clamped aluminium plate, again 

excited by an acoustic plane wave. The two tables of resonant frequencies and the figures of 

power transmission ratios show the difference between simply-supported and clamped boundary 

functions. Although the general features of the frequency response functions are similar, reso-

nant frequencies of the clamped plate are around 1.5 times higher than their simply-supported 

counterparts. 

The sound power radiated by plates with simply-supported and clamped boundary conditions 

has been compared in figures 3.4 and 3.5, which shows that the radiation efiiciencies of the struc-
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n/m(Hz) 1 2 3 

1 132 289 529 

2 250 398 634 

3 438 578 807 

Table A.3: Natural frequencies of a clamped aluminium plate 

mode 1 mode 2 mode 3 

mode 4 mode 5 mode 6 

Figure A.4: First six mode shapes for a clamped beam 

mode 1 mode 2 mode 3 

/ v 

mode 4 mode 5 mode 6 

Figure A.5: Comparison of first six mode shapes for simply-supported (solid lines) and clamped 

(dashed lines) beams 
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Simply-supported edges 

Clamped edges 

Figure A.6: (1,1) mode of a simply-supported plate and a clamped plate 

200 400 600 
Frequency (Hz) 

800 1000 

Figure A.7: Power transmission ratio for a clamped plate 
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tural modes of a clamped plate are similar to those of a simply-supported plate. Several authors 

[109,110,112] also show that, at low frequencies, the sound radiation from plates with the two 

different types of boundary conditions is very similar. Berry et al. [112] in particular compare 

the radiation efficiencies of individual modes (equation 3.24) for the two sets of boundary con-

ditions and these are seen to differ by no more than MB, the highest differences occuring for 

high-low modes (e.g. where m is large and n is small). They conclude that an elastic restraint 

against rotation at the edges does not signiScantly eEect the radiation eSciency. They also 

note that up to the critical frequency of the plate, only the piston motion, or volume velocity, 

is required to provide a good estimate of the radiated power. At high frequencies however, a 

clamped edge can have approximately twice the efficiency per unit length of a simply-supported 

edge [110]. 

The radiation modes have also been shown to be dependent on the geometry of the surface but 

independent of the dynamic properties of the surface so their radiation efficiencies will not be 

aSiected by the diSerent boundary conditions. 
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Appendix B 

A common formulat ion for t h e 

control of volume velocity and the 

control of sum of squared errors 

This appendix gives a common formulation for controlling the approximation to the volume 

velocity using a number of accelerometers, controlling the sum of the squared accelerometer 

signals, which turns out to be closer to vibration control, and controlling the radiated sound 

power. 

B . l Weightings on sensors 

For a direct comparison between the control of volume velocity and the control of sum of squared 

errors, the cost equation (6.7), can be expressed as 

./ = (13.1) 

where the matrix Wg repreresents the individual weightings for the separate structural sensors. 

Three such weighting functions have been examined in the thesis: 
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1. Vibration control which is equivalent to minimising the sum of the squared errors 

e,: (B.2) 

where Uge is the number of sensors. 

In this case, the weighting matrix Wg is given by the identity matrix. For example, for 

four sensors, it would be 

W , 

/ 1 0 0 0 \ 

0 1 0 0 

0 0 1 0 

\ 0 0 0 1 / 

(B.3) 

2. Control of volume velocity as approximated by the accelerometers. This is equivalent to 

minimising the squared summed error. 

(B.4) 
i=l 

In this case, the weighting matrix for four sensors is given by 

/ 1 1 1 1 \ 

1 1 1 1 

1 1 1 1 

1 1 1 1 

W , 

\ 

(B.5) 

With the elemental models used in this thesis, controlling the true volume velocity would 

require an accelerometer at each element as shown in chapter 6. 

3. Control of radiated power. Equation (3.30) shows that the radiated power can also be 

expressed as 

power = Rv (B.6) 
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with the elemental velocities denoted by v and the radiation resistance matrix R being 

given by equation (3.34). 

R 
47rc 

sinfcri2 sin krii 
krii 

sin fcrai 
trai 

sin krji 

This clearly has a very similar form to equation (B.l) where e represents a reduced 

version of v where only the relevant values are taken according to the elements in which 

the accelerometers are placed. In this case, the matrix W s is given directly by a reduced 

form of A (again by taking the elements at which sensors are placed). 

Note that in the low frequency limit, where kl ^ 0 

(13.7) 

which corresponds to the volume velocity weighting matrix given in (B.5). 

4. One further weighting which would be of interest would be the matrix W s which corre-

sponds to the minimisation of the pressure at a number of far-field error sensors. In this 

case, each element of the matrix would represent the frequency response function between 

vibration at the positions of the accelerometers and the radiated sound pressure at the 

microphones. 

B.2 Weightings on ac tua tors 

In an analogous approach, a variation on the cost function, equation (6.11) is given by, 

J = Ww 4- (d + Gw)^A + (d + Gu) .H, (B.8) 
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where W is a weighting matrix for the input voltages. Provided that the matrix W is symmetric, 

then the vector of control voltages in the underdetermined case described above is 

Ur. = ( G W G (B.9) 

(c.f. equation 6.12). 

Cancelling the sum of squared errors with minimum effort, outlined above, gives each actuator 

the same value of unity in the weighting matrix. An example of the weighting matrix for 5 

actuators is then given by 

W 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

\ 0 0 0 0 1 y 

(B.IO) 

The weightings on the different actuators can now be changed and is shown by the corresponding 

element in the weighting matrix. Further flexibility can be given to this cost function by making 

the weighting function a function of frequency W{uj), or by giving separate weighting constants 

to the parts of the error criterion minimising control eSort{u^Wu) and the sensor outputs 

{d + Gu) i.e. by introducing a Wi and W2 say. 

J = + (d + A 4- (d + H- vH, (B.l l) 
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