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With a single snapshot a target is located
with hydrophones in uncertain locations, with
NSR= 10 x log(number of hydrophones)

by Geoffrey Sweet 14/12/92

Abstract: At an instant in time an acoustic pressure measurement is taken
from each hydrophone. A wavelength is divided up into equal parts called
‘space phase bins’. The spectrum of the target can be recovered if the mea-
sured pressures are correctly assigned to the bins with which, for the wave-
lengths, direction and range of interest, the hydrophones are associated. The
algorithm is resistant to noise at the rule-of-thumb NSR= 10 x log(number
of hydrophones). A straight string of hydrophones is regarded as a singular
case, where the target’s range cannot be estimated if it is at end-fire, and
where the method is invalid if the target is exactly at broadside and suffi-
ciently far away for plane waves to be received at the string. Otherwise, the
only conditions are on the number of hydrophones and the Nyquist condition
(distance between hydrophones)< 2.

Example: A target is found to within 2% accuracy by a single string of
1,000 hydrophones at a range of 10x (length of the string) with a hydrophone
location uncertainty of two parts in a thousand and with NSR= 30.

Conclusion: Uncertainty about hydrophone location is not a problem, and
noise is not a problem.

Recommendation: As many hydrophones as possible are better distributed
over two dimensions than one. The algorithm works with one string of hy-
drophones, where better two-dimensional resolution is achieved if the string
is grossly deformed. Processing speed and accuracy would increase apprecia-
bly if the algorithm were to be implemented with more than one string.0



Introduction

This algorithm is designed specifically to locate the target from one instant
to the next. It is possible to ‘latch on’ to the target and to follow it about.
And if the power of the target’s acoustic radiation changes, it can noted at
once. With a time history, on the other hand, it must be difficult to interpret
data in these respects.

The algorithm is an effective Fourier Transform for uncertain sampling
intervals. There is no theoretical basis for applying the Discrete Fourier
Transform to data taken at irregular, unknown intervals. An important
difference is that the Discrete Fourier Transform cannot cope with a target
at a finite distance. This algorithm can.

If we make the right selection of bins, the data will reinforce each other.
But if we make a wrong selection of bins, the data will tend to cancel each
other out. A bin is a band of phase points.

We must have at least three hydrophones per wavelength. Three bins
per wavelength is optimal in the sense that three is the minimum number of
bins required to corroborate a wavelength, and the minimum number of bins
will allow the maximum number of data points per bin, thus maximising the
noise-rejection. _

If d is the distance between adjacent hydrophones and A is the wave-
length, the condition '

A
d< 2

applies. It is the Nyquist condition.

Although uncertainty about a hydrophone’s location increases with dis-
tance, provided that it is known that a hydrophone is near enough a distance
d from its neighbour on the string, gross deformations of the string are unim-
portant. Indeed, gross deformations of the string are desirable, because they
increase the two-dimensional resolution. And in fact the worst case is where
the target is off the broadside in the middle of a straight string, for then,



with far-field plane waves, only one bin is available, and more than one bin
becomes available with wave-front curvature only when, for a straight string
of length / and target at a distance of n times ! and number of bins /,
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is observed.

With end-fire condition, uniform binning is required (see Figure 1 below).
But end-fire is a singular case. In general, the string will be deformed, and
so circular binning must be applied (see Figure 2). With gross deformations
of a single string or, alternatively, with an array of many strings, binning can
be done along the y-axis as well as the z-axis, thus improving the resolution
of the algorithm (see Figure 3).

The binning power integral P, . ¢ is constructed as follows. There are
added together, in the ith bin (i = 1,2, ..., ), successively each jth sample,
i.e. samples s)) o thought to have arisen from a target with K wavelengths
Ak, at range r and direction 8, with the total number J§, , , of samples in the
ith bin. With optimal binning I = 3. Then the bin average bi,,,r,a is taken,

thus

Ji r.0
Ag,rd — Jl 8&\*,!‘,0 ?
Ag,r,0 ij=1

square it and add it to the other b}_, , to construct the space binning integral

I .
PA*,I‘,G = Z(b:\,,,r,ﬂ)z *

i=1
The P,, ;¢ convey the power associated with wavelengths A at range r and
angle 0.

Theoretical Foundations of the Method

The basis of the method lies in the theory of rational approximation. For
instance, with a Fourier Transform the understanding is that what is in
general an irrational number may be approximated by a rational one. While



in general a period of a signal cannot be measured in terms of a rational
number, the notional periods with which it is compared can only be conceived
of in terms of rational numbers. The consequences of the mismatch are
seen when a Fourier Transform is applied to data taken over many periods.
Increasingly the convolvent and the convolved diverge, and a periodogram
begins to lose resolution and to display aliasses.

The Fourier Transform is itself a member of the class of binning algorithms
in the sense that an arbitrarily small distance between an irrational convolved
and a rational convolvent itself constitutes a bin, albeit one of the narrowest
kind. On the other hand, in accepting wider bins than that, the present
algorithm allows a tolerance of the uncertainties about hydrophone locations.
It is because of those uncertainties that the binning approach is called for
rather than a point-by-point convolution.

The phase binning method was developed when pulsars were first ob-
served in the optical. A very quick way had to be found in order to estimate
frequency. Each successive sample was added simultaneously to the contents
of different bins, and a watch was kept on the various totals. A rising total
suggested a correct binning, while a flat one suggested that the data were
cancelling each other out and that, therefore, the wrong binning had been
chosen. It is proposed to employ just such a technique in order to latch on
to a target and to monitor its progress from one snapshot to the next.

The difference between the present algorithm and its progenitors in as-
tronomy is that it is designed for use in two dimensions rather than one. It
is possible to extend its use to three dimensions. However, with the present

version, circular binning has been applied in order to locate a target in two

dimensions.

Finally, the verb ‘locate’ has been used rather than ‘localize’ because al-
though the method might seem to belong to the activity of ‘optimization’, the
location is being estimated with respect to only one variable, the wavelength.
Usually, in optimization, more than one variable is involved.

Example

Graph 1 below shows the spectrum of a target not at infinity taken with
end-fire condition in the absence of noise on the signal but with hydrophone
location uncertainty of 12 X (distance of hydrophone from the towing vessel).



The spike at A = 40 is an alias of A = 20. The efficacy of the method is not
restricted to the range of wavelengths shown in the example. Graph 2 shows
the spectrum of the same target at 45° in the far-field in the a.bsence of noise
with the same end-fire binning as used for Graph 1. - |

Graph 3 shows_the spectrum of the target at 45° in the far-field with
uniform binning allowing for that angle and with NSR= 30. The choice of
45° is arbitrary. The reader is invited to verify that although several other
spikes have now appeared on the periodogram, the signature of the target of
interest is still manifest amongst them.

Graph 4 shows the periodogram for 45° and a target range of 10x (length
of the string) with uniform binning and NSR= 30. It can be seen that uniform
binning is no longer appropriate at that range. Similarly, Graph 5 shows the
periodogram for the same angle but with a target range of 6 x(the length of
the string) with uniform binning and NSR= 30. Notice how, with uniform
binning, the spectrum breaks up as the target approaches the hydrophones.

But Graph 6 shows the accuracy of a circular binning for 45° and target
range of 10X (the length of the string). The wavelength analysed is % =T73.
The accuracy is about 2%.0
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