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Remotely Operated underwater Vehicles (ROVs) have been used in the oil industry since 

the 1970's. With the increase in the availability and complexity of instruments that can be 

fitted to the vehicles, the ability to modify the configuration becomes critical. By using a 

distributed communication architecture, where various functions of the vehicle are 

separated into several independent units, it becomes possible to interchange units more 

easily. 

After a review of the available networking techniques, a particular solution has been 

selected, and used in a prototype vehicle. The vehicle has been tested successfully in 

water trials. A particular problem occurring with networks over which dynamic control 

systems operate was highlighted ; if a control system was to be established over the 

network, the variation of the transportation delay could cause the controller to fail. For 

example, with a network node used for gathering heading data and another network 

node used for driving the thrusters, the time it takes for the heading data and thruster 

command data to be received depends highly on the behaviour of the other nodes 

present on the network. 

In order to establish how this delay varies, a simulation of the network has been 

created, allowing for various configurations to be investigated. 

To achieve total flexibility, it should be possible to keep the same controller for a control 

system running over the network, whatever the state of the network configuration. Such a 

controller is implemented by using a recursive least square estimator, the results of 

which are used to estimate the delay. The value of the delay is then used to tune the 

parameters of a PID controller. This self-tuning controller has been successfully tested 

both in simulation and experiments. 
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1. R E M O T E L Y O P E R A T E D V E H I C L E B A C K G R O U N D 

1.1 Evolution of Ocean Technology 

Thirty years ago the vision for the future was that technology would allow man to 

live on the moon as well as at the bottom of the sea. Such a progress in 

technology has not been as easy as expected. 

It is the discovery of oil beneath the ocean that triggered the main progress in 

ocean technology. Oil is being exploited at greater depth, with little or no 

accessibility from divers. ROVs (Remotely Operated Underwater Vehicles) are an 

important tool for such undersea operations, such as survey, inspection and 

repair. They are still very much in use nowadays, and their future seems only 

threatened by the development of autonomous underwater vehicles (AUVs), 

which do not require a pilot. However, the extreme conditions where ROVs are 

used mean that the AUV technology would have to be well proven and advanced 

before a real competition appears. 

1.2 ROVs 

ROVs are an important tool for unden^/ater exploration and exploitation, such as 

scientific and military surveys, inspections and repairs of subsea structures. 

Indeed, their use is constantly increasing, as human divers limitations offer less 

and less competition to a tele-operated robotic vehicle. The basis of the vehicle 

consists of a subsea unit, incorporating thrusters and usually a camera, and a 

surface unit which provides the pilot with means of tele-operation. 

ROVs are used primarily in three different areas. The first is scientific observation, 

where the ROV's presence often interferes less with the actual scientific 

experiment than a human diver would. The second application area is military 

use, where ROVs can carry out high risk underwater operations. The third area is 
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the oil exploitation industry, where ROVs can be used to inspect the state of 

corrosion and the integrity of subsea structures, cables and pipelines. These 

routine inspections have to be carried out regularly to comply with safety and 

insurance regulations. They can also be used during the construction period, as 

they can be fitted with tools such as manipulators, or cable cutters. 

Since this research project is funded by a company whose main customers come 

from the oil-industry, the study emphasises the industrial aspects of ROV 

operations. A case study has also been carried out with one of the company's 

vehicles. 

1.3 Instrumentation 

The type of instrumentation used on ROVs can be divided in two categories: 

essential instruments and the optional ones. In the case of the Seaeye 

'Scrutineer', the basic instrumentation consists of four thrusters, one black and 

white camera, one colour camera, a compass and a depthmeter (Figure 1.1). 

Those provide direct control and feedback to and from the pilot. 
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Figure 1.1 A Remotely Operated Underwater Vehicle (Seaeye Marine 

Scrutineer) 

ROVs will also be fitted with specialised instrumentation, which allow it to 

complete certain tasks. For example, for a scientific survey, the vehicle could be 

fitted with temperature and current sensors; for an industrial pipeline survey, a 

cathodic potential probe and a pipe tracker would be fitted [1]. 

Interchanging these various instruments is often a difficult and time consuming 

task, sometimes demanding important modifications to the vehicle. The major 

requirement for a ROV is to make those unavoidable modifications as easy as 

possible. Such a need for flexibility places great demands on the system 

architecture, and interfacing and data communication is not straightforward. The 

range of instruments is wide and therefore it was necessary to review those most 

commonly used, in order to have a perspective on what the system architecture 

can be. 
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1.3.1 Thrusters 

Propulsion is the most essential feature of the vehicle. Although novel propulsion 

mechanisms have been suggested, commercial ROVs are fitted with thrusters. 

Electric thrusters are often favoured, as they offer many advantages over 

hydraulic ones [2]: 

• reliability: a mean time between failures of 1000 hours an average compared 

to less than 170 hours for hydraulic thrusters 

® simplicity; it is much easier to interface electric devices with a controller than a 

hydraulic mechanism, as they generally have a linear behaviour, and so control 

is more accurate 

• payload: hydraulic systems can be very heavy and bulky 

1.3.2 Cameras 

In the most common configuration, the ROV is fitted with both a black and white 

and a colour camera. Usually during the navigation the pilot would use the black 

and white output, and then switch to colour for close inspection of an object. 

Lighting conditions can be very poor underwater, and cameras have to be very 

sensitive. In some cases , a still photograph of the inspection is also required for 

documentation purposes. The camera is often fitted with a pan and tilt facility, 

allowing the pilot to inspect a wider area without having to move the vehicle. This 

pan and tilt facility can be provided by fitting the camera on a moving platform, or 

with a single module camera, where the pan and tilt functions are integrated. 

Two principal technologies are available ; CCD (Charge Coupled Device) based 

on solid state electronics or SIT (Silicon Intensified Target) based on a tube[3]. 

CCD cameras are more compact and lightweight than tube cameras for a given 

image size. They also use less power and require little or no set-up. 

A typical example of those new generation cameras is the Osprey OE1386 series. 

This is a CCD camera, which incorporates Pan, Tilt and Rotation functions, 

allowing a 160 ° horizontal coverage and 180 ° vertical coverage (including lens 

angle of view). The Iris control is automatic, and the focus is controlled from the 

surface by the pilot. 
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Some cameras, known as TVP (Television Photographic Camera), incorporate 

both video and stills photography functions. 

New types of viewing system are being developed, such as 3D acoustic cameras 

or laser viewing systems, however the cost of these remains very high and they 

are not yet very common, although they can be a great advantage in turbid waters 

[4]. 

Most commercial ROVs provide the ability to overlay the video image with 

comments and other data available, such as depth and heading, during the ROV 

diving operation. The resulting image is recorded onto a video tape. This 

procedure allows the ROV operators to prove to their customer that the work has 

actually been carried out. This task is a major contribution to the pilot's workload. 

Recent innovations now allow the interfacing of video signals with laser and 

computer disks for efficient storage, retrieval and analysis. 

1.3.3 Navigation systems 

There is a wide range of gyros and depth meters available, and prices vary 

depending on accuracy, speed, depth rating and size. All newer models 

incorporate RS232 communications. Alternative positioning systems use acoustic 

signals, that can be related to the mother ship's positioning system [5]. 

1.3.4 Other instrumentation 

Apart from the above instrumentation, ROVs are often fitted , depending on the 

tasks to be carried out, with sophisticated sensors and tools, such as sonars, 

profilers, pipe and cable trackers, CP probes, manipulators, current meters etc... 

These instruments are generally fitted with a digital interface. The detail of how 

they operate is irrelevant to this research, but the way they can be linked in the 

vehicle is the key issue. It is indeed those more expensive instruments that will 

not be fitted permanently, and therefore rely on a flexible and modular vehicle 

architecture. Scientific instruments pose a particular problem, as the amount of 

data gathered makes real-time transmission unrealistic. Local storage is often 

used, allowing the data to be analysed only when the vehicle is taken out of the 

water. The real time communication only controls the instrument and the data 

storage facility [6]. 
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1.4 . Control methods 

All of Seaeye vehicles provide auto-heading and auto-depth features, which 

allow the ROV trajectory to be locked towards a certain heading or depth. This is 

implemented using a PID controller. The coefficients have been chosen after a 

series of trials in a sea water lake, and remain the same for all the ROVs 

produced. As a result the system is not efficient in all circumstances. The 

problem is that the model used by the PID has been set in a specific environment, 

and does not take into account variable parameters such as sea state, depth and 

equipment fitted on ROV. There is a need for a system which can adapt to those 

different environments . 

This leads us to intelligent control theories such as sliding law control, self tuning 

control, fuzzy logic or even neural networks. Some work has already been done in 

those areas. [34][35][36][37][38] 

The ROV developed by Woods Hole Oceanographic Institution, named JASON is 

using the sliding control technique with success. Heriot Watt University, 

Edinburgh is developing their ROV ANGUS HQO control law. Development in the 

University of Hawaii has been considering Parameter Adaptation Algorithm (PAA) 

and lately Neural Net. 

However, apart from the JASON case, most of this work remains in simulation 

only and nothing has actually been implemented on the hardware. 

Fuzzy logic seems the best solution for this case, as it would cope with the high 

non-linearities of the ROV, and is also very robust. Neural network could also be 

as a solution, but it requires much more computing and that it is difficult to prove 

its reliability. 

Another important point is that all those control techniques require a fair amount 

of processing, and this should be taken into account when designing the 

hardware. 

1.5 Limitations of modem vehicles 

The current communication system used for Seaeye ROVs is based on RS485 

communications. The main loop links the subsea unit, the surface unit and a 
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video overlay unit (Figure 1,2). Although the system is fully functional, the 

communication architecture is not optimised, and improvements and modification 

to the vehicle are not straightforward. In this type of data loop, data from the 

sender has to go to all possible receiving units. This means, for example, that 

when the subsea unit sends data to the video unit, the surface unit also reads the 

message. Although only the two first destination identifying characters are 

actually read, this can be time consuming, especially when traffic is heavy. One 

can see that if the amount of information transmitted, or the number of units 

connected, was to increase, the processing time left at each unit for non-

communication tasks would be badly affected. As instruments tend to be 

'smarter', that is to say that they are increasingly using digital technology, the 

more information we can expect from them. Unfortunately, this also means larger 

message sizes. 

The main problems encountered with the system at the moment are due to the 

lack of modularity and the lack of maintenance facilities, which are extremely 

important in a market where time is restricted by the parent vessel's availability, or 

sea conditions. The crew using the ROV is not generally highly trained 

technically, and diagnostics and repair should be as straightforward as possible. 

This also applies to the upgrading and modifying of the ROV configuration. 

A good way to introduce modularity in the vehicle's system is to use networks 

instead of a centralised architecture. Such a modular architecture provides a 

more flexible platform for adaptation, with a number of intelligent nodes 

networked together (Figure 1.3). 
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Figure 1.3 An Example of a Networked Vehicle Architecture 

The centralised approach is used widely within the industry, most probably for 

historical reasons. When the first generation of vehicles emerged in the 70's, 

digital electronics were still very basic, and networks were not a realistic solution. 

The advantages of distributed architecture have now been recognised in another 

area of ocean technology. New Autonomous Underwater Vehicles (AUVs) such 

as Autosub and Martin are based on networks[6][7]. These are research vehicles, 

and therefore the design exercise is quite different, but the concept of distributed 

control is similar. 
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1.6 Research Objectives and Contribution 

The aim of the project has been to design a suitable communication system for a 

ROV. No specification as to the form of communication was given, the choice had 

to be made with considerations for the application, the problems encountered with 

existing ROVs, and particularly the ability to run a dynamic controller over the 

communication loop. 

The initial stage consisted of reviewing all communications systems that could be 

applied: the outcome of the review led to the selection of a Fieldbus-based 

system. The second stage was to evaluate the suitability of such a system for 

dynamic control. A simulation of the network was required for that purpose, and 

the simulation developed has been validated against a real hardware system. 

Simulation results showed that in some cases the delays originated by the 

network could cause the instability of a closed-loop control system. The particular 

problem was that part of the network should be able to be removed or added, 

without necessarily having to re-tune all controllers. A suitable answer has been 

found by using adaptive control. An estimate of the process parameters is 

obtained using a Recursive Least squares estimator, the value of which is then 

used to calculate the delay of the process. The calculated delay is then used in a 

self tuning law, in order to alter the controller's parameters. 

On the practical side, a prototype communication system has been built, and then 

fitted within an existing ROV chassis for a demonstration. Most of the elements 

of this prototype were also used to verify results obtained with theory, such as the 

network simulation and the self-tuning controller. The prototype system was 

demonstrated in operation at the Ocean Basin, DERA Haslar, where the main aim 

was to show that the prototype electronics working in laboratory conditions were 

operating as expected. 

1.7 Layout of the thesis 

The thesis is organised in several chapters. The first one offers some background 

information about ROVs, and general information about the PhD project. 

The second chapter presents a review of networks and communication methods, 

it is followed by a detailed description of the chosen network in chapter 3. A 

prototype vehicle control system has been designed and built during the project. 
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and has been used as a base for experiments. Details of this prototype can be 

found in chapter 4. Chapter 5 explains why and how a simulation of the the 

network has been developed and results from the simulation are also compared 

with experimental values obtained from the prototype. Chapter 6 is concerned 

with the effects of a variable delay on a closed loop control system, and describes 

a self tuning controller able to cope with such systems. The final chapter 

concludes the thesis. 
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2. N E T W O R K S A N D C O M M U N I C A T I O N 

2.1 General communication concepts 

Computers are now used in every walk of life. In the home, the office, but also in 

the process and manufacturing industries. Although in most instances they are 

used to perform their intended role in a stand alone mode, they increasingly need 

to interchange data with other computers. The type of data exchanged can vary 

from databases. Email, pictures, to instrumentation and control commands. 

The basic requirement in all those applications is the provision of a suitable data 

communication facility. A wide range of facilities exist, and they have to be suited 

to the particular application. Inside a computer, information is usually transferred 

in a parallel mode, i.e. in a 16 bit system, 16 signal lines are dedicated, one for 

each bit [8]. 

In order to be transmitted on a data communication line, this information has to 

be converted to a serial form, where the 16 bits would be transmitted one after 

another on the same line. Some means of detecting corruption (error control), and 

of regulating the data rate (flow control) are often provided. 

Three modes of operations can be used when information is exchanged between 

two computers: 

i. Simplex : This is used when data is flowing one way only. For example a data 

logging system where the measuring device returns data at regular intervals to 

a data gathering computer. 

ii. Half duplex : This is when data is flowing in both ways alternately. For 

example a data logging system where the data gathering computer sends a 

request to the measuring device, which then returns some data. 

iii. Duplex : This is when data is flowing both ways simultaneously. 

Data is normally transmitted between computers in multiples of a fixed length unit, 

usually 8 bits (or a 'byte'). Each byte is transmitted serially, the receiving 

computer receives one of the two levels which vary accordingly to the bit pattern, 
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making up the message. In order to interpret this bit pattern correctly, the 

receiving computer must be able to find ; 

i. Clock synchronisation: the start of each bit ( in order to sample in the middle 

of the bit) 

ii. Byte synchronisation; the start and end of each byte 

iii. Frame synchronisation; the start and end of each complete message block 

(or frame) 

The above tasks can be executed in one of two ways, depending on whether the 

receiver and transmitter clocks are independent (asynchronous) or synchronised 

(synchronous). With asynchronous transmission each character is treated 

independently, and the receiver's clock is resynchronised at the start of each 

character received (Figure 2.1). 

0 X X X X X X X X 1 1 

t 
Start bit 

t 
7/8 data bits 

t 
Stop bit(s) 

Figure 2.1 Asynchronous transmission of a character 

: r L _ r ~ i _ 

I STAR! 

Start of 

frame 

character 

INFO INFO 

frame contents 

INFO EOF 

End of 

frame 

character 

Figure 2.2 Synchronous transmission of a character 
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With synchronous communication, a complete frame of characters is transmitted 

in a continuous string of bits. The receiver has to keep in synchronisation for the 

duration of the complete frame (Figure 2.2). 

2.1.1 Error Control 

In asynchronous transmission, error control can be implemented by adding a 

parity bit before each stop bit. The value of that bit is computed by adding 

together the number of '1' bits in the byte (Modulo 2); the parity bit is chosen so 

that the total number of '1' bits (including the parity bit) is either even (even parity) 

or odd (odd parity). When the receiver gets the character, the same calculation is 

completed, and if the result matches the parity bit, the character is assumed to be 

correct. This method will allow the detection of all single bit errors. 

For synchronous transmission, since block of characters are transmitted, there is 

an increased probability that a frame would be corrupted. It is possible to extend 

the parity bit method described above, by assigning a parity bit for each character 

transmitted (row parity), as well a bit for each bit position in the complete 

frame(column parity). A more robust method is to use polynomial codes, where a 

single set of check digits is computed for each frame. The receiver then performs 

a similar calculation on the frame and check digits. A fixed result is expected 

when no errors have been induced. This method is known as Frame Check 

Sequence (FCS) or Cyclic Redundancy Check (CRC). 

2.1.2 Encoding 

Encoding is the way in which the binary data ('0' or '1') is represented as electrical 

signals. Many ways of encoding data are available (Figure 2.3). For asynchronous 

communication, where no clocking information needs to be transmitted, the most 

common encoding method is Non Return to Zero (NRZ) where '1's and 'O's are 

encoded as positive or negative voltage levels on the transmission line. 
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Figure 2.3 Different types of data encoding 

For synchronous transmissions, the clocking information is often embedded in the 

bit stream. For example in bipolar encoding, a binary '1' is represented by a 

positive pulse, and a binary '0' by a negative pulse. As shown on Figure 2.3, the 

sequence '1001' is represented by a positive pulse '1', followed by two negative 

pulses '00' and then a positive pulse '1'. Since there is always a change in the 

signal at each clock period, the clocking information can be retrieved by the 

receiver. Differential Manchester encoding follows the same principle, except that 

pulses are now replaced with falling or rising signal transitions. 

In Non Return to Zero Inverted (NRZI) encoding, a transition represents a binary 

'0', and no changes represent a binary '1'. If the data being send consisted of 

only '1' no transitions would be present on the line, and the receiver would loose 

track of the timing information. In order to ensure that enough transitions are 

received in order to recover the clock information, a '0' is inserted after five 

consecutive 1's (known as 'bit stuffing'). The clock information is recovered using 

a technique known as Digital Phase Lock Loop (DPLL). 
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Manchester encoding is mainly used in Local Area Networks, in relatively short 

cable runs. NRZI is favoured for longer distances, as each bit occupies a full 

width pulse, making it less error prone. 

2.1.3 Flow control 

Flow control ensures that when two devices are communicating, the receiving 

device has sufficient storage space to hold the data that is transmitted. This can 

be implemented in software, by using dedicated messages to confirm that the 

station is ready to receive the next message. Flow control can also be 

implemented in hardware, by having dedicated signal lines indicating whether a 

device is ready to accept incoming data. The hardware method has the 

disadvantage of requiring more physical data lines between the devices, the 

software requires that some special messages are reserved for controlling the 

flow, therefore modifying the original data. This lack of transparency can 

sometimes be a problem, when trouble shooting communications failures for 

example. 

2.1.4 Data link protocol 

The data link protocol deals with error correction and flow control. It also defines 

the format of communication, i.e. the number of bits per digit and the type of 

encoding used. The protocol also specifies the type and order of messages that 

are exchanged. For example, the messages that are exchanged when first 

establishing a communication, what the procedure is when an error is detected. 

2.2 Local area networks 

2.2.1 Topologies 

In the context of networking, the first basic characteristic to consider is the way in 

which the end points, or stations are interconnected (Figure 2.4). 
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Star Ring 

Bus 

Figure 2.4 Network topology 

In a star topology, each station is connected to a centre node, and in order for 

one station to exchange data with another, all messages have to go through the 

centre node. With a bus topology, a single line is used ( for example a cable ) and 

is connected to each station. With a ring topology, each node is interconnected 

to its neighbour via a unidirectional connection, so that the group of nodes forms 

a complete ring. 

The physical signal paths, or transmission media, that have commonly been used 

for local area networks are twisted pair cable, coaxial cable and optical fibre. 

The introduction of such topologies requires some form of management to 

regulate the access to the medium and to resolve issues such as addressing (i.e. 

to ensure that a message can go from one node to the other, we need to know 

who has access to the medium, and a way of identifying each node). 

2.2.2 OSI model 

In an effort to facilitate the process of designing internationally compatible 

communication systems the International Standards Organisation (ISO) have 

defined a multi-level communications protocol model. This model is designed to 

be used as a guideline for the development of actual protocols, employing a 

strategy known as Open System Interconnect (OSI). The ISO/OSI model 

describes the flow of data across a network as a downwards progression through 

different layers, from the application layer to the physical layer, across the 

physical medium and back up the stack of the receiving station (Figure 2.5). 
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Figure 2.5 The 7 Layer OSI Model 

The physical layer deals with the mechanical and electrical interface to the 

medium, the data link layer deals with the way data is formatted, usually some 

sort of low level error recovery is also implemented. The network layer deals with 

addressing issues, the transport layer deals with flow control and error control. 

The upper three layers deal with aspects related to the application itself such as 

data representation, transfer syntax etc... 

2.2.3 CSMA/CD (Carrier Sense IViultipfe Access with Collision Detection ) 

Local area networks are widely used in the office environment as a link between 

computers. The most common networking standard is the IEEE 802.3 standard, 

more often known under its trademark name as Ethernet. It is based on a 7 layer 

Open System Interconnect (OSI) model. The MAC (Media Access Control) is 

based on is the CSMA/CD (Carrier Sense Multiple Access with Collision 

Detection). 

CSMA/CD is a method of controlling bus access. Each node is free to transmit at 

any time. When a node tries to access a busy bus, a collision is detected, and the 

transmission is corrupted (Figure 2.6). To make sure that all the nodes involved in 

the collisions are aware that the collision has occurred, a random bit pattern is 

send for a short time Tj. This is the jam sequence. The two nodes then wait for a 

short random time before trying to retransmit. This type of bus access is 

probabilistic and depends on the network loading. Under worst case conditions 

the amount of time to detect the collision is twice the propagation delay tp. 
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A starts to transmit a frame 

M U 
B starts to transmit a frame 

=tp B detects a collision has occured 

t=2tp A detects a collision has occured 

tp = (worst case) transmission propagation (path) delay 

Figure 2.6 CSMA/CD mode of operation 

We can guess that this system is very efficient for long messages. In the case of 

short and very frequent messages from a few nodes, as in our case, the number 

of collisions occurring will rise and some nodes might not be able to get access to 

the line at all. As this system is not deterministic , i.e. it is not guaranteed that a 

node will gain access to the network, it is not a good solution for our real time 

system. 

2.2.4 Token Passing 

Another widely known network standard is the IEEE 802.4, also known as token 

bus. Like CSMA/CD it is based on the 7 layer OSI model, although the topology is 

bus. The nodes are considered as a logical ring. That is, the stations assume an 

ordered sequence, and each station knows the identity of the stations preceding 

and following it. A control frame, known as Token regulates the right of access. 

The station receiving the token has access to the medium for a limited time, and 

must pass the token to the next station when it has either nothing to send on the 

medium, or it has finished using the medium or the station's time has expired 
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(Figure 2.7). The advantages of this standard is that each node is guaranteed to 

have access on the medium, which makes it ideal for a real time application. It 

also means that the implementation is much more complex, having to deal with 

the logical ring management and fault detection . 

Token ring, or IEEE 802.5, is very similar to the token bus standard, and is based 

on a ring topology. When all the stations are idle, the token circulates on the 

medium, if a station wishes to use the medium it must seize the token by 

changing one bit on the token pattern. The transmitting station will return the 

token to the ring once it has finished. There also is a priority mechanism, allowing 

certain stations to seize the token before the others. 

A B D 

H G F E 

Physical Medium 

Logical Ring 

Figure 2.7 Example of a token passing loop 

Figure 2.7 shows a token passing loop where node C is inactive and has been 

removed from the logical loop. Each node has a logical predecessor and 

successor. 

2.2.5 Other methods of medium access control 

To keep up with the progress brought by the optical fibre technology, the FDDI 

(Fibre Distributed Data Interface) has been derived from the Token Ring standard 

and can support higher data rates, 100 Mbps for FDDI, compared with 1 or 4 

Mbps for Token Ring [9], 
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2,2.6 Response to traffic load 

Figures 2.8 and 2.9 show the effect that traffic load has on the delay\ for both 

CSMA/CD and token passing protocols. Those are for a 50 node network, with a 

data rate of 10 Mbps for the token passing and 20 Mbps for the CSMA/CD; a 

packet length of 1000 bits; a medium length of 2000 meters and, where 

applicable, a token length of 10 bits. 

These are the results from a simulation program by Sadiku [10], and represent a 

statistical average, the error bar shows the 95% confidence interval. The scales 

for each graph is different to highlight the different behaviour of each method as 

traffic increases. It shows clearly that a token passing method copes with traffic 

increases in a better way than CSMA/CD. As traffic Increases, the delay not only 

increases sharply, but it becomes less and less predictable (shown by the 

confidence interval ).This is the major issue that lead to the choice of a token 

passing system for our network. 

^ The delay being the time difference between when the message is available at the sender station and when 
this message is received correctly by receiver station. 
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Figure 2.8 Delay versus traffic load with CSMA/CD 
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Figure 2.9 Delay versus load with token-passing protocol 
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2.3 MAP and Fieldbus 

Another standard has been derived from the token bus standard : MAP 

(Manufacturing Automation Protocol). It has the advantage over Ethernet and 

token bus of having been designed for real-time networking. It is used in the USA 

by major companies like General Motors, who designed it, and also by Boeing, 

Kodak etc. This technology did not take on in Europe, mainly because of its high 

cost. 

The FieldBus concept has evolved from the MAP protocol. As MAP was covering 

the full 7 layer OSI model, the time response was limited for real time 

applications, and thus was not adapted to low level instrumentation. The concept 

of FieldBus is to use a "collapsed" version of the OSI model, reducing it to a three 

layer model, containing only the application layer, the data link layer and the 

physical layer. 

Some national standards already exist, such as FIP in France and Profibus in 

Germany, each being influenced by their target application. FIP emphasised an 

accurate time response, while Profibus emphasised sharing the bus resources. 

However the requirements of the multi-national user companies led to demands 

for an international standard. The lEC Fieldbus standard (International Electro-

technical Commission) has been developed through international agreement 

using the best features of the leading industry and national standards, this 

process is very slow, and the complete standard has not been approved yet. 

National and commercial self-interests make the voting process for the standard's 

agreement very difficult, and the prospect of having an agreed international 

standard is very small [11]. 

Meanwhile, other types of protocols are being developed for very specialised 

targets. Lonworks, for example, for House Automation, HART, CAN and VAN for 

the Automotive Industry [12][13]. All these proprietary solutions have two major 

inconveniences. Firstly, the application layer was designed for very specific 

application, and therefore it is very likely that it would need modifying, secondly 

the development kit can be very expensive. 

Since the prototype communication system could potentially be used as 

commercial solution by the sponsor company, it was felt that committing to a 

particular supplier would have been a burden. A customised prototype system 
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based on Fieldbus has been designed and built as part of this project for 

experimental purposes, and is used to implement a distributed architecture on the 

ROV. 

2.4 Design features 

2.4.1 Losses and Reflection 

Digital systems require the transmission of signals to different elements on the 

system. The high frequency components of a step input are attenuated and 

delayed more than the low frequency components, mainly due to skin effect. As a 

result a pulse is distorted, as shown in appendix B. 

2.4.2 Signal Distortion due to Rise Time and Duty Cycle 

The duty cycle of the transmitted signal also causes distortion. The effect is 

related to the rise time. If the signal has a 1/2 (50%) duty cycle and the threshold 

of the receiver (Vth) is halfway between the logic levels, the distortion is small . 

When the duty cycle decreases, the signal is considerably distorted and might not 

reach the threshold level at all (Figure 2.10). 

1/2 duty P 
cycle data 

1/2 duty cycle 
line response 

1/8 duty 
cycle data 

1/8 duty cycle 
line response 

Vth 

n 
vth 

Figure 2.10 Signal distortion due to duty cycle 

If the threshold level of the receiver is not halfway between logic level one and 

zero, the receiver will contribute to the distortion effect. As shown on Figure 2.11, 

a pulse would be either lengthened or shortened. 
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Figure 2.11 Signal distortion due to tlireshold level 

2.5 Functional aspects 

2.5.1 Delays 

The propagation speed of a signal on a twisted pair cable is^ typically 2.10® m/s. 

So for a 1 km long line, the propagation delay Tp = 1000 / 2.10® = 5 juts. Values 

for cables up to 1km long were computed, and can be obtained from Figure 2.12. 

5.0E-6 

4.0E-6 

3.0E-6 
C35 <u 
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1.0E-6 

QOOO.OE+0 

Length (meters) 

Figure 2.12 Propagation delay chart 

For a frame of 10 bytes (80 bits), and with a transmission speed of 10.5 Kbd, the 

transmission delay is : 

This is the typical speed of the signal for twisted-pair or coaxial cable [1] 
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Tx = 80 / 10500 = 7.6 ms. Other values can be obtained from (Figure 2.13). 
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Figure 2.13 Transmission delay chart 

The ratio a= Tp/Tx is much smaller than 1, The transmission delay dominates the 

'round trip delay', that is the time delay between the first bit of a block being 

transmitted by the sender and the last bit of its associated acknowledgement 

being received (Figure 2.14). 
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Figure 2.14 Timing Diagram 
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2.5.2 Noise 

Noise in received signals constitutes the most prevalent factor limiting the 

performance of a communication system, since noise introduces errors in the 

receiver. One source of noise is crosstalk. It is due to capacitive coupling between 

two lines, and is significant in high speed circuits. 

Another form of noise caused by external activity is impulse noise. An example 

would be a lightning discharge. Its main characteristic is that it occurs in bursts. A 

burst of half a second might corrupt 4800 bits of data at a transmission rate of 

9600 bps. Error decoding techniques allow that type of error to be detected. 

A third type of noise, thermal noise, is present in all types of electronic device. It is 

due to the thermal agitation of the electrons, associated with each atom making 

up the device or transmission line material. It is made up of random frequency 

components, across the whole spectrum, of continuously varying amplitude (white 

noise). A minimum signal level must be used to achieve a minimum Bit Error Rate 

(BER). For example a BER of 10^ means that on average, 1 bit every 10"̂  

received will be misinterpreted. 

It is possible to calculate the BER caused by a defined amount of noise (appendix 

A). For example, with a differential value of 5V and a noise variance of 525 mV, 

we get a BER of about 10"®. However, this is for the case only of a single ended 

transmission line. For a differential transmission line, two signals of equal and 

opposite polarity are produced for every bit to be transmitted, the receiver is 

sensitive only to the difference between the two signals. Any noise picked up in 

both wires will have its effect cancelled at reception. 

A fourth type of noise is intersymbol noise, when the transmission rate increases, 

some frequency components associated with each bit are delayed and interfere 

with a later bit. 

All those sources contribute to the total error rate. The error rate can be reduced 

by increasing the signal level or by implementing error-control coding techniques 

in the higher level of the protocol. 

2.6 Selected methods 

In light of the review carried out in the above paragraphs, a particular approach 

was selected for a prototype system. The deciding factor was the selection of a 
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token passing network, rather than a collision based one. The reason was the 

behaviour of such networks as traffic increases (Figure 2.8 and Figure 2.9). 

Other implementation choices mentioned above were made with respect to the 

actual possibilities available in hardware. Error control algorithms and encoding 

rules are often embedded within communication hardware. 

The choice of the topology was of a bus type, although each node is within a 

logical ring on the network. 

The choice of the baud rate, which would closely affect the delays, was left open. 

The value of the baud rate that can be used is limited by the length and quality of 

the cable, which could vary. By using a low value by default, the worst cases are 

dealt with. 

The software implementation of the prototype network is described in the 

following chapter. 
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3. I M P L E M E N T A T I O N O F T H E N E T W O R K 

This chapter describes how the communication concepts described in the 

previous chapter were selected and implemented. The selection of a particular 

network was driven not only by functionality, as described in the previous chapter, 

but also by commercial aspects, such as the availability and costs of hardware 

and software components. Technical aspects also came into consideration as 

the final system has to fit in a relatively small enclosure, with a limited power 

supply. 

One of the initial decision made was to use a token passing network, as having a 

deterministic response was identified as a key issue for such a control system. A 

Fieldbus type network was seem as an adequate implementation. At the time, the 

fieldbus standard was only partially specified with only the lower protocol layers 

defined. There was also many uncertainties in the industry about the future of the 

standard, which was evolving very slowly compared to similar proprietory 

networks such as CAN and Profibus. 

The cost of developing proprietory fieldbus solutions such as CAN or Lonworks 

was above the projects's budget, and the sponsor company was concerned about 

committing a design to a third party supplier. 

The choice was made to implement a basic fieldbus version by using industry 

standard communication controllers and microprocessor. The initial decision was 

to use and Intel 8344 microcontroller, which includes a serial communication 

controller and allowed all the necessary hardware to fit in a small space. The 

familiarity and popularity of the Intel microcontrollers was also a great advantage, 

as a choice of software development kits was widely available. The 

microcontroller implements several communication features in hardware ; NRZI 

encoding, SDLC (Synchronous Data Link Control) framing, which includes PCS 

error correction . The topology was chosen to be bus, as it suits the layout of the 

ROV hardware better. 
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During development, the speed at which the network was to be run was initially 

set at 9600 baud, the hardware could support speeds up to 62Kbds and this 

value is easily changeable in software if needed. There was no need to increase 

this value in development. 

The higher level of the communication protocol was implemented in software, 

written in C language. The includes feature such as token management and 

recovery, and data format. Part of the protocol was taken from the SDLC 

specification, some new features were added to adapt the network to the ROV 

appication. 

This technology was implemented in a prototype vehicle, described in the next 

chapter. 

3.1 SDLC 

A typical SDLC frame consists of five fields (Figure 3.1): flag, address, control, 

information and Frame Check Sequence (FCS). The FCS is used to check for 

transmission errors between the two data link stations, this is implemented by a 

Cyclic Redundancy Check (CRC). The transmitting station performs Modulo 2 

division, based on an established polynomial, on the address, control and 

information fields and appends the remainder as the FCS field. In turn the 

receiving station performs a division with the same polynomial. If the remainder 

equals a predetermined value, the chances are very high that the transmission 

occurred without any errors. Otherwise, it indicates a probable transmission error, 

in which case the receiving station sends a negative acknowledgement. 

O p e n i n g Flag Address Field Control Field In format ion Field F r a m e C h e c k Clos ing Flag 
S e q u e n c e 

Var iab le 
0 1 1 1 1 1 1 0 8 bits 8 bits l eng th (on ly in 16 bi ts 01 ] 1 1 1 1 0 

I n f o r m a t i o n 
f r a m e s ) 

Figure 3.1 SDLC frame format 
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3.1.1 Error correction in HDLC 

In HDLC^, the generator polynomial used for error correction is [8]: 

g(x) = +1. The PCS is calculated using the following method : 

Let M a k-bit number representing the frame contents, R an n-bit number, such 

that k>n, representing the PCS, and G an (n+1)-bit number representing the 

generator polynomial. 

i f R = ( M o d u l o 2 ) t h e n = 0 

G G 

, . , , . M x 2 ° + M x 2 ° n / A f ^ 1 
c a n b e c h e c k e d s i n c e : = 0 ( M o d u l o 2 ) 

The PCS (R) is calculated using a Modulo 2 multiplication and division. The PCS is 

decoded by checking that the second expression is zero. 

3.1.2 Limitations of HDLC due to framing and bit insertion 

There is still a possibility that an error remains undetected, for example if a single 

bit error generates a spurious flag. As in Figure 3.2, if the sequence '01110110' is 

to be transmitted, a single bit error could generate a spurious flag, '01111110'. 

The leading and trailing '0' have to be transmitted error free, while the '0' in 

position 2 to 7 has to be affected by bit errors in order to generate a flag. 

position 1 2 3 4 5 6 7 8 

octet 0 1 1 1 0 1 1 0 

bit error 

FLAG 0 1 1 1 1 1 1 0 

Figure 3.2 Occurrence of a spurious flag 

The probability of this type of error happening is described in Appendix I. Figure 

3.3 shows how the probability of such an error happening R(FLAG) increases, as 

the probability p of a bit error varies, for various message lengths. The chance of 

this error happening can also be reduced by implementing other error detection 

protocol at higher protocol level. 

® HDLC: High Level Data Link Control, of which SDLC is a subset 
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Figure 3.3 Residual error due to spurious flags 

3.2 P r o f o c o / d e s / g n 

3.2.1 Control field 

A fixed number of control fields are used, some were taken from the HDLC 

specification (Table 3.1). As well as the standard control fields, custom control 

fields were defined for this particular project (Table 3.2). Those are used for 

implementing the token passing protocol, as shown in section 3.2.4. 
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Control Field Bit Encoding 

Format 1 2 3 4 5 6 7 8 Commands Responses 

Unnumbered 1 1 0 0 0 0 0 Ul Ul 

1 1 0 0 • 0 0 1 SNRM 

1 1 0 0 0 0 1 0 DISC RD 

1 1 0 0 [] 1 0 0 UP 

1 1 0 0 1 1 0 UA 

1 1 1 0 • 0 0 1 FRMR 

1 1 1 1 • 0 0 0 DM 

1 1 1 1 0 1 0 1 XID XID 

1 1 0 0 • 1 1 1 TEST TEST 

Legend 

1 Information XID Exchange identification 

Ul Unnumbered Information DM Disconnect Mode 

SNRM Set Normal Response Mode • The P/F bit 

DISC Disconnect FRMR Frame Reject 

RD Request Disconnect TEST Test 

UP Unnumbered Poll UA Unnumbered Acknowledge 

Table 3.1 Standard HDLC control field used 

Custom Control Field Bit Encoding 

Format 1 2 3 4 5 6 7 8 Commands Responses 

Unnumbered 1 1 1 1 0 1 1 0 SS UA 

1 1 1 1 0 1 0 0 SP UA 

1 1 1 1 0 0 1 0 WFM 

1 1 1 1 i] 0 0 0 STTRT 

1 1 0 1 0 0 0 0 CTF 

1 1 0 1 0 0 0 1 TOK-A 

1 1 0 1 0 0 1 0 TOKEN 

Legend 

SS Set Successor UA Unnumbered Acknowledge 

SP Set Predecessor CTF Claim Token Frame 

WFM Who Follows Me STTRT Set Target Token Rotation Time 

TOK-A Token TOKEN Token 

Acknowledge 

Table 3.2 Custom Control Field Bit Encoding 
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An example of how those messages are used Is given in Figure 3.4. The primary 

station starts by establishing communication with the secondary station by 

sending a SNRM (Set Normal Response Mode) message. When the secondary 

station has acknowleged with a UA (Unnumbered Acknowledge), the actual data 

transfer can start. The stations can send Information frames (UI unnumbered 

Information) or test messages (TEST). 

In order to disconnect its connection to the secondary station, the primary station 

sends a DISC (Disconnect) message. Following this test messages send to the 

secondary station are answered by a DM (Disconnect Mode) message, rather 

than TEST. 

Primary Secondary 

SNRM 

Establish ' 

Link IJA 

Data U i 
Transfer 

u i ~~~*-

Test 
___TEST^^^ 

TEST" 

Disconnect 
___D1SC^^ ___D1SC^^ 

I J A 

____TEST^^ 
Test 

____TEST^^ 

1 "DM 

Figure 3.4 Example of SDLC transfer 

3.2.2 Error management on protocol level 

When data is corrupted during transmission, there are two ways the protocol can 

deal with the problem, either a retransmission is requested as In Figure 3.5, or the 

data is ignored as in Figure 3.6. 

The overhead incurred in the retransmission case by the possible reception 

time-out and retransmission request can be a problem when dealing with fast 
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changing data. By the time the same message is retransmitted, the value could 

be obsolete. 

The non-retransmission case is better suited to fast changing data, for example 

the heading value of a ROV. In the implemented protocol, each node will transmit 

recent high priority data when it owns the token, thus we know that data is 

retransmitted within a certain time. 

Sender Receiver 

Transmit Data 

Retransmit Data 

Corruption 

Error detected or 

time out 

Send NACK 
(Negative 

Acknowledgment) 

Successful reception 

Figure 3,5 Corrupted transfer with recovery 
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Sender Receiver 

Transmit Data 
Corruption 

Node receives the 
token 

Transmit next data 

packet 

Error detected 

Data Ignored 

Successful reception 

Figure 3.6 Corrupted data transfer without retransmission 

In our protocol, the data transmissions use a non-retransmission transfer, 

however for messages used in the token passing protocol, a transfer system is 

implemented. Should the transmission of the token be corrupted, this would be 

detected, and recovery procedure can be triggered. 

3.2.3 Addresses 

Ranges of addresses were reserved for certain type of nodes. This facilitates 

future changes. These addresses are defined as: 

• 0x81 to 0x90 Thruster card compatible nodes, (e.g. Node 1) 

• 0x91 to OxAO Navigation card compatible nodes (e.g. Node 2) 

• OxAl to OxBO Camera control node (e.g. Node 3) 

• 0x10 for Surface Unit (e.g. PC) 

3.2.4 Token passing 

This high level function is implemented in software. The flowcharts in Figure 3.7 

and Figure 3.8 show how it is implemented. Each node knows the address of its 

successor and predecessor in the logical ring. The token is passed around the 

ring and nodes only have control over the media while they own the token. 

3-8 



This version implements a two-level priority mechanism. Each node needs to 

keep two timers; the Inactivity Timer, which can detect, for example if a token is 

lost; and the Token Rotation Time TRT timer, which monitors the time since the 

node last had the token. Low priority frames are only transmitted if the TRT timer 

does not exceed the Target Token Rotation Time (TTRT), which is fixed. 

Each node will support the protocol described above. In addition, the master 

(Surface Unit) is also able to build a database of the node present on the ring. 

This is used as a monitoring device, and provides useful features for maintenance 

and fault detection, such as logging events on files. The master also calculates a 

TTRT and distributes it to all the nodes . 
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Inactivity timer 
expires 

Receives 
message 

Set inactivity timer 
Generate new token 
(call Initialisation) 

Received 
other frame 

Received token 

rocess in command 
decode Send High Pnonty frames 

TRT < TTRT? 

Reset TRT Reset TRT 

Send low priority frames 

Send token to successor 

Acknowledge? 

No 
4 retries? 

\ 

([Revest new succesor 

Figure 3.7 Token passing flowchart 
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Give up - Somebody 
else has the token 

Send Claim Token 
Frame, with data length 
from 2 address bits 

Wait one slot time 

Listen 

Silent Heard message 

Process whole 
address 

Done 

Owns 
Token 

Figure 3.8 Token initialisation procedure 

3.3 Preliminary tests and design steps 

A step-by-step approach to the building of the prototype vehicle and network has 

been taken. The hardware was built at the same time as the software evolved. 

The first step was to have the local function of the first node operational. This 

provided a test bed to ensure that the programming tools, such as compiler, 

EPROM programmer and emulator, were operational; and to assess the validity 

of the hardware. 

Then a basic communication was established with the PC used for development. 

At that stage a demonstration was arranged showing the PC controlling a Seaeye 

thruster remotely via the thruster node. 
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The network protocol was then Implemented and tested with the prototype 

hardware. A library was written, allowing all the network communication functions 

to be standardised for all nodes. [17][19] 

The software design for each of the additional node followed the same process: 

first implementing the local routines in a stand-alone mode. This allowed to check 

that the hardware was operating as expected, and to establish and test the local 

software procedures. The network library was then included and the node was 

tested in networked mode. [20] 

3.4 Comparison with commercial networks 

The major factor for choosing to implement our own network, as opposed to using 

an 'off-the-shelf package, was the economic aspect. 

Off-the-shelf solutions would offer have offered better performance: since they 

are designed commercially, larger manufacturing quantities mean that it is worth 

designing dedicated transceiver and hardware. 

The whole Fieldbus standard is not yet published at the time of the research, so 

the design was based on the currently published parts, with some additional 

design features described below. Currently, we can list several points where our 

design differs from the Fieldbus lEC standard. 

• Encoding"^; our design uses NRZI^ whereas Fieldbus uses Manchester 

encoding. This choice was mainly driven by the availability of the encoding 

hardware. 

• Priority level ; the draft standard makes provision for 3 levels, we only 

implement 2. This made the design simpler, and there was no requirement for 

more priority levels. 

As far as the prototype vehicle is concerned, the main feature that could have 

been useful was to have a high performance transceiver device, however the 

standard RS485 device used proved sufficient for the speed response needed by 

such vehicles. 

The advantages of having designed a customised network are: 

" Encoding is the way a logical value is transmitted electrically over the transnnission line 

® NRZI: Non Return to Zero Encoding : an encoding method where the signal level does not change for a 
binary '1', and where a voltage transition represents a logical '0'. 



• All the details are known, which made the network very easy to model 

• All the features are there because they were needed, rather than because the 

network manufacturer provides them by default, this saves on memory 

requirements. 

« The network is very basic, this limits the number of possible failures. 

The disadvantages were that all the levels of design and implementation had to 

carried out for the research, this added a considerate amount of work, and was a 

riskier approach. 

However the choice of the network has little importance when the study of time 

delays within control loops is concerned. Indeed all types of networks will show a 

variation in the transportation delay when the network configuration is modified. 
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4. E X P E R I M E N T A L S E T U P 

4.1 Overall concept 

Much emphasis was given to the practical aspects of this communication and control 

system. In collaboration with a teaching company associate working with Seaeye Marine, 

a prototype ROV was built and subsequently tested in the manoeuvring tank at DERA. 

The hardware used for the prototype ROV was also used for bench experiments, in 

conjunction with some dedicated test software. 

The chassis used to house the prototype communication system was a Seaeye 

Surveyor, for ease of reading this is referred to as 'the prototype vehicle'. 

The prototype electronics replaced the Seaeye communication system and interfaced to 

the existing instruments. The original chassis and electronics pressure pods were used 

[33]. A picture of the prototype vehicle is shown in Figure 4.2. 

The Surveyor is a survey/inspection vehicle. The original Seaeye specifications are 

described in Table 4.1: 

Vehicle Total Length: 1450 mm 
Width: 820 mm. 
Height: 815 mm. 
Weight: 175 Kgs. 
Forward thrust: 80 Kgs. 
Payload: 45 Kgs. 
Lateral thrust: 35 Kgs. 
Depth rating: 300 Metres. 
Vertical thrust: 35 Kgs 

Camera Colour CCD television camera with wide angle lens, 
fixed focus and auto-iris. 

Camera tilt ± 90° of tilt, providing optimum coverage. 
Lighting 2 x 150 Watts Quartz Halogen lamps, variable intensity 

and mounted on camera tilt. 
Navigation Flux-gate compass with solid state rate sensor for 

additional azimuth stability. Depth sensor 

Auto-pilot Automatic pilot is provided for heading and depth. 
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Umbilical Lifting umbilical cable complete with electrical and 
mechanical terminations. Used to launch and recover 
the vehicle Specifications:-

Sheathing : Polyurethane. 
OD : 24.5 mm 
Weight in air : 618 Kg/km 
Weight in seawater; 134 Kg/km 
Minimum bend radius: 240 mm (Dynamic.) 
Break strength : 3000 Kgf. 

Surface Unit Free standing (19" rack) console housing surface 
control electronics and keypad. 
Height: 370 mm. Width: 495 mm. 
Depth; 495 mm. 
Weight: 25 Kgs. 

Surface Power Supply 
UnK(PSU) 

mounted in a steel cabinet, 2 Power Supply Units, 
supplied with 440v three phase AC power. 
Height: 1450 mm. Width: 600 mm. Depth: 500 mm. 
Weight: 207 Kgs. 

Controller Small self-contained hand control unit containing all 
vehicle controls. Supplied with a flying lead. 
Height; 112 mm Nominal. (190 mm max.) 
Width; 145 mm. Depth; 150 mm. Weight: 2 Kgs. 
Power: 380 Vac /415 Vac/480 Vac 3-Phase 
50/60 Hz. 15 kva. 

Table 4.1 Seaeye Surveyor Specifications 

These specifications were kept on the prototype vehicle: the original thrusters, Camera 

tilt unit, Lighting, Navigation, Umbilical and power supplies were interfaced to the 

prototype electronics. 

The following structure was used for interfacing to the various instruments:(Figure 4.1) 

COMMUNFCAODNS I Relays 
M fo 

IHanuCoikfol Ui Pan & Tilt 

Nodes 

Node 1A 

Node 2 
Node IB I 4 Thrusters 

! PC buiiqce Lf.it 

Compass 
Depth Meter 

Gyro 

Figure 4.1 Prototype ROV Communication system 
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1* 

Figure 4.2 Side and front views of the vehicle based upon the 

prototype Fieldbus system 

4.2 Detailed information 

4.2.1 PC Surface Unit 

The PC is a standard PC fitted with an RS485/Zilog 8530 serial communication card [16]. 

During the development of the prototype vehicle, the PC was used as the 

communications master node. Several versions of software were created as the 

development of the subsea nodes evolved into a full vehicle (Figure 4.3). After ensuring 

that the communication hardware is present on the PC and initialised correctly, the 

software enters a loop that can be exited by the user pressing 'Q' on the keyboard. 

Within the loop, the master starts by not owning the token, and attempts to find it by 

listening to incoming messages. Within a certain time limit, the master can assume that 
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the token has been lost and starts a recovery routine. Once the station owns the token, it 

can now send data to any node. When the master has finished sending data, it can pass 

the token to its successor on the logical ring. The data that the master sends is taken 

from the user input, for example pressing the up-arrow would cause the master to send a 

message to the thruster nodes, requesting an upward thrust. 

The HCU (Hand Control Unit) was built at the end of the project, to allow the PC surface 

unit to be replaced by a cheaper alternative. It also has the advantages of being smaller 

and portable. 

4-4 



Arcom Card Present! 
• EXIT 

Initialise Communications 
Card 

Set logical ring 

Is 'Q' is pressed 

While master station 
does not own the token 

Listen to. Communications 
Listen () 

Process messages if any 

I 
Check Timers T/mecf ouf 

Recovery roubnes 

If master station receive 
the token 

Reinitialise timers 

Send messages from 
queues 

y 
Pass token to 
successor 

Recovery 

Check keyboard input presse 

Update message 
queues 

/Vo acAnoKYedgmenf 

Figure 4.3 PC 'Development software' flowchart 
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A software library has been created [17], allowing the communication routines to be 

imported easily. This has proved very useful as the various test software routines were 

developed for experimental purposes (e.g. noise tests, control system). 

Once the HCU was completed, the PC was not needed any longer to run the ROV. 

However the graphical interface could still be used by overlaying the PC output with the 

live video image coming from the vehicle's camera. A basic monitoring software was 

created, allowing the PC to have a listening only role [18]. The main feature was to 

display on a monitor information such as depth and heading (Figure 4.4). After ensuring 

that the communication hardware is present on the PC and initialised correctly, the 

software enters a loop that can be exited by the user pressing a key on the keyboard. 

Within the loop, the PC listens to all messages on the communication line, and reacts to 

internal events such as time change and when a new value is detected the display is 

updated. A major advantage is that, as the PC is not part of the network as such (it was 

not assigned an address), the software can be started and stopped independently of the 

vehicle. A screenshot of the monitor software is shown below, this display was overlaid 

on top of the live video picture coming from the ROV's camera. The output from the 

video picture is not shown on the figure. 

ROV Telecontrol Monitor 1.0 21:19 3 0 / 1 1 / 1 9 9 P 

Ulead i n g IDepdJb 

(]()(} (](](].0 
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Arcom Card Present? 

YES 

• •cTWhi le (No key Pressed) 

YES 
Heading changed? 

Depth changed? 

YES 

Time changed? 

YES 

NO 

EXIT 

EXIT 

EXIT 

Display new value 
Update_Heading() 

Display new value 
Update_Time() 

Close variables for PC 
Graphics 

Display new value 
Update_Depth() 

Listen to. Communications Line 
ListenO 

Initialise Communications 
Card 

Initialise variables for 
PC Graphics 

Figure 4.4 PC Monitoring software flowchart 
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4.2.2 Thruster Card (Node 1A and Node 1B) 

The thruster node's functionality is to provide interfacing to the Seaeye SM4 thrusters. 

This includes power amplification. Each node can drive four thrusters. 

The Seaeye Marine SM4 thruster motor is a brushless DC unit containing integral 

electronics. It requires a 250 V. DC, 5A power supply, and can provide 20 kg of dynamic 

thrust. It is designed to operate at depths down to 1000 m. 

The thruster is controlled by three lines : two direction lines and a 50 Hz Pulse Width 

Modulated (PWM) speed signal. The direction signals have an amplitude of 24 V (peak-

to-peak), the PWM speed signal has an amplitude of 12V (peak-to-peak) (Figure 4.5). 

STOPPED 

HALF-SPEED 

FULL SPEED 

20 ms 1.8 ms 
o 

Figure 4.5 Pulse Width Modulation Speed Signal 

The thrusters have to receive an 'Init. pulse' when started, this is implemented in 

software. The structure of the software is described in flowcharts in Figure 4.6. After an 

initialisation sequence, necessary for the microprocessor card hardware, a loop is 

entered, where the timer values are checked. If the node has not received any command 

for a long time (set to 10 sec), something has gone wrong, and the thrusters are stopped. 

The thruster command value is also monitored to convert the high level command 

received in the message (e.g. upwards, full speed) to local commands (e.g. thruster 

number 1, full speed forward). The communication routine is called by interrupt, the 

timer interrupt is used to create the PWM signal, based on the low level commands, and 

also to keep track of timers. 
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MAIN FUNCTION 

Timed out 

Shut down loca 

functions 

Hardware and variable 

initialisation 

Check Inactivity timer 

Update thruster 

command low level 

output variable 

COMMUNICA TION PORT INTERRUPT 

Receives message 

Process protocol messages 

Update command high level 

variables 

TIMER INTERRUPT 

Are Thrusters Initialised? 

No 

Yes 

No 

Send low-level commands to 

hardware 

Initialise Thrusters 

J 

Update timers 

Figure 4.6 Thruster node software flowchart 
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The vehicle was used for the DERA tank tests. Two thruster cards were required, each 

controlling four thrusters. The choice of thruster assignment was such that in the event of 

one thruster node being non-functional, the vehicle could still move in all its axes of 

freedom. 

The software used to implement those functions comprises of a set of standard slave 

communication routines [19], and of local applications routines [20]; those were created 

as a common module to be shared between all slave nodes. 

4.2.3 Navigation Card (Node 2) 

The navigation node is used to interface to various navigation sensors. The card is fitted 

with two serial ports and an analogue port, allowing it to interface to most instruments. In 

the case of the prototype ROV, those were: a Cetrek Compass, a Gyro and a Depth 

meter. 

The Cetrek compass is a flux gate compass, with a serial data output mode. The output 

follows the NMEA (National Marine Electronics Association) standard. The format is 

defined as 4800 bauds, 8 data bits, no parity, one or more stop bits. 

The gyro is Gyrostar ENV-05A, manufactured by Murata. It is connected to the card's 

analogue input, linking it to the Analogue-to-Digital Converter (ADC). 

The Depth-meter is based on a pressure transducer, the output of which is a frequency 

modulated square wave, ranging from 1 kHz to 6 kHz, corresponding respectively to 

depths of 0 to 500 m. This is converted to a voltage, via a frequency to voltage converter, 

and then digitised via an serial ADC, allowing the value to be read on the card's UART®. 

The software constantly reads the values of the navigation devices; because the 

conversion time of the ADC is very fast compared to the network (25 psec for a 

conversion cycle), when the navigation nodes ends the values on the network, the most 

recently read values are sent. 

The software used to implement those functions comprises of a set of standard slave 

communication routines [19], and of local applications routines [20]. A flowchart 

describes how those functions are used (Figure 4.7). After an initialisation sequence, 

necessary for the microprocessor card hardware, a loop is entered. The first action is to 

read the available data from the connected sensors, and to convert those value into 

® UART: Universal Asynchronous Receiver Transmitter; the electronic device used to convert between serial data and 
parallel data used by a microprocessor. 
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standard units. The timer values are checked (e.g. if the node has not received any 

command for a long time (10 sec), something has gone wrong). The communication 

routine is called by interrupt, and processes incoming and outgoing messages. The timer 

interrupt is used to update the timer values. 

MAIN FUNCTION 

Timed out 

Check Inactivity timer Shut down local 

functions 

Compute final values from 
raw values (heading, depth, 

gym) 

Hardware and variable 

Initialisation 

Read raw values from 
i hardware (ADC and two 

serial lines) 

COMMUNICATION PORT INTERRUPT 

TIMER INTERRUPT 

Update timers 

Process protocol messages 

Receives message 

When token is owned, transmit 

data 

Figure 4.7 Navigation node software flowchart 
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4.2.4 Video Card (Node 3) 

This card has various input and output facilities: 

• three relays, one for Sonar switching, one for switching the video signal going to the 

umbilical between two cameras, and one for operating a 'stills' camera. 

® tilt platform closed loop control for the camera; provision has also been made for a 

pan facility. This also includes a trip-detection system, which allows for the pan and 

tilt facilities to be stopped in case a mechanical fault occurs and the motor is drawing 

more current than expected. 

• light level control signal 

The software used to implement those functions comprises a set of standard slave 

communication routines [19], and local applications routines [20]. 

A flowchart describes how those functions are used (Figure 4.8). The structure is very 

similar to the navigation node. Digital to Analogue Converters (DAC) and Analogue to 

Digital Converters (ADC) are used to interface with the local instruments. A simple PID 

(Proportional, Integral and Derivative) controller is implemented to control the Pan and 

Tilt position. 
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MAIN FUNCTION 

Hardware and variable 

Initialisation 

Update Relay state 

1 
Send Pan, Tilt and Light 

values to hardware (write to 
DAC) 

Read Pan and Tilt feedback 
(read from ADC) 

Implement local PID for Pan 
and Tilt position control 

Check Pan and Tilt fault 
detection trip value (read 

from ADC) 

R 
Check Inactivity timer 

OK 

COMMUNICA TION PORT INTERRUPT 

Timed out 

Shut down local 

functions 

Receives message 

Process protocol messages 

When data is received, update variables 

Figure 4.8 Video node software flowchart 

4.2.5 Hand Control Unit (HCU) 

The HCU is a hand-held control box used by the pilot to control the ROV. A list of 

commands available to the pilot is given in Table 4.2, with a reference to how the 

function is implemented in the hardware. 

The HCU was used as a communications master node in the final ROV prototype. The 

software used is described in Figure 4.10 and Figure 4.11 [21] and, because the micro-
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processor used was different to the other nodes, the low-level communications routines 

had to be rewritten to accommodate the hardware changes. 

Function Hardware used 

Display 2 line LCD screen 

Audible alarm Buzzer 

XY + Twist ROV movement 

moving ROV within horizontal plan 

Joystick (Analogue Inputs) 

Z ROV Movement 

moving ROV up or down 

Potentiometer (Analogue Input) 

Auto-Depth ON/OFF switch Digital Inputs 

Auto Heading On/OFF switch 

Digital Inputs 

Thruster Enable ON/OFF switch 

Digital Inputs 

Sonar ON/OFF switch 

Digital Inputs 

Camera 1/2 switch 

Digital Inputs 

Stills camera ON/OFF switch 

Digital Inputs 

Full up switch 

moving ROV up as fast as possible 

Digital Inputs 

Full down switch 

moving ROV down as fast as 

possible 

Digital Inputs 

Lights potentiometer Analogue Inputs 

Tilt position potentiometer Analogue Inputs 

PID tuning potentiometers Analogue Inputs 

Backup memory for joystick 

calibration 

e2PR0M 

Table 4.2 HCU functions 

The HCU's node architecture is described in Figure 4.9. The software used is 

described in Figure 4.10. After having initialised the hardware components as 

required, an attempt is made to retrieve previous calibration results from e2PR0M. If 

this is unsuccessful, the calibration routine has to be called, allowing the user to 

calibrate the potentiometers and joysticks. The communication circuitry is then started. 
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and user inputs are read for the first time. The software then enters a loop, where 

input from the user is read, and accordingly either a menu option is offered, or a 

normal run mode ('Go') is entered (Figure 4.11). In run mode, the values read are 

transmitted as command messages to the relevant nodes. Incoming messages are 

also processed, and heading and depth values are displayed. 

Serial 
Communication 1 

Controller Zilog 8 5 3 C ) ^ ^ Liquid Crystal 
Display 

Analogue 
Inputs Microprccessc!' 

8u51 

Digital 
Inputs 

e2PROM 

Figure 4.9 HCU architecture 
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Hardware Initialisation 

Has e?PROM got data? 

Load Calibration Analogue Inputs Calibration 

Initialise Communication IC 
and start Digital Phase Lock 

Loop 

Initialise Communication IC 
and start Digital Phase Lock 

Loop 

Read switches state for the first 

time 

1 
Read analogue input values 

(filtered) 

Update switches state 

Look for key press 

No key pressed 

Key pressed 

Process menu options 

Is 'Go' menu selected? 

No 
Yes 

Display Heading and Depth 

Send command messages to 

nodes 

Process token ring messages 

Figure 4.10 HCU Main software structure 
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Establish 

communication to the 

nodes Displays values used 

in PID controllers 

Pre loads Compass 

Init Request 

Calibration routine 

Go 

Network Setup 

HCU setup 

Compass Initialise 

PID Tuning 

Software Title Display 

Displays state of each 

node 

Figure 4.11 HCU menu structure 

4.3 Noise sensitivity 

The effect of noise on the Bit Error Rate (BER) in our system has been evaluated 

experimentally, by introducing noise artificially on the line. 

The system was set up as : a PC sending repeatedly a set message to Node 1, node 1 

was listening for the set message. Counters were set at both the sending and receiving 

end (Figure 4.12). No Frame Check Sequence (PCS) was used, so that we could count: 

the number of valid frames received, the number of valid frames with corrupted data 

received and the number of corrupted frames that were lost. Valid frames with corrupted 

data would be detected when using a FCS, corrupted frames would be ignored. 

Noise was produced by a white noise generator [22] and introduced on the line via a 

torroidal transformer. Different measurements were made for different baud rates and 

noise levels. 
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PC repeatedly 

transmitting the 
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\ 
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\ 
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keeping count of 

how many matched 

a set message. 

Figure 4.12 Noise tests setup 

The results (Figure 4.13, Figure 4.14, Figure 4.15) show that small levels of noise have 

little effect on the frame error rate. At a higher level, noise causes the number of faulty 

frames to increase sharply. The number of valid frames with corrupted data increases 

more slowly, and decreases when the level of noise prevents any valid frame to go 

through at all. 

The responses have the same shapes for the different baud rates, the main difference 

being that the rise starts at lower noise level for higher baud rates. 

Those results have been used later to evaluate the stability of the network under high 

noise level. 
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Noise response 4.8Kbds 
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%0f 50 
frame* 

0̂  1 1̂  
Noise Ouput Level (V RMS) 

Figure 4.13 Noise tests results at 4.8 Kbds 

- Good 
- -m — Data Fault 
—&— Frame / Address Fault 

10.5 Kbds Noise response 

- Good 
- -m-' Data Fault 
—A— Frame / Address Fault 

1 1.5 

Noise Output Level (V RMS) 

Figure 4.14 Noise tests results at 10.5 Kbds 
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31.25 K b d s Noise R e s p o n s e 

- — Good 
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Noise Output Level (V RMS) 

Figure 4.15 Noise tests results at 31.25 Kbds 
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5. S I M U L A T I O N OF A N E T W O R K 

The performance of a network can be measured by one major criteria: the delay 

between when the message is available at the sender station and when this 

message is received correctly by receiver station. This delay will vary depending 

on many factors: transmission speed, number of stations, length of messages, 

error rate. A network simulation is a good way to predict this delay, which can 

then be analysed for different configurations. It is a good alternative to building 

and testing the network at the outset. Not only this would be expensive, but 

should the results be unsatisfactory, the cost and complexity of changing the 

network would be a drawback. Simulation allows for much more flexibility, and 

makes trying different configurations much more practical than having to 

implement them for real. 

5.1 LAN simulation 

Simulation of Local Area Networks currently exist; they are mainly used during the 

planning phase of a network design, allowing the designer to evaluate its 

performance before committing to hardware. Different type of simulations exist: 

1. Analytic models : Analytic simulations are based on a mathematical 

representation of the system. Assumptions about the system have to made in 

order to find such a mathematical representation and this makes the simulation 

difficult to develop. In addition, since the simulation is unlike the real-life 

situation only gross answers can be obtained. 

2. Modelled simulations : In this case the network is modelled up to the level of 

detail required. Since less assumptions have to be made than in 1, the result is 

more accurate [23]. However, programming can be complex and costly, and 

the resulting simulation is slower to run. 

3. Hybrid : An hybrid simulation is a combination of the two methods above; it 

gives a compromise between accuracy, complexity and run time. 
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5.2 S f a ^ f / c a / a s p e c t s 

This section deals with the probability aspects of a computer simulation. Firstly, 

the simulation must be able to generate truly random numbers in order to model 

arrival rate for messages that are triggered randomly. Secondly, the batch of 

results gathered is limited in number, and must be interpreted in statistical terms. 

There are many ways in which to generate a random number X, from its 

probability distribution F(x). Two techniques commonly used are described in 

Appendix D; the inverse method and the rejection method. The inverse method 

was used in the simulation software. 

The simulation gives out estimated values which is only an average of a number 

of tests. These sample statistics will vary from one experiment to another. Hence 

the values obtained will fluctuate about a mean value. 

+00 

Supposing that X is a random variable, its mean ^ is defined as : / / = , 

with /(jc)defining the probability density function of X 

If we draw random and independent samples Xf,X2,X3,. ..,x/v from /(;c) our 

1 ^ 
estimate of x would take the form of the mean of N samples : p, = — ^ 

is the true mean value of X and p is the unbiased estimator of jil is close to 

but fx The spread of the difference between the two values is given by the 

standard deviation : 

The confidence we place in the estimate of the mean is given by the variance of p, 

• ^ 
This shows that the spread of the results falls as the number of samples increase. 

1 ^ 2 
The spread in (l is defined as the sample variance : 5"̂  = — — 

Using the central limit theorem, which states that the sum of a large number of 

random variables tends to be normally distributed, this gives [23]: 

2cr^(jic) 
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Since the number of samples N is finite, we can estimate some confidence interval 

around p, so that we can predict that ju falls within the interval between 

|i-E and jLi+E. 

/ ^ \ 

or f y"- 1-a 

Z /̂2 is the upper a/2 percent of the standard deviation. The confidence interval is 

jl ± G, the confidence level is g// 

Generally s is chosen as , this implies that the probability of the sample mean 

fi lying within the interval / i ± a { x ) / 4 N is 68.26%. Other values are shown below, 

with M the number of standard deviation: 

P ju - M L-: < ju, < |U + M L_: 

0.6826 M = 1 

0.954 M = 2 

0.997 M = 3 

Usually a is not known, we can obtain it from a t-distribution table, knowing values 

for S and N. This gives: 

where f̂ /gis the upper 100 x (w2) percentage point of the t-distribution. 

P 1 — OC 

In practice, this means that when analysing a set of simulation results, we must 

first decide the level of confidence we require, for example 95%. 

Then we need to calculate the mean, in order to get the sample variance S. 

This allows us to find the confidence interval by applying : s •• 
V F 
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This theory is used in the simulation program to represent the set of results 

obtained. 

5.3 Choice of programming language object-oriented approach 

5.3.1 Existing languages for network simulation 

Some dedicated languages are used for network simulation, such as 

SIMSCRIPT [24] which has been used for the simulation of circuit switched 

networks and for token passing bus. 

General purpose simulation languages are also used, especially process-oriented 

languages such as SIMULA [25] and SIMAN (SIMulation ANalysis) [26]. 

The main feature of those programs is to be able to obtain the average message 

delay. Additional features such as : calculating bus throughput, utilisation, being 

able to simulate faulty or normal operation, dealing with priorities, generating 

random messages at each queue, and selecting randomly the frame length can 

also be implemented. Some programs also offer a graphic interface to present 

results to the user. 

5.3.2 Example of a C-code program 

A basic simulation program for a token-passing ring and bus developed by Sadiku 

and llyas [23] has been studied, and the source code was supplied by the authors 

in [23]. In order to keep the program simple, a large number of assumptions have 

been made by the authors : 

• The arrival rate at all stations follows a Poisson process 

• All stations generate the same amount of traffic (same rate and packet 

lengths) 

• The transmission medium is error free 

® Physical spacing between stations is the same 

• Source and destination is on average 1/2 ring size apart 

• Propagation delay of Sps/km (from a signal propagation speed in copper of 

2.10° m/s) 

This led to a program with the following structure (Figure 5.1), which was derived 

from the source code made available by the authors. 

Figure 5.1 shows that the software has an event-based structure. The event can 

be one of three types: 
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• Arrival of packet: this is when the message is 'created' on the node, the rate of 

creation follows a Poisson process. The time of creation is referred to as start-

time of the packet. 

• Token arrival: this is when a node receives a token, allowing it to transmit 

messages. 

• Departure of packet: this is when the node transmits a packet once it received 

the token. The delay is calculated at this point relative to the start-time. Once 

the packet has departed, the token can be passed to the following station. 

The results are computed following the rules from section 5.2, and information 

such as average delay within 95% interval confidence can be displayed in textual 

form. 

The software was developed to simulate Local Area Networks, and although the 

structure is of interest, major modifications have to be made in order to simulate 

the network used on our prototype vehicle. 

In order to reduce the number of assumptions made, the structure of the program 

has been altered and some application-oriented information as been added: the 

above program is designed for a loop of computers generating a random amount 

of data. In our case, the application's structure, i.e. the vehicle, is very different, 

and we need to take this into account during the simulation. Those alterations can 

prove difficult to implement within the existing software structure. An alternative 

approach was to use an object-oriented language. 

5-5 



START 

J 
Read Input parameters 

Departure of packet 

Update queue 
size and related 

variables 

Compute delay 
and push queue 

forward 

Reconfigure 
logical ring 

I 
Schedule token 

arrival at the next 
station 

Initialise Variables 

Scan the event 
list and pick the 

next event 

Arrival of packet 

Token 
arrival 

1 r 

Schedule packet 
departure 

1 r 

r 

Update queue 
size and start 
time of packet 

Should 
simulation be 

stopped? 

Compute 
results 

s network 
empty? 

Schedule 
token arrival 

Schedule 
next arrival 

Figure 5.1 Flowchart of Sadiku and llyas' simulation software 
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5.3.3 Object-oriented approach 

An object-oriented language allows for great reusability and modularity. 

Some of its advantages over a standard programming technique are : 

• information hiding, where the name of variables, constants, functions and 

types can be made local to a module. 

® data abstraction, allowing basic facilities for defining a set of operations for an 

object type, and restricting the access to objects of the type to that set of 

operations. 

• inheritance, allowing to create subclasses (or 'derived' classes) from a 

superclass (or 'base' class) 

® polymorphism, allowing one routine, for example, to be applied to objects of 

many different types. 

• dynamic binding, virtual functions can be used to define a set of operations for 

the most general version of a base^ class. When necessary the interpretation 

of these operations can be refined for particular derived classes. 

All those advantages mean that a basic library can be reused very easily. 

Because an object-oriented language is based on data rather than functionality, it 

is particularly well suited for creating simulations. C++ being a common object-

oriented language has therefore been selected as the base for the simulation 

work. 

5.4 Simulation ofFieldbus network 

The aim of this simulation is to model a Fieldbus-type network, as proposed for 

the ROV. This means having the basic network simulation structure, but also 

being able to highlight the issues that are particular to a ROV network, i.e. the 

nodes can behave very differently depending on what function they have. For 

example, a navigation node with a compass will have very different 

communication requirement to a node fitted with a manipulator. 

When the program starts, the network is defined as empty by default, stations 

have to be added. This is not a major problem since the networks we are 

^ It is possible to define subsets of a class (the base class), called derived classes, which can reuse 
functions and variables defined in the base class. 
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simulating are of small size. In case this would prove to be a problem in the 

future, a storage and retrieval facility could be added. Each node can be one of 

two types : master or slave; a slave can be actuator, sensor or tool (Figure 5.2). 

The choice of the type of node implies its rate and packet length, however those 

values can be modified. The basic user interface allows the user to firstly create 

the network, and secondly to run the simulation. It avoids having to recompile 

some code for each different configuration. 

A class hierarchy diagram shows the organisation of objects in the program 

(Figure 5.2). 

The class Simu contains instances® of the classes Medium, Net. Simu deals with 

all the statistical calculations and results management. It also starts the 

simulation process. Medium contains the particulars of the network such as 

topology, station latency, propagation delay and medium length. Net represents 

the network, and contains instances of the nodes that are in the network 

simulation. Net also manages queues and schedules start and arriving times. 

Node is the base class for each node, and is derived into Master, Slave, Actuator, 

Sensor, and Tool classes to take into account the various arrival rates and packet 

lengths of each node. 

Obviously this model has its limits, and the following points are important; 

• error rate; the error rate is taken into account in the simulation, however the 

model is only valid if errors occur in different frames. The model cannot cope 

with successive and repeated errors and would give erroneous results. 

• latency ; this is the time the receiving device takes to decode the incoming 

message, and to act upon it. The latency values used in the simulation have 

been taken from measurements made on the node. This was measured by 

running the networking software, and outputting a signal on one of the output 

lines, when network messages were received. A time measurement was made 

with an oscilloscope, by looking at both the communication line and the output 

line. The time measurement was taken as shown in Figure 5.3. The latency 

value was 8.5 msec. 

' An instance of a class is a particular specimen of such a class. 
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Figure 5.2 Class hierarchy diagram 
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Figure 5.3 Latency measurement 
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These classes are used by the main program as follows (Figure 5.4): 

Quit the 
program 

Display Help 
Information 

Menu - keypress 
activated 

Create variable 
mysimulation, 

instance of Simu() 

Modify node 
attributes: packet 

length and generation 
rate 

Display the network 
components, calling 

mysimulation->ListNodes() 

Run the simulation, 
calling 

mysimulation->lnit() 
mysimulation->Result() 

Add a master to the 
network, calling 

mysimulation->Add_Node 

Remove a node from the network, 
calling 

mysimulation->Delete_Node 

Add a node to the network, calling 
mysimulation->Add__Node, 

The node can be Tool, Actuator or 
Sensor 

Figure 5.4 Main menu flowchart 

Source code of the simulation software is included in Appendix C. 
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5.4.1 Results and tests 

At the time of those tests, the prototype network consisted of a PC master node 

and three slave nodes: one thruster node (actuator), one navigation node 

(sensor) and one video node (tool). 

Measurements have been made on the prototype of the following values: 

1. Token Rotation Time : this is the time it takes for the token to loop around all 

the nodes. This measurement was made by the PC by keeping a log file of the 

time when it received the token. 

2. Delay at node : this is the time it takes between when the message is created 

and when it is transmitted. For example, the time between when a node reads 

the result of a DAC conversion, and when the result of that conversion is 

transmitted over the network. A time stamp was created at the time of the DAC 

reading, and another at the time of transmission. Both time stamps were 

transmitted within the message, and could then be processed by the PC. 

3. Delay at PC : this is the time it takes between when the message is created 

and when it is transmitted. Time stamps for those events were logged onto a 

file and processed later. 

All the timing information was saved onto files which were readable by a 

spreadsheet program. This allowed the user to get information such as average 

trt and delay. 

Results from the simulation have been compared with measured values. 

The delay is variable, and can be defined as moving randomly around an average 

value. Only the average result is represented on Figure 5.5, although a 

confidence interval has also been obtained. 

Results were also obtained from the actual test rig; the token rotation time (trt) 

was measured. For each node using the network for transmission, the delay 

between when the message is generated, and when it is actually transmitted was 

measured. 
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Figure 5.5 Delay estimation and measurements results 

The results showed a good match for the trt and the slave nodes (Figure 5.5). 

The results are poor for the PC prediction (Node 0), this is probably due to the 

fact that the model used in the simulation for station latency is simple. This is fine 

for real time embedded systems as the slave nodes, but insufficient for a more 

complex behaviour such as a PC running software under an operating system. 

The values obtained can also be used as representative values of the delay that 

the experimental system will be expected to cope with. The following set-up was 

chosen as a typical ROV configuration, as it is representative of the prototype 

vehicle : 

• Number of nodes: 4 nodes in total, one master node and three slave nodes 

(thruster, navigation and tools nodes). 

• Thruster node : receives packet sizes of 48 bits, but does not transmit any 

data. 

• Navigation node : transmits packet of 80 bits. 

• Video node : transmits packets of 96 bits. 

» Frame error rate 1 in 1000 frame is corrupted. 

• Baud rate : 9.6Kbd. 

• Umbilical length : 500 meters. 

• Latency for each node 85 ms. 



For the above values the resulting transportation delays occuring for each node 

varied between 20 to 70 ms on average (See Figure 5.5). 

The simulation is also a very valuable tool that can be used to design, develop, 

validate and modify networks. Many parameters can be varied: number of nodes, 

packet length, transmission rate, and latency. As a design tools it allows the user 

to experiment with different configurations and find out the effect of modifying 

several parameters before investing in hardware. As a development tool, it allows 

the user to compare the expected results against real measurements, and 

therefore to detect any malfunction which would not be obvious otherwise. If the 

results match the network can be shown to function as expected and can be 

validated. In a similar way the simulation can also be used to investigate the 

effect of possible modifications. For example it is possible to find out by how 

much will the delay increase when more nodes are added, and by how much the 

transmission speed has to be increased if the choice is to have the same delays 

as before the nodes were added. 
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6. E F F E C T O F V A R I A B L E D E L A Y O N C L O S E D L O O P C O N T R O L 

This chapter investigates the effect of delays within control loops, and describes a 

way of controlling processes with variable delays. This is particularly relevant to 

the prototype ROV. Indeed the transportation delay within a control loop run over 

a network is affected by parameters such as the number and type of nodes 

present on the network. 

ROVs are often tailored to suit a particular task, and having to re-tune all closed 

loop controllers within the vehicle at each modification would be impractical. 

The idea of having an 'universal' controller, which is not affected by changes in 

transportation delay would seem to be the answer. A potential solution, using self-

tuning control, has been found and has been tested both in simulation and in 

experiments. 

6.1 Definition of system studied 

Originally it was expected that control experiments would be carried on one of the 

ROV instruments. First the camera tilt mechanism unit was targeted, where a 

position control system could be designed. Initial tests however showed that this 

unit was very slow compared to the range of delays introduced by the prototype 

communication system. The unit could be modelled as a delayed integrator, with 

a delay of 0.9 sec. 

One other way of experimenting was to control the speed of the thruster. 

However it proved difficult to find a suitable speed feedback signal without any 

major design changes. The internal Seaeye thruster electronics give a step 

response as follows: a delay of 90 msec and a sharp rise (taking about 10 msec) 

to a settling point. The speed value was taken from the Hall-effect sensor existing 

in the thruster, giving a frequency proportional to the thruster speed: (f(Hz)= 

speed(RPM) x 0.1). A plot of the measured response is shown in Figure 6.1, 

where the A trace is the demand, and the B trace is the output from the Hall 

sensor. 
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Not enough transient points (4 points can be read in the rising step) could be 

obtained in order to build a model which could represent the motor behaviour 

accurately. 

nil 

A B 
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CFL DC DC 

OFS 8 V 0 V 

HTB 5B MS 50 IDS 

DLY -2 -2 

BMP 2048 2048 

m r 25/03/97 25/03/97 

TIM 
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HID 

DLV 

BMP 

DAT 

TIM 

Figure 6.1 Speed step response of Seaeye thruster 

The only other possibility of testing closed loop control on the vehicle was the 

vehicle itself, by controlling heading or depth. Although a simple PID controller 

was implemented for the water tests, it was decided that this would not be a very 

good starting point for the following reasons: 

• difficulty of setting up the test; need access to tank, a vehicle chassis, help to 

launch vehicle 

® difficulty of modelling: it would be problematic to assess exactly what 

contribution the delay has with respect to the other unknown parameters. 

The auto-heading PID controller used during the water tests was tuned in-situ 

using a trial and error method, which gave acceptable results. Because the 

vehicle's response will vary with respect to ballast and payload, trial and error 

tuning remains a favourite method in industry to cope with such a complex 

behaviour. 
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The solution chosen was to use a laboratory servo system. Minor changes had to 

be made to one of the existing nodes to provide adequate amplification for the rig 

command and feedback signals. The existing ADC and DAC were used, allowing 

most of the software for both the network and the local application to be re-used. 

Since all tests could now be implemented on the bench, this allowed for more 

flexibility and testing time. 

The servo system used was a 'Feedback Modular servo system MS150 MklT, 

which is primarily intended for experimental use by students investigating closed-

loop systems [27]. The motor used has split field winding, with current flow in 

each part of the coil being controlled by a transistor. (Figure 6.2) 

field coils 

Vin=V2 Vin=V1 armature 

Figure 6.2 Schematic of armature control motor 

The result of this arrangement is that the speed of the motor is proportional the 

input voltage Vin. Due to friction, a minimum voltage is needed to start the motor. 

An integral tacho-generator is fitted with the unit. 

6.2 Experimental Setup 

The experimental setup for the control experiments were as follows; 

The PC was acting as a master and connected to one subsea node (test node). 

The hardware of this test node originated from a thruster node but the I/O side 

was modified to integrate the ADC and DAC. 
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The test node has one output which is the command line going to the feedback 

rig, and two inputs, one is the speed feedback and the other is the position 

feedback (Figure 6.3). 

The software was designed so that the control loop could either be closed or 

open. The closed loop algorithm could be run either; 

a) locally ; the node implements the PID controller independently 

The test node software executes the following tasks: 

1. read the ADC conversion results on both channels 

2. compute PID controller output 

3. set the DAC to convert the PID output and go back to 1. 

4. When the access to the network is available (interrupt driven), 

transmit a message to the PC containing feedback , 

command and time values. 

The PC executes the following tasks: 

1. run network software 

2. read values received and log into file 

b) remotely : the PC computes the PID depending on results obtained on 

remote node 

The test node software executes the following tasks: 

1. read the ADC conversion results on both channels 

2. set the DAC to convert the command and go back to 1. 

3. When the access to the network is available (interrupt driven), 

transmit a message to the PC containing feedback values. 

4. On interrupt, receive the command value from the PC 

The PC executes the following tasks: 

1. run network software 

2. read values received and log into file 

3. compute PID controller output 

The PC could also be made to add a time delay in the control loop. 
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Figure 6.3 The control tests experimental setup 

The network used here was minimal, with only one master and one slave. 

Additional delays could be added artificially by the PC (master), rather than by 

adding other slave nodes. 

6.3 Experiments without introduced delay 

6.3.1 Open loop measurements 

The purpose of the first experiment was to determine a dynamic model of the test 

rig, The information obtained can then be used to model and analyse the rig's 

behaviour in more complex situations. 
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The first step was to establish the tachometer calibration. The results are shown 

in Figure 6.4. The tachometer readings could be interpreted as a linear function 

}; = 25.7%-953.3. 

This linear function is only valid for digital readings below 255, after this point the 

ADC is saturated. This implies that we are not able to read speeds above 5610 

RPM. Therefore the experiments were operating the motor around a much lower 

speed (typically 3000 rpm). The offset of the digital reading is due to an offset in 

the amplification stage, and has been included in the above equation. 

g 3000 

100 150 200 

Digital reading 

300 

Figure 6.4 Tacho calibration curve 

An open loop configuration was setup, the test node generated the step function 

(height 255 digital value, or 14V) which was feeding the motor and transmitted the 

readings of the speed output to the PC. Those readings were then converted to 

RPM using the calibration values. Results are shown in Figure 6.5. 
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Figure 6.5 Experimental open loop step response 

The open loop response was obtained by giving a step speed command to the 

motor, shown as 'Command' in Figure 6.5. The response, shown as 'Speed' in 

Figure 6.5, allowed us to approximate the model of the rig as a first order model, 

with a time constant of 4.4 sec and a steady state gain of 4000/14=285 rpmA/, 

giving the following function; 

Gfs) = = 

This transfer function was entered in a simple Simulink model and a similar open 

loop test was setup (Figure 6.6). The results are shown in Figure 6.7 and match 

the experimental results. 

t 

Clock To Workspacel 

To Workspace Step Fen 
Transfer Fen 

yout 
s+0.23 

6 4 . 9 3 

Transfer Fen 

Figure 6.6 Open loop simulation in Simulink 
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Figure 6.7 Simulated open loop step response (Step demand generated at 

t=1 sec) 

6.3.2 Closed loop control simulation and experiment 

Simulink was also used to test PID values on the model (Figure 6.8); adequate 

values were found to be P=12.5 1=0.5 D=10 (Figure 6.9). The saturation block in 

Figure 6.8 represents the characteristic of the amplifier. 

The controller values were obtained using the Ziegler-Nichols [29] tuning rule and 

then by iterative trials in the simulation. The demand is shown as a solid line and 

the response as a dotted line. 
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Figure 6.8 Closed-loop PID control in Simulink 
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Figure 6.9 Simulated locally run (case a) PID step response (setpoint = 3000 

RPM) 
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The PID values were also tested on the rig, with the PID implemented locally 

(case a in Figure 6.3) on the test node, and the PC only logging results. 

Experimental result are shown in Figure 6.10. 

PID step response (Setpoint =3000 RPM) 

5 2000 

Time (sec) 

.Response 

-Demand 

Figure 6.10 Experimental locally run (case a) PID step response 

This confirms the results obtained from the simulation with no overshoot or 

steady state error. The rise time is much longer in the experimental result. 

6.4 Delayed case 

6.4.1 Simulation 

A delay was added in the closed loop PID simulation (Figure 6.11). Results 

showed that increasing the delay without modifying the PID controller coefficients 

causes the response to deteriorate. The response cannot reach a steady state 

value, but oscillates around a final value. 

The spread of the oscillation becomes more noticeable as the delay increases 

(Figure 6.12 to Figure 6.15). 
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Figure 6.11 Closed loop PID simulation with variable delay 
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Figure 6.12 PID step response with 

no delay added 
Figure 6.14 PID step response with 

100 msec added delay 
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Figure 6.13 PID step response with 

50 msec added delay 

Figure 6.15 PID step response with 

500 msec delay added 
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6.4.2 Experimental results 

The software implemented on the test rig was such that the PID controller was 

implemented on the PC (Case b in Figure 6.3). As well as the communication 

delay between the two nodes, a delay could be artificially added by the PC. 

Different values of delay were added, and results are shown in figures 6.16 to 

6.19. An oscillation appears in the steady state, with an amplitude that increases 

with the delay. 
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Figure 6.16 Remote PID step response without added delay 
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Figure 6.17 Remote PID step response with 50 msec added delay 
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Figure 6.18 Remote PID step response with 200 msec delay added 
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Figure 6.19 Remote PID step response with 500 msec delay added 

6.4.3 Comparison and conclusion 

The experimental results obtained are very similar to what the simulation 

predicted. This is most obvious with the case where the delay was 500 msec 

(Figure 6.19); the oscillation is very clear and corresponds to the simulated 

prediction (Figure 6.15). 

This type of oscillation would be a problem in practice, for example if this control 

system was the auto-heading of a ROV. Although the overall direction would be 

accurate, the oscillations would make the video image taken by the vehicle 

'shaky' and unusable. 

Solutions to this particular problem have been researched in the past, but mainly 

for system with unknown time delays, rather than a variable time delay, as in this 

case. Because of the spread in the use of distributed control systems, this 

particular problem will become more generalised. Most of those solutions are 

based on an adaptive PID controller; where the PID controller's parameters are 

calculated, based either on the results of a parameter estimation or pattern 

recognition of the system. They have been shown to give good results for fixed 

and non-significant delays [30]. One other way of coping with this problem is to 

calculate, based on knowledge of the network, what the worst case delay is, and 

use this as a factor to design controller [32]. 
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Typically, the type of adaptive controller described above have been tested in two 

phase tests, where the first phase typically consists of applying disturbance to the 

system in order to estimate parameters for a model, and the second phase 

implements a suitable controller. A better solution would be to continuously 

estimate the delay, and modify the PID parameters accordingly. This idea has 

been developed, both in theory and practice, and the self-tuning system is 

described next. 

6.5.1 Theory 

This section shows how a self-tuning controller can be implemented, so that the 

response of a process does not deteriorate when a transport lag is introduced or 

modified in the process, as shown in the previous section. 

6.5. f . f TVme de/ays m sfafe space 

It is well known how to model systems with time delays in state space [28]; 

The non delayed case can be written as 

vecfor aW « fAe vecfw, a/z vd aW 

TTzg a Zmear fo f/ze varzaA/ej: aW 

f/zg ybZ/owmg; 

j; = + Dw, w/zgfg _y M a vgc^or oz/(pz/f 

With the introduction of a delay x in the system, this becomes: 

6.5.1.1.1 Delay smaller than sampling period T<h 

The above leads to discrete time state equations [28]; 

x(,̂ /z + A) = g'̂ x()^/z) + u(^'-r)ak'' 

= 0x(A/z) + r;U(A/z - A) + FoUf&A) 
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r , = 

In a standard representation matrix form this gives 

x(kh + h) 

u(kh ) 

0 r , 

0 0 u(kh-h) 
4- u(kh) (Eq. 1) 

6.5.1.1.2 Delay larger than sampling period T>h 

For the case of the time delay being larger than the sampling period, 

T = {d -l)h + f 0 <%-'</%, d representing the entire part of the delay and T' the 

fractional part of the delay, the discrete state equation can be generalised as [28]: 

x(kh + h)= x(kh) + TjU(kh-dh)+ TgU(kh - dh +h) 

In matrix form this gives: 

x(kh + h) r , r , K 0" x(kh ) ~o' 

u(kh-dh + h) 0 0 / K u( kh-dh) 0 

M = M M + IV 

u(kh~h) 0 K I u( kh — 2h) 0 

u(kh) 0 K 0 u(kh-h) I 

u(kh) (Eq. 2) 

6.5.1.2 Z transforms of delayed processes 

6.5.1.2.1 Z transforms with no delays 

It Is possible to apply a Z transform to discrete state space equations [28]. The 

classic algorithm for a non-delayed case is given below. 
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Given the discrete state equation 

x(k +1) = Ox( k) + Tu( k ) 

Y:-,Z-''x(k + l)=Y'Z-'(<bx(k) + Tu(k)) 

CO CO 

'Z-'x{k)-x(0))=^<S>Z-'x(k)+^TZ-'u(k) 

o;] = ; + r ; 

; = (27 - o / ' ; + r [ / r z ; ] 

; = cr27 - o ; + c r z z - o r c / f ' z ; 

The Z transform of the system is H(Z) = C(ZI - ^y' F 

6.5.1.2.2 Z transforms for delayed cases 

A similar approach can be taken for a delayed case (T<h), this highlights the 

contribution of the delay. 

Given the discrete state equations (from 6.5.1.1.1) 

x(k +1) = ^x( k)-\-TjU(k — l ) + TgU(k)this can also be expressed as: 

x(k + 2) = (^x(k + 1) + T,u(k) + Y„u(k +1) 

TbAzMg Z oAove ggwaf/oM.' 
%;;z-'jc(^+2)=^;z-'^ + ; ; + + j ; ) 

0 0 

0 

z" [A"rz; - - z-"xr7;]= zo^^rz ;+r^ fy rz ;+zr , [ / rz ; 

^ ( z ; = rz V - zo; - ' [z%ro;+;((;;+^/rz x r , + z r , ; ] 
and 

y^z; = c r z '7 - zo [ z % r o ; + ; ] 

+ crz^ - (D/ ' (T, + z r , ; [ / r z ; 

the first term is negligeable, this simplifies to 

y ^ z ; = c rzz - o / Y P ; + z r , ; 

y(z) 
The Z transform of the system is H(Z) - u{z) 
H(z)=C(Z'I-Z<S>)-'(T,+Zr,) 
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6.5.2 Example of application to a first order system 

As an example, the above results can be applied to a first order system, with the 

transfer function: 

E 
M _ T 

T 
Converting into state space form A x + B u 

xl = — 

^ + -

T 
T T 

y = xl 

A = B = — C = 1 
T T 

u 

IJ./T 

x1 

(S+1/T) 

6.5.2.1 Non-delayed case 

In order to illustrate how the theory developed in 6.5.1 can be applied to the 

above system, we can initially obtain the Z-transform for a non-delayed case. This 

simple example is a good starting point before moving on to the more complex 

delayed case. This gives the following digital state equation values®; 

0 = 

The Z transform of the system is : 

T Z-p 

with p = e^ 

The purpose of those calculations Is to highlight the way in which the theory developed can be applied. In 
this particular case, looking up in a Z-transform table would be much easier and give the same result, this 
is only used as an example. 
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We have moved from continuous to digital state-space variables, and then 

obtained the Z-transform of the system, the same method is used for a delayed 

system in the following section. 

6.5.2.2 Delayed case 

In a delayed case, a similar reasoning can be applied. The discrete state 

equations values are; 

O = = e ^ 

T 

T—h rri T' T T—h —T 
= /je ^ = /Je^(l-e''') 

—J 

r„ = = je'''ds —= ^(l-e^) 
0 0 ^ 

given (ly. 

H(Z)- C(Z^ I-ZQ>)~' (Yj +Zr^) from6.5.1.2.2,usingthevalues of 0, Fg and Fy 

. . 5 , . 

Z f Z - g r ; Z / Z - g r ; 
using T = Eh 

-h ^ (s-l)h 

/ f r z ; = — ^ ^ - ^ r g ^ r e ^ - j ; + z r j - g ^ 

z f z - g ^ ; 

^ r z ; = — 
Z f Z - g r ; 

using p^e-

\ y 

-A 
. T 
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By using a = , this simplifies to 

Z F ' Z 

p(l- - p ) 

z y z -P) 

K i - ~p) 

Z F Z - p ) 

^1(1- -P) 

Z f Z - f J 

1-p 

r ^ + z f ; 
1-p 

(a + Z( 1-a)) 

As a reminder, the Z-transform of a non-delayed case is : H( Z )== /u-
Z-p 

This can be generalised to a first order model with a delay T = dh + sh, larger than 

the sampling period. 

Ob) : 
1 + sT 

e " with T = dh + eh.T > 0, 0 <s <1 

The effect of the delay can be simplified to: 

• for 0<s <l (delay) 

« r z ; 

( i - a)z + - ( d + 7) 
/ / 

^ J -
( ( i - a)z + a) 

with P = e ^ ^ ^ and a • 
P p - ' - l 

1-p 

The delay sh gives rise to a pole at the origin and a real negative zero q=-

a/(1-a) 

for -1 < g < 0 (anticipation) 

w f z ; 
= Z ((; - )g)z + ;g)= Z |(|[7 - )9)z" + 

Z — 

with P = e and P 

— s 

1 ~ p 

The anticipation sh gives rise to a real negative zero q=-y9/(1-/?) 

For an uncertain delay T=dh+£h -1 <s<1, this generalises to 
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7 / ( z )=Z 
Z-p 

h] / — /y 
with for 0 < s < 1 ,b2 = 0, — = 

60 a 

and for -1 < s < 0,b0 = 0,^ = -—— 
67 ^ 

The zeros are: 

• for 0<e<1b = 1 — a Zeros are - bO/bl b2 = 0 

60 

1 + &0 64 + 67 64 + 67 
bl 

for -1 < E <0 s = 1 — <7 Zeros are - bl/b2 bO = 0 

s = 1 

1 + 
62 

+ 1 
bl -hi 

1 1 
67 + 62 67 + 62 

* So we can generalise for -1 < s < 1 that 

60 — 62 

bO + bl + b2 

This feature allows us to predict the unknown delay of a first order system by 

analysing delay contributions in the Z model terms bO and b2. [30] All of the 

following work is based on this result. By using an estimator to find bO, b1 and b2, 

we can calculate the value of the delay introduced. 
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6.5.3 Simulation 

Simulation software has been developed in order to prove that the delay 

estimation theory can be applied within a closed loop control system. 

This control method can be represented as in the diagram in Figure 6.20. 

Haalman Delay lit Haalman Delay 
Estimator Tuning rule Estimator w Estimator Tuning rule Estimator pp 

Command 

Regulate 
Parameters 

PID 
controller Process .Output 

Figure 6.20 Diagram of the Self-tuning controller 

Source code for this piece of software can be found in Appendices E and F. 

The simulation software consists of several elements, which are represented in 

flowchart form in Figure 6.21: 

1) Data generation : a default Z-transform model of a first order system is used 

to generate the data in order to simulate the process. Also at time step 250, a 

delay is added within that model and at time 650, it is removed. The Command 

value is also updated to show several step responses (Figure 6.22) The virtual 

sampling rate used in the Z model was of 40 ms, as it matches the 

experimental sampling rate. 

2) RLS Estimator: a classic recursive least-squares estimation (RLS) method is 

used [29], which is described in Appendix H. It estimates the parameters of the 

Z model of the process. The model used is of a form: 

H(Z)=Z 
Z — p 

. The RLS algorithm is stopped when the 

estimation error remains within a 2% band around the actual value. 

3) Delay estimation : using the theory detailed in 6.5.1, it is then possible to 

estimate s, the fractional part of the delay. If the absolute value of s rises above 

0.8, the model is 'shifted' by one sampling time, the number of shifts is 

contained in the variable d, representing the integer part of the delay. Figure 

6.23 shows that the software could keep track of the generated delay. The time 

it takes for the software to shift the model depends greatly on what excitation is 
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appl ied to the sys tem at the t ime. Indeed if the system has reached a steady 

state at the t ime of addi t ion of the delay, no c h a n g e s wi l l be made until a new 

exci tat ion is appl ied. By add ing smal l random signal t o the c o m m a n d signal, it 

is poss ib le to ove rcome this part icular prob lem, w i t h o u t af fect ing the overall 

response. 

4) Self tuning PID values T h e va lues of parameters f o u n d for the model are then 

used to ca lcu late PID control ler coeff ic ients. T h e m e t h o d used is that of 

Haa lman [31]^° Those va lues are then used at the n e x t sampl ing t ime to 

ca lcu late an appropr ia te output . This g ives a good r e s p o n s e when the 

es t imator has locked to correct values. However the r e s p o n s e is erratic when 

the es t imator is still t ry ing to f ind the right model , as f o r examp le at t ime 

650.(See Figure 6.22) 

10 Haalman tuning rule: the paper gives a tuning rule for delayed processes for both the PI and 
PID controller. The rule is obtained by trial and error on a computer simulation. The performance 
of the controller is measured by calculating the least mean square value of the error, in the 
response to a step disturbance. This gives a relatively simple rules for tuning. In our particular 
case of a first order delayed system; 

G(^)= 
1+ST 

The following PI controller is recommended ; 

2T 
with K = —- and Ti 

3T 
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Is RLS locked? 

Yes 

Is estimation 
error witliin 
2% band Yes No 

£ I >0.8 

GI <0.8 

Calculate s 

RLS is 
locked 

Update RLS 

'Shift' the Z 
model 

Calculate 
estimation error 

Generate data 
using default Z 

model 

Calculate PID 
output and add 
random signal 

Command is 
random 

excitation 

Calculate PID 
coefficients using 

Haalman tuning rule 

Figure 6.21 Structure of the simulation software for the self-tuning 

controller 
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The result of the simulation include representations o f ; 

1. The PID response (Figure 6 .22 ) : this shows the s imu la ted response of the 

closed loop system (dotted l ine)against the demand (sol id line). 

2. The delay est imate (Figure 6 . 2 3 ) : this shows that t h e delay estimation (d) has 

kept a good track of the system delay, which was art i f ic ial ly added at t ime step 

250 and removed at t ime step 650. The artificial d e l a y was created by shifting 

the reference model by one sample t ime; in the c o d e the value of the reference 

matrix is shif ted f rom the non-delayed value: [ - a i b 2 bi bo o] to the 

delayed value: [ - a l o b2 bi o]. The value o f ' d ' is the entire part of the 

est imated delay, and when the est imation of the par t ia l part of the delay 8 

becomes close to unity, the entire part of the delay is shi f ted. Therefore the 

est imated change f rom 1 to 2 is correct Figure 6.23. T h e t ime unit used (time 

steps) related to the number of t ime the simulation so f twa re has looped, that is 

a new t ime step would represent a new sample in prac t ice . 

9.00E+03 -r 

7.00E+03 

4.00E+03 

2 0 0 E + 0 3 

1.00E+03 

Delay is Incmased al 

time s k p 250 

Delay is reduced 

d m e s t e p K O 

1 101 201 3 0 1 4 0 1 5 0 1 G 0 1 7 0 1 8 0 1 9 0 1 1001 1101 1201 1301 1401 1501 1801 1701 1801 1901 

Time steps, 1 step every 40 ms 

Figure 6.22 Simulation result- PID response, using the self-tuning response 
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1.00E+00 
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6.00E-01 
4.00E-01 
2.00E-01 
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( N CO 
CO CD 

Time steps 

Figure 6.23 Simulation result - Delay estimate 

6.5.4 Experiments 

Once the s imulat ion showed that it was possib le to use a sel f - tuning control ler, an 

exper imenta l test was implemented. 

Th is was s imi lar in st ructure to the s imulat ion so f tware (F igu re 6.24). Major 

d i f ferences are; 

• Data is not genera ted by the sof tware itself but a c q u i r e d on the network f rom 

node 1. 

• T h e est imat ion error band has been increased to 5 % , th is is to cope with the 

fact that the readings are digi t ised by the A D C and in t h e p resence of noise. 

• an addi t ional de lay can be added wi th in the loop to s i m u l a t e the addi t ion and 

removal of nodes on the network 

• the sampl ing t ime for the control p rocess is the t ime pe r i od in be tween each 

network access loop, obv ious ly this wil l vary wi th the a d d e d delay. T h e local 

sampl ing t ime used by the test node is very short , as t h e node is constant ly 

act ivat ing the conver ters , therefore w h e n the a new v a l u e is t ransmi t ted on the 

network, it is the result f rom a very recent reading. 

6-27 



New sample 

Is RLS locked? 

Calculate 
PID output 

Command is 
default excitation 

Calculate 
estimation error 
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error vwthin 
5% band 
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locked 
Update RLS 

Calculate s 

E >0 .8 

E <0 .8 

'Shiff the Z 
model 

Calculate PID 
coefficients using 

Haalman tuning rule 

1 r 

Add artificial delay 

Figure 6.24 Structure of the experimental software 
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The setup used was the same as with the first exper imenta l work, with the PC 

implement ing the self-tuning PID controller, and the t e s t node acting as an 

interface to the laboratory test rig (Figure 6.25). 

Speed feedback 

(digi ta l) 

PID output (digital) 

Speed feedback (analog) 

P I D output (analog) 

Test Node 

Feedback Test Rig 

PC 

Implementing the self-tuning 

PID control ler 

Figure 6.25 Experimental setup for self-tuning controller 

Results were taken with various delays, the speed setpo in t was 1500 RPM. 

The fol lowing graphs show both the est imated and m e a s u r e d speed, as logged by 

the PC. The est imat ion error shows the accuracy of the RLS est imator. Since the 

PID controller is only active once the RLS has converged, responses will not only 

reflect the choice of PID coeff icients, but also the convergence of the RLS 

algorithm. The sharp changes at the start of the est imat ion, which can be seen in 

Figure 6.26 to Figure 6.29, reflects the fact that the RLS has not converged at 

that point yet, and the output est imate is using the initial mode l parameter values. 

On Figure 6.26, the changes at t ime step 60 happen w h e n the RLS est imation 

goes outside the est imation error band,(5%), and the R L S est imat ion process has 

to be restarted. One possible est imation for the bad convergence of the RLS 

could be an outside event that caused the motor to al ter its response. The source 

code of the sof tware can be found in Appendices F and G. 
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Time #teps 

Figure 6.26 PID Self tuning control with no added delay 
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Time steps 

"Measured 

" Estimated 

-Measured 

-Estimated 

Figure 6.27 PID self tuning control with 50 ms added delay 
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250E+03 

5.00E+02 

-Measured 

-Estimated 

Time steps 

Figure 6.28 PID Self tuning control with 100 ms added delay 

-Measured 

-Estimated 

Figure 6.29 PID Self tuning control with 200 ms added delay 

6.5.5 Advantages and limitation of the method 

The method of self- tuning control was shown to work on a computer simulation, 

where a known model was est imated and control led, a f te r a certain t ime, a delay 

was introduced, and then removed in the model and both changes were 

successful ly detected by the RLS est imation. The PID contro l ler parameters were 

also adjusted in a suitable manner (Figure 6.22 and F igure 6.23). 
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In the exper iments, several values of delay were added artificially, and the same 

control ler was run, with a setpoint of 1500 rpm. In mos t cases a satisfactory 

steady state response was obtained. However the t rans ien t behaviour is often 

quite poor, and in the worst case the overall response is unsatisfactory, as in 

Figure 6.29. 

The poor quality of the reponse has later been ana lysed as a consequence of the 

fol lowing fact; the PID controller is only activated once t h e RLS estimation has 

converged to a set of est imated model parameters, a n d due to the presence of 

noise, this can take a long t ime, in which the process rema ins uncontrol led . In 

the case of f igure Figure 6.26, the values that were f irst est imated by the RLS 

were wrong, and the RLS estimation process had to be restarted. 

A better response could be obtained by starting the p rocess with default PID 

parameters value, the PID controller could then be s ta r ted straight away, while 

the RLS est imation is being run. 

6-32 



7. C O N C L U S I O N 

7.1 Achievements 

The approach taken at the start was to identify the p rob lems existing with current 

industry ROVs, and to set new requirements for the d e s i g n of a future vehicle. A 

case study of a commercia l vehicle was undertaken. T h e main problem identified 

was the lack of flexibility of the communicat ion system, w h i c h links the several 

components of the vehicle. This prevents the vehicle s e t u p being modif ied at 

short notice, as it of ten is required in the industry. 

The first step in the research was to select a distr ibuted archi tecture to link the 

vehicle sub-systems, as opposed to a central ised archi tecture, which was used 

on the current vehicle. This al lowed for more flexibility, a n d also has the potential 

of making maintenance and error detect ion quicker and easier . The next step was 

to review avai lable networking techniques, and to select a suitable method, which 

was to be used for l inking the ROV sub-systems, or nodes . A f ie ldbus-based 

network was selected, as it showed the most suitable fo r t he application. A 

prototype vehicle was build, using the selected network ing technique, and was 

later demonstrated in underwater operat ion. This pro to type was build in stages; 

first only a basic 'propulsion node' was build on a bench sys tem, and 

communicated to a master PC. A 'navigation' node, suppor t ing compass and 

depth meter was then added, fol lowed by a third node, w h i c h supported other 

components such as camera and lights control. A hand cont ro l unit was also build 

to ease the operat ion, and replaced the master PC. The P C was kept on the 

system, and used as a monitor ing funct ion only. W h e n th is sys tem was shown to 

be operat ional on the bench, it was then integrated in an ac tua l vehicle, with the 

help of the sponsor company, and demonstrated underwater . 

This prototype has the advantage over the case study veh ic le of being completely 

modular, as each of the sub-systems can be added or r e m o v e d with min imum of 
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disruption. It also has the potential of support ing many m o r e instruments, indeed 

the prototype vehicle supported all the functionality ex is t ing on the version of the 

case study vehicle. 

The design of the vehicle is fully documented in techn ica l reports 

(references: [17][18][19][20][21]). 

Alongside the prototype building tasks, the theory of t h e network communicat ion 

was studied, and a simulation of the ROV network was created. This simulation is 

a useful design tool that al lows to exper iment with c h a n g e s in various parameters. 

For example there might be a need to add a node to t h e vehic le in order to carry 

out a special task, in this case the simulation would a l l ow to f ind out by how much 

the transportat ion delay would increase. Should the resul t ing increase in the delay 

overload the network in an unacceptable way, the s imu la t ion could then be used 

to f ind ways to improve the performance, for example w h a t would be the 

beneficial effect of increasing the transmission speed o r o f shortening the packet 

length. 

Another side to the problem is that the delays not only v a r y according to the 

vehicle conf igurat ion, but also whilst the network is runn ing , The simulat ion gives 

out an average result and a conf idence interval of the es t ima ted delay. 

Ideally, the vehicle should be able to be modif ied, for e x a m p l e by adding a 

camera control node, without having to alter any contro l ler sett ings. This is a very 

important aspect of the practical problems faced by the oi l industry. In order to 

achieve this, a self-tuning controller was implemented, a s descr ibed in chapter 6. 

A simulat ion of such a control system was shown to c o p e wel l with delay 

variat ions (Figure 6.22). However the experimental resul ts were less encouraging 

(Figure 6.28 and Figure 6.29), this could be for several reasons : a mismatch of 

the s imulated model and the real hardware, or an inef f ic ient RLS est imat ion 

method. One particular suggest ion for improvement is t o imp lement a default 

control ler to be used whilst the RLS est imator is giving uns tab le results. 

7.2 Contribution to research 

The main contr ibution is to have designed a self-tuning P I D control ler, for systems 

where the transportat ion delay may vary. These delays o c c u r in distr ibuted control 
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systems, such as the modular prototype ROV, and a r e not supported by standard 

control techniques. 

Distributed control systems are becoming increasingly popular , with applications 

ranging f rom automated manufactur ing lines, to cars a n d building automation. Not 

being dependant on a fixed transportat ion delay is a m a j o r issue, as in most of 

those appl icat ions a dynamic closed loop control is es tab l i shed over the network. 

The network makes the transportat ion delay subject t o m a n y variable factors: 

effect of noise, bandwidth, size of networks and proper t ies of each node such as 

latency and transmission behaviour. A network s imu la t ion was used to estimate 

transportat ion delays for the studied ROV. 

By using a RLS est imator the contribution of the delay c a n be est imated, then 

suitable PID parameters can be calculated. This type o f control ler is ideal for the 

ROV system, as the setup of the network is likely to be modi f ied often. Only one 

control ler can be used for any configurat ion of the ne twork . Details of the control 

system development are descr ibed in Chapter 6. 

The review of existing networking methods is also an impor tan t point, as once the 

distr ibuted approach is selected, the choice of a par t icu lar networking method is a 

difficult one to make. Many networks exist, all with thei r advantages and 

disadvantages, the review showed that in a commerc ia l env i ronment this choice 

would be driven by the f inancial aspects. The network s imula t ion was also useful 

to investigate the impact of some design decisions such as the choice of 

t ransmission speed. 

7.3 Limitations 

The limitations of such a self-tuning controller were f o u n d to be that there is a 

possibil i ty that a change In the model could be wrongly ident i f ied as a change in 

the transportat ion delay. Since the vehicle is to be used in a widely changing 

environment, this is a possible cause for problems. Decreas ing the sensit ivity of 

the parameter updat ing algorithm, it might be possible t o overr ide this problem. 

One other factor that caused problems in the exper iments was that the RLS 

est imator needs to be excited in order to converge. Th is w a s solved by adding a 

small randomly varying signal to the command signal, a n d this random signal was 
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small enough not to affect the target system, whi le a l low ing the RLS estimator to 

converge more easily. 

7.4 Suggestions for further work 

As far as the design of the prototype vehicle is concerned , some Improvements 

could be made by adding more nodes and therefore a l lowing for a wider 

functionality. The vehicle is still a prototype, and in o rde r to be produced 

commercial ly, would need to be more reliable. During t h e development the 

majority of the faults that occurred were due to weak connec t ions and poor quality 

printed circuit boards. This is the area needing the mos t improvements, and 

where much t ime was spend diagnosing and repairing tr iv ial problems.. 

A far as the theory is concerned, the control system cou ld be extended to be 

appl ied to the ROV heading and depth control. This invo lves firstly obtaining a 

model of the ROV, and secondly applying the sel f - tuning controller. This is a 

much more complex system to control than the first o rde r system studied in the 

laboratory, especial ly when the ballast, posit ion of thrusters , instruments and 

environmental condit ions can vary considerably be tween each vehicle launch. 

Another important factor to model would be the amount o f disturbances, as the 

vehicle is to be used in extreme condit ions. The robus tness of the controller 

would be a key factor. 

7-4 
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Appendix A Noise variance and Bit Er ror Rate 

Supposing that the noise has a Gaussian probabil i ty d is t r ibut ion with zero mean : 

2(7̂  
p ( n = - r 

V2;z 'cr 

Consider a logic '0' being represented by Ao and a logic '1 ' by A i . 

Ai 

An 

W h e n no noise is p resen t , a logical '0' is represented by a vol tage V set to Ao, 

and a logical 'V is represented by a voltage V set to A i . A s noise contributes to 

the signal, it is possible that the voltage value changes a n d crosses the threshold 

level d, this causes a transmission error. 

As the noise is added, there will be a probabil i ty d istr ibut ion about Aoand Ai . An 

error occurs when V<d when a '1' was transmit ted {Pei )and w h e n V>d when a '0' 

was transmitted(Peo). 

P g o = ^ e r r o r o n a ' 0 ' t r a n s m i s s i o n 

£d 

p, {V)dV e r r o r o n a '1' transmission 

Due to the symmetry in the distributions, we have Peo = Pei. T h e average 

probabil i ty of error is : 

Pe = PiPei +Po Peo. , W h e r e Pi is the probabil i ty of a '1' be ing t ransmit ted, and 

where Po is the probabil i ty of a '0' being transmitted. Cons ider ing a probabil i ty of 

occurrence of '1' and '0' as in HDLC of Po = 32/63 and P i = 3 1 / 6 3 , (there is a 

higher probabil i ty of a '0' being transmit ted due to the bit s tu f f ing process) we 

have Pg = Pel [Po + Pi ] = PeO [Po + ] = PeO = Pel 



Using Gauss ian stat ist ics 
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cerf is the complimentary error function defined as: 

2 ^ 2 
cerf(u) = I dx approximated to : 

cerf(u) I 
w V n 

for u > 3 

Ti i is def in i t ion of Pe is very important , s ince it l inks the B E R (Bit Error Rate) to the 

thermal no ise var iance. 



Appendix B Transmission line theory 

From Mat ick [8] a t ransmiss ion line can be model led a s a success ion of the 

fo l lowing circuit: 

R L to inf inity 

V c 

/ v w x — n i n y 

V x+Ax 
^ Rp = 1 / G 

^ Ax ^ 

The basic e f fects occurr ing a long a l ine are phase shi f t a n d at tenuat ion. 

The analys is o f a smal l length of the circuit (Ax) gives : 
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a s o l u t i o n t o t h a t d i f f e r e n t i a l e q u a t i o n i s ; 

F, = + F . e ' ' 

a n d f o r i^ 

^ = (if + jaL)(G + jaC)i, = y 

a s o l u t i o n t o t h a t d i f f e r e n t i a l e q u a t i o n is : 
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e / represents waves travel l ing in the negat ive x d i rec t i ons end e " / waves 

travel l ing in the posit ive direct ion. This refect ion has a d is to r t ion effect on pulses. 

T h e propagat ion constant y is a complex, its real part a is the at tenuat ion 

constant , and its imaginary part p is the phase cons tan t . 

= (R + j <yL)(G + j (uC) 
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a - —I + —, — attenuation in rad / meter 

2.yL/C 2 VC 

I — f R G RG ^ 
B = (oVLC 1 + — H ; phase constant rad / meter 

T h e above calculat ion does not take into account the sk i n ef fect . Mat ick shows 

that when including the skin ef fect the at tenuat ion b e c o m e s : 

a = with no shunt loss 
2 . y i y c V 2 

and the phase constant is : 6 = co4lC+ 
2 V L G V 2 

This means that high f requency signals are a t tenuated m o r e than low f requency 

ones and this is the main cause of distort ion of pulses. 



APPENDIX C Network Simulation Software 

random.hpp page 1 
r 
* File :random.h * 
* Description : random number genaration library header file * 
* Adapted from "Numerical Recipes in C - The art of * 
* scientific computing", Press, Flannery, Teukolsky Vetterling, * 
* Cambridge University Press, ISBN 0-521-35465-X * 
* HISTORY; Date Author Comments * 

* 20/09/96 S.M.Holland Creation * 

#include <Btdlib.h> 
#include <math.h> 

h 
* Procedur: RanO * 
* Input : idum - negative for initialisation * 
* Output : random number * 
* Comments : uses the standard rand() but reshuffled * 
* HISTORY: Date Author Comments * 

* 20.09.96 S.M.Rolland Creation * 

*/ 
float ranOfint *idum); 



APPENDIX C Network Simulation Software 

random cpp 
1 /******#****************#*******************#**************** A, 
2 * file rrandom.c * 
3 * DescripCion : random number genaration library * 
4 * MoaCly taken from "Numerical aecipes in C - The arc of * 
5 * scientific computing", Press, Flannery, Teukolsky Vetterling, * 
6 * Cambridge University Press, fSEM 0-521-35425-% * 
7 * HISTORY: Date Author Comments * 

9 * 20/09/9g g.M.Rolland Creation 
1 0 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

11 #iaclude "random.hpp" 
12 /* 

13 * Procedur; RanO 
14 * fnput : idum - negative for initialisation 
15 * Output : random number 
16 * Comments ; uses the standard randfj but reshuffled 
17 * HTgT&Ry; Date Author Comments 
18 * 

19 * 20.09.96 g.M.Rolland Creation 
20 
21 float ranO(int* idum) 
22 { 
23 static float y,maxran,v[98]; 
24 float dum; 
25 static int iff=0; 
26 int j; 
27 void nerror(); 
28 
29 if (*idum <0 || iffmmO) 
30 { 
31 iff.l; 
32 naxranmRANDJMAX +1.0; 
33 srandf* idum); 
34 *idum=l; 
35 for (j"l;j<-97;j++) dum*rand(); 
3 6 for (j=l;j< = 97;j++) v[j3 =rand() ; 
37 ymrand(); 
3B } 
39 j"l+97.0 *y/maxr&n; 
40 /*if (j >97 II j<l) nerror("RANO: This cannot happen");*/ 
41 y-v[j]; 
42 v[j] =rand() ; 
43 return y/maxran; 
44 } 



APPENDIX C Network Simulation Software 

simu hpp j.iij.. 
* * * * * * * * * * 

* File :simu.hpp * 
* Description : 00 network simulation project * 
* HISTORY: Date Author Comments * 

* 19/06/96 S.M.Rolland Creation * 
***************..*******.******,..******,********.*****#**********./ 

#include <math.h> 
#include <stdlib.h> 
Winclude <iostream.h> 
#include <conio.h> 
#include "random.hpp" 
#deEine MAX_0_SIZE 1 
#define MAX_PACKETS 10000 
#deEine RATE 10500.0 
#define FACTOR 1000.0 
#deEine MEDIUM_LENGTH 500 /* 500 meters*/ 
#define MAX_NODSS 32 
// Mode of output used in list nodes 

#define VERBOSE I 
#define 2 
#define TRUE 0 
#define FALSE 1 
extern float T_dist_par[10]; 

/* 
* Class definition : Node * 
* HISTORY: Date Author Comments * 

* 19.06.96 S.M.Rolland Creation * 
*/ 

class Node{ 
friend class Net; 

int queue_8ize; // queue size at station 
int hp_queue_Bize; // high priority queue size 
int next_stn; // identifies next station 
int previous_stn; // identifies previous station 
int in; // status of station 
float start_time[MAX_p_SIZE]; // starting time of packets 
float hp_start_time[MAX_p_SIZE]; // starting time of high priority packets 
float event_time[4]; // time of occurence of an event 
unsigned char corrupt_frame_flag; 
unsigned char skipped_flag; 

protected: 
float infinite; 

int * inum; 
public: 

Node(); 
-Node(); 
virtual float Get_arrival_rate(); 
virtual float G^t_hp_arrival_rate(); 
virtual float Schedule_next_arrival(); 
virtual float Schedule_next_hp_arrival(); 
virtual float Get_packet_length(); 
virtual void Set_arrival_rate(float rate); 
virtual void Set_hp_arrival_rate(float rate); 
virtual void Set_packet_length(float length); 
virtual void Describe(ostream & strm,unsigned char mode) 

{ strm <<"Generic Node";} 
void Set_corrupt_frame_flag(unsigned char flag) 

{corrupt_frame_flag-flag;} 
unsigned char Get_corrupt_frame_flag() 

{return corrupt_frame_flag;} 
void Set_8kipped_flag(unsigned char flag) 

{skipped_flag=flag;} 
unsigned char Get_skipped_flag() 

{return 8kipped_flag;} 

virtual float Get_Token_Rotation_Time(); 
virtual void Set_Token Rotation Time(float value); 

}; // Node class 

Class definition : Slave 
Inheritance from : Node 
HISTORY: Date Author 

* 19.06.96 S.M.Rolland Creation 

class Slave : public Node{ 
protected: 
float local_arrival_rate; 
float local_hp_arrival_rate; 
float local_packet_length; 
float Token_Rotation_Time; 
public: 
Slave(float rate,float hp_rate, float plength), 
-Slave(); 
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virtual float Get_arrival_rate(); 
virtual float Get_hp_arrival_rate(); 
virtual float Schedule_next_arrival(); 
virtual float Schedule_next_hp_arrival(); 

virtual float Get_packet_length(); 
virtual void Set_arrival_rate(float rate); 
virtual void Set_hp_arrival_rate(float rate); 
virtual void Set_packet_length(float length); 
virtual void Describe(ostream6 strm,unsigned char mode) 

{ strm <<"Generic Slave";} 
virtual float G€t_Token_Rotation_Time(); 
virtual void Set Token Rotation Time(float value); 

Class definition : Master 
Inheritance from : Node 
HISTORY: Date Author Comments 

19.0G.96 S.M.Rolland Creation * 
*/ 

class Master : public Node{ 
float local_arrival_rate; 
float local_hp_arrival_rate; 
float local_packet_length; 
float Token_Rotation_Time; 
public: 
Master(float rate, float hp_rate, float plength); 
-Master(); 

virtual float Get_arrival_rate(); 
virtual float GeC_hp_arrival_rate(); 
virtual float Schedule_next_arrival(); 
virtual float Schedule_next_hp_arrival(); 
virtual float Get_packet_length(); 
virtual void Set_arrival_rate(float rate); 
virtual void Set_hp_arrival_rate(float rate); 
virtual void Set_packet_length(float length); 
virtual void Describe(ostream& strm,unsigned char mode) 

if (mode == VERBOSE) 
strm <<"Master\t AB - "<<local_arrival_rate<<"\t HP-Aa = "<<local_hp_arrival_rate <<"\t 

P = "<<local_packet_length; 
else if (mode »= TABULAR) 

strm <<"M"; 

} 
virtual float Get_Token_Rotation_Time(); 
virtual void Set Token Rotation Time(float value); 

Class definition : Actuator 
Inheritance from : Slave 
HISTORY: Date Author 

* 19.06.96 S.M.Rolland Creation * 
*/ 

class Actuator: public Slave{ 
public: 
Actuator():Slave(0.0,0.0,48.0)() 
-Actuator(){) 
//this is small packet size and low arrival rate 
virtual float Schedule_next_arrival() 

return infinite;// NO packet sent 
) 

virtual float Schedule_next_hp_arrival() 

return infinite; //No packets sent 

virtual void Describe(ostream& strm,unsigned char mode) 
if (mode == VERBOSE) 

strm <<"Actuator\t AR = "<<local_arrival_rate<<"\t 
"<<local_hp_arrival_rate<<"\t P - "<<local_packet_length; 

else if (mode-- TABULAR) 
strm <<"A"; „ 

/* 
* Class definition : Sensor * 
* Inheritance from : Slave * 
* HISTORY: Date Author Comments * 

* 19.06.96 S.M.Rolland Creation * 
*/ 

class Sensor: public Slave{ 
public: 
Sensor():Slave(7,0.001,80){} 

//this is small packet size and high arrival rate 
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-Sensor(){) 
virtual float Schedule_next_arrival() // Not a Poisson processii! 

return FACTOR/local_arrival_rate; 

virtual float Schedule_next_hp_arrival() // Poisson Process 

float X,result; 
for (;;) 
{ 
x=ranO(inum); 
if (x!=0.0) break; 
} 

if (local_hp_arrival_rate> 0 . 0 0 0 0 0 1 ) 

result - -(float)log((double)x) * FACTOR / local_hp_arriT/al_rate; 

else 

{ 
result=infinite; 
} 

return result; 
} 

virtual void Describe(ostream& strm,unsigned char mode) 
{ 
if (mode == VERBOSE) 

Strm <<"Sensor\t AR = "<<local_arrival_rate<<"\t HP^^ua -
"<<local_hp_arrival_rate<<"\t P = "<<local_packet_length; 

else if (mode *= TABULAR) 
strm <<"S"; 

/* 
* Class definition : Tool * 
* Inheritance from : Slave * 
* HISTORY: Date Author Comments * 

* 19.06.96 S.M.Rolland Creation * 
*/ 

class Tool: public Slave{ 
public: 
Tool():Slave(30,0.5,96){} 
//this is larger packet size and medium arrival rate 
-ToolC)(} 
virtual float Schedule_next_arrival() // Not a Poisson process 

return FACTOR/local_arrival_rate; 
/* float X,result; // Previous Poisson Process 

for (;;) 
{ 
X"ranO(inum); 
if (xl-O.O) break; 
) 

if (local_arrival_rate> 0.000001) 

result = -log(x) * FACTOR / local_arrival_rate; 

else 
( 
result-infinite; 

} 
return result; 

virtual float Schedule_next_hp_arrival() // Poisson Process 

float X,result; 
for (;;) 
{ 
x-ranO(inum); 
if (xl=0.0) break; 
} 

if (local_hp_arrival_rate> 0 . 0 0 0 0 0 1 ) 

result = -log (x) * FACTOR / local_hp__arrival_rate; 

else 

{ 
result=infinite; 
} 
return result; 

} 
virtual void Describe(ostream& strm, unsigned char mode) 

{ 
if (mode == VERBOSE) 

Strm <<"Tool\t\t AR = "<<local_arrival_rate<<"\t HP_A^ 
"<<local_hp_arrival_rate<<"\t P = "<<local_packet_length; 
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—3e if (mode= 

strm 
TABULAR) 

Class definition : Net 
Friends : Simu 
Comments : contains instances of Node 
HISTORY: Date Author Comments 

19.06. S.M.Rolland Creation 

class Net { 
friend class Simu; 
private: 

int max_stations; 
int num_stations; 
Node ** station; 

public: 
Net(int size); 
-Net(); 
float Get_event_time(int i,int j); 
void Inc_queue_size(int i); 
void Dec_queue_size(int i); 
void Inc_hp_queue_Gize(int i ) ; 
void Dec_hp_queue_size(int i); 
void Set_in(int i, int value); 
void Set_next_stn(int i, int value); 
int Get_next_8tn(int i); 
void Set_previous_stn(int i, int value); 
int Get_previous_stn(int i); 
void Set_event_time(int i, int j, float value); 
void Set_start_time(int i, int queue, float value); 
void Set_hp_start_time(int i, int qu^ue, float value); 

float Get_hp_start_time(int i,int queue); 
int Get_queue_size(int i); 
void Set_queue_size(int i, int value); 
int Get_hp_queue_slze(int i); 
void Set_hp_queue_size(int i, int value); 
int GGt_in(int i); 
float Get_start_time(int i, int queue); 
float Get_arrival_rate(int i); 
float Get_hp_arrival_rate(int i); 
float Schedule_next_arrival(int i); 
float Schedule_next_hp_arrival(int i); 

float Get_packet_time(int i); 
Node * Remove(int index); 
int Add(Node * n); 
void ListNodes(ostream & strm,unsigned char mode); 
void Edit_Node(int index, float rate, float length); 
void Set_corrupt_frame_flag(int i,unsigned char value) 
unsigned char Get_corrupt_frame_flag(int i); 
void Set_Token_Rotation_Time(int i, float value); 
float Get_Token_Rotation_Time(int i); 
void Set_skipped_flag(int i,unsigned char value); 
unsigned char Get_skipped_flag(int i); 

}; // Net class 

Class definition : Medium 
Friends 
HISTORY: 

: Simu 
Date Author Comments 

19.06.96 S.M.Rolland Creation 

class Medium{ 
friend class Simu; 

private: 

int ring_or_bus; // flag to choose topology 
float packet_time; // average packet transmission time 
float stn_latency; //station latency in time units 
float token_time; // token transmission time 
float tok_ack_time; // token acknowledge transmission time*/ 
float tau; // end to end propagation delay 

public: 
Medium(); 
-Mediumf); 

};// Medium class 

Class definition 
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* Comments : contains instances of Net ana Medium - Th: . -
* level class * 
* HISTORY: Date Author Comments * 

* 19.06.96 S.M.Rolland Creation * 
* 30.09.96 " Each node has its own stat * 

*/ 
class Simu{ 

Medium * mymedlum; 
Net * net; 
float arrival_rate; // arrival rate in packets per sec per staticm 
float rho, clock, next_event_time; 
int *no_pkts_departed; 
float *delay, *total_delay, *average_delay, walk_time; 
float *delay_sum, *delay_8qr, *delay_yar, *delay_8dv, *delay_cc^^_iru% 
int *no_hp_pkts_departed; 
float *hp_delay, *hp_total_delay, *hp_average_delay; 
float *hp_delay_8um, *hp_delay_Bqr, *hp_delay_var, *hp_delay_sch^ *hp_delay_con_int; 
float trt,temp,trt_sum; 
long trt_count; 
int degrees_fr; 
int ic, flag, next_8tation, previous_station; 
float X, logx, rand_8ize, infinite; 
float **delay_ci; 
float **hp_delay_ci; 
int temp_flag; 
int Btn_to_add, ring_size, next_event; 
int master_index; 
float Frame_Error_Rate; 
int error_count; 
float token_count; 
float TTRT; 

public : 
simu 0 ; 
-Simu(); 
void Init(); 
void Increase_Arrival_Rate(); 
void Increase_ic_index(); 
void Runt); 
void Result(); 
int Add_Node(Node* n); 
void List_Nodes(ostream& strm,unsigned char mode); 
int Delete_Node(int n); 
void Edit_Node(int n, float rate, float length); 

}; // Simu class 
// End Of File 
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1 
2 * File : simu.cpp * 
3 * DescripCioa ; 00 aeCwork simulacion * 
4 * #ZgTO#y: Dace AuLAor CbmmenCs * 
5 * * 
6 * 19/06/92 g.M.aoiland Creation * 
7 
8 #laclude "gimu.hpp" 
9 #include <faCream.6> 

10 #inciude <io.h> 
11 ^include <fcntl.h> 
12 #include "random.app" 
13 /* 
14 * Class Member defiaicions ; Node * 
15 * HTSTOay: Date AuLhor Comments * 
16 * * 
17 * 19.06.96 S.M.Rolland Creation * 
18 */ 
19 Nod#;:Nod#() //consCrucCor 
20 { 
21 int i; 
22 i=l; 
23 inurnm&i; 
24 size = 0; 
25 hpqueueeizemO; 
26 corrupt__frame_flag = FALSE; 
27 skipped_flag"FALSE; 
28 for(i=0;i<MAX_Q_SIZE; i++) 
29 Btart time[i]-0.0; 
30 /* assuming bus */ 
31 next_8tn --1; 
32 previou8_8tnm-l; 
33 in=0; 
34 infinite= 1.0 * pow(10.0, 30.0); 
35 for(imO;i<3; i++) 
36 { 
37 event time[i]mO.O; 
38 if (il*0) eventtime[i]"1.0 * pow(10.0,30.0); 
39 } 
40 } 
4 1 / / / / / / / / / / / / y / / / / y / / / / / / / / / / 
42 Node::~Node(){} // descruccor 
43 float Node::Get arrival rate() 
44 {return 0.0;} 
45 float NodexxGet hp arrival_rate() 
46 {return 0.0;} 
47 float Node::Schedule next_afrival() 
48 {return 0.0;} 
49 float Node::Schedule next hp arrival() 
50 {return 0.0;} 
51 
52 float Node::Get packet length() 
53 {return 0.0;} 
54 void Node::Set arrival rate(float rate) 
55 {} 
56 void Node::9et hp arrival rate(float rate) 
57 {} 
58 
59 void Node%:Set packet length(float length) 
60 { } 
61 
62 float Node:%aet_Token_Rotation_Time() 
63 { 
64 return 0.0; 
65 } 
66 void Node::8et Token Rotation Time(float value) 
67 { 
68 } 
69 
70 /• 
71 * Class Member definitions ; Slave * 
72 * HZSTOayv Date AucAor Comments * 
73 * * 
74 * 19.06.96 S.M.Holland CreaCion * 
75 */ 
76 Slave::Slave(float rate, float hp rate, float plength){ 
77 local_arrival_rate"rate; 
78 local_packet_length*pleagth; 
79 localhp arrival rate-hp rate; 
80 } 
81 Slave::-Slave(){} 
82 float Slave::Getarrival_rate() 
83 {return local arrival rate;} 
84 float Slave: :Get_hp__arrival_rate () 
85 {return localhp arrival rate;} 
86 float Slave::Schedule next arrival() 
87 {return 0.0;} 
88 float Slave::Schedulenext hp arrival{) 
89 {return 0.0;} 
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90 
91 float Slave::Get_packet_length() 
92 {return local packet length;} 
93 void Slave::Set_arrivalrate(float rate) 
94 {local_arrival rate-rate;} 
95 void Slave::Set_hparrival_rate(float rate) 
96 {localhp arrival ratemrate;} 
97 void Slave::Set_packet_length(float length) 
98 {local packet lengthwlength;} 
99 float Slave::Get_Token_Rotation_Time() 

100 { 
101 return Token Rotation Time; 
102 } 
103 void Slave::Set Token Rotation Time(float value) 
104 { 
105 Token Rotation Time* value; 
106 } 
107 /* 
108 * Class Member defiaicions : Master * 
109 * HZSTOay; Date Author Comments * 
110 * * 

111 * 19.06.96 g.M.Holland CreaCion * 
112 */ 
113 Master::Master(float rate, float hprate, float plength){ 
114 local_arrival_rate"rate; 
115 local_hp arrival rate-hprate; 
116 local packet length-plength; 
117 } 
118 M&8ter::-Master(){} 
119 float M&8ter::Get_arrival rate() 
120 {return localarrival rate;} 
121 float Master::G^^_hp_arrivalrate() 
122 {return localhp arrival_rate;} 
123 float Master::Schedule next arrival() Poissoa process 
124 { 
125 float X,result; 
126 for (;;) 
127 { 
128 xmranO(inum); 
129 if (xl-0.0) break; 
130 } 
131 if (local arrival rate> 0.000001) 
132 { 
133 result * -log(x) * FACTOR / local arrival rate; 
134 } 
135 else 
136 { 
137 resultminfinite; 
138 } 
139 return result; 
140 } 
141 
142 
143 float Master::Schedule_next_hp arrival() // Poisson Process 
144 { 
145 float X,result; 
146 for (;;) 
147 { 
148 x=ranO(inum); 
149 if (xlmO.O) break; 
150 } 
151 if (localhp arrival_rate> 0.000001) 
152 { 
153 result * -log(x) * FACTOR / localhp arrival rate; 
154 } 
155 else 
156 { 
15 7 result=infinite; 
158 } 
159 return result; 
^0 } 
161 
162 
163 float M&ster*:Get_packet_length() 
164 {return local packet length;} 
165 void Master::Set arrival rate(float rate) 
166 {local_arrival rate-rate;} 
167 void Master::3ethp_arrivalrate(float rate) 
168 {localhp arrival rate-rate;} 
169 
170 void Master::Set_packetlength(float length) 
171 {local_packet_length"length;} 
172 float Master: :Get Token Rotation TlmeO 
173 { 
174 return Token Rotation Time; 
175 } 
176 void Master::Set_Token_RotationTime(float value) 
177 { 
178 Token Rotation Time- value; 
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179 } 
180 /* 
181 * Class Member definitions : Net 
182 * HISTORY: Date Author Cowiuents 
183 * 
184 * 19.06.96 S.M.Rolland Creation 
IBS 
186 Net::Net(int size) 
1B7 { 
188 inax_stations=3ize; 
189 iium_stations = 0 ; 
190 station-new Node * [size]; 
191 for (int i=0; i<size; ++i) 
192 station [i] =1TOLL; 
193 
194 } 
195 Net: :-Net C) 
196 { 
197 } 
198 //////////////////////////// 
199 float Net::Get_event_time(int i,int j) 
200 { 
201 return station[i]->event_time[j]; 
202 } 
203 //////////////////////////// 
204 float Net::Get_start_time(int i,int queue) 
205 { 
206 return stationEil->start_time[queue]; 
207 } 
208 / / / / / / y / / / / / / / / / / / / / / / / / / / / / 
209 void Net::Inc_queue_size(lnt i) 
210 { 
211 station[i]->queue_size++; 
212 if (station[i]->queue_size > MAX_Q_SIZE) 
213 { 
214 station[i]->queue_size--; 
215 /* cout << "Queue size too large";*/ 
216 /* exiCfl];*/ 
217 } 
218 } 
219 //////////////////////////// 
220 void Net::Dec_queue_size(int i) 
221 { 
222 station[i]->queue_size--; 
223 } 
224 //////////////////////////// 
225 void Net::Inc_hp_queue_size(int i) 
226 { 
227 station[i]->hp_queue_size++; 
228 if (station [i]->hp_queue_size > tlAX_Q_SIZE) 
229 { 
230 station[i]->hp_queue_size--; 
231 /* cout << "Queue size too large";*/ 
232 /* exitflj;*/ 
233 } 
234 } 
235 //////////////////////////// 
236 void Net: :Dec__hp_queue_size (int i) 
237 { 
238 station[i]->hp_queue_size--; 
239 } 
240 
241 //////////////////////////// 
242 void Net::Set_in(int i, int value) 
243 { 
244 station[i]->in=valu6; 
245 } 
246 //////////////////////////// 
247 int Net::Get_in(int i) 
248 { 
249 return (station[i]->in); 
250 } 
251 
252 //////////////////////////// 
253 void Net::Set_next_stn(int i, int value) 
254 { 
255 station[i]->next_stn=valu6; 
256 } 
257 
258 int Net::Get_next_stn(int i) 
259 { 
260 return (station[i]->next_stn); 
261 } 
262 
263 //////////////////////////// 
264 void Net: :Set__previous_stn (int i, int value) 
265 { 
266 station[i]->previous_stn=value; 
267 } 
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268 / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
269 int Net::Get_previous_stn(int i) 
270 { 
271 return (station[i]->prevlous_stn); 
272 } 
273 
274 //////////////////////////// 
275 void Net::Set_event_time(int i, int j, float value) 
276 { 
277 station[i]->event_time[j]=value; 
278 
279 } 
280 / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
281 void Net". : Set_start_time (int i, int queue, float value) 
282 { 
283 stationEi]~>start_time[queue]=value; 
284 } 
285 //////////////////////////// 
286 int Net::Get_queue_size(int i) 
287 { 
288 / * if (1==2) 
289 return 1;*/ 
290 return (station[i]->queue_size); 
291 } 
292 void Net: :Set_queue__si2e (int i, int value) 
293 { 
294 station[i]->queue_siz6 = value; 
295 } 
296 //////////////////////////// 
297 int Net::Get_hp_queue_size(int i) 
298 { 
299 return (station[i]->hp_queue_size); 
300 } 
301 void Net:;Set_hp_queue_size(int i, int value) 
302 { 
303 station[i]->hp_queue_size = value; 
304 } 
305 //////////////////////////// 
306 float Net: :Get__arrival_rate(int i) 
307 { 
308 return station[i]->Get_arrival_rate(); 
309 } 
310 //////////////////////////// 
311 
312 float Net:iGet hp arrival rate(int i) 
313 { 
314 return station[i]->Get hp arrival rate(); 
315 } 
316 //////////////////////////// 
317 float Net:%8chedule next arrival(int i) 
318 {return 8tation[i]->Schedule_n@xt arrival();} 
319 //////////////////////////// 
320 float Net::Schedulenext_hp arrival(int i) 
321 {return 8tation[i]->8chedule_next_hp arrival();} 
322 /vvyvvvvvvvvvvvvvy////////// 
323 float Net: ;Get_packet__time (int i) 
324 { 
325 return (station[i]->Get_packet_length() * FACTOR /RATE); 
326 } 
327 //////////////////////////// 
328 Node * Net:%Remove(int index) 
329 { 
330 if (index>max_stations) 
331 return 0; 
332 if (Btation[index]l"NULL) 
3^ { 
334 Node * temp"Station[index]; 
335 8tation[index]mNDLL; 
336 --num^atations; 
337 return temp; 
3^ } 
339 else 
340 return NULL; 
341 } 
342 //////////////////////////// 
343 int Net%%Add(Node* n) 
344 { 
345 if (num_8tations =* max stations) 
346 return 0; 
347 ++ num stations; 
348 int i=0; 
349 while (station[i]!=NULL) 
350 ++i; 
351 station[i]"n; 
352 return i+1; 
353 } 
354 / / / / / / / / / / ^ ^ v v v y / / / / / / / / / / / 
355 void Net::Li8tNodes(ostream& strm, unsigned char mode) 
356 { 
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357 if (num atations >0) 
358 for(int i=0;i<num_8tationB;++i) 
359 if (8tatiom[i] l-NULL) 
360 { 
361 if (mode VERBOSE) 
362 8trm << "\nNode "<<i << " is 
363 station[i]->D#scribe(strm,mode); 
364 } 
365 else 
366 { 
367 if (mode VERBOSE) 
368 strm << "\nNode "<<i << " is NULL"; 
369 } 
370 } 
371 //////////////////////////// 
372 void Net::Edit_Node(int index, float rate, float length) 
373 { 
374 8tation[index]->Set arrival rate(rate); 
375 8tation[indmx]->Set packet_length(length); 
376 } 
377 void Net;:Set corrupt frame flag(int i, unsigned char value) 
378 { 
379 8tation[i]->Set_corrupt frame flag(value); 
380 } 
381 unsigned char Net::Get corrupt frame flag(int i) 
382 { 
383 station[i]->Get_corrupt frame_flag(); 
384 } 
385 void NetiiSetskipped flag(int i, unsigned char value) 
386 { 
387 8tation[i]->9et_8kipped flag(value); 
388 } 
389 unsigned char Net::Get_skipped_flag(int i) 
390 { 
391 return 8tation[i]->Get skipped flag(); 
392 } 
393 
394 void Net::Set_Token_Rotation Time(int i, float value) 
395 { 
396 station[i]->Set Token Rotation Time(value); 
397 ; 
398 } 
399 float Net::Get_Token_Rotation_Time(int i) 
400 { 
401 return Btation[i]->Get Token Rotation Time(); 
402 } 
403 
404 float Net::Get_hp start time(int i,int queue) 
405 { 
406 return station[i]->hp_start_time[queue]; 
407 } 
408 void Net::Set_hp start time(int i, int queue, float value) 
409 { 
410 station[i]->hp_start_time[queue]-value; 
411 } 
412 
413 /* 
414 * Class Member defiaicions ; Medium * 
415 * HISTORY: Date Author Coininents * 
416 * 
417 * 19.06.96 S.M.Rolland Creation * 
418 V 
419 Medium: :Medium(){ 
420 ring_or_bus - 0; 
421 packet_time » 56.0 * FACTOR / RATE; // this is Lhe atn^rage packet time 
422 8tn_latency - 0.0085 * FACTOR; // from measurements 
423 token_time - 48.0 * FACTOR / RATE; 
424 tok_ack_time=48.0 * FACTOR / RATE; 
425 tau " MEDIUM LBNGTH * FACTOR # 5.0 * pow(10.0,-9.0); 
426 } 
427 
428 Medium::-Medium() {}; 
429 /* 
430 * Class Member definitions ; gimu * 
431 * HZSTORY; Date Author Comments * 
432 
433 * 19.06.96 S.M.Holland Creation * 
434 */ 
435 Simu%%Simu() 
436 { 
43 7 mymedium = new MediumC) ; 
438 net = new Net (MAX_NODES) ; 
439 degrees_fr=5; 
440 delay ci= new float* [5] : // STEP 1: SET UP THE ROWS. 
441 for (Int j = 0; j <= 5; j++) 
442 delay_ci[j] = new float [MAX_NODES] ; // STEP 2: SET UP THE COLUMNS 
443 hp_delay_ci= new float* [5] ; // STEP 1: SET UP THE ROWS. 
444 for (j = 0; j <= 5; j++) 
445 hp_delay_ci [j] = new float [MAX_NODES] ; // STEP 2: SET UP THE COLUMNS 
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446 
447 no_pkt8_departed"n#w intCMAZNODBS]; 
448 dmlay-new float[MAX_NODES]; 
449 total_delay mnaw float[MAZNODES]; 
450 average delay -new float[MAZNODES]; 
451 delay sum -new float [MAZ NODES]; 
452 delay_sqr=new float [MAX__NODES] ; 
453 delay__varmnew float [MAX_NODES] 
454 delay_sdv=new float [MAX_NODES] ; 
455 delay_con__int=new float [MAX_NODES] ; 
456 no_hp__pkt8_departedmnew int [MAZ_N0DE8]; 
457 hp delaymnew float [MAX_NODES] ; 
458 hp_total_delay=new floatEMAX_NODES]; 
459 hpaveragedelay-new float[MAXNODES]; 
460 hp delay sum-new float [MAZ NODES]; 
461 hp_delay_mqrmnew float [MAX NODES] 
462 hpdelayvarmnew float[MAXNODES]; 
463 hpdelaysdvmnew float[MAXNODES]; 
464 hp_delay_con_intmnew float[MAXITODES]; 
465 
466 arrival_rate"0.5; // Lhis is Lhe giobal arrival rate 
467 rhO"0.0; 
468 clook*0.0; 
4 69 for (int i.O;i<MAX_NODES;i++) 
470 { 
471 no pkts departedCi] * 0; 
4 72 total_delay[i]=0.0; 
473 average delay[i]"0.0; 
474 nq_hp pkt8_departed[i] * 0; 
475 hp_total__delay [x] =0.0; 
476 hp average_delay[i]"0.0; 
477 } 
478 flag=l.0; 
4 79 next_event_ti%ne » 0.0; 
480 next_event"-l; 
481 ic=-l; 
482 rand size - 0.5 * pow(2.0,8.0* sizeof(int)); 
483 infinite= 1.0 * pow(10.0, 30.0); 
484 ]master_index"0; 
485 Frame_Error_Rate"1000.0; /* one in Frajne_Erroz;_Rat:e frame krili be corrupted*/ 
486 errorcountmO; 
487 tokencountmO; 
488 for (1=0;i<5;i++) 
489 { 
490 for (j.O;j<MAX_NODE9;j++) 
491 { 
492 delay ci[i][j]*0; 
493 hp delay ci[i][j]"0; 
494 } 
495 } 
496 
497 } 
498 //////////////////////////// 
499 
500 8imu::-8imu() 
501 { 
502 delete (mymedium); 
503 delete (net); 
504 } 
505 // / / / / / / / / / / / / / / / / / / / / / / / / / / 
506 void 9imux:Init() 
507 { 
508 trtmO.O; 
509 temp"0.0; 
510 trt_*um"0.0; 
511 ten^mO.O; 
512 trt_count=D; 
513 degrees_fr=5; 
514 arrival_rate"20.0; // Lhis is Lhe glojbai arrival race 
515 rho.0.0; 
516 clookmO.O; 
517 for (int jmO;j<MAX_NODES;j++) 
518 { 
519 no_pktB_departed[j] * 0; 
520 total_delay[j]=0.0; 
521 average_delay[j]mO.O; 
522 no_hp_pkts_departedEj ] = 0; 
523 hp total delay[j1=0.0; 
524 hp average delay[j]"0.0; 
525 } 
526 
527 flag=1.0; 
528 next_event_time - 0.0; 
529 next_event"-l; 
530 ic=-l; 
531 rand size " 0.5 * pow(2.0,8.0* sizeoffint)); 
532 infinite: 1.0 * pow(10.0, 30.0); 
533 error_count"0; 
534 token count"0; 
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535 cout <<"\nEnt#r the Frame Error Rate (float) : " << flush; 
536 cin >> Frame Error Rate; 
537 cout <<"\nEnter TTRT : "<<flu8h; 
538 cin >> TTRT; 
539 } 
540 
541 z^^^vvvvvvvvvvvvvy////////// 
542 void 8imu::Increase_Arrival_Rate() 
543 ( 
544 arrival_rate= arrival_rate + 2 0.0; 
545 } 

546 ,^^^^vvvvvvvvvy///////////// 
547 int Simu:%Add_Node(Node *n) 
548 { 
549 if (net->Add(n)mmO) 
550 { 
551 cout <<"\nCould not add a node\n"; 
552 return (0); 
553 } 
554 else 
555 return 1; 
556 } 

558 void Simu::List_Nodes(ostream& strm,unsigned char mode) 
559 { 
560 if (net->num_8tations "-0) 
561 { 
562 if (mode -- VERBOSE) 
563 Btrm <<"\nEmpty Network!"; 
564 } 
565 net->ListNode8(strm,mode); 
566 if (mode -- VERBOSE) 
567 8trm << "\nTotal of " << net->num stations <<" nodes."; 
568 } 
569 
570 / Y / y y / / / / / / / / / / / / / / / / / / / / / / / 
571 int Simu::Delete_Node(int n) 
572 { 
573 Node *tempmnet->Remove(n); 
574 if ((temp==NULL) j| (temp ==0)) 
575 return 0; 
576 for (int i"n+l;i<"net->num 8tation8;i++) // sAifC down Lhe rest of (J]e 
577 { 
578 temp"net->Remove(i); 
579 if ( (teTftp==NULL) j I (temp ==0)) 
580 return 0; 
581 Add_Node(temp); 
582 } 
583 return 1; 
584 } 
585 void Simu::Edit_Node(int n, float rate, float length) 
586 { 
587 if (n<net->num_stations) 
588 { 
589 net->Edit_Node(n,rate,length); 
590 cout <<"\nNode modified"; 
591 } 
592 else 
593 cout << "\nThis node does not exist"; 
594 } 
595 
596 //vy/zy///////////////////// 
597 void Simu::Increa8e ic inde%() 
598 { 
599 int i,j; 
600 if (ic<"degree8 fr) 
601 { 
602 ic«ic+l; 
603 rho=0.0; 
604 clock"0.0; 
605 temprnO; 
606 for (i.O;i<MAX_NODES;i++) 
6M { 
608 no_pkts_departed[i] * 0; 
60 9 total_delay[i]=0.0; 
610 average_delay[i]"0.0; 
611 no_hp_pkts_departed[i] » 0; 
612 hp_total_delay Ei]=0.0; 
613 hp_average_delay[i]mO.O; 
614 } 
615 flagml.O; 
616 next_event_time * 0.0; 
617 rhO"arrival_rate * 48.0 * net->num_stations / RATE; // using arrival rate 
618 if (rho >ml.O) 
6^ { 
620 /* cout <<"Waming Traffic intensity is too high"<< "\n";// not necessarily true!!!! obsolete 
621 /* ewjtfi;;"/ 
6^ } 
623 for(i=0;i<net->num stations; i++) 
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624 { 
625 net->Set_queue_Bize(i,0); 
626 net->Set_hp_quaue 8ize(i,0); 
627 for (j.0;j<MAX_O 8IZa;j++) 
628 { 
629 net->Set_8taft 
630 net->9et_hp_8tart 
631 } 
632 } 
633 } 
634 } 
635 //////////////////////////// 
636 void Simu%:Run() 
637 { 
638 int i, j; 
639 //floaC Crt,Cemp/ 
640 int temp_gtn,next; 
641 int * inum; 
642 float errorgen; 
643 unsigned char end; 
644 i=l; 
645 inum«&i; 
64 6 end=FALSE; 
647 //ofaCream cscf"cest.i0g",i06:;0uc|i05;;^pp^/// ouCpuC file 
648 ofstream tlog("token.log",io8::out|io8::app);// ouCpuC file 
649 if (mymedium->ring_or_bu8 *"1) // aZNG 
650 { 
651 ring 8ize"net->num stations; 
652 walk_tiine-inymedium->token_time + mymedium->8tn_latancy + mymedium->tau/net->num8tations; 
653 } 
654 else // BUS 
655 { 
656 ring size-O; 
657 walk time" mymedium->token_time +mymedium->stn_latency+ inymedium->tau/3.0+inyinedium->tau/3.0 + 

myme d i um - > t o k_ a c k__ t i m e; 
658 } 
659 for(i-0;i<net->num 8tation8;i++) 
660 { 
661 net->Setnext_Btn(net->num stations-l,0); 
662 net->8et_previous_stn(0,net->num stationa-1); 
663 net->Setpreviou8_8tn(net->num stations-l,net->numstations-2); 
664 n*t->Set next_8tn(0,l); 
665 if ((i<(net->num stations-l)) 66 (i>0)) 
666 { 
667 net->Set_next stn(i,i+l); 
668 net->Set_previous_stn(i,i-l); 
669 } 
670 } 
671 for(i"0;i<(net->num stations);i++) 
672 { 
673 net->Set_Token Rotation_Time(i,0.0); 
674 for (j"iO;j<5;j++) 
6^ { 
676 net->Set_event time(i,j,0.0); 
677 if ((j!=0) && (j!=4)) 
678 net->8et_event_time(i,j,infinite); 
679 } 
680 } 
681 
682 while (end==FALSE) 
683 { 
684 next_event_time"infinite; 
685 for(imO;i<(net->num stations);i++) 
6M { 
687 if (no_pkts_departed[i] > MA%_PACKET8) 
688 end - TRUE; 
689 for(jmO;j<5;j++) 
690 { 
691 if (nexteventtime > net->Getaventtime(i,j)) 
692 { 
693 next_event_time = net->Get_event_time(i,j); 
694 next_stationmi; 
695 next_event-j; 
696 } 
697 } 
6M } 
699 clockmnext_event_time; 
700 if (nextevent > 4) 
701 { 
702 cout <<"Check the Event list"; 
703 exit(l); 
7M } 
705 // SCAN THE EVENT LIST 
706 switch (nextevent) 
7^ { 
708 case 0:// arrival event 
709 { 
710 // tlog <<"\nNA "<< next_station <<" "<<clock; 
711 // net->Inc_queue_slze (nex:t_statlon) ; // INCREASE NORMAL PRIORITY QUEUE 
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712 
713 
714 
715 
716 
717 
718 
719 
720 
721 // 
7̂ 1 ^ 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 
739 
740 
741 
742 
743 
744 
745 
746 
747 
748 
749 

. - - page 9 - . 
if (flag ==1.0) 

{ 
flag=0.0; 
net->S#t ev#nt tim#(next Btatiom,2,clock); 
} 

// schedule for next arrival 

x=net->Schedule__next_arrival (next_station) ; 
if fnexc_scacion--0j 

CSC 
if (net->G#t arrival rate(ne%t_Btation) 1*0.0) 

net->Inc_qu#ue_8iza(next_8tatlon); /y 
nat->8et_avent time(next_8tation, next event, (clock+%)); 
net->Set_start_time(next_station, (net->Get_queue_8iza(naxt_statioii) -1), 

clock); 
} 

else 
{ 

net->Seb__event_time(next_8tation, next eventfx+clock); 

break; 
} 

case 1 : // departure evenC 
{ 

tlog <<"\nND "<< next etation <<" 

if (net->Get_queue_8lze(next_8tation) >0) // gUEUE STZE CHECX 

if (net->Get_corrupt_frame_flag(next_8tation) I* TRUE) // ERR0J3 GEZf 

if (net->Get_skipped_f lag (next__station) ! =TRUE) // TTRT CHECK 

net->Dec queue size(next station); 
no_pkts_departed[next station] ++; 

if (next_8tationmmO) // added Co gimulaCe CAe face CAaC PC NOT OJi inCerrupCs 

if ((clock - net->Get starttime (next station, 0)) < 40) // PC dead 
Cime 

750 
751 
752 
753 
754 
755 

756 
757 
758 

759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 

779 
780 
781 
782 
783 
784 
785 
786 
787 
788 
789 
790 
791 
792 
793 
794 
795 
796 

{ 
delay[next station]"40; 

COMPCTTE DELAY 

DELAY 

delay[next_station]mclock - net->Get_8tart_time(next_station,0);// 

} 
else 
delay[next station]mclock - net->Get_8tart_time(next_station,0);// COMPC/ITE 

total delay[next_station] +=delay[next_station] ; 
// push the queue forward 
for(i = 0;i<net->Get_queue_size(next station); i + + ) 

net->Set_start__time (next station, i, 
net->Get start_time (next station, i+1)); 

net->Set_start_time(next_8tation,net->Get_queue_8ize(next station) ,0.0); 
net->8et_event time(next_station,next_event, infinite); 
tlog <<" Txed"; 
} 

else // TTRT CHECK TRUE 
{ 

tlog <<" Skipped"; 
net->Set skipped flag(next_station,FALSE); 
net->Set_event_tiine (next station,naxt_event, infinite) ; 

} ^ 
else // ERROR GEN TRUE 

{ 

net->Set_corrupt frame flag(next_station,FALSE); 
net->Set_event_time(next_station,next_event,infinite); // 37fe sCaCio;] doesn'C 

know ic was corrupc 

} 
tlog <<" Error" 

} 
else // QUEUE SIZE CHECK EMPTY 

{ 

net->Set_event_time (next_8tation,next_event, infinite) ; 
tlog <<" EMPTY"; 

} 
// Modified logical ring managemenc 
next*net->G*t_next stn(next_station); 
// ToJcen Passing 
net->Set_event_time(next,2,clock+walk_time); 
error gen*ran0 (inuiti) ; 
if ((errorgen * Frame Error_Rate) <1.0) 

// error during Coken passing => reopeac procedure????*/ 
error count++; 
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797 net->Setevent time(next,2,clock+2*walk_tlme); 
798 } 
799 break; 
800 } 
801 cage 2% // This is a token arrival event 
802 { 
803 // Clog <<"\ar0X "<< next_6CaCian <<" "<<ciock/ 
804 if (next_8tation ** 0) 
805 { 
806 
807 if (temp 1*0.0) 
808 { 
809 trt=net->Get_event_time(ne%t_8tation,2)-temp; /y TRT gTATTSrzCS 
810 trt_count++; 
811 } 
812 temp"net->Get event time(next station,2); 
813 trt_8um*trt_sum + trt; 
814 
815 } 
816 net->8et_event_time(next station,2,infinite); 
817 
818 if (net->Get hp_queue_size(naxt station) >0) /Y &IZE CHECK 
819 { 
820 error_genmranO(inum); 
821 if ((error_gen * FrameError Rate) <1.0) 
822 { 
823 /y CGrrupc frame => not actually cransmitced*/ 
824 error count++; 
825 net->Set corrupt frame flag(nextstation,TRUE); 
826 } 
827 net->Set_eventtime(next8tation,3,clock + net->Qet_packet_time(next_station)); 
828 } 
829 else 
830 { 
831 net->9et_event_time(next_Btation,3,clock); 
832 } 
833 if ( (clock-net->Get___Token_Rotation_Time (next_station) ) <TTRT) // PREPARE FOR TTRT 

CHECK 
834 { 
835 // cout <<" r ''<<cloc/c<<'' ''<<^net->GeC_roken_J3ot:ation_!rimernaxt_sta(:ioj]^^<< " 

"<<clock-neC->GeC_ro*en_#oCacion_rimernext_sCacion̂ / 
836 net->Set_Bkipped_flag(next_Btation, FALSE); 
837 } 
838 else 
839 { 
840 // cout <<"5 "<<clock-j]eC->GeC_roken_#o(:atio2]_!rijnefnejcc_sCaCiof]J/ 
841 net->Set skipped flag(next Station, TRUE); 
842 } 
843 
844 Det->8et_Token Rotation_Time(next_station,clock); 
845 break; 
846 } 
847 case 3 : // departure of high priority frame 
848 { 
849 // tlog "<< aext_8tation <<" "<<clock/ 
850 if (net->Get_hp_queue_size(next_8tation) >0) // QUEUE 5ZZE CHEOC 
851 { 
852 net->Dec_hp_queue si%e(next station); 
853 if (net->Get_corrupt frame_flag(next_station) I- TRUE) // ERR0J3 GE# 
854 { 
855 // tlog <<" Txed"; 
856 nq_hppkts_departad[next station] ++; 
857 hp_delay[naxt_station]mclock - net->Get_hp_start_time(next station,0);// COMPUITE 

DELAY 
858 hp_total_delay[na%t_station] +"hp_delay[next_8taticm]; 
859 // push the queue forward 
860 for(imO;i<net->Get_hp_queue_size(next_station);i++) 
861 net->Set_hp start time(next station,i, 
862 net->Get_hp_start tiin@ (next_station, i+1)); 
863 net->Set_hp_start__time (next_station,net->Get_hp_queue_size (next station) ,0.0); 
864 net->SGt_event_time(next station,next_event,infinite) ; 
865 } 
866 else // ERgOj! GEM m U E 
867 { 
868 // tlog << " Error"; 
869 net->Setcorrupt frame flag(next_station,FALSE); 
870 net->Set_event_time(next_8tation,next_event,infinite); /V 3%% station doesn't 

know it was corrupt 
871 } 
872 } 
873 else // QUEUE SIZE CHECK EMPTY 
874 { 
875 // tlog <<" Empty"; 
876 net->Set_event_time(next station,nextevent,infinite); 
877 } 
878 // n^ZGGER ZyP̂ EVEATT 
879 if (net->Get_queiie_size(next_station) >0) // QUEUE SZZE CZHECK 
880 { 
881 if (net ->Get__skipped__f lag (next station) ! -TRUE) 
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882 { 
883 // j]ec->gec_eyef]t_cimefj]e%c_6bacj0f!,l,ci0cjc + J]ec->GeC^packeC_CjmefnexC_5CaCion;;, 
884 net->8et_#v#nt_tima(ne%t_8tation,l,clock ); 
885 error_g*nmranO(inum); 
886 if ((error gen * Frame_Error Rate) <1.0) 
887 { 
888 // Corrupt frame => noC actually transmitCed*/ 
889 error_count++; 
890 net->Set_comipt_frame_flag(next_station,TRUE) ; 
891 
892 } 
893 } 
894 else 
895 { 
896 net->Set_eventtime(next station,1,clock); 
897 } 
898 } 
899 else 
900 { 
901 net->Set event time(next station,1,clock); 
902 } 
903 break; 
904 } 
905 case 4:// J-fP arrival event 
906 { 
907 // tlog "<< aexC_station <<" "<<clock/ 
908 x"net->schedulenext_hp arrival(next station); 
909 if (net->Gbt_hp arrival rate(next station) 1*0.0) 
910 { 
911 net->Inc_hp_queue_size(next_station); // INCREASE QUEUE 
912 net->Set_event_tiine(next_station, next event,(clock+x)); 
913 net->9et hp_start_time(next_station, (net->Get_hp_queue size(next_station) -1), 
914 clock); 
915 /Y tlog <<" Added"/ 
916 } 
917 else 
918 { 
919 net->Set_event_time(next station, next_event,x+clock); 
920 // tlog <<" No ffP Frame"; 
921 } 
922 break; 
923 } 
924 
925 } // end of switch 
926 } // end of while 
927 for (i"0;i<net->num 8tations;i++) 
928 { 
929 if (no pkts_departed[i] *- 0) 
930 { 
931 average_delay[i] -0.0; 
932 } 
933 else 
934 { 
935 average delay[i]" total_delay[i] /(no_pkts_departed[i] *FACTOR); 
936 if (nohp pktB_departed[i] m«0) 
937 hpaveragedelayCilmO; 
938 else 
939 hp_average_delay[i]- hp total_delay[i] /(no_hp_pkts_d@parted[i] *FACTOR); 
940 } 
941 delay_ci[ic][i]"average_delay[i]; 
942 hp_delayci[ic][i]"hp_average delay[i]; 
943 } 
944 
945 } 
946 
947 void Simn::Result() 
948 { 
949 int i,j; 
950 
951 ofstream ostrm("simu.log",iOB%%out|ios%:app);// output file 
952 if (net->num stations <"1) 
953 cout « "\nA network needs at least two stations I Will not run simulation"; 
954 else 
955 { 
956 for (j"0;j<"degree6_fr;j++) 
957 { 
956 Increase icindex(); 
959 RunO; 
960 } 
961 
962 for (i"0;i<net->num stations;i++) 
963 { 
964 delay_sum[i] -0.0; 
965 delay sqr[i] * 0.0; 
966 hp_delay_sum[i] =0.0; 
967 hp_delaysqr[i] m 0.0; 
968 
969 for (jmO;j<"degree8_fr;j++) ^ 
970 { 
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971 daiay_8um[i] +md#layci[]][!]; 
972 delay_sqrEi] += pow (delayed Ej ] [i], 2.0); 
973 hp_delay_sum[i] +=hp_delay_ci[j][i]; 
974 hp delay__sqr[i] +* pow(hp_delay_ci[j][i], 2.0); 
975 } 
976 cout <<"\nNODE 
977 if (delay_8um[i]l"0) 
978 { 
979 delay_8um[i] » delay_8um[i] / (dagreea fr +1); 
980 delay_sqr[i] m delay 8qr[i] / (degrees fr +1); 
981 delay_var[i] -delay sqrCi] - pow(delay_8um[i], 2.0); 
982 if (delay var[i] >0) 
983 { 
984 dalay_sdv[i] * 8qrt(delay_var[i]); 
985 delay_co%i_iiit [i]" delay_sdv[il * T diet car [degrees fr-11/sort (degrees_fr): 
986 } 
987 
988 cout << "\nThe average delay is " << delay_sum[i] << << delay_con_int[i]; 
989 Li8t_Node8(o8trm,TABULAR); 
990 if (delay con_int[i] >0) 
991 { 
992 cout << " Validity check " « degrees fr <<">= "<<delay_sdv[i] * 

T di8t_par[degree8_fr-l]/8qrt (delay con int[i]); 
993 ostrm <<","<<i<< ","<<delay_sum[i] << << delay_con_int[i] << net-

>num stations <<","<< 
994 delay sdv [i] * T_dist_par [degrees^fr-1] /sqrt (delay_con_int [i] )<<","<< 

trt_sum/trt_count<<","<<Frame Error Rate<< 
995 ","<<TTRT<<"\n" ; 
996 } 
997 else 
998 { 
999 cout << "\nUnable to compile confidence interval check"; 

1000 ostrm <<","<<i<< ","<<delay_sum[i] << "," << delay conint[i] << net-
>num stations <<","<< 

1001 "Failed"<<","<< trt sum/trt count<<","<<Fraume Error Rate<<","<<TTRT<<"\n" ; 
1002 } 
1003 } 
1004 else 
1005 cout <<"\nNo information gathered "<<delay_sum[i]; 
1006 if (hp_delay_sum[i]lmO) 
1007 { 
1008 hp_delay_sum[i] m hp_delay_sum[i] / (degrees_fr +1) ; 
1009 hp_delay_sqr[i] » hp_delay_sqr[i] / (degreesfr +1); 
1010 hp_delay_var[i] mhp_delay_sqr[i] - pow(hp_delay_Bum[i], 2.0); 
1011 if Chp_delay_var[i] >0) 
1012 hp_delay_8dv[i] # 8qrt(hp_delay_var[i]); 
1013 else 
1014 hp_delay_sdv[i]=0; 
1015 hp_delay_con_int [i] = hp de 1 ay sdv[i] * T_dist__par [degrees_fr-l]/sqrt 

(degrees fr); 
1016 cout << "\nThe average hp_delay is " << hp_delay_sum[i] << << 

hp_delay_con_int[i] ; 
1017 if (hp_delay_con_intli] >0) 
1018 cout << " Validity check " << degrees fr <<">= "<<hp_delay_8dv[i] * 

Tdi8t_par[degrees fr-1]/sqrt (hp delay conint[i]); 
1019 } 
1020 else 
1021 cout «"\nNo High Priority Frame Information gathered "«hp_delay sum[i] ; 
1022 } 
1023 cout << "\nAverage trt "<< trt_sum/trt count ; 
1024 cout <<"\n Generated "<< error count <<" errors. 
1025 
1026 } 
1027 } 
1028 // End of File 
1029 
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iii-'tsini cpp payu % 
89 } 
90 //////////////////////////// 
91 Net::-Net() 
92 { 
93 deleten station; 
94 } 
95 //////////////////////////// 
96 float Net::Get_event_time(int i,int j) 
97 { 
98 return station Cil • eveiit_time [j ] ; 
99 } 
100 //////////////////////////// 
101 float Net::Get_start_time(int i,int queue) 
102 { 
103 return station [i] . start_tiine [queue] ; 
104 } 
105 //////////////////////////// 
106 void Net::Inc_queue_sizeCint i) 
107 { 
108 station[i].queue_size++; 
109 if (station [i] . queue__size > MAX_Q_SIZE) 
110 { 
111 cout << "Queue size too large"; 
112 exit(l); 
113 } 
114 } 
115 //////////////////////////// 
116 void Net::Dec_queue_size(int i) 
117 { 
118 station[i].queue_size--; 
119 } 
120 
121 //////////////////////////// 
122 void Net::Set_in(int i, int value) 
123 { 
124 station[i].in=value; 
125 } 
12S //////////////////////////// 
127 int Net::Get_in(int i) 
128 { 
129 return (station[i].in); 
130 } 
131 
132 //////////////////////////// 
133 void Net::Set_next_stn(int i, int value) 
134 { 
135 station[i].next_stn=value; 
136 } 
137 //////////////////////////// 
138 int Net::Get_next_stn(int i) 
139 { 
140 return (station[i].next_stn); 
141 } 
142 
143 //////////////////////////// 
144 void Net::Set_previous_stn(int i, int value) 
145 { 
146 station[il.previous_stn-value; 
147 } 
148 //////////////////////////// 
149 int Net::Get previous stn(int i) 
150 { 
151 return (station[i].previous stn); 
152 } 
153 
154 //////////////////////////// 
155 void Net: : Set__event_time (int i, int j, float value) 
156 { 
157 station[i].event_timeEj]=value; 
158 
159 } 
160 / / / / / / / / / / / / / / / / / / / / / / / / / / / / 
161 void Net::Set_start_tim6(int i, int queue, float value) 
162 { 
163 station [i] . start__time [queue] =value; 
164 } 
165 //////////////////////////// 
166 int Net: :Get__queue_size(int i) 
167 { 
168 return (station[i].queue size); 
169 } 
170 void Net::Set_queue sizefint i, int value) 
171 { 
172 station[i].queue size * value; 
173 } 
174 //y////y////y//////////y//y////////////////////////////////////////y 
175 class Medium{ 
176 friend class Simu; 
177 private: 
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-itilsim cpp payo 
178 
179 int ring_or_bu8; // flag Co cAoose topology 
180 float pack#t_time; // packet trangmiggion time 
181 float 8tn_lat@ncy; //station latency in time units 
182 float token_tim@; // token transmission time 
183 float tan; // end to end propagation delay 
184 
185 public: 
186 Medium() ; 
187 -Medium (); 
188 
189 };// Medium class 
190 //////////////////////////// 
191 Madii]m::Medium(){ 
192 ringorbug - 0; 
193 packet_time . 1000.0 * FACTOR / RATE; 
194 gtnlatancy = 0.0; 
195 token_time = 50.0 * FACTOR / RATE; 
196 tau " 0.01; 

} 
198 //////////////////////////// 
199 Medium: :-Mediiini() {}; 
200 
201 //////////////////////////////////////////////////////////////////// 
202 clags 8imu{ 
203 Medium * mymedium; 
204 Net * net; 
205 float arrival_rate; // arrival rate in packets per sec per station 
206 float rho, clock, no_pktg_departed, next_event_time; 
207 float delay, totaldelay, averagedelay, walktime; 
208 float delaysum, delaygqr, delay_var, delaysdv, delayconint; 
209 int degreesfr; 
210 int ic, flag, nextgtation, previouggtation; 
211 float X, logx, rand_gize, infinite; 
212 float *delay_ci; 
213 int ten^ flag; 
214 int gtntoadd, ringsize, next_event; 
215 public : 
216 Simu 0 ; 
217 -SimuO ; 
218 void Increage_Arrival_Rate(); 
219 void Increage_icindex(); 
220 void Run(); 
221 void Result(); 
222 }; // gimu class 
2 2 3 //////////////////////////// 
224 Simu:%Simu() 

226 mymedium " new MediumO; 
227 net - new Net (50); 
228 degreesfr-S; 
229 delayci = new float[5]; 
230 arrivalrate-O; 
231 rho=Q.O; 
232 clock=0.0: 
233 no_pktg_departed = 0.0; 
234 totaldelaymO.O; 
235 averagede1ay-0.0; 
236 flag=1.0; 
237 next_event_time * 0.0; 
238 na%t_eventm-l; 
239 ic=-l; 
240 randgize = 0.5 * pow(2.0,8.0* sizeof(int)); 
241 infinite" 1.0 * powdO.O, 30.0); 

243 //////////////////////////// 
244 
245 8imu:%-8imu() 

247 delete delay_ci; 
248 delete (mymedium); 
249 delete (net); 

251 //////////////////////////// 

252 void Simu::Increage Arrival RateO 

254 arrivalratew arrivalrate + 20.0; 

256 //////////////////////////// 
257 void 9imu::Increase_icinde%{) 
259 int i,j; 
260 if (ic<*degreea_fr) 

262 ic"ic+l; 
263 rhomO.O; 
264 clockmO.O; 
265 no^ktg departed » 0.0; 
266 totaldelay-O.O; 
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267 average d#laymO.O; 
268 flag=1.0; 
2 69 next_event_time = 0.0; 
270 rhO"arrival_rate * 1000.0 * net->ma%_station8 / RATE; 
271 if (rho >.1.0) 
272 { 
2 73 cout <<"Traffic intensity is too high"<<"\n"; 
274 exit(l); 
275 } 
276 for(i * 0;i<net->max_8tationg; i++) 

{ 
278 net->Set_queue_size(i,0); 
279 for (j=0;j<MAX_Q_SIZE;j++) 
280 net->Set_start_tiine (i, j , 0 . 0) ; 

} 
282 } 
283 } 
284 //////////////////////////// 
285 void Simu::Run() 
286 { 
287 ink i, j; 
288 int temp_8tn,next; 
289 if (mymedium->ring orbus ="1) // 
290 { 
2 91 ring_si2e=net->max_stations; 
292 walk_time-inymediuin->token_time + mymedium->stnlatency + mymedium->tau/net->max_8 tat ions; 
293 } 
2 94 else // BUS 
295 { 
296 rlng_size=0; 
297 walk__time= myinediuin->token_time + mymedium->tau/3 . 0; 
298 } 
2 99 for(i=0;i<net->max_stations;i++) 
300 { 
301 if Cmymedium->ring__or_bus ==1) // RING 
302 { 
303 net->Set_next_stn (net->inax_stations-l, 0) ; 
304 net->Set previou88tn(0,net->max stations-1); 
305 net->Set previous stn(net->max8tations-l,net->max_*tation8-2); 
306 net->Set_next 8tn(0,l); 
307 if ((i<(net->max stations-l)) && (i>0)) 
308 { 
309 net->Set_next_stn(i,i + 1) ; 
310 net->Set_previous_stn(i,i-1); 
311 } 
312 } 
313 else 
314 { 
315 net->Set_in(i,0); 
316 net->Set_next__stn(i,-1) ; 
317 net->Set_previous_stn(i,-1) ; 
318 } 
319 } 
320 for(i = 0;i< Cnet->max_stations);i + + ) 
321 { 
322 for (j=0;j<3;j++) 
3^ { 
324 net->Set_event_time(i,j,0.0); 
325 if (jl=0) 
326 net->Set_event_time(i,j,infinite); 
3^ } 
328 } 
329 
330 while (nopkts departed < MAX_PACKETS) 
331 { 
332 next_event_time=infinite; 
333 for(imO;i<(net->max stations);i++) 
3^ { 
335 for(j=0;j<3;j++) 
336 { 
337 if (nexteventtime > net->Get_event_time(i,j)) 
338 { 
339 nextevent time * net->Get_event ttma(i,j); 
340 next_8tation"i; 
341 next_event-j; 
342 } 
343 } 
3^ } 
345 clock"next_event_time; 
346 if (next event > 2) 
3^ { 
348 cout <<"Check the Event list"; 
349 exit(l); 
3^ } 
3 51 // SCAN THE EVENT LIST 
352 switch (nextevent) 
353 { 
354 case 0:// arrival event 
355 { 
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356 n@t->Inc queue 8ize(n*xt_8tation); 
357 if (mymedium->ring_0r_bu8 "*!) //RZMG 
358 { 
359 if (flag == 1.0) 
360 { 
361 flag " 0.0; 
362 net->8etevent_time (next station,2,clock); 
363 } 
364 } 
365 else 

{ 
367 if (flag==1.0) 
368 { 
369 flag-0.0; 
370 ring size-l; 
371 net->8etin(next station,!); 
3 72 net->Set_next_stn(next station,next station); 
3 73 net->Set_previous_stn(next station,next_station) ; 
374 net->Set event time(next station,2,clock); 
375 } 
376 } 
377 
378 // schedule for aext arrival 
379 for (;;) 

{ 
381 xm(float) rand(); 
382 if (xl"0.0) break; 
383 } 
384 logx m -log(x/rand size) * FACTOR / arrival rate; 
385 net->Set_event_time(next_station, next event, (clock+logx)); 
386 net->Set start_time(next station, (net->Get_queue_siza(next_station) -1), 
387 clock); 
388 break; 
389 } 
390 case 1 : // departure evenc 
391 { 
392 net->Decgueuesize(next station); 
393 no_pkts_departed ++; 
394 delaywclock - net->Get start time(next station,0); 
395 total delay +"delay; 
396 // push the queue forward 
397 for(i"0;i<net->aetqueue_size(next station);i++) 
398 net->Setstart_time(next station,i, 
399 net->Get_start_tima (next station, i+1)); 
400 net->Set_8tart_tiiiie(next_station,net->Get_(iueue_size(next station) ,0.0); 
401 net->Set_eventtime(next_station,next event,infinite); 
402 if (mymedium->ring_or_bus ** 0) 
403 { 
404 stnto add "-1; 
405 for( i*next station+l;i<net->max stations;i++) 
406 { 
407 if ((net->Get queue Bize(i)>0) && (net->Get in(i)"'"0)) 
408 stntoaddmi; 
409 if (stn to_add lm-1) continue; 
410 } 
411 if (stn_to add == -!) 
412 { 
413 for(i"0; i<next_station -1; i++) 
414 { 
415 if ((net->Get_queue_size(i)>0) && (net->G@C_in(i) ==0)) 
416 stn to_add-i; 
417 if (stn to add I--1) continue; 
418 } 
419 } 
420 if (stn_tq_add lm-l) 
421 { 
422 temp_8tn * net->Get_next_stn(next_station); 
423 net->Set next_stn(next_station, stnto add); 
424 net->9et_next stn(stn_to add, temp_stn); 
425 net->8et previous 8tn(stn to add,next station); 
426 net->9et previous stn(temp stn,stn_to_add); 
427 ring 8ize++; 
428 net->9et in(stn to add,l); 
429 } 
430 if (net->Getqueue_size(next station)"mO) 
431 { 
432 ring size--; 
433 net->9etin(next station,0); 
434 if (ring_size==0) 
435 { 
436 net->9et_nextstn(next Station,-!); 
437 net->Set previou8_stn(next_Btation,-l); 
438 flag-1.0; 
439 } 
440 else 
441 { 
442 next=net->Getnext_stn(next Station); 
443 net->8etevent time(next,2,clock+walk time); 
444 net->9et_next stn(net->Get_previous stn(next Btation), 
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445 net->Get:_next_Bbn(next station)); 
446 net->Setjprevious 8tn(next,net->Get previous_gtn(next station)); 
44T } 
448 } 
449 else // queue size not 0 
450 { 
451 next"net->Get_next_stn(next_station); 
452 net->Set_event_time(next,2,clock+walktime); 
453 } 
454 } 
455 if Cmyinedium->ring_or_bus - = 1) //RING 
456 { 
457 next"net->Get_nextstn(ne%t Station); 
458 if (( nextm"0) && (net->Get_queue sizetnext staticwi) 0)) 
459 { 
460 temp flag *! ; 
461 for(i"0; i<net->max stations; i++) 
462 { 
463 if (net->Get_queue size(i) I* 0) 
464 { 
465 net->Set_event_time(next,2,clock+walk_time); 
466 temp flag-0; 
467 break; 
468 } 
469 } 
470 if (teinp_flag = = 1) 
471 { 
472 flag = 1.0; 
473 net->Set_event_tiine (next, 2, infinite) ; 
474 } 
475 } 
476 else 
477 { 
478 net->Set_event time(next,2,clock+walk_time); 
479 } 
480 break; 
481 } 
482 break; 
483 } 
484 case 2: // T&jg is a token arrival event 
485 { 
486 net->Set_event_time(next station,2,infinite); 
487 if (net->a*t_queuesize(next station) >0) 
488 { 
489 net->9et event_time(ne%t Station,1,clock + mymedium->packet time); 
490 } 
491 else 
492 cout <<"There is something wrong (BUS)"; 
493 
494 // assuming bus 
495 break; 
496 } 
4 97 } // end of switch 
498 } // end of while 
499 if (no_pkts_departed 0.0) 
500 { 
501 averagedelay =0; 
502 cout << "wrong answer\n"; 
503 } 
504 else 
505 average delay* total delay /(no pktsdeparted *FACTOR); 
506 delay ci[ic]maverage_delay; 
507 
508 } 
509 
510 void 8imM:*Result() 
511 { 
512 int i, j; 
513 for (i=0;i<10;i++) 
514 { 
515 io=-l; 
516 lncrease_Arrival_Rate(); 
517 for (jmO;j<"degreesfr;j++) 
518 { 
519 Increase ic_index(); 
520 Run(); 
521 } 
522 
523 delaysum =0.0; 
524 delay sqr = 0.0; 
525 for (ic"0;ic<"degrees_fr;ic++) 
526 { 
527 delaysum +"delay ci[ic]; 
528 delaysqr +- pow(delay ci[ic], 2.0); 
529 } 
530 delaysum * delaysum / (degrees fr +1); 
531 delaysqr * delaysqr / (degreesfr +1); 
532 delay_yar "delay_8qr - pow(delay sum, 2.0); 
533 delay sdv m sqrt(delay_var); 
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534 delay_con_int # delay_8dv * T di8t_par[degree8_fr-l]/8qrt: (d#gre#B_fr); 
535 cout « " For an arrival rata of " << arrival ratm << " cha avaraga delay is 
536 << delaysum << << delay con int << "\n"; 
537 } 
538 } 
539 
540 void main (void) 
541 { 
542 
543 Simu * myaimulation; 
544 couC << "Starting simulation" << "\n"; 
545 
546 myaimulation = new Simu(); 
547 mysimulation->RaGult(); 
548 delete mysimulation; 
549 cout << "\n"; 
550 getch(); 
551 
552 } 
553 
554 
555 
556 
557 
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This presents different ways of generating a random number X, from its 

probability distribution F(x). Two techniques commonly used are: 

1. Inverse transformation (or direct method) 

This is based by inverting the cumulative probability function F (x ) = P ( X < x ) , 

which is associated with the random variable X. We know that 0 < F (x) < 1. 

By generating a random number U uniformaly distributed between 0 and 1, we 

can produce a random sample X from the distribution by inversion: 

U = F(x) 

X = F ' ( U ) 

00 e.g. if F(x) = 1 - e " w i t h 0 < x < 

then X = -JU\VL{\ - U) 

Assuming that the inverse transformation exists, this method is good. However, 

there is a problem if it does not exist, as in a Gaussian distribution. 

2, Rejection method 

This method can be applied to any bounded variable. With the probability density 

function of the random variable noted as f (x ) . 

l e t d r y ? f t K ) = = O f b r a : > x : > b and f (x ) 

It is possible to generate random variates by 

a) generating two random numbers U1 and U2 in the interval (0,1) 

b) computing two random numbers with uniform distribution in (a,b) and (0,M) 

respectively so that: 

X=a+(b-a)U1 ( scale on the X axis ) 

Y=U2 M ( scale on the Y axis ) 

c) if Y<=f(X1) accept X the next random variate otherwise reject and go back to a) 

All points falling above f (x ) are rejected, and the points falling on or below are 

utilised to generate X. 
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selftune.c 
1 // file ; selfcune.c Au&Aor ; S.aoiland Sepcember '97 

// selfcuning PZD simuiaCiom software 

//Other module included is matrix computation library fmatlibj 
^include "matlib.A" 

#include <dos.A> 
#define TRUE 1 
§define FALSE 0 

2 ^define N 5 

3 // 

4 // Main procedure 

5 // 

6 void main() 
7 { 
8 //variable declarations 
9 float ** theta_k,**phi_k,**theta old,**phi_old,**P,**P_old,#*L,**temp,**teiqp2,**P_ten#,**P_ten%)2 

10 float ** used_theta,** ugad_phi,#* P_temp3,**P temp4,**phi_tamp; 
11 float ** phi_log3,** phi log4,** phi logS,** phi log6; 
12 static float den; 
13 static float lambamO.99; 
14 static float estimate_error; 
15 static float dyk;//current output 
16 static double wo-lOe?; 
17 static double A,B,C,delta,rootl,root2; 
18 int i,j; 
19 int tint; 
20 float alphal,alpha2,bO,bl,b2;/y t±^ actual parameters to estimace 
21 float d; /y estimate values 
22 float temp floatl,temp float2; 
23 FILE *in; 
24 FILE *pid; 
25 float newy-O.O; 
26 float epsilom; 
27 float al,a2,tau,delta2,mu,h; 
28 float K,Ti,Td; 
29 float PID error,PID output,PID_integral,PID_derivative,PlD_old_error; 
30 float *f_pointer; 
31 float tf; 
32 int RLS step,oldRLS step; 
33 unsigned char PID_ON; 
34 static float uk; 
35 static float olduk; 
36 float command[10]; 
37 float output[10]; 
38 unsigned char locked; 
39 
40 // variable initialisation 
41 locked " FALSE; 
42 _stklen=0x2000; 
43 command[1]m-1; 
44 output[l]m-l; 
45 A.O; 
46 B-O; 
47 C=0; 
48 delta=0; 
49 al=0; 
50 a2=0; 
51 tau"0; 
52 mu"0; 
53 d=l; 
54 h.0.04; 
55 
56 // file opening 
57 // event.log logs parameters estimation values 
58 if ((in = fopen("event.log", "wt")) == NULL) 
59 { 
60 fprintf(8tderr, "Cannot open input file.\n"); 
61 e%it(l); 
62 } 
63 // pid.log logs the PJD coefficients and output values 
64 if ((pid " fopen("pid.log", "wt")) NULL) 
65 { 
66 fprintf(stderr, "Cannot open pid file.\n"); 
67 exit(l); 
68 } 
69 // values used for generating model response 
70 alphal=0.975; 
71 bO-0; 
72 bl=2.56; 
73 b2 =0; 
74 // matrix memory allocation 
75 printf("\nThe is stack: %u\tstack pointer: %u", stackavailf), _SP); 
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seifUine c 
76 ugad_th#ta"matrix(l,l,l,N); 
7 7 theta__k=matrix (1,1,1,N) ; 
78 theta_old"matrix(l,l,l,N); 
79 u8ed_phi"matrix(l,N,l,l); 
80 phi_k=inatrix (1,N, 1,1) ; 
81 phi_old«matrix(1,N/1,1); 
82 phi__log3=matrix C1,N, 1,1) ; 
83 phi_log4=inatrix (1,N, 1,1) ; 
84 phi_log5=matrix(1,N,1,1); 
85 phi log6*matrlx(l,N,1,1); 
86 phi_temp=matrix(1,N,1,1); 
87 L=matrix(1,1,1,N); 
88 P=matri%(l,N,l,N); 
89 P_old=matrix(l,N,l,N); 
90 teng)"matrix(l,l,l,N); 
91 teinp2=matrix(1,1,1,1) ; 
92 P_temp"matrix(l,N, 1,N); 
93 P_temp2=matrix(l,N, 1,N) ; 
94 P_temp3=inatrix(l,N, 1,N) ; 
95 P_teng)4*matrix(l,N, 1,N); 
96 // matrix iajtialigacjon 
97 zero(P,1,N,1,N); 
98 eye(P,1,N,1,N); 
99 zero(P_old,1,N,1,N); 

100 eye(P_old,l,N,1,N); 
101 zero(theta_k,1,1,1,N); 
102 zero(theta old,1,1,1,N); 
103 zero(L,1,1,1,N); 
104 
105 theta_k[l] [43 =1; //m.'=0 
106 theta_old[1] [4]=1; // bl!=0 
107 theta k[l][l]"l; 
108 th*ta_old[l][l]"l; 
109 thata_k[l][2].l; 
110 theta_oldE13 [21=1; 
111 used_theta[13 [13="alphal; 
112 used_theta[13 [2]=b2; 
113 used_theta[13 [33=bl; 
114 used_theta[1] [43=bO; 
115 used_theta[13 [5]=0; 
116 zero(used_phi,1,N,1,1); 
117 zero(phi k,l,N,1,1); 
118 z#ro(phiold,l,N,l,l); 
119 phi_k[N][l].l; 
120 phi_old[N3 [13=1; 
121 zero(L,1,1,1,N); 
122 zero(temp,l,l,l,N); 
123 zero(temp2,1,1,1,1); 
124 printf("\nNow, the stack: %u\tstack pointer: %u", Btackavail(), _9P); 
125 
126 //PZD coeffs default values 
127 K.0.5; 
128 Ti=0.1; 
129 Td=0.01; 
13 0 PID__integral=0; 
131 PID error"0; 
132 PID_old_error=0; 
13 3 PID_derivative=0; 
134 
135 RLS_step=0; 
136 // write header line in files 
137 fprintf (pid, "K Ti Td uk dyk PID__output") ; 
138 fprintf(in,"Step dyk esterror estimate den espilon thetal 2 3 4 5 6 d"); 
139 forCj=0;j<2000;j++) // loop for 800 steps 
140 { 
141 
142 
143 if (j""250) // introduce delay at step 250 by shifted used model 
144 { 
145 
146 used theta[l][l]--alphal; 
147 used__theta [13 [23=0; 
148 used__thGta [13 [3 3=b2; 
149 used_theta[1][43=bl; 
150 used__theta [13 [5]=0; 
151 } 
152 if (j""650) // back to original st step 450 
153 { 
154 U8ed_theta[l][l]"-alphal; 
155 used_theta[13 [2]=b2; 
156 used_theta[13 [3]=bl; 
157 used_theta[1] [41=bO; 
158 used theta[l][5]-0; 
159 } 
160 if Cj==0) // command changes 
161 { 
162 uk=1000; 
163 } 
164 else if (j==250) 
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165 { 
166 uk=2000; 
167 } 
168 else if (j==350) { 
169 uk=3000; 
170 } 
171 
172 else If (j==450) 
173 { 
174 uk=1000; 
175 } 
176 else if (j==650) 
177 { 
178 uk=4000; 
179 } 
180 else if (j==850) 
181 { 
182 uk=3000; 
183 } 
1B4 
185 else if (j==1050) 
186 { 
187 uk=1000; 
188 } 
189 else if (j==1250) 
190 { 
191 uk=2000; 
192 } 
193 else if (j==1450) 
194 { 
195 uk=3000; 
196 } 
197 else if (j==1650) 
198 { 
199 uk=1000; 
200 } 

else if (j==1850) 
{ 
ukm2000; 
} 

else if (j""2050) 
{ 
uk"3000; 
} 

PZD calculabions 
(locked m" TRUE) // only uses PZD when &LS esCimaCor Aas c%M]Tns.rged 

printf(«\n%+e %+e %e " ,K,Ti,Td); 
PID_old_error=PID_error; 
PID error-uk-dyk; 
PID_integralm piD error + PID_integral; // wind up needed???? 
if (PID_integral>5000) 

PID_integral=5000; 
i f (PID_integral<- 5000) 

PID_integral=-5000; 
PID_derivative=(PID error-PID old error); 
fprintf(pid," PID_integral= %e ",PID_integral); 
PID_output= (fabs(K)*PID_error) + ((h*PID_integral)/{fabs(Ti)*10) ) 

+(rand()*10/RAND_MAX);; 

} 
else 
{ 

PID output"(rand()*10/RANDjMAX);; 
fprintf(pid, " NO PID"); 

} 
fprintf(pid,"\n%+e %+e %e %+e %+e %+e - %e +%e +random " 

,Ti,Td,uk,dyk,PID_output, (fabs(K)*PID_error*h), ((PID_integral *h) /(fabs(Ti)*10))); 
open loop force PZD_ouCpuC=uk 

printf("\n % d : j ) ; 
fprintf(in,"\n%d",j); 

copy_m(phi k,phi_tei%g),N, 1); 
pmm(u8ed theta,phi temp,1,1,1,N,1,N,1,1); 
dyk=phi_temp[1][1]; 
fprintf(in," %e ",dyk); 

241 // calculate estimation error 
tint=(int)d; 
8witch(tint) 

{ 
case 1: 

copy_m(phi_k,phi_teinp,N, 1); 
break; 

case 2% 
copy_m(phi old,phi_temp,N,l); 
break; 

case 3: 
copy_m(phi log3,phi temp,N,l); 

201 
202 
203 
204 
205 
206 
207 
208 
209 // 
210 if 
211 { 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 

232 // 
233 
234 
235 
236 
237 
238 
239 
240 
241 // 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
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253 break; 
254 case 4: 
255 copy_m(phi_log4,phi_temp,N,l); 
256 break; 
257 case 5% 
258 copy_m(phi_log5,phi_temp,N,1); 
259 break; 
260 case 6: 
261 copy_mXph± log6,phi_temp,N,l); 
262 break; 

} 
264 pmm(theta_k,phi temp,1,1,1,N,1,N,1,1); 
265 egtimate_error"dyk-phi_temp[l][l]; 
266 fprintf(in," %e %e",estimate_error,phi_temp[l][l]); 
267 /y if escimace outside +/- 2* band, RLS should be on 
268 oldRLS stepmRLS step; 
269 if ((fabsfestimate error)>fab8(dyk)*0.02) && (RLS 8tep<50)) 
270 { 
2 7 1 RLg_step++; 
2 72 locked = FALSE; 
273 lamba-pow(0.99,RLS step); 
274 P_old"P; 
275 tint=(int)d; 
276 8witch(tint) 
277 { 
278 case 1: 
279 copy__m(phi_k,P_teiig)3,N,l); 
280 break; 
281 case 2% 
282 copy_m(phiold,Pteii%)3,N,l); 
283 break; 
284 case 3: 
285 copy_in(phi_log3,P_teinp3/N,l) ; 
286 break; 
287 case 4% 
288 copyjm(phi log4,P_temp3,N,l); 
28 9 break; 
290 case 5: 
2 91 copy__m(phi_log5, P_temp3 ,N, 1) ; 
2 92 break; 
293 case 6: 
294 copy_m(philog6,P_ten%)3,N, 1); 
295 break; 
296 } 
297 ptranspose(P temp3,l,N,1,1); 
298 copy_m(P_old,PteiRp2,N,N); 
2 99 pmm(P tei%^3,P_temp2,l,l,l,N, 1,N, 1,N) ; 
300 if (d.-l) 
301 copy_m(phi_k,phi temp,N,l); 
302 else 
303 copy_m(phi_old,phi temp,N,l); 
304 p m m ( P _ t e m p 2 , p h i _ t e m p , 1 , N , 1 , 1 ) ; 
305 denmlamba+phi_temp[l][l]; 
306 fprintf(in," %e",den); 
307 if (d==l) 
308 copy_m(phi_k,phi_teir%;,N,l); 
309 else 
310 copy_m(phi_old,phi temp,N,l); 
311 pmm(P_old,phi temp,1,N,1,N,1,N,1,1); 
312 if (denl.O) 
313 { 
314 *f_pointer"l/den; 
315 pkm(phi temp,f_pointer,l,N,1,1); 
316 } 
317 else 
318 fprintf(in,"Error den-0"); 
319 tenp"theta_k; 
32 0 *f_pointer=estimate__error; 
321 pkm(phi temp,f pointer,1,N,1,1); 
322 theta_k"transpose(phi temp,1,N,1,1); 
323 theta old-temp; 
324 paddin(theta_old, theta_k, 1,1,1,N, 1,1,1,N) ; 
325 //calculate aew P 
326 //P=fP_old- C fi^old*pAi_k*pAi_;c'*f^oldJ/najnbda+pAi_k'*P_old*pAi_k;^^/lamda 
327 if (d==l) 
328 copy_m(phi_k,phi_teiiq),N,l); 
329 else 
330 copy_m(phi_old,phi_ten^,N, 1); 
331 pmm(p old,phi temp,1,N,1,N,1,N,1,1); 
332 if (d==l) 
333 copy_m(phi_k,P_teng)2,N,l); 
334 else 
335 copy_m(phi_old,P_temp2,N,l); 
336 ptranmpose(P temp2,l,N,l,l); 
337 pmm(phi temp,Ptemp2,l,N,1,1,1,1,1,N); 
338 copy_m(P_old,P_tei%^3,N,N); 
33 9 pmm(P temp2,P_temp3,1,N, 1,N, 1,N, 1,N) ; 
340 if (denl"0) 
341 { 
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342 * f_pointer*-l/den; 
343 pkm(P_tai%%)3,fjpointer,l,N,l,N); 
344 } 
345 else 
346 printf("den*0"); 
347 paddin(P_old, P_temp3 ,1,N,1,N, 1,N,1,N) ; 
348 if (lamba 1*0) 
349 { 
350 *f pointer * 1/lamba; 
351 pkm(P temp3,f_pointer,l,N,1,N); 
352 copy_m(P_tei%t)3,P,N,N); 
353 } 
354 else 
355 printf C"lainba=0") ; 
356 }// end of RLS 
357 // escimace is witAia 2* no 
358 else 
359 { 
360 // reseC RLS parameters 
3 61 locked = TRUE; 
362 printfC NO-RLS"); 
363 fprintf(in," NORLS"); 
364 zero(P,l,N,1,N); 
365 eye{P,l,N,1,N); 
366 z#ro(P_old,l,N,l,N); 
367 eye(P_old,l,N,l,N); 
368 zero(L,l,l,l,N); 
369 RLS stepmO; 
370 } 
371 
372 // Shifting Phi k record 
373 copy_m(phi logs,phi log6,N,l); 
374 copy_m(phi log4,phi logs,N,l); 
375 copy__m(phi_log3/phi_log4,N, 1) ; 
376 copy_m(phi_old,phi log3,N,1); 
377 copy_m(phi_k,phi old,N,l); 
378 if (RLS_step .-1) 
379 { 
380 zero(phi_k,l,N,1,1); 
381 zero(phi old,l,N,1,1); 
382 phi_k[N][l].l; 
383 phi_old[N][l].l; 
384 phi_k[2][l]" PID_output; 
385 phi_k[l][l]"-dyk; 
386 } 
387 else 
388 { 
389 phi_k[5] [1] =phi_k[4] [1] ; 
390 phi_k[41 [l]=phi_k[3] [1] ; 
391 phi_k[33 Cl]=phi_k[2] [1] ! 
392 phi_k[2][l]mP%D_output; 
393 phi_k[l][l].-dyk; 
394 } 
395 
396 phi_log6[l][l]"-dyk; 
397 phi_log5[l][l]"-dyk; 
398 phi_log4[l][l]m-dyk; 
399 phi_log3[l][l]"-dyk; 
400 phi old[l][l]"-dyk; 
401 fprintf(in," %e %e %e %e %e ",theta_k[l] [1] , theta__k [1] [2 ] , theta_k [1] [3 ] , theta_k [1] [4] , theta_k [13 [5] ) ; 
402 fprintf(in,"d« %e",d); 
403 fprintfCin," phi= %e %e %e %e %e",phi_k[l][l],phi_k[23 El],phi_k[3] [l],phi_k[4][l],phi_k[5][1]); 
404 
405 epsilon= Ctheta_k [1] [4]-theta__k EU E23 ) / Ctheta_k [1] E4]+theta_k [1] C3]+theta_k [1] [2]); 
406 fprintf(in," *e",epsilon); 
407 
408 if ((epsilon < - 0.8) 66 (RLS stepm-O)) // if Aas locked on and epsiloj]<-0.8 
409 { 
410 printf("< -0.8"); 
411 fprintfCin," <-0.8»); 
412 temp_f loatl = theta__k [13 [43 ;//bO 
413 d=d-l; 
414 theta_k[13 E43-theta_k[1][3]+3*temp_floatl; //b0=bl+3b0 
415 theta_k[l][3]=theta_k[13 [23-3*temp_floatl; //bX=b2-3bO 
416 theta_k[l][2]*temp_floatl; //b2=bO 
417 } 
418 else if ((epsilon >0.8) &6 (RLS_step"-0))// if RL5 Tzas locked on and epsilon>0.6 
419 { 
420 printf("> 0.8"); 
421 fprintf(in,">0.8") ; 
422 d=d+l; 
423 temp_f loatl=theta__k [13 [33 ; //bl 
424 temp_float2 = theta_k[13 12]; //h2 
425 theta_k[13 [33 =theta_k [1] [4]-3 * temp_f loat2;//i)l=jbO 
426 theta__k [13 [23 =temp_f loatl+3*teinp_f loat2 •, //b2=hl-^3b2 
427 theta_k[l][4]mtemp float2;//bO-b2 
428 } 
429 
430 tau-h*(d+ep8ilon); 



APPENDIX E Simulation Self tuning software 

suitUiiic- c 
431 // calculate PID coeffs 
432 if (theta_k[l] [1]<0) 
433 al=!-log(~theta_k[l] [1] )/h; 
434 if ((l+theta_k[l][1]) 1=0) 
435 { 
436 inu= (theta_k [1] [2]+theta_k [1] [3]+theta_k [13 [4] ) / (l + theta_k [1] [1]); 
437 fprintf(in," %e/%e", (theta_k[1] [2]+theta_k[1] [3]+theta_k [1] [4]), (l+theta_k[1] [1])); 
438 } 
439 else 
440 fprintf(in," NOMU"); 
441 // Ugiag Haalman tuning rules 
442 if (all-0) 
443 { 
444 Ti=(l/al); 
445 Td=0; // PI only 
446 K=2/(al*6*niu*tau) ; 
447 fprintf (in," theta_k [1] [1] =%e al=%e mu=%e Ti=%e\tTd=%e\tK=%e" , theta_k [1] [1] , al.mu, Ti,Td,K) ; 
448 } 
449 else 
450 fprintf(in," skip"); 
451 
452 
453 } 
454 /y end for loop 
455 // cleaning memory and closing files 
456 fcloge(in); 
457 fclose(pid); 
458 free_matrix(used_theta,l,l,l,N); 
459 fr*e_matrix(theta_k,l,l,l,N); 
460 free_matrix(theta_old,l,l,l,Nj; 
461 free_inatrix (phi_k, 1,N, 1,1) ; 
462 free_matrix(phi old,l,N,l,l); 
463 freejmatrix(phi_log3,l,N,l,l)j 
464 free_matrix(phi_log4,l,N,l,l) 
465 free_inatrix {phi_log5,1,N, 1,1) 
466 free matrix(phi_log6,l,N,1,1) 
4 67 free_matrix Cused_phi,1,N,1,1) 
468 free_matrix(P,l,N,1,N); 
469 free_matrix(P old,l,N,l,N); 
470 free_matrix(L,1,1,1,N}; 
471 free_matrix(temp,l,l,l,N); 
472 free_matrix(temp2,l,l,l,l); 
473 free_matrix(P_temp,l,N,1,N); 
474 free_matrix(P temp2,l,N,l,N); 
475 free_matrix(P temp3,l,N,1,N); 
476 free_matrix(P_temp4,l,N,l,N); 
477 free_matrix(phi temp,1,N,1,1); 
478 
479 
480 prxntfC end."); 
481 getch(); 
482 exit(l); 
483 } 
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1 // File : maclib.6 AuCAor ; g.aoliand August '27 
2 // matrix iibary header file 
3 #includ* <malloc.h> 
4 #inciude <sCdio.h> 
5 ffinclude <3tdlib.h> 
6 #iaciude <conio.h> 
7 #incJude <math.h> 
8 // standard error handier 
9 void nr#rror(char error text[]); 

10 // allocates a float vector range /nl..nhj 
11 float *vector(int nl,int nh); 
12 //allocates an int vector range /hl..nA7 
13 int *ivector(int nl,int nh); 
14 //allocates a double vector range fnl..nAJ 
15 double*dvector(int nl,int nh); 
16 // allocates a float matrix with rane fnrl..nrA7/ncl..ncA7 
17 float **matrix(int nrl,int nrh,int ncl,int nch); 
18 // allocates an int matrix with rane fnrl..nrhjfncl..nchj 
19 int **lmatrix(int nrl,int nrh,int ncl,int nch); 
20 // allocates a double matrix with rane fnrl..nrhjfncl..nch7 
21 double **dmatrix(int nrl,int nrh,int ncl,int nch); 
22 // returns a submatrix with range fnewrl..newrl+foldrh-oldrl^J fnewcl..newcl+foldch-oldclJJ 
23 float **8ubmatrix(float **a,int oldrl,int oldrh,int oldcl,int o]Lidch,int newrl,int newel); 
24 //frees a float vector 
25 void free_vector(float*v,int nl,int nh); 
26 //frees an int vector 
27 void free_ivector(int*v,int nl,int nh); 
28 //frees a double vector 
29 void free_dvector(double*v,int nl,int nh); 
30 //frees a matrix 
31 void free_matrix(float **m ,int nrl,int nrh,int ncl,int nch); 
32 //frees an int matrix 
33 void free imatrix(int **m ,int nrl,int nrh,int ncl,int nch); 
34 //frees a double matrix 
35 void free dmatrix(double **m ,int nrl,int nrh,int ncl,int nch); 
36 // frees a sumatrix 
37 void free_submatrix(float **b,int nrl,int nrh,int ncl,int nch); 
38 //allocate a float matrix that points to the matrix a 
39 float ** convert_matrix(float *a,int nrl,int nrh,int ncl,int nch); 
40 //frees a matrix allocated by covert_matrixn 
41 void free_convert_matrix(float **b,int nrl,int nrh,int ncl,int nch); 
42 // copies contents of a matrix to the other 
43 // dest can be larger than dest 
44 void copy_m(float **8rc,float **de8t,int nr,int nc); 
45 // mu&ltiplies two matrices , result returned in b 
46 // must not multiply two same matrices 
47 void pmm(float**a,float**b,lat nral,int nrah,int ncal,int ncah,int nrbl,int nrbh,int ncbl,int 

ncbh); 
48 // adds two matrices, result returned in b 
49 void paddm(float**a,float**b,int nral,int nrah,int ncal,int ncah,iTit nrbl,int nrbh,int ncbl,int 

ncbh); 
50 // multiplies matrix by float 
51 // float passed as a pointer 
52 //result returned in a 
53 void pkm(float**a,float* f,int nral,int nrah,int ncal,int ncah); 
54 // calculates determinant of 2X2 matrix 
55 float det22(float**a,int nral,int nrah,int ncal,int ncah); 
56 // fills a matrix with zero 
57 void zero(float**a/int nral,int nrah,int ncal,int ncah); 
58 // fills a matrix with identity matrix 
59 void eye(float**a,int nral,int nrah,int ncal,int ncah); 
60 // calculates cofactor 
61 float cofactor(float**a,int nral,int nrah,int ncal,int ncah,int i,int j); 
62 // calculates determinant 
63 float det (float**a,int nral,int nrah,int ncal,int ncah); 
64 // transposes a matrix 
65 // result returned as pointer to float 
66 // MARNIWC : this function allocates memory that isn't freed afterwards 
67 // use ptranspose instead 
68 float **tran8poBe(float**a,int nral,int nrah,int ncal,int ncah); 
69 // transposes a matrix 
70 // result returned in a 
71 void ptranspose(float**a,int nral/int nrah,int ncal,int ncah); 
72 // calculate adjoint matrix 
73 float **adjoint(float**a,int nral,int nrah,int ncal,int ncah); 
74 // calculate inverse matrix 
75 float **inverse(float**a,int nral,int nfah,int ncal,int ncah); 
76 // displays matrix contents on screen 
77 void display(float **m,int nrl,int nrh,int ncl,int nch); 
78 // displays matrix contenets on file 
79 void fdieplayXFILE *8tream,float **m,int nrl,int nrh,int ncl,int nch); 
80 
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1 // File ; maclib.c AucAor ; S.Kolland Augusc '97 
2 // matrix libary 
3 #include "maClib.h" 
4 
5 // sCaadard error handler 
6 void nrarror(char error text[]) 
7 { 
8 fprintf(8tderr,"Matrix calculation run time error\n"); 
9 fprintf(8tderr,"%8\n",error text); 

10 fprintf(8tderr,"...Now exiting system...\n"); 
11 getch 0 ; 
12 exit(l); 
13 } 
14 // allocates a float vector range fnl..nh7 
15 float *vector(int nl,int nh) 
16 { 
17 float *v; 
18 V"(float*)malloc((unsigned )(nh-nl+l)*8izeof(float)); 
19 if (Iv)nrerror("allocation failure in vector()"); 
20 return v-nl; 
21 } 
22 //allocates an inc vector range /nl-.n^J 
23 int *ivector(int nl,int nh) 
24 { 
25 int *v; 
26 V"(int*)malloc((unsigned )(nh-nl+l)*8izeof(int)); 
27 if (Iv)nrerror("allocation failure in ivector()"); 
28 return v-nl; 
29 } 
30 //allocates a double vector range /'nl..nh7 
31 double*dvector(int nl,int nh) 
32 { 
33 double *v; 
34 v=(double*)malloc((unsigned )(nh-nl+l)*sizeof(double)); 
35 if (Iv)nrerror("allocation failure in dvector()"); 
36 return v-nl; 
37 } 
38 
39 // allocates a float matrix with rane fnrl..nrh7fncl..nchj 
40 float **matrix(int nrl,int nrh,int ncl,int nch) 
41 { 
42 int i; 
43 float **m; 
44 // rows 
45 m*(float**)malloc((unsigned)(nrh-nrl+l)#8izeof(float*)); 
46 if (Im) nrerror("allocation failure 1 in matrix!)"); 
47 m-"nrl; 
48 for(imnrl;i<"nrh;i++){ 
49 m[i]*(float*)malloc((unsigned)(nch-ncl+l)*8izeof(float)); 
50 if (lm[i])nrerror("allocation failure 2 in matrix()"); 
51 m[i 3 -=nc1; 
52 } 
53 return m; 
54 } 
55 // allocates an int matrix with rane fnrl..nrhjfncl..nchj 
56 int **imatrix(int nrl,int nrh,int ncl,int nch) 
57 { 
58 int i; 
59 int **m; 
60 // rows 
61 m*(int**)malloc((unsigned)(nrh-nrl+l)*sizeof(int*)); 
62 if (Imj nrerror("allocation failure 1 in imatrix()"); 
63 m-=nrl; 
64 for(i"nrl;i<=nrh;i++){ 
65 m[i]*(int*)malloc((unsigned)(nch-ncl+l)*sizeof(int)); 
66 if (lm[i])nrerror("allocation failure 2 in imatri%()"); 
67 m[i]--ncl; 
68 } 
69 return m; 
70 } 
71 /y allocates a double matrix with rane fnrl..nrh7fncl..nchj 
72 double **dmatrix(int nrl,int nrh,int ncl,int nch) 
73 { 
74 int i; 
75 double **m; 
7 6 // rows 
77 m^!double**)malloc((unsigned)(nrh-nrl+l)*sizeof(double*)); 
78 if (Im) nrerror("allocation failure 1 in dmatrix()"); 
79 m-"nrl; 
80 for(imnrl;i<mnrh;i++){ 
81 m[i]*(double*)malloc((unsigned)(nch-ncl+l)*sizeof(double)); 
82 if (lm[i])nrerror("allocation failure 2 in dmatrix()"); 
83 m[i]-*ncl; 
84 } 
85 return m; 
86 } 
87 // returns a submatrix wiLh range fnewrl..newrl+roldrh-oldrl^J /'2]ewcl..newcl+foldch-oldcl^J 
88 float **submatrix(float **a,int oldrl,int oldrh,int oldcl,int oldch,int newrl,int newel) 
89 { 
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90 int i,j; 
91 float **m; 
92 m"(float**)malloc((unsigned)(oldrh-oldrl+l)*siz#of(float*)); 
93 if (Im)nrerror("allocation failure in 8uhmatrix()"); 
94 m-=newrl; 
95 f0r(i"0ldrl,j"newrl;i<m0ldrh;i++,j++) 
96 m[j]"a[i]+oldcl-newcl; 
97 return m; 
98 } 
99 

100 //freea a fioat vector 
101 void free_yectof(float*v,int nl,int nh) 
102 { 
103 free((char*)(v+nl)); 
104 } 
105 
106 //freea an int vector 
107 void free_ivector(int*v,int nl,int nh) 
108 { 
109 free((char*)(v+nl)); 
110 } 
111 
112 //frees a double vector 
113 void free_dvector(double*v,int nl,int nh) 
114 { 
115 free((char*)(v+nl)); 
116 } 
117 //frees a matrix 
118 void free_matrix(float **m ,int nrl,int nrh,int ncl,int nch) 
119 { 
120 int i; 
121 for(i"nrh;i>"nrl;i--) 
122 free((char*) (m[i]+ncl)); 
123 free ((char*)(m+nrl)); 
124 } 
125 //frees an int matrix 
126 void free_imatri%(int **m ,int nrl,int nrh,int ncl,int nch) 
127 { 
128 int i; 
12 9 for(i=nrh;i>=nrl;i-- ) 
130 free((char*) (m[i]+ncl)); 
131 free ((char*)(m+nrl)); 
132 } 
133 
134 //frees a double matrix 
135 void free_dmatri%(double **m ,int nrl,int nrh,int ncl,int nch) 
136 { 
137 int i; 
13 8 for{i=nrh;i>=nrl;i-- ) 
139 free((char*) (m[i]+ncl)); 
140 free ((char*)(m+nrl)); 
141 } 
142 
143 // frees a sumatrix 
144 void free submatrix(float **b,int nrl,int nrh,int ncl,int nch) 
145 { 
146 free ((char*)(b+nrl)); 
147 } 
148 //allocate a float matrix tbat points to tbe matrix a 
149 float ** convert_matri%(float *a,int nrl,int nrh,int ncl,int nch) 
150 { 
151 int i,j,nrow,ncol; 
152 float **in; 
153 nrowmnrh-nrl+1; 
154 ncol-nch-ncl+l; 
155 m*(float **) malloc((unsigned)(nrow)*8izeof(float*)); 
156 if (Im) nrerror("allocation failure in convertjmatri%()"); 
157 rn-mnrl; 
158 for(i*0,j"nrl;i<"nrow-l;i++,j++) 
159 m[j]"a+ncol*i-ncl; 
160 return m; 
161 } 
162 
163 //frees a matrix allocated by covert_matrixO 
164 void free_convertjmatri%(float **b,int nrl,int nrh,int ncl,int nch) 
165 { 
166 free((char*)(b+nrl)); 
167 } 
168 // copies contents of a matrix to the other 
169 // dest can be larger than dest 
170 void copy_m(float **8rc,float **deBt,int nr,int nc) 
171 { 
172 int i,j; 
173 float **m; 
174 m*(float**)malloc((unsigned)(nr+l)*sizeof(float*)); 
175 if (Im) nrerror("allocation failure 1 in copym()"); 
176 m-=l; 
177 for(i = l;i<=nr;1 + + ) { 
178 m[i]"(float*)malloc((unsigned)(nc+l)*Bizeof(float)); 
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179 if (lm[i])nrerror("allocation failure 2 in copym()"); 
180 } 
181 
182 for(1=1;i<=nr;i++) 
183 for(j-l;j<"nc;j++) 

{ 
185 m[i][j]"src[i][j]; 
186 } 
187 for(i-l;i<"ar;i++) 
166 for(j"l;j<"nc;j++) 

{ 
190 dest[i][j]"m[i][j]; 

} 
192 freejmatrixCm,l,nr,l,nc); 
193 } 
194 // mukiciplies two matrices , result returned in b 
195 // must not multiply two same matrices 
196 inoid pmm(float**a,float**b,int nral,int nrah,int ncal,int ncah,int: nrbl,int nrbh,int ncbl,int 

ncbh) 
197 { 
198 int i; 
199 int j; 
200 int k; 
201 int nra,ncb,nca; 
202 float **m; 
203 if ((ncah-ncal)l=(nrbh-nrbl)) 
204 { 
205 printf("\n*d I* %d\n",ncah-ncal,nrbh-nrbl); 
206 nrerror("Matrix MUliplication error"); 
207 } 
208 nca-ncah-ncal+l; 
209 nra*nrah-nral+l; 
210 ncb-ncbh-ncbl+l; 
211 
212 
213 // size of resulting matrix fnraA-nral+l^ rows % fncaA-ncbk+1^ columns 
214 m"(float**)malloc((unsigned)(nra)*8izeof(float*)); 
215 if (Im) nrerror("allocation failure 1 in pmm()"); 
216 m-rnnral; 
217 for(i"nralfi<"nrah;i++){ 
218 m[i]=(float*)malloc((unsigned)(neb)*sizeof(float)); 
219 if (lm[i])nrerror("allocation failure 2 in pmm()"); 
220 } 
221 
222 for(i"l;i<*nra;i++) 
223 { 
224 for(j"l;j<"ncb;j++) 
225 { 
226 mEi] [j] -0; 
227 for (kml;k<"nca;k++) 
228 { 
229 m[i] [jl=m[i] [j] + (a[i] [k] *b [k] [j]); 
230 } 
231 } 
232 } 
233 for(i*l;i<"nra;i++) 
234 for(j*l;j<mncb;j++) 
235 b[i] [j]=mEi] [j] ; 
236 freejmatrix(m,l,nra,l,ncb); 
237 } 
238 
239 // adds two matrices, result returned in b 
240 void paddm(float**a,float**b,int nral,int nrah,int ncal,int ncah,int nrbl,int nrbh,int ncbl,int 

ncbh) 
241 { 
242 
243 int i,j; 
244 int nra,nrb,ncb,nca; 
245 float 
246 nca^ncah-ncal+l; 
247 nra-nrah-nral+l; 
248 ncb-ncbh-ncbl+l; 
249 nrb-nrbh-nrbl+l; 
250 if ((nra!=nrb) || (nca!=ncb)) 
251 nrerror("Matrix Addition error error"); 
252 
253 
254 // size of resulting matrix fnra^^nral+lj rows % fncaA-ncbk+lJ columns 
255 m-(float**)malloc((unsigned)(nra)*sizeof(float*)); 
256 if (Im) nrerror("allocation failure 1 in mm()"); 
257 m-"nralf 
258 for(imnral;i<mnrah;i++){ 
259 m[i]*(float*)malloc((unsigned)(neb)*sizeof(float)); 
260 if (lm[i])nrerror("allocation failure 2 in mm()"); 
261 } 
262 for(i-l;i<*nra;i++) 
263 for(jml;j<"ncb;j++) 
264 { 
265 =a[i] [j]+b[i] [j] ; 
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267 
268 for(i*l;i<"nra;i++) 
269 for(j"l;j<"neb;j++) 
270 b[i] [j]=m[i3 Ej] ; 
271 freejmatrix(m,l,nra,l,ncb); 
272 
273 } 
274 // mulcipljes macrix by float 
275 // float passed as a pointer 
276 //result returned In a 
277 void. pkm(float**a,float* f,int nral,int nrah,int ncal/int ncah) 
278 { 
279 int i; 
2 80 int j; 
281 int nra,nca; 
282 float **m; 
283 ncamncah-ncal+l; 
284 nra-nrah-nral+l; 
285 // size of resulting matrix ^nrah-nral+ij rows X fncaA-ncbJc+1^ columns 
286 m*(float**)malloc((unsigned)(nra)*8izeof(float*)); 
287 if (Im) nrerror("allocation failure 1 in mm()"); 
288 m-"nral; 
289 for(imnral;i<"nrah;i++){ 
290 m[i]"(float*)malloc((unsigned)(nca)*sizeof(float)); 
291 if (lm[i])nrerror("allocation failure 2 in mm()"); 
292 } 
293 
294 for(iml;i<mnra;i++) 
295 { 
296 for(j"l;j<=nca;j++) 
297 { 
298 m[i][j].(a[i][j])*(*f); 
299 } 
300 } 
301 for(i"l;i<"nra;i++) 
302 for(j-l;j<-nca;j++) 
303 ali][j]=mli][j]; 
304 free_matrix(m,l,nra,l,nca); 
305 
306 } 
307 // calculates determinant of 2X2 matrix 
308 float det22(float**a,int nral,int nrah,int ncal,int ncah) 
309 { 
310 float f; 
311 f"(a[nral][ncal]*a[nrah][ncah])-(a[ncal][nrah]*a[ncah][nral]); 
312 return f; 
313 } 
314 
315 // fills a matrix witA zero 
316 void zero(float**a,int nral,int nrah,int ncal,int ncah) 
311 { 
318 int nra,nca,i,j; 
319 nra-nrah-nral+1; 
320 nca-ncah-ncal+1; 
321 for (1=1; i<=:nra; i + + ) 
322 for(j"l;j<"nca;j++) 
323 a[i][j].0.0; 
324 } 
325 /y fills a matrix witA identity matrix 
326 void eye(float**a,int nral,int nrah,int ncal,int ncah) 
327 { 
328 int nra,nca,i; 
329 nra-nrah-nral+l; 
330 nca-ncah-ncal+l; 
331 if (nralmnca) 
332 nrerror("nhable to create non square I matrix"); 
333 for(i"l;i<"nra;i++) 
334 a[i][i].1.0e6; 
335 } 
336 // calculates cofactor 
337 float cofactor(float**a,int nral,int nrah,int ncal,int ncah,int i,int j) 
338 { 
339 float f; 
340 float**in; 
341 int nra,nca; 
342 int ii,jj,k,l; 
343 
344 
345 nra^nrah-nral+l; 
346 nca*ncah-ncal+l; 
347 
348 if ((nra>3) {j (nca>3)) 
349 nrerror("unable to find cofactor of big matrix"); 
350 n^matrix(l,nra-l,l,nca-l); 
351 k=l;l=l; 
352 for(ii"l;ii<*nra;ii++) 
353 { 
354 if (iit"i) 
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355 { 
356 1=1; 
357 for(jjml;jj<mnca;jj++) 
358 { 
359 if (jjl=j) 
360 { 
361 mtk] [l]=a[ii] [jj] ; 
362 // princfMXnminor is W 
363 1++; 
364 } 
365 } 
366 k++; 
367 } 
368 } 
369 f.pow(-l,i+j)*det22(m,l,2,l,2); 
370 return f; 
371 } 
372 // calculates deCerminanC 
373 float det (float**a,int nral,int nrah,int ncal,int ncah) 
374 { 
375 int i; 
376 float f; 
377 int nra,nca; 
378 nra-nrah-nral+l; 
379 nca-ncah-ncal+l; 
380 if (nral-nca) 
381 nrerror("unable to calculate det of non square matrix"); 
382 f=0; 
383 for(i-l;i<-nra;i++) 
384 fmf+a[i][l]*cofactor(a,nral,nrah,ncal,ncah,i,l); 
385 return f; 
386 } 
387 /y transposes a macrlx 
388 // result returned as pointer to float 
389 // WARNING ; tAis function allocates memory that isn't freed afterward^ 
390 // use ptramspose instead 
391 float **tran8pose(float**a,int nral,int nrah,int ncal,int ncah) 
392 { 
3 93 int i; 
394 int j; 
395 float **m; 
396 int nra,nca; 
397 nra-nrah-nral+1; 
398 nca-ncah-ncal+1; 
399 :m"(float**)malloc((unsigned)(nca)*sizeof(float*)); 
400 if (Im) nrerror("allocation failure 1 in transpose^)"); 
401 m-"ncal; 
402 for(imncal;i<"ncah;i++){ 
403 m[i]"(float*)malloc((unsigned)(nra)*sizeof(float)); 
404 if (Im[i])nrerror("allocation failure 2 in transpose()"); 
405 } 
406 for(iml;i<*nra;i++) 
407 { 
408 for(j-l;j<"nca;j++) 
4 M { 
410 m[j][i]"a[i][j]; 
4 ^ } 
412 } 
413 return m; 
414 } 
415 // transposes a matrix 
416 // result returned in a 
417 void ptranspose(float#*a,int nral,int nrah,int ncal,int ncah) 
418 { 
419 int i; 
420 int j; 
421 float **m; 
422 int nra,nca; 
423 nra-nrah-nral+1; 
424 ncamncah-ncal+1; 
425 m"(float**)malloc((unsigned)(nca)*sizeof(float*)); 
426 if (Im) nrerror("allocation failure 1 in transposed)"); 
427 m-"ncal; 
426 for(i"ncal;i<*ncah;i++){ 
429 m[i]*(float*)malloc((unsigned)(nra)*sizeof(float)); 
430 if (lm[i])nrerror("allocation failure 2 in transposed)"); 
431 } 
432 for(i"l;i<*nra;i++) 
433 { 
434 for(j-l;j<"nca;j++) 
4 ^ { 
436 m[j][i]*a[i][j]; 
4 ^ } 
438 } 
439 for(i"l;i<"nca;i++) 
440 { 
441 for(j"l;j<mnra;j++) 
442 { 
443 a[i][j]*m[i][j]; 
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445 } 
446 
447 frm#^matri%(m,ncal,ncah,nral,nrah); 
448 } 
449 
450 // calculate adjoint matrix 
451 float **adjoiat(float**a,int nral,lnt nrah,int ncal,int ncah) 
452 { 
453 int i; 
454 int j; 
455 float **ma; 
456 int nra,nca; 
457 nra-nrah-nral+1; 
458 nca-ncah-ncal+1; 
459 ina=(float**)malloc((unsigned)(nra)*sizeof(float*)); 
460 if (Ima) nrerror("allocation failure 1 in tran8pose()"); 
461 ma--nral; 
462 for(i-nral;i<-arah;i++){ 
463 ma[i]"(float*)malloc((un8igned)(nca)*sizeof(float)); 
464 if (lma[i])nrerror("allocation failure 2 in tran8po8e()"); 
465 } 
466 for(i"l;i<"nra;i++) 
467 { 
468 for(jml;j<"nca;j++) 
469 { 
470 ma[i][j]"COfactor(a,nfal,nrah,ncal,ncah,i,j); 
471 } 
472 } 
473 return(tran8po8e(ma,nral,nrah,ncal,ncah)); 
474 
475 } 
476 // calculate inverse matrix 
477 float **inver8e(float**a,int nral,int nrah,int ncal,int ncah) 
478 { 
479 float **mm; 
480 int nra,nca; 
481 float f; 
482 float * fp; 
4 83 int i; 
484 nramnrah-nral+1; 
485 nca-ncah-ncal+l; 
486 mm*(float**)malloc((unsigned)(nra)*siz@of(float*)); 
487 if (Imm) nrerror("allocation failure 1 in inverse()"); 
488 mm-rnnral; 
489 for(i"nral;i<-nrah;i++){ 
490 mm[i]"(float*)malloc((unsigned)(nca)*8izeof(float)); 
491 if (lmm[i])nrerror("allocation failure 2 in inverae()"); 
492 } 
493 
494 f"l/det(a,nral,nrah,ncal,ncah); 
495 *fp=f; 
496 mm*adjoint(a,nral,nrah,ncal,ncah); 
497 pkm(mm,fp,nral,nrah,ncal,ncah); 
498 return(mm); 
499 
500 } 
501 // displays matrix contents on screen 
502 void di«play(float **m,int nrl,int nrh,int ncl,int nch) 
503 { 
504 int i,j; 
505 for (iml;i<*nrh-nrl+l;i++) 
506 { 
507 printf("\n Row %d : ",i); 
508 for(jml;j<"nch-ncl+l;j++) 
509 printf(" %e\t",m[i][j]); 
510 } 
511 } 
512 // displays matrix contents on file 
513 void fdi#play(PILE *8tream,float **m,int nrl,int nrh,int ncl,int 
514 { 
515 int i,j; 
516 for (i"l;i<=nrh-nrl+l;i++) 
517 { 
518 fprintf(stream,"\n Row %d : ",i); 
519 for(jml;j<*nch-ncl+l;j++) 
520 { 
521 fprintf(stream," %e\t",m[i][j]); 
5 ^ } 
523 } 
524 } 
525 
526 
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estbase.c 
1 // File : esLbase.c Au&bor : g.aoliand August '97 
2 //Estimator software for experimental trials 
3 
4 #include "cf\stef\control\matlib.h" 
5 
6 ^include "sdlc.h" 
7 #inciud* <stdio.h> 
8 #±nclude <conio.A> 
9 #include <fioat.h> 

10 fincluda <maC±.h> 
11 #include <dos.a> 
12 #include <process.6> 
13 #include "psdrv.h" 
14 #include "CoAao.A" 
15 
16 ^define OFF FALSE 
17 #defiae ON TRBE 
18 
19 ^define MAX_ESTIMATION_ERROR 15.0 
20 fdefine a%N_E8T%MAr%OW_ERROR -15.0 
21 
22 define INIT_CETREK 0k09 
23 #define SETUPJJART OxOA 
24 #defin* DATAaEADER OxOB 
25 #define STATUSJiBQ OxOC 
26 #deflne VTDED Ox&D 
27 #define RELAY_COMM 0x01 
2 8 #define PAN_COm 0x02 
2 9 #define TILTj:OJm 0x03 
30 #defin* LIGHT COMM 0x04 
31 
32 #define W 5 
33 /* 
34 Global Variables 
35 */ 
36 extern long Inactivity_timer; 
37 extern long Trt_timer; 
38 char mag[30]; 
39 signed char RECV_BUFFER[64]; 
40 int RBL; 
41 int heading, depth; 
42 struct time t; /* time structure*/ 
43 int TTRT; /*TTar in msec*/ 
44 int INACTIVITY_TIME OUT ; 
45 int TTRT_PC_TICKS; 
46 unsigned char speed,th,tl,command; 
47 float SmallDelayTest; 
48 FILE *log_file; 
49 int setpoint; 
50 float calculatedspeed; 
51 int error; 
52 int old_error; 
53 float derivitive; 
54 float integral; 
55 float PIDcommand; 
56 unsigned char Tilt Com; 
57 float f_tilt_coin; 
58 float temp_k,temp_Ti; 
59 extern unsigned _stklen " 80000; 
60 unsigned char locked; 
61 long temp_long; 
62 float tempf; 
63 /* 
64 Functions and Procedures 
65 */ 
66 km(float**a,float f,int nral,int nrah,int ncal,int ncah) 
67 { 
68 int i; 
69 int j; 
70 int nra,nca; 
71 float **m; 
72 ncamncah-ncal+1; 
73 nra-nrah-nral+l; 
74 // size of resulting matrix fnraA-nral+lj rows X ^ncah-ncb^+l^ columns 
75 m*(float**)malloc((unsigned)(nra)*sizeof(float*)); 
76 if (Im) nrerror("allocation failure 1 in mm()"); 
77 rn-mnral; 
78 for(imnral;i<"nrah;i++){ 
79 m[i]m(float*)malloc((unsigned)(nca)*sizeof(float)); 
80 if (lm[i])nrerror("allocation failure 2 in mm()"); 
81 } 
82 
83 for(i*l;i<-nra;i++) 
84 { 
85 for(j=1;j<=nca;j++) 
86 { 
87 m[i] [j] = (a[i] [j] ) * (f) ; 
88 } 
89 } 
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90 for(iml;i<-nra;i++) 
91 for(j"lfj<mnca;j++) 
92 a[i] [j]=m[i] [j] ; 
93 freematrixCm,l,nra,l,nca); 
94 
95 } 
96 
97 
98 * Procedure ReceivefJ * 
99 * ZnpuC: none * 

100 * C^itpuC : none * 
101 * Action : receives frame * 
102 * HTgTORy; DaCe Author Comments * 
103 * * 
104 * 22.05.25 S.M.Holland Creation * 
105 * 08.09.45 " ARCOM card * 
106 * 11.09.95 " aligned with ssdrv.c * 

108 void Receive() 
109 { 
110 int i; 
111 int j; 
112 int temp; 
113 float f; 
114 RSD [Station_Nuinber] . Buf f er_Status=BUFFER_READY; 
115 if ( (Tnsg[0]==MASTER__ADDRESS) && ( (msg [1] & OxEF) == TOKEN)) /* The Token */ 
116 { 
117 Send TOK_A(BSD[0].Predecessor,0); 
118 RSD[0].Station State"TOKEN_ACK; 
119 
120 
121 } 
122 
123 else if (mag[l] *= U%) /* J frame*/ 
124 { 
125 if (msg[2]..VIDEO) 
126 { 
127 gotoxy(50,13); 
128 printf("Update"); 
129 
130 8peed"msg[3]; 
131 command-mag[4]; 
132 th=insg [5] ; 
133 tl=msg[6]; 
134 olderror-error; 
135 if (speed<40) 
136 calculated_Bpeed"0; 
137 else 
138 calculated 8peed*25.741*speed-953.36; 
139 //PZD calculations 
14 0 error=setpoint-calculated_speed; 
141 if (errorlmO) 
142 derivitive-(old error-error)/error; 
143 else 
144 derivitive-O; 
145 integral-integral+error; 
146 if {integral<-200) 
147 integral=-200; 
148 if (integral>200) 
149 integral "200; 
150 if (locked TRUE) 
151 { 
152 if (temp_k<0) 
153 temp_k=-temp_k; 
154 
155 PIDcommand"temp_k*error+temp Ti*integral; 
156 } 
157 else 
158 PIDcommand"setpoint; 
159 if (PIDcommand>255) 
160 { 
161 Til t_Com=5 255; 
162 f tilt_com«255.0; 
163 } 
164 else if (PIDcommand<0) 
165 { 
166 Tilt_Com.O; 
167 f tilt com-O.O; 
16B } 
169 else 
170 { 
171 Tilt_Com=(unsigned char)PIDcommand; 
172 f t i1tcom- PIDcommand; 
173 } 
174 RSD[l].Info_Length . 4; 
175 RSD[l].Buffer_8tatus. BUFFER_READY; 
176 RSDCl].DataEO]= TILT_COMM; 
177 RSD[l].Data[l]- Tilt_Com; 
178 
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179 
180 
181 } 
182 
183 
184 }/* End UI Frame*/ 
185 els* if ( (magCl] & OxEF) *" SS) /* gec S u c c e s s o r * / 
186 { 
187 R9D[Station_Nuinb#r] .Successor-mmgCZ]; 
188 /* acknowledge*/ 
189 } 
190 else if ( (mag[l] & OxEF) m* SP) /* Set Predecessor*/ 
191 { 
192 RSD[8tation_Number].Predeca88or"msg[2]; 
193 /* Acknowledge*/ 
194 } 
195 else if ( (mag[l] & OxEF) =* WFM) /# Who Follows Me */ 
196 { 
197 for (i"0;i<.NUMBER_OF_3TATIONS;i++) 
198 { 
199 if (RSD[i].StatioD_Address ** (m8g[2] & OxTF)) 
200 { 
201 
202 if (i.. 0) 
203 { 
204 R8D[0].Station_8tata.T0KEN_ACK; 
205 St:atioii_Numbar"0; 
206 return; 
207 } 
208 else 
209 { 
210 if (Recovery(i,0)l=TRUE) 
211 { 
212 RSD[i].Station_State=ERASED; 
213 teinp=FALSE; 
214 fof(j-l;j<NUMBER_0F_STATI0N9;j++) 
215 { 
215 if (RSD[j].Station_State 1= ERASED) 
217 ten^mTRUE; 
218 } 
219 if (temp == FALSE) 
220 { 
221 printf("\nAll nodes now erased - automatic shutdown, check main umbilical") J 
222 getchO; 
223 exit(l); 
224 } 
225 
22 6 /* REGENERATE TOKEN FROM MASTER*/ 
227 RSD[0].Station State=TOKEN_ACK; 
228 StationNumberrnO; 
229 for (teii^mO;tan^<NUMBER_OF_STATION9;tenqp++) 
230 { 
231 if (RSD [temp] . Successor== RSD [i] . Station_Address) 
232 { 
233 RSD[temp] . Successor=:RSD [i] .Successor; 
234 } 
235 } 
236 for (temp=0;temp<NTJMBER_OF_STATIONS;temp++) 
237 { 
238 if (RSD [temp] .Predecessor=- RSD [i] .Station_Address) 
239 { 
240 RSD[temp].Predecessor=RSD[i].Predecessor; 
241 } 
242 } 
243 /* should reduce TRT*/ 
244 RSDCi].Station State=BRASED; 
245 RSD[0].Station_State=TOKEN_ACK; 
246 Set_Logical_Ring(l, 0,TTRT); 
247 
248 return; 
249 } 
250 return; 
251 } 
252 } 
253 } 
254 } 
255 else if ( (msg[1] & OxEF) == CTF) /* Claim token frame */ 
256 { 
257 for (i=0;i<=NTOIBER_OF_STATIONS;i++) 
258 { 
259 if (RSD[i].Station_Address == (msg[2] £ OxFF)) 
260 { 
261 for(temp=0;temp<100;temp++); /* delay ?*/ 
262 RSD[i].Station_State=DISCONNECT_S; 
263 RSD[i].Station_State=DISCONNECT_S; 
264 
265 } 
266 } 
267 for(i=0;i<NUMBER OF STATIONS;i++) 



APPENDIX G Experimental Estimation software 

[;stbasb.(-
268 { 
2S9 if ((i>=l) as (i<NUMBER_OP_STATIONS-l)) 
270 { 
2 71 RSD[i].Successor-RSD[i+1].Station_Address; 
272 RSD[i3.Predecessor=RSD[i-1].Station_Address; 
273 } 
274 else if (i==0) 

{ 
276 RSDEO].Successor=RSD[1].Station_Address; 
277 RSD[0] .Predecessor=RSD[NUMBER_OF_STATIONS-l] . Station_Address; 
278 } 
279 else if (i==NUMBER_OF___STATIONS-l) 
280 { 
281 RSDEi].Successor^RSD[0].Station_Address; 
282 RSD[i].Predecessor=RSD[i-1].Station_Address; 

} 
284 
285 } 
286 Set_Logical_Ring(l, 0,TTRT); 
287 RSDIO].Station_State=TOKEN_ACK; 
288 } 
289 } 
290 
2 91 /* 
292 * Procedurermaln * 
293 * ZnpuC; void * 
294 * OuCpuC : void * 
295 * Action ;main program loop * 
296 * HZSTOay; Date AuCAor CbmmenCs * 
297 * * 
298 * 11.08.95 g.M.Holland Creation * 
299 * 13.10.25 " Improved * 
300 */ 
301 void main() 
302 { 
303 int counts; 
304 int channel, byte; 
305 signed char Command[4]; 
306 char flag; /* thruster command change*/ 
307 char status_flag; /* station scace flag*/ 
308 int end; 
309 int i,j; 
310 int car; 
311 char ctemp; 
312 long old_trt; 
313 unsigned char successor; 
314 static float den; 
315 static float lanba*0.99; 
316 static float estimate_error; 
317 double RL8 step; 
318 
319 int tint; 
320 float temp floatl,temp floatZ; 
321 
322 
323 FILE *in; 
324 FILa *pid; 
325 float ** 

theta_k, **phi_k, **theta old, #*phi_old, old, **ten^, **te%i^2, **P_teii^, **P_ten%)2; 
326 float ** used_theta; 
327 float ** used_phi,** P temp3,**P temp4,**phitemp; 
328 float ** phi_log3,** phi__log4,** phi_log5,** phi__log6; 
329 
330 float epsilon; 
331 float d; 
332 float Ti,Td,K; 
333 float al,a2,tau,delta2,mu,h; 
334 float *f_pointer; 
335 unsigned char test; 
336 
337 locked-.FALSE; 
338 end"0; 
33 9 ten^floatlmO; 
340 temp_float2=0; 
341 // cbmmunicacion card dececcion 
342 printf("\n<<< Demo Program >»\n\n"); 
343 printf("Assumas PCSER4 switches set to 180\n"); 
344 printf("Testing for PCSER4\n"); 
345 ]&yte m ioread(ID); 
34 6 INACTIVITY_TIME__OUT= 10000; 
347 TTRT=255: 
348 for (1=0;i<6;i++) 
349 Command[i]"0; 
350 setpoint-0; 
351 calculatedspeedmO; 
352 byte=ioread(ID); 
353 Tilt__Com=0; 
354 f_tilt_com=0; 
355 if (byte -- 16) 
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^16 { 
357 printf("PCSER4 found OK\n"); 
358 iowrite(GRLED,0); /* LED on */ 
359 delay(0x100); 
360 iowrite(GRLED,l); /* LED off */ 
361 delay(OxlOO); 
362 channel = OxPF; 
363 if ((log_file = fopen("otl.log", "at")) == NULL) 
364 { 
365 printf("Cannot open otl.log"); 
366 return; 
367 }; 
368 if ((in * fopen("ev&nt.log", "wt")) 

370 { 
371 fprintf(stderr, "Cannot open input file.\n"); 
372 exit(l); 
373 } 
374 if ((pid " fopmn("pid.log", "wt")) 
375 " NULL) 
376 { 
377 fprintf (stderr, "Cannot open pid file.\n"); 
378 e%lt(l); 
379 } 
380 // matrix inicialisacion 
381 U8ed_thetammatrix(l,l,l,N); 
3 82 theta_k=inatrix(l, 1,1,N) ; 
383 theta_Dld=matrix (1,1, l^N) ; 
384 used_phi"matrix(l,N,1,1); 
385 phi_k=matrixCl,N,1,1); 
386 phi_old=matrix(l,N,1,1); 
387 phi_log3=matrix(1,N,1,1) 
3 88 phi_log4=inatrix (1,N, 1,1) 
389 phi_log5=inatrix (1,N, 1,1) 
390 phi_log6"matri%(l,N,l,l) 
391 phi_temp-matri%(l,N,l,l); 
3 92 L=matrix (1,1,1,N) ; 
3 93 P=matrix (1,N, 1,N) ; 
394 P_old=matrix(l,N, 1,N) ; 
3 95 temp=niatrix (1,1,1,N) ; 
396 temp2mmatrix(l,1,1,1); 
397 P_temp=matrix(l,N,1,N); 
398 P temp2"matrix(l,N, 1,N); 
399 P_temp3*matrix(l,N, 1,N); 
400 P_temp4-matrix(l,N, 1,N); 
401 zero(P,l,N,1,N); 
402 eye(P,l,N,l,N); 
403 zero(P old,1,N,1,N); 
404 eye(P_old,1,N,1,N); 
405 zero(theta_k,1,1,1,N); 
406 zero(theta_old,1,1,1,N); 
407 zero(L,l,l,l,N); 
408 theta_k[ll C31=1; //bl!=0 
409 theta_oldEl] [3]=1; // bl!=0 
410 theta_kEl] [1]=1; 
411 theta_old[l][l]"l; 
412 theta_kEl][N]=l; 
413 theta_oldEl][N]=l; 
414 RLS_8tep"0.0; 
415 zero(used_phi,l,N,1,1); 
416 zero{phi_k,1,N,1,1); 
417 zero(phi old,l/N,l,l); 
418 phi_k[N] El] =1; 
419 phi_old[N][l]*l; 
420 zero(L,l,l,l,N); 
421 zero(temp,l,l,l,N); 
422 zero (teinp2,1,1,1,1) ; 
423 // PID default values 
424 K=0.5; 
425 Ti=a.l; 
426 TdmO.Ol; 
42 7 d=l; 
428 // Evaluate PC speed 
429 printf("Evaluating PC Speed.."); 
430 EvaluatePC(); 
431 printf("\nPC speed evaluated to %f",8mall_pelay_Test); 
432 fprintf Clog_file,"Feeback,Time,Sync\n"); 
433 fprintf (in, "Measured Estimated Estimate__Error Step den Theta k [1] [1] Theta_k[l] [2] 

Theta_k[ll [31 Theta_k[lH4] Theta_k[1] [5] ") : 
434 while((channel < 0) || (channel > 3)) 
435 { 
436 printf("Enter a channel number (0-3)"); 
437 scanf("%x",&channel); 
438 } 
439 setpoint"1500; 
440 printf("Initialising Channel %x\n",channel); 
441 initscc(channel); /* initiaiige SCC */ 
442 initDPLL(channel); 
443 Power On(); 
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444 /* see comm Co Lhruscer card*/ 
445 Station_NumbermO; 
446 Update_Address (RSD [Station__Nuinber] . Station_Address, channel) ; 
447 RSD[Station_Numb#r].StaCion_StatemTOKEN_ACK; 
448 clrscr(); 
449 Set Logical Ring(l, channel,TTRT); 
450 gotoxy{10,l); 
451 printf("Estimator Test - Logging software "); 
452 printfC'Node 3 : 
453 gotoxy(5/5); 

455 Inactivity_timer"bio8time(0,0L); 
456 Trt_timermbiostime(0,0L); 
457 while (endmmO) /* loop unCil g pressed */ 
456 { 
459 wtlle (RSD[0].Station_Statel-TOKEN_ACK) 

{ 
461 fprintf(pid," W "); 
462 Listenfchannel); 
463 if ((biostime(0,0L)-Inactivity_timer) INACnviTY_TIME_OUT) 
464 { 
465 
466 Inactivity_timer=biostime(0,OL); 
467 Ctemp-FALSE; 
468 fprintf(pid," X "); 
469 for(j.l;j <NT]MBER_OP_STATIONS; j + + ) 
470 { 
471 if (RSD[j].Station State I* ERASED) 
472 ctenp.TRUE; 
473 } 
474 if (ctemp "" FALSE) 
475 { 
476 printf ("\nAll nodes now erased - automatic shutdown, check main 

umbilical"); 
477 getch(); 
478 e%it(l); 
479 } 
480 RSD[0].Station State-TOKEN ACK; 
481 
482 } 
483 } 
464 
485 if (RSD[0].Station_8tate.. TOKENACK) 
486 { 
487 fprintf(pid," TOK "); 
488 //PZD calculation is implemented in J^eceivei'^ 
489 tint=(int)d; 
490 switch(tint) 
491 { 
492 case 1: 
493 copy_m(phi_k,phi_teng),N,l); 
494 break; 
495 case 2; 
4 96 copy_m(phi old,phi_ten^,N, 1); 
497 break; 
498 case 3: 
499 copy_m(phi_log3,phi_teinp,N,l); 
500 break; 
501 case 4: 
502 copy_m(phi_log4,phi_ten^,N, 1); 
503 break; 
504 case 5: 
505 copy_m(phi_log5,phi_tea%),N, 1); 
506 break; 
507 case 6: 
508 copy_m(phi_log6,phi_temp,N,l); 
509 break; 
510 
511 } 
512 pmm(theta_k,phi temp,1,1,1,N,1,N,1,1); 
513 e8timate_error"calculated speed-(phi temp[1][1]); 
514 fprintf (in,"Xnte %e %e",calculated_speed,phi_te%%T)[l][l],»stimate_error); 
515 fprintf(log file,"%d,%d,%d\n",speed,Tilt_Com, (th*256)+tl) ; 
516 // CHECK RLS CONVERGENCE 
517 if ((int)RLS step<50) 
518 { 
519 fprintf(in," <50"); 
520 if ( ((int)fabs(estimate_error)>(int)(calculated speed*0.1)) ) 
521 { 
522 test-TRUE; 
523 fprintf (in," OUTte %d ",estimate_error, (int)fabs(estimate_error)); 
524 } 
525 else 
526 { 
527 test=FALSE; 
528 fprintf (in," IN%e %d " , estimate_error, (int) estiinate_error) ; 
529 } 
530 } 
531 else 
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532 tmst"FALSZ; 
533 
534 
535 if (tastmmTRUE ) 
536 { 
537 /y RLg algorithm 
538 fprintfdn," RLS"); 
539 RLS_step++; 
540 lockedmFALSE; 
541 lambampow(0.99,RL8_sCep); 
542 P oldmP; 
543 tint=: (int) d; 
544 *witch(tint) 
545 { 
546 case 1: 
547 copy_m(phi_k,P_teng)3,N, 1); 
548 break; 
549 case 2: 
550 copy_m(phi_old,P_Ceii%>3,N,l); 
551 break; 
552 case 3: 
553 copy_m(phi_log3,P_teng)3,N,l); 
554 break; 
555 case 4: 
556 copy_m(phi_log4,P ten^3,N,l); 
557 break; 
558 came 5: 
559 copy_m(phi_log5,P teng)3,N,l); 
560 break; 
561 case 6% 
562 copy_m(phi_log6,P teiiqp3,N, 1); 
563 break; 
564 } 
565 
566 ptransposefP temp3,l,N,1,1); 
567 copy_m(P_old,P_ten^2,N,N); 
568 pinm(P_temp3 , P _ t e m p 2 , ; 
569 tint=(int)d; 
570 8witch(tint) 
571 { 
572 case 1: 
573 copy_%n(phi_k,phi_ten%),N, 1); 
574 break; 
575 case 2: 
576 copy_m(phi_old,phiteii^,N,l); 
577 break; 
578 case 3: 
579 copy_m(phi_log3,phi_teinp,N,l); 
580 break; 
581 case 4: 
582 copy_m(phi_log4,phi_teirp,N,l); 
583 break; 
584 case 5% 
585 copy_in(phi_log5,phi_ten%»,N, 1); 
586 break; 
587 case 6: 
588 copy_m(plii_log6,phi_temp,N,l); 
589 break; 
590 } 
591 
592 pmm(P_temp2,phi_temp,l,l, 1,N, ; 
593 dearnlamba+phi temp[l][l]; 
594 fprintf(in," %e",den); 
595 copy_m(phik,phi_temp,N,1); 
596 pmm(P_pld,phi temp,1,N,1,N,1,N,1,1); 
5 97 km(phi___temp, 1/den, 1,N, 1,1) ; 
598 copy_m(theta_k,temp,l,N); 
599 km(phi_temp,e8timate_error,l,N,1,1); 
600 theta_k"transp08e(phi temp,1,N,1,1); 
601 copy_m(ten^,theta_old,l,N); 
602 paddm(theta_old,theta_k,1,1,1,N,1,1,1,N); 
603 //calculate new P 
604 //P= (P__old~ ((P_old*phi_k*phi_k' *P_old) / (lambda+phi_k' *P__old*phi_k))) /lamda 
605 tint=(int)d; 
606 switch(tint) 
607 { 
608 case 1: 
609 copy_m(phi_k,phi_tei%g),N, 1); 
610 break; 
611 case 2: 
612 copy_m(phi_old,phi_temp,N,l); 
613 break; 
614 case 3: 
615 copy_m(phi_log3,phi_teinp,N,l); 
616 break; 
617 case 4: 
618 copy_m(phi_log4,phi_ten%),N,l); 
619 break; 
620 case 5: 
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621 copy_m(phi_log5,phi_ten^,N, 1); 
622 break; 
623 case 6: 
624 copy_m(phi_log6,phi temp,N,l); 
625 break; 
626 
627 } 
628 pmm(P_old,phi temp,1/N,1,N,1,N, 1,1); 
629 tint"(int)d; 
630 8witch(tint) 
631 { 
632 cage 1% 
633 copy_Bi(phi_k,P_teiap2,N,l); 
634 break; 
635 case 2: 
636 copy_m(phi old,P_tamp2,N,l); 
637 break; 
638 cage 3: 
639 copy_m(phi_log3,P_teng)2,N,l); 
640 break; 
641 case 4: 
642 copy_in(phi__log4,P_temp2,N, 1) ; 
643 break; 
644 case 5: 
64 5 copy_m(phi_log5,P_temp2,N,1); 
646 break; 
647 case 6: 
648 copy_m(phi_log6,P_tei%^2,N,l); 
649 break; 
650 } 
651 ptranspose(P_temp2,l,N,1,1); 
652 pinm(phi_ten^,P_tenq)2,1,N, 1,1,1,1,1,N); 
653 copy_m(P_old,P_teinp3,N,N); 
654 pmm(P_tei^2,P teinp3,l,N,l,N,l,N,l,N) ; 
655 km(P_teinp3, -1/den, 1,N, 1,N) ; 
656 paddm(P_old, P _ t e m p 3 , 1 , N , 1,N) ; 
657 km(P_temp3,l/lamba,1,N,1,N); 
658 copy_m(P_tenqp3,P,N,N); 
659 }// end of RLS 
660 else 
661 { 
662 // JtLS has converged 
663 // reset RLS parameters 
664 locked " TRUE; 
665 fprintfdn," NORLS"); 
666 zero(P,1,N,1,N); 
667 eye(P,l,N,1,N); 
668 zero(P_old,l,N,l,N); 
669 eye(P old,l,N,1,N); 
670 zero(L,l,l.l,N); 
671 RLS_step=0.0; 
672 } 
67 3 Gopy_m(phi_log5,phi_log6,N,1); 
674 copy_m(phi log4,phi logs,N,l) 
67 5 copy_T[v(phi_log3/phi__log4,N,l) 
676 copy_m(phi old,phi log3,N,l); 
677 copy_m(phik,phi old,N,l); 
67 8 copy_m(phi logS,phi_log6,N,1) 
679 copy_m(phi_log4,phi_log5,N,1) 
680 copy_m(phi_log3,phi_log4,N,l); 
681 copy_m(phi__old,phi_log3,N, 1) ; 
682 copy_in(phi_k,phi_old,N, 1) ; 
683 fprintf(in," TestY %e",theta_k[1][1]); 
684 if ((int)RLS step --1) 
685 { 
686 phi_k[N] [1] =1; 
687 phi_old[Nl [1]=1; 
688 phi_k[2][1]=f_tilt_com; 
689 phi k[l][l]--calculated speed; 
690 } 
691 else 
692 { 
693 phi_k[5][l].phi_k[4][l]; 
694 phi_k[4][l].phi_k[3][l]; 
695 phi_k[3][l].phi_k[2][l]; 
696 phi_k[2] [1] =f_tilt_coin; 
697 phi_k[l][1]"-calculated gpeed; 
698 
699 } 
700 
701 
702 
703 
704 phi_log6[l][l]m-calculated_speed; // this does not need shifting 
705 phi_log5[l][1]--calculated speed; 
706 phi_log4[l][1]=-calculated_speed; 
707 phi_log3El][1]=-calculated_speed; 
708 phi_old[l][l]"-calculated_speed; 
709 fprintf(in," TestZ %e",theta k[l][l]); 
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710 fprintf(in," %e %e %e %e %e 

", theta_k [1] [1] , theta_k [1] [2] , theta__k [1] [3] , theta__k [1] [4] , theta_k [l] [5] ) ; 
711 fprintf (in," %e %# %e %# ",phi_k[l] [l],phi_k[2] [l],phi_k[3] [1] ,phl_k[4] [l],phi_k[5] [1]); 
712 fprintf(in," d- %e",d); 
713 // ^silof] based delay esCimaCjon 
714 epsilon= (tiieta_k [13 [4] -theta_k [1] [2] ) / (theta__k [1] [2] +theta_k [1] 13 ] +theta_k [1] [4] ) ; 
715 fprintf(in," epsilon= %e",epsilon); 
716 
717 if (((int)apailon*10 <-8) 66 ((int)RL8_Btep"-0)) // if 7]as locJced ajid espilon <-0.6 
718 { 
719 tai%^_floatl"theta_k[l][4]; //bO 
720 d"d-l; 
721 theta_k[l] [4] =theta_k [13 [33+3*tenip_f loatl; // b0=bl+3b0 
122 theta__k[l] [3] =theta_k[1] [2]-3*teinp__floatl; // bl=b2-3b0 
723 theta_k[l] [2]"tenT)_floatl; // b2-bO 
724 } 
725 else if (((int)epgilon*10>8) && ((int)RLS_step-"0)) // if JtLg bag locJced azid espilon >0.6 
726 { 
727 d=d+l; 
728 temp_floatl=theta_k[13 [33; //bl 
729 teinp_float2=:theta_k [1] [23 ; //b2 
730 theta_k[l] [33 =tbeta_k[1] [4] -3*temp_float2;//bl =bO-3jb2 
731 theta__k [13 [23 =temp_floatl+3*temp_float2 ; //b2=bl+3*b2 
732 thata_k[l][4]mt#i%^_float2; //bO=b2 
733 } 
734 if ((int)(epsilon*1000) !=0) 
73 5 tau=h*epsilon; 
736 else 
737 tau =0.001; 
738 // calculate PZD coeffs 
739 if ((lockedm.TRUE) && ((int)theta_k[l][l]l.l) ) 
740 al=-log{-theta_k[13 [13)/h; 
741 el8# 
742 al=-log(0.9)/h; 
743 mu= (theta_k [1] [23 +theta_k [1] [3] +theta_k [13 [43 ) / (l+theta__k [13 [13 ) ; 
744 // using Haalman tuning rules 
745 Ti=al; 
746 K"2/(al*6*mu*tau); 
747 temp_k=K; 
748 temp_Ti=Ti; 
749 fprintf(pid,"\n %e %e %e %e %e",al,mu,tau,K, Ti); 
750 delay(50); // tbis is tbe additional delay in msec 
751 old_trt"Trt_timer; 
752 /* Initialise TRT Timer*/ 
753 Trt_timar"bio8time(0,0L); 
754 h=(Trt_timer-old_trt)/BIOSCLK TCK; 
755 fprintf (pid, " h:=%lu %e",Trt_timer-old_trt, h) ; 
756 gotoxy(50,13) ; 
757 printf("token") ; 
758 gotoxy(50/13) ; 
759 printf(" "); 
760 gotoxy(50, 5) ; 
761 flag=0; 
762 for (i.l;i<NUMBBR_OF_STATIONS;i++) 
763 { 
764 fprintf(pid," S%d",i); 
765 if(RSD[i].Station_State== ERASED) 
766 { 
767 /* break; skip to next station*/ 
768 } 
769 elae if (RSD[i].Station_State-. DISCONNECT_S) 
770 { 
771 gotoxy(50,i+1); 
772 printf("OFF "); 
773 
774 Send_Snrm(i,channel); 
775 if (R9D[i].8tation_9tate.-
776 { 
777 goto%y(50,i+l); 
778 printf("ON "); 
779 } 
780 } 
781 elme if (R8D[i].Station_8tate.. GO_TO_DISC) 
782 { 
783 Send_Di8c(RSD[i].StationAddress,channel); 
784 } 
785 else if ( (RSD[i].Info_Length>0) &&(RSD[i].Buffer_Statii8"wBnFFER_READY) ) 
786 { 
787 gotoxy(50,13); 
788 printf("Xmit 1"); 
789 
790 Xmit_I_T_S(i,T_I_FRAME, channel) ; 
791 RSD[i3 .Info_Length=0; 
792 gotoxy(50,13); 
793 printf("Zmit lb"); 
794 } 
795 } /* end of for*/ 
796 
797 fprintf(pid," Pagging"); 
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798 if (Pass_T0KEN(R8D[Station_Nuinber] .Succeggor,channel) imTRUB) 
799 { 
800 gotoxy(50,13); 
801 printf("Failed"); 
802 
803 for (cteng)"l;cten%KNI]MBER_OF_STATIONS;cken%;++) 
804 { 
805 if (RSD[ctenp].8tation_Addreammm RSD[9tatioii_Nimiber].Successor) 
806 successor^ctamp; 
807 
808 } 
809 Listen(channel); 
810 Listen(channel); 
811 if (Recovery(successor,0)l*TRUE) 
812 { 
813 
814 gotoxy(50,succes8or+l); 
815 printf("OFF "); 
816 
817 for (cteinp"0;ctemp<NUMBER_OF_STATIONS;cteinp++) 
818 { 
819 if (RSD[cten^].Successor-" RSD[8uccessor].Station_Address) 
820 { 
821 RSDCcteng)] .Successor-RSD[successor] .Successor; 
822 } 
823 } 
824 for (ctei%g)"0;ctei%g)<NUMBER_OF_STATIONS;cCe%np++) 
825 { 
826 if (R8D[cten^].Predecessor-" R8D[8uccessor].Station_Address) 
827 { 
828 R3D[cteinp] .Predecessor-RSD[successor] .Predecessor; 
829 } 
830 } 
831 RSD[successor].Station StatewERASED; 
832 RSD[Station_Nuinber] .Station_State"TOKEN_ACK; 
833 Set_Logical_Ring(1, channel,TTRT); 
834 
835 } 
836 
837 } 
838 } // 
839 if (kbhitO) 
840 carmgetch(); 
841 else 
842 car=D; 
843 switch (car) 
844 { 
845 case 113: 
846 case 81: /* 0 _>end*/ 
847 {endml; break;} 
848 } /* end of swicch sCaCemenC*/ 
849 
850 } /* end of while*/ 
851 /y closing files 
852 fclose(log_file); 
853 fclose(in); 
854 fclose(pid); 
855 /y cleaning matrix allocations 
856 free_matrix(usedtheta,1,1,1,N); 
857 free_inatrix(theta_k, 1,1,1,N) ; 
858 free_matrix(theta_oId,1,1,1,N); 
859 free_matrix(phi_k,l,N,1,1); 
860 freejmatrix(phi old,l,N,1,1); 
861 free_matrix(phi_log3,1,N,1,1); 
862 freejmatrix(phi log4,l,N,l,l); 
863 free_matrix(phi logs,1,N,1,1); 
864 free_matrix(phi_log6,1,N,1,1); 
865 free_matrix(used_phi,l,N,1,1); 
866 freematrix(P,l,N, 1,N); 
867 free_matrix {P_old, 1,N, 1,N) ; 
868 free_matrix(L,l,l,l,N); 
869 free_matrix(tenqp,l,l,l,N); 
870 free__matrix (tempS ,1,1,1,1) ; 
871 free_matrix(P_teii%),l,N,l,N); 
872 free_matrix(P_temp2,l,N, 1,N); 
873 free_inatrix (P_temp3 ,1,N, 1,N) ; 
874 free_matrix(P temp4,l,N,l,N); 
875 free_matrix(phi_tea%),l,N,l,l); 
876 } 
877 
878 else // no communication card found 
879 printf("PCSER4 not found: ID - $%x\n",byte);/* Arcom JK)t detected*/ 
880 getch(); 
881 } 



Appendix H RLS Estimation 

The Recursive Least Square estimation algorithm used is a classic one [29]. It 

allows to estimate unknown model parameters, by using observations from the 

experiment. In our case, the model is n i z ) = + + . The 
Z - j , 

unknown parameters can be put in vector notation has follows: 

5 = [-p b2 bl 60 C] 

The observations are in the following vector: 

C is a constant set to 1. 

(t+i) ^(t+i) 

,9 + ] r 

with 

y -,9 ty 1 
/(t+l) (t) ( t + u 

JL'ohki) ' (znnoi" zit site;]] Ic + I 

_ [ / - % ] 

A 
P ( ^ ) = L 

The recursive least square algorithm with forgetting factor used is: 

Where A, is the forgetting factor and is calculated as 1=0.99®'®'', where step is the 

number of iteration of the RLS estimator. 

Those calculations are implemented in the C program in appendix G. 



APPENDIX I Probability of spurious flag 

Funk [14] shows that in an assumed memory-less, binary symmetric channel model, 

each bit position is inverted independently with the bit error probability p, and is 

received correctly with the probability q. With this simplified model we get ; 

P(FLAG) = — q 2 
2 4 8 

6̂̂  
p 2 q 4 + + P^] + P̂  

/ 

P ( F L A G ) = ^ q ' ( l - q ® ) for q = 1 - p 

P ( F L A G ) = = 0 0 2 4 p for p « 0.5 

For example, with a bit error probability p = 1e"®, the probability of having a spurious 

flag is 2.41 e"®. 

However, this does not take into account that the probability distribution for '0' and 

'V is different, because of bit insertion. The average distance of a '0' bit insertion is 

62 bits, since '0' bits are inserted in patterns of type 011111 or 011111 11111 etc.... 

Considering these patterns as exclusive events occurring with probability 2"®, 

the resulting probability of '0' bit insertion is: 

P('O'msertion) = 2 " ^ +2"''+... 

P('O'msertion) = 2 " ^ / (1 - 2 " ^ ) = 1 / 6 2 

This means that an HDLC text of arbitrary length contains 32/63 "O's" and 31/63 

Within and HDLC frame, things are slightly different; within the first five bits after the 

FLAG, the probabilities of "O's" and "1's" are 0.5. Funk [14] shows that the probability 

of a spurious flag caused by a single bit error then becomes : 

P ( F L A G ) « — p q ^ « 0 . 0 3 1 7 p for p « 0.5 

6 3 

For example, with a bit error probability p = 1e"®, the probability of having a spurious 

flag is 3.17e"®, slightly higher than with the simplified model. 

A spurious flag divides the transmitted message in two received frames. However, 

SDLC rejects short frames. Thus the chances of receiving a shortened frame without 

detecting it supposes that: 

» The spurious flag occurs after the address and control field are transmitted. 

1 - 1 



• The 16 bits Frame Check Sequence (PCS) happens to be correct. The 

probability of this happening is 2"̂ ®. 

The resulting residual error probability caused by a spurious flag is for a n-bit 

message is: 

R(FLAG) = 2-'4l-(l-P(FLAG))""'^' 


