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Remotely Operated underwater Vehicles (ROVs) have been used in the oil industry since
the 1970’s. With the increase in the availability and complexity of instruments that can be
fitted to the vehicles, the ability to modify the configuration becomes critical. By using a
distributed communication architecture, where various functions of the vehicle are
separated into several independent units, it becomes possible to interchange units more
easily.

After a review of the available networking techniques, a particular solution has been
selected, and used in a prototype vehicle. The vehicle has been tested successfully in
water trials. A particular problem occurring with networks over which dynamic control
systems operate was highlighted : if a control system was to be established over the
network, the variation of the transportation delay could cause the controller to fail. For
example, with a network node used for gathering heading data and another network
node used for driving the thrusters, the time it takes for the heading data and thruster
command data to be received depends highly on the behaviour of the other nodes
present on the network.

In order to establish how this delay varies, a simulation of the network has been
created, allowing for various configurations to be investigated.

To achieve total flexibility, it should be possible to keep the same controller for a control
system running over the network, whatever the state of the network configuration. Such a
controller is implemented by using a recursive least square estimator, the results of
which are used to estimate the delay. The value of the delay is then used to tune the
parameters of a PID controller. This self-tuning controller has been successfully tested

both in simulation and experiments.
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1. REMOTELY OPERATED VEHICLE BACKGROUND

1.1 Evolution of Ocean Technology

Thirty years ago the vision for the future was that technology would allow man to
live on the moon as well as at the bottom of the sea. Such a progress in

technology has not been as easy as expected.

It is the discovery of oil beneath the ocean that triggered the main progress in
ocean technology. Oil is being exploited at greater depth, with little or no
accessibility from divers. ROVs (Remotely Operated Underwater Vehicles) are an
important tool for such undersea operations, such as survey, inspection and
repair. They are still very much in use nowadays, and their future seems only
threatened by the development of autonomous underwater vehicles (AUVs),
which do not require a pilot. However, the extreme conditions where ROVs are
used mean that the AUV technology would have to be well proven and advanced

before a real competition appears.

1.2 ROVs

ROVs are an important tool for underwater exploration and exploitation, such as
scientific and military surveys, inspections and repairs of subsea structures.
Indeed, their use is constantly increasing, as human divers limitations offer less
and less competition to a tele-operated robotic vehicle. The basis of the vehicle
consists of a subsea unit, incorporating thrusters and usually a camera, and a

surface unit which provides the pilot with means of tele-operation.

ROVs are used primarily in three different areas. The first is scientific observation,
where the ROV’s presence often interferes less with the actual scientific
experiment than a human diver would. The second application area is military

use, where ROVs can carry out high risk underwater operations. The third area is
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the oil exploitation industry, where ROVs can be used to inspect the state of
corrosion and the integrity of subsea structures, cables and pipelines. These

routine inspections have to be carried out regularly to comply with safety and

insurance regulations. They can also be used during the construction period, as

they can be fitted with tools such as manipulators, or cable cutters.

Since this research project is funded by a company whose main customers come

from the oil-industry, the study emphasises the industrial aspects of ROV

operations. A case study has also been carried out with one of the company’s

vehicles.

1.3 Instrumentation

The type of instrumentation used on ROVs can be divided in two categories:
essential instruments and the optional ones. In the case of the Seaeye
‘Scrutineer’, the basic instrumentation consists of four thrusters, one black and
white camera, one colour camera, a compass and a depthmeter (Figure 1.1).

Those provide direct control and feedback to and from the pilot.
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Figure 1.1 A Remotely Operated Underwater Vehicle (Seaeye Marine

Scrutineer)

ROVs will also be fitted with specialised instrumentation, which allow it to
complete certain tasks. For example, for a scientific survey, the vehicle could be
fitted with temperature and current sensors; for an industrial pipeline survey, a

cathodic potential probe and a pipe tracker would be fitted [1].

Interchanging these various instruments is often a difficult and time consuming
task, sometimes demanding important modifications to the vehicle. The major
requirement for a ROV is to make those unavoidable modifications as easy as
possible. Such a need for flexibility places great demands on the system
architecture, and interfacing and data communication is not straightforward. The
range of instruments is wide and therefore it was necessary to review those most

commonly used, in order to have a perspective on what the system architecture

can be.



1.3.1 Thrusters

Propulsion is the most essential feature of the vehicle. Although novel propulsion
mechanisms have been suggested, commercial ROVs are fitted with thrusters.
Electric thrusters are often favoured, as they offer many advantages over

hydraulic ones [2]:

o reliability: a mean time between failures of 1000 hours an average compared

to less than 170 hours for hydraulic thrusters

e simplicity: it is much easier to interface electric devices with a controller than a
hydraulic mechanism, as they generally have a linear behaviour, and so control

is more accurate

e payload: hydraulic systems can be very heavy and bulky

1.3.2 Cameras

In the most common configuration, the ROV is fitted with both a black and white
and a colour camera. Usually during the navigation the pilot would use the black
and white output, and then switch to colour for close inspection of an object.
Lighting conditions can be very poor underwater, and cameras have to be very
sensitive. In some cases , a still photograph of the inspection is also required for
documentation purposes. The camera is often fitted with a pan and tilt facility,
allowing the pilot to inspect a wider area without having to move the vehicle. This
pan and tilt facility can be provided by fitting the camera on a moving platform, or

with a single module camera, where the pan and tilt functions are integrated.

Two principal technologies are available : CCD (Charge Coupled Device) based
on solid state electronics or SIT (Silicon Intensified Target) based on a tube[3].
CCD cameras are more compact and lightweight than tube cameras for a given

image size. They also use less power and require little or no set-up.

A typical example of those new generation cameras is the Osprey OE1386 series.
This is a CCD camera, which incorporates Pan, Tilt and Rotation functions,
allowing a 160 ° horizontal coverage and 180 ° vertical coverage (including lens
angle of view). The lIris control is automatic, and the focus is controlled from the

surface by the pilot.
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Some cameras, known as TVP (Television Photographic Camera), incorporate

both video and stills photography functions.

New types of viewing system are being developed, such as 3D acoustic cameras
or laser viewing systems, however the cost of these remains very high and they
are not yet very common, although they can be a great advantage in turbid waters
[4].

Most commercial ROVs provide the ability to overlay the video image with
comments and other data available, such as depth and heading, during the ROV
diving operation. The resulting image is recorded onto a video tape. This
procedure allows the ROV operators to prove to their customer that the work has
actually been carried out. This task is a major contribution to the pilot’s workload.
Recent innovations now allow the interfacing of video signals with laser and

computer disks for efficient storage, retrieval and analysis.

1.3.3 Navigation systems

There is a wide range of gyros and depth meters available, and prices vary
depending on accuracy, speed, depth rating and size. All newer models
incorporate RS232 communications. Alternative positioning systems use acoustic

signals, that can be related to the mother ship’s positioning system [5].

1.3.4 Other instrumentation

Apart from the above instrumentation, ROVs are often fitted , depending on the
tasks to be carried out, with sophisticated sensors and tools, such as sonars,
profilers, pipe and cable trackers, CP probes, manipulators, current meters etc...
These instruments are generally fitted with a digital interface. The detail of how
they operate is irrelevant to this research, but the way they can be linked in the
vehicle is the key issue. It is indeed those more expensive instruments that will
not be fitted permanently, and therefore rely on a flexible and modular vehicle
architecture. Scientific instruments pose a particular problem, as the amount of
data gathered makes real-time transmission unrealistic. Local storage is often
used, allowing the data to be analysed only when the vehicle is taken out of the

water. The real time communication only controls the instrument and the data

storage facility [6].
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1.4 . Control methods

All of Seaeye vehicles provide auto-heading and auto-depth features, which
allow the ROV trajectory to be locked towards a certain heading or depth. This is
implemented using a PID controller. The coefficients have been chosen after a
series of trials in a sea water lake, and remain the same for all the ROVs
produced. As a result the system is not efficient in all circumstances. The
problem is that the model used by the PID has been set in a specific environment,
and does not take into account variable parameters such as sea state, depth and
equipment fitted on ROV. There is a need for a system which can adapt to those
different environments .

This leads us to intelligent control theories such as sliding law control, self tuning
control, fuzzy logic or even neural networks. Some work has already been done in
those areas. [34][35][36][37][38]

The ROV developed by Woods Hole Oceanographic Institution, named JASON is
using the sliding control technique with success. Heriot Watt University,
Edinburgh is developing their ROV ANGUS Heo control law. Development in the
University of Hawaii has been considering Parameter Adaptation Algorithm (PAA)
and lately Neural Net .

However, apart from the JASON case, most of this work remains in simulation
only and nothing has actually been implemented on the hardware.

Fuzzy logic seems the best solution for this case, as it would cope with the high
non-linearities of the ROV, and is also very robust. Neural network could also be
as a solution, but it requires much more computing and that it is difficult to prove
its reliability.

Another important point is that all those control techniques require a fair amount
of processing, and this should be taken into account when designing the

hardware.

1.5 Limitations of modern vehicles

The current communication system used for Seaeye ROVs is based on RS485

communications. The main loop links the subsea unit, the surface unit and a
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video overlay unit (Figure 1.2). Although the system is fully functional, the
communication architecture is not optimised, and improvements and modification
to the vehicle are not straightforward. In this type of data loop, data from the
sender has to go to all possible receiving units. This means, for example, that
when the subsea unit sends data to the video unit, the surface unit also reads the
message. Although only the two first destination identifying characters are
actually read, this can be time consuming, especially when traffic is heavy. One
can see that if the amount of information transmitted, or the number of units
connected, was to increase, the processing time left at each unit for non-
communication tasks would be badly affected. As instruments tend to be
‘smarter’, that is to say that they are increasingly using digital technology, the
more information we can expect from them. Unfortunately, this also means larger

message sizes.

The main problems encountered with the system at the moment are due to the
lack of modularity and the lack of maintenance facilities, which are extremely
important in a market where time is restricted by the parent vessel’s availability, or
sea conditions. The crew using the ROV is not generally highly trained
technically, and diagnostics and repair should be as straightforward as possible.

This also applies to the upgrading and modifying of the ROV configuration.

A good way to introduce modularity in the vehicle’s system is to use networks
instead of a centralised architecture. Such a modular architecture provides a
more flexible platform for adaptation, with a number of intelligent nodes

networked together (Figure 1.3).
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Figure 1.2 Seaeye Vehicle Centralised Architecture
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Figure 1.3 An Example of a Networked Vehicle Architecture

The centralised approach is used widely within the industry, most probably for
historical reasons. When the first generation of vehicles emerged in the 70’s,
digital electronics were still very basic, and networks were not a realistic solution.
The advantages of distributed architecture have now been recognised in another
area of ocean technology. New Autonomous Underwater Vehicles (AUVs) such
as Autosub and Martin are based on networks[6][7]. These are research vehicles,

and therefore the design exercise is quite different, but the concept of distributed

control is similar.
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1.6 Research Objectives and Contribution

The aim of the project has been to design a suitable communication system for a
ROV. No specification as to the form of communication was given, the choice had
to be made with considerations for the application, the problems encountered with
existing ROVs, and particularly the ability to run a dynamic controller over the
communication loop.

The initial stage consisted of reviewing all communications systems that could be
applied; the outcome of the review led to the selection of a Fieldbus-based
system. The second stage was to evaluate the suitability of such a system for
dynamic control. A simulation of the network was required for that purpose, and
the simulation developed has been validated against a real hardware system.
Simulation results showed that in some cases the delays originated by the
network could cause the instability of a closed-loop control system. The particular
problem was that part of the network should be able to be removed or added,
without necessarily having to re-tune all controllers. A suitable answer has been
found by using adaptive control. An estimate of the process parameters is
obtained using a Recursive Least squares estimator, the value of which is then
used to calculate the delay of the process. The calculated delay is then used in a
self tuning law, in order to alter the controller's parameters.

On the practical side, a prototype communication system has been built, and then
fitted within an existing ROV chassis for a demonstration. Most of the elements
of this prototype were also used to verify results obtained with theory, such as the
network simulation and the self-tuning controller. The prototype system was
demonstrated in operation at the Ocean Basin, DERA Haslar, where the main aim
was to show that the prototype electronics working in laboratory conditions were

operating as expected.

1.7 Layout of the thesis

The thesis is organised in several chapters. The first one offers some background

information about ROVs, and general information about the PhD project.

The second chapter presents a review of networks and communication methods,
it is followed by a detailed description of the chosen network in chapter 3. A

prototype vehicle control system has been designed and built during the project,
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and has been used as a base for experiments. Details of this prototype can be
found in chapter 4. Chapter 5 explains why and how a simulation of the the
network has been developed and results from the simulation are also compared
with experimental values obtained from the prototype. Chapter 6 is concerned
with the effects of a variable delay on a closed loop control system, and describes
a self tuning controller able to cope with such systems. The final chapter

concludes the thesis.
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2. NETWORKS AND COMMUNICATION

2.1 General communication concepts

Computers are now used in every walk of life. In the home, the office, but also in
the process and manufacturing industries. Although in most instances they are
used to perform their intended role in a stand alone mode, they increasingly need
to interchange data with other computers. The type of data exchanged can vary
from databases, Email, pictures, to instrumentation and control commands.

The basic requirement in all those applications is the provision of a suitable data

communication facility. A wide range of facilities exist, and they have to be suited

to the particular application. Inside a computer, information is usually transferred
in a parallel mode, i.e. in a 16 bit system, 16 signal lines are dedicated, one for

each bit [8].

In order to be transmitted on a data communication line, this information has to

be converted to a serial form, where the 16 bits would be transmitted one after

another on the same line. Some means of detecting corruption (error control), and
of regulating the data rate (flow control) are often provided.

Three modes of operations can be used when information is exchanged between

two computers:

i. Simplex : This is used when data is flowing one way only. For example a data
logging system where the measuring device returns data at regular intervals to
a data gathering computer.

ii. Half duplex : This is when data is flowing in both ways alternately. For
example a data logging system where the data gathering computer sends a
request to the measuring device, which then returns some data.

iii. Duplex : This is when data is flowing both ways simultaneously.

Data is normally transmitted between computers in multiples of a fixed length unit,

usually 8 bits (or a ‘byte’). Each byte is transmitted serially, the receiving

computer receives one of the two levels which vary accordingly to the bit pattern,

2-1



making up the message. In order to interpret this bit pattern correctly, the

receiving computer must be able to find :

i. Clock synchronisation: the start of each bit ( in order to sample in the middie

of the bit )

ii. Byte synchronisation: the start and end of each byte

iii. Frame synchronisation: the start and end of each complete message block

(or frame)

The above tasks can be executed in one of two ways, depending on whether the

receiver and transmitter clocks are independent (asynchronous) or synchronised

(synchronous). With asynchronous transmission each character is treated

independently, and the receiver’s clock is resynchronised at the start of each

character received (Figure 2.1).

Ol X[ X | X X | X] X

f f

Start bit 7/8 data bits

?

Stop bit(s)

Figure 2.1 Asynchronous transmission of a character
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Start of
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Figure 2.2 Synchronous transmission of a character



With synchronous communication, a complete frame of characters is transmitted
in a continuous string of bits. The receiver has to keep in synchronisation for the

duration of the complete frame (Figure 2.2).

2.1.1 Error Control

In asynchronous transmission, error control can be implemented by adding a
parity bit before each stop bit. The value of that bit is computed by adding
together the number of ‘1’ bits in the byte (Modulo 2); the parity bit is chosen so
that the total number of ‘1’ bits (including the parity bit) is either even (even parity)
or odd (odd parity). When the receiver gets the character, the same calculation is
completed, and if the result matches the parity bit, the character is assumed to be

correct. This method will allow the detection of all single bit errors.

For synchronous transmission, since block of characters are transmitted, there is
an increased probability that a frame would be corrupted. It is possible to extend
the parity bit method described above, by assigning a parity bit for each character
transmitted (row parity), as well a bit for each bit position in the complete
frame(column parity). A more robust method is to use polynomial codes, where a
single set of check digits is computed for each frame. The receiver then performs
a similar calculation on the frame and check digits. A fixed result is expected
when no errors have been induced. This method is known as Frame Check
Sequence (FCS) or Cyclic Redundancy Check (CRC).

2.1.2 Encoding

Encoding is the way in which the binary data (‘0" or ‘1’) is represented as electrical
signals. Many ways of encoding data are available (Figure 2.3). For asynchronous
communication, where no clocking information needs to be transmitted, the most
common encoding method is Non Return to Zero (NRZ) where ‘1’s and ‘0’s are

encoded as positive or negative voltage levels on the transmission line.
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Figure 2.3 Different types of data encoding

For synchronous transmissions, the clocking information is often embedded in the
bit stream. For example in bipolar encoding, a binary '1" is represented by a
positive pulse, and a binary '0' by a negative pulse. As shown on Figure 2.3, the
sequence '1001' is represented by a positive pulse '1', followed by two negative
pulses '00' and then a positive pulse '1". Since there is always a change in the
signal at each clock period, the clocking information can be retrieved by the
receiver. Differential Manchester encoding follows the same principle, except that
pulses are now replaced with falling or rising signal transitions.

In Non Return to Zero Inverted (NRZI) encoding, a transition represents a binary
‘0’, and no changes represent a binary ‘1’. If the data being send consisted of
only '1' no transitions would be present on the line, and the receiver would loose
track of the timing information. In order to ensure that enough transitions are
received in order to recover the clock information, a ‘0’ is inserted after five
consecutive 1’'s (known as ‘bit stuffing’). The clock information is recovered using

a technique known as Digital Phase Lock Loop (DPLL).
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Manchester encoding is mainly used in Local Area Networks, in relatively short
cable runs. NRZI is favoured for longer distances, as each bit occupies a full

width pulse, making it less error prone.

2.1.3 Flow control

Flow control ensures that when two devices are communicating, the receiving
device has sufficient storage space to hold the data that is transmitted. This can
be implemented in software, by using dedicated messages to confirm that the
station is ready to receive the next message. Flow control can also be
implemented in hardware, by having dedicated signal lines indicating whether a
device is ready to accept incoming data. The hardware method has the
disadvantage of requiring more physical data lines between the devices, the
software requires that some special messages are reserved for controlling the
flow, therefore modifying the original data. This lack of transparency can

sometimes be a problem, when trouble shooting communications failures for

example.

2.1.4 Data link protocol

The data link protocol deals with error correction and flow control. It also defines
the format of communication, i.e. the number of bits per digit and the type of
encoding used. The protocol also specifies the type and order of messages that
are exchanged. For example, the messages that are exchanged when first

establishing a communication, what the procedure is when an error is detected.

2.2 Local area networks

2.2.1 Topologies
In the context of networking, the first basic characteristic to consider is the way in

which the end points, or stations are interconnected (Figure 2.4).
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Figure 2.4 Network topology

In a star topology, each station is connected to a centre node, and in order for
one station to exchange data with another, all messages have to go through the
centre node. With a bus topology, a single line is used ( for example a cable ) and
is connected to each station. With a ring topology, each node is interconnected
to its neighbour via a unidirectional connection, so that the group of nodes forms
a complete ring.

The physical signal paths, or transmission media, that have commonly been used
for local area networks are twisted pair cable, coaxial cable and optical fibre.

The introduction of such topologies requires some form of management to
regulate the access to the medium and to resolve issues such as addressing (i.e.
to ensure that a message can go from one node to the other, we need to know

who has access to the medium, and a way of identifying each node).

2.2.2 OSI model

In an effort to facilitate the process of designing internationally compatible
communication systems the International Standards Organisation (ISO) have
defined a multi-level communications protocol model. This model is designed to
be used as a guideline for the development of actual protocols, employing a
strategy known as Open System Interconnect (OSI). The ISO/OSI model
describes the flow of data across a network as a downwards progression through
different layers, from the application layer to the physical layer, across the

physical medium and back up the stack of the receiving station (Figure 2.5).
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Figure 2.5 The 7 Layer OS| Model

The physical layer deals with the mechanical and electrical interface to the
medium, the data link layer deals with the way data is formatted, usually some
sort of low level error recovery is also implemented. The network layer deals with
addressing issues, the transport layer deals with flow control and error control.
The upper three layers deal with aspects related to the application itself such as

data representation, transfer syntax etc...

2.2.3 CSMA/CD (Carrier Sense Multiple Access with Collision Detection )

Local area networks are widely used in the office environment as a link between
computers. The most common networking standard is the IEEE 802.3 standard,
more often known under its trademark name as Ethernet. It is based on a 7 layer
Open System Interconnect (OSI) model. The MAC (Media Access Control) is
based on is the CSMA/CD (Carrier Sense Multiple Access with Collision
Detection).

CSMA/CD is a method of controlling bus access. Each node is free to transmit at
any time. When a node tries to access a busy bus, a collision is detected, and the
transmission is corrupted (Figure 2.6). To make sure that all the nodes involved in
the collisions are aware that the collision has occurred, a random bit pattern is
send for a short time Tj. This is the jam sequence. The two nodes then wait for a
short random time before trying to retransmit. This type of bus access is
probabilistic and depends on the network loading. Under worst case conditions

the amount of time to detect the collision is twice the propagation delay tp.
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Figure 2.6 CSMA/CD mode of operation

We can guess that this system is very efficient for long messages. In the case of
short and very frequent messages from a few nodes, as in our case, the number
of collisions occurring will rise and some nodes might not be able to get access to
the line at all. As this system is not deterministic , i.e. it is not guaranteed that a

node will gain access to the network, it is not a good solution for our real time

system.

2.2.4 Token Passing

Another widely known network standard is the IEEE 802.4, also known as token
bus. Like CSMA/CD it is based on the 7 layer OS| model, although the topology is
bus. The nodes are considered as a logical ring. That is, the stations assume an
ordered sequence, and each station knows the identity of the stations preceding
and following it. A control frame, known as Token regulates the right of access.
The station receiving the token has access to the medium for a limited time, and
must pass the token to the next station when it has either nothing to send on the

medium, or it has finished using the medium or the station's time has expired
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(Figure 2.7). The advantages of this standard is that each node is guaranteed to
have access on the medium, which makes it ideal for a real time application. It
also means that the implementation is much more complex, having to deal with
the logical ring management and fault detection .

Token ring, or IEEE 802.5, is very similar to the token bus standard, and is based
on a ring topology. When all the stations are idle, the token circulates on the
medium, if a station wishes to use the medium it must seize the token by
changing one bit on the token pattern. The transmitting station will return the
token to the ring once it has finished. There also is a priority mechanism, allowing

certain stations to seize the token before the others.

H "G T F E

— Physical Medium
""""" > Logical Ring

Figure 2.7 Example of a token passing loop

Figure 2.7 shows a token passing loop where node C is inactive and has been
removed from the logical loop. Each node has a logical predecessor and
successor.

2.2.5 Other methods of medium access control

To keep up with the progress brought by the optical fibre technology, the FDDI
(Fibre Distributed Data Interface) has been derived from the Token Ring standard
and can support higher data rates, 100 Mbps for FDDI, compared with 1 or 4

Mbps for Token Ring [9],
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2.2.6 Response to traffic load
Figures 2.8 and 2.9 show the effect that traffic load has on the delay’, for both

CSMA/CD and token passing protocols. Those are for a 50 node network, with a
data rate of 10 Mbps for the token passing and 20 Mbps for the CSMA/CD; a
packet length of 1000 bits; a medium length of 2000 meters and, where
applicable, a token length of 10 bits.

These are the results from a simulation program by Sadiku [10], and represent a
statistical average, the error bar shows the 95% confidence interval. The scales
for each graph is different to highlight the different behaviour of each method as
traffic increases. It shows clearly that a token passing method copes with traffic
increases in a better way than CSMA/CD. As traffic increases, the delay not only
increases sharply, but it becomes less and less predictable (shown by the
confidence interval .E).This is the major issue that lead to the choice of a token

passing system for our network.

' The delay being the time difference between when the message is available at the sender station and when
this message is received correctly by receiver station.
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Figure 2.8 Delay versus traffic load with CSMA/CD
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2.3 MAP and Fieldbus

Another standard has been derived from the token bus standard : MAP
(Manufacturing Automation Protocol). It has the advantage over Ethernet and
token bus of having been designed for real-time networking. It is used in the USA
by major companies like General Motors, who designed it, and also by Boeing,
Kodak etc. This technology did not take on in Europe, mainly because of its high
cost.

The FieldBus concept has evolved from the MAP protocol. As MAP was covering
the full 7 layer OSI model, the time response was limited for real time
applications, and thus was not adapted to low level instrumentation. The concept
of FieldBus is to use a "collapsed" version of the OSI model, reducing it to a three
layer model, containing only the application layer, the data link layer and the
physical layer.

Some national standards already exist, such as FIP in France and Profibus in
Germany, each being influenced by their target application. FIP emphasised an
accurate time response, while Profibus emphasised sharing the bus resources.
However the requirements of the multi-national user companies led to demands
for an international standard. The IEC Fieldbus standard (International Electro-
technical Commission) has been developed through international agreement
using the best features of the leading industry and national standards, this
process is very slow, and the complete standard has not been approved yet.
National and commercial self-interests make the voting process for the standard’s
agreement very difficult, and the prospect of having an agreed international
standard is very small [11].

Meanwhile, other types of protocols are being developed for very specialised
targets. Lonworks, for example, for House Automation, HART, CAN and VAN for
the Automotive Industry [12][13]. All these proprietary solutions have two major
inconveniences. Firstly, the application layer was designed for very specific
application, and therefore it is very likely that it would need modifying, secondly
the development kit can be very expensive.

Since the prototype communication system could potentially be used as
commercial solution by the sponsor company, it was felt that committing to a

particular supplier would have been a burden. A customised prototype system
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based on Fieldbus has been designed and built as part of this project for
experimental purposes, and is used to implement a distributed architecture on the

ROV.

2.4 Design features

2.4.1 Losses and Reflection

Digital systems require the transmission of signals to different elements on the
system. The high frequency components of a step input are attenuated and
delayed more than the low frequency components, mainly due to skin effect. As a

result a pulse is distorted, as shown in appendix B.

2.4.2 Signal Distortion due to Rise Time and Duty Cycle

The duty cycle of the transmitted signal also causes distortion. The effect is
related to the rise time. If the signal has a 1/2 (50%) duty cycle and the threshold
of the receiver (Vth) is halfway between the logic levels, the distortion is small .

When the duty cycle decreases, the signal is considerably distorted and might not

reach the threshold level at all (Figure 2.10).

cycle data
1/2 duty cycle e "
line response WM\L /\\l /\\1/\\

1/8 duty

cycle data I—I ‘—!

1/8 duty cycle Kf’———_‘\ //-—
line response — =

Vth

Figure 2.10 Signal distortion due to duty cycle

If the threshold level of the receiver is not halfway between logic level one and
zero, the receiver will contribute to the distortion effect. As shown on Figure 2.11,

a pulse would be either lengthened or shortened.
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DRIVER INPUT

Receiver
Trredhad \ .- / RECEIVER INPUT

RECEIVER GUTPUT

: ; RECEIVER OUTPUT
Negative Pulse / f

Figure 2.11 Signal distortion due to threshold level

2.5 Functional aspects

2.5.1 Delays

The propagation speed of a signal on a twisted pair cable is? typically 2.10% m/s.
So for a 1 km long line, the propagation delay T, = 1000 / 2.10°=5 us. Values

for cables up to 1km long were computed, and can be obtained from Figure 2.12.

Tp
- 50E-6 -
S S 40E6-
S 8 3.0E-6 +
© O
8 2 20E6
d—‘f 5 10E6
0000.0E+0 - | — | —
O (@] (@] [en] o (e} (] (@] (o] o
(@] [®] (en] (e} (@] [an] (] (@] o (e
~ (V] o <t wn [(e] M~ [e0] [9)] 2

Length {(meters)

Figure 2.12 Propagation delay chart

For a frame of 10 bytes (80 bits), and with a transmission speed of 10.5 Kbd, the

transmission delay is :

2 This is the typical speed of the signal for twisted-pair or coaxial cable [1]
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Tx =80/10500 = 7.6 ms. Other values can be obtained from (Figure 2.13).

80.0E-3 —
70.0E-3 - Tx 7
60.0E-3 + - «
50.0E-3 + - :
40.0E-3 + _ - ]

1

|——— 10500 Baud |
62 500 Baud |
l
|

30.0E-3 - — - -~ 250 000 Baud
20.0E-3 + -
10.0E-3 - —
000.0E+0 L I e e e e
o o
-~ [aV]

Tx Delay (Sec)
\

Length (bytes)

Figure 2.13 Transmission delay chart

The ratio a= T, /Ty is much smaller than 1. The transmission delay dominates the
‘round trip delay’, that is the time delay between the first bit of a block being
transmitted by the sender and the last bit of its associated acknowledgement

being received (Figure 2.14).

Send first bit of

frame .
fse”d last bit of Receives first bit
rame of frame
Sender
Receives first bit Send first bit of X Receives last bit
of frame acknowledgement of frame
_\ frame
Receiver
Receives last bit ¥ Send last bit of
of frame acknowledgement
Ty T T, T, frame
<> P T, <> T, T,
time »
T,

T, = round trip time

Te = computing time

T« = Transmission delay
T,=Propagation Delay

Figure 2.14 Timing Diagram



2.5.2 Noise

Noise in received signals constitutes the most prevalent factor limiting the
performance of a communication system, since noise introduces errors in the
receiver. One source of noise is crosstalk. It is due to capacitive coupling between
two lines, and is significant in high speed circuits.

Another form of noise caused by external activity is impulse noise. An example
would be a lightning discharge. Its main characteristic is that it occurs in bursts. A
burst of half a second might corrupt 4800 bits of data at a transmission rate of
9600 bps. Error decoding techniques allow that type of error to be detected.

A third type of noise, thermal noise, is present in all types of electronic device. It is
due to the thermal agitation of the electrons, associated with each atom making
up the device or transmission line material. It is made up of random frequency
components, across the whole spectrum, of continuously varying amplitude (white
noise). A minimum signal level must be used to achieve a minimum Bit Error Rate
(BER). For example a BER of 10™* means that on average, 1 bit every 10*
received will be misinterpreted.

It is possible to calculate the BER caused by a defined amount of noise (appendix
A). For example, with a differential value of 5V and a noise variance of 525 mV,
we get a BER of about 10 . However, this is for the case only of a single ended
transmission line. For a differential transmission line, two signals of equal and
opposite polarity are produced for every bit to be transmitted, the receiver is
sensitive only to the difference between the two signals. Any noise picked up in
both wires will have its effect cancelled at reception.

A fourth type of noise is intersymbol noise, when the transmission rate increases,
some frequency components associated with each bit are delayed and interfere
with a later bit.

All those sources contribute to the total error rate. The error rate can be reduced
by increasing the signal level or by implementing error-control coding techniques

in the higher level of the protocol.

2.6 Selected methods

In light of the review carried out in the above paragraphs, a particular approach

was selected for a prototype system. The deciding factor was the selection of a
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token passing network, rather than a collision based one. The reason was the
behaviour of such networks as traffic increases (Figure 2.8 and Figure 2.9).
Other implementation choices mentioned above were made with respect to the
actual possibilities available in hardware. Error control algorithms and encoding
rules are often embedded within communication hardware.

The choice of the topology was of a bus type, although each node is within a
logical ring on the network.

The choice of the baud rate, which would closely affect the delays, was left open.
The value of the baud rate that can be used is limited by the length and quality of
the cable, which could vary. By using a low value by default, the worst cases are

dealt with.
The software implementation of the prototype network is described in the

following chapter.
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3. IMPLEMENTATION OF THE NETWORK

This chapter describes how the communication concepts described in the
previous chapter were selected and implemented. The selection of a particular
network was driven not only by functionality, as described in the previous chapter,
but also by commercial aspects, such as the availability and costs of hardware
and software components. Technical aspects also came into consideration as
the final system has to fit in a relatively small enclosure, with a limited power
supply.

One of the initial decision made was to use a token passing network, as having a
deterministic response was identified as a key issue for such a control system. A
Fieldbus type network was seem as an adequate implementation. At the time, the
fieldbus standard was only partially specified with only the lower protocol layers
defined. There was also many uncertainties in the industry about the future of the
standard, which was evolving very slowly compared to similar proprietory
networks such as CAN and Profibus.

The cost of developing proprietory fieldbus solutions such as CAN or Lonworks
was above the projects’s budget, and the sponsor company was concerned about
committing a design to a third party supplier.

The choice was made to implement a basic fieldbus version by using industry
standard communication controllers and microprocessor. The initial decision was
to use and Intel 8344 microcontroller, which includes a serial communication
controller and allowed all the necessary hardware to fit in a small space. The
familiarity and popularity of the Intel microcontrollers was also a great advantage,
as a choice of software development kits was widely available. The
microcontroller implements several communication features in hardware : NRZI
encoding, SDLC (Synchronous Data Link Control) framing, which includes FCS
error correction . The topology was chosen to be bus, as it suits the layout of the

ROV hardware better.



During development, the speed at which the network was to be run was initially
set at 9600 baud, the hardware could support speeds up to 62Kbds and this
value is easily changeable in software if needed. There was no need to increase
this value in development. ‘

The higher level of the communication protocol was implemehted in software,
written in C language. The includes feature such as token management and
recovery, and data format. Part of the protocol was taken from the SDLC
specification, some new features were added to adapt the network to the ROV
appication.

This technology was implemented in a prototype vehicle, described in the next

chapter.

3.1 SDLC

A typical SDLC frame consists of five fields (Figure 3.1): flag, address, control,
information and Frame Check Sequence (FCS). The FCS is used to check for
transmission errors between the two data link stations, this is implemented by a
Cyclic Redundancy Check (CRC). The transmitting station performs Modulo 2
division, based on an established polynomial, on the address, control and
information fields and appends the remainder as the FCS field. In turn the
receiving station performs a division with the same polynomial. If the remainder
equals a predetermined value, the chances are very high that the transmission
occurred without any errors. Otherwise, it indicates a probable transmission error,

in which case the receiving station sends a negative acknowledgement.

Opening Flag Address Field Control Field Information Field Frame Check Closing Flag
Sequence
Variable
01111110 8 bits 8 bits length(only in 16 bits 01111110
Information
frames)

Figure 3.1 SDLC frame format
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3.1.1 Error correction in HDLC
In HDLC? | the generator polynomial used for error correction is [8] :
g(x) = x'® + x> +x° +1. The FCS is calculated using the following method :

Let M a k-bit number representing the frame contents, R an n-bit number, such
that k>n, representing the FCS, and G an (n+1)-bit number representing the

generator polynomial.

n n
ifR = MX2 Modulo 2) then 222 R _g
n n
can be checked since : M2 :}M X2 =0 (Modulo 2)

The FCS (R) is calculated using a Modulo 2 multiplication and division. The FCS is

decoded by checking that the second expression is zero.

3.1.2 Limitations of HDLC due to framing and bit insertion

There is still a possibility that an error remains undetected, for exampile if a single
bit error generates a spurious flag. As in Figure 3.2, if the sequence ‘01110110 is
to be transmitted, a single bit error could generate a spurious flag, ‘01111110’
The leading and trailing ‘0’ have to be transmitted error free, while the ‘0’ in

position 2 to 7 has to be affected by bit errors in order to generate a flag.

position 1 2 3 4 5 6 7 8
occtet 61 110110¢0
bit error @

FLAG 601111110

Figure 3.2 Occurrence of a spurious flag

The probability of this type of error happening is described in Appendix |. Figure
3.3 shows how the probability of such an error happening R(FLAG) increases, as
the probability p of a bit error varies, for various message lengths. The chance of
this error happening can also be reduced by implementing other error detection

protocol at higher protocol level.

3HDLC: High Level Data Link Control, of which SDLC is a subset
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Probability of a spurious flag
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0.00001 + T G LAG et H
0 | R R{FLAG) Nﬂ;Mm!
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[—--—RFLAG)N=80 |
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0000008 4

0.000004 +

0.000802 +

gt

1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.08E+00

Figure 3.3 Residual error due to spurious flags

3.2 Protocol design

3.2.1 Control field

A fixed number of control fields are used, some were taken from the HDLC
specification (Table 3.1). As well as the standard control fields, custom control
fields were defined for this particular project (Table 3.2). Those are used for

implementing the token passing protocol, as shown in section 3.2.4.



Control Field Bit Encoding

Format 1 2 3 4 5 6 7 8 Commands Responses
Unnumbered 1 1 6 0 o 0 0 © Ul ]|
1 t 0 0 o 0 0 1 SNRM
1 + 0 0 O o 1 0 DISC RD
1 t 0 0 o 1t 0 O upP
1 t 0 0 o 1 1 0 UA
1 1t 1 0 O 0 0 1 FRMR
1 111 o o0 0 o DM
1 17 1 1 o 1 0 1 XD XiD
1 1 0 O 1T 1 1 TEST TEST
Legend
| Information XID Exchange ldentification
Ul Unnumbered Information DM Disconnect Mode
SNRM Set Normal Response Mode 0 The P/F bit
DISC Disconnect FRMR Frame Reject
RD Reguest Disconnect TEST Test
UP Unnumbered Poll UA Unnumbered Acknowledge
Table 3.1 Standard HDLC control field used
Custom Control Field Bit Encoding
Format 1 2 3 4 5 6 7 8 Commands Responses
Unnumbered 1T 1 1 1 o 1 1 0 §S UA
1 1 1 1 0 1 0O 0 &P UA
1T 1 1 1 0O 0 17 0 WFM
1 1 1 1 0 O 0 0 STIRT
11 0 1 O 0 0 0 CTF
1 1 0 1 0 0 1 TOKA
t 1 0 1 0O 0 1 0 TOKEN
Legend
SS Set Successor UA Unnumbered Acknowledge
Sk Set Predecessor CTF Claim Token Frame
WFM Who Follows Me STTRT Set Target Token Rotation Time
TOK-A Token TOKEN Token
Acknowledge

Table 3.2 Custom Control Field Bit Encoding
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An example of how those messages are used is given in Figure 3.4. The primary
station starts by establishing communication with the secondary station by
sending a SNRM (Set Normal Response Mode) message. When the secondary
station has acknowleged with a UA (Unnumbered Acknowledge), the actual data
transfer can start. The stations can send information frames (Ul unnumbered
Information) or test messages (TEST).

In order to disconnect its connection to the secondary station, the primary station
sends a DISC (Disconnect) message. Following this test messages send to the

secondary station are answered by a DM (Disconnect Mode) message, rather

than TEST.

Primary Secondary
SNRM

Establish
Link T

Data
Transfer

Test —

Disconnect

Test Y M —

Figure 3.4 Example of SDLC transfer

3.2.2 Error management on protocol level

When data is corrupted during transmission, there are two ways the protocol can
deal with the problem, either a retransmission is requested as in Figure 3.5, or the

data is ighored as in Figure 3.6.

The overhead incurred in the retransmission case by the possible reception

time-out and retransmission request can be a problem when dealing with fast
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changing data. By the time the same message is retransmitted, the value could

be obsolete.

The non-retransmission case is better suited to fast changing data, for example
the heading value of a ROV. In the implemented protocol, each node will transmit
recent high priority data when it owns the token, thus we know that data is

retransmitted within a certain time.

Sender Receiver

Corruption

Transmit Data

— 7

T Error detected or
time out
4”‘_”’—/’_’J_’_/,,_/,’— Send NACK
- (Negative
Retransmit Data Acknowledgment)

\ Successful reception

Figure 3.5 Corrupted transfer with recovery
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Sender Receiver

Corruption

Transmit Data

\‘ Error detected

Node receives the Data Ignored
token

Transmit next data

packet \
Successful reception

Figure 3.6 Corrupted data transfer without retransmission

In our protocol, the data transmissions use a non-retransmission transfer,
however for messages used in the token passing protocol, a transfer system is
implemented. Should the transmission of the token be corrupted, this would be

detected, and recovery procedure can be triggered.

3.2.3 Addresses

Ranges of addresses were reserved for certain type of nodes. This facilitates
future changes. These addresses are defined as:

e (0x81 to 0x90 Thruster card compatible nodes. (e.g. Node 1)

e 0x91 to OxAO Navigation card compatible nodes (e.g. Node 2)

e 0xA1 to 0xBO Camera control node (e.g. Node 3)

e 0x10 for Surface Unit (e.g. PC)

3.2.4 Token passing

This high level function is implemented in software. The flowcharts in Figure 3.7
and Figure 3.8 show how it is implemented. Each node knows the address of its
successor and predecessor in the logical ring. The token is passed around the

ring and nodes only have control over the media while they own the token.
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This version implements a two-level priority mechanism. Each node needs to
keep two timers: the Inactivity Timer, which can detect, for example if a token is
lost; and the Token Rotation Time TRT timer, which monitors the time since the
node last had the token. Low priority frames are only transmitted if the TRT timer
does not exceed the Target Token Rotation Time (TTRT), which is fixed.

Each node will support the protocol described above. In addition, the master
(Surface Unit) is also able to build a database of the node present on the ring.
This is used as a monitoring device, and provides useful features for maintenance
and fault detection, such as logging events on files. The master also calculates a

TTRT and distributes it to all the nodes .
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Inactivity timer

Receives :
expires

message

Set Inactivity timer

Received token

Generate new token
(call Initialisation)

Received
other frame

Process in command-
decode

Reset TRT

Send High Priority frames

TRT < TTRT?

Reset TRT

Send low priority frames

Send token to successor

J 4 retries?

Yes No
Acknowledge?

Figure 3.7 Token passing flowchart



Send Claim Token

Frame, with data length
from 2 addrefy

Wait one slot time

Silent Heard message

Process whole
address

Give up - Somebody
else has the token

Owns
Token

Figure 3.8 Token initialisation procedure

3.3 Preliminary tests and design steps

A step-by-step approach to the building of the prototype vehicle and network has
been taken. The hardware was built at the same time as the software evolved.
The first step was to have the local function of the first node operational. This
provided a test bed to ensure that the programming tools, such as compiler,

EPROM programmer and emulator, were operational; and to assess the validity

of the hardware.

Then a basic communication was established with the PC used for development.
At that stage a demonstration was arranged showing the PC controlling a Seaeye

thruster remotely via the thruster node.
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The network protocol was then implemented and tested with the prototype

hardware. A library was written, allowing all the network communication functions

to be standardised for all nodes. [17][19]

The software design for each of the additional node followed the same process:
first implementing the local routines in a stand-alone mode. This allowed to check
that the hardware was operating as expected, and to establish and test the local
software procedures. The network library was then included and the node was

tested in networked mode. [20]

3.4 Comparison with commercial networks

The major factor for choosing to implement our own network, as opposed to using

an ‘off-the-shelf’ package, was the economic aspect.

Off-the-shelf solutions would offer have offered better performance: since they
are designed commercially, larger manufacturing quantities mean that it is worth

designing dedicated transceiver and hardware.

The whole Fieldbus standard is not yet published at the time of the research, so
the design was based on the currently published parts, with some additional
design features described below. Currently, we can list several points where our
design differs from the Fieldbus IEC standard.

o Encoding4: our design uses NRZI° whereas Fieldbus uses Manchester
encoding. This choice was mainly driven by the availability of the encoding
hardware.

e Priority level : the draft standard makes provision for 3 levels, we only
implement 2. This made the design simpler, and there was no requirement for
more priority levels.

As far as the prototype vehicle is concerned, the main feature that could have

been useful was to have a high performance transceiver device, however the

standard RS485 device used proved sufficient for the speed response needed by
such vehicles.

The advantages of having designed a customised network are:

* Encoding is the way a logical value is transmitted electrically over the transmission line

® NRzI: Non Return to Zero Encoding : an encoding method where the signal level does not change for a
binary ‘1’, and where a voltage transition represents a logical ‘0’.
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» All the details are known, which made the network very easy to model

o All the features are there because they were needed, rather than because the
network manufacturer provides them by default, this saves on memory
requirements.

e The network is very basic, this limits the number of possible failures.

The disadvantages were that all the levels of design and implementation had to
carried out for the research, this added a considerate amount of work, and was a
riskier approach.

However the choice of the network has little importance when the study of time
delays within control loops is concerned. Indeed all types of networks will show a

variation in the transportation delay when the network configuration is modified.
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4. EXPERIMENTAL SETUP

4.1 Overall concept

Much emphasis was given to the practical aspects of this communication and control

system. In collaboration with a teaching company associate working with Seaeye Marine,

a prototype ROV was built and subsequently tested in the manoeuvring tank at DERA.

The hardware used for the prototype ROV was also used for bench experiments, in

conjunction with some dedicated test software.

The chassis used to house the prototype communication system was a Seaeye

Surveyor, for ease of reading this is referred to as ‘the prototype vehicle'.

The prototype electronics replaced the Seaeye communication system and interfaced to

the existing instruments. The original chassis and electronics pressure pods were used

[33]. A picture of the prototype vehicle is shown in Figure 4.2.

The Surveyor is a survey/inspection vehicle. The original Seaeye specifications are

described in Table 4.1;

Vehicle

Total Length: 1450 mm
Width: 820 mm.

Height: 815 mm.

Weight: 175 Kgs.
Forward thrust: 80 Kgs.
Payload: 45 Kgs.
Lateral thrust: 35 Kgs.
Depth rating: 300 Metres.
Vertical thrust: 35 Kgs

Camera

Colour CCD television camera with wide angle lens,
fixed focus and auto-iris.

Camera tilt

+ 90° of tilt, providing optimum coverage.

Lighting

2 x 150 Watts Quartz Halogen lamps, variable intensity
and mounted on camera tilt.

Navigation

Flux-gate compass with solid state rate sensor for
additional azimuth stability. Depth sensor

Auto-pilot

Automatic pilot is provided for heading and depth.
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Umbilical

Lifting umbilical cable complete with electrical and
mechanical terminations. Used to launch and recover
the vehicle Specifications:-

Sheathing . Polyurethane.

oD : 24.5 mm

Weightinair : 618 Kg/km

Weight in seawater : 134 Kg/km

Minimum bend radius: 240 mm (Dynamic.)

Break strength  : 3000 Kgf.

Surface Unit

Free standing (19" rack) console housing surface
control electronics and keypad.

Height: 370 mm. Width: 495 mm.

Depth: 495 mm.

Weight: 25 Kgs.

Surface Power Supply
Unit (PSU)

mounted in a steel cabinet, 2 Power Supply Units,
supplied with 440v three phase AC power.

Height: 1450 mm. Width: 600 mm. Depth: 500 mm.
Weight: 207 Kgs.

Controller

Small self-contained hand control unit containing all
vehicle controls. Supplied with a flying lead.

Height: 112 mm Nominal. (190 mm max.)

Width: 145 mm. Depth: 150 mm. Weight: 2 Kgs.
Power: 380 Vac /415 Vac/480 Vac 3-Phase
50/60 Hz. 15 kva.

Table 4.1 Seaeye Surveyor Specifications

These specifications were kept on the prototype vehicle: the original thrusters, Camera

tilt unit, Lighting, Navigation, Umbilical and power supplies were interfaced to the

prototype electronics.

The following structure was used for interfacing to the various instruments:(Figure 4.1)

Communications Relays
[ link to surface

! Lights ‘ [ Pan & Tilt |

Node 3

Node 1A

4 Thrusters

Node 18

Node 2

1 4 Thrusters I

I Compass I Depth Meter

Gyro

Figure 4.1 Prototype ROV Communication system
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Figure 4.2 Side and front views of the vehicle based upon the

prototype Fieldbus system

4.2 Detailed information

4.2.1 PC Surface Unit
The PC is a standard PC fitted with an RS485/Zilog 8530 serial communication card [16].

During the development of the prototype vehicle, the PC was used as the
communications master node. Several versions of software were created as the
development of the subsea nodes evolved into a full vehicle (Figure 4.3). After ensuring
that the communication hardware is present on the PC and initialised correctly, the
software enters a loop that can be exited by the user pressing ‘Q’ on the keyboard.
Within the loop, the master starts by not owning the token, and attempts to find it by

listening to incoming messages. Within a certain time limit, the master can assume that
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the token has been lost and starts a recovery routine. Once the station owns the token, it
can now send data to any node. When the master has finished sending data, it can pass
the token to its successor on the logical ring. The data that the master sends is taken

from the user input, for example pressing the up-arrow would cause the master to send a

message 1o the thruster nodes, requesting an upward thrust.

The HCU (Hand Control Unit) was built at the end of the project, to allow the PC surface

unit to be replaced by a cheaper alternative. It also has the advantages of being smaller

and portable.



Arcom Card Present?

* Yes

Initialise Communications
Card

v

Set logical ring

Is ‘Q’ is pressed

Yes

While master station
does not own the token

Listen to. Communications
Listen ()

Process messages if any

—> Exr |

Check Timers —1 Timed out

{ Recovery routines

If master station receive
the token

True

Reinitialise timers
False

v

Send messages from
queues

v

Pass token to
successor

No acknowledgment

=

y e ]

Check keyboard input

Key pressed

Update message
queues

|

Figure 4.3 PC ‘Development software’ flowchart
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A software library has been created [17], allowing the communication routines to be
imported easily. This has proved very useful as the various test software routines were

developed for experimental purposes (e.g. noise tests, control system).

Once the HCU was completed, the PC was not needed any longer to run the ROV.
However the graphical interface could still be used by overlaying the PC output with the
live video image coming from the vehicle's camera. A basic monitoring software was
created, allowing the PC to have a listening only role [18]. The main feature was to
display on a monitor information such as depth and heading (Figure 4.4). After ensuring
that the communication hardware is present on the PC and initialised correctly, the
software enters a loop that can be exited by the user pressing a key on the keyboard.
Within the loop, the PC listens to all messages on the communication line, and reacts to
internal events such as time change and when a new value is detected the display is
updated. A major advantage is that, as the PC is not part of the network as such (it was
not assigned an address), the software can be started and stopped independently of the
vehicle. A screenshot of the monitor software is shown below, this display was overlaid
on top of the live video picture coming from the ROV's camera. The output from the

video picture is not shown on the figure.

ROV Telecontrol Mondtor 1.0 21:19 30 /11 /1998

Heading Depth
0ao 000.0
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Arcom Card Present?

Initialise Communications
Card

Initialise variables for
PC Graphics

EXIT

T EXT_]
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v

Listen to. Communications Line
Listen()

Heading changed?
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Update_Heading()

Depth changed?
YES

v

Display new value
Update_Depth()

Time changed?

JYES

Display new value
NO Update_Time()

/

Close variables for PC
Graphics

Figure 4.4 PC Monitoring software flowchart



4.2.2 Thruster Card (Node 1A and Node 1B)

The thruster node’s functionality is to provide interfacing to the Seaeye SM4 thrusters.
This includes power amplification. Each node can drive four thrusters.

The Seaeye Marine SM4 thruster motor is a brushless DC unit containing integral
electronics. It requires a 250 V. DC, 5A power supply, and can provide 20 kg of dynamic
thrust. It is designed to operate at depths down to 1000 m.

The thruster is controlled by three lines : two direction lines and a 50 Hz Pulse Width
Modulated (PWM) speed signal. The direction signals have an amplitude of 24 V (peak-
to-peak), the PWM speed signal has an amplitude of 12V (peak-to-peak) (Figure 4.5).

STOPPED

' HALF-SPEED
,Al (’ ,/ FULL SPEED

20 ms

Figure 4.5 Pulse Width Modulation Speed Signal

The thrusters have to receive an ‘Init. pulse’ when started, this is implemented in
software. The structure of the software is described in flowcharts in Figure 4.6. After an
initialisation sequence, necessary for the microprocessor card hardware, a loop is
entered, where the timer values are checked. If the node has not received any command
for a long time (set to 10 sec), something has gone wrong, and the thrusters are stopped.
The thruster command value is also monitored to convert the high level command
received in the message (e.g. upwards, full speed) to local commands (e.g. thruster
number 1, full speed forward). The communication routine is called by interrupt, the
timer interrupt is used to create the PWM signal, based on the low level commands, and

also to keep track of timers.
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MAIN FUNCTION

Hardware and variable

Initialisation

Check Inactivity timer

v

| o

Update thruster

command low level
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COMMUNICATION PORT INTERRUPT

F Receives message

v

Process protocol messages
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Update command high level

variables

TIMER INTERRUPT

Are Thrusters Initialised?

Timed out

Shut down local

functions

l Yes

Send low-level commands to
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Figure 4.6 Thruster node software flowchart
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The vehicle was used for the DERA tank tests. Two thruster cards were required, each
controlling four thrusters. The choice of thruster assignment was such that in the event of
one thruster node being non-functional, the vehicle could still move in all its axes of
freedom.

The software used to implement those functions comprises of a set of standard slave
communication routines [19], and of local applications routines [20]; those were created

as a common module to be shared between all slave nodes.

4.2.3 Navigation Card (Node 2)

The navigation node is used to interface to various navigation sensors. The card is fitted
with two serial ports and an analogue port, allowing it to interface to most instruments. In
the case of the prototype ROV, those were: a Cetrek Compass, a Gyro and a Depth
meter.

The Cetrek compass is a flux gate compass, with a serial data output mode. The output
follows the NMEA (National Marine Electronics Association) standard. The format is
defined as 4800 bauds, 8 data bits, no parity, one or more stop bits.

The gyro is Gyrostar ENV-05A, manufactured by Murata. It is connected to the card’s
analogue input, linking it to the Analogue-to-Digital Converter (ADC).

The Depth-meter is based on a pressure transducer, the output of which is a frequency
modulated square wave, ranging from 1 kHz to 6 kHz, corresponding respectively to
depths of 0 to 500 m. This is converted to a voltage, via a frequency to voltage converter,
and then digitised via an serial ADC, allowing the value to be read on the card’s UART®.
The software constantly reads the values of the navigation devices; because the
conversion time of the ADC is very fast compared to the network (25 psec for a
conversion cycle), when the navigation nodes ends the values on the network, the most
recently read values are sent.

The software used to implement those functions comprises of a set of standard slave
communication routines [19], and of local applications routines [20]. A flowchart
describes how those functions are used (Figure 4.7). After an initialisation sequence,
necessary for the microprocessor card hardware, a loop is entered. The first action is to

read the available data from the connected sensors, and to convert those value into

® UART: Universal Asynchronous Receiver Transmitter; the electronic device used to convert between serial data and
parallel data used by a microprocessor.
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standard units. The timer values are checked (e.g. if the node has not received any
command for a long time (10 sec), something has gone wrong). The communication
routine is called by interrupt, and processes incoming and outgoing messages. The timer

interrupt is used to update the timer values.

MAIN FUNCTION

Hardware and variable

Initialisation

v

Read raw values from
——% hardware (ADC and two
serial lines)

l

Compute final values from
raw values (heading, depth,

gyro)
1 Timed out
Check Inactivity timer \ Shut down local
functions
OK

COMMUNICATION PORT INTERRUPT

’7 Receives message W

—
Process protocol messages

v

When token is owned, transmit

data

TIMER INTERRUPT

Update timers

Figure 4.7 Navigation node software flowchart
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4.2.4 Video Card (Node 3)

This card has various input and output facilities:

e three relays, one for Sonar switching, one for switching the video signal going to the
umbilical between two cameras, and one for operating a 'stills' camera.

e tilt platform closed loop control for the camera; provision has also been made for a
pan facility. This also includes a trip-detection system, which allows for the pan and
tilt facilities to be stopped in case a mechanical fault occurs and the motor is drawing
more current than expected.

¢ light level control signal

The software used to implement those functions comprises a set of standard slave

communication routines [19], and local applications routines [20].

A flowchart describes how those functions are used (Figure 4.8). The structure is very

similar to the navigation node, Digital to Analogue Converters (DAC) and Analogue to

Digital Converters (ADC) are used to interface with the local instruments. A simple PID

(Proportional, Integral and Derivative) controller is implemented to control the Pan and

Tilt position.
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h 4

J When data is received, update variables }

Figure 4.8 Video node software flowchart

4.2.5 Hand Control Unit (HCU)
The HCU is a hand-held control box used by the pilot to control the ROV. A list of
commands available to the pilot is given in Table 4.2, with a reference to how the

function is implemented in the hardware.
The HCU was used as a communications master node in the final ROV prototype. The

software used is described in Figure 4.10 and Figure 4.11 [21] and, because the micro-
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processor used was different to the other nodes, the low-level communications routines

had to be rewritten to accommodate the hardware changes.

Function Hardware used

Display 2 line LCD screen

Audible alarm Buzzer

XY + Twist ROV movement Joystick (Analogue Inputs)

moving ROV within horizontal plan

Z ROV Movement Potentiometer (Analogue Input)

moving ROV up or down

Auto-Depth ON/OFF switch Digital Inputs

Auto_Heading On/OFF switch

Thruster Enable ON/OFF switch

Sonar ON/OFF switch

Camera 1/2 switch

Stills camera ON/OFF switch

Full up switch
moving ROV up as fast as possible

Full down switch

moving ROV down as fast as

possible

Lights potentiometer Analogue Inputs
Tilt position potentiometer Analogue Inputs
PID tuning potentiometers Analogue Inputs
Backup memory for joystick e2PROM
calibration

Table 4.2 HCU functions

The HCU’s node architecture is described in Figure 4.9. The software used is
described in Figure 4.10. After having initialised the hardware components as
required, an attempt is made to retrieve previous calibration results from e2PROM. If
this is unsuccessful, the calibration routine has to be called, allowing the user to

calibrate the potentiometers and joysticks. The communication circuitry is then started,
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and user inputs are read for the first time. The software then enters a loop, where
input from the user is read, and accordingly either a menu option is offered, or a
normal run mode (‘Go’) is entered (Figure 4.11). In run mode, the values read are
transmitted as command messages to the relevant nodes. Incoming messages are

also processed, and heading and depth values are displayed.

Serial
Communication
Controller Zilog 8530

Liquid Crystal
Display

Digital
Inputs

Figure 4.9 HCU architecture
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Figure 4.10 HCU Main software structure
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Figure 4.11 HCU menu structure

4.3 Noise sensitivity

The effect of noise on the Bit Error Rate (BER) in our system has been evaluated
experimentally, by introducing noise artificially on the line.

The system was set up as : a PC sending repeatedly a set message to Node 1, node 1
was listening for the set message. Counters were set at both the sending and receiving
end (Figure 4.12). No Frame Check Sequence (FCS) was used, so that we could count :
the number of valid frames received, the number of valid frames with corrupted data
received and the number of corrupted frames that were lost. Valid frames with corrupted
data would be detected when using a FCS, corrupted frames would be ignored.

Noise was produced by a white noise generator [22] and introduced on the line via a

torroidal transformer. Different measurements were made for different baud rates and

noise levels.
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Figure 4.12 Noise tests setup

The results (Figure 4.13, Figure 4.14, Figure 4.15) show that small levels of noise have
little effect on the frame error rate. At a higher level, noise causes the number of faulty
frames to increase sharply. The number of valid frames with corrupted data increases

more slowly, and decreases when the level of noise prevents any valid frame to go

through at all.
The responses have the same shapes for the different baud rates, the main difference

being that the rise starts at lower noise level for higher baud rates.
Those results have been used later to evaluate the stability of the network under high

noise level.
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Figure 4.13 Noise tests results at 4.8 Kbds
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5. SIMULATION OF ANETWORK

The performance of a network can be measured by one major criteria: the delay
between when the message is available at the sender station and when this
message is received correctly by receiver station. This delay will vary depending
on many factors: transmission speed, number of stations, length of messages,
error rate. A network simulation is a good way to predict this delay, which can
then be analysed for different configurations. It is a good alternative to building
and testing the network at the outset. Not only this would be expensive, but
should the results be unsatisfactory, the cost and complexity of changing the
network would be a drawback. Simulation allows for much more flexibility, and
makes trying different configurations much more practical than having to

implement them for real.

5.1 LAN simulation

Simulation of Local Area Networks currently exist; they are mainly used during the
planning phase of a network design, allowing the designer to evaluate its
performance before committing to hardware. Different type of simulations exist:

1. Analytic models : Analytic simulations are based on a mathematical
representation of the system. Assumptions about the system have to made in
order to find such a mathematical representation and this makes the simulation
difficult to develop. In addition, since the simulation is unlike the real-life
situation only gross answers can be obtained.

2. Modelled simulations : In this case the network is modelled up to the level of
detail required. Since less assumptions have to be made than in 1, the result is
more accurate [23]. However, programming can be complex and costly, and
the resulting simulation is slower to run.

3. Hybrid : An hybrid simulation is a combination of the two methods above; it

gives a compromise between accuracy, complexity and run time.



5.2 Statistical aspects

This section deals with the probability aspects of a computer simulation. Firstly,
the simulation must be able to generate truly random numbers in order to model
arrival rate for messages that are triggered randomly. Secondly, the batch of
results gathered is limited in number, and must be interpreted in statistical terms.
There are many ways in which to generate a random number X, from its
probability distribution F(x). Two techniques commonly used are described in
Appendix D; the inverse method and the rejection method. The inverse method
was used in the simulation software.

The simulation gives out estimated values which is only an average of a number
of tests. These sample statistics will vary from one experiment to another. Hence

the values obtained will fluctuate about a mean value.

Supposing that X is a random variable, its mean p is defined as : u= f xf(x)dx,

Rt

with £(x)defining the probability density function of X.

If we draw random and independent samples x1,x2,X3,....,Xy from f (x) our
estimate of x would take the form of the mean of N samples : {1 = —1]\7an
n=

u is the true mean value of X and [ is the unbiased estimator of u. [1 is close to

u, but f#u. The spread of the difference between the two values is given by the

172
standard deviation : 5/x) = [E(Xz - uz} !

The confidence we place in the estimate of the mean is given by the variance of

o(x)
Do) =
W)= TV
This shows that the spread of the results falls as the number of samples increase.
N
The spread in [1is defined as the sample variance : $? = L (x,- ﬁ)z

—1

n=1
Using the central limit theorem, which states that the sum of a large number of
random variables tends to be normally distributed, this gives [23]:

e e



Since the number of samples N is finite, we can estimate some confidence interval

around p, so that we can predict that [1 falls within the interval between

w-e and pte.

p+e

Plu—e<p<p+el= [1(p)di

H~E
. (i—p)
by letting A = ——="4— t
v letting \/—2/—Na (x) we ge
INJ2 )s/c)

P[/l—€</}<ﬂ+8]=‘\/%\ ge_ﬁdﬂ«
—erf((\/—)g(,cﬂ

or P[ a/z\[—-<ﬂ<ﬂ+~ /2\/_}

Z,,,1s the upper o/2 percent of the standard deviation. The confidence interval is

u + ¢, the confidence level is er/{(,/N/ ) o )J
X

Generally € is chosen as E(—x)-, this implies that the probability of the sample mean

JN
(i lying within the interval ji+o(x)/+/N is 68.26%. Other values are shown below,

with M the number of standard deviation:

0.6826 M=1
P[H~M%<Q<M+M£(\/%—)—}z 0.954 M=2
0997 M=3

Usually o is not known, we can obtain it from a t-distribution table, knowing values

for S and N. This gives:
where {,»is the upper 100 x («/2) percentage point of the t-distribution.

In practice, this means that when analysing a set of simulation résults, we must
first decide the level of confidence we require, for example 95%.
Then we need to calculate the mean, in order to get the sample variance S.

St,
This allows us to find the confidence interval by applying : ¢ = \/’27\;’ !
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This theory is used in the simulation program to represent the set of results

obtained.

5.3 Choice of programming language object-oriented approach

5.3.1 Existing languages for network simulation

Some dedicated languages are used for network simulation, such as
SIMSCRIPT [24] which has been used for the simulation of circuit switched
networks and for token passing bus.

General purpose simulation languages are also used, especially process-oriented
languages such as SIMULA [25] and SIMAN (SiMulation ANalysis) [26].

The main feature of those programs is to be able to obtain the average message
delay. Additional features such as : calculating bus throughput, utilisation, being
able to simulate faulty or normal operation, dealing with priorities, generating
random messages at each queue, and selecting randomly the frame length can
also be implemented. Some programs also offer a graphic interface to present

results to the user.

5.3.2 Example of a C-code program

A basic simulation program for a token-passing ring and bus developed by Sadiku
and llyas [23] has been studied, and the source code was supplied by the authors
in [23]. In order to keep the program simple, a large number of assumptions have
been made by the authors :

e The arrival rate at all stations follows a Poisson process

All stations generate the same amount of traffic (same rate and packet

lengths)
o The transmission medium is error free
e Physical spacing between stations is the same
e Source and destination is on average 1/2 ring size apart
e Propagation delay of 5us/km (from a signal propagation speed in copper of

2.10% m/s)
This led to a program with the following structure (Figure 5.1), which was derived

from the source code made available by the authors.

Figure 5.1 shows that the software has an event-based structure. The event can

be one of three types:



e Arrival of packet : this is when the message is ‘created’ on the node, the rate of
creation follows a Poisson process. The time of creation is referred to as start-
time of the packet.

e Token arrival : this is when a node receives a token, allowing it to transmit
messages.

o Departure of packet : this is when the node transmits a packet once it received
the token. The delay is calculated at this point relative to the start-time. Once
the packet has departed, the token can be passed to the following station.

The results are computed following the rules from section 5.2, and information

such as average delay within 95% interval confidence can be displayed in textual

form.

The software was developed to simulate Local Area Networks, and although the

structure is of interest, major modifications have to be made in order to simulate

the network used on our prototype vehicle.

In order to reduce the number of assumptions made, the structure of the program

has been altered and some application-oriented information as been added: the

above program is designed for a loop of computers generating a random amount
of data. In our case, the application’s structure, i.e. the vehicle, is very different,
and we need to take this into account during the simulation. Those alterations can
prove difficult to implement within the existing software structure. An alternative

approach was to use an object-oriented language.
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5.3.3 Object-oriented approach

An aobject-oriented language allows for great reusability and modularity.

Some of its advantages over a standard programming technique are :

¢ information hiding, where the name of variables, constants, functions and
types can be made local to a module.

« data abstraction, allowing basic facilities for defining a set of operations for an
object type, and restricting the access to objects of the type to that set of
operations.

o inheritance, allowing to create subclasses (or ‘derived’ classes) from a
superclass (or ‘base’ class)

e polymorphism, allowing one routine, for example, to be applied to objects of
many different types.

e dynamic binding, virtual functions can be used to define a set of operations for
the most general version of a base’ class. When necessary the interpretation
of these operations can be refined for particular derived classes.

All those advantages mean that a basic library can be reused very easily.

Because an object-oriented language is based on data rather than functionality, it

is particularly well suited for creating simulations. C++ being a common object-

oriented language has therefore been selected as the base for the simulation

work.

5.4 Simulation of Fieldbus network

The aim of this simulation is to model a Fieldbus-type network, as proposed for
the ROV. This means having the basic network simulation structure, but also
being able to highlight the issues that are particular to a ROV network, i.e. the
nodes can behave very differently depending on what function they have. For
example, a navigation node with a compass will have very different
communication requirement to a node fitted with a manipulator.

When the program starts, the network is defined as empty by default, stations

have to be added. This is not a major problem since the networks we are

"ltis possible to define subsets of a class (the base class), called derived classes, which can reuse
functions and variables defined in the base class.
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simulating are of small size. In case this would prove to be a problem in the

future, a storage and retrieval facility could be added. Each node can be one of

two types : master or slave; a slave can be actuator, sensor or tool (Figure 5.2).

The choice of the type of node implies its rate and packet length, however those

values can be modified. The basic user interface allows the user to firstly create

the network, and secondly to run the simulation. It avoids having to recompile
some code for each different configuration.

A class hierarchy diagram shows the organisation of objects in the program

(Figure 5.2).

The class Simu contains instances® of the classes Medium, Net. Simu deals with

all the statistical calculations and results management. It also starts the

simulation process. Medium contains the particulars of the network such as
topology, station latency, propagation delay and medium length. Nef represents
the network, and contains instances of the nodes that are in the network
simulation. Net also manages queues and schedules start and arriving times.

Node is the base class for each node, and is derived into Master, Slave, Actuator,

Sensor, and Tool classes to take into account the various arrival rates and packet

lengths of each node.

Obviously this model has its limits, and the following points are important:

e error rate: the error rate is taken into account in the simulation, however the
model is only valid if errors occur in different frames. The model cannot cope
with successive and repeated errors and would give erroneous results.

e latency : this is the time the receiving device takes to decode the incoming
message, and to act upon it. The latency values used in the simulation have
been taken from measurements made on the node. This was measured by
running the networking software, and outputting a signal on one of the output
lines, when network messages were received. A time measurement was made
with an oscilloscope, by looking at both the communication line and the output
line. The time measurement was taken as shown in Figure 5.3. The latency

value was 8.5 msec.

® An instance of a class is a particular specimen of such a class.
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These classes are used by the main program as follows (Figure 5.4):

Create variable
mysimulation,
instance of Simu()

!

Add a master to the
network, calling
mysimulation->Add_Node

!

Menu - keypress
activated

Quit the
program

Display Help
Information

Figure 5.4 Main menu flowchart

calling
mysimulation->Delete_Node

Remove a node from the network,

mysimulation->Add_Node,

Sensor

Add a node to the network, calling

The node can be Tool, Actuator or

Display the network
components, calling
mysimulation->ListNodes()

Run the simulation,
calling
mysimulation->Init()
mysimulation->Result()

Modify node
attributes: packet
length and generation
rate

Source code of the simulation software is included in Appendix C.
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5.4.1 Results and tests

At the time of those tests, the prototype network consisted of a PC master node
and three slave nodes: one thruster node (actuator), one navigation node

(sensor) and one video node (tool).
Measurements have been made on the prototype of the following values:

1. Token Rotation Time : this is the time it takes for the token to loop around all
the nodes. This measurement was made by the PC by keeping a log file of the

time when it received the token.

2. Delay at node : this is the time it takes between when the message is created
and when it is transmitted. For example, the time between when a node reads
the result of a DAC conversion, and when the result of that conversion is
transmitted over the network. A time stamp was created at the time of the DAC
reading, and another at the time of transrﬁission. Both time stamps were

transmitted within the message, and could then be processed by the PC.

3. Delay at PC : this is the time it takes between when the message is created
and when it is transmitted. Time stamps for those events were logged onto a

file and processed later.

All the timing information was saved onto files which were readable by a
spreadsheet program. This allowed the user to get information such as average

trt and delay.

Results from the simulation have been compared with measured values.

The delay is variable, and can be defined as moving randomly around an average
value. Only the average result is represented on Figure 5.5, although a
confidence interval has also been obtained.

Results were also obtained from the actual test rig; the token rotation time (trt)
was measured. For each node using the network for transmission, the delay

between when the message is generated, and when it is actually transmitted was

measured.
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Figure 5.5 Delay estimation and measurements results

The results showed a good match for the trt and the slave nodes (Figure 5.5).
The results are poor for the PC prediction (Node 0), this is probably due to the
fact that the model used in the simulation for station latency is simple. This is fine

for real time embedded systems as the slave nodes, but insufficient for a more

complex behaviour such as a PC running software under an operating system.

The values obtained can also be used as representative values of the delay that

the experimental system will be expected to cope with. The following set-up was

chosen as a typical ROV configuration, as it is representative of the prototype

vehicle :

Number of nodes: 4 nodes in total, one master node and three slave nodes
(thruster, navigation and tools nodes).

Thruster node : receives packet sizes of 48 bits, but does not transmit any
data.

Navigation node : transmits packet of 80 bits.

Video node : transmits packets of 96 bits.

Frame error rate 1 in 1000 frame is corrupted.

Baud rate : 9.6Kbd.

Umbilical length : 500 meters.

Latency for each node 85 ms.
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For the above values the resulting transportation delays occuring for each node

varied between 20 to 70 ms on average (See Figure 5.5).

The simulation is also a very valuable tool that can be used to design, develop,
validate and modify networks. Many parameters can be varied: number of nodes,
packet length, transmission rate, and latency. As a design tools it allows the user
to experiment with different configurations and find out the effect of modifying
several parameters before investing in hardware. As a development tool, it allows
the user to compare the expected results against real measurements, and
therefore to detect any malfunction which would not be obvious otherwise. If the
results match the network can be shown to function as expected and can be
validated. In a similar way the simulation can also be used to investigate the
effect of possible modifications. For example it is possible to find out by how
much will the delay increase when more nodes are added, and by how much the
transmission speed has to be increased if the choice is to have the same delays

as before the nodes were added.
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6. EFFECT OF VARIABLE DELAY ON CLOSED LOOP CONTROL

This chapter investigates the effect of delays within control loops, and describes a
way of controlling processes with variable delays. This is particularly relevant to
the prototype ROV. Indeed the transportation delay within a control loop run over
a network is affected by parameters such as the number and type of nodes
present on the network.

ROVs are often tailored to suit a particular task, and having to re-tune all closed
loop controllers within the vehicle at each modification would be impractical.

The idea of having an ‘universal’ controller, which is not affected by changes in
transportation delay would seem to be the answer. A potential solution, using self-

tuning control, has been found and has been tested both in simulation and in

experiments.

6.1 Definition of system studied

Originally it was expected that control experiments would be carried on one of the
ROV instruments. First the camera tilt mechanism unit was targeted, where a
position control system could be designed. Initial tests however showed that this
unit was very slow compared to the range of delays introduced by the prototype
communication system. The unit could be modelled as a delayed integrator, with
a delay of 0.9 sec.

One other way of experimenting was to control the speed of the thruster.
However it proved difficult to find a suitable speed feedback signal without any
major design changes. The internal Seaeye thruster electronics give a step
response as follows: a delay of 90 msec and a sharp rise (taking about 10 msec)
to a settling point. The speed value was taken from the Hall-effect sensor existing
in the thruster, giving a frequency proportional to the thruster speed: (f(Hz)=
speed(RPM) x 0.1). A plot of the measured response is shown in Figure 6.1,

where the A trace is the demand, and the B trace is the output from the Hall

sensor.
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Not enough transient points (4 points can be read in the rising step) could be

obtained in order to build a model which could represent the motor behaviour

accurately.
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Figure 6.1 Speed step response of Seaeye thruster

The only other possibility of testing closed loop control on the vehicle was the

vehicle itself, by controlling heading or depth. Although a simple PID controller

was implemented for the water tests, it was decided that this would not be a very

good starting point for the following reasons:

e difficulty of setting up the test: need access to tank, a vehicle chassis, help to
launch vehicle

o difficulty of modelling: it would be problematic to assess exactly what

contribution the delay has with respect to the other unknown parameters.

The auto-heading PID controller used during the water tests was tuned in-situ
using a trial and error method, which gave acceptable results. Because the
vehicle’s response will vary with respect to ballast and payload, trial and error
tuning remains a favourite method in industry to cope with such a complex

behaviour.
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The solution chosen was to use a laboratory servo system. Minor changes had to
be made to one of the existing nodes to provide adequate amplification for the rig
command and feedback signals. The existing ADC and DAC were used, allowing
most of the software for both the network and the local application to be re-used.
Since all tests could now be implemented on the bench, this allowed for more
flexibility and testing time.

The servo system used was a ‘Feedback Modular servo system MS150 MKIT’,
which is primarily intended for experimental use by students investigating closed-
loop systems [27]. The motor used has split field winding, with current flow in

each part of the coil being controlled by a transistor. (Figure 6.2)

7 +
%4——— field coils —»

Vin=V2

Vin=V1 armature

l l

Figure 6.2 Schematic of armature control motor

The result of this arrangement is that the speed of the motor is proportional the
input voltage Vin. Due to friction, a minimum voltage is needed to start the motor.

An integral tacho-generator is fitted with the unit.

6.2 Experimental Setup

The experimental setup for the control experiments were as follows:
The PC was acting as a master and connected to one subsea node (test node).
The hardware of this test node originated from a thruster node but the 1/O side

was modified to integrate the ADC and DAC.
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The test node has one output which is the command line going to the feedback

rig, and two inputs, one is the speed feedback and the other is the position

feedback (Figure 6.3).
The software was designed so that the control loop could either be closed or

open. The closed loop algorithm could be run either:

a) locally : the node implements the PID controller independently

The test node software executes the following tasks:

1.

2.
3.
4

read the ADC conversion results on both channels

compute PID controller output

set the DAC to convert the PID output and go back to 1.
When the access to the network is available (interrupt driven),
transmit a message to the PC containing feedback ,

command and time values.

The PC executes the following tasks:

1.
2.

run network software

read values received and log into file

b) remotely : the PC computes the PID depending on results obtained on

remote node

The test node software executes the following tasks:

1.
2.
3.

4.

read the ADC conversion results on both channels

set the DAC to convert the command and go back to 1.
When the access to the network is available (interrupt driven),
transmit a message to the PC containing feedback values.

On interrupt, receive the command value from the PC

The PC executes the following tasks:

1.
2.
3.

run network software
read values received and log into file

compute PID controller output

The PC could also be made to add a time delay in the control loop.
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Anplification ‘
Speed Feedback

Position Feedback
Speed Command

Position Command

Figure 6.3 The control tests experimental setup

The network used here was minimal, with only one master and one slave.
Additional delays could be added artificially by the PC (master), rather than by

adding other slave nodes.

6.3 Experiments without introduced delay

6.3.1 Open loop measurements
The purpose of the first experiment was to determine a dynamic model of the test
rig, The information obtained can then be used to model and analyse the rig’s
behaviour in more complex situations.
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The first step was to establish the tachometer calibration. The results are shown

in Figure 6.4. The tachometer readings could be interpreted as a linear function

y=25.7x-953.3.

This linear function is only valid for digital readings below 255, after this point the
ADC is saturated. This implies that we are not able to read speeds above 5610
RPM. Therefore the experiments were operating the motor around a much lower
speed (typically 3000 rpm). The offset of the digital reading is due to an offset in

the amplification stage, and has been included in the above equation.

Speed (RPM)

0 50 100 150 200 250 300
Digital reading

Figure 6.4 Tacho calibration curve

An open loop configuration was setup, the test node generated the step function
(height 255 digital value, or 14V) which was feeding the motor and transmitted the
readings of the speed output to the PC. Those readings were then converted to

RPM using the calibration values. Results are shown in Figure 6.5.
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Figure 6.5 Experimental open loop step response

The open loop response was obtained by giving a step speed command to the
motor, shown as ‘Command’ in Figure 6.5. The response, shown as ‘Speed’ in
Figure 6.5, allowed us to approximate the model of the rig as a first order model,
with a time constant of 4.4 sec and a steady state gain of 4000/14=285 rpm/V,
giving the following function:

285/t  64.93

s+1/7 s+0.23

This transfer function was entered in a simple Simulink model and a similar open

G(s)=

loop test was setup (Figure 6.6). The results are shown in Figure 6.7 and match

the experimental results.

O—f T ]

Clock To Workspace

i >{ .
Step Fen 5+0.23 To'Workspace

Transfer Fecn

Figure 6.6 Open loop simulation in Simulink
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Cpen loop simulation (64.93/(5+0.23))
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Figure 6.7 Simulated open loop step response (Step demand generated at

t=1 sec)

6.3.2 Closed loop control simulation and experiment

Simulink was also used to test PID values on the model (Figure 6.8); adequate
values were found to be P=12.5 1=0.5 D=10 (Figure 6.9). The saturation block in
Figure 6.8 represents the characteristic of the amplifier.

The controller values were obtained using the Ziegler-Nichols [29] tuning rule and
then by iterative trials in the simulation. The demand is shown as a solid line and

the response as a dotted line.
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Figure 6.8 Closed-loop PID control in Simulink
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Figure 6.9 Simulated locally run (case a) PID step response (setpoint = 3000

RPM)
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The PID values were also tested on the rig, with the PID implemented locally
(case a in Figure 6.3) on the test node, and the PC only logging results.

Experimental result are shown in Figure 6.10.

PiD step response (Setpoint =3000 RPM)

3500

3000
2500

2000 J
7
!! ....... Response ‘

[ Demand |

Speed (RPM)

-
o
j=)
o

1000 -

s00 4 |

Time (sec)

Figure 6.10 Experimental locally run (case a) PID step response

This confirms the results obtained from the simulation with no overshoot or

steady state error. The rise time is much longer in the experimental result.

6.4 Delayed case

6.4.1 Simulation

A delay was added in the closed loop PID simulation (Figure 6.11). Results
showed that increasing the delay without modifying the PID controller coefficients
causes the response to deteriorate. The response cannot reach a steady state

value, but oscillates around a final value.

The spread of the oscillation becomes more noticeable as the delay increases

(Figure 6.12 to Figure 6.15).
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Figure 6.11 Closed loop PID simulation with variable delay
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Figure 6.14 PID step response with
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6.4.2 Experimental results

The software implemented on the test rig was such that the PID controller was
implemented on the PC (Case b in Figure 6.3). As well as the communication
delay between the two nodes, a delay could be artificially added by the PC.
Different values of delay were added, and results are shown in figures 6.16 to

6.19. An oscillation appears in the steady state, with an amplitude that increases

with the delay.

3500
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2500 | e
£ 2000 - e -
4 e Response |
3 ' | ———Demand_|
g 1500 -
72}

1000 4

500 ¢

0* z
0 5 10 15 20 25

Time (sec)

Figure 6.16 Remote PID step response without added delay
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Figure 6.17 Remote PID step response with 50 msec added delay
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Figure 6.18 Remote PID step response with 200 msec delay added
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Figure 6.19 Remote PID step response with 500 msec delay added

6.4.3 Comparison and conclusion

The experimental results obtained are very similar to what the simulation
predicted. This is most obvious with the case where the delay was 500 msec
(Figure 6.19); the oscillation is very clear and corresponds to the simulated

prediction (Figure 6.15).

This type of oscillation would be a problem in practice, for example if this control
system was the auto-heading of a ROV. Although the overall direction would be

accurate, the oscillations would make the video image taken by the vehicle

‘shaky’ and unusable.

Solutions to this particular problem have been researched in the past, but mainly
for system with unknown time delays, rather than a variable time delay, as in this
case. Because of the spread in the use of distributed control systems, this
particular problem will become more generalised. Most of those solutions are
based on an adaptive PID controller; where the PID controller's parameters are
calculated, based either on the results of a parameter estimation or pattern
recognition of the system. They have been shown to give good results for fixed
and non-significant delays [30]. One other way of coping with this problem is to
calculate, based on knowledge of the network, what the worst case delay is, and

use this as a factor to design controller [32].
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Typically, the type of adaptive controller described above have been tested in two
phase tests, where the first phase typically consists of applying disturbance to the
system in order to estimate parameters for a model, and the second phase
implements a suitable controller. A better solution would be to continuously
estimate the delay, and modify the PID parameters accordingly. This idea has
been developed, both in theory and practice, and the self-tuning system is

described next.
6.5 Self-tuning system for delayed processes

6.5.1 Theory

This section shows how a self-tuning controller can be implemented, so that the
response of a process does not deteriorate when a transport lag is introduced or

modified in the process, as shown in the previous section.

6.5.1.1 Time delays in state space

It is well known how to model systems with time delays in state space [28]:

The non delayed case can be written as
X = Ax + Bu
with x the state variable vector and u the input signal vector,an A and B

martrices.
The outputs of a linear system can be related to the state variables and input signals by

the following :
y =Cx + Du, where y is avector of output signals

With the introduction of a delay t in the system, this becomes:

X=Ax(t)+Bu(t-1)

6.5.1.1.1 Delay smaller than sampling period t<h

The above leads to discrete time state equations [28]:

fehr+ht

x(kh+ h) = e*'x(kh) + |

) eA(kh-!-h—s‘)B ll(S"—T)dS'
]

= eM'x(kh)+ J;; " AW o u(kh—h)+ J‘/ Zjh A OB ds w(kh)
= Ox(kh)+Ta(kh - h)+Tou(kh)
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with

D=e"
T "
L= [e¥ass

In a standard representation matrix form this gives

x(kh+h)| | @ T, x(kh) r,
{ u(kh) }—[0 0 ][u(kh-h)}’[ I J”(kh) (Eq. 1)

6.5.1.1.2 Delay larger than sampling period t>h

For the case of the time delay being larger than the sampling period,

r=(d-Dh+1' 0<7'<h, drepresenting the entire part of the delay and t‘ the
fractional part of the delay, the discrete state equation can be generalised as [28]:
x(kh+h)= x(kh)+T,u(kh—dh)+T,u(kh—dh+h)

In matrix form this gives:

x(kh+h) | [ r, T, K o x(kh) (0]
u(kh—dh+h)| |0 0 I K O|ukh—-dh)| |0

M =| M M |+| Mu(kh) (Eq.2)
u(kh—nh) 0 K I|ukh-2h)| |0

u(kh) 0 K 0| ukh-h) | |I]

6.5.1.2 Z transforms of delayed processes

6.5.1.2.1 Z transforms with no delays
It is possible to apply a Z transform to discrete state space equations [28]. The

classic algorithm for a non-delayed case is given below.
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Given the discrete state equation
xX(k+1)=Ox(k)+Tu(k)

and taking its Z transform

Szt xlk+1)=Y" 2 (Ox(k)+Tu(k))

Z(Z:Z‘kx(k)— x(0 ))= i ®Z *x(k) +i TZ *u(k)
Z[x(Z)-x(0)]=®Xx(Z)+TU(Z)

X(Z)=(ZI-® ) [Zx(0)+TU(Z )]

and Y(Z)=C(ZI-® )" Zx(0)+ C(ZI-®)'TU(Z)
The Z transform of the system is H(Z )=C(ZI-®)" T

6.5.1.2.2 Ztransforms for delayed cases
A similar approach can be taken for a delayed case (t<h), this highlights the
contribution of the delay.
Given the discrete state equations (from 6.5.1.1.1)
x(k+1)=Ox(k)+T,u(k—1)+T,u(k)this can also be expressed as :
x(k+2)=®x(k+1)+T,u(k)+T,u(k+1)
Taking the Z transform of the above equation :
Yozl +2)=3" 2 (@x(k+1)+T,u(k)+T,u(k+1))

Z? (ij-kx(k)— x(0)— Z”]x(l))= i OZ Fx(k+1) +irjz—k u(k)

+>T,Z u(k+1)
0

22[x(2)-x(0)- 27 x(1)|= 20x(Z )+ T,U(Z )+ ZT,U(Z)
X(Z)=(Z2*T-2® )" [Zx(0 )+ x(1)+U(Z )(T, + 7T, )]
and
Y(Z) = CX(2)
Y(Z)=C(Z*1-2®)" [Zx(0)+x(1)]
+C(ZI-®)(T, + 2T, JU(Z)

the first termis negligeable, this simplifies to
Y(Z)=C(ZI-®) (T, +2I',)U(Z)

The Z transform of the systemis H(Z ) = ——=

H(Z)=C(Z*I-2®)(T, + T, )
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6.5.2 Example of application to a first order system

As an example, the above results can be applied to a first order system, with the

transfer function:

H
H T
G = =
(s) 1+sT 1
S+

Converting into state space form &= Ax+ B u

Vil
wl=—L = sa=Hy_-*
1 T T
S+—
T
y=xl
L g2 oy
T T
u x1
_wT
(s+1/T)

6.5.2.1 Non-delayed case

In order to illustrate how the theory developed in 6.5.1 can be applied to the
above system, we can initially obtain the Z-transform for a non-delayed case. This
simple example is a good starting point before moving on to the more complex

delayed case. This gives the following digital state equation values®:

O=e"=eT
ho o
- u =
I'=leTds===(1-eT
0[ = (I=eT)
The Z transform of the system is :

g’

H(Z):C(Zl—d:)"r=(Z——e7)“’§(1-e7)=y—-”'p)

Z-p

with p= el

® The purpose of those calculations is to highlight the way in which the theory developed can be applied. In
this particular case, looking up in a Z-transform table would be much easier and give the same result, this

is only used as an example.
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We have moved from continuous to digital state-space variables, and then
obtained the Z-transform of the system, the same method is used for a delayed

system in the following section.

6.5.2.2 Delayed case

In a delayed case, a similar reasoning can be applied. The discrete state

equations values are:

h-t h—t -s T—h
— As — vT- _lt_l_= — -T—
I‘,,—l;[e dsB = Je dsto=p(l-e7 )
The Z transformis given as:
H(Z)=C(Z’I-Z® )" (T, +ZT,) from6.5.1.2.2,using the values of ®,T, and T,

T=h -7 7-h

T 1 T T —h —h =h
H(Z)=,ue (1—e )+i(] eT)= H - ((eT —e” )+Z(1-eT ))
Z(Z-eT) Z(Z—-eT )
using T = &h
-h & (8=1)h
H(Z)=—H (T (eT —1)+2(1-¢ 7 )

Z(Z-eT )

—h -n\7¢ —h(1-¢)
H(Z)= ——”—T(e‘?((e‘f] D)+ Z(1-¢T )
Z(Z-eT)
~h
using p = el

_ ,u -& _ _ (—e+1)
H(Z)-“—————Z(Z_p)(p(p )+Z(1-p"™"))
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plp*-1)

By using @ = T  this simplifies to
H(Z):—Z’L%E—I;)j(a+z 1_1"’;)::“ tr),
H(Z):?—((;—:—%(a«r—z(]-i?;—;—]lj)
H(Z):%(aﬂﬂ—a))

As a reminder, the Z-transform of a non-delayed case is : H(Z) ==ﬂﬂ_‘.£l
Z-p

This can be generalised to a first order model with a delay ¢ = dh + ¢h, larger than

the sampling period.

G(s)=—E—e witht=dh+eh, T>0, 0<e<1
1+sT

The effect of the delay can be simplified to:
e for 0<e<1 (delay)

M=Z_dﬂ(I—p]((I—a)Z+a)=Z—(d+I)ﬂ(%)«l_a)z_*_a)

u(Z) Z—-p Z
—&
p[p - 1]
withp=e~ /T and a =
I-p
The delay €h gives rise to a pole at the origin and a real negative zero q=-
o/(1-a)

e for -1<e&<0(anticipation)

NZ)_ pa [ 1=P \qr_ _ e, [ L= P ) pY,e
2" F ﬂ(z_pJ((l B+ B)=Z ﬂ(z_pJ((I p)Z* + fiz)

e
withP=e™'" and f=~—~2
I-p
The anticipation €h gives rise to a real negative zero q=-/(1- /)

e For an uncertain delay t=dhxeh -1<e<1, this generalises to
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Z-+1) bO+blZ+b27Z°
Z—p
bl 1-«a

with for0< e <1,b2=0,—=
b0 o

and for-1<e<0,b0=0,93=5—_-'—5—
bl B

H(Z)=

The zeros are:
o for 0<&e<le=1-0 Zerosare-b0/bl b2=0

1 bl b0
g:]-—- =1—- =
b0 b0+bl bO+bI

o for -1<&g<0&=1-0 Zerosare-bl/b2 b0=10

g=l—|—L _yq|=y-—0b2 __;_ =02
bl bl+b2 bl1+b2

e  So wecan generalise for-1< g <1that
L b0—b2
b0 + b1+ 52

This feature allows us to predict the unknown delay of a first order system by
analysing delay contributions in the Z model terms b0 and b2. [30] All of the
following work is based on this result. By using an estimator to find b0, b1 and b2,

we can calculate the value of the delay introduced.
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6.5.3 Simulation

Simulation software has been developed in order to prove that the delay
estimation theory can be applied within a closed loop control system.

This control method can be represented as in the diagram in Figure 6.20.

Healman | Delay [ )
Tuning rule Estimator ; Estimator  |¢——
Regulate
Command Parameters
— PID Outout
——pt controller | Process —» Outp

Figure 6.20 Diagram of the Self-tuning controller

Source code for this piece of software can be found in Appendices E and F.

The simulation software consists of several elements, which are represented in

flowchart form in Figure 6.21:

1) Data generation : a default Z-transform model of a first order system is used
to generate the data in order to simulate the process. Also at time step 250, a
delay is added within that model and at time 650, it is removed. The Command
value is also updated to show several step responses (Figure 6.22) The virtual
sampling rate used in the Z model was of 40 ms, as it matches the
experimental sampling rate.

2) RLS Estimator: a classic recursive least-squares estimation (RLS) method is
used [29], which is described in Appendix H. It estimates the parameters of the

Z model of the process. The model used is of a form:

) DO+ DIZ + b2Z*
Z-p

H(Z)= . The RLS algorithm is stopped when the

estimation error remains within a 2% band around the actual value.

3) Delay estimation : using the theory detailed in 6.5.1, it is then possible to
estimate ¢, the fractional part of the delay. If the absolute value of ¢ rises above
0.8, the model is ‘shifted’ by one sampling time, the number of shifts is
contained in the variable d, representing the integer part of the delay. Figure
6.23 shows that the software could keep track of the generated delay. The time

it takes for the software to shift the model depends greatly on what excitation is
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applied to the system at the time. Indeed if the system has reached a steady
state at the time of addition of the delay, no changes will be made until a new
excitation is applied. By adding small random signal to the command signal, it
is possible to overcome this particular problem, without affecting the overall
response.

4) Self tuning PID values The values of parameters found for the model are then
used to calculate PID controller coefficients. The method used is that of
Haalman [31]10 Those values are then used at the next sampling time to
calculate an appropriate output. This gives a good response when the
estimator has locked to correct values. However the response is erratic when
the estimator is still trying to find the right model, as for example at time

650.(See Figure 6.22)

'® Haalman tuning rule: the paper gives a tuning rule for delayed processes for both the Pl and
PID controller. The rule is obtained by trial and error on a computer simulation. The performance
of the controller is measured by calculating the least mean square value of the error, in the
response to a step disturbance. This gives a relatively simple rules for tuning. In our particular
case of a first order delayed system:

o)==

I1+st

The following P1 controller is recommended :

n=x{1+L]

sTi

with K = 27, and Ti=1,
3T
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Figure 6.21 Structure of the simulation software for the self-tuning

controller
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The result of the simulation include representations of :

1. The PID response (Figure 6.22) : this shows the simulated response of the
closed loop system (dotted line)against the demand (solid line).

2. The delay estimate (Figure 6.23) : this shows that the delay estimation (d) has
kept a good track of the system delay, which was artificially added at time step
250 and removed at time step 650. The artificial delay was created by shifting
the reference model by one sample time; in the code the value of the reference
matrix is shifted from the non-delayed value: [-a1 b2 bl b0 0] tothe
delayed value: [-al 0 b2 bl 0] The value of 'd" is the entire part of the
estimated delay, and when the estimation of the partial part of the delay ¢
becomes close to unity, the entire part of the delay is shifted. Therefore the
estimated change from 1 to 2 is correct Figure 6.23. The time unit used (time
steps) related to the number of time the simulation software has looped, that is

a new time step would represent a new sample in practice.

9.00E+03 +

8.00E+03

Delay is reduced at

Delay is increased at
time step 650

7.00E+03 time step 250

6.00E+03

> o
B OF
8 2

Speed RPM

3.00E+03

2.00E+03

1.00E+03 -

0.00E+00 + t + + + + t t ' +
1 101 20 301 401 501 801 701 801 901 1001 1101 1201 1301 1401 1501 1601 1701 1801 1901

Time steps, 1 step every 40 ms

Figure 6.22 Simulation result- PID response, using the self-tuning response

6-26



Entire part of delay estimate

2.00E+00

1.80E+00 +
1.60E+00 -+
1.40E+00
1.20E+00 + ,
1.00E+00 +------

8.00E-01 -

6.00E-01 +
4.00E-01 +
2.00E-01 +

0.00E+00 +

[
T T 1 1
n o M~ v~ W0
W OO — N I W
O ~ O O «— «
Ll
Time steps

Figure 6.23 Simulation result - Delay estimate

6.5.4 Experiments

1369 |

1483 |

1597 +

1711
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1939 |

Once the simulation showed that it was possible to use a self-tuning controller, an

experimental test was implemented.

This was similar in structure to the simulation software (Figure 6.24). Major

differences are:
Data is not generated by the software itself but acquired on the network from

node 1.

The estimation error band has been increased to 5%, this is to cope with the

fact that the readings are digitised by the ADC and in the presence of noise.

an additional delay can be added within the loop to simulate the addition and

removal of nodes on the network

the sampling time for the control process is the time period in between each

network access loop, obviously this will vary with the added delay. The local

sampling time used by the test node is very short, as the node is constantly

activating the converters, therefore when the a new value is transmitted on the

network, it is the result from a very recent reading.
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Figure 6.24 Structure of the experimental software
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The setup used was the same as with the first experimental work, with the PC
implementing the self-tuning PID controller, and the test node acting as an

interface to the laboratory test rig (Figure 6.25).

PC

Implementing the self-tuning Speed feedback

(digital)

PID controller

PID output (digital)

Test Node

Speed feedback (analog)

PID output (analog)

Feedback Test Rig

Figure 6.25 Experimental setup for self-tuning controller

Results were taken with various delays, the speed setpoint was 1500 RPM.

The following graphs show both the estimated and measured speed, as logged by
the PC. The estimation error shows the accuracy of the RLS estimator. Since the
PID controller is only active once the RLS has converged, responses will not only
reflect the choice of PID coefficients, but also the convergence of the RLS
algorithm. The sharp changes at the start of the estimation, which can be seen in
Figure 6.26 to Figure 6.29, reflects the fact that the RLS has not converged at
that point yet, and the output estimate is using the initial model parameter values.
On Figure 6.26, the changes at time step 60 happen when the RLS estimation
goes outside the estimation error band,(5%), and the RLS estimation process has
to be restarted. One possible estimation for the bad convergence of the RLS
could be an outside event that caused the motor to alter its response. The source

code of the software can be found in Appendices F and G.
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Figure 6.29 PID Self tuning control with 200 ms added delay

6.5.5 Advantages and limitation of the method

The method of self-tuning control was shown to work on a computer simulation,
where a known model was estimated and controlled, after a certain time, a delay
was introduced, and then removed in the model and both changes were
successfully detected by the RLS estimation. The PID controller parameters were

also adjusted in a suitable manner (Figure 6.22 and Figure 6.23).
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In the experiments, several values of delay were added artificially, and the same
controller was run, with a setpoint of 1500 rpm. In most cases a satisfactory
steady state response was obtained. However the transient behaviour is often
quite poor, and in the worst case the overall response is unsatisfactory, as in
Figure 6.29.

The poor quality of the reponse has later been analysed as a consequence of the
following fact; the PID controller is only activated once the RLS estimation has
converged to a set of estimated model parameters, and due to the presence of
noise, this can take a long time, in which the process remains uncontrolled . In
the case of figure Figure 6.26, the values that were first estimated by the RLS

were wrong, and the RLS estimation process had to be restarted.

A better response could be obtained by starting the process with default PID

parameters value, the PID controller could then be started straight away, while

the RLS estimation is being run.
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7. CONCLUSION

7.1 Achievements

The approach taken at the start was to identify the problems existing with current
industry ROVs, and to set new requirements for the design of a future vehicle. A
case study of a commercial vehicle was undertaken. The main problem identified
was the lack of flexibility of the communication system, which links the several
components of the vehicle. This prevents the vehicle setup being modified at

short notice, as it often is required in the industry.

The first step in the research was to select a distributed architecture to link the
vehicle sub-systems, as opposed to a centralised architecture, which was used
on the current vehicle. This allowed for more flexibility, and also has the potential
of making maintenance and error detection quicker and easier. The next step was
to review available networking techniques, and to select a suitable method, which
was to be used for linking the ROV sub-systems, or nodes. A fieldbus-based
network was selected, as it showed the most suitable for the application. A
prototype vehicle was build, using the selected networking technique, and was
later demonstrated in underwater operation. This prototype was build in stages:
first only a basic ‘propulsion node’ was build on a bench system, and
communicated to a master PC. A ‘navigation’ node, supporting compass and
depth meter was then added, followed by a third node, which supported other
components such as camera and lights control. A hand control unit was also build
to ease the operation, and replaced the master PC. The PC was kept on the
system, and used as a monitoring function only. When this system was shown to
be operational on the bench, it was then integrated in an actual vehicle, with the

help of the sponsor company, and demonstrated underwater.

This prototype has the advantage over the case study vehicle of being completely

modular, as each of the sub-systems can be added or removed with minimum of
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disruption. It also has the potential of supporting many more instruments, indeed
the prototype vehicle supported all the functionality existing on the version of the

case study vehicle.

The design of the vehicle is fully documented in technical reports
(references: [17][18][19][20][21]).

Alongside the prototype building tasks, the theory of the network communication
was studied, and a simulation of the ROV network was created. This simulation is
a useful design tool that allows to experiment with changes in various parameters.
For example there might be a need to add a node to the vehicle in order to carry
out a special task, in this case the simulation would allow to find out by how much
the transportation delay would increase. Should the resulting increase in the delay
overload the network in an unacceptable way, the simulation could then be used
to find ways to improve the performance, for example what would be the
beneficial effect of increasing the transmission speed or of shortening the packet

length.

Another side to the problem is that the delays not only vary according to the
vehicle configuration, but also whilst the network is running, The simulation gives

out an average result and a confidence interval of the estimated delay.

Ideally, the vehicle should be able to be modified, for example by adding a
camera control node, without having to alter any controller settings. This is a very
important aspect of the practical problems faced by the oil industry. In order to
achieve this, a self-tuning controller was implemented, as described in chapter 6.
A simulation of such a control system was shown to cope well with delay
variations (Figure 6.22). However the experimental results were less encouraging
(Figure 6.28 and Figure 6.29), this could be for several reasons: a mismatch of
the simulated model and the real hardware, or an inefficient RLS estimation
method. One particular suggestion for improvement is to implement a default

controller to be used whilst the RLS estimator is giving unstable results.

7.2 Contribution to research

The main contribution is to have designed a self-tuning PID controller, for systems

where the transportation delay may vary. These delays occur in distributed control
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systems, such as the modular prototype ROV, and are not supported by standard

control techniques.

Distributed control systems are becoming increasingly popular, with applications
ranging from automated manufacturing lines, to cars and building automation. Not
being dependant on a fixed transportation delay is a major issue, as in most of
those applications a dynamic closed loop control is established over the network.
The network makes the transportation delay subject to many variable factors:
effect of noise, bandwidth, size of networks and properties of each node such as
latency and transmission behaviour. A network simulation was used to estimate

transportation delays for the studied ROV.

By using a RLS estimator the contribution of the delay can be estimated, then

suitable PID parameters can be calculated. This type of controller is ideal for the
ROV system, as the setup of the network is likely to be modified often. Only one
controller can be used for any configuration of the network. Details of the control

system development are described in Chapter 6.

The review of existing networking methods is also an important point, as once the
distributed approach is selected, the choice of a particular networking method is a
difficult one to make. Many networks exist, all with their advantages and
disadvantages, the review showed that in a commercial environment this choice
would be driven by the financial aspects. The network simulation was also useful
to investigate the impact of some design decisions such as the choice of

transmission speed.

7.3 Limitations

The limitations of such a self-tuning controller were found to be that there is a
possibility that a change in the model could be wrongly identified as a change in
the transportation delay. Since the vehicle is to be used in a widely changing
environment, this is a possible cause for problems. Decreasing the sensitivity of

the parameter updating algorithm, it might be possible to override this problem.

One other factor that caused problems in the experiments was that the RLS
estimator needs to be excited in order to converge. This was solved by adding a

small randomly varying signal to the command signal, and this random signal was
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small enough not to affect the target system, while allowing the RLS estimator to

converge more easily.

7.4 Suggestions for further work

As far as the design of the prototype vehicle is concerned, some improvements
could be made by adding more nodes and therefore allowing for a wider
functionality. The vehicle is still a prototype, and in order to be produced
commercially, would need to be more reliable. During the development the
majority of the faults that occurred were due to weak connections and poor quality
printed circuit boards. This is the area needing the most improvements, and

where much time was spend diagnosing and repairing trivial problems..

A far as the theory is concerned, the control system could be extended to be
applied to the ROV heading and depth control. This involves firstly obtaining a
model of the ROV, and secondly applying the self-tuning controller. This is a
much more complex system to control than the first order system studied in the
laboratory, especially when the ballast, position of thrusters, instruments and

environmental conditions can vary considerably between each vehicle launch.

Another important factor to model would be the amount of disturbances, as the

vehicle is to be used in extreme conditions. The robustness of the controller

would be a key factor.
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Appendix A Noise variance and Bit Error Rate

Supposing that the noise has a Gaussian probability distribution with zero mean :

V2

e 202
V) =
r N27wo
Consider a logic ‘0" being represented by Ag and a logic ‘1’ by A;.
A
1 Ao

p1(v)

When no noise is present, a logical ‘0’ is represented by a voltage V set to Ay,
and a logical ‘1’ is represented by a voltage V set to A;. As noise contributes to
the signal, it is possible that the voltage value changes and crosses the threshold
level d, this causes a transmission error.

As the noise is added, there will be a probability distribution about Agand As. An

error occurs when V<d when a ‘1’ was transmitted (Pe1)and when V>d when a ‘0’

was transmitted(Peo).
P,=p,(V>d)= fpo (V)dV error on a '0' transmission
P,=p(V<d)= '[dpl (V)dV error on a'l' transmission

Due to the symmetry in the distributions, we have Py = Pe1. The average
probability of error is :

Pe = P1Pe1 +Po Peo. , Where Py is the probability of a ‘1’ being transmitted, and
where Py is the probability of a ‘0’ being transmitted. Considering a probability of
occurrence of ‘1’ and ‘0’ as in HDLC of Py = 32/63 and P1=31/63, (there is a
higher probability of a ‘0’ being transmitted due to the bit stuffing process) we

have P, =P, [P, + P |= P[P +Py|=P =P,



Using Gaussian statistics :

=fp V)av
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cerf is the complimentary error function defined as :

cerf(u) e dx approximated to :

2
:Tﬁ‘f

foru>3

cerf(u) » ©

uTI

This definition of P is very important, since it links the BER (Bit Error Rate) to the

thermal noise variance.



Appendix B Transmission line theory

From Matick [8] a transmission line can be modelled as a succession of the

following circuit:
R L to infinity

___va\__ngjE_E_/\/vv\_rm\;E; ..................
c - 3 R,-1/G

The basic effects occurring along a line are phase shift and attenuation.
The analysis of a small length of the circuit (Ax) gives :
V.=i RAx +i joLAx +V

V.. -V =-i(R+ joL)Ax

x+Ax

V V

X+Ax X+Ax

T
e R Ax 1/jCAxw

i ==V (G+jowC)Ax

X+Ax - x X+Ax

AV, =—i (R+ jolL)
Ax

AL _ V. . (G + jaC)
Ax

when Ax = 0 this becomes
dVv,

= —(R+ jolL)i,
dx
L (G + jocy,
dx
ddex =(R+ joL)(G + joC)V, =y*V,
X

a solution to that differential equation is :
V. =V,e”™ +V,e”

and for 1,
3 12" =(R+ joL)(G + joC)i =y’
X

a solution to that differential equation is :

i =1

- L
=i.e " +ie
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using sinusoial excitation :
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ey* represents waves travelling in the negative x directions end e waves

travelling in the positive direction. This refection has a distortion effect on pulses.
The propagation constant y is a complex, its real part « is the attenuation

constant, and its imaginary part B is the phase constant.

y* =R +joL)(G+jeC)
1
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NV 8w’l? 8w?C? 4w’LC

R L .
+ —g \/g attenuation in rad / meter

“2JUC 2
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=~ LC(I + + -
F 80%1% 8w?C? 4w’LC

i

v

N | —

/4

) phase constant rad / meter

The above calculation does not take into account the skin effect. Matick shows

that when including the skin effect the attenuation becomes :

Rsk
2,JL/C

o .
— with no shunt loss

@
and the phase constantis : f=wVLC +—==
JLC r

This means that high frequency signals are attenuated more than low frequency

ones and this is the main cause of distortion of pulses.
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. random.hpp - -~ ~ - . o . pagel
/*******************************************************************
*

* File :random.h

* Description : random number genaration library header file *
* Adapted from "Numerical Recipes in C - The art of *

* scientific computing", Press, Flannery, Teukolsky Vetterling, *
* Cambridge University Press, ISBN 0-521-35465-X *
* HISTORY: Date Author Comments *
T e e e e m e e e e e *
* 20/09/96 S.M.Rolland Creation *

A R R R e R R A A et T e e

#include <stdlib.hs>
#include <math.hs>

/*
* Procedur: Ran0 *
* Input : idum - negative for initialisation *
* Output : random number *
* Comments : uses the standard rand() but reshuffled *
* HISTORY: Date Author Comments *
K e e e e e e e e e o e 4 — e e = *
* 20.09.9%6 S.M.Rolland Creation *
*/

float ranO(int *idum);
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randomepp ~ : o : ; L
/**********************'k*****************************************7\'**
* File :random.c
Description : random number genaration library

Mostly taken from "Numerical Recipes in C - The art of
scientific computing”, Press, Flannery, Teukolsky Vetterling,
Cambridge University Press, ISBN 0-521-35465-X
HISTORY: Date Author Comments

9 * 20/09/96 $.M.Rolland C(reation *
10 *******************************************************************/
11 #include *random.hpp"

12 /*

L

*

@~ U WA

LI

13 * Procedur: Ran0 *
14 * Input : idum - negative for initialisation *
15 * Qutput : random number *
16 * Comments : uses the standard rand() but reshuffled *
17 * HISTORY: Date Author Comments *
2 o *
19 * 20.09.96 S.M.Rolland Creation *
20 */
21 float ranO{int* idum)

22

23 static float y,maxran,v[98];
24 float dum;
25 static int iff=0;

26 int j;

27 void nerror();

28

29 if (*idum <0 || iff==0)

30

31 iff=1;

32 maxran=RAND MAX +1.0;

33 srand (* idum);

34 *idum=1;

35 for (j=1;3<=97;j++) dum=rand();
36 for (J=1;3<=97;j++) vI[jl=rand();
37 y=rand () ;

38

39 j=1497.0 *y/maxran;

40 /*if (j »97 || j<l1) nerror("RANO: This cannot happen");*/
41 y=vIjl;

42 vijl=rand();

43 return y/maxran;
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. slmubpp . ‘ -
/*******************************************************************
* File :simu.hpp

* Description : OO network simulation project

* HISTORY: Date Author Comments

F e e e e e e e e e e e e e o e e e e . ————
* 19/06/96 S.M.Rolland Creation *
******************************************'k************************/
#include <math.h>

#include <«<stdlib.hs

#include <iostream.hs>

#include <conioc.h>

#include "random.hpp"

#define MAX Q SIZE 1

#define MAX PACKETS 10000

#define RATE 10500.0

#define FACTOR 10600.0

#define MEDIUM_LENGTH 500 /* 500 meters*/

#define MAX_NODES 32

// Mode of output used in list nodes

#define VERBOSE 1

#define TABULAR 2

#define TRUE ©

#define FALSE 1

extern float T_dist_par([10];

/*

* Class definition : Node *
* HISTORY: Date Author Comments *
K e e e e e e e e m e s e e i e e *
* 19.06.96 S.M.Rolland Creation *

class Node{
friend class Net;
int queue_size; // queue size at station
int hp_queue_size; // high priority queue size
int next_stn; // identifies next station
int previous_stn; // identifies previous station
int in; // status of station
float start_time[MAX Q SIZE]; // starting time of packets
float hp_start_time[MAX_Q SIZE]; // starting time of high priority packets
float event_time[4); // time of occurence of an event
unsigned char corrupt_frame_flag;
unsigned char skipped_flag;
protected:
float infinite;
int * inum;

public:
Node () ;
~Node () ;
virtual float Get_arrival rate();
virtual float Get_hp arrival_rate(};
virtual float Schedule_next_arrival();
virtual float Schedule_next _hp arrival();

virtual float Get_packet_length{(};
virtual void Set_arrival_rate(float rate);
virtual void Set_hp_arrival_rate(float rate);
virtual void Set_packet_ length(float length);
virtual void Describe{ostream & strm,unsigned char mode)
{ strm <<"Generic Node";)}
void Set_corrupt_frame flag(unsigned char flag)
{corrupt_frame_ flag=flag;}
unsigned char Get_corrupt_frame flag()
{return corrupt_frame_ flag;}
void Set_skipped flag(unsigned char flag)
{skipped_flag=flag;}
unsigned char Get_skipped flag()
{return skipped_flag;}

virtual float Get_Token Rotation Time () ;
virtual void Set_Token Rotation_Time(float value);

}; // Node class

/*

* Class definition : Slave *
* Inheritance from : Node *
* HISTORY: Date Author Comments *
K e e e e e e et et m e e e e e e e e o am e e e o e e e *
* 19.06.96 S.M.Rolland Creation *

class Slave : public Node{
protected:
float local_arrival_rate;
float local_hp_ arrival_rate;
float local_packet length;
float Token Rotation Time;
public:
Slave(float rate,float hp rate, float plength};
~8lave();

 pagel
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virtual float Get_arrival_rate();

virtual float Get_hp arrival rate({);

virtual float Schedule next_arrival();

virtual float Schedule_next_hp_arrival();

virtual float Get_packet_length(};

virtual void Set_arrival_rate(float rate);

virtual void Set_hp arrival_rate(float rate);

virtual void Set_packet length{float length);

virtual void Describe (ostream& strm,unsigned char mode)
{ strm <<"Generic Slave";}

virtual float Get_Token_ Rotation_Time () ;

virtual void Set_Token_Rotation Time (float value);

H
*

[N

Class definition : Master
Inheritance from : Node *
HISTORY: Date Author Comments

19.06.96 S.M.Rolland Creation *

*

* F ok

class Master : public Node{

float local_arrival_rate;

float local_hp arrival_rate;

float local_packet_length;

float Token Rotation_Time;

public:

Master (float rate, float hp_rate, float plength);

~Master();
virtual float Get_arrival_rate();
virtual float Get_hp_arrival_rate();
virtual float Schedule_next_arrival(};
virtual f£loat Schedule_next_hp arrival{);
virtual float Get_packet length{);
virtual void Set_arrival_rate{float rate);
virtual void Set_hp_arrival rate(float rate);
virtual void Set_packet_length{float length);
virtual void Describe (ostream& strm,unsigned char mode)

if (mode == VERBOSE)
strm <<'"Master\t AR = "<<local_ arrival_ rate<<"\t HP-AR = "<<local_hp arrival_rate <<"\t
P = "<<local packet_length;
else if {(mode == TABULAR)
strm <<"M";

virtual float Get_Token Rotation_Time();
virtual void Set_Token_Rotation_Time(float value);

i
/*

* Class definition : Actuator

* Inheritance from : Slave

* HISTORY: Date Author Comments

K e e e =
*

19.06.96 8.M.Rolland C(reation *

class Actuator: public Slave(
public:
Actuator () :Slave(0.0,0.0,48.0){}
~Actuator () {}
//this is small packet size and low arrival rate
virtual float Schedule_next_arrival()

return infinite;// NO packet sent

virtual float Schedule_next_hp_arrival ()

return infinite; //No packets sent

virtual void Describe (ostream& strm,unsigned char mode)

if (mode == VERBOSE)
strm <<"Actuator\t AR = "<<local arrvival_rate<<"\t HP-AR =
"<<local_hp_arrival_rate<<"\t P = "<<local_packet length;
else if (mode== TABULAR)
sTtrm <<“A"“;

}i
/*
* Class definition : Sensor
* Inheritance from : Slave
* HISTORY: Date Author Comments
K e e e e et o o e e e e e e o = e e e o e e
*

19.06.96 S.M.Rolland Creation

class Sensor: public Slavef{
public:
Sensor() :Slave(7,0.001,80){}
//this is small packet size and high arrival rate
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~Sensor ()} {}
virtual float Schedule_next_arrival(} // Not a Poisson process!!

return FACTOR/local_arrival_rate;
}
virtual float Schedule_next_hp_arrival () // Poisson Process
float x,result;

for (;;)

i:rano(inum);

if (x!=0.0) break;
if {local_hp_arrival_rates 0.000001)

result = -(float)log((double)x) * FACTOR / local_hp arrival rate;
else

result=infinite;

return result;

)

virtual void Describe(ostream& strm,unsigned char mode)

if (mode == VERBOSE)

strm <<"Sensor\t AR = "<<local arrival_rate<<"\t HP_AR =
*<<local_hp_arrival_rate<<"\t P = "<<local_ packet_length;
else if (mode == TABULAR)

strm <<"S";

}
}i

/*
* Class definition : Tool *
* Inheritance from : Slave *
* HISTORY: Date Author Comments *
K e e e e e e e e e o o o o *
* 19.06.96 S.M.Rolland Creation *
*/
class Tool: public Slave(
public:
Tool () :Slave (30,0.5,96) {}
//this is larger packet size and medium arrival rate
~Tool () {}
virtual float Schedule_next_arrival() // Not a Poisson process
return FACTOR/local_arrival_rate;
/* float x,result; // Previous Poisson Process
for {(;;)
{
x=ran0 (inum) ;
if (x!=0.0) break;
if (local_arrival_rate> 0.000001)
{
result = -log(x) * FACTOR / local_arrival rate;
else
{
result=infinite;
return result; */
}
virtual float Schedule next_hp arrival() // Poisson Process
float x,result;
for (;;)
{
x=ran0 (inum) ;
if (x!=0.0) break;
if (local_hp_arrival_rates> 0.000001)
result = -log{x) * FACTOR / local_hp arrival_rate;
}
else
{
result=infinite;
return result;
!
virtual void Describe (ostream& strm, unsigned char mode)
if (mode == VERBOSE}
strm <<"Tool\t\t AR = "<<local_arrival_rate<<"\t HP_AR =

"<<local_hp_arrival_rate<<"\t P = "<<local_packet_length;
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simuhpp ~ _
else if (mode== TABULAR)
strm <<"T";
}
)i
/*
* Class definition : Net *
* Friends : Simu *
* Comments : contains instances of Node *
* HISTORY: Date Author Comments *
U g U *
* 19.06.96 S.M.Rolland Creation *
*/
class Net (
friend class Simu;
private:
int max_stations;
int num_stations;
Node ** station;
public:
Net (int size);
~Net () ;
float Get_event_time(int i,int j);
void Inc_gueue_size(int i);
void Dec_gueue_size (int i);
void Inc_hp_gueue_size{int 1i};
void Dec_hp_gueue_size(int i};
void Set_in{int i, int value};
void Set_next_stn(int i, int value);
int Get_next_stn(int i);
void Set_previous_stn{int i, int value);
int Get_previous_stn(int i);
void Set_event_time(int i, int j, float value);
void Set_start_time(int i, int gueue, float value);
void Set_hp_start_time(int i, int queue, float value);
float Get_hp_start_time(int i,int queue);
int Get_queue_size(int i};
void Set_queue_size{int i, int wvalue);
int Get_hp_gqueue_ size{int 1i};
void Set_hp_queue_size(int i, int value);
int Get_in(int i);
float Get_start_time(int i, int queue);
float Get_arrival_rate(int i);
float Get_hp_arrival rate{int i};
float Schedule_next_arrival(int i);
float Schedule_next_hp_arrival (int i);
float Get_packet_time(int i);
Node * Remove{int index);
int Add(Node * n);
void ListNodes (ostream & strm,unsigned char mode);
void Edit_Node{int index, float rate, float length};
void Set_corrupt_frame_flag(int i,unsigned char value);
unsigned char Get_corrupt_ frame_flag(int i);
void Set_Token_Rotation Time(int i, float value);
float Get_Token_ Rotation_Time(int i);
void Set_skipped flag{int i,unsigned char value);
unsigned char Get_skipped_flag(int i);
}; // Net class
/*
* Class definition : Medium *
* Friends : Simu *
* HISTORY: Date Author Commernts *
2y g v *
* 19.06.96 S.M.Rolland Creation *
*
/
class Medium(
friend class Simu;
private:
int ring or bus; // flag to choose topology
float packet_time; // average packet transmission time
float stn_latency; //station latency in time units
float token_time; // token transmission time
float tok_ack_time; // token acknowledge transmission time*/
float tau; // end to end propagation delay
public:
Medium(} ;
~Medium() ;
};// Medium class
/-k
*

* Class definition : Simu
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. simu.bpp . _ . .
* Comments : contains instances of Net and Medium - This is a high

* level class

* HISTORY: Date Author Comments *
K e e e e e o e e m e e e e e - — *
* 19.06.96 S.M.Rolland Creation *
* 30.09.96 " Each node has its own stat *

class Simu{
Medium * mymedium;
Net * net;
float arrival_rate; // arrival rate in packets per sec per station
float rho, clock, next_event_time;
int *no_pkts_departed;
float *delay, *total_delay, *average_ delay, walk_time;
float *delay_sum, *delay_sqr, *delay var, *delay_sdv, *delay con int;
int *no_hp_pkts_departed; -
float *hp_delay, *hp total delay, *hp average_delay;
float *hp delay_sum, *hp_delay_sqr, *hp delay var, *hp_delay_sdv, *hp delay con_int;
float trt,tewp,trt_sum; - -
long trt_count;
int degrees_fr;
int ic, flag, next_station, previous_station;
float x, logx, rand_size, infinite;
float **delay_ci;
float **hp_delay ci;
int temp_flag;
int stn_to_add, ring_size, next_event;
int master_index;
float Frame_Error Rate;
int error_count;
float token_count;
float TTRT;

public
Simu ()} ;
~Simu() ;
void Init{);
void Increase_Arrival_ Rate();
void Increase_ic_index();
void Run{);
void Result () ;
int Add_Node (Node* n) ;
void List_Nodes (ostream& strm,unsigned char mode);
int Delete Node(int n);
void Edit_Node{int n, float rate, float length);
}: // Simu class
// End Of File
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. simucpp . ; _ ‘ - ~ L -
1 /*******************************************************************
2 * File : simu.cpp *
3 * Description : 00 network simulation *
4 * HISTORY: Date Author Comments *
5 K e e e e e e e e e e S e e — — — = — e *
6 * 19/06/96 §.M.Rolland Creation *
7 ‘k**ﬁr*i***k*****‘k*********k*****************************************/
8 #include "simu.hpp"

9 #include <fstream.h>

10 #include <io.h>

11 #include <fcntl.h>

12 #include "random.hpp"

13 /*

14 * Class Member definitions : Node

15 * HISTORY: Date Author Comments *

- T T e T T ey *
17 * 19.06.96 S.M.Rolland Creation *
18 x/
19 Node::Node() //constructor

20 {

21 int i;

22 i=1;

23 inum=&i;

24 queue_size = 0;

25 hp_queue_size=0;

26 corrupt_ frame flag = FALSE;
27 skipped flag=FALSE;

28 for(i=0;i<MAX Q SIZE; i++)
29 start_time[i]=0.0;

30 /* assuming bus */

31 next_stn =-1;

32 previous_stn=-1;

33 in=0;

34 infinite= 1.0 * pow(10.0, 30.0);
35 for(i=0;i<3; i++)}

36 {

37 event_time[i]=0.0;

38 if (i1=0) event time[i]l=1.0 * pow(10.0,30.0);
39 }

40 }

41 Jiidiirrryesisiveid

42 Node::~Node(){} // destructor
43 float Node::Get_arrival rate()

44 {return 0.0;}

45 float Node::Get_hp arrival_ rate()

46 {return 0.0;}

47 float Node::Schedule_ next arrival()

48 {return 0.0;}

49 float Node::Schedule_next_hp_ arrival()

50 {return 0.0;}

51

52 float Node::Get_ packet length()

53 {return 0.0;}

54 void Node::Set_arrival rate(float rate)

55 {

56 void Node::Set_hp arrival rate(float rate)

57

58

59 void Node::Set_packet_length(float length)

50 {}

61

62 float Node::Get_Token Rotation_Time ()

63

64 return 0.0;

65

66 void Node::Set_Token_Rotation_Time(float value)

67

68 3}

69

70 /*

71 * Class Member definitions : Slave *
72 * HISTORY: Date Author Comments *
73 K e e e e e m e e e m m m m o m m . m mmm e e . *
74 * 19.06.96 §.M.Rolland C(Creation *
75 */
76 Slave::Slave(float rate, float hp_rate, float plength){

77 local_arrival rate=rate;

78 local packet_length=plength;

79 local_hp_arrival_rate=hp_rate;

80

81 Slave::~Slave(){}

82 float Slave::Get_arrival_rate()

83 {return 1ocal_arrival_rate;}

84 float Slave::CGet_hp_ arrival rate()

85 {return local_hp_arrival_rate;}
86 float Slave::Schedule_next_ arrival()

87 {return 0.0;}

88 float Slave::Schedule next hp_arrival()
89 {return 0.0;}

page 1
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176

sim.cpp

float Slave::Get_packet_length()
{return local_packet_length;}

void Slave::Set_arrival rate(float rate)
{local_arrival_ rate=rate;}

void Slave::Set _hp arrival_rate(float rate)
{local_hp_arrival_rate=rate;}

void Slave::Set_packet length(float length)
{local_packet_length=length;}

float Slave::Get_Token Rotation Time ()

return Token Rotation_ Time;
void Slave::Set_Token Rotation Time(float value)

Token_Rotation Time= value;

/*

* Class Member definitions : Master *

* HISTORY: Date Author Comments *

T e e e L o e e e e e o — — — . *

* 19.06.96 S.M.Rolland Creation *
*/

Master::Master(float rate, float hp_rate, float plength){
local_arrival_rate=rate;
local_hp arrival rate=hp_ rate;
local_packet_length=plength;

Master::~Master () {}
float Master::Get_arrival_rate()
{return local_arrival_rate;}
float Master::Get_hp_arrival_ rate()
{return local_hp_arrival_rate;}
float Master::Schedule next_arrival() // Poisson process

float x,result;
for (i:)

x=ran0 (inum) ;
if (x!=0.0) break;

if (local_arrival_rate> 0.000001)
result = -log(x) * FACTOR / local_arrival_rate;
else
{
result=infinite;
return result;
}

float Master::Schedule next_hp arrival() // Poisson Process

float x,result;
for (;;)

x=ranl (inunm) ;
if (x1=0.0) break;

if (local_hp arrival rate> 0.000001)

result = -log(x) * FACTOR / local_hp_ arrival_ rate;

}

else

{

result=infinite;

return result;

float Master::Get_packet length()
{return local_packet_length;}
void Master::Set_arrival_rate(float rate)
{local_arrival_rate=rate;}
void Master::Set_hp arrival_rate(float rate)
{local_hp_arrival_rate=rate;}

void Master::Set_packet length(float length)
{local_packet_length=length;}
float Master::Get_Token_ Rotation Time()
return Token Rotation Time;

void Master::Set_Token Rotation Time(float value)

Token_Rotation Time= value;

. pagez
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179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

| simucpp

/*
* Class Member definitions : Net

* HISTORY: Date Author Comments
G A W
* 19.06.96 S.M.Rolland Creation

Net: :Net (int size)

{

max_stationg=size;

num_stations=0;

station=new Node *[size];

for (int i=0; i<size; ++i)
station(i] =NULL;

194 }

195
1%6
197
198
199

Net::~Net ()

{
b
LILILI 7777777777777/

float Net::Get_event time(int i,int J)

200 {

201

return stationlil-s>event timel[j]l;

202 }

203
204
205
206

Yol

float Net::Get_start_time(int i,int queue)

{

return stationli]->start_ time[queuel];

207 }

208
209

LILLL0L1 7077777777777 777777

void Net::Inc_queue_size(int i)

210 {

211
212
213
214
215
216
217
218
219
220

station[i] ->queue_size++;
if (station[i]l->queue size > MAX Q SIZE)

stationfi] ->queue_size--;
/* cout << "Queue size too large';*/
/* exit(l);*/

}
LILLLILLI 170777777 7777777

void Net::Dec_queue_ size(int i)

221 {

222

station[i] ->queue_size--;

223 }

224
225

LIV 7777077777777 77777

void Net::Inc_hp queue_size(int i)

226 {

227
228
229
230
231
232
233
234
235
236

station[i] ->hp_queue size++;
if (station[il->hp_gqueue_size > MAX Q SIZE)

station[i] ->hp_gueue_size--;
/* cout << "Queue size too large’;*/
/* exit(1l);*/

}
SILLLIL 0777777777 77777777

void Net::Dec_hp_gueue_size(int 1)

237 {

238

station[i] ->hp_gqueue_size--;

239 }

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264
265
266
267

LILLLLIL L0077 77 777777777

void Net::8et_in(int i, int value)
station[i] ->in=value;

LILILLLLL 777077700707 077777

int Net::Get_ in(int i)
return (station[i]->in);
Y iiiiiiia
void Net::Set_next_stn(int i, int value)
station[i] -»>next_stn=value;

i

int Net::Get_next_stn(int i)

return (station[i]->next_stn);

LILILLL L7777 7 7770777077777

void Net::Set_previous_stn(int i, int value)

{

station[i] ->previous stn=value;

*/

G peues
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268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
308
306
307
308
309
310
311
312
313
314
318
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

. simucpp

N e
int Net::Get_previous_stn(int i)

return (station[i]->previous_stn);

}
Ylriiiriiiis

void Net::8et_event_ time(int i, int j, float value)

station[i] ->event_time[j]=value;

}
LI 777777777077 77777 7

void Net::Set_start_time(int i, int gueue, float value)
station[i] -»start_time [queue] =value;

Yyriiiiiiizda

int Net::Get_gqueue_ sgize(int i)

{
/* if (i==2)
return 1;*/
return (station[il]->queue_size};

void Net::Set_gueue_size(int i, int value)
station[i] ->queue_size = value;

Yy

int Net::Get_hp queue size(int i)

return (station[i]->hp_gueue_size);

}

void Net::Set_hp_gueue size(int i, int value)
station[i] ->hp_gqueue size = value;

}
Yiillliyiiiieia

float Net::Get_arrival rate{int i)

return station[il->Get_arrival_rate();

’ i
float Net::Get_hp_arrival_rate(int i)

return station[i]-»>Get_hp_arrival_rate();

}
il
float Net::8chedule_next_arrival (int i)
{return stationli]->Schedule next_arrival();}
LILLIL 077777777707 77777 777
float Net::Schedule next hp arrival (int i)
{return stationl[i]->Schedule_next_hp arrival();}
LILL00 0777777777777 777777
float Net::Get_packet_ time(int i)

return (station[i]->Get packet_ length() * FACTOR /RATE);

Yiiiriiiia

Node * Net::Remove (int index)

if (index>max_stations)
return 0;
if (station[index] !=NULL)

Node * temp=station[index];
station[index] =NULL;
--num_stations;

return temp;

else
return NULL;

Yt
int Net::Add(Node* n)

if (num_stations == max_stations)
return 0;

++ num_stations;

int i=0;

while (station(i] !=NULL)
++1;

station[il=n;

return i+1l;

il

void Net::ListNodes (ostream& strm, unsigned char mode)

. _paged
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357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
3739
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
408
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

void Net::Edit_Node(int index, float rate,

cop

if (num_stations‘>0f

for(int i=0;i<num stations;++i)
! =NULL)

if (stationl[i]

if (mode == VERBOSE)
"\nNode "<<i << " ig ¥;
station[i] ->Describe (strm,mode) ;

strm <<

else

3

if (mode == VERBOSE)

strm <<

"\nNode "<<i << " is

LILIII7071777 7777777777777 7

station[index] ->Set_arrival_rate(rate);
station[index] ->Set packet_length(length);

NULL";

float length)

void Net::Set corrupt_frame_flag(int i, unsigned char value)

station[i] ->Set_corrupt_frame_ flag(value);

unsigned char Net::Get corrupt_frame_flag(int i)

return

}

station[i] -»>Get_corrupt_frame_flag();

void Net::Set_skipped flag(int i, unsigned char value)

station(i] ->Set_skipped flag(value);

}

unsigned char Net::Get_ skipped flag(int i)

void Net::Set_ Token Rotation Time(int i,

{

return

station[i] -»>Get_skipped_ flag();

station[i]—>Set_Token_RotationﬁTime(value);

i

float Net::Get_Token Rotation_Time(int i)

{

return station[i] ->Get_Token Rotation_Time();

float Net::Get hp_start_time(int i,int queue)

return station[i]->hp start_time[queue];

float value)

void Net::Set_hp_ start time(int i, int queue, float value)

/*

station[i] ->hp_start_time[queuel] =value;

}

*

*

*

*

Class Member definitions
Date Author Comments

19.06.96 S$.M.Rolland Creation

HISTORY:

: Medium

Medium: :Medium() {

ring or_bus = 0;
packet_time = 56.0 * FACTOR / RATE; // this is the average packet time
stn_latency = 0.0085 * FACTOR;

token_time = 48.0 * FACTOR / RATE;

tok_ack_time=48.0 * FACTOR / RATE;

LI 7707777 7777777/777777

Medium: : ~Medium() {};

// from measurements

tau = MEDIUM LENGTH * FACTOR * 5.0 * pow(10.0,-9.0);

/*
* (Class Member definitions Simu
* HISTORY: Date Author Comments
K e e e e e e e e o =
* 19.06.96 S.M.Rolland Creation
Simu::Simu()
mymedium = new Medium();
net = new Net (MAX NODES) ;
degrees_fr=5;
delay ci= new float*([5]; // STEP 1: SET UP THE ROWS.
for (int j = 0; J <= 5; j++)

delay cilj] =

new float [MAX NODES];

hp_delay ci= new float*[5]; // STEP 1:
= 0; J <= 5; j++)

for (3

hp_delay ciljl

new float [MAX NODES] ;

// STEP 2: SET UP THE COLUMNS

SET UP THE ROWS.

// STEP 2: SET UP THE COLUMNS

_ pages
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446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

531
532
533
534

no_pkts departed=new int [MAX NODES];

delay=new float [MAX NODES];

total_delay =new float[MAX NODES];
average_delay =new float [MAX NODES];

delay sum =new float [MAX NODES];
delay_sgr=new float [MAX NODES];
delay var=new float [MAX NODES];
delay sdv=new float [MAX NODES];

delay con_int=new £float[MAX NODES];
no_hp_pkts_departed=new int [MAX_ NODES];

hp_delay=new float [MAX NODES];

hp_total_delay=new float[MAX NODES];
hp_average_delay=new float [MAX NODES] ;
hp_delay sum=new float[MAX NODES];
hp_delay sgr=new float[MAX NODES];

hp delay var=new float[MAX NODES];
hp_delay_sdv=new float [MAX NODES];

hp delay con_int=new float [MAX NODES];

arrival_rate=0.5; // this is the global arrival rate

rho=0.0;
clock=0.0;

for (int i=0;i<MAvaODES;i++)

no_pkts_departed[i] =
total delay[il=0.0;

average_delay[il=0.0;
no_hp_pkts_departedl[i]
hp_total_delay[i]1=0.0;
hp_average_delay[i]=0.

flag=1.0;
next_event_time = 0.0;
next_event=-1;

ic=-1;

rand_size = 0.5 * pow(2.0,8.0*% sizeof(int));

infinite= 1.0 * pow{10.0,
master_index=0;

0;

= 0;

0;

30.0);

. pageé

Frame Error_Rate=1000.0; /* one in Frame Error Rate frame will be corrupted=*/

error_count=0;
token_count=0;
for (i=0;i<5;i++)

for (j=0;J<MAX NODES;j++)

delay cil[i] [j]1=0;
hp delay cili] [j1=0:

Yidrririiyiiiiiiis

Simu::~Simu ()

delete (mymedium);
delete (net);

LILLLLI 77771777777 777777777

void Simu::Init()

trt=0.0;
temp=0.0;
trt_sum=0.0;
temp=0.0;
trt_count=0;
degrees_f£fr=5;

arrival rate=20.0; // this is the global arrival rate

rho=0.0;
clock=0.0;

for (int j=0;j<MAX NODES;j++)

no_pkts_departed(jl =
total_delay[jl1=0.0;

average_delay[j]=0.0;
no_hp_pkts_departed(j]
hp_total delay[j]1=0.0;
hp average_ delay[jl=0.

flag=1.0;
next_event_time = 0.0;
next_ event=-1;

ic=-1;

rand_size = 0.5 * pow(2.0,8.0*% sizeof(int));

infinite= 1.0 * pow(10.0,
error_count=0;
token_count=0;

0;

= 0;

0;

30.0);
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. simuepp . o o o page?
535 cout <<"\nEnter the Frame Error Rate (float) : " << flush;
536 cin »> Frame_Error Rate;

537 cout <<"\nEnter TTRT : "<<flush;

538 cin »>> TTRT;

539 }

540

541 Yorriiirriiiriiisvis
542 void Simu::Increase Arrival_Rate()

543

544 arrival_ rate= arrival_rate + 20.0;

545 }

546 iriiiiiisirissisies
547 int Simu::Add Node(Node *n)

548

549 if (net->Add(n)==0)

550

551 cout <<"\nCould not add a node\n®;

552 return (0);

553

554 else

555 return 1;

556 }

557 Yriiiiiiidiiiisees
558 void Simu::List_Nodes(ostream& strm,unsigned char mode)
559 {

560 i1f (net->num_stations ==0)

561

562 if (mode == VERBOSE)

563 strm <<"\nEmpty Network!";

564

565 net->ListNodes(strm,mode);

566 if (mode == VERBOSE)

567 strm << "\nTotal of " << net->num stations << nodes.";
568 }

569

570 iiriiiiisiiivisd
571 int Simu::Delete Node(int n)

572

573 Node *temp=net->Remove (n);

574 if ((temp==NULL) || (temp ==0))

575 return 0;

576 for ({(int i=n+l;i<=net->num_stations;i++) // shift down the rest of the nodes
5717

578 temp=net->Remove (i) ;

57% if ({temp==NULL) || (temp ==0))

580 return 0;

581 Add_Node (temp) ;

582

583 return 1;

584

585 void Simu::Edit_Node(int n, float rate, float length)
586

587 if (n<net->num_stations)

588 {

589 net->Edit_Node(n,rate, length);

590 cout <<"\nNode modified";

591

592 else

593 cout << "\nThis node does not exist";

594

595

596 Yiiiiiiiiiisisess
597 void Simu::Increase_ic_index()

598 {

599 int i,3;

600 if (ic<=degrees_£fr)

601

602 ic=ic+1;

603 rho=0.0;

604 clock=0.0;

605 temp=0;

606 for (i=0;i<MAX NODES;i++)

607

608 no_pkts_departed[i] = 0;

609 total_delay[il=0.0;

610 average_delay[i]=0.0;

611 no_hp pkts_departedii] = 0;

612 hp_total_delay([i]=0.0;

613 hp_average_delay[i]=0.0;

614

615 £lag=1.0;

616 next_event time = 0.0;

617 rho=arrival_rate * 48.0 * net->num_stations / RATE; // using global arrival rate
618 if (rho >=1.0)

619

620 /* cout <<"Warning Traffic intensity is too high"<<"\n";// not necessarily true!!!! obsolete
621 /* exit(1);*/

622

623 for{(i = 0;i<net->num stations; i++)
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624
625
526
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

651
652
653
654
655
656
657

658
659
660
661
662
663
664
665

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

693
694
695

697
698
699
700
701
702
703
704
705
706
707
708
7089
710
711

a,imu;c,pp{f . page 8
net-»>Set_queue_size(i,0);
net->Set_hp queue_size(i,0);
for (j=0;j<MAX_Q STIZE;j++)
net->Set_start_time(i,3j,0.0);
net->Set_hp_start_time(i,j,0.0);
}
%
LILLILLIII 0777700777777 7777
void Simu::Run()

int i, 3;

//Ffloat trt,temp;

int temp_ stn,next;

int * inum;

float error_gen;

unsigned char end;

i=1;

inum=&i;

end=FALSE;

//ofstream tst("test.log", ios::out|ios::app);// output file
ofstream tlog("token.log",ios::out|ios::app);// output file

if

(mymedium->ring or bus ==1) // RING

ring size=net->num_stations;
walk time=mymedium->token_time + mymedium->gtn_latency + mymedium->tau/net->num_stations;

else // BUS

ring_size=0;
walk_time= mymedium->token_ time +mymedium->stn latency+ mymedium->tau/3.0+mymedium->tau/3.0 +

mymedium->tok_ack_time;

for(i=0;i<net->num stations;i++)

net->Set_next_stn(net-»num stations-1,0);
net->Set_previous_stn(0,net->num_stations-1);
net->Set_previous_stn(net->num stations-1,net-»>num_stations-2);
net->Set_next_stn(0,1);
if ((i<(net->num stations-1)) && (i>0))

{

net->Set_next_stn(i,i+l);

net->Set_previous_stn(i,i-1);

for(i=0;i<(net->num stations);i++)

net->Set_Token Rotation Time(i,0.0):
for (j=0;j<5;j++)
net->8Set_event_time(i,j,0.0);

if ((31=0) && (j!=4))
net->8et_event_time(i,j,infinite);

}

while (end==FALSE)

s

next_event_time=infinite;
for(i=0;i<(net->num stations);i++)

if (no_pkts_departed(i] > MAX_PACKETS)
end = TRUE;

for(§=0;3<5;j++)
{

if (next event_time > net->Get event time(i,j))
next_event_time = net->Get_event_ time(i,j);

next_station=i;
next_events=j;

}

clock=next_event time;
if (next_event > 4)

cout <<«"Check the Event list";
exit(1l);

// SCAN THE EVENT LIST
switch (next_event)

case 0:// arrival event

tlog <<"\nNA "<< next_station <<" "<<clock;
net->Inc_queue_size(next_station); // INCREASE NORMAL PRIORITY QUEUE
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712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749

750
751
752
753
754

Csmugpe . pages
if (flag ==1.0)
flag=0.0;
net->Set_event_time(next_ station,2,clock);
// schedule for next arrival
x=net->Schedule next_arrival (next_station);
// if (next_station==0)
/7 tst <<x<<"\n";
if (net-»Get_arrival_ rate(next_station) !=0.0)
net->Inc_queue_size(next_station); // INCREASE QUEUE
net->Set_event_ time(next_ station, next_event, (clock+x));
net->Set_start_time(next_station, (net->Get_gqueue_ size(next_station) -1),
clock) ;
}
else
{
net->Set event_ time(next_ station, next_event,x+clock);
break;
case 1 : // departure event
tlog <<"\nND "<< next_station <<" *;
if (net->Get_queue size(next_station) >0) // QUEUE SIZE CHECK
if (net->Get_corrupt_ frame flag(next_station) != TRUE) // ERRCR GEN
if (net->Get_skipped_ flag(next_station)!=TRUE) // TTRT CHECK
net->Dec_queue_size(next_station);
no_pkts_departed{next station] ++;
if (next_station==0) // added to simulate the fact that PC NOT on interrupts
if ((clock - net->Get_start_ time(next station,0)) < 40) // PC dead
time
delay[next_station]=40;
else
delay[next_station])=clock - net->Get_start_time(next_station,0);//

755

756
757
758

759
760
761
762
763
764
768
766
767
768
769
770
771
772
773
774
775
776
777
778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

COMPUTE DELAY

}

else
delay[next_stationl=clock - net->Get_start_time(next_station,0);// COMPUTE

DELAY
total_ delaylnext station] +=delay[next_station];
// push the queue forward
for{i=0;i<net->Get_queue size(next station);i++)
net->Set_start_time(next_station,i,
net->Get_start_time (next_station,i+l)};

net->Set _start_time(next_station,net->Get queue_size(next_station),0.0);
net->Set_event_time(next_ station,next_event,infinite);
tlog <<" Txed";

else // TTRT CHECK TRUE
tlog <<" Skipped"®;
net->Set_skipped flag(mext station,FALSE);
net-»>Set_event_time(next_station,next_event, infinite);
else // ERROR GEN TRUE

net->Set_corrupt_frame flag(next_ station,FALSE) ;
net->Set_event_time(next_station,next_event,infinite); // THe station doesn't

know it was corrupt

}

else // QUEUE SIZE CHECK EMPTY

tlog << Error";

net->Set_event_ time(next station,next_event,infinite);
tlog <<" EMPTY";

// Modified logical ring management
next=net-»>Get_next_stn{next_station);

// Token Passing
net->Set_event_time(next,2,clock+walk_time);
error_gen=ran0 (inum) ;

if ({error gen * Frame_ Error_ Rate) <1.0)

// error during token passing =»> reopeat procedure????*/
error_count++;
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797 net->Set_event_time(next,2,clock+2*walk_time);

798

799 break;

800

801 case 2: // This is a token arrival event

802

803 // tlog <<"\nTOK "<< next_station <<" "<<clock;

804 if (next_station == 0)

805

806

807 if (temp !=0.0)

808

809 trt=net->Get_event_ time(next_station,2)-temp; // TRT STATISTICS

810 trt_count++;

811

812 temp=net->Get_event_time(next station,2);

813 trt_sum=trt_sum + trt;

814

815 }

816 net->Set event_ time{next_station,2,infinite);

817

818 if (net->Get_hp_ queue size(next_station) »0) // QUEUE SIZE CHECK

819

820 error_gen=ran0 (inum) ;

821 if ((error_gen * Frame_ Error_Rate) <1.0)

822

823 // Corrupt frame => not actually transmitted*/

824 error_count++;

825 net->Set_corrupt_frame flag(next_station,TRUE);

826

827 net->Set_event_time(next_station,3,clock + net->Get_ packet_ time(next_station));

828

829 else

830 {

831 net->Set_event_ time(next_ station, 3,clock);

832

833 if( (clock-net->Get_ Token Rotation Time(next_station)) <TTRT) // PREPARE FOR TTRT
CHECK

834 {

83s // cout <<" T "<<clock<<" "<<(net->Get_Token Rotation_ Time(next_station))<< "
"<cclock-net->Get_Token_Rotation_Time(next station);

836 net->Set_skipped flag(next_station, FALSE);

837 }

838 else

839 {

840 // cout <<" S "<<clock-net->Get_Token Rotation Time (next_station);

841 net->Set_skipped flag(next_station, TRUE);

842

843

844 net->Set_Token_Rotation _Time(next_station,clock};

845 break;

846

847 cagse 3 : // departure of high priority frame

848

849 // tlog <<"\nHPD "<< next_station <<" "<<clock;

850 if (net->Get_hp_gueue_size(next_station) >0) // QUEUE SIZE CHECK

851

852 net->Dec_hp_ queue_size(next_station);

853 if (net->Get_corrupt_ frame_ flag(next_station) != TRUE) // ERROR GEN

854

855 // tlog <<" Txed";

856 no_hp_pkts_departed[next_station] ++;

857 hp_delay [next station]=clock - net->Get_hp start_ time(next_station,0);// COMPUTE
DELAY

858 hp_total_delay[next_station] +=hp_delay[next_ stationl;

859 // push the queue forward

860 for (i=0;i<net->Get_hp_queue_size(next_station);i++)

861 net->Set_hp_ start_time(next_station,i,

862 net->Get_hp_start_time (next_station,i+l1));

863 net->Set_hp_ start_time(next_station,net->Get_hp_gueue_ size(next_station),0.0);

864 net->Set_event_ time(next station,next_event, infinite);

865

866 else // ERROR GEN TRUE

867

868 // tlog <<" Error"”;

869 net->Set_corrupt_frame_flag(next station,FALSE);

870 net->Set_event_time(next_station,next event,infinite); // THe station doesn't
know it was corrupt

871

872

873 else // QUEUE SIZE CHECK EMPTY

874

875 // tlog <<" Empty";

876 net->Set_event_ time(next_station,next_event, infinite);

877

878 // TRIGGER LP_EVENT

879 if (net->Get_queue size(next_station) >0) // QUEUE SIZE CHECK

880

881 if (net->CGet_ skipped flag(next station) !=TRUE)
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| page il

simu.cpp
S/ net->Set_event_time (next_station,l,clock + net->Get_packet_time(next_station));
net->Set_event_time(next_station,l,clock );

error_gen=ran0 (inum) ;
if ((error_gen * Frame Error_ Rate} <1.0)

// Corrupt frame => not actually transmitted*/
error_count++;
net->8et_corrupt_frame_ flag(next_station, TRUE) ;

}
}

else

{

net->Set_event_time(next_station,l,clock);

}

else
{
net->Set_event_time(next_station,l,clock);
break;

case 4:// HP arrival event

{
/7 tlog <<"\nHP "<< next_station <<" "<<clock;
x=net->Schedule_next_hp_arrival (next_station);
if (net-»Get_hp_ arrival rate(next_station) !=0.0)
net->Inc_hp_ queue_size(next_station); // INCREASE HP PRIORITY QUEUE
net->Set_event_time(next_station, next_event, (clock+x));
net->Set_hp_start_time(next_station, (net->Get_hp_queue_size(next_station) -1),
clock);
// tlog <<" Added*;
elge
{
net->Set_event time(next_station, next_event,x+clock);
// tlog <<" No HP Frame";
break;
}

} // end of switch
} // end of while
for (i=0;i<net-»num_stations;i++)

if (no_pkts_departed[i] == 0)
average_delay[il =0.0;

else

{

average_delay[i]l= total_delayl[il] /(no_pkts_departed[i] #*FACTOR);
if (no_hp pkts_departed[i] ==0)
hp_average delay[il=0;
else
hp_average_delay[il= hp_total_delay[i]l /(no hp_pkts_departed[i] *FACTOR);

delay_cilicl] [i]=average delay[il;
hp delay cilic] [il=hp_average delay[il;

}

void Simu::Resgult()

{

int i,3;

ofstream ostrm("simu.log",ios::out|ios::app);// output file
if (net->num_stations <=1)
cout << "\nA network needs at least two stations ! Will not run simulation”;

else

{

for (j=0;j<=degrees fr;j++)
Increase_ic_index();
Run () ;

for (i=0;i<net-»>num stationsg;i++)

delay sum[i] =0.0;

delay sqgrli] = 0.0;

hp_delay sum[i] =0.0;

hp_delay sqrlil = 0.0;

for (j=0;j<=degrees_fr;j++)
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972
973
974
975
976
977
978
979
980

982
983
984
2985
986
987
988
989
9380
991
952

993

994

995
996

998
999
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

1016

1017
1018

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

_page 12

simucpp ...

delay sum[i] +=delay cilj][i];

delay sqgr[i] += pow(delay_cil[jl[il, 2.0);
hp_delay sum(i] +=hp delay cilj][il;

hp _delay sgrlil += pow(hp_delay cil[jlIlil, 2.0);

cout <<"\nNODE "ccicaMkdkskhrnskdsssn,
if (delay sumli]1=0)

delay sum[i] = delay sum[i] / (degrees_fr +1)
delay sqrlil = delay sqrli] / (degrees_£r +1)
delay var[i] =delay sqr[il - pow(delay sum[i], 2.0);
if (delay var[i] >0)

Ne o

delay_sdv[i]l = sqgrt(delay_var[il);
delay_con_int [il= delay _sdv(i]l * T _dist_par[degrees fr-11/sqrt (degrees fr);

}

cout << "\nThe average delay is " << delay sumlil << "+/-" << delay con_int[i];
List_ Nodes (ostrm, TABULAR) ;
if (delay con_int[il >0)
cout << " Validity check " << degrees_fr <<">= "ccdelay sdv[i] *
T dist_par[degrees fr-1]/sqrt (delay_cen_int[il);
ostrm <<","<<i<< ", "<<delay sum[i] << "," << delay con_int[i] <<"," << net-
>num_stations <<","<< -
delay_sdv([i] * T_dist par(degrees_fr-1]/sgrt (delay con_int[i])<<","<<
trt_sum/trt_count<<","<<Frame_ Error_Rate<<
", Me<TTRT<<"\n" ;

else

{

cout << "\nUnable to compile confidence interval check";
ostrm <<","<<i<< ", "<<delay sum[i] << ", " << delay»con_int[i] <<, " << net-

>num_stations <<","<<
"Failed"<<", "< trt_sum/trt_count<<","<<Frame~Error_Rate<<","<<TTRT<<"\n"

}

else
cout <<"\nNo information gathered "<<delay suml[il;

if (hp delay sum[i]!=0)}

hp_delay_sum{i] = hp_delay sum[i] / (degrees_£fxr +1);
hp_delay sqrli] = hp_delay sqr(il / (degrees fx +1);
hp_delay var[i] =hp_delay sqgr(i] - pow(hp_delay_ sum[i], 2.0);
if (hp_delay var([il »>0)
hp_delay_sdv[i] = sqgrt(hp_delay var[i])};
else
hp_delay sdv[i]=0;
hp_delay con_int[i] = hp_ delay sdv(i] * T_dist_par[degrees_£fr-1]/sqrt
(degrees_fr);
cout << "\nThe average hp_delay is " << hp_delay_ sum[i] << "+/-" <<
hp_delay con_int[i] ;
if (hp delay con intlil >0)
cout << " Validity check " << degrees_fr <<">= "<<hp_delay sdv[i] *
T_dist_parl[degrees_fr-11/sgrt (hp_delay con_int[il);

else
cout <<"\nNo High Priority Frame information gathered "<<hp_delay sumlil;

cout << "\nAverage trt "<< trt_sum/trt_count ;
cout <<"\n Generated "<« error count <<" errors. ";

3
}

// End of File
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. t}\éts~im,¢pp' o

Yoz iiiiiiiisiiiiiiiis
Net: : ~Net ()

deletel]l station;

}
inisiicrriis

float Net::Get_event_time(int 1i,int j)
return station{i].event timeljl;

}
LILLLL 7777777777 77777777

float Net::Get_start_ time(int i,int queue)

{

return station[i].start time[queuel;

iiiiiiiyiis

void Net::Inc_gueue_size(int i)

station[i] .queue size++;
if (station[i].queue_size > MAX Q SIZE)

{

cout << "Queue size too large";
exit (1) ;

3
}
iiyrsiiis

void Net::Dec_gueue_size(int i)
station[i].queue_size--;
iy
void Net::Set_in(int i, int value)
station[i].in=value;

}
LIS 7777777777777 7

int Net::Get_in(int i)

return (station([i].in);

Yyl

void Net::Set_next_stn(int i, int value)
station(i] .next_stn=value;

}
LILILIII 7777707777777 77

int Net::Get_next_stn(int i)

return (station[i].next_stn);

}
Yaiiiitiiiiiaa

void Net::Set_previous_stn(int i, int value)
station(i] .previous_stn=value;

LILIIIII7 0777770777777/ 777

int Net::Get_ previous_stn(int i)

{

return (station[i].previous_stn);

Yl

void Net::Set event_time(int i, int j, float value)

stationli) .event_timelj]=value;

3
SISLISLII 7770777 7777777777

void Net::Set_start_time(int i, int gueue, float value)

station[i] .start_time [queue]=value;

drcridisiis
int Net::Get_queue_size(int i)
{
return (station[i].queue_size);

void Net::Set_queue_ size(int i, int value)

station[i] .queue_size = value;

}
VA A A A I A A N I A A s L

class Medium{
friend class Simu;
private:

| pagez
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netsimepp page3
17
179 int ring _or bus; // flag to choose topology
180 float packet_time; // packet transmission time
181 float stn_latency; //station latency in time units
182 float token_time; // token transmission time
183 float tau; // end to end propagation delay
184
185 public:
186 Medium() ;
187 ~Medium();
188
189 }:;// Medium class
190 Y
191 Medium: :Medium() {
192 ring or_bus = 0;
193 packet_time = 1000.0 * FACTOR / RATE;
194 stn_latency = 0.0;
195 token_time = 50.0 * FACTOR / RATE;
196 tau = 0.01;
197 3}
198 Yl
199 Medium::~Medium() {};
200

VIl iiis

202 class Simu{

203 Medium * mymedium;
204 Net * net;

205 f£loat arrival rate; // arrival rate in packets per sec per station
206 float rho, clock, no_pkts_departed, next_event_time;
207 float delay, total_delay, average_delay, walk_time;
208 float delay sum, delay_ sqr, delay_var, delay_sdv, delay_con_int;
209 int degrees_fr;

210 int ic, flag, next_station, previous_station;
211 float x, logx, rand size, infinite;

212 float *delay ci;

213 int temp_ flag;

214 int stn_to_add, ring_size, next_event;

215 public

216 Simu() ;

217 ~8imu () ;

218 void Increase_ Arrival Rate();

219 void Increase ic_index(};

220 void Run{);

221 void Result():

222 }; // Simu class

223 Vs aisdie

224 Simu::Simu()

225 {

226 mymedium = new Medium{();

227 net = new Net(50);

228 degrees_£r=5;

229 delay ci = new float[5];

230 arrival_rate=0;

231 rho=0.0;

232 clock=0.0;

233 no_pkts_departed = 0.0;

234 total delay=0.0;

235 average delay=0.0;

236 flag=1.0;

237 next_event time = 0.0;

238 next_event=-1;

239 ie=-1;

240 rand gize = 0.5 * pow(2.0,8.0% gizeof(int));
241 infinite= 1.0 * pow(10.0, 30.0);

242 }

243 Vi

244

245 Simu::~Simu()

246 {

247 delete delay ci;
248 delete (mymedium);
249 delete (net);

250 }

251 iy
252 void Simu::Increase_Arrival Rate()

253

254 arrival_rate= arrival_rate + 20.0;

255 }

256 Y iiiiiiiiisiiids
257 void Simu::Increase ic_index{()

258 {

259 int i,3;
260 if (ic<=degrees_fr)

261

262 ic=ic+l;

263 rho=0.0;

264 clock=0.0;

265 no_pkts_departed = 0.0;

266 total_delay=0.0;
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267
268
269
270
271
272
273
274
275
276
277
278
27%
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

314
315
316

351

355

hetsimepp.

. page 4
average_delay=0.0;

flag=1.0;

next_event_time = 0.0;

rho=arrival_rate * 1000.0 * net->max_stations / RATE;
if (rho »=1.0)

cout <<"Traffic intensity is too high"<<"\n";
exit(1);

for(i = O;i<net->max_stations; i++)

net->Set_gqueue_size(i,0);

for (j=0;j<MAX Q SIZE;j++)
net->Set_start_time(i,j,0.0);

}

}

}

void Simu::Run()

{

int i, Jj:

int temp_stn,next;

if (mymedium->ring or bus ==1) // RING

LILLLLLIL LI L7777 7777077777

ring_size=net->max stations;
walk_time=mymedium->token_time + mymedium->stn_latency + mymedium->tau/net->max stations;

else // BUS

ring size=0;
walk_time= mymedium->token_time + mymedium->tau/3.0;

}

for{i=0;i<net->max_stations;i++)
if (mymedium->ring_or_bus ==1) // RING

net->Set _next_ stn(net->max_stations-1,0);
net->Set_previous_stn(0,net->max_stations-1);
net->Set_previous_gtn(net->max_stations-1,net-»>max_stations-2);
net->Set_next_stn(0,1);

if ((i<(net->max_stations-1)) && (i>0))

net->Set_next_stn(i,i+l);
net->Set_previous_stn(i,i-1);

}

else

net-»Set_in(i,0);
net->Set_next_stn(i,-1);
net->Set_previous_stn(i,-1);

}
for(i=0;i<(net->max_stations);i++)
for (§=0;j<3;j++)
net->Set_event_time(i,j,0.0);

if (j1=0)
net->Set_event_time(i,j,infinite);

}

while (no_pkts departed < MAX PACKETS)

next_event_time=infinite;
for (i=0;i<(net->max_stations);i++)
for(§=0;j<3;j++)
if (next_event_time > mnet->Get_event_time(i,j))
next_event_time = net->Get_event_time(i,j);

next_station=1i;
next_event=j;

}

clock=next_event_time;
if (next_event > 2)

{

cout <<"Check the Event list";
exit(1);

// SCAN THE EVENT LIST
switch (next_event)

case 0:// arrival event
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357
358
359

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

net->Ihc;queué~size(hext_station);
if (mymedium->ring or bus ==1) //RING

if (flag == 1.0)

flag = 0.0;
net->Set_event_time(next_station,2,clock);
}
else
{

if (flag==1.0)

£lag=0.0;

ring size=1;

net->Set_in(next_station,1);
net->Set_next_stn(next_station,next_statiom);
net->Set_previous_stn(next_station,next_station);
net->Set_event_time(next_station,2,clock);

}

// schedule for next arrival
for (;;)

x=(float) rand(};
if (x!=0.0) break;

logx = -log(x/rand_size) * FACTOR / arrival rate;
net->Set_event_time(next station, next_event, (clock+logx));
net->Set_start_time(next_ station, (net->Get_queue_size (next_station)

break;

case 1 : // departure event

net->Dec_gueue_size(next_ station);

no_pkts_departed ++;

delay=clock - net->Get_start_time(next_station,0);

total_ delay +=delay;

// push the queue forward

for(i=0;i<net->Get_queue_size(next_station);i++)
net->Set_start time(next_station,i,

_ pages

-1),
clock);

net->Get_start_time (next_station,i+l));
net->Set_start_time(next_station,net->Get_queue_size(next_station),0.0);

net->Set_event_time(next_ station,next_event,infinite);
if (mymedium->ring or_bus == 0)

stn_to_add =-1;
for( i=next_station+l;i<net->max_stations;i++)

if ((net->Get_gueue_size(i)>0) && (net->Get_in(i)==0))
stn_to_add=i;
if (stn_to_add !=-1) continue;

if (stn_to_add == -1)

{

for(i=0; i<next_station -1; i++)

if ((net->Get_gqueue_size(i)>0) && (net->Get_in(i) ==0))
stn_to_ add=i;
if (stn_to_add !=-1) continue;

}

if {stn_to add t=-1)

temp_stn = net->Get_next_stn(next_statiom);
net->Set_next_ stn(next_station, stn to_add);
net->Set_next stn(stn_to_add, temp_ stn);
net->Set_previous stn(stn_to_add,next_station);
net->Set previous_stn(temp_stn,stn_to_add);
ring size++;

net->Set_in{stn_to add,l);

if (net->Get_gueue_size(next_ station)==0)

ring size--;
net->Set_in(next_station,0);
if (ring_ size==0)

net->8et_next_stn(next_station,-1);
net->Set previous_stn(next_station,-1);
flag=1.0;

else
next=net->Get_next_ stn(next_station);
net->Set_event_time(next,2,clock+walk_time);
net->Set_next_stn(net->Get_previous_stn(next_station),
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. npetsim.cpp ,~ ~ o ~ . | pageb6
445 net->Get_next_stn(next_station));
446 net->Set_previous_stn(next,net->Get_previous_stn (next station));
447

448

449 else // queue size not 0

450

451 next=net->Get_next_stn(next_station);

452 net->Set_event_ time(next,2,clock+walk_time);
453

454 3}

455 if (mymedium->ring or bus ==1) //RING

456

457 next=net->Get_next_stn(next_station);

458 if (( next==0) && (net->Get_gueue_size(next_station) == 0))
459 {

460 temp_£flag =1 ;

461 for{i=0; i<net->max_stations; i++)

462

463 if (net->Get_queue size(i) != 0)

464

465 net->Set_event_ time(next,2,clock+walk_ time);
466 temp_flag=0;

467 break;

468 }

469

470 if (temp flag ==1)

471

472 flag = 1.0;

473 net->Set_event_time(next,2,infinite);
474

475 }

476 else

477

478 net->Set_event_time(next,2,clock+walk time);
479

480 break;

481 3

482 break;

483

484 case 2: // This is a token arrival event

485

486 net->Set_event time(next_station,2,infinite);
487 if (net->Cet_gqueue size(next_station) >0)

488

489 net->Set_event_time(next_station,l,clock + mymedium->packet_ time);
490 }

491 else

492 cout <<"There is something wrong (BUS)";

493

494 // assuming bus

495 break;

496 }

497 } // end of switch

498 } // end of while

499 if (no_pkts_departed == (.0}

500

501 average_delay =0;

502 cout << "wrong answer\n'";

503

504 else

505 average_delay= total_delay /(no_pkts_departed *FACTOR) ;
506 delay cilicl=average_delay;

507

508 3}

509

510 wvoid Simu::Result()

511 {

512 int i, j;

513 for (i=0;1<10;i++)

514

515 ic=-1;

516 Increase_Arrival Rate();

517 for (j=0;J<=degrees_f£r;j++)

518

519 Increase_ic_index();

520 Run () ;

521

522

523 delay sum =0.0;

524 delay sqr = 0.0;

525 for (ic=0;ic<=degrees_£fr;ic++)

526 {

527 delay sum +=delay cilicl;

528 delay_sqr += pow(delay cilic], 2.0);

529

530 delay sum = delay sum / (degrees_fr +1);
531 delay_sqr = delay_sqr / (degrees_fr +1);
532 delay var =delay sqr - pow(delay sum, 2.0);
533 delay sdv = sqgrt(delay var);
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534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
5459
550
551
552
553
554
555
556
557

_ nefsim.cpp . . L . . page7l
delay _con_int = delay_sdv * T _dist_par[degrees_fr-1] /sqrt (degrees_fr);
cout << " For an arrival rate of " << arrival_rate << " the average delay is "
<< delay sum << "+/-" << delay con_int << "\n";
}

}

void main (void)

{

Simu * mysimulation;

cout << "Starting simulation" << "\n";

mysimulation = new Simu();
nysimulation->Result();
delete mysimulation;

cout <<
getch{);

}

" -
KARAAK XA KA AR KA AR R AIENDI Ik kb hhhh ek kb b hd koo "\n“,



Appendix D Random number generation

This presents different ways of generating a random number X, from its

probability distribution F(x). Two techniques commonly used are:

1. Inverse transformation (or direct method)

This is based by inverting the cumulative probability function F(x) = P(X < x),
which is associated with the random variable X. We know that 0 < F(x) <1.
By generating a random number U uniformaly distributed between 0 and 1, we
can produce a random sample X from the distribution by inversion:

U =F(x)

X =F'(U)

e.g. if F(x)=1-e™ with 0 <x <

then X = -y In(1-U)

Assuming that the inverse transformation exists, this method is good. However,
there is a problem if it does not exist, as in a Gaussian distribution.
2. Rejection method

This method can be applied to any bounded variable. With the probability density

function of the random variable noted as f(x).

letting f(x)=0fora>x>b and f{(x) <M

It is possible to generate random variates by

a) generating two random numbers U1 and U2 in the interval (0,1)

b) computing two random numbers with uniform distribution in (a,b) and (0,M)
respectively so that :

X=a+(b-a)U1 ( scale on the X axis )

Y=U2M ( scale ontheY axis )

c) if Y<=f(X1) accept X the next random variate otherwise reject and go back to a)

All points falling above f(X) are rejected, and the points falling on or below are

utilised to generate X.
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. selftunec . ; : ; s
1 // File : selftune.c Author : S.Rolland September '97
// selftuning PID simulation software

//Other module included is matrix computation library (matlib)
#include "matlib.h"

#include <dos.h>
#define TRUE 1
#define FALSE 0

2 #define N 5

3 /e

void main()

//variable declarations
9 float ** theta_k,**phi_k,**theta_old,**phi_old,**P,**P_old,**L,**temp,**tempz,**P_temp,**P_tempZ;

10 float ** used_theta,** used phi,** P_temp3, **P_temp4, **phi_temp;
11 float ** phi_ log3,** phi_ log4,** phi_log5,** phi_logé6;

12 static float den;

13 static float lamba=0.99;

14 static float estimate_error;

15 static float dyk;//current output

16 static double wo=10e7;

17 static double A,B,C,delta,rootl,root2;

18 int 4i,3;

19 int tint;

20 float alphal,alpha2,b0,bl,b2;// the actual parameters to estimate

21 float d; // estimate values

22 float temp_ floatl,temp_float2;

23 FILE *in;

24 FILE *pid;

25 float newy=0.0;

26 float epsilon;

27 float al,a2,tau,delta2,mu, h;

28 float K,Ti,Td;

29 float PID_error,PID_output,PID_integral,PID_derivative,PID old_ error;

30 float *£_ pointer;

31 float tf;

32 int RLS_step,old_RLS_step;

33 unsigned char PID ON;

34 static float uk;

35 static float old_uk;

36 float command[10];

37 float outputl[l10];

38 unsigned char locked;

40 // variable initialisation
41 locked = FALSE;
42 _stklen=0x2000;
43 command(ll=-1;
44 outputl[ll=-1;
45 A=0;

46 B=0;

47 C=0;

48 delta=0;

49 al=0;

50 a2=0;

51 tau=0;

52 mu=0;

53 d=1;

54 h=0.04;

56 // file opening
57 // event.log logs parameters estimation values

58 if ((in = fopen("event.log", "wt")) == NULL)

59

60 fprintf(stderr, "Cannot open input file.\n");
61 exit(1);

62

63 // pid.log logs the PID coefficients and output values
64 if ((pid = fopen("pid.log", "wt")) == NULL)

65

66 fprintf (stderr, "Cannot open pid file.\n");
67 exit(1);

68

69 // values used for generating model response

70 alphal=0.975;

71 b0=0;

72 bl=2.56;

73 b2 =0;

74 // matrix memory allocation

75 printf("\nThe is stack: %u\tstack pointer: %u", stackavail(), _SP);



APPENDIX E Simulation Self tuning software

selftunec

used_theta=matrix(1,1,1,N);
theta k=matrix(1,1,1,N);
theta old=matrix(1,1,1,N);
used_phi=matrix(1,N,1,1);
phi_k=matrix(1,N,1,1);
phi_oldsmatrix(1,N,1,1);
phi_log3=matrix(1,N,1,1);
phi_log4=matrix(1l,N,1,1);
phi_logS=matrix(1,N,1,1);
phi_logé=matrix(l,N,1,1);
phi_temp=matrix(1l,N,1,1);
L=matrix(1,1,1,N);
P=matrix(1,N,1,N);

P _old=matrix(1l,N,1,N);
temp=matrix(1l,1,1,N);
temp2=matrix(1,1,1,1);
P_temp=matrix(1,N,1,N);
P_temp2=matrix(1,N,1,N);
P_temp3=matrix(1,N,1,N};
P tempd4=matrix(1l,N,1,N);
// matrix initialisation
zero(P,1,N,1,N);
eye(P,1,N,1,N);
zero(P_old,1,N,1,N);
eye(P_old,1,N,1,N);

zero (theta k,1,1,1,N);
zero(theta_old,1,1,1,N);
zero(L,1,1,1,N);

theta_k([1] [4]1=1; // bli=0
theta_old[1] [4]1=1; // bl!=0
theta_kI[1] [11=1;
theta_old[1] [1]=1;
theta_kI[1] [2]=1;
theta_old[1] [2]1=1;

used _thetall}] [{1]l=-alphal;
used_thetall] [2]=b2;
used_thetal[l] [3]=bl;
used_thetal[l] [4]1=b0;
used_theta[l] [5]1=0;
zero(used_phi,1,N,1,1);
zero(phi _k,1,N,1,1);
zero(phi_old,1,N,1,1);
phi_k[N] [11=1;

phi_old[N] [1]=1;
zero(L,1,1,1,N);
zero(temp,1,1,1,N);
zero(temp2,1,1,1,1);

printf (*\nNow, the stack: %u\tstack pointer: %u",

//PID coeffs default values
K=0.5;

Ti=0.1;

Td=0.01;

PID_integral=0;

PID error=0;

PID old error=0;

PID derivative=0;

RLS_step=0;
// write header line in files
fprintf(pid,"K Ti Td uk dyk PID_output");

fprintf (in, "Step dyk esterror estimate den espilon thetal 2 3 4 5 6 4d");

for(§=0;3<2000;3++) // loop for 800 steps

if (§==250) // introduce delay at step 250 by shifted used model

used thetal[l] {1]=-alphal;
uged_theta({l] [2]=0;
used_theta[1] [31=b2;
uged thetall] [4]=bl;
used_thetalll [5]=0;

stackavail()},

if (j==650) // back to original st step 450

used_theta(l] [1]1=-alphal;
used thetal[l] [2]=b2;
used thetal[l] [3]=bl;
uged_thetall] [41=b0;
used thetall] [5]=0;

if (4==0) // command changes
uk=1000;

else if (j==250)

_8P);
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165 {
166 uk=2000;
167
168 else if (§==350) {
169 uk=3000;
170 }
171
172 elgse if (§==450)
173
174 uk=1000;
175
176 else if (j==650)
177
178 uk=4000;
179
180 else if (j==850)
181
182 uk=3000;
183
184
185 else if (j==1050)
186
187 uk=1000;
188
189 elge if (j==1250)
190
191 uk=2000;
192
193 else if (j==1450)
194
198 uk=3000;
196
197 else if (j==1650)
198
199 uk=1000;
200
201 else if (j==1850)
202
203 uk=2000;
204
208 elge if (j==2050)
206
207 uk=3000;
208

209 // PID calculations
210 if (locked == TRUE) // only uses PID when RLS estimator has converged

211 {

212 printf ("\n%+e %+e %e * ,K,Ti,Td);

213 PID _old error=PID error;

214 PID_ error=uk-dyk;

215 PID_integral= PID error + PID_integral; // wind up needed????
216 if (PID_integral>5000)

217 PID integral=5000;

218 if (PID_integral<-5000)

219 PID_integral=-5000;

220 PID derivative=(PID error-PID_old error);

221 fprintf(pid," PID_integral= %e ",PID integral);

222 PID_output= (fabs(K)*PID_error)+((h*PID_integral)/(fabs(Ti)*10))
223 +(rand () *10/RAND MAX);;

224

225 }

226 else

227

228 PID_ output=(rand()*10/RAND_MAX);;

229 fprintf(pid, " NO PID");

230

231 fprintf (pid, "\n%+e %+e %e %+e %+e %+e = %e +%e +random "

(K, Ti,Td, uk,dyk,PID_output, (fabs(K)*PID error*h), ((PID_integral *h)/(fabs(Ti)*10})});
232 // open loop force PID output=uk

233

234 printf("\n %d:%,3j);

235 fprintf (in, "\n%d",3);

236

237 copy_m{phi_k,phi_temp,N,1);

238 pmm(used theta,phi temp,1,1,1,N,1,N,1,1);
239 dyk=phi_ temp (1] {1];

240 fprintf (in," %e ",dyk);

241 // calculate estimation error

242 tint=(int)d;

243 switch(tint)

244

245 case 1:

246 copy_m(phi_k,phi_temp,N,1);
247 break;

248 case 2:

249 copy_m{(phi_old,phi_temp,N,1);
250 break;

251 case 3:

252 copy_m{phi_log3,phi temp,N,1);
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<

break;

case 4:
copy _m(phi_log4,phi_temp,N,1);
break;

case 5:
copy_m{phi_log5,phi temp,N,1):
break;

case 6:
copy m{phi_logé,phi temp,N,1};
break;

pmm(theta k,phi_temp,1,1,1,N,1,N,1,1);
estimate_error=dyk-phi_temp[1] [1];
fprintf (in, " %e %e",estimate_error,phi_temp[1] [1]);
// if estimate outside +/- 2% band, RLS should be on
old_RLS_step=RLS_step;
if ((fabs(estimate_error)>fabs(dyk)*0.02) && (RLS_step<50))

RLS_step++;
locked = FALSE;
lamba=pow(0.99,RLS step):;

P_old=P;
tint=(int)d;
switch(tint)
case 1:
copy m{phi_k,P_temp3,N,1};
break;
case 2:
copy _m{phi_old,P_temp3,N,1);
break;
case 3:
copy_m{phi_log3,P_temp3, N, 1);
break;
case 4:
copy m(phi_log4,P_temp3,N,1l);
break;
case 5:
copy_m(phi_log5,P_temp3,N,1);
break;
case 6:
copy_m{phi_log6,P_temp3,N,1);
break;
}

ptranspose (P_temp3,1,N,1,1);
copy_m(P_old,P_temp2,N,N);
pmm (P_temp3,P_temp2,1,1,1,N,1,N,1,N);

if (d==1)
copy m{phi_k,phi temp,N,1);
else

copy_m(phi_old,phi_temp,N,1);
pmm (P_temp2,phi_ temp,1,1,1,N,1,N,1,1);
den=lamba+phi_temp [1] [1];
fprintf(in, " %e",den);

if (d==1)
copy_m(phi_k,phi_temp,N,1);
else

copy m(phi_old,phi_temp,N,1);
pmm (P_old,phi_temp,1,N,1,N,1,N,1,1);
if (dent=0)

{

*f pointer=1l/den;

pkm(phi_temp, f_pointer,1,N,1,1);

else
fprintf (in, "Error den=0");
temp=theta_k;
*f pointer=estimate_error;
pkm(phi_temp, f pointer,1,N,1,1);
theta_k=transpose (phi_temp,1,¥,1,1};
theta_old=temp;
paddm(theta old, theta k,1,1,1,N,1,1,1,N);
//calculate new P
//P=(P_old- ((P_old*phi_k*phi_k'*P_old)/(lambda+phi_k'*P_old+*phi_k)))/lamda

if (d==1)
copy_m{phi_k,phi temp,N,1);
else

copy_m(phi_old,phi temp,N,1);
pmm(P_old,phi_temp,1,N,1,N,1,N,1,1);

if (d==1)
copy_m(phi_k,P_temp2,N,1);
else

copy_m{phi_old,P_temp2,N,1);
ptranspose(P_temp2,1,W,1,1);
pmm(phi_temp,P_temp2,1,N,1,1,1,1,1,N);
copy m(P_old,P_temp3,N,N);
pmm(P_temp2,P_temp3,1,N,1,N,1,N,1,N};
if (den!=0)
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343
344

. selftunec ... ...~
* £ pointer=-1/den;
pkm(P_temp3, £ pointer,1,N,1,N);
else

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
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383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
3%9
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

printf("den=0");
paddm(P_old,P_temp3,1,N,1,N,1,N,1,N);
if (lamba !=Q)

*f pointer = l/lamba;
pkm(P_temp3, f_pointer,1,N,1,N);
copy_m({(P_temp3,P,N,N);

else
printf(¥lamba=0");
}// end of RLS
// estimate is within 2% no RLS
else

// reset RLS parameters
locked = TRUE;
printf (" NO-RLS");
fprintf (in, " NORLSY);
zero(P,1,N,1,N);
eye(P,1,N,1,N);
zero(P_old,1,N,1,N);
eye(P_old,1,N,1,N);
zero(L,1,1,1,N);
RLS_step=0;

// Shifting Phi k record
copy_m{phi_log5,phi_log6,N,1);
copy_m(phi_log4,phi_log5,N,1):
copy_m(phi_log3,phi_log4,N,1);
copy_m(phi_old,phi_log3,N,1);
copy_m{phi_k,phi_old,N,1);

if (RLS_step ==1)

zero(phi_k,1,N,1,1);
zero{phi_old,1,N,1,1);
phi_k([N][1]=1;
phi_oldIN] [1]=1;
phi_k{2} [1]= PID output;
phi k(1] [1]=-dyk;

else

phi_ k(5] [1]1=phi_k(4][1];
phi_k[4] [1]=phi_k(3][1];
phi k(3] {1]=phi k([2]{1];
phi_k([2] [1]1=PID_output;
phi_k([1] [1]=-dyk;

phi_logé [1] [1]=-dyk;

phi_log5([1] [1]=-dyk;

phi_log4 (1] [1]1=-dyk;

phi_log3[1] [1]=-dyk;

phi_old(1] [1]=-dvk;

fprintf(in," %e %e %e %e %e ", theta_kI[1][1],theta k(1] [2],theta_k([1] [3],theta k(1] [4],theta k[1][5]1);
fprintf (in, ¥d= %e®,d);

fprintf (in, " phi= %e %e %e %e %e",phi_kI[1] [1],phi_k[2]1[1},phi_k[3] [1],phi_ k(4] [1],phi_k([5] [11);

epsilon=(theta_k[1] [4] -theta_k[1] [2])/(theta_k[1] [4]+theta_k[1] [3]1+theta_k(1][2]1);
fprintf(in," %e",epsilon);

if ((epsilon < - 0.8) && (RLS_step==0)) // if RLS has locked on and epsilon<-0.8

printf ("< -0.8");

fprintf (in," <-0.8");

temp_ floatl=theta_kI[1] [4];//b0

d=d-1;

theta_k[1] [4]=theta k[1] [3]+3*temp_floatl; //b0=bl+3b0
theta_kI[1] [3]=theta_k[1] [2]-3*temp_£floatl; //bl=b2-3b0
theta k(11 [2]=temp floatl; //b2=b0

else if ((epsilon > 0.8) && (RLS_step==0))// if RLS has locked on and epsilon>0.§
{
printf ("> 0.8");
fprintf(in,">0.8");
d=d+1;
temp_floatl=theta_k(11(31; //bl
temp float2=theta k[1] [2]; //b2
theta k[1] [3]1=theta_k{1][4]-3*temp_ float2;//bl=b0-3b2
theta_k[1] [2]=temp floatl+3*temp float2;//b2=bl+3b2
theta_kI1] [4]=temp_£loat2;//b0=b2

tau=h* (d+epsilon) ;
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// calculate PID coeffs

if (theta_kI[1] [1]<0)
al=-log(-theta_k([1]({11)/h;

if ((l+theta_ kI[1] [1]) 1=0)

mu=(theta k[1] [2] +theta k[1] [3]+theta k(11 [4])/{l+theta k{11 [1]);
fprintf (in," %e/%e", (theta k[1] [2]+theta k[1] [3]+theta k(1] [4]), (1+theta k[1]{1]));

else

fprintf (in, " NOMU");
// Using Haalman tuning rules
if (all=0)

Ti=(1l/al);

Td=0; // PI only

K=2/(al*6*mu*tau);

fprintf(in," theta kI[1] [l]=%e al=%e mu=%e Ti=%e\tTd=%e\tK=%e", theta_kI[1][1],al,mu,Ti,Td,K);

}
elge
fprintf(in, " gkip");

// end for loop

// cleaning memory and closing files
fclose(in);

fcloze (pid);
free_matrix(used_theta,1,1,1,N);
free matrix(theta k,1,1,1,N);
free_matrix(theta old,1,1,1,N);
free matrix(phi _k,1,N,1,1);
free_matrix(phi_ old,1,N,1,1);
free_matrix(phi_log3,1,N,1,1);
free matrix(phi_log4,1,N,1,1);
free_matrix(phi_log5,1,N,1,1);
free_matrix(phi_log6,1,N,1,1});
free matrix(used phi,1,N,1,1);
free_matrix(P,1,N,1,N);
free_matrix(P_old,1,N,1,N);
free matrix(L,1,1,1,N);

free matrix(temp,1,1,1,N);

free matrix(temp2,1,1,1,1);
free matrix(P_temp,1,N,1,N);
free matrix(P_temp2,1,N,1,N);
free matrix(P_temp3,1,N,1,N);
free matrix(P_temp4,1,N,1,N};
free_matrix(phi_temp,1,N,1,1);

printf (" end.");
getch();
exit(1);
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1 // File : matlib.h Author : §.Rolland August '97

2 // matrix libary header file

3 #include <malloc.h>

4 #include <stdio.h>

5 #include <stdlib.h>

S

7

8

9

#include <conio.h>
#include <math.h>
// standard error handler
void nrerror{char error_ textl[]);

10 // allocates a float vector range [nl..nh]

11 float *vector(int nl,int nh);

12 //allocates an int vector range [nl..nh]

13 int *ivector(int nl,int nh);

14 //allocates a double vector range [nl..nh]

15 double*dvector(int nl,int nh);

16 // allocates a float matrix with rane [nrl..nrh] (ncl..nch]

17 float **matrix(int nrl,int nrh,int ncl,int nch);

18 // allocates an int matrix with rane [nrl..nrh}[ncl..nch]

19 int **imatrix(int nrl, int nrh,int ncl,int ach);

20 // allocates a double matrix with rane [nrl..nrh] [ncl..nch]

21 double **dmatrix{int nrl,int nrh,int ncl,int nch);

22 // returns a submatrix with range [newrl..newrl+(oldrh-oldrl)] [newcl..newcl+(oldch-oldcl)]

23 float **submatrix(float **a,int oldrl,int oldrh,int oldcl, int oldch,int newrl, int newcl);

24 //frees a float vector

25 void free_vector(float*v,int nl,int nh);

26 //frees an int vector

27 void free_ivector(int*v,int nl,int nh);

28 //frees a double vector

29 void free_dvector(double*v,int nl,int nh);

30 //frees a matrix

31 void free matrix(float **m ,int nrl,int nrh,int ncl, int nch);

32 //frees an int matrix

33 void free_ imatrix(int **m ,int nrl,int arh,int ncl,int nch};

34 //frees a double matrix

35 void free dmatrix(double **m ,int nrl,int nrh,int ncl,int nch);

36 // frees a sumatrix

37 void free submatrix(float **b,int nrl,int nrh,int ncl,int nch);

38 //allocate a float matrix that points to the matrix a

39 float ** convert_matrix(float *a,int nrl,int nrh,int necl,int nch);

40 //frees a matrix allocated by covert matrix()

41 void free_convert matrix(float **b,int nrl,int nrh,int ncl,int nch);

42 // copies contents of a matrix to the other

43 // dest can be larger than dest

44 void copy m(float **grc,float **dest,int nr,int nc);

45 // mukltiplies two matrices , result returned in b

46 // must not multiply two same matrices

47 void pmm(float**a,float**b,int nral,int nrah,int ncal,int ncah,int nrbl,int nrbh, int ncbl,int
ncbh) ;

48 // adds two matrices, result returned in b

49 void paddm(float**a,float**b,int nral,int nrah,int ncal,int ncah, int nrbl,int nrbh,int ncbl, int
ncbh) ;

50 // multiplies matrix by float

51 // float passed as a pointer

52 //result returned in a

53 void pkm(float**a, float* f,int nral,int nrah,int ncal,int ncah);

54 // calculates determinant of 2X2 matrix

55 float det22(float**a,int nral,int nrah,int ncal,int ncah);

56 // fills a matrix with zero

57 void zero(float*+*a,int nral,int nrah, int ncal,int ncah);

58 // fills a matrix with identity matrix

59 void eye(float**a,int nral,int nrah, int ncal,int ncah);

60 // calculates cofactor

61 float cofactor(float**a,int nral,int nrah, int ncal,int ncah,int i,int j);

62 // calculates determinant

63 float det (float**a,int nral,int nrah,int ncal, int ncah);

64 // transposes a matrix

65 // result returned as pointer to float

66 // WARNING : this function allocates memory that isn't freed afterwards

67 // use ptranspose instead

68 float **transpose(float**a,int nral,int nrah,int ncal,int ncah);

69 // transposes a matrix

70 // result returned in a

71 void ptranspose(float**a,int nral,int nrah,int ncal,int ncah);

72 // calculate adjoint matrix

73 float **adjoint(float**a,int nral,int nrah,int ncal, int ncah);

74 // calculate inverse matrix

75 float **inverse(float**a,int nral, int nrah,int ncal,int ncah);

76 // displays matrix contents on screen

77 void display({float **m,int nrl,int nrh,int ncl,int nch);

78 // displays matrix contenets on file

79 void fdisplay(FILE *stream,float **m,int nrl,int nrh, int ncl, int nch);
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// File : matlib.c  Author : §.Rolland August '97
// matrix libary
#include "matlib.h"

// standard error handler
void nrerror(char error_text[l)

fprintf(stderr, "Matrix calculation run time error\a");
fprintf (stderr, "%s\n", error_text);

10 fprintf(stderr,"...Now exiting system...\n");

11 getch();

12 exit(1l);

WOV WN

14 // allocates a float vector range [nl..nh]
15 float *vector(int nl,int nh)

17 £loat *v;

18 v=(float*)malloc((unsigned ) (nh-nl+l)*sizeof (float));
19 if (!v)nrerror("allocation failure in vector()");

20 return v-nl;

22 //allocates an int vector range [nl..nh]

23 int *ivector(int nl,int nh)

24 {

25 int *v;

26 v={int*)malloc((unsigned ) (nh-nl+l)*gizeof (int));
27 if (lv)nrerror("allocation failure in ivector()");
28 return v-nl;

30 //allocates a double vector range [nl..nh]
31 double*dvector(int nl,int nh)

33 double *v;

34 v=(double*)malloc((unsigned ) (nh-nl+l)*sizeof (double));
35 if (!v)nrerror("allocation failure in dvector()}");

36 return v-nl;

39 // allocates a float matrix with rane [nrl..nrh][ncl..nch]
40 float **matrix(int nrl,int nrh,int ncl,int nch)

41 {

42 int 1i;

43 float **m;

44 // rows

45 m={float**)malloc ( (unsigned) (nrh-nrl+l) *sizeof (float*));
46 if (!m) nrerror("allocation failure 1 in matrix{()");

47 m-=nrl;

48 for{i=nrl;i<=nrh;i++){

49 m[i]l=(float*)malloc ({unsigned) (nch-ncl+l) *sizeof (float));
50 if (tml[i])nrerror("allocation failure 2 in matrix()");

51 m[i] -=ncl;

52

53 return m;

54

55 // allocates an int matrix with rane [nrl..nrh] [ncl..nch]
56 int **imatrix(int nrl,int nrh,int ncl,int nch)

57 {

58 int i;

59 int **m;

60 // rows

61 m={int**)malloc ((ungigned) (nrh-nrl+1l)*sizeof (int*));

62 if (Im) nrerror("allocation failure 1 in imatrix{()");

63 m-=nrl;

64 for(i=nrl;i<=nrh;i++){

65 m[i]=(int*)malloc((unsigned) (nch-ncl+l)*sizeof(int));
66 if (1ml[i])nrerror(®allocation failure 2 in imatrix{()*);
67 m[i] -=ncl;

68

63 return m;

70

71 // allocates a double matrix with rane [nrl..nrh][ncl..nch]
72 double **dmatrix(int nrl,int nrh,int ncl, int nch)

74 int i;

75 double **m;

76 // rows

77 m=(double**)malloc((unsigned) (nrh-nrl+l) *sizeof (double*));
78 if (!m) nrerror("allocation failure 1 in dmatrix()");

79 m-=nrl;

80 for(i=nrl;i<=nrh;i++){

81 m[i]=(double*)malloc ({unsigned) (nch-ncl+l)*sizeof (double));
82 if (I1mli])nrerror("allocation failure 2 in dmatrix()");

83 m{i] -=ncl;

84

85 return m;

86

87 // returns a submatrix with range [newrl..newrl+(oldrh-oldrl)] [newcl..newcl+(oldch-oldcl)]
88 float **gubmatrix(float **a,int oldrl,int oldrh,int oldcl,int oldch, int newrl,int newcl)

89 {
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90 int 1,3
91 float **m;
92 m=(float**)malloc((unsigned) (oldrh-oldrl+l)*sizeof (float*));
93 if (Im)nrerror("allocation failure in submatrix(}");
94 m-=newrl;
95 for(i=oldrl, j=newrl;ic=oldrh;i++,j++)

96 mf{jl=alil +oldcl-newcl;
97 return m;

98

99

100 //frees a float vector
101 void free_vector(float*v,int nl,int nh)

103 free((char*) (v+nl));

106 //frees an int vector
107 void free_ivector(int*v,int nl,int nh)

109 free((char*) (v+nl));

112 //frees a double vector
113 void free_dvector (double*v, int nl, int nh)

115 free((char*) (v+nl));

117 //frees a matrix
118 void free matrix(float **m ,int nrl,int nrh,int ncl, int nch)

119

120 int i;

121 for{i=nrh;i>=nrl;i--)

122 free((char*) (m[i]+ncl));
123 free ((char*) (m+nrl));

124

125 //frees an int matrix
126 void free imatrix(int **m ,int nrl,int nrh,int ncl,int nch)

128 int i;

129 for{(i=nrh;i>=nrl;i--)

130 free ({(char*) (m{il+ncl));
131 free ((char*) (m+nrl));

132

133

134 //frees a double matrix

135 void free dmatrix(double **m ,int nrl,int nrh,int ncl,int nch)
136 {

137 int i;

138 for(i=nrh;is>=nrl;i--)

139 free((char*) (m[il+necl));

140 free ((char*) (m+nrl));

143 // frees a sumatrix
144 void free_ submatrix({float **b,int nrl,int nrh,int ncl,int nch)

146 free ((char*) (b+nrl));

148 //allocate a float matrix that points to the matrix a

149 float ** convert_matrix(float *a,int nrl,int nrh,int ncl,int nch)
150 {

151 int i,j,nrow,ncol;

152 float **m;

153 nrow=nrh-nrl+l;

154 ncol=nch-ncl+l;

155 m=(float **) malloc((unsigned) (nrow)*sizeof (float*));

156 if (Im) nrerror("allocation failure in convert_matrix()");
157 m-=nrl;

158 for(i=0,j=nrl;i<=nrow-1;i++,j++)

159 m{j]=a+ncol*i-ncl;
160 return m;

161

162

163 //frees a matrix allocated by covert matrix()
164 void free_convert matrix(float **b,int nrl,int nrh,int ncl, int nch)

166 free((char*) (b+nrl));

168 // copies contents of a matrix to the other
169 // dest can be larger than dest
170 void copy_m{float **grc,float **dest,int nr,int nc)

172 int i,3;

173 float **m;

174 m=(float**)malloc((unsigned) (nr+1) *sizeof (float*));

175 if (Im) nrerror("allocation failure 1 in copym()");

176 m-=1;

177 for(i=l;ic=nr;i++){

178 m[i]l=(float*)malloc ((unsigned) (nc+1)*sizeof (float));
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if (lm[i])nferrof(“allécétidn failure 2 in copym()“);

for(i=1;i<=nr;i++)
for(j=1;j<=nc;j++)

m[{i] {§1=src i} {3];

for(i=l;i<=nr;i++)
for{(j=1;j<=nc;j++)

dest [1]1 [jI1=m[i] [Jj1;
free_matrix(m,1l,nr,1,nc);

// mukltiplies two matrices , result returned in b
// must not multiply two same matrices
void pmm(float**a, float**b,int nral,int nrah,int ncal, int ncah,int nrbl, int nrbh,int ncbl,int

ncbh)

int i;

int j;

int k;

int nra,ncb,nca;

float **m;

if ((ncah-ncal) !=(nrbh-nrbl))

printf ("\n%d != %d\n",ncah-ncal,nrbh-nrbl);
nrerror ("Matrix Muliplication error");

nca=ncah-ncal+l;
nra=nrah-nral+l;
ncb=necbh-ncbl+l;

// size of resulting matrix (nrah-nral+l) rows X (ncah-ncbk+1) columns
m=(float**)malloc ( (unsigned) (nra) *sizeof (float*));
if (!m) nrerror("allocation failure 1 in pmm()");
m-=nral;
for (i=nral;i<=nrah;i++){
miil=(float*)malloc ((unsigned) (ncb) *sizeof (float));
if (im[i] )nrerror("allocation failure 2 in pmm(}");

}
for(i=l;i<c=nra;i++)
for{j=1;j<=ncb;j++)

m{i) [j1=0;
for (k=1l;k<=nca;k++)

mlil [Jl=m[i] [j1+(ali] [k1*bIk] []]);

}

for(i=1;i<=nra;i++)
for(j=1;j<=ncb;j++)
b[i] [j1=m[i] [j1;
free_matrix(m,1,nra,l,ncb);

// adds two matrices, result returned in b
void paddm(float**a,float*#*b,int nral, int nrah,int ncal,int ncah, int nrbl, int nrbh,int ncbl,int

ncbh)

int 1i,3;
int nra,nrb,ncb,nca;
float **m;
nca=ncah-ncal+l;
nra=nrah-nral+l;
ncb=ncbh-ncbl+l;
nrb=nrbh-nrbl+l;
if ((nrat=nrb) || (ncal=ncb))
nrerror ("Matrix Addition error error");

// size of resulting matrix (nrah-nral+l) rows X (ncah-ncbk+1) columns
m=(float**)malloc ( (unsigned) (nra) *sizeof (£loat*));
if {(I'm) nrerror(vallocation failure 1 in mm{)");
m-=nral;
for (i=nral;ic<=nrah;i++){
m{il=({float*)malloc ({unsigned) {nch)*sizeof {float));
if (im[i])nrerror("allocation failure 2 in mm()");

for({i=1l;ic=nra;i++)
for(j=1;j<=ncb;j++)

mii] [31=alil [33+bIi1 131
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266

267

268 for(i=l;i<=nra;i++)

269 for{j=1;j<=ncb;j++)

270 bIli] [F1=m[i] [j);

271 free matrix(m,1,nra,l,ncb);
272

273

274 // multiplies matrix by float

275 // float passed as a pointer

276 //result returned in a

277 void pkm(float**a,float* f£,int nral,int nrah,int ncal,int ncah)
278

279 int i;

280 int j;

281 int nra,nca;

282 float **m;

283 nca=ncah-ncal+l;

284 nra=nrah-nral+l;

285 // size of resulting matrix (nrah-nral+l) rows X (ncah-ncbk+1) columns
286 m={(float**)malloc({unsigned) (nra)*sizeof (float*));

287 if (Im) nrerror("allocation failure 1 in mm()");

288 m-=nral;

289 for(i=nral;i<=nrah;i++){

290 mfil=(float*)malloc{(unsigned) {nca) *sizecf(float));
291 if (!m[il)nrerror(vallocation failure 2 in mm(}");
292 }

293

294 for(i=l;i<=nra;i++)

295 {

296 for(j=1l;j<=nca;j++)

297

298 m[il [§1=(ali] [§1)*(*£);

299

300

301 for(i=1l;i<=nra;i++)

302 for(j=1;j<=nca;j++)

303 alil [31=mli] [3];

304 free matrix(m,1,nra,l,nca);

305

306

307 // calculates determinant of 2X2 matrix

308 float det22(float**a,int nral,int nrah,int ncal,int ncah)
309 {

310 float £;

311 f=(alnrall [ncall*alnrahl [ncahl)- (alncall [nrahl *a[ncah] [nrall);
312 return £;

313

314

315 // fills a matrix with zero

316 void zero(float**a,int nral, int nrah,int ncal,int ncah)
317

318 int nra,nca,i.,j;

319 nra=nrah-nral+l;

320 nca=ncah-ncal+l;

321 for(i=1;i<=nra;i++)

322 for(j=1;j<=nca;j++)
323 alil [j1=0.0;
324

325 // fills a matrix with identity matrix

326 void eye(float**a,int nral,int nrah, int ncal,int ncah)
327

328 int nra,nca,i;

329 nra=nrah-nral+l;

330 nca=ncah-ncal+l;

331 if (nrat=nca)

332 nrerror ("Unable to create non square I matrix");
333 for(i=1;i<=nra;i++)

334 afil (i1=1.0e6;

335 }

336 // calculates cofactor
337 float cofactor{float**a,int nral,int nrah,int ncal,int ncah,int i, int j)
338

339 float £;

340 float**m;

341 int nra,nca;

342 dint ii,j5j.k.1;

343

344

345 nra=nrah-nral+l;

346 nca=ncah-ncal+l;

347
348 if ((nra>3) || (nca>3))
349 nrerror ("Unable to find cofactor of big matrix");

350 m=matrix(l,nra-1,1,nca-1);
351 k=1;1l=1;

352 for{ii=1;ii<=nra;ii++)

353

354 if (iit=i)
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{

1=1;
for(jj=1;jj<=nca;jj++)

if (ji1=3)

mlk]l [11=alii] [§5);
// printf(v\nminor is m(%d] [$d]=%e %d %d",k,1,m([k] [1],i1i,73);
L+
}
H
ki+;

}

3
f=pow(-1,i+q)*det22(m,1,2,1,2);
return £;

// calculates determinant
float det (float**a,int nral,int nrah,int ncal,int ncah)

int i;
float £;
int nra,nca;
nra=nrah-nral+l;
nca=ncah-ncal+l;
if (nral=nca)
nrerror ("unable to calculate det of non square matrix");
£=0;
for(i=1;i<=nra;i++)
f=f+a[i] [1] *cofactor(a,nral,nrah,ncal,ncah,i,1l);
return f;
}
// transposes a matrix
// result returned as pointer to float
// WARNING : this function allocates memory that isn't freed afterwards
// use ptranspose instead
float **transpose(float**a,int nral,int nrah,int ncal, int ncah)

int i;

int j;

float **m;

int nra,nca;

nra=nrah-nral+l;

nca=ncah-ncal+l;

m=(float**)malloc ( (unsigned) (nca) *sizeof (float*));

if (!m) nrerror("allocation failure 1 in transpose()");

m-=ncal;

for{i=ncal;i<=ncah;i++){
m{il=(float*)malloc ( (unsigned) (nra) *sizeof (float});
if (!ml[i])nrerror("allocation failure 2 in transpose(}");

}

for(i=1l;i<=nra;i++)
for(j=1;j<=nca;j++)
ml[jl[i)=ali] (§];
}

return m;

// transposes a matrix
// result returned in a
void ptranspose(float**a,int nral,int nrah,int ncal,int ncah)

int i;
int j;
float **m;
int nra,nca;
nra=nrah-nral+l;
nca=ncah-ncal+l;
m=(float**)malloc( (unsigned) (nca) *sizeof (float*));
if (!m) nrerror("allocation failure 1 in transpose()");
m-=ncal;
for (i=ncal;i<=ncah;i++){
m{il=(float*)malloc((unsigned) (nra)*sizeof(float));
if (Im[i]l)nrerror("allocation failure 2 in transpose()");

for(i=1l;i<=nra;i++)
for(j=1l;j<=nca;j++)

ml[j] [i1=ali] [31;

for(i=1;i<=nca;i++)
for(j=1;j<=nra;j++)

alil [§1=ml[il [j1;
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445 3}

446

447 free matrix(m,ncal,ncah,nral,nrah);
448 }

449

450 // calculate adjoint matrix

451 float **adjoint (float**a,int nral,int nrah,int ncal,int ncah)
452 {

453 dint i;

454 int §;

455 float **ma;

456 int nra,nca;

457 nra=nrah-nral+l;

458 nca=ncah-ncal+l;

459 ma=(float**)malloc ((unsigned) (nra)*sizeof (float*));

460 if (Ima) nrerror("allocation failure 1 in transpose()"):
461 ma-=nral;

462 for(i=nral;i<=nrah;i++){

463 malil=(float*)malloc((unsigned) (nca) *sizeof (float));
464 if (imalil)nrerror(“allocation failure 2 in transpose()");
465

466 for(i=l;i<=nra;i++)

467

468 for(j=1;j<=nca;j++)

469

470 ma[i]l [j] =cofacteor(a,nral,nrah,ncal,ncah,i,j};
471

472

473 return(transpose(ma,nral,nrah,ncal,ncah));

474

475 }

476 // calculate inverse matrix

477 float **inverse(float**a,int nral,int nrah,int ncal,int ncah)
478

479 float **mm;

480 int nra,nca;

481 float £;

482 flecat * fp;

483 int i;

484 nra=nrah-nral+l;

485 nca=ncah-ncal+l;

486 mm=(float**)malloc{(ungigned) (nra)*sizecf(float*));
487 if (!mm) nrerror("allocation failure 1 in inverse()");
488 mm-=nral;

489 for(i=nral;i<=nrah;i++){

490 mm[il=(float*)malloc ((unsigned) (nca)*sizeof (float));

491 if (tmm[i])nrerror("allocation failure 2 in inverse()");
492 }

493

494 f£=1/det(a,nral,nrah,ncal,ncah);

495 *fp=f;

496 mm=adjoint(a,nral,nrah,ncal,ncah);

497 pkm(mm, £p,nral,nrah,ncal,ncah);

498 return(mm);

499

500

501 // displays matrix contents on screen

502 wvoid display(float **m,int nrl,int nrh,int ncl,int nch)
503

504 dint i,3;

505 for (i=l;i<=nrh-nrl+l;i++)

506

507 printf("\n Row %4 : ",i);
508 for(j=1;j<=nch-ncl+l;j++)
509 printf (" %e\t",m[i] [§1);
510

511

512 // displays matrix contents on file
513 void fdisplay(FILE *stream, float #**m,int nrl,int nrh,int ncl,int nch)
514

515 int 1i,3;

516 for (i=l;i<=nrh-nrl+l;i++)

517

518 fprintf(stream, "\n Row %d : “,1i);
519 for(j=1;j<=nch-ncl+1l;Jj++)

520

521 fprintf (stream," %e\t",m[i](41);
522

523 }

524 }

525

526
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estbasec

V4 File : estbase.c Author : S.Rolland August ‘97
//Estimator software for experimental trials

#include "c:\stef\control\matlib.h"

#include "sdlc.h”
#include <stdio.h>
#include <conio.h>
#include <float.h>
#include <math.h>
#include <dos.h>
#include <process.h>
#include "psdrv.h"
#include "token.h"

#define OFF FALSE
#define ON TRUE

#define MAX ESTIMATION ERROR 15.0
#define MIN ESTIMATION ERROR -15.0

#define INIT_CETREK 0x09
#define SETUP_UART 0x0A
#define DATA_HEADER 0Ox0B
#define STATUS REQ 0x0C
#define VIDEO 0x0D
#define RELAY COMM 0x01
#define PAN COMM 0x02
#define TILT COMM 0x03
#idefine LIGHT_COMM 0x04

#define N 5
/*

Global Variables
*/

extern long Inactivity timer:;
extern long Trt_timer;

char msg(30];

signed char RECV_BUFFER[64];

int RBL;

int heading, depth;

struct time t; /* time structure*/
int TTRT; /*TTRT in msec*/

int INACTIVITY TIME OUT ;

int TTRT_PC_TICKS;

unsigned char speed, th,tl,command;
float Small Delay_ Test;

FILE *log file;

int setpoint;

float calculated speed;

int error;

int old_error;

float derivitive;

float integral;

float PIDcommand;

unsigned char Tilt_Com;

float £ tilt_ com;

float temp_k, temp_Ti;

extern unsigned _stklen = 80000;
unsigned char locked;

long temp_long;

float temp_ £;

/*

Functions and Procedures
*/

void km(float**a, float £,int nral,int nrah,int ncal,int ncah)

int i;

int j;

int nra,nca;

£loat **m;

nca=ncah-ncal+l;

nra=nrah-nral+l;
// size of resulting matrix (nrah-nral+l) rows X (ncah-nchk+1)

m=(float**)malloc((unsigned) (nra) *sizeof (float*));

if (im) nrerror(“allocation failure 1 in mm()");

m-=nral;

for (i=nral;i<=nrah;i++){
m[i]=(float*)malloc ( (unsigned) (nca)*sizeof (float));
if (tm{il)nrerror(vallocation failure 2 in mm()"};

for(i=1;i<=nra;i++)
for(j=1l;j<=nca;j++)

?[i]{j]=(a[i][j])*(f);

columns
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estbasec @ _
90 for(i=l;i<=nra;i++)
91 for(j=1;j<=nca;j++)
92 alil [§1=m[i][31:
93 free matrix(m,1,nra,l,nca);
94
95 }
96
97 /**************************************'k****************************
98 * Procedure Receive()
9% * Input: none
100 * Output : none
101 * Action : receives frame
102 * HISTORY: Date Author Comments
B e
104 * 22.05.95 S.M.Rolland C(reation
105 = 08.09.95 " ARCOM card
106 * 11.09.85 " aligned with ssdrv.c
107 **'k****************************************************************/
108 void Receive()
109 {
110 int i;
111 int j;
112 int temp;
113 float £;
114 RSD{Station_Number].Buffer_Status=BUFFER_READY;
115 if ( (msg[0]==MASTER ADDRESS) && ((msg[l] & OxEF) == TOKEN)) /*
116
117 Send_TOK A (RSD[0].Predecessor,0);
118 RSD[0] .Station_State=TOKEN ACK;
119
120
121 3}
122
123 else if (msgfl]l == UI) /* I frame*/
124
125 if (msg[2]==VIDEO)
126
127 gotoxy (50,13);
128 printf ("Update");
129
130 speed=msg[3];
131 command=msg [4] ;
132 th=msg[5];
133 tl=msg[61;
134 old_error=error;
1358 if (speed<40)
136 calculated speed=0;
137 else
138 calculated speed=25.74l*speed-953.36;
139 //PID calculations
140 error=setpoint-calculated speed;
141 if (error!=0)
142 derivitive=(old_error-error)/error;
143 else
144 derivitive=0;
145 integral=integral+error;
146 if (integral<-200)
147 integral=-200;
148 if (integral»>200)
149 integral =200;
150 if (locked == TRUE)
151
152 if (temp_ k<0)
153 temp_k=-temp k;
154
155 PIDcommand=temp k*error+temp Ti*integral;
156
157 else
158 PIDcommand=setpoint;
159 if (PIDcommand>255)
160
161 Tilt_Com=255;
162 £ tilt com=255.0;
163
164 else if (PIDcommand<O0)
165
166 Tilt Com=0;
167 £ tilt_com=0.0;
168 }
169 else
170
171 Tilt_Com=(unsigned char)PIDcommand;
172 £ _tilt_com=PIDcommand;
173
174 RSDI[1] .Info Length = 4;
175 RSD[1] .Buffer Status= BUFFER_READY;
176 RSDI[1] .Data[0l= TILT_COMM;
177 RSDI[1] .Data[ll= Tilt Com;

178
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T ; ¢
180
181 3}
182
183
184 }/* End UI Framex/
185 else if ( (msgll] & OxEF) == S8) /* Set Successor*/
186
187 RSD[Station_Number] .Successor=msg[2];
188 /* ACknowledge*/
189
190 else if { (msg(l] & OxXEF) == SP) /* Set Predecessor+*/
191
192 RSD[Station_Number] .Predecessor=msg{2];
193 /* ACknowledge*/
194
195 else if { (msgll) & OxEF) == WFM) /* Who Follows Me */
196
197 for (i=0;i<=NUMBER_OF_STATIONS;i++)
198
199 if (RSD[il.Station_Address == (msgl[2] & OxFF))
200
201
202 if (i== 0)
203
204 RSD[0] .Station_State=TOKEN ACK;
205 Station_Number=0;
206 return;
207
208 else
209 {
210 if (Recovery(i,0)!=TRUE)
211
212 RSDI[i] .Station_State=ERASED;
213 temp=FALSE;
214 for (j=1;j<NUMBER_OF_STATIONS;J++)
215
216 if (RSD[j].Station_State {= ERASED)
217 temp=TRUE;
218
219 if (temp == FALSE)
220
221 printf ("\nAll nodes now erased - automatic shutdown, check main umbilical");
222 getch();
223 exit(1l);
224
225
226 /* REGENERATE TOKEN FROM MASTER*/
227 RSD[0] .Station_State=TOKEN ACK:
228 Station_ Number=0;
229 for (temp=0;temp<NUMBER_OF_STATIONS; temp++)
230
231 if (RSDI[temp] .Successor== RSD[i].Station_Address)
232
233 RSD [temp] . Successor=RSD[i].Successor;
234
2358
236 for (temp=0;temp<NUMBER OF STATIONS;temp++)
237
238 if (RSD[temp].Predecegsor== RSD[i].Station_Address)

239

240 RSD [temp] .Predecessor=RSD[i] .Predecessor;
241

242

243 /* should reduce TRT*/

244 RSD[i] .Station_State=ERASED;

245 RSD[0].Station_State=TOKEN_ACK;
246 Set_Logical Ring{(l, 0,TTRT);

247

248 return;

249

250 return;

251

252 }

253 }

254

255 else if ( (mgg(l]l & OxEF) == CTF) /* Claim token frame */
256

257 for (i=0;i<=NUMBER_OF_STATIONS;i++)

258

259 if (RSD[i].Station Address == (msg[2] & OXFF))
260

261 for (temp=0;temp<l00;temp++); /* delay ?*/
262 RSD[i] .Station_State=DISCONNECT S;

263 RSD[i] .Station_State=DISCONNECT S;

264

265 }

266 }

267 for(i=0;i<NUMBER_OF_STATIONS;i++)
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268
269 if ((i>=1) && (i<NUMBER_OF STATIONS-1))
270
271 RSD[i] .Successor=RSD[i+1l].Station_Address;
272 RSDI[i].Predecessor=RSD[i-1] .Station_Address;
273
274 else if (i==0)
278
276 RSD[0] .Successor=RSD{[1] .Station_Address;
277 RSD{0] .Predecessor=RSD [NUMBER_OF STATIONS-1].Station_Address;
278
279 else if (i==NUMBER OF STATIONS-1})
280
281 RSD[i] .Successor=RSD[0] .Station_Address;
282 RSDI[i].Predecessor=RSD[i-1].Station_Address;
283
284
285 }
286 Set_Logical_ Ring(l, 0,TTRT);
287 RSDI0] .Station_State:TOKEN_ACK;
288
289 }
290
291 /*
292 * procedure:main *
293 * Input: void *
294 * Qutput : void *
295 * Action :main program loop *
296 * HISTORY: Date Author Comments *
20T % e e e e e e e e —m e *
298 * 11.08.95 S.M.Rolland Creation *
295 * 13.10.95 " Improved *
300 */
301 void main()
302 {
303 int counts;
304 int channel, byte;
305 signed char Command([4];
306 char flag; /* thruster command change*/
307 char status_flag; /* station state flag*/
308 int end;
309 int i,3;
310 int car;
311 char ctemp;
312 long old_trt;
313 unsigned char successor;
314 static float den;
315 gtatic float lamba=0.99;
316 static float estimate_error;
317 double RLS_step:
318
319 int tint;
320 float temp_floatl,temp_float2;
321
322
323 FILE *in;
324 FILE *pid;
325 float *#*
theta_k, **phi_k, **theta_old, **phi_old, **P, **P_old, **L, **temp, **temp2, **P_temp, **P_temp2;
326 float ** used_ theta;
327 float ** used_phi,** P_temp3,**P_temp4, **phi_temp;
328 £loat ** phi log3,** phi log4,** phi_log5,** phi_logé§;
329
330 float epsilon;
331 float d;
332 £loat Ti,T4,K;
333 float al,a2,tau,delta2,mu,h;
334 float *f_pointer;
335 unsigned char test;
336
337 locked-=FALSE;
338 end=0;
339 temp floatl=0;
340 temp float2=0;
341 // Communication card detection
342 printf ("\n<<< Demo Program >>>\n\n");
343 printf ("Assumes PCSER4 switches set to 180\n");
344 printf ("Testing for PCSER4\n");
345 byte = ioread(ID);
346 INACTIVITY TIME OUT=10000;
347 TTRT=255;
348 for (i=0;i<6;i++)
349 Command [i]1=0;
350 setpoint=0;
351 calculated_speed=0;
352 byte=ioread(ID);
353 Tilt_Coms=0;
354 £f_tilt_com=0;
355 if (byte == 16)



APPENDIX G Experimental Estimation software

estbasec
356
357 printf ("PCSER4 found OK\n");
358 iowrite (GRLED,0); /* LED on */
359 delay(0x100);
360 iowrite (GRLED,1l); /* LED off */
361 delay(0x100);
362 channel = OxFF;
363 if ((log_file = fopen("otl.log", "at")) == NULL)
364
365 printf ("Cannot open otl.log*);
366 return;
367 };
368 if ((in = fopen("event.log", "wt"))
369 == NULL)
370 {
371 fprintf (stderr, "Cannot open input file.\n");
372 exit(1);
373
374 if ((pid = fopen("pid.log", "wt"))
375 == NULL)
376
377 fprintf (stderr, "Cannot open pid file.\n");
378 exit(1);
379 }
380 // matrix initialisation
381 used_theta=matrix(l,1,1,N};
382 theta_k=matrix(1,1,1,N);:
383 theta_old=matrix(1,1,1,N);
384 used_phi=matrix(1,N,1,1);
385 phi_k=matrix(1,N,1,1);
386 phi_old=matrix(1,N,1,1);
387 phi_log3=matrix(1,N,1,1);
388 phi_log4=matrix(l,N,1,1);
389 phi_logS=matrix(1,N,1,1);
390 phi_logé=matrix(1,N,1,1);
391 phi_temp=matrix(1,N,1,1);
392 L=matrix(1l,1,1,N);
393 P=matrix(1,N,1,N);
394 P_old=matrix(1,N,1,N);
395 temp=matrix(1,1,1,N);
396 temp2=matrix(1,1,1,1);
397 P_temp=matrix(1l,N,1,N);
398 P_temp2=matrix(1,N,1,N);
399 P_tempi=matrix(1,N,1,N);
400 P_temp4=matrix(1,N,1,N);
401 zero(P,1,N,1,N};
402 eye(P,1,N,1,N);
403 zero(P_old,1,N,1,N);
404 eye(P_old,1,N,1,N);
405 zero(theta k,1,1,1,N);
406 zero(theta_old,1,1,1,N);
407 zero(L,1,1,1,N};
408 theta k(11 (31=1; // bl!=0
409 theta_old(1] [3]=1; // bli=0
410 theta_k[1] [1]=1;
411 theta_old[1] [1]1=1;
412 theta k[1] [N]=1;
413 theta_old[1] [N]=1;
414 RLS_step=0.0;
415 zero(used phi,1,N,1,1);
416 zero(phi_k,1,N,1,1);
417 zero({phi_ ol4,1,N,1,1);
418 phi_k(N] [1]l=1;
419 phi_old[N] [1]=1;
420 zero(L,1,1,1,N);
421 zero(temp,1,1,1,N);
422 zero(temp2,1,1,1,1);
423 // PID default values
424 K=0.5;
425 Ti=0.1;
426 Td=0.01;
427 d=1;
428 // Evaluate PC speed
429 printf ("Evaluating PC Speed..");
430 Evaluate_PC{();
431 printf ("\nPC speed evaluated to %£",Small Delay_ Test);
432 fprintf (log_file, "Feeback, Time, Sync\n") ;
433 fprintf (in, "Measured Estimated Estimate_ Error Step den Theta k[1][1] Theta kI[1][2]
Theta k(1] (3] Theta_k[1} [4] Theta k(1] (51");
434 while((channel < 0) || (channel > 3))
435
436 printf ("Enter a channel number (0-3)");
437 scanf ("%x", &channel) ;
438
439 setpoint=1500;
440 printf("Initialising Channel %x\n",channel);
441 initscc (channel); /* initialise SCC */
442 initDPLL (channel);

443 Power_On();
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479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

/* set comm to thruster card*/

Station_ Number=0;
Update_Address(RSD[Station Number].Station Address,channel);
RSD[Station_Number].Station_State=TOKEN_ACK;

clrscr();

Set_Logical_Ring(l, channel, TTRT);

gotoxy(10,1);

printf ("Estimator Test - Logging software ");

printf ("Node 3 : ");

gotoxy (5,5);

PIAintE (FAAAAAAAASARARAAAARRARAAARAAARMARAARRARARARAAAAR AR A AR AYY
Inactivity timer=biostime(0,0L);

Trt_timer=biostime(0,0L);

while (end==0) /* loop until g pressed */

while (RSD[0] .Station_State!=TOKEN_ACK)

fprintf(pid," W ");
Listen(channel);
if ((biostime(0,0L)-Inactivity timer) >= INACTIVITY_TIME_OUT)

Inactivity timer=biostime(0,0L);
ctemp=FALSE;

fprintf (pid," X ");

for{j=1; J<NUMBER OF STATIONS;j++)

if (RSDI[jl.Station State != ERASED)
ctemp=TRUE;

if (ctemp == FALSE)

printf ("\nAll nodes now erased - automatic shutdown,
umbilical");

getch();

exit(1);

RSD[0] .Station_State=TOKEN ACK;

}
}

if (RSDI[0].Station_State== TOKEN_ACK)

fprintf (pid," TOK ");

//PID Calculation is implemented in Receive ()
tint=(int)d;

switch(tint)

case 1:
copy_m{phi k,phi temp,N,1);
break;

case 2:
copy_m(phi_old,phi_ temp,N,1};
break;

case 3:
copy_m(phi_log3,phi_ temp,N,1):
break;

case 4:
copy_m(phi log4,phi_temp,N,1);
break;

case 5:
copy_m(phi_log5,phi_ temp,N,1):;
break;

case 6:
copy_m(phi_logé6,phi_ temp,N,1):
break;

pmm(theta k,phi temp,1,1,1,N,1,N,1,1});
estimate_error=calculated speed-(phi templ[1]I[1]};

fprintf (in, "\n%e %e %e",calculated speed,phi_temp (1] [1], estimate_error);
fprintf(log_file, "%d, %d, %d\n", speed, Tilt_Com, (th*256)+tl) ;

// CHECK RLS CONVERGENCE

if ((int)RLS_step<S50)

fprintf(in, " <50");
if ( ((int)fabs(estimate_error)> (int) (calculated_ speed*0.1)) )

test=TRUE;
fprintf (in," OUT%e %d ",estimate error, (int)fabs(estimate error));

else

test=FALSE;
fprintf(in," IN%e %d ",estimate_error, (int)estimate_error);

else

check main
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532 test=FALSE;
533
534
535 if (test==TRUE )
536
537 // RLS algorithm
538 fprintf(in," RLS");
539 RLS_step++;
540 locked=FALSE;
541 lamba=pow(0.99,RLS_step);
542 P_old=P;
543 tint=(int)d;
544 switch(tint)
545
546 case 1:
547 copy m{phi_k,P_temp3,N,1);
548 break;
549 case 2:
550 copy_m(phi_old,P_temp3,N,1);
551 break;
552 case 3:
553 copy m{phi_log3,P_temp3,N,1);
554 break;
555 case 4:
556 copy _m{phi_log4,P_temp3,N,1};
557 break;
558 case 5:
559 copy_m(phi_log5,P_temp3,N,1);
560 break;
561 case 6:
562 copy m(phi_logé,P_temp3,N,1);
563 break;
564
565
566 ptranspose (P_temp3,1,N,1,1);
567 copy_m(P_old,P_temp2,N,N);
568 pmm(P_temp3,P_temp2,1,1,1,N,1,N,1,N);
569 tint=(int)d;
570 switch(tint)
571
572 case 1:
573 copy_m{phi_k,phi_ temp,N,1);
574 break;
575 case 2:
576 copy_m{phi_old,phi_temp,N,1);
577 break;
578 case 3:
579 copy_m{phi_log3,phi_temp,N,1);
580 break;
581 case 4:
582 copy_m{phi_log4,phi_temp,N,1};
583 break;
584 case 5:
585 copy m(phi_log5,phi_temp,N,1);
586 break;
587 case 6:
588 copy m{phi_log6,phi_temp,N,1);
589 break;
590
591
592 prmm(P_temp2,phi temp,1,1,1,N,1,N,1,1);
593 den=lamba+phi_temp[1] [1];
594 fprintf (in," %e",den);
595 copy m(phi_k,phi_temp,N,1);
596 pmm (P_old,phi_temp,1,N,1,N,1,N,1,1);
597 km(phi_temp,1/den,1,N,1,1);
598 copy m{theta_k, temp,1,N);
599 km(phi_temp, estimate_error,1,N,1,1);
600 theta k=transpose(phi temp,1l,N,1,1);
601 copy_m(temp, theta o0ld,1,N);
602 paddm(theta_old, theta_k,1,1,1,N,1,1,1,N);
603 //calculate new P
604 //P=(P_old-((P_old*phi_k*phi_k'*P_old)/(lambda+phi_k'*P_old*phi_k)))/lamda
605 tint=(int)d;
606 switch(tint)
607 {
608 case 1:
609 copy_m(phi_k,phi_ temp,N,1);
610 break;
611 case 2:
612 copy_m(phi_old,phi_temp,N,1);
613 break;
614 case 3:
615 copy m{phi_log3,phi_ temp,N,1);
616 break;
617 case 4:
618 copy_m(phi_log4,phi_temp,N,1);
619 break;

620 case 5:
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621 copy_m(phi_log5,phi_temp,N,1);
622 break;

623 case 6:

624 copy_m(phi_log6,phi_temp,N,1);
625 break;

626

627

628 prmm{P_old,phi_temp,l,N,1,N,1,N,1,1);
629 tint=(int)d;

630 switch(tint)

631

632 case 1l:

633 copy_miphi_k,P_temp2,N,1};

634 break;

635 case 2:

636 copy m(phi_old,P_temp2,N,1};
637 break;

638 case 3:

639 copy_m(phi_log3,P_temp2,N,1);
640 break;

641 case 4:

642 copy m{phi_log4,P_temp2,N,1);
643 break;

644 case 5:

645 copy m(phi_log5,P_temp2,N,1);
646 break;

647 case 6:

648 copy m(phi_log6,P_temp2,N,1);
649 break;

650

651 ptranspose(P_temp2,1,N,1,1);

652 pmm(phi_temp,P_temp2,1,N,1,1,1,1,1,N);
653 copy_m(P_old,P_temp3,N,N);

654 pmm(P_temp2,P_temp3,1,N,1,N,1,N,1,N);
655 km(P_temp3,-1/den,1,N,1,N);

656 paddm(P_old,P_temp3,1,N,1,N,1,N,1,N);
657 km(P_temp3,1/lamba,l,N,1,N);

658 copy m(P_temp3,P,N,N);

659 }// end of RLS

660 else

661

662 // RLS has converged

663 // reset RLS parameters

664 locked = TRUE;

665 fprintf(in," NORLSY);

666 zero(P,1,N,1,N);

667 eye(P,1,N,1,N);

668 zero(P_old,1,N,1,N);

669 eye(P_old,1,N,1,N);

670 zero(L,1,1,1,N);

671 RLS step=0.0;

672

673 copy m(phi_log5,phi_ logé,N,1);
674 copy_m(phi_log4,phi_log5,N,1);
675 copy_m{phi_log3,phi_log4,N,1);
676 copy m(phi_old,phi_log3,N,1);
677 copy_m{phi k,phi_old,N,1);

678 copy_m({phi_log5,phi_log6,N,1);
679 copy_m(phi_log4,phi_log5,N,1);
680 copy m(phi_log3,phi log4,N,1l);
681 copy m(phi_old,phi_log3,N,1);
682 copy m(phi_k,phi_old,N,1);

683 fprintf(in," TestY %e",theta kI[1][1l);
684 if ((int)RLS_step ==1)

685

686 phi_k([N][11=1;

687 phi_old[N] [1]=1;

688 phi k[2] [1]=f tilt com;

689 phi_k([1] [1]=-calculated_speed;
690

691 else

692 {

693 phi_k([5] (1]=phi_ki{4][1];

694 phi_k[4] [1]1=phi_ kI[3] [1];

685 phi_ k(3] [11=phi_k([2] {1];

696 phi k(2] [11=f_tilt_com;

697 phi_k[1] [1]l=-calculated speed;
698

699 }

700

701

702

703

704 phi_log6 (1] [1ll1=-calculated speed; // this does not need shifting
705 phi_log5[1] [1]l=-calculated speed;

706 phi_log4 (1] [1]1=-calculated_speed;

707 phi_log3[1] [1]=-calculated speed;

708 phi_old[1l] [1]=-calculated_ speed;

709 fprintf (in," TestZ %e",theta k(1] [1]);
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710 fprintf(in," %e %e %e %e %e
", theta_k(11[1],theta_k[1] [2], theta_k[1] [3],theta_k[1] [4],theta_k[1] [5]);

711 fprintf(in," %e %e %e %e %e ",phi k(1] {1],phi k(2] [1],phi_kI3] [11,phi k(4] [1],phi_kI5][11);

712 fprintf(in," d= %e",d);

713 // Epsilon based delay estimation

714 epsilon={theta_kI[1] [4]-theta_k[1] [2])/(theta_k[l] [2]+theta_k[1l] [3]+theta k[1] [4]);

715 fprintf(in," epsilon= %e",epsilon); -

717 if (((int)epsilon*10 <-8) && ((int)RLS_step==0)) // if RLS has locked and espilon <-0.8

719 temp_ floatl=theta ki1][4]: //b0

720 d=d-1;

721 theta_kl1] [4]=theta_k([1] [3]+3*temp floatl; // b0=bl+3b0
722 theta_k{1} [3]=theta_k[1} [2]-3*temp_floatl; // bl=b2-3b0
723 theta_kl[1] [2]=temp floatl; // b2=b0

724

725 else if (((int)epsilon*10>8) && ((int)RLS_step==0)) // if RLS has locked and espilon >0.8

727 d=d+1;

728 temp floatl=theta k[1][3]; //bl

729 temp_ float2=theta kI[1][2]; //b2

730 theta k({1] [3]=theta_k{1][4]-3*temp_ float2;//bl=b0-3b2
731 theta_k[1l] [2]1=temp_£floatl+3*temp_float2; //b2=bl+3*b2
732 theta_k[1] [4]=temp_float2; //b0=b2

733 }

734 if ((int) (epsilon*1000) !=0)

735 tau=h*epsilon;

736 else

737 tau =0.001;

738 // calculate PID coeffs

739 if ((locked==TRUE) && ((int)theta_k[1][1]!=1) )

740 al=-log(-theta_kI[1] [1]1)/h;

741 else

742 al=-1log(0.9)/h;

743 mu=(theta k[1] [2]+theta_k([1] [3]+theta k(1] [4])/(l+theta_kI[1] [1]);
744 // using Haalman tuning rules

745 Ti=al;

746 K=2/(al*6*mu*tau);

747 temp_k=K;

748 temp Ti=Ti;

749 fprintf (pid,"\n %e %e %e %e %e",al,mu,tau,k, Ti);
750 delay(50); // this is the additional delay in msec
751 old_trt=Trt_timer;

752 /* Initialise TRT Timer*/

753 Trt_timer=biostime(0,0L);

754 h= (Trt_timer-old trt)/_BIOS_CLK_TCK;

755 fprintf (pid, " h=%lu %e",Trt_timer-old trt,h);
756 gotoxy (50,13);

757 printf ("token") ;

758 gotoxy (50,13);

759 printf (" "

760 gotoxy (50, 5);

761 £lag=0;

762 for (i=1;i<NUMBER_OF_STATIONS;i++)

764 fprintf (pid, " S%d",i);
765 if(RSD[i].Station_State== ERASED)

767 Vad break; skip to next station*/
769 else if (RSD[i].Station_State== DISCONNECT_S)

771 gotoxy (50,1+1);
772 printf ("OFF ") ;

774 Send_Snrm(i,channel);
715 if (RSD[i].Station State== I _T 8)

777 gotoxy (50,i+1);

778 printf (YON ");

781 else if (RSD[i].Station_State== GO_TO DISC)

783 Send_Disc(RSD(i] .Station_Address,channel);

785 else if ( (RSD[i].Info_Length>0) &&(RSD[i].Buffer Status==BUFFER_READY) )

787 gotoxy (50,13} ;
788 printf (YXmit 1");

790 Xmit_I_T S(i,T_I_FRAME,channel);
791 RSDI[i] .Info_Length=0;

792 gotoxy (50,13);

793 printf ("Xmit 1b");

795 } /* end of for*/

797 fprintf (pid, * Passing");
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798 if (Pass_TOKEN(RSD[Station Number] .Successor,channel) { =TRUE)
799
800 gotoxy (50,13);
801 printf(“Failed");
802
803 for (ctemp=1;ctemp<NUMBER OF STATIONS;ctemp++)
804
805 if (RSD[ctemp].Station_address== RSD[Station_Number} .Successor)
806 successor=ctemp;
807
808
809 Ligten(channel);
810 Listen(channel);
811 if (Recovery(successor, () !=TRUE)
812
813
814 gotoxy (50, successor+l) ;
815 printf ("OFF ");
816
817 for (ctemp=0;ctemp<NUMBER_OF_STATIONS;ctemp++)
818
819 %f (RSD [ctemp] . Successor== RSD[successor].Station Address)
820
821 RSD [ctemp] . Successor=RSD [successor] . Successgor;
822
823 }
824 for (ctemp=0;ctemp<NUMBER _OF_ STATIONS;ctemp++)
825 {
826 if (RSD[ctemp].Predecessor== RSD[successorl.Station Address)
827
828 RSD [ctemp] . Predecessor=RSD[successor] .Predecessor;
829
830
831 RSD[successor] .Station_State=ERASED;
832 RSD[Station Number] .Station State=TOKEN_ACK;
833 Set_Logical Ring(1l, channel,TTRT);
834
835 }
836
837 }
838 Yy //
839 if (kbhit ())
840 car=getch();
841 else
842 car=0;
843 switeh (car)
844
845 case 113:
846 case 81: /* Q _»endx/
847 {end=1; break;}
848 } /* end of switch statement*/
849
850 } /* end of while*/
851 // closing files
852 fclose(log_file);
853 fclose(in);
854 fclosge(pid);
855 // cleaning matrix allocations
856 free matrix{used_theta,l1,1,1,N};
857 free matrix(theta_k,1,1,1,N);
858 free matrix(theta_old,1,1,1,N);
859 free matrix(phi_k,1,N,1,1);
860 free matrix(phi_old,1,N,1,1);
861 free_matrix(phi_log3,1,N,1,1);
862 free_matrix(phi_ log4,1,N,1,1);
863 free matrix(phi_log5,1,N,1,1);
864 free matrix(phi_logé6,1,N,1,1);
865 free matrix(used _phi,1,N,1,1);
866 free_matrix(pP,1,N,1,N);
867 free matrix(P_old,1,N,1,N);
868 free matrix(L,1,1,1,N);
869 free matrix(temp,1,1,1,N);
870 free matrix(temp2,1,1,1,1);
871 free matrix(P_temp,1,N,1,N);
872 free_matrix(P_temp2,1,N,1,N);
873 free matrix(P_temp3,1,N,I1,N);
874 free_matrix(P_temp4,1,N,1,N);
875 free_matrix(phi_temp,1,N,1,1);
876
877
878 else // no communication card found
879 printf ("PCSER4 not found: ID = $%x\n",byte);/* Arcom board not detected*/
880 getch();

881 }
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The Recursive Least Square estimation algorithm used is a classic one [29]. It

allows to estimate unknown model parameters, by using observations from the

experiment. In our case, the model is z7(z)= z- b0 +b1Z +b2Z° The
Z-p

unknown parameters can be put in vector notation has follows:
$=[-p b2 bl b0 C]
The observations are in the following vector:

C is a constant set to 1.

\P(/H»l) = [y(kH) u(k+1) u(k) u(k—l) C]

8. =8, +T, |y, -8w. ]

(k+1) (k+1) (k-+1

with [y(m) - B(k o ] the estimation error at step k +1
L =P ¥ (k) [/1 +¥ P kI”,(k)]u1

(k) (k-1) (k)™ (k1)

P(k) = [ —rﬁ(f) (k)]P

(k-1

The recursive least square algorithm with forgetting factor used is:
Where 1 is the forgetting factor and is calculated as A=0.99%", where step is the
number of iteration of the RLS estimator.

Those calculations are implemented in the C program in appendix G.



APPENDIX I Probability of spurious flag

Funk [14] shows that in an assumed memory-less, binary symmetric channel model,
each bit position is inverted independently with the bit error probability p, and is
received correctly with the probability g. With this simplified model we get :

P(FLAG) = — + + + —+
( )248q(1pq ,)Pa 5P )P4 5/Patp

P(FLAG) = f?__zlféqz(l* q6) forgq=1-p

P(FLAG) = ,—2%3_13 =0.024p forp << 0.5

For example, with a bit error probability p = 1€, the probability of having a spurious
flag is 2.41e™®.

However, this does not take into account that the probability distribution for ‘0" and
1" is different, because of bit insertion. The average distance of a ‘0’ bit insertion is
62 bits, since ‘0’ bits are inserted in patterns of type 011111 or 011111 11111 etc....
Considering these patterns as exclusive events occurring with probability 2% 2.,
the resulting probability of ‘0’ bit insertion is:

P('0'insertion) = 270 + 27114+ .

P('0'insertion) =270 /(1-27)=1/62

This means that an HDLC text of arbitrary length contains 32/63 “0’s” and 31/63
“1's”,

Within and HDLC frame, things are slightly different : within the first five bits after the
FLAG, the probabilities of “0’s” and “1’s” are 0.5. Funk [14] shows that the probability

of a spurious flag caused by a single bit error then becomes :
2
P(FLAG) ~ ggpq7 ~0.0317p forp<<0.5

For example, with a bit error probability p = 1€®, the probability of having a spurious
flag is 3.17¢’®, slightly higher than with the simplified model.

A spurious flag divides the transmitted message in two received frames. However,
SDLC rejects short frames. Thus the chances of receiving a shortened frame without
detecting it supposes that:

e The spurious flag occurs after the address and control field are transmitted.



e The 16 bits Frame Check Sequence (FCS) happens to be correct. The
probability of this happening is 27*°.
The resulting residual error probability caused by a spurious flag is for a n—bit

message is:

R(FLAG) =27%(1-(1-P(FLAG))" ")



