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Program specialisation is a source-to-source program transformation technique 
which can be used to improve the efficiency of programs. It includes traditional 
compiler optimisations and also incorporates more aggressive transformations which 
offer greater potential for improvements in performance. 

Termination is a key issue in the construction of fully automatic tools, such as 
compilers and program specialisers, which are used in program development. For 
any such tool to be effectively usable by a non-specialist user, a minimal requirement 
is that it should terminate for all input. 

This thesis studies termination of logic programs and termination of program 
specialisation in particular. Two approaches to the latter are traditionally recognised. 
The ojfline approach divides the specialisation process into two phases; the first is 
an analysis phase which gathers termination information which is used to guide the 
specialisation proper in the second phase. This separation of components provides 
an identifiable termination component within a tool and is good software engineering 
practice. It also offers a ntmiber of other advantages over the online approach where 
the two phases are intertwined. In logic programming, however, the focus of attention 
has been on online techniques since they have generally offered better potential for 
optimisation. 

This thesis proposes the first solution to automatic, offline specialisation of logic 
programs which compares favourably with current online techniques with regard 
to its optimisation capability. Specifically, it is the first offline technique in logic 
programming to pass the, so called, KMP test which has become the acid test for 
program specialisation techniques; the automatic generation of a fast pattern matcher 
from a naive one. 

To this end, a number of techniques for termination analysis are developed culmi-
nating in the identification of a useful termination criterion for coroutining logic pro-
grams. Such programs are notoriously difficult to prove terminating, yet they provide 
an extremely useful model for an essential part of the program specialisation process. 
Tackling this problem in turn leads to the establishment of a solid link between the 
fields of program specialisation and termination analysis, laying the foundation for 
the proposed offline approach. 
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1 Introduction 

Imperative languages, such as C, C++ and Java, are founded on the idea of giving 
commands which express which actions must be taken to perform a computational 
task. They force a programmer to think algorithmically, focusing on the details of the 
individual steps necessary to solve the problem. 

Consider the problem of string searching; trying to find a sequence of characters, 
or pattern, in a piece of text. For example, the problem might be to find the pattern 
"gorith" in the text of this chapter. An imperative approach would be to form a 
sequence of instructions which might begin as follows; 

1. Compare the first letter of the pattern to the first letter of the text; 

2. If they are the same, then compare the next letter of the pattern with the next 
letter of the text; otherwise compare the first letter of the pattern with the next 
letter of the text... 

The imperative programmer quickly becomes engrossed in the details of specific com-
parisons between characters, keeping track of which characters have already been 
compared and which characters should be compared next. 

An alternative is to describe the problem declaratively. That is, to state what the 
problem is rather than how it should be solved. A simple declarative specification of 
the string searching problem is the following: 

pattern is a substring of text if there exist strings a and b such that a + pattern + b = text 

where "+" represents string concatenation. From this specification it can be deter-
mined, for example, that "gorith" is a substring of "algorithm" because "al" and "m" 
are strings such that "al" + "gorith" + "m" = "algorithm". This specification is simple 
and readily understood, but it does not in itself constitute an algorithm and cannot be 
executed directly on a machine. 

The role of declarative programming languages is to bridge this gap between 
specification and algorithm. Fundamentally, a declarative language must provide 
support for synthesising from the specification, a correct and efficient algorithm which 
can be executed. Ideally, the synthesis would be completely automatic direct from the 
specification, though in practice this ideal has yet to be achieved. The benefits of 
declarative programming are numerous: smaller, cleaner programs which are easier 
to understand, to write and to maintain. 

1.1 Logic programming 

Logic programming is an approach to declarative programming based on first order 
logic, where specifications are logical formulae. For example, the above string search 
specification can be translated directly into the following first order logical formula: 
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V pattern V text (Substring(pattern, text) ^ 3 a 3 b (Concat(a, pattern, prefix) A 
Concat(prefix, b, text))) 

Substring and Concat are called relation symbols or predicate symbols. Substring(z, y) is 
read as "x is a substring of y" and Concat(z, y, z) is read as "z is the concatenation 
of X and y", or "z = x + y". The symbols , A, V and 3 have their usual meaning 
in first order logic, namely "if", "and", "for all" and "there exists" respectively. The 
close correspondence between this formula and the original specification should now 
be apparent. 

The equation "Algorithm = Logic + Control" due to Kowalski 1979, captures the 
main idea behind logic programming. The "Logic" part of the equation represents 
the purely declarative component; the logical specification provided by a number of 
logical formulae such as the one above. The "Control" part represents the procedural 
interpretation of the logic and determines how the problem should be solved. The 
procedural interpretation of the above logic for the string searching problem might be 
something like: 

Choose a str ing a and calculate a + pattern = prefix. If prefix + b = text for 
some string b then stop, otherwise repeat with a different string a. 

An alternative strategy is the following: 

Divide text into two substrings, prefix and b. Divide prefix into two sub-
strings a and c. If c = pattern then stop, otherwise repeat with a different 
division of text a n d / o r prefix. 

Different algorithms for the same problem can be obtained by varying the control 
component, as in the example, or alternatively by replacing the logic component with 
another one that is (logically) equivalent. Hence, the automatic synthesis of programs 
from specifications focuses on these two techniques. The control generation problem 
deals with the automatic derivation of a suitable control component for a given logical 
specification. The aim of program transformation is to improve the efficiency of an 
algorithm through transformation of the logic component. In this case, the control 
component is usually kept the same. 

Modern logic programming systems provide a default control component so that 
logical specifications can be written directly as programs. A system will usually 
provide a number of mechanisms for the programmer to refine the control in order to 
time the efficiency of the program. It is often the case, however, that simple, high-level 
specifications lead to inefficient algorithms regardless of the control. For example, 
expressing the logical formula above directly in a logic programming system would 
result in a program which is very inefficient. Most likely it would implement a (rather 
poor) brute force search algorithm, attempting to match the pattern with the text at 
all possible positions tmtil finding a match. Modifying the control component will do 
little, if anything, to improve the underlying complexity of this program (though it 
could make it worse!). Any fundamental improvement can only be achieved through 
modification of the logic. 

1.2 Specialisation of logic programs 

Most of the efficient string searching algorithms that have been devised rely on some 
form of preprocessing on the pattern to be searched for. They exploit knowledge about 



the given pattern in order to search for it more quickly. This knowledge can also be 
exploited to improve the performance of the brute force search program encountered 
above. In fact, for any given pattern, the program can be transformed into another 
which mimics the efficient Knuth-Morris-Pratt string matching algorithm (Pettorossi 
et al 1996, Knuth et al. 1977). This kind of transformation, which is directed by part of 
a program's input, is called program specialisation. 

The example provides a useful illustration of the basic principles of program 
specialisation. The search program takes two inputs, a pattern p and some text t. 
When the pattern is known the program may be specialised with respect to this input, 
resulting in a program which takes t as its only argument. The pattern p which was an 
input to the original program is incorporated into the specialised version. This new 
version may be used to efficiently search for p in any number of different texts, but 
cannot of course be used to search for other patterns distinct from p in those texts. 
To search for a new pattern q, the original program must be used or alternatively it 
can be specialised as before with respect to the pattern q. In program specialisation 
parlance, any input known at compile time such as p is static, while an input like t, 
which only becomes available at runtime is dynamic. In general, a program may have 
more than two inputs, but each of these can be classified as static or dynamic. The 
program would then be specialised with respect to its static inputs. 

Observe that the specialisation process in the example corresponds to the pre-
processing that would ordinarily occur in a hand-coded version of the Knuth-Morris-
Pratt algorithm. But as Sedgewick 1990 points out, "the Knuth-Morris-Pratt algorithm 
requires some complicated preprocessing on the pattern that is difficult to understand 
and has limited the extent to which it is used.". One advantage of the naive specifi-
cation/transformation approach is that, with problems of this kind, the programmer 
neither needs to devise any complicated preprocessing, understand it, program it nor 
even be aware of it. Program specialisation offers the possibility of automatically deriv-
ing correct, efficient algorithms from simple specifications for a variety of application 
areas. 

1.3 Termination and correctness 

Reconsider the two example control strategies in Section 1.1. Both involve some 
repetition, essentially of the form "If pattern not found then repeat". Arising out of 
this repetition is the question as to whether or not this process of searching for the 
pattern will ever end. In the second strategy, the process is repeated "with a different 
division of text and /o r prefix". Since there is only a finite number of distinct ways to 
divide a string into two, the search process must end as either the pattern will be found 
or the possible divisions of the string will be exhausted without finding a match. With 
the first strategy, however, a similar reasoning cannot be applied. The search process 
is repeated each time "with a different string a" without any constraint on the form or 
length of a. An infinite number of strings could be tried and the pattern might never 
be found (even if it occurs in text). 

Formally, a process or computation which ends is said to terminate or be ter-
minating and one which never ends is said not to terminate or be non-terminating. 
In contrast to imperative languages which contain several looping constructs, e.g. 
while, for, goto, repeat the only possible cause of non-termination in logic programs 
is recursion (i.e. predicates defined in terms of themselves). For example, consider the 



following 

Brother(x, y) ^ Brother(y, x). 

This rule for the Brother relation is recursively defined and its intended inter-
pretation is that "x is the brother of y if y is the brother of x". Thus given the fact 
Brother(Alan, Deryk), one m a y deduce Brother(Deryk, Alan) f rom the above rule. But 
applying the rule to this last fact one may further deduce the original fact Brother(Alan, 
Deryk). There is no limit to the number of times that this rule may be applied 

An issue closely related to termination, which has already been mentioned in 
passing is program correctness. Loosely speaking, a program is said to be partially correct 
if for any input, whenever it terminates, it produces the right output. A program is 
totally correct if it is partially correct and terminates for all inputs. Partial correctness 
is relatively easy to achieve in logic programming given the close correlation between 
logical specifications and logic programs. Thus the primary concern of control gener-
ation, with regard to correctness, is termination. 

1.4 Partial evaluation 

One form of program specialisation which has attracted a considerable amoimt of 
interest is partial evaluation. In its simplest form, partial evaluation consists of the 
evaluation or reduction of expressions combined with unfolding. 

The evaluation of an expression during the specialisation process is performed 
exactly as it would be at runtime. Reduction of expressions occurs when full evalua-
tion is not possible. As an example, consider the expression {x + y) * z occurring in 
a program P. During the specialisation of P, this expression can be evaluated only if 
the values of x, y and z are known (static). Now suppose that x = 3 and y = 4, but z is 
dynamic. Then the expression cannot be evaluated but it may be reduced to 7 * z. This 
residual expression must form part of the specialised program and may be evaluated 
at runtime when the value of z becomes known. 

An unfolding step conceptually replaces a procedure, function or predicate call 
with the body of the called procedure, function or predicate. Unfolding then, is similar 
in spirit to the idea of inlining used in imperative languages. Since predicates, etc., 
may be defined recursively it is immediately apparent that unfolding steps may be 
followed one after another ad infinitum. Infinite imfolding will, of course, lead to 
non-termination of the specialisation process and must be avoided. Unfolding, itself, 
cannot be avoided altogether, since very little specialisation can be achieved without 
it. Thus, means are required to curb its occasional tendency to get carried away. 

1.5 Aims and outline of the thesis 

This thesis is divided into two parts. The second part comprises the original contri-
bution while the first provides the necessary technical background. The main thread 
follows the development of an approach to the control of vmfolding of logic programs. 
The key idea is to use static termination analysis to derive sufficient conditions for 
finite unfolding. Since unfolding effectively models the computation process, this 
problem is closely related to the control generation problem which is also examined. 
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Chapters 1, 3 and 4 respectively introduce the basics of logic programming, ter-
mination of logic programs and partial evaluation of logic programs. 

Norms, which measure the size of data structures, play an important role in 
modern termination analyses for logic programs. Chapter 5 examines how norms 
can be automatically derived from the types of a logic program. An earlier version of 
this chapter appeared in Martin et al. 1996. 

Much of the practical static termination analysis work that has been developed 
builds on a few theoretical characterisations of termination. These characterisations, 
however, are not cast in terms of the recursive structure of programs which in itself 
forms an intuitive and practical basis for reasoning about termination. Alternative 
characterisations based on the recursive structure of programs are proposed in Chap-
ter 6, which potentially provide a more useful foundation for practical termination 
analyses. 

Chapter 7 studies the control generation problem and shows how it can be tackled 
using a transformation approach. The emphasis is on termination but the framework 
developed is sufficiently flexible to allow a range of search strategies to be incorporat-
ed within it. This offers the opportunity to time the efficiency of a program once its 
total correctness has been established. This chapter is a revised and extended version 
of Martin & King 1997. 

Chapter 8 extends the results of the previous chapter to obtain a refined strategy 
for unfolding. As before, finiteness of the unfolding process is ensured without un-
duly restricting the search strategy which is applied. Within this framework there is 
not only scope for improving the efficiency of the unfolding, but also for introducing 
determinacy control in an independent way. Determinacy control amounts to deciding 
whether certain choices in the search space should be explored at specialisation time 
or at rimtime. Making the wrong decision can lead to a specialised program which is 
less efficient than the original program. Clearly, the ability to incorporate determinacy 
control in a specialiser is essential, and this is catered for within the framework. The 
main results of this chapter can also be found in Martin & Leuschel 1999. 

Pre-requisites Though not essential, it would certainly be helpful if the reader had 
some understanding of the basic results of computability theory (see, e.g, Harel 1989), 
including Turing machines, the halting problem and undecidabiUty. Some experience 
with a logic programming language such as Prolog would also be useful. A basic 
grounding in computer science and a rudimentary knowledge of set theory is assumed 
throughout. 
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Part I 

Technical Background 
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2 Logic Programming 

Logic programming is based on the fundamental idea, mainly due to Kowalski 1974 
and Colmerauer et al. 1973, that a subset of first order logic may be given a procedural 
interpretation and hence used as a programming language. In this chapter, the basic 
concepts of typed logic programming are reviewed beginning with the syntax and 
semantics of typed first order logic. This is then used as a basis for the development 
of the syntax and semantics of typed logic programs. The presentation closely follows 
Lloyd 1987 and Hill & Lloyd 1994 and the reader is encouraged to consult these texts 
for further details. 

2.1 Syntax of polymorphic many-sorted languages 

Definition 2.1 (alphabet) An alphabet of a first order, many-sorted, polymorphic lan-
guage is composed of the following classes of symbols 

1. a countably infinite set U of parameters (type variables); 

2. a finite set = 2 ; ^ U Ylconstmctor of type constructor symbols where 

(a) Tthase is a non-empty set of symbols of arity zero called bases and 

(b) T,constructor is a Set of symbols of arity n > 0 called constructors; 

3. a countably infinite set V of variables; 

4. a finite set 2^^ = T̂ constant U T,functor of function symbols where 

(a) Inconstant is a non-empty set of symbols of arity zero called constants and 

(b) T^functor is a set of symbols of arity n > 0 called functors; 

5. a non-empty finite set Ep,.gd = ^̂ proposition U T-predicate of predicate symbols where 

(a) ^^proposition is a Set of symbols of arity zero called propositions and 

(b) "Spredicate is a Set of symbols of arity n > 0 called predicates; 

6. the connectives (negation), A (conjunction), V (disjunction), e - (implication) 
and ^ (equivalence); 

7. the universal quantifier V and the existential quantifier 3; 

8. the pimctuation symbols "(", ")", "(", and 

Classes 1-5 distinguish different alphabets whilst classes 6-8 are the same for all 
alphabets. The syntactic objects of a language are the strings that can be built from 
the symbols of its alphabet. In order to define the semantics of a language, that is to 
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associate meanings with its syntactic objects, attention is usually restricted to a subset 
of objects which are well-formed in some sense. Objects which are not well-formed have 
no meaning. Furthermore, in a typed language, the property of being well-formed also 
includes that of being well-typed. 

In the following sections these notions are made more precise, and the well-
formed objects of a first order, many-sorted, polymorphic language are defined. 

2,1.1 Types 

Definition 2.2 (type) A type is defined inductively as follows 

1. A parameter is a type. 

2. A base is a type. 

3. If c is a constructor of arity n and n , . . . , T„ are types then c ( r i , . . . , r„) is a type. 

A ground type or monotype is a type not containing parameters. • 

The set of parameters occuring in a syntactic object o is denoted by pars{o). A 
syntactic object which contains no parameters is said to be type-ground. 

Example 2.1 Let U = {u, ui,u2,..Z&ggg = {int} and T,constructor = {Ust/l} (i.e. list is a 
constructor of arity one). Then int, list{int), u, and list{list{u)) are examples of types, 
the first two of which are type-ground since they contain no parameters. Furthermore, 
parg(K) = pars(Zisf(W(u))) = O 

Given a type r containing parameters, a new type may be obtained from r by 
replacing certain parameters of r with other types. For example, the type list(int) may 
be obtained from the type list{u) by substituting the type int for the parameter u. In 
this case, the type list{int) is said to be a type instance of list{u) by the type substitution 
which binds u to int. These concepts are formally defined below. 

Definition 2.3 (type substitution) A type substitution -0 is a finite set { t i i / n , . . . Un/rn} 
of type bindings where ui,... ,Un are distinct parameters and r i , . . . , are types such 
that Ui ^ Ti for alH G [1, n]. • 

Definition 2.4 (parameter renaming) A type substitution tjj = { u i / t i , . . . Un/rn} is a 
paramefer rgnamzMg iff 7̂  is a parameter for all / € [1, %]. O 

Definition 2.5 (type instance) Let-^ = {ui/ti, ... be a type substitution and o 
a syntactic object. Then the type instance of o by ip, denoted ip{o), is the syntactic object 
obtained from o by simultaneously replacing each occurence of the parameter u, in o 
by the type n for all i e [1, n]. If i>{o) is type ground then is a type-ground instance 
of o, and i]j is called a type-grounding substitution for o. • 

Any two type substitutions ijj and can be composed to produce a third type sub-
stitution K such that for any type r the type instances and K{T) are equivalent. 

Definition 2.6 (composition of type substitutions) Let ip = { a i / r i , . . . , am/Tm} and 
= {hi/ai,..., bn/(Jn} be type substitutions. Then the composition of i/; and i), denoted 

is the set {oi/Tii) | ^ A % e [1, m]} U {6i/cri | 6; 0 { o i , . . . , 0^} A % E [1,)%]}. O 
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The above definition is based on Definition 2.3.1 in Leuschel 1997 which defines 
how term substitutions are composed. It is easy to see that the composition of any two 
type substitutions according to Definition 2.6 is also a type substitution. Moreover, it 
can be shown that, given type substitutions ^ and for any type r , the type instances 
•d{tj){T)) and {ijj-d){T) are equivalent. 

If, following the application of a type substitution ip to two types r and a, the two 
resulting type instances iP{t) and ^ (a ) are equal to each other, then is called a type 
unifier of r and a. If r and a are unifiable in this way, then there may be many type 
unifiers for the two types. A most general type unifier of r and a is intuitively one of the 
simplest of these unifiers. 

Definition 2.7 (mgtu) Let 5 be a finite set of type equations {ai = TI, . . . , CR„ = T„}. A 
type substitution ^ is a type unifier of S for alH e [1, n]. A type unifier 
-0 of 5 is a most general type unifier, or mgtu, of S iff for each type unifier ip' of S there 
exists a type substitution d such that if;' = ijj'd. • 

The notion of a most general type unifier will play an important role in the con-
struction of terms, atoms and formulae (see Section 2.1.2) and also in the application 
of term substitutions (see Section 2.4.2). 

In a many-sorted, polymorphic language each function symbol is assigned a 
function type and each predicate symbol is assigned a predicate type. The assignment is 
such that the types of function and predicate symbols are unique modulo parameter 
renaming^. 

Definition 2.8 (function and predicate type) A function type (resp. predicate type) takes 
the form (n . . . r) (resp. r i . . . r„) where r i . . . r„ is a (possibly empty) string of types 
and r is a type which is not a parameter. • 

In ftmction and predicate types, the empty string will be denoted by e. Note that 
all constants have a ftmction type of the form (e, r) and all propositions have predicate 
type e. 

Definition 2.9 (transparency) A ftmction type a = ( r i . . . T„, r) is transparent iff every 
parameter occuring in u also occurs in r . That is, pars(a) C pars{T). • 

Definition 2.10 (type assignment) Let E -̂, ^pred be respectively the sets of type 
constructor symbols, ftmction symbols and predicate symbols of a first order, many-
sorted, polymorphic language. A type assignment is a mapping from function symbols 
to transparent function types and from predicate symbols to predicate types, such 
that each function symbol of arity n maps to a type of the form ( r i . . . T„, T) and each 
predicate symbol of arity n maps to a type of the form r i . . . • 

It will usually be more convenient to work with sets of typed fimction and pred-
icate symbols rather than the untyped ones defined by an alphabet. These shall be 
denoted by Sy and Ep respectively and are defined as follows 

# I / E E/MM A a is the type assigned to / } 

^For overloaded symbols, for example +, it is assumed that the symbol is uniquely renamed for each 
of its types. 
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• Ep = {pcr I p € Epred A cr is the type assigned to p} 

In addition, use will often be made of the set of all type-ground instances of and 
the set of all type-ground instances of Ep defined by 

• EJ = { f s \ fa- € 'Ef A 5 is a type-ground instance of a} 

• Ep = {ps I Per G Ep A 5 is a type-ground instance of a } 

Finally, whenever /(Ti..,r„,T> G Ey and n > 0, the type r is called the range type of 

2.1,2 Terms, Atoms and Formulae 

Typed terms, atoms and formulae can be defined in much the same way as in an 
untyped language, though there is of course the additional complication of ensuring 
that each construct is well-typed. In particular, it is necessary to ensure that every 
subterm in a term, atom or formula has a type and that multiple occurences of a 
variable all have the same type. In each case, the well-typing is guaranteed by finding 
a most general unifier of a set of type equations. If such a unifier does not exist then the 
construct cannot be well-typed and the construction fails. The following definitions 
formalise these notions. 

Definition 2.11 (typed variable) I f v e V is a variable and r is a type, then v^- denotes 
a typed variable. If o is a syntactic object, then vars{o) is the set of typed variables which 
occur in o. • 

Definition 2.12 (term, subterm) Terms and subterms are defined inductively as follows 

1. Itv eV and u e U then Vu is a term of type u. The only subterm of Vu is itself. 

2. If C(g e Ey then is a term of type r . The only subterm of is itself. 

3. Let /(o-i (t„,(t) G Ey and for all i e [1, n] let U be a term of type such that 

# (pars(cri) U . . . U pars(cr;i) U par5(a)) n pars(Ti) = 0, and 

# pars(Ti) n par5(7j) = 0 for all j e [1, ?%], % 

If, and only if, there exists a most general unifier ijj of the set of type equations 

I % E [1, Ti]} U = pj I i/p. E A E A % J E [1, n ] } 

then t = ... cr„.(T)(̂ b • • • itn)) is a term of type ^(cr). Furthermore, i is a 
subterm of t and for all i E [1, n], if s is a subterm of U then ip{s) is a (strict) 
subterm of t. • 

Recall that every function symbol / E Ey;„J has a function type, ( n . . . T„, T) say, 
such that /(ri..,T„,T) E Ey. Each occurence of / in a term t, however, has a relative type 
in t which is an instance of its function type ( r i . . . r„, r) . It is this relative type which 
appears in the term as a subscript to the function symbol. It should be noted that a 
relative type is unique up to parameter renaming. 

Although variables are not assigned types in the same way as function symbols, 
each occurence of a variable in a term t also has a unique relative type in t. Again it 
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is this relative type which appears in the term as a subscript to the variable. Where 
a variable is defined to be a term, its relative type is defined to be a parameter. This 
ensures that the relative type is most general in the sense that the variable could stand 
for any term regardless of its type. The relative type of a variable when it appears as 
a subterm of a term t depends upon the context, i.e. on the function types in t. Here 
again the relative type is most general but now in the sense that the variable could 
stand for any term of an appropriate type determined by the context. 

Observe that multiple occurences of a variable in a term t all have the same 
relative type in t. This is guaranteed by the construction of the term. Whenever a 
variable v occurs in terms U and tj, and v has relative types pi and pj in U and tj 
respectively, pi and pj must be imifiable if a new term is to be constructed which has 
(type instances of) ti and tj as strict subterms. 

A consequence of explicitly tagging all occurences of function symbols and vari-
ables in a term with their relative types is that a subterm s o f a term may not necessar-
ily be a term itself. Instead, for every subterm s of a term there exists a term s' and a 
type substitution •0 such that s = •0(s'). 

Terms may alternatively be written such that each fimction symbol and variable 
appears without its relative type. This will usually be done when the types are clear 
from the context or irrelevant. Note that, when all terms are written in this form, every 
subterm of a term is also a term. Furthermore, for a term t in this form, vars{t) denotes 
the set of variables in t rather than the set of typed variables. 

Definition 2.13 (atom) An atom is defined as follows 

1. A proposition Pe G Sp is an atom. 

2. Let po-j ... a-n G Sp and for all i e [1, n] let U be a term of type n such that 

# (par5(cri) U . . . U pa/'g(crn)) npgrs(T:) = 0, and 

* pa7'5(T )̂ n pg?'5(7j) = 0 for all j € [1, a], % ^ 

If, and only if, there exists a most general unifier of the set of type equations 

{(Ti = Ti I % e [1,7%)} U = Pj 1 e Darg(ti) A e z;a?'5(tj) A j E [1, m]} 

then A = i>{pai ... cr„(ii, • • •, tn)) is an atom. For all i G [1, n], if s is a subterm of 
ti then '^(g) is a subterm of A. • 

The predicate symbol of an atom A is denoted by rel{A). Formulae are formed by 
combining atoms using the connectives and quantifiers of the underlying language. If 
F is a formula, then every subterm of an atom in F is also a subterm of F. 

Definition 2.14 (formula and free variables) The set oifree variables of a {polymorphic, 
many-sorted) formula F is denoted by freevars{F) where a formula and its free variables 
are defined inductively as follows 

1. An atom ^ is a formula andfreevars(A) = vars(A). 

2. If F is a formula then so is - iF and freevars{-^F) = freevars(F). 

3. Let F be a formula with v e freevars{F). Then VwF and 3vF are formulae whose 
free variables are given by/ree?7flrs(F) \ {f}. 
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4. Let F and G be formulae whose common variables are free in both F and G. 
Suppose further that 

# par5(F) npars(G) = 0, and 

» there exists a most general tmifier ^ of the set of type equations 

= PG I G /regDars(F) A G /rggz;ars(G)} 

Then ip{F A G), ip{F V G), ip{F f - G) and ip{F ^ G) are all formulae whose free 
variables are given by ) | f e U o 

Definition 2.15 (type of a subterm) Given a syntactic object o, and a subterm t of o, 
the type of t in o is defined by 

s f T i f t = Vr and v e V 

Observe that multiple occurences of a variable in a formula are all of the same 
type in the formula. Also the types of subterms of a formula are unique up to param-
eter renaming. A term, atom or formula is said to be ground if it does not contain any 
variables. 

Definition 2.16 (literal) If A is an atom, then the formulae A and -^A are called literals. 

Definition 2.17 (conjunction, disjunction) Let A i , . . . , A n be atoms (resp. literals). 
Then Ai / \ . . . /\An (which may also be written as A i , . . . , An) is a conjunction of atoms 
(resp. literals) and V . . . V is a disjunction of atoms (resp. literals). • 

Definition 2.18 (closed formula) A formula is closed iff it has no free variables. • 

Definition 2.19 (universal and existential closure) Let F be a formula whose free 
variables are f i , . . . , f„ . Then 

• V(F) = V f i , . . . , VnF denotes the universal closure of F. 

• 3(F) = 3 f i , . . . , VnF denotes the existential closure of F. • 

Definition 2.20 (language) The polymorphic many-sorted language given by an alphabet 
consists of the set of polymorphic many-sorted formulae that can be constructed from 
the symbols of the alphabet. • 

Since certain symbols of an alphabet appear in all alphabets, and the types of 
interest are closely associated with the ftmction and predicate symbols, a polymorphic, 
many-sorted, first-order language can be defined by a triple C = (Ep, Ey, V). 

Definition 2.21 (theory) A polymorphic many-sorted theory consists of a polymorphic 
many-sorted language and a set of axioms which is a designated subset of closed 
formulae in the language of the theory. • 
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2.2 Semantics of polymorphic many-sorted languages 

The sentences of a language may be thought of as statements about a "world" of 
objects and the relations among those objects. The objects in the world are repre-
sented in the language by terms, formed from the constant and function symbols of 
the language. The precise association between terms and objects is given by a pre-
interpretation. A pre-interpretation for a language defines a world and uniquely iden-
tifies each term in the language with an object in the world. This "world" is formally 
called a domain, though in a typed language it is split into a family of domains, one 
domain for each ground type in the language. 

Definition 2.22 (pre-interpretation) A pre-interpretation of a first order polymorphic 
many-sorted language is a pair J = {Dj, Aj) where 

1. Dj = {Djg I 6 is a ground type}, is a family of domains where each Dis a non-
empty set called the domain of type 5 in the pre-interpretation J ; 

2. A J is an assignment defined such that 

(a) Each G T.J is assigned an element in Dj^s', 

(b) Each e ly is assigned a mapping from x . . . x to 

• 

The ground, monomorphic, atomic formulae (ground, monomorphic atoms) of a 
language, express simple statements about the objects of the world (the elements of 
the domains of the pre-interpretation). An interpretation directly determines the truth 
or falsity of each of these statements. 

Definition 2.23 (interpretation) An interpretation I j for a polymorphic many-sorted 
language consists of a pre-interpretation J = {Dj, Aj) and an assignment of truth 
functions to elements of E* such that 

1. Each pe e S* is assigned a value true oi false; 

2. Eachpa^„.{^ € S* is assigned a mapping from x . . . x to { }. 

• 

To determine truth values for non-ground (monomorphic) atoms, the notions of 
variable assignment and term assignment are used. 

Definition 2.24 (variable assignment) Let J = {Dj, Aj) be a pre-interpretation. A 
variable assignment Vj maps each variable of type 5 to an element of where 6 is a 
ground type. • 

Definition 2.25 (term assignment) Given a pre-interpretation J = {D, A) and a vari-
able assignment Vj, the term assignment ivrt J and Vj, denoted is defined as 
follows: 

1. (f)jy{vs) = Vj{vs) for all f G y and for every ground type 5. 
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2. = Aj(y(g_a)) 

3. . . . ,tn)) = . . . ,(;6j,y(^n)) 

for all E 2^ and e • 

Definition 2.26 (truth value of a monomorphic atom) Let I j be an interpretation, Vj 
a variable assignment and a = psi...sn (^i, • • •, ^n) a monomorphic atom. The truth value 
of o (wrt and V}) is frwe iff . . . , maps to true in where 
(pjy is the term assignment wrt J and V, and false otherwise. • 

Clearly, the truth value of a ground monomorphic atom depends solely on the 
intepretation I j . The convention is followed here of overloading I j to additionally 
represent the set of groimd atoms whose truth values are true wrt I j . That is a E I j iff 
a maps to true in I j . The truth values of monomorphic formulae can easily be defined 
in an analogous manner to the untyped case. 

Definition 2.27 (truth value of a monomorphic formula) Let I j be an interpretation, 
Vj a variable assignment and w a monomorphic formula. The truth value of w (wrt I j 
and VJ) is determined as follows. 

1. If w is an atom, then its truth value is determined by Definition 2.26. 

2. If w has the form -iF, F A G, F V G, F ^ G or F G, then the truth value of w 
is given by the following table 

T ( f ) T(G) A G) T(F V G) ^ G) ^ G) 
frwg frwe ^Zge true frwg 

frug frwg yaZse 
yhZse frwg yaZse 

frwe frwe 

where T{F) is the truth value of F. 

3. U w has the form BvgF, then the truth value of w is true iff there exists d E Djg 
such that F has truth value true wrt I j and Vj{vs / d) where Vj{vs / d ) is Vj except 
that vs is assigned d; otherwise, its truth value is false. 

4. If w has the form then the truth value of w is true iff F has truth value true 
wrt I J and Vj(vs/d), for all d € Dj^s', otherwise, its truth value is false. 

• 

Note that the truth value of a closed formula depends only on the interpretation 
and not on the variable assignment. Thus a closed formula F is said to be true (resp. 
false) wrt an interpretation I iff the truth value of F is true (resp. false) wrt 1. Truth 
values of polymorphic formulae can now be defined in terms of truth values for 
monomorphic formulae. 

Definition 2.28 (truth value of a polymorphic formula) Let J be an interpretation of 
a polymorphic many-sorted language L and let whe a closed polymorphic formula of 
L. Then w is true wrt I iff for every grounding type substitution ip for w, ip{w) is true 
wrt L On the other hand, w is false wrt I iff there exists a grounding type substitution 
-0 for 10 such that •!/'(u') is/fltee wrt J. • 
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From the above, it can be seen that the truth or falsity of any formula in a language 
is determined by an interpretation for the language. In general, only the formulae 
of a given theory are of interest at any one time. Furthermore, the interpretations 
of interest will be those for which all the formulae of the theory are true. Such 
interpretations are called models. 

Definition 2.29 (model) Let I be an interpretation of a polymorphic many-sorted lan-
guage L and let lu be a closed formula of L. Then / is a model for w, denoted I \= w, iff 
w is true wrt I. If 5 is a set of closed polymorphic formulae in L then I |= 5 iff / |= it; 
for all w G S. • 

Definition 2.30 (logical consequence) Given a closed polymorphic formula w and a 
set S of closed polymorphic formulae, w is a logical consequence of S, denoted 5 |= in, 
iff for every interpretation I, the premise I \= S implies the conclusion J |= w. • 

2.3 Syntax of polymorphic many-sorted programs 

Definition 2.31 (statement) A statement s is of the form 

where H is an atom, called the head, and B is either absent or a polymorphic many-
sorted formula, called the body. The free variables of s are assumed to be universally 
quantified at the front of s. The set of atoms appearing in 5 is denoted by body{s). • 

Definition 2.32 (program) A polymorphic many-sorted logic program is a pair (A, S) 
where A is a triple {At , Ay, Ap) of type declarations and 5" is a finite set of statements. 
The type declarations A^, A f and Ap define respectively Sy and Ep in the following 
way 

1. Each constant declaration c : r e A/ implies E Zy. 

2. Each function declaration f : TI x ... x TN T e Af implies /(Ti...T„,r) 6 Ey. 

3. Each proposition declaration p e Ap implies pe G Sp. 

4. Each predicate declaration p : r i x . . . x e Ap implies pri...r„ G Ep 

Furthermore, the following four conditions must be satisfied 

1. Each statement is a polymorphic many-sorted formula in the language defined 
by the type declarations. 

2. Each fimction declaration is transparent (see below). 

3. Each statement satisfies the head condition (see below). 

4. Ay and Ap are universal. That is each symbol has exactly one declaration in Ay 
(resp. Ap) so that Ey (resp. Ep) is well-defined. 

Definition 2.33 (transparency) A declaration for a function / : r i x . . . x ^ r is 
transparent iff every parameter appearing in the declaration also appears in the range 
type T. • 
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Definition 2.34 (head condition) Let Pai...a„ be the typed predicate symbol occuring 
in the head of a statement s and let P ; TI x . . . x T„ be the type declaration for p. Then 
s satisfies the head condition iff ai . . . cr„ is a variant of ti . . . r„. • 

Definition 2.35 (proposition and predicate definition) The definition of a proposition 
or predicate p in a program P is the set of all statements in P which have p in their 
head. • 

Definition 2.36 (goal) A goal is of the form 

^ F 

where F, called the body, is a polymorphic many-sorted formula. The free variables of 
F are assumed to be rmiversally quantified at the front of the goal. • 

Definition 2.37 (definite program and goal) A definite clause (resp. definite goal) is a 
statement (resp. goal) whose body is a (possibly empty) conjtmction of atoms. A 
definite program is a program whose statements are all definite clauses. • 

In the sequel, attention will be restricted to definite programs and goals. More-
over, it will often be convenient to ignore the type declarations and consider a program 
P = (A, S) as being equivalent to the set of clauses S. 

2.4 Semantics of polymorphic many-sorted programs 

2.4.1 Declarative semantics 

Definition 2.38 (Herbrand pre-interpretation) Let P be a definite program and let 
£ p = {T,p,T,f,V) be the first order polymorphic many-sorted language underlying 
P. The Herbrand pre-interpretation of is the pair Herb = (Dngrb, ^Herb) where 

1. Dnerb = {DHerb,5 | ^ is a grotmd type}, and for every ground type S, DHerb,s is 
the least set such that if f(^Si ... sn,s) G Sy and U e D^grbM for all i e [1, n], then 

/(di ... 6^,a)(4, . . . E 

2. Anerb is defined such that if ... s„.S) G and U e D^erbA for all i e [1, n], then 

^Herb{f{Si ... ) ^n) = f{5i ... i ^n)- ^ 

Observe that the domain equal to the union of the domains in Dnerb contains 
precisely all of the ground terms that can be constructed ui the language Hp. This 
domain is usually referred to as the Herbrand universe and is denoted hy Up. Another 
important domain, consisting of all the ground atoms in the language is known as 
the Herbrand base and is denoted hy Bp. 

Definition 2.39 (Herbrand base) Let Cp = (Ep, Ey, V) be a first order polymorphic 
many-sorted language defined by a program P. The Herbrand base of Cp is the least 
set Bp such that 

1. Ifpe E Zp thenpe E Bp. 

2. Ifpgi...6^ E 2^ thenpai...g^(di,...,cL) E Bp where E for all % E [l,n]. 
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An Herbrand interpretation for a language Hp is any interpretation based on the 
Herbrand pre-interpretation for By abuse of terminology an Herbrand interpre-
tation for a program P is any Herbrand interpretation for the language imderlying P. 
Note then that any Herbrand interpretation can be defined as a subset of the Herbrand 
base. 

Definition 2.40 (Herbrand model) Let Cp he a first order polymorphic many-sorted 
language defined by a program P = {A,S). An Herbrand model I C Bp for 5" is an 
Herbrand interpretation for £ p which is a model for S. An Herbrand model I for S is 
minimal iff there exists no other Herbrand model I' for S such that / ' C / . • 

For every definite program P = (A, S), there exists a unique minimal Herhrand 
model for S. This minimal model is equivalent to the set {a | a e Bp A 5 |= a} 
of ground atoms which are logical consequences of S. This set is also known as the 
success set of P and it defines the declarative semantics of P. 

2.4.2 Procedural semantics 

Definition 2.41 An expression is either a term, an atom, a conjunction of atoms, or a 
definite clause. A simple expression is either a term or an atom. • 

Definition 2.42 (term substitution) A substitution & is a finite set {vi/ti,... Vn/tn} of 
bindings where u i , . . . , are distinct variables and t i , . . . ,tn are terms such that Vi / ti 
for all i e [1,n]. The set {vi,... ,Vn} is called the domain of the substitution and is 
denoted by dam(6). • 

Definition 2.43 (term instance) Let 9 = {vi/ti,..., Vn/tn} be a term substitution and 
0 a syntactic object such that pars{o) n pars{vi/ti) n . . . n pars{vn/tn) = 0. If there exists 
a most general tmifier ^ of the set of type equations 

I % E 

then the instance of o by 0, denoted od, is the syntactic object obtained from o by 
simultaneously replacing each occurence of the variable Uj in o by the term ti for all 
1 e [l,n] and applying the type substitution ip. If oO is ground then 6 is called a 
gzowndzMg gubsfzfwfiOM for o. O 

An expression d is an instance of another expression e if d = eO for some substi-
tution 9. If e is also an instance of d then d and e are said to be variants of each other 
and 9 is known as a renaming substitution for e. If 5 = {Ei,..., is a finite set of 
expressions and 0 is a substitution, then S9 denotes the set , En9}. 

Definition 2.44 (composition of term substitutions) Let 0 = { u i / s i , . . . , Um/sm} and 
(f) = {vi/ti,..., Vn/tn} be substitutions. Then the composition of 9 and cp, denoted 9(j), 
is the set | 'Ui ^ A % e U | 0 {'ui, . . . ,24^} A % E O 

Definition 2.45 (mgu) Let 5 be a finite set of simple expressions. A substitution 0 is a 
unifier for S iff S9 is a singleton. A tmifier 9 for 5 is a most general unifier, or mgu, for S 
iff for each unifier 9' of S there exists a substitution such that 9' = 9'd. • 
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The set of most general unifiers of {ei, eg} where ei and eg are arbitrary simple 
expressions is denoted 62). 

Definition 2.46 (substitution restriction) Let 0 be a substitution and V a set of vari-
ables. The restriction of 0 to V, denoted 9\v, is the substitution obtained from 6 by 
deleting any binding v jt for which v ^V. • 

Definition 2.47 (computation rule) A computation rule is a ftmction from a set of goals 
to a set of atoms such that the value of the function for a goal G is an atom, called the 
selected atom, in G. • 

Definition 2.48 (SLD-resolution) Let G = *— Ai,..., Ag,..., Am be a goal with m > 1 
and 1 < s < m, and let c : H ^ Bi,Bnhe a clause. Then G' is derived from G and 
c using 6 iff the following conditions hold: 

• As is the selected atom in G; 

e g e 

• C is the goal ^ 

The goal G' is called a resolvent of G and c. • 

Definition 2.49 (SLD-derivation) Let P be a program and G a goal. An SLD-derivation 
of P U {G] consists of a (possibly infinite) sequence Go, Gi, Gg, . . . of goals, a sequence 
ci, C2,... of variants of program clauses of P and a sequence 6*1,6*2,... of substitutions 
such that Go = G and each G^+i is derived from Gj and Cj+i using 0^+1 for all i > 0. • 

SLD-derivations may be charaterised as follows. An SLD-derivation is 

• finite iff it consists of a finite sequence of goals; otherwise it is infinite. 

• successful iff it is finite and the last goal is the empty goal. 

' iff it is finite and it ends in a non-empty goal such that the selected atom in 
this goal does not tmify with the head of any program clause. 

• complete iff it is either successful, failed or infinite. 

• incomplete iff it is finite and neither successful nor failed; in other words, not 
complete. 

Definition 2.50 (SLD-refutation) An SLD-refutation is a successful SLD-derivation. • 

Definition 2.51 (SLD-tree) Let P be a program and G a goal. An SLD-tree for P u { G } 
is a tree satisfying the following: 

1. Each node of the tree is a (possibly empty) goal. 

2. The root node is G. 

3. Let G' = <— A i , . . . ,As, • •., Am be a node in the tree. Then exactly one of the 
following hold: 
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(a) no atom is selected in G', and the node has no children; 

(b) As is the selected atom in G', and for each input clause H e- Bi,.. .,Bn 
such that a substitution 9 e mgu{H, Am) exists, the goal 

^ (-^1; • • • 5 -̂ S — 1 ? -̂ 17 • • • 7 T̂L ? ; • • • ; Afj^O 

is a child of the node. 

4. Nodes which are the empty goal have no children. 

• 

Each branch of an SLD-tree is an SLD-derivation. Hence branches may be called 
infinite or finite, successful or failed, complete or incomplete, according to the charac-
terisation of the corresponding derivation. Observe that the leaf node of an incomplete 
branch is a non-empty goal where no atom has been selected. An SLD-tree is complete 
iff all its branches are complete, and incomplete otherwise. Note then, that both com-
plete and incomplete trees may contain infinite branches. 

An incomplete SLD-tree may be further expanded by unfolding the goal at a leaf 
node. This involves selecting an atom in the goal and adding as children to the node 
the goals described in 3(b) Definition 2.51. Thus a complete SLD-tree may be obtained 
from one that is incomplete by performing a (possibly infinite) number of unfolding 
steps. 

An SLD-tree is said to be trivial if the root node is the only node of the tree, and 
non-trivial otherwise. SLD-trees can be depicted graphically. In figures, selected atoms 
are underlined and the empty goal is denoted by Failed derivations end in 

Definition 2.52 (search rule) A search rule is a strategy for searching SLD-trees to find 
success branches. • 

Search rules are often defined as clause selection rules which given a set of clauses 
forming a predicate definition define a fixed order in which the clauses should be used 
to form resolvents. For example, the clause selection rule of Prolog selects clauses in 
the order in which they appear in the program. An SLD-refutation procedure is specified 
by a computation rule together with a search rule. 

The following notions tie together the declarative and procedural semantics. 

Definition 2.53 (answer) Let P be a program and G a goal. An answer for P U {G} is 
a substitution 6 such that dom{9) C vars{G). O 

Definition 2.54 (correct answer) Let P be a program and Q a goal. An answer 9 
for P U {<— Q} is a correct answer for P U {<— Q} iff P |= V(Q0). • 

Definition 2.55 (computed answer) Let P be a program, GQ a goal, and Go,.. •, an 
SLD-refutation of P U {Go}, where the sequence of substitutions is 9%,... ,9n- Then the 
substitution {9i... 9n)\vars{Go) ^ computed answer for P U {Go}. • 

Theorem 2.56 (soundness of SLD-resolution) Let P be a program and G a goal. Ev-
ery computed answer for P U {G} is a correct answer for P U {G}. • 

Theorem 2.57 (completeness of SLD-resolution) Let P be a program and G a goal. 
For every correct answer A for P U {G} there exists a computed answer 9 for P U {G} 
and a substitution 7 such that Gcr = G9J. • 
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3 Introduction to Termination 

This chapter introduces the fundamental notions of termination that will be used 
in the remainder of the thesis. Section 3.1 introduces the halting problem for logic 
programs, outlining the different areas of research which have evolved, and places 
the current work in context. It turns out that the logic programming paradigm admits 
a number of notions of termination and some of the more important ones will be 
reviewed here. 

There are several concepts which are common to a large number of works on 
termination and which will play a prominent role in this thesis. These include level 
mappings, the notion of boundedness and interargument relationships. They are 
defined in Sections 3.2.1 and 3.2.4. Norms and rigidity, two other important notions 
are only touched on here; these are the subject of Chapter 5. 

Also to be fotmd in this chapter are the definitions of the classes of recurrent and 
acceptable programs. They are, arguably, the two most significant classes of program 
to have been defined in the literature on termination of definite logic programs. An 
understanding of them and the surrotmding concepts is crucial to the assimilation of 
Chapter 6, which builds extensively on them. 

Much of the material of this chapter, and a great deal more besides, can be found 
in the survey by De Schreye & Decorte 1994. 

3.1 The Halting Problem in Logic Programming 

For an arbitrary logic program P and arbitrary goal G, the halting problem is to de-
termine whether or not G terminates wrt P. Exactly what it means for G to terminate 
wrt P is examined in Section 3.1.1. If G is simply regarded as a particular input to the 
program P, however, then the problem essentially is to determine whether or not the 
execution of P with this input requires a finite amount of time. The problem inherits 
the undecidability of the halting problem for Turing machines, meaning that no algo-
rithm can be encoded which will determine the correct answer in a finite amount of 
time. This is a direct consequence of the fact that every computable function can be 
encoded as an appropriate logic program (see, e.g., Lloyd 1987). 

The undecidable nature of termination has led to three main directions of research 
as identified in De Schreye & Decorte 1994. Firstly, on the subject of decidability itself a 
number of works have sought to establish the botmdary between minimal subclasses 
of programs which are computationally complete, and maximal classes for which 
the halting problem is decidable. The current work makes no contribution in this 
direction. The interested reader is referred to the references contained in De Schreye 
& Decorte 1994. 

A second line of work has been to investigate necessary and sufficient conditions 
for termination. Such conditions are, of course, undecidable, but, nonetheless, can be 
used as a theoretical basis for constructing practical termination analyses. Some works 
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in this area have led to a classification of programs according to their termination 
behaviour. For example, acceptable programs are precisely those which, for ground 
input, terminate under the left-to-right computation rule of Prolog (Apt & Pedreschi 
1990). Programs which, for ground input, terminate under any selection rule are clas-
sified as recurrent (Bezem 1993). The original definitions of these classes, introduced in 
Sections 3.2.2 and 3.2.3, do not, in fact, form an ideal basis for automatic termination 
analyses. Some difficulties arise in formulating termination proofs in terms of the defi-
nitions. Chapter 6 examines the technicalities involved and concludes with alternative 
characterisations of the two classes which help to alleviate the problems. 

The third category encompasses the development and use of sufficient conditions 
for proving termination. These techniques may be used, for example, to provide 
support for program development or program transformation tools such as partial 
evaluators. Chapter 7 introduces a class of programs which are terminating under a 
dynamic selection rule. A sufficient condition for termination, which can be checked 
at compile-time, is that a given program lies within the class. Chapter 8 develops 
sufficient conditions for ensuring unfolding during partial deduction. The work of 
Chapter 5, which is designed to facilitate the construction of termination proofs, may 
also be considered to fall in this category. 

3.1.1 Some Definit ions of Termination 

Whether or not a goal G terminates wrt a program P is obviously dependent on the 
operational behaviour which in a logic program is defined by the control component. 
Thus termination is in fact sensitive to the following four components. 

1. The program 

2. The goal 

3. The computation rule 

4. The search rule 

To complicate the issue a little further, different notions of termination have been 
defined in the literature. Firstly due to the inherent non-determinism present in the 
logic programming paradigm the following distinction, put forward by Vasak & Potter 
1986, can be made. 

Definition 3.1 (existential termination Vasak & Potter 1986) Let P be a program, G 
a goal and s a search rule. Then G existentially terminates wrt P (imder s) iff either 
all derivations for P U {G} are finitely failed or the search rule s finds a successful 
derivation for P U {G} in a finite number of steps. • 

Definition 3.2 (universal termination Vasak & Potter 1986) Let P he a program and 
G a goal. Then G universally terminates wrt P iff all derivations for P U {G} are finite. • 

Intuitively existential termination and universal termination correspond respec-
tively to the notions of finding one and all solutions for a given goal and program. 
Observe that existential termination is sensitive to the search rule whereas universal 
termination is not. Thus, where the computation rule is fixed, universal termination 
implies existential termination. 
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Example 3.1 Let P be the program 

P(A). 
P(x) ^ P(x). 

and G the goal P(x). Then G existentially terminates wrt P under the Prolog search 
rule, but not under a search rule which selects clauses in the reverse order. G does not 
universally terminate wrt P in any case. • 

Vasak and Potter also characterised goals as strongly or weakly terminating. The 
definitions are provided here for completeness, though, the terms are seldom encoun-
tered in the literature. 

Definition 3.3 (strong termination Vasak & Potter 1986) Let P be a program and G a 
goal. Then G is strongly terminating wrt P iff G terminates wrt P for all computation 
rules. • 

Definition 3.4 (weak termination Vasak & Potter 1986) Let P be a program and G a 
goal. Then G is weakly terminating wrt P iff G terminates wrt P for some computation 
rule. • 

In the above definitions, "G terminates" may be taken to mean either "G existen-
tially terminates" or "G tmiversally terminates". In the remainder of the thesis, as in 
the majority of works, attention will be restricted to universal termination. Thus the 
expression "G terminates" will mean "G universally terminates". Moreover, with ref-
erence to Definition 3.2, three types of finite derivation will be permitted: successful, 
finitely failed and incomplete. 

The next two definitions introduce the two most frequently used notions of ter-
mination. 

Definition 3.5 (termination Bezem 1989) Let P be a program and G a goal. Then G 
is terminating wrt P iff every SLD-derivation for P U {G} is finite. P is terminating iff 
every variable-free goal is terminating wrt P . • 

Definition 3.6 (left termination Apt & Pedreschi 1990) Let P be a program and G a 
goal. Then G is left terminating wrt P iff every LD-derivation for P U {G} is finite. P is 
left terminating iff every variable-free goal is left terminating wrt P . • 

Observe that "termination" as defined by Bezem is equivalent to "strong, univer-
sal termination" as defined by Vasak and Potter. On the other hand, "left termination" 
is an example of "weak, imiversal termination". Since strong termination implies 
weak termination, any goal which is terminating is also left terminating. 

Example 3.2 Consider the Permute program below 

perm^ Perm([], [])• 
perm^ Perm([h|t], [a|p]) f -

Delete(a, [h|t], I) A 
Perm(l, p). 

deh Delete(x, [x|y], y). 
dek Delete(x, [yjz], [y|w]) ^ 

Delete(x, z, w). 
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Perm([1], [1]) Perm([1], [1]) 

Delete(1, [1 

Perm([], []) 

, I) A Perm(l, Q) 

Delete(1, [], w) A Perm([1 |w], []) 

Delete(1, [1 , I) A Perm(l, Q) 

Delete(1,[1], []) 

• • 

Figure 3.1: SLD-derivations for Permute u { ^ Perm([1 ], [1 ])}. Note that the left SLD-tree 
actually represents two derivations; the goal ^ Delete(1, [], w) A Perm([1 |w], []) fails 
immediately regardless of which atom is selected. 

^Perm([1,2], [1,2]) 

Delete(1, [1,2 , I) A Perm(l, [2]) 

penMg 

Delete(1, [1,2], I) A Delete(2,1,1') A Perm(l', []) 

Delete(1, [1,2], [yjz]) A Delete(2, z, w) A Perm([y|w]. []) 

Delete(1, [1,2], [y,y'|z']) A De ete(2, z', w') A Perm([y,y'{w'], []) 

Figure 3.2: Infinite SLD-derivation for Permute U{<— Perm([1,2], [1,2])}. Here, variants 
of the atom Delete(2, z, w) recur infinitely in subsequent goals if the second atom is 
always selected and the clause deh is always used. 

The goal e- Perm([1 ], [1 ]) is terminating wit Permute (see Figure 3.1) and as a conse-
quence is left terminating also. The goal ^ Perm([1, 2], [1, 2]) is left terminating but not 
terminating, since there exists a computation rule which selects non-ground Delete/3 
goals resulting in an infinite derivation (see Figure 3.2). It follows that the program is 
not terminating though it can be proven to be left terminating (see Section 3.2.3). • 

3.2 The Nuts and Bolts of Termination Proofs 

The fundamental idea underlying all termination proofs is to define an order on the 
set of all goals that can occur in a derivation. 
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Definition 3.7 (order) A partial order on a set 5 is a binary relation C that is 

1. reflexive (Vx E S : x ^x), 

1. antisymmetric (Vx, y ^ S {x ^ y /\y x) x = y) and 

3. fraMSZhoe (Vr, ?/, z E 5": (a; C ^ A C z) a: C z). 

A linear or total order on a set 5 is a partial order such that any two elements of S are 
comparable (Vx, • 

An ordered set S{Q) is a set S together with an order C on 5. A partial order C on a 
set S induces a strict order C on 5 (V%, y e S : {x n y ^ {x n y Ax y)). A strict order 
C on a set S is well foimded if there exists no infinite descending chain ei • 62 • .. • of 
elements of S. The set 6'(c) is well-founded if c is well founded on S. 

In this thesis, attention will be mostly restricted to the use of well-fotmded orders. 
Under this restriction, the basis of a termination proof then reduces to the following. 
Given a program P and goal Go, assume that > is a well-foimded order on the set of 
goals that can occur in any derivation of f U {Go}, and let Go, Gi, G2, . . . be such a 
derivation. Quite simply if G, > G^+i for all i > 0, one deduces that the sequence 
Go, Gi, Gg, . . . is finite by the well-fotmdedness of >. 

Two issues become apparent at this point. The most obvious is the problem of 
defining a suitable order on goals which can be used to prove termination. To simplify 
the problem, it is sometimes convenient to define the order on abstractions of goals 
rather than on the goals themselves. Thus the order > is defined such that G > G' 
holds iff A{G) > A{G') holds where A is an abstraction ftmction. For example, A 
might be defined to map each goal G to a multiset of natural numbers, where each 
atom in G maps to a single number in the multiset. This particular abstraction will be 
formalised in the next section. The idea of mapping atoms to natural numbers occurs 
frequently and forms the basis of many goal abstractions used in the literature. 

The other issue which arises is how to verify for each derivation Go, Gi, G2,..., 
that Gj > Gi+i for all i > 0. The derivations cannot of course be explicitly constructed 
in a finite amotmt of time and so it is necessary to use a finite approximation to the 
set of all derivations. This can be achieved by considering individual SLD-resolution 
steps together with the abstraction ftmction mentioned above. More precisely, the 
aim is to prove that if G is a goal, A is the selected atom in G and A unifies with 
the head of a clause c, then the resolvent G' of G is such that G > G'. Since G and 
A may be arbitrary the decrease from G to G' is usually obtained by requiring the 
clause c to satisfy certain conditions. By verifying these conditions for all clauses in 
the program, it can be asserted that all derivations are finite. The abstraction ftmction 
simplifies the proof by allowing irrelevant details to be ignored such as the individual 
syntactic structure of goals and the details of unifications. In reality, it is unlikely that 
the decrease from G to G' will hold for all goals, though it may hold for a specific 
subset of them. In this case, it is also necessary to show that any resolvent G' of G is 
also a member of the subset. Sections 3.2.2 and 3.2.3 present two conditions on clauses 
which can be used to ensure finiteness of derivations in the above manner. 

Four well-founded orders will occur frequently throughout: the usual order on 
the natural numbers, the lexicographical ordering, the multiset ordering, and the 
ordering between the predicates of a program. These last three orders are defined 
below. 
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The lexicographical ordering allows tuples to be compared. 

Definition 3.8 (lexicographical ordering) Let Ci and IZ2 be strict orders on the sets 
5'i and % respectively. The lexicographical ordering <c on 5'i(Ci) x ^ ( C a ) is defined by 

iff Si Ci s'l or Si = s'l and sg Cg s'g. • 

If 5'i(Ci) and 5'2(lZ2) are well-fotmded sets then the set (S'i(Ci) x 5'2([l2))(<) is 
well-founded also (Van Leeuwen 1990). Clearly then, well-fotmded lexicographical 
orderings can be defined over tuples of any fixed length. 

Another mechanism for comparing collections of elements is the multiset order-
ing. A multiset is a collection of elements where the number of occurrences of each 
element is significant. Formally a multiset is a fimction from a set S to the natural 
numbers which returns the multiplicity of each element in S. It will be convenient 
to consider multisets as being sets with duplicate elements. Thus if si = {3} and 
S2 = {3} are multisets then the multiset si U S2 = {3, 3} ^ {3}. 

Informally the multiset ordering is defined as follows. Given two multisets si 
and S2, S2 is smaller than si in the multiset ordering if S2 can be obtained from si 
by replacing an element e of si with zero or more elements each of which is strictly 
smaller than e (wrt the ordering over the elements of the multisets). 

Definition 3.9 (multiset ordering) Let C be a strict order on the set S. The multiset 
ordering n,nui on multisets of elements of 5'(c) is defined by 

^2 ^mul 

iff there exists e E si and e i , . . . , e„ G S2 such that sg = si /{e} U {e i , . . . , e„} and C e 
for all i G [1, n]. • 

This ordering is particularly useful for defining an ordering on goals in a deriva-
tion. For example, a goal G and its resolvent G' could be abstracted by multisets si and 
82 of natural numbers, where each natural ntimber represents the abstraction of one 
atom in G or G'. The resolvent G', by definition, is obtained from G by replacement 
of one atom in G with zero or more atoms from the body of a clause (combined with 
a substitution application). Hence the abstraction gg would also be obtainable from 
Si by replacement of one element e of si with zero or more natural numbers (i.e. the 
abstractions of the body atoms of the resolving clause). In the case that each of these 
numbers is smaller than e then S2 is smaller than si in the multiset ordering and G' 
may be seen to be smaller than G in the goal ordering. 

Finally, an ordering exists among the predicates of a program based on its recur-
sive structure. 

Definition 3.10 (predicate dependency) Let Cp — (Ep, Sy, V) be a language defined 
by a program P and let p, g e Then p directly depends on q iff 

p( ( i , . . . , (7%,) B i , . . . , Bn E f and B, = g(g i , . . . , for some % e [1, M]. 

The depends on relation is defined as the reflexive, transitive closure of the directly 
depends on relation. If p depends on q and q depends on p then p and q are mutually 
dependent and this is denoted hj P — q- O 
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The well-founded ordering among the predicates of a program is induced by the 
depends on relation; q whenever p depends on q but q does not depend on p, i.e. p 
calls g as a subprogram. By abuse of terminology, two atoms are mutually dependent 
(with each other) if they have mutually dependent predicate symbols. Furthermore, a 
body atom in a clause is said to be recursive if it is mutually dependent with the head 
of the clause. 

3.2.1 Level Mappings, Norms and Boundedness 

The idea of mapping atoms to natural numbers to construct termination proofs was 
originally proposed in Cavedon 1989 and Bezem 1989. 

Definition 3.11 (level mapping Cavedon 1989) Let P be a program. A level mapping 
for P is a function |.| : Bp t-» N from the Herbrand base to the natural numbers. For 
an atom A e Bp, |_A| denotes the level of A. • 

Example 3.3 Let P be the program 

P(A, X) ^ P(B, X) . 

P(B, A). 
P(B, B). 

The function |.| : {P(A, A), P(A, B), P(B, A), P(B, B)} N defined by |P(A, A)| = 34, 
|P(A, B)| = 12, |P(B, A)| = 0 and |P(B, B)| = 27 is a level mapping for P. • 

A level mapping is only defined for ground atoms. The lifting of the mapping to 
non-grotmd atoms was proposed in Bezem 1989. 

Definition 3.12 (bounded atom Bezem 1989) An atom A is bounded wrt a level map-
ping |.j if |.| is bounded on the set [A] of variable free instances of A. If A is bounded 
then I [J4] | denotes the maximum that |. | takes on [A]. • 

The importance of the notion of botmdedness cannot be over stressed. Since goals 
which are ground cannot be used to compute values, they are the exception rather 
than the norm in logic programming. Thus practical termination proofs must be able 
to deal with non-ground goals and boundedness provides the basis for this. It has 
shaped much of the work on termination and plays a prominent role in this thesis. 

Example 3.4 Let P be the program and |.| the level mapping of Example 3.3. The 
atom P(A, x) is bounded since |.| is bounded on the set [P(A, x)] = {P(A, A), P(A, B)}. 
Moreover, |[P(A, x)]| = raflx({|P(A, A)|, |P(A, B)|}) = max{{3A, 12}) = 34. • 

Level mappings are usually defined in terms of norms. Basically, a norm is a 
mapping from terms to natural numbers which provides some measure of the size 
of a term. Norms will be examined in some detail in Chapter 5. For now, it will be 
sufficient to consider a single norm which can be used to construct some interesting 
level mappings. 

Example 3.5 The list-length norm \.\iist-iength '-Up from the Herbrand universe to 
the natural numbers can be defined by 

I 1 whenever t = [fijZs] 
j 0 odMXTvae 

Then, for example, | [x, y, z] Ifigf./gMgfh = 3. O 
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Example 3.6 Let P be the program 

OneList([]). 
OneList([1 |y]) ^ 

OneList(y). 

Let I.I be the level mapping defined by |OneList(x)| = \x\iist-iength- Then the atom 
OneList([1, 1, z]) is bounded and |[0neList([1, 1,z])]| = 3. The atom OneList([1 |x]) is 
unbounded and |[0neList([1 |x])]| is not defined since |.| is not bounded on the set 
[OneUst([1 |x])] = {OneList([1]), . . . , OneList([1, 1 , OneList( [1,1,1]) , . . . } . • 

The next two lemmas, which promote reasoning directly with bounded atoms 
(rather than sets of ground instances of bounded atoms), follow easily from Defini-
tion 3.12. 

Lemma 3.13 Let |. | be a level mapping and A a bounded atom. Then for every substi-
tution 0, the atom A0 is also bounded and moreover |[v4]| > |[Adj\. • 

Proof 1 RecaHfW [A] = | TTign [A] 3 [A#], so 

|[yl] I [] 

Lemma 3.14 Let H be a boimded atom, B an atom and |.| a level mapping. If for 
every grounding substitution 6 for H and B, \H6\ > \B9\, then B is also bounded and 
moreover | [il] | > | [E] |. • 

Proof 2 Recall that [S] = {B6 | 6 is a grounding substitution for B}. But \H6\ > \B6\for 
so |.| K &ow/Wg(f OM [5], smcg |.| zs 6owM(̂ g(̂  

on [H], Let 9 he any grounding substitution for H and B such that \B9\ = |[5]|. Then, by 

| [^] | > |[a-0]| = > |g0| = O 

3.2.2 Recurrency 
In Bezem 1989, level mappings were used to define a class of terminating programs. 

Definition 3.15 (recurrency Bezem 1993) Let P be a definite logic program and |.| a 
level mapping for P. A clause c : H B i , B n is recurrent (wrt |.|) if for every 
grounding substitution 9 for c, \H9\ > \Bi6\ for all i G [1, n]. P is recurrent (wrt |.|) if 
every clause in P is recurrent (wrt |.|). • 

Example 3.7 Consider the Append program below 

o p p i App8nd([], X, X) . 

gppg Append([u|x], y, [u|z]) 
Append(x, y, z). 

and the level mappings |.|i, |.|2, Ms and |.|4 defined by 

|Append(ti,t2,t3)|i = 
|Append((i,/:2, tails = 3 x + 1 
|Append(ti,t2,t3)|3 = Itslw-Zenga 

IAppGnd(ii, t2) ̂ s)U — ̂ ^^{\tl\list-lengthi \^s\list-length) 
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The clause app^ is trivially recurrent wrt any level mapping. Now for every grounding 
substitution 6 for app^, 

|Append([u|x], y, [u|z])g|i = |[u|x]0|%wengm 

= 1 + lŷ Sllist-length 
^ I'^^llist-length 
= |Append(x, y, z)#|i 

Hence the program is recurrent wrt |. 11. Similarly it can be shown that the program is 
recurrent wrt |. | i for alH G [1,4]. • 

Bezem proved the following result. 

Theorem 3.16 (recurrency Bezem 1989) Every recurrent program is terminating. 

The same result was also obtained independently by Cavedon 1989 in the more 
general context of recurrent programs with negation (called locally u-hierarchical pro-
grams in Cavedon 1989 and later renamed acyclic programs in Apt & Bezem 1990). The 
proof in Bezem 1989 relies on the following definition. 

Definition 3.17 (bounded goal Bezem 1989) A goal G A i , . . . , is bounded wrt 
a level mapping |.| if every Ai is bounded wrt |.|. If G is bounded then |[G]| denotes 
the finite multiset consisting of the natural numbers | [^i] | , . . . , | [An] |. • 

The proof follows the basic outline of Section 3.2. In particular the abstraction 
ftmction A = |[.]| and as a result a well-founded order > is defined over the set 
of bounded goals by taking G > G' iff | [G] | | [G'] \, where >mui is the multiset 
ordering over the natural numbers. The proof is completed by showing for every 
SLD-resolvent G' of a bounded goal G, that G' is botmded and G > G'. In fact, this 
proof suggests a stronger corollary. 

Corollary 3.18 (recurrency Bezem 1989) Let P be a program, G a goal and |.| a level 
mapping. If P is recurrent wrt |.| and G is bounded wrt |.| then G is terminating wrt 
P. 

The strength of this corollary lies in the fact that Theorem 3.16 applies only to 
ground goals (by virtue of Definition 3.5) whereas Corollary 3.18 applies also to non-
ground goals. 

Example 3.8 Reconsider the Append program and the level mappings of Example 3.7. 
Then 

^ Append([u, v, w], y, z) is bounded wrt |.|i, M2 and |.|4, 
^ Append(x, y, [u, v, w]) is bounded w r t [.js and |.|4 

Hence these goals are terminating wrt Append. Also, for a goal G observe that 

G is botmded wrt |. 11 ^ G is bounded wrt |. 12 
(G is bounded wrt |.|i V G is bounded wrt [.[a) —» G is bounded wrt |.|4 

Thus by proving recurrency of Append wrt |.|4 a larger class of goals can be proven 
terminating than by proving recurrency wrt |.|i, |.|2 or [.(g. • 

The above example demonstrates that the choice of the level mapping for proving 
recurrency is important with regard to the set of goals which can be proven terminat-
ing. As a final remark, Bezem also proved the converse of Theorem 3.16. 

Theorem 3.19 (recurrency Bezem 1989) A program is recurrent iff it is terminating. 
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3.2.3 Acceptabil ity 

The notion of recurrency is a theoretical one and is not of much use in proving termi-
nation of Prolog programs. Most Prolog programs are intended to terminate under a 
left-to-right selection rule, and are not recurrent. 

Example 3.9 Reconsider the Permute program of Example 3.2. By Theorem 3.19, the 
program is not recurrent since it does not terminate for all ground goals (Figure 3.2). 
The program is left terminating. • 

The class of recurrent programs was extended in Apt & Pedreschi 1990 to the class 
of acceptable programs in order to provide a theoretical basis for proving termination 
of left terminating programs. 

Definition 3.20 (acceptability Apt & Pedreschi 1990) Let |.| be a level mapping and I 
an interpretation for a program P. A clause c : H ^ Bi,..., Bn is acceptable wrt |.| and 
/ i f f 

1. I is a model for c and 

2. for all i € [l,n] and for every grounding substitution 6 for c such that / j= 
{Bi,..., Bi-i}6, we have that \H6\ > \Bi6\. 

P is acceptable wrt |. | and I if every clause in P is acceptable wrt |. | and I. • 

Note the role that the model I plays in this definition. In condition 2, \H6\ is 
only required to be greater than \Bi6\ when I \= {Bi,..., Bi-i}6. This captures the 
fact that during a computation which uses a left-to-right computation rule instances 
of the body atoms to the left of Bi (where they appear in a goal) must be successfully 
resolved before the corresponding instance of Bi (as it appears in the derived goal) 
can be selected. Any grovmd instance of the conjunction of the successfully resolved 
atoms (with answer substitution applied) is modelled by I and it is only in such cases 
where (an instance of) Bi is selected as part of a successful derivation that the level 
decrease is required to ensure termination. 

Analogous results to those for recurrent programs (Theorem 3.16, Corollary 3.18 
and Theorem 3.19) have been proven for acceptable programs. The proofs again 
follow the same basic outline of Section 3.2. The abstraction function used is rather 
more complicated than that used in the proof of recurrency First, observe that, if a 
goal G Ai,... ,An terminates tmder a left-to-right computation rule then each 
atom Ai is not necessarily botmded, but should be once the atoms to its left have been 
resolved. This idea forms the basis of the following definitions. 

Definition 3.21 (maximum function Apt & Pedreschi 1994) The maximum fimction 
max : p(N) N U {oo}, where p(N) denotes the powerset of N , is defined as 

0 i f g = 0 
max S = ^ n if 5" is finite and non-empty and n is the maximum of S 

oo if S is infinite 

Then max 5 < oo iff the set S is finite. • 
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Definition 3.22 (left bounded goal Apt & Pedreschi 1994)^ Let |.| be a level mapping, 
I an interpretation and G A i , A n a goal. Then G is left bounded wit |.| and I iff 
for all z E [1, n], the set 

0 is a groimding substitution for G 
7 1= {Ai , . . . , 

is finite. If G is left bounded wrt |.| and I then |[G]/| denotes the finite multiset 

Using the abstraction function A = |[.]j| allows one to prove that for a goal G 
which is left boimded wrt |.|, any SLD-resolvent G' of G is left bounded and further-
more |[G]/| >mul |[G']/|. The result is the analogue of Corollary 3.18. 

Corollary 3.23 (acceptability Apt & Pedreschi 1990) Let P be a program, G a goal, |.j 
a level mapping and I an interpretation for P . If P is acceptable wrt |. | and I and G is 
left boimded wrt |. | and I then G is left terminating wrt P . • 

Sufficient and necessary conditions for left termination are characterised by the 
following theorem. 

Theorem 3.24 (acceptability) A program is acceptable iff it is left terminating. 

Example 3.10 Considering the Permute program from Example 3.2 again, let |.| be the 
level mapping defined by 

|Permute(ti,t2)| = + 1 

I DelGtG(ti, ^2; I = \t2\list-length 

and I be the interpretation 

{Delete((i,^2,^3) | 
{PermutG(tx) ̂ 2) | \tl\list-length \^2\list-length} 

Now / is a model for the program and, in particular, for the clause penMg, and for every 
grounding substitution 6 for -perm^, 

|Permute([h|t], [a|p])6i| = [[hiqgjKst.kMgA + 1 

> \i^\i]0\list-length 

= jDelete(a, [h|t], l)0| 

and for every grounding substitution 6 for perm^ such that 11= Delete(a, [h|t], \)9, 

|Permute([h|t], [a|p])g| = 1 

— i\^^\list-length + 1) + 1 
^ \^^\ust-length 4" 1 
= |Permute(l, p)0| 

Hence perm^ is acceptable wrt |.| and / . The clauses perm^ and deli are trivially 
acceptable wrt |. | and I since I is a model for them, while the clause deh can easily 
be shown to be acceptable wrt |.| and / in the same way as for perm^. This proves the 
program Permute is left terminating. • 

^The term left bounded is introduced here to avoid confusion with Definition 3.17. 
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3.2,4 Interargument Relationships 

The intuition behind the proof of left termination in Example 3.10 is rather simple. One 
key step is to show that the size of the first argument in the head of the clause -perm^ 
is strictly greater than the size of the first argument in the recursive body atom, that 
is \[h\t]\iist-iength > \^\iist-iength/ whenever this body atom is selected. Since the computation 
proceeds under a left-to-right computation rule, this body atom will only be selected 
following the refutation of the Delete(a, [hjt], I) call. The model I of the program is then 
used to infer that the equation \[h\t]9\iist-iength = l^^liist-length + 1 holds proving that the 
required inequality holds also. The equation \t2\iist-iength = \h\ust-length + 1 appearing 
in the definition of the interpretation I constitutes an interargument relationship. It 
expresses the relation between the sizes of arguments of any Delete/3 atom occurring 
in the success set of the program. This notion is formalised in the following definition. 

Definition 3.25 (interargument relationship) Le tp /n be a predicate defined in a pro-
gram P whose minimal model is M, and let |.| be a norm. An interargument rela-
tionship for p/n (wrt |.|) is a relation I C N" , such that if M |= p{ti,... ,tn) then 
C t i l , . I t n l ) E 7. [] 

It will usually be convenient to write interargument relationships in the form 
p{ti,. • • ,tn) : Expr where Expr is an expression over the terms i i , . . . , For example, 
P(ii, tg) : | 4 | = 1̂ 2! + 1 defines an interargument relationship for the predicate P/2 in 
a program P such that if M |= P(ti,t2) then |(i| = |t2| + 1 where M is the minimal 
model for P. 

Interargument relationships play an essential role in proving termination of a 
large class of programs. They were first identified by Ullman & Van Gelder 1988 who 
used interargument inequalities of the form pi + c> pj where pk denotes the list length 
of the fcth argmnent of the predicate p, for A: = i, j, and c is an integer constant. These 
were generalised in Pliimer 1990a, Pliimer 1990b, Pltimer 1991 and Groger & Plumer 
1992 to linear predicate inequalities of the form YlieiPi + c > YljeJPj where I and J 
are sets of input and output positions for p. Verschaetse & De Schreye 1991 considers 
linear equations of the form cq -I- YA=I CiPi = 0 where q for all i € [0, n] are integers. 
In Verschaetse et al. 1992 this is extended to conjunctions of linear equations. Finally, 
Debray et al. 1990 describe the derivation of non-linear interargument relationships 
using difference equations. 
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4 Introduction to Partial Deduction 

This chapter introduces partial evaluation in the context of logic programming. To 
recapitulate, partial evaluation is an example of a program specialisation technique. 
Classic partial evaluation techniques divide a program's input into a static part and a 
dynamic part, and specialise the program with respect to the static input. The effect is 
that a computation becomes staged; the first stage being the specialisation process, and 
the second, the execution of the specialised program, also called the residual program. 
Hence, instead of consuming all of the input at once, the static part is consumed in the 
first stage, and the dynamic part in the second (Figure 4.1). 

By staging the computation in this way, those parts of it which rely exclusively on 
the static data, can be performed once and for all at specialisation time. The remaining 
parts of the computation, which depend, either in whole or in part, on the dynamic 
input, are performed during the second stage. Given then, that the residual program 
has less work to do than the original, theoretically, at least, it should be more efficient. 

In the context of logic programming, the objective of program specialisation can 
be stated as follows. Given a program P and a goal G, specialise P wrt G to obtain the 
residual program P', such that for any substitution 9, the following properties hold: 

• computations of P U {GO} and P' U {G9} give identical results; 

• computations of P' U {GO} are more efficient than P U {G6}. 

Here, the static data is input to the specialisation process through the partially 
instantiated goal G; the dynamic data is supplied through the substitution 0. The 
second property above captures the real motivation for performing specialisation, 
while the first expresses a necessary correctness criterion. 

owfpwf PE Ps PE Ps output 

Figure 4.1: Staging a computation by partial evaluation: Stage 1: The partial evaluator 
PE, specialises the program P, wrt the static data s, resulting in the program Pg. Stage 2: 
Pg takes the dynamic data d as input, producing the same output obtained by supplying 
both s and d simultaneously as input to P. 

38 



4.1 Partial deduction 

Partial evaluation was first introduced into logic programming by Komorowksi 1981. 
It is a mixture of execution and code generation and for this reason was called mixed 
computation by Ershov 1982. The term partial deduction was coined in Komorowski 
1992, meaning partial evaluation of pure logic programs. Since only pure logic pro-
grams are considered in this thesis, this term will be used throughout. 

Partial deduction was placed on a firm theoretical foundation in Lloyd & Shep-
herdson 1991. This section reviews the key notions and the correctness results of that 
paper and presents some simple examples. The results of Lloyd & Shepherdson 1991 
are cast in the context of normal logic programs, i.e. programs containing negative 
literals in the bodies of clauses. Since only definite logic programs are considered in 
this thesis the following definitions and results have been simplified accordingly. 

Definition 4.1 (resultant Lloyd & Shepherdson 1991) A residtant is a first order for-
mula of the form V((5i ^ Qg), where for all i € [1,2], Qi is either absent or a conjtmc-
tion of atoms. • 

Definition 4.2 (resultant of a derivation) Let P be a program, ^ Qo a goal, and d = 
(t— Qo, • • •) ̂  Qn) a finite SLD-derivation of P U {4— Qo}, where the sequence of 
substitutions is . . . , 6'„. Let 9 = 61... 9n\varsiQo)- Then the derivation has length n 
with computed answer 0 and the resultant of d, denoted residtant{d), is QQ9 ^ Q„. In 
the case when n = 0, the resultant is Qo ^ Qo- O 

Definition 4.3 Let P be a program, G a goal and let r be a finite SLD-tree for Pu {G}. 
Let D be the set of non-failing SLD-derivations associated with the branches of r . Then 
resultants{T) = {resultant{d) | d E D} is the set of resultants of r . • 

Example 4.1 Consider the Append program below. 

App8nd([], X, x). 
appg Append([u|x], y, [u|z]) ^ 

Append(x, y, z). 

Let Ti be the finite, incomplete SLD-tree for Append U{<— Append([1,2|x], y, z)} de-
picted in Figure 4.2. Then resultants{TI) contains the following two resultants: 

Append([1,2], y, [1,2|y]) ^ 
Append([1,2,u|x'], y, [1,2,u|z'"]) ^ Append(x', y z'") 

Let t2 be the subtree of n rooted at the goal <— Append(x, y, z"). Observe that T2 
is a finite SLD-tree for Append U{<— Append(x, y z")}. Then resultants{T2) contains the 
following two resultants: 

AppendKL%y)^-
Append([u|x'], y [u|z"']) Append(x', y z"') • 

Definition 4.4 (partial deduction) Let P be a program and A an atom. Let r be a 
finite non-trivial SLD-tree for P U {4— A}. Then the set of clauses resultants{T) is called 
a partial deduction of A in P . • 
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Append([1,2|x], y, z) 

W 2 { z/[1 |z'] } 

Append([2jx], y, z') 

W 2 { z'/[2|z"] } 

^ Append(x, y, z") 

{ x/0, z"/y } x/Lulx"], z''/[u|z'"] } 

• ^ Append(x', y, z"') 

Figure 4.2: Finite, incomplete SLD-tree for Append U{<— Append([1,2|x], y, z)} 

If A = { ^ 1 , . . . , is a finite set of atoms, then a partial deduction of A in P is 
the union of partial deductions of ^ 1 , . . . , in P . A partial deduction of P wrt A is 
a program obtained from P by replacing the set of clauses in P , whose head contains 
one of the predicate symbols appearing in A (called the partially deduced predicates), 
with a partial deduction of A in P . 

Example 4.2 Let A = {Append([1,2jx], y, z), Append(x, y, z)}. Then the following pro-
gram Appendi is both a partial deduction of A in Append and also a partial deduction 
of Append w r t A: 

Append([1,2], y, [1,2|y]). 
Append([1,2,u|x], y, [1.2,u|z]) ^ 

Append(x, y, z). 

Append([], y, y). 
Append([u|x], y, [u|z]) ^ 

Append(x, y, z). • 

Observe that the program Appendi above admits two (equivalent) solutions to 
the goal ^ Append([1,2], [], z) whereas the Append program only admits one. Hence 
this program is not strictly a specialised version of the original. The problem arises 
because Append([1,2], [], z) is an instance of both atoms in the set A. The solution is to 
impose a condition on the set A. 

Definition 4.5 (common instance) Let A and B be atoms. Then A and B have a 
common instance iff there exists an atom C such that C is an instance of both A and 
B, i.e. there exist substitutions 0 and (p such that AO = C = Bcj). • 

Observe that if two atoms A and B have a common instance, then A and B are 
unifiable after renaming apart. Hence, it is possible for two non-tmifiable atoms to have 
a common instance. 

Definition 4.6 (independence) Let A be a finite set of atoms. Then A is independent iff 
no pair of atoms in A have a common instance. • 

The set A = {Append([1,2|x], y, z),Append(x, y, z)} of E x a m p l e 4.2 is n o t indepen-

dent. The two atoms in A are not tmifiable, but can be unified after renaming apart. 
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Example 4.3 Let A = {Append([1,2|x], y, z)} be a set of atoms. Then the following 
program is a partial deduction of Append wrt A: 

Append([1,2], y, [1,2|y]). 
Append([1,2,u|x], y, [1,2,u|z]) 

Append(x, y, z). 

Note that A is an independent set. • 

The problem with the above program is that a goal such as ^ Append([1,2,3], y, z) 
will fail whereas it succeeds in the original program. The cause here is that the goal 
gives rise to a call Append([], y, z') which is not an instance of any of the atoms in A. 
Hence a further condition needs to be imposed on the program to ensure equivalence 
with the original. 

Definition 4.7 {closedness) Let S be a set of first order formulae and A a finite set of 
atoms. Then S is A-closed iff each atom in S containing a predicate symbol in an atom 
in A is an instance of an atom in A. • 

Definition 4.8 (coveredness) Let P he a program, G a goal, A a finite set of atoms, 
P' a partial evaluation of P wrt A, and P* the subprogram of P' consisting of the 
definitions of predicates in P' upon which G depends. Then P' U {G} is A-covered if 
P* U {G} is A-closed. • 

The independence and coveredness conditions are together sufficient to ensure 
correctness of partial deduction. 

Theorem 4.9 (Lloyd & Shepherdson 1991) Let P be a program, G a goal, A a finite, 
independent set of atoms, and P' a partial deduction of P wrt A such that P' U {G} is 
A-covered. Then the following hold: 

1. P' U {G} has an SLD-refutation with computed answer 0 iff P U {G} does. 

2. P ' U {G} has a finitely failed SLD-tree iff P U {G} does. 

Example 4.4 Let G = <— Append([1,2|x], y, z) and A = {Append(x, y, z")}. Then the fol-
lowing program Append' is a partial deduction of Append wrt A: 

Append ([], y, y). 
Append([u|x']. y, [u|z"']) 

Append(x', y, z'"). 

Observe that A is independent and Append' U{G} is A-covered. Hence the premises of 
Theorem 4.9 hold and correctness is ensured. This is not surprising! • 

In fact, if P ' is a partial deduction of Append wrt some set of atoms A such that P ' u 
Append([1,2|x], y, z)} is A-covered then the atom Append(x, y, z) (modulo renaming) 

must be contained in A. It follows, that if A is independent, Append(x, y, z) is the only 
Append/3 atom in A, and as a consequence Append' is the only partial deduction of 
Append that can be used to refute the goal ^ Append([1,2|x], y, z). Of course, given that 
Append' is equivalent to Append, this is not a very useful specialisation. To achieve, a 
better specialised program a little bit of cheating is required. 
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Example 4.5 Reconsider the program Appendi of Example 4.2, the partial deduction 
of Append w i t t he set A = {Append([1,2|x], y, z), Append(x, y, z)}. As n o t e d earlier, the 

set A is not independent, but observe that Appendi U {<— Append([1,2|x], y, z)} is A-
covered. Independence of A can be achieved by renaming the atom Append(x, y, z) as 
Append-1 (x, y, z) and defining the two atoms to be equivalent. 

Let B = {Append([1,2|x], y, z), Append-1 (x, y, z)}. T h e n the p r o g r a m Appendg be low 
can be ob t a ined as a par t ia l d e d u c t i o n of Append U{Append_1 (x, y, z) e- Append(x, y z)} 
wrt B, followed by replacing each body atom Append(x, y, z) occurring in the body of a 
clause by AppendJ (x, y, z). This last step is known as folding since it is a reverse of the 
imfolding process (Burstall & Darlington 1977, Tamaki & Sato 1984). 

Append([1,2], y, [1,2|y]). 
Append([1,2,u|x], y, [1,2,u|z]) f -

Append_1 (x, y, z). 

Append-1 ([], x, x). 
AppendJ ([u|x], y, [u|z]) ^ 

Append-I (x, y, z). 

Note that the set B is independent and that Append^ U {e- Append([1,2|x], y, z)} is 
B-covered. Although, Append^ is not strictly a partial deduction of Append wrt B, it 
follows by the correctness of the folding process (Kawamura & Kanamori 1988, Seki 
1989) that the conclusions of Theorem 4.9 still hold. • 

One interesting property of this last specialisation it that the original Append/3 
predicate has given rise to two versions of the predicate in the residual program, i.e. 
Append/3 and Append_1/3. This is known as polyvariant specialisation. 

4.2 Control of partial deduction 

The above examples illustrate several key features of the partial deduction process. 
Firstly, a partial deduction of a program is derived from a number of SLD-trees. For 
example, the Append^ of Example 4.5 is derived from two SLD-trees ri and T2 of 
Example 4.1. Note that the predicate Append/3 of the specialised program corresponds 
to the tree t i and the predicate Append-1/3 is derived from rg. In general, each SLD-tree 
generated during partial deduction gives rise to a specialised predicate in the residual 
program. The definition of a predicate is determined precisely by its corresponding 
SLD-tree. 

Two levels of control in the partial deduction process can now be distinguished. 
The global control decides which trees should be generated. More precisely, since 
each tree is rooted at a single atom, the global control determines the set of atoms 
which should be used to construct SLD-trees from. This set is, in fact, the independent 
set A of Theorem 4.9 (or, rather, a set such as B in Example 4.5). Hence, the global 
control also determines the amount of polyvariance, i.e. the number of specialised 
versions generated for each predicate. The local control, on the other hand, determines 
the structure of each individual SLD-tree. Since construction of a tree proceeds by 
unfolding, the local control is often described by an unfolding rule. 

Each level of control has associated with it, its own termination problem. For the 
global control, the problem is to ensure finiteness of the set A, whereas the local control 
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must ensure that every SLD-tree generated is finite. This thesis focuses exclusively on 
local termination. 

Of course, finiteness, in itself, is not hard to achieve. A simple depth bound 
approach, for example, will suffice. But the quality of the residual code depends very 
much on the construction of the SLD-trees and it is often the case, though not always, 
that more unfolding leads to better specialisation. Thus the problem restated, is to 
"unfold finitely as much as possible". 

4.3 Online and offline control 

There are two basic approaches to the control of partial evaluation. In the online 
approach, all control decisions, including both local and global, are made at speciali-
sation time. In the opposing offline approach, control decisions are taken prior to the 
actual specialisation itself. This can be achieved by (statically) analysing the program 
to be specialised and producing an armotated version containing control information. 
This annotated program is submitted to the partial evaluator which picks up the con-
trol information and uses it to guide the subsequent specialisation process. 

An offline analysis usually works with descriptions of values and can thus some-
times be too conservative in its control decisions. At specialisation time when the 
concrete data is available more refined decisions can be made. It is for this reason, that 
online methods usually offer better specialisation potential than offline ones. 

The offline approach offers its own advantages, however. The separation of the 
specialisation process into components is good software engineering practice and 
permits the development of these components to occur independently. Of more use to 
the user, is that offline partial evaluation can be significantly faster than online partial 
evaluation, since, at specialisation time, no control decisions need to be made. The 
time taken to perform the offline analysis, does not necessarily need to be taken into 
account. The reason for this, is that when several different specialisations of a single 
program are required, only one analysis is ever necessary. Hence, the analysis time 
can often become insignificant overall. 

The offline approach also has an advantage when it comes to self-application. A 
self-applicable partial evaluator, is one which is able to specialise itself. The experience 
of many researchers has been that it is much easier to build an offline partial evaluator, 
that is amenable to self-application, than it is to bufld an online one. The interest in 
self-application stems from the Futamura projections described in the next section. 

4.3.1 The Futamura projections 

One application of partial evaluation which has attracted considerable attention is its 
use in the automatic derivation of compilers from interpreters. The main ideas in this 
area were formally captured in the Futamura projections (Futamura 1971). 

Let Int be a meta-interpreter which takes two inputs; a program P (known as the 
object program) and an input G for P. The interpreter effectively executes P with 
input G and produces the same output that would be obtained from a "genuine" 
execution of the program with the same input: 
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P G G 

It is often the case that one would like to run the program P on a variety of 
different inputs. The situation then is exactly that depicted in Figure 4.1 where the 
program P corresponds to the static input data s and G represents the dynamic part 
of the input. Hence, program specialisation techniques can be applied to good effect. 

4.3.1.1 The first Futamura projection 

The interpreter Int can be partially evaluated with respect to the object program P 
to produce a specialised version Intp of Int dedicated to the "interpretation" of P. 
This new "interpreter" is dedicated in the sense that P is the only program that it 
can "interpret". As such Intp, with input G, should execute more quickly than Int, 
with inputs P and G, and produce the same output. This, after all, is the whole 
point of the partial evaluation process. The quotes here are used with reference 
to interpretation, since very often the interpretation layer can be entirely removed 
through specialisation. 

jbf P G 

P£i P£i 

Observe the similarity between the program Intp and the program P. Both take an 
input G and produce the same output. For this reason, Intp is often referred to as 
a "compiled" version of the object program P. A consideration of the underlying 
languages involved adds weight to this idea of partial evaluation as a compilation 
process. 

Suppose that the interpreter is written in a language Ci„t and the language of the 
object program is Cp. The program Intp is just a specialised version of Int and hence 
is also in the language Cj„t. Thus the partial evaluation process is effectively a form 
of compilation from the language Cp to An interesting case arises when Cp and 
Cjnt are equivalent. Then, ideally, the program Intp should be the same as the original 
program P (or possibly an optimised version of it). This case clearly demonstrates 
the potential for completely removing the interpretation overhead through partial 
evaluation. 

4.3.1.2 The second Futamura projection 

Note that the partial evaluator PE^ used in the first Futamura projection is not in itself 
a compiler as such, since it must take both an object program P and an interpreter 
Int as input, whereas a compiler would only require the object program P. The sec-
ond Futamura projection details how such a compiler can be obtained from a partial 
evaluator and an interpreter. 

It usual for an interpreter such as Int to be used to interpret a number of different 
programs. This gives rise to another static/dynamic classification and an opportunity 
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for specialisation. Specifically, the program PE^ can be partially evaluated regarding 
the input Int as static and the input P as dynamic. This, of course, requires a partial 
evaluator which is capable of specialising the partial evaluator PE^. 

G 

PE^ Intp PE^ Intp 

The result of specialising PE^ with respect to Int is the partial evaluator PE^, 
which is dedicated to the partial evaluation of the interpreter Int, in the same sense 
as before. This program can now take an object program P and produce a compiled 
version Intp of P. Consequently, a program such as PE^, is called a compiler. 

4.3.1.3 The third Futamura projection 

It may well be desirable to generate compilers for a range of different interpreters. 
Specialisation of the compiler generation process of the second Futamura projection, 
permits more rapid generation of a compiler from an interpreter. This time, the partial 
evaluator PE^ is the program to be specialised, the static input is the partial evaluator 
PE^ and the unknown input is the interpreter Int. Again a partial evaluator PE^ is 
required which is capable of specialising the partial evaluator PE^. 

PE^PEi Int 

PE^ f t L , Intp PE^ f t L , Intp output 

The result of specialising PE^ with respect to PE^ is the partial evaluator PEp^i which 
is dedicated to the partial evaluation of the partial evaluator P E \ This program is 
referred to as a compiler generator since it takes an interpreter Int as its only input 
and produces a compiler PE^, as output. 

4.3.1.4 Self application 

The interrelationship of the three Futamura projections is shown in Figure 4.3. Con-
sider the case when the partial evaluator PE^ above is self-applicable. Then, since 
PE^ is capable of specialising itself, the partial evaluator PE^ may be replaced by PE^. 
Similarly PE^ may also be replaced by PE^ and a compiler generator may be obtained 
through self-application of a single partial evaluator. 

4.3.2 Perspective 

This thesis focuses on developing offline, local control for partial deduction. In partic-
ular, it addresses the termination issue: how to ensure the construction of finite SLD-
trees during partial deduction. Instead of developing an offline termination analysis 
for partial deduction from scratch, it explores the work which has been done on static 
termination analysis of logic programs (Chapters 5, 6 and 7), and examines how the 
existing analysis techniques can be adapted for partial deduction (Chapter 8). 
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Figure 4.3: Interrelationship of the three Futamura projections. 
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Part II 

Terminating Logic Programs 
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5 Typed Norms for Typed Logic Programs 

5.1 Introduction 

The usefulness of considering the sizes of arguments as a suitable abstraction for 
proving termination of logic programs was first illustrated by Ullman & Van Gelder 
1988. This work was the starting point for the development of functions called norms 
which map terms to natural ntunbers. 

Choosing the right set of norms is crucial for deducing termination and also for 
deriving useful interargument relationships. Early work on termination relied on the 
user to provide the necessary norms. As this had limited usefulness a method to 
automatically generate norms from a program was proposed in Decorte et al. 1993. 
The approach focuses on deriving norms from type graphs that have previously been 
inferred by an analysis of the program. The technique is effective in generating norms 
for proving termination of many of the programs foimd in the termination literature. 
However, a more direct approach can be adopted in the context of a typed language 
such as Godel (Hill & Lloyd 1994), when the types are already known. 

As typed logic programming becomes more mainstream, development tools like 
partial deduction systems will need to be mapped from untyped languages to typed 
ones. SAGE (Gurr 1994) is one example of a partial deduction system developed for 
the typed language Godel. Although SAGE does well to demonstrate the effective-
ness of self-application and how the overheads of the ground representation in meta-
programs can be removed, there is much potential for improvement (Gurr 1995). One 
of its weaknesses is that it relies on a rather rudimentary termination analysis which 
could benefit considerably from the well developed techniques found in the termi-
nation literature. Revamping the analysis would require incorporating a number of 
techniques, including norm derivation, developed for untyped logic programs. It is 
important, however, when mapping techniques across from the untyped setting that 
the new techniques should exploit the underlying type system as much as possible. 
In the case of automatic norm derivation the approach in Decorte et al. 1993 clearly 
would not take advantage of the prescribed types. As a result of this and since "any 
state-of-the-art approach to termination analysis needs to take type information into 
accotmt" (Decorte et al. 1994), new techniques are needed to derive norms directly 
from these types and avoid the overhead of type graph generation. This chapter lays 
a foundation for such techniques. 

This chapter shows how norms can be generated from the prescribed types of a 
program written in a language, such as Godel, which supports parametric polymor-
phism. Interestingly, the types highlight restrictions of earlier norms and suggest how 
these norms can be extended to obtain some very general and powerful notions of 
norm which can be used to measure any term in an almost arbitrary way. 

The next section introduces typed norms and defines the classes of linear, semi-
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linear and type-linear typed n o r m s S o m e technical issues in the definition of typed 
norms are also addressed and the important notion of rigidity is defined. Section 5.3 
describes how to infer the norms of Section 5.2 from the prescribed types of a program 
and relates the approach to that of Decorte et al. 1993. Related work is addressed in 
the penultimate section and the conclusion outlines some directions for future work. 

5.2 Typed norms 

Before proceeding with the main development, a short remark is in order regarding 
the range of norms. Originally, norms were defined as mappings from terms to 
natural numbers. Thus both ground and non-ground terms were mapped to natural 
numbers which was achieved by mapping variables to zero. The norm \-\iist-iength 

defined in Example 3.5 is an example of such a norm. It is often more useful, however, 
particularly when it comes to deriving norms, to map a non-grotmd term t to an 
arithmetic expression over the variables in t. This approach will be followed here. 
It has also been adopted by others, e.g. Benoy & King 1996, Lindenstrauss & Sagiv 
1997, Codish & Talboch 1997, and is fast becoming the norm for practical analyses. 

Let EDt- denote the set of all (ground and non-ground) terms of type r . 

DeSnitionS.l Let 2̂ - = {Lm} and E/ = be alphabets of 
type and function symbols respectively and let Vu^ be a countably infinite set of 
variables. Then EDun represents the class of linear expressions on Vun where a term 
such as 4- + 3/Lm + 1 -|-1 4-1 is abbreviated by a; + 2?/ -t- 3 (Note that 
associativity and commutativity are assumed because of the intended interpretation). 
• 

Having established the range of a norm, the next step is to define the domain. 
The domain of tmtyped norms is simply the Herbrand universe. In a typed language, 
there is a natural division of this universe determined by the types in the language. 
This motivates the introduction, for each type r in the language, of a typed norm |.|r 
which only measures terms of type r . 

Definition 5.2 (typed norm I) A typed norm for a polymorphic type r is a mapping 
Mr : ED^ ^ EDiin- • 

Example 5.1 The typed norm |.|List{int) : ED|_ist(int) —̂  defined below measures 
the length of both open and closed lists of integers. 

l'^lList(lnt) = 
|Nil|List(lnt) = 0 

|Cons(ti, t2)|List(lnt) = 1 + |̂ 2|Lis1(lnt) 

Then |Cons(1, Cons(2, Nil))| = 2 and |Cons(1, Cons(x, Cons(y, z)))| = 3 -k z. • 

It is appropriate at this point to review the important concept of rigidity which 
was originally introduced by Bossi et al. 1994 in order to prove termination for a 
class of goals with possibly non-grotmd terms. A rigid term is one whose size, as 
determined by a norm, is not affected by substitutions applied to the term. In the 
following, (p denotes the variable assignment which binds all variables in a term to the 
term Qun-

^Originally called hierarchical typed norms in Martin et al. 1996. 
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Definition 5.3 (rigid term) Let |.jr be a typed norm for r and t be a term of type r . 
Then t is rigid with respect to j.j^ iff for every substitution 6, \t\T-4i = \tO\r(p- • 

Example 5.2 The term Cons(x, Cons(y, Nil)) is rigid wrt the norm MList(lnt) of Exam-
ple 5.1 since for every substitution {x t i ,y i-+ tg} where ti and tg are terms |Cons((i, 
Cons(^2, Nil))|=2. O 

By defining level mappings in terms of norms, it is possible to define a class of 
bounded goals in terms of rigidity. More precisely an atom is bounded with respect 
to a level mapping if each argument of the atom whose size is measured in the level 
mapping is rigid. A problem arises, however, with the typed norms used in level 
mappings. In measuring the level of an atom, a norm |.|r, which can only measure 
terms of type r may be applied to a term of type a, where a = •^(r) for some type 
substitution ip-

Example 5.3 Let P define the language (Ep, Zy, V), where 

Sr = {Int, List} 

E y = {N i l ^g , C o n s ^ y Ljst(u) y s t ( u ) ) } ) 

= {TraverseList(u)} 

and S = {Traverse(Nil).,Traverse(Cons(x, y)) ^ Traverse(y).} then the norm |.|List(u) 

defined by 

l '^lList(u) = ^ 

|Nil|List(u) — 0 

|Cons(ti, i2)|List{u) = 1 + |̂ 2|List(u) 

can be used to define a level mapping |.| for the Traverse/1 predicate as follows 

|Traverse(t)| = |f|ust(u) 

The problem is that in trying to prove recurrency with respect to the level mapping |.| 
for Traverse/1, the level mapping can be applied to atoms such as Traverse(Cons(1, Nil)), 
yet the type of the argument of Traverse/1 in this instance, List(lnt), is not the type List(u) 
for which the mapping is defined. • 

This problem arises due to the polymorphism in the typed language and is not d-
ifficult to remedy. The domain of the norm must be changed and a constraint imposed 
to ensure that the rigidity property still holds. To see why the constraint is required, 
suppose that the term t is rigid wrt the typed norm Then, by the definition of 
rigidity for every substitution 6, 

(5.1) 

Now applying a variable substitution to a term often has the effect of further instan-
tiating the type of the term. For example the type of the term Cons(x, Nil) is List(u), 
b u t the type of Cons(x, Nil){ x i-> 1 } = Cons(1, Nil) is List(lnt). H e n c e the def in i t ion of 

|.|r needs to be constrained so that equation (5.1) holds. This leads to the following 
definition. 
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Definition 5.4 (typed norm II) A typed norm for a polymorphic type r is a mapping 
|.|t ; U^g$ED^(T-) EDiin where 0 denotes the set of all type substitutions, and for 
every term t of type r and for every type substitution i p , \ t \ r = \ t p { t ) \ r . • 

The definition of a type I norm naturally induces a norm of type II. Thus any type 
II norm may be unambiguously defined by means of a type I norm. This approach, 
which avoids unnecessary notation and does not cloud the intuitions involved, will 
be adopted in the sequel. 

To prove rigidity of a term with respect to a norm it is infeasible to apply all 
possible substitutions to it to verify that its size with respect to the norm is invari-
ant. Instead, a syntactic characterisation of rigid terms is needed. By imposing the 
following condition on the way norms are defined, a simple, syntactic check can be 
obtained to determine the rigidity of terms with respect to norms defined under these 
conditions. 

Definition 5.5 (linearity property) A typed norm |.|r satisfies the linearity property 
iff for every variable v, \v\r G Vun and for all t e EDr, the following properties hold 

1. Î li- is of the form co -t-cilfilTi + . . . + where co,Ti > 0, c i , . . . ,Cn > Oand 
for all % e [1, n], E 

2. if |^|t — Cq ~\~ "i~ • • . "h I I t h e n — Cq 4- -j- . . . CfilVn l̂rn/ 
for every substitution 6. • 

Proposition 5.6 (rigid term) Let |.|^ be a typed norm satisfying the linearity property 
and t be a term of type r . Then t is rigid with respect to | . | r if vars{\t\r) = 0. • 

Proof 3 If vars{\t\r) = 0 then it follows by the linearity property that \t\r = \td\r for every 
substitution 6. • 

Although each norm is annotated with its type, the following example illustrates 
that several norms may exist for the same type. 

Example 5.4 The typed norm | • lust(List{int)) ii^easures the length of a list whose elements 
are lists of integers. The typed norm sums the lengths of the elements of 
such a list. 

U.lten 
r lL ist{List( lnt)) — ^ 

iMIIl/en _ n 
l'^'l|List(List(int)) — ^ 

|Cons(ti, 2̂)||_ist(List{lnt)) ~ 1 + l̂ 2|List(List(lnt)) 

r lL ist(List( lnf)) 

l'̂ ''lust(List(lnt)) = 
|Cons(ti,t2)lus't{List{lnt)) = Î ll0s7(lnt) + l̂ 2|Lĵ (List(lnt)) 

where equal to the norm |.|List(int) of Example 5.1. Note that the norm 

I lust (Lis t ( in t ) ) characterised by a weight of 1 in its recursive equation and the selection 
of the second argument position only whereas the norm MS(List{int)) characterised 
by a weight of 0 in its recursive equation and the selection of both argument positions. 
• 
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Let S j = {/^(o-) I fa G TifAt/j is a type substitution} denote the set of all instances of 
Then a norm can be uniquely characterised by a partial mapping w : S j x N i-» N 

which assigns weights to typed fimction symbols and argument positions. More 
specifically, given a function symbol G s j , let 0) denote the 

weight assigned to and for all i E [1, n], let u^(/(ri...r„,r)) denote the weight 
assigned to the ith argument position of The definition of a norm for a type 
r depends on w and therefore the norm is denoted by |.|^. 

Example 5.5 Let len and sum be partial mappings defined by 

0) = 0 0) = 1 1) = 0 ZeM(/2,2) = 1 

sw?M(/i, 0) = 0 sw?M(/2,0) = 0 sw?M(/2,1) = 1 swm(/2,2) = 1 
swm(/3,0) = 0 swm(/4,0) = 1 swm(/4,1) = 0 sw?M(/4,2) = 1 

where / i = NilLjst(Ust(lnt))/ / 2 = Cons^|_ist(lnt).List(List(lnt)),List(List(lnt)))/ f s = NilList(int) and 

/4 = ConS(,nt.ust(int),List(int)). Then the norms |.|(%,(List(int)) and |.|f%(Ust(ini)) of Example 5.4 
may be defined as 

i 7 JI 7 J 

l / l lust(List(lnt)) — kM(/ i ,0) 

|/2(tl, t2)li%,(usi(lnt)) = 0) + ZeM(y2, l)|4lL^t(List(lnt)) + 2)|t2lu%,(Lisl(lnt)) 

I /), ISUTH ___ /J J 
r lList{List(lnt)) — ^ 

l / l l us t (L is t { ln t ) ) = SMm(/i,0) 
|/2(tl, t2)IS(Ust(lr,t)) = S™(/2, 0) + SWm(/2, l)|tl|Ln(lnt) + 5W)M(/2, 2)1̂ 2lL%(Usl(lnt)) 

l/sltQlnt) = 0) 
1/4(^1, ^2)lL%(|nt) = 0) + SW?M(/4, l ) | t l | |nr + SWm(/4, 2)|t2|%nt) 

• 

A notion of linear and semi-linear norms can now be defined for typed programs. 
These two classes of norms were originally introduced in the context of non-typed 
programs by Plumer 1990a and Bossi et al. 1992 respectively. 

Definition 5.7 (linear typed norm) A typed norm |.|^ is linear iff for allv e V and for 

a l l /(Ti. . .r„,r) E 

[FL™ = V 

where , %) = 1 for all t e [1, m]. • 

Note that the types highlight an inherent restriction of linear norms, that is, these 
norms are only defined when TI = T for all i e [l,n]. Such norms have limited 
applicability. 
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Example 5.6 Given Er = {Tree} and = {Leaf^g j r e e ) / N o d e^ j ree .T ree .T ree) } ' the linear 
typed norm for Tree that cotmts the number of fvmction symbols in a term is defined 
by 

l^lTree ' 
|Leaf|?» = 1 

w 

|Nocle(J i ,«2)a = l + • 

Semi-linear norms are a generalisation of linear norms where for all i E [l,n], 
E {0,1}. 

Definition 5.8 (semi-linear typed norm) A typed norm |.|^ is semi-linear iff for all 

E y and for all E Sj 

where E {0,1} for all % E [1, n]. O 

Example 5.7 If = {Int, List} and Ey = {Nil̂ ^ List(u))/ Cons^u.L is t {u) ,L is t (u) ) } / then the norm 
I I/en 
l ' lList(List( lnt)) defined in Example 5.4 is semi-linear. • 

Semi-linear norms are not expressive enough to measure the sizes of terms that 
can be defined in a typed language such as Godel. To quote Bossi et al. 1992, p. 72, 
paragraph 2 "The recursive structure of a semi-linear norm gets into the term structure 
by only one level. Moreover so far it is not defined how different semi-linear norms 
can be linked to work together. The definition of a semi-linear norm is recursively 
based only onto itself and it is easy to imderstand that this is a severe restriction." 
Again the types highlight where the essential problem lies: the norm applied to U is 
|.|t whereas the type of ti is r^. The following definition overcomes this Umitation of 
semi-linear norms. It also lifts the restriction of the definition of the weight function. 

Definition 5.9 (type-linear typed norm) A typed norm |.|^ is type-linear iff for all v e 

y and for all E Sj 

|F = V 

where \ti are type-linear typed norms. • 

Example 5.8 With Er and Eyas defined in Example 5.7, the norm MysT{List( int)) defined 
in Example 5.4 is type-linear and, in fact, cannot be expressed as a semi-linear norm. 
• 

Note that Definition 5.9 is closely related to definition 4.5 of Decorte et al. 1993. 
Both generalise the definition of a type norm proposed in Pliimer 1990a. In Decorte 
et al. 1993 the relationship between typed norms and semi-linear norms is not made 
explicit, but the presentation here makes the relationships between the various norms 
clear. In particular, it can be seen that every linear typed norm is semi-linear and every 
semi-linear typed norm is type-linear. The following proposition is needed to establish 
a syntactic characterisation of rigidity with respect to type-linear typed norms. 
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Proposition 5.10 Let |.|T- be a type-linear typed norm. Then |.|r satisfies the linearity 
property. • 

It follows from Proposition 5.10 that linear typed norms and semi-linear typed 
norms also satisfy the linearity property. The power of typed norms is illustrated in 
the following example. 

Example 5.9 Consider the predicate Flatten/2 defined below which flattens a list of 
lists. 

Flatten(Nil, Nil). 
Flatten(Cons(e, x), r) ^ 

Append(e, y, r) A 
Flatten (x, y). 

Observe that for any atom Flatten(ti,t2) in the minimal model for this program, 
where ti and tg are ground terms, the sum of the lengths of the sublists of ti is equal 
to the length of the list t2. This interargument relationship can be expressed as follows 

F l a t t e n ( ( i , ( 2 ) : |^llLi^(List(lnt)) = l^2ll%t(lnt) 

where Must(List(int)) ^ '̂̂ l-lus?(int) the norms defined in Example 5.4. Note that this 
precise relationship can be expressed only using type-linear typed norms, or the typed 
norms of Decorte et al. 1993 and Bossi et al. 1992. • 

5.3 Automatic generation of norms 

To perform termination analysis or interargument relationship analysis on a program 
P, a finite set of norms is usually required which will enable the size of any term 
occurring in P to be measured. This section outlines how a set of type-linear typed 
norms suitable for this purpose can be derived directly from the prescribed types of a 
program. The actual norms needed will be determined by the types of the terms that 
can occur in P. In the following, two types are considered to be equivalent if one is a 
renaming of the other. 

Definition 5.11 (argument types) Let (Ep,Ey, F) denote the underlying language of 
P. Then Parg = | Pn ...r„ G Ep A 1 <i<n}is the set of argument types for P. • 

The set Parg represents the types of all terms occurring as arguments of atoms in 
P, in that if the type of an argument of some atom is T, then either R G Parg, or there 
exists a type a e Parg and a type substitution tp such that r = •^(cr). The following 
definition captures the types of subterms of arguments. 

Definition 5.12 (argument subtypes) For each r G Parg, the set of argument subtypes of 
T is the least set such that T € and if E Eyy d € and a = 
theiifetal is E e [] 

Example 5.10 Let P define the language (Ep, Ey, V), where 

S / = {Ni l (e,L ist (u)>) C o n s ^ y List {u) ,L ist (u))} 

E p = {PL is t (L is t (u ) ) i Q L i s t ( u ) } 
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Then 
Parg = {List(List(u)), List(u)} 

pUst(List(u)) ^ {List(List(u)), List(u), u} 

={i-ist(u), u} 

• 

By defining a norm for each r G P^g, the size of any argument occurring 
in the program can be measured. The sets are used to facilitate the definitions 
of these norms. It will often be the case that some of the arguments in a program 
have the same type and different norms may be required to measure the sizes of such 
arguments. Thus for each r G Parg a norm is defined which is parameterised by a 
weight function w as in the preceding section. Later, different w can be defined for 
individual arguments. 

Before defining the induction process it is worth making an important observa-
tion which has an effect on the definition of the norms. First note that the type of a 
constant or the range type of a function must be either a base type or a type with a 
constructor in it (i.e. it cannot be a parameter). A consequence of this is that any term 
whose type is a parameter is a variable. The term structure of any term assigned to 
this variable cannot be accessed or altered in any way within the local computation, 
since if it could, the type of the term would be known and thus the variable would 
be of a more specific type. Thus the term (and its size measured wrt to any norm) 
never changes and hence has no effect on termination at the local level. This means 
that when defining the norm |.|u where u e U, the value of |t|„ for any term t should 
be constant. To simplify the definition it may be assumed that this constant value is 
zero. Furthermore, the norm |.|u can be removed from any definition which depends 
on it. 

Definition 5.13 (induced typed norm) For each r E Parg the type-linear typed norm 
: EDr —EDLin is defined as the least set of equations as follows. If r e then 
= {|.|^ = 0}, else 

j = ' : ; | t ,EyAcrE j U 

/ (^1; • • • ) 1(7 
1 X / i = l I 0 1̂ ' J 1(7,: 

where w is a weight function partially defined for each r e Parg such that for each 
a e and E and for all i E E N and for all 
i e [1, n] such that tjj is a parameter then ?) = 0. • 

Note that due to the definition of each |.|̂ ^ is defined in E^ . Thus each is 
well defined pending a complete definition of the weight fvmction w. 

Example 5.11 Given P^g as defined in Example 5.10, let p he a weight function for 
the type List(List(u)) and qhe a weight ftmction for the type List(u) partially defined as 
follows: 

P(f^''(e,Lisf(Lisf(u)))) 0 ) = W i P(f^i l (e,Usf(u)) i 0 ) — ^ 5 

p(ConS^Ljst(y) Ljst(i_jst(u))̂  List(List(u)))) 0) = W2 p(ConS^Li.List(u), List(u)); 0) = WQ 
p(ConS^Ljst(u),List(Lisf(u)), List(Ust(u))>! 1) ~ '^3 p(ConS^|j List{u))) 1) = 0 
p(ConS l̂_|gt(y) Ljst(Lisf{u)), List(Ust(u))>7 2) = W4 p(ConS^y List(u)); 2) = Wg 
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'?(Nil(e,List(u))) 0) = ^ 9 

( ^ ( C o n s ^ u List(u))) 0 ) ~ ^ 1 0 

(j(COnŜ y |_jgt(y)̂  LiSt{u))) 1) = 0 
( ^ ( C o n s ^ y LiSt(u))) 2 ) = W l 2 

where for all i € [1,12], Wi e N. Choosing, for example, wi = W2 = ws = wg = 0 and 
W3 = W4̂  = wq = ws = wio = wi2 = 1, the following equation sets may be derived 

U,|P 
iMi l lP iNiiiP — n 

| C o n s ( t i , t 2 ) lL i s t (Us t (u ) ) = l ^ l l L i s t (u ) + l ^2 |us t (Us t (u ) ) ' 

0, 

^ ' ^ + Î 2lus1(u) 
l̂ lList(u) 
|Nil|L(u) 
|Cons(ti,t2)|^jg,(^) = l + |t2|Lt(u) 

List(List(u)) 

TpCj 
List(u) 

• 

Note that the sets of terms for which the norms are defined are not disjoint. For 
example, the domain of the norm lList{List(u)) 

for the norm iL ist(u) ' 

of Example 5.11 is a subset of the domain 
There is no confusion, however, when deciding which norm to 

use on a particular argument of an atom since the choice is determined by the atom's 
predicate symbol. 

Example 5 . 1 2 Consider the atom OList(List(int))(Cons(Cons(1, Nil), Nil)) which may appear 
as part of a goal for the predicate QList(u)- Although the type of the atom's argument 
is List(List(lnt)), the correct norm to use would be 
type of the predicate is List(u). 

iLt(u) aiid not lList(List(u)) since the 
• 

All that remains now to complete the definitions of the derived norms is to fully 
define a suitable weight function. This in itself is a non-trivial problem. 

5.3.1 Defining the weight function 

Most of the approaches to termination analysis based on norms essentially use a 
simple generate-and-test method for deducing termination. Norms are generated 
(either automatically or otherwise) and used to form level mappings which are then 
applied to the program for which a termination proof is sought. Inequalities are then 
derived whose solubility indicates the success or failure of the termination proof. 

The main difficulty with this approach is the potentially infinite number of norms 
that can be generated. To reduce the complexity of this problem a number of heuristics 
can be used. Decorte et al. Decorte et al. 1993, for example, propose the following 
(adapted) heuristics for deriving typed norms. 

1. A weight of one is assigned to all functors of arity n > 0. 

2. A weight of zero is assigned to all constants. 
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3. Any argument position whose type is not a parameter is assigned a weight of 
one. 

Applying these heuristics to the partially derived norms results in the same norms 
that would be derived by Decorte et al. 1993 given the same type information in 
the form of a type graph. Although this approach works well on a large number 
of examples, there are occasions when it will fail to generate norms that can be used 
in a termination proof. The naive reverse program with an accumulating parameter 
Decorte et al. 1993 is one example where an argument position needs to be assigned 
a weight of zero, effectively meaning that the size of the subterms occuring in that 
argument position are not counted by the norm. In that paper a solution to this 
problem is sketched using symbolic norms which effectively define an argument index 
ftmction through an exhaustive search. The example below shows that the second 
heuristic is also not always effective. 

Example 5.13 If each constant occurring in the program below is assigned a weight 
of zero then the interargument relation derived for Path(rc, y) would be |x| = \y\ = 0. 
With this relationship, termination cannot be proved since \x\ > |z|is required to hold 
in the recursive TransitiveClosure/2 clause. To prove termination each constant must 
take on a different value. 

TransitiveClosure(x, y) ^ Path(x, y). 
TransitiveClosure(x, y) ^ Path(x, z) A TransitiveClosure(z, y). 

Path(A, B). 
Path(B, C). • 

This example seems to suggest that the determination of weights must take place 
as an integral part of a termination analysis - the variety of the weights occurring 
indicates the futility of a generate and test approach in this instance. Recently, such 
a demand-driven approach has been described in Decorte & De Schreye 1997, where 
the weights are determined so as to satisfy the various inequalities needed to prove 
termination. This approach relies on first generating norms which are parameterised 
in exactly the same way as the induced typed norms of Definition 5.13. Thus the tech-
nique described here could be integrated with the analysis of Decorte & De Schreye 
1997 in a typed context. 

In summary, there are several approaches to the problem of deriving the weight 
fimction. No particular method is advocated here since it is necessary to further 
investigate and compare suitable methods. The open-ended definitions of the derived 
norms should facilitate such a study. 

5.4 Related work 

One weakness of Decorte et al. 1993 is that its norms are derived from type graphs. 
Type graph analyses, however, have not always been renowned for their tractability. 
Even for small programs, the prototype analyser of Janssens & Bruynooghe 1992, 
used in Decorte et al. 1993, is typically 15 times slower than the optimising PLM 
compiler (Van Roy 1984). Recently, type graph analysis has been shown to be practical 
for medium-sized Prolog programs (Van Hentenryck et al. 1994) when augmented 
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with an improved widening and compacting procedure. In addition, Gallagher & de 
Waal 1994 have shown how type graphs can be efficiently represented as unary logic 
programs. Clearly however, any approach which avoids the costs of inferring type 
graphs is preferable. 

Bossi et al. 1992 define a very general concept of norm in terms of type schemata 
which describe structural properties of terms. Their typed norms for termination 
analysis are very similar to the ones presented in this chapter, though they are able 
to define some norms which cannot be inferred using the present framework. 

Example 5.14 Consider the following program from Bossi et al. 1992 

Check(Cons(x, xs)) ^ Check(xs). 
Check(Cons(x, Nil)) ^ Nat(x). 
Nat(Succ(x)) f - Nat(x). 
Nat(O). 

We would like to define a norm |.|List(Nat) so that we can prove termination for 
goals ^ Check(x) where x is rigid wrt |.|List(Nat)- The following norm adapted from 
Bossi et al. 1992 satisfies this criterion. 

l̂ lList(Nat) — ^ I'̂ lwat 
|Cons(ti, i2)|List(Nat) = 1 + |̂ 2|List(Nat) |0|Nat 
|Cons(ti, ^2) iList(Nat) — 1̂11 Nat + 1̂ 21 Empty |SuCC(i) l^at 

= V |w|Empty = ^̂  
— 0 j Nil ĵ iYipty — 0 
= 1 + l̂ lwat 

This norm cannot be inferred automatically using the proposed method (nor that of 
Decorte et al. 1993) since it is necessary for the functor Cons to have two distinct types, 
n a m e l y (Nat.List(Nat), List(Nat)) a n d (Nat.Empty, List(Nat)), b u t this is fo rb idden in 
languages like Godel where the declarations are universal. Note that this is not a 
limitation of the framework but rather a limitation of the type system on which it is 
based. Given a more flexible system it would be possible to infer such norms as the 
above directly from the prescribed types. • 

Finally, note that the typed norms of Bossi et al. 1992 are not derived automati-
cally. By contrast, typed-linear typed norms, are simple enough to be easily derived 
using only the type declarations of a program. 

5.5 Conclusions and future work 

This chapter has presented a flexible method for inferring a number of norms from 
the type declarations of a program which are sufficient to measure the size of any 
Herbrand term occurring in the program in an almost arbitrary way. The norms are 
intended for use in termination analysis and the derivation of inter-argument rela-
tionships, though their applicability is not restricted to these areas. The definition of 
each derived norm is parameterised by a weight fimction. This open-ended definition 
allows the norms to be incorporated into a wide range of analyses which define these 
functions in different ways. Defining the weight function in an efficient and intelligent 
way is a non-trivial problem in itself. The definitions of norms proposed here provides 
a useful framework in which to study this problem. 
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6 Termination and Left Termination 

Norms, such as those discussed in the last chapter, are often used in termination analy-
sis as a basis for constructing level mappings. Recall that a level mapping is a function 
which provides some measure of the size of an atom and it is natural to express such a 
fimction in terms of norms which measure the sizes of the subterms in the atom. The 
interest in level mappings, of course, lies in their use in the construction of termination 
proofs based on notions such as recurrency or acceptability as introduced in Chapter 3. 

However, while the notions of recurrency and acceptability provide a sound 
theoretical basis for reasoning about termination, they do not provide much insight 
into the practicalities of actually deriving the level mappings which are needed to 
prove a program terminating or left terminating. Instead, intuition has served as 
the guide in the development of automatic techniques. In particular, there has been 
a desire to derive "natural" level mappings based on the recursive structure of the 
program at hand. For example, given the program 

P([h|t]) ^ P(t). 

it is natural to define a level mapping |.| to prove termination by |P(z)| = \x\iist-iength 
since the predicate is inductively defined over the structure of its argument, which is 
a list. Other definitions, such as |P(x)| = \x\iist-iength +1 and |P(a;)| = 2 x do not 
possess the same "natural" correspondence with the intution behind the program's 
terminating behaviour. The desire for natural level mappings is not just an aesthetic 
predilection. Such level mappings are also easier to derive. 

This chapter examines the reasons why termination proofs based on recurrency 
and acceptability are often difficult to obtain. The observations are not new and have 
been made, among others, by Apt & Pedreschi 1994. Their solution was to define 
alternative characterisations of terminating and left terminating programs which they 
called semi recurrency and semi acceptability respectively. This solution is investigated 
in Sections 6.2 and 6.3 where it is demonstrated that it is not entirely satisfactory. 

This leads to the main contribution of this chapter in Sections 6.4 and 6.5 where 
the notions of bounded recurrency and bounded acceptability are introduced. The classes 
of bounded recurrent and boimded acceptable programs are shown to be equivalent 
to the recurrent and acceptable classes respectively. Moreover, since these new no-
tions are more aligned with the intuitions underlying termination proofs, they lend 
themselves more naturally to the automatic construction of such proofs. 

6.1 The Recurrent Problem 

The main problem with recurrency, as noted by De Schreye et al. 1992 and Apt & 
Pedreschi 1994, is that it does not intuitively relate to recursion, the principal cause 
of non-termination in a logic program. The definition requires that, for every grotmd 
instance of a clause, the level of its head atom is greater than the level of every body 
atom irrespective of the recursive relation between the two. 
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Definition 6.1 (recurrency Bezem 1989) Let P be a definite logic program and |.| a 
level mapping for P. A clause H ^ S i , . . . , is recurrent (wrt |.|) if for every 
grotmding substitution 6, \H9\ > for all i E [l,n]. P is recurrent (wrt |.|) if 
every clause in P is recurrent (wrt |.|). • 

There is a temptation to "fix" this by using a modified definition of recurrency 
which only requires a decrease for mutually recursive body atoms. The following 
example, from De Schreye et al. 1992, shows that this requirement alone is too weak to 
prove termination. 

Example 6.1 Using the weaker form of recurrency suggested above, the following 
program would be classed as recurrent. 

P([h|t]) ^ Append(x, y, z) A P(t). 

Append([u|x], y, [u|z]) ^ Append(x, y, z). 
Append([], x, x). 

Using the left-to-right computation rule and the top-down search rule, however, 
the goal ^ P([1,2]) admits an infinite computation. Of course, the clause defining the 
predicate P/1 should not be classified as recurrent. The reason is that, while Append/3 
is recurrent (even by Bezem's definition), only bounded goals should be guaranteed 
to terminate and the predicate P/1 contains an tmboimded call to Append/3. • 

This example shows that the level mapping decrease between the head and the 
non-recursive atoms of a clause implied by Definition 6.1, is required to ensure that all 
subcomputations are initiated from a bounded goal. Enforcing boundedness in this 
way, however, complicates the derivation of level mappings. The following example, 
illustrating this, also comes from De Schreye et al. 1992. 

Example 6.2 Consider the following program 

Pi 
P([h|t]) ^ Q([h|t]) A P(t). 

91 Q(OX 
% 0([h|t ] )^Q(t) . 

It is clear that this program is terminating for any goal ^ P(x) where x is a rigid list. To 
construct an automatic proof of this one would like to use the "natural" level mapping 
I. I defined by 

|P(a:)| = \x\iig{_igfigf{f |Q(2;)| = \x\iigt4gngth 

The problem is that the clause p2 is not recurrent wrt this level mapping since it is not 
the case that |P([h|t])6'| > |Q([h|t])0| for all grounding substitutions 6. For the inequality 
to hold, an "unnatural" offset must be included in the level mapping definition by 
taking for example |P(z)| = \x\iist-iength + 1- O 

The above examples show that the strict decrease in the level mapping between 
head and body atoms of a recurrent clause is required for two distinct purposes. 

1. To ensure that the levels of mutually recursive calls are strictly decreasing. 

2. To ensure that subcomputations are initiated from a bounded goal. 
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6.2 Semi Recurrency 

Apt and Pedreschi observed that, for termination, while it is necessary for the level 
mapping to decrease between the head of a clause and each mutually recursive body 
atom, a strict decrease is not required for the non-recursive body atoms. They intro-
duced the notion of semi recurrency which exploited this observation and showed the 
classes of recurrent and semi recurrent programs to be equivalent. 

Definition 6.2 (semi recurrency Apt & Pedreschi 1994) Let P be a definite logic pro-
gram and |.| a level mapping for P. A clause i J ^ 5 i , . . . , is semi recurrent (wrt 
I. I) if for every grounding substitution 6, for all i E [1, n] 

1. if 

2. |gg | + 1 > if 

P is semi recurrent (wrt |.|) if every clause in P is semi recurrent (wrt |.|). • 

Whilst this definition now admits a simple termination proof of Example 6.2 
using the original "natural" level mapping of that example, it is not hard to construct 
examples where it is inadequate. 

Example 6.3 Consider the following program 

ci FXI). 
C2 P(ih|t])<-Q([h,h|t])AP(t). 

C3 (3(0)-
C4 

To prove that the above program is semi recurrent requires the following unnat-
ural level mapping. 

|P(x)| = \x\iigf.igfigt}j 1 |Q(x)| = \x\iist-length ^ 

It seems that very little has actually been gained from this revised definition of 
recurrency which still insists that there is a non-increasing relationship between the 
level of the head and the level of all body atoms. In fact, it does not matter if the level 
of a non-recursive atom is greater than the level of the head provided that such an 
atom is bounded whenever it is selected. 

To be fair, the notion of semi recurrency was introduced to facilitate modular 
termination proofs and does indeed, in some cases, allow proofs to be based on 
simpler level mappings than those used in proofs of recurrency. In the above example, 
however, this is not the case. 

Example 6.4 Reconsider the program of Example 6.3. According to the methodology 
of Apt & Pedreschi 1994 a modular termination proof can be contructed in a kind 
of bottom up fashion on the recursive cliques of the predicate dependency graph. 
The details of the methodology will not be explained here; only the steps involved 
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in proving termination of the above program will be worked through. First Q/1 is 
proven to be (semi) recurrent wrt |.|Q defined by 

|Q(^) W ~ \^\list-length 

Second, P/1 is proven to be (semi) recurrent wrt |.|p defined by 

|P(2^)|p = \^\list-length |Q(^)|p ~ 0 

The final step in the proof requires the derivation of a level mapping |. |' such that 

|P([(iK2])r>|Q([(i,!^iK2])|Q and |P([ti|i^2])r>|P(!^2)r 

for all groimd terms ti and t2- Providing the level mapping |,|' exists, theorem 4.9 
of Apt & Pedreschi 1994 can be used to draw the conclusion that the program is 
semi recurrent and hence terminating. In terms of automation, this existence proof 
is achieved through defining |.|' so that the above inequalities are satisfied. However, 
the most likely choice of a definition for |.|' is 

|P(x)| = \x\iig{_ig„gf-lĵ  + 1 

Of course, this is no easier to derive than the original mapping |. | of Example 6.3. • 

What is most conspicuous about the definition of semi recurrency, is that the 
difference in levels between a non-recursive body atom and the head atom of a clause 
is limited to be at most zero, whereas it could be arbitrarily large, though still finite. 
Indeed, a simple termination proof for the program of Example 6.3 can be obtained 
using a "natural" level mapping if condition 2 of Definition 6.2 is replaced by \H9\ + 
k > \Bi9\ if rel{H) 9̂  rel{Bi), where k is some large constant. It is easy to prove that the 
class of programs captured by this revised definition of semi recurrency is equivalent 
to the class of recurrent programs. In addition, theorems 4.6, 4.8 and 4.9 of Apt & 
Pedreschi 1994, which are used for constructing modular termination proofs, all still 
hold with this alternative definition. Moreover, the premises of those theorems may be 
weakened in an obvious manner to permit such proofs to be constructed more easily. 

Note that the problem with the termination proofs above arises because the atoms 
in the body of a clause contain extra ftmction symbols which raise the levels of those 
atoms to the level of the head. Since it is fairly imlikely that such a body atom will 
contain, say, a million function symbols or more, by taking k = 1000000 the vast ma-
jority of recurrent programs which occur in practice could be proven terminating by 
focusing solely on their recursive structure and employing the appropriate weakened 
forms of the theorems of Apt and Pedreschi. 

6.3 Semi Acceptability 

Similar remarks to those of Section 6.1 can be made about the definition of acceptabil-
ity. The notion of semi acceptability was introduced as an analogous concept to semi 
recurrency for left terminating programs. 

Definition 6.3 (semi acceptability Apt & Pedreschi 1994) Let |.| be a level mapping 
and I an interpretation for a program P. A clause c : H ^ Bi,... ,Bn is semi acceptable 
wrt |.| and I iff 
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1. J is a model for c and 

2. for all i e [l,n] and for every grounding substitution 6 for c such that 
I N {Bi-, • • • ,Bi-i]6 

(a) jjiei > |g;0| if rgZ(ff) -

(b) |H0| + 1 > if reZ(jT) 

P is semi acceptable (wrt |. | and I) iff every clause in P is semi acceptable (wrt |. | and 
O 

Not surprisingly termination proofs based on semi acceptability suffer from sim-
ilar problems to those encountered in Examples 6.3 and 6.4. The definition could be 
adjusted in the manner prescribed above for semi recurrency but the result is not as 
satisfactory as the following example shows. 

Example 6.5 Consider the following program 

% DoubleSquare(x, I) : I = \2{x — 1)^, 2(x — 2)^ , . . . , 0] 

DoubleSquare(0, []). 
DoubleSquare(S(x), [cl|ds]) e-

Square(x, 0, y)A 
DoublePlus(y, 0, d)A 
DoubleSquare(x, ds). 

% Square(2;, 0, y) : y = % DoublePlus(a;, %/, z ) : z = 2a; + ;/ 

Square(0, y, y). DoublePlus(0, x, x). 
Square(S(x), acc, y) <— DoublePlus(S(x), y, S(S(z))) ^ 

DoublePlus(x, S(acc), accl)A DoublePlus(x, y, z). 
Square(x, accl, y). 

Let the level mapping |. ( be defined by 

|DoubleSquare(2;, y)| = [zja |Square(x, y, 2;)| = |x|s |DoublePlus(a;, j/, z)] = |x|s 

w h e r e jOja = 0 a n d |S(2;)|s = 1 + |z|g. The predica tes Square/3 and DoublePlus/3 are 
both recurrent (and hence acceptable) wrt |.|, but there is no value of k for which 
the inequality |DoubleSquare(S(x), [d|ds])0| + k > |DoublePlus(y, 0, d)0| holds for all 
groimding substitutions 0 such that I |= Square(x, 0, y)6 where / is a model of the 
program. Hence the predicate DoubleSquare/2 is not semi acceptable wrt |. | even imder 
the revised definition suggested above. It is easy to prove (semi) acceptability of the 
program, however, wrt the level mapping |.|' where |.|' is defined exactly as for |.| 
exceptthat |DoubleSquare(a;,y)|' = \x\s^ • Note that a goal is boimded wrt |. | if and only 
if it is bounded wrt |. |' and all such goals are left terminating. It seems reasonable then 
to base a proof of termination on the former level mapping since it more closely relates 
to the recursion and as a result is easier to derive automatically. Indeed, no automatic 
termination analysis has yet been devised which can derive level mappings defined 
in terms of polynomial expressions such as | • 
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Observe that the k above acts as an upper bound on the difference between the 
level of any body atom and the level of the head atom. Of course, this ad hoc approach 
falls down when there is no upper bound as in Example 6.5. 

In summary although semi recurrency and semi acceptability are more flexible 
notions than their predecessors, they still enforce a dependence between the level of 
a head atom and the levels of non-recursive body atoms. This dependence is counter 
intuitive and forces one to use artificial level mappings to obtain termination proofs. 

6.4 Bounded Recurrency 

Recall from Section 6.1 that there are two conditions which must be fulfilled to ensure 
that a program is terminating. 

1. The levels of mutually recursive calls are strictly decreasing. 

2. All subcomputations are initiated from a bounded goal. 

This section examines how the notions of recurrency and semi recurrency can 
be developed such that the above two conditions are cleanly separated. This leads 
to the definition of boimded recurrency, a characterisation of terminating programs 
that more closely matches the intuition tmderlying termination proofs and as a result 
facilitates the automatic construction of such proofs. 

To fully motivate the definition of bounded recurrency in Definition 6.5 it is useful 
to consider an evolutionary step in the form of Definition 6.4. This may be viewed as 
an initial attempt at defining the notion of bounded recurrency. It will be seen that 
this definition does not fully achieve the desired separation in terms of the conditions 
above and as such it is further refined to obtain Definition 6.5. 

Definition 6.4 (single bounded recurrency) Let |.) be a level mapping for a program 
P. A clause c : i J ^ S i , . . . , is single bounded recurrent wrt |.| iff for all % e [1, n] and 
for every substitution 6 for c such that HO is bounded wrt |. | 

1. Bi9 is bounded wrt |.|, and 

2. \[Hd]\ > \[Bi6] \ whenever ci rel{Bi). 

P is single bounded recurrent wrt |.| iff every clause in P is single bounded recurrent 
wrt |.|. • 

Observe that, in this definition, no decrease, or indeed any fixed difference, is 
enforced between the level of the head of a clause and the levels of the non-recursive 
body atoms. All that is required is that each atom is bounded whenever the head is 
bounded. While this is more intuitively appealing, observe that boundedness of non-
recursive atoms still influences the definition of the level mapping in a non-modular 
way. 

Example 6.6 Consider the following program for Curry's type assignment taken from 
Apt & Pedreschi 1994. 

64 



Type(e, Var(x), t) <-
ln(e, IQ. 

fypg Type(e, Apply(m, n), t) <-
Type(e, m, Arrow(s, t)) A 
Type(e, n, s). 

typ^ Type(e, Lambda(x, m), Arrow(s, t)) <™ 
Type([(x, s) | e], m, t). 

ini ln([(x, t) I e], X, t). 
zMg ln(i(y, t) I e], x, t) <-

x ^ y A 
ln(e, X, t). 

One may observe that the predicate In/3 is inductively defined over the length of 
its first argument which is a list. The predicate Type/3 is inductively defined on the 
size of its second argument which is a A-term. As a result, one would hope to base a 
termination proof on the level mapping |. | defined by 

| ln(x,y, 2)1 = |TypG(x, y, z)I = \y\term-size 

where \y\term-size denotes the number of function symbols in the term y. The problem, 
of course, is that any call Type(e, Var(x), t) which is bounded wrt |.| can give rise to a 
call ln(e, x, t) which is not bounded wrt |.|. Clearly this can lead to non-termination. 
Definition 6.4, therefore, insists that for the clause the body atom ln(e, x, t) is 
bounded whenever the head is. Unfortunately this entails that the level mapping must 
now be modified to take the first argument of Type/3 into account. This in turn leads 
to problems with the clause typ^ since the first argument is increasing in the recursive 
call. Eventually, one arrives at a level mapping definition such as 

| ln(x,y,2) | i =: |Type(a;, y, z) | i = |a^|/zsf-;en^f/2 + 2 x lyjterm-size 

which bears no immediate relation to the program structure. As a result such a 
mapping can be hard to derive automatically. • 

Clearly there is an interdependence between ensuring non-recursive atoms are 
botrnded wrt |.| and ensuring that the levels of recursive calls are decreasing wrt |.|. 
This plainly arises out of the use of the one level mapping. It seems therefore that 
the obvious way to break the dependence is to use two level mappings. One holds the 
responsibility for ensuring the recursive decrease in levels, while the other assures that 
non-recursive atoms are bounded. This idea is captured in the following definition. 

Definition 6.5 (bounded recurrency) Let |. 11 and |. I2 be level mappings for a program 
P. A clause c : <— B i , . . . , is bounded recurrent (wrt |.|i and |.|2) iff for all i G [1, n] 
and for every substitution 6 for c such that H6 is bounded wrt |.11 and |.I2 

1. Bi9 is bounded wrt j.|i and |.|2, and 

2. |[ff0]|i > \[Bi9]\i whenever reZ(ff) ~ rel{Bi). 

P is bounded recurrent (wrt |.|i and |.|2) iff every clause in P is bounded recurrent 
(wrt 1.11 and 1.12). O 
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It is informally understood that a goal G is bounded wrt |.|i and |.|2 iff G is 
bounded wrt j.|i and G is bounded wrt j-jg. Note that, when the two level mappings 
coincide, that is when |.|i = j.jg, then Definition 6.5 is equivalent to Definition 6.4. 

Example 6.7 Returning to the program of Example 6.6, recall that the stumbling block 
in the derivation of a natural level mapping arose because any call Type(e, Var(x), t) 
which is bounded wrt |.| can give rise to a call ln(e, x, t) which is not bounded wrt |.|. 
At this point, one intuitively reasons that if the first argument of a call to Type/3 is a 
rigid list then the first argument of all subsequent calls to Type/3 will also be a rigid 
list. So define a second level mapping |.|' by 

|ln(a;, y, z)! = |Type(x, y, z)] = \x\iist-length 

The program is bounded recurrent wrt |.| and |.|'. Indeed, any call to Type/3 or In/3 
which is botmded wrt |.| and |.|' only gives rise to calls which are bounded wrt |.| 
and |.|'. Combine this with the fact that recursive calls are decreasing wrt |.| and 
termination can be proven in a very intuitive manner. Furthermore the level mappings 
I. I and I. I' follow directly from the structure of the program, facilitating their automatic 
derivation. • 

Lemma 6.6 and Corollary 6.7 below establish that bounded recurrent programs 
are indeed terminating. Proof of this relies on orderings which not only take into 
account the levels of atoms but also their relation to each other in the predicate depen-
dency graph. 

For a level mapping |.| and goal G Ai,..., An, if G is bounded wrt |.| then let 
|[G]| denote the finite multiset of pairs {(rel{Ai), | [^ i ] | ) , . . . , {rel{An), |[^n]|)}- Let -4 be 
the lexicographical ordering on Zp(c) x N ( < ) and let -K^ui be the multiset ordering 
based on Observe that is well founded. 

Lemma 6.6 Let |.|i and j.jg be level mappings for a program P. Let P be bounded 
recurrent wrt |. 11 and |. 12 and let G be a goal which is bounded wrt |. 11 and |. 12. Let G' 
be an SLD-resolvent of G from P. Then 

1. G ' i s bounded wrt j.11 and 1.12, 

2. |[G']|i |[G]|i, and 

3. every SLD-derivation of P U {<— G} is finite. 

Proof 4 Assume Aj is the selected literal in G =4— Ai,..., Am and c : H ^ P i , . . . , 
> OJ fAe program cZawse waetf. TTign G' ( ^ 1 , . . . , B i , . . . , . . . , -4^)^ 

wWe 0 E , jif). 

1. Since G zs wrf |.|i and |.|2, zfybZZows f W aW are wrf |.|i aW 
\.\2f0r all k e [l,rn]. In particular, AjO = HO is bounded wrt |.|i and |.|2. It follows, 
by 6.5, f W 5,0 zs bowMded wrf |.|i aW |.|2/D^ ^ E [1,a] aM(f Aence G' is 
bounded wrt |.|i and |.|2. 

2. Moreover, > \[AkO]\i for all k e [l,m] by Lemma 3.13. Finally, for alii G [l,n] 

W = rgZ(^) by 6.5, and 
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Hence 

(reZ(Bii9),|[gi6']|i) -< (reZ(v4j),|[^j]|i) ybraZZ%E[l,n] 
(reZ(Akg),|[At^]|i) ^ (reZ(At),|[^k]|i) ybraMA;E[l,77i] 

proDZMg | [ G ' ] | i l [G ] | i . 

3. Smcg is weZ/-̂ UMde(f f/zg rggw/tyb/Zows zmmedzaMy. 

Corollary 6.7 Every bounded recurrent program is terminating. 

Theorem 6.8 Let |.|i and |.|2 be level mappings for a program P. The following hold. 

1. If P is recurrent wrt |.11 then P is bounded recurrent wrt |.|i and |.11. 

2. If P is bounded recurrent wrt |.|i and \.\2, then there exists a level mapping j.js 
such that P is recurrent wrt |. I3. Moreover, for any atom A, A is bounded wrt |. I3 
if A is bounded wrt |. 11 and |. I2. 

Proof 5 W c : <— B i , . . . , be a cZawgg m P. Swppoge P is rgcwn-gnf wrf |.|i. W 0 be 
a substitution such that H6 is bounded wrt |.|i. Then BiO is bounded and |[^76']11 > |[P(6']|i 
ybr aZZ % E [1, n,] by recwrrgMcy. parf ̂ ZZows by Lgnzma 6.6 an̂ f fZzgorgm 2.2 a^d 
coroZZary 2.2 q/'Bezem 3993. 

6.5 Bounded Acceptability 

The definition of bounded recurrency is easily adapted to obtain a characterisation of 
left terminating programs. 

Definition 6.9 (bounded acceptability) Let |.|i and |.|2 be level mappings and I an 
interpretation for a program P . A clause c : f - P i , . . . , . is bounded acceptable (wrt 
1. 11,1.12 and I) iff f is a model for c and for all % E [1, n], for every substitution 9 such that 
HO is bounded wrt |.|i and |.|2, {Pi, • • •, Pi_i}^ is ground and I |= { P i , . . . , Pi_i}0 

1. Bi6 is bounded wrt |.|i and |.|2, and 

2. |[P6']|i > \[BiO]\i whenever reZ(P) ~ rel{Bi). 

P is bounded acceptable (wrt | • 11, | • I2 and I) iff every clause in P i s bounded acceptable 
(wrt |.|i, |.|2 a n d / ) . Q 

Lemma 6.10 asserts that every bounded acceptable program is left terminating. 
The proof of this follows along the same lines as that for acceptable programs. 

Lemma 6.10 Let |.|i and |.|2 be level mappings and I an interpretation for a program 
P. Let P be bounded acceptable wrt |.|i, |.|2 and I, and let G be a goal which is left 
bounded wrt |.|i and I, and wrt |.|2 and I. Let G' be an LD-resolvent of G from P. 
Then 

1. G' is left bounded wrt |.11 and I, and wrt |.I2 and I, 
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2. |[G']/|i-<;n«/|[G];|i,and 

3. every LD-derivation of P U G} is finite. 

Proof 6 W G Ao, , An ("I > Oj aW agswme c : <— B i , . . . , (n > Oj is 
f/ig program cZawse wsetf. TTzgn C =<— (Bi , . . . , A i , . . . , wkere ̂  € mgw(Ao, B). 

1. Need to show for all j e [1,2], i e [l,n + m] that |[G']j|j is finite. Firstly, for all 
j e [1, 2], i € [1, n] 

— |[<—(Bi,..., B„ ,^1 , . . . , 
is a growMdzMg sw&sfzfwfzoMybr C 1 

11= {S i , . . . , Bi^i}9(j) j 
is a growM(fiMg swbsfiiwfioMybr { B i , . . . , Bi_i}0 

7 1= {Bi , . . . ,Bi_i}0(^ 
<7 is a growndiMg swbsiifwfioM/br Bi0(^ 

= < \Bi 

= < \Bi6(pa\j 

Now by D^nifioM 6.9, /or aZ/ i G [1, %%]/ /or guen/ swbsfifwfioM swc/z fAai is 
bowM(kdi(;7'f |.|i aW |.|2, {Bi , . . . ,Bi_i}^^ isgrowndaWf {Bi , . . . ,Bi_i] 

(aj Bî î  is bounded wrf |.|i and |.|2/ aW 

(W > |[Big^]|i 5;/igMgi;grW(B') c± rgZ(Bt). 

Hence, |[G']j|j is finite for all i e [l,n], j G [1,2]. Nowforallj G [1,2], k e [l,m] 

[G17+1; = | [^ (Bi , . . . ,B^ ,^ i , . . . ,A_)g]p+ '= | , 

— /1 /) A/Al ^ ^ growndiMĝ  swbsfifwfion/or C 1 

is a growMdinĝ  swbsfifwfionybr {B, . . . , .4^}^ 
f ^ {B ,̂ ^1, . . . ,^A:-lj 

C ][<— (ylo, ^1, • • • , An)]/'^^|j 

Since G is left bounded wrt ].|i and I, and wrt |.|2 and I, then |[G']j"^''|j is finite for all 
A: E e [1,2]. 

2. It follows directly that for all k e [l,m],j e [1,2], max\[G'Y}~^''\j < max\[G]'^^^\j and 
ybr aZZ i E [1, n], wZieMgz'gT' 7'eZ(̂ o) = ?'gZ(B') reZ(B«) 

< maz{|Bg(^|i|^isag7'0UMdiMg^swWifwfi0MybrB^} 
= ma%{|Ao0( |̂i I is a growMding swbsfifwfioMybr Ao^} 
= ?Ma%|[^Ao^]}|i 
< ?Ma%|[^v4o]}|i 

Hence 

(?'eZ(Bii9),?Ma%|[G']}|i) ^ (?'eZ(Ao),?Mm:|[G]}|i) ybraZZ^ E[l,m] 
(rgZ(Ak^),ma%|[G']p+*=|i) X (reZ(Ak),M%a%|[G];+ |̂i) ybraZZA:E[l,m] 

p-oz;iMg |[G'];|i Xmw |[G]f|i. 
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3. SzMce zs f/ze regwZfybZZows ZMimedzaWi/. 

Corollary 6.11 Every bounded acceptable program is left terminating. 

Theorem 6.12 Let |. 11 and |. I2 be level mappings and I an interpretation for a program 
P. The following hold. 

1. If P is acceptable wrt |. 11 then P is bounded acceptable wrt |. 11 and |. 11. 

2. If P is bounded acceptable wrt |.11 and |.I2, then there exists a level mapping |. js 
such that P is acceptable wrt |.|3. Moreover, for any atom A, A is bounded wrt 
l-ls if A is bounded wrt |.|i and |.|2. • 

Proof 7 Let c : H ^ Bi,..., Bn be a clause in P. Suppose P is acceptable wrt |.|i. Then I 
25 a TModeZ/or c. W 0 be a swbsh'fwfzoM swck fkaf zs wrf |.|i, { B i , . . . , zs 
groz/zzd azzd f [= { B i , . . . , TTzen K bozzWed wrf |.|i aW by 
acceptability and Lemma 3.14. The second part follows by Lemma 6.10 and theorem 1.1 and 
corollary 1.1 ofBezem 1993. • 

Example 6.8 Observe that the program of Example 6.5 is bounded acceptable wrt |.|, 
I.I and I where |.| is the original level mapping defined in that example and 7 is a 
model of the program. Hence a proof of left termination is obtained which is based 
solely on the recursive structure of the program. • 

6.6 Discussion 

The concept of boimded acceptability proposed here is quite similar to that of rigid 
acceptability defined by Decorte & De Schreye 1997. This latter notion forms the basis 
of a practical, demand-driven termination analysis. The analysis is essentially top-
down, attempting to prove termination for a set of queries S. An important step in 
the analysis is the calculation of the call set Call{P, S), the set of all calls which may 
occur during the derivation of an atom in S. The analysis focuses on the recursive 
components to derive a level mapping |. |, enforcing boundedness of sub-computations 
by imposing a rigidity constraint on the call set. That is, during the derivation of |.|, 
every atom in Call{P, S) is required to be rigid wrt |.|. 

For program specialisation, and partial deduction in particular, it is more useful to 
derive sufficient termination conditions for individual predicates rather than proving 
that a given top-level goal will terminate (Bruynooghe et al. 1998). The reason is that 
the overall computation is tmlikely to be left-terminating but some sub-computations 
probably will be. The required conditions can be derived in a bottom-up manner on 
the strongly connected components of the predicate dependency graph. The notion of 
bounded acceptability lends itself naturally to this process. 

In Decorte & De Schreye 1998, the analysis of Decorte & De Schreye 1997 is adapt-
ed to obtain the above mentioned conditions. It attempts to derive for each predicate a 
maximal set S of left-terminating queries. Essentially, this amotmts to deriving a level 
mapping |. | which defines S, in that an atom A is in 5 if and only if A is bounded wrt 
I, I. However, an important step is omitted from the paper De Schreye 1998, and the set 
S may contain queries which are not left-terminating. The level mapping j.| is derived 
by only considering the recursive components of the program and thus corresponds 
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to the level mapping |.|i in the definition of bounded acceptability. Sub-computations 
are no longer guaranteed to start from bounded goals since no rigidity constraint is 
placed on the level mapping during its derivation as in Decorte & De Schreye 1997: 
specifically, this is because the set CaU{P, S) is imknown since S is unknown (the idea 
after all being to derive S), and as a result no rigidity constraint can be imposed on 
Call{P, S). Hence, in relation to the current work, the missing step is the derivation 
of the second level mapping j-jg. The maximal set S' C S of left-terminating queries 
then, contains only those atoms which are bounded wrt |.|i and [.[g. Note that j-jg 
can be derived entirely independently of |.|i, in the sense that there is never any need 
to alter the definition of |.|i in order to obtain a definition of |.|2 which can be used 
to prove bounded acceptability. Thus the notion of bounded acceptability allows the 
set 5" to be easily constructed from S without requiring any change to the method of 
Decorte & De Schreye 1998. 

In summary, the notions of bounded recurrency and botmded acceptability pro-
vide practical criteria for constructing modular termination proofs based purely on 
the recursive structure of a program. 
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7 Generating Efficient, Terminating Logic 
Programs 

A logic program can be considered as consisting of a logic component and a control 
component (Kowalski 1979). Although the meaning of the program is largely defined 
by its logical specification, choosing the right control mechanism is crucial in obtaining 
a correct and efficient program. In recent years, one of the most popular ways of 
defining control is via suspension mechanisms which delay the selection of an atom 
in a goal until some condition is satisfied. Such mechanisms include the block declara-
tions of SICStus Prolog (SICS 1995) and the DELAY declarations of Godel (Hill & Lloyd 
1994). These mechanisms are used to define dynamic selection rules with the two 
main aims of enhancing performance through coroutining and ensuring termination. 
In practice, however, these two aims are not complementary and it is often the case 
that termination, and hence program correctness, is sacrificed for efficiency. 

The objective of control generation in logic programming then, is to automatically 
derive a computation rule for a program that is efficient and yet does not compromise 
program correctness. Progress in solving this important problem has been slow and, 
to date, only partial solutions have been proposed where the generated programs are 
either incorrect or inefficient. This chapter shows how the control generation problem 
can be tackled with a simple automatic transformation that relies on information about 
the depths of SLD-trees. 

To prove termination of the transformed programs some theoretical development 
will be necessary. The main result of this will be the introduction of the new class of 
semi delay recurrent programs (Section 7.2). The intention is that any program lying 
within this class is terminating with respect to a dynamic selection rule. Furthermore, 
the notion of a semi delay recurrent program simplifies previous ideas in the termina-
tion literature for reasoning about logic programs with delay. 

Precedent to this is a discussion in Section 7.1 of the problems that can arise 
in termination for logic programs with delay. Some of the solutions that have been 
proposed to resolve these problems, and their short-comings, will be explored. 

Section 7.3 presents a formal development of the proposed transformation, in-
cluding correctness results. In particular, transformed programs are (by construction) 
semi delay recurrent and hence termination is guaranteed. 

7.1 The Problems of Dynamism 

The presence of delayed goals in a computation significantly complicates a program's 
termination behaviour. This section reviews the kind of problems which can arise, the 
solutions which have been proposed in the past and suggests why there is still room 
for improvement. 
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7.1.1 Local Boundedness 

Consider the Append program below with its typical DELAY declaration which delays 
the selection of an Append/3 atom until either the first or third argument is instantiated 
to a non-variable term. 

app^ Append([], x, x). 
app^ Append([u|x], y, [u|z]) ^ Append(x, y, z). 

DELAY Append(x, z) UNTIL Nonvar(x) v Nonvar(z). 

Interestingly although it is intended to assist termination the delay declaration is not 
sufficient to ensure that all Append/3 goals terminate. The goal ^ Append([x|xs], ys, xs), 
for example, satisfies the condition in the declaration and yet its derivation is an 
infinite one, where each resolvent is a variant of the previous goal (Naish 1993). 

Termination can only be guaranteed for all goals by strengthening the condition in 
the delay declaration. This is where the trade off between efficiency, termination and 
deadlock freedom takes place. The stronger the condition, the more goals suspend. 
Although termination may eventually be assured, it may be at the expense of failing 
to resolve goals which have finite derivations. Also, the stronger the delay condition, 
the more time consuming it usually is to check. Thus one of the main problems in 
generating control of this form is finding suitable conditions which are inexpensive 
to check and guarantee termination and deadlock freedom. This will be referred to 
here as the local boundedness issue, since a delay declaration is used to ensure that 
an atom is bounded in some sense, and this property is dependent solely on the atom 
itself. This is in contrast to global boundedness where the search tree as a whole is 
considered. 

There have been several attempts at solving the local boundedness problem. Each 
of these will be examined in the context of the Append program above, though each 
technique has wider applicability. 

7.1.1.1 Linearity 

Ltittringhaus-Kappel 1993 observed that, in the case of single literal goals, one addi-
tional condition sufficient for termination is that the goal is linear, that is, no variable 
occurs more than once in the goal. Although this restriction would prevent the looping 
Append/3 call above from proceeding, it would also tmfortunately delay many other 
goals with finite derivations such as Append([x, x], ys, zs). 

7.1.1.2 Rigidity and Boundedness 

An alternative approach proposed by both Marchiori & Teusink 1995 and Mesnard 
1995 delays Append/3 goals until the first or third argument is a list of determinate 
length (i.e. rigid wrt the list length norm^). Termination is obtained for a large class of 
goals, but at a price. Checking such a condition requires the complete traversal of the 

^ This is equivalent to delaying an Append/3 atom until it is bounded wrt the level mapping |. | defined 
by |Append(ti,t2,t3)| = I'tslust-kngth)• Then, for example, the atom Append([1,2.3], y, 
z) is bounded since its first argument is rigid. The atom would not be described as rigid, however, since 
its level could decrease if, for example, Z were instantiated to the term [1 ]. 
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list and the condition must be checked on every call to the predicate^. Naish argues 
that this approach can be "... expensive to implement and ... can delay the detection of 
failure in a sequential system and restrict parallelism in a stream and-parallel system" 
(Naish 1993). 

7.1.1.3 Modes 

Naish goes on to solve the problem with the use of modes. Termination can be 
guaranteed with the above DELAY declaration if the modes of the Append/3 calls are 
acyclic, or more generally cycle bounded (Naish 1993). This restriction essentially stops 
the output feeding back into the input. Although modes form a good basis for solving 
this problem, they have not been shown to be satisfactory for reasoning about another 
termination problem, that of speculative output bindings. 

7.1.2 G l o b a l B o u n d e d n e s s 

Even when finite derivations exist, delay conditions alone are not, in general, suffi-
cient to ensure termination. Infinite computations may arise as a result of speculative 
output bindings (Naish 1993), which can occur due to the dynamic selection of atoms. 
There are several problems associated with speculative output bindings (see Naish 
1993 for a discussion of these). The effect that they have on termination is the focus 
of interest here and will be referred to as the global boundedness issue. To illustrate 
the problem caused by speculative output bindings consider the Quicksort program 
shown below. This is a well known program whose termination behaviour can be 
unsatisfactory. With the given delay declarations, the program can be shown to ter-
minate in forward mode, that is for queries of the form ^ Quicksort(x, y) where x is 
boimd and y is iminstantiated. In reverse mode, however, where y is bound and x is 
tminstantiated, the program does not always terminate. More precisely, a goal such as 

Quicksort(x, [1,2,3]) will terminate existentially, i.e. produce a solution, but not univer-
sally, i.e. produce all solutions. In fact, experimentation with the Godel and SICStus 
implementations indicates that when the elements of the list are not strictly increasing, 
f o r e x a m p l e i n t h e goa l s ^ Quicksort(x, [1,1]) a n d 4- Quicksort(x, [2,1]), t h e p r o g r a m 
does not even existentially terminate! This is illustrative of the subtle problems that 
dynamic selection rules pose in reasoning about termination, and which suggest that 
control should ideally be automated to avoid them. 

qs^ Quicksort([], []). 
Quicksort([x|xs], ys) ^ 

Partition(xs, x, I, b) A 
Quicksort(l, Is) A 
Quicksort(b, bs) A 
Append(ls, [x|bs], ys). 

DELAY Quicksort(x, y) UNTIL Nonvar(x) v Nonvar(y). 

pt^ Partitlon([], _, [], []). 
pt^ Partition([x|xs], y, [xjls], bs) 

x < y A 
Partition(xs, y Is, bs). 

pt^ Partition([x|xs], y, Is, [x|bs]) ^ 

^In Mesnard 1995 the check is, in fact, only performed on the initial call, but there is no justification 
for this optimisation given in the paper. For non-structurally recursive predicates, e.g. QuickSOrt/2 of 
Section 7.1.2, such an optimisation would not usually be possible. 
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X > y A 
Partition(xs, y, Is, bs). 

DELAY Pa r t i t i on ( x , y z) UNTIL Nonvar(x) v (Nonvar(y) A Nonvar(z)). 

To improve matters, the delay conditions can be strengthened in the manner 
prescribed by Marchiori and Teusink or by Naish (see Sections 7.1.1.2 and 7.1.1.3). In 
general, however, no matter how strong the delay conditions are, they are not always 
sufficient to ensure termination, even though a terminating computation exists. To see 
w h y consider augmenting the Quicksort program with the clause 

app^ Append(x, [_|x], x) False. 

In what follows, it is assumed that the control strategy tries to execute goals left-to-
right by default. The declarative semantics of the program are completely unchanged 
by the addition of the appg clause and one would hope that the new program would 
produce exactly the same set of answers as the original. This will not be the case, 
however, if this clause is selected before all other Append/3 clauses. Consider the goal 
^ Quicksort(x, [1,2,3]). Following resolution with the second clause of Quicksort/2, the 
only atom which can be selected is Append(ls, [xjbs], [1,2,3]). When this imifies with the 
above clause, both Is and bs are immediately bound to the term [1,2,3]. As a result of 
these speculative output bindings the previously suspended calls Quicksort(l, Is) and 
Quicksort(b, bs) will be woken before the computation reaches the call to False. The 
net result is an infinite computation due to recurring goals of the form <— Quicksort(x, 
[1,2.3]). 

The problem here is that the output bindings are made before it is known that the 
goal will fail and no matter how stringent the conditions are on the Quicksort/2 goals, 
loops of this kind cannot generally be avoided. The reason for this is that a delay 
condition only measures a local property of a goal without regard for the computation 
as a whole. The conditions can ensure that goals are bounded, but are unable to ensure 
that the bounds are decreasing. 

7.1.2.1 Local Selection Rule 

To remedy this, Marchiori & Teusink 1995 propose the use of a local selection rule. Such 
a rule only selects atoms from those that are most recently introduced in a derivation. 
This ensvires that any atom selected from a goal, is completely resolved before any 
other atom in the goal is selected. The effect in the above example is that the call 
to False would be selected and the Append/3 goal fully resolved before the calls to 
Quicksort/2 are woken. This prevents an infinite loop. The main disadvantage of local 
selection rules is that they do not allow any form of coroutining. This is clearly a very 
severe restriction. 

7.1.2.2 Delayed Output Unification 

A similar solution proposed by Naish 1993 is that of delaying output imification. In 
the example above, assuming a left-to-right computation rule, the clause app^ would 
be rewritten as 

appg Append(x, y z ) F a l s e A y = [_|x] A z = x. 

The intended effect of such a transformation is that no output bindings should 
be made until the computation is known to succeed. This has parallels with the local 
selection rule and also restricts coroutining. 
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7.1.2.3 Constraints 

Mesnard uses interargument relationships compiled as constraints to guarantee that 
the bounds on goals decrease (Mesnard 1995). For example, solving the constraint 
lyslzisWengfA = llskwmigfA + 1 + before selecting the atom Append(ls, [x|bs], ys) 
ensures that bs and Is are only bound to lists with lengths less than that of ys. This is 
enough to guarantee termination, but is expensive to check as it requires calculating 
the lengths of all three arguments of Append/3. 

7.1.3 Summary and Contribution 

The most promising approaches to control generation, while guaranteeing termination 
and completeness, produce programs which are inefficient, either directly due to 
expensive checks which must be performed at run-time or indirectly by restricting 
coroutining. 

This thesis presents an elegant solution to the above problems. To solve the local 
boundedness problem, delay declarations in the spirit of Marchiori & Teusink 1995 
will be used to ensure boundedness of selected atoms. This will require rigidity checks 
to be performed on arguments, but a novel program transformation will be introduced 
to overcome the inefficiencies of the Marchiori and Teusink approach which were 
discussed in Section 7.1.1.2. Simultaneously, the transformation inexpensively solves 
the global boundedness problem without grossly restricting coroutining. The transfor-
mation is simple and is easy to automate. Transformed programs are guaranteed to 
terminate and are also efficient. 

The technique is based on the following idea. If the maximum depth of the SLD-
tree needed to solve a given goal can be determined, then by only searching to that 
depth, the goal will be completely solved, i.e. all answers (if any) will be obtained, in 
a finite number of steps. 

Section 7.2 develops the necessary theoretical foundations on which the trans-
fomation will be based, while the transformation itself is described in Section 7.3. 
The following subsection illustrates the essential ideas behind the approach through a 
concrete example. 

7.1.4 Example 

The Quicksort program of Section 7.1.2 can be transformed into a version where termi-
nation is guaranteed for all goals. Furthermore for a goal of the form ^ Quicksort(x, y) 
where x or y is a ground list of integers, the computation does not flotmder and if it 
succeeds then the set of answers produced is complete with respect to the declarative 
semantics. The transformed program is shown below. 

Quicksort(x, y) «-
SetDepth_Q(x, y, d) A 
Quicksort_1 (x, y, d). 

DELAY Quicksort_1 (_, d) UNTIL Ground(d). 

Quicksort_1([], [], d) d > 0. 
Quicksort_1([x|xs], ys, d) d > 0 A 

Partition(xs, x, I, b) A 
Quicksort_1(l, Is, d - 1) A 
Quicksort_1 (b, bs, d - 1) A 
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Appencl(ls, [x|bs], ys). 

Partition(xs, x, I, b) ^ 
SetDepth_P(xs, I, b, d) A 
Partition J (xs, x, I, b, d). 

DELAY Partition_1 (_, d) UNTIL Ground(d). 

Partition_1([], [], [], d) d > 0. 
Partition_1 ([xjxs], y, [x|is], bs, d) d > 0 A 

x < y A 
Partition^ (xs, y. Is, bs, d - 1). 

Partition-1([x|xs], y. Is, [x|bs], d) <- d > 0 A 
x > y A 
Partition_1 (xs, y, Is, bs, d - 1). 

Append(x, y, z) 4-
SetDepth_A(x, z, d) A 
AppendJ (x, y, z, d). 

DELAY Append_1 (_, _, _, d) UNTIL Ground(d). 

Append_1 ([], x, x, d) <- d > 0. 
Append_1 ([u|x], y, [u|z], d) d > 0 A 

AppendJ (x, y, z, d - 1). 

The predicate SetDepth-Q(x, y, d) calculates the lengths of the lists x and y, delaying 
until one of the lists is found to be of determinate length, at which point the variable 
d is instantiated to this length. Only then can the call to Quicksort J/3 proceed. The 
purpose of this last argument is to ensure finiteness of the subsequent computation. 
More precisely, d is an upper bound on the number of calls to the recursive clause of 
Quicksort_1/3 in any successful derivation. Thus by failing any derivation where the num-
ber of such calls has exceeded this bound (using the test d > 0), termination is guaran-
teed without losing completeness. The predicates SetDepth_P/4 and SetDepth_A/3 are 
defined in a similar way. 

7.1.4.1 Local and Global Boundedness 

The local boimdedness problem is solved in the first instance with a rigidity check in 
the style of Marchiori & Teusink 1995. This ensures that the initial goal is bounded. 
Boundedness of subsequent goals, however, is enforced by the depth parameter and 
further rigidity checks on these depth bounded goals are redimdant. This allows, 
for example, the call Quicksort_1(l, Is, d - 1) to proceed, without fear of an infinite 
computation, even if both I and Is are iminstantiated, providing d is ground. A huge 
improvement in performance is possible by eliminating these checks. The global 
boimdedness problem is also neatly solved. By restricting the search space to be finite, 
even though speculative output bindings may still occur, they cannot lead to infinite 
derivations. 
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7.1.4.2 A Simple Optimisation 

Even though many of the rigidity checks have now been removed, the efficiency 
of the program is still imsatisfactory. This is due to the rigidity checks which are 
performed on each call to Append/3 and Partition/4. It is easy to show that the depths 
of these subcomputations are botmded by the same depth parameter occurring in 
Quicksort_1/3. Hence , the a t o m s Partition(xs, x, I, b) a n d Append(ls, [x|bs], ys) in the 

body of Quicl<sort_1/3 can be replaced respectively by Partition_1 (xs, x, I, b, d - 1) and 
Append-1(ls, [xjbs], ys, d - 1 ) . 

Another, more minor, optimisation can be performed to reduce the effect of the 
delays on the program. Observe that according to the delay declaration for the predi-
cate Quicksort_1/3, the third argument is tested for groimdness every time the predicate 
is called. However, this test is unnecessary for every call except the first, since once 
instantiated, the depth parameter will always be ground on each recursive call. The 
delay can be factored out of the loop by introducing an auxilliary predicate with the 
following definition. 

DELAY Quicksort_2(_, d) UNTIL Ground(d). 

Quicksort_2(x, y, d) 4-
Quicksort_1(x, y, d). 

With the introduction of this predicate, the call to Quicksort J /3 in the body of 
Quicksort/3 is then replaced by a call (with the same arguments) to Quicksort_2/3. The 
delay declaration for Quicksort_1/3 can then be removed avoiding redundant ground-
ness checks. This same optimisation can also be applied to the Partition/4 and Append/3 
predicates (although if the first optimisation described above is performed, this last 
step is unnecessary since the Partition/4 and Append/3 predicates will never be called). 

The version of the program incorporating these optimisations is quite efficient. 
The only rigidity checks that are performed are those on the initial input, exactly 
at the point where they are needed to guarantee termination. Following the initial 
call to Quicksort_2/3 the program runs completely without delays and the only other 
overhead is the decrementation of the depth parameters and some trivial botmdedness 
checks on them. The net result is that, with the Bristol Godel implementation, the 
program actually runs faster on average than the original program with the Nonvar 
delay declarations! 

7.1.4.3 Coroutining 

Notice in particular how the global botmdedness problem is overcome without re-
ducing the potential for coroutining. Simply knowing the maximtmi depth of any 
potentially successful branch of the SLD-tree allows one to force any derivations along 
this branch which extend beyond this depth to fail without losing completeness. These 
forced failures keep the computation tree finite but do not restrict the way in which 
the tree is searched. The addition of the failing Append/3 clause app^ from Section 7.1.2 
(which would appear here as an AppendJ /4 clause) cannot affect the termination of 
the algorithm, even if the same coroutining behaviour of the original program is used. 
Of course, the computation rule needs to be restrained such that 

1. the test d > 0 is always selected before any other atom in the body of the clause 
with a subterm d, and 
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2. the depth parameter is ground for each recursive call (or for any call with a 
subterm d in the optimised version) 

but this is not nearly as restrictive as using the local computation rule. Indeed, using 
the default left-to-right selection rule (with delay) these conditions will clearly be 
satisfied in the above program. 

7.1.4.4 Termination and Efficiency 

With termination guaranteed, the programmer is now free to concentrate on the pro-
gram's performance. Notice for the program above that the order of the goals in the 
body of Quicksort_1 is critical to the efficiency of the algorithm. For the best perfor-
mance, they must be arranged so that the computation is data driven. In fact, by 
defining SetDepth_Q/3 by 

SetDepth_Q(x, y, d) <-
Length(x, d) A 
Length (y, d). 

the computation will be data driven in both forward and reverse modes with the 
ordering of the goals as above. This dependence on the ordering can be reduced by 
introducing the typical delay declarations used for this program. These declarations 
do not effect the terminating nature of the algorithm, in that they will not cause the 
algorithm to loop, though they may possibly reduce previously successful or failing 
derivations to floundering ones. They are inserted solely to improve the performance 
through coroutining. Alternatively, one may seek to optimise the performance for 
different modes through multiple specialisation, for example. The important point is 
that with the general approach described here the trade-off between termination and 
performance is significantly reduced. In seeking an efficient algorithm, correctness 
does not have to be compromised. 

7.2 Theoretical Foundations 

To provide a sound theoretical basis for termination of delay logic programs it is 
natural to build on the preceding theoretical foundations established for conventional 
logic programs. This was initiated with the work of Marchiori & Teusink 1995 on 
which this section further builds. 

The intention is to introduce a new program class which subsumes that of delay 
recurrent programs introduced in Marchiori & Teusink 1995. Its introduction is moti-
vated by an overly restrictive condition imposed in the definition of delay recurrency. 
By removing this unnecessary condition the new class of semi delay recurrent programs 
will be obtained. 

7.2.1 A t o m Select ion 

In all of the level mapping based approaches to termination examined so far a fun-
damental requirement is that only bounded atoms are selected. The reason is that, in 
general, when unboimded atoms are selected for resolution, it is extremely difficult to 
reason about the termination of the subsequent computation. The principle can still be 
applied when considering flexible computation rules. Moreover, delay declarations 
provide a mechanism to control this directly by delaying atoms until they become 
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bounded. This idea was encountered in Sections 7.1.1.2 and 7.1.2, and is formally 
captured in the following definition. 

Definition 7.1 (safe delay declaration Marchiori & Teusink 1995) A delay declara-
tion for a predicate p is safe wrt a level mapping |. | if for every atom A with predicate 
symbol p, if A satisfies its delay declaration, then A is botmded wrt |. |. • 

7.2.2 Covers 

To determine whether or not an atom is bounded when it is selected requires a con-
sideration of the atoms that have been (partially) resolved before the selection of the 
atom. The following definitions proposed by Marchiori & Teusink 1995 try to capture 
this notion. 

Definition 7.2 (direct cover Marchiori & Teusink 1995) Let c ; H ^ i ? i , . . . , be a 
clause and |.| a level mapping. Let A e hody{c) and D C body{c) such that A ^ D. 
Then D is a direct cover for A wrt |. | in c, if there exists a substitution 0 such that 

1. is bounded wrt |.|, and 

2. (fo?M(0) C z;ars(j7) Ut;a?'5(D). 

A direct cover D for A is minimal if no proper subset of D is a direct cover for A. The 
set of minimal direct covers of A wrt |.| in c is denoted by mdcovers^ c{^)• O 

Intuitively a direct cover of an atom A in a clause c is a subset D of the body 
atoms of c such that for some instantiation 6 of the variables in the head of c and in D, 
AO is bounded. Note that a body atom may have zero, one or more (mininal) direct 
covers. In particular, an atom A will have no direct cover when, in order for A to 
become bounded, it is necessary to instantiate a variable of A which does not occur 
elsewhere in the clause. On the other hand, the atom A will have the empty set as its 
only minimal direct cover if A is bounded whenever the head of the clause is bounded. 

Example 7.1 Consider the program Quicksort and the level mapping |.| defined by 

|Qsort(a;, y)| = y'-I-1 |Partition(tt;, x, y, 2)| = y'- |-2' |Append(z, y, z)| = z' 

where y = \y\iist-iength sn-d z = Then 

(Partition(xs,x, I, b)) = {{Qsort(l,ls),Qsort(b, bs)}} 

Wcoi;grS|,|_^g^(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}} 

mdcoyerS|.|_gs^(Qsort(b, bs)) = {{Append(ls, [x|bs], ys)}} 

?Mdco5ers|,|_(̂ g (̂Append(ls, [x|bs],ys)) = {0} 

Note in this example that each atom has exactly one minimal direct cover. • 

Definition 7.3 (cover Marchiori & Teusink 1995) Let c : H ^ B i , B n he a clause 
and |.| a level mapping. Let A E body(c) and C c hody[c) such that A ^ C. Then C is 
a cover for A wrt |. | in c, if {A, C) is an element of the least set S such that 

1. (A, 0) € S whenever the empty set is the minimal direct cover for A wrt |. | in c 
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2. (A, C) E S whenever A ^ C, and C is of the form 

{J4i, v4^} u Ci U . . . u Ct 

such that {Ai,..., Ak} is a minimal direct cover for A wrt ).| in c and for all 
i e [1, k], we have {Ai, Q ) G S. 

The set of covers of A wrt |.| in c is denoted by coyers| | c(^). • 

Intuitively, a cover of an atom A in a clause c is a subset of the body atoms 
which must be (partially) resolved in order for A to become botmded wrt some level 
mapping in c. The cover relation is a kind of closure of the direct cover relation but 
not a transitive one; a direct cover of an atom is not necessarily a cover of that atom. 
Observe that, if an atom has no minimal direct cover, then neither does it have a cover. 

Example 7.2 Consider the program Quicksort and the level mapping |.| of Example 7.1. 
Then 

coz;grS| I gag(Partition(xs, x, I, b)) = {{Qsort(l, Is), Qsort(b, bs), Append(ls, [x|bs], ys)}} 

coi;grs|,|,ga2(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}} 

ccwerg|,|_,a2(Qsort(b,bs)) = {{Append(ls, [x|bs],ys)}} 

C0DgrS|,|,ga2(Append(ls, [x|bs],ys)) = {0} 

Observe then, that each body atom in has exactly one cover wrt |. |. • 

7.2.3 D e l a y Recur rency 

Using the notion of cover, Marchiori & Teusink 1995 introduced the class of delay 
recurrent programs. It was intended that programs lying within this class would be 
terminating under a dynamic selection rule. 

Definition 7.4 (delay recurrency Marchiori & Teusink 1995)^ Let P be a program, |.| 
a level mapping and I an interpretation for P. A clause c : H Bi,... ,Bn is delay 
recurrent wrt |. | and I iff 

1. J is a model for c and 

2. for all i G [1, n], for every cover C for Bi and for every grounding substitution 0 
for c such that I [= C9, we have that \H0\ > \Bi9\. 

A program P is delay recurrent wrt |.| and I iff every clause of P is delay recurrent 
wrt 1.1 a n d / . • 

Example 7.3 Let |.| be the level mapping of Example 7.1 and I the interpretation 

{Qsort(a;, y) | \x\iist-length — \y\list-length} U 

{Partition(x, ty, y, 2) | \x\iist-length ~ \y\ust-length \^\list-length} ^ 

{Append(a;, y, 2) | \z\iist-iength ~ l^lnst-length "l~ \y\list-length} 

®The definition of delay recurrency in Marchiori & Teusink 1995 contains some slight redundan-
cy/ambiguity and as such its correct interpretation is unclear. This definition accurately reflects the 
intentions of the authors (Marchiori 1996). 
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Note that I is a model for the clause of the Quicksort program. Consider the body 
atom Partition(xs, x, I, b). Recall that 

coDgrsj i gag(Partition(xs, x, I, b)) = {{Qsort(l, ls),Qsort(b, bs), Append(is, [xjbs], ys)}} 

Let 0 = {x/ti,xs/t2,ys/t3, l/t4,b/t5,ls/t6,bs/t7} be a grounding substitution for such 
t h a t / 1= {Qsort(t4,t6),Qsort(t5,t7),Append(t6, [iilty],^3)}- Then 

|QS0rt([ti|t2], is)! ~ 3]list-length 

~ i\i6\list-length + 1^7 \list-length + 1 ) + 1 

~ list-length l^sllist-length + 1 ) + 1 

^ \^4:\list-length \^5\list-length 

= |Partition(t2,ti, (4,^5)1 

It is easy to check that condition 2 of Definition 7.4 holds for every other body atom of 
qs^. Hence qs^ is delay recurrent wrt |.| and I. • 

The intention behind the definition of delay recurrency is that a delay recurrent 
program P, when augmented with a set of safe delay declarations for the predicates 
of P, only admits finite derivations. The delay declarations handle the local botmded-
ness issue, but there is still the global botmdedness problem to consider. 

Suppose C is a cover for an atom B in a delay recurrent clause, and 9 is an answer 
substitution for C such that B6 is bounded (note that 9 may not necessarily be a correct 
answer substitution since the atoms in C have not yet been fully resolved). At this 
point 6 speculatively binds the variables of B since it is not yet know whether or not 
there exists some substitution a such that I \= C9a. If B9 is selected at this point an 
infinite computation may arise since there is no guarantee that the level of the head 
is greater than the level of B9. Instead, by fully resolving each atom in C such that 
a correct answer substitution 9 is obtained, B9 can be safely selected since I |= C9a 
for all cr, whence by condition 2 of delay recurrency, the level of 5 6̂  is less than the 
level of the head. Full resolution of C can be achieved by using a local selection 
rule as mentioned in Section 7.1.2.1. To reiterate, a local selection rule only selects 
the most recently introduced atoms in a derivation and thus completely resolves sub-
computations before proceeding with the main computation. The notion is formally 
defined below. 

Definition 7.5 (age of an atom) For a goal G =*— Vli , . . . , Am the %th atom in G is Ai. 
Let Go , . . . , be a derivation. The age of the ith atom in Gk, denoted ageQ^ {i) is 
defined as follows. 

1. If Go = ^ A i , . . . , Am, then ageQ^{i) = 0, for all i € [1, m]. 

2. If G^ ^ A' l , . . . , Am and G/j_|_% ^ ^ ; -̂ s—i ? B \ , . . . , Bji, A^^^, . . . , Am 9̂̂  
then 

f agCQ^ (z) + 1, for alH e [1, s - 1] 
(%) = < 0, foral l%E[g,a + Ti —1] 

[ '̂ Ŝ Gk (̂  — M + 1) + 1, for alH G [s + n, n + m — 1] 

For a goal G =<— A i , . . . , Am, the atom Ai is introduced in G if age^^i) = 0. The atom 
.4; is (or mosf recgMfZi/ mfrodwced) in G if ggeG(%) < aggg(j) for all j E [1, m]. O 
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Definition 7.6 (local selection rule Vieille 1989) Let G = ^ Ai,..., Am be a goal. An 
atom Ai is selectable in G vmder a local selection rule iff Ai is most recently introduced 
in G. • 

The main result regarding delay recurrent programs can now be stated. 

Theorem 7.7 (delay recurrency Marchiori & Teusink 1995) Let P be a program with 
a delay declaration for each predicate in P. Let |.| be a level mapping and I an 
interpretation. Suppose that 

1. P is delay recurrent wrt |. | and I, and 

2. the delay declarations for P are safe wrt |.| 

Then every delay SLD-derivation for a goal, using a local selection rule is finite. • 

7.2.4 Semi Delay Recurrency 

Marchiori & Teusink 1995 noticed that boundedness of atoms could be enforced by 
using safe delay declarations but did not fully exploit this fact combined with the 
observations of Chapter 6 in defining delay recurrency. Their definition requires a 
decrease in the level mapping from the head to the non-recursive body atoms when 
in fact boundedness of selected atoms is already guaranteed by the safe delay dec-
larations. Their definition is generalised here by removing this restriction. The new 
definition will prove useful for defining a large class of terminating programs which 
permit coroutining. 

Definition 7.8 (semi delay recurrency) Let ).| be a level mapping and I an interpreta-
tion for a program P. A clause c : i7 ^ P i , . . . , P„ is semi delay recurrent wrt |.| and I 
iff 

1. 7 is a model for c and 

2. for all i G [1, n] such that rel{H) ~ rel{Bi), for every cover C for Bi and for every 
grounding substitution 0 for c such that I \= CO, we have that \H9\ > \Bi9\. 

A program P is semi delay recurrent wrt |. | and I iff every clause of P is semi delay 
recurrent wrt |. | and I. • 

Observe in this definition that there are no restrictions placed on the relation 
between the level of the head of the clause and the level of the non-recursive body 
atoms. 

Example 7.4 Let I be the interpretation of Example 7.3, and |.| the level mapping 
defined by 

\Qsort(x,y)\ = y' \P3rt\t\on{w,x,y, z)\ = y'+ z' |Append(x, y, z)| = 

where y' = \y\iist-iength and z' = \z\iist-iength- As before, 7 is a model for the clause cjŝ  of 
the Quicksort program. Consider the body atom Qsort(b, bs). Then 

corgrS|,|_ga2(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}} 

gag (Qsort(b, bs)) = {{Append(ls, [x|bs], ys)}} 
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Let 9 = {x/ii,xs/i2,ys/t3, l/t4,b/%,ls/^6,bs/t7} be a grounding substitution for q'Sg such 
that J t= {Append(t6, [ti\t7],t3)}. Then 

|Qsort([ti|^2],^3)| = Itskist-kTzgfh 
^ {\t6\list-Iength + 1^7 \list-length + 1) 

^ \^7\list-length 

= |Qsort(t5,t7)| 

|Qsort([ti|t2],t3)| > |t6|w.WgtA 
= |Qsort(t4,t6)| 

Hence is semi delay recurrent wrt |. | and 1. • 

The relationship between delay recurrency and semi delay recurrency is imclear. 
Obviously every delay recurrent program is semi delay recurrent, but the converse 
may or may not be true. In Martin & King 1997 the following program was said to be 
semi delay recurrent but not delay recurrent. 

P([x|y]) 4- Append(_, _) A P(y). 

The reasoning was based upon interpreting the definition of delay recurrency in 
Marchiori & Teusink 1995 such that, for a body atom which has no cover, the decrease 
in level from the head of the clause to the atom must hold for all grotmd instances. 
Since the Append(_, _) atom has no cover and the decrease does not hold, the clause 
cannot be delay recurrent (Marchiori 1996). However, with the interpretation of delay 
recurrency given by Definition 7.4 the second condition of the definition is vacuously 
satisfied for an atom with no cover. As such with this definition, the above program 
is considered to be delay recurrent. This does not endanger termination. Observe that 
if an atom has no cover then it can never become boimded. If all delay declarations 
are safe then such atoms will never be selected. Indeed one necessary condition for 
deadlock freedom of a program is that every atom has at least one cover (Marchiori & 
Teusink 1996). It would be an interesting result, theoretically, if delay recurrency and 
semi delay recurrency were shown to be equivalent, but this is not considered any 
further here. 

It would be straightforward to prove that Theorem 7.7 still holds if the program 
is replaced by one which is semi delay recurrent, but a much more significant result 
may be obtained. Observe that a local selection rule is used to ensure that a cover of 
an atom is completely resolved before the atom itself is selected. Notice, however, that 
for semi delay recurrency, it is only necessary for the covers of the mutually recursive 
atoms to be resolved completely. This means that following the resolution of these 
covers, an arbitrary amount of coroutining may take place amongst the remaining 
atoms of the clause. 

To formalise a selection rule based on this idea the notion of a covering is intro-
duced. Intuitively, this is a lifting of the notion of cover from the clause level to the 
goal level. A covering of a recursive atom in a goal G is the set of atoms in G which 
have yet to be resolved before A can be safely selected. An atom A may have more 
than one covering, though it is only necessary to fully resolve the atoms of one of 
them before the selection of A. Coverings of atoms will change during the course of a 
derivation as new atoms are introduced and others are fully resolved via resolution. 
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Definition 7.9 (covering) Let Go, Gi, G2, . . . be a derivation and |.| a level mapping. 
A covering for an atom v4 in a goal Gk wrt |.| is defined as follows. 

1. Suppose Go = Ai,..., A^. Then for all i G [l,rn], the empty set is a covering 
for Ai in Go wrt |.|. 

2. Suppose Gj+i = <— . . . , B i , . . . , Ag+i , . . . , is the resolvent 
derived from Gf = t - Ai,..., Ag,..., Am and c : H ^ 5 i , . . •, B^, where As 
is the selected atom in G; and 6 e mgu{H, As). Then 

(a) for all % G [!,«], 

• if rel{H) Tel{Bi) and G is a cover for Bi in c wrt |.|, then CO is a 
covering for Bi9 m G;+i wrt |.|; 

• if rel(H) 9̂  rel{Bi), then the empty set is a covering for BiO in Gi^i wrt 

(b) for all i G [1, m], i ^ s,itC C {Ai,..., Ai-i, Ai+i,..., Am} is a covering for 
Ai in G wrt |.| then 

• C9\{AsO}u{Bi,..., is a covering for in G^+i wrt |.|, if .4^ G G; 

• G0 is a covering for AiO in Gi+j wrt |.|, if Ag ^ G. 

An occurence of an atom A is uncovered in a goal G wrt |. | iff the empty set is a covering 
for ^ in G wrt |.|. • 

Definition 7.10 (semi local selection rule) Let 6 - Go, Gi, Gg, . . . be a derivation and 
|.| a level mapping. Let Gk = Ai,..Am be a goal in 5. An atom As {1 < s < m) 
is selectable in G^ tmder a semi local selection rule (parameterised by |.|) iff As is 
uncovered wrt |. | in G^. • 

It can be shown that if a bounded atom is selectable under a local selection rule, 
then it is selectable tmder a semi local selection rule. 

The main result can now be stated. 

Theorem 7.11 Let P be a program with a delay declaration for each predicate in P. 
Let |.| be a level mapping and I an interpretation. Suppose that 

1. P is semi delay recurrent wrt |. | and I 

2. The delay declarations for P are safe wrt |.| 

Then every delay SLD-derivation for a goal, using a semi-local selection rule (param-
eterised by I. I) is finite. • 

Proof 8 Follows as a corollary of Lemma 7.13. 

Definition 7.12 Let |.| be a level mapping, I an interpretation and G = ^ ^ 1 , . . . , 4̂̂  a 
goal. Define for all i G [1, n]. 

|[G]}| — < \AiO\ + 1 
0 is a grounding substitution for G 
G is a covering for Ai in G wrt |. | 

Then the finite multiset of pairs {{rel{Ai), max\[G]j\),..., {rel{An),max\[G]']\)} is de-
noted by |[G]/|. • 
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Observe that if the atom Ai has no covering in the goal G = +- A i , A n then 
|[Gj}| = 0. Also, if for every covering C for Ai and for every grounding substitution 9 
for G, I CO, then |[G]j| = 0. Note that the expression 1̂ 6̂*1 + 1 in the definition of 
|[G]}| ensures that max\[G]\\ > 0 when |[G]}| is non-empty. That is, max\[G])\ can only 
be zero if | [G]\\ = 0. This device is used purely to facilitate the proof of Lemma 7.13. 

Let be the lexicographical ordering on Ep(iz) x N ( < ) and let be the multiset 
ordering based on Observe that is well founded. 

Lemma 7.13 Let |. | be a level mapping and I an interpretation for a program P. Let P 
be semi delay recurrent wrt |. | and I, and let G be a goal. Let G' be an SLD-resolvent 
of G from P. Then |[G']/j |[G]/|. 

Proof 9 Suppose G' = <— (v4i,. . . , B i , . . . , ^s+i , - - -, is fkg SLD-rgsoZDenf 
(fenced/rem G = 4— , Ag, . . . , and c : jT B i , . . . , wWe is seZecW 
afom M G and 0 E ylg). Rrsf s/iow fWybr aM % E [1, n] 

CZear/i/ fAis koZds ybr aZZ % E [ 1 , swcA f/iaf reZ(gi) ref(n) If rg?Mams fo sAow 
that the inequality holds for all i e [1, n] such that rel(Bi) ^ rel{H). By Definition 7.10, the 

sef is a ccwgnMg/br .Ag m G wrf |.|. TTzen 

?Ma%|[G]j| = ?Ma%{|Aa(̂ | + 1 I ̂  is ag/owndzMg SMbsfifufioMybr G} 

Since is bowntfetf (onZi/ 6owM(fe(f afoms may 6e seZecfe f̂J, if ybZZows f/zaf ?7ia%|[G]j| = 
|[Aa]| + l. By Lemma 3.33, |[Aa]| > |[^a^]| = Tkw5ma%|[G]}| > |[JT0]|. Now, 

for all i G [1, n]. 

|[G1 11 
I I (•^Ij • • • I -^s—li Bit • • • ) ^n; -^s+lj • • • ) Am)d]j 

is a growMtfing swbsfifwfioM^r G' 
D is a ccwehng^ybr BiO in G' 

s+i—l I 

= < \Bi9^\ + 1 

Lef z E [1, M] sucA fkaf reZ(gi) reZ(jT) and ^ 0. TAen fWe ezisfs 

]. a growMdinĝ  swkfifwfion G', and 

2. a covering D for Bi9 in G' wrt \.\, 

such that 

3. I \= Dcj), and 

4. |g^0(^| + l = ma%|[G']}+'-^|. 

from (2) aboue if /bZZows f Aaf fkere e^isfs a cocer G ^ B, in c swcTz fkaf D = G^, and Agnce by 
(3), 7 1= G^(^. By (3), is a growM^fing subsfifufionybr <— B i , . . . , Lef cr be a growndzMg 
sw&sfz'fwfzoM ^ TTzgM (̂̂ cr is a swbsfifwfioM c, swcA fAaf i |= G^^cr 
(since G0(̂ (7 = G^(^). Hence, by semi deZay recwrrency q/'c, = |B;0(^|. 
Thus max\[G'Y]^''~^\ < \H9(j)a\ = \[H9(j)a]\ < \[H 0]\, hy Lemma 3.13. It follows that for all 

r ' " i e [l,n] such that rel{Bi) ~ rel{H) and |[G']j+' ^ 0, max\[G]j\ > ma%|[G']j+^ 
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W % E [1,7%] gwc/z f/zaf reZ(Bi) and = 0. TTzezi = 0. 
But max\[G]f\ > 0 so max\[G]f\ > max\[G'Yj^^~~^\. It follows that for all i e [l,n] such that 
reZ(Bi) 7-6/(̂ 7)̂  ?Maz|[G]}| > TTzzgcompZekgf/zgyirsfparfc^fkfpmq/i 

Ng%f gkow /br % E [1, ^ a, 

(rgZ(Ai0),m;%|[G']}|) :< (rgZ(Ai),?Mg%|[G]}|) 

Let i e [1, m], i ^ s, such that |[G']}| ^ 0. Then there exists 

2. a covering D for Ai6 in G' wrt |.|, 

such that 

3. I \= Dcj), and 

4. + 1 = 

From C2̂  abooe ztybZZowg fAaf fAere exzgfg a co^en'Mg C C { / l i , . . . , . . . , ybr 

Ai in G wrt |. | such that 

• As E C and D = CO \ U { S i , . . . , Bn}0, or 

• As ^ C and D = CO. 

fn yirsf cage, by (3), 7 |= (C0 \ U { B i , . . . , and coMgeî weMfZi// szMce 7 ig a 
TModeZybr 7 |= (C0 \ U Bwf fkm 7 |=: becawgg = AgO. fn fAg gecond 
cagg, 0)/ 7 |= 

By K a growndzMg gwbgfzfwfzoM ybr <— ^ i , . . . , ^3_i, Ag+i , . . . , Am- W cr be 
a growndrng swbgfzfwfioM ^ (̂̂ cr zg a growMdzMg gwkfzfwfzoM /br gwck 
f W 7 [= C^i^o" (gzMcg C0(̂ cr = C0(^). HgMCg |Ai0^cr| + 1 E |[G]}| and ag a rggwff 
?Ma%|[G]}| > 7Ma%|[G']}|. 

W i s [1, m], % ^ g/ gwc/z f W |[G']}| = 0. TTzgM ?7%a%|[C]}| — 0 < ?Ma%|[G]}|. If/oZZowg 
fAaf ?Ma%| [G]} I > 7Ma%| [C]} | /br aZZ % e [1, m]̂  % 5̂  compZefing fZze pmq/i O 

7.3 The Transformation 

The above result can be used to develop a program transformation which is able to 
derive correct and efficient programs from logical specifications. Basically, the idea 
is to transform a given program into one which is semi delay recurrent, but with 
equivalent declarative semantics. Then by adding safe delay declarations a program 
is obtained which terminates for all goals using a semi-local selection rule. 

Section 7.3.1 formally introduces the transformation and proves the main results 
relating to termination of the transformed programs, and their semantic equivalence 
to the original programs. Some efficiency issues are considered in Section 7.3.2. 
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7.3.1 Termination 

The following definition formalises the transformation exemplified in Section 7.1.4'̂ . 

Definition 7.14 (semi delay recurrent transform sir) For a predicate symbol p and a 
clause identifier c defined in a program P, let and denote predicate 
symbols not defined in P. Let p/Zc be a predicate. Then 

gd7'(p/A:) = d ) , . . . , d) 

where the d and Vi are variables for all i G [1, k]. Let c : p{ti,. ..,(&) ^ -Bi, . . . , be a 
clause with Rec = { i i , . . . , C {1, . . . , n} representing the recursive body atoms of c 
in that j € Rec iff rel{Bj) ~ p. Then 

scfrrd = j ' ' ' ' ° 
^ ^ ^ , tk, 4 ^ (^1, . . . , . . . , otherwise 

where vars{d, d,, . . . di^) n vars{c) = 0 and 

• if rel{Bi) 9̂  p then B[ = Bi, 

• otherwise . . . ,si, di) given that Bi — q{si,..., si). 

Then sdr{P) = {sdr{c) | c is a clause in P} U {sdr{p) | p is a predicate in P}. • 

Example 7.5 Applying the sdr transform to the predicate Quicksort/2 of Section 7.1.2 
results in the following clauses. 

sdr(Quicksort/2): Quicksort(x, y) ^ 

Quicksort*P^''(x, y, d) A 

Quicksort®'̂ ''(x, y, d). 

s(f7'(9sj : Ouicksorf'^'^([|, [|, _) <-
sdr{qs^): Quicksort®''''([x|xs], ys, d) ^ 

Qs2 '̂̂ (d, dz, ds), 
Partition(xs, x, I, b), 

Quicksort^'^(l, Is, 62), 

Quicksort^'^(b, bs, dg) 
Append(ls, [x|bs], ys) 

• 

Each predicate introduced by the sdr transform is essentially a function map-
ping the depth bound in the head of a clause c to the depth botmds for the recursive 
calls in the body of c. To ensure termination and completeness, the definitions of these 
decrementation predicates need to be contrained. The following property is required 
for termination. 

^The transformation and the results of this section assume that the declarative semantics of the 
transformed program will be given by a Herbrand interpretation. It is trivial to see how these can be 
adapted to apply in the case of the non-Herbrand interpretation considered in Section 7.1.4. 
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Definition 7.15 (termination property of Let be a decrementation predicate 
introduced by the sdr transform. Let |.|(^ be a norm and let / be a model for 
The predicate is decreasing wrt |.|cu and I if, for all di,..., dn) E I, |d|w > 

for all i G [1, n]. • 

Lemma 7.16 (termination) Consider the program sdr{P) U Depth U Dec where sdr{P) 
is obtained from a program P via the above transform, and Depth and Dec contain 
respectively definitions for each predicate and introduced by the transform 
such that 

• no predicate in Depth depends on a predicate in sdr{P) U Dec 

• no predicate in Dec depends on a predicate in sdr{P) U Depth 

Let J be a model for sdr{P) U Depth U Dec and suppose there exist level mappings |.|i 
and |.|2 such that Depth is semi delay recurrent wrt |.|i and I, and Dec is semi delay 
recurrent wrt |.|2 and I. Furthermore, suppose there exists a norm |.|^ such that, for 
all G Dec, is decreasing wrt |.|w and I. 

Then there exists a level mapping (.| such that sdr(P) U Depth U Dec is semi delay 
recurrent wrt |. | and I. • 

Proof 10 Let \.\ujbe the norm satisfying the above condition. Define the level mapping |.| by 

d)i = |d|^ | p ( t ) i = 0 

If is easy fo s/zow fkaf ybr any predzcafg p in f ybr azzy c/awse c m f , bof/z sdr(p) and 
sdr(c) are semi delay recurrent wrt |. | and I. • 

The main consequence of Lemma 7.16 is that any program can be transformed 
into one which is semi delay recurrent and whose semantics are equivalent in a sense 
which will be examined shortly. 

Observe that for a clause c the atom d i ^ , i s the only atom in the 
body of sdr (a) which is a cover for any other atom wrt the level mapping |. | defined in 
Lemma 7.16. This means that after its resolution, an arbitrary amoimt of coroutining 
may take place between the body atoms of sdr{c). 

Example 7.6 Let P be the program consisting of the clauses qs^ and qs^- Then sdr{P) 
comprises the three clauses of Example 7.5. Let Depth consist of the single clause 

Quicksort^^^^(_, _) 

and Dec consist of the single clause 

Q s f ( S ( d ) , d , d ) 

The program sdr{P) U Depth U Dec is semi delay recurrent and moreover, if I is the 
minimal model for this program and J is the minimal model for P then for any ground 
terms ti and tg/1 \= Quicksort(ti, tg) iff J |= Quicksort(^i, tg). • 



By Theorem 7.11, the program sdr{P)UDepthuDec will be terminating for all goals 
under a semi local selection rule if, for each predicate, a delay declaration is added 
which is safe wrt the level mapping |.| defined in the proof of Lemma 7.16. In the 
above example, this amounts to delaying goals of the form <— Quicksort®''' (x, y, d) until 
d is bounded wrt |.|w. However, with the definition of Quicksort^^*^ in Example 7.6, all 
such goals will suspend, since d is never instantiated. Of course, the d parameter acts 
as a depth bound on the subsequent computation and it is the role of the introduced 
Ouicksort^^'^ predicate to establish a bound which is large enough to allow that part 
of the search space containing correct answers to be searched. For example, the goal 

Quicksort([1.2,3], y) will fail if the subgoal <- Quicksort^^''([1,2,3], y, d) binds d to 
S(S(0)) since more than two recursive calls to the predicate Quicksort®'''' are required 
to obtain the correct answer substitution y/[1,2,3]. To ensure that completeness is not 
lost, the definition of Ouicksort^^^^ needs to be constrained to ensure that sufficiently 
large depth bounds are determined. 

Observe, however, that such depth predicates are only responsible for determining 
the initial depth bound. The depth bounds at subsequent steps in the computation are 
dependent on the decrementation predicates. Hence the definitions of these predicates 
must also be constrained. In this respect, it turns out that the following properties can 
be used to ensure completeness, and yet are sufficiently general enough to permit 
considerable flexibility in defining decrementation predicates. 

Definition 7.17 (completeness properties of Let be a decrementation predi-
cate of arity n introduced by the sdr transform. Let |.|̂ ^ be a norm and let f be a model 
for The predicate is 

• well defined wrt |.|^ and I if for all /c G N , there exists di,..., dn) € I such 
that |d|^ = k. 

• monotonic wrt |.|w and I if for any two ground atoms d i , . . . , dn) G I and 
d'l,... ,dn) E I, such that |d|w > \d'\^ holds, > \d% for all i G [1, n]. 

• unbounded above wrt |.|w and I if for every ground atom di,... ,dn) G I, 
there exists d'^,..., d'^) G I such that \d[\^ > \di\t^ for all i G [1, n]. • 

The following lemma states that it is not necessary to determine precise depth 
bounds for the search space, but it is instead possible to estimate them by over ap-
proximation. They may not, of course, be under approximated without losing com-
pleteness. This is a useful result from a practical point of view, since it considerably 
simplifies the analysis required to determine the bounds. 

Lemma 7.18 (over approximation) Let sdr{P) U Depth U Dec be the program satisfying 
the conditions of Lemma 7.16. Let I be the minimal model for sdr{P) U Depth U Dec. 
Suppose there exists a norm |.|w such that for each decrementation predicate in 
Dec, is well defined wrt |.|^ and / , decreasing wrt |.|(^ and I and monotonic wrt 
1. 1̂  and I. Then the following hold 

1. If / 1= ... ,tk,d) then there exists d' such that I \= .. .,tk, d') and 
for all d" such that I |= p®'̂ ''(4, - - - , 4 , d"), \d"\ui > \d'\^. 

2. I f f 1= p®'̂ ''(ii, • • • ,tk,d) then for all h > 0, there exists d' such that |d% = \d\^ + h 
and f 1= . . . , d')-
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Proof 11 For brevity, let R = sdr{P) U Depth and let S = Ru Dec. Let luec denote the 
subsef modeZ Zybr 5 fkose afoms wz'fk predzcak symboZs kZoMgzng 
fo pretfzcaks ZM Dec. Nok f/zaf, smce no pWz'cak m Dec depends on any predzcafe m 
E, iogc is f/ie TMZMZTMaZ modeZybr Dec. Then 7 = w/iere 

= {p(t) I p(() 4— is a growMd zMĝ ance q̂ a base cZawse in A} U Ẑ gc 

/j+i = L(t) p(t) <— B i , . . . , K agrowMd msfance q/'a cZawge m J%(m > 0) 
and Bi E Ug=o-̂ A aZZ % e [1, m] 

BybZZowg zMiTMedzafeZyyrom D^MzfzoM 7.34 fkaf . . . , tt, G fZieM/br ez;e?T/ 
ferm t m fkeHerbrand wnzuerse q / ' S ' , . . . , E Jg. Since is weZZ d^ned wrf |.|t̂  
and 7, and is decreasing wrf |.|̂ j and 7, fZigre exists a Her&rand ferm t swcZz fZzaf M 
ybr aZZ n, > 0. IfybZZows fkaf/br aZZ n > 0 fZiere ezzsfs d' suc/z fZzaf ... ,%, d') E Jg and 
jd jo; Tl. 

fzsrf skow f W ^p^''((i,..., tk, d) € 7g, fZzen |d|w > M. TTze caseybr n = OybZZows/rom 
abcwe. for fZze zndwcfzoM sfep, sẑ ppose fZzaf . . . , tt, d) E 7̂ "̂ ^ (n > 0). TTzen fZzere 
e%zsfs a grownd zMSfance . . . , tt, d) ^ ĉ '̂ (d, d^^,..., dij, B i , . . . , of a cZaz/se zn 
A, ('wAereybraZZ J e [l,m],Bj = . . . , Sj^,dj) and j e {4,...,%;} ^reZ(gj) 
sz/cZz f W c4̂ '̂ (d, di^,..., dij e U^=ô a ^ ^ ^ [1, By fZze zndzzch'on 
hypothesis, |dy > nfor all j e [1, /]. Hence |d|a; > n + 1, since is decreasing wrt |.|^ 
and I. 

Nezf sZzow f/zâ  . . . , d) E Zg, fZzen /or aZZ > 0 fZzere ezzsfs d' sẑ cZz fZzaf 
p^''(ti,..., tk, d') E Zg and |d% = |d|î  + /i. Again fZze case/or n = 0 /bZZows /ronz aboz)e. 
for fZze indz^cfion sfep, sẑ ppose fZzaf . . . , d) E (zi > OJ. TTzen f ^ e ezisfs a 
groz/nd insfance c* : . . . , d) ^ ĉ '̂̂ (d, d^^,..., d,,), B i , . . . , qfa cZaz/se c in 72̂  
(wZzere/or aZZ j E [1, m], d̂ ) and j E { 4 , . . . , zz} ̂ reZ(Bj) ::± 
sẑ cZz iZzaf ĉ '̂̂ (d, dj^,..., dij E G U%=ofg /or aZZ j E [1, m]. Since 
is weZZ d^ned wrf |.|^j and 7, /or aZZ > 0 fZzere exisfs ĉ '̂̂ (d% d^^,..., d̂ J E U _̂Q7g 
szfcZz f/zaf |d'|w = |d|^ + /t. TTien, by fAe znonofoniczfy q/'ĉ '̂  wrf |.|t̂  and 7, if nzzisf be 
fZzecasefW |d̂ .|̂ ^ > jd,̂ . |̂ /̂braZZj E [1,Z]. HencebyfZzeindwciionZzi/poiZzesis,/braZZ 
j E [l,m] sz^cZzfWreZ(Bj) Bj = g^'^''(sj,...,g"\dj) E U^=o-̂ a- f̂ /oZZows 
fAaf . . . , 4 , d') <— ĉ ^̂ (d', d^^,..., d^J, B^,.. . , B^ is a groẑ nd instance q/'c, wZzere 
B̂  = Bi ^reZ(B )̂ swcZz fkai c^':(d', d^^,...,d^J E and Bj- E U%=o7#/or aZZ 
j E [1, m]. TZzer^re, p^ ' ' ( t i , . . . , 4 , d') E proving fke resz/Zf. O 

The main equivalence result may now be stated. This includes both a complete-
ness result which asserts that every logical consequence of the original program is 
also a logical consequence of the transformed program, and a soundness result which 
asserts the converse (restricted to the predicates defined in the original program). 

Lemma 7.19 (equivalence) Let sdr{P) U Depth U Dec be the program satisfying the 
conditions of Lemma 7.16. Let I be the minimal model for sdr{P) U Depth U Dec and 
let J be the minimal model for P. For a predicate p defined in P, define 

depfZz(p(t)) = Mzin{|d|w | / |= d)} 

Suppose the following conditions hold 
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1. there exists a norm |.|ĉ  such that for each decrementation predicate in Dec, 

• well defined wrt |. 1̂^ and I, 

• decreasing wrt |.|w and I, 

• monotonic wrt |.|w and I, and 

• unbotmded above wrt |.|^j and I. 

2. whenever I |= then there exists d', such that |d% > depth{p(f)) and 

Then I |= p(t) iff J |= p(t). • 

Proof 12 The proof proceeds bottom up on the predicate dependency graph of P. First parti-
h'oM fAg prgdicakg m f as ybZZows 

1. p e Zfo eac/i cZawgg p ( t i , . . . , ^ -Bi , . . . , p, ezfW m = 0 or 
rel{Bj) ~ pfor all j e [1, m] 

2. p E ^ cZawse p ( t i , . . . , ^ -Bi , . . . , 
p, gzYAgr m = 0/ or /or a/Z j € [1, mj gzYAgr rgZ(Bj) c::! p or rgZ(B )̂ € U{^=o^fk' 

Example 7.7 Consider the program 

SW ^ PW, Q. 
P W ^ R W , PW. 
Q-

Rm; ^ T(B). 
T w f - Trs;, RCAi u . 

Spo = {Q, [/, y} , 2pi {jz, r } , 2p , = { f } Spa = 

Suppose fkg pretfzcafes q/̂  f dwidg m k maz + 1 parhfions Zpg, . . . , Lef 
dgMOfe f/zg swbsgf conswAng q/̂  fAg d̂ MzfzoMS q/'f/zg prg(fz'cafes zrz Zp̂ .̂. Obsgrug f/zgzz 
fZzaf f = TTzg zrzzMZMzaZ zzzodeZ jybr f znay aZso bg parfzfzorzgd accordmg k fAg 
prgdz'cak depgzz^cy grapk sẑ c/z fkaf J = Jp̂ ^ wkgrg 

Jpjt — {p(^ I ^ ^ } 

ybr aZZ A; e [0, znajy]. 
Given the way that sdr{P) is derived from P according to Definition 7.14, the partitions 

q/^f ZMay bg ẑ sed fo dgrzi)g a parfzfzonmg^ q/^sdr(f). W = {p̂ '̂ '' | p e Zp^} (("d 
Zy;̂  = Sfk- jZt dgMofg f/zg sẑ Z?sgfs q/ 'sdr(f) coMszsfzMĝ  q/'̂ /zg d^»z%)Ms q/'f/zg 
prgdz'caks m Zg^ arzd Z^^ rgspgcfẑ eZi/. Obsgr^g f/zaf Qt = {sdr(c) | c zs a c/az^g zrz 
azzd TZt = {5dr(p) | p zs a prgdzcafe ZM P)̂ }. Hezzcg 5dr(Pt) = U At and 5dr(P) = 
U^sdr(fA:) . 

PzzzaZZi/̂  f/zg TZZZMZTZzaZ nzodgZ 7ybr 5dr(P) U DgpfZz U Dgc Mzay bg parfzfz'oMgd as ybZZows. 
Lgf D̂gc and /oepfh dgzzofg fZzg sẑ bsgfs q/"/ conzprzszzzg rgspecfzugZy fZzose afozrzs wz'fZz predz'cafg 
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gymboZs WoMging fo m Dec an̂ f DepfA regpechWy. Note since no 
pre f̂zcafe z» Dec (̂ epewda on any pre f̂zcak zn 5(fr(jP) U DepfA, Tggg K /̂ze mzMz'zTzaZ z?zo(k/ ybr 
Dec. CA szzMzZar obser[;ah'oM mzy be Mzatfe reĝ ardzMg /ogpfh/ nof ref̂ wzred/br fke 
pmq^. 

T/ze remazYzder of fAe mzMZZMaZ wzodeZ ) = / \ (^gc U foepA)/ ^3 / (*ko be parfzfzonê f 
accordzMg fo f/ze parfzhonrng q/̂ f/ze predzcafes z'n gdr(f) degcrzbed aboce szzc/z f/zaf 7sjr(f) = 
Uk^(/Qk u /A J 

-̂ Qk = {P(Q I P(^ e Zazz^fp E Eg J aM(f = {p(^ | p (^ E /azz^Zp E 2^^} 

/or aZZ A; E [0, ?»«%]. 
7b proz'e f/ze z-ggz/Zf̂  zY gz^ces fo g/zow f/zaf aZZ /: E [0, ?/za%] ^ p(^ E /̂zen 

p(^ E /Bf TTzM K proved by z'M(fucfz'o?z ocer A;. Obgerue f/zafybr a/Z A: E [0,7Ma%] 

-̂ Ak = { P(^) 
p(t) f - d), p^''(t, d) 

zg a groz/zzd zngfazzce q/̂ a cZaẑ e ZM At, 
4 E d) E /Q, 

EacZz Jp^ an̂ f can z'n fwnz aZgo be (f^netf z?Z(fz(cfz'i;eZy, gẑ cZz fZzaf Jp^ 

^Qk = U%lo4k 

= {p(^) I p(^) ^ K a groẑ M(f ZMgfazzce q/'a bage cZawge zzz fb} 

• ' f t ' 

Jpt' 

p(t) 
p(t) <— B i , . . . , Bm K agrozzMd zzigfance q/̂ a cZawge ZM > 0), 

G Ug^qJ^g/braZZ; E [l,m] 

pm 

r n + l 
^Qo 

= {p(^) I P(̂ ) ^ is a groî Tzd zngfazzce q/a bage cZaẑ e z'n 

p(t) <— B i , . . . , Bm is a growMcZ ZMgfazzce q/'a cZawse zzz > 0), 
Bj E ^ — P, (ZMd 
Bj E u)̂ %Q Jp^ybr aZZ j E [1, m] gz/cZz fZzaf reZ(Bj) ^ p 

I ^ zs a growM<i zngfazzce q/̂ a bage cZaẑ ge zn Qo} 

<— C, B i , . . . , Bm is a groz/zzd zngfance q/̂ a cZaizse zzz Qo, 
C E Togc, (ZMd 

6 U%_o7^^ybraZZ; E [l,v7i] 

„sdr/IN 

lf'{i) 

I 'L = i / ' ' i i ) I P"'{i) 

/%+' 

Zg a grownd ZMgfance q/̂ a bage cZause z'n Qt} 

<— C, B i , . . . , B^ z'g a groẑ zzd zngfance q/'a cZaẑ ge z'n Qt, 
C E /Dec, 
Bj E J G [1, m] szzcZz fZzaf ?'eZ(B̂ ) c:̂  p, azzd 
Bj E /br aZZ j E [1, m] szzcZz fZzaf reZ(Bj) p 

fndz^cfzue ZzypofZzegzs A; E Jp̂ ^ fZzezi p(7) E 

1. Base case: (k = 0) Inductive hypothesis B: Ifp{t) E Jp^ then there exists d such that 

4 E 7^,. 

(a) Base case: (r = 0) It follows immediately from Definition 7.14 that ifp{t) e Jp^ 

fZzgM r̂ euery d z'n fZze Herbrand wzzzz'ez'ge q/^sdr(B) UDepfZzUDec, ((, d) E . 
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(b) Inductive case: (r > Oj Now suppose p(t) E Jp^^, (n > Oj. Then there exists 
a p(3) <— B i , . . . , q/'a cZai/sg c m (77% > 0) guc/i fWybr 
aZZ j E Bj = gj (sj) E U^^gJpg. ByTzi/pof/iesis B, zŶ bZ/ows fW/br aZZ 
j E [l,ni]Xkeree%z5fsdjgwc^fWgj'^''(gy, dj) E CoMgzdgrf/zepWicak 

m f/zg c/aifgg sdr(c). Smce is wgZZ wrf and 7, and wnbownded 
aboz;g wrf |.|t̂  and 7, fkere g%zsk , . . . , E foec swc/i |dj > |(fj 
ybraZZj E [l,m]. Bylg?MMa7.3g,Bj — E ^ 

If /bZZows f W d) <— c '̂̂ (d, d i , . . . , d^), . . . , is a ground msfance 
q/'gdr(c) E Qo swc/i ĉ '̂̂ (d, d^,. . . , d^) E /oec «Md Bj E ybr aZZ 
j E [l,77i]. Hencep^''(t,d) E 

Now swpposzMĝ  E zf ybZfowg /rem fke aboue fkaf fkere ezz'sfs d gẑ c/z f/zaf 
d) E 7^0. TTzen, by aggWTMpfz'oM, f^re ezKfs d', gzfc!z f/zaf |d'|t̂  > depfk(p(^) 

and 7 |= d') (z.e. d') E /Dept/i)- By LemzMa 7.18, d") E /go and 
ag a ZogzcaZ coMge(̂ zzeMcep(̂  E /%-

2. Inductive case: (k > 0) Inductive hypothesis C: Ifp{i) € Jp then there exists d such 

fAaf d) E . 

(a) Base case: (r = 0) It follows immediately from Definition 7.14 that ifp{t) G Jp^ 

f/zezzybr ez)ery d ZM f/zg Herbrand zzMwerge (^gdr(f)UDepf/zUDec, d) E . 

(b) Inductive case: (r > 0) Now suppose p(t) G (n > Oj. Then there exists a 
groẑ nd zMgfazzcep(t) ^ B i , . . . , B ^ a cZawgg c ZM (m > 0), w/zere 

i. for all j e [1, m] such that rel{Bj) ~ p, Bj = ^^(ay) 6 U%=Q Jp^, and 

zz. ybr aZZ j E [1, m] gẑ cA f W reZ(B )̂ 9̂  p, Bj E U^Zo-^h-

By kypof/zggeg C and A respecfz^eZy, zf ybZZowg fkaf 

z. ^raZZ J E [1, m] gz/cA f/zaf f̂ Z(By) c± p, f/zeree%Kk dj gz/c/z f W dj) E 

zz. aZ/ j E [1, m] gẑ c/z f!zaf ref(Bj) p, Bj = B^ E 

CoMgzder f/ze predzcafe m f/ze cZaz/ge gdr(c). 5mce K weZZ d^zzed wrf |.|(̂  
and f , and zzzzbozz/zded aboue m i | . a n d 7, fkere ezigfg ĉ '̂̂ (d, d^^,..., d^) E /oec 
(wWeybr aZZ j E [1, m], j E {%i,..., tz} ^reZ(Bj) c::; p) gz/c/z f W jd^^ > |dj|(̂  
ybr aZZ j E [1, m]. By LezzzzTza 7.18, Bj = d )̂ E U % = o - ^ Q k ^ 
gzfcZzfWz'gZ(Bj) p. Zf/bZZowg fWp^''(^, d) i— ĉ '̂̂ (d, d<^,..., d -J ,B( , . . . , B^ 
zg a groẑ Tzd ZMgfance q/'gdr(c) E Qt gz/cZz f W ĉ '̂̂ (d, d-^,..., d Ĵ E Toec/ E 

ybr aZZ j E [1, m] gwcZz fZzaf reZ(Bj) p, and Bj E ybr aZZ 

j E [1, ?7i] gzzcZz fZzaf reZ(Bj) p. Hencep '̂̂ ''(t, d) E 

Now gẑ pposzzzg p(^ E vTf),, zY ybZZowg /rom fZzg aboz% fZzaf fZzere ezigk d sz/cZz fZzaf 
p̂ '̂ (E, d) E TTzgzz, by aggzznzpfzoz:, fZzere ezKk d', gẑ cZz fZzaf jd'l̂ j > depfZz(p(^) 
and 7 ^ d') (z.e. p^9'(''(t, d') E logpfh). By Lemma 7.18, p''̂ ''(̂ , d') E and 
ag a ZogzcaZ congĝ ẑzezzce p(^ E 7^^ 

TTzz'g proueg fZzg compZefezzegg regwZf. TTze goẑ ndzzegg regwZf gzoezz by fZze cozzẑ erge can eagz'Zy be 
proved ZM a gzmzZar zzzazzMer fo fZze aboue wz'fZzoizf reZymg on any properfKg q/̂ fZze decremenfafzon 
predzcafeg. O 
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This lemma states that the declarative semantics of the original and transformed 
programs (restricted to the predicates defined in the original program) coincide. Then, 
under the assumption that the transformed program is deadlock free (Marchiori & 
Teusink 1996), it can be guaranteed that all computed answers of this program are 
complete wrt the declarative semantics of the original program. 

The problem now then is to define for each predicate p such that the con-
dition of Lemma 7.19 holds. Observe the intuition behind the construction of the 
transformed program. Suppose it can be deduced that for a given goal G, all computed 
answers for G can be found in an SLD-tree of a certain depth, then the SLD-tree can 
be computed to that depth and no more, and all answers for G will surely have been 
found. In reality, the granularity is finer, relying not on the depth of the SLD-tree as 
a whole but rather on the lengths of individual branches. More precisely, for each 
predicate p/k the depth parameter d' in Lemma 7.19 is an upper bound on the number 
of calls to p/k along one particular branch of the tree. It will often be the case that this 
bormd relates to the "input arguments" of the predicate, i.e. those arguments which 
are instantiated at the time the predicate is called. One natural approach therefore, is 
to use interargument relationships to capture this relation. 

Example 7.8 Consider the following abstract version of the Append program where 
the list length norm has been applied to the arguments and the predicate has been 
augmented with a depth parameter. 

Append^(0, x, x, 0). 
Append°^^(x +1,y, z + 1,d + 1)<-

Append^(x, y, z, d). 

The success set of this program is characterised by the set 

{Append^(T, 2/, z, d) 11 = z — = d} 

from which it may be observed that d is bounded whenever x or z is. Append'̂ ^̂ '' may 
then be defined as follows. 

Append*P^^(x, z, d) ^ 
Length(x, Ix) A 
Length(z, Iz) A 
OneOf(lx, Iz, d). 

The definition of OneOf/3 is non-recursive and hence terminating. It is defined to 
succeed once and instantiate d to either Ix or Iz in an obvious way. 

The above characteristion of the success set may be derived automatically. The 
analysis of Benoy & King 1996 is one such example of a size relationship analysis 
based on abstract interpretation capable of deriving the above result. In addition, 
given suitable abstract programs it can also derive meaningful relationships for the 
Quicksort program which can then be used to form the definitions of the predicates 
SetDepth_Q/3, SetDepth_A/3 and SetDepth_P/4 in the program of Section 7.1.4. • 

Example 7.9 Given the predicate Split from the program Mergesort 

Splitm, D, 0). 
Split([xjxs], [x|o], e) ^ Split(xs, e, o). 
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the following abstract program may be obtained 

Split^^"(0, 0, 0, 0). 
Split^^(xs + 1 ,0 + 1,6, d + 1 ) ^ Split"^®(xs, e, o, d). 

whose success set is characterised by the set 

5" = { S p l i f ^ ( a ; , z , d) | d = 2;/ — 1 < d < 2^, 2z < d < 2z + 1} 

Observe that d is bounded whenever x, y ox z is. This information (automatically 
inferred by the analysis of Benoy & King 1996) may be used to derive a program, ac-
cording to the proposed transform, which terminates for any goal ^ Split(x, y, z) and, in 
addition, returns a set of complete answers wrt the declarative semantics whenever x, 
y or z is a list of determinate length and the remaining two arguments are (optionally) 
iminstantiated. Existing level mapping based approaches fail to prove termination 
for these three separate modes. These approaches only reason about the decrease 
in the level mapping of successive goals in a derivation. For the level mappings 
|Split(ti, ^2, ̂ 3)12 = 1̂21 and |Split(ti,t2,i3)|3 = l̂ sl the decrease only occurs on every 
second goal. A suitable level mapping which can be used to prove termination would 
be |Split(ti, t2, is)! = Tnin{\ti\,2\t2\, 2|t3| + 1) which is difficult to derive automatically 
with existing techniques. Although there is some similarity between the definition of 
I. I and the description of the set S, it is important to remember that the information 
relating to the depths of derivatons captured by S only applies to successful deriva-
tions. Thus it cannot generally be relied upon as a proof of termination in itself (it is 
in this example, but only because there is a single body atom in the recursive clause). 
Termination is, instead, ensured through the described transformation procedure. 

Another problematic predicate, similar in nature to the Split predicate, where 
arguments are exchanged in the recursive call, is examined in Mesnard 1995. Ter-
mination of that predicate in its various modes can also be ensured via the technique 
described here. • 

7.3.2 Efficiency 

The essential idea behind the described approach is to ensure termination by delaying 
possibly non-terminating goals until certain arguments of those goals become rigid. 
In theory the rigidity checks necessary should not incur much more overhead than 
the delay declarations that are often used to assist termination. For example, checking 
rigidity of the first argument of the goal ^ Append([1,2,3], y, z) requires three Nonvar 
tests - exactly the same ntmiber that would be required if the goal were executed using 
the conventional delay declarations. There are additional costs due to vmification and 
the calculation of the depth bound, but these costs could be minimised through careful 
implementation. Some sample programs have been naively implemented and tested, 
and some preliminary results are given below. The experiments have been carried out 
in SICStus Prolog (SICS 1995) on a Sparc 4. 
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Program 
P 

Goal 
G 

Length 
of list L 

f U{G} sdr(f) U{G} Program 
P 

Goal 
G 

Length 
of list L one all one aH 

8-queens qn(-) - 0.4s 6.8s 0.3s 5.3s 
permsort Ps(L, -) 10 6.8s oo 0.7s 0.7s 
permsort ps(-, L) 8 1.7s 10.5s 2.6s lOjk 
quicksort qs(L, _) 4000 3.7s 4.5s 4.8s 6.0s 
quicksort qs(-, L) 8 12ms oo 6ms 83.0s 

The main overhead is due to the rigidity checks and the implementation in this 
respect is rather naive and could be improved. Even with the experimental implemen-
tation this overhead only reaches a maximum factor of about three for the simplest 
programs, e.g. Append. The power of the approach, however, lies in its scalability 
and it is here where potentially the most impressive performance gains are to be 
made. Preliminary tests indicate that the most benefit is obtained from larger pro-
grams where only one rigidity test is performed at the beginning of the program and 
the rest of the computation is bounded by the depth bounds. Then the transformed 
programs can outperform the original ones with the delay declarations, particularly 
as the amount of backtracking or coroutining increases. 

7.4 Summary and Discussion 

The aim of control generation is to automatically derive a computation rule for a pro-
gram that is efficient but does not compromise program correctness. The problem has 
been effectively tackled here by transforming a program into a semantically equiva-
lent one, introducing safe delay declarations and defining a flexible computation rule 
which ensures that all goals for the transformed program terminate. Furthermore, it 
has been shown that the answers computed by the transformed program are complete 
with respect to the declarative semantics. This is significant. 

Beyond the theoretical aspects of the work, its practicality has been demonstrat-
ed. In particular, it has been shown how transformed programs can be easily im-
plemented in a standard logic programming language and how such a program can 
be optimised to reduce the number of costly rigidity checks needed to ensure ter-
mination, dramatically improving its performance. Furthermore, with the proposed 
transformation, the termination problems caused by speculative output bindings are 
eliminated without the use of a local computation rule or other costly overhead. The 
coroutining behaviour which is then possible contributes significantly to the efficiency 
of the generated code. 

In terms of correctness, only termination and completeness have been considered 
in this work, though other correctness issues also need investigating. The connection 
between acyclic modes, rigid terms and the occur check problem needs to be exam-
ined, since the check is never needed for acyclic moded goals (Naish 1993). Also, the 
example of Section 7.1.4.2 illustrates how the problem of deadlock freedom might be 
handled. 

The efficiency issues also require further investigation. To some extent the issues 
of termination and performance have been separated but it is not now clear what role 
extra delay declarations might play in improving the performance of the transformed 
programs, or even whether other techniques such as multiple specialisation would be 
more appropriate. 
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8 Sonic Partial Deduction 

8.1 Introduction 

Control of partial deduction is divided into two levels. The local level guides the 
construction of individual SLDNF-trees while the global level manages the forest, 
determining which, and how many trees should be constructed. Each tree gives 
rise to a specialised predicate definition in the final program so the global control 
ensures a finite number of definitions are generated and also controls the amotmt of 
polyvariance, i.e. the number of specialised versions produced for each individual 
source predicate. The local control on the other hand determines what each specialised 
definition will look like. 

Recent work on global control of partial deduction has reached a level of maturity 
where fully automatic algorithms can be described which offer a near optimal control 
of polyvariance and guarantee termination of the overall partial deduction process 
Leuschel et at. 1998. Such algorithms are parameterised by the local control com-
ponent: an unfolding rule which describes how an incomplete SLDNF-tree should 
be constructed for a given goal and program. It is a requirement of any terminating 
partial deduction system that such trees are necessarily finite. Techniques developed 
to ensure finite unfolding of logic programs Bruynooghe et al. 1992, Martens et al. 1994, 
Martens & De Schreye 1996 have been inspired by the various methods used to prove 
termination of rewrite systems Dershowitz & Manna 1979, Dershowitz 1987. Whilst, 
by no means ad hoc, there is little direct relation between these techniques and those 
used for proving termination of logic programs (or even those of rewrite systems). 
This means that advances in the static termination analysis technology do not directly 
contribute to improving the control of partial deduction and the quality of specialised 
code produced by partial deduction systems. The work of this chapter aims to bridge 
this gap. 

8.1,1 Offl ine versus Onl ine Partial Deduct ion 

Introduction of a static termination analysis phase into a partial deduction algorithm 
has the added benefit that unfolding decisions can be based on a global analysis of the 
program's behaviour, and can sometimes even be made before the actual specialisa-
tion phase itself. Such an offline approach has a number of advantages over its online 
counterpart where unfolding decisions are made at specialisation time. 

The advantage which has been the focus of interest of many researchers is its 
usefulness in the automatic construction of compilers and compiler generators. Par-
tial evaluation of a meta-interpreter with respect to an object program produces a 
"compiled" version of the object program where the interpretation overhead has been 
removed. Given a meta-interpreter, a compiler in this context is a specialised program 
dedicated to the "compilation" of object programs in the above sense. A compiler 
generator, or cogen, is a program which generates a compiler from a meta-interpreter. 
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Compiler generators can be automatically generated through self-application, i.e. 
through partial evaluation of a partial evaluator Futamura 1971. Self applicable partial 
evaluators for full languages are particularly difficult to contruct, however, and as a 
result this approach has recently been neglected in favour of a more promising one, 
known as the cogen approach, where the compiler generator is hand-written instead. 
This seemingly daunting task turns out to be not too difficult and offers a number of 
advantages over the indirect approach Birkedal & Welinder 1994. 

In order to write a compiler generator by hand, one must first focus on the struc-
ture of the compilers that one would like to generate. Remember that a compiler is in 
effect a "partially evaluating meta-interpreter" where the "interpretation" overhead 
of the partial evaluator has been removed. In other words, the control which would 
be imposed on the meta-interpreter by the partial evaluator has been compiled into it 
effectively allowing direct (partial) execution of the meta-interpreter under this control 
regime. Any control decisions which can be made offline, i.e. independently of die 
object programs to be executed by the interpreter, can be hard-wired into the compiler 
and indeed should be in order to make the compiler as fast as possible. Thus, much can 
be contributed to the efficiency of compilers through the use of the offline approach 
with its separate static analysis phase. 

Clearly these arguments still apply when the meta-interpreter, object program 
and object goal are replaced by an arbitrary program accepting static and dynamic 
inputs. For historical reasons, in the cogen approach a compiler is in fact called a 
generating extension and this terminology is adhered to here, not only for consistency 
with the literature but also for its wider applicability to arbitrary programs. 

8.1.2 The Cogen Approach in Logic Programming 

The construction of a cogen for a logic programming language (a subset of Prolog) 
was first described in Jorgensen & Leuschel 1996. A generating extension is obtained 
via a simple transformation of the source program which will briefly be described here 
without covering all of the details. Specifically, each atom in the body of a clause in the 
source program is marked as either reducible or non-reducible. Each clause in the source 
program appears in the generating extension, though slightly transformed. Atoms in 
the body of a clause marked as reducible in the source program also appear in the 
body of the corresponding clause in the generating extension. As a result these atoms 
will always be imfolded at partial evaluation time. Non-reducible atoms on the other 
hand are removed from the body during the transformation process; they will never be 
imfolded at partial evaluation time and together will form the leaves of the final SLD-
tree (the final part of the transformation augments each head and body atom in the 
program with an additional argument to capture these leaf atoms at partial evaluation 
time). One problem with this approach, however, is that whilst it permits goals to be 
imfolded at normal execution speed, it can unduly restrict the amount of unfolding 
which takes place with a detrimental effect on the resulting specialised program. 

Example 8.1 Consider the Append program below. 

oppi Append([], x, x). 
appg Append([u|x], y, [u|z]) 

Append(x, y, z). 
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In the approach described in Jorgensen & Leuschel 1996 two generating exten-
sions of this program are possible (see below). The first is obtained as a result of 
marking the body atom Append(x. y, z) in clause app^ ^ reducible and the second is 
obtained by marking this atom as non-reducible. 

Append([], x, x, []). 
Append([u|x], y, [u|z], [leaves]) 

Append(x, y, z, leaves). 

Append([], x, x, []). 
Append([u|x], y, [u|z], [App8nd(x, y, z)]). 

The fourth argtiment in each program is included to capture the leaves of the 
SLD-tree in the form of an unflattened nested list of atoms. Now consider the goal 
^ Append([1,2,3|x], y, z, leaves). Unfolding this goal wrt the first generating extension 
above leads to the construction of an SLD-tree of infinite depth. When the goal is 
unfolded wrt the second generating extension, the resulting SLD-tree is finite, but only 
a single unfolding step is performed and the opportunity for specialisation is missed. 

The main problem with the above approach is that it is based on the concept 
of binding times which effectively classify arguments as static (known at specialisation 
time) or dynamic (unknown at specialisation time). This division is too coarse, how-
ever, to allow refined tmfolding of goals containing partially instantiated data where 
some parts of the structure are known and others unknown. Instead, the key issue 
which needs to be considered is termination. 

8.1.3 A Sonic Approach 

This chapter proposes a flexible solution to the local termination problem for offline 
partial deduction of logic programs. Based on the cogen approach, the construction of 
a generating extension will be described which "compiles in" the local tmfolding rule 
for a program and is capable of constructing maximally expanded SLD-trees of finite 
depth. 

The technique builds directly on the work of Chapter 7. The link here is that the 
residual goals of a deadlocked computation are the leaves of an incomplete SLD-tree. 
The basic idea is to use static analysis to derive relationships between the sizes of goals 
and the depths of derivations. This depth information is incorporated in a generating 
extension and is used to accurately control the tmfolding process. At specialisation 
time the sizes of certain goals are computed and the maximum depth of subsequent 
derivations is fixed according to the relationships derived by the analysis. In this way 
termination is ensured whilst allowing a flexible and generous amount of unfolding. 
Section 8.2 shows how the transformation of Chapter 7 can be used directly to provide 
the basis of a generating extension which allows finite unfolding of botmded goals. A 
simple extension to the technique is described in Section 8.3 which also permits the 
safe tmfolding of unbounded goals. 

This is the first offline approach to partial deduction which is able to successfully 
unfold arbitrarily partially instantiated (including unbounded) goals such as the one 
encotmtered in Example 8.1 (Section 8.3). In fact, it is demonstrated that the method 
can, surprisingly yield even better specialisation than (pure) online techniques. In 
particular, some problematic issues in tmfolding, notably tmfolding tmder a corou-
tining computation rule and the back propogation of instantiations Martens & De 
Schreye 1996, can be easily handled within the approach (Section 8.5). Furthermore, 
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it is the first offline approach which passes the KMP test (i.e., obtaining an efficient 
Knuth-Morris-Pratt pattern matcher by specialising a naive one), as demonstrated in 
Section 8.7. 

An analysis which measures the depths of derivations may be termed a sounding 
analysis. Section 8.4 describes how such an analysis can be based on existing static 
termination analyses which compute level mappings and describes how the necessary 
depths may be obtained from these level mappings. Unfolding based on a sounding 
analysis then, is the basis of sonic partial deduction. 

8.2 Unfolding Bounded Atoms 

A fundamental problem in adapting techniques from the termination literature for use 
in controlling partial deduction is that the various analyses that have been proposed 
(see De Schreye & Decorte 1994 for a survey) are designed to prove full termination 
for a given goal and program, in other words guaranteeing finiteness of the complete 
SLD-tree constructed for the goal. For example, consider the goal ^ Flatten([x, y, z], w) 
and the program Flatten consisting of the clauses appi, app2,flati and/Zafg-

flat^ Flatten (Q, []). 
flat^ Flatten([e|x]. r) ^ 

Append(e, y, r) A 
Flatten(x, y). 

app^ Append([], x, x). 
appg App8nd([u|x], y, [u|z]) ^ 

Append(x, y, z). 

A typical static termination analysis would (correctly) fail to deduce termination 
for this program and goal. Most analyses can infer that a goal of the form e- Flatten(x, 
y) will terminate if x is a rigid list of rigid lists, or if x is a rigid list and y is a rigid 
list. In the context of partial deduction however, such a condition for termination will 
usually be too strong. The problem is that the information relating to the goal, by 
the very nature of partial deduction, is often incomplete. For example, the goal <-
Flatten([x, y, z], w), will not terminate but the program can be partially evaluated to 
produce the following specialised definition of Flatten/2. 

Flatten([X, y, z], r) ^ 
Append(x, r1, r ) A 
Append(y, r2, r1) A 
Append(z, [], r2). 

The scheme described in Chapter 7 transforms the program Flatten into the fol-
lowing. 

flat* Flatten (x, y) f -
SetDepth_F(x, d) A 
Flatten(x, y, d). 

DELAY F l a t t e n d ) UNTIL Ground(d). 

f lat l Flatten([], [], d) ^ d > 0. 
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f la t l Flatten([e|x], r, d) d > 0 A 
Append(e, y, r) A 
Flatten(x, y, d - 1). 

app* Append(x, y, z) ^ 
SetDepth-A(x, z, d) A 
Append(x, y, z, d). 

DELAY Append(_, d) UNTIL Ground(d). 

app]; Append(Q, x, x, d) d > 0. 
app* Append([u|x], y, [u|z], d) ^ d > 0 A 

Append(x, y, z, d - 1). 

For now, assume that the (meta-level) predicate SetDepth_F(x, d) is defined such 
that it always succeeds instantiating the variable d to the length of the list x if this is 
fotmd to be of determinate length and leaving d tmboimd otherwise. Note that a call 
to Flatten/3 will proceed only if its third argument has been instantiated as a result of 
the call to SetDepth_F(x, d). The purpose of this last argument is to ensure finiteness 
of the subsequent computation. More precisely, d is an upper bound on the number 
of calls to the recursive clause flat^ in any successful derivation. Thus by failing any 
derivation where the number of such calls has exceeded this bound (using the test d > 
0), termination is guaranteed without losing completeness. The predicate SetDepthJVS 
is defined in a similar way, but instantiates d to the minimum of the lengths of the lists 
X and z, delaying if both x and z are unbounded. 

The result of Chapter 7 guarantees that the above program will terminate for 
every goal (in some cases the program will deadlock). Moreover, given a goal of the 
form ^ Flatten(x, y) where x is a rigid list of rigid lists or where x is a rigid list and y is 
a rigid list, the program does not deadlock and produces all solutions to such a goal. 
In other words, both termination and completeness of the program are guaranteed. 

Since the program is terminating for all goals, it can be viewed as a means of 
constructing a finite (possibly incomplete) SLD-tree for any goal. As mentioned above, 
it is indeed capable of complete evaluation but a partial evaluation for botmded goals 
may also be obtained. Quite simply the deadlocking goals of the computation are 
seen to be the leaf nodes of an incomplete SLD-tree. 

For example, the goal ^ Flatten([x, y, z], r) leads to deadlock with the residual goal 
^ Append(x, r1, r, d1) A Append(y, r2, r1, d2) A Append(z, [], r2, d3). R e m o v i n g t he d e p t h 

bounds, this residue can be used to construct a partial evaluation of the original goal 
resulting in the specialised definition of Flatten/2 above. Observe that the unfolding is 
achieved very efficiently through the direct execution of the transformed program. As 
discussed in Chapter 7 the main limiting factor in this respect is the calculation of the 
depth bounds. This will be examined in more detail in Section 8.6. 

The approach, thus far, is limited in that it can only handle bounded goals. For 
unbovmded goals the unfolding will deadlock immediately and it is not possible, for 
example, to specialise ^ Flatten([[], [a] | z], r) in a non-trivial way. This strong limitation 
will be overcome in the following sections. 
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8.2.1 Relation to Previous Approaches 

The method proposed in Bruynooghe et al. 1991 (and further developed in Martens 
& De Schreye 1996) ensures the construction of a finite SLD-tree through the use of a 
measure function which associates with each node (goal) in the tree a weight from a 
well-founded set (see also Section 8.5.1). For example, the original measure function 
proposed by Bruynooghe et al. 1991 maps individual atoms to natural numbers and 
then defines the weight of a goal to be the weight of its selected atom. 

Finiteness is ensured by imposing the condition that the weight of any goal is 
strictly less than the weight of its direct covering ancestor^. This last notion is introduced 
to prevent the comparison of tmrelated goals which could precipitate the end of the 
unfolding process. Clearly, one should only compare the weights of goals whose 
selected atoms share the same predicate symbol. But this is not enough. Consider 
the atoms Append([1], y, r, 1) and Append([2], y1, y, 1) in the tree of Figure 8.1. Any 
sensible measure ftmction would assign exactly the same weight to each atom. But, 
if these weights were compared, imfolding would be prematurely halted after four 
steps. Hence, this comparison must be avoided and this is justified by the fact that the 
atoms occur in separate "sub-derivations" of the main derivation. The direct covering 
ancestor of a goal G then is, loosely speaking, the "closest" ancestor G' occuring in the 
same sub-derivation where the selected atoms in G and G' share the same predicate 
symbol^. 

In the sonic approach, the above notions are dealt with implicitly. Figure 8.1 
depicts the SLD-tree for the goal ^ Flatten([[1], [2]], r, 2) and the transformed version of 
Flatten. The depth argument of each atom may be seen as a weight as described above. 
Note that the weight of any atom in a sub-derivation (except the first) is implicitly de-
rived from the weight of its direct covering ancestor by the process of resolution. This 
conceptual simplicity eliminates the need to explicitly trace direct covering ancestors, 
improving performance of the specialisation process and removing a potential source 
of programming errors. 

8.3 Unfolding Unbounded Atoms 

The main problem with the above transformation is that it only allows the unfolding 
of botmded goals. Often, as mentioned in the introduction, to achieve good special-
isation it is necessary to tmfold unbounded atoms also. This is especially true in a 
logic programming setting, where partially instantiated goals occur very naturally 
even at runtime. This capability may be incorporated into the above scheme as fol-
lows. Although an atom may be unbounded, it may well have a minimum size. For 
example the length of the list [1,2,3|x] must be at least three regardless of how x may be 
instantiated. In fact, this minimum size is an accurate measure of the size of the part of 
the term which is partially instantiated and this may be used to determine an estimate 
of the number of unfolding steps necessary for this part of the term to be consumed in 
the specialisation process. For example, consider the Append/3 predicate and the goal 
e- Append([1,2,3|x], y, z). Given that the minimum size of the first argument is three it 
may be estimated that at least three unfolding steps must be performed. Now suppose 

^Note that this concept has nothing to do with the direct cover relation (Definition 7.2). 
^In fact, Bruynooghe et al. 1991 states a slightly more general condition which is useful for unfolding 

meta-interpreters, but the details are not important here. 

102 



Flatten([[1].[2]].r,2) 

Append([1], y, r, 1) A Flatten([[2]], y, 1) 

Append([], y, r1, 0) A Flatten([[2]], y, 1) 

Flatt8n([[2]], y. 1) 

Append([2], y1, y, 1) A Flatten([], y1, 0) 

Append([], y1, r2, 0) A Flatten([], y1, 0) 

Flatten^, y1, 0) 

• 

Figure 8.1; Unfolding of Flatten([[1], [2]]. r, 2) 
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that the number of unfolding steps is fixed at one plus the minimum (this will usually 
give exactly the required amoimt of specialisation). The transformed Flatten program 
may now be used to control the unfolding by simply calling ^ Append([1,2,3|x], y, z, 3). 
The problem here, of course, is that completeness is lost, since the goal fails if x does 
not become instantiated to []. To remedy this, an extra clause is introduced to capture 
the leaf nodes of the SLD-tree. The Append/3 predicate would therefore be transformed 
into the following. 

app* Append(0, x, x, d) d > 0. 
app; Append([u|x], y, [u|z], d) d > 0 A 

Append(x, y, z, d - 1). 
appl Append(x, y, z, d) d < 0 A 

Append(x, y, z, _). 

The call to Append/4 in the clause app^ immediately suspends since the depth 
argument is iminstantiated. The clause is only selected when the derivation length 
has exceeded the approximated length and the effect is that a leaf node (residual goal) 
is generated precisely at that point. For this reason, such a clause is termed a leaf 
generator in the sequel. Now for the goal Append([1,2,3|x], y, z, 3) the following 
resultants are obtained. 

Append([1,2,3], y, [1,2,3|y], 3) 
Append([1,2,3,u|x'], y, [1,2,3,u|z'], 3) f - Append(x', y, z', _) 

Observe that the partial input data has been completely consumed in the tmfold-
ing process. In fact, in this example, one more unfolding step has been performed 
than is actually required to obtain an optimal specialisation, but this is due to the 
fact that the goal has been unfolded non-deterministically. In some cases, this non-
deterministic tmfolding may actually be desirable, but this is an orthogonal issue to 
termination (this issue will be re-examined in Section 8.7). 

Furthermore, note that the SetDepth predicates must now be redefined to assign 
depths to tmbotmded atoms. In the case that the depths are derived from level 
mappings (see Section 8.4), which in turn are defined in terms of norms, this will most 
likely involve modifying the norm definitions such that variables map to zero instead 
of variables. Then, for example, |[1,2,3|x]|/,st_/g„^f^ = 3 and not 3 + x. 

Finally, a predicate such as SetDepth J\(x, z, d) must be defined such that d gets 
instantiated to the maximum of the minimum lengths of the lists x and z to ensure 
a maximal amount of unfolding. Recall the level mapping |.|4 of Example 3.7 de-
fmed by |Append(ti,t2,t3)|4 = consider the goal (-
Append([1,2,3|x], y, z) from above. With a redefined list length norm mapping variables 
to zero, it becomes feasible to apply this level mapping to non-grovmd atoms. Then 
|Append([1,2,3|x], y, z)|4 = min(3,0) = 0. It is clearly inappropriate, however, to base 
the value of the depth bound on this level mapping, since it does not provide a mea-
sure of the structure present in the atom. This can easily be rectified by redefining |.|4 
such that |Append((i,t2,^3)|4 = max{\ti\iigt.igngth-, \t-i\iist-iength)- Note that the maximum 
value returned by this mapping will always be finite. 

8.4 Deriving Accurate Depth Bounds from Level Mappings 

The above transformations rely on a sounding analysis to determine the depths of 
derivations or tinfoldings. Such an analysis may be based on exisiting termination 
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analyses which derive level mappings. To establish the link with the termination 
literature the depth argument in an atom during unfolding may simply be chosen to 
be the level of the atom with respect to some level mapping used in a termination 
proof. Whilst, in principle a depth bound for unfolding may be derived from any 
level mapping, in practice this can lead to excessive imfolding. The following example 
illustrates this. 

Example 8.2 Consider again the Append program and the level mapping |.| defined 
by |Append(z, y,z)\ = 3 * | x | i i s t - i eng th - The program can be proven to be recurrent wrt 
|.| and thus goals of the form Append(x, y, z) where x is a rigid list are guaranteed to 
terminate. If the upper bound on the number of derivation steps in a computation 
is defined to be equal to the level-mapping, a gross over-approximation is obtained. 
Given the goal ^ Append([1 jx], y, z), the number of derivation steps will be estimated as 
three. Non-determinate unfolding wrt the clauses app^, app^ ^nd appl then produces 
the following resultants (with the depth bounds removed) 

Append([1], y, [1|y]) <-
Append([1,u], y. [1,u|y]) 
Append([1,u,v], y, [1,u,v|y]) <-
Append([1 ,u,v,w|x], y, [1 ,u,v,w|z]) ^ Append(x, y, z) 

This specialisation is clearly undesirable. The problem can be fixed here by using 
a determinate tmfolding rule, but this may not always be the case. A more general 
solution is to consider the difference in the level mappings between the head and the 
(mutually recursive) body atoms. By subtracting the difference on each recursive call 
the number of unfolding steps may be accurately controlled. 

Example 8.3 Consider clause app^ of the Append program and the level mapping |.| 
defined in Example 8.2. Since 

|Append([u|x], y, [u|z])| - |App8nd(x, y, z)| = (3 x |x|]jst.iength -t- 3) - (3 x |x|]ist.iength) = 3 

the clause app^ may be transformed into the clause appl below. Then an Append/3 atom 
whose size is measured wrt |. | can be unfolded wrt app^, appl and app^ resulting in the 
desired specialisation. 

appl Append([u|x], y, [u|z], d) d > 0 A Append(x, y, z, d - 3). 

• 

It is often the case that the head and recursive body atoms in a predicate contain 
distinct variables and thus the difference in their levels is an expression over these 
variables. Such expressions can often be reduced to a constant using interargtiment 
relationships. 

Example 8.4 Consider the well known naive reverse predicate below. 

revi Reverse([], []). 
rev2 Reverse([x|xs], [y|ys]) ^ 

Delete(y, [xjxs], zs) A 
Reverse(zs, ys). 
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Given the interargument relationship Delete(x, i/, z) : \y\iisi-iength = \z\iist-iength + 1 
together with the level mapping |.| defined by |Reverse(rE, y)| = \x\iist-ie„gth + 1 and 
|Delete(r, 1/, z)| = \y\iist-iength the difference in the levels between the head and the 
recursive call of the clause reug is (1 + |xs|;igWgMgfh + 1) - (|zs|%(.kng(h + 1) = (1 + 
l^Miist-iength + 1) " {\^^\ust-iength + 1) = 1- Note that this m a y b e automatically derived 
using constraint technology. • 

One problem remains in this example. For any goal ^ Reverse(x, y), the level 
mapping |. | over-approximates the number of unfolding steps by 1 each time which 
may lead to sub-optimal specialisation. Careful examination of the termination litera-
ture reveals that level mappings involving additive constants such as |. | are needed in 
termination proofs where the recursive structure of the program is not fully exploited, 
such as in a proof of recurrency (De Schreye & Decorte 1994). For example, to prove 
that the Reverse predicate is recurrent wrt |. | the inequality 

|Reverse([x|xs], [y|ys])| > |Delete(y, [x|xs], zs)| 

must hold and hence |.| must be defined by |Reverse(2;, y)| = \x\iist-iength + 1 rather 
than |Reverse(x,y)| = \x\iist-iength- The classes of bounded recurrent and semi delay 
recurrent programs, introduced in Chapters 6 and 7 respectively, allow termination 
proofs to be based on the recursive structure of a program. Additive constants are 
seldom needed in such proofs. Indeed, for directly recursive programs, they are 
completely unnecessary and for mutually recursive programs they can be minimised. 
The Reverse predicate, for example, is semi delay recurrent wrt the level mapping 
defined as in Example 8.4 but with |Reverse(z, y) | = \x\iist-iength- It is straightforward to 
adapt existing termination analyses to derive these simpler level mappings which can 
then be used to give an accurate measure of the number of imfolding steps required 
for a given goal. 

It may happen that the difference in levels between head and body atoms is not 
a constant, but is boimded by a constant n. In this case, it is safe to take the bound n 
as the difference as this will alow a large (though not necessarily maximal) amount of 
unfolding. 

Finally the most problematic case arises when the difference is (bounded by) a 
variable expression which cannot be reduced to a constant. Here it may be possible 
to track the sizes of the relevant variables. This involves only a few extra arithmetic 
operations and not the calculation of a large number of term sizes and so incurs only 
a small performance penalty. 

Example 8.5 Consider the Match program 

mi Match([], _). 
7712 Match([a|ps], [ajts], p, t) ^ 

Match(ps, ts, p, t). 
ms Match([a|v], [bjw], p, [x|t]) ^ 

a ^ b A 

Match(p, t, p, t). 

and the level mapping |.| defined by |Match(w,a;,3/,z)| = 
The difference between the head of the clause ma and its recursive body atom is not a 
constant: 
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|Match([a|v], [b|w], p, [x|t])| - |Match(p, t, p, t)| = {1 + w + 1 + 2t + - {t + t^) 

= {1 + w) + (1 + t) 

where w = \w\iist-iength and t = \t\iist-iength- Tight control of the unfolding process 
can still be achieved however by transforming Match into the following, where extra 
arguments are added to track the sizes of the second and fourth arguments which in 
turn can be used to calculate a more accurate depth bound for each recursive call. 

m l Match([], (sizes, size4, d)) f -
d > 0 A sizeg > 0 A size4 > 0. 

Match([a|ps], [ajts], p. t, (size2, size4, d)) <-
d > 0 A size2 > 0 A size4 > 0 A 
Match(ps, ts, p, t, (size2 - 1, size4, d - 1)). 

Match([a|_], [b|_], p, [_|t], (siz82,size4,d)) 
d > 0 A sizes > 0 A size4 > 0 A 
a ^ b A 

IVIatch(p, t, p, t, (size4 - 1, size4 - 1, d - sizeg - size4)). 

In this program, the argument d keeps track of the level of each IViatch atom. 
The level of the recursive call of clause ml is calculated from the level of the head 
by subtracting the sizes of the second and fourth head arguments. The necessary 
expression (i.e. d - sizes - size )̂ can be obtained automatically, using, for example, 
constraint technology, from the difference in the levels of the head and the recursive 
call as calculated above (note that the size of the second argument in the head is 1 + w 
and the size of the fourth argument is 1 + t). • 

It is not clear when such a transformation would be generally applicable. It is 
important to note, however, that finiteness can always be guaranteed; the problems 
raised above relate only to the quality of the specialisation and, as mentioned earlier, 
this is also dependent to some extent on the control of determinacy. Although this has 
been touched upon in Gallagher 1993 this is still a relatively unexplored area in the 
context of partial deduction. Many of the problems above may disappear altogether 
with the right balance of bounded and determinate unfolding. Finally, note that the 
problem of deriving a tight upper bound on the number of derivation steps in a 
computation is also useful in the context of cost analysis (Debray & Lin 1991). 

8.5 Offline versus Online Unfolding 

This section compares the power of sonic partial deduction with existing online tech-
niques. The most interesting conclusion of this study is that the choice of an offline 
approach does not necessarily entail the sacrifice of tmfolding potential. On the con-
trary, in some cases the imfoldtng behaviour is better with the proposed method than 
with the most recent online ones. This is demonstrated through some simple examples 
which illustrate known problematic imfoldtng issues (Martens & De Schreye 1996). 
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8.5.1 Measure Functions and Level Mappings 

Online unfolding methods, e.g. Martens & De Schreye 1996, Bruynooghe et al. 1991, 
Martens et al. 1994 use measure functions to assign weights to atoms and goals. Unfold-
ing is controlled by ensuring that weights are strictly decreasing at each unfolding 
step. In the seminal online work Bruynooghe et al. 1991, weights were assigned to 
individual atoms using set based measure functions of the form 

|p(^l) • • • ) ^n) \p,S — \tai I • • • + Om I 

where S = {ai,... ,am} Q {l,...,n} and |t| counts the number of (non 0-ary) functors 
in the term t. The subset S of argument positions for each predicate is determined 
dynamically during the unfolding process. Clearly, such a function corresponds to a 
restricted form of level mapping and in principle, the level mapping could be derived 
a priori using static analysis. Much depends of course on the power of the analysis 
and also to what extent the decreasing weights of goals is dependent on the program 
input rather than the structure of the program itself. In many cases, however, current 
termination analysis techniques are able to derive exactly the same level mappings 
that are obtained through online rmfolding. 

8.5.2 Lexicographical Priorities 

Set based measure ftmctions can lead to overly restrictive tmfolding as the following 
example from Martens & De Schreye 1996 illustrates. 

Example 8.6 Consider the ProduceConsume program 

pci ProdCons([x|xs], Q) 
ProdCons(xs, [x]). 

pc2 ProdCons(x, [yjys]) ^ 
ProdCons(x, ys). 

and the goal ^ ProdCons([1,2jxs], []). Figure 8.2 depicts a finite incomplete SLD-tree 
illustrating the desired unfolding for this goal (the additional third argument in each 
atom should be ignored at this point). As Martens & De Schreye 1996 points out, there 
is no subset S for which the set based measure function |. | prodCons s ^ decreasing for 
each successive atom in this tree (excluding the last node). 

In order to obtain the desired unfolding. Martens and De Schreye refine their 
measure functions by introducing the notion of a partition based measure fimction. 
Such a function maps an atom to an ordered n-tuple where each element in the tuple 
is obtained by applying a set based measure fimction to the atom. By using the lexico-
graphical ordering to compare n-tuples, this refinement effectively allows priorities to 
be assigned amongst the arguments of an atom. Figure 8.2 shows the 2-tuples assigned 
to the atoms in the SLD-tree by the function MprodCons,({i},{2}) defined by 

IProdCons(3;, ^)|ProdCons,({l},{2}) — (l^|proclCons,{l}i lz/|prodCons,{2}) 

The problem is easily handled within the framework proposed here by the choice of 
a level mapping which ensures termination. The above program is recurrent wrt the 
level mapping |.| defined by |ProdCons(3:,2/)| = 2 * + Iz/lfisf-kngfA- Then 

|ProdCons([x|xs], [])| - |ProdCons(xs, [x])| — 1 
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ProdCons([1,2|xs], 0,4) (2,0) 

ProdCons([2jxs], [1], 3) (1,1) 

- ProdCons([2)xs], [], 2) (1,0) 

- ProdCons(xs, [2], 1) (0,1) 

^ ProdCons(xs, [], 0) (0,0) 

<-ProdCons(xs', [x'],-1) (0,1) 

Figure 8.2; Unfolding of ProdCons([1,2|xs], [], 4) 

|ProdCons(x, [y|ys])| - |ProdCons(x, ys)| = 1 

and the clauses and pc^ can be transformed into 

pel ProdCons([x|xs], [], d) ^ 
ProdCons(xs, [x], d - 1). 

pc* ProdCons(x, [y|ys], d) ^ 
ProdCons(x, ys, d - 1). 

N o w |ProdCons([1,2|xs], [])| = 4 a n d the goal <— ProdCons([1,2|xs], [], 4) can be 
unfolded wit the clauses pc*, pc^ and a leaf generator to produce the SLD-tree depicted 
in Figure 8.2. Notice how the priority assigned to the first argument of ProdCons/2 by 
the lexicographical ordering is captured by the co-efficient 2 in the level mapping |. |. 
In fact, exactly the same result may be obtained using any other level mapping |.|' 
defined by |ProdCons(3;,^)|' = a * + 6 * where a > 6 > 0 are 
arbitrary integers. Of course, the generating extension and goal are different in each 
case. Also note that such a level mapping can be automatically derived using current 
termination analysis technology, e.g. Decorte & De Schreye 1997. 

8.5.3 Well-quasi Orders and Homeomorphic Embedding 

It turns out that, for the online approach, well-foimded orders as used in Sections 8.5.1 
and 8.5.2 are sometimes too rigid or (conceptually) too complex. Recently, well-quasi 
orders have therefore gained popularity to ensure online termination of program ma-
nipulation techniques (Bol 1991, Sahlin 1993, Serensen & Gliick 1995, Gltick et al. 1996, 
Jorgensen et al. 1996, Leuschel & Martens 1996, Vanhoof & Martens 1997, Leuschel 
gfaZ. 1998). 

The additional power of well-quasi orders stems from the fact that incomparable 
elements are allowed within sequences of goals during unfolding (while approaches 
based upon well-founded orders have to impose strict decreases). For example, con-
sider a sequence of goals GQ, . . . ,Gn obtained during tmfolding. Unfolding based on 
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a well founded order would require Go > • • • > Thus, unfolding will be halted at 
this point if the next goal in the sequence Gn+i is such that < Gn+i- On the other 
hand, when using a well-quasi order, it is permissible for elements in the sequence, 
such as Gn and to be incomparable. The goal G„+i will be the final goal in the 
sequence only if for some i < n + 1, Gi < Gn+i- The following definition formalises 
this idea. 

Definition 8.1 (well-quasi order) An ordered set 5'(<) is called well-quasi ordered iff 
for any infinite sequence ei, eg,... of elements of S, there exist elements e, and Cj with 
i < j such that Cj < ej. • 

A simple example of a well-quasi order is the homeomorphic embedding relation < 
defined below. The intuition behind this relation is that s < t if s can be obtained from t 
by "striking out" parts of t. For example, P(A) can be obtained from P(F(A)) by striking 
out the function symbol F and thus P(A) < P(F(A)). Note that this is a generalisation of 
the subterm relation. 

Definition 8.2 (homeomorphic embedding) The homeomorphic embedding relation 
< on expressions is defined inductively as follows 

1. X <y for all variables x, y 

2. g < / ( t i , . . . , if 5 < for some z 

3. / ( s i , . . . ,Sn) ^ / ( ( i , . . . if for G [1,7%], g, < 

The power of well-quasi orders can be seen in the homeomorphic embedding 
relation which will, for example, allow an unfolding step from the goal P([], [A]) to 
the goal P([A], []) and vice versa, since the goal atoms are incomparable. No well 
fotmded order will allow both of these unfoldings. On the formal side, Leuschel 1998 
shows that the homeomorphic embedding relation is strictly more powerful than any 
online approach using monotonic well-founded orders or simplification orders. These terms 
are defined below. 

Definition 8.3 (monotonic well-founded order) A well-founded order < on expres-
sions is monotonic iff the following hold: 

1. X y for all variables x, y; 

2. s f{ti,.. • ,tn) whenever / is a function symbol and for some i; 

3. / ( s i , . . . , gn) /(t i , - - , whenever for all % E [1, a]. O 

Definition 8.4 (simplification ordering) A simplification ordering is a well-founded or-
der < on expressions which satisfies the following; 

1. f{ti,..., s , . . . , < f{ti,... ,t,... ,tn) if s < t (replacement property); 

2. t < f{ti,... ,t,... ,tn) (subterm property); 

3. s9 < t(l) if s < t for all variable renaming substitutions 9 and 4> (invariance under 
variable replacement). • 
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The results of Leuschel 1998 covers the approaches of Bruynooghe et al. 1992, 
Martens et al. 1994 and Martens & De Schreye 1996 as described in Sections 8.5.1 and 
8.5.2. Furthermore, there is no well-founded order, monotonic or not, which is strictly 
more powerful than <. In practice this means that there will be cases where < is more 
powerful than the sonic approach based upon well-founded orders. 

Nonetheless, well-quasi orders are more costly to implement (at every unfolding 
step, a comparison is required with every ancestor while well-fotmded orders only 
require a comparison with the covering ancestor due to transitivity). Moreover, the 
well-founded orders used by the sonic approach are not restricted to be monotonic and 
do not have to be simplification orders. They are thus incomparable in power to <. For 
example, the list length norm | .{usi-ungth is neither monotonic nor a simplification order, 
and indeed, given = [1,2,3] and = [[1,2,3],4] then = 3 > Itslzist-kmgfA = 2 
although ti < t2 (because ti can be obtained from tg by striking out parts of the term). 
In other words \-\iist-iength will admit the sequence ti,t2 while < does not. As will be 
shown below, there are other cases where the sonic approach is more powerful than 
the simple approach of using homeomorphic embedding on covering ancestors. 

8.5.4 Coroutining 

The increased power offered by partition based measure functions can still be insuffi-
cient when unfolding tmder a coroutining computation rule. The following example, 
again from Martens & De Schreye 1996, illustrates the problem. 

Example 8.7 Consider the program Co-ProduceConsume below 

cpci ProduceConsume(x, y) ^ 
Procluce(x, y) A 
Consume(y). 

cpc2 Produce([], []). 
cpc3 Produce([x|xs], [x|ys]) ^ 

Produce(xs, ys). 

cpc4 Consume([]). 
cpc5 Consume([x|xs]) ^ 

Consume(xs). 

and the goal e- ProduceConsume([1,2|x], y). Figure 8.3 illustrates the desired unfolding 
for this goal and program (again the additional third argument in each atom should 
be momentarily ignored). Observe that any (sensible) measure function which only 
considers the selected atom when assigning a weight to a goal will map the two 
goals containing the selected atoms Consume([1 |y']) and Consume([2|y"]) to the same 
weight and consequently unfolding would stop on reaching the second of these goals. 
Observe that an imfolding rule based upon < would allow the Consume([2|y"]) to be 
unfolded (Consume([1 |y"]) ^ Consume([2|y"]) as 1 and 2 are tmcomparable). However, 
if the initial goal is slightly changed to ProduceConsume([1,1 |x], y) then the same prob-
lem also arises for < (now Consume([1 |y"]) < Consume([1 |y"]) and further unfolding is 
prevented). • 

The solution proposed in Martens & De Schreye 1996 is to further refine partition 
based measure fimctions to take into accotmt other atoms in a goal besides the selected 
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ProduceConsume([1,2|x], y, 2) 

Produce([1,2|x], y, 2) A Consume(y, 2) (2,0) 

Produce([2|x], y', 1 A Consume([1 |y'], 2) (1,1) 

Produce([2|x], y', 1) A Consume(y', 1) (1,0) 

0) A Consume([2|y"], 1) (0,1) Produce(x, y 

Produce(x 

(_L,0) ^ Consume([], 0) 

^ A Consume(y", 0) (0,0) 

Produce(x", z, -1) A Consume([x'|z], 0) (0,1) 

I 
• Produce(x", z, -1) A Consume(z, -1) 

Figure 8.3: Unfold ing of ^ ProduceConsume([1,2jx], y, 2) 

one. The details are somewhat complicated and consequently a full description is not 
given here. Figure 8.3 shows one possible assignment of weights to the goals in the 
SLD-tree under the scheme of Martens & De Schreye 1996. The weight associated 
to each goal is a 2-tuple where the first argument of the tuple is the size of the first 
argument of the Produce atom in the goal and the second argument is the size of the 
(first) argument of the Consume atom in the goal. The symbol _L is used to register 
the disappearance of the Produce atom, and in addition the ordering on the natural 
numbers is extended by defining _L< 0. 

An offline approach may exploit information from a static analysis to accurately 
control the unfolding in this example. In particular, interargument relationships allow 
depth information to be shared between the coroutining atoms in the computation. 
The interargument relationships 

ProduceConsume(x, y) : x ' = y' a n d Produce(x, y) : x' = y' 

may be derived for the program where x' = \x\iist-iength and y' = \y\iist-iength- Let |. | be the 
level mapping defined by |Produce(a;,i/)| = and |Consume(2/)| = 
Then for any successful refutation of the goal ^ Produce(x, y) A Consume(y) the equation 
|Produce(x, y)| = \x\iist-kngth = \v\iist-iength = |Consume(y)| must hold. Hence the program 
can be transformed into the following (leaf generators for Produce/3 and Consume/2 
omitted). 

cpc* ProduceConsume(x, y) ^ 
SetDepth_PC(x, y, d) A ProduceConsume(x, y, d). 
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cpcj ProduceConsume(x, y, d) ^ 
Produce(x, y, d) A Consume(y, d). 

prodl Pi'oduce([], [], d) ^ d > 0. 
prod* Produce([x|xs], [x|ys], d) d > 0 A Produce(xs, ys, d - 1 ) . 

consl Consume([], d) d > 0. 
coMgg Consume([x|xs], d - 1) <— d > 0 A Consume(xs, d). 

In this program, the predicate SetDepth_PC(x, y, d) is effectively defined by the 
equation d = mflx(|Produce(x, y)|, |Consume(y)|). By choosing the maximum of the 
levels of the two atoms (which is always finite - see Section 8.3) the greatest potential 
for unfolding is obtained. Thus the initial goal ^ ProduceConsume([1,2|x], y) gives 
mflx(|Produce([1,2jx], y)|, |Consume(y)|) = max{2,Q) = 2 and consequently the goal 
^ Produce([1,2|x], y, 2) A Consume(y, 2) is obtained. Unfolding this goal wrt the above 
program leads to the construction of the whole SLD-tree depicted in Figure 8.3. Using 
the context considering partition based measure functions of Martens & De Schreye 
1996 the final unfolding step on the right hand branch of the tree (indicated by the 
dashed arrow) is not permitted since the weight of this goal is the same as the weight 
of its direct covering ancestor ^ Produce(x, y", 0) A Consume([2|y"], 1). 

The key issue here is not that a single extra unfolding step is obtained in this 
example but the fact that this demonstrates that the unfolding capability of an offline 
technique may surpass that of an online one and the reason for this. The "sharing" 
of depth information between atoms is possible through the use of interargument 
relationships which describe the success set of the program. Information relating to 
the success set is not available to a (pure) online technique. Thus in sonic partial 
deduction a strictly broader context is considered than in the online case when making 
unfolding decisions. Finally it is worth remarking that the derivation of interargument 
relationships forms a core part of many of the termination analyses found in the 
literature. 

8.5.5 Back Propagation 

A generating extension for the naive reverse program using Append is shown below. 

rev* Rev(x, y) ^ 
SetDepth_R(x, y, d) A 
Rev(x, y, d). 

Rev(|], [], d) <-
d > 0 . 

rev^ Rev([x|xs], y, d) ^ 
d > 0 A 

Rev(xs, z, d - 1) A 
App(z, [x], y, d - 1), 

rev^ Rev(x, y, d) ^ 
d < 0 A 
Rev(x, y, _). 

Unfolding the goal Rev([1,2|x], y) wrt this program results in an SLD-tree with 
associated resultants r i , . . . ,r4 below. To give some idea of how these are obtained, 
the SLD-derivation associated to rg is roughly depicted in Figure 8.4. 
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Rev([1,2|xs], y, 2) 

Rev([2|xs], z, 1 A App(z, 

^ Rev(xs, z', 0) A App(z', [2], z, 0) A App(z, [1 ], y, 1) 

rgDg { xs/[x|xs']} 

Rev(xs', z", -1) A App(z", [x], z', -1) A App(z', [2], z, 0) A App(z, [1], y, 1) 

W i { z'/D, z/[2] } 

^ Rev(xs', z", -1) A App(z", [x], [], -1) A App([2], [1], y, 1) 

| W 2 / W i {y/[2.i]} 

^ Rev(xs', z", -1) A App(z", [x], [], -1) 

Figure 8.4: Unfolding of e- Rev([1,2|xs], y, 2) 

n Rev([1,2|x], y)<-x = []Ay = [2,1]. 
RA Rev([1,2|x], y) <- x = [a|b] A y = [2,1] A Rev(b,c) A App(c,[a],[]). 
RG Rev([1,2|x], y) ^ X = [a|b] A y = [c,1] A App(d,[2],[]) A Rev(b,e) A 

App(e,[a],[c|d]). 
7-4 Rev([1,2|x], y) ^ X = [a|b] A y = [c,d|e] A App(f,[1],8) A App(g,[2],[d|f]) A 

Rev(b,h) A App(h,[a],[c|g]). 

Observe that rg and rg both contain atoms of the form App(x, [y], []) in their right 
hand sides. These atoms clearly lead to failure but this is not identified during the tm-
folding process. The decision to leave them as residual atoms takes place before they 
become instantiated enough to be unfolded. More precisely, when one of these atoms 
is first encoimtered it is of the form App(x, [y], z) and should not be unfolded further 
since there is danger of non-termination. Later in the computation z becomes bound 
to [] but the atom App(x, [y], []) is no longer a candidate for selection. This problem 
also arises in the online approach when using the measure functions described in the 
previous sections to control unfolding It is termed the back propagation problem in 
Martens & De Schreye 1996 since it is caused by a reverse flow of data. 

To solve the problem Martens & De Schreye 1996 suggests yet another, even 
more complicated measure fvmction refinement. The details of this refinement are 
not presented and it is not clear to what extent it satisfactorily deals with the problem. 
The solution in the present context is much simpler and consists of always vmfolding 
any atoms that are bounded. Such atoms will lead to a (possibly empty) resultant 
whose atoms have predicate symbols lower down in the predicate dependency graph 
than the predicate symbol of the initial atom. It might also be possible to imfold these 
atoms further or as a result other atoms in the original resultant may have become 

®The unfolding and the resultants obtained are slightly different, but the resultants still contain atoms 
of the form App{x, [y], []) in their right-hand sides. 
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bounded and can also be selected for unfolding. Note that this process is guaranteed 
to terminate. 

Here again a greater unfolding potential is realised through the availability of 
global information, i.e. the knowledge that a bounded atom can be safely tmfolded 
a finite number of steps. A pure online technique does not have this "look ahead" 
capability; it can only compare the present goal with the ones it has encountered in 
the past with no clue as to what may occur in the future computation. 

8.5.6 Other related work 

8.5.6.1 Loop checking 

Early work on termination in logic programming focused on detecting loops at rim-
time (Brough & Walker 1984, Covington 1985a, Covington 1985b, Nute 1985, Poole & 
Goebel 1985, van Gelder 1987). Simple adaptations of these techniques were proposed 
(Apt et al. 1989, Benkerimi & Lloyd 1990) for controlling unfolding during partial 
deduction. Benkerimi & Lloyd 1990, for example, give four criteria for controling 
the unfolding. At each unfolding step the selected literal is compared with the one 
previously selected on the same branch of the SLDNF-tree and rmfolding is halted 
if the descendent literal is a variant of, an instance of, more general than or unifies 
with the ancestor literal. As illustrated in Bruynooghe et al. 1991 these criteria are 
not comprehensive enough to prevent infinite unfolding. Bol 1993 describes some so 
called complete loop checks which ensure termination of imfolding. It is shown in Bol 
1991, however, that it is not enough to look only at the selected literal; the context of 
the goal is needed, which makes the check more expensive. 

As it is, the majority of loop checks rely on comparing the current goal with every 
preceding goal in the derivation, resulting in a number of checks which is quadratic 
in the length of the derivation. Some notable exceptions include the Tortoise and Hare 
technique of van Gelder 1987, which is not actually complete, and those proposed 
by Bol 1991. Of these, it is suggested that the "triangular" loop check is perhaps, in 
general, the most efficient though this requires something on the order of 5n checks 
for a derivation of length n. Since each check can involve the comparison of goals, 
atom for atom, term for term, the cost of these loop checking techniques is still quite 
high. 

Another major disadvantage of the linear time loop checks proposed in Bol 1991 
is their random nature. Since they do not compare all goals, and are not tailored 
specifically to suit a given program and goal, when a loop occurs, it is largely a matter 
of luck as to when it is detected. In terms of partial deduction, this can lead to an 
tmneccessary explosion of the search space during unfolding. 

Finally, it may be remarked that these techniques are all designed to detect loops 
at rim-time which in the partial deduction context translates as an online approach to 
unfolding. They cannot be used, for example, to ensure in advance, that a given goal, 
or class of goals can be completely unfolded. 

8.5.6.2 Finiteness Analysis 

Offline partial evaluation has been studied extensively in functional programming 
though for some time consideration of termination was largely neglected. The partial 
evaluation stage is preceded by a binding time analysis which annotates each argu-
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ment in the program as either static or dynamic. Functions with static arguments can 
be evaluated whilst residual code is produced for those with dynamic ones. The ter-
mination issue is addressed hy generalising variables, that is by changing their binding 
time annotation from static to dynamic (Hoist 1991, Anderson & Hoist 1996). This 
occurs whenever execution of a piece of static code may lead to non-termination. 
Whilst this works well for functional programs, the static/dynamic divisions do not 
translate well for logic programs (see Section 8.1) and thus this approach to ensuring 
termination is not generally suitable for logic programming. 

8.5.7 Offline vs. Online Conclusion 

This section has compared sonic partial deduction with the state of the art online 
unfolding techniques as described in Martens & De Schreye 1996. It has been shown 
that the approach is able to handle a variety of examples which are known to present 
difficulties in unfolding. The method is able to handle these examples in a uniform 
manner, whereas the work of Martens & De Schreye 1996 requires the use of increas-
ingly complex measure functions to handle them. This increasing complexity intro-
duces with it increasing overhead as well as the growing risk of programmer error in 
the actual coding. This is an important issue when considering the construction of a 
tool which one would like to prove terminating. 

Not only is the approach much simpler, it also offers potential for unfolding 
unfulfilled by online methods. The reason why offline techniques can permit more 
unfolding than online ones is the fact that they consider the global context. A global 
analysis can infer information which may not be available locally when deciding on a 
particular atom to unfold. A number of fairly complex examples have been examined 
in the previous sections. The following is a simpler example: 

UpToN(n, n, [n]). 
UpToN(x, n, [xjxs]) ^ 

X < n A 
UpToN(x + 1,n, xs). 

Unfolding the goal UpToN(1, 3, x) leads to two other goals: UpToN(2, 3, x) 
and UpToN(3, 3, x). The only difference between the atoms in these goals is in the 
first argument which is increasing in value. To determine that the sequence of goals is 
finite (under a left-to-right computation rule) requires the global information that the 
first argument is bounded by the second argument. 

Of course, an online technique may still be able to make refined unfolding deci-
sions based on the availability of concrete data, not available to an offline one. Clearly, 
then, a more powerful technique may be obtained by a combination of these approach-
es. 

8.6 Implementation 

In the sonic approach the main limiting factor in the efficiency of the specialisation 
process is the calculation of the required depth bounds. The "greater than zero" tests 
on the depth bounds and the decrementation of them in the subsequent computation 
incur minimal overhead. Thus, by paying attention to the calculation of these botmds 
the generating extensions can be tuned for maximum efficiency. 
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This hand-crafting of generating extensions, is an important step in the develop-
ment of fast specialisers. Experience with the self-application approach shows that fast 
compilers (or generating extensions) do not come about by accident. Some care needs 
to be taken to ensure that both the partial evaluator and the interpreter are amenable 
to specialisation. This amenability has been particularly difficult to achieve in the case 
of the partial evaluator which must be self-applied. 

With regard to the Futamura projections, great emphasis has been placed on how 
to obtain an efficient compiled version of a program, but not how to obtain efficient 
compilers or compiler generators. The hope was that by focusing on the result of 
compilation, i.e. the quality of specialised code, such compilers and cogens would 
be obtained "for free" through self-application. Given that this approach has not 
delivered the expected goods, however, it is now necessary to consider how to write 
efficient generating extensions and cogens. Arguably, this is the right approach even if 
one were aiming towards self-application anyway; if it were not known how to write 
an efficient generating extension by hand, it would be extremely fortuitous to generate 
one automatically. 

In this section, concrete issues relating to implementation are examined based on 
the findings of a simple empirical study. The aim of the study was to investigate ways 
in which to code a generating extension, based on the sonic approach, in Prolog. The 
main issues discussed are: atom selection; efficient calculation of the depth bounds; 
avoiding speculative output bindings and achieving argument indexing; and how to 
incorporate the global control. A prototype has been built based on the results of this 
section. 

8.6.1 Atom selection 

To understand the problem of atom selection consider the goal G = Append(x, y, z) 
A Append([1,2,3], w, x) for the Append program. Suppose the first atom in this goal is 
selected for unfolding. An estimate of zero for the size of this atom would be obtained 
by taking the maximum of the minimum estimates for the list lengths of x and z. 
Nondeterminate unfolding with a depth of zero then leads to the following two goals; 

^ Append(x', y, z') A Append([1,2,3], w, [u|x']) 
^Append([1,2,3], w, 0) 

The second goal leads to failure. In the first goal, the second atom can be selected, 
and tmfolding with a depth of three results in the following goal: 

^ Append([2,3|w], y, z') 

It appears that two more tmfolding steps whould be possible at this point (con-
suming the terms 2 and 3), but observe that the atom in this goal is simply a more 
instantiated version of an atom which has already been tmfolded. As such it should 
not be reselected for tmfolding, since doing so repeatedly can endanger termination. 
If, however, the second atom in the original goal G had been selected first followed by 
the first atom, then these tmfolding steps could have been performed. 

The problem here is similar to the coroutining and back propagation problems 
previously discussed. Clearly, there is a dependency between the size of the argu-
ments X and [1,2,3] in the goal G, which could be exploited to obtain the desired 
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unfolding even when selecting the atom Append(x, y, z) first. If dependencies such as 
this are not identified during analysis, however, then the order of selection of atoms 
in a goal may significantly affect the result of the unfolding process. 

Controlling the selection of atoms is non-trivial, however, and can greatly increase 
the time spent unfolding. In the prototype, the simplest option was adopted: un-
folding atoms tmder the normal, left-to-right Prolog computation rule, calculating an 
atom's depth when it is first encoutered without regard to whether or not a better 
estimate might be obtained by delaying the atom. The results of Section 8.7 suggest 
that this approach works well in practice and it is imlikely that a more sophisticated 
approach is required. 

8.6.2 Depth bound calculations 

Two means of calculating depth bounds are required: one for (possibly) unbounded 
atoms and one for bounded atoms. The first of these is the simplest. All that is 
required is a predicate for each norm used and one for each level mapping. In the 
calculation of the norms, variables should always map to zero to obtain a minimum 
estimate of the size of a term. The level mappings may be defined as a "disjunction" 
representing various alternative modes for which a given predicate is terminating. All 
that is required is the maximum of the possible levels for an atom as discussed in 
Section 8.3. 

Let |.| be a level mapping defined for all atoms A with predicate symbol p/n as 
follows: 

where each |.|i is a level mapping defined as follows: 

\ p { t i , . . . , t r i ) | i = / i ( | 1^1111, • • • , 11 i n 11 n ) 

where each ||.||j is a type-linear norm and /, : N " N is a (monotonia) function. 
The above scheme can be used to define a large munber of level mappings, includ-

ing all those commonly found in the termination literature. The min function in the 
level mapping definition allows termination to be proven for a predicate when used 
in different modes (see Example 3.7). For the level mapping to be used to estimate the 
size of unboimded atoms, this min function must be changed to a max function and, in 
addition, variables must be mapped to zero by the norms (see Section 8.3). Translation 
into Prolog then results in the following program schema: 

set_depth_p_n_u (Xj , . .., X„ , L) : -
' | | . | | l ' ( X i , S X i ) , 

' ^ |^ ' (Xn,SXn) , 

' fm ' ( SXi , . . . / SXn , J-iui) / 
max ( [Li, ..., Lm] , L) • 

Obviously, this general schema can be specialised for each level mapping. For 
example, the following is a specialised instance of the above schema for the level 
mapping |.| defined by |Append(z, {/, z)| = mm(|Append(2;, y, z)|i, |Append(a;, 2/, z)|2) 
where |Append(a;,i/,z)|i = |Append(a;,i/,z)|2 = 
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set_depth_append_3_u (X, Z, L) 
list-length(X,LX), 
list_length(Z,LZ), 
max(LX,LZ,L). 

Turning to the calculation of the norms, since only a minimum estimate of the 
size of a term is needed, this is a case where variables should be mapped to zero. The 
definition of a type-linear norm can be translated directly into Prolog. For example, 
the list length norm can be defined by the following predicate: 

list_length (V, D, D) . 
var(V),!. 

list_length([],D,D) . 
list_length( [_| Y] ,D-in,D_out) : -

D_inl is D_in + 1, 
list_length(Y,D_inl,D_out) . 

The norm which sums the lengths of the sublists of a list can then be defined as 
follows: 

sum_sublist_length (V, D, D) . 
var(V),i. 

sum_sublist_length ( [ ] , D, D) . 
sum_sublist_length ( [X|Y] ,D_in,D-Out) 

list_length (X, D_in, Djnid) , 
suin.sublist_length (Y, D_mid, D_out) . 

It is possible that, it may be useful to know if an atom is actually bounded, and it 
is straightforward to modify these predicate definitions to determine this, with trivial 
overhead. Future experimentation will determine whether or not this information can 
be used to improve the tmfolding. For example, with the level mapping definition 
above, if x and z were found to be rigid it might be more useful to bind L to their 
minimum. In fact, in the case of the Append predicate this will not make any difference, 
but it gives an idea of how such information might be useful. 

Recall that, in the proposed scheme, atoms which have been unfolded are delayed 
and will be awoken only if they become botmded. Where the level mapping |.| is 
defined as the minimum of level mappings |.|i to |.|m as above, an atom will be 
boimded wrt |.| if it is bounded wrt |.|i for some i € [1, m]. This in turn will depend 
on the rigidity of the arguments which the level mapping is defined in terms of. For 
example, an Append/3 atom will be boimded wrt the level mapping |.| defined earlier 
if either its first argument or its third argument is rigid. 

It is straightforward to define a predicate which measures the size of a term wrt 
a norm, but delays tmtil the term is rigid. Because the term may become rigid incre-
mentally, i.e. various parts of the term may become instantiated over time, constraints 
are a convenient mechanism to handle the calculation. For example, the following is 
an implementation of a norm which measures the size of a binary tree (the expressions 
in braces are constraints): 

block tree-size(-, ?). 

/* delay tree_size{A, B) until A is instantiated */ 
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tree_size(leaf, D):-
{D = 0}. 

tree_size(node(X, Z), D):-
tree_size(X, Dx), 
tree-Size(Z, Dz), 
{D = Dx + Dz + 1}. 

Constraints are a particularly expensive mechanism to use, however, for such 
time-critical calculations. The above norm can alternatively be implemented as fol-
lows: 

- / ? ) . 

are instantiated */ 

block tree_size(-, ?, ?), tree_size(?, 

/* delay tree_size(A, B, C) until A and 

tree_size(leaf, D, D). 

tree_size (node (X, Z) , D_in, D-Out):-
D_inl is D_in + 1, 
tree-size(X, D-inl, D_mid), 
tree_size(Z, D-inid, D_out) . 

The difference between these two implementations is significant as the following 
table shows. Timings are also included for implementations of the list length norm. 
All timings performed on a Sparc 4 using SICStus Prolog 3 # 3, and rigid terms as 
input. 

Norm Term Size '{}' Time(ms) 'is' Time(ms) 
list_length 10000 1550 10 
list_length 100000 16920 40 
tree_size 32767 6670 50 
tree.size 65535 13750 100 

8.6.3 Speculative output b ind ings and argument indexing 

The following program is a simple (incomplete) implementation of a generating exten-
sion for the naive reverse program of Section 8.5.5. The predicate set_depth_rev_u/3 
is used to estimate the level of a possibly unbounded rev/2 atom. This predicate 
always succeeds and never suspends. Its counterpart set-depth_revJD/3 found in 
the leaf generator clause for rev is defined similarly but will suspend if the atom is 
not bounded, i.e. it will only compute a level for bounded atoms. The predicates 
set-depth_append_u/3 and set_depth.appendJo/3 are defined similarly. 

rev(X, Y) : -
set_depth_rev_u (X, Y, Level), 
rev(X, Y, Level, unbounded). 

rev{ [ ] , [ ] , D, _):-
D > = 0 . 

rev{[X|Xs], Y, D, Mode):-
D >= 0, 
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D 1 i s D - 1 , 

rev{Xs, Z, Dl, Mode), 
append(Z, [X], Y, Dl, Mode). 

rev(X, Y, D, unbounded):-
D < 0 , 

set_depth_revJD (X, Y, Level), 
freeze(Level, rev(X, Y, Level, bounded)). 

append(X, Y, Z):-
set_depth_append_u (X, Z, Level), 
append(X, Y, Z, Level, unbounded). 

append ( [ ] , X, X, D, _) : -
D >= 0 . 

append{[X IXs] , Y, [X|Zs], D, Mode) :-
D >= 0 , 

Dl is D — 1, 
append(Xs, Y, Zs, Dl, Mode). 

append(X, Y, Z, D, unbounded):-
D < 0 , 

set_depth_appendJD (X, Z, Level), 
freeze(Level, append(X, Y, Z, Level, bounded)). 

Observe that this simple program implements the solution to the back propaga-
tion problem described in Section 8.5.5. In fact, for any goal of the form rev (x, y) 
where x or y is a non-rigid list of arbitrary length, the program will prune all failing 
branches. 

Unfortunately, the problem of speculative output bindings rears its ugly head 
once again, with the effect this time, not being non-termination, but poor performance. 
Consider, for example, the computation which results from the call rev (x, Y). After 
finding the first solution the following segment of the computation is reached: 

rev(X,Y,0,unbounded) 

{ x / [ u | x s ] } 

0 >= 0,Dl is 0 — 1,rev(Xs,Z,Dl,unbounded), append(Z, [U] ,Y,Dl,unbounded) 
I 
I 
i 

rev(Xs,Z,-1,unbounded), append(Z, [U],Y,-1,unbounded) 
I 
I 
i 

..., freeze(L,rev(Xs,Z,L,bounded)), append(Z, [U],Y,-1,unbounded) 

rev(Xs, [],0,bounded), -1 >= 0 

This last goal arises because the call append (z, [u] , Y, -1, unbounded) matches 
the first clause of append and speculatively binds z to [ ]. This binding causes the 
rev atom in the goal to become bounded and as a result it is selected. The call -l 
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>= 0, which will cause the whole goal to fail, is not reached until this redundant sub-
computation is completed. Furthermore, the call to - 1 >= 0 is repeatedly selected 
due to backtracking over the call rev(Xs, [], 0,bounded) (observe that it matches 
two clauses of reverse). 

As will be seen shortly, these speculative output bindings are a source of great 
inefficieny In order to avoid them, the obvious solution is to ensure that the depth 
bounds are range checked before any output bindings are made. Delaying unification 
a la Naish 1993, until after the range check has been made is one possibility. In 
this case, the second clause of append, for example, would be transformed into the 
following: 

append(Al, Y, A3, D, Mode) 
D >= 0, 
Al = 
A3 = [X|Zs], 
D1 is D — 1, 
append(Xs, Y, Zs, Dl, Mode). 

The adequacy of this approach depends very much on the sophistication of the 
available indexing mechanism. Many implementations of Prolog will not be able to 
perform the deep indexing that would be required here. Hence, in order to take ad-
vantage of the performance benefits of indexing, an alternative approach is called for. 
The one suggested here is to introduce an auxilliary clause which simply handles the 
range checks for depth bounds. The append predicate, for example, would become: 

append(X, Y, Z):-
set_depth_append_u (X, Z, Level), 
append(X, Y, Z, Level, unbounded). 

append_aux (X, Y, Z, D, Mode):-
(D >= 0 > 

append(X, Y, Z, D, Mode) 

Mode = unbounded, 
set_depth-appendJD(X, Z, Level) , 
freeze(Level, append(X, Y, Z, Level, bounded)) 

) . 

append ( [ ] , X, X, _) . 
append([X IXs], Y, [XjZs], D, Mode) :-

Dl is D - 1, 
append_aux (Xs, Y, Zs, Dl, Mode) . 

A comparison of these three versions reveals the potential impact that speculative 
output bindings and argument indexing can have on the efficiency of the generating 
extension. The programs were all executed with a goal of the form rev (x, Y) where 
X was an open list of elements (i.e. the tail of the list was a variable). Rimning on 
interpreted code under SICStus Prolog 2.1 #9 on a Sparc 4, the results, for the 1, 2, 5, 
10, 20, 200 and 500 element list respectively, were as follows: Original version (with 
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speculative output bindings) - 4ms, 7ms, 17ms, 45ms, 143ms, 10792ms, 65527ms; de-
layed unification version - 4ms, 5ms, 11ms, 27ms, 76ms, 4813ms, 29755ms; auxilliary 
clause version - 3ms, 4ms, 9ms, 22ms, 56ms, 2918ms, 17516ms. 

8.6.4 Global control 

When an atom is unfolded it gives rise to an SLD-tree which describes the unfolding. 
The majority of approaches to global control rely on an abstract representation of the 
SLD-trees for atoms to control polyvariance. In order, for the local control to plug in to 
the global component it must return some such representation. Trace-terms (Gallagher 
& Lafave 1996) and characteristic trees (e.g. Leuschel et al. 1998) have emerged as the 
main contenders for abstracting SLD-trees. Characteristic trees are hard to generate 
directly in the cogen approach, since they require meta-level information regarding 
which atom in a goal has been selected. Hence, trace-terms, which do not require 
such information, appear to be the perfect choice in this situation. As an example, 
trace-terms can be incorporated into the reverse predicate as follows: 

rev( [ ] , revl) . 
rev([X|Xs], Y, D, Mode, rev2(Rev, App)):-

D1 is D - 1, 
rev_aux{Xs, Z, Dl, Mode, Rev), 
append.aux{Z, [X], Y, Dl, Mode, App). 

Trace-terms only abstract single derivations, however, and must be combined in 
some way to form trace-term trees. In order to construct the trace-term tree, each 
individual trace-term must be saved to avoid its loss on backtracking for alterna-
tive solutions. This introduces, what is probably, the greatest expense of the whole 
approach. In a Prolog based implementation this overhead seems difficult to avoid 
and no solution is suggested here. It is an area which requires further investigation, 
however, in order to improve the efficiency of the overall specialisation process. 

8.7 Experiments and Benchmarks 

To gauge the efficiency and power of the sonic approach, a prototype implementation 
has been devised and integrated into the ECCE partial deduction system (Leuschel 
1996, Leuschel 1997, Leuschel et al. 1998). The latter is responsible for the global 
control and code generation and calls the sonic prototype for the local control. A 
comparison has been made with ECCE tmder the default settings, i.e. with ECCE also 
providing the local control using its default unfolding rule. For the global control, 
both specialisers used conjimctive partial deduction (Leuschel et al. 1996, Gliick et al. 
1996) and characteristic trees (Leuschel et al. 1998). 

In the cogen approach, it is very covenient to build trace terms (Gallagher & 
Lafave 1996) for use in the global control and this was incorporated into the sonic 
prototype. As ECCE employs characteristic trees in a certain format, however, a con-
version from trace terms into characteristic trees had to be added. Such a conversion 
will be tmnecessary in an improved version of ECCE which is also able to handle trace 
terms. 
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All the benchmarks are taken from the DPPD library (Leuschel 1996) and were 
run on a Power Macintosh G3 266 Mhz with Mac OS 8.1 using SICStus Prolog 3 
#6 (Macintosh version 1.3). Tables 8.1 shows the total specialisation time for each 
benchmark without post-processing. This total specialisation time includes not only 
the time spent in tmfolding during specialisation but also the additional time needed 
by the global control (provided by ECCE) to guide the overall specialisation process. 
Table 8.2 shows only the time spent in unfolding during specialisation. In Table 8.1 the 
times to produce the generating extensions for the sonic approach are not included, as 
this is still done by hand. It is possible to automate this process and one purpose of 
hand-coding the generating extensions was to gain some insight into how this could 
be best achieved. In any case, in situations where the same program is repeatedly 
respecialised, this time will become insignificant anyway. The precision of the timings, 
which were performed using the s t a t i s t i c s / 2 predicate, seems to be approximate-
ly 1 /60th of a second, i.e., about 16.7 ms. Hence "0 ms" in Table 8.2 should most likely 
be interpreted as "less than 16 ms". The runtimes for the residual programs appear 
in Table 8.3, which, for a more comprehensive comparison, also includes the results 
obtained by MIXTUS. 

Benchmark sonic + ECCE ECCE 
advisor 17 ms 150 ms 
applast 83 ms 33 ms 
doubleapp 50 ms 34 ms 
map.reduce 33 ms 50 ms 
map.rev 50 ms 67 ms 
match.kmp 300 ms 166 ms 
matchapp 66 ms 83 ms 
maxlength 184 ms 200 ms 
regexp.rl 34 ms 400 ms 
relative 50 ms 166 ms 
remove 367 ms 400 ms 
remove! 1049 ms 216 ms 
reverse 50 ms 50 ms 
rev_acc_type 316 ms 83 ms 
rotateprune 67 ms 183 ms 
ssupply 34 ms 100 ms 
transpose 50 ms 467 ms 
upto.suml 33 ms 284 ms 
upto.sum2 50 ms 83 ms 

Table 8.1: Specialisation times (total w / o post-processing) 

The sonic prototype implements a more agressive unfolding rule than the default 
determinate unfolding rule of ECCE. This is at the expense of total transformation 
time (see Table 8.1), as it often leads to increased polyvariance, but consequently the 
speed of the residual code is often improved, as can be seen in Table 8.3.^ Default 
ECCE settings more or less guarantee no slowdown, and this is reflected in Table 8.3, 

more agressive unfolding rule, in conjunctive partial deduction, did not lead to improved speed 
under compiled code of Prolog by BIM; see Leuschel 1997. So, this also depends on the quality of the 
indexing generated by the compiler. 
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Benchmark sonic + ECCE ECCE 
advisor 0 ms 33 ms 
applast 0 ms 16 ms 
doubleapp 0 ms 0 ms 
map.reduce 0 ms 17 ms 
map.rev 0 ms 34 ms 
match.kmp 0 ms 99 ms 
matchapp 0 ms 33 ms 
maxlength 0 ms 67 ms 
regexp.rl 0 ms 383 ms 
relative 0 ms 166 ms 
remove 34 ms 201 ms 
remove2 33 ms 50 ms 
reverse 16 ms 33 ms 
rev_acc_type 0 ms 32 ms 
rotateprune 0 ms 99 ms 
ssupply 0 ms 67 ms 
transpose 16 ms 400 ms 
upto.suml 0 ms 168 ms 
upto.sum2 0 ms 66 ms 

Table 8.2: Specialisation times (unfolding) 

whereas the general lack of determincay control in the prototype sonic unfolding rule 
leads to two small slowdowns. 

There is plenty of room for improvement, however, on these preliminary results. 
The sonic approach is flexible enough to allow determinacy control to be incorporated 
within it, and this extra layer of control could help to guarantee no slowdown. Also, 
the sonic prototype has been built on the philosophy of "unfold finitely as much 
as possible". This bull-in-a-china-shop approach actually pays off much better than 
expected, but the results also indicate that some refinements might also lead to better 
specialisation times and more efficient residual code. There is plenty of scope for 
variation within the prototype, which would allow these refinements to be made. The 
only potential problem is in identifying when it would be appropriate to use them. 

All in all, the sonic approach provides extremely fast unfolding combined with 
very good specialisation capabilities. It is surprising that the sonic approach out-
performed the (albeit conservative) default unfolding of ECCE. Also observe that the 
sonic approach even improves upon the match . kmp benchmark and passes the KMP 
test (even better than the online system does). The sonic approach is thus the first 
offline approach to our knowledge which passes the KMP test.® If it were possible to 
extend the sonic approach to the global control as well, one would hopefully obtain 
an extremely efficient specialiser producing highly optimised residual code. 

®One might argue that the global control is still online. Note, however, that for KMP no generalisation 
and thus no global control is actually needed. 
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Benchmark Original sonic + ECCE ECCE MIXTUS 
advisor 1541 ms 

1 
483 ms 
3U9 

426 ms 
3.62 

471 ms 

applast 1563 ms 
1 

491 ms 
318 

471 ms 
332 

1250 ms 

doubleapp 1138 ms 
1 

700 ms 
1.63 

600 ms 
1.90 

854 ms 

map.reduce 541 ms 
1 

100 ms 
541 

117 ms 
4.62 

383 ms 

map.rev 221 ms 
1 

71 ms 
311 

83 ms 
2.66 

138 ms 

match.kmp 4162 ms 
1 

1812 ms 
230 

3166 ms 
1.31 

2521ms 

matchapp 1804 ms 
1 

771ms 
2.34 

1525 ms 
1A8 

1375 ms 

maxlength 217 ms 
1 

283 ms 
0.77 

208 ms 
1.04 

213 ms 

regexp.rl 3067 ms 
1 

396 ms 
7.74 

604 ms 
5IW 

relative 9067 ms 
1 

17 ms 
53335 

1487 ms 
610 

17 ms 

remove 3650 ms 
1 

4466 ms 
0.82 

2783 ms 
131 

2916 ms 

remove! 5792 ms 
1 

4225 ms 
137 

3771ms 
1.54 

3017 ms 

reverse 8534 ms 
1 

6317 ms 
135 

6900 ms 
1^4 

rev_acc-type 37391ms 
1 

26302 ms 
1.42 

26815 ms 
139 

25671 ms 

rotateprune 7350 ms 
1 

5167 ms 
1.42 

5967 ms 
L23 

5967 ms 

ssupply 1150 ms 
1 

79 ms 
14.56 

92 ms 
12^0 

92 ms 

transpose 1567 ms 
1 

67 ms 67 ms 67 ms 

upto.suml 6517 ms 
1 

4284 ms 
1.52 

4350 ms 
1.50 

4716 ms 

upto.sum2 1479 ms 
1 

1008 ms 
147 

1008 ms 
147 

1008 ms 

Table 8.3: Speed of the residual programs (in ms, for a large number of queries, 
interpreted code) and Speedups 
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9 Conclusion 

The staging of a program's input, or alternatively its division into static and dynamic 
parts, is the ftmdamental basis of program specialisation. In specialisation of function-
al programs, this division is explicitly captured by classifying arguments as static or 
dynamic. Classification of arguments in the logic programming setting is less satisfac-
tory, however, due to the ubiquity of partially instantiated data structures, particularly 
during partial deduction. An alternative approach is required to the problem of en-
suring finite unfolding during partial deduction, specifically tailored to deal with the 
peculiarities of logic programming. 

The viewpoint adopted here has been that a theory for termination of unfolding 
should arise naturally out of a theory for full termination of programs. In fact, the 
former should really be a generalisation of the latter given that full evaluation is 
simply a special case of partial evaluation. While this thesis has not sought to develop 
a theory of termination for partial deduction as such, it has developed the existing 
theory for full termination in order to provide a basis for a practical technique for 
ensuring finite tmfolding. 

To begin with, this has required focusing on the recursive structure of termina-
tion proofs. A first notion of "partial termination" can be obtained by considering 
the strongly connected components (SCCs) of the predicate dependency graph of a 
program. Loops can occur in any of the SCCs. If execution of a program leads to loops 
in some SCCs but not in others, the program may be said to partially terminate, and 
in terms of partial deduction, the non-looping SCCs can be unfolded. 

The notions of bounded recurrency and bounded acceptability introduced in this 
thesis provide a foundation for the construction of termination proofs based on the 
recursive structure of programs. While facilitating proofs of full termination in gener-
al, the focus on recursion leads the way to considering termination of the individual 
SCCs when only partial input is supplied. Proofs based on recurrency or acceptability 
provide no support for this. 

Since coroutining logic programs accurately model the unfolding process, devel-
oping a theory of termination for them is key to providing a theoretical underpinning 
for finite unfolding. The class of semi delay recurrent programs captures a useful sub-
set of coroutining programs, where, as before, the emphasis is on the recursive struc-
ture to facilitate termination proofs and to allow individual SCCs to be considered. 
Moreover, programs which have been proven to be bounded acceptable can easily be 
transformed into semi delay recurrent versions. The advantage of doing so is that the 
strict left-to-right computation rule can be relaxed, and a more flexible one adopted 
without danger of non-termination. This gives the opportunity to use the transformed 
program as an "unfolding machine", which simply handles the unfolding of bounded 
goals, as part of a generating extension. This idea was taken a step further in the last 
chapter by extending the machine to also handle unbounded goals. 

The most significant contribution of this thesis then, is in establishing a link be-
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tween the fields of partial deduction and static termination analysis. A direct conse-
quence of drawing on the static termination literature, rather than loop checking, say, 
is that the result lends itself naturally to offline partial deduction. The proof of concept 
is provided in the results of the previous chapter. The sonic approach represents a 
significant step forward in the offline partial deduction technology for logic programs, 
being the first offline approach to successfully unfold arbitrarily instantiated goals 
and, as a result, the first to pass the KMP test. 

A full implementation of the proposed cogen together with comprehensive exper-
imentation and benchmarking are now needed to drive the work forward. Even at this 
stage, however, there are a number of issues which remain imresolved some of which 
have arisen through the limited experimentation which has already been carried out. 

• Without any determinacy control there is a possibility that the specialised pro-
gram may be slower than the original. Clearly, then this is an important issue 
which must be addressed in the development of a practical specialises It is or-
thogonal to the termination issue, however, and as such there should not be any 
problem in incorporating determinacy control within the proposed framework. 

• Having seen that the same specialised programs can be produced using different 
unfolding strategies (e.g. sonic vs. ECCE) raises the question of how the global 
and local control really interrelate. Obtaining the right balance could significant-
ly affect the efficiency of the specialisation process. 

• The techniques presented have been designed only for definite logic programs. 
There are a number of non-trivial issues relating to both termination and spe-
cialisation which would need to be addressed when extending the techniques to 
deal with normal logic programs. 

• There is much potential for combining offline and online imfolding strategies to 
obtain more efficient and more powerful specialisers. How to combine the two 
and obtaining the right balance are non-trivial problems. 

• This thesis has really only considered how to make the local control offline. No 
work has been done on effective offline global control for logic programs, and it 
remains to be seen whether or not there is much to be gained from this. 

• The philosophy adopted in the design of the unfolding algorithms here has 
been "finitely unfold as much as possible". Determinacy issues aside, this may 
not always be desirable. Prolific unfolding may well lead to huge residual 
programs with no significant improvement in performance. Only extensive 
experimentation will reveal whether this philosophy is well foimded or if there 
is a need to manage the code explosion/performance improvement tradeoff. 
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