
University of Southampton

Judgement Day: Terminating Logic Programs

by

Jonathan Charles Martin

A thesis submit ted for the degree of
Doctor of Phi losophy

in the
Faculty of Engineering and Applied Science

Depar tment of Electronics and Computer Science

June 2000

University of Southampton

ABSTRACT

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science
Doctor of Philosophy

Judgement Day: Terminating Logic Programs

by Jonathan Charles Martin

Program specialisation is a source-to-source program transformation technique
which can be used to improve the efficiency of programs. It includes traditional
compiler optimisations and also incorporates more aggressive transformations which
offer greater potential for improvements in performance.

Termination is a key issue in the construction of fully automatic tools, such as
compilers and program specialisers, which are used in program development. For
any such tool to be effectively usable by a non-specialist user, a minimal requirement
is that it should terminate for all input.

This thesis studies termination of logic programs and termination of program
specialisation in particular. Two approaches to the latter are traditionally recognised.
The ojfline approach divides the specialisation process into two phases; the first is
an analysis phase which gathers termination information which is used to guide the
specialisation proper in the second phase. This separation of components provides
an identifiable termination component within a tool and is good software engineering
practice. It also offers a ntmiber of other advantages over the online approach where
the two phases are intertwined. In logic programming, however, the focus of attention
has been on online techniques since they have generally offered better potential for
optimisation.

This thesis proposes the first solution to automatic, offline specialisation of logic
programs which compares favourably with current online techniques with regard
to its optimisation capability. Specifically, it is the first offline technique in logic
programming to pass the, so called, KMP test which has become the acid test for
program specialisation techniques; the automatic generation of a fast pattern matcher
from a naive one.

To this end, a number of techniques for termination analysis are developed culmi-
nating in the identification of a useful termination criterion for coroutining logic pro-
grams. Such programs are notoriously difficult to prove terminating, yet they provide
an extremely useful model for an essential part of the program specialisation process.
Tackling this problem in turn leads to the establishment of a solid link between the
fields of program specialisation and termination analysis, laying the foundation for
the proposed offline approach.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to Andy King for
the interest he has always shown in my work and his indispensable support. He has
contributed to this thesis in so many ways: from the intensive brainstorming sessions
during my visits to Kent, which made the most out of my ideas and helped me to
formulate them in writing; through collaboration on two papers which formed a basis
for two of the chapters; to the reading and correcting of parts of the final text. The
opportunity to work with him and learn from him has been a fruitful and rewarding
experience and above all highly enjoyable.

I am extremely grateful also to Paul Soper, my supervisor, whose guidance and
encouragement have kept me going to the last. His relaxed approach combined with
his uncanny ability to always find the silver lining in my clouds of doom, provided
me with the free hand I needed to develop my own ideas and the safety net to catch
me when I fell. 1 would never have believed that anyone could make me feel positive
about a complete lack of progress, but Paul even managed that too.

Many thanks to Corin Gurr who proved invaluable in the early stages in helping
me to understand the partial evaluation literature and get to grips with the problems
involved. His patience in explaining complex issues in detail via email was very much
appreciated.

Thanks to Hugh Glaser and Manuel Hermenegildo who between them arranged
my visit to the CLIP group in Madrid under the Erasmus scheme, and to all the
members of the group: Francisco Bueno, Maria Garcia de la Banda, Daniel Cabeza,
Manuel Carro, Pedro Lopez and German Puebla who, together with Manuel, went
out of their way to make me feel welcome and ultimately made my visit a pleasant
and enjoyable one. 1 am also grateful to Hugh Glaser, and Pieter Hartel too, for their
help and advice on a number of different research and departmental matters.

Also on the home front I would like to thank among others Jon Hallet, Stuart
Maclean, Wouter von Oortmerssen, Chris Pratten and the staff of the Hedgehog; Bob
Kemp for solving all my UNIX problems and a whole host of others; the inimitable
Mark Longley for having a genuinely useful answer to just about everything and,
most of aU, just for being Mark Longley; Charlie Boardman - a constant source of en-
tertainment; and all the other members of the DSSE group, both staff and researchers,
past and present, who have contributed to making my time at Southampton enjoyable
and for providing a stimulating environment in which to work.

In no particular order, I would like to thank Florence Benoy for discussions, her
careful reading of parts of the text, helpful comments, and her imique style of en-
couragement; Michael Leuschel for his interest in the work and his most welcome
contribution, which has provided a very satisfying conclusion; Elena Marchiori for
patient discussions on delay recurrency; Danny de Schreye for several useful discus-
sions, clarifying my understanding of the termination literature and for providing
helpful feedback; Bern Martens whose words of encouragement and interest for my
work were the first to make me feel that it was actually worthwhile; Kostis Sagonas
for his encouragement and interest; Peter Hoist Andersen, Maurice Bruynooghe, Ste-
fann Decorte, John Gallagher, Laura Lafave, Fred Mesnard and Jan Smaus for useful
discussions and comments; for their constructive comments, the anonymous referees
who reviewed the papers forming the basis of this thesis; and all those whom I had
useful discussions with, at one time or another over the years, either in person or via

email.
Finally, on the personal side, I am grateful to all those who have been supportive

throughout, but in particular to Benjamin Alberti, Cressida Fforde, Andy Winter and
my mother.

This work was supported by EPSRC studentship ref. no. 93315269 and, also, in
part, by the Nuffield grant ref. no. SCI/180/94/417/G.

Contents

Introduction 7
1.1 Logic programming 7
1.2 Specialisation of logic programs 8
1.3 Termination and correctness 9
1.4 Partial evaluation 10
1.5 Aims and outline of the thesis 10

Technical Background 12

Logic Programming 13
2.1 Syntax of polymorphic many-sorted languages 13

2.1.1 Types 14
2.1.2 Terms, Atoms and Formulae 16

2.2 Semantics of polymorphic many-sorted languages 19
2.3 Syntax of polymorphic many-sorted programs 21
2.4 Semantics of polymorphic many-sorted programs 22

2.4.1 Declarative semantics 22
2.4.2 Procedural semantics 23

Introduction to Termination 26
3.1 The Halting Problem in Logic Programming 26

3.1.1 Some Definitions of Termination 27
3.2 The Nuts and Bolts of Termination Proofs 29

3.2.1 Level Mappings, Norms and Botrndedness 32
3.2.2 Recurrency 33
3.2.3 Acceptability 35
3.2.4 Interargument Relationships 37

Introduction to Partial Deduction 38
4.1 Partial deduction 39
4.2 Control of partial deduction 42
4.3 Online and offline control 43

4.3.1 The Futamura projections 43
4.3.2 Perspective 45

II Terminating Logic Programs 47

Typed Norms for Typed Logic Programs 48
5.1 Introduction 48
5.2 Typed norms 49
5.3 Automatic generation of norms 54

5.3.1 Defining the weight function 56
5.4 Related work 57
5.5 Conclusions and future work 58

Termination and Left Termination 59
6.1 The Recurrent Problem 59
6.2 Semi Recurrency 61
6.3 Semi Acceptability 62
6.4 Bounded Recurrency 64
6.5 Botmded Acceptability 67
6.6 Discussion 69

Generating Efficient, Terminating Logic Programs 71
7.1 The Problems of Dynamism 71

7.1.1 Local Boimdedness 72
7.1.2 Global Botmdedness 73
7.1.3 Summary and Contribution 75
7.1.4 Example 75

7.2 Theoretical Foundations 78
7.2.1 Atom Selection 78
7.2.2 Covers 79
7.2.3 Delay Recurrency 80
7.2.4 Semi Delay Recurrency 82

7.3 The Transformation 86
7.3.1 Termination 87
7.3.2 Efficiency 95

7.4 Summary and Discussion 96

Sonic Partial Deduction 97
8.1 Introduction 97

8.1.1 Offline versus Online Partial Deduction 97
8.1.2 The Cogen Approach in Logic Programming 98
8.1.3 A Sonic Approach 99

8.2 Unfolding Bounded Atoms 100
8.2.1 Relation to Previous Approaches 102

8.3 Unfolding Unbounded Atoms 102
8.4 Deriving Accurate Depth Bounds from Level Mappings 104
8.5 Offline versus Online Unfolding 107

8.5.1 Measure Functions and Level Mappings 108
8.5.2 Lexicographical Priorities 108
8.5.3 Well-quasi Orders and Homeomorphic Embedding 109
8.5.4 Coroutining I l l
8.5.5 Back Propagation 113
8.5.6 Other related work 115

8.5.7 Offline vs. Online Conclusion 116
8.6 Implementation 116

8.6.1 Atom selection 117
8.6.2 Depth bound calculations 118
8.6.3 Speculative output bindings and argument indexing 120
8.6.4 Global control 123

8.7 Experiments and Benchmarks 123

9 Conclusion 1^7

Bibliography 129

1 Introduction

Imperative languages, such as C, C++ and Java, are founded on the idea of giving
commands which express which actions must be taken to perform a computational
task. They force a programmer to think algorithmically, focusing on the details of the
individual steps necessary to solve the problem.

Consider the problem of string searching; trying to find a sequence of characters,
or pattern, in a piece of text. For example, the problem might be to find the pattern
"gorith" in the text of this chapter. An imperative approach would be to form a
sequence of instructions which might begin as follows;

1. Compare the first letter of the pattern to the first letter of the text;

2. If they are the same, then compare the next letter of the pattern with the next
letter of the text; otherwise compare the first letter of the pattern with the next
letter of the text...

The imperative programmer quickly becomes engrossed in the details of specific com-
parisons between characters, keeping track of which characters have already been
compared and which characters should be compared next.

An alternative is to describe the problem declaratively. That is, to state what the
problem is rather than how it should be solved. A simple declarative specification of
the string searching problem is the following:

pattern is a substring of text if there exist strings a and b such that a + pattern + b = text

where "+" represents string concatenation. From this specification it can be deter-
mined, for example, that "gorith" is a substring of "algorithm" because "al" and "m"
are strings such that "al" + "gorith" + "m" = "algorithm". This specification is simple
and readily understood, but it does not in itself constitute an algorithm and cannot be
executed directly on a machine.

The role of declarative programming languages is to bridge this gap between
specification and algorithm. Fundamentally, a declarative language must provide
support for synthesising from the specification, a correct and efficient algorithm which
can be executed. Ideally, the synthesis would be completely automatic direct from the
specification, though in practice this ideal has yet to be achieved. The benefits of
declarative programming are numerous: smaller, cleaner programs which are easier
to understand, to write and to maintain.

1.1 Logic programming

Logic programming is an approach to declarative programming based on first order
logic, where specifications are logical formulae. For example, the above string search
specification can be translated directly into the following first order logical formula:

7

V pattern V text (Substring(pattern, text) ^ 3 a 3 b (Concat(a, pattern, prefix) A
Concat(prefix, b, text)))

Substring and Concat are called relation symbols or predicate symbols. Substring(z, y) is
read as "x is a substring of y" and Concat(z, y, z) is read as "z is the concatenation
of X and y", or "z = x + y". The symbols , A, V and 3 have their usual meaning
in first order logic, namely "if", "and", "for all" and "there exists" respectively. The
close correspondence between this formula and the original specification should now
be apparent.

The equation "Algorithm = Logic + Control" due to Kowalski 1979, captures the
main idea behind logic programming. The "Logic" part of the equation represents
the purely declarative component; the logical specification provided by a number of
logical formulae such as the one above. The "Control" part represents the procedural
interpretation of the logic and determines how the problem should be solved. The
procedural interpretation of the above logic for the string searching problem might be
something like:

Choose a str ing a and calculate a + pattern = prefix. If prefix + b = text for
some string b then stop, otherwise repeat with a different string a.

An alternative strategy is the following:

Divide text into two substrings, prefix and b. Divide prefix into two sub-
strings a and c. If c = pattern then stop, otherwise repeat with a different
division of text a n d / o r prefix.

Different algorithms for the same problem can be obtained by varying the control
component, as in the example, or alternatively by replacing the logic component with
another one that is (logically) equivalent. Hence, the automatic synthesis of programs
from specifications focuses on these two techniques. The control generation problem
deals with the automatic derivation of a suitable control component for a given logical
specification. The aim of program transformation is to improve the efficiency of an
algorithm through transformation of the logic component. In this case, the control
component is usually kept the same.

Modern logic programming systems provide a default control component so that
logical specifications can be written directly as programs. A system will usually
provide a number of mechanisms for the programmer to refine the control in order to
time the efficiency of the program. It is often the case, however, that simple, high-level
specifications lead to inefficient algorithms regardless of the control. For example,
expressing the logical formula above directly in a logic programming system would
result in a program which is very inefficient. Most likely it would implement a (rather
poor) brute force search algorithm, attempting to match the pattern with the text at
all possible positions tmtil finding a match. Modifying the control component will do
little, if anything, to improve the underlying complexity of this program (though it
could make it worse!). Any fundamental improvement can only be achieved through
modification of the logic.

1.2 Specialisation of logic programs

Most of the efficient string searching algorithms that have been devised rely on some
form of preprocessing on the pattern to be searched for. They exploit knowledge about

the given pattern in order to search for it more quickly. This knowledge can also be
exploited to improve the performance of the brute force search program encountered
above. In fact, for any given pattern, the program can be transformed into another
which mimics the efficient Knuth-Morris-Pratt string matching algorithm (Pettorossi
et al 1996, Knuth et al. 1977). This kind of transformation, which is directed by part of
a program's input, is called program specialisation.

The example provides a useful illustration of the basic principles of program
specialisation. The search program takes two inputs, a pattern p and some text t.
When the pattern is known the program may be specialised with respect to this input,
resulting in a program which takes t as its only argument. The pattern p which was an
input to the original program is incorporated into the specialised version. This new
version may be used to efficiently search for p in any number of different texts, but
cannot of course be used to search for other patterns distinct from p in those texts.
To search for a new pattern q, the original program must be used or alternatively it
can be specialised as before with respect to the pattern q. In program specialisation
parlance, any input known at compile time such as p is static, while an input like t,
which only becomes available at runtime is dynamic. In general, a program may have
more than two inputs, but each of these can be classified as static or dynamic. The
program would then be specialised with respect to its static inputs.

Observe that the specialisation process in the example corresponds to the pre-
processing that would ordinarily occur in a hand-coded version of the Knuth-Morris-
Pratt algorithm. But as Sedgewick 1990 points out, "the Knuth-Morris-Pratt algorithm
requires some complicated preprocessing on the pattern that is difficult to understand
and has limited the extent to which it is used.". One advantage of the naive specifi-
cation/transformation approach is that, with problems of this kind, the programmer
neither needs to devise any complicated preprocessing, understand it, program it nor
even be aware of it. Program specialisation offers the possibility of automatically deriv-
ing correct, efficient algorithms from simple specifications for a variety of application
areas.

1.3 Termination and correctness

Reconsider the two example control strategies in Section 1.1. Both involve some
repetition, essentially of the form "If pattern not found then repeat". Arising out of
this repetition is the question as to whether or not this process of searching for the
pattern will ever end. In the second strategy, the process is repeated "with a different
division of text and /o r prefix". Since there is only a finite number of distinct ways to
divide a string into two, the search process must end as either the pattern will be found
or the possible divisions of the string will be exhausted without finding a match. With
the first strategy, however, a similar reasoning cannot be applied. The search process
is repeated each time "with a different string a" without any constraint on the form or
length of a. An infinite number of strings could be tried and the pattern might never
be found (even if it occurs in text).

Formally, a process or computation which ends is said to terminate or be ter-
minating and one which never ends is said not to terminate or be non-terminating.
In contrast to imperative languages which contain several looping constructs, e.g.
while, for, goto, repeat the only possible cause of non-termination in logic programs
is recursion (i.e. predicates defined in terms of themselves). For example, consider the

following

Brother(x, y) ^ Brother(y, x).

This rule for the Brother relation is recursively defined and its intended inter-
pretation is that "x is the brother of y if y is the brother of x". Thus given the fact
Brother(Alan, Deryk), one m a y deduce Brother(Deryk, Alan) f rom the above rule. But
applying the rule to this last fact one may further deduce the original fact Brother(Alan,
Deryk). There is no limit to the number of times that this rule may be applied

An issue closely related to termination, which has already been mentioned in
passing is program correctness. Loosely speaking, a program is said to be partially correct
if for any input, whenever it terminates, it produces the right output. A program is
totally correct if it is partially correct and terminates for all inputs. Partial correctness
is relatively easy to achieve in logic programming given the close correlation between
logical specifications and logic programs. Thus the primary concern of control gener-
ation, with regard to correctness, is termination.

1.4 Partial evaluation

One form of program specialisation which has attracted a considerable amoimt of
interest is partial evaluation. In its simplest form, partial evaluation consists of the
evaluation or reduction of expressions combined with unfolding.

The evaluation of an expression during the specialisation process is performed
exactly as it would be at runtime. Reduction of expressions occurs when full evalua-
tion is not possible. As an example, consider the expression {x + y) * z occurring in
a program P. During the specialisation of P, this expression can be evaluated only if
the values of x, y and z are known (static). Now suppose that x = 3 and y = 4, but z is
dynamic. Then the expression cannot be evaluated but it may be reduced to 7 * z. This
residual expression must form part of the specialised program and may be evaluated
at runtime when the value of z becomes known.

An unfolding step conceptually replaces a procedure, function or predicate call
with the body of the called procedure, function or predicate. Unfolding then, is similar
in spirit to the idea of inlining used in imperative languages. Since predicates, etc.,
may be defined recursively it is immediately apparent that unfolding steps may be
followed one after another ad infinitum. Infinite imfolding will, of course, lead to
non-termination of the specialisation process and must be avoided. Unfolding, itself,
cannot be avoided altogether, since very little specialisation can be achieved without
it. Thus, means are required to curb its occasional tendency to get carried away.

1.5 Aims and outline of the thesis

This thesis is divided into two parts. The second part comprises the original contri-
bution while the first provides the necessary technical background. The main thread
follows the development of an approach to the control of vmfolding of logic programs.
The key idea is to use static termination analysis to derive sufficient conditions for
finite unfolding. Since unfolding effectively models the computation process, this
problem is closely related to the control generation problem which is also examined.

10

Chapters 1, 3 and 4 respectively introduce the basics of logic programming, ter-
mination of logic programs and partial evaluation of logic programs.

Norms, which measure the size of data structures, play an important role in
modern termination analyses for logic programs. Chapter 5 examines how norms
can be automatically derived from the types of a logic program. An earlier version of
this chapter appeared in Martin et al. 1996.

Much of the practical static termination analysis work that has been developed
builds on a few theoretical characterisations of termination. These characterisations,
however, are not cast in terms of the recursive structure of programs which in itself
forms an intuitive and practical basis for reasoning about termination. Alternative
characterisations based on the recursive structure of programs are proposed in Chap-
ter 6, which potentially provide a more useful foundation for practical termination
analyses.

Chapter 7 studies the control generation problem and shows how it can be tackled
using a transformation approach. The emphasis is on termination but the framework
developed is sufficiently flexible to allow a range of search strategies to be incorporat-
ed within it. This offers the opportunity to time the efficiency of a program once its
total correctness has been established. This chapter is a revised and extended version
of Martin & King 1997.

Chapter 8 extends the results of the previous chapter to obtain a refined strategy
for unfolding. As before, finiteness of the unfolding process is ensured without un-
duly restricting the search strategy which is applied. Within this framework there is
not only scope for improving the efficiency of the unfolding, but also for introducing
determinacy control in an independent way. Determinacy control amounts to deciding
whether certain choices in the search space should be explored at specialisation time
or at rimtime. Making the wrong decision can lead to a specialised program which is
less efficient than the original program. Clearly, the ability to incorporate determinacy
control in a specialiser is essential, and this is catered for within the framework. The
main results of this chapter can also be found in Martin & Leuschel 1999.

Pre-requisites Though not essential, it would certainly be helpful if the reader had
some understanding of the basic results of computability theory (see, e.g, Harel 1989),
including Turing machines, the halting problem and undecidabiUty. Some experience
with a logic programming language such as Prolog would also be useful. A basic
grounding in computer science and a rudimentary knowledge of set theory is assumed
throughout.

11

Part I

Technical Background

12

2 Logic Programming

Logic programming is based on the fundamental idea, mainly due to Kowalski 1974
and Colmerauer et al. 1973, that a subset of first order logic may be given a procedural
interpretation and hence used as a programming language. In this chapter, the basic
concepts of typed logic programming are reviewed beginning with the syntax and
semantics of typed first order logic. This is then used as a basis for the development
of the syntax and semantics of typed logic programs. The presentation closely follows
Lloyd 1987 and Hill & Lloyd 1994 and the reader is encouraged to consult these texts
for further details.

2.1 Syntax of polymorphic many-sorted languages

Definition 2.1 (alphabet) An alphabet of a first order, many-sorted, polymorphic lan-
guage is composed of the following classes of symbols

1. a countably infinite set U of parameters (type variables);

2. a finite set = 2 ; ^ U Ylconstmctor of type constructor symbols where

(a) Tthase is a non-empty set of symbols of arity zero called bases and

(b) T,constructor is a Set of symbols of arity n > 0 called constructors;

3. a countably infinite set V of variables;

4. a finite set 2^^ = T̂ constant U T,functor of function symbols where

(a) Inconstant is a non-empty set of symbols of arity zero called constants and

(b) T^functor is a set of symbols of arity n > 0 called functors;

5. a non-empty finite set Ep,.gd = ^̂ proposition U T-predicate of predicate symbols where

(a) ^^proposition is a Set of symbols of arity zero called propositions and

(b) "Spredicate is a Set of symbols of arity n > 0 called predicates;

6. the connectives (negation), A (conjunction), V (disjunction), e - (implication)
and ^ (equivalence);

7. the universal quantifier V and the existential quantifier 3;

8. the pimctuation symbols "(", ")", "(", and

Classes 1-5 distinguish different alphabets whilst classes 6-8 are the same for all
alphabets. The syntactic objects of a language are the strings that can be built from
the symbols of its alphabet. In order to define the semantics of a language, that is to

13

associate meanings with its syntactic objects, attention is usually restricted to a subset
of objects which are well-formed in some sense. Objects which are not well-formed have
no meaning. Furthermore, in a typed language, the property of being well-formed also
includes that of being well-typed.

In the following sections these notions are made more precise, and the well-
formed objects of a first order, many-sorted, polymorphic language are defined.

2,1.1 Types

Definition 2.2 (type) A type is defined inductively as follows

1. A parameter is a type.

2. A base is a type.

3. If c is a constructor of arity n and n , . . . , T„ are types then c (r i , . . . , r„) is a type.

A ground type or monotype is a type not containing parameters. •

The set of parameters occuring in a syntactic object o is denoted by pars{o). A
syntactic object which contains no parameters is said to be type-ground.

Example 2.1 Let U = {u, ui,u2,..Z&ggg = {int} and T,constructor = {Ust/l} (i.e. list is a
constructor of arity one). Then int, list{int), u, and list{list{u)) are examples of types,
the first two of which are type-ground since they contain no parameters. Furthermore,
parg(K) = pars(Zisf(W(u))) = O

Given a type r containing parameters, a new type may be obtained from r by
replacing certain parameters of r with other types. For example, the type list(int) may
be obtained from the type list{u) by substituting the type int for the parameter u. In
this case, the type list{int) is said to be a type instance of list{u) by the type substitution
which binds u to int. These concepts are formally defined below.

Definition 2.3 (type substitution) A type substitution -0 is a finite set { t i i / n , . . . Un/rn}
of type bindings where ui,... ,Un are distinct parameters and r i , . . . , are types such
that Ui ^ Ti for alH G [1, n]. •

Definition 2.4 (parameter renaming) A type substitution tjj = { u i / t i , . . . Un/rn} is a
paramefer rgnamzMg iff 7̂ is a parameter for all / € [1, %]. O

Definition 2.5 (type instance) Let-^ = {ui/ti, ... be a type substitution and o
a syntactic object. Then the type instance of o by ip, denoted ip{o), is the syntactic object
obtained from o by simultaneously replacing each occurence of the parameter u, in o
by the type n for all i e [1, n]. If i>{o) is type ground then is a type-ground instance
of o, and i]j is called a type-grounding substitution for o. •

Any two type substitutions ijj and can be composed to produce a third type sub-
stitution K such that for any type r the type instances and K{T) are equivalent.

Definition 2.6 (composition of type substitutions) Let ip = { a i / r i , . . . , am/Tm} and
= {hi/ai,..., bn/(Jn} be type substitutions. Then the composition of i/; and i), denoted

is the set {oi/Tii) | ^ A % e [1, m]} U {6i/cri | 6; 0 { o i , . . . , 0^} A % E [1,)%]}. O

14

The above definition is based on Definition 2.3.1 in Leuschel 1997 which defines
how term substitutions are composed. It is easy to see that the composition of any two
type substitutions according to Definition 2.6 is also a type substitution. Moreover, it
can be shown that, given type substitutions ^ and for any type r , the type instances
•d{tj){T)) and {ijj-d){T) are equivalent.

If, following the application of a type substitution ip to two types r and a, the two
resulting type instances iP{t) and ^ (a) are equal to each other, then is called a type
unifier of r and a. If r and a are unifiable in this way, then there may be many type
unifiers for the two types. A most general type unifier of r and a is intuitively one of the
simplest of these unifiers.

Definition 2.7 (mgtu) Let 5 be a finite set of type equations {ai = TI, . . . , CR„ = T„}. A
type substitution ^ is a type unifier of S for alH e [1, n]. A type unifier
-0 of 5 is a most general type unifier, or mgtu, of S iff for each type unifier ip' of S there
exists a type substitution d such that if;' = ijj'd. •

The notion of a most general type unifier will play an important role in the con-
struction of terms, atoms and formulae (see Section 2.1.2) and also in the application
of term substitutions (see Section 2.4.2).

In a many-sorted, polymorphic language each function symbol is assigned a
function type and each predicate symbol is assigned a predicate type. The assignment is
such that the types of function and predicate symbols are unique modulo parameter
renaming^.

Definition 2.8 (function and predicate type) A function type (resp. predicate type) takes
the form (n . . . r) (resp. r i . . . r„) where r i . . . r„ is a (possibly empty) string of types
and r is a type which is not a parameter. •

In ftmction and predicate types, the empty string will be denoted by e. Note that
all constants have a ftmction type of the form (e, r) and all propositions have predicate
type e.

Definition 2.9 (transparency) A ftmction type a = (r i . . . T„, r) is transparent iff every
parameter occuring in u also occurs in r . That is, pars(a) C pars{T). •

Definition 2.10 (type assignment) Let E -̂, ^pred be respectively the sets of type
constructor symbols, ftmction symbols and predicate symbols of a first order, many-
sorted, polymorphic language. A type assignment is a mapping from function symbols
to transparent function types and from predicate symbols to predicate types, such
that each function symbol of arity n maps to a type of the form (r i . . . T„, T) and each
predicate symbol of arity n maps to a type of the form r i . . . •

It will usually be more convenient to work with sets of typed fimction and pred-
icate symbols rather than the untyped ones defined by an alphabet. These shall be
denoted by Sy and Ep respectively and are defined as follows

I / E E/MM A a is the type assigned to / }

^For overloaded symbols, for example +, it is assumed that the symbol is uniquely renamed for each
of its types.

15

• Ep = {pcr I p € Epred A cr is the type assigned to p}

In addition, use will often be made of the set of all type-ground instances of and
the set of all type-ground instances of Ep defined by

• EJ = { f s \ fa- € 'Ef A 5 is a type-ground instance of a}

• Ep = {ps I Per G Ep A 5 is a type-ground instance of a }

Finally, whenever /(Ti..,r„,T> G Ey and n > 0, the type r is called the range type of

2.1,2 Terms, Atoms and Formulae

Typed terms, atoms and formulae can be defined in much the same way as in an
untyped language, though there is of course the additional complication of ensuring
that each construct is well-typed. In particular, it is necessary to ensure that every
subterm in a term, atom or formula has a type and that multiple occurences of a
variable all have the same type. In each case, the well-typing is guaranteed by finding
a most general unifier of a set of type equations. If such a unifier does not exist then the
construct cannot be well-typed and the construction fails. The following definitions
formalise these notions.

Definition 2.11 (typed variable) I f v e V is a variable and r is a type, then v^- denotes
a typed variable. If o is a syntactic object, then vars{o) is the set of typed variables which
occur in o. •

Definition 2.12 (term, subterm) Terms and subterms are defined inductively as follows

1. Itv eV and u e U then Vu is a term of type u. The only subterm of Vu is itself.

2. If C(g e Ey then is a term of type r . The only subterm of is itself.

3. Let /(o-i (t„,(t) G Ey and for all i e [1, n] let U be a term of type such that

(pars(cri) U . . . U pars(cr;i) U par5(a)) n pars(Ti) = 0, and

pars(Ti) n par5(7j) = 0 for all j e [1, ?%], %

If, and only if, there exists a most general unifier ijj of the set of type equations

I % E [1, Ti]} U = pj I i/p. E A E A % J E [1, n] }

then t = ... cr„.(T)(̂ b • • • itn)) is a term of type ^(cr). Furthermore, i is a
subterm of t and for all i E [1, n], if s is a subterm of U then ip{s) is a (strict)
subterm of t. •

Recall that every function symbol / E Ey;„J has a function type, (n . . . T„, T) say,
such that /(ri..,T„,T) E Ey. Each occurence of / in a term t, however, has a relative type
in t which is an instance of its function type (r i . . . r„, r) . It is this relative type which
appears in the term as a subscript to the function symbol. It should be noted that a
relative type is unique up to parameter renaming.

Although variables are not assigned types in the same way as function symbols,
each occurence of a variable in a term t also has a unique relative type in t. Again it

16

is this relative type which appears in the term as a subscript to the variable. Where
a variable is defined to be a term, its relative type is defined to be a parameter. This
ensures that the relative type is most general in the sense that the variable could stand
for any term regardless of its type. The relative type of a variable when it appears as
a subterm of a term t depends upon the context, i.e. on the function types in t. Here
again the relative type is most general but now in the sense that the variable could
stand for any term of an appropriate type determined by the context.

Observe that multiple occurences of a variable in a term t all have the same
relative type in t. This is guaranteed by the construction of the term. Whenever a
variable v occurs in terms U and tj, and v has relative types pi and pj in U and tj
respectively, pi and pj must be imifiable if a new term is to be constructed which has
(type instances of) ti and tj as strict subterms.

A consequence of explicitly tagging all occurences of function symbols and vari-
ables in a term with their relative types is that a subterm s o f a term may not necessar-
ily be a term itself. Instead, for every subterm s of a term there exists a term s' and a
type substitution •0 such that s = •0(s').

Terms may alternatively be written such that each fimction symbol and variable
appears without its relative type. This will usually be done when the types are clear
from the context or irrelevant. Note that, when all terms are written in this form, every
subterm of a term is also a term. Furthermore, for a term t in this form, vars{t) denotes
the set of variables in t rather than the set of typed variables.

Definition 2.13 (atom) An atom is defined as follows

1. A proposition Pe G Sp is an atom.

2. Let po-j ... a-n G Sp and for all i e [1, n] let U be a term of type n such that

(par5(cri) U . . . U pa/'g(crn)) npgrs(T:) = 0, and

* pa7'5(T)̂ n pg?'5(7j) = 0 for all j € [1, a], % ^

If, and only if, there exists a most general unifier of the set of type equations

{(Ti = Ti I % e [1,7%)} U = Pj 1 e Darg(ti) A e z;a?'5(tj) A j E [1, m]}

then A = i>{pai ... cr„(ii, • • •, tn)) is an atom. For all i G [1, n], if s is a subterm of
ti then '^(g) is a subterm of A. •

The predicate symbol of an atom A is denoted by rel{A). Formulae are formed by
combining atoms using the connectives and quantifiers of the underlying language. If
F is a formula, then every subterm of an atom in F is also a subterm of F.

Definition 2.14 (formula and free variables) The set oifree variables of a {polymorphic,
many-sorted) formula F is denoted by freevars{F) where a formula and its free variables
are defined inductively as follows

1. An atom ^ is a formula andfreevars(A) = vars(A).

2. If F is a formula then so is - iF and freevars{-^F) = freevars(F).

3. Let F be a formula with v e freevars{F). Then VwF and 3vF are formulae whose
free variables are given by/ree?7flrs(F) \ {f}.

17

4. Let F and G be formulae whose common variables are free in both F and G.
Suppose further that

par5(F) npars(G) = 0, and

» there exists a most general tmifier ^ of the set of type equations

= PG I G /regDars(F) A G /rggz;ars(G)}

Then ip{F A G), ip{F V G), ip{F f - G) and ip{F ^ G) are all formulae whose free
variables are given by) | f e U o

Definition 2.15 (type of a subterm) Given a syntactic object o, and a subterm t of o,
the type of t in o is defined by

s f T i f t = Vr and v e V

Observe that multiple occurences of a variable in a formula are all of the same
type in the formula. Also the types of subterms of a formula are unique up to param-
eter renaming. A term, atom or formula is said to be ground if it does not contain any
variables.

Definition 2.16 (literal) If A is an atom, then the formulae A and -^A are called literals.

Definition 2.17 (conjunction, disjunction) Let A i , . . . , A n be atoms (resp. literals).
Then Ai / \ . . . /\An (which may also be written as A i , . . . , An) is a conjunction of atoms
(resp. literals) and V . . . V is a disjunction of atoms (resp. literals). •

Definition 2.18 (closed formula) A formula is closed iff it has no free variables. •

Definition 2.19 (universal and existential closure) Let F be a formula whose free
variables are f i , . . . , f„ . Then

• V(F) = V f i , . . . , VnF denotes the universal closure of F.

• 3(F) = 3 f i , . . . , VnF denotes the existential closure of F. •

Definition 2.20 (language) The polymorphic many-sorted language given by an alphabet
consists of the set of polymorphic many-sorted formulae that can be constructed from
the symbols of the alphabet. •

Since certain symbols of an alphabet appear in all alphabets, and the types of
interest are closely associated with the ftmction and predicate symbols, a polymorphic,
many-sorted, first-order language can be defined by a triple C = (Ep, Ey, V).

Definition 2.21 (theory) A polymorphic many-sorted theory consists of a polymorphic
many-sorted language and a set of axioms which is a designated subset of closed
formulae in the language of the theory. •

18

2.2 Semantics of polymorphic many-sorted languages

The sentences of a language may be thought of as statements about a "world" of
objects and the relations among those objects. The objects in the world are repre-
sented in the language by terms, formed from the constant and function symbols of
the language. The precise association between terms and objects is given by a pre-
interpretation. A pre-interpretation for a language defines a world and uniquely iden-
tifies each term in the language with an object in the world. This "world" is formally
called a domain, though in a typed language it is split into a family of domains, one
domain for each ground type in the language.

Definition 2.22 (pre-interpretation) A pre-interpretation of a first order polymorphic
many-sorted language is a pair J = {Dj, Aj) where

1. Dj = {Djg I 6 is a ground type}, is a family of domains where each Dis a non-
empty set called the domain of type 5 in the pre-interpretation J ;

2. A J is an assignment defined such that

(a) Each G T.J is assigned an element in Dj^s',

(b) Each e ly is assigned a mapping from x . . . x to

•

The ground, monomorphic, atomic formulae (ground, monomorphic atoms) of a
language, express simple statements about the objects of the world (the elements of
the domains of the pre-interpretation). An interpretation directly determines the truth
or falsity of each of these statements.

Definition 2.23 (interpretation) An interpretation I j for a polymorphic many-sorted
language consists of a pre-interpretation J = {Dj, Aj) and an assignment of truth
functions to elements of E* such that

1. Each pe e S* is assigned a value true oi false;

2. Eachpa^„.{^ € S* is assigned a mapping from x . . . x to { }.

•

To determine truth values for non-ground (monomorphic) atoms, the notions of
variable assignment and term assignment are used.

Definition 2.24 (variable assignment) Let J = {Dj, Aj) be a pre-interpretation. A
variable assignment Vj maps each variable of type 5 to an element of where 6 is a
ground type. •

Definition 2.25 (term assignment) Given a pre-interpretation J = {D, A) and a vari-
able assignment Vj, the term assignment ivrt J and Vj, denoted is defined as
follows:

1. (f)jy{vs) = Vj{vs) for all f G y and for every ground type 5.

19

2. = Aj(y(g_a))

3. . . . ,tn)) = . . . ,(;6j,y(^n))

for all E 2^ and e •

Definition 2.26 (truth value of a monomorphic atom) Let I j be an interpretation, Vj
a variable assignment and a = psi...sn (^i, • • •, ^n) a monomorphic atom. The truth value
of o (wrt and V}) is frwe iff . . . , maps to true in where
(pjy is the term assignment wrt J and V, and false otherwise. •

Clearly, the truth value of a ground monomorphic atom depends solely on the
intepretation I j . The convention is followed here of overloading I j to additionally
represent the set of groimd atoms whose truth values are true wrt I j . That is a E I j iff
a maps to true in I j . The truth values of monomorphic formulae can easily be defined
in an analogous manner to the untyped case.

Definition 2.27 (truth value of a monomorphic formula) Let I j be an interpretation,
Vj a variable assignment and w a monomorphic formula. The truth value of w (wrt I j
and VJ) is determined as follows.

1. If w is an atom, then its truth value is determined by Definition 2.26.

2. If w has the form -iF, F A G, F V G, F ^ G or F G, then the truth value of w
is given by the following table

T (f) T(G) A G) T(F V G) ^ G) ^ G)
frwg frwe ^Zge true frwg

frug frwg yaZse
yhZse frwg yaZse

frwe frwe

where T{F) is the truth value of F.

3. U w has the form BvgF, then the truth value of w is true iff there exists d E Djg
such that F has truth value true wrt I j and Vj{vs / d) where Vj{vs / d) is Vj except
that vs is assigned d; otherwise, its truth value is false.

4. If w has the form then the truth value of w is true iff F has truth value true
wrt I J and Vj(vs/d), for all d € Dj^s', otherwise, its truth value is false.

•

Note that the truth value of a closed formula depends only on the interpretation
and not on the variable assignment. Thus a closed formula F is said to be true (resp.
false) wrt an interpretation I iff the truth value of F is true (resp. false) wrt 1. Truth
values of polymorphic formulae can now be defined in terms of truth values for
monomorphic formulae.

Definition 2.28 (truth value of a polymorphic formula) Let J be an interpretation of
a polymorphic many-sorted language L and let whe a closed polymorphic formula of
L. Then w is true wrt I iff for every grounding type substitution ip for w, ip{w) is true
wrt L On the other hand, w is false wrt I iff there exists a grounding type substitution
-0 for 10 such that •!/'(u') is/fltee wrt J. •

20

From the above, it can be seen that the truth or falsity of any formula in a language
is determined by an interpretation for the language. In general, only the formulae
of a given theory are of interest at any one time. Furthermore, the interpretations
of interest will be those for which all the formulae of the theory are true. Such
interpretations are called models.

Definition 2.29 (model) Let I be an interpretation of a polymorphic many-sorted lan-
guage L and let lu be a closed formula of L. Then / is a model for w, denoted I \= w, iff
w is true wrt I. If 5 is a set of closed polymorphic formulae in L then I |= 5 iff / |= it;
for all w G S. •

Definition 2.30 (logical consequence) Given a closed polymorphic formula w and a
set S of closed polymorphic formulae, w is a logical consequence of S, denoted 5 |= in,
iff for every interpretation I, the premise I \= S implies the conclusion J |= w. •

2.3 Syntax of polymorphic many-sorted programs

Definition 2.31 (statement) A statement s is of the form

where H is an atom, called the head, and B is either absent or a polymorphic many-
sorted formula, called the body. The free variables of s are assumed to be universally
quantified at the front of s. The set of atoms appearing in 5 is denoted by body{s). •

Definition 2.32 (program) A polymorphic many-sorted logic program is a pair (A, S)
where A is a triple {At , Ay, Ap) of type declarations and 5" is a finite set of statements.
The type declarations A^, A f and Ap define respectively Sy and Ep in the following
way

1. Each constant declaration c : r e A/ implies E Zy.

2. Each function declaration f : TI x ... x TN T e Af implies /(Ti...T„,r) 6 Ey.

3. Each proposition declaration p e Ap implies pe G Sp.

4. Each predicate declaration p : r i x . . . x e Ap implies pri...r„ G Ep

Furthermore, the following four conditions must be satisfied

1. Each statement is a polymorphic many-sorted formula in the language defined
by the type declarations.

2. Each fimction declaration is transparent (see below).

3. Each statement satisfies the head condition (see below).

4. Ay and Ap are universal. That is each symbol has exactly one declaration in Ay
(resp. Ap) so that Ey (resp. Ep) is well-defined.

Definition 2.33 (transparency) A declaration for a function / : r i x . . . x ^ r is
transparent iff every parameter appearing in the declaration also appears in the range
type T. •

21

Definition 2.34 (head condition) Let Pai...a„ be the typed predicate symbol occuring
in the head of a statement s and let P ; TI x . . . x T„ be the type declaration for p. Then
s satisfies the head condition iff ai . . . cr„ is a variant of ti . . . r„. •

Definition 2.35 (proposition and predicate definition) The definition of a proposition
or predicate p in a program P is the set of all statements in P which have p in their
head. •

Definition 2.36 (goal) A goal is of the form

^ F

where F, called the body, is a polymorphic many-sorted formula. The free variables of
F are assumed to be rmiversally quantified at the front of the goal. •

Definition 2.37 (definite program and goal) A definite clause (resp. definite goal) is a
statement (resp. goal) whose body is a (possibly empty) conjtmction of atoms. A
definite program is a program whose statements are all definite clauses. •

In the sequel, attention will be restricted to definite programs and goals. More-
over, it will often be convenient to ignore the type declarations and consider a program
P = (A, S) as being equivalent to the set of clauses S.

2.4 Semantics of polymorphic many-sorted programs

2.4.1 Declarative semantics

Definition 2.38 (Herbrand pre-interpretation) Let P be a definite program and let
£ p = {T,p,T,f,V) be the first order polymorphic many-sorted language underlying
P. The Herbrand pre-interpretation of is the pair Herb = (Dngrb, ^Herb) where

1. Dnerb = {DHerb,5 | ^ is a grotmd type}, and for every ground type S, DHerb,s is
the least set such that if f(^Si ... sn,s) G Sy and U e D^grbM for all i e [1, n], then

/(di ... 6^,a)(4, . . . E

2. Anerb is defined such that if ... s„.S) G and U e D^erbA for all i e [1, n], then

^Herb{f{Si ...) ^n) = f{5i ... i ^n)- ^

Observe that the domain equal to the union of the domains in Dnerb contains
precisely all of the ground terms that can be constructed ui the language Hp. This
domain is usually referred to as the Herbrand universe and is denoted hy Up. Another
important domain, consisting of all the ground atoms in the language is known as
the Herbrand base and is denoted hy Bp.

Definition 2.39 (Herbrand base) Let Cp = (Ep, Ey, V) be a first order polymorphic
many-sorted language defined by a program P. The Herbrand base of Cp is the least
set Bp such that

1. Ifpe E Zp thenpe E Bp.

2. Ifpgi...6^ E 2^ thenpai...g^(di,...,cL) E Bp where E for all % E [l,n].

22

An Herbrand interpretation for a language Hp is any interpretation based on the
Herbrand pre-interpretation for By abuse of terminology an Herbrand interpre-
tation for a program P is any Herbrand interpretation for the language imderlying P.
Note then that any Herbrand interpretation can be defined as a subset of the Herbrand
base.

Definition 2.40 (Herbrand model) Let Cp he a first order polymorphic many-sorted
language defined by a program P = {A,S). An Herbrand model I C Bp for 5" is an
Herbrand interpretation for £ p which is a model for S. An Herbrand model I for S is
minimal iff there exists no other Herbrand model I' for S such that / ' C / . •

For every definite program P = (A, S), there exists a unique minimal Herhrand
model for S. This minimal model is equivalent to the set {a | a e Bp A 5 |= a}
of ground atoms which are logical consequences of S. This set is also known as the
success set of P and it defines the declarative semantics of P.

2.4.2 Procedural semantics

Definition 2.41 An expression is either a term, an atom, a conjunction of atoms, or a
definite clause. A simple expression is either a term or an atom. •

Definition 2.42 (term substitution) A substitution & is a finite set {vi/ti,... Vn/tn} of
bindings where u i , . . . , are distinct variables and t i , . . . ,tn are terms such that Vi / ti
for all i e [1,n]. The set {vi,... ,Vn} is called the domain of the substitution and is
denoted by dam(6). •

Definition 2.43 (term instance) Let 9 = {vi/ti,..., Vn/tn} be a term substitution and
0 a syntactic object such that pars{o) n pars{vi/ti) n . . . n pars{vn/tn) = 0. If there exists
a most general tmifier ^ of the set of type equations

I % E

then the instance of o by 0, denoted od, is the syntactic object obtained from o by
simultaneously replacing each occurence of the variable Uj in o by the term ti for all
1 e [l,n] and applying the type substitution ip. If oO is ground then 6 is called a
gzowndzMg gubsfzfwfiOM for o. O

An expression d is an instance of another expression e if d = eO for some substi-
tution 9. If e is also an instance of d then d and e are said to be variants of each other
and 9 is known as a renaming substitution for e. If 5 = {Ei,..., is a finite set of
expressions and 0 is a substitution, then S9 denotes the set , En9}.

Definition 2.44 (composition of term substitutions) Let 0 = { u i / s i , . . . , Um/sm} and
(f) = {vi/ti,..., Vn/tn} be substitutions. Then the composition of 9 and cp, denoted 9(j),
is the set | 'Ui ^ A % e U | 0 {'ui, . . . ,24^} A % E O

Definition 2.45 (mgu) Let 5 be a finite set of simple expressions. A substitution 0 is a
unifier for S iff S9 is a singleton. A tmifier 9 for 5 is a most general unifier, or mgu, for S
iff for each unifier 9' of S there exists a substitution such that 9' = 9'd. •

23

The set of most general unifiers of {ei, eg} where ei and eg are arbitrary simple
expressions is denoted 62).

Definition 2.46 (substitution restriction) Let 0 be a substitution and V a set of vari-
ables. The restriction of 0 to V, denoted 9\v, is the substitution obtained from 6 by
deleting any binding v jt for which v ^V. •

Definition 2.47 (computation rule) A computation rule is a ftmction from a set of goals
to a set of atoms such that the value of the function for a goal G is an atom, called the
selected atom, in G. •

Definition 2.48 (SLD-resolution) Let G = *— Ai,..., Ag,..., Am be a goal with m > 1
and 1 < s < m, and let c : H ^ Bi,Bnhe a clause. Then G' is derived from G and
c using 6 iff the following conditions hold:

• As is the selected atom in G;

e g e

• C is the goal ^

The goal G' is called a resolvent of G and c. •

Definition 2.49 (SLD-derivation) Let P be a program and G a goal. An SLD-derivation
of P U {G] consists of a (possibly infinite) sequence Go, Gi, Gg, . . . of goals, a sequence
ci, C2,... of variants of program clauses of P and a sequence 6*1,6*2,... of substitutions
such that Go = G and each G^+i is derived from Gj and Cj+i using 0^+1 for all i > 0. •

SLD-derivations may be charaterised as follows. An SLD-derivation is

• finite iff it consists of a finite sequence of goals; otherwise it is infinite.

• successful iff it is finite and the last goal is the empty goal.

' iff it is finite and it ends in a non-empty goal such that the selected atom in
this goal does not tmify with the head of any program clause.

• complete iff it is either successful, failed or infinite.

• incomplete iff it is finite and neither successful nor failed; in other words, not
complete.

Definition 2.50 (SLD-refutation) An SLD-refutation is a successful SLD-derivation. •

Definition 2.51 (SLD-tree) Let P be a program and G a goal. An SLD-tree for P u { G }
is a tree satisfying the following:

1. Each node of the tree is a (possibly empty) goal.

2. The root node is G.

3. Let G' = <— A i , . . . ,As, • •., Am be a node in the tree. Then exactly one of the
following hold:

24

(a) no atom is selected in G', and the node has no children;

(b) As is the selected atom in G', and for each input clause H e- Bi,.. .,Bn
such that a substitution 9 e mgu{H, Am) exists, the goal

^ (-^1; • • • 5 -̂ S — 1 ? -̂ 17 • • • 7 T̂L ? ; • • • ; Afj^O

is a child of the node.

4. Nodes which are the empty goal have no children.

•

Each branch of an SLD-tree is an SLD-derivation. Hence branches may be called
infinite or finite, successful or failed, complete or incomplete, according to the charac-
terisation of the corresponding derivation. Observe that the leaf node of an incomplete
branch is a non-empty goal where no atom has been selected. An SLD-tree is complete
iff all its branches are complete, and incomplete otherwise. Note then, that both com-
plete and incomplete trees may contain infinite branches.

An incomplete SLD-tree may be further expanded by unfolding the goal at a leaf
node. This involves selecting an atom in the goal and adding as children to the node
the goals described in 3(b) Definition 2.51. Thus a complete SLD-tree may be obtained
from one that is incomplete by performing a (possibly infinite) number of unfolding
steps.

An SLD-tree is said to be trivial if the root node is the only node of the tree, and
non-trivial otherwise. SLD-trees can be depicted graphically. In figures, selected atoms
are underlined and the empty goal is denoted by Failed derivations end in

Definition 2.52 (search rule) A search rule is a strategy for searching SLD-trees to find
success branches. •

Search rules are often defined as clause selection rules which given a set of clauses
forming a predicate definition define a fixed order in which the clauses should be used
to form resolvents. For example, the clause selection rule of Prolog selects clauses in
the order in which they appear in the program. An SLD-refutation procedure is specified
by a computation rule together with a search rule.

The following notions tie together the declarative and procedural semantics.

Definition 2.53 (answer) Let P be a program and G a goal. An answer for P U {G} is
a substitution 6 such that dom{9) C vars{G). O

Definition 2.54 (correct answer) Let P be a program and Q a goal. An answer 9
for P U {<— Q} is a correct answer for P U {<— Q} iff P |= V(Q0). •

Definition 2.55 (computed answer) Let P be a program, GQ a goal, and Go,.. •, an
SLD-refutation of P U {Go}, where the sequence of substitutions is 9%,... ,9n- Then the
substitution {9i... 9n)\vars{Go) ^ computed answer for P U {Go}. •

Theorem 2.56 (soundness of SLD-resolution) Let P be a program and G a goal. Ev-
ery computed answer for P U {G} is a correct answer for P U {G}. •

Theorem 2.57 (completeness of SLD-resolution) Let P be a program and G a goal.
For every correct answer A for P U {G} there exists a computed answer 9 for P U {G}
and a substitution 7 such that Gcr = G9J. •

25

3 Introduction to Termination

This chapter introduces the fundamental notions of termination that will be used
in the remainder of the thesis. Section 3.1 introduces the halting problem for logic
programs, outlining the different areas of research which have evolved, and places
the current work in context. It turns out that the logic programming paradigm admits
a number of notions of termination and some of the more important ones will be
reviewed here.

There are several concepts which are common to a large number of works on
termination and which will play a prominent role in this thesis. These include level
mappings, the notion of boundedness and interargument relationships. They are
defined in Sections 3.2.1 and 3.2.4. Norms and rigidity, two other important notions
are only touched on here; these are the subject of Chapter 5.

Also to be fotmd in this chapter are the definitions of the classes of recurrent and
acceptable programs. They are, arguably, the two most significant classes of program
to have been defined in the literature on termination of definite logic programs. An
understanding of them and the surrotmding concepts is crucial to the assimilation of
Chapter 6, which builds extensively on them.

Much of the material of this chapter, and a great deal more besides, can be found
in the survey by De Schreye & Decorte 1994.

3.1 The Halting Problem in Logic Programming

For an arbitrary logic program P and arbitrary goal G, the halting problem is to de-
termine whether or not G terminates wrt P. Exactly what it means for G to terminate
wrt P is examined in Section 3.1.1. If G is simply regarded as a particular input to the
program P, however, then the problem essentially is to determine whether or not the
execution of P with this input requires a finite amount of time. The problem inherits
the undecidability of the halting problem for Turing machines, meaning that no algo-
rithm can be encoded which will determine the correct answer in a finite amount of
time. This is a direct consequence of the fact that every computable function can be
encoded as an appropriate logic program (see, e.g., Lloyd 1987).

The undecidable nature of termination has led to three main directions of research
as identified in De Schreye & Decorte 1994. Firstly, on the subject of decidability itself a
number of works have sought to establish the botmdary between minimal subclasses
of programs which are computationally complete, and maximal classes for which
the halting problem is decidable. The current work makes no contribution in this
direction. The interested reader is referred to the references contained in De Schreye
& Decorte 1994.

A second line of work has been to investigate necessary and sufficient conditions
for termination. Such conditions are, of course, undecidable, but, nonetheless, can be
used as a theoretical basis for constructing practical termination analyses. Some works

26

in this area have led to a classification of programs according to their termination
behaviour. For example, acceptable programs are precisely those which, for ground
input, terminate under the left-to-right computation rule of Prolog (Apt & Pedreschi
1990). Programs which, for ground input, terminate under any selection rule are clas-
sified as recurrent (Bezem 1993). The original definitions of these classes, introduced in
Sections 3.2.2 and 3.2.3, do not, in fact, form an ideal basis for automatic termination
analyses. Some difficulties arise in formulating termination proofs in terms of the defi-
nitions. Chapter 6 examines the technicalities involved and concludes with alternative
characterisations of the two classes which help to alleviate the problems.

The third category encompasses the development and use of sufficient conditions
for proving termination. These techniques may be used, for example, to provide
support for program development or program transformation tools such as partial
evaluators. Chapter 7 introduces a class of programs which are terminating under a
dynamic selection rule. A sufficient condition for termination, which can be checked
at compile-time, is that a given program lies within the class. Chapter 8 develops
sufficient conditions for ensuring unfolding during partial deduction. The work of
Chapter 5, which is designed to facilitate the construction of termination proofs, may
also be considered to fall in this category.

3.1.1 Some Definit ions of Termination

Whether or not a goal G terminates wrt a program P is obviously dependent on the
operational behaviour which in a logic program is defined by the control component.
Thus termination is in fact sensitive to the following four components.

1. The program

2. The goal

3. The computation rule

4. The search rule

To complicate the issue a little further, different notions of termination have been
defined in the literature. Firstly due to the inherent non-determinism present in the
logic programming paradigm the following distinction, put forward by Vasak & Potter
1986, can be made.

Definition 3.1 (existential termination Vasak & Potter 1986) Let P be a program, G
a goal and s a search rule. Then G existentially terminates wrt P (imder s) iff either
all derivations for P U {G} are finitely failed or the search rule s finds a successful
derivation for P U {G} in a finite number of steps. •

Definition 3.2 (universal termination Vasak & Potter 1986) Let P he a program and
G a goal. Then G universally terminates wrt P iff all derivations for P U {G} are finite. •

Intuitively existential termination and universal termination correspond respec-
tively to the notions of finding one and all solutions for a given goal and program.
Observe that existential termination is sensitive to the search rule whereas universal
termination is not. Thus, where the computation rule is fixed, universal termination
implies existential termination.

27

Example 3.1 Let P be the program

P(A).
P(x) ^ P(x).

and G the goal P(x). Then G existentially terminates wrt P under the Prolog search
rule, but not under a search rule which selects clauses in the reverse order. G does not
universally terminate wrt P in any case. •

Vasak and Potter also characterised goals as strongly or weakly terminating. The
definitions are provided here for completeness, though, the terms are seldom encoun-
tered in the literature.

Definition 3.3 (strong termination Vasak & Potter 1986) Let P be a program and G a
goal. Then G is strongly terminating wrt P iff G terminates wrt P for all computation
rules. •

Definition 3.4 (weak termination Vasak & Potter 1986) Let P be a program and G a
goal. Then G is weakly terminating wrt P iff G terminates wrt P for some computation
rule. •

In the above definitions, "G terminates" may be taken to mean either "G existen-
tially terminates" or "G tmiversally terminates". In the remainder of the thesis, as in
the majority of works, attention will be restricted to universal termination. Thus the
expression "G terminates" will mean "G universally terminates". Moreover, with ref-
erence to Definition 3.2, three types of finite derivation will be permitted: successful,
finitely failed and incomplete.

The next two definitions introduce the two most frequently used notions of ter-
mination.

Definition 3.5 (termination Bezem 1989) Let P be a program and G a goal. Then G
is terminating wrt P iff every SLD-derivation for P U {G} is finite. P is terminating iff
every variable-free goal is terminating wrt P . •

Definition 3.6 (left termination Apt & Pedreschi 1990) Let P be a program and G a
goal. Then G is left terminating wrt P iff every LD-derivation for P U {G} is finite. P is
left terminating iff every variable-free goal is left terminating wrt P . •

Observe that "termination" as defined by Bezem is equivalent to "strong, univer-
sal termination" as defined by Vasak and Potter. On the other hand, "left termination"
is an example of "weak, imiversal termination". Since strong termination implies
weak termination, any goal which is terminating is also left terminating.

Example 3.2 Consider the Permute program below

perm^ Perm([], [])•
perm^ Perm([h|t], [a|p]) f -

Delete(a, [h|t], I) A
Perm(l, p).

deh Delete(x, [x|y], y).
dek Delete(x, [yjz], [y|w]) ^

Delete(x, z, w).

28

Perm([1], [1]) Perm([1], [1])

Delete(1, [1

Perm([], [])

, I) A Perm(l, Q)

Delete(1, [], w) A Perm([1 |w], [])

Delete(1, [1 , I) A Perm(l, Q)

Delete(1,[1], [])

• •

Figure 3.1: SLD-derivations for Permute u { ^ Perm([1], [1])}. Note that the left SLD-tree
actually represents two derivations; the goal ^ Delete(1, [], w) A Perm([1 |w], []) fails
immediately regardless of which atom is selected.

^Perm([1,2], [1,2])

Delete(1, [1,2 , I) A Perm(l, [2])

penMg

Delete(1, [1,2], I) A Delete(2,1,1') A Perm(l', [])

Delete(1, [1,2], [yjz]) A Delete(2, z, w) A Perm([y|w]. [])

Delete(1, [1,2], [y,y'|z']) A De ete(2, z', w') A Perm([y,y'{w'], [])

Figure 3.2: Infinite SLD-derivation for Permute U{<— Perm([1,2], [1,2])}. Here, variants
of the atom Delete(2, z, w) recur infinitely in subsequent goals if the second atom is
always selected and the clause deh is always used.

The goal e- Perm([1], [1]) is terminating wit Permute (see Figure 3.1) and as a conse-
quence is left terminating also. The goal ^ Perm([1, 2], [1, 2]) is left terminating but not
terminating, since there exists a computation rule which selects non-ground Delete/3
goals resulting in an infinite derivation (see Figure 3.2). It follows that the program is
not terminating though it can be proven to be left terminating (see Section 3.2.3). •

3.2 The Nuts and Bolts of Termination Proofs

The fundamental idea underlying all termination proofs is to define an order on the
set of all goals that can occur in a derivation.

29

Definition 3.7 (order) A partial order on a set 5 is a binary relation C that is

1. reflexive (Vx E S : x ^x),

1. antisymmetric (Vx, y ^ S {x ^ y /\y x) x = y) and

3. fraMSZhoe (Vr, ?/, z E 5": (a; C ^ A C z) a: C z).

A linear or total order on a set 5 is a partial order such that any two elements of S are
comparable (Vx, •

An ordered set S{Q) is a set S together with an order C on 5. A partial order C on a
set S induces a strict order C on 5 (V%, y e S : {x n y ^ {x n y Ax y)). A strict order
C on a set S is well foimded if there exists no infinite descending chain ei • 62 • .. • of
elements of S. The set 6'(c) is well-founded if c is well founded on S.

In this thesis, attention will be mostly restricted to the use of well-fotmded orders.
Under this restriction, the basis of a termination proof then reduces to the following.
Given a program P and goal Go, assume that > is a well-foimded order on the set of
goals that can occur in any derivation of f U {Go}, and let Go, Gi, G2, . . . be such a
derivation. Quite simply if G, > G^+i for all i > 0, one deduces that the sequence
Go, Gi, Gg, . . . is finite by the well-fotmdedness of >.

Two issues become apparent at this point. The most obvious is the problem of
defining a suitable order on goals which can be used to prove termination. To simplify
the problem, it is sometimes convenient to define the order on abstractions of goals
rather than on the goals themselves. Thus the order > is defined such that G > G'
holds iff A{G) > A{G') holds where A is an abstraction ftmction. For example, A
might be defined to map each goal G to a multiset of natural numbers, where each
atom in G maps to a single number in the multiset. This particular abstraction will be
formalised in the next section. The idea of mapping atoms to natural numbers occurs
frequently and forms the basis of many goal abstractions used in the literature.

The other issue which arises is how to verify for each derivation Go, Gi, G2,...,
that Gj > Gi+i for all i > 0. The derivations cannot of course be explicitly constructed
in a finite amotmt of time and so it is necessary to use a finite approximation to the
set of all derivations. This can be achieved by considering individual SLD-resolution
steps together with the abstraction ftmction mentioned above. More precisely, the
aim is to prove that if G is a goal, A is the selected atom in G and A unifies with
the head of a clause c, then the resolvent G' of G is such that G > G'. Since G and
A may be arbitrary the decrease from G to G' is usually obtained by requiring the
clause c to satisfy certain conditions. By verifying these conditions for all clauses in
the program, it can be asserted that all derivations are finite. The abstraction ftmction
simplifies the proof by allowing irrelevant details to be ignored such as the individual
syntactic structure of goals and the details of unifications. In reality, it is unlikely that
the decrease from G to G' will hold for all goals, though it may hold for a specific
subset of them. In this case, it is also necessary to show that any resolvent G' of G is
also a member of the subset. Sections 3.2.2 and 3.2.3 present two conditions on clauses
which can be used to ensure finiteness of derivations in the above manner.

Four well-founded orders will occur frequently throughout: the usual order on
the natural numbers, the lexicographical ordering, the multiset ordering, and the
ordering between the predicates of a program. These last three orders are defined
below.

30

The lexicographical ordering allows tuples to be compared.

Definition 3.8 (lexicographical ordering) Let Ci and IZ2 be strict orders on the sets
5'i and % respectively. The lexicographical ordering <c on 5'i(Ci) x ^ (C a) is defined by

iff Si Ci s'l or Si = s'l and sg Cg s'g. •

If 5'i(Ci) and 5'2(lZ2) are well-fotmded sets then the set (S'i(Ci) x 5'2([l2))(<) is
well-founded also (Van Leeuwen 1990). Clearly then, well-fotmded lexicographical
orderings can be defined over tuples of any fixed length.

Another mechanism for comparing collections of elements is the multiset order-
ing. A multiset is a collection of elements where the number of occurrences of each
element is significant. Formally a multiset is a fimction from a set S to the natural
numbers which returns the multiplicity of each element in S. It will be convenient
to consider multisets as being sets with duplicate elements. Thus if si = {3} and
S2 = {3} are multisets then the multiset si U S2 = {3, 3} ^ {3}.

Informally the multiset ordering is defined as follows. Given two multisets si
and S2, S2 is smaller than si in the multiset ordering if S2 can be obtained from si
by replacing an element e of si with zero or more elements each of which is strictly
smaller than e (wrt the ordering over the elements of the multisets).

Definition 3.9 (multiset ordering) Let C be a strict order on the set S. The multiset
ordering n,nui on multisets of elements of 5'(c) is defined by

^2 ^mul

iff there exists e E si and e i , . . . , e„ G S2 such that sg = si /{e} U {e i , . . . , e„} and C e
for all i G [1, n]. •

This ordering is particularly useful for defining an ordering on goals in a deriva-
tion. For example, a goal G and its resolvent G' could be abstracted by multisets si and
82 of natural numbers, where each natural ntimber represents the abstraction of one
atom in G or G'. The resolvent G', by definition, is obtained from G by replacement
of one atom in G with zero or more atoms from the body of a clause (combined with
a substitution application). Hence the abstraction gg would also be obtainable from
Si by replacement of one element e of si with zero or more natural numbers (i.e. the
abstractions of the body atoms of the resolving clause). In the case that each of these
numbers is smaller than e then S2 is smaller than si in the multiset ordering and G'
may be seen to be smaller than G in the goal ordering.

Finally, an ordering exists among the predicates of a program based on its recur-
sive structure.

Definition 3.10 (predicate dependency) Let Cp — (Ep, Sy, V) be a language defined
by a program P and let p, g e Then p directly depends on q iff

p((i , . . . , (7%,) B i , . . . , Bn E f and B, = g(g i , . . . , for some % e [1, M].

The depends on relation is defined as the reflexive, transitive closure of the directly
depends on relation. If p depends on q and q depends on p then p and q are mutually
dependent and this is denoted hj P — q- O

31

The well-founded ordering among the predicates of a program is induced by the
depends on relation; q whenever p depends on q but q does not depend on p, i.e. p
calls g as a subprogram. By abuse of terminology, two atoms are mutually dependent
(with each other) if they have mutually dependent predicate symbols. Furthermore, a
body atom in a clause is said to be recursive if it is mutually dependent with the head
of the clause.

3.2.1 Level Mappings, Norms and Boundedness

The idea of mapping atoms to natural numbers to construct termination proofs was
originally proposed in Cavedon 1989 and Bezem 1989.

Definition 3.11 (level mapping Cavedon 1989) Let P be a program. A level mapping
for P is a function |.| : Bp t-» N from the Herbrand base to the natural numbers. For
an atom A e Bp, |_A| denotes the level of A. •

Example 3.3 Let P be the program

P(A, X) ^ P(B, X) .

P(B, A).
P(B, B).

The function |.| : {P(A, A), P(A, B), P(B, A), P(B, B)} N defined by |P(A, A)| = 34,
|P(A, B)| = 12, |P(B, A)| = 0 and |P(B, B)| = 27 is a level mapping for P. •

A level mapping is only defined for ground atoms. The lifting of the mapping to
non-grotmd atoms was proposed in Bezem 1989.

Definition 3.12 (bounded atom Bezem 1989) An atom A is bounded wrt a level map-
ping |.j if |.| is bounded on the set [A] of variable free instances of A. If A is bounded
then I [J4] | denotes the maximum that |. | takes on [A]. •

The importance of the notion of botmdedness cannot be over stressed. Since goals
which are ground cannot be used to compute values, they are the exception rather
than the norm in logic programming. Thus practical termination proofs must be able
to deal with non-ground goals and boundedness provides the basis for this. It has
shaped much of the work on termination and plays a prominent role in this thesis.

Example 3.4 Let P be the program and |.| the level mapping of Example 3.3. The
atom P(A, x) is bounded since |.| is bounded on the set [P(A, x)] = {P(A, A), P(A, B)}.
Moreover, |[P(A, x)]| = raflx({|P(A, A)|, |P(A, B)|}) = max{{3A, 12}) = 34. •

Level mappings are usually defined in terms of norms. Basically, a norm is a
mapping from terms to natural numbers which provides some measure of the size
of a term. Norms will be examined in some detail in Chapter 5. For now, it will be
sufficient to consider a single norm which can be used to construct some interesting
level mappings.

Example 3.5 The list-length norm \.\iist-iength '-Up from the Herbrand universe to
the natural numbers can be defined by

I 1 whenever t = [fijZs]
j 0 odMXTvae

Then, for example, | [x, y, z] Ifigf./gMgfh = 3. O

32

Example 3.6 Let P be the program

OneList([]).
OneList([1 |y]) ^

OneList(y).

Let I.I be the level mapping defined by |OneList(x)| = \x\iist-iength- Then the atom
OneList([1, 1, z]) is bounded and |[0neList([1, 1,z])]| = 3. The atom OneList([1 |x]) is
unbounded and |[0neList([1 |x])]| is not defined since |.| is not bounded on the set
[OneUst([1 |x])] = {OneList([1]), . . . , OneList([1, 1 , OneList([1,1,1]) , . . . } . •

The next two lemmas, which promote reasoning directly with bounded atoms
(rather than sets of ground instances of bounded atoms), follow easily from Defini-
tion 3.12.

Lemma 3.13 Let |. | be a level mapping and A a bounded atom. Then for every substi-
tution 0, the atom A0 is also bounded and moreover |[v4]| > |[Adj\. •

Proof 1 RecaHfW [A] = | TTign [A] 3 [A#], so

|[yl] I []

Lemma 3.14 Let H be a boimded atom, B an atom and |.| a level mapping. If for
every grounding substitution 6 for H and B, \H6\ > \B9\, then B is also bounded and
moreover | [il] | > | [E] |. •

Proof 2 Recall that [S] = {B6 | 6 is a grounding substitution for B}. But \H6\ > \B6\for
so |.| K &ow/Wg(f OM [5], smcg |.| zs 6owM(̂ g(̂

on [H], Let 9 he any grounding substitution for H and B such that \B9\ = |[5]|. Then, by

| [^] | > |[a-0]| = > |g0| = O

3.2.2 Recurrency
In Bezem 1989, level mappings were used to define a class of terminating programs.

Definition 3.15 (recurrency Bezem 1993) Let P be a definite logic program and |.| a
level mapping for P. A clause c : H B i , B n is recurrent (wrt |.|) if for every
grounding substitution 9 for c, \H9\ > \Bi6\ for all i G [1, n]. P is recurrent (wrt |.|) if
every clause in P is recurrent (wrt |.|). •

Example 3.7 Consider the Append program below

o p p i App8nd([], X, X) .

gppg Append([u|x], y, [u|z])
Append(x, y, z).

and the level mappings |.|i, |.|2, Ms and |.|4 defined by

|Append(ti,t2,t3)|i =
|Append((i,/:2, tails = 3 x + 1
|Append(ti,t2,t3)|3 = Itslw-Zenga

IAppGnd(ii, t2) ̂ s)U — ̂ ^^{\tl\list-lengthi \^s\list-length)

33

The clause app^ is trivially recurrent wrt any level mapping. Now for every grounding
substitution 6 for app^,

|Append([u|x], y, [u|z])g|i = |[u|x]0|%wengm

= 1 + lŷ Sllist-length
^ I'^^llist-length
= |Append(x, y, z)#|i

Hence the program is recurrent wrt |. 11. Similarly it can be shown that the program is
recurrent wrt |. | i for alH G [1,4]. •

Bezem proved the following result.

Theorem 3.16 (recurrency Bezem 1989) Every recurrent program is terminating.

The same result was also obtained independently by Cavedon 1989 in the more
general context of recurrent programs with negation (called locally u-hierarchical pro-
grams in Cavedon 1989 and later renamed acyclic programs in Apt & Bezem 1990). The
proof in Bezem 1989 relies on the following definition.

Definition 3.17 (bounded goal Bezem 1989) A goal G A i , . . . , is bounded wrt
a level mapping |.| if every Ai is bounded wrt |.|. If G is bounded then |[G]| denotes
the finite multiset consisting of the natural numbers | [^i] | , . . . , | [An] |. •

The proof follows the basic outline of Section 3.2. In particular the abstraction
ftmction A = |[.]| and as a result a well-founded order > is defined over the set
of bounded goals by taking G > G' iff | [G] | | [G'] \, where >mui is the multiset
ordering over the natural numbers. The proof is completed by showing for every
SLD-resolvent G' of a bounded goal G, that G' is botmded and G > G'. In fact, this
proof suggests a stronger corollary.

Corollary 3.18 (recurrency Bezem 1989) Let P be a program, G a goal and |.| a level
mapping. If P is recurrent wrt |.| and G is bounded wrt |.| then G is terminating wrt
P.

The strength of this corollary lies in the fact that Theorem 3.16 applies only to
ground goals (by virtue of Definition 3.5) whereas Corollary 3.18 applies also to non-
ground goals.

Example 3.8 Reconsider the Append program and the level mappings of Example 3.7.
Then

^ Append([u, v, w], y, z) is bounded wrt |.|i, M2 and |.|4,
^ Append(x, y, [u, v, w]) is bounded w r t [.js and |.|4

Hence these goals are terminating wrt Append. Also, for a goal G observe that

G is botmded wrt |. 11 ^ G is bounded wrt |. 12
(G is bounded wrt |.|i V G is bounded wrt [.[a) —» G is bounded wrt |.|4

Thus by proving recurrency of Append wrt |.|4 a larger class of goals can be proven
terminating than by proving recurrency wrt |.|i, |.|2 or [.(g. •

The above example demonstrates that the choice of the level mapping for proving
recurrency is important with regard to the set of goals which can be proven terminat-
ing. As a final remark, Bezem also proved the converse of Theorem 3.16.

Theorem 3.19 (recurrency Bezem 1989) A program is recurrent iff it is terminating.

34

3.2.3 Acceptabil ity

The notion of recurrency is a theoretical one and is not of much use in proving termi-
nation of Prolog programs. Most Prolog programs are intended to terminate under a
left-to-right selection rule, and are not recurrent.

Example 3.9 Reconsider the Permute program of Example 3.2. By Theorem 3.19, the
program is not recurrent since it does not terminate for all ground goals (Figure 3.2).
The program is left terminating. •

The class of recurrent programs was extended in Apt & Pedreschi 1990 to the class
of acceptable programs in order to provide a theoretical basis for proving termination
of left terminating programs.

Definition 3.20 (acceptability Apt & Pedreschi 1990) Let |.| be a level mapping and I
an interpretation for a program P. A clause c : H ^ Bi,..., Bn is acceptable wrt |.| and
/ i f f

1. I is a model for c and

2. for all i € [l,n] and for every grounding substitution 6 for c such that / j=
{Bi,..., Bi-i}6, we have that \H6\ > \Bi6\.

P is acceptable wrt |. | and I if every clause in P is acceptable wrt |. | and I. •

Note the role that the model I plays in this definition. In condition 2, \H6\ is
only required to be greater than \Bi6\ when I \= {Bi,..., Bi-i}6. This captures the
fact that during a computation which uses a left-to-right computation rule instances
of the body atoms to the left of Bi (where they appear in a goal) must be successfully
resolved before the corresponding instance of Bi (as it appears in the derived goal)
can be selected. Any grovmd instance of the conjunction of the successfully resolved
atoms (with answer substitution applied) is modelled by I and it is only in such cases
where (an instance of) Bi is selected as part of a successful derivation that the level
decrease is required to ensure termination.

Analogous results to those for recurrent programs (Theorem 3.16, Corollary 3.18
and Theorem 3.19) have been proven for acceptable programs. The proofs again
follow the same basic outline of Section 3.2. The abstraction function used is rather
more complicated than that used in the proof of recurrency First, observe that, if a
goal G Ai,... ,An terminates tmder a left-to-right computation rule then each
atom Ai is not necessarily botmded, but should be once the atoms to its left have been
resolved. This idea forms the basis of the following definitions.

Definition 3.21 (maximum function Apt & Pedreschi 1994) The maximum fimction
max : p(N) N U {oo}, where p(N) denotes the powerset of N , is defined as

0 i f g = 0
max S = ^ n if 5" is finite and non-empty and n is the maximum of S

oo if S is infinite

Then max 5 < oo iff the set S is finite. •

35

Definition 3.22 (left bounded goal Apt & Pedreschi 1994)^ Let |.| be a level mapping,
I an interpretation and G A i , A n a goal. Then G is left bounded wit |.| and I iff
for all z E [1, n], the set

0 is a groimding substitution for G
7 1= {Ai , . . . ,

is finite. If G is left bounded wrt |.| and I then |[G]/| denotes the finite multiset

Using the abstraction function A = |[.]j| allows one to prove that for a goal G
which is left boimded wrt |.|, any SLD-resolvent G' of G is left bounded and further-
more |[G]/| >mul |[G']/|. The result is the analogue of Corollary 3.18.

Corollary 3.23 (acceptability Apt & Pedreschi 1990) Let P be a program, G a goal, |.j
a level mapping and I an interpretation for P . If P is acceptable wrt |. | and I and G is
left boimded wrt |. | and I then G is left terminating wrt P . •

Sufficient and necessary conditions for left termination are characterised by the
following theorem.

Theorem 3.24 (acceptability) A program is acceptable iff it is left terminating.

Example 3.10 Considering the Permute program from Example 3.2 again, let |.| be the
level mapping defined by

|Permute(ti,t2)| = + 1

I DelGtG(ti, ^2; I = \t2\list-length

and I be the interpretation

{Delete((i,^2,^3) |
{PermutG(tx) ̂ 2) | \tl\list-length \^2\list-length}

Now / is a model for the program and, in particular, for the clause penMg, and for every
grounding substitution 6 for -perm^,

|Permute([h|t], [a|p])6i| = [[hiqgjKst.kMgA + 1

> \i^\i]0\list-length

= jDelete(a, [h|t], l)0|

and for every grounding substitution 6 for perm^ such that 11= Delete(a, [h|t], \)9,

|Permute([h|t], [a|p])g| = 1

— i\^^\list-length + 1) + 1
^ \^^\ust-length 4" 1
= |Permute(l, p)0|

Hence perm^ is acceptable wrt |.| and / . The clauses perm^ and deli are trivially
acceptable wrt |. | and I since I is a model for them, while the clause deh can easily
be shown to be acceptable wrt |.| and / in the same way as for perm^. This proves the
program Permute is left terminating. •

^The term left bounded is introduced here to avoid confusion with Definition 3.17.

36

3.2,4 Interargument Relationships

The intuition behind the proof of left termination in Example 3.10 is rather simple. One
key step is to show that the size of the first argument in the head of the clause -perm^
is strictly greater than the size of the first argument in the recursive body atom, that
is \[h\t]\iist-iength > \^\iist-iength/ whenever this body atom is selected. Since the computation
proceeds under a left-to-right computation rule, this body atom will only be selected
following the refutation of the Delete(a, [hjt], I) call. The model I of the program is then
used to infer that the equation \[h\t]9\iist-iength = l^^liist-length + 1 holds proving that the
required inequality holds also. The equation \t2\iist-iength = \h\ust-length + 1 appearing
in the definition of the interpretation I constitutes an interargument relationship. It
expresses the relation between the sizes of arguments of any Delete/3 atom occurring
in the success set of the program. This notion is formalised in the following definition.

Definition 3.25 (interargument relationship) Le tp /n be a predicate defined in a pro-
gram P whose minimal model is M, and let |.| be a norm. An interargument rela-
tionship for p/n (wrt |.|) is a relation I C N" , such that if M |= p{ti,... ,tn) then
C t i l , . I t n l) E 7. []

It will usually be convenient to write interargument relationships in the form
p{ti,. • • ,tn) : Expr where Expr is an expression over the terms i i , . . . , For example,
P(ii, tg) : | 4 | = 1̂ 2! + 1 defines an interargument relationship for the predicate P/2 in
a program P such that if M |= P(ti,t2) then |(i| = |t2| + 1 where M is the minimal
model for P.

Interargument relationships play an essential role in proving termination of a
large class of programs. They were first identified by Ullman & Van Gelder 1988 who
used interargument inequalities of the form pi + c> pj where pk denotes the list length
of the fcth argmnent of the predicate p, for A: = i, j, and c is an integer constant. These
were generalised in Pliimer 1990a, Pliimer 1990b, Pltimer 1991 and Groger & Plumer
1992 to linear predicate inequalities of the form YlieiPi + c > YljeJPj where I and J
are sets of input and output positions for p. Verschaetse & De Schreye 1991 considers
linear equations of the form cq -I- YA=I CiPi = 0 where q for all i € [0, n] are integers.
In Verschaetse et al. 1992 this is extended to conjunctions of linear equations. Finally,
Debray et al. 1990 describe the derivation of non-linear interargument relationships
using difference equations.

37

4 Introduction to Partial Deduction

This chapter introduces partial evaluation in the context of logic programming. To
recapitulate, partial evaluation is an example of a program specialisation technique.
Classic partial evaluation techniques divide a program's input into a static part and a
dynamic part, and specialise the program with respect to the static input. The effect is
that a computation becomes staged; the first stage being the specialisation process, and
the second, the execution of the specialised program, also called the residual program.
Hence, instead of consuming all of the input at once, the static part is consumed in the
first stage, and the dynamic part in the second (Figure 4.1).

By staging the computation in this way, those parts of it which rely exclusively on
the static data, can be performed once and for all at specialisation time. The remaining
parts of the computation, which depend, either in whole or in part, on the dynamic
input, are performed during the second stage. Given then, that the residual program
has less work to do than the original, theoretically, at least, it should be more efficient.

In the context of logic programming, the objective of program specialisation can
be stated as follows. Given a program P and a goal G, specialise P wrt G to obtain the
residual program P', such that for any substitution 9, the following properties hold:

• computations of P U {GO} and P' U {G9} give identical results;

• computations of P' U {GO} are more efficient than P U {G6}.

Here, the static data is input to the specialisation process through the partially
instantiated goal G; the dynamic data is supplied through the substitution 0. The
second property above captures the real motivation for performing specialisation,
while the first expresses a necessary correctness criterion.

owfpwf PE Ps PE Ps output

Figure 4.1: Staging a computation by partial evaluation: Stage 1: The partial evaluator
PE, specialises the program P, wrt the static data s, resulting in the program Pg. Stage 2:
Pg takes the dynamic data d as input, producing the same output obtained by supplying
both s and d simultaneously as input to P.

38

4.1 Partial deduction

Partial evaluation was first introduced into logic programming by Komorowksi 1981.
It is a mixture of execution and code generation and for this reason was called mixed
computation by Ershov 1982. The term partial deduction was coined in Komorowski
1992, meaning partial evaluation of pure logic programs. Since only pure logic pro-
grams are considered in this thesis, this term will be used throughout.

Partial deduction was placed on a firm theoretical foundation in Lloyd & Shep-
herdson 1991. This section reviews the key notions and the correctness results of that
paper and presents some simple examples. The results of Lloyd & Shepherdson 1991
are cast in the context of normal logic programs, i.e. programs containing negative
literals in the bodies of clauses. Since only definite logic programs are considered in
this thesis the following definitions and results have been simplified accordingly.

Definition 4.1 (resultant Lloyd & Shepherdson 1991) A residtant is a first order for-
mula of the form V((5i ^ Qg), where for all i € [1,2], Qi is either absent or a conjtmc-
tion of atoms. •

Definition 4.2 (resultant of a derivation) Let P be a program, ^ Qo a goal, and d =
(t— Qo, • • •) ̂ Qn) a finite SLD-derivation of P U {4— Qo}, where the sequence of
substitutions is . . . , 6'„. Let 9 = 61... 9n\varsiQo)- Then the derivation has length n
with computed answer 0 and the resultant of d, denoted residtant{d), is QQ9 ^ Q„. In
the case when n = 0, the resultant is Qo ^ Qo- O

Definition 4.3 Let P be a program, G a goal and let r be a finite SLD-tree for Pu {G}.
Let D be the set of non-failing SLD-derivations associated with the branches of r . Then
resultants{T) = {resultant{d) | d E D} is the set of resultants of r . •

Example 4.1 Consider the Append program below.

App8nd([], X, x).
appg Append([u|x], y, [u|z]) ^

Append(x, y, z).

Let Ti be the finite, incomplete SLD-tree for Append U{<— Append([1,2|x], y, z)} de-
picted in Figure 4.2. Then resultants{TI) contains the following two resultants:

Append([1,2], y, [1,2|y]) ^
Append([1,2,u|x'], y, [1,2,u|z'"]) ^ Append(x', y z'")

Let t2 be the subtree of n rooted at the goal <— Append(x, y, z"). Observe that T2
is a finite SLD-tree for Append U{<— Append(x, y z")}. Then resultants{T2) contains the
following two resultants:

AppendKL%y)^-
Append([u|x'], y [u|z"']) Append(x', y z"') •

Definition 4.4 (partial deduction) Let P be a program and A an atom. Let r be a
finite non-trivial SLD-tree for P U {4— A}. Then the set of clauses resultants{T) is called
a partial deduction of A in P . •

39

Append([1,2|x], y, z)

W 2 { z/[1 |z'] }

Append([2jx], y, z')

W 2 { z'/[2|z"] }

^ Append(x, y, z")

{ x/0, z"/y } x/Lulx"], z''/[u|z'"] }

• ^ Append(x', y, z"')

Figure 4.2: Finite, incomplete SLD-tree for Append U{<— Append([1,2|x], y, z)}

If A = { ^ 1 , . . . , is a finite set of atoms, then a partial deduction of A in P is
the union of partial deductions of ^ 1 , . . . , in P . A partial deduction of P wrt A is
a program obtained from P by replacing the set of clauses in P , whose head contains
one of the predicate symbols appearing in A (called the partially deduced predicates),
with a partial deduction of A in P .

Example 4.2 Let A = {Append([1,2jx], y, z), Append(x, y, z)}. Then the following pro-
gram Appendi is both a partial deduction of A in Append and also a partial deduction
of Append w r t A:

Append([1,2], y, [1,2|y]).
Append([1,2,u|x], y, [1.2,u|z]) ^

Append(x, y, z).

Append([], y, y).
Append([u|x], y, [u|z]) ^

Append(x, y, z). •

Observe that the program Appendi above admits two (equivalent) solutions to
the goal ^ Append([1,2], [], z) whereas the Append program only admits one. Hence
this program is not strictly a specialised version of the original. The problem arises
because Append([1,2], [], z) is an instance of both atoms in the set A. The solution is to
impose a condition on the set A.

Definition 4.5 (common instance) Let A and B be atoms. Then A and B have a
common instance iff there exists an atom C such that C is an instance of both A and
B, i.e. there exist substitutions 0 and (p such that AO = C = Bcj). •

Observe that if two atoms A and B have a common instance, then A and B are
unifiable after renaming apart. Hence, it is possible for two non-tmifiable atoms to have
a common instance.

Definition 4.6 (independence) Let A be a finite set of atoms. Then A is independent iff
no pair of atoms in A have a common instance. •

The set A = {Append([1,2|x], y, z),Append(x, y, z)} of E x a m p l e 4.2 is n o t indepen-

dent. The two atoms in A are not tmifiable, but can be unified after renaming apart.

40

Example 4.3 Let A = {Append([1,2|x], y, z)} be a set of atoms. Then the following
program is a partial deduction of Append wrt A:

Append([1,2], y, [1,2|y]).
Append([1,2,u|x], y, [1,2,u|z])

Append(x, y, z).

Note that A is an independent set. •

The problem with the above program is that a goal such as ^ Append([1,2,3], y, z)
will fail whereas it succeeds in the original program. The cause here is that the goal
gives rise to a call Append([], y, z') which is not an instance of any of the atoms in A.
Hence a further condition needs to be imposed on the program to ensure equivalence
with the original.

Definition 4.7 {closedness) Let S be a set of first order formulae and A a finite set of
atoms. Then S is A-closed iff each atom in S containing a predicate symbol in an atom
in A is an instance of an atom in A. •

Definition 4.8 (coveredness) Let P he a program, G a goal, A a finite set of atoms,
P' a partial evaluation of P wrt A, and P* the subprogram of P' consisting of the
definitions of predicates in P' upon which G depends. Then P' U {G} is A-covered if
P* U {G} is A-closed. •

The independence and coveredness conditions are together sufficient to ensure
correctness of partial deduction.

Theorem 4.9 (Lloyd & Shepherdson 1991) Let P be a program, G a goal, A a finite,
independent set of atoms, and P' a partial deduction of P wrt A such that P' U {G} is
A-covered. Then the following hold:

1. P' U {G} has an SLD-refutation with computed answer 0 iff P U {G} does.

2. P ' U {G} has a finitely failed SLD-tree iff P U {G} does.

Example 4.4 Let G = <— Append([1,2|x], y, z) and A = {Append(x, y, z")}. Then the fol-
lowing program Append' is a partial deduction of Append wrt A:

Append ([], y, y).
Append([u|x']. y, [u|z"'])

Append(x', y, z'").

Observe that A is independent and Append' U{G} is A-covered. Hence the premises of
Theorem 4.9 hold and correctness is ensured. This is not surprising! •

In fact, if P ' is a partial deduction of Append wrt some set of atoms A such that P ' u
Append([1,2|x], y, z)} is A-covered then the atom Append(x, y, z) (modulo renaming)

must be contained in A. It follows, that if A is independent, Append(x, y, z) is the only
Append/3 atom in A, and as a consequence Append' is the only partial deduction of
Append that can be used to refute the goal ^ Append([1,2|x], y, z). Of course, given that
Append' is equivalent to Append, this is not a very useful specialisation. To achieve, a
better specialised program a little bit of cheating is required.

41

Example 4.5 Reconsider the program Appendi of Example 4.2, the partial deduction
of Append w i t t he set A = {Append([1,2|x], y, z), Append(x, y, z)}. As n o t e d earlier, the

set A is not independent, but observe that Appendi U {<— Append([1,2|x], y, z)} is A-
covered. Independence of A can be achieved by renaming the atom Append(x, y, z) as
Append-1 (x, y, z) and defining the two atoms to be equivalent.

Let B = {Append([1,2|x], y, z), Append-1 (x, y, z)}. T h e n the p r o g r a m Appendg be low
can be ob t a ined as a par t ia l d e d u c t i o n of Append U{Append_1 (x, y, z) e- Append(x, y z)}
wrt B, followed by replacing each body atom Append(x, y, z) occurring in the body of a
clause by AppendJ (x, y, z). This last step is known as folding since it is a reverse of the
imfolding process (Burstall & Darlington 1977, Tamaki & Sato 1984).

Append([1,2], y, [1,2|y]).
Append([1,2,u|x], y, [1,2,u|z]) f -

Append_1 (x, y, z).

Append-1 ([], x, x).
AppendJ ([u|x], y, [u|z]) ^

Append-I (x, y, z).

Note that the set B is independent and that Append^ U {e- Append([1,2|x], y, z)} is
B-covered. Although, Append^ is not strictly a partial deduction of Append wrt B, it
follows by the correctness of the folding process (Kawamura & Kanamori 1988, Seki
1989) that the conclusions of Theorem 4.9 still hold. •

One interesting property of this last specialisation it that the original Append/3
predicate has given rise to two versions of the predicate in the residual program, i.e.
Append/3 and Append_1/3. This is known as polyvariant specialisation.

4.2 Control of partial deduction

The above examples illustrate several key features of the partial deduction process.
Firstly, a partial deduction of a program is derived from a number of SLD-trees. For
example, the Append^ of Example 4.5 is derived from two SLD-trees ri and T2 of
Example 4.1. Note that the predicate Append/3 of the specialised program corresponds
to the tree t i and the predicate Append-1/3 is derived from rg. In general, each SLD-tree
generated during partial deduction gives rise to a specialised predicate in the residual
program. The definition of a predicate is determined precisely by its corresponding
SLD-tree.

Two levels of control in the partial deduction process can now be distinguished.
The global control decides which trees should be generated. More precisely, since
each tree is rooted at a single atom, the global control determines the set of atoms
which should be used to construct SLD-trees from. This set is, in fact, the independent
set A of Theorem 4.9 (or, rather, a set such as B in Example 4.5). Hence, the global
control also determines the amount of polyvariance, i.e. the number of specialised
versions generated for each predicate. The local control, on the other hand, determines
the structure of each individual SLD-tree. Since construction of a tree proceeds by
unfolding, the local control is often described by an unfolding rule.

Each level of control has associated with it, its own termination problem. For the
global control, the problem is to ensure finiteness of the set A, whereas the local control

42

must ensure that every SLD-tree generated is finite. This thesis focuses exclusively on
local termination.

Of course, finiteness, in itself, is not hard to achieve. A simple depth bound
approach, for example, will suffice. But the quality of the residual code depends very
much on the construction of the SLD-trees and it is often the case, though not always,
that more unfolding leads to better specialisation. Thus the problem restated, is to
"unfold finitely as much as possible".

4.3 Online and offline control

There are two basic approaches to the control of partial evaluation. In the online
approach, all control decisions, including both local and global, are made at speciali-
sation time. In the opposing offline approach, control decisions are taken prior to the
actual specialisation itself. This can be achieved by (statically) analysing the program
to be specialised and producing an armotated version containing control information.
This annotated program is submitted to the partial evaluator which picks up the con-
trol information and uses it to guide the subsequent specialisation process.

An offline analysis usually works with descriptions of values and can thus some-
times be too conservative in its control decisions. At specialisation time when the
concrete data is available more refined decisions can be made. It is for this reason, that
online methods usually offer better specialisation potential than offline ones.

The offline approach offers its own advantages, however. The separation of the
specialisation process into components is good software engineering practice and
permits the development of these components to occur independently. Of more use to
the user, is that offline partial evaluation can be significantly faster than online partial
evaluation, since, at specialisation time, no control decisions need to be made. The
time taken to perform the offline analysis, does not necessarily need to be taken into
account. The reason for this, is that when several different specialisations of a single
program are required, only one analysis is ever necessary. Hence, the analysis time
can often become insignificant overall.

The offline approach also has an advantage when it comes to self-application. A
self-applicable partial evaluator, is one which is able to specialise itself. The experience
of many researchers has been that it is much easier to build an offline partial evaluator,
that is amenable to self-application, than it is to bufld an online one. The interest in
self-application stems from the Futamura projections described in the next section.

4.3.1 The Futamura projections

One application of partial evaluation which has attracted considerable attention is its
use in the automatic derivation of compilers from interpreters. The main ideas in this
area were formally captured in the Futamura projections (Futamura 1971).

Let Int be a meta-interpreter which takes two inputs; a program P (known as the
object program) and an input G for P. The interpreter effectively executes P with
input G and produces the same output that would be obtained from a "genuine"
execution of the program with the same input:

43

P G G

It is often the case that one would like to run the program P on a variety of
different inputs. The situation then is exactly that depicted in Figure 4.1 where the
program P corresponds to the static input data s and G represents the dynamic part
of the input. Hence, program specialisation techniques can be applied to good effect.

4.3.1.1 The first Futamura projection

The interpreter Int can be partially evaluated with respect to the object program P
to produce a specialised version Intp of Int dedicated to the "interpretation" of P.
This new "interpreter" is dedicated in the sense that P is the only program that it
can "interpret". As such Intp, with input G, should execute more quickly than Int,
with inputs P and G, and produce the same output. This, after all, is the whole
point of the partial evaluation process. The quotes here are used with reference
to interpretation, since very often the interpretation layer can be entirely removed
through specialisation.

jbf P G

P£i P£i

Observe the similarity between the program Intp and the program P. Both take an
input G and produce the same output. For this reason, Intp is often referred to as
a "compiled" version of the object program P. A consideration of the underlying
languages involved adds weight to this idea of partial evaluation as a compilation
process.

Suppose that the interpreter is written in a language Ci„t and the language of the
object program is Cp. The program Intp is just a specialised version of Int and hence
is also in the language Cj„t. Thus the partial evaluation process is effectively a form
of compilation from the language Cp to An interesting case arises when Cp and
Cjnt are equivalent. Then, ideally, the program Intp should be the same as the original
program P (or possibly an optimised version of it). This case clearly demonstrates
the potential for completely removing the interpretation overhead through partial
evaluation.

4.3.1.2 The second Futamura projection

Note that the partial evaluator PE^ used in the first Futamura projection is not in itself
a compiler as such, since it must take both an object program P and an interpreter
Int as input, whereas a compiler would only require the object program P. The sec-
ond Futamura projection details how such a compiler can be obtained from a partial
evaluator and an interpreter.

It usual for an interpreter such as Int to be used to interpret a number of different
programs. This gives rise to another static/dynamic classification and an opportunity

44

for specialisation. Specifically, the program PE^ can be partially evaluated regarding
the input Int as static and the input P as dynamic. This, of course, requires a partial
evaluator which is capable of specialising the partial evaluator PE^.

G

PE^ Intp PE^ Intp

The result of specialising PE^ with respect to Int is the partial evaluator PE^,
which is dedicated to the partial evaluation of the interpreter Int, in the same sense
as before. This program can now take an object program P and produce a compiled
version Intp of P. Consequently, a program such as PE^, is called a compiler.

4.3.1.3 The third Futamura projection

It may well be desirable to generate compilers for a range of different interpreters.
Specialisation of the compiler generation process of the second Futamura projection,
permits more rapid generation of a compiler from an interpreter. This time, the partial
evaluator PE^ is the program to be specialised, the static input is the partial evaluator
PE^ and the unknown input is the interpreter Int. Again a partial evaluator PE^ is
required which is capable of specialising the partial evaluator PE^.

PE^PEi Int

PE^ f t L , Intp PE^ f t L , Intp output

The result of specialising PE^ with respect to PE^ is the partial evaluator PEp^i which
is dedicated to the partial evaluation of the partial evaluator P E \ This program is
referred to as a compiler generator since it takes an interpreter Int as its only input
and produces a compiler PE^, as output.

4.3.1.4 Self application

The interrelationship of the three Futamura projections is shown in Figure 4.3. Con-
sider the case when the partial evaluator PE^ above is self-applicable. Then, since
PE^ is capable of specialising itself, the partial evaluator PE^ may be replaced by PE^.
Similarly PE^ may also be replaced by PE^ and a compiler generator may be obtained
through self-application of a single partial evaluator.

4.3.2 Perspective

This thesis focuses on developing offline, local control for partial deduction. In partic-
ular, it addresses the termination issue: how to ensure the construction of finite SLD-
trees during partial deduction. Instead of developing an offline termination analysis
for partial deduction from scratch, it explores the work which has been done on static
termination analysis of logic programs (Chapters 5, 6 and 7), and examines how the
existing analysis techniques can be adapted for partial deduction (Chapter 8).

45

P G

1st

2nd r

3rd

f—PE Int—^

PE^PEi

PE^ PE^

compiler
generator

compiler compiled
program

Figure 4.3: Interrelationship of the three Futamura projections.

46

Part II

Terminating Logic Programs

47

5 Typed Norms for Typed Logic Programs

5.1 Introduction

The usefulness of considering the sizes of arguments as a suitable abstraction for
proving termination of logic programs was first illustrated by Ullman & Van Gelder
1988. This work was the starting point for the development of functions called norms
which map terms to natural ntunbers.

Choosing the right set of norms is crucial for deducing termination and also for
deriving useful interargument relationships. Early work on termination relied on the
user to provide the necessary norms. As this had limited usefulness a method to
automatically generate norms from a program was proposed in Decorte et al. 1993.
The approach focuses on deriving norms from type graphs that have previously been
inferred by an analysis of the program. The technique is effective in generating norms
for proving termination of many of the programs foimd in the termination literature.
However, a more direct approach can be adopted in the context of a typed language
such as Godel (Hill & Lloyd 1994), when the types are already known.

As typed logic programming becomes more mainstream, development tools like
partial deduction systems will need to be mapped from untyped languages to typed
ones. SAGE (Gurr 1994) is one example of a partial deduction system developed for
the typed language Godel. Although SAGE does well to demonstrate the effective-
ness of self-application and how the overheads of the ground representation in meta-
programs can be removed, there is much potential for improvement (Gurr 1995). One
of its weaknesses is that it relies on a rather rudimentary termination analysis which
could benefit considerably from the well developed techniques found in the termi-
nation literature. Revamping the analysis would require incorporating a number of
techniques, including norm derivation, developed for untyped logic programs. It is
important, however, when mapping techniques across from the untyped setting that
the new techniques should exploit the underlying type system as much as possible.
In the case of automatic norm derivation the approach in Decorte et al. 1993 clearly
would not take advantage of the prescribed types. As a result of this and since "any
state-of-the-art approach to termination analysis needs to take type information into
accotmt" (Decorte et al. 1994), new techniques are needed to derive norms directly
from these types and avoid the overhead of type graph generation. This chapter lays
a foundation for such techniques.

This chapter shows how norms can be generated from the prescribed types of a
program written in a language, such as Godel, which supports parametric polymor-
phism. Interestingly, the types highlight restrictions of earlier norms and suggest how
these norms can be extended to obtain some very general and powerful notions of
norm which can be used to measure any term in an almost arbitrary way.

The next section introduces typed norms and defines the classes of linear, semi-

48

linear and type-linear typed n o r m s S o m e technical issues in the definition of typed
norms are also addressed and the important notion of rigidity is defined. Section 5.3
describes how to infer the norms of Section 5.2 from the prescribed types of a program
and relates the approach to that of Decorte et al. 1993. Related work is addressed in
the penultimate section and the conclusion outlines some directions for future work.

5.2 Typed norms

Before proceeding with the main development, a short remark is in order regarding
the range of norms. Originally, norms were defined as mappings from terms to
natural numbers. Thus both ground and non-ground terms were mapped to natural
numbers which was achieved by mapping variables to zero. The norm \-\iist-iength

defined in Example 3.5 is an example of such a norm. It is often more useful, however,
particularly when it comes to deriving norms, to map a non-grotmd term t to an
arithmetic expression over the variables in t. This approach will be followed here.
It has also been adopted by others, e.g. Benoy & King 1996, Lindenstrauss & Sagiv
1997, Codish & Talboch 1997, and is fast becoming the norm for practical analyses.

Let EDt- denote the set of all (ground and non-ground) terms of type r .

DeSnitionS.l Let 2̂ - = {Lm} and E/ = be alphabets of
type and function symbols respectively and let Vu^ be a countably infinite set of
variables. Then EDun represents the class of linear expressions on Vun where a term
such as 4- + 3/Lm + 1 -|-1 4-1 is abbreviated by a; + 2?/ -t- 3 (Note that
associativity and commutativity are assumed because of the intended interpretation).
•

Having established the range of a norm, the next step is to define the domain.
The domain of tmtyped norms is simply the Herbrand universe. In a typed language,
there is a natural division of this universe determined by the types in the language.
This motivates the introduction, for each type r in the language, of a typed norm |.|r
which only measures terms of type r .

Definition 5.2 (typed norm I) A typed norm for a polymorphic type r is a mapping
Mr : ED^ ^ EDiin- •

Example 5.1 The typed norm |.|List{int) : ED|_ist(int) —̂ defined below measures
the length of both open and closed lists of integers.

l'^lList(lnt) =
|Nil|List(lnt) = 0

|Cons(ti, t2)|List(lnt) = 1 + |̂ 2|Lis1(lnt)

Then |Cons(1, Cons(2, Nil))| = 2 and |Cons(1, Cons(x, Cons(y, z)))| = 3 -k z. •

It is appropriate at this point to review the important concept of rigidity which
was originally introduced by Bossi et al. 1994 in order to prove termination for a
class of goals with possibly non-grotmd terms. A rigid term is one whose size, as
determined by a norm, is not affected by substitutions applied to the term. In the
following, (p denotes the variable assignment which binds all variables in a term to the
term Qun-

^Originally called hierarchical typed norms in Martin et al. 1996.

49

Definition 5.3 (rigid term) Let |.jr be a typed norm for r and t be a term of type r .
Then t is rigid with respect to j.j^ iff for every substitution 6, \t\T-4i = \tO\r(p- •

Example 5.2 The term Cons(x, Cons(y, Nil)) is rigid wrt the norm MList(lnt) of Exam-
ple 5.1 since for every substitution {x t i ,y i-+ tg} where ti and tg are terms |Cons((i,
Cons(^2, Nil))|=2. O

By defining level mappings in terms of norms, it is possible to define a class of
bounded goals in terms of rigidity. More precisely an atom is bounded with respect
to a level mapping if each argument of the atom whose size is measured in the level
mapping is rigid. A problem arises, however, with the typed norms used in level
mappings. In measuring the level of an atom, a norm |.|r, which can only measure
terms of type r may be applied to a term of type a, where a = •^(r) for some type
substitution ip-

Example 5.3 Let P define the language (Ep, Zy, V), where

Sr = {Int, List}

E y = {N i l ^g , C o n s ^ y Ljst(u) y s t (u)) })

= {TraverseList(u)}

and S = {Traverse(Nil).,Traverse(Cons(x, y)) ^ Traverse(y).} then the norm |.|List(u)

defined by

l '^lList(u) = ^

|Nil|List(u) — 0

|Cons(ti, i2)|List{u) = 1 + |̂ 2|List(u)

can be used to define a level mapping |.| for the Traverse/1 predicate as follows

|Traverse(t)| = |f|ust(u)

The problem is that in trying to prove recurrency with respect to the level mapping |.|
for Traverse/1, the level mapping can be applied to atoms such as Traverse(Cons(1, Nil)),
yet the type of the argument of Traverse/1 in this instance, List(lnt), is not the type List(u)
for which the mapping is defined. •

This problem arises due to the polymorphism in the typed language and is not d-
ifficult to remedy. The domain of the norm must be changed and a constraint imposed
to ensure that the rigidity property still holds. To see why the constraint is required,
suppose that the term t is rigid wrt the typed norm Then, by the definition of
rigidity for every substitution 6,

(5.1)

Now applying a variable substitution to a term often has the effect of further instan-
tiating the type of the term. For example the type of the term Cons(x, Nil) is List(u),
b u t the type of Cons(x, Nil){ x i-> 1 } = Cons(1, Nil) is List(lnt). H e n c e the def in i t ion of

|.|r needs to be constrained so that equation (5.1) holds. This leads to the following
definition.

50

Definition 5.4 (typed norm II) A typed norm for a polymorphic type r is a mapping
|.|t ; U^g$ED^(T-) EDiin where 0 denotes the set of all type substitutions, and for
every term t of type r and for every type substitution i p , \ t \ r = \ t p { t) \ r . •

The definition of a type I norm naturally induces a norm of type II. Thus any type
II norm may be unambiguously defined by means of a type I norm. This approach,
which avoids unnecessary notation and does not cloud the intuitions involved, will
be adopted in the sequel.

To prove rigidity of a term with respect to a norm it is infeasible to apply all
possible substitutions to it to verify that its size with respect to the norm is invari-
ant. Instead, a syntactic characterisation of rigid terms is needed. By imposing the
following condition on the way norms are defined, a simple, syntactic check can be
obtained to determine the rigidity of terms with respect to norms defined under these
conditions.

Definition 5.5 (linearity property) A typed norm |.|r satisfies the linearity property
iff for every variable v, \v\r G Vun and for all t e EDr, the following properties hold

1. Î li- is of the form co -t-cilfilTi + . . . + where co,Ti > 0, c i , . . . ,Cn > Oand
for all % e [1, n], E

2. if |^|t — Cq ~\~ "i~ • • . "h I I t h e n — Cq 4- -j- . . . CfilVn l̂rn/
for every substitution 6. •

Proposition 5.6 (rigid term) Let |.|^ be a typed norm satisfying the linearity property
and t be a term of type r . Then t is rigid with respect to | . | r if vars{\t\r) = 0. •

Proof 3 If vars{\t\r) = 0 then it follows by the linearity property that \t\r = \td\r for every
substitution 6. •

Although each norm is annotated with its type, the following example illustrates
that several norms may exist for the same type.

Example 5.4 The typed norm | • lust(List{int)) ii^easures the length of a list whose elements
are lists of integers. The typed norm sums the lengths of the elements of
such a list.

U.lten
r lL ist{List(lnt)) — ^

iMIIl/en _ n
l'^'l|List(List(int)) — ^

|Cons(ti, 2̂)||_ist(List{lnt)) ~ 1 + l̂ 2|List(List(lnt))

r lL ist(List(lnf))

l'̂ ''lust(List(lnt)) =
|Cons(ti,t2)lus't{List{lnt)) = Î ll0s7(lnt) + l̂ 2|Lĵ (List(lnt))

where equal to the norm |.|List(int) of Example 5.1. Note that the norm

I lust (Lis t (in t)) characterised by a weight of 1 in its recursive equation and the selection
of the second argument position only whereas the norm MS(List{int)) characterised
by a weight of 0 in its recursive equation and the selection of both argument positions.
•

51

Let S j = {/^(o-) I fa G TifAt/j is a type substitution} denote the set of all instances of
Then a norm can be uniquely characterised by a partial mapping w : S j x N i-» N

which assigns weights to typed fimction symbols and argument positions. More
specifically, given a function symbol G s j , let 0) denote the

weight assigned to and for all i E [1, n], let u^(/(ri...r„,r)) denote the weight
assigned to the ith argument position of The definition of a norm for a type
r depends on w and therefore the norm is denoted by |.|^.

Example 5.5 Let len and sum be partial mappings defined by

0) = 0 0) = 1 1) = 0 ZeM(/2,2) = 1

sw?M(/i, 0) = 0 sw?M(/2,0) = 0 sw?M(/2,1) = 1 swm(/2,2) = 1
swm(/3,0) = 0 swm(/4,0) = 1 swm(/4,1) = 0 sw?M(/4,2) = 1

where / i = NilLjst(Ust(lnt))/ / 2 = Cons^|_ist(lnt).List(List(lnt)),List(List(lnt)))/ f s = NilList(int) and

/4 = ConS(,nt.ust(int),List(int)). Then the norms |.|(%,(List(int)) and |.|f%(Ust(ini)) of Example 5.4
may be defined as

i 7 JI 7 J

l / l lust(List(lnt)) — kM(/ i ,0)

|/2(tl, t2)li%,(usi(lnt)) = 0) + ZeM(y2, l)|4lL^t(List(lnt)) + 2)|t2lu%,(Lisl(lnt))

I /), ISUTH ___ /J J
r lList{List(lnt)) — ^

l / l l us t (L is t { ln t)) = SMm(/i,0)
|/2(tl, t2)IS(Ust(lr,t)) = S™(/2, 0) + SWm(/2, l)|tl|Ln(lnt) + 5W)M(/2, 2)1̂ 2lL%(Usl(lnt))

l/sltQlnt) = 0)
1/4(^1, ^2)lL%(|nt) = 0) + SW?M(/4, l) | t l | |nr + SWm(/4, 2)|t2|%nt)

•

A notion of linear and semi-linear norms can now be defined for typed programs.
These two classes of norms were originally introduced in the context of non-typed
programs by Plumer 1990a and Bossi et al. 1992 respectively.

Definition 5.7 (linear typed norm) A typed norm |.|^ is linear iff for allv e V and for

a l l /(Ti. . .r„,r) E

[FL™ = V

where , %) = 1 for all t e [1, m]. •

Note that the types highlight an inherent restriction of linear norms, that is, these
norms are only defined when TI = T for all i e [l,n]. Such norms have limited
applicability.

52

Example 5.6 Given Er = {Tree} and = {Leaf^g j r e e) / N o d e^ j ree .T ree .T ree) } ' the linear
typed norm for Tree that cotmts the number of fvmction symbols in a term is defined
by

l^lTree '
|Leaf|?» = 1

w

|Nocle(J i ,«2)a = l + •

Semi-linear norms are a generalisation of linear norms where for all i E [l,n],
E {0,1}.

Definition 5.8 (semi-linear typed norm) A typed norm |.|^ is semi-linear iff for all

E y and for all E Sj

where E {0,1} for all % E [1, n]. O

Example 5.7 If = {Int, List} and Ey = {Nil̂ ^ List(u))/ Cons^u.L is t {u) ,L is t (u)) } / then the norm
I I/en
l ' lList(List(lnt)) defined in Example 5.4 is semi-linear. •

Semi-linear norms are not expressive enough to measure the sizes of terms that
can be defined in a typed language such as Godel. To quote Bossi et al. 1992, p. 72,
paragraph 2 "The recursive structure of a semi-linear norm gets into the term structure
by only one level. Moreover so far it is not defined how different semi-linear norms
can be linked to work together. The definition of a semi-linear norm is recursively
based only onto itself and it is easy to imderstand that this is a severe restriction."
Again the types highlight where the essential problem lies: the norm applied to U is
|.|t whereas the type of ti is r^. The following definition overcomes this Umitation of
semi-linear norms. It also lifts the restriction of the definition of the weight function.

Definition 5.9 (type-linear typed norm) A typed norm |.|^ is type-linear iff for all v e

y and for all E Sj

|F = V

where \ti are type-linear typed norms. •

Example 5.8 With Er and Eyas defined in Example 5.7, the norm MysT{List(int)) defined
in Example 5.4 is type-linear and, in fact, cannot be expressed as a semi-linear norm.
•

Note that Definition 5.9 is closely related to definition 4.5 of Decorte et al. 1993.
Both generalise the definition of a type norm proposed in Pliimer 1990a. In Decorte
et al. 1993 the relationship between typed norms and semi-linear norms is not made
explicit, but the presentation here makes the relationships between the various norms
clear. In particular, it can be seen that every linear typed norm is semi-linear and every
semi-linear typed norm is type-linear. The following proposition is needed to establish
a syntactic characterisation of rigidity with respect to type-linear typed norms.

53

Proposition 5.10 Let |.|T- be a type-linear typed norm. Then |.|r satisfies the linearity
property. •

It follows from Proposition 5.10 that linear typed norms and semi-linear typed
norms also satisfy the linearity property. The power of typed norms is illustrated in
the following example.

Example 5.9 Consider the predicate Flatten/2 defined below which flattens a list of
lists.

Flatten(Nil, Nil).
Flatten(Cons(e, x), r) ^

Append(e, y, r) A
Flatten (x, y).

Observe that for any atom Flatten(ti,t2) in the minimal model for this program,
where ti and tg are ground terms, the sum of the lengths of the sublists of ti is equal
to the length of the list t2. This interargument relationship can be expressed as follows

F l a t t e n ((i , (2) : |^llLi^(List(lnt)) = l^2ll%t(lnt)

where Must(List(int)) ^ '̂̂ l-lus?(int) the norms defined in Example 5.4. Note that this
precise relationship can be expressed only using type-linear typed norms, or the typed
norms of Decorte et al. 1993 and Bossi et al. 1992. •

5.3 Automatic generation of norms

To perform termination analysis or interargument relationship analysis on a program
P, a finite set of norms is usually required which will enable the size of any term
occurring in P to be measured. This section outlines how a set of type-linear typed
norms suitable for this purpose can be derived directly from the prescribed types of a
program. The actual norms needed will be determined by the types of the terms that
can occur in P. In the following, two types are considered to be equivalent if one is a
renaming of the other.

Definition 5.11 (argument types) Let (Ep,Ey, F) denote the underlying language of
P. Then Parg = | Pn ...r„ G Ep A 1 <i<n}is the set of argument types for P. •

The set Parg represents the types of all terms occurring as arguments of atoms in
P, in that if the type of an argument of some atom is T, then either R G Parg, or there
exists a type a e Parg and a type substitution tp such that r = •^(cr). The following
definition captures the types of subterms of arguments.

Definition 5.12 (argument subtypes) For each r G Parg, the set of argument subtypes of
T is the least set such that T € and if E Eyy d € and a =
theiifetal is E e []

Example 5.10 Let P define the language (Ep, Ey, V), where

S / = {Ni l (e,L ist (u)>) C o n s ^ y List {u) ,L ist (u))}

E p = {PL is t (L is t (u)) i Q L i s t (u) }

54

Then
Parg = {List(List(u)), List(u)}

pUst(List(u)) ^ {List(List(u)), List(u), u}

={i-ist(u), u}

•

By defining a norm for each r G P^g, the size of any argument occurring
in the program can be measured. The sets are used to facilitate the definitions
of these norms. It will often be the case that some of the arguments in a program
have the same type and different norms may be required to measure the sizes of such
arguments. Thus for each r G Parg a norm is defined which is parameterised by a
weight function w as in the preceding section. Later, different w can be defined for
individual arguments.

Before defining the induction process it is worth making an important observa-
tion which has an effect on the definition of the norms. First note that the type of a
constant or the range type of a function must be either a base type or a type with a
constructor in it (i.e. it cannot be a parameter). A consequence of this is that any term
whose type is a parameter is a variable. The term structure of any term assigned to
this variable cannot be accessed or altered in any way within the local computation,
since if it could, the type of the term would be known and thus the variable would
be of a more specific type. Thus the term (and its size measured wrt to any norm)
never changes and hence has no effect on termination at the local level. This means
that when defining the norm |.|u where u e U, the value of |t|„ for any term t should
be constant. To simplify the definition it may be assumed that this constant value is
zero. Furthermore, the norm |.|u can be removed from any definition which depends
on it.

Definition 5.13 (induced typed norm) For each r E Parg the type-linear typed norm
: EDr —EDLin is defined as the least set of equations as follows. If r e then
= {|.|^ = 0}, else

j = ' : ; | t ,EyAcrE j U

/ (^1; • • •) 1(7
1 X / i = l I 0 1̂ ' J 1(7,:

where w is a weight function partially defined for each r e Parg such that for each
a e and E and for all i E E N and for all
i e [1, n] such that tjj is a parameter then ?) = 0. •

Note that due to the definition of each |.|̂ ^ is defined in E^ . Thus each is
well defined pending a complete definition of the weight fvmction w.

Example 5.11 Given P^g as defined in Example 5.10, let p he a weight function for
the type List(List(u)) and qhe a weight ftmction for the type List(u) partially defined as
follows:

P(f^''(e,Lisf(Lisf(u)))) 0) = W i P(f^i l (e,Usf(u)) i 0) — ^ 5

p(ConS^Ljst(y) Ljst(i_jst(u))̂ List(List(u)))) 0) = W2 p(ConS^Li.List(u), List(u)); 0) = WQ
p(ConS^Ljst(u),List(Lisf(u)), List(Ust(u))>! 1) ~ '^3 p(ConS^|j List{u))) 1) = 0
p(ConS l̂_|gt(y) Ljst(Lisf{u)), List(Ust(u))>7 2) = W4 p(ConS^y List(u)); 2) = Wg

55

'?(Nil(e,List(u))) 0) = ^ 9

(^ (C o n s ^ u List(u))) 0) ~ ^ 1 0

(j(COnŜ y |_jgt(y)̂ LiSt{u))) 1) = 0
(^ (C o n s ^ y LiSt(u))) 2) = W l 2

where for all i € [1,12], Wi e N. Choosing, for example, wi = W2 = ws = wg = 0 and
W3 = W4̂ = wq = ws = wio = wi2 = 1, the following equation sets may be derived

U,|P
iMi l lP iNiiiP — n

| C o n s (t i , t 2) lL i s t (Us t (u)) = l ^ l l L i s t (u) + l ^2 |us t (Us t (u)) '

0,

^ ' ^ + Î 2lus1(u)
l̂ lList(u)
|Nil|L(u)
|Cons(ti,t2)|^jg,(^) = l + |t2|Lt(u)

List(List(u))

TpCj
List(u)

•

Note that the sets of terms for which the norms are defined are not disjoint. For
example, the domain of the norm lList{List(u))

for the norm iL ist(u) '

of Example 5.11 is a subset of the domain
There is no confusion, however, when deciding which norm to

use on a particular argument of an atom since the choice is determined by the atom's
predicate symbol.

Example 5 . 1 2 Consider the atom OList(List(int))(Cons(Cons(1, Nil), Nil)) which may appear
as part of a goal for the predicate QList(u)- Although the type of the atom's argument
is List(List(lnt)), the correct norm to use would be
type of the predicate is List(u).

iLt(u) aiid not lList(List(u)) since the
•

All that remains now to complete the definitions of the derived norms is to fully
define a suitable weight function. This in itself is a non-trivial problem.

5.3.1 Defining the weight function

Most of the approaches to termination analysis based on norms essentially use a
simple generate-and-test method for deducing termination. Norms are generated
(either automatically or otherwise) and used to form level mappings which are then
applied to the program for which a termination proof is sought. Inequalities are then
derived whose solubility indicates the success or failure of the termination proof.

The main difficulty with this approach is the potentially infinite number of norms
that can be generated. To reduce the complexity of this problem a number of heuristics
can be used. Decorte et al. Decorte et al. 1993, for example, propose the following
(adapted) heuristics for deriving typed norms.

1. A weight of one is assigned to all functors of arity n > 0.

2. A weight of zero is assigned to all constants.

56

3. Any argument position whose type is not a parameter is assigned a weight of
one.

Applying these heuristics to the partially derived norms results in the same norms
that would be derived by Decorte et al. 1993 given the same type information in
the form of a type graph. Although this approach works well on a large number
of examples, there are occasions when it will fail to generate norms that can be used
in a termination proof. The naive reverse program with an accumulating parameter
Decorte et al. 1993 is one example where an argument position needs to be assigned
a weight of zero, effectively meaning that the size of the subterms occuring in that
argument position are not counted by the norm. In that paper a solution to this
problem is sketched using symbolic norms which effectively define an argument index
ftmction through an exhaustive search. The example below shows that the second
heuristic is also not always effective.

Example 5.13 If each constant occurring in the program below is assigned a weight
of zero then the interargument relation derived for Path(rc, y) would be |x| = \y\ = 0.
With this relationship, termination cannot be proved since \x\ > |z|is required to hold
in the recursive TransitiveClosure/2 clause. To prove termination each constant must
take on a different value.

TransitiveClosure(x, y) ^ Path(x, y).
TransitiveClosure(x, y) ^ Path(x, z) A TransitiveClosure(z, y).

Path(A, B).
Path(B, C). •

This example seems to suggest that the determination of weights must take place
as an integral part of a termination analysis - the variety of the weights occurring
indicates the futility of a generate and test approach in this instance. Recently, such
a demand-driven approach has been described in Decorte & De Schreye 1997, where
the weights are determined so as to satisfy the various inequalities needed to prove
termination. This approach relies on first generating norms which are parameterised
in exactly the same way as the induced typed norms of Definition 5.13. Thus the tech-
nique described here could be integrated with the analysis of Decorte & De Schreye
1997 in a typed context.

In summary, there are several approaches to the problem of deriving the weight
fimction. No particular method is advocated here since it is necessary to further
investigate and compare suitable methods. The open-ended definitions of the derived
norms should facilitate such a study.

5.4 Related work

One weakness of Decorte et al. 1993 is that its norms are derived from type graphs.
Type graph analyses, however, have not always been renowned for their tractability.
Even for small programs, the prototype analyser of Janssens & Bruynooghe 1992,
used in Decorte et al. 1993, is typically 15 times slower than the optimising PLM
compiler (Van Roy 1984). Recently, type graph analysis has been shown to be practical
for medium-sized Prolog programs (Van Hentenryck et al. 1994) when augmented

57

with an improved widening and compacting procedure. In addition, Gallagher & de
Waal 1994 have shown how type graphs can be efficiently represented as unary logic
programs. Clearly however, any approach which avoids the costs of inferring type
graphs is preferable.

Bossi et al. 1992 define a very general concept of norm in terms of type schemata
which describe structural properties of terms. Their typed norms for termination
analysis are very similar to the ones presented in this chapter, though they are able
to define some norms which cannot be inferred using the present framework.

Example 5.14 Consider the following program from Bossi et al. 1992

Check(Cons(x, xs)) ^ Check(xs).
Check(Cons(x, Nil)) ^ Nat(x).
Nat(Succ(x)) f - Nat(x).
Nat(O).

We would like to define a norm |.|List(Nat) so that we can prove termination for
goals ^ Check(x) where x is rigid wrt |.|List(Nat)- The following norm adapted from
Bossi et al. 1992 satisfies this criterion.

l̂ lList(Nat) — ^ I'̂ lwat
|Cons(ti, i2)|List(Nat) = 1 + |̂ 2|List(Nat) |0|Nat
|Cons(ti, ^2) iList(Nat) — 1̂11 Nat + 1̂ 21 Empty |SuCC(i) l^at

= V |w|Empty = ^̂
— 0 j Nil ĵ iYipty — 0
= 1 + l̂ lwat

This norm cannot be inferred automatically using the proposed method (nor that of
Decorte et al. 1993) since it is necessary for the functor Cons to have two distinct types,
n a m e l y (Nat.List(Nat), List(Nat)) a n d (Nat.Empty, List(Nat)), b u t this is fo rb idden in
languages like Godel where the declarations are universal. Note that this is not a
limitation of the framework but rather a limitation of the type system on which it is
based. Given a more flexible system it would be possible to infer such norms as the
above directly from the prescribed types. •

Finally, note that the typed norms of Bossi et al. 1992 are not derived automati-
cally. By contrast, typed-linear typed norms, are simple enough to be easily derived
using only the type declarations of a program.

5.5 Conclusions and future work

This chapter has presented a flexible method for inferring a number of norms from
the type declarations of a program which are sufficient to measure the size of any
Herbrand term occurring in the program in an almost arbitrary way. The norms are
intended for use in termination analysis and the derivation of inter-argument rela-
tionships, though their applicability is not restricted to these areas. The definition of
each derived norm is parameterised by a weight fimction. This open-ended definition
allows the norms to be incorporated into a wide range of analyses which define these
functions in different ways. Defining the weight function in an efficient and intelligent
way is a non-trivial problem in itself. The definitions of norms proposed here provides
a useful framework in which to study this problem.

58

6 Termination and Left Termination

Norms, such as those discussed in the last chapter, are often used in termination analy-
sis as a basis for constructing level mappings. Recall that a level mapping is a function
which provides some measure of the size of an atom and it is natural to express such a
fimction in terms of norms which measure the sizes of the subterms in the atom. The
interest in level mappings, of course, lies in their use in the construction of termination
proofs based on notions such as recurrency or acceptability as introduced in Chapter 3.

However, while the notions of recurrency and acceptability provide a sound
theoretical basis for reasoning about termination, they do not provide much insight
into the practicalities of actually deriving the level mappings which are needed to
prove a program terminating or left terminating. Instead, intuition has served as
the guide in the development of automatic techniques. In particular, there has been
a desire to derive "natural" level mappings based on the recursive structure of the
program at hand. For example, given the program

P([h|t]) ^ P(t).

it is natural to define a level mapping |.| to prove termination by |P(z)| = \x\iist-iength
since the predicate is inductively defined over the structure of its argument, which is
a list. Other definitions, such as |P(x)| = \x\iist-iength +1 and |P(a;)| = 2 x do not
possess the same "natural" correspondence with the intution behind the program's
terminating behaviour. The desire for natural level mappings is not just an aesthetic
predilection. Such level mappings are also easier to derive.

This chapter examines the reasons why termination proofs based on recurrency
and acceptability are often difficult to obtain. The observations are not new and have
been made, among others, by Apt & Pedreschi 1994. Their solution was to define
alternative characterisations of terminating and left terminating programs which they
called semi recurrency and semi acceptability respectively. This solution is investigated
in Sections 6.2 and 6.3 where it is demonstrated that it is not entirely satisfactory.

This leads to the main contribution of this chapter in Sections 6.4 and 6.5 where
the notions of bounded recurrency and bounded acceptability are introduced. The classes
of bounded recurrent and boimded acceptable programs are shown to be equivalent
to the recurrent and acceptable classes respectively. Moreover, since these new no-
tions are more aligned with the intuitions underlying termination proofs, they lend
themselves more naturally to the automatic construction of such proofs.

6.1 The Recurrent Problem

The main problem with recurrency, as noted by De Schreye et al. 1992 and Apt &
Pedreschi 1994, is that it does not intuitively relate to recursion, the principal cause
of non-termination in a logic program. The definition requires that, for every grotmd
instance of a clause, the level of its head atom is greater than the level of every body
atom irrespective of the recursive relation between the two.

59

Definition 6.1 (recurrency Bezem 1989) Let P be a definite logic program and |.| a
level mapping for P. A clause H ^ S i , . . . , is recurrent (wrt |.|) if for every
grotmding substitution 6, \H9\ > for all i E [l,n]. P is recurrent (wrt |.|) if
every clause in P is recurrent (wrt |.|). •

There is a temptation to "fix" this by using a modified definition of recurrency
which only requires a decrease for mutually recursive body atoms. The following
example, from De Schreye et al. 1992, shows that this requirement alone is too weak to
prove termination.

Example 6.1 Using the weaker form of recurrency suggested above, the following
program would be classed as recurrent.

P([h|t]) ^ Append(x, y, z) A P(t).

Append([u|x], y, [u|z]) ^ Append(x, y, z).
Append([], x, x).

Using the left-to-right computation rule and the top-down search rule, however,
the goal ^ P([1,2]) admits an infinite computation. Of course, the clause defining the
predicate P/1 should not be classified as recurrent. The reason is that, while Append/3
is recurrent (even by Bezem's definition), only bounded goals should be guaranteed
to terminate and the predicate P/1 contains an tmboimded call to Append/3. •

This example shows that the level mapping decrease between the head and the
non-recursive atoms of a clause implied by Definition 6.1, is required to ensure that all
subcomputations are initiated from a bounded goal. Enforcing boundedness in this
way, however, complicates the derivation of level mappings. The following example,
illustrating this, also comes from De Schreye et al. 1992.

Example 6.2 Consider the following program

Pi
P([h|t]) ^ Q([h|t]) A P(t).

91 Q(OX
% 0([h|t])^Q(t) .

It is clear that this program is terminating for any goal ^ P(x) where x is a rigid list. To
construct an automatic proof of this one would like to use the "natural" level mapping
I. I defined by

|P(a:)| = \x\iig{_igfigf{f |Q(2;)| = \x\iigt4gngth

The problem is that the clause p2 is not recurrent wrt this level mapping since it is not
the case that |P([h|t])6'| > |Q([h|t])0| for all grounding substitutions 6. For the inequality
to hold, an "unnatural" offset must be included in the level mapping definition by
taking for example |P(z)| = \x\iist-iength + 1- O

The above examples show that the strict decrease in the level mapping between
head and body atoms of a recurrent clause is required for two distinct purposes.

1. To ensure that the levels of mutually recursive calls are strictly decreasing.

2. To ensure that subcomputations are initiated from a bounded goal.

60

6.2 Semi Recurrency

Apt and Pedreschi observed that, for termination, while it is necessary for the level
mapping to decrease between the head of a clause and each mutually recursive body
atom, a strict decrease is not required for the non-recursive body atoms. They intro-
duced the notion of semi recurrency which exploited this observation and showed the
classes of recurrent and semi recurrent programs to be equivalent.

Definition 6.2 (semi recurrency Apt & Pedreschi 1994) Let P be a definite logic pro-
gram and |.| a level mapping for P. A clause i J ^ 5 i , . . . , is semi recurrent (wrt
I. I) if for every grounding substitution 6, for all i E [1, n]

1. if

2. |gg | + 1 > if

P is semi recurrent (wrt |.|) if every clause in P is semi recurrent (wrt |.|). •

Whilst this definition now admits a simple termination proof of Example 6.2
using the original "natural" level mapping of that example, it is not hard to construct
examples where it is inadequate.

Example 6.3 Consider the following program

ci FXI).
C2 P(ih|t])<-Q([h,h|t])AP(t).

C3 (3(0)-
C4

To prove that the above program is semi recurrent requires the following unnat-
ural level mapping.

|P(x)| = \x\iigf.igfigt}j 1 |Q(x)| = \x\iist-length ^

It seems that very little has actually been gained from this revised definition of
recurrency which still insists that there is a non-increasing relationship between the
level of the head and the level of all body atoms. In fact, it does not matter if the level
of a non-recursive atom is greater than the level of the head provided that such an
atom is bounded whenever it is selected.

To be fair, the notion of semi recurrency was introduced to facilitate modular
termination proofs and does indeed, in some cases, allow proofs to be based on
simpler level mappings than those used in proofs of recurrency. In the above example,
however, this is not the case.

Example 6.4 Reconsider the program of Example 6.3. According to the methodology
of Apt & Pedreschi 1994 a modular termination proof can be contructed in a kind
of bottom up fashion on the recursive cliques of the predicate dependency graph.
The details of the methodology will not be explained here; only the steps involved

61

in proving termination of the above program will be worked through. First Q/1 is
proven to be (semi) recurrent wrt |.|Q defined by

|Q(^) W ~ \^\list-length

Second, P/1 is proven to be (semi) recurrent wrt |.|p defined by

|P(2^)|p = \^\list-length |Q(^)|p ~ 0

The final step in the proof requires the derivation of a level mapping |. |' such that

|P([(iK2])r>|Q([(i,!^iK2])|Q and |P([ti|i^2])r>|P(!^2)r

for all groimd terms ti and t2- Providing the level mapping |,|' exists, theorem 4.9
of Apt & Pedreschi 1994 can be used to draw the conclusion that the program is
semi recurrent and hence terminating. In terms of automation, this existence proof
is achieved through defining |.|' so that the above inequalities are satisfied. However,
the most likely choice of a definition for |.|' is

|P(x)| = \x\iig{_ig„gf-lĵ + 1

Of course, this is no easier to derive than the original mapping |. | of Example 6.3. •

What is most conspicuous about the definition of semi recurrency, is that the
difference in levels between a non-recursive body atom and the head atom of a clause
is limited to be at most zero, whereas it could be arbitrarily large, though still finite.
Indeed, a simple termination proof for the program of Example 6.3 can be obtained
using a "natural" level mapping if condition 2 of Definition 6.2 is replaced by \H9\ +
k > \Bi9\ if rel{H) 9̂ rel{Bi), where k is some large constant. It is easy to prove that the
class of programs captured by this revised definition of semi recurrency is equivalent
to the class of recurrent programs. In addition, theorems 4.6, 4.8 and 4.9 of Apt &
Pedreschi 1994, which are used for constructing modular termination proofs, all still
hold with this alternative definition. Moreover, the premises of those theorems may be
weakened in an obvious manner to permit such proofs to be constructed more easily.

Note that the problem with the termination proofs above arises because the atoms
in the body of a clause contain extra ftmction symbols which raise the levels of those
atoms to the level of the head. Since it is fairly imlikely that such a body atom will
contain, say, a million function symbols or more, by taking k = 1000000 the vast ma-
jority of recurrent programs which occur in practice could be proven terminating by
focusing solely on their recursive structure and employing the appropriate weakened
forms of the theorems of Apt and Pedreschi.

6.3 Semi Acceptability

Similar remarks to those of Section 6.1 can be made about the definition of acceptabil-
ity. The notion of semi acceptability was introduced as an analogous concept to semi
recurrency for left terminating programs.

Definition 6.3 (semi acceptability Apt & Pedreschi 1994) Let |.| be a level mapping
and I an interpretation for a program P. A clause c : H ^ Bi,... ,Bn is semi acceptable
wrt |.| and I iff

62

1. J is a model for c and

2. for all i e [l,n] and for every grounding substitution 6 for c such that
I N {Bi-, • • • ,Bi-i]6

(a) jjiei > |g;0| if rgZ(ff) -

(b) |H0| + 1 > if reZ(jT)

P is semi acceptable (wrt |. | and I) iff every clause in P is semi acceptable (wrt |. | and
O

Not surprisingly termination proofs based on semi acceptability suffer from sim-
ilar problems to those encountered in Examples 6.3 and 6.4. The definition could be
adjusted in the manner prescribed above for semi recurrency but the result is not as
satisfactory as the following example shows.

Example 6.5 Consider the following program

% DoubleSquare(x, I) : I = \2{x — 1)^, 2(x — 2)^ , . . . , 0]

DoubleSquare(0, []).
DoubleSquare(S(x), [cl|ds]) e-

Square(x, 0, y)A
DoublePlus(y, 0, d)A
DoubleSquare(x, ds).

% Square(2;, 0, y) : y = % DoublePlus(a;, %/, z) : z = 2a; + ;/

Square(0, y, y). DoublePlus(0, x, x).
Square(S(x), acc, y) <— DoublePlus(S(x), y, S(S(z))) ^

DoublePlus(x, S(acc), accl)A DoublePlus(x, y, z).
Square(x, accl, y).

Let the level mapping |. (be defined by

|DoubleSquare(2;, y)| = [zja |Square(x, y, 2;)| = |x|s |DoublePlus(a;, j/, z)] = |x|s

w h e r e jOja = 0 a n d |S(2;)|s = 1 + |z|g. The predica tes Square/3 and DoublePlus/3 are
both recurrent (and hence acceptable) wrt |.|, but there is no value of k for which
the inequality |DoubleSquare(S(x), [d|ds])0| + k > |DoublePlus(y, 0, d)0| holds for all
groimding substitutions 0 such that I |= Square(x, 0, y)6 where / is a model of the
program. Hence the predicate DoubleSquare/2 is not semi acceptable wrt |. | even imder
the revised definition suggested above. It is easy to prove (semi) acceptability of the
program, however, wrt the level mapping |.|' where |.|' is defined exactly as for |.|
exceptthat |DoubleSquare(a;,y)|' = \x\s^ • Note that a goal is boimded wrt |. | if and only
if it is bounded wrt |. |' and all such goals are left terminating. It seems reasonable then
to base a proof of termination on the former level mapping since it more closely relates
to the recursion and as a result is easier to derive automatically. Indeed, no automatic
termination analysis has yet been devised which can derive level mappings defined
in terms of polynomial expressions such as | •

63

Observe that the k above acts as an upper bound on the difference between the
level of any body atom and the level of the head atom. Of course, this ad hoc approach
falls down when there is no upper bound as in Example 6.5.

In summary although semi recurrency and semi acceptability are more flexible
notions than their predecessors, they still enforce a dependence between the level of
a head atom and the levels of non-recursive body atoms. This dependence is counter
intuitive and forces one to use artificial level mappings to obtain termination proofs.

6.4 Bounded Recurrency

Recall from Section 6.1 that there are two conditions which must be fulfilled to ensure
that a program is terminating.

1. The levels of mutually recursive calls are strictly decreasing.

2. All subcomputations are initiated from a bounded goal.

This section examines how the notions of recurrency and semi recurrency can
be developed such that the above two conditions are cleanly separated. This leads
to the definition of boimded recurrency, a characterisation of terminating programs
that more closely matches the intuition tmderlying termination proofs and as a result
facilitates the automatic construction of such proofs.

To fully motivate the definition of bounded recurrency in Definition 6.5 it is useful
to consider an evolutionary step in the form of Definition 6.4. This may be viewed as
an initial attempt at defining the notion of bounded recurrency. It will be seen that
this definition does not fully achieve the desired separation in terms of the conditions
above and as such it is further refined to obtain Definition 6.5.

Definition 6.4 (single bounded recurrency) Let |.) be a level mapping for a program
P. A clause c : i J ^ S i , . . . , is single bounded recurrent wrt |.| iff for all % e [1, n] and
for every substitution 6 for c such that HO is bounded wrt |. |

1. Bi9 is bounded wrt |.|, and

2. \[Hd]\ > \[Bi6] \ whenever ci rel{Bi).

P is single bounded recurrent wrt |.| iff every clause in P is single bounded recurrent
wrt |.|. •

Observe that, in this definition, no decrease, or indeed any fixed difference, is
enforced between the level of the head of a clause and the levels of the non-recursive
body atoms. All that is required is that each atom is bounded whenever the head is
bounded. While this is more intuitively appealing, observe that boundedness of non-
recursive atoms still influences the definition of the level mapping in a non-modular
way.

Example 6.6 Consider the following program for Curry's type assignment taken from
Apt & Pedreschi 1994.

64

Type(e, Var(x), t) <-
ln(e, IQ.

fypg Type(e, Apply(m, n), t) <-
Type(e, m, Arrow(s, t)) A
Type(e, n, s).

typ^ Type(e, Lambda(x, m), Arrow(s, t)) <™
Type([(x, s) | e], m, t).

ini ln([(x, t) I e], X, t).
zMg ln(i(y, t) I e], x, t) <-

x ^ y A
ln(e, X, t).

One may observe that the predicate In/3 is inductively defined over the length of
its first argument which is a list. The predicate Type/3 is inductively defined on the
size of its second argument which is a A-term. As a result, one would hope to base a
termination proof on the level mapping |. | defined by

| ln(x,y, 2)1 = |TypG(x, y, z)I = \y\term-size

where \y\term-size denotes the number of function symbols in the term y. The problem,
of course, is that any call Type(e, Var(x), t) which is bounded wrt |.| can give rise to a
call ln(e, x, t) which is not bounded wrt |.|. Clearly this can lead to non-termination.
Definition 6.4, therefore, insists that for the clause the body atom ln(e, x, t) is
bounded whenever the head is. Unfortunately this entails that the level mapping must
now be modified to take the first argument of Type/3 into account. This in turn leads
to problems with the clause typ^ since the first argument is increasing in the recursive
call. Eventually, one arrives at a level mapping definition such as

| ln(x,y,2) | i =: |Type(a;, y, z) | i = |a^|/zsf-;en^f/2 + 2 x lyjterm-size

which bears no immediate relation to the program structure. As a result such a
mapping can be hard to derive automatically. •

Clearly there is an interdependence between ensuring non-recursive atoms are
botrnded wrt |.| and ensuring that the levels of recursive calls are decreasing wrt |.|.
This plainly arises out of the use of the one level mapping. It seems therefore that
the obvious way to break the dependence is to use two level mappings. One holds the
responsibility for ensuring the recursive decrease in levels, while the other assures that
non-recursive atoms are bounded. This idea is captured in the following definition.

Definition 6.5 (bounded recurrency) Let |. 11 and |. I2 be level mappings for a program
P. A clause c : <— B i , . . . , is bounded recurrent (wrt |.|i and |.|2) iff for all i G [1, n]
and for every substitution 6 for c such that H6 is bounded wrt |.11 and |.I2

1. Bi9 is bounded wrt j.|i and |.|2, and

2. |[ff0]|i > \[Bi9]\i whenever reZ(ff) ~ rel{Bi).

P is bounded recurrent (wrt |.|i and |.|2) iff every clause in P is bounded recurrent
(wrt 1.11 and 1.12). O

65

It is informally understood that a goal G is bounded wrt |.|i and |.|2 iff G is
bounded wrt j.|i and G is bounded wrt j-jg. Note that, when the two level mappings
coincide, that is when |.|i = j.jg, then Definition 6.5 is equivalent to Definition 6.4.

Example 6.7 Returning to the program of Example 6.6, recall that the stumbling block
in the derivation of a natural level mapping arose because any call Type(e, Var(x), t)
which is bounded wrt |.| can give rise to a call ln(e, x, t) which is not bounded wrt |.|.
At this point, one intuitively reasons that if the first argument of a call to Type/3 is a
rigid list then the first argument of all subsequent calls to Type/3 will also be a rigid
list. So define a second level mapping |.|' by

|ln(a;, y, z)! = |Type(x, y, z)] = \x\iist-length

The program is bounded recurrent wrt |.| and |.|'. Indeed, any call to Type/3 or In/3
which is botmded wrt |.| and |.|' only gives rise to calls which are bounded wrt |.|
and |.|'. Combine this with the fact that recursive calls are decreasing wrt |.| and
termination can be proven in a very intuitive manner. Furthermore the level mappings
I. I and I. I' follow directly from the structure of the program, facilitating their automatic
derivation. •

Lemma 6.6 and Corollary 6.7 below establish that bounded recurrent programs
are indeed terminating. Proof of this relies on orderings which not only take into
account the levels of atoms but also their relation to each other in the predicate depen-
dency graph.

For a level mapping |.| and goal G Ai,..., An, if G is bounded wrt |.| then let
|[G]| denote the finite multiset of pairs {(rel{Ai), | [^ i] |) , . . . , {rel{An), |[^n]|)}- Let -4 be
the lexicographical ordering on Zp(c) x N (<) and let -K^ui be the multiset ordering
based on Observe that is well founded.

Lemma 6.6 Let |.|i and j.jg be level mappings for a program P. Let P be bounded
recurrent wrt |. 11 and |. 12 and let G be a goal which is bounded wrt |. 11 and |. 12. Let G'
be an SLD-resolvent of G from P. Then

1. G ' i s bounded wrt j.11 and 1.12,

2. |[G']|i |[G]|i, and

3. every SLD-derivation of P U {<— G} is finite.

Proof 4 Assume Aj is the selected literal in G =4— Ai,..., Am and c : H ^ P i , . . . ,
> OJ fAe program cZawse waetf. TTign G' (^ 1 , . . . , B i , . . . , . . . , -4^)^

wWe 0 E , jif).

1. Since G zs wrf |.|i and |.|2, zfybZZows f W aW are wrf |.|i aW
\.\2f0r all k e [l,rn]. In particular, AjO = HO is bounded wrt |.|i and |.|2. It follows,
by 6.5, f W 5,0 zs bowMded wrf |.|i aW |.|2/D^ ^ E [1,a] aM(f Aence G' is
bounded wrt |.|i and |.|2.

2. Moreover, > \[AkO]\i for all k e [l,m] by Lemma 3.13. Finally, for alii G [l,n]

W = rgZ(^) by 6.5, and

66

Hence

(reZ(Bii9),|[gi6']|i) -< (reZ(v4j),|[^j]|i) ybraZZ%E[l,n]
(reZ(Akg),|[At^]|i) ^ (reZ(At),|[^k]|i) ybraMA;E[l,77i]

proDZMg | [G '] | i l [G] | i .

3. Smcg is weZ/-̂ UMde(f f/zg rggw/tyb/Zows zmmedzaMy.

Corollary 6.7 Every bounded recurrent program is terminating.

Theorem 6.8 Let |.|i and |.|2 be level mappings for a program P. The following hold.

1. If P is recurrent wrt |.11 then P is bounded recurrent wrt |.|i and |.11.

2. If P is bounded recurrent wrt |.|i and \.\2, then there exists a level mapping j.js
such that P is recurrent wrt |. I3. Moreover, for any atom A, A is bounded wrt |. I3
if A is bounded wrt |. 11 and |. I2.

Proof 5 W c : <— B i , . . . , be a cZawgg m P. Swppoge P is rgcwn-gnf wrf |.|i. W 0 be
a substitution such that H6 is bounded wrt |.|i. Then BiO is bounded and |[^76']11 > |[P(6']|i
ybr aZZ % E [1, n,] by recwrrgMcy. parf ̂ ZZows by Lgnzma 6.6 an̂ f fZzgorgm 2.2 a^d
coroZZary 2.2 q/'Bezem 3993.

6.5 Bounded Acceptability

The definition of bounded recurrency is easily adapted to obtain a characterisation of
left terminating programs.

Definition 6.9 (bounded acceptability) Let |.|i and |.|2 be level mappings and I an
interpretation for a program P . A clause c : f - P i , . . . , . is bounded acceptable (wrt
1. 11,1.12 and I) iff f is a model for c and for all % E [1, n], for every substitution 9 such that
HO is bounded wrt |.|i and |.|2, {Pi, • • •, Pi_i}^ is ground and I |= { P i , . . . , Pi_i}0

1. Bi6 is bounded wrt |.|i and |.|2, and

2. |[P6']|i > \[BiO]\i whenever reZ(P) ~ rel{Bi).

P is bounded acceptable (wrt | • 11, | • I2 and I) iff every clause in P i s bounded acceptable
(wrt |.|i, |.|2 a n d /) . Q

Lemma 6.10 asserts that every bounded acceptable program is left terminating.
The proof of this follows along the same lines as that for acceptable programs.

Lemma 6.10 Let |.|i and |.|2 be level mappings and I an interpretation for a program
P. Let P be bounded acceptable wrt |.|i, |.|2 and I, and let G be a goal which is left
bounded wrt |.|i and I, and wrt |.|2 and I. Let G' be an LD-resolvent of G from P.
Then

1. G' is left bounded wrt |.11 and I, and wrt |.I2 and I,

67

2. |[G']/|i-<;n«/|[G];|i,and

3. every LD-derivation of P U G} is finite.

Proof 6 W G Ao, , An ("I > Oj aW agswme c : <— B i , . . . , (n > Oj is
f/ig program cZawse wsetf. TTzgn C =<— (Bi , . . . , A i , . . . , wkere ̂ € mgw(Ao, B).

1. Need to show for all j e [1,2], i e [l,n + m] that |[G']j|j is finite. Firstly, for all
j e [1, 2], i € [1, n]

— |[<—(Bi,..., B„ ,^1 , . . . ,
is a growMdzMg sw&sfzfwfzoMybr C 1

11= {S i , . . . , Bi^i}9(j) j
is a growM(fiMg swbsfiiwfioMybr { B i , . . . , Bi_i}0

7 1= {Bi , . . . ,Bi_i}0(^
<7 is a growndiMg swbsiifwfioM/br Bi0(^

= < \Bi

= < \Bi6(pa\j

Now by D^nifioM 6.9, /or aZ/ i G [1, %%]/ /or guen/ swbsfifwfioM swc/z fAai is
bowM(kdi(;7'f |.|i aW |.|2, {Bi , . . . ,Bi_i}^^ isgrowndaWf {Bi , . . . ,Bi_i]

(aj Bî î is bounded wrf |.|i and |.|2/ aW

(W > |[Big^]|i 5;/igMgi;grW(B') c± rgZ(Bt).

Hence, |[G']j|j is finite for all i e [l,n], j G [1,2]. Nowforallj G [1,2], k e [l,m]

[G17+1; = | [^ (Bi , . . . ,B^ ,^ i , . . . ,A_)g]p+ '= | ,

— /1 /) A/Al ^ ^ growndiMĝ swbsfifwfion/or C 1

is a growMdinĝ swbsfifwfionybr {B, . . . , .4^}^
f ^ {B ,̂ ^1, . . . ,^A:-lj

C][<— (ylo, ^1, • • • , An)]/'^^|j

Since G is left bounded wrt].|i and I, and wrt |.|2 and I, then |[G']j"^''|j is finite for all
A: E e [1,2].

2. It follows directly that for all k e [l,m],j e [1,2], max\[G'Y}~^''\j < max\[G]'^^^\j and
ybr aZZ i E [1, n], wZieMgz'gT' 7'eZ(̂ o) = ?'gZ(B') reZ(B«)

< maz{|Bg(^|i|^isag7'0UMdiMg^swWifwfi0MybrB^}
= ma%{|Ao0(|̂i I is a growMding swbsfifwfioMybr Ao^}
= ?Ma%|[^Ao^]}|i
< ?Ma%|[^v4o]}|i

Hence

(?'eZ(Bii9),?Ma%|[G']}|i) ^ (?'eZ(Ao),?Mm:|[G]}|i) ybraZZ^ E[l,m]
(rgZ(Ak^),ma%|[G']p+*=|i) X (reZ(Ak),M%a%|[G];+ |̂i) ybraZZA:E[l,m]

p-oz;iMg |[G'];|i Xmw |[G]f|i.

68

3. SzMce zs f/ze regwZfybZZows ZMimedzaWi/.

Corollary 6.11 Every bounded acceptable program is left terminating.

Theorem 6.12 Let |. 11 and |. I2 be level mappings and I an interpretation for a program
P. The following hold.

1. If P is acceptable wrt |. 11 then P is bounded acceptable wrt |. 11 and |. 11.

2. If P is bounded acceptable wrt |.11 and |.I2, then there exists a level mapping |. js
such that P is acceptable wrt |.|3. Moreover, for any atom A, A is bounded wrt
l-ls if A is bounded wrt |.|i and |.|2. •

Proof 7 Let c : H ^ Bi,..., Bn be a clause in P. Suppose P is acceptable wrt |.|i. Then I
25 a TModeZ/or c. W 0 be a swbsh'fwfzoM swck fkaf zs wrf |.|i, { B i , . . . , zs
groz/zzd azzd f [= { B i , . . . , TTzen K bozzWed wrf |.|i aW by
acceptability and Lemma 3.14. The second part follows by Lemma 6.10 and theorem 1.1 and
corollary 1.1 ofBezem 1993. •

Example 6.8 Observe that the program of Example 6.5 is bounded acceptable wrt |.|,
I.I and I where |.| is the original level mapping defined in that example and 7 is a
model of the program. Hence a proof of left termination is obtained which is based
solely on the recursive structure of the program. •

6.6 Discussion

The concept of boimded acceptability proposed here is quite similar to that of rigid
acceptability defined by Decorte & De Schreye 1997. This latter notion forms the basis
of a practical, demand-driven termination analysis. The analysis is essentially top-
down, attempting to prove termination for a set of queries S. An important step in
the analysis is the calculation of the call set Call{P, S), the set of all calls which may
occur during the derivation of an atom in S. The analysis focuses on the recursive
components to derive a level mapping |. |, enforcing boundedness of sub-computations
by imposing a rigidity constraint on the call set. That is, during the derivation of |.|,
every atom in Call{P, S) is required to be rigid wrt |.|.

For program specialisation, and partial deduction in particular, it is more useful to
derive sufficient termination conditions for individual predicates rather than proving
that a given top-level goal will terminate (Bruynooghe et al. 1998). The reason is that
the overall computation is tmlikely to be left-terminating but some sub-computations
probably will be. The required conditions can be derived in a bottom-up manner on
the strongly connected components of the predicate dependency graph. The notion of
bounded acceptability lends itself naturally to this process.

In Decorte & De Schreye 1998, the analysis of Decorte & De Schreye 1997 is adapt-
ed to obtain the above mentioned conditions. It attempts to derive for each predicate a
maximal set S of left-terminating queries. Essentially, this amotmts to deriving a level
mapping |. | which defines S, in that an atom A is in 5 if and only if A is bounded wrt
I, I. However, an important step is omitted from the paper De Schreye 1998, and the set
S may contain queries which are not left-terminating. The level mapping j.| is derived
by only considering the recursive components of the program and thus corresponds

69

to the level mapping |.|i in the definition of bounded acceptability. Sub-computations
are no longer guaranteed to start from bounded goals since no rigidity constraint is
placed on the level mapping during its derivation as in Decorte & De Schreye 1997:
specifically, this is because the set CaU{P, S) is imknown since S is unknown (the idea
after all being to derive S), and as a result no rigidity constraint can be imposed on
Call{P, S). Hence, in relation to the current work, the missing step is the derivation
of the second level mapping j-jg. The maximal set S' C S of left-terminating queries
then, contains only those atoms which are bounded wrt |.|i and [.[g. Note that j-jg
can be derived entirely independently of |.|i, in the sense that there is never any need
to alter the definition of |.|i in order to obtain a definition of |.|2 which can be used
to prove bounded acceptability. Thus the notion of bounded acceptability allows the
set 5" to be easily constructed from S without requiring any change to the method of
Decorte & De Schreye 1998.

In summary, the notions of bounded recurrency and botmded acceptability pro-
vide practical criteria for constructing modular termination proofs based purely on
the recursive structure of a program.

70

7 Generating Efficient, Terminating Logic
Programs

A logic program can be considered as consisting of a logic component and a control
component (Kowalski 1979). Although the meaning of the program is largely defined
by its logical specification, choosing the right control mechanism is crucial in obtaining
a correct and efficient program. In recent years, one of the most popular ways of
defining control is via suspension mechanisms which delay the selection of an atom
in a goal until some condition is satisfied. Such mechanisms include the block declara-
tions of SICStus Prolog (SICS 1995) and the DELAY declarations of Godel (Hill & Lloyd
1994). These mechanisms are used to define dynamic selection rules with the two
main aims of enhancing performance through coroutining and ensuring termination.
In practice, however, these two aims are not complementary and it is often the case
that termination, and hence program correctness, is sacrificed for efficiency.

The objective of control generation in logic programming then, is to automatically
derive a computation rule for a program that is efficient and yet does not compromise
program correctness. Progress in solving this important problem has been slow and,
to date, only partial solutions have been proposed where the generated programs are
either incorrect or inefficient. This chapter shows how the control generation problem
can be tackled with a simple automatic transformation that relies on information about
the depths of SLD-trees.

To prove termination of the transformed programs some theoretical development
will be necessary. The main result of this will be the introduction of the new class of
semi delay recurrent programs (Section 7.2). The intention is that any program lying
within this class is terminating with respect to a dynamic selection rule. Furthermore,
the notion of a semi delay recurrent program simplifies previous ideas in the termina-
tion literature for reasoning about logic programs with delay.

Precedent to this is a discussion in Section 7.1 of the problems that can arise
in termination for logic programs with delay. Some of the solutions that have been
proposed to resolve these problems, and their short-comings, will be explored.

Section 7.3 presents a formal development of the proposed transformation, in-
cluding correctness results. In particular, transformed programs are (by construction)
semi delay recurrent and hence termination is guaranteed.

7.1 The Problems of Dynamism

The presence of delayed goals in a computation significantly complicates a program's
termination behaviour. This section reviews the kind of problems which can arise, the
solutions which have been proposed in the past and suggests why there is still room
for improvement.

71

7.1.1 Local Boundedness

Consider the Append program below with its typical DELAY declaration which delays
the selection of an Append/3 atom until either the first or third argument is instantiated
to a non-variable term.

app^ Append([], x, x).
app^ Append([u|x], y, [u|z]) ^ Append(x, y, z).

DELAY Append(x, z) UNTIL Nonvar(x) v Nonvar(z).

Interestingly although it is intended to assist termination the delay declaration is not
sufficient to ensure that all Append/3 goals terminate. The goal ^ Append([x|xs], ys, xs),
for example, satisfies the condition in the declaration and yet its derivation is an
infinite one, where each resolvent is a variant of the previous goal (Naish 1993).

Termination can only be guaranteed for all goals by strengthening the condition in
the delay declaration. This is where the trade off between efficiency, termination and
deadlock freedom takes place. The stronger the condition, the more goals suspend.
Although termination may eventually be assured, it may be at the expense of failing
to resolve goals which have finite derivations. Also, the stronger the delay condition,
the more time consuming it usually is to check. Thus one of the main problems in
generating control of this form is finding suitable conditions which are inexpensive
to check and guarantee termination and deadlock freedom. This will be referred to
here as the local boundedness issue, since a delay declaration is used to ensure that
an atom is bounded in some sense, and this property is dependent solely on the atom
itself. This is in contrast to global boundedness where the search tree as a whole is
considered.

There have been several attempts at solving the local boundedness problem. Each
of these will be examined in the context of the Append program above, though each
technique has wider applicability.

7.1.1.1 Linearity

Ltittringhaus-Kappel 1993 observed that, in the case of single literal goals, one addi-
tional condition sufficient for termination is that the goal is linear, that is, no variable
occurs more than once in the goal. Although this restriction would prevent the looping
Append/3 call above from proceeding, it would also tmfortunately delay many other
goals with finite derivations such as Append([x, x], ys, zs).

7.1.1.2 Rigidity and Boundedness

An alternative approach proposed by both Marchiori & Teusink 1995 and Mesnard
1995 delays Append/3 goals until the first or third argument is a list of determinate
length (i.e. rigid wrt the list length norm^). Termination is obtained for a large class of
goals, but at a price. Checking such a condition requires the complete traversal of the

^ This is equivalent to delaying an Append/3 atom until it is bounded wrt the level mapping |. | defined
by |Append(ti,t2,t3)| = I'tslust-kngth)• Then, for example, the atom Append([1,2.3], y,
z) is bounded since its first argument is rigid. The atom would not be described as rigid, however, since
its level could decrease if, for example, Z were instantiated to the term [1].

72

list and the condition must be checked on every call to the predicate^. Naish argues
that this approach can be "... expensive to implement and ... can delay the detection of
failure in a sequential system and restrict parallelism in a stream and-parallel system"
(Naish 1993).

7.1.1.3 Modes

Naish goes on to solve the problem with the use of modes. Termination can be
guaranteed with the above DELAY declaration if the modes of the Append/3 calls are
acyclic, or more generally cycle bounded (Naish 1993). This restriction essentially stops
the output feeding back into the input. Although modes form a good basis for solving
this problem, they have not been shown to be satisfactory for reasoning about another
termination problem, that of speculative output bindings.

7.1.2 G l o b a l B o u n d e d n e s s

Even when finite derivations exist, delay conditions alone are not, in general, suffi-
cient to ensure termination. Infinite computations may arise as a result of speculative
output bindings (Naish 1993), which can occur due to the dynamic selection of atoms.
There are several problems associated with speculative output bindings (see Naish
1993 for a discussion of these). The effect that they have on termination is the focus
of interest here and will be referred to as the global boundedness issue. To illustrate
the problem caused by speculative output bindings consider the Quicksort program
shown below. This is a well known program whose termination behaviour can be
unsatisfactory. With the given delay declarations, the program can be shown to ter-
minate in forward mode, that is for queries of the form ^ Quicksort(x, y) where x is
boimd and y is iminstantiated. In reverse mode, however, where y is bound and x is
tminstantiated, the program does not always terminate. More precisely, a goal such as

Quicksort(x, [1,2,3]) will terminate existentially, i.e. produce a solution, but not univer-
sally, i.e. produce all solutions. In fact, experimentation with the Godel and SICStus
implementations indicates that when the elements of the list are not strictly increasing,
f o r e x a m p l e i n t h e goa l s ^ Quicksort(x, [1,1]) a n d 4- Quicksort(x, [2,1]), t h e p r o g r a m
does not even existentially terminate! This is illustrative of the subtle problems that
dynamic selection rules pose in reasoning about termination, and which suggest that
control should ideally be automated to avoid them.

qs^ Quicksort([], []).
Quicksort([x|xs], ys) ^

Partition(xs, x, I, b) A
Quicksort(l, Is) A
Quicksort(b, bs) A
Append(ls, [x|bs], ys).

DELAY Quicksort(x, y) UNTIL Nonvar(x) v Nonvar(y).

pt^ Partitlon([], _, [], []).
pt^ Partition([x|xs], y, [xjls], bs)

x < y A
Partition(xs, y Is, bs).

pt^ Partition([x|xs], y, Is, [x|bs]) ^

^In Mesnard 1995 the check is, in fact, only performed on the initial call, but there is no justification
for this optimisation given in the paper. For non-structurally recursive predicates, e.g. QuickSOrt/2 of
Section 7.1.2, such an optimisation would not usually be possible.

73

X > y A
Partition(xs, y, Is, bs).

DELAY Pa r t i t i on (x , y z) UNTIL Nonvar(x) v (Nonvar(y) A Nonvar(z)).

To improve matters, the delay conditions can be strengthened in the manner
prescribed by Marchiori and Teusink or by Naish (see Sections 7.1.1.2 and 7.1.1.3). In
general, however, no matter how strong the delay conditions are, they are not always
sufficient to ensure termination, even though a terminating computation exists. To see
w h y consider augmenting the Quicksort program with the clause

app^ Append(x, [_|x], x) False.

In what follows, it is assumed that the control strategy tries to execute goals left-to-
right by default. The declarative semantics of the program are completely unchanged
by the addition of the appg clause and one would hope that the new program would
produce exactly the same set of answers as the original. This will not be the case,
however, if this clause is selected before all other Append/3 clauses. Consider the goal
^ Quicksort(x, [1,2,3]). Following resolution with the second clause of Quicksort/2, the
only atom which can be selected is Append(ls, [xjbs], [1,2,3]). When this imifies with the
above clause, both Is and bs are immediately bound to the term [1,2,3]. As a result of
these speculative output bindings the previously suspended calls Quicksort(l, Is) and
Quicksort(b, bs) will be woken before the computation reaches the call to False. The
net result is an infinite computation due to recurring goals of the form <— Quicksort(x,
[1,2.3]).

The problem here is that the output bindings are made before it is known that the
goal will fail and no matter how stringent the conditions are on the Quicksort/2 goals,
loops of this kind cannot generally be avoided. The reason for this is that a delay
condition only measures a local property of a goal without regard for the computation
as a whole. The conditions can ensure that goals are bounded, but are unable to ensure
that the bounds are decreasing.

7.1.2.1 Local Selection Rule

To remedy this, Marchiori & Teusink 1995 propose the use of a local selection rule. Such
a rule only selects atoms from those that are most recently introduced in a derivation.
This ensvires that any atom selected from a goal, is completely resolved before any
other atom in the goal is selected. The effect in the above example is that the call
to False would be selected and the Append/3 goal fully resolved before the calls to
Quicksort/2 are woken. This prevents an infinite loop. The main disadvantage of local
selection rules is that they do not allow any form of coroutining. This is clearly a very
severe restriction.

7.1.2.2 Delayed Output Unification

A similar solution proposed by Naish 1993 is that of delaying output imification. In
the example above, assuming a left-to-right computation rule, the clause app^ would
be rewritten as

appg Append(x, y z) F a l s e A y = [_|x] A z = x.

The intended effect of such a transformation is that no output bindings should
be made until the computation is known to succeed. This has parallels with the local
selection rule and also restricts coroutining.

74

7.1.2.3 Constraints

Mesnard uses interargument relationships compiled as constraints to guarantee that
the bounds on goals decrease (Mesnard 1995). For example, solving the constraint
lyslzisWengfA = llskwmigfA + 1 + before selecting the atom Append(ls, [x|bs], ys)
ensures that bs and Is are only bound to lists with lengths less than that of ys. This is
enough to guarantee termination, but is expensive to check as it requires calculating
the lengths of all three arguments of Append/3.

7.1.3 Summary and Contribution

The most promising approaches to control generation, while guaranteeing termination
and completeness, produce programs which are inefficient, either directly due to
expensive checks which must be performed at run-time or indirectly by restricting
coroutining.

This thesis presents an elegant solution to the above problems. To solve the local
boundedness problem, delay declarations in the spirit of Marchiori & Teusink 1995
will be used to ensure boundedness of selected atoms. This will require rigidity checks
to be performed on arguments, but a novel program transformation will be introduced
to overcome the inefficiencies of the Marchiori and Teusink approach which were
discussed in Section 7.1.1.2. Simultaneously, the transformation inexpensively solves
the global boundedness problem without grossly restricting coroutining. The transfor-
mation is simple and is easy to automate. Transformed programs are guaranteed to
terminate and are also efficient.

The technique is based on the following idea. If the maximum depth of the SLD-
tree needed to solve a given goal can be determined, then by only searching to that
depth, the goal will be completely solved, i.e. all answers (if any) will be obtained, in
a finite number of steps.

Section 7.2 develops the necessary theoretical foundations on which the trans-
fomation will be based, while the transformation itself is described in Section 7.3.
The following subsection illustrates the essential ideas behind the approach through a
concrete example.

7.1.4 Example

The Quicksort program of Section 7.1.2 can be transformed into a version where termi-
nation is guaranteed for all goals. Furthermore for a goal of the form ^ Quicksort(x, y)
where x or y is a ground list of integers, the computation does not flotmder and if it
succeeds then the set of answers produced is complete with respect to the declarative
semantics. The transformed program is shown below.

Quicksort(x, y) «-
SetDepth_Q(x, y, d) A
Quicksort_1 (x, y, d).

DELAY Quicksort_1 (_, d) UNTIL Ground(d).

Quicksort_1([], [], d) d > 0.
Quicksort_1([x|xs], ys, d) d > 0 A

Partition(xs, x, I, b) A
Quicksort_1(l, Is, d - 1) A
Quicksort_1 (b, bs, d - 1) A

75

Appencl(ls, [x|bs], ys).

Partition(xs, x, I, b) ^
SetDepth_P(xs, I, b, d) A
Partition J (xs, x, I, b, d).

DELAY Partition_1 (_, d) UNTIL Ground(d).

Partition_1([], [], [], d) d > 0.
Partition_1 ([xjxs], y, [x|is], bs, d) d > 0 A

x < y A
Partition^ (xs, y. Is, bs, d - 1).

Partition-1([x|xs], y. Is, [x|bs], d) <- d > 0 A
x > y A
Partition_1 (xs, y, Is, bs, d - 1).

Append(x, y, z) 4-
SetDepth_A(x, z, d) A
AppendJ (x, y, z, d).

DELAY Append_1 (_, _, _, d) UNTIL Ground(d).

Append_1 ([], x, x, d) <- d > 0.
Append_1 ([u|x], y, [u|z], d) d > 0 A

AppendJ (x, y, z, d - 1).

The predicate SetDepth-Q(x, y, d) calculates the lengths of the lists x and y, delaying
until one of the lists is found to be of determinate length, at which point the variable
d is instantiated to this length. Only then can the call to Quicksort J/3 proceed. The
purpose of this last argument is to ensure finiteness of the subsequent computation.
More precisely, d is an upper bound on the number of calls to the recursive clause of
Quicksort_1/3 in any successful derivation. Thus by failing any derivation where the num-
ber of such calls has exceeded this bound (using the test d > 0), termination is guaran-
teed without losing completeness. The predicates SetDepth_P/4 and SetDepth_A/3 are
defined in a similar way.

7.1.4.1 Local and Global Boundedness

The local boimdedness problem is solved in the first instance with a rigidity check in
the style of Marchiori & Teusink 1995. This ensures that the initial goal is bounded.
Boundedness of subsequent goals, however, is enforced by the depth parameter and
further rigidity checks on these depth bounded goals are redimdant. This allows,
for example, the call Quicksort_1(l, Is, d - 1) to proceed, without fear of an infinite
computation, even if both I and Is are iminstantiated, providing d is ground. A huge
improvement in performance is possible by eliminating these checks. The global
boimdedness problem is also neatly solved. By restricting the search space to be finite,
even though speculative output bindings may still occur, they cannot lead to infinite
derivations.

76

7.1.4.2 A Simple Optimisation

Even though many of the rigidity checks have now been removed, the efficiency
of the program is still imsatisfactory. This is due to the rigidity checks which are
performed on each call to Append/3 and Partition/4. It is easy to show that the depths
of these subcomputations are botmded by the same depth parameter occurring in
Quicksort_1/3. Hence , the a t o m s Partition(xs, x, I, b) a n d Append(ls, [x|bs], ys) in the

body of Quicl<sort_1/3 can be replaced respectively by Partition_1 (xs, x, I, b, d - 1) and
Append-1(ls, [xjbs], ys, d - 1) .

Another, more minor, optimisation can be performed to reduce the effect of the
delays on the program. Observe that according to the delay declaration for the predi-
cate Quicksort_1/3, the third argument is tested for groimdness every time the predicate
is called. However, this test is unnecessary for every call except the first, since once
instantiated, the depth parameter will always be ground on each recursive call. The
delay can be factored out of the loop by introducing an auxilliary predicate with the
following definition.

DELAY Quicksort_2(_, d) UNTIL Ground(d).

Quicksort_2(x, y, d) 4-
Quicksort_1(x, y, d).

With the introduction of this predicate, the call to Quicksort J /3 in the body of
Quicksort/3 is then replaced by a call (with the same arguments) to Quicksort_2/3. The
delay declaration for Quicksort_1/3 can then be removed avoiding redundant ground-
ness checks. This same optimisation can also be applied to the Partition/4 and Append/3
predicates (although if the first optimisation described above is performed, this last
step is unnecessary since the Partition/4 and Append/3 predicates will never be called).

The version of the program incorporating these optimisations is quite efficient.
The only rigidity checks that are performed are those on the initial input, exactly
at the point where they are needed to guarantee termination. Following the initial
call to Quicksort_2/3 the program runs completely without delays and the only other
overhead is the decrementation of the depth parameters and some trivial botmdedness
checks on them. The net result is that, with the Bristol Godel implementation, the
program actually runs faster on average than the original program with the Nonvar
delay declarations!

7.1.4.3 Coroutining

Notice in particular how the global botmdedness problem is overcome without re-
ducing the potential for coroutining. Simply knowing the maximtmi depth of any
potentially successful branch of the SLD-tree allows one to force any derivations along
this branch which extend beyond this depth to fail without losing completeness. These
forced failures keep the computation tree finite but do not restrict the way in which
the tree is searched. The addition of the failing Append/3 clause app^ from Section 7.1.2
(which would appear here as an AppendJ /4 clause) cannot affect the termination of
the algorithm, even if the same coroutining behaviour of the original program is used.
Of course, the computation rule needs to be restrained such that

1. the test d > 0 is always selected before any other atom in the body of the clause
with a subterm d, and

77

2. the depth parameter is ground for each recursive call (or for any call with a
subterm d in the optimised version)

but this is not nearly as restrictive as using the local computation rule. Indeed, using
the default left-to-right selection rule (with delay) these conditions will clearly be
satisfied in the above program.

7.1.4.4 Termination and Efficiency

With termination guaranteed, the programmer is now free to concentrate on the pro-
gram's performance. Notice for the program above that the order of the goals in the
body of Quicksort_1 is critical to the efficiency of the algorithm. For the best perfor-
mance, they must be arranged so that the computation is data driven. In fact, by
defining SetDepth_Q/3 by

SetDepth_Q(x, y, d) <-
Length(x, d) A
Length (y, d).

the computation will be data driven in both forward and reverse modes with the
ordering of the goals as above. This dependence on the ordering can be reduced by
introducing the typical delay declarations used for this program. These declarations
do not effect the terminating nature of the algorithm, in that they will not cause the
algorithm to loop, though they may possibly reduce previously successful or failing
derivations to floundering ones. They are inserted solely to improve the performance
through coroutining. Alternatively, one may seek to optimise the performance for
different modes through multiple specialisation, for example. The important point is
that with the general approach described here the trade-off between termination and
performance is significantly reduced. In seeking an efficient algorithm, correctness
does not have to be compromised.

7.2 Theoretical Foundations

To provide a sound theoretical basis for termination of delay logic programs it is
natural to build on the preceding theoretical foundations established for conventional
logic programs. This was initiated with the work of Marchiori & Teusink 1995 on
which this section further builds.

The intention is to introduce a new program class which subsumes that of delay
recurrent programs introduced in Marchiori & Teusink 1995. Its introduction is moti-
vated by an overly restrictive condition imposed in the definition of delay recurrency.
By removing this unnecessary condition the new class of semi delay recurrent programs
will be obtained.

7.2.1 A t o m Select ion

In all of the level mapping based approaches to termination examined so far a fun-
damental requirement is that only bounded atoms are selected. The reason is that, in
general, when unboimded atoms are selected for resolution, it is extremely difficult to
reason about the termination of the subsequent computation. The principle can still be
applied when considering flexible computation rules. Moreover, delay declarations
provide a mechanism to control this directly by delaying atoms until they become

78

bounded. This idea was encountered in Sections 7.1.1.2 and 7.1.2, and is formally
captured in the following definition.

Definition 7.1 (safe delay declaration Marchiori & Teusink 1995) A delay declara-
tion for a predicate p is safe wrt a level mapping |. | if for every atom A with predicate
symbol p, if A satisfies its delay declaration, then A is botmded wrt |. |. •

7.2.2 Covers

To determine whether or not an atom is bounded when it is selected requires a con-
sideration of the atoms that have been (partially) resolved before the selection of the
atom. The following definitions proposed by Marchiori & Teusink 1995 try to capture
this notion.

Definition 7.2 (direct cover Marchiori & Teusink 1995) Let c ; H ^ i ? i , . . . , be a
clause and |.| a level mapping. Let A e hody{c) and D C body{c) such that A ^ D.
Then D is a direct cover for A wrt |. | in c, if there exists a substitution 0 such that

1. is bounded wrt |.|, and

2. (fo?M(0) C z;ars(j7) Ut;a?'5(D).

A direct cover D for A is minimal if no proper subset of D is a direct cover for A. The
set of minimal direct covers of A wrt |.| in c is denoted by mdcovers^ c{^)• O

Intuitively a direct cover of an atom A in a clause c is a subset D of the body
atoms of c such that for some instantiation 6 of the variables in the head of c and in D,
AO is bounded. Note that a body atom may have zero, one or more (mininal) direct
covers. In particular, an atom A will have no direct cover when, in order for A to
become bounded, it is necessary to instantiate a variable of A which does not occur
elsewhere in the clause. On the other hand, the atom A will have the empty set as its
only minimal direct cover if A is bounded whenever the head of the clause is bounded.

Example 7.1 Consider the program Quicksort and the level mapping |.| defined by

|Qsort(a;, y)| = y'-I-1 |Partition(tt;, x, y, 2)| = y'- |-2' |Append(z, y, z)| = z'

where y = \y\iist-iength sn-d z = Then

(Partition(xs,x, I, b)) = {{Qsort(l,ls),Qsort(b, bs)}}

Wcoi;grS|,|_^g^(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}}

mdcoyerS|.|_gs^(Qsort(b, bs)) = {{Append(ls, [x|bs], ys)}}

?Mdco5ers|,|_(̂ g (̂Append(ls, [x|bs],ys)) = {0}

Note in this example that each atom has exactly one minimal direct cover. •

Definition 7.3 (cover Marchiori & Teusink 1995) Let c : H ^ B i , B n he a clause
and |.| a level mapping. Let A E body(c) and C c hody[c) such that A ^ C. Then C is
a cover for A wrt |. | in c, if {A, C) is an element of the least set S such that

1. (A, 0) € S whenever the empty set is the minimal direct cover for A wrt |. | in c

79

2. (A, C) E S whenever A ^ C, and C is of the form

{J4i, v4^} u Ci U . . . u Ct

such that {Ai,..., Ak} is a minimal direct cover for A wrt).| in c and for all
i e [1, k], we have {Ai, Q) G S.

The set of covers of A wrt |.| in c is denoted by coyers| | c(^). •

Intuitively, a cover of an atom A in a clause c is a subset of the body atoms
which must be (partially) resolved in order for A to become botmded wrt some level
mapping in c. The cover relation is a kind of closure of the direct cover relation but
not a transitive one; a direct cover of an atom is not necessarily a cover of that atom.
Observe that, if an atom has no minimal direct cover, then neither does it have a cover.

Example 7.2 Consider the program Quicksort and the level mapping |.| of Example 7.1.
Then

coz;grS| I gag(Partition(xs, x, I, b)) = {{Qsort(l, Is), Qsort(b, bs), Append(ls, [x|bs], ys)}}

coi;grs|,|,ga2(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}}

ccwerg|,|_,a2(Qsort(b,bs)) = {{Append(ls, [x|bs],ys)}}

C0DgrS|,|,ga2(Append(ls, [x|bs],ys)) = {0}

Observe then, that each body atom in has exactly one cover wrt |. |. •

7.2.3 D e l a y Recur rency

Using the notion of cover, Marchiori & Teusink 1995 introduced the class of delay
recurrent programs. It was intended that programs lying within this class would be
terminating under a dynamic selection rule.

Definition 7.4 (delay recurrency Marchiori & Teusink 1995)^ Let P be a program, |.|
a level mapping and I an interpretation for P. A clause c : H Bi,... ,Bn is delay
recurrent wrt |. | and I iff

1. J is a model for c and

2. for all i G [1, n], for every cover C for Bi and for every grounding substitution 0
for c such that I [= C9, we have that \H0\ > \Bi9\.

A program P is delay recurrent wrt |.| and I iff every clause of P is delay recurrent
wrt 1.1 a n d / . •

Example 7.3 Let |.| be the level mapping of Example 7.1 and I the interpretation

{Qsort(a;, y) | \x\iist-length — \y\list-length} U

{Partition(x, ty, y, 2) | \x\iist-length ~ \y\ust-length \^\list-length} ^

{Append(a;, y, 2) | \z\iist-iength ~ l^lnst-length "l~ \y\list-length}

®The definition of delay recurrency in Marchiori & Teusink 1995 contains some slight redundan-
cy/ambiguity and as such its correct interpretation is unclear. This definition accurately reflects the
intentions of the authors (Marchiori 1996).

80

Note that I is a model for the clause of the Quicksort program. Consider the body
atom Partition(xs, x, I, b). Recall that

coDgrsj i gag(Partition(xs, x, I, b)) = {{Qsort(l, ls),Qsort(b, bs), Append(is, [xjbs], ys)}}

Let 0 = {x/ti,xs/t2,ys/t3, l/t4,b/t5,ls/t6,bs/t7} be a grounding substitution for such
t h a t / 1= {Qsort(t4,t6),Qsort(t5,t7),Append(t6, [iilty],^3)}- Then

|QS0rt([ti|t2], is)! ~ 3]list-length

~ i\i6\list-length + 1^7 \list-length + 1) + 1

~ list-length l^sllist-length + 1) + 1

^ \^4:\list-length \^5\list-length

= |Partition(t2,ti, (4,^5)1

It is easy to check that condition 2 of Definition 7.4 holds for every other body atom of
qs^. Hence qs^ is delay recurrent wrt |.| and I. •

The intention behind the definition of delay recurrency is that a delay recurrent
program P, when augmented with a set of safe delay declarations for the predicates
of P, only admits finite derivations. The delay declarations handle the local botmded-
ness issue, but there is still the global botmdedness problem to consider.

Suppose C is a cover for an atom B in a delay recurrent clause, and 9 is an answer
substitution for C such that B6 is bounded (note that 9 may not necessarily be a correct
answer substitution since the atoms in C have not yet been fully resolved). At this
point 6 speculatively binds the variables of B since it is not yet know whether or not
there exists some substitution a such that I \= C9a. If B9 is selected at this point an
infinite computation may arise since there is no guarantee that the level of the head
is greater than the level of B9. Instead, by fully resolving each atom in C such that
a correct answer substitution 9 is obtained, B9 can be safely selected since I |= C9a
for all cr, whence by condition 2 of delay recurrency, the level of 5 6̂ is less than the
level of the head. Full resolution of C can be achieved by using a local selection
rule as mentioned in Section 7.1.2.1. To reiterate, a local selection rule only selects
the most recently introduced atoms in a derivation and thus completely resolves sub-
computations before proceeding with the main computation. The notion is formally
defined below.

Definition 7.5 (age of an atom) For a goal G =*— Vli , . . . , Am the %th atom in G is Ai.
Let Go , . . . , be a derivation. The age of the ith atom in Gk, denoted ageQ^ {i) is
defined as follows.

1. If Go = ^ A i , . . . , Am, then ageQ^{i) = 0, for all i € [1, m].

2. If G^ ^ A' l , . . . , Am and G/j_|_% ^ ^ ; -̂ s—i ? B \ , . . . , Bji, A^^^, . . . , Am 9̂̂
then

f agCQ^ (z) + 1, for alH e [1, s - 1]
(%) = < 0, foral l%E[g,a + Ti —1]

['̂ Ŝ Gk (̂ — M + 1) + 1, for alH G [s + n, n + m — 1]

For a goal G =<— A i , . . . , Am, the atom Ai is introduced in G if age^^i) = 0. The atom
.4; is (or mosf recgMfZi/ mfrodwced) in G if ggeG(%) < aggg(j) for all j E [1, m]. O

81

Definition 7.6 (local selection rule Vieille 1989) Let G = ^ Ai,..., Am be a goal. An
atom Ai is selectable in G vmder a local selection rule iff Ai is most recently introduced
in G. •

The main result regarding delay recurrent programs can now be stated.

Theorem 7.7 (delay recurrency Marchiori & Teusink 1995) Let P be a program with
a delay declaration for each predicate in P. Let |.| be a level mapping and I an
interpretation. Suppose that

1. P is delay recurrent wrt |. | and I, and

2. the delay declarations for P are safe wrt |.|

Then every delay SLD-derivation for a goal, using a local selection rule is finite. •

7.2.4 Semi Delay Recurrency

Marchiori & Teusink 1995 noticed that boundedness of atoms could be enforced by
using safe delay declarations but did not fully exploit this fact combined with the
observations of Chapter 6 in defining delay recurrency. Their definition requires a
decrease in the level mapping from the head to the non-recursive body atoms when
in fact boundedness of selected atoms is already guaranteed by the safe delay dec-
larations. Their definition is generalised here by removing this restriction. The new
definition will prove useful for defining a large class of terminating programs which
permit coroutining.

Definition 7.8 (semi delay recurrency) Let).| be a level mapping and I an interpreta-
tion for a program P. A clause c : i7 ^ P i , . . . , P„ is semi delay recurrent wrt |.| and I
iff

1. 7 is a model for c and

2. for all i G [1, n] such that rel{H) ~ rel{Bi), for every cover C for Bi and for every
grounding substitution 0 for c such that I \= CO, we have that \H9\ > \Bi9\.

A program P is semi delay recurrent wrt |. | and I iff every clause of P is semi delay
recurrent wrt |. | and I. •

Observe in this definition that there are no restrictions placed on the relation
between the level of the head of the clause and the level of the non-recursive body
atoms.

Example 7.4 Let I be the interpretation of Example 7.3, and |.| the level mapping
defined by

\Qsort(x,y)\ = y' \P3rt\t\on{w,x,y, z)\ = y'+ z' |Append(x, y, z)| =

where y' = \y\iist-iength and z' = \z\iist-iength- As before, 7 is a model for the clause cjŝ of
the Quicksort program. Consider the body atom Qsort(b, bs). Then

corgrS|,|_ga2(Qsort(l,ls)) = {{Append(ls, [x|bs],ys)}}

gag (Qsort(b, bs)) = {{Append(ls, [x|bs], ys)}}

82

Let 9 = {x/ii,xs/i2,ys/t3, l/t4,b/%,ls/^6,bs/t7} be a grounding substitution for q'Sg such
that J t= {Append(t6, [ti\t7],t3)}. Then

|Qsort([ti|^2],^3)| = Itskist-kTzgfh
^ {\t6\list-Iength + 1^7 \list-length + 1)

^ \^7\list-length

= |Qsort(t5,t7)|

|Qsort([ti|t2],t3)| > |t6|w.WgtA
= |Qsort(t4,t6)|

Hence is semi delay recurrent wrt |. | and 1. •

The relationship between delay recurrency and semi delay recurrency is imclear.
Obviously every delay recurrent program is semi delay recurrent, but the converse
may or may not be true. In Martin & King 1997 the following program was said to be
semi delay recurrent but not delay recurrent.

P([x|y]) 4- Append(_, _) A P(y).

The reasoning was based upon interpreting the definition of delay recurrency in
Marchiori & Teusink 1995 such that, for a body atom which has no cover, the decrease
in level from the head of the clause to the atom must hold for all grotmd instances.
Since the Append(_, _) atom has no cover and the decrease does not hold, the clause
cannot be delay recurrent (Marchiori 1996). However, with the interpretation of delay
recurrency given by Definition 7.4 the second condition of the definition is vacuously
satisfied for an atom with no cover. As such with this definition, the above program
is considered to be delay recurrent. This does not endanger termination. Observe that
if an atom has no cover then it can never become boimded. If all delay declarations
are safe then such atoms will never be selected. Indeed one necessary condition for
deadlock freedom of a program is that every atom has at least one cover (Marchiori &
Teusink 1996). It would be an interesting result, theoretically, if delay recurrency and
semi delay recurrency were shown to be equivalent, but this is not considered any
further here.

It would be straightforward to prove that Theorem 7.7 still holds if the program
is replaced by one which is semi delay recurrent, but a much more significant result
may be obtained. Observe that a local selection rule is used to ensure that a cover of
an atom is completely resolved before the atom itself is selected. Notice, however, that
for semi delay recurrency, it is only necessary for the covers of the mutually recursive
atoms to be resolved completely. This means that following the resolution of these
covers, an arbitrary amount of coroutining may take place amongst the remaining
atoms of the clause.

To formalise a selection rule based on this idea the notion of a covering is intro-
duced. Intuitively, this is a lifting of the notion of cover from the clause level to the
goal level. A covering of a recursive atom in a goal G is the set of atoms in G which
have yet to be resolved before A can be safely selected. An atom A may have more
than one covering, though it is only necessary to fully resolve the atoms of one of
them before the selection of A. Coverings of atoms will change during the course of a
derivation as new atoms are introduced and others are fully resolved via resolution.

83

Definition 7.9 (covering) Let Go, Gi, G2, . . . be a derivation and |.| a level mapping.
A covering for an atom v4 in a goal Gk wrt |.| is defined as follows.

1. Suppose Go = Ai,..., A^. Then for all i G [l,rn], the empty set is a covering
for Ai in Go wrt |.|.

2. Suppose Gj+i = <— . . . , B i , . . . , Ag+i , . . . , is the resolvent
derived from Gf = t - Ai,..., Ag,..., Am and c : H ^ 5 i , . . •, B^, where As
is the selected atom in G; and 6 e mgu{H, As). Then

(a) for all % G [!,«],

• if rel{H) Tel{Bi) and G is a cover for Bi in c wrt |.|, then CO is a
covering for Bi9 m G;+i wrt |.|;

• if rel(H) 9̂ rel{Bi), then the empty set is a covering for BiO in Gi^i wrt

(b) for all i G [1, m], i ^ s,itC C {Ai,..., Ai-i, Ai+i,..., Am} is a covering for
Ai in G wrt |.| then

• C9\{AsO}u{Bi,..., is a covering for in G^+i wrt |.|, if .4^ G G;

• G0 is a covering for AiO in Gi+j wrt |.|, if Ag ^ G.

An occurence of an atom A is uncovered in a goal G wrt |. | iff the empty set is a covering
for ^ in G wrt |.|. •

Definition 7.10 (semi local selection rule) Let 6 - Go, Gi, Gg, . . . be a derivation and
|.| a level mapping. Let Gk = Ai,..Am be a goal in 5. An atom As {1 < s < m)
is selectable in G^ tmder a semi local selection rule (parameterised by |.|) iff As is
uncovered wrt |. | in G^. •

It can be shown that if a bounded atom is selectable under a local selection rule,
then it is selectable tmder a semi local selection rule.

The main result can now be stated.

Theorem 7.11 Let P be a program with a delay declaration for each predicate in P.
Let |.| be a level mapping and I an interpretation. Suppose that

1. P is semi delay recurrent wrt |. | and I

2. The delay declarations for P are safe wrt |.|

Then every delay SLD-derivation for a goal, using a semi-local selection rule (param-
eterised by I. I) is finite. •

Proof 8 Follows as a corollary of Lemma 7.13.

Definition 7.12 Let |.| be a level mapping, I an interpretation and G = ^ ^ 1 , . . . , 4̂̂ a
goal. Define for all i G [1, n].

|[G]}| — < \AiO\ + 1
0 is a grounding substitution for G
G is a covering for Ai in G wrt |. |

Then the finite multiset of pairs {{rel{Ai), max\[G]j\),..., {rel{An),max\[G]']\)} is de-
noted by |[G]/|. •

84

Observe that if the atom Ai has no covering in the goal G = +- A i , A n then
|[Gj}| = 0. Also, if for every covering C for Ai and for every grounding substitution 9
for G, I CO, then |[G]j| = 0. Note that the expression 1̂ 6̂*1 + 1 in the definition of
|[G]}| ensures that max\[G]\\ > 0 when |[G]}| is non-empty. That is, max\[G])\ can only
be zero if | [G]\\ = 0. This device is used purely to facilitate the proof of Lemma 7.13.

Let be the lexicographical ordering on Ep(iz) x N (<) and let be the multiset
ordering based on Observe that is well founded.

Lemma 7.13 Let |. | be a level mapping and I an interpretation for a program P. Let P
be semi delay recurrent wrt |. | and I, and let G be a goal. Let G' be an SLD-resolvent
of G from P. Then |[G']/j |[G]/|.

Proof 9 Suppose G' = <— (v4i,. . . , B i , . . . , ^s+i , - - -, is fkg SLD-rgsoZDenf
(fenced/rem G = 4— , Ag, . . . , and c : jT B i , . . . , wWe is seZecW
afom M G and 0 E ylg). Rrsf s/iow fWybr aM % E [1, n]

CZear/i/ fAis koZds ybr aZZ % E [1 , swcA f/iaf reZ(gi) ref(n) If rg?Mams fo sAow
that the inequality holds for all i e [1, n] such that rel(Bi) ^ rel{H). By Definition 7.10, the

sef is a ccwgnMg/br .Ag m G wrf |.|. TTzen

?Ma%|[G]j| = ?Ma%{|Aa(̂ | + 1 I ̂ is ag/owndzMg SMbsfifufioMybr G}

Since is bowntfetf (onZi/ 6owM(fe(f afoms may 6e seZecfe f̂J, if ybZZows f/zaf ?7ia%|[G]j| =
|[Aa]| + l. By Lemma 3.33, |[Aa]| > |[^a^]| = Tkw5ma%|[G]}| > |[JT0]|. Now,

for all i G [1, n].

|[G1 11
I I (•^Ij • • • I -^s—li Bit • • •) ^n; -^s+lj • • •) Am)d]j

is a growMtfing swbsfifwfioM^r G'
D is a ccwehng^ybr BiO in G'

s+i—l I

= < \Bi9^\ + 1

Lef z E [1, M] sucA fkaf reZ(gi) reZ(jT) and ^ 0. TAen fWe ezisfs

]. a growMdinĝ swkfifwfion G', and

2. a covering D for Bi9 in G' wrt \.\,

such that

3. I \= Dcj), and

4. |g^0(^| + l = ma%|[G']}+'-^|.

from (2) aboue if /bZZows f Aaf fkere e^isfs a cocer G ^ B, in c swcTz fkaf D = G^, and Agnce by
(3), 7 1= G^(^. By (3), is a growM^fing subsfifufionybr <— B i , . . . , Lef cr be a growndzMg
sw&sfz'fwfzoM ^ TTzgM (̂̂ cr is a swbsfifwfioM c, swcA fAaf i |= G^^cr
(since G0(̂ (7 = G^(^). Hence, by semi deZay recwrrency q/'c, = |B;0(^|.
Thus max\[G'Y]^''~^\ < \H9(j)a\ = \[H9(j)a]\ < \[H 0]\, hy Lemma 3.13. It follows that for all

r ' " i e [l,n] such that rel{Bi) ~ rel{H) and |[G']j+' ^ 0, max\[G]j\ > ma%|[G']j+^

85

W % E [1,7%] gwc/z f/zaf reZ(Bi) and = 0. TTzezi = 0.
But max\[G]f\ > 0 so max\[G]f\ > max\[G'Yj^^~~^\. It follows that for all i e [l,n] such that
reZ(Bi) 7-6/(̂ 7)̂ ?Maz|[G]}| > TTzzgcompZekgf/zgyirsfparfc^fkfpmq/i

Ng%f gkow /br % E [1, ^ a,

(rgZ(Ai0),m;%|[G']}|) :< (rgZ(Ai),?Mg%|[G]}|)

Let i e [1, m], i ^ s, such that |[G']}| ^ 0. Then there exists

2. a covering D for Ai6 in G' wrt |.|,

such that

3. I \= Dcj), and

4. + 1 =

From C2̂ abooe ztybZZowg fAaf fAere exzgfg a co^en'Mg C C { / l i , . . . , . . . , ybr

Ai in G wrt |. | such that

• As E C and D = CO \ U { S i , . . . , Bn}0, or

• As ^ C and D = CO.

fn yirsf cage, by (3), 7 |= (C0 \ U { B i , . . . , and coMgeî weMfZi// szMce 7 ig a
TModeZybr 7 |= (C0 \ U Bwf fkm 7 |=: becawgg = AgO. fn fAg gecond
cagg, 0)/ 7 |=

By K a growndzMg gwbgfzfwfzoM ybr <— ^ i , . . . , ^3_i, Ag+i , . . . , Am- W cr be
a growndrng swbgfzfwfioM ^ (̂̂ cr zg a growMdzMg gwkfzfwfzoM /br gwck
f W 7 [= C^i^o" (gzMcg C0(̂ cr = C0(^). HgMCg |Ai0^cr| + 1 E |[G]}| and ag a rggwff
?Ma%|[G]}| > 7Ma%|[G']}|.

W i s [1, m], % ^ g/ gwc/z f W |[G']}| = 0. TTzgM ?7%a%|[C]}| — 0 < ?Ma%|[G]}|. If/oZZowg
fAaf ?Ma%| [G]} I > 7Ma%| [C]} | /br aZZ % e [1, m]̂ % 5̂ compZefing fZze pmq/i O

7.3 The Transformation

The above result can be used to develop a program transformation which is able to
derive correct and efficient programs from logical specifications. Basically, the idea
is to transform a given program into one which is semi delay recurrent, but with
equivalent declarative semantics. Then by adding safe delay declarations a program
is obtained which terminates for all goals using a semi-local selection rule.

Section 7.3.1 formally introduces the transformation and proves the main results
relating to termination of the transformed programs, and their semantic equivalence
to the original programs. Some efficiency issues are considered in Section 7.3.2.

86

7.3.1 Termination

The following definition formalises the transformation exemplified in Section 7.1.4'̂ .

Definition 7.14 (semi delay recurrent transform sir) For a predicate symbol p and a
clause identifier c defined in a program P, let and denote predicate
symbols not defined in P. Let p/Zc be a predicate. Then

gd7'(p/A:) = d) , . . . , d)

where the d and Vi are variables for all i G [1, k]. Let c : p{ti,. ..,(&) ^ -Bi, . . . , be a
clause with Rec = { i i , . . . , C {1, . . . , n} representing the recursive body atoms of c
in that j € Rec iff rel{Bj) ~ p. Then

scfrrd = j ' ' ' ' °
^ ^ ^ , tk, 4 ^ (^1, . . . , . . . , otherwise

where vars{d, d,, . . . di^) n vars{c) = 0 and

• if rel{Bi) 9̂ p then B[= Bi,

• otherwise . . . ,si, di) given that Bi — q{si,..., si).

Then sdr{P) = {sdr{c) | c is a clause in P} U {sdr{p) | p is a predicate in P}. •

Example 7.5 Applying the sdr transform to the predicate Quicksort/2 of Section 7.1.2
results in the following clauses.

sdr(Quicksort/2): Quicksort(x, y) ^

Quicksort*P^''(x, y, d) A

Quicksort®'̂ ''(x, y, d).

s(f7'(9sj : Ouicksorf'^'^([|, [|, _) <-
sdr{qs^): Quicksort®''''([x|xs], ys, d) ^

Qs2 '̂̂ (d, dz, ds),
Partition(xs, x, I, b),

Quicksort^'^(l, Is, 62),

Quicksort^'^(b, bs, dg)
Append(ls, [x|bs], ys)

•

Each predicate introduced by the sdr transform is essentially a function map-
ping the depth bound in the head of a clause c to the depth botmds for the recursive
calls in the body of c. To ensure termination and completeness, the definitions of these
decrementation predicates need to be contrained. The following property is required
for termination.

^The transformation and the results of this section assume that the declarative semantics of the
transformed program will be given by a Herbrand interpretation. It is trivial to see how these can be
adapted to apply in the case of the non-Herbrand interpretation considered in Section 7.1.4.

87

Definition 7.15 (termination property of Let be a decrementation predicate
introduced by the sdr transform. Let |.|(^ be a norm and let / be a model for
The predicate is decreasing wrt |.|cu and I if, for all di,..., dn) E I, |d|w >

for all i G [1, n]. •

Lemma 7.16 (termination) Consider the program sdr{P) U Depth U Dec where sdr{P)
is obtained from a program P via the above transform, and Depth and Dec contain
respectively definitions for each predicate and introduced by the transform
such that

• no predicate in Depth depends on a predicate in sdr{P) U Dec

• no predicate in Dec depends on a predicate in sdr{P) U Depth

Let J be a model for sdr{P) U Depth U Dec and suppose there exist level mappings |.|i
and |.|2 such that Depth is semi delay recurrent wrt |.|i and I, and Dec is semi delay
recurrent wrt |.|2 and I. Furthermore, suppose there exists a norm |.|^ such that, for
all G Dec, is decreasing wrt |.|w and I.

Then there exists a level mapping (.| such that sdr(P) U Depth U Dec is semi delay
recurrent wrt |. | and I. •

Proof 10 Let \.\ujbe the norm satisfying the above condition. Define the level mapping |.| by

d)i = |d|^ | p (t) i = 0

If is easy fo s/zow fkaf ybr any predzcafg p in f ybr azzy c/awse c m f , bof/z sdr(p) and
sdr(c) are semi delay recurrent wrt |. | and I. •

The main consequence of Lemma 7.16 is that any program can be transformed
into one which is semi delay recurrent and whose semantics are equivalent in a sense
which will be examined shortly.

Observe that for a clause c the atom d i ^ , i s the only atom in the
body of sdr (a) which is a cover for any other atom wrt the level mapping |. | defined in
Lemma 7.16. This means that after its resolution, an arbitrary amoimt of coroutining
may take place between the body atoms of sdr{c).

Example 7.6 Let P be the program consisting of the clauses qs^ and qs^- Then sdr{P)
comprises the three clauses of Example 7.5. Let Depth consist of the single clause

Quicksort^^^^(_, _)

and Dec consist of the single clause

Q s f (S (d) , d , d)

The program sdr{P) U Depth U Dec is semi delay recurrent and moreover, if I is the
minimal model for this program and J is the minimal model for P then for any ground
terms ti and tg/1 \= Quicksort(ti, tg) iff J |= Quicksort(^i, tg). •

By Theorem 7.11, the program sdr{P)UDepthuDec will be terminating for all goals
under a semi local selection rule if, for each predicate, a delay declaration is added
which is safe wrt the level mapping |.| defined in the proof of Lemma 7.16. In the
above example, this amounts to delaying goals of the form <— Quicksort®''' (x, y, d) until
d is bounded wrt |.|w. However, with the definition of Quicksort^^*^ in Example 7.6, all
such goals will suspend, since d is never instantiated. Of course, the d parameter acts
as a depth bound on the subsequent computation and it is the role of the introduced
Ouicksort^^'^ predicate to establish a bound which is large enough to allow that part
of the search space containing correct answers to be searched. For example, the goal

Quicksort([1.2,3], y) will fail if the subgoal <- Quicksort^^''([1,2,3], y, d) binds d to
S(S(0)) since more than two recursive calls to the predicate Quicksort®'''' are required
to obtain the correct answer substitution y/[1,2,3]. To ensure that completeness is not
lost, the definition of Ouicksort^^^^ needs to be constrained to ensure that sufficiently
large depth bounds are determined.

Observe, however, that such depth predicates are only responsible for determining
the initial depth bound. The depth bounds at subsequent steps in the computation are
dependent on the decrementation predicates. Hence the definitions of these predicates
must also be constrained. In this respect, it turns out that the following properties can
be used to ensure completeness, and yet are sufficiently general enough to permit
considerable flexibility in defining decrementation predicates.

Definition 7.17 (completeness properties of Let be a decrementation predi-
cate of arity n introduced by the sdr transform. Let |.|̂ ^ be a norm and let f be a model
for The predicate is

• well defined wrt |.|^ and I if for all /c G N , there exists di,..., dn) € I such
that |d|^ = k.

• monotonic wrt |.|w and I if for any two ground atoms d i , . . . , dn) G I and
d'l,... ,dn) E I, such that |d|w > \d'\^ holds, > \d% for all i G [1, n].

• unbounded above wrt |.|w and I if for every ground atom di,... ,dn) G I,
there exists d'^,..., d'^) G I such that \d[\^ > \di\t^ for all i G [1, n]. •

The following lemma states that it is not necessary to determine precise depth
bounds for the search space, but it is instead possible to estimate them by over ap-
proximation. They may not, of course, be under approximated without losing com-
pleteness. This is a useful result from a practical point of view, since it considerably
simplifies the analysis required to determine the bounds.

Lemma 7.18 (over approximation) Let sdr{P) U Depth U Dec be the program satisfying
the conditions of Lemma 7.16. Let I be the minimal model for sdr{P) U Depth U Dec.
Suppose there exists a norm |.|w such that for each decrementation predicate in
Dec, is well defined wrt |.|^ and / , decreasing wrt |.|(^ and I and monotonic wrt
1. 1̂ and I. Then the following hold

1. If / 1= ... ,tk,d) then there exists d' such that I \= .. .,tk, d') and
for all d" such that I |= p®'̂ ''(4, - - - , 4 , d"), \d"\ui > \d'\^.

2. I f f 1= p®'̂ ''(ii, • • • ,tk,d) then for all h > 0, there exists d' such that |d% = \d\^ + h
and f 1= . . . , d')-

89

Proof 11 For brevity, let R = sdr{P) U Depth and let S = Ru Dec. Let luec denote the
subsef modeZ Zybr 5 fkose afoms wz'fk predzcak symboZs kZoMgzng
fo pretfzcaks ZM Dec. Nok f/zaf, smce no pWz'cak m Dec depends on any predzcafe m
E, iogc is f/ie TMZMZTMaZ modeZybr Dec. Then 7 = w/iere

= {p(t) I p(() 4— is a growMd zMĝ ance q̂ a base cZawse in A} U Ẑ gc

/j+i = L(t) p(t) <— B i , . . . , K agrowMd msfance q/'a cZawge m J%(m > 0)
and Bi E Ug=o-̂ A aZZ % e [1, m]

BybZZowg zMiTMedzafeZyyrom D^MzfzoM 7.34 fkaf . . . , tt, G fZieM/br ez;e?T/
ferm t m fkeHerbrand wnzuerse q / ' S ' , . . . , E Jg. Since is weZZ d^ned wrf |.|t̂
and 7, and is decreasing wrf |.|̂ j and 7, fZigre exists a Her&rand ferm t swcZz fZzaf M
ybr aZZ n, > 0. IfybZZows fkaf/br aZZ n > 0 fZiere ezzsfs d' suc/z fZzaf ... ,%, d') E Jg and
jd jo; Tl.

fzsrf skow f W ^p^''((i,..., tk, d) € 7g, fZzen |d|w > M. TTze caseybr n = OybZZows/rom
abcwe. for fZze zndwcfzoM sfep, sẑ ppose fZzaf . . . , tt, d) E 7̂ "̂ ^ (n > 0). TTzen fZzere
e%zsfs a grownd zMSfance . . . , tt, d) ^ ĉ '̂ (d, d^^,..., dij, B i , . . . , of a cZaz/se zn
A, ('wAereybraZZ J e [l,m],Bj = . . . , Sj^,dj) and j e {4,...,%;} ^reZ(gj)
sz/cZz f W c4̂ '̂ (d, di^,..., dij e U^=ô a ^ ^ ^ [1, By fZze zndzzch'on
hypothesis, |dy > nfor all j e [1, /]. Hence |d|a; > n + 1, since is decreasing wrt |.|^
and I.

Nezf sZzow f/zâ . . . , d) E Zg, fZzen /or aZZ > 0 fZzere ezzsfs d' sẑ cZz fZzaf
p^''(ti,..., tk, d') E Zg and |d% = |d|î + /i. Again fZze case/or n = 0 /bZZows /ronz aboz)e.
for fZze indz^cfion sfep, sẑ ppose fZzaf . . . , d) E (zi > OJ. TTzen f ^ e ezisfs a
groz/nd insfance c* : . . . , d) ^ ĉ '̂̂ (d, d^^,..., d,,), B i , . . . , qfa cZaz/se c in 72̂
(wZzere/or aZZ j E [1, m], d̂) and j E { 4 , . . . , zz} ̂ reZ(Bj) ::±
sẑ cZz iZzaf ĉ '̂̂ (d, dj^,..., dij E G U%=ofg /or aZZ j E [1, m]. Since
is weZZ d^ned wrf |.|^j and 7, /or aZZ > 0 fZzere exisfs ĉ '̂̂ (d% d^^,..., d̂ J E U _̂Q7g
szfcZz f/zaf |d'|w = |d|^ + /t. TTien, by fAe znonofoniczfy q/'ĉ '̂ wrf |.|t̂ and 7, if nzzisf be
fZzecasefW |d̂ .|̂ ^ > jd,̂ . |̂ /̂braZZj E [1,Z]. HencebyfZzeindwciionZzi/poiZzesis,/braZZ
j E [l,m] sz^cZzfWreZ(Bj) Bj = g^'^''(sj,...,g"\dj) E U^=o-̂ a- f̂ /oZZows
fAaf . . . , 4 , d') <— ĉ ^̂ (d', d^^,..., d^J, B^,.. . , B^ is a groẑ nd instance q/'c, wZzere
B̂ = Bi ^reZ(B)̂ swcZz fkai c^':(d', d^^,...,d^J E and Bj- E U%=o7#/or aZZ
j E [1, m]. TZzer^re, p^ ' ' (t i , . . . , 4 , d') E proving fke resz/Zf. O

The main equivalence result may now be stated. This includes both a complete-
ness result which asserts that every logical consequence of the original program is
also a logical consequence of the transformed program, and a soundness result which
asserts the converse (restricted to the predicates defined in the original program).

Lemma 7.19 (equivalence) Let sdr{P) U Depth U Dec be the program satisfying the
conditions of Lemma 7.16. Let I be the minimal model for sdr{P) U Depth U Dec and
let J be the minimal model for P. For a predicate p defined in P, define

depfZz(p(t)) = Mzin{|d|w | / |= d)}

Suppose the following conditions hold

90

1. there exists a norm |.|ĉ such that for each decrementation predicate in Dec,

• well defined wrt |. 1̂^ and I,

• decreasing wrt |.|w and I,

• monotonic wrt |.|w and I, and

• unbotmded above wrt |.|^j and I.

2. whenever I |= then there exists d', such that |d% > depth{p(f)) and

Then I |= p(t) iff J |= p(t). •

Proof 12 The proof proceeds bottom up on the predicate dependency graph of P. First parti-
h'oM fAg prgdicakg m f as ybZZows

1. p e Zfo eac/i cZawgg p (t i , . . . , ^ -Bi , . . . , p, ezfW m = 0 or
rel{Bj) ~ pfor all j e [1, m]

2. p E ^ cZawse p (t i , . . . , ^ -Bi , . . . ,
p, gzYAgr m = 0/ or /or a/Z j € [1, mj gzYAgr rgZ(Bj) c::! p or rgZ(B)̂ € U{^=o^fk'

Example 7.7 Consider the program

SW ^ PW, Q.
P W ^ R W , PW.
Q-

Rm; ^ T(B).
T w f - Trs;, RCAi u .

Spo = {Q, [/, y} , 2pi {jz, r } , 2p , = { f } Spa =

Suppose fkg pretfzcafes q/̂ f dwidg m k maz + 1 parhfions Zpg, . . . , Lef
dgMOfe f/zg swbsgf conswAng q/̂ fAg d̂ MzfzoMS q/'f/zg prg(fz'cafes zrz Zp̂ .̂. Obsgrug f/zgzz
fZzaf f = TTzg zrzzMZMzaZ zzzodeZ jybr f znay aZso bg parfzfzorzgd accordmg k fAg
prgdz'cak depgzz^cy grapk sẑ c/z fkaf J = Jp̂ ^ wkgrg

Jpjt — {p(^ I ^ ^ }

ybr aZZ A; e [0, znajy].
Given the way that sdr{P) is derived from P according to Definition 7.14, the partitions

q/^f ZMay bg ẑ sed fo dgrzi)g a parfzfzonmg^ q/^sdr(f). W = {p̂ '̂ '' | p e Zp^} (("d
Zy;̂ = Sfk- jZt dgMofg f/zg sẑ Z?sgfs q/ 'sdr(f) coMszsfzMĝ q/'̂ /zg d^»z%)Ms q/'f/zg
prgdz'caks m Zg^ arzd Z^^ rgspgcfẑ eZi/. Obsgr^g f/zaf Qt = {sdr(c) | c zs a c/az^g zrz
azzd TZt = {5dr(p) | p zs a prgdzcafe ZM P)̂ }. Hezzcg 5dr(Pt) = U At and 5dr(P) =
U^sdr(fA:) .

PzzzaZZi/̂ f/zg TZZZMZTZzaZ nzodgZ 7ybr 5dr(P) U DgpfZz U Dgc Mzay bg parfzfz'oMgd as ybZZows.
Lgf D̂gc and /oepfh dgzzofg fZzg sẑ bsgfs q/"/ conzprzszzzg rgspecfzugZy fZzose afozrzs wz'fZz predz'cafg

91

gymboZs WoMging fo m Dec an̂ f DepfA regpechWy. Note since no
pre f̂zcafe z» Dec (̂ epewda on any pre f̂zcak zn 5(fr(jP) U DepfA, Tggg K /̂ze mzMz'zTzaZ z?zo(k/ ybr
Dec. CA szzMzZar obser[;ah'oM mzy be Mzatfe reĝ ardzMg /ogpfh/ nof ref̂ wzred/br fke
pmq^.

T/ze remazYzder of fAe mzMZZMaZ wzodeZ) = / \ (^gc U foepA)/ ^3 / (*ko be parfzfzonê f
accordzMg fo f/ze parfzhonrng q/̂ f/ze predzcafes z'n gdr(f) degcrzbed aboce szzc/z f/zaf 7sjr(f) =
Uk^(/Qk u /A J

-̂ Qk = {P(Q I P(^ e Zazz^fp E Eg J aM(f = {p(^ | p (^ E /azz^Zp E 2^^}

/or aZZ A; E [0, ?»«%].
7b proz'e f/ze z-ggz/Zf̂ zY gz^ces fo g/zow f/zaf aZZ /: E [0, ?/za%] ^ p(^ E /̂zen

p(^ E /Bf TTzM K proved by z'M(fucfz'o?z ocer A;. Obgerue f/zafybr a/Z A: E [0,7Ma%]

-̂ Ak = { P(^)
p(t) f - d), p^''(t, d)

zg a groz/zzd zngfazzce q/̂ a cZaẑ e ZM At,
4 E d) E /Q,

EacZz Jp^ an̂ f can z'n fwnz aZgo be (f^netf z?Z(fz(cfz'i;eZy, gẑ cZz fZzaf Jp^

^Qk = U%lo4k

= {p(^) I p(^) ^ K a groẑ M(f ZMgfazzce q/'a bage cZawge zzz fb}

• ' f t '

Jpt'

p(t)
p(t) <— B i , . . . , Bm K agrozzMd zzigfance q/̂ a cZawge ZM > 0),

G Ug^qJ^g/braZZ; E [l,m]

pm

r n + l
^Qo

= {p(^) I P(̂) ^ is a groî Tzd zngfazzce q/a bage cZaẑ e z'n

p(t) <— B i , . . . , Bm is a growMcZ ZMgfazzce q/'a cZawse zzz > 0),
Bj E ^ — P, (ZMd
Bj E u)̂ %Q Jp^ybr aZZ j E [1, m] gz/cZz fZzaf reZ(Bj) ^ p

I ^ zs a growM<i zngfazzce q/̂ a bage cZaẑ ge zn Qo}

<— C, B i , . . . , Bm is a groz/zzd zngfance q/̂ a cZaizse zzz Qo,
C E Togc, (ZMd

6 U%_o7^^ybraZZ; E [l,v7i]

„sdr/IN

lf'{i)

I 'L = i / ' ' i i) I P"'{i)

/%+'

Zg a grownd ZMgfance q/̂ a bage cZause z'n Qt}

<— C, B i , . . . , B^ z'g a groẑ zzd zngfance q/'a cZaẑ ge z'n Qt,
C E /Dec,
Bj E J G [1, m] szzcZz fZzaf ?'eZ(B̂) c:̂ p, azzd
Bj E /br aZZ j E [1, m] szzcZz fZzaf reZ(Bj) p

fndz^cfzue ZzypofZzegzs A; E Jp̂ ^ fZzezi p(7) E

1. Base case: (k = 0) Inductive hypothesis B: Ifp{t) E Jp^ then there exists d such that

4 E 7^,.

(a) Base case: (r = 0) It follows immediately from Definition 7.14 that ifp{t) e Jp^

fZzgM r̂ euery d z'n fZze Herbrand wzzzz'ez'ge q/^sdr(B) UDepfZzUDec, ((, d) E .

92

(b) Inductive case: (r > Oj Now suppose p(t) E Jp^^, (n > Oj. Then there exists
a p(3) <— B i , . . . , q/'a cZai/sg c m (77% > 0) guc/i fWybr
aZZ j E Bj = gj (sj) E U^^gJpg. ByTzi/pof/iesis B, zŶ bZ/ows fW/br aZZ
j E [l,ni]Xkeree%z5fsdjgwc^fWgj'^''(gy, dj) E CoMgzdgrf/zepWicak

m f/zg c/aifgg sdr(c). Smce is wgZZ wrf and 7, and wnbownded
aboz;g wrf |.|t̂ and 7, fkere g%zsk , . . . , E foec swc/i |dj > |(fj
ybraZZj E [l,m]. Bylg?MMa7.3g,Bj — E ^

If /bZZows f W d) <— c '̂̂ (d, d i , . . . , d^), . . . , is a ground msfance
q/'gdr(c) E Qo swc/i ĉ '̂̂ (d, d^,. . . , d^) E /oec «Md Bj E ybr aZZ
j E [l,77i]. Hencep^''(t,d) E

Now swpposzMĝ E zf ybZfowg /rem fke aboue fkaf fkere ezz'sfs d gẑ c/z f/zaf
d) E 7^0. TTzen, by aggWTMpfz'oM, f^re ezKfs d', gzfc!z f/zaf |d'|t̂ > depfk(p(^)

and 7 |= d') (z.e. d') E /Dept/i)- By LemzMa 7.18, d") E /go and
ag a ZogzcaZ coMge(̂ zzeMcep(̂ E /%-

2. Inductive case: (k > 0) Inductive hypothesis C: Ifp{i) € Jp then there exists d such

fAaf d) E .

(a) Base case: (r = 0) It follows immediately from Definition 7.14 that ifp{t) G Jp^

f/zezzybr ez)ery d ZM f/zg Herbrand zzMwerge (^gdr(f)UDepf/zUDec, d) E .

(b) Inductive case: (r > 0) Now suppose p(t) G (n > Oj. Then there exists a
groẑ nd zMgfazzcep(t) ^ B i , . . . , B ^ a cZawgg c ZM (m > 0), w/zere

i. for all j e [1, m] such that rel{Bj) ~ p, Bj = ^^(ay) 6 U%=Q Jp^, and

zz. ybr aZZ j E [1, m] gẑ cA f W reZ(B)̂ 9̂ p, Bj E U^Zo-^h-

By kypof/zggeg C and A respecfz^eZy, zf ybZZowg fkaf

z. ^raZZ J E [1, m] gz/cA f/zaf f̂ Z(By) c± p, f/zeree%Kk dj gz/c/z f W dj) E

zz. aZ/ j E [1, m] gẑ c/z f!zaf ref(Bj) p, Bj = B^ E

CoMgzder f/ze predzcafe m f/ze cZaz/ge gdr(c). 5mce K weZZ d^zzed wrf |.|(̂
and f , and zzzzbozz/zded aboue m i | . a n d 7, fkere ezigfg ĉ '̂̂ (d, d^^,..., d^) E /oec
(wWeybr aZZ j E [1, m], j E {%i,..., tz} ^reZ(Bj) c::; p) gz/c/z f W jd^^ > |dj|(̂
ybr aZZ j E [1, m]. By LezzzzTza 7.18, Bj = d)̂ E U % = o - ^ Q k ^
gzfcZzfWz'gZ(Bj) p. Zf/bZZowg fWp^''(^, d) i— ĉ '̂̂ (d, d<^,..., d -J ,B(, . . . , B^
zg a groẑ Tzd ZMgfance q/'gdr(c) E Qt gz/cZz f W ĉ '̂̂ (d, d-^,..., d Ĵ E Toec/ E

ybr aZZ j E [1, m] gwcZz fZzaf reZ(Bj) p, and Bj E ybr aZZ

j E [1, ?7i] gzzcZz fZzaf reZ(Bj) p. Hencep '̂̂ ''(t, d) E

Now gẑ pposzzzg p(^ E vTf),, zY ybZZowg /rom fZzg aboz% fZzaf fZzere ezigk d sz/cZz fZzaf
p̂ '̂ (E, d) E TTzgzz, by aggzznzpfzoz:, fZzere ezKk d', gẑ cZz fZzaf jd'l̂ j > depfZz(p(^)
and 7 ^ d') (z.e. p^9'(''(t, d') E logpfh). By Lemma 7.18, p''̂ ''(̂ , d') E and
ag a ZogzcaZ congĝ ẑzezzce p(^ E 7^^

TTzz'g proueg fZzg compZefezzegg regwZf. TTze goẑ ndzzegg regwZf gzoezz by fZze cozzẑ erge can eagz'Zy be
proved ZM a gzmzZar zzzazzMer fo fZze aboue wz'fZzoizf reZymg on any properfKg q/̂ fZze decremenfafzon
predzcafeg. O

93

This lemma states that the declarative semantics of the original and transformed
programs (restricted to the predicates defined in the original program) coincide. Then,
under the assumption that the transformed program is deadlock free (Marchiori &
Teusink 1996), it can be guaranteed that all computed answers of this program are
complete wrt the declarative semantics of the original program.

The problem now then is to define for each predicate p such that the con-
dition of Lemma 7.19 holds. Observe the intuition behind the construction of the
transformed program. Suppose it can be deduced that for a given goal G, all computed
answers for G can be found in an SLD-tree of a certain depth, then the SLD-tree can
be computed to that depth and no more, and all answers for G will surely have been
found. In reality, the granularity is finer, relying not on the depth of the SLD-tree as
a whole but rather on the lengths of individual branches. More precisely, for each
predicate p/k the depth parameter d' in Lemma 7.19 is an upper bound on the number
of calls to p/k along one particular branch of the tree. It will often be the case that this
bormd relates to the "input arguments" of the predicate, i.e. those arguments which
are instantiated at the time the predicate is called. One natural approach therefore, is
to use interargument relationships to capture this relation.

Example 7.8 Consider the following abstract version of the Append program where
the list length norm has been applied to the arguments and the predicate has been
augmented with a depth parameter.

Append^(0, x, x, 0).
Append°^^(x +1,y, z + 1,d + 1)<-

Append^(x, y, z, d).

The success set of this program is characterised by the set

{Append^(T, 2/, z, d) 11 = z — = d}

from which it may be observed that d is bounded whenever x or z is. Append'̂ ^̂ '' may
then be defined as follows.

Append*P^^(x, z, d) ^
Length(x, Ix) A
Length(z, Iz) A
OneOf(lx, Iz, d).

The definition of OneOf/3 is non-recursive and hence terminating. It is defined to
succeed once and instantiate d to either Ix or Iz in an obvious way.

The above characteristion of the success set may be derived automatically. The
analysis of Benoy & King 1996 is one such example of a size relationship analysis
based on abstract interpretation capable of deriving the above result. In addition,
given suitable abstract programs it can also derive meaningful relationships for the
Quicksort program which can then be used to form the definitions of the predicates
SetDepth_Q/3, SetDepth_A/3 and SetDepth_P/4 in the program of Section 7.1.4. •

Example 7.9 Given the predicate Split from the program Mergesort

Splitm, D, 0).
Split([xjxs], [x|o], e) ^ Split(xs, e, o).

94

the following abstract program may be obtained

Split^^"(0, 0, 0, 0).
Split^^(xs + 1 ,0 + 1,6, d + 1) ^ Split"^®(xs, e, o, d).

whose success set is characterised by the set

5" = { S p l i f ^ (a ; , z , d) | d = 2;/ — 1 < d < 2^, 2z < d < 2z + 1}

Observe that d is bounded whenever x, y ox z is. This information (automatically
inferred by the analysis of Benoy & King 1996) may be used to derive a program, ac-
cording to the proposed transform, which terminates for any goal ^ Split(x, y, z) and, in
addition, returns a set of complete answers wrt the declarative semantics whenever x,
y or z is a list of determinate length and the remaining two arguments are (optionally)
iminstantiated. Existing level mapping based approaches fail to prove termination
for these three separate modes. These approaches only reason about the decrease
in the level mapping of successive goals in a derivation. For the level mappings
|Split(ti, ^2, ̂ 3)12 = 1̂21 and |Split(ti,t2,i3)|3 = l̂ sl the decrease only occurs on every
second goal. A suitable level mapping which can be used to prove termination would
be |Split(ti, t2, is)! = Tnin{\ti\,2\t2\, 2|t3| + 1) which is difficult to derive automatically
with existing techniques. Although there is some similarity between the definition of
I. I and the description of the set S, it is important to remember that the information
relating to the depths of derivatons captured by S only applies to successful deriva-
tions. Thus it cannot generally be relied upon as a proof of termination in itself (it is
in this example, but only because there is a single body atom in the recursive clause).
Termination is, instead, ensured through the described transformation procedure.

Another problematic predicate, similar in nature to the Split predicate, where
arguments are exchanged in the recursive call, is examined in Mesnard 1995. Ter-
mination of that predicate in its various modes can also be ensured via the technique
described here. •

7.3.2 Efficiency

The essential idea behind the described approach is to ensure termination by delaying
possibly non-terminating goals until certain arguments of those goals become rigid.
In theory the rigidity checks necessary should not incur much more overhead than
the delay declarations that are often used to assist termination. For example, checking
rigidity of the first argument of the goal ^ Append([1,2,3], y, z) requires three Nonvar
tests - exactly the same ntmiber that would be required if the goal were executed using
the conventional delay declarations. There are additional costs due to vmification and
the calculation of the depth bound, but these costs could be minimised through careful
implementation. Some sample programs have been naively implemented and tested,
and some preliminary results are given below. The experiments have been carried out
in SICStus Prolog (SICS 1995) on a Sparc 4.

95

Program
P

Goal
G

Length
of list L

f U{G} sdr(f) U{G} Program
P

Goal
G

Length
of list L one all one aH

8-queens qn(-) - 0.4s 6.8s 0.3s 5.3s
permsort Ps(L, -) 10 6.8s oo 0.7s 0.7s
permsort ps(-, L) 8 1.7s 10.5s 2.6s lOjk
quicksort qs(L, _) 4000 3.7s 4.5s 4.8s 6.0s
quicksort qs(-, L) 8 12ms oo 6ms 83.0s

The main overhead is due to the rigidity checks and the implementation in this
respect is rather naive and could be improved. Even with the experimental implemen-
tation this overhead only reaches a maximum factor of about three for the simplest
programs, e.g. Append. The power of the approach, however, lies in its scalability
and it is here where potentially the most impressive performance gains are to be
made. Preliminary tests indicate that the most benefit is obtained from larger pro-
grams where only one rigidity test is performed at the beginning of the program and
the rest of the computation is bounded by the depth bounds. Then the transformed
programs can outperform the original ones with the delay declarations, particularly
as the amount of backtracking or coroutining increases.

7.4 Summary and Discussion

The aim of control generation is to automatically derive a computation rule for a pro-
gram that is efficient but does not compromise program correctness. The problem has
been effectively tackled here by transforming a program into a semantically equiva-
lent one, introducing safe delay declarations and defining a flexible computation rule
which ensures that all goals for the transformed program terminate. Furthermore, it
has been shown that the answers computed by the transformed program are complete
with respect to the declarative semantics. This is significant.

Beyond the theoretical aspects of the work, its practicality has been demonstrat-
ed. In particular, it has been shown how transformed programs can be easily im-
plemented in a standard logic programming language and how such a program can
be optimised to reduce the number of costly rigidity checks needed to ensure ter-
mination, dramatically improving its performance. Furthermore, with the proposed
transformation, the termination problems caused by speculative output bindings are
eliminated without the use of a local computation rule or other costly overhead. The
coroutining behaviour which is then possible contributes significantly to the efficiency
of the generated code.

In terms of correctness, only termination and completeness have been considered
in this work, though other correctness issues also need investigating. The connection
between acyclic modes, rigid terms and the occur check problem needs to be exam-
ined, since the check is never needed for acyclic moded goals (Naish 1993). Also, the
example of Section 7.1.4.2 illustrates how the problem of deadlock freedom might be
handled.

The efficiency issues also require further investigation. To some extent the issues
of termination and performance have been separated but it is not now clear what role
extra delay declarations might play in improving the performance of the transformed
programs, or even whether other techniques such as multiple specialisation would be
more appropriate.

96

8 Sonic Partial Deduction

8.1 Introduction

Control of partial deduction is divided into two levels. The local level guides the
construction of individual SLDNF-trees while the global level manages the forest,
determining which, and how many trees should be constructed. Each tree gives
rise to a specialised predicate definition in the final program so the global control
ensures a finite number of definitions are generated and also controls the amotmt of
polyvariance, i.e. the number of specialised versions produced for each individual
source predicate. The local control on the other hand determines what each specialised
definition will look like.

Recent work on global control of partial deduction has reached a level of maturity
where fully automatic algorithms can be described which offer a near optimal control
of polyvariance and guarantee termination of the overall partial deduction process
Leuschel et at. 1998. Such algorithms are parameterised by the local control com-
ponent: an unfolding rule which describes how an incomplete SLDNF-tree should
be constructed for a given goal and program. It is a requirement of any terminating
partial deduction system that such trees are necessarily finite. Techniques developed
to ensure finite unfolding of logic programs Bruynooghe et al. 1992, Martens et al. 1994,
Martens & De Schreye 1996 have been inspired by the various methods used to prove
termination of rewrite systems Dershowitz & Manna 1979, Dershowitz 1987. Whilst,
by no means ad hoc, there is little direct relation between these techniques and those
used for proving termination of logic programs (or even those of rewrite systems).
This means that advances in the static termination analysis technology do not directly
contribute to improving the control of partial deduction and the quality of specialised
code produced by partial deduction systems. The work of this chapter aims to bridge
this gap.

8.1,1 Offl ine versus Onl ine Partial Deduct ion

Introduction of a static termination analysis phase into a partial deduction algorithm
has the added benefit that unfolding decisions can be based on a global analysis of the
program's behaviour, and can sometimes even be made before the actual specialisa-
tion phase itself. Such an offline approach has a number of advantages over its online
counterpart where unfolding decisions are made at specialisation time.

The advantage which has been the focus of interest of many researchers is its
usefulness in the automatic construction of compilers and compiler generators. Par-
tial evaluation of a meta-interpreter with respect to an object program produces a
"compiled" version of the object program where the interpretation overhead has been
removed. Given a meta-interpreter, a compiler in this context is a specialised program
dedicated to the "compilation" of object programs in the above sense. A compiler
generator, or cogen, is a program which generates a compiler from a meta-interpreter.

97

Compiler generators can be automatically generated through self-application, i.e.
through partial evaluation of a partial evaluator Futamura 1971. Self applicable partial
evaluators for full languages are particularly difficult to contruct, however, and as a
result this approach has recently been neglected in favour of a more promising one,
known as the cogen approach, where the compiler generator is hand-written instead.
This seemingly daunting task turns out to be not too difficult and offers a number of
advantages over the indirect approach Birkedal & Welinder 1994.

In order to write a compiler generator by hand, one must first focus on the struc-
ture of the compilers that one would like to generate. Remember that a compiler is in
effect a "partially evaluating meta-interpreter" where the "interpretation" overhead
of the partial evaluator has been removed. In other words, the control which would
be imposed on the meta-interpreter by the partial evaluator has been compiled into it
effectively allowing direct (partial) execution of the meta-interpreter under this control
regime. Any control decisions which can be made offline, i.e. independently of die
object programs to be executed by the interpreter, can be hard-wired into the compiler
and indeed should be in order to make the compiler as fast as possible. Thus, much can
be contributed to the efficiency of compilers through the use of the offline approach
with its separate static analysis phase.

Clearly these arguments still apply when the meta-interpreter, object program
and object goal are replaced by an arbitrary program accepting static and dynamic
inputs. For historical reasons, in the cogen approach a compiler is in fact called a
generating extension and this terminology is adhered to here, not only for consistency
with the literature but also for its wider applicability to arbitrary programs.

8.1.2 The Cogen Approach in Logic Programming

The construction of a cogen for a logic programming language (a subset of Prolog)
was first described in Jorgensen & Leuschel 1996. A generating extension is obtained
via a simple transformation of the source program which will briefly be described here
without covering all of the details. Specifically, each atom in the body of a clause in the
source program is marked as either reducible or non-reducible. Each clause in the source
program appears in the generating extension, though slightly transformed. Atoms in
the body of a clause marked as reducible in the source program also appear in the
body of the corresponding clause in the generating extension. As a result these atoms
will always be imfolded at partial evaluation time. Non-reducible atoms on the other
hand are removed from the body during the transformation process; they will never be
imfolded at partial evaluation time and together will form the leaves of the final SLD-
tree (the final part of the transformation augments each head and body atom in the
program with an additional argument to capture these leaf atoms at partial evaluation
time). One problem with this approach, however, is that whilst it permits goals to be
imfolded at normal execution speed, it can unduly restrict the amount of unfolding
which takes place with a detrimental effect on the resulting specialised program.

Example 8.1 Consider the Append program below.

oppi Append([], x, x).
appg Append([u|x], y, [u|z])

Append(x, y, z).

98

In the approach described in Jorgensen & Leuschel 1996 two generating exten-
sions of this program are possible (see below). The first is obtained as a result of
marking the body atom Append(x. y, z) in clause app^ ^ reducible and the second is
obtained by marking this atom as non-reducible.

Append([], x, x, []).
Append([u|x], y, [u|z], [leaves])

Append(x, y, z, leaves).

Append([], x, x, []).
Append([u|x], y, [u|z], [App8nd(x, y, z)]).

The fourth argtiment in each program is included to capture the leaves of the
SLD-tree in the form of an unflattened nested list of atoms. Now consider the goal
^ Append([1,2,3|x], y, z, leaves). Unfolding this goal wrt the first generating extension
above leads to the construction of an SLD-tree of infinite depth. When the goal is
unfolded wrt the second generating extension, the resulting SLD-tree is finite, but only
a single unfolding step is performed and the opportunity for specialisation is missed.

The main problem with the above approach is that it is based on the concept
of binding times which effectively classify arguments as static (known at specialisation
time) or dynamic (unknown at specialisation time). This division is too coarse, how-
ever, to allow refined tmfolding of goals containing partially instantiated data where
some parts of the structure are known and others unknown. Instead, the key issue
which needs to be considered is termination.

8.1.3 A Sonic Approach

This chapter proposes a flexible solution to the local termination problem for offline
partial deduction of logic programs. Based on the cogen approach, the construction of
a generating extension will be described which "compiles in" the local tmfolding rule
for a program and is capable of constructing maximally expanded SLD-trees of finite
depth.

The technique builds directly on the work of Chapter 7. The link here is that the
residual goals of a deadlocked computation are the leaves of an incomplete SLD-tree.
The basic idea is to use static analysis to derive relationships between the sizes of goals
and the depths of derivations. This depth information is incorporated in a generating
extension and is used to accurately control the tmfolding process. At specialisation
time the sizes of certain goals are computed and the maximum depth of subsequent
derivations is fixed according to the relationships derived by the analysis. In this way
termination is ensured whilst allowing a flexible and generous amount of unfolding.
Section 8.2 shows how the transformation of Chapter 7 can be used directly to provide
the basis of a generating extension which allows finite unfolding of botmded goals. A
simple extension to the technique is described in Section 8.3 which also permits the
safe tmfolding of unbounded goals.

This is the first offline approach to partial deduction which is able to successfully
unfold arbitrarily partially instantiated (including unbounded) goals such as the one
encotmtered in Example 8.1 (Section 8.3). In fact, it is demonstrated that the method
can, surprisingly yield even better specialisation than (pure) online techniques. In
particular, some problematic issues in tmfolding, notably tmfolding tmder a corou-
tining computation rule and the back propogation of instantiations Martens & De
Schreye 1996, can be easily handled within the approach (Section 8.5). Furthermore,

99

it is the first offline approach which passes the KMP test (i.e., obtaining an efficient
Knuth-Morris-Pratt pattern matcher by specialising a naive one), as demonstrated in
Section 8.7.

An analysis which measures the depths of derivations may be termed a sounding
analysis. Section 8.4 describes how such an analysis can be based on existing static
termination analyses which compute level mappings and describes how the necessary
depths may be obtained from these level mappings. Unfolding based on a sounding
analysis then, is the basis of sonic partial deduction.

8.2 Unfolding Bounded Atoms

A fundamental problem in adapting techniques from the termination literature for use
in controlling partial deduction is that the various analyses that have been proposed
(see De Schreye & Decorte 1994 for a survey) are designed to prove full termination
for a given goal and program, in other words guaranteeing finiteness of the complete
SLD-tree constructed for the goal. For example, consider the goal ^ Flatten([x, y, z], w)
and the program Flatten consisting of the clauses appi, app2,flati and/Zafg-

flat^ Flatten (Q, []).
flat^ Flatten([e|x]. r) ^

Append(e, y, r) A
Flatten(x, y).

app^ Append([], x, x).
appg App8nd([u|x], y, [u|z]) ^

Append(x, y, z).

A typical static termination analysis would (correctly) fail to deduce termination
for this program and goal. Most analyses can infer that a goal of the form e- Flatten(x,
y) will terminate if x is a rigid list of rigid lists, or if x is a rigid list and y is a rigid
list. In the context of partial deduction however, such a condition for termination will
usually be too strong. The problem is that the information relating to the goal, by
the very nature of partial deduction, is often incomplete. For example, the goal <-
Flatten([x, y, z], w), will not terminate but the program can be partially evaluated to
produce the following specialised definition of Flatten/2.

Flatten([X, y, z], r) ^
Append(x, r1, r) A
Append(y, r2, r1) A
Append(z, [], r2).

The scheme described in Chapter 7 transforms the program Flatten into the fol-
lowing.

flat* Flatten (x, y) f -
SetDepth_F(x, d) A
Flatten(x, y, d).

DELAY F l a t t e n d) UNTIL Ground(d).

f lat l Flatten([], [], d) ^ d > 0.

100

f la t l Flatten([e|x], r, d) d > 0 A
Append(e, y, r) A
Flatten(x, y, d - 1).

app* Append(x, y, z) ^
SetDepth-A(x, z, d) A
Append(x, y, z, d).

DELAY Append(_, d) UNTIL Ground(d).

app]; Append(Q, x, x, d) d > 0.
app* Append([u|x], y, [u|z], d) ^ d > 0 A

Append(x, y, z, d - 1).

For now, assume that the (meta-level) predicate SetDepth_F(x, d) is defined such
that it always succeeds instantiating the variable d to the length of the list x if this is
fotmd to be of determinate length and leaving d tmboimd otherwise. Note that a call
to Flatten/3 will proceed only if its third argument has been instantiated as a result of
the call to SetDepth_F(x, d). The purpose of this last argument is to ensure finiteness
of the subsequent computation. More precisely, d is an upper bound on the number
of calls to the recursive clause flat^ in any successful derivation. Thus by failing any
derivation where the number of such calls has exceeded this bound (using the test d >
0), termination is guaranteed without losing completeness. The predicate SetDepthJVS
is defined in a similar way, but instantiates d to the minimum of the lengths of the lists
X and z, delaying if both x and z are unbounded.

The result of Chapter 7 guarantees that the above program will terminate for
every goal (in some cases the program will deadlock). Moreover, given a goal of the
form ^ Flatten(x, y) where x is a rigid list of rigid lists or where x is a rigid list and y is
a rigid list, the program does not deadlock and produces all solutions to such a goal.
In other words, both termination and completeness of the program are guaranteed.

Since the program is terminating for all goals, it can be viewed as a means of
constructing a finite (possibly incomplete) SLD-tree for any goal. As mentioned above,
it is indeed capable of complete evaluation but a partial evaluation for botmded goals
may also be obtained. Quite simply the deadlocking goals of the computation are
seen to be the leaf nodes of an incomplete SLD-tree.

For example, the goal ^ Flatten([x, y, z], r) leads to deadlock with the residual goal
^ Append(x, r1, r, d1) A Append(y, r2, r1, d2) A Append(z, [], r2, d3). R e m o v i n g t he d e p t h

bounds, this residue can be used to construct a partial evaluation of the original goal
resulting in the specialised definition of Flatten/2 above. Observe that the unfolding is
achieved very efficiently through the direct execution of the transformed program. As
discussed in Chapter 7 the main limiting factor in this respect is the calculation of the
depth bounds. This will be examined in more detail in Section 8.6.

The approach, thus far, is limited in that it can only handle bounded goals. For
unbovmded goals the unfolding will deadlock immediately and it is not possible, for
example, to specialise ^ Flatten([[], [a] | z], r) in a non-trivial way. This strong limitation
will be overcome in the following sections.

101

8.2.1 Relation to Previous Approaches

The method proposed in Bruynooghe et al. 1991 (and further developed in Martens
& De Schreye 1996) ensures the construction of a finite SLD-tree through the use of a
measure function which associates with each node (goal) in the tree a weight from a
well-founded set (see also Section 8.5.1). For example, the original measure function
proposed by Bruynooghe et al. 1991 maps individual atoms to natural numbers and
then defines the weight of a goal to be the weight of its selected atom.

Finiteness is ensured by imposing the condition that the weight of any goal is
strictly less than the weight of its direct covering ancestor^. This last notion is introduced
to prevent the comparison of tmrelated goals which could precipitate the end of the
unfolding process. Clearly, one should only compare the weights of goals whose
selected atoms share the same predicate symbol. But this is not enough. Consider
the atoms Append([1], y, r, 1) and Append([2], y1, y, 1) in the tree of Figure 8.1. Any
sensible measure ftmction would assign exactly the same weight to each atom. But,
if these weights were compared, imfolding would be prematurely halted after four
steps. Hence, this comparison must be avoided and this is justified by the fact that the
atoms occur in separate "sub-derivations" of the main derivation. The direct covering
ancestor of a goal G then is, loosely speaking, the "closest" ancestor G' occuring in the
same sub-derivation where the selected atoms in G and G' share the same predicate
symbol^.

In the sonic approach, the above notions are dealt with implicitly. Figure 8.1
depicts the SLD-tree for the goal ^ Flatten([[1], [2]], r, 2) and the transformed version of
Flatten. The depth argument of each atom may be seen as a weight as described above.
Note that the weight of any atom in a sub-derivation (except the first) is implicitly de-
rived from the weight of its direct covering ancestor by the process of resolution. This
conceptual simplicity eliminates the need to explicitly trace direct covering ancestors,
improving performance of the specialisation process and removing a potential source
of programming errors.

8.3 Unfolding Unbounded Atoms

The main problem with the above transformation is that it only allows the unfolding
of botmded goals. Often, as mentioned in the introduction, to achieve good special-
isation it is necessary to tmfold unbounded atoms also. This is especially true in a
logic programming setting, where partially instantiated goals occur very naturally
even at runtime. This capability may be incorporated into the above scheme as fol-
lows. Although an atom may be unbounded, it may well have a minimum size. For
example the length of the list [1,2,3|x] must be at least three regardless of how x may be
instantiated. In fact, this minimum size is an accurate measure of the size of the part of
the term which is partially instantiated and this may be used to determine an estimate
of the number of unfolding steps necessary for this part of the term to be consumed in
the specialisation process. For example, consider the Append/3 predicate and the goal
e- Append([1,2,3|x], y, z). Given that the minimum size of the first argument is three it
may be estimated that at least three unfolding steps must be performed. Now suppose

^Note that this concept has nothing to do with the direct cover relation (Definition 7.2).
^In fact, Bruynooghe et al. 1991 states a slightly more general condition which is useful for unfolding

meta-interpreters, but the details are not important here.

102

Flatten([[1].[2]].r,2)

Append([1], y, r, 1) A Flatten([[2]], y, 1)

Append([], y, r1, 0) A Flatten([[2]], y, 1)

Flatt8n([[2]], y. 1)

Append([2], y1, y, 1) A Flatten([], y1, 0)

Append([], y1, r2, 0) A Flatten([], y1, 0)

Flatten^, y1, 0)

•

Figure 8.1; Unfolding of Flatten([[1], [2]]. r, 2)

103

that the number of unfolding steps is fixed at one plus the minimum (this will usually
give exactly the required amoimt of specialisation). The transformed Flatten program
may now be used to control the unfolding by simply calling ^ Append([1,2,3|x], y, z, 3).
The problem here, of course, is that completeness is lost, since the goal fails if x does
not become instantiated to []. To remedy this, an extra clause is introduced to capture
the leaf nodes of the SLD-tree. The Append/3 predicate would therefore be transformed
into the following.

app* Append(0, x, x, d) d > 0.
app; Append([u|x], y, [u|z], d) d > 0 A

Append(x, y, z, d - 1).
appl Append(x, y, z, d) d < 0 A

Append(x, y, z, _).

The call to Append/4 in the clause app^ immediately suspends since the depth
argument is iminstantiated. The clause is only selected when the derivation length
has exceeded the approximated length and the effect is that a leaf node (residual goal)
is generated precisely at that point. For this reason, such a clause is termed a leaf
generator in the sequel. Now for the goal Append([1,2,3|x], y, z, 3) the following
resultants are obtained.

Append([1,2,3], y, [1,2,3|y], 3)
Append([1,2,3,u|x'], y, [1,2,3,u|z'], 3) f - Append(x', y, z', _)

Observe that the partial input data has been completely consumed in the tmfold-
ing process. In fact, in this example, one more unfolding step has been performed
than is actually required to obtain an optimal specialisation, but this is due to the
fact that the goal has been unfolded non-deterministically. In some cases, this non-
deterministic tmfolding may actually be desirable, but this is an orthogonal issue to
termination (this issue will be re-examined in Section 8.7).

Furthermore, note that the SetDepth predicates must now be redefined to assign
depths to tmbotmded atoms. In the case that the depths are derived from level
mappings (see Section 8.4), which in turn are defined in terms of norms, this will most
likely involve modifying the norm definitions such that variables map to zero instead
of variables. Then, for example, |[1,2,3|x]|/,st_/g„^f^ = 3 and not 3 + x.

Finally, a predicate such as SetDepth J\(x, z, d) must be defined such that d gets
instantiated to the maximum of the minimum lengths of the lists x and z to ensure
a maximal amount of unfolding. Recall the level mapping |.|4 of Example 3.7 de-
fmed by |Append(ti,t2,t3)|4 = consider the goal (-
Append([1,2,3|x], y, z) from above. With a redefined list length norm mapping variables
to zero, it becomes feasible to apply this level mapping to non-grovmd atoms. Then
|Append([1,2,3|x], y, z)|4 = min(3,0) = 0. It is clearly inappropriate, however, to base
the value of the depth bound on this level mapping, since it does not provide a mea-
sure of the structure present in the atom. This can easily be rectified by redefining |.|4
such that |Append((i,t2,^3)|4 = max{\ti\iigt.igngth-, \t-i\iist-iength)- Note that the maximum
value returned by this mapping will always be finite.

8.4 Deriving Accurate Depth Bounds from Level Mappings

The above transformations rely on a sounding analysis to determine the depths of
derivations or tinfoldings. Such an analysis may be based on exisiting termination

104

analyses which derive level mappings. To establish the link with the termination
literature the depth argument in an atom during unfolding may simply be chosen to
be the level of the atom with respect to some level mapping used in a termination
proof. Whilst, in principle a depth bound for unfolding may be derived from any
level mapping, in practice this can lead to excessive imfolding. The following example
illustrates this.

Example 8.2 Consider again the Append program and the level mapping |.| defined
by |Append(z, y,z)\ = 3 * | x | i i s t - i eng th - The program can be proven to be recurrent wrt
|.| and thus goals of the form Append(x, y, z) where x is a rigid list are guaranteed to
terminate. If the upper bound on the number of derivation steps in a computation
is defined to be equal to the level-mapping, a gross over-approximation is obtained.
Given the goal ^ Append([1 jx], y, z), the number of derivation steps will be estimated as
three. Non-determinate unfolding wrt the clauses app^, app^ ^nd appl then produces
the following resultants (with the depth bounds removed)

Append([1], y, [1|y]) <-
Append([1,u], y. [1,u|y])
Append([1,u,v], y, [1,u,v|y]) <-
Append([1 ,u,v,w|x], y, [1 ,u,v,w|z]) ^ Append(x, y, z)

This specialisation is clearly undesirable. The problem can be fixed here by using
a determinate tmfolding rule, but this may not always be the case. A more general
solution is to consider the difference in the level mappings between the head and the
(mutually recursive) body atoms. By subtracting the difference on each recursive call
the number of unfolding steps may be accurately controlled.

Example 8.3 Consider clause app^ of the Append program and the level mapping |.|
defined in Example 8.2. Since

|Append([u|x], y, [u|z])| - |App8nd(x, y, z)| = (3 x |x|]jst.iength -t- 3) - (3 x |x|]ist.iength) = 3

the clause app^ may be transformed into the clause appl below. Then an Append/3 atom
whose size is measured wrt |. | can be unfolded wrt app^, appl and app^ resulting in the
desired specialisation.

appl Append([u|x], y, [u|z], d) d > 0 A Append(x, y, z, d - 3).

•

It is often the case that the head and recursive body atoms in a predicate contain
distinct variables and thus the difference in their levels is an expression over these
variables. Such expressions can often be reduced to a constant using interargtiment
relationships.

Example 8.4 Consider the well known naive reverse predicate below.

revi Reverse([], []).
rev2 Reverse([x|xs], [y|ys]) ^

Delete(y, [xjxs], zs) A
Reverse(zs, ys).

105

Given the interargument relationship Delete(x, i/, z) : \y\iisi-iength = \z\iist-iength + 1
together with the level mapping |.| defined by |Reverse(rE, y)| = \x\iist-ie„gth + 1 and
|Delete(r, 1/, z)| = \y\iist-iength the difference in the levels between the head and the
recursive call of the clause reug is (1 + |xs|;igWgMgfh + 1) - (|zs|%(.kng(h + 1) = (1 +
l^Miist-iength + 1) " {\^^\ust-iength + 1) = 1- Note that this m a y b e automatically derived
using constraint technology. •

One problem remains in this example. For any goal ^ Reverse(x, y), the level
mapping |. | over-approximates the number of unfolding steps by 1 each time which
may lead to sub-optimal specialisation. Careful examination of the termination litera-
ture reveals that level mappings involving additive constants such as |. | are needed in
termination proofs where the recursive structure of the program is not fully exploited,
such as in a proof of recurrency (De Schreye & Decorte 1994). For example, to prove
that the Reverse predicate is recurrent wrt |. | the inequality

|Reverse([x|xs], [y|ys])| > |Delete(y, [x|xs], zs)|

must hold and hence |.| must be defined by |Reverse(2;, y)| = \x\iist-iength + 1 rather
than |Reverse(x,y)| = \x\iist-iength- The classes of bounded recurrent and semi delay
recurrent programs, introduced in Chapters 6 and 7 respectively, allow termination
proofs to be based on the recursive structure of a program. Additive constants are
seldom needed in such proofs. Indeed, for directly recursive programs, they are
completely unnecessary and for mutually recursive programs they can be minimised.
The Reverse predicate, for example, is semi delay recurrent wrt the level mapping
defined as in Example 8.4 but with |Reverse(z, y) | = \x\iist-iength- It is straightforward to
adapt existing termination analyses to derive these simpler level mappings which can
then be used to give an accurate measure of the number of imfolding steps required
for a given goal.

It may happen that the difference in levels between head and body atoms is not
a constant, but is boimded by a constant n. In this case, it is safe to take the bound n
as the difference as this will alow a large (though not necessarily maximal) amount of
unfolding.

Finally the most problematic case arises when the difference is (bounded by) a
variable expression which cannot be reduced to a constant. Here it may be possible
to track the sizes of the relevant variables. This involves only a few extra arithmetic
operations and not the calculation of a large number of term sizes and so incurs only
a small performance penalty.

Example 8.5 Consider the Match program

mi Match([], _).
7712 Match([a|ps], [ajts], p, t) ^

Match(ps, ts, p, t).
ms Match([a|v], [bjw], p, [x|t]) ^

a ^ b A

Match(p, t, p, t).

and the level mapping |.| defined by |Match(w,a;,3/,z)| =
The difference between the head of the clause ma and its recursive body atom is not a
constant:

106

|Match([a|v], [b|w], p, [x|t])| - |Match(p, t, p, t)| = {1 + w + 1 + 2t + - {t + t^)

= {1 + w) + (1 + t)

where w = \w\iist-iength and t = \t\iist-iength- Tight control of the unfolding process
can still be achieved however by transforming Match into the following, where extra
arguments are added to track the sizes of the second and fourth arguments which in
turn can be used to calculate a more accurate depth bound for each recursive call.

m l Match([], (sizes, size4, d)) f -
d > 0 A sizeg > 0 A size4 > 0.

Match([a|ps], [ajts], p. t, (size2, size4, d)) <-
d > 0 A size2 > 0 A size4 > 0 A
Match(ps, ts, p, t, (size2 - 1, size4, d - 1)).

Match([a|_], [b|_], p, [_|t], (siz82,size4,d))
d > 0 A sizes > 0 A size4 > 0 A
a ^ b A

IVIatch(p, t, p, t, (size4 - 1, size4 - 1, d - sizeg - size4)).

In this program, the argument d keeps track of the level of each IViatch atom.
The level of the recursive call of clause ml is calculated from the level of the head
by subtracting the sizes of the second and fourth head arguments. The necessary
expression (i.e. d - sizes - size)̂ can be obtained automatically, using, for example,
constraint technology, from the difference in the levels of the head and the recursive
call as calculated above (note that the size of the second argument in the head is 1 + w
and the size of the fourth argument is 1 + t). •

It is not clear when such a transformation would be generally applicable. It is
important to note, however, that finiteness can always be guaranteed; the problems
raised above relate only to the quality of the specialisation and, as mentioned earlier,
this is also dependent to some extent on the control of determinacy. Although this has
been touched upon in Gallagher 1993 this is still a relatively unexplored area in the
context of partial deduction. Many of the problems above may disappear altogether
with the right balance of bounded and determinate unfolding. Finally, note that the
problem of deriving a tight upper bound on the number of derivation steps in a
computation is also useful in the context of cost analysis (Debray & Lin 1991).

8.5 Offline versus Online Unfolding

This section compares the power of sonic partial deduction with existing online tech-
niques. The most interesting conclusion of this study is that the choice of an offline
approach does not necessarily entail the sacrifice of tmfolding potential. On the con-
trary, in some cases the imfoldtng behaviour is better with the proposed method than
with the most recent online ones. This is demonstrated through some simple examples
which illustrate known problematic imfoldtng issues (Martens & De Schreye 1996).

107

8.5.1 Measure Functions and Level Mappings

Online unfolding methods, e.g. Martens & De Schreye 1996, Bruynooghe et al. 1991,
Martens et al. 1994 use measure functions to assign weights to atoms and goals. Unfold-
ing is controlled by ensuring that weights are strictly decreasing at each unfolding
step. In the seminal online work Bruynooghe et al. 1991, weights were assigned to
individual atoms using set based measure functions of the form

|p(^l) • • •) ^n) \p,S — \tai I • • • + Om I

where S = {ai,... ,am} Q {l,...,n} and |t| counts the number of (non 0-ary) functors
in the term t. The subset S of argument positions for each predicate is determined
dynamically during the unfolding process. Clearly, such a function corresponds to a
restricted form of level mapping and in principle, the level mapping could be derived
a priori using static analysis. Much depends of course on the power of the analysis
and also to what extent the decreasing weights of goals is dependent on the program
input rather than the structure of the program itself. In many cases, however, current
termination analysis techniques are able to derive exactly the same level mappings
that are obtained through online rmfolding.

8.5.2 Lexicographical Priorities

Set based measure ftmctions can lead to overly restrictive tmfolding as the following
example from Martens & De Schreye 1996 illustrates.

Example 8.6 Consider the ProduceConsume program

pci ProdCons([x|xs], Q)
ProdCons(xs, [x]).

pc2 ProdCons(x, [yjys]) ^
ProdCons(x, ys).

and the goal ^ ProdCons([1,2jxs], []). Figure 8.2 depicts a finite incomplete SLD-tree
illustrating the desired unfolding for this goal (the additional third argument in each
atom should be ignored at this point). As Martens & De Schreye 1996 points out, there
is no subset S for which the set based measure function |. | prodCons s ^ decreasing for
each successive atom in this tree (excluding the last node).

In order to obtain the desired unfolding. Martens and De Schreye refine their
measure functions by introducing the notion of a partition based measure fimction.
Such a function maps an atom to an ordered n-tuple where each element in the tuple
is obtained by applying a set based measure fimction to the atom. By using the lexico-
graphical ordering to compare n-tuples, this refinement effectively allows priorities to
be assigned amongst the arguments of an atom. Figure 8.2 shows the 2-tuples assigned
to the atoms in the SLD-tree by the function MprodCons,({i},{2}) defined by

IProdCons(3;, ^)|ProdCons,({l},{2}) — (l^|proclCons,{l}i lz/|prodCons,{2})

The problem is easily handled within the framework proposed here by the choice of
a level mapping which ensures termination. The above program is recurrent wrt the
level mapping |.| defined by |ProdCons(3:,2/)| = 2 * + Iz/lfisf-kngfA- Then

|ProdCons([x|xs], [])| - |ProdCons(xs, [x])| — 1

108

ProdCons([1,2|xs], 0,4) (2,0)

ProdCons([2jxs], [1], 3) (1,1)

- ProdCons([2)xs], [], 2) (1,0)

- ProdCons(xs, [2], 1) (0,1)

^ ProdCons(xs, [], 0) (0,0)

<-ProdCons(xs', [x'],-1) (0,1)

Figure 8.2; Unfolding of ProdCons([1,2|xs], [], 4)

|ProdCons(x, [y|ys])| - |ProdCons(x, ys)| = 1

and the clauses and pc^ can be transformed into

pel ProdCons([x|xs], [], d) ^
ProdCons(xs, [x], d - 1).

pc* ProdCons(x, [y|ys], d) ^
ProdCons(x, ys, d - 1).

N o w |ProdCons([1,2|xs], [])| = 4 a n d the goal <— ProdCons([1,2|xs], [], 4) can be
unfolded wit the clauses pc*, pc^ and a leaf generator to produce the SLD-tree depicted
in Figure 8.2. Notice how the priority assigned to the first argument of ProdCons/2 by
the lexicographical ordering is captured by the co-efficient 2 in the level mapping |. |.
In fact, exactly the same result may be obtained using any other level mapping |.|'
defined by |ProdCons(3;,^)|' = a * + 6 * where a > 6 > 0 are
arbitrary integers. Of course, the generating extension and goal are different in each
case. Also note that such a level mapping can be automatically derived using current
termination analysis technology, e.g. Decorte & De Schreye 1997.

8.5.3 Well-quasi Orders and Homeomorphic Embedding

It turns out that, for the online approach, well-foimded orders as used in Sections 8.5.1
and 8.5.2 are sometimes too rigid or (conceptually) too complex. Recently, well-quasi
orders have therefore gained popularity to ensure online termination of program ma-
nipulation techniques (Bol 1991, Sahlin 1993, Serensen & Gliick 1995, Gltick et al. 1996,
Jorgensen et al. 1996, Leuschel & Martens 1996, Vanhoof & Martens 1997, Leuschel
gfaZ. 1998).

The additional power of well-quasi orders stems from the fact that incomparable
elements are allowed within sequences of goals during unfolding (while approaches
based upon well-founded orders have to impose strict decreases). For example, con-
sider a sequence of goals GQ, . . . ,Gn obtained during tmfolding. Unfolding based on

109

a well founded order would require Go > • • • > Thus, unfolding will be halted at
this point if the next goal in the sequence Gn+i is such that < Gn+i- On the other
hand, when using a well-quasi order, it is permissible for elements in the sequence,
such as Gn and to be incomparable. The goal G„+i will be the final goal in the
sequence only if for some i < n + 1, Gi < Gn+i- The following definition formalises
this idea.

Definition 8.1 (well-quasi order) An ordered set 5'(<) is called well-quasi ordered iff
for any infinite sequence ei, eg,... of elements of S, there exist elements e, and Cj with
i < j such that Cj < ej. •

A simple example of a well-quasi order is the homeomorphic embedding relation <
defined below. The intuition behind this relation is that s < t if s can be obtained from t
by "striking out" parts of t. For example, P(A) can be obtained from P(F(A)) by striking
out the function symbol F and thus P(A) < P(F(A)). Note that this is a generalisation of
the subterm relation.

Definition 8.2 (homeomorphic embedding) The homeomorphic embedding relation
< on expressions is defined inductively as follows

1. X <y for all variables x, y

2. g < / (t i , . . . , if 5 < for some z

3. / (s i , . . . ,Sn) ^ / ((i , . . . if for G [1,7%], g, <

The power of well-quasi orders can be seen in the homeomorphic embedding
relation which will, for example, allow an unfolding step from the goal P([], [A]) to
the goal P([A], []) and vice versa, since the goal atoms are incomparable. No well
fotmded order will allow both of these unfoldings. On the formal side, Leuschel 1998
shows that the homeomorphic embedding relation is strictly more powerful than any
online approach using monotonic well-founded orders or simplification orders. These terms
are defined below.

Definition 8.3 (monotonic well-founded order) A well-founded order < on expres-
sions is monotonic iff the following hold:

1. X y for all variables x, y;

2. s f{ti,.. • ,tn) whenever / is a function symbol and for some i;

3. / (s i , . . . , gn) /(t i , - - , whenever for all % E [1, a]. O

Definition 8.4 (simplification ordering) A simplification ordering is a well-founded or-
der < on expressions which satisfies the following;

1. f{ti,..., s , . . . , < f{ti,... ,t,... ,tn) if s < t (replacement property);

2. t < f{ti,... ,t,... ,tn) (subterm property);

3. s9 < t(l) if s < t for all variable renaming substitutions 9 and 4> (invariance under
variable replacement). •

110

The results of Leuschel 1998 covers the approaches of Bruynooghe et al. 1992,
Martens et al. 1994 and Martens & De Schreye 1996 as described in Sections 8.5.1 and
8.5.2. Furthermore, there is no well-founded order, monotonic or not, which is strictly
more powerful than <. In practice this means that there will be cases where < is more
powerful than the sonic approach based upon well-founded orders.

Nonetheless, well-quasi orders are more costly to implement (at every unfolding
step, a comparison is required with every ancestor while well-fotmded orders only
require a comparison with the covering ancestor due to transitivity). Moreover, the
well-founded orders used by the sonic approach are not restricted to be monotonic and
do not have to be simplification orders. They are thus incomparable in power to <. For
example, the list length norm | .{usi-ungth is neither monotonic nor a simplification order,
and indeed, given = [1,2,3] and = [[1,2,3],4] then = 3 > Itslzist-kmgfA = 2
although ti < t2 (because ti can be obtained from tg by striking out parts of the term).
In other words \-\iist-iength will admit the sequence ti,t2 while < does not. As will be
shown below, there are other cases where the sonic approach is more powerful than
the simple approach of using homeomorphic embedding on covering ancestors.

8.5.4 Coroutining

The increased power offered by partition based measure functions can still be insuffi-
cient when unfolding tmder a coroutining computation rule. The following example,
again from Martens & De Schreye 1996, illustrates the problem.

Example 8.7 Consider the program Co-ProduceConsume below

cpci ProduceConsume(x, y) ^
Procluce(x, y) A
Consume(y).

cpc2 Produce([], []).
cpc3 Produce([x|xs], [x|ys]) ^

Produce(xs, ys).

cpc4 Consume([]).
cpc5 Consume([x|xs]) ^

Consume(xs).

and the goal e- ProduceConsume([1,2|x], y). Figure 8.3 illustrates the desired unfolding
for this goal and program (again the additional third argument in each atom should
be momentarily ignored). Observe that any (sensible) measure function which only
considers the selected atom when assigning a weight to a goal will map the two
goals containing the selected atoms Consume([1 |y']) and Consume([2|y"]) to the same
weight and consequently unfolding would stop on reaching the second of these goals.
Observe that an imfolding rule based upon < would allow the Consume([2|y"]) to be
unfolded (Consume([1 |y"]) ^ Consume([2|y"]) as 1 and 2 are tmcomparable). However,
if the initial goal is slightly changed to ProduceConsume([1,1 |x], y) then the same prob-
lem also arises for < (now Consume([1 |y"]) < Consume([1 |y"]) and further unfolding is
prevented). •

The solution proposed in Martens & De Schreye 1996 is to further refine partition
based measure fimctions to take into accotmt other atoms in a goal besides the selected

111

ProduceConsume([1,2|x], y, 2)

Produce([1,2|x], y, 2) A Consume(y, 2) (2,0)

Produce([2|x], y', 1 A Consume([1 |y'], 2) (1,1)

Produce([2|x], y', 1) A Consume(y', 1) (1,0)

0) A Consume([2|y"], 1) (0,1) Produce(x, y

Produce(x

(_L,0) ^ Consume([], 0)

^ A Consume(y", 0) (0,0)

Produce(x", z, -1) A Consume([x'|z], 0) (0,1)

I
• Produce(x", z, -1) A Consume(z, -1)

Figure 8.3: Unfold ing of ^ ProduceConsume([1,2jx], y, 2)

one. The details are somewhat complicated and consequently a full description is not
given here. Figure 8.3 shows one possible assignment of weights to the goals in the
SLD-tree under the scheme of Martens & De Schreye 1996. The weight associated
to each goal is a 2-tuple where the first argument of the tuple is the size of the first
argument of the Produce atom in the goal and the second argument is the size of the
(first) argument of the Consume atom in the goal. The symbol _L is used to register
the disappearance of the Produce atom, and in addition the ordering on the natural
numbers is extended by defining _L< 0.

An offline approach may exploit information from a static analysis to accurately
control the unfolding in this example. In particular, interargument relationships allow
depth information to be shared between the coroutining atoms in the computation.
The interargument relationships

ProduceConsume(x, y) : x ' = y' a n d Produce(x, y) : x' = y'

may be derived for the program where x' = \x\iist-iength and y' = \y\iist-iength- Let |. | be the
level mapping defined by |Produce(a;,i/)| = and |Consume(2/)| =
Then for any successful refutation of the goal ^ Produce(x, y) A Consume(y) the equation
|Produce(x, y)| = \x\iist-kngth = \v\iist-iength = |Consume(y)| must hold. Hence the program
can be transformed into the following (leaf generators for Produce/3 and Consume/2
omitted).

cpc* ProduceConsume(x, y) ^
SetDepth_PC(x, y, d) A ProduceConsume(x, y, d).

112

cpcj ProduceConsume(x, y, d) ^
Produce(x, y, d) A Consume(y, d).

prodl Pi'oduce([], [], d) ^ d > 0.
prod* Produce([x|xs], [x|ys], d) d > 0 A Produce(xs, ys, d - 1) .

consl Consume([], d) d > 0.
coMgg Consume([x|xs], d - 1) <— d > 0 A Consume(xs, d).

In this program, the predicate SetDepth_PC(x, y, d) is effectively defined by the
equation d = mflx(|Produce(x, y)|, |Consume(y)|). By choosing the maximum of the
levels of the two atoms (which is always finite - see Section 8.3) the greatest potential
for unfolding is obtained. Thus the initial goal ^ ProduceConsume([1,2|x], y) gives
mflx(|Produce([1,2jx], y)|, |Consume(y)|) = max{2,Q) = 2 and consequently the goal
^ Produce([1,2|x], y, 2) A Consume(y, 2) is obtained. Unfolding this goal wrt the above
program leads to the construction of the whole SLD-tree depicted in Figure 8.3. Using
the context considering partition based measure functions of Martens & De Schreye
1996 the final unfolding step on the right hand branch of the tree (indicated by the
dashed arrow) is not permitted since the weight of this goal is the same as the weight
of its direct covering ancestor ^ Produce(x, y", 0) A Consume([2|y"], 1).

The key issue here is not that a single extra unfolding step is obtained in this
example but the fact that this demonstrates that the unfolding capability of an offline
technique may surpass that of an online one and the reason for this. The "sharing"
of depth information between atoms is possible through the use of interargument
relationships which describe the success set of the program. Information relating to
the success set is not available to a (pure) online technique. Thus in sonic partial
deduction a strictly broader context is considered than in the online case when making
unfolding decisions. Finally it is worth remarking that the derivation of interargument
relationships forms a core part of many of the termination analyses found in the
literature.

8.5.5 Back Propagation

A generating extension for the naive reverse program using Append is shown below.

rev* Rev(x, y) ^
SetDepth_R(x, y, d) A
Rev(x, y, d).

Rev(|], [], d) <-
d > 0 .

rev^ Rev([x|xs], y, d) ^
d > 0 A

Rev(xs, z, d - 1) A
App(z, [x], y, d - 1),

rev^ Rev(x, y, d) ^
d < 0 A
Rev(x, y, _).

Unfolding the goal Rev([1,2|x], y) wrt this program results in an SLD-tree with
associated resultants r i , . . . ,r4 below. To give some idea of how these are obtained,
the SLD-derivation associated to rg is roughly depicted in Figure 8.4.

113

Rev([1,2|xs], y, 2)

Rev([2|xs], z, 1 A App(z,

^ Rev(xs, z', 0) A App(z', [2], z, 0) A App(z, [1], y, 1)

rgDg { xs/[x|xs']}

Rev(xs', z", -1) A App(z", [x], z', -1) A App(z', [2], z, 0) A App(z, [1], y, 1)

W i { z'/D, z/[2] }

^ Rev(xs', z", -1) A App(z", [x], [], -1) A App([2], [1], y, 1)

| W 2 / W i {y/[2.i]}

^ Rev(xs', z", -1) A App(z", [x], [], -1)

Figure 8.4: Unfolding of e- Rev([1,2|xs], y, 2)

n Rev([1,2|x], y)<-x = []Ay = [2,1].
RA Rev([1,2|x], y) <- x = [a|b] A y = [2,1] A Rev(b,c) A App(c,[a],[]).
RG Rev([1,2|x], y) ^ X = [a|b] A y = [c,1] A App(d,[2],[]) A Rev(b,e) A

App(e,[a],[c|d]).
7-4 Rev([1,2|x], y) ^ X = [a|b] A y = [c,d|e] A App(f,[1],8) A App(g,[2],[d|f]) A

Rev(b,h) A App(h,[a],[c|g]).

Observe that rg and rg both contain atoms of the form App(x, [y], []) in their right
hand sides. These atoms clearly lead to failure but this is not identified during the tm-
folding process. The decision to leave them as residual atoms takes place before they
become instantiated enough to be unfolded. More precisely, when one of these atoms
is first encoimtered it is of the form App(x, [y], z) and should not be unfolded further
since there is danger of non-termination. Later in the computation z becomes bound
to [] but the atom App(x, [y], []) is no longer a candidate for selection. This problem
also arises in the online approach when using the measure functions described in the
previous sections to control unfolding It is termed the back propagation problem in
Martens & De Schreye 1996 since it is caused by a reverse flow of data.

To solve the problem Martens & De Schreye 1996 suggests yet another, even
more complicated measure fvmction refinement. The details of this refinement are
not presented and it is not clear to what extent it satisfactorily deals with the problem.
The solution in the present context is much simpler and consists of always vmfolding
any atoms that are bounded. Such atoms will lead to a (possibly empty) resultant
whose atoms have predicate symbols lower down in the predicate dependency graph
than the predicate symbol of the initial atom. It might also be possible to imfold these
atoms further or as a result other atoms in the original resultant may have become

®The unfolding and the resultants obtained are slightly different, but the resultants still contain atoms
of the form App{x, [y], []) in their right-hand sides.

114

bounded and can also be selected for unfolding. Note that this process is guaranteed
to terminate.

Here again a greater unfolding potential is realised through the availability of
global information, i.e. the knowledge that a bounded atom can be safely tmfolded
a finite number of steps. A pure online technique does not have this "look ahead"
capability; it can only compare the present goal with the ones it has encountered in
the past with no clue as to what may occur in the future computation.

8.5.6 Other related work

8.5.6.1 Loop checking

Early work on termination in logic programming focused on detecting loops at rim-
time (Brough & Walker 1984, Covington 1985a, Covington 1985b, Nute 1985, Poole &
Goebel 1985, van Gelder 1987). Simple adaptations of these techniques were proposed
(Apt et al. 1989, Benkerimi & Lloyd 1990) for controlling unfolding during partial
deduction. Benkerimi & Lloyd 1990, for example, give four criteria for controling
the unfolding. At each unfolding step the selected literal is compared with the one
previously selected on the same branch of the SLDNF-tree and rmfolding is halted
if the descendent literal is a variant of, an instance of, more general than or unifies
with the ancestor literal. As illustrated in Bruynooghe et al. 1991 these criteria are
not comprehensive enough to prevent infinite unfolding. Bol 1993 describes some so
called complete loop checks which ensure termination of imfolding. It is shown in Bol
1991, however, that it is not enough to look only at the selected literal; the context of
the goal is needed, which makes the check more expensive.

As it is, the majority of loop checks rely on comparing the current goal with every
preceding goal in the derivation, resulting in a number of checks which is quadratic
in the length of the derivation. Some notable exceptions include the Tortoise and Hare
technique of van Gelder 1987, which is not actually complete, and those proposed
by Bol 1991. Of these, it is suggested that the "triangular" loop check is perhaps, in
general, the most efficient though this requires something on the order of 5n checks
for a derivation of length n. Since each check can involve the comparison of goals,
atom for atom, term for term, the cost of these loop checking techniques is still quite
high.

Another major disadvantage of the linear time loop checks proposed in Bol 1991
is their random nature. Since they do not compare all goals, and are not tailored
specifically to suit a given program and goal, when a loop occurs, it is largely a matter
of luck as to when it is detected. In terms of partial deduction, this can lead to an
tmneccessary explosion of the search space during unfolding.

Finally, it may be remarked that these techniques are all designed to detect loops
at rim-time which in the partial deduction context translates as an online approach to
unfolding. They cannot be used, for example, to ensure in advance, that a given goal,
or class of goals can be completely unfolded.

8.5.6.2 Finiteness Analysis

Offline partial evaluation has been studied extensively in functional programming
though for some time consideration of termination was largely neglected. The partial
evaluation stage is preceded by a binding time analysis which annotates each argu-

115

ment in the program as either static or dynamic. Functions with static arguments can
be evaluated whilst residual code is produced for those with dynamic ones. The ter-
mination issue is addressed hy generalising variables, that is by changing their binding
time annotation from static to dynamic (Hoist 1991, Anderson & Hoist 1996). This
occurs whenever execution of a piece of static code may lead to non-termination.
Whilst this works well for functional programs, the static/dynamic divisions do not
translate well for logic programs (see Section 8.1) and thus this approach to ensuring
termination is not generally suitable for logic programming.

8.5.7 Offline vs. Online Conclusion

This section has compared sonic partial deduction with the state of the art online
unfolding techniques as described in Martens & De Schreye 1996. It has been shown
that the approach is able to handle a variety of examples which are known to present
difficulties in unfolding. The method is able to handle these examples in a uniform
manner, whereas the work of Martens & De Schreye 1996 requires the use of increas-
ingly complex measure functions to handle them. This increasing complexity intro-
duces with it increasing overhead as well as the growing risk of programmer error in
the actual coding. This is an important issue when considering the construction of a
tool which one would like to prove terminating.

Not only is the approach much simpler, it also offers potential for unfolding
unfulfilled by online methods. The reason why offline techniques can permit more
unfolding than online ones is the fact that they consider the global context. A global
analysis can infer information which may not be available locally when deciding on a
particular atom to unfold. A number of fairly complex examples have been examined
in the previous sections. The following is a simpler example:

UpToN(n, n, [n]).
UpToN(x, n, [xjxs]) ^

X < n A
UpToN(x + 1,n, xs).

Unfolding the goal UpToN(1, 3, x) leads to two other goals: UpToN(2, 3, x)
and UpToN(3, 3, x). The only difference between the atoms in these goals is in the
first argument which is increasing in value. To determine that the sequence of goals is
finite (under a left-to-right computation rule) requires the global information that the
first argument is bounded by the second argument.

Of course, an online technique may still be able to make refined unfolding deci-
sions based on the availability of concrete data, not available to an offline one. Clearly,
then, a more powerful technique may be obtained by a combination of these approach-
es.

8.6 Implementation

In the sonic approach the main limiting factor in the efficiency of the specialisation
process is the calculation of the required depth bounds. The "greater than zero" tests
on the depth bounds and the decrementation of them in the subsequent computation
incur minimal overhead. Thus, by paying attention to the calculation of these botmds
the generating extensions can be tuned for maximum efficiency.

116

This hand-crafting of generating extensions, is an important step in the develop-
ment of fast specialisers. Experience with the self-application approach shows that fast
compilers (or generating extensions) do not come about by accident. Some care needs
to be taken to ensure that both the partial evaluator and the interpreter are amenable
to specialisation. This amenability has been particularly difficult to achieve in the case
of the partial evaluator which must be self-applied.

With regard to the Futamura projections, great emphasis has been placed on how
to obtain an efficient compiled version of a program, but not how to obtain efficient
compilers or compiler generators. The hope was that by focusing on the result of
compilation, i.e. the quality of specialised code, such compilers and cogens would
be obtained "for free" through self-application. Given that this approach has not
delivered the expected goods, however, it is now necessary to consider how to write
efficient generating extensions and cogens. Arguably, this is the right approach even if
one were aiming towards self-application anyway; if it were not known how to write
an efficient generating extension by hand, it would be extremely fortuitous to generate
one automatically.

In this section, concrete issues relating to implementation are examined based on
the findings of a simple empirical study. The aim of the study was to investigate ways
in which to code a generating extension, based on the sonic approach, in Prolog. The
main issues discussed are: atom selection; efficient calculation of the depth bounds;
avoiding speculative output bindings and achieving argument indexing; and how to
incorporate the global control. A prototype has been built based on the results of this
section.

8.6.1 Atom selection

To understand the problem of atom selection consider the goal G = Append(x, y, z)
A Append([1,2,3], w, x) for the Append program. Suppose the first atom in this goal is
selected for unfolding. An estimate of zero for the size of this atom would be obtained
by taking the maximum of the minimum estimates for the list lengths of x and z.
Nondeterminate unfolding with a depth of zero then leads to the following two goals;

^ Append(x', y, z') A Append([1,2,3], w, [u|x'])
^Append([1,2,3], w, 0)

The second goal leads to failure. In the first goal, the second atom can be selected,
and tmfolding with a depth of three results in the following goal:

^ Append([2,3|w], y, z')

It appears that two more tmfolding steps whould be possible at this point (con-
suming the terms 2 and 3), but observe that the atom in this goal is simply a more
instantiated version of an atom which has already been tmfolded. As such it should
not be reselected for tmfolding, since doing so repeatedly can endanger termination.
If, however, the second atom in the original goal G had been selected first followed by
the first atom, then these tmfolding steps could have been performed.

The problem here is similar to the coroutining and back propagation problems
previously discussed. Clearly, there is a dependency between the size of the argu-
ments X and [1,2,3] in the goal G, which could be exploited to obtain the desired

117

unfolding even when selecting the atom Append(x, y, z) first. If dependencies such as
this are not identified during analysis, however, then the order of selection of atoms
in a goal may significantly affect the result of the unfolding process.

Controlling the selection of atoms is non-trivial, however, and can greatly increase
the time spent unfolding. In the prototype, the simplest option was adopted: un-
folding atoms tmder the normal, left-to-right Prolog computation rule, calculating an
atom's depth when it is first encoutered without regard to whether or not a better
estimate might be obtained by delaying the atom. The results of Section 8.7 suggest
that this approach works well in practice and it is imlikely that a more sophisticated
approach is required.

8.6.2 Depth bound calculations

Two means of calculating depth bounds are required: one for (possibly) unbounded
atoms and one for bounded atoms. The first of these is the simplest. All that is
required is a predicate for each norm used and one for each level mapping. In the
calculation of the norms, variables should always map to zero to obtain a minimum
estimate of the size of a term. The level mappings may be defined as a "disjunction"
representing various alternative modes for which a given predicate is terminating. All
that is required is the maximum of the possible levels for an atom as discussed in
Section 8.3.

Let |.| be a level mapping defined for all atoms A with predicate symbol p/n as
follows:

where each |.|i is a level mapping defined as follows:

\ p { t i , . . . , t r i) | i = / i (| 1^1111, • • • , 11 i n 11 n)

where each ||.||j is a type-linear norm and /, : N " N is a (monotonia) function.
The above scheme can be used to define a large munber of level mappings, includ-

ing all those commonly found in the termination literature. The min function in the
level mapping definition allows termination to be proven for a predicate when used
in different modes (see Example 3.7). For the level mapping to be used to estimate the
size of unboimded atoms, this min function must be changed to a max function and, in
addition, variables must be mapped to zero by the norms (see Section 8.3). Translation
into Prolog then results in the following program schema:

set_depth_p_n_u (Xj , . .., X„ , L) : -
' | | . | | l ' (X i , S X i) ,

' ^ |^ ' (Xn,SXn) ,

' fm ' (SXi , . . . / SXn , J-iui) /
max ([Li, ..., Lm] , L) •

Obviously, this general schema can be specialised for each level mapping. For
example, the following is a specialised instance of the above schema for the level
mapping |.| defined by |Append(z, {/, z)| = mm(|Append(2;, y, z)|i, |Append(a;, 2/, z)|2)
where |Append(a;,i/,z)|i = |Append(a;,i/,z)|2 =

118

set_depth_append_3_u (X, Z, L)
list-length(X,LX),
list_length(Z,LZ),
max(LX,LZ,L).

Turning to the calculation of the norms, since only a minimum estimate of the
size of a term is needed, this is a case where variables should be mapped to zero. The
definition of a type-linear norm can be translated directly into Prolog. For example,
the list length norm can be defined by the following predicate:

list_length (V, D, D) .
var(V),!.

list_length([],D,D) .
list_length([_| Y] ,D-in,D_out) : -

D_inl is D_in + 1,
list_length(Y,D_inl,D_out) .

The norm which sums the lengths of the sublists of a list can then be defined as
follows:

sum_sublist_length (V, D, D) .
var(V),i.

sum_sublist_length ([] , D, D) .
sum_sublist_length ([X|Y] ,D_in,D-Out)

list_length (X, D_in, Djnid) ,
suin.sublist_length (Y, D_mid, D_out) .

It is possible that, it may be useful to know if an atom is actually bounded, and it
is straightforward to modify these predicate definitions to determine this, with trivial
overhead. Future experimentation will determine whether or not this information can
be used to improve the tmfolding. For example, with the level mapping definition
above, if x and z were found to be rigid it might be more useful to bind L to their
minimum. In fact, in the case of the Append predicate this will not make any difference,
but it gives an idea of how such information might be useful.

Recall that, in the proposed scheme, atoms which have been unfolded are delayed
and will be awoken only if they become botmded. Where the level mapping |.| is
defined as the minimum of level mappings |.|i to |.|m as above, an atom will be
boimded wrt |.| if it is bounded wrt |.|i for some i € [1, m]. This in turn will depend
on the rigidity of the arguments which the level mapping is defined in terms of. For
example, an Append/3 atom will be boimded wrt the level mapping |.| defined earlier
if either its first argument or its third argument is rigid.

It is straightforward to define a predicate which measures the size of a term wrt
a norm, but delays tmtil the term is rigid. Because the term may become rigid incre-
mentally, i.e. various parts of the term may become instantiated over time, constraints
are a convenient mechanism to handle the calculation. For example, the following is
an implementation of a norm which measures the size of a binary tree (the expressions
in braces are constraints):

block tree-size(-, ?).

/* delay tree_size{A, B) until A is instantiated */

119

tree_size(leaf, D):-
{D = 0}.

tree_size(node(X, Z), D):-
tree_size(X, Dx),
tree-Size(Z, Dz),
{D = Dx + Dz + 1}.

Constraints are a particularly expensive mechanism to use, however, for such
time-critical calculations. The above norm can alternatively be implemented as fol-
lows:

- / ?) .

are instantiated */

block tree_size(-, ?, ?), tree_size(?,

/* delay tree_size(A, B, C) until A and

tree_size(leaf, D, D).

tree_size (node (X, Z) , D_in, D-Out):-
D_inl is D_in + 1,
tree-size(X, D-inl, D_mid),
tree_size(Z, D-inid, D_out) .

The difference between these two implementations is significant as the following
table shows. Timings are also included for implementations of the list length norm.
All timings performed on a Sparc 4 using SICStus Prolog 3 # 3, and rigid terms as
input.

Norm Term Size '{}' Time(ms) 'is' Time(ms)
list_length 10000 1550 10
list_length 100000 16920 40
tree_size 32767 6670 50
tree.size 65535 13750 100

8.6.3 Speculative output b ind ings and argument indexing

The following program is a simple (incomplete) implementation of a generating exten-
sion for the naive reverse program of Section 8.5.5. The predicate set_depth_rev_u/3
is used to estimate the level of a possibly unbounded rev/2 atom. This predicate
always succeeds and never suspends. Its counterpart set-depth_revJD/3 found in
the leaf generator clause for rev is defined similarly but will suspend if the atom is
not bounded, i.e. it will only compute a level for bounded atoms. The predicates
set-depth_append_u/3 and set_depth.appendJo/3 are defined similarly.

rev(X, Y) : -
set_depth_rev_u (X, Y, Level),
rev(X, Y, Level, unbounded).

rev{ [] , [] , D, _):-
D > = 0 .

rev{[X|Xs], Y, D, Mode):-
D >= 0,

120

D 1 i s D - 1 ,

rev{Xs, Z, Dl, Mode),
append(Z, [X], Y, Dl, Mode).

rev(X, Y, D, unbounded):-
D < 0 ,

set_depth_revJD (X, Y, Level),
freeze(Level, rev(X, Y, Level, bounded)).

append(X, Y, Z):-
set_depth_append_u (X, Z, Level),
append(X, Y, Z, Level, unbounded).

append ([] , X, X, D, _) : -
D >= 0 .

append{[X IXs] , Y, [X|Zs], D, Mode) :-
D >= 0 ,

Dl is D — 1,
append(Xs, Y, Zs, Dl, Mode).

append(X, Y, Z, D, unbounded):-
D < 0 ,

set_depth_appendJD (X, Z, Level),
freeze(Level, append(X, Y, Z, Level, bounded)).

Observe that this simple program implements the solution to the back propaga-
tion problem described in Section 8.5.5. In fact, for any goal of the form rev (x, y)
where x or y is a non-rigid list of arbitrary length, the program will prune all failing
branches.

Unfortunately, the problem of speculative output bindings rears its ugly head
once again, with the effect this time, not being non-termination, but poor performance.
Consider, for example, the computation which results from the call rev (x, Y). After
finding the first solution the following segment of the computation is reached:

rev(X,Y,0,unbounded)

{ x / [u | x s] }

0 >= 0,Dl is 0 — 1,rev(Xs,Z,Dl,unbounded), append(Z, [U] ,Y,Dl,unbounded)
I
I
i

rev(Xs,Z,-1,unbounded), append(Z, [U],Y,-1,unbounded)
I
I
i

..., freeze(L,rev(Xs,Z,L,bounded)), append(Z, [U],Y,-1,unbounded)

rev(Xs, [],0,bounded), -1 >= 0

This last goal arises because the call append (z, [u] , Y, -1, unbounded) matches
the first clause of append and speculatively binds z to []. This binding causes the
rev atom in the goal to become bounded and as a result it is selected. The call -l

121

>= 0, which will cause the whole goal to fail, is not reached until this redundant sub-
computation is completed. Furthermore, the call to - 1 >= 0 is repeatedly selected
due to backtracking over the call rev(Xs, [], 0,bounded) (observe that it matches
two clauses of reverse).

As will be seen shortly, these speculative output bindings are a source of great
inefficieny In order to avoid them, the obvious solution is to ensure that the depth
bounds are range checked before any output bindings are made. Delaying unification
a la Naish 1993, until after the range check has been made is one possibility. In
this case, the second clause of append, for example, would be transformed into the
following:

append(Al, Y, A3, D, Mode)
D >= 0,
Al =
A3 = [X|Zs],
D1 is D — 1,
append(Xs, Y, Zs, Dl, Mode).

The adequacy of this approach depends very much on the sophistication of the
available indexing mechanism. Many implementations of Prolog will not be able to
perform the deep indexing that would be required here. Hence, in order to take ad-
vantage of the performance benefits of indexing, an alternative approach is called for.
The one suggested here is to introduce an auxilliary clause which simply handles the
range checks for depth bounds. The append predicate, for example, would become:

append(X, Y, Z):-
set_depth_append_u (X, Z, Level),
append(X, Y, Z, Level, unbounded).

append_aux (X, Y, Z, D, Mode):-
(D >= 0 >

append(X, Y, Z, D, Mode)

Mode = unbounded,
set_depth-appendJD(X, Z, Level) ,
freeze(Level, append(X, Y, Z, Level, bounded))

) .

append ([] , X, X, _) .
append([X IXs], Y, [XjZs], D, Mode) :-

Dl is D - 1,
append_aux (Xs, Y, Zs, Dl, Mode) .

A comparison of these three versions reveals the potential impact that speculative
output bindings and argument indexing can have on the efficiency of the generating
extension. The programs were all executed with a goal of the form rev (x, Y) where
X was an open list of elements (i.e. the tail of the list was a variable). Rimning on
interpreted code under SICStus Prolog 2.1 #9 on a Sparc 4, the results, for the 1, 2, 5,
10, 20, 200 and 500 element list respectively, were as follows: Original version (with

122

speculative output bindings) - 4ms, 7ms, 17ms, 45ms, 143ms, 10792ms, 65527ms; de-
layed unification version - 4ms, 5ms, 11ms, 27ms, 76ms, 4813ms, 29755ms; auxilliary
clause version - 3ms, 4ms, 9ms, 22ms, 56ms, 2918ms, 17516ms.

8.6.4 Global control

When an atom is unfolded it gives rise to an SLD-tree which describes the unfolding.
The majority of approaches to global control rely on an abstract representation of the
SLD-trees for atoms to control polyvariance. In order, for the local control to plug in to
the global component it must return some such representation. Trace-terms (Gallagher
& Lafave 1996) and characteristic trees (e.g. Leuschel et al. 1998) have emerged as the
main contenders for abstracting SLD-trees. Characteristic trees are hard to generate
directly in the cogen approach, since they require meta-level information regarding
which atom in a goal has been selected. Hence, trace-terms, which do not require
such information, appear to be the perfect choice in this situation. As an example,
trace-terms can be incorporated into the reverse predicate as follows:

rev([] , revl) .
rev([X|Xs], Y, D, Mode, rev2(Rev, App)):-

D1 is D - 1,
rev_aux{Xs, Z, Dl, Mode, Rev),
append.aux{Z, [X], Y, Dl, Mode, App).

Trace-terms only abstract single derivations, however, and must be combined in
some way to form trace-term trees. In order to construct the trace-term tree, each
individual trace-term must be saved to avoid its loss on backtracking for alterna-
tive solutions. This introduces, what is probably, the greatest expense of the whole
approach. In a Prolog based implementation this overhead seems difficult to avoid
and no solution is suggested here. It is an area which requires further investigation,
however, in order to improve the efficiency of the overall specialisation process.

8.7 Experiments and Benchmarks

To gauge the efficiency and power of the sonic approach, a prototype implementation
has been devised and integrated into the ECCE partial deduction system (Leuschel
1996, Leuschel 1997, Leuschel et al. 1998). The latter is responsible for the global
control and code generation and calls the sonic prototype for the local control. A
comparison has been made with ECCE tmder the default settings, i.e. with ECCE also
providing the local control using its default unfolding rule. For the global control,
both specialisers used conjimctive partial deduction (Leuschel et al. 1996, Gliick et al.
1996) and characteristic trees (Leuschel et al. 1998).

In the cogen approach, it is very covenient to build trace terms (Gallagher &
Lafave 1996) for use in the global control and this was incorporated into the sonic
prototype. As ECCE employs characteristic trees in a certain format, however, a con-
version from trace terms into characteristic trees had to be added. Such a conversion
will be tmnecessary in an improved version of ECCE which is also able to handle trace
terms.

123

All the benchmarks are taken from the DPPD library (Leuschel 1996) and were
run on a Power Macintosh G3 266 Mhz with Mac OS 8.1 using SICStus Prolog 3
#6 (Macintosh version 1.3). Tables 8.1 shows the total specialisation time for each
benchmark without post-processing. This total specialisation time includes not only
the time spent in tmfolding during specialisation but also the additional time needed
by the global control (provided by ECCE) to guide the overall specialisation process.
Table 8.2 shows only the time spent in unfolding during specialisation. In Table 8.1 the
times to produce the generating extensions for the sonic approach are not included, as
this is still done by hand. It is possible to automate this process and one purpose of
hand-coding the generating extensions was to gain some insight into how this could
be best achieved. In any case, in situations where the same program is repeatedly
respecialised, this time will become insignificant anyway. The precision of the timings,
which were performed using the s t a t i s t i c s / 2 predicate, seems to be approximate-
ly 1 /60th of a second, i.e., about 16.7 ms. Hence "0 ms" in Table 8.2 should most likely
be interpreted as "less than 16 ms". The runtimes for the residual programs appear
in Table 8.3, which, for a more comprehensive comparison, also includes the results
obtained by MIXTUS.

Benchmark sonic + ECCE ECCE
advisor 17 ms 150 ms
applast 83 ms 33 ms
doubleapp 50 ms 34 ms
map.reduce 33 ms 50 ms
map.rev 50 ms 67 ms
match.kmp 300 ms 166 ms
matchapp 66 ms 83 ms
maxlength 184 ms 200 ms
regexp.rl 34 ms 400 ms
relative 50 ms 166 ms
remove 367 ms 400 ms
remove! 1049 ms 216 ms
reverse 50 ms 50 ms
rev_acc_type 316 ms 83 ms
rotateprune 67 ms 183 ms
ssupply 34 ms 100 ms
transpose 50 ms 467 ms
upto.suml 33 ms 284 ms
upto.sum2 50 ms 83 ms

Table 8.1: Specialisation times (total w / o post-processing)

The sonic prototype implements a more agressive unfolding rule than the default
determinate unfolding rule of ECCE. This is at the expense of total transformation
time (see Table 8.1), as it often leads to increased polyvariance, but consequently the
speed of the residual code is often improved, as can be seen in Table 8.3.^ Default
ECCE settings more or less guarantee no slowdown, and this is reflected in Table 8.3,

more agressive unfolding rule, in conjunctive partial deduction, did not lead to improved speed
under compiled code of Prolog by BIM; see Leuschel 1997. So, this also depends on the quality of the
indexing generated by the compiler.

124

Benchmark sonic + ECCE ECCE
advisor 0 ms 33 ms
applast 0 ms 16 ms
doubleapp 0 ms 0 ms
map.reduce 0 ms 17 ms
map.rev 0 ms 34 ms
match.kmp 0 ms 99 ms
matchapp 0 ms 33 ms
maxlength 0 ms 67 ms
regexp.rl 0 ms 383 ms
relative 0 ms 166 ms
remove 34 ms 201 ms
remove2 33 ms 50 ms
reverse 16 ms 33 ms
rev_acc_type 0 ms 32 ms
rotateprune 0 ms 99 ms
ssupply 0 ms 67 ms
transpose 16 ms 400 ms
upto.suml 0 ms 168 ms
upto.sum2 0 ms 66 ms

Table 8.2: Specialisation times (unfolding)

whereas the general lack of determincay control in the prototype sonic unfolding rule
leads to two small slowdowns.

There is plenty of room for improvement, however, on these preliminary results.
The sonic approach is flexible enough to allow determinacy control to be incorporated
within it, and this extra layer of control could help to guarantee no slowdown. Also,
the sonic prototype has been built on the philosophy of "unfold finitely as much
as possible". This bull-in-a-china-shop approach actually pays off much better than
expected, but the results also indicate that some refinements might also lead to better
specialisation times and more efficient residual code. There is plenty of scope for
variation within the prototype, which would allow these refinements to be made. The
only potential problem is in identifying when it would be appropriate to use them.

All in all, the sonic approach provides extremely fast unfolding combined with
very good specialisation capabilities. It is surprising that the sonic approach out-
performed the (albeit conservative) default unfolding of ECCE. Also observe that the
sonic approach even improves upon the match . kmp benchmark and passes the KMP
test (even better than the online system does). The sonic approach is thus the first
offline approach to our knowledge which passes the KMP test.® If it were possible to
extend the sonic approach to the global control as well, one would hopefully obtain
an extremely efficient specialiser producing highly optimised residual code.

®One might argue that the global control is still online. Note, however, that for KMP no generalisation
and thus no global control is actually needed.

125

Benchmark Original sonic + ECCE ECCE MIXTUS
advisor 1541 ms

1
483 ms
3U9

426 ms
3.62

471 ms

applast 1563 ms
1

491 ms
318

471 ms
332

1250 ms

doubleapp 1138 ms
1

700 ms
1.63

600 ms
1.90

854 ms

map.reduce 541 ms
1

100 ms
541

117 ms
4.62

383 ms

map.rev 221 ms
1

71 ms
311

83 ms
2.66

138 ms

match.kmp 4162 ms
1

1812 ms
230

3166 ms
1.31

2521ms

matchapp 1804 ms
1

771ms
2.34

1525 ms
1A8

1375 ms

maxlength 217 ms
1

283 ms
0.77

208 ms
1.04

213 ms

regexp.rl 3067 ms
1

396 ms
7.74

604 ms
5IW

relative 9067 ms
1

17 ms
53335

1487 ms
610

17 ms

remove 3650 ms
1

4466 ms
0.82

2783 ms
131

2916 ms

remove! 5792 ms
1

4225 ms
137

3771ms
1.54

3017 ms

reverse 8534 ms
1

6317 ms
135

6900 ms
1^4

rev_acc-type 37391ms
1

26302 ms
1.42

26815 ms
139

25671 ms

rotateprune 7350 ms
1

5167 ms
1.42

5967 ms
L23

5967 ms

ssupply 1150 ms
1

79 ms
14.56

92 ms
12^0

92 ms

transpose 1567 ms
1

67 ms 67 ms 67 ms

upto.suml 6517 ms
1

4284 ms
1.52

4350 ms
1.50

4716 ms

upto.sum2 1479 ms
1

1008 ms
147

1008 ms
147

1008 ms

Table 8.3: Speed of the residual programs (in ms, for a large number of queries,
interpreted code) and Speedups

126

9 Conclusion

The staging of a program's input, or alternatively its division into static and dynamic
parts, is the ftmdamental basis of program specialisation. In specialisation of function-
al programs, this division is explicitly captured by classifying arguments as static or
dynamic. Classification of arguments in the logic programming setting is less satisfac-
tory, however, due to the ubiquity of partially instantiated data structures, particularly
during partial deduction. An alternative approach is required to the problem of en-
suring finite unfolding during partial deduction, specifically tailored to deal with the
peculiarities of logic programming.

The viewpoint adopted here has been that a theory for termination of unfolding
should arise naturally out of a theory for full termination of programs. In fact, the
former should really be a generalisation of the latter given that full evaluation is
simply a special case of partial evaluation. While this thesis has not sought to develop
a theory of termination for partial deduction as such, it has developed the existing
theory for full termination in order to provide a basis for a practical technique for
ensuring finite tmfolding.

To begin with, this has required focusing on the recursive structure of termina-
tion proofs. A first notion of "partial termination" can be obtained by considering
the strongly connected components (SCCs) of the predicate dependency graph of a
program. Loops can occur in any of the SCCs. If execution of a program leads to loops
in some SCCs but not in others, the program may be said to partially terminate, and
in terms of partial deduction, the non-looping SCCs can be unfolded.

The notions of bounded recurrency and bounded acceptability introduced in this
thesis provide a foundation for the construction of termination proofs based on the
recursive structure of programs. While facilitating proofs of full termination in gener-
al, the focus on recursion leads the way to considering termination of the individual
SCCs when only partial input is supplied. Proofs based on recurrency or acceptability
provide no support for this.

Since coroutining logic programs accurately model the unfolding process, devel-
oping a theory of termination for them is key to providing a theoretical underpinning
for finite unfolding. The class of semi delay recurrent programs captures a useful sub-
set of coroutining programs, where, as before, the emphasis is on the recursive struc-
ture to facilitate termination proofs and to allow individual SCCs to be considered.
Moreover, programs which have been proven to be bounded acceptable can easily be
transformed into semi delay recurrent versions. The advantage of doing so is that the
strict left-to-right computation rule can be relaxed, and a more flexible one adopted
without danger of non-termination. This gives the opportunity to use the transformed
program as an "unfolding machine", which simply handles the unfolding of bounded
goals, as part of a generating extension. This idea was taken a step further in the last
chapter by extending the machine to also handle unbounded goals.

The most significant contribution of this thesis then, is in establishing a link be-

127

tween the fields of partial deduction and static termination analysis. A direct conse-
quence of drawing on the static termination literature, rather than loop checking, say,
is that the result lends itself naturally to offline partial deduction. The proof of concept
is provided in the results of the previous chapter. The sonic approach represents a
significant step forward in the offline partial deduction technology for logic programs,
being the first offline approach to successfully unfold arbitrarily instantiated goals
and, as a result, the first to pass the KMP test.

A full implementation of the proposed cogen together with comprehensive exper-
imentation and benchmarking are now needed to drive the work forward. Even at this
stage, however, there are a number of issues which remain imresolved some of which
have arisen through the limited experimentation which has already been carried out.

• Without any determinacy control there is a possibility that the specialised pro-
gram may be slower than the original. Clearly, then this is an important issue
which must be addressed in the development of a practical specialises It is or-
thogonal to the termination issue, however, and as such there should not be any
problem in incorporating determinacy control within the proposed framework.

• Having seen that the same specialised programs can be produced using different
unfolding strategies (e.g. sonic vs. ECCE) raises the question of how the global
and local control really interrelate. Obtaining the right balance could significant-
ly affect the efficiency of the specialisation process.

• The techniques presented have been designed only for definite logic programs.
There are a number of non-trivial issues relating to both termination and spe-
cialisation which would need to be addressed when extending the techniques to
deal with normal logic programs.

• There is much potential for combining offline and online imfolding strategies to
obtain more efficient and more powerful specialisers. How to combine the two
and obtaining the right balance are non-trivial problems.

• This thesis has really only considered how to make the local control offline. No
work has been done on effective offline global control for logic programs, and it
remains to be seen whether or not there is much to be gained from this.

• The philosophy adopted in the design of the unfolding algorithms here has
been "finitely unfold as much as possible". Determinacy issues aside, this may
not always be desirable. Prolific unfolding may well lead to huge residual
programs with no significant improvement in performance. Only extensive
experimentation will reveal whether this philosophy is well foimded or if there
is a need to manage the code explosion/performance improvement tradeoff.

128

Bibliography

ALPUENTE, M., M. PALASCHI, P. JULIAN, & G. V i D A L 1997. "Spezialisation of
Lazy Functional Logic Programs", in Proceedings ofPEPM'97, the ACM Sigplan Sym-
posium on Partial Evaluation and Semantics-Based Program Manipidation, pp. 151-162,
Amsterdam, The Netherlands. ACM Press.

A N D E R S O N , P . H . & C.K. H O L S T 1996. "Termination analysis for offline partial
evaluation of a higher order functional language", in Cousot, R. & Schmidt, D. A.,
(eds.), fAg TTzW Syy/zposzwrn on Sfafzc AWysrs,
Lecture Notes in Computer Science 1145, pp. 67-82, Aachen, Germany. Springer-
Verlag.

APT, K . R . & M. BEZEM 1990. "Acyclic programs". In Warren & Szeredi 1990, pp.
617-633.

APT, K . R . , R . N . BOL, & J . W . K L O P 1989. "On the safe termination of Prolog
programs". In Levi & Martelli 1989, pp. 3 5 3 - 3 6 8 .

A F T , K.R. & D. PEDRESCHI 1990. "Studies in pure Prolog: Termination", in Pro-
ceedings Esprit Symposium on Computational Logic, pp. 1 5 0 - 1 7 6 , Brussels. Springer-
Verlag.

A P T , K.R. & D. PEDRESCHI 1994. "Modular termination proofs for logic and pure
Prolog programs", in Levi, G., (ed.). Proceedings of the Fourth International School for
Computer Science Researchers. Oxford University Press.

BENKERIMI, K . & J . W . LLOYD 1990. " A partial evaluation procedure for logic
programs". In Debray & Hermenegildo 1990, pp. 343-358.

BENOY, F. & A. K I N G 1996. "Inferring argument size relations with CLP(%)", In
Gallagher 1996, pp. 204-223.

BEZEM, M . 1989. "Characterizing termination of logic programs with level map-
pings", in Lusk, E. L. & Overbeek, R. A., (eds.). Proceedings of the North American
Conference on Logic Programming, pp. 6 9 - 8 0 , Cleveland, Ohio, USA. M I T Press.

BEZEM, M . 1993 . "Strong termination of logic programs". Journal of Logic Program-
ming, 15 (1 & 2): 79-97.

BIRKEDAL, L. & M. WELINDER 1994. "Hand-writing program generator genera-
tors", in Hermenegildo, M. & Penjam, J., (eds.). Proceedings of the Sixth International
SyfMposmm on Pmgrammmg Language fmpkmgMkfzoM and PrngramymMg, Lecture
Notes in Computer Science 844, pp. 1 9 8 - 2 1 4 , Madrid, Spain. Springer-Verlag.

BOL, R. N. 1991. Loop checking in logic programming. PhD thesis, CWI, Amsterdam.
CWI Tract 112.

129

BOL, R. N. 1993. "Loop checking in partial deduction". Journal of Logic Program-
ming, 16 (1 & 2): 25-46.

BOSSI, A . , N . C O C C O , & M . FABRIS 1992. "Typed norms", in Krieg-Briikner, (ed.).
Fourth European Symposium on Programming, LNCS 582, pp. 73-92, Rennes, France.
Springer-Verlag.

BOSSI, A . , N. C o c c o , & M. FABRIS 1994. "Norms on terms and their use in
proving tmiversal termination of a logic program". Theoretical Computer Science, 124:
297-328.

B R O U G H , D . & A . WALKER 1984. "Some practical properties of a Prolog inter-
preter", m q/" f/ig iMfgrnahOMaZ Cof^gnce on GmerafioM Compwfgr
Systems, Tokyo, Japan. Association for Computing Machinery.

BRUYNOOGHE, M., D . D E SCHREYE, & B. MARTENS 1991. "A general criterion
for avoiding infinite unfolding during partial deduction of logic programs". In
Saraswat & Ueda 1991, pp. 117-131.

BRUYNOOGHE, M., D. D E SCHREYE, & B. MARTENS 1992. "A General Criterion for
Avoiding Infinite Unfolding During Partial Deduction", New Generation Computing,
11 (1): 47-79.

BRUYNOOGHE, M., M. LEUSCHEL, &: K. SAGONAS 1998. "A polyvariantbinding-
time analysis for off-line partial deduction", in Hankin, C., (ed.). Proceedings of the
European Symposium on Programming (ESOP'98), Lecture Notes in Computer Science
1381, pp. 27-41. Springer-Verlag.

BURSTALL, R . M . & J. DARLINGTON 1977. " A transformation system for develop-
ing recursive programs". Journal of the ACM, 2 4 (1): 4 4 - 6 7 .

CAVEDON, L. 1989. "Continuity consistency, and completeness properties for logic
programs". In Levi & Martelli 1989, pp. 571-584.

C O D I S H , M. & C. TALBOCH 1997. " A semantic basis for termination analysis of
logic programs and its realisation using symbolic norm constraints", in Hanus, M.,
Heering, J., & Meinke, K., (eds.). Proceedings of the Sixth International Joint Conference
on Algebraic and Logic Programming, ALP'97 - HOA'97, Lecture Notes in Computer
Science 1298, pp. 31-45, Southampton, UK. Springer-Verlag.

COLMERAUER, A., H. K A N O U i , P. ROUSSEL, & R. PASERO 1973. "Un systeme
de communication homme-machine en francais". Technical report. Croupe de
recherche en Intelligence Artificielle, Universite d'Aix-Marseille.

C O V I N G T O N , M. A. 1985a. "Eliminating unwanted loops in Prolog", SIGPLAN
Notices, 20 (1).

C O V I N G T O N , M. A. 1985b. "A further note on looping in Prolog", SIGPLAN
20 (8).

D A N V Y , O . , R. C L U C K , & P. T H I E M A N N / (eds.) 1996. q/" f/zg

Dagstuhl seminar on partial evaluation. Lecture Notes in Computer Science 1110,
Schlofi Dagstuhl. Springer-Verlag.

130

D E SCHREYE, D. 1998. "Personal communication".

D E SCHREYE, D . & S. DECORTE 1994. "Termination of logic programs: The never-
ending story", Journal of Logic Programming, 19 & 20: 199-260 .

DE SCHREYE, D., K. VERSCHAETSE, &: M. BRUYNOOGHE 1992. "A framework for
analysing the termination of definite logic programs with respect to call patterns",
in FGCS'92, pp. 481-488. MIT Press.

DEBRAY, S. &: M. HERMENECILDO, (eds.) 1990. Procgetfmgs 1990 NorfA Arnen-
can Conference on Logic Programming, Austin. ALP, MIT Press.

DEBRAY, S . K . & N . - W . LIN 1991. "Automatic complexity analysis of logic pro-
grams", In Furukawa 1991, pp. 599 -613 .

DEBRAY, S . K . , N . - W . LIN, & M . HERMENEGILDO 1990. "Task granularity analy-
sis in logic programs", in Proceedings ACM SIGPLAN'90 conference on programming
language design and implementation, pp. 174-188.

DECORTE, S. & D . D E SCHREYE 1997. "Demand-driven and constraint-based auto-
matic left-termination analysis for logic programs", In Naish 1997, pp. 78-92.

DECORTE, S. & D . D E SCHREYE 1998. "Termination analysis: Some practical
properties of the norm and level mapping space", in Jaffar, J., (ed.), Proceedings of the
1998 Joint International Conference and Symposium on Logic Programming, pp. 235-249,
Manchester, England. The MIT Press.

DECORTE, S. , D . D E SCHREYE, & M. FABRIS 1993. "Automatic inference of norms:
A missing link in automatic termination analysis", in Miller, D., (ed.). Proceedings of
the 1993 International Logic Programming Symposium, pp. 420-436, Vancouver, Cana-
da. The MIT Press.

DECORTE, S. , D . DE SCHREYE, & M . FABRIS 1994. "Exploiting the power of typed
norms in automatic inference of interargument relations". Technical report, Dept.
computer science, K.U.Leuven.

DERSHOWITZ, N . 1987. "Termination of Rewriting", Journal of Symbolic Computa-
tion, 3: 69-116.

DERSHOWITZ, N . & Z . M A N N A 1979. "Proving termination with multiset order-
ings". Communications of the ACM, 22 (8): 465 -476 .

ERSHOV, A . P . 1982. "Mixed Computation: Potential applications and problems for
study". Theoretical Computer Science, 18: 4 1 - 6 7 .

FuCHS, NORBERT, (ed.) 1997. Pmceedmgs fTig 7fA iMfgrmfioMaZ WorAskop on Log-
ic Program Synthesis and Transformation (LOPSTR'97), Lecture Notes in Computer
Science 1463, Leuven, Belgium. Springer-Verlag.

FURUKAWA, KOICHI, (ed.) 1991. Proceedings of the Eighth International Conference on
Logic Programming, Paris, France. The MIT Press.

FUTAMURA, Y. 1971. "Partial evaluation of a computation process - n approach to
a compiler-compiler". Systems, Computers, Controls, 2 (5): 45-50.

131

GALLAGHER, J .P . 1993. "Tutorial on specialisation of logic programs", in Proceed-
mgs PEPM'93, f/ig ACM SigpZan Symposzum on ParfiaZ Eoafi/afzoM and SgTManh'cs-
Based Program Manipulation, pp. 88-98. ACM Press.

GALLAGHER, J., (ed.) 1996. Proceedings of the 6th International Workshop on Logic Pro-
gram Synthesis and Transformation (LOPSTR'96), Lecture Notes in Computer Science
1207, Stockholm, Sweden. Springer-Verlag.

GALLAGHER, J. & A . DE WAAL 1994. "Fast and precise regular approximations of
logic programs", in Van Hentenryck, P., (ed.). Proceedings of the Eleventh International
Conference on Logic Programming, pp. 5 9 9 - 6 1 3 , Massachusetts Institute of Technolo-
gy. The MIT Press.

GALLAGHER, J .P. & L . LAFAVE 1996. "Regular approximation of computation
paths in logic and functional languages". In Danvy et al. 1996, pp. 115-136 .

G L U C K , R . , J. J 0 R G E N S E N , B. MARTENS, & M . H . S 0 R E N S E N 1996. "Controlling
conjunctive partial deduction of definite logic programs", in Kuchen, H. & Swier-
stra, S., (eds.), Pmceedrngs fhg iMfgrnahoTiaZ Symposiwrn on PrngramTrn'Mĝ LaMgwĝ es,
Implementations, Logics and Programs (PLILP'96), LNCS 1140, pp. 152-166, Aachen,
Germany. Springer-Verlag. Extended version as Technical Report CW 226, K.U.
Leuven. Accessible via http: / /www. cs . kuleuven. ac .be/ ~dtai.

GROCER, G . & L . PLUMER 1992. "Handling of mutual recursion in automatic ter-
mination proofs for logic programs", in Apt, K., (ed.). Proceedings of the 1992 Joint
International Conference and Symposium on Logic Programming, pp. 336-350, Washing-
ton, USA. The MIT Press.

GURR, C.A. 1994. A self-applicable partial evaluator for the logic programming language
Gddel. PhD thesis. University of Bristol.

GURR, C.A. 1995. "Personal commtmication on the literature on termination anal-
yses".

H A R E L , D. 1989. The Science of Computing. Addison-Wesley.

H I L L , P.M. & J.W. LLOYD 1994. The Gddel programming language. MIT Press.

HOLST, C.K. 1991. "Finiteness Analysis", in Hughes, (ed.). Functional Program-
ming Languages and Computer Architectures, Lecture Notes in Computer Science 523,
pp. 473-495, Cambridge, Massachusetts, USA. Association for Computing Machin-
ery, Springer-Verlag.

JANSSENS, G . & M . BRUYNOOGHE 1992. "Deriving Descriptions of Possible Values
of Program Variables by Means of Abstract Interpretation", Journal Logic Program-
mmg, 13: 205-258.

TONES, N.D., C.K. GOMARD, & P. SESTOFT 1993. fa/f^Z gcaZWioM ancf awfomafzc
program generation. Prentice Hall.

J 0 R G E N S E N , J. & M. LEUSCHEL 1996. "Efficiently generating efficient gener-
ating extensions in Prolog", In Danvy et al. 1996, pp. 238-262. Extended ver-
sion also available as Technical Report CW 221, K.U. Leuven. Accessible via
http://www.cs.kuleuven.ac.be/~dtai.

132

http://www.cs.kuleuven.ac.be/~dtai

J0RGENSEN, J., M. LEUSCHEL, & B. MARTENS 1996. "Conjunctive partial deduc-
tion in practice". In Gallagher 1996, pp. 59-82. Also in the Proceedings of BENEL-
OG'96. Extended version as Technical Report CW 242, K.U. Leuven.

KAWAMURA, T. & T. KANAMORI 1988. "Preservation of stronger equivalence
in unfold/fold logic program transformation", in Institute for New Generation
Computer Technology (ICOT), (ed.). Proceedings of the International Conference on
Fifth Generation Computer Systems, 2, pp. 4 1 3 - 4 2 1 , Tokyo, Japan. Springer-Verlag.

KNUTH, D.E., J.H. MORRIS, & V.R. PRATT 1977. "Fast pattern matching in
strings", SIAM Journal of Computation, 6 (2): 323-350.

KOMOROWKSI, J. 1981. A specification of an abstract Prolog machine and its application
to partial evaluation. PhD thesis, Linkoping University Sweden. Linkoping Studies
in Science and Technology Dissertations 69.

KOMOROWSKI, J. 1992. "An introduction to partial evaluation", in Pettorossi,
A., (ed.). Proceedings Meta'92, Lecture Notes in Computer Science 649, pp. 49-69.
Springer-Verlag.

KOWALSKI, R . A . 1974. "Predicate logic as a programming language", in Information
Processing 74, pp. 5 6 9 - 5 7 4 , Stockholm. North-Holland Pub. Co.

KOWALSKI, R . A . 1979. "Algorithm = Logic + Control", Communications of the ACM,
22 (7): 424-^6.

LAFAVE, L . & J. GALLAGHER 1997. "Constraint-based partial evaluation of
rewriting-based functional logic programs". In Fuchs 1997, pp. 1 6 8 - 1 8 8 .

LEUSCHEL, M . 1996. "The ECCE partial deduction system and the DPPD library of
benchmarks". Obtainable via h t t p : / /www. e c s . s o t o n . ac . uk /~mal .

LEUSCHEL, M. 1997. Advanced Techniques for Logic Program Specialisation. PhD
thesis, K.U. Leuven. Accessible via h t t p : / /www. e c s . s o t o n . ac . u k / ~mal.

LEUSCHEL, M. 1998. "On the power of homeomorphic embedding for online
termination", in Levi, G., (ed.). Static Analysis. Proceedings of SAS'98, LNCS 1503,
pp. 230-245, Pisa, Italy. Springer-Verlag.

LEUSCHEL, M., D. D E SCHREYE, &: A. DE W A A L 1996. "A conceptual embed-
ding of folding into partial deduction: Towards a maximal integration", in Ma-
her, M., (ed.). Proceedings of the 1996 Joint International Conference and Symposium
on Logic Programming, pp. 319-332, Bonn, Germany. The MIT Press. Extend-
ed version available as Technical Report CW 225, K.U. Leuven. Accessible via
h t t p : / / w w w . c s .kuleuven . a c . b e / ~ d t a i .

LEUSCHEL, M . & B. MARTENS 1996. "Global control for partial deduction through
characteristic atoms and global trees". In Danvy et al. 1996, pp. 263-283. Extend-
ed version available as Technical Report CW 220, K.U. Leuven. Accessible via
h t t p : / / w w w . c s .kuleuven. a c . b e / ~ d t a i .

133

http://www.cs.kuleuven.ac.be/~dtai
http://www.cs.kuleuven.ac.be/~dtai

LEUSCHEL, M . , B. MARTENS, & D. DE SCHREYE 1998. "Controlling generalisation
and polyvariance in partial dedtiction of normal logic programs", ACM Transactions
OM PmgrgTMTMZMg and SysfgMig, 20 (1): 208-258.

LEVI, G . & M . MARTELLI, (eds.) 1989. Proceedings of the Sixth International Confer-
ence on Logic Programming, Lisbon. The MIT Press.

LINDENSTRAUSS, N . & Y. SAGIV 1997. "Automatic termination analysis of logic
programs". In Naish 1997, pp. 63 -77 .

LLOYD, J .W. 1987. Foundations of Logic Programming. Springer-Verlag, second
edition.

LLOYD, J.W., (ed.) 1995. Proceedings of the 1995 International Logic Programming
Symposium, Portland, USA. The MIT Press.

LLOYD, J. W . & J. C . SHEPHERDSON 1991. "Partial evaluation in logic program-
ming", Journal of Logic Programming, 11: 217 -242 .

LUTTRINGHAUS-KAPPEL, S. 1993. "Control generation for logic programs", in
Warren, D. S., (ed.). Proceedings of the Tenth International Conference on Logic Program-
ming, pp. 478-495, Budapest, Himgary. The MIT Press.

MARCHIORI, E. 1996. "Personal commimication".

MARCHIORI, E. & F. TEUSINK 1995. "Proving termination of logic programs with
delay declarations". In Lloyd 1995, pp. 447 -461 .

MARCHIORI, E . & F. TEUSINK 1996. "Proving deadlock freedom of logic pro-
grams with dynamic scheduling", in Boer, F. & M.Gabbrielli, (eds.), JICSLP'96 Post-
Conference Workshop W2 on Verification and Analysis of Logic Programs, Bonn. TR-96-
31, University of Pisa, Italy.

MARTENS, B. & D . D E SCHREYE 1996. "Automatic finite unfolding using well-
fotmded measures". Journal of Logic Programming, 28 (2): 89 -146 .

MARTENS, B. , D . D E SCHREYE, & T. HORVATH 1994. "Sound and complete partial
deduction with unfolding based on well-founded measures". Theoretical Computer
SczgMcg, 122 (1-2): 97-117.

MARTIN, J . C . & A . KING 1997. "Generating efficient, terminating logic programs",
in Bidoit, M. & Dauchet, M., (eds.). Proceedings of the Seventh International Joint
Conference on Theory and Practice of Software Development (TAPSOFT'97), Lecture
Notes in Computer Science 1214, Lille, France. Springer-Verlag.

MARTIN, J . C . , A. KING, & P. SOPER 1996. "Typed norms for typed logic program-
s'', In Gallagher 1996, pp. 224-238.

MARTIN, J.C. & M . LEUSCHEL 1999. "Sonic partial deduction", in Proceedings of the

on f p p . 101-112,
Lecture Notes in Computer Science 1755, Novosibirsk, Russia. Springer-Verlag.

MESNARD, F. 1995. "Towards Automatic Control for CLP(<Y) Programs", in LOP-
STR'95. Springer-Verlag.

134

NAISH, L. 1993. "Coroutining and the construction of terminating logic programs",
ZM Compufgr SczfMcg Brisbane.

NAISH, L., (ed.) 1997. f/ie FowrfgrnfA ZMkmafiom/ Coz^gMce on Logic
f mgrammzMg, Leuven, Belgium. The MIT Press.

N U T E , D . 1985. "A programming solution to certain problems with loops in Pro-
log'', SZGPLANNohcgs, 20 (8).

PETTOROSSi, A., M. PROIETTI, & S. RENAULT 1996. '"Enhancing partial deduction
via unfold/fold rules", In Gallagher 1996, pp. 146-168.

PLUMER, L. 1990a. Termination proofs for logic programs. Lecture Notes in Artificial
Intelligence 446. Springer-Verlag.

PLUMER, L. 1990b. "Termination proofs for logic programs based on predicate
inequalities". In Warren & Szeredi 1990, pp. 634-648.

PLUMER, L. 1991. "Automatic termination proofs for Prolog programs operating
on nonground terms". In Saraswat & Ueda 1991, pp. 5 0 3 - 5 1 7 .

POOLE, D. & R. GOEBEL 1985. "On eliminating loops in Prolog", S / G P L A N Noh'ces,
20 (8).

SAHLIN, D . 1993. "Mixtus: An automatic partial evaluator for full Prolog", New
GgMgrafion CoTnpwfiMg, 12 (1): 7-51.

SARASWAT, V. & K. UEDA, (eds.) 1991. Pmcegfimgs 3991 ZMfgrnafiOMaZ Logic
Pmgrammmg SympogiwTM, San Diego, USA. MIT Press.

SEDGEWICK, R. 1990. Algorithms in C. Addison-Wesley.

SEKI, H . 1989. "Unfold/fold transformation of stratified programs". In Levi &
Martelli 1989, pp. 554r-568.

SICS 1995. SICStMS Prolog User's Manual. Intelligent Systems Laboratory, SICS,
PO Box 1263, S-164 28 Kista, Sweden. Accessible via SICStus Prolog home page at
h t t p : / / w w w . s i c s . s e / p s / s i c s t u s . h t m l .

S 0 R E N S E N , M.H. & R. GLUCK 1995. "An algorithm of generalization in positive
supercompilation'', In Lloyd 1995, pp. 465-479.

TAMAKI, H . & T. SATO 1984. "Unfold/Fold Transformations of Logic Programs",
m Tamlund, S.-A., (ed.), Procee^fmgs fkg Second iMfgmafioMaZ Con/^gMcg on jLogic
Programmmg, pp. 127-138^ Uppsala, Sweden.

ULLMAN, J . D . & A . VAN GELDER 1988. "Efficient tests for top-down termination
of logical rules'% /ownzaZ ACM, 35 (2): 345-373.

VAN GELDER, A . 1987. "Efficient loop detection in Prolog using the Tortoise-and-
Hare technique", /oMrwzZ q^jLogic Programmmg, 4 (1): 23-32.

VAN HENTENRYCK, P., A. CORTESi, &: B. LE CHARLIER 1994. "Type Analysis of
Prolog Using Type Graphs", m PLD7'94, pp. 337-348. ACM Press.

135

http://www.sics.se/ps/sicstus.html

VAN LEEUWEN, J., (ed.) 1990. JTieorefimZ CoMipwfer Science; Vofŵ ne B.
Elsevier.

VAN ROY, P. 1984. "A Prolog Compiler for the PLM", Master's thesis. Computer
Science Division, University of California, Berkeley.

VANHOOF, W . & B. MARTENS 1997. "To Parse or Not To Parse", In Fuchs 1997, pp.
3 2 2 - 3 4 2 . Also as Technical Report C W 251 , K.U.Leuven.

VASAK, T. & J . POTTER 1986. "Characterisation of terminating logic programs", in
IEEE Symposium on Logic Programming, pp. 140-147.

VERSCHAETSE, K . & D . D E SCHREYE 1991. "Deriving termination proofs for logic
programs, using abstract procedures". In Furukawa 1991, pp. 3 0 1 - 3 1 5 .

VERSCHAETSE, K . , S . DECORTE, & D . D E SCHREYE 1992. "Derivation of linear
size relations by abstract interpretation", in Bruynooghe, M. & Wirsing, M., (eds.),
Pmcee<fzMgs f/ze Fowrfk /MfemafioMaZ SyMzposiw/M on I.aMgwge MpZe-
mentation and Logic Programming, Lecture Notes in Computer Science 631, Leuven,
Belgium. Springer-Verlag.

VIEILLE, L . 1989. "Recursive query processing: The power of logic". Theoretical
Computer Science, 69 (1); 1-53.

WARREN, D.H.D. &: P. SZEREDI, (eds.) 1990. PmceedzMgs Seuen^k
Conference on Logic Programming, Jerusalem. The MIT Press.

136

