UNIVERSITY OF SOUTHAMPTON

Modelling a Change of Classification in Economic Time Series Data

Filippo Moauro

Master of Philosophy

FACULTY OF SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

UNIVERSITY OF SOUTHAMPTON

Abstract

The change of classification problem for economic sectoral time series data is examined by a conversion matrix approach. State space representations are proposed both for data reconstruction and modelling a change of classification. The Doran (1992) methodology of constraining the Kalman filter to satisfy time varying restrictions is applied to show how to handle both limited information and aggregation constraints. We explore the implications of this approach for what will be, perhaps, the most important change of classification in sectoral data: the new European System of National Accounts. Results of an experimental application to Italian Quarterly Accounts are provided.

FACULTY OF SOCIAL SCIENCES

ECONOMICS

Master of Philosophy

MODELLING A CHANGE OF CLASSIFICATION IN ECONOMIC TIME SERIES DATA

by Filippo Moauro

List of contents

Preface v
Acknowledgements vii
1 Introduction 1
1.1 Motivations 1
1.2 Plan of the Thesis 3
2 The Kalman Filter as an Instrument for Data
Reconstruction 5
2.1 The Kalman Filter 5
2.1.1 State Space Form 5
2.1.2 Recursions 6
2.1.3 Initial Conditions 7
2.2 Maximum Likelihood Estimation 9
2.2.1 Computing the Likelihood Function 9
2.2.2 Generalized Least Squares 9
2.2.3 Missing Observations 13
2.3 Smoothing 15
2.4 Incorporating Time-Varying Restrictions 16
2.5 Data Reconstruction 19
3 A Framework for a Change of Classification 22
3.1 Basic Concepts 22
3.1.1 Deterministic Preliminaries 23
3.2 Conversion Matrix 24
3.3 Dynamics 27
4 An Application 32
4.1 The Generating Process of z_{t} 33
4.2 Reconstruction of z_{t} 35
4.3 Change of Classification Model 38
5 Conclusions 48
A Data 50
B Codes 53
Bibliography 77

Preface

As a Researcher of the Italian National Statistical Office (ISTAT) and, in particular, working in the National Accounts Department and Economic Research, the last two years have been spent on the transition towards the new European System of National Accounts (Eurostat, 1996). As a result, a general revision of the System has been carried out. In this activity, my interest has been captured by the econometric implications that the introduction of new Classification Standards has involved in compiling Accounts by Sector.
The National Accounts System consists of a wide set of economic figures compiled at different and detailed sectoral levels over a long time period. The System provides an "internationally compatible accounting framework for a systematic and detailed description of a total economy (that is a region, country or group of countries), its components and its relations with other total economies" (Eurostat, 1996, p.1).
Under normal conditions, each Accounts is compiled by aggregating data from the related survey which is coherent in terms of standards and definitions. Estimates are produced just for more recent time periods (quarters or years), updating previous estimates to the last available time period.

When a general revision occurs National Accounts have to be completely refounded. Estimates have to be recompiled over all the sample period, following the new framework to be introduced. As an implication, long and consistent time series of related surveys for the Accounts to be reconstructed are needed. But, it is a matter of fact that surveys are periodically revised
to follow changes in investigated phenomena so that time series suffer from structural breaks. Furthermore, over a long sample period surveys are often available under different sectoral classifications with respect to the standards to be introduced.

Consequently, when new standards are introduced, reconstruction of sectoral Accounts proceeds first through a benchmark producing new levels from a given time period and, secondly, by giving to data new coherence in a time series sense. As a result of the first step, two different measures of the same sectoral aggregates are observed: the former, for a longer period of time, in terms of old classification standards and the latter, just from the benchmark, in terms of new standards. At the second step, retrapolation techniques are adopted to gain new Accounts even in the past.

In this thesis a framework for a conversion of sectoral time series from old to new classification standards is provided. This is based on the definition of a conversion matrix to express time-varying compositional effects among different sectoral definitions. State space representations are presented to handle data reconstruction and modelling change of classification. A new approach for data reconstruction is suggested. The time series to be reconstructed is considered as an unobserved variable in a state space model: the estimates are so obtained satisfying the restrictions imposed by the few available observations.

The Kalman filter provides a well-established procedure to obtain optimal parameter estimation of state space forms. This has been largely used in this work obtaining reliable results on a preliminary experimental application based on Italian Quarterly Accounts.

Acknowledgements

First of all, as my Supervisor, I am grateful to Jan Podivinsky for helpful and precise comments and for the patience demonstrated over all the period involved in the preparation of this Thesis. Among the Staff of the Economics Department of the University of Southampton very helpful comments on computational aspects, concentrating a likelihood function and GLS estimation came from Ray O'Brien.

For a deep and at the same time practical approach to Dynamic Models and Regime Switching, my attendance at the Ph.D. course in Econometrics held by James D. Hamilton and S. Hylleberg in June 1997 in Aarhus, Denmark, has been very important.

Finally, I would like to thank Howard E. Doran and Alicia L. Rambaldi for the Gauss codes on the Singular Value Decomposition approach to constrain the Kalman filter to satisfy time-varying restrictions.

This material is based upon work supported by Consiglio Nazionale delle Ricerche under the scholarship posiz.204.4317, prot.057951, announcement n.203.10.32 of July 3, 1995.

The responsibility for any errors is, of course, only mine and the views expressed in the work are those of the author and do not indicate concurrence by ISTAT.

1 Introduction

The goal of this thesis is to provide a discussion on time series reconstruction. In particular, the problem for economic sectoral time series when a change of classification in economic activities occurs is approached.

In fact, a given economic variable (e.g. industrial production, GDP, consumption, income) gives a different composition among sectors depending on which sectoral standards is adopted. If by a given time period the way Statistical Agencies collect data changes, problems of comparing pre- and post-change time series arise.
In the following chapters a new approach for data reconstruction is suggested. The time series to be reconstructed is considered as an unobserved variable in a state space model: the estimates are so obtained satisfying the restrictions imposed by the few available observations. State space representations are even provided to handle modelling a change of classification.

A two step procedure to achieve both data reconstruction and parameter estimation of a change of classification model is suggested. It is shown as the Kalman filter provides the instrument to carry out optimal parameter estimation of the suggested state space forms even when models are subject to time-varying restrictions.

1.1 Motivations

An opportunity for statistics to capture economic structural change is to upgrade the methods, classification standards and definitions underlying their
construction. Historically, developed economies have been going through a fast and significant de-industrialization: the service sectors, notably distribution, banking, business services and communications, have been growing very rapidly. At the same time we have observed the relative decline of agriculture, extractive industries and manufacturing. Note that qualitative changes have been as important as quantitative changes: in fact growth goes with a large diversification of economic activities, commodities and services in such a way that new ones have been created and others have disappeared. To perform surveys adequately representative of structural changes, International Statistical Agencies propose periodically to National Offices new classification standards, schemes and methods to be followed both for commodities and monitoring of firms.
Generally, new classifications introduce more accuracy and detail in the specification of economic activities. Because progress has introduced a relative diversification of services strictly linked with traditional processes (i.e. Agriculture and Industry), new classifications split up some activities previously belonging only to the latter processes. As a result, grouping economic activities into industrial sectors or into economy-wide aggregates incurs compositional incoherences when a comparison among different standards is performed.
Furthermore, a change of classification produces a structural break in sectoral time series and an historical reconstruction has to be realized. Usually, when new standards are introduced, reconstruction of sectoral data proceeds first through a benchmark producing new levels from a given time period and, secondly, by giving to data new coherence in a time series sense.
Considering the introduction of the new European System of National Accounts (Eurostat, 1996) these aspects will be particularly important. By
that date new sectoral classifications will be adopted by those Countries joining the European Unification and a problem of historical reconstruction of Sectoral National Accounts will arise. In fact, two different measures of the same sectoral aggregates will be observed: the former, for a longer period of time, in terms of old classification standards and the latter, just from the benchmark, in terms of new standards.

In the following chapters a framework for a conversion of sectoral time series from old to new classification standards is provided. This is based on the definition of a conversion matrix to express time-varying compositional effects among different sectoral definitions. State space representations are presented to handle data reconstruction and modelling change of classification.

The Kalman filter provides a well-established procedure to obtain optimal parameter estimation of state space forms. Moreover, the Doran (1992) and Doran and Rambaldi (1996) methodologies of constraining the Kalman filter to obey time varying restrictions is revealed as an useful instrument to obtain efficient smoothed estimates. These allow us to incorporate contemporaneous aggregation constraints and available observations into the model.

1.2 Plan of the Thesis

The plan of this thesis is as follows. In chapter 2 an introduction of the Kalman filter as an instrument for data reconstruction has given: the main tools on the Kalman filter are provided in order to get the material of this thesis self contained. After the description of a general state space form, the typical recursions of the Kalman filter and initial conditions, section 2 provides the basic issues on the maximum likelihood estimation; particular attention has given to the developments involved in the Kalman filter when
some parameters to be estimated are concentrated out of the likelihood; furthermore, available solutions to the problem of missing observations are shortly mentioned. The smoothing algorithm is the issue of section 3 , while section 4 introduces the discussion on constraining the Kalman filter to obey time varying restrictions: the Doran (1992) and Doran and Rambaldi (1996) methodology is summarized. Finally, in section 5 a new approach to the problem of data reconstruction is shown by proposing a state space form for a simplified data generating process.

Chapter 3 provides the framework for a change of classification by a formal exposition. In section 1, basic concepts on classification standards give a preliminary introduction; then deterministic preliminaries and the definition of the conversion matrix are provided. The extension to a dynamic model is the subject of section 2 , where a state space representation for modelling the change of classification is proposed.

In chapter 4 results of a preliminary application on Italian quarterly accounts are shown. After a first section where data in terms of new classification standards are artificially generated, sections 2 and 3 provide a two stage procedure to gain both data reconstruction and modelling a change of classification.

Finally, chapter 5 provides a concluding summary discussion.

2 The Kalman Filter as an Instrument for Data Reconstruction

2.1 The Kalman Filter

2.1.1 State Space Form

Let z_{t} be a p-vector of observed variables at time t. A general state space form relates z_{t} in the sample period $t=1,2, . ., T$ with a possibly unobserved k-vector μ_{t} by the following system ${ }^{1}$:

$$
\begin{align*}
z_{t} & =X_{t} \mu_{t}+w_{t} \tag{2.1}\\
\mu_{t+1} & =F \mu_{t}+p+v_{t+1}, \tag{2.2}
\end{align*}
$$

where (2.1) and (2.2) are, respectively, the observation equation and the state equation. In equation (2.1), X_{t} is a $(p \times k)$ matrix of exogenous or predetermined variables and w_{t} is a p-vector of serially uncorrelated disturbances with mean 0 and covariance matrix H. In equation (2.2), μ_{t} is generated by a first order vector-autoregressive process, with the k-vector ρ as a drift and v_{t} as a k-vector of white noise with mean 0 and covariance matrix Q. The disturbances w_{t} and v_{t} are assumed to be uncorrelated at any lags.

[^0]Usually, the system (2.1)-(2.2) is used to describe a finite series of observations $\left\{z_{1}, z_{2}, . . z_{T}\right\}$, so that assumptions about the initial value of the state vector μ_{t} are needed. In particular, μ_{1} is assumed to be uncorrelated with any realizations of v_{t} or w_{t}. Moreover, the mean of μ_{1} is assumed to be equal to m_{1} with covariance matrix P_{1}.
The system (2.1)-(2.2) is enough flexible and it can be easily generalized to a system in which the matrices H, F, ρ and Q are time-varying.

2.1.2 Recursions

A model like (2.1)-(2.2) is suitable for the application of the Kalman filter. This is a recursive procedure for computing the optimal estimator of the state vector μ_{t} based upon the information available at time t .
Let m_{t-1} denote the optimal estimator of μ_{t-1} based on all the observations up to and including time $(t-1)$. Let $Z_{t-1}=\left\{z_{t-1}, z_{t-2}, . ., z_{1}, X_{t-1}, X_{t-2}, . ., X_{1}\right\}$ denote this information, so that

$$
\begin{equation*}
m_{t-1}=E\left[\mu_{t-1} / Z_{t-1}\right] . \tag{2.3}
\end{equation*}
$$

The covariance matrix of the estimation error is denoted as P_{t-1}, i.e.

$$
\begin{equation*}
P_{t-1}=E\left[\left(\mu_{t-1}-m_{t-1}\right)\left(\mu_{t-1}-m_{t-1}\right)^{\prime}\right] . \tag{2.4}
\end{equation*}
$$

It can be proved from the law of iterating projections ${ }^{2}$ that, given m_{t-1} and P_{t-1}, the optimal estimator of μ_{t} is given by

$$
\begin{equation*}
m_{t / t-1}=F m_{t-1}+\rho, \tag{2.5}
\end{equation*}
$$

with covariance matrix of the estimation error

$$
\begin{equation*}
P_{t / t-1}=F P_{t-1} F^{\prime}+Q \tag{2.6}
\end{equation*}
$$

[^1]Equations (2.5) and (2.6) are known as prediction equations.
Once new observations z_{t} become available the estimator of μ_{t}, m_{t} and its covariance matrix P_{t}, can be updated by the following updating equations

$$
\begin{align*}
m_{t} & =m_{t / t-1}+P_{t / t-1} X_{t}^{\prime}\left(X_{t} P_{t / t-1} X_{t}^{\prime}+H\right)^{-1}\left(z_{t}-X_{t} m_{t / t-1}-\rho\right) \tag{2.7}\\
P_{t} & =P_{t / t-1}-P_{t / t-1} X_{t}^{\prime}\left(X_{t} P_{t / t-1} X_{t}^{\prime}+H\right)^{-1} X_{t} P_{t / t-1} \tag{2.8}
\end{align*}
$$

From starting values specified both in terms of m_{0} and P_{0} or $m_{1 / 0}$ and $P_{1 / 0}$, the Kalman filter produces the optimal estimator of the state vector as each new observation becomes available. At time T the filter yields optimal estimator of the current state vector based on the full information set. Moreover, optimal predictions of future values of both m_{t} and z_{t} can be performed.

In particular, computing predictions $\hat{z}_{t / t-1}$ of z_{t} conditional on Z_{t-1} and X_{t} gives

$$
\begin{equation*}
\hat{z}_{t / t-1}=E\left[z_{t} / X_{t}, Z_{t-1}\right]=X_{t} m_{t / t-1} . \tag{2.9}
\end{equation*}
$$

Note that X_{t} contains no information about μ_{t} beyond that contained in Z_{t-1}, because it is assumed predetermined or exogenous. As a result, $E\left[\mu_{t} / X_{t}, Z_{t-1}\right]=E\left[\mu_{t} / Z_{t-1}\right]=m_{t / t-1}$ and equation (2.9) can be derived by the law of iterated projections. The mean square error of this forecast is

$$
\begin{equation*}
G_{t}=E\left[\left(z_{t}-\hat{z}_{t / t-1}\right)\left(z_{t}-\hat{z}_{t / t-1}\right)^{\prime}\right]=X_{t} P_{t / t-1} X_{t}^{\prime}+H \tag{2.10}
\end{equation*}
$$

2.1.3 Initial Conditions

In the state space form (2.1)-(2.2) the starting values for the Kalman filter can be given by the mean and covariance of the unconditional distribution of the state vector denoted, respectively, as m and Σ, only if eigenvalues of the matrix F are all inside the unit circle. In other terms, only if μ_{t} is covariance-stationary.

This being the case, taking expectations of both sides of (2.2) and considering that $E\left(\mu_{t}\right)=E\left(\mu_{t-1}\right)=m$ because of stationarity of μ_{t}, it yields

$$
\begin{equation*}
m=E\left(\mu_{t}\right)=(I-F)^{-1} \rho, \tag{2.11}
\end{equation*}
$$

where the matrix $(I-F)$ is nonsingular because no eigenvalue of F equals to 1 .

The unconditional variance of μ_{t}, i.e. Σ, can be derived by the following steps: postmultiplying

$$
\left(\mu_{t+1}-E\left[\mu_{t+1}\right]\right)=F\left(\mu_{t}-E\left[\mu_{t}\right]\right)+v_{t+1}
$$

by its transpose and taking expectations it yields

$$
\begin{equation*}
\operatorname{Var}\left(\mu_{t+1}\right)=F \cdot \operatorname{Var}\left(\mu_{t}\right) \cdot F^{\prime}+Q . \tag{2.12}
\end{equation*}
$$

Because the process μ_{t} is covariance-stationary, $\operatorname{Var}\left(\mu_{t+1}\right)=\operatorname{Var}\left(\mu_{t}\right)=\Sigma$ and it can be shown ${ }^{3}$ that solution is given by

$$
\begin{equation*}
\operatorname{vec}(\Sigma)=\left[I_{k^{2}}-(F \otimes F)\right]^{-1} \operatorname{vec}(Q) \tag{2.13}
\end{equation*}
$$

where $\operatorname{vec}(\cdot)$ is the operator that transforms a matrix in a vector by stacking the columns, \otimes indicates the Kronecker product and $I_{k^{2}}$ is the k^{2} identity matrix.

If, instead, some eigenvalues of F are on or outside the unit circle, the state equation is not stationary and the unconditional distribution of μ_{t} is not defined. The distribution of μ_{1} is given by genuine prior information or by a diffuse prior; $m_{1 / 0}$ is replaced with the best guess for the initial value of μ_{1} and $P_{1 / 0}$ is a positive definite matrix summarizing the confidence in this guess.

[^2]
2.2 Maximum Likelihood Estimation

2.2.1 Computing the Likelihood Function

As stressed in the previous section, the forecasts $m_{t / t-1}$ and $\hat{z}_{t / t-1}$ calculated by the Kalman filter are linear functions of $\left(X_{t}, Z_{t-1}\right)$. Furthermore, if the initial state vector $m_{1 / 0}$ and the disturbances $\left(v_{t}, w_{t}\right)$ are multivariate Gaussian, $m_{t / t-1}$ and $\hat{z}_{t / t-1}$ are optimal among any function of $\left(X_{t}, Z_{t-1}\right)$. Then, the distribution of z_{t} conditional on $\left(X_{t}, Z_{t-1}\right)$ is also Gaussian with mean given by equation (2.9) and variance by equation (2.10).
Gaussian assumption, therefore, allows the construction of the sample log likelihood L starting from the usual expression of a multivariate normal distribution, that is

$$
\begin{equation*}
L=\frac{p T}{2} \log 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \log \left|G_{t}\right|-\frac{1}{2} \sum_{t=1}^{T}\left(z_{t}-\hat{z}_{t / t-1}\right)^{\prime} G_{t}^{-1}\left(z_{t}-\hat{z}_{t / t-1}\right) \tag{2.14}
\end{equation*}
$$

where $\hat{z}_{t / t-1}$ and G_{t} are values defined in equations (2.9) and (2.10), respectively. Maximization of L with respect to the unknown parameters in the matrices F, ρ, H and Q can be found by a numerical optimization routine.
The \log likelihood function L can be computed iterating on the Kalman filter from proper starting values $m_{1 / 0}$ and $P_{1 / 0}$ and initial guesses of F, ρ, H and Q. Employing an optimization routine (e.g. the Newton-Raphson method), these initial guesses are gradually improved until equation (2.14) is maximized.

2.2.2 Generalized Least Squares

Running an optimization routine to maximize the likelihood function (2.14) with respect to the unknown parameters could be very risky when the parameter space is high; difficulties can arise in locating the global maximum
of L. So, it becomes very important to exploit any linearities in the state space form, in order to reduce the dimension of the search.
In other terms, it is convenient to find proper reparametrizations of the state space form, so that a concentrated likelihood function could be computed. This section provides an explanatory example of Generalized Least Squares (GLS) estimation of ρ.
For convenience, let's rewrite here the general state space model (2.1)-(2.2):

$$
\begin{align*}
z_{t} & =X_{t} \mu_{t}+w_{t} \tag{2.15}\\
\mu_{t+1} & =F \mu_{t}+\rho+v_{t+1} \tag{2.16}
\end{align*}
$$

When the state-vector μ_{t} is covariance-stationary, equation (2.11) has shown that

$$
\rho=(I-F) m
$$

Defining $\xi_{t}=\mu_{t}-m$, the system (2.15)-(2.16) can be put as follow:

$$
\begin{align*}
z_{t} & =X_{t} \xi_{t}+X_{t} m+w_{t}, \quad t=1, . ., T \tag{2.17}\\
\xi_{t+1} & =F \xi_{t}+v_{t+1} \tag{2.18}
\end{align*}
$$

This allows the following regression form representation:

$$
\begin{align*}
& z_{t}=X_{t} m+u_{t} \tag{2.19}\\
& u_{t}=X_{t} \xi_{t}+w_{t} \tag{2.20}
\end{align*}
$$

If it is assumed that ξ_{0} has a mean of zero and a bounded covariance matrix P_{0}, then the expected value of u_{t} is zero for all t but is, in general, serially
correlated and heteroskedastic. In this form, the $G L S$ estimation of m can be performed by the generalized formula

$$
\begin{equation*}
\hat{m}=\left[\sum_{t=1}^{T} X_{t}^{*^{\prime}} G_{t}^{-1} X_{t}^{*}\right]^{-1} \sum_{t=1}^{T} X_{t}^{*^{\prime}} G_{t}^{-1} z_{t}^{*} \tag{2.21}
\end{equation*}
$$

where G_{t} is the variance-covariance matrix of u_{t}.
In a Kalman filter framework, \hat{m} results from a concentrated likelihood function, without any need to evaluate, as usual, the Cholesky decomposition of the variance-covariance matrix of u_{t}.
However, a brief explanation of equation (2.21) is needed:
z_{t}^{*} and X_{t}^{*} result from the Cholesky decomposition of the variance covariance matrix that the Kalman filter implicitly performs. In fact, decomposing X_{t} into $k n$-vectors such that

$$
X_{t}=\left[\begin{array}{llll}
x_{1 t} & x_{2 t} & \ldots & x_{k t}
\end{array}\right]
$$

and applying $k+1$ times the Kalman filter where the state equation is given from the same (2.18) and the measurement equations are given separately from

$$
\begin{align*}
z_{t}= & X_{t} \xi_{t}^{z}+w_{t}^{z}, \tag{2.22}\\
x_{1 t}= & X_{t} \xi_{t}^{x_{1}}+w_{t}^{x_{1}}, \\
& \ldots . . \\
x_{k t}= & X_{t} \xi_{t}^{x_{k}}+w_{t}^{x_{k}},
\end{align*}
$$

serially uncorrelated innovations $z_{t}^{*}, X_{t}^{*}=\left[x_{1 t}^{*} x_{2 t}^{*} \ldots . x_{k t}^{*}\right]$ with identical covariance matrix G_{t} can be performed. In particular, z_{t}^{*} and X_{t}^{*} are given from

$$
\begin{equation*}
z_{t}^{*}=z_{t}-X_{t} \hat{\xi}_{t / t-1}^{z} \tag{2.23}
\end{equation*}
$$

$$
\begin{aligned}
x_{1 t}^{*}= & x_{1 t}-X_{t} \hat{\xi}_{t / t-1}^{x_{1}}, \\
& \ldots \ldots \\
x_{k t}^{*}= & x_{k t}-X_{t} \hat{\xi}_{t / t-1}^{x_{k}},
\end{aligned}
$$

where $\hat{\xi}_{t / t-1}^{z}, \hat{\xi}_{t / t-1}^{x_{1}}, \ldots ., \hat{\xi}_{t / t-1}^{x_{k}}$ are obtained from the following recursions

$$
\begin{align*}
& \hat{\xi}_{t / t-1}^{z}=F \hat{\xi}_{t-1 / t-1}^{z}, \tag{2.24}\\
& \hat{\xi}_{t / t-1}^{x_{1}}= F \hat{\xi}_{t-1 / t-1}^{x_{1}}, \\
& \ldots \ldots, \\
& \hat{\xi}_{t / t-1}^{x_{k}}= F \hat{\xi}_{t-1 / t-1}^{x_{k}},
\end{align*}
$$

with

$$
\begin{align*}
& \hat{\xi}_{t / t}^{z}=\hat{\xi}_{t / t-1}^{z}+P_{t / t-1} X_{t}^{\prime} G_{t}^{-1} z_{t}^{*}, \tag{2.25}\\
& \hat{\xi}_{t / t}^{x_{1}}=\hat{\xi}_{t / t-1}^{x_{1}}+P_{t / t-1} X_{t}^{\prime} G_{t}^{-1} x_{1 t}^{*}, \\
& \hat{\xi}_{t / t}^{x_{k}}=\hat{\xi}_{t / t-1}^{x_{k}}+P_{t / t-1} X_{t}^{\prime} G_{t}^{-1} x_{k t}^{*} .
\end{align*}
$$

The matrix $P_{t / t-1}$ is the mean squared error of ξ_{t}, iteratively computed from the following equations:

$$
\begin{gather*}
P_{t / t-1}=E\left[\left(\xi_{t}-\hat{\xi}_{t / t-1}\right)\left(\xi_{t}-\hat{\xi}_{t / t-1}\right)^{\prime}\right]=F P_{t-1 / t-1} F^{\prime}+Q \tag{2.26}\\
P_{t / t}=E\left[\left(\xi_{t}-\hat{\xi}_{t / t}\right)\left(\xi_{t}-\hat{\xi}_{t / t}\right)^{\prime}\right]=P_{t / t-1}+P_{t / t-1} X_{t}^{\prime} G_{t}^{-1} X_{t} P_{t / t-1} . \tag{2.27}
\end{gather*}
$$

Note that recursions of $P_{t / t-1}$ and $P_{t / t}$ are fully independent with respect to $\hat{\xi}_{t / t-1}$ and $\hat{\xi}_{t / t}$, allowing the calculations above.

Finally, the variance-covariance matrix G_{t} is estimated as

$$
\begin{equation*}
G_{t}=X_{t} P_{t / t-1} X_{t}^{\prime}+H \tag{2.28}
\end{equation*}
$$

As a result of the formalization above, m can be concentrated out of the likelihood. Then, estimation of the parameters F, H and Q are obtained by a concentrated likelihood function L_{c} such that

$$
\begin{equation*}
L_{c}=-\frac{T n}{2} \log 2 \pi-\frac{1}{2} \sum_{t=1}^{T} \log \left|G_{t}\right|-\frac{1}{2} \sum_{t=1}^{T} \hat{\varepsilon}_{t}^{\prime} G_{t}^{-1} \hat{\varepsilon}_{t} \tag{2.29}
\end{equation*}
$$

in which G_{t} is estimated by equation (2.28), residuals $\hat{\varepsilon}_{t}$ are defined as

$$
\begin{equation*}
\hat{\varepsilon}_{t}=z_{t}^{*}-X_{t}^{*} \hat{m} \tag{2.30}
\end{equation*}
$$

and, conditional on given values of F, H and Q, \hat{m} is performed by equation (2.21).

2.2.3 Missing Observations

All observations are assumed to be available in the discussion provided so far. In fact, some observations may be missing or subject to contemporaneous aggregation. It means that the full p-vector, now denoted as z_{t}^{\dagger}, is not necessary equal to the p_{t}-vector of observations z_{t}. Possible solutions to this problem are introduced in this sub-section for the following three cases:

1. $p_{t} \geq 1$ for all $t \rightarrow$ only some components of z_{t}^{\dagger} are missing or contemporaneously aggregated. In this case the identity

$$
\begin{equation*}
z_{t}=W_{t} z_{t}^{\dagger}, \quad t=1, \ldots, T \tag{2.31}
\end{equation*}
$$

is defined, where W_{t} is a $p_{t} \times p$ matrix of fixed weights. The measurement equation is now given by combining equation (2.1) with (2.31). The main difference is that the dimension of z_{t} is time-varying, without particular consequences on the Kalman filter and the prediction error decomposition of the likelihood function.
2. $p_{t}=0$ for some $t \rightarrow$ no observations are available for certain t. In this case, equation (2.31) is no longer defined, so that it is assumed that observations are available only at the points $t_{\tau}, \tau=1, . ., T$, where the t_{τ} 's are integers such that $0<t_{1}<t_{2} \cdots<t_{T}$. So, equation (2.31) is replaced by

$$
\begin{equation*}
z_{\tau}=W_{\tau} z_{t_{\tau}}^{\dagger}, \quad \tau=1, \ldots, T . \tag{2.32}
\end{equation*}
$$

The system generates t_{T} values of z_{t}^{\dagger} at unit intervals, but observations on this vector are only made in T not-evenly time periods. In this case as well, the particular form of the system does not affect the prediction error decomposition. Prediction errors associated with the observations $z_{\tau}, \tau=1, . ., T$ can be obtained by skipping the Kalman filter, updating equations for the state space form of z_{t}^{\dagger} at the points where there are no observations (Jones, 1980). Thus, if missing observations are at $t=n$, values given by the updating equations (2.7) and (2.8) are simply substituted by their corresponding prediction equations:

$$
\begin{equation*}
m_{n}=m_{n / n-1}, \quad P_{n}=P_{n / n-1} \tag{2.33}
\end{equation*}
$$

3. $p_{t}=0$ for some $t \rightarrow$ no observations are available for certain t. In this case the same problem as point 2. is handled in an alternative way: a value of zero is given to a missing observation and a dummy variable is introduced into the model. The dummy variable takes a value of unity at the point where missing occurs and zero elsewhere. The likelihood is then constructed for the full sample period but it needs to be maximised with respect to the coefficient of the dummy variable as well. When several observations are missing, problems could arise because of the high number of parameters to be estimated. For this reason this method seems suitable just for handling a small number of observations.

2.3 Smoothing

If filtering performs the expected value of the state vector μ_{t} conditional on information at time t, smoothing concerns an inference on μ_{t} based upon information available after time t. Let's denote Z_{τ} the information up to and including time τ, for $\tau>t$. Then, like the notation in previous sections suggests, the smoothed estimator of μ_{t} can be expressed as

$$
\begin{equation*}
m_{t / \tau}=E\left[\mu_{t} / Z_{\tau}\right] \quad \text { for } \tau>t \tag{2.34}
\end{equation*}
$$

with covariance matrix denoted by

$$
\begin{equation*}
P_{t / \tau}=E\left[\left(\mu_{t}-m_{t / \tau}\right)\left(\mu_{t}-m_{t / \tau}\right)^{\prime}\right] . \tag{2.35}
\end{equation*}
$$

When $\tau=T$, then $m_{t / T}$ is called fixed-interval smoother. If $t=\tau-j$ for $j=1, . ., M$, where M is some maximum lag, then $m_{\tau-j / \tau}$ is called fixed-lag smoother. Finally, fixed-point smoothing is the algorithm concerning the estimation of the state vector μ_{t} at some fixed point in time.

In economic literature the fixed interval smoothing is the most spread, so that only a short introduction of this algorithm is provided in this section ${ }^{4}$. It consists of a set of backward recursions for time $t=T-1, T-2, . ., 1$, starting from the final estimates m_{T} and P_{T} of the standard Kalman filter. $m_{t / T}$ and $P_{t / T}$ are given by the following 3 recursive equations:

$$
\begin{align*}
m_{t / T} & =m_{t}+J_{t}\left(m_{t+1 / T}-F m_{t}\right) \\
P_{t / T} & =P_{t}+J_{t}\left(P_{t+1 / T}-P_{t+1 / t}\right) J_{t}^{\prime} \\
J_{t} & =P_{t} F^{\prime} P_{t+1 / t}^{-1} \tag{2.36}
\end{align*}
$$

with $m_{T / T}=m_{T}$ and $P_{T / T}=P_{T}$.

[^3]
2.4 Incorporating Time-Varying Restrictions

When exogenous informations provide estimates of μ_{t} for some t, its estimation by the Kalman filter using the methodologies introduced in the previous sections is efficient only if the original model (2.1)-(2.2) is appropriately constrained by the observed values. Such extraneous information can be incorporated into the model in the form of linear constraints that the parameters of the model should satisfy.

A property of the Kalman filter which is of fundamental importance at this purpose is that time-varying restrictions in the linear form

$$
\begin{equation*}
R_{t} \mu_{t}=r_{t} \tag{2.37}
\end{equation*}
$$

can be incorporated into the model (2.1)-(2.2) so that estimates $\hat{\mu}_{t}$ can be obtained to satisfy equation (2.37). Considering that additional information, aggregation constraints or specific hypothesis could be available, methodologies to handle constrained estimates have to be applied.

Two different approaches can be mentioned. The more general one (Doran, 1992), consists of augmenting the observation equation (2.1) defining

$$
z_{t}^{*}=\left[\begin{array}{c}
z_{t} \tag{2.38}\\
r_{t}
\end{array}\right], X_{t}^{*}=\left[\begin{array}{l}
X_{t} \\
R_{t}
\end{array}\right], w_{t}^{*}=\left[\begin{array}{c}
w_{t} \\
0
\end{array}\right],
$$

with

$$
E\left(w_{t}^{*} w_{t}^{* \prime}\right)=\left[\begin{array}{cc}
H & 0 \tag{2.39}\\
0 & 0
\end{array}\right]
$$

so that the observation equation

$$
\begin{equation*}
z_{t}^{*}=X_{t}^{*} \mu_{t}+w_{t}^{*} \tag{2.40}
\end{equation*}
$$

can be associated with the state-equation (2.2). The usual Kalman filter methodology applied to equations (2.40) and (2.2) provides optimal smoothed
estimates of μ_{t} which satisfy linear time-varying constraints. Note that this approach is extremely flexible because no mention of the row dimension of R_{t} and r_{t} is given: it can actually vary across time. This allows the incorporation of non-homogeneous information into the model whatever the linear form of equation (2.37).

Anyhow, as stressed in Doran and Rambaldi (1997), practical problems arise when computation of the Kalman filter is performed with an high number of parameters to be estimated. Difficulties in locating the global maximum of the likelihood function may occur. Thus, it becomes important to find a proper reparametrization of the state space model (2.40)-(2.2), in order to reduce the dimension of the parameter-space. Simple reparametrizations are available which allow ρ to be estimated by generalized least squares, computing a concentrated likelihood function.

The second approach (Doran and Rambaldi, 1996), more computationally efficient but less flexible, can be applied only when the row dimensions of R_{t} and r_{t} are constant over time. Instead of augmenting the observation equation, time-varying constraints are substituted out, reducing the dimension of the parameter space. The Singular Value Decomposition (SVD) Theorem (see for example Magnus and Neudecker, 1988, p.18) is used to achieve a convenient reparametrization of the model (2.1)-(2.2).

Suppose that the row dimension of R_{t} is J for all t. Then, by definition, the rank of R_{t} is J. The $S V D$ states that two square matrices U_{t} and V_{t} of dimension J and k, respectively, corresponding to the left and right eigenvectors of R_{t} exist such that

$$
\begin{equation*}
R_{t}=U_{t} S_{t} V_{t}^{\prime} \tag{2.41}
\end{equation*}
$$

where S_{t} is a $(J \times k)$ diagonal matrix with non-zero singular values $s_{1 t}, s_{2 t}$, $\ldots, s_{J t}$ on the principal diagonal. Alternatively, the following standard result
can be obtained:

$$
P_{t} R_{t} V_{t}=\left[\begin{array}{ll}
I_{J} & 0_{J, k-J} \tag{2.42}
\end{array}\right],
$$

where $P_{t}=S_{1 t}^{-1} U_{t}^{\prime}$, and $S_{1 t}=\operatorname{diag}\left(s_{1 t}, s_{2 t}, \ldots, s_{J t}\right), I_{J}$ is the J identity matrix and $0_{J, k-J}$ a $(J \times k-J)$ null matrix.

From equation (2.42) it is possible to reparametrize the constrained model given by equations (2.1) and (2.37) recognizing that equation (2.37) can alternatively be written as

$$
\begin{align*}
r_{t} & =\left[\begin{array}{ll}
P_{t}^{-1} & 0_{J, k-J}
\end{array}\right] V_{t}^{-1} \mu_{t} \tag{2.43}\\
& =\left[\begin{array}{ll}
P_{t}^{-1} & 0_{J, k-J}
\end{array}\right] \mu_{t}^{*},
\end{align*}
$$

with $\mu_{t}^{*}=V_{t}^{-1} \mu_{t}$. If the partition of μ_{t}^{*} such that $\mu_{t}^{*}=\left[\mu_{1 t}^{*^{\prime}} \mu_{2 t}^{*^{\prime}}\right]^{\prime}$ is considered, we obtain

$$
\begin{equation*}
\mu_{1 t}^{*}=P_{t} r_{t} \tag{2.44}
\end{equation*}
$$

and the following reparametrization of (2.1) is achieved:

$$
\begin{align*}
z_{t} & =X_{t} V_{t} V_{t}^{-1} \mu_{t}+w_{t} \tag{2.45}\\
& =X_{t}^{*} \mu_{t}^{*}+w_{t} \\
& =X_{1 t}^{*} \mu_{1 t}^{*}+X_{2 t}^{*} \mu_{2 t}^{*}+w_{t}
\end{align*}
$$

where $X_{1 t}^{*}$ and $X_{2 t}^{*}$ are the first J and the remaining $k-J$ columns of X_{t}^{*} respectively.

Finally, substituting equation (2.44) into (2.45),

$$
\begin{equation*}
z_{t}-X_{1 t}^{*} P_{t} r_{t}=z_{t}^{*}=X_{2 t}^{*} \mu_{2 t}^{*}+w_{t} \tag{2.46}
\end{equation*}
$$

it should be observed that it is enough to estimate the parameter vector $\mu_{2 t}^{*}$ to obtain estimates of the original parameter μ_{t}.

2.5 Data Reconstruction

Assume that in the model (2.1)-(2.2) z_{t} is observed only for the last l time periods (for $t=T-l+1, \ldots, T$). Restricted estimation of the parameters ρ, F, H, Q in order to obtain smoothed estimates of μ_{t} for $t=1,2, \ldots, T$ cannot be directly reached by the Kalman filter. In fact, the skipping approach (Jones, 1980) for which all the missing observations of z_{t} are substituted by the Kalman filter updated estimates cannot gain reliable results when the number of observed values of z_{t} (i.e. l) is too small with respect to the full sample (i.e. T). For the same reason, handling missing observations by giving them a value of zero and introducing dummy variables into the model is also inefficient. Moreover, serious theoretical problems occur when missings are located at the beginning of the sample period.

As a solution, alternative state space representations could be set up when many observations are missing or subject to contemporaneous aggregation. The Kalman filter together with the smoothing algorithm can be applied to gain efficient estimates of missing observations ${ }^{5}$. Another possible choice has given by retrapolation procedures, even if less flexible in accommodating restrictions which change in each time period.

In this section a new approach for data reconstruction is suggested. The time series to be reconstructed is considered as an unobserved state variable in a state space model and the few available observations as time-varying restrictions. The methodology of section 4 is then applied to get efficient

[^4]smoothed estimates of z_{t} satisfying restrictions given by those observations of z_{t} which are available.

Reconstruction for the period $t=1,2, \ldots, T-l$ of each element $z_{i t}(i=1$, $2, \ldots, p$) of z_{t} is obtained estimating, separately, parameters of p different state space models, one for each element of z_{t}. In order to obtain the reconstruction, it is supposed that an n-vector y_{t} of related stochastic indicators of z_{t} are available over all the sample period ${ }^{6}$.
Let $y_{t}^{s_{i}}$ be a κ_{i}-vector of selected indicators from the n-vector y_{t}, that is the most convenient selection of elements of y_{t} to reach the reconstruction of $z_{i t}$. Then, the following state space representation can be considered:

$$
\begin{align*}
y_{t}^{s_{i}} & =G_{i} \xi_{i t}+\varepsilon_{i t} \tag{2.47}\\
\xi_{i t+1} & =\xi_{i t}+\lambda_{i}+\eta_{i t+1} \tag{2.48}
\end{align*}
$$

G_{i} is a $\left(\kappa_{i} \times 2\right)$ matrix of parameters with a κ_{i}-vector of ones as first column; $\xi_{i t}$ is a bivariate state vector such that

$$
\begin{equation*}
\xi_{i t}=\left[d_{i t} z_{i t}^{\dagger}\right]^{\prime} \tag{2.49}
\end{equation*}
$$

$z_{i t}^{\dagger}$ and $d_{i t}$ express, respectively, the unobserved i-th element of z_{t} to be reconstructed and an identical time-varying coefficient; $\varepsilon_{i t}$ and $\eta_{i t}$ are the usual i.i.d. Gaussian white noise errors uncorrelated with each other at any lags and with covariance matrix, respectively, H_{i}^{ε} and Q_{i}^{η}; finally, λ_{i} is a bivariate drift on the state equation (2.48).
Observed values for $z_{i t}$ enter into the model as time-varying restrictions on $\xi_{i t}$; notably, for $t=T-l+1, \ldots, T$, constraints imply

[^5]\[

\left[$$
\begin{array}{ll}
0 & 1 \tag{2.50}
\end{array}
$$\right] \xi_{i t}=z_{i t} .
\]

Restricted maximum-likelihood estimation of $G_{i}, \lambda_{i}, H_{i}^{\varepsilon}, Q_{i}^{\eta}$ and an optimal estimation of $\xi_{i t}$ by the Kalman filter is carried out through the methodologies explained in the previous sections.
In practice, the observation equation (2.47) is a generalized regression with an unobserved regressor $z_{i t}^{\dagger}$ and a time-varying coefficient $d_{i t}$ to fit the difference between each element of $y_{t}^{s_{i}}$ and $z_{i t}^{\dagger}$.
Assuming non-stationarity of y_{t}, reconstructed values of z_{t} should be non-stationary too. Then, the state equation (2.48) captures the dynamics of $z_{i t}^{\dagger}$ and $d_{i t}$ in terms of a random walk where the drift λ_{i} affects the direction of the random movement of $z_{i t}^{\dagger}$ and $d_{i t}$ over the time. Since restrictions in the form of equation (2.50) are imposed, the estimation of λ_{i} is strongly dependent on the observed value of z_{t} in the last l time periods.
Assumptions behind the state space form of equations (2.47)-(2.48) refer to a basic but significant case: in fact each element $z_{i t}$ of z_{t} is assumed to be equally generated by a trend component only which is additive with respect to the trend of $y_{t}^{s_{i}}$. In particular this trend component is assumed to be generated by a random walk with drift process. Cycle or seasonal components are not considered, even if the state space form (2.47)-(2.48) could be easily extended to incorporate more complicated data generating processes of z_{t}.

3 A Framework for a Change of Classification

3.1 Basic Concepts

Generally, statistical information is collected from National Statistical Agencies using conventional procedures. Among countries, harmonized survey schemes allow the collection of economic statistics directly from firms or individuals (Economic Activity Unit, EAU) and International standards are provided in order to harmonise sectoral definitions.

Classification standards univocally define the economic activities, their number and aggregation levels. According to the last international revision (United Nations, 1989), 5 aggregation levels are considered. Notably, 874 categories of economic activities, make up 512 classes, 222 groups, 60 divisions and 17 sections.

A larger degree of detail has been introduced with respect to the previous standards: only 675 categories and 4 aggregation levels (United Nations, 1969). The goal has been to guarantee more accuracy of coverage in the diversification of economic activities, sampling previously non-existent activities.

Not only the introduction of new activities, but even the implicit split within different aggregations that new classification implies lets the comparison in terms of old and new standards be formalized. It is possible that new standards split up economic activities in such a way that some $E A U s$ joining
some old activities fall into different new aggregates.
In practice, because of the historical de-industrialization process, new standards attempt to capture economic structural change from a qualitative point of view. Qualitative change means new commodities, services and a diversification of economic activities. The diversification goes from traditional to service-oriented activities.

Assume that over a given time period EAUs available for a given economic variable are classified with respect to two different classification standards. Following both the definitions, aggregating on economic activities in classes, groups and so on determines a compositional effect among aggregates. As a limit case, a uniform aggregation in Agriculture, Industry and Services (i.e. macro sectors) gives the advantage to let the compositional effect express in terms of differences among uniform aggregates.

In the following subsections a formal exposition of the problem is attempted.

3.1.1 Deterministic Preliminaries

Let x_{t}^{*} denote a m_{t}-vector of $E A U s$ values for a given economic variable at time t. It is assumed that x_{t}^{*} is evenly sampled at a given frequency and it is available for the time period $t=1,2, \ldots, T$. Its dimension is time-variant because of the variability over time in the number of sampled EAUs. Aggregation of x_{t}^{*} into n ($n<m_{t}$ for all t) sectors is obtained defining a binary $0 / 1\left(n \times m_{t}\right)$ aggregation matrix A_{t} such that

$$
\begin{equation*}
y_{t}=A_{t} x_{t}^{*} . \tag{3.1}
\end{equation*}
$$

y_{t} represents a n-vector of aggregated data in n sectors ${ }^{7}$. A_{t} is a full row rank matrix where every column sums to unity and it is unique for each

[^6]classification standard. A scalar sum Y_{t} of the elements of y_{t} (e.g. GDP) is also defined.
In these terms, a different classification standard means a new ($p \times m_{t}$) aggregation matrix B_{t} (with $n \leq p<m_{t}$ for all t) such that
\[

$$
\begin{equation*}
z_{t}=B_{t} x_{t}^{*} \tag{3.2}
\end{equation*}
$$

\]

where z_{t} represents the new p-vector of aggregated data in p sectors and B_{t}, as A_{t}, is a full row rank matrix where every column sums to unity. Moreover a scalar Z_{t} as sum of the elements of z_{t} can be defined with the same meaning of Y_{t}.

3.2 Conversion Matrix

Suppose now that the new classification modifies only the composition, without any changes for the total aggregate so that $Y_{t}=Z_{t}$. Then, a $(p \times n)$ conversion matrix C_{t} is uniquely defined given A_{t}, B_{t} and x_{t} such that

$$
\begin{equation*}
z_{t}=C_{t} y_{t} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{t}=B_{t} x_{t}^{* d} A_{t}^{\prime}\left(A_{t} x_{t}^{* d} A_{t}^{\prime}\right)^{-1} \tag{3.4}
\end{equation*}
$$

and $x_{t}^{* d}$ is a m_{t}-square matrix defined as

$$
\begin{equation*}
x_{t}^{* d}=\operatorname{diag}\left(x_{1 t}^{*}, x_{2 t}^{*}, \ldots, x_{m_{t} t}^{*}\right) . \tag{3.5}
\end{equation*}
$$

In detail, equations (3.3) and (3.4) can be obtained as follows: denoting as i_{n}^{\prime} a row of ones, the equality $i_{n}^{\prime} A_{t}=i_{m}^{\prime}$ is given as the columns of A_{t} sum to unity. Taking the transposes, it implies $A_{t}^{\prime} i_{n}=i_{m}$ from which, by repeated substitutions,

$$
\begin{align*}
x_{t}^{d} i_{m} & =x_{t}, \tag{3.6}\\
y_{t} & =A_{t} x_{t}=A_{t} x_{t}^{d} i_{m}=A_{t} x_{t}^{d} A_{t}^{\prime} i_{n}, \tag{3.7}\\
\left(A_{t} x_{t}^{d} A_{t}^{\prime}\right)^{-1} y_{t} & =i_{n}, \tag{3.8}\\
A_{t}^{\prime}\left(A_{t} x_{t}^{d} A_{t}^{\prime}\right)^{-1} y_{t} & =A_{t}^{\prime} i_{n}=i_{m}, \tag{3.9}\\
x_{t}^{d} A_{t}^{\prime}\left(A_{t} x_{t}^{d} A_{t}^{\prime}\right)^{-1} y_{t} & =x_{t}^{d} i_{m}=x_{t}, \tag{3.10}\\
B_{t} x_{t}^{d} A_{t}^{\prime}\left(A_{t} x_{t}^{d} A_{t}^{\prime}\right)^{-1} y_{t} & =B_{t} x_{t}=z_{t} . \tag{3.11}
\end{align*}
$$

B_{t} is an allocation matrix as well, then $i_{p}^{\prime} B_{t}=i_{m}^{\prime}$ and the equality $Y_{t}=Z_{t}$ results from previous results, given that

$$
\begin{equation*}
Z_{t}=i_{p}^{\prime} z_{t}=i_{p}^{\prime} B_{t} x_{t}=i_{m}^{\prime} x_{t}=X_{t}=i_{n}^{\prime} A_{t} x_{t}=i_{n}^{\prime} y_{t}=Y_{t} \tag{3.12}
\end{equation*}
$$

C_{t} is a full column rank matrix and, as for A_{t} and B_{t}, every column sums to 1. Each element of $C_{t}, c_{t}^{i j}(i=1,2, . ., p$ and $j=1,2, . ., n)$ is bounded between zero and one

$$
0 \leq c_{t}^{i j} \leq 1 ; \quad i=1,2, . ., p ; j=1,2, . ., n
$$

In other terms, each element $c_{t}^{i j}$ of the conversion matrix C_{t} gives a transition weight from a sector of the old classification to a sector of the new one. If the definition of the i-th new sector (in terms of either joined economic activities or $E A U s)$ is precisely the same as the j-th sector of the old classification $c_{t}^{i j}=1$; if there is a split from the j-th old sector into more than one new sectors, then $0<c_{t}^{i j}<1$; finally, if there are no linkages $c_{t}^{i j}=0$. Then, for every i, j such that $c_{t}^{i j}=0$ or $c_{t}^{i j}=1$, this holds for all $t(t=1,2, \ldots T)$ and time-invariant restrictions on C_{t} have to be imposed.
Note that by equation (3.3) it results a mapping from y_{t} to z_{t} by the matrix C_{t} which is defined only for given A_{t}, B_{t} and x_{t}. In fact, when the available
information is referred only to y_{t} and z_{t} the matrix C_{t} is not uniquely defined since equation (3.3) is a system of p equations into $p \times n$ unknowns. Anyhow equation (3.3) should be meant as a relation among aggregated data in terms of a matrix of weights, for which the information on detailed sectoral allocations is definitely lost.

A more convenient representation of equation (3.3) in order to eliminate time-invariant restrictions in terms of zero elements of C_{t} is the following:

$$
\begin{equation*}
z_{t}=\left(y_{t}^{\prime} \otimes I_{p}\right) \operatorname{vec}\left(C_{t}\right), \tag{3.13}
\end{equation*}
$$

where \otimes denotes the Kronecker-product, I_{p} the p-identity matrix, and vec (\cdot) the vec-operator that transforms a $(p \times n)$ matrix in a np-vector by stacking the columns. Then, using a ($k^{*} \times n p$) selection matrix $S_{\beta}{ }^{8}$, a k^{*}-vector β_{t} can be defined such that

$$
\begin{equation*}
\beta_{t}=S_{\beta} \operatorname{vec}\left(C_{t}\right) \tag{3.14}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
S_{\beta}^{\prime} \beta_{t}=\operatorname{vec}\left(C_{t}\right) . \tag{3.15}
\end{equation*}
$$

Notably, S_{β} is a block diagonal matrix given by

$$
\begin{equation*}
S_{\beta}=\operatorname{diag}\left(S_{\beta 1}, S_{\beta 2}, . ., S_{\beta n}\right), \tag{3.16}
\end{equation*}
$$

where $S_{\beta j}(j=1,2, . ., n)$ is the proper $\left(k_{j}^{*} \times p\right)$ selection matrix for time-varying coefficients of each column of C_{t}. Obviously $k_{j}^{*} \leq p ; k^{*}=\sum_{j} k_{j}^{*}$ and S_{β} is a full rank matrix.

$$
\begin{aligned}
& { }^{8} \mathrm{~A}((k-d) \times k) \text { selection matrix } S \text { is an operator such that } \\
& \qquad x^{*}=S x,
\end{aligned}
$$

where x is a k-vector and x^{*} a ($k-n$)-vector equal to selected elements of $x . S$ is an identity matrix without those rows corresponding to elements of x to be eliminated.

Then, through a $\left(n \times k^{*}\right)$ block diagonal matrix R_{β} defined by

$$
\begin{equation*}
R_{\beta}=\operatorname{diag}\left(1_{k_{1}^{*}}^{\prime}, 1_{k_{2}^{*}}^{\prime}, . ., 1_{k_{n}^{*}}^{\prime}\right) \tag{3.17}
\end{equation*}
$$

where $1_{k_{j}^{*}}$ is a $\left(k_{j}^{*} \times 1\right)$ vector of $1 s$, it is possible to express, in terms of β_{t}, the property that every column of C_{t} sums to one as the following:

$$
\begin{equation*}
R_{\beta} \beta_{t}=1_{n}, \tag{3.18}
\end{equation*}
$$

where 1_{n} denotes a n-vector of ones
The analytical framework of a change of classification given so far is extremely useful when full information in terms of the matrices A_{t}, B_{t} and x_{t} is available ${ }^{9}$. Diversification of economic activities and split within sectors have been expressed in a matrix notation so that the conversion matrix C_{t} can be analytically computed.

Nevertheless, homogeneous and very detailed data sets are rarely available across several years. Whenever they are available, classifying the $E A U s$ with respect to different standards is possible only for more recent observations, since new standards have typically been introduced. As a result, if A_{t}, B_{t} and x_{t}^{*} are given only for $t=T-l+1, \ldots, T$, then β_{t} is available only for the last l time periods. Then, assuming that y_{t} and z_{t} are observed for $t=$ $1,2, \ldots, T$, a model to capture the dynamics of β_{t} has to be considered.

3.3 Dynamics

The dynamics of the conversion matrix can be represented through a state space model in which β_{t} is the unobserved state variable and the measurement equation is a generalization of the deterministic equality given by (3.13). In particular, the following system is considered:

[^7]\[

$$
\begin{align*}
z_{t} & =X_{t} \mu_{t}+w_{t} \tag{3.19}\\
\mu_{t+1} & =F \mu_{t}+\rho+v_{t+1} . \tag{3.20}
\end{align*}
$$
\]

Equation (3.19) is the observation equation in which z_{t} is the p-vector of sectoral composition in terms of the new classification as in (3.2); X_{t} is a ($p \times k$) matrix, where $k=p+k^{*}$ and such that

$$
\begin{equation*}
X_{t}=\left(y_{t}^{* \prime} \otimes I_{p}\right) S_{\mu}^{\prime} \tag{3.21}
\end{equation*}
$$

with y_{t}^{*} the $(n+1)$-vector defined by

$$
y_{t}^{*}=\left[\begin{array}{ll}
1 & y_{t}^{\prime} \tag{3.22}
\end{array}\right]^{\prime},
$$

in which y_{t} is the n-vector of sectoral composition in terms of the old classification as in equation (3.1), I_{p} is the p identity matrix, S_{μ} the $(k \times(p+n p))$ selection matrix such that

$$
S_{\mu}=\left[\begin{array}{cc}
I_{p} & 0 \tag{3.23}\\
0 & S_{\beta}
\end{array}\right]
$$

with I_{p} the p-identity matrix and S_{β} as defined in equation (3.16); μ_{t} is the following k-vector

$$
\begin{equation*}
\mu_{t}=\left[\bar{\mu}_{1 t} \bar{\mu}_{2 t} \ldots . \bar{\mu}_{p t} \beta_{t}^{\prime}\right]^{\prime}, \tag{3.24}
\end{equation*}
$$

in which β_{t} represents the k^{*}-vector as in equation (3.14); finally, w_{t} is a p-vector of i.i.d. Gaussian white noise errors with mean 0 and

$$
E\left[w_{t} w_{\tau}^{\prime}\right]=\left\{\begin{array}{cc}
H & \text { for } t=\tau \tag{3.25}\\
0 & \text { otherwise }
\end{array},\right.
$$

where H is a $(p \times p)$ positive definite and symmetric matrix.
From the deterministic latent variable framework of Section 3.2 a more general device has been provided with the state space model of equations
(3.19)-(3.20). This is justified by considering that a flexible fitting method with quadratic objective is needed to obtain an estimate of unrestricted elements of C_{t}.

Note that with respect to the deterministic representation given in equation (3.13), in each equation of (3.19) a time-varying constant term $\bar{\mu}_{i t}$ has been added in order to take into account scale effects in measuring sectoral aggregates. So, Y_{t} is allowed to differ from $Z_{t}{ }^{10}$.

Equation (3.20) is the state equation in which ρ is a drift on μ_{t}, F is a $(k \times k)$ matrix of parameters and v_{t} is a k-vector of i.i.d. Gaussian white noise errors with mean 0 and

$$
E\left[v_{t} v_{\tau}^{\prime}\right]=\left\{\begin{array}{c}
Q \quad \text { for } t=\tau \tag{3.26}\\
0 \quad \text { otherwise }
\end{array},\right.
$$

where Q is a $(k \times k)$ positive definite and symmetric matrix. The disturbances w_{t} and v_{t} are assumed to be uncorrelated at all lags.
In equation (3.20) the dynamics of μ_{t} are modelled as a first order vector-autoregressive process. The first p elements of μ_{t} are free, whereas each element of β_{t} is positive, satisfying the restrictions given by equation (3.18).

Such a representation is appropriate to capture the dymamics of the compositional effect within sectors that is a characteristic of economic development. The conversion matrix C_{t} is assimilated to a stochastic process that switches over time from a matrix with weights close to 1 concentrated

[^8]on the principal diagonal, to one with lower and more distributed weights among all the elements of C_{t}. Actually, higher weights on the principal diagonal of C_{t} correspond to a low conversion effect within classifications, whereas distribution of weights among all the elements of C_{t} corresponds to a higher compositional effect.

As $t \rightarrow 0$, the old classification standards should be considered fully adequate to represent the structure among economic activities: any conversion effect should be taken into account. For the limit case when $p=n, C_{0}$ can be assumed equal to the ($p \times p$) identity matrix I_{p}.

As $t \rightarrow \infty$ the properties of C_{t} depend on F and on the restrictions given in equation (3.18). Provided that the eigenvalues of F are all inside the unit circle the process for μ_{t} in (3.20) is covariance stationary and a steady-state value ${ }^{11} \mu$ of μ_{t} can be obtained. Taking the expectations of both sides of equation (3.20), rearranging the terms and defining $\mu=E\left[\mu_{t}\right]$ produces

$$
\begin{equation*}
(I-F) \mu=\rho . \tag{3.27}
\end{equation*}
$$

Observing that equation (3.18) can be rewritten as

$$
\left[\begin{array}{ll}
0_{n, p} & R_{\beta} \tag{3.28}
\end{array}\right] \mu=1_{n},
$$

where $0_{n, p}$ is a $(n \times p)$ null matrix and μ_{t} has been replaced with μ, combining (3.27) and (3.28) the following expression is reached:

$$
A_{\mu} \mu=\left[\begin{array}{c}
\rho \tag{3.29}\\
1_{n}
\end{array}\right]
$$

where A_{μ} is the $((n+k) \times k)$ full column rank matrix such that

$$
A_{\mu}=\left[\begin{array}{cc}
(I-F) \tag{3.30}\\
0_{n, p} & R_{\beta}
\end{array}\right]
$$

[^9]The solution for μ is found pre-multiplying (3.29) by $\left(A_{\mu}^{\prime} A_{\mu}\right)^{-1} A_{\mu}^{\prime}$, so that

$$
\mu=\left(A_{\mu}^{\prime} A_{\mu}\right)^{-1} A_{\mu}^{\prime}\left[\begin{array}{c}
\rho \tag{3.31}\\
1_{n}
\end{array}\right]
$$

Alternatively, if some eigenvalues of F lie on or outside the unit circle, then A_{μ} is singular. Unique information as $t \rightarrow \infty$ is given by equation (3.18) which provides the limit value β of β_{t} through the $M P$-inverse of $R_{\beta}{ }^{12}$:

$$
\begin{equation*}
\beta=R_{\beta}^{\prime}\left(R_{\beta} R_{\beta}^{\prime}\right)^{-1} 1_{n} \tag{3.32}
\end{equation*}
$$

[^10]
4 An Application

In this section results of an experimental application are provided. A two step procedure to achieve data reconstruction and a parameter estimation of the change of classification model is suggested.

Let the following system be the analytical extension of the observation equation (3.19):

$$
\begin{align*}
z_{1 t}= & \bar{\mu}_{1 t}+c_{t}^{11} y_{1 t}+. .+c_{t}^{1 n} y_{n t}+w_{1 t} \tag{4.1}\\
z_{2 t}= & \bar{\mu}_{2 t}+c_{t}^{21} y_{1 t}+. .+c_{t}^{2 n} y_{n t}+w_{2 t} \\
& \ldots \\
z_{p t}= & \bar{\mu}_{p t}+c_{t}^{p 1} y_{1 t}+. .+c_{t}^{p n} y_{n t}+w_{p t} \quad \text { for } t=1, \ldots, T .
\end{align*}
$$

The example considers the actual Italian quarterly value added at market prices as the n-vector $y_{t}=\left(y_{1 t} \ldots y_{n t}\right)^{\prime}$, observed for the period 1970.1-1996.4 ($T=108$). Data are at constant prices for 1990 and seasonally adjusted. The dimension of y_{t} is $n=3$ corresponding to the old sectors Agriculture, Industry and Services. $z_{t}=\left(\begin{array}{lll}z_{1 t} & \ldots & z_{p t}\end{array}\right)^{\prime}$ is the p-vector of sectoral value added in terms of the new classification. The example tries to model the conversion among same sectors of two different classifications, so that $p=n=3$ and $z_{1 t}, z_{2 t}$ and $z_{3 t}$ are, respectively, the new definitions of the same sectors as $y_{1 t}, y_{2 t}$ and $y_{3 t}$.
$\bar{\mu}_{t}=\left(\begin{array}{lll}\bar{\mu}_{1 t} & \ldots & \bar{\mu}_{p t}\end{array}\right)^{\prime}$ is the p-vector summarizing the scale effect of the introduction of new accounting methods; $c_{t}^{i j}$, for $i=1, \ldots, p$ and $j=1, \ldots, n$, are the element of the time-varying conversion matrix C_{t}. Finally, $w_{t}=\left(w_{1 t}\right.$
... $\left.w_{p t}\right)^{\prime}$ is a p-vector of i.i.d. Gaussian white noise errors with mean 0 and variance-covariance matrix H.

4.1 The Generating Process of z_{t}

The application requires that z_{t} is provided for the last l observations. For l $=20$ a simulation of z_{t} is performed so that a short series in terms of new standards is available for the period 1992.1-1996.4 $(t=89, \ldots, 108)$.

The generating process of z_{t} for $t=89, \ldots, 108$ starts from an arbitrary guess of the (3×3) conversion matrix $C_{t}^{(0)}$ and the (3×1) vector $\bar{\mu}_{t}^{(0)}$ at time t $=89^{13}$. Since no crossing among definitions of old Agricultural economic activities and new Services has been found (United Nations, 1989), the element c_{t}^{13} of C_{t} is equal to zero for all t. Eliminating out this time-invariant restriction of C_{t}, the combination in an only vector of $\bar{\mu}_{t}$ and each element of C_{t}, column by column, produces the k-vector μ_{t}, with $k=3+3 \times 3-1=11$. A first, non-restricted sampling $\mu_{t}^{(1)}$ of μ_{t} for $t=89, \ldots 108$ can be performed by the state equation (3.20)

$$
\begin{equation*}
\mu_{t+1}^{(1)}=F \mu_{t}^{(1)}+\rho^{(0)}+v_{t}^{(0)} . \tag{4.3}
\end{equation*}
$$

In this exercise standard errors $v_{t}^{(0)}$ have been drawn from a normal distribution with mean 0 and variance-covariance matrix $Q^{(0)}$, where $Q^{(0)}$ is diagonal with identical values for each sector given, respectively, by the

$$
\begin{align*}
& C_{89}^{(0)}=\left(\begin{array}{lll}
: 9855 & : 0067 \\
: 0005 & : 04484 & : 0901
\end{array}\right), \tag{4.2}\\
& \bar{\mu}_{89}^{(0)}=(1.03) y_{89}-C_{89} y_{89} .
\end{align*}
$$

For $\bar{\mu}_{89}^{(0)}$ an identical revaluation of 3% among sectors has been assumed for an hypothetical introduction of new accounting methods.
sample standard deviations of $y_{1 t}, y_{2 t}$ and $y_{3 t}$ over the full time period $(t=$ 1, ..., 108). Notably,

$$
\begin{equation*}
Q^{(0)}=\operatorname{diag}\left(\hat{\sigma}_{y_{1}}, \hat{\sigma}_{y_{2}}, \hat{\sigma}_{y_{3}}, \hat{\sigma}_{y_{1} 1}, \hat{\sigma}_{y_{2}}, \hat{\sigma}_{y_{3}}, \hat{\sigma}_{y_{1}}, \hat{\sigma}_{y_{2}}, \hat{\sigma}_{y_{3}}, \hat{\sigma}_{y_{2}}, \hat{\sigma}_{y_{3}}\right)^{2} . \tag{4.4}
\end{equation*}
$$

For the drift, $\rho^{(0)}$ has been determined as follows:

$$
\begin{equation*}
\rho^{(0)}=\frac{\mu_{89}^{(0)}-\mu_{1}^{(0)}}{89-1} \tag{4.5}
\end{equation*}
$$

with

$$
\mu_{1}^{(0)}=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \tag{4.6}
\end{array}\right)^{\prime} .
$$

Equation (4.5) represents the slope of 11 straight lines passing through the points $\mu_{1 i}^{(0)}$ and $\mu_{89 i}^{(0)}$, for $i=1, \ldots, 11$. Note that $\mu_{1 i}^{(0)}$ is a vector that implies non-conversion among classifications at time $t=1$ and non-scale effect: in practice $z_{1}=y_{1}$.
Assuming that each element of $\mu_{t}^{(1)}$ is non-stationary, the parameter matrix F is equal to the identity matrix. Starting from $\mu_{89}^{(0)}$, by iterative substitutions equation (4.3) can be rewritten as

$$
\begin{equation*}
\mu_{t}^{(1)}=\mu_{89}^{(0)}+\rho^{(0)}(t-89)+\sum_{i=89}^{t} v_{i-89+1}^{(0)}, \quad \text { for } t=89, . ., 108 \tag{4.7}
\end{equation*}
$$

For $t=89, \ldots, 108, z_{t}$ is obtained by substituting each element of $\mu_{t}^{(1)}$ into equation (4.1), where the variance-covariance matrix H of w_{t} is assumed equal to the null matrix. Finally, for the same time period, restricted sampling values of μ_{t} have been generated running the Kalman filter iterations by augmenting equation (4.1) following the Doran (1992) methodology.
Restrictions on μ_{t}, in the form $R_{t} \mu_{t}=r_{t}$, have been fixed for $t=89$

$$
\begin{equation*}
R_{t}=\left[0_{8,3} I_{8}\right], r_{t}=\left(\mu_{4,89}^{(0)} \ldots \mu_{11,89}^{(0)}\right)^{\prime}, \tag{4.8}
\end{equation*}
$$

and for $t=90, \ldots, 108$

$$
R_{t}=\left(\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \tag{4.9}\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), r_{t}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)^{\prime}
$$

where $0_{8,3}$ is a (8×3) null matrix and I_{8} is the (8×8) identity matrix. Note that, for $t=89$, equation (4.8) constraints the conversion matrix C_{t} to be equal to the given initial guess $C_{89}^{(0)}$. For $t=90, \ldots, 108, R_{t}$ equation (4.9) restricts every column of C_{t} to sum to unity. Finally, the coefficients of the (3×1) vector $\bar{\mu}_{t}$ are free for every t.

4.2 Reconstruction of z_{t}

Reconstruction of z_{t} for the period 1970.1-1991.4 $(t=1, \ldots, 88)$ is carried out by the Kalman filter estimating, separately, parameters of three univariate state space models as in equations (2.47)-(2.48). In particular, $y_{t}^{s_{i}}$ in the observation equation (2.47) is 100 -times the logarithm of $y_{i t}$ for $i=1,2,3$ and $t=1, \ldots, 108$. Furthermore $G_{1}=G_{2}=G_{3}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $H_{1}^{\varepsilon}=H_{2}^{\varepsilon}=H_{3}^{\varepsilon}=0^{14}$, so that the system (2.47)-(2.48) becomes

$$
\begin{align*}
y_{i t} & =d_{i t}+z_{i t}^{\dagger} \tag{4.10}\\
\binom{d_{i, t+1}}{z_{i, t+1}^{\dagger}} & =\binom{d_{i t}}{z_{i t}^{\dagger}}+\binom{\lambda_{i}^{d}}{\lambda_{i}^{z}}+\binom{\eta_{i, t+1}^{d}}{\eta_{i, t+1}^{z}} \tag{4.11}
\end{align*}
$$

[^11]The variance-covariance matrix Q_{i}^{η} of $\eta_{i t}=\left(\eta_{i t}^{d} \eta_{i t}^{z}\right)^{\prime}$ is diagonal for every i, such that

$$
Q_{i}^{\eta}=\left(\begin{array}{cc}
\sigma_{i}^{\eta^{d}} & 0 \tag{4.12}\\
0 & \sigma_{i}^{\eta^{z}}
\end{array}\right)^{2}
$$

Restrictions in the form

$$
\left[\begin{array}{ll}
0 & 1 \tag{4.13}
\end{array}\right]\binom{d_{i t}}{z_{i t}^{\dagger}}=z_{i, t}
$$

are imposed for $t=1, z_{i 1}^{\dagger}=y_{i 1}$, that implies non-conversion among classifications; and for $t=89, \ldots, 108, z_{i t}^{\dagger}=z_{i t}$ because observations are available. Restricted estimates of z_{t} for $t=2, . ., 88$ are obtained by the Kalman filter augmenting the observation equation (4.10).
Results of estimation are shown in Table 1. For each sector $(i=1,2,3), \hat{L}$ is the maximum of the sample \log likelihood reached by the Newton-Raphson optimization routine; $\hat{\lambda}_{i}^{d}$ and $\hat{\lambda}_{i}^{z}$ are the estimates for the bivariate drift of the state equation (4.11); $\hat{\sigma}_{i}^{\eta^{d}}$ and $\hat{\sigma}_{i}^{\eta^{z}}$ are the estimates of the diagonal terms of Q_{i}^{η}. In brackets are the standard errors of the estimates ${ }^{15}$.
Graphic results of the reconstruction of z_{t} are in figure 1, where the smoothed estimates (dashed line) for each new sector is shown together with the actual value added (solid line). For the last 20 observations generated values of z_{t} are considered. Both y_{t} and z_{t} are seasonally adjusted. Values are in billions of Italian lira at 1990 prices.

The ordinary Kalman filter has been used for estimating the state vector. Because of non-stationarity of (4.11) the iterations cannot be started with

[^12] For a discussion see Hamilton (1994b, p.143).

Table 1: Results of reconstruction for the period 1970-91 of the Italian value added following a simulated new sectoral classification. Quarterly seasonally adjusted data at constant prices.

Sector	\hat{L}	$\hat{\boldsymbol{\lambda}}_{i}^{d}$	$\hat{\boldsymbol{\lambda}}_{i}^{z}$	$\hat{\boldsymbol{\sigma}}_{i}^{\eta^{d}}$	$\hat{\boldsymbol{\sigma}}_{i}^{\eta^{z}}$
1.Agriculture	-230.6	-.0340	.2268	.1565	3.9737
		$(.0152)$	$(.4369)$	$(.0237)$	$(.2721)$
2.Industry	144.0	-.0532	.5753	.2640	1.5724
		$(.0257)$	$(.1519)$	$(.0403)$	$(.1104)$
3.Services	-33.3	-.0376	.7362	.2032	.5414
		$(.0190)$	$(.0523)$	$(.0316)$	$(.0422)$

Note: \hat{L} is the restricted maximum of the sample log likelihood for the model (4.10)-(4.11);
$\hat{\lambda}_{i 1}, \hat{\lambda}_{i 2}, \hat{\sigma}_{i 1}^{\eta}$ and $\hat{\sigma}_{i 2}^{\eta}$ are, respectively, the estimates for the bivariate drift and for the standard errors of the state equation. In brackets are the standard ertors.
the unconditional mean and variance of $\left(\begin{array}{ll}d_{i t} & z_{i t}^{\dagger}\end{array}\right)^{\prime}$. Then, the starting values $\left(\begin{array}{ll}d_{i 1} & z_{i 1}^{\dagger}\end{array}\right)^{\prime}$ have been arbitrary drawn from the following normal distribution:

$$
\binom{d_{i 1}}{z_{i 1}^{\dagger}} \sim N\left(\left[\begin{array}{c}
0 \tag{4.14}\\
y_{i 1}
\end{array}\right], 10^{2}\left[\begin{array}{cc}
\hat{\sigma}_{i}^{\eta^{d}} & 0 \\
0 & \hat{\sigma}_{i}^{\eta^{z}}
\end{array}\right]^{2}\right)
$$

where the factor 10^{2} registers the prior for the relative uncertainty about the true value of $\left(\begin{array}{ll}d_{i 1} & z_{i 1}^{\dagger}\end{array}\right)^{\prime}$.
No significant difference has been found between smoothed estimates and simulated observations of $z_{t}(t=89, \ldots, 108)$. Over the reconstruction time period $(t=1, . ., 88)$ the pattern of z_{t} is very accurate, respecting the sample path of y_{t}. The implicit interpolation between the first observation and the last 20s seems well fitted, distributing gradually over the time the difference among new and old classification.
Crucial has been the choice of the prior distribution of the initial state vector: this strongly affects the smoothed estimates for the first observations. In practice, constraining the Kalman filter to obey time-varying restrictions often generates breaks over unobserved values of z_{t}. Because in this exercise a model to fit the generating process of z_{t} is based only on the last 20 observations and a restriction is imposed on $t=1$, it can happen that iterating back the smoothing algorithm, the free path does not converge towards constraints. The result is a break in the time series. A delicate starting-prior is the only way to handle the problem.

4.3 Change of Classification Model

For convenience, we rewrite here the state space representation (3.19)-(3.20):

Figure 1: Results of reconstruction. Seasonally adjusted Italian value added following new and old classification standards. Values in billion of lira at 1990 prices.

$$
\begin{align*}
z_{t} & =X_{t} \mu_{t}+w_{t} \tag{4.15}\\
\mu_{t+1} & =F \mu_{t}+\rho+v_{t+1} . \tag{4.16}
\end{align*}
$$

$z_{t}, X_{t}, \mu_{t}, w_{t}, F, \rho$ and v_{t} hold the same definitions set out so far. Now X_{t} and z_{t} are available for the full sample period $(t=1, \ldots, 108)$ and a restricted maximum likelihood estimation of F, ρ and variance-covariance matrices H and Q, respectively, of w_{t}, and v_{t} is attempted.
Restrictions on μ_{t}, in the usual form $R_{t} \mu_{t}=r_{t}$, are referred only to the conversion matrix. Then, for $t=1, \ldots, 88$ restrictions regard the sum to unity of every column of the conversion matrix as equation (4.9). For $t=$ $89, . .108$, since μ_{t} is hypothetically observed, μ_{t} is constrained as equation (4.8). Notably,

$$
\begin{equation*}
R_{t}=\left[0_{8,3} I_{8}\right], r_{t}=\left(\mu_{4, t} \ldots \mu_{11, t}\right)^{\prime} \tag{4.17}
\end{equation*}
$$

Optimal estimation of F, ρ, H and Q is achieved by using a numerical optimization routine. A practical problem in using such optimizers for estimating multivariate models is the high number of parameter to be estimated. It gets into difficulties in seeking the global maximum of the likelihood function.

A reparametrization of the model (4.15)-(4.16) can be considered to overcome a large parameter space. Provided that the eigenvalues of F are all inside the unit circle, if we set $\mu_{t}^{*}=\mu_{t}-\mu$, where μ is the average or steady-state value of μ_{t}, from equation (3.27) $\rho=(I-F) \mu$ and the system (4.15)-(4.16) becomes

$$
\begin{equation*}
z_{t}=X_{t} \mu+X_{t} \mu_{t}^{*}+w_{t} \tag{4.18}
\end{equation*}
$$

Table 2: Results of a change of classification model on the Italian value added. Quarterly seasonally adjusted data at prices of 1990.

Parameter	value	st.error
$\hat{\rho}^{\bar{\mu}_{1}}$	$-2.512 \mathrm{E}-4$	$1.251 \mathrm{E}-5$
$\hat{\rho}^{\bar{\mu}_{2}}$	$9.926 \mathrm{E}-3$	$7.493 \mathrm{E}-4$
$\hat{\rho}^{\bar{\mu}_{3}}$	$5.731 \mathrm{E}-3$	$1.044 \mathrm{E}-3$
$\hat{\rho}^{c^{11}}$	$-1.664 \mathrm{E}-4$	$1.251 \mathrm{E}-5$
$\hat{\rho}^{c^{12}}$	$1.621 \mathrm{E}-4$	$6.199 \mathrm{E}-4$
$\hat{\rho}^{c^{22}}$	$-6.068 \mathrm{E}-4$	$6.112 \mathrm{E}-4$
$\hat{\rho}^{c^{23}}$	$5.309 \mathrm{E}-4$	$6.112 \mathrm{E}-4$
$\hat{\rho}^{c^{33}}$	$-1.504 \mathrm{E}-4$	$6.015 \mathrm{E}-4$
\hat{q}_{1}	$1.240 \mathrm{E}-4$	$7.220 \mathrm{E}-6$
\hat{q}_{2}	$7.516 \mathrm{E}-3$	$3.287 \mathrm{E}-4$
\hat{q}_{3}	$1.065 \mathrm{E}-2$	$4.027 \mathrm{E}-4$
$\hat{z}_{\text {tand }}$		

The advantage is that μ can be estimated by generalized least squares separate from the optimization routine as stressed in section 2.2.2.
Nevertheless μ is not defined if F is equal to the identity matrix: the state equation (4.16) changes in a multivariate random walk with drift $\rho . \rho$ is the slope over which μ_{t} randomly runs. Since every column of the conversion matrix sums to one, the sum of ρ is constrained too. In particular, among the elements of ρ representing the conversion matrix $(p+1, \ldots, k)$, every p elements sum to zero. Instead of estimating k parameter of ρ it is enough to consider only $k-p$ parameters in the optimization routine.
Results of estimation with respect to values of z_{t} and y_{t} rescaled by the factor 10^{-5} are shown in Table 2. Estimation of F and H is restricted, respectively,
to the identity and null matrices ${ }^{16}$ so that, considering that $c_{t}^{31}=0$ for all t, the observation equation (4.15) becomes

$$
\begin{align*}
& z_{1 t}=\bar{\mu}_{1 t}+c_{t}^{11} y_{1 t}+c_{t}^{12} y_{2 t}+c_{t}^{13} y_{3 t} \tag{4.20}\\
& z_{2 t}=\bar{\mu}_{2 t}+c_{t}^{21} y_{1 t}+c_{t}^{22} y_{2 t}+c_{t}^{23} y_{3 t} \\
& z_{3 t}=\bar{\mu}_{3 t}+\quad c_{t}^{32} y_{2 t}+c_{t}^{33} y_{3 t}
\end{align*}
$$

and the state equation (4.16)

$$
\left(\begin{array}{l}
\bar{\mu}_{1, t+1} \tag{4.21}\\
\bar{\mu}_{2, t+1} \\
\bar{\mu}_{3, t+1} \\
c_{t+1}^{11} \\
c_{t+1}^{12} \\
c_{t+1}^{13} \\
c_{t+1}^{21} \\
c_{t+1}^{22} \\
c_{t+1}^{23} \\
c_{t+1}^{32} \\
c_{t+1}^{33}
\end{array}\right)=\left(\begin{array}{c}
\bar{\mu}_{1 t} \\
\bar{\mu}_{2 t} \\
\bar{\mu}_{3 t} \\
c_{t}^{11} \\
c_{t}^{12} \\
c_{t}^{13} \\
c_{t}^{21} \\
c_{t}^{22} \\
c_{t}^{23} \\
c_{t}^{32} \\
c_{t}^{33}
\end{array}\right)+\left(\begin{array}{c}
\rho^{\bar{\mu}_{1}} \\
\rho^{\bar{\mu}_{2}} \\
\rho^{\bar{\mu}_{3}} \\
\rho^{c^{1^{1}}} \\
\rho_{c^{1^{2}}} \\
-\rho_{c^{11}}-\rho^{c^{12}} \\
-\rho^{c^{22}}-\rho^{c^{23}} \\
\rho_{c^{22}}^{c^{c^{33}}} \\
-\rho_{c^{33}}^{c^{33}}
\end{array}\right)+\left(\begin{array}{c}
v_{t+1}^{\bar{\mu}_{1}} \\
v_{t+1}^{\bar{\mu}_{2}} \\
v_{t+1}^{\mu_{3}} \\
v_{t+1}^{c^{11}} \\
v_{t+1}^{c^{12}} \\
v_{t+1}^{c^{13}} \\
v_{t+1}^{c^{21}} \\
v_{t+1}^{c^{22}} \\
v_{t+1}^{c^{23}} \\
v_{t+1}^{c^{32}} \\
v_{t+1}^{c^{33}}
\end{array}\right)
$$

because for ρ every tern of elements representing the conversion matrix $\left(\rho^{c^{11}}, . ., \rho^{c^{33}}\right)$ sum to zero. The variance-covariance matrix Q of v_{t} has been assumed diagonal with identical standard deviations $\hat{q}_{1}, \hat{q}_{2}, \hat{q}_{3}$ for each sector. This parametrization allows the sample log likelihood L depending only on $8+3=11$ unknown parameters. The maximum \hat{L} reached by

[^13]the Newton-Raphson optimization routine is 3096.3. Standard errors of the estimates are obtained by the second derivative method (Hamilton, 1994b, p.143).

For each sector, -first, second and third row of equation (4.20)- smoothed estimates of $\bar{\mu}_{i t}, c_{t}^{i 1}, c_{t}^{i 2}$ and $c_{t}^{i 3}$ for $i=1,2,3$ are represented, respectively, in figures 2, 3 and 4 . For the last 20 observations generated values are considered. The starting values μ_{1} have been arbitrarily drawn from the following normal distribution:

$$
\begin{equation*}
\mu_{1} \sim N\left(\mu_{1}^{(0)}, 10 \times \hat{Q}\right) \tag{4.22}
\end{equation*}
$$

where the mean $\mu_{1}^{(0)}$ reflects the hypothesis of no conversion among classification for $t=1$, see equation (4.6), and the factor 10 registers the prior for the relative uncertainty about the true value of μ_{1}. Among different sectors, no significant differences have been observed between smoothed estimates and simulated observations of μ_{t}, i.e. when $t=89, .$. , 108. With regard to the reconstruction period (i.e. $t=1$, .., 88), aggregation constraints among conversion parameters have always been respected but with different performances among sectors:
for the Industry sector (figure 3), $\bar{\mu}_{2 t}, \hat{c}_{t}^{21}, \hat{c}_{t}^{22}$ and \hat{c}_{t}^{23} well interpolate the actual observations starting from hypothetical points 0 or 1 at the beginning of the sample. For these observations a small but significant break has been observed only for the conversion parameters \hat{c}_{t}^{22} and \hat{c}_{t}^{23}, revealing the difficulties stressed in section 4.2 in fitting the smoothed estimates to the initial constraints;
for the Agriculture and Service sectors (figure 2 and 4) the exercise seems to be particularly complicated: conversion parameters are highly irregular and very close to the boundary limits. Difficulties have been encountered

Figure 2: Smoothed estimates of time-varying coefficients for the Agriculture sector.

Figure 3: Smoothed estimates of time varying coefficients for the Industry sector.

Figure 4: Smoothing estimates of time varying coefficients for the Service sector.
(a) Coefficient
since estimates of the state vector give often values which tend to be less than zero or greater than one, even if never more than 0.5%. In fact, by using the ordinary Kalman filter estimates are not guaranteed to be inside a defined interval or to satisfy non-linear constraints ${ }^{17}$. Estimates against boundary conditions always involve first observations, revealing problems in the definition of the initial conditions of the Kalman filter.

[^14]
5 Conclusions

In this thesis a framework for a conversion of sectoral time series from old to new classification standards has been suggested. This is based on the definition of a conversion matrix to express time-varying compositional effects among different sectoral definitions.

The change of classification is an important practical problem considering European Unification. By that date all European countries will adopt National Accounts obeying new sectoral standards, causing problems of comparing pre- and post-change time series.
State space representations have been presented to handle historical reconstruction and modelling change of classification. The Doran (1992) and Doran and Rambaldi (1996) methodology of constraining the Kalman filter to satisfy time varying restrictions has provided a flexible instrument to obtain efficient smoothed estimates.
A two step experimental application has provided the Italian Value Added reconstruction and parameter estimation of a three-sector model. The proposals of Doran and Rambaldi $(1996,1997)$ to reparametrise the original model in order to reduce the parameter space have not been applied because of non-stationarity of original time series and time variability in the dimension of restrictions. A simpler reparametrization of the state equation has been effective in overcoming the usual convergence problems associated with numerical search procedures.

Reconstructed smoothed estimates have shown a good fit, well interpolating over time the difference among new and old classifications. On the other
hand, the pattern across the first observations has shown a strong dependence on the arbitrary prior distribution of the initial state vector.

The fit of the smoothed conversion matrix estimates is revealed to be good, always respecting aggregation constraints. Nevertheless, the exercise has stressed difficulties in restricting reconstructed values to vary within defined intervals. In particular this behaviour seems to involve the observed conversion parameters which are highly irregular and close to the boundary limits. Such a problem could be solved by considering the extended instead of the ordinary Kalman filter. Then, extended state space forms could be formulated to incorporate non linear constraints which are appropriate to the definition of the conversion matrix.

Appendix A: Data

Data used for the application of chapter 4 are shown in this appendix. These correspond to the Italian quarterly value added figures at market prices for the period 1970.1-1996.4. The seasonally adjusted release in terms of billion of Italian lira at 1990 prices is considered.

Agriculture

	Q1	Q2	Q3	Q4
1970	9731	9771	9983	9649
1971	9833	9792	9972	9594
1972	9406	8769	8674	8833
1973	9325	9449	9613	9851
1974	9543	9727	9721	9759
1975	9779	9897	10276	10140
1976	9904	9846	9541	9361
1977	10005	9311	9673	9710
1978	10023	9808	9805	9811
1979	9917	10546	10446	10531
1980	10358	10840	10873	11351
1981	10189	10755	10846	10820
1982	10565	10538	10485	10405
1983	10916	11049	11436	12462
1984	11175	11335	10597	10064
1985	10454	10795	10657	11384
1986	10600	11159	11307	11025
1987	10926	11358	11507	11487
1988	11108	10662	10847	10843
1989	10966	10623	11043	11136
1990	10924	10704	10878	9627
1991	11235	11441	11106	11760
1992	11451	11608	11913	11727
1993	11563	11367	11188	11869
1994	12000	11579	11343	11274
1995	12080	11512	11128	11672
1996	11726	11815	12002	11961

Industry

	Q 1	Q 2	Q 3	Q 4
1970	65218	66646	67602	66513
1971	66088	65630	66309	67474
1972	68696	68069	68332	69607
1973	70342	72922	76997	78336
1974	80128	79762	78848	75114
1975	72906	72607	73384	74427
1976	75083	77513	81007	83362
1977	83427	82041	79804	79567
1978	81677	82989	84000	86698
1979	87289	86723	89293	93641
1980	94958	93329	90552	90662
1981	90274	91145	90534	90360
1982	89921	89832	88228	87490
1983	88052	88802	89347	89490
1984	91216	90237	90496	90575
1985	91337	92268	92972	93493
1986	93277	94858	96130	95905
1987	95321	98351	98152	100033
1988	102184	102534	103342	104653
1989	105538	106406	106923	108464
1990	109722	109251	109733	108923
1991	108639	108304	110065	110127
1992	110444	110451	109361	108388
1993	106769	107072	105609	106912
1994	106837	110288	111474	112381
1995	114340	113853	115202	115534
1996	115787	113823	114871	114013

Service

	$Q 1$	$Q 2$	$Q 3$	$Q 4$
1970	104342	104528	105892	106736
1971	107993	108894	110317	111287
1972	113128	113953	115356	115852
1973	117208	119681	122619	124353
1974	126620	126454	126092	124630
1975	124932	124787	126407	128155
1976	130154	132640	135390	136633
1977	136688	137408	138297	139340
1978	141214	142891	144892	146725
1979	149026	150078	151608	154226
1980	155139	155797	155619	155721
1981	156875	158452	159042	159609
1982	160698	161565	161676	162484
1983	162731	163125	164267	166501
1984	168549	169441	170014	170939
1985	172137	174648	176774	177704
1986	178605	179618	180725	182561
1987	183772	185147	186331	188733
1988	190507	192202	193516	195176
1989	195949	197038	198440	200934
1990	202009	202652	203483	204283
1991	204614	205393	206373	207172
1992	207930	208762	209114	208748
1993	209508	209685	210247	211068
1994	211593	212365	213559	214103
1995	215657	216738	217772	218047
1996	218394	219198	220089	220354

Appendix B: Codes

In this appendix codes to perform the application of Chapter 4 are provided. All the codes are compiled in Gauss, version 3.2. The material, quite complicated, is arranged in different sections, where main programs and procedures are shown separately.
Following the organization of Chapter 4, first codes on the generating process of z_{t} are considered: the main program GENX1 presents the instructions to control the simulation of data in terms of a new hypothetical classification. Then, the program GENXMAI1 performs the reconstruction of z_{t} as it is shown in section 4.2. Finally, TVC8MAIN is the main program to control the Kalman filter and the Maximum Likelihood estimation of the parameters of the state space form concerning the change of classification model of section 4.3.
The three mentioned main programs need specific Gauss-procedures, which are compiled separately. These are:
TVC8KF, which is the general routine to control the Kalman filter and to evaluate the Likelihood Function;
AUGMENT, to augment the state space form in terms of the Doran (1992) methodology;
INTERP, to perform a deterministic interpolation over the time of matrices provided at two given periods.

Gauss codes for the generating process of z_{t}

Filename: GENX1
Author: Filippo Moauro
Date: 24/11/1997
Type: Gauss main program
Description:
Simulate data by the Kalman filter under time-varying constraints, starting from a synthetic conversion matrix. General state space form like:
[1] $y_{-} t=\operatorname{ast}\left(X s_{-} t\right)+H s t\left(X s_{-} t\right) * c h s i_{-} t+w_{-} t$,
[2] \quad chsi $i_{-} t+1=F s t\left(X s_{-} t\right) *$ chsi_ $t+m u+v_{-} t+1$,
with $t=1, \ldots$, capt,
$y=($ capt $x n)$ matrix of endogenous variables,
$X X=$ (capt $x k$) matrix of exogenous variables,
chsi_t $=r x$-state vector, $m u=$ drift,
[3] $\quad X_{-} t=X X_{-} t \otimes I_{n}\left(n x\left(n^{*} k\right)\right)$ matrix,
[4] $\operatorname{ast}\left(X s_{-} t\right)=0$,
[5] $\quad H s t\left(X s_{-} t\right)=X s_{-} t$,
[6] $\quad \operatorname{Cov}\left(w_{-} t\right)=R=0$,
[7] $\operatorname{Fst}\left(X s_{-} t\right)=I_{n}$,
[8] $\operatorname{Cov}\left(v_{-} t\right)=Q$ (diagonal).
Restrictions like:
[9] \quad RR_t ${ }^{*}$ chsi_t $=$ cn_t.
Include:
INTERP $\Rightarrow>$ deterministic matrix interpolation,
TVC8KF $=>$ Kalman filter and likelihood evaluation,
AUGMENT $\Rightarrow>$ Augmentation of the measurement equation.
$====================================* /$
@ Set global variables and Kalman filter control parameters @
$\mathrm{n}=3$; @ dimension of observation vector @
$\mathrm{k}=\mathrm{n}+1$; @ dimension of exogenous vector @
$\mathrm{rx}=\mathrm{n}^{*} \mathrm{k}$; @ dimension of state-space (eventually Sbb correction) @
cap0 $=108$; @ n.observations dataset @
capt $=20$; @ sample size generated y_{-}@
sigc =.00001; @ coefficient on standard errors for every sector @
idgp =.03; @ arbitrary percentage of increasing of GDP @
scdata $=1$; @ scale factor on dataset @
scal =1; @ scale factor on y @
prior $=1 \mathrm{e}+3$; @ diffuse prior on P_1/0@
ind $=$ seqa(1992.25,0.25,capt); @ time sequence @
$\mathrm{Sbb}=\{100000000000$,
010000000000 ,
001000000000 ,
000100000000 ,
000010000000 , 000001000000 , 000000100000 , 000000010000 , 000000001000 , 000000000010 , $000000000001\}$; @ selection matrix for time invariant constraints @ $\mathrm{rx}=\mathrm{rx}-(\mathrm{rows}(\mathrm{Sbb})-$-rows $(\mathrm{Sbb}))$; @ dimension-correction @ Smu $= \begin{cases}10000000, ~\end{cases}$ 01000000 , 00100000 , 00010000 , 00001000 , 000-1-1000, $00000-1$-1 0, 00000100 , 00000010 , $0000000-1$, $00000001\}$ @ selection matrix for restrictions on mu @;
chsi $=$ zeros(capt,rx); @ filter inferences chsi_t/t @
$\mathrm{P}=\mathrm{zeros}\left(\mathrm{capt}, \mathrm{rx}\right.$ ^2); @ filter variances $P_{-} t / t @$
start1=1; @quarter70.1@
startob=89; @ quarter 92.1@
$\mathrm{C} 1=$ eye(n); @ hypothesized conversion matrix for 70.1@
$\mathrm{Cob}=\{.985498549317$. 006719179210 . 0 , .014001400665 . 944885039408.010105882315 , .000500050018.048395781382.989894117685\}; @ obs.conversion matrix @
/* $=====================================$ */
@ Read dataset @
@ value added agriculture, industry and service - old classification @ load XXX[cap0,n] = va3sec.prn;
$\mathrm{XX}=\mathrm{XXX}[$ cap 0 -capt +1 :cap $0,$.$] / scdata;$
GDPold $=\operatorname{sumc}\left(\mathrm{XX}^{\prime}\right)$; @ GDP old classification @
$\mathrm{XX}=$ ones(capt,1) ~XX; @ add constant @
$/ *====================================* /$
@ CC1 and CCob @
\#include interp;
$\mathrm{y} 1=(1+\mathrm{idgp})^{*} \mathrm{XX}[1,2: 4]^{1} /$ scdata;
constob $=\mathrm{y} 1-\mathrm{Cob} * \mathrm{XX}[1,2: 4]^{\prime} ;$ @ observed constants in $t=$ startob @
$\mathrm{CC} 1=\operatorname{zeros}(\mathrm{n}, 1){ }^{\sim} \mathrm{C} 1$; @ conversion matrix in $t=70.1 @$
$\mathrm{CCob}=$ constob ~ Cob; @ constant extended conv.matrix @
CCinterp = interp(CC1,CCob,start1,startob,cap0); @ interpolation @
CCinterp $=$ CCinterp[cap0-capt+1:cap0,.];
XXinterp $=$ CCinterp* $\left(X X . *\right.$.eye(n)) ${ }^{*} \cdot{ }^{*}\left(\text { eye }(\text { capt }) .{ }^{*} \text {.ones }(1, \mathrm{n})\right)^{*}$ (ones(capt,1).*.eye(n));
$/ *====================================* /$
@ Simulated parameter values @
$\mathrm{mu}=\operatorname{inv}\left(\mathrm{Smu}^{\prime *}{ }^{\mathrm{Smu}}\right)^{*} \mathrm{Smu}^{\prime} * \mathrm{Sbb}^{*}(\mathrm{vec}(\mathrm{CCob})-\mathrm{vec}(\mathrm{CC} 1)) /($ startob - start1) $;$
sigv $=$ sigc*stdc(XX[.,2:4]); @ variance-covariance matrix of $v_{-} t$ @
$\mathrm{th}=\operatorname{vec}(\mathrm{mu}) \mid \operatorname{vec}($ sigv $) ;$
$/^{*}==================================1 /$
@ Read in and translate parameters into standard state-space matrices @

```
\(\operatorname{proc}(2)=\operatorname{readin}(\mathrm{it}, \mathrm{y}, \mathrm{XX}, \mathrm{n}, \mathrm{Sbb})\);
    local Xs, ydp;
    \(\mathrm{X} s=\mathrm{XX}[\mathrm{it},\).\(] .*. eye(n); @ as in [3] @\)
    \(\mathrm{X} s=\mathrm{X} \mathrm{s}^{*} \mathrm{Sbb}^{\prime} ;\)
    \(\mathrm{ydp}=\mathrm{y}[\mathrm{it}, .]^{\prime} ;\)
retp(ydp, Xs); endp;
\(\operatorname{proc}(1)=\operatorname{ast}(\mathrm{th}, \mathrm{rx}) ;\)
    local A;
    \(\mathrm{A}=0\); @ as in [4] @
\(\operatorname{retp}(\mathrm{A})\); endp;
```

```
proc(1) = Hst(Xs);
    local HH;
    HH=Xs'; @ as in [5] @
retp(HH); endp;
proc(1) = Rst(th, n);
    local R;
    R =zeros(n,n);@as in [6] @
retp(R); endp;
proc(1) = Fst(th, rx);
    local Fx;
    Fx=eye(rx);@ as in [7]@
retp(Fx); endp;
proc(1) = must(th,rx);
    local aver;
    aver = Smu**h[1:rx-n,1];
retp(aver); endp;
proc(1) = Qst(th,rx);
    local Q, sigvsq;
    sigvsq = th[rx-n+1:rx,1] ^2;
    sigvsq = Sbb*(vec(ones(1,k).*.sigvsq)})
    Q = diagrv(zeros(rx,rx),sigvsq); @ as in [8] @
retp(Q); endp;
/* ========================================**/
@ Time-varying constrains@
int89 = 1;
RR89 = zeros(rx-n,n) ~ eye(rx-n);
cn89 = scal*vec(Cob);
cn89 = Sbb[4:rx,4:n*k]* cn89;
intob = zeros(2,1);
intob[1,1] = 2; intob[2,1] = capt;
RRob = zeros(n,n) ~ eye(n).*.ones(1,n);
RRob = RRob*Sbb';
cnob = scal*ones(n,1);
skipcon = 1; @ flag 0-1 to constraint the Kalman filter @
proc(3) = constr(it, Xs, ydp, R);
```

local smacn;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{R}\}=\operatorname{augment}(\mathrm{cn} 89, \mathrm{RR} 89, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R}, \mathrm{it}, \operatorname{int} 89)$;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{R}\}=\operatorname{augment}($ cnob, RRob, Xs, ydp, R, it, intob);
retp(Xs, ydp, R); endp;

```
/* ======================================= **/
@ Generate y before constraints @
dseed = 162443;
v_t = rndns(capt,rx,dseed)*Qst(th, rx);
slope = vec(CCob - CC1)/(startob - start1);
slope = Sbb*slope;
drift = seqa(0,1,capt).*.slope';
CCgenr = drift + ones(capt,1).*.(Sbb*vec(CCob))' + cumsumc(v_t);
CCgenr = CCgenr*Sbb;
y = ((CCgenr*(XX.*.eye(n))').*(eye(capt).*.ones(1,n)))*(ones(capt,1).*.eye(n));
/* =======================================**/
@ Results@
```

$\mathrm{Fx}=\mathrm{Fst}(\mathrm{th}, \mathrm{rx})$;
\#include tvc8kf;
\#include augment;
$\mathrm{z}=-\mathrm{ofn}(\mathrm{th})$;
convob $=$ chsi*Sbb;
yyy $=\operatorname{convob}^{*}\left(X X . .^{*} \text {.eye }(\mathrm{n})\right)^{\prime} \cdot{ }^{*}\left(\text { eye }(\text { capt }) \cdot{ }^{*} . \text { ones }(1, \mathrm{n})\right)^{*}$
(ones(capt,1).*.eye(n));
save yyy;
save convob;

Gauss codes for the reconstruction of z_{t}

$/^{*}===1$
Filename: GENXMAII
Author: Filippo Moauro
Date: 25/11/1997
Type: Gauss main program
Description:
The program controls the Kalman filter for data reconstruction. For each sector the model is:
[2] $\left[a_{-} t+1 x_{-} t+1\right]^{\prime}=\left[a_{-} t x_{-} t\right]^{\prime}+[a x]^{\prime}+v_{-} t+1$,
with $t=1, \ldots$, capt,
$y_{-} t=\log$ of value added old-classification i-th sector,
$\mathrm{x}-t=\log$ of value added new-classification i-th sector to be reconstructed.
[3]
$\operatorname{Cov}\left(w_{-} t\right)=0$,
[4] $\operatorname{Cov}\left(v_{-} t\right)=Q$ (diagonal),
Restrictions like:
[5] $\quad \mathrm{x}-1=y-1$
[6] $\quad \mathrm{x}-t=x^{*}-t$ for $t=$ startob, startob $+1, . .$, capt
Include:
TVC8KF $=>$ Kalman filter and likelihood evaluation
OPTMUM $\Rightarrow>$ Gauss numerical optimizer
AUGMENT $\Rightarrow>$ Augmentation of the measurement equation
$=====================================* * /$
@ Set global variables and Kalman filter control parameters @
startob = 89; @ 92.1@
$\sec =1$; @ select sector (1, 2, 3) @
$\mathrm{n}=1$; @ dimension of observation vector @
$\mathrm{k}=\mathrm{n}+1$; @dimension of exogenous vector @
$\mathrm{rx}=2$; @ dimension of state-space (eventually Sbb correction) @
capt =108; @ sample size @
scal=100; @ scale factor @
prior $=1 \mathrm{e}+6$; @ diffuse prior on P_1/0 @
ind $=$ seqa(1970.25,0.25,capt); @ time sequence @
chsi $=$ zeros(capt,rx); @ filter inferences chsi_t/t @
chsif $=$ zeros(capt,rx); @ forecasted inferences chsi $t+1 / t$ @
chsis $=z \operatorname{zeros}($ capt,rx $)$; @ smoothed inferences chsi_t/T @
$\mathrm{P}=\operatorname{zeros}(\mathrm{capt}, \mathrm{rx} \wedge 2)$; @ filter variances $P _t / t$ @
$\operatorname{Pf}=$ zeros $\left(\right.$ capt,rx^2); @ forecasted variances $P_{-} t+1 / t @$
Ps = zeros(capt,rx^2); @ smoothed variances P_t/T @
output file=junk reset;

```
/* =======================================**/
@ Read dataset @
@ value added agriculture, industry and service - old classification @ load vagg \([\) capt, 3\(]=\) va3sec.prn;
load yyy; @ generated series new class. from 92.1 (see GENX1) @ ly \(=\mathrm{scal}^{*} \ln (\) vagg[.,sec]);
\(\mathrm{lx}=\) zeros(startob-1,1) \(\mid\) scal* \({ }^{*} \ln (\mathrm{yyy}[.\), sec \(])\);
\(/ *=================================* /\)
@ Guess initial parameter values @
```

$\mathrm{mu}=-.2396-.0025 ;$
sigv $=-.5161,1$;
th $=\operatorname{vec}(\mathrm{mu}) \mid \operatorname{vec}($ sigv $) ;$
th0 = th; @ backup @
proc startval; @ This defines starting value for iteration to be th @ retp(th); endp;

```
/* ======================================== */
```

@ Read in and translate parameters into standard state-space matrices @

```
proc(2)= readin(it, y, XX, n, Sbb);
    local Xs, ydp;
    Xs=HH';
    ydp = ly[it,.];
retp(ydp, Xs); endp;
proc(1) = ast(th,rx);
    local A;
    A = 0;
retp(A); endp;
```

```
\(\operatorname{proc}(1)=\operatorname{Hst}(\mathrm{Xs}) ;\)
    local HH;
    \(\mathrm{HH}=\{1,1\} ;\) as in [1] @
retp(HH); endp;
\(\operatorname{proc}(1)=\operatorname{must}(\mathrm{th}, \mathrm{rx})\); @ as in [2] @
    local mean;
    mean \(=\operatorname{th}[1,1] \mid \operatorname{th}[2,1] ;\)
retp(mean); endp;
\(\operatorname{proc}(1)=\operatorname{Rst}(\mathrm{th}, \mathrm{n})\); @ as in [3] @
    local R;
    \(\mathrm{R}=0\);
retp \((\mathrm{R})\); endp;
\(\operatorname{proc}(1)=\) Qst(th, rx); @ as in [4] @
    local Q, sigvsq;
    sigvsq \(=\operatorname{th}[3: 4,1]^{\wedge} 2 ;\)
    \(\mathrm{Q}=\operatorname{diagrv}(\mathrm{zeros}(\mathrm{rx}, \mathrm{rx})\), sigvsq\() ;\)
\(\operatorname{retp}(\mathrm{Q})\); endp;
\(\operatorname{proc}(1)=\) Fst(th, rx); @as in [2] @
    local FF;
    \(\mathrm{FF}=\) eye( rx );
\(\operatorname{retp}(\mathrm{FF})\); endp;
```

$/^{*}====================================^{*} /$
@ Time-variant constrains @
int1 $=1 ;$
$R R 1=\{01\} ;$
$\mathrm{cn} 1=1 \mathrm{y}[1,1]$; @ as in [5] @
intob1 $=$ zeros $(2,1) ;$ intob1 $[1,1]=$ startob; intob1 $[2,1]=$ capt;
RRob1 = RR1;
cnob1=lx; @as in [6] @
skipcon = 1; @ flag 0-1 to constraint the Kalman filter @
$\operatorname{proc}(3)=\operatorname{constr}(\mathrm{it}, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R})$;
local Ren;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{Rcn}\}=\operatorname{augment}(\mathrm{cn} 1, \mathrm{RR} 1, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R}, \mathrm{it}, \mathrm{int1})$;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{Rcn}\}=\operatorname{augment}(\mathrm{cnob1[it,]}$. ', RRob1, Xs, ydp, R, it, intob1);
retp(Xs, ydp, Rcn); endp;

```
\(/^{*}====================================_{*}^{*} /\)
@ Echo initial parameter values@
```

format /rds 10,6;
"starting values of th as follows"; th;
\#include tvc8kf;
\#include augment;
"Value of \log likelihood"; $\mathrm{z}=$-ofn(th);z;
format / m1;
"Do you wish to continue (y or n)?";
zzs = cons;
if $z Z S$ S $==$ " n "; end; endif;

```
\(/^{*}===================================={ }_{*}^{*} /\)
@ Set parameters to use Gauss numerical optimizer @
```

library optmum;
\#include optmum.ext;
__btol = 1.e-06; @ This controls convergence criterion for coefficients @
_-gtol = 1.e-06; @ This controls convergence criterion for gradient @
-_algr = 1; @ This chooses BFGS optimization @
_-miter = 400; @ This controls the maximum number of iterations @
_-output = 1; @ This causes extra output to be displayed @
__covp = 0; @ This speeds up return from OPTMUM; note that the program
makes a reparameterization to calculate std. errors @
output off;
$\{\mathrm{x}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}=$ optmum(\&ofn,startval); @ GAUSS numerical optimizer @
output file=junk on;
"";"";"MLE as parameterized for numerical optimization ";
"Coefficients:" ;x';
"";"Value of log likelihood:";;-f;
"";"Gradient vector:"; g^{\prime};
$\mathrm{h}=(\mathrm{hessp}(\& \mathrm{ofn}, \mathrm{x}))$;
va $=\operatorname{eigrs}(\mathrm{h})$;
call ofn(x);
if minc(eigrs $(\mathrm{h}))<=0$;
"Negative of Hessian is not positive definite";
"Either you have not found local maximum, or else estimates are up "
"against boundary condition. In latter case, impose the restricted "
"params rather than estimate them to calculate standard errors";
else;
$\mathrm{h}=\operatorname{invpd}(\mathrm{h}) ;$
$\operatorname{std}=\operatorname{diag}(\mathrm{h})^{\wedge} .5$;
"standard errors";std';
"variance-covariance matrix";
format /m3; h;
format /m1;
endif;
$\mathrm{R}=\operatorname{Rst}(\mathrm{x}, \mathrm{n})$;
$\mathrm{FX}=\operatorname{Fst}(\mathrm{x}, \mathrm{rx})$;
$\mathrm{Q}=\operatorname{Qst}(\mathrm{x}, \mathrm{rx})$;
"prior:"; format /rds 20,0; prior;
"Rst:"; format /rds 20,16; R;
"Fst:"; format /rds 20,16; FX;
"Qst:"; format /rds 20,16; Q;
"";"--";";
output file=junk off;

Gauss codes for a change of classification model

$/^{*}===1$
Filename: TVC8MAIN
Author: Filippo Moauro
Date: 18/10/1997
Type: Gauss main program
Description:
Modelling a change of classification for sectoral time series via a conversion matrix approach. The program controls the Kalman filter estimation of a time-varying regression model under time-varying constraints (Doran,1992). General model like:
[1] $\quad y_{-} t=\operatorname{ast}\left(X s_{-} t\right)+H s t\left(X s_{-} t\right)^{\prime} * \operatorname{chsi} i_{-} t+w_{-} t$
[2] $\quad c h s i_{-} t+1=F s t\left(X s_{-} t\right) * c h s i_{-} t+m u+v_{-} t+1$
with $t=1, \ldots$, capt,
[3]

$$
\operatorname{Cov}\left(w_{-} t\right)=\operatorname{Rst}\left(X s_{-} t\right)
$$

[4]
$\operatorname{Cov}\left(v_{-} t\right)=\operatorname{Qst}\left(X s_{-} t\right)$
$y_{-} t=$ sectoral Italian value added old-classification
$X_{s} t=$ sectoral Italian value added new-classification. It is assumed that
$X s_{-} t$ is observed only for a given period at the end of the sample ($t=$ startob, startob +1 , .., capt). Interpolation via the Kalman filter to reconstruct the previous period
Restrictions like:
[5]

$$
R R_{-} t * c h s i_{-} t=c n_{-} t
$$

Include:
TVC8KF $\Rightarrow>$ Kalman filter and likelihood evaluation
OPTMUM $=>$ Gauss numerical optimizer
AUGMENT $\Rightarrow>$ Augmentation of the measurement equation
$======================================* /$
@ Set global variables and Kalman filter control parameters @
$\mathrm{n}=3$; @ dimension of observation vector @
$\mathrm{k}=\mathrm{n}+1$; @ dimension of exogenous vector @
$\mathrm{rx}=\mathrm{n}^{*} \mathrm{k}$; @ dimension of state-space (eventually Sbb correction) @
capt =108; @ sample size @
scdata $=1 \mathrm{e}+4$; @ scale factor on dataset @
scal $=1$; @ scale factor on $y @$
prior $=1 \mathrm{e}+2$; @ diffuse prior on P_1/0@
ind=seqa(1970.25,0.25,capt); @ time sequence @
load Sbb; @ selection matrix for time-invariant constraints (see GENX1) @ rx = rx - (rows(Sbb')-rows(Sbb)); @ dimension-correction @
load Smu; @ selection matrix for restrictions on mu @
chsi10pr $=\operatorname{scal}^{*} \operatorname{Sbb}^{*}(z \operatorname{eros}(\mathrm{n}, 1) \mid \operatorname{vec}(\operatorname{eye}(\mathrm{n})))$; @ prior on chsi_1/0 @
chsi $=$ zeros(capt,rx); @ filter inferences chsi_t/t @
chsif $=$ zeros $($ capt, rx$)$; @ forecasted inferences chsi_t $+1 / t @$
chsis $=$ zeros(capt,rx); @ smoothed inferences chsi_t/T @
$\mathrm{P}=\operatorname{zeros}\left(\mathrm{capt}, \mathrm{rx}{ }^{\wedge} 2\right)$; @ filter variances $P_{-} t / t @$
$\mathrm{Pf}=$ zeros $\left(\right.$ capt,rx^2); @ forecasted variances $P_{-} t+1 / t @$
Ps $=$ zeros (capt,rx^2); @ smoothed variances $P_{-} t / T$
$y=$ capt x matrix of observations on endogenous variables
$X X .=$ capt $x k$ matrix of observations on exogenous variables @
start $1=1$; @ quarter 70.1@
startob=89; @quarter 92.1@
$\mathrm{CC1}=\operatorname{zeros}(\mathrm{n}, 1)^{\sim} \operatorname{eye}(\mathrm{n})$; @ simulated conversion matrix for 70.1@
load convob; @ observed conversion matrices for 92.1-96.4@
output file=junk reset;
$/ *====================================* /$
@ Read dataset @
@ value added agriculture, industry and service - old classification @ load XX[capt, n$]=$ va3sec.prn;
$\mathrm{XX}=\mathrm{XX} /$ scdata;
$\mathrm{XX}=$ ones(capt,1) $\sim \mathrm{XX}$; @ add constant @
load agr11pr6; @ reconstructed series - agriculture (see GENXMAI1) @ load ind11pr6; @ reconstructed series - industry (see GENXMAI1) @ load ser11pr8; @ reconstructed series - service (see GENXMAI1) @ $\mathrm{y}=\left(\operatorname{agr} 11 \mathrm{pr} 6^{\sim}\right.$ ind11pr 6^{\sim} ser11pr8)/scdata;
/* $=====================================* /$
@ OLS estimation of time-invariant coefficients (bb0).
Starting values for the maximum likelihood estimation @
Cob $=$ reshape $\left(\operatorname{convob}\left[1, \mathrm{n}+1: \mathrm{n}^{*} \mathrm{k}\right], \mathrm{n}, \mathrm{n}\right)^{\prime}$; constob $=\mathrm{y}[$ startob,.]' - Cob*XX[startob,2:4]'; @ observed constants in $t=$ startob @
$\mathrm{CCob}=$ constob ${ }^{\text {Cob; } @ ~ c o n s t a n t ~ e x t e n d e d ~ c o n v . m a t r i x ~ @ ~}$
$\mathrm{y}=$ scal $^{*} \mathrm{y}$;
_output=0;
$\mathrm{bb}=\mathrm{zeros}\left(\mathrm{n}^{*} \mathrm{k}, 1\right)$; @ Time-invariant coefficients @
stderr $=\operatorname{zeros}\left(\mathrm{n}^{*} \mathrm{k}, 1\right)$; @ Coefficient standard errors @
sighat $=z \operatorname{zeros}(\mathrm{n}, 1)$; @ Standard errors of regressions @
$\operatorname{rsq}=\operatorname{zeros}(\mathrm{n}, 1)$; @ $R^{\wedge} 2$ of regressions @
$\mathrm{dw}=\operatorname{zeros}(\mathrm{n}, 1)$; @ Durbin-Watson statistics @
ii $=1$; $\mathrm{ip}=1$; do until ii $>\mathrm{n}$;
id=ii*k;
\{vnam, m, bols, stb, vc, ste, sh, cx, r_sq, resid, dws $\}=$
ols("", y[.,ii], XX[.,2:k]);
bb[ip:id,1] = bols;
stderr[ip:id,1] = ste;
sighat $[i i, 1]=$ sh;
rsq $[i i, 1]=$ r_sq;
$\mathrm{dw}[\mathrm{ii}, 1]=\mathrm{dws} ;$
$\mathrm{i}=\mathrm{ii}+1$;
ip=id +1 ;
endo;
$\mathrm{bb}=\operatorname{vec}(\operatorname{reshape}(\mathrm{bb}, \mathrm{n}, \mathrm{k}))$;
stderr $=\operatorname{vec}($ reshape(stderr,n,k));
$\mathrm{bb} 0=\mathrm{bb}$;
_-output=1;
$/ *===================================* /$
@ Guess initial parameter values @
$m u=\operatorname{inv}\left(S m u *{ }^{*} \operatorname{Smu}\right) * S m u^{*}{ }^{*} \operatorname{Sbb}^{*}(\operatorname{vec}(\mathrm{CCob})-\operatorname{vec}(\mathrm{CC1})) /($ startob -1$) ;$
sigv $=$ sighat;
th $=\operatorname{vec}(\mathrm{mu}) \mid \operatorname{vec}(\mathrm{sigv})$; @ parameters to be estimated @
proc startval; @ This defines starting value for iteration to be th @ retp(th); endp;
$/^{*}====================================* /$
@ Read in and translate parameters into standard state-space matrices @
$\operatorname{proc}(2)=\operatorname{readin}(\mathrm{it}, \mathrm{y}, \mathrm{XX}, \mathrm{n}, \mathrm{Sbb})$;
local Xs, ydp;

```
    Xs = XX[it,.] .*. eye(n);
    Xs = Xs*Sbb';
    ydp = y[it,.];
retp(ydp, Xs); endp;
proc(1) = ast(th,rx);
    local A;
    A=0;@as in [1],ast(Xs_t)=0@
retp(A); endp;
proc(1) = Hst(Xs);
    local HH;
    HH=Xs'; @ as in [1],Hst(Xs_t)=Xs@
retp(HH); endp;
proc(1) = Rst(th, n);
    local R;
    R}=z\operatorname{zeros(n,n); @ as in [3],Rst(Xs_t)=0@
retp(R); endp;
proc(1) = Fst(th, rx);
    local Fx;
    Fx = eye(rx); @ as in [2],Fst(Xs_t)= Irx @
retp(Fx); endp;
proc(1)=must(th,rx);@ mean of state vector @
    local aver;
    aver = Smu*th[1:rx-n,1];
retp(aver); endp;
proc(1) = Qst(th,rx);
    local Q, sigvsq;
    sigvsq = th[rx-n+1:rx,1] }\mp@subsup{}{}{\wedge}2
    sigvsq = Sbb* (vec(ones(1,k).*.sigvsq));
    Q = diagrv(zeros(rx,rx),sigvsq); @ as in [4],Qst(Xs_t)diagonal @
retp(Q); endp;
```

```
\(/^{*}====================================* /\)
```

$/^{*}====================================* /$
@ Time-varying constrains @
@ Time-varying constrains @
int2 = zeros(2,1);
int2[1,1] = 1; int2[2,1] = startob-1;
RR2 = zeros(n,n) eye(n).*.ones(1,n);

```
```

RR2 $=$ RR2 ${ }^{*}$ Sbb';
cn2 $=$ scal*ones(n,1);
intob $=\operatorname{zeros}(2,1)$;
intob $[1,1]=$ startob; intob[2,1] = capt;
RRob = RR1;
cnob $=$ zeros(startob-1, $\left.\mathrm{n}^{\wedge} 2\right) \mid$ scal * convob[.,n+1:n*k];
cnob $=$ cnob * Sbb $\left[\mathrm{n}+1: \mathrm{rx}, \mathrm{n}+1: \mathrm{n}^{*} \mathrm{k}\right]$;
skipcon $=1$; @ flag 0-1 to constraint the Kalman filter @
$\operatorname{proc}(3)=\operatorname{constr}(\mathrm{it}, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R})$;
local smacn;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{R}\}=\operatorname{augment}(\mathrm{cn} 2, \mathrm{RR} 2, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R}, \mathrm{it}, \operatorname{int2})$;
$\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{R}\}=\operatorname{augment}\left(\mathrm{cnob}[\mathrm{it}, .]^{\prime}\right.$, RRob, Xs, ydp, R, it, intob);
retp(Xs, ydp, R); endp;

```

@ Echo initial parameter values@
format /rds 10,6;
"OLS estimation of a time-invariant conversion matrix"; reshape(bb0,k,n)';
"sum for column"; sumc(reshape(bb0,k,n)')';
"with coefficient standard errors"; reshape(stderr,k,n)';
"standard errors of regression"; sighat';
"R-squared"; rsq';
"and Durbin-Watson statistics"; dw';
"starting values of th as follows"; th;
\#include tvc8kf;
\#include augment;
"Value of \(\log\) likelihood"; \(z=-\) ofn(th);z;
format /m1;
"Do you wish to continue (y or n)?";
zzs = cons;
if zzs \(\$==\) " n "; end; endif;

```

@ Set parameters to use Gauss numerical optimizer @

```
library optmum;
\#include optmum.ext;
__btol = 1.e-06; @ This controls convergence criterion for coefficients @
_-gtol = 1.e-06; @ This controls convergence criterion for gradient @
_-algr =1; @This chooses BFGS optimization @
\(\ldots\) miter \(=400\); @ This controls the maximum number of iterations @
_-output = 1; @ This causes extra output to be displayed @
_-covp = 0; @ This speeds up return from OPTMUM; note that the program
makes a reparameterization to calculate std. errors@
output off;
\(\{\mathrm{x}, \mathrm{f}, \mathrm{g}, \mathrm{h}\}=\) optmum(\&ofn, startval); @ GAUSS numerical optimizer @
output file=junk on;
"";"";"MLE as parameterized for numerical optimization ";
format /rds 14,9;
"Coefficients:";x';
"";"Value of log likelihood:";;-f;
"";"Gradient vector:"; \({ }^{\prime}\) ';
\(\mathrm{h}=(\mathrm{hessp}(\& \mathrm{ofn}, \mathrm{x}))\);
\(\mathrm{va}=\operatorname{eigrs}(\mathrm{h}) ;\)
call ofn(x);
if \(\operatorname{minc}(\operatorname{eigrs}(\mathrm{h}))<=0\);
"Negative of Hessian is not positive definite";
"Either you have not found local maximum, or else estimates are up "
"against boundary condition. In latter case, impose the restricted"
"params rather than estimate them to calculate standard errors";
else;
\(\mathrm{h}=\operatorname{invpd}(\mathrm{h})\);
std \(=\operatorname{diag}(\mathrm{h})^{\wedge} .5\);
"standard errors";std';
"variance-covariance matrix";
format /m3; h;
endif;
\(\mathrm{R}=\operatorname{Rst}(\mathrm{x}, \mathrm{n})\);
\(\mathrm{FX}=\mathrm{Fst}(\mathrm{x}, \mathrm{rx})\);
\(\mathrm{mu}=\operatorname{must}(\mathrm{x}, \mathrm{rx}) ;\)
\(\mathrm{Q}=\mathrm{Qst}(\mathrm{x}, \mathrm{rx})\);
bbbf \(=\) chsif*Sbb; @ beta t+1/t @
\(\mathrm{bbb}=\mathrm{chsi}^{*} \mathrm{Sbb}\); beta \(\mathrm{t} / \mathrm{t} @\)
yyyf \(=\mathrm{bbbf}\left(\mathrm{XX} . .^{*} . \operatorname{eye}(\mathrm{n})\right)^{\prime} \cdot{ }^{*}\left(\text { eye }(\text { capt }) .{ }^{*} . \text { ones }(1, \mathrm{n})\right)^{*}\)
(ones(capt,1).*.eye(n)); @ yhat_t+1/t @
yyy \(=\mathrm{bbb}{ }^{*}(X X . *\).eye(n))'.*(eye(capt).*.ones( \(\left.1, \mathrm{n})\right)^{*}\)
(ones(capt,1).*.eye(n)); @ yhat.t/t @
"Rst:"; format /rds 14,9; R;
"mu:"; format /rds 14,9; mu;
"Qst:"; format /rds 14,9; Q;
"scal:"; format /rds 14,0; scal;
"prior:"; format /rds 14,0; prior;
"scdata:"; format /rds 14,0; scdata;
"Sbb:"; format /rds 4,0; Sbb;
"Smu:"; format /rds 4,0; Smu;
"";" ";"";
output file=junk off;

\section*{Gauss procedure to perform the Kalman filter and to evaluate the likelihood function}

\section*{\(/^{*}==========================================1\)}

Filename: TVC8KF
Author: Filippo Moauro
Date: 30/09/1997
Type: Gauss procedure - ofn
Description:
The proc ofn(th) performs Kalman filter and evaluates likelihood function for general model like:
\[
y_{-} t=\operatorname{ast}\left(X s_{-} t\right)+H s t\left(X s_{-} t\right)^{\prime} * \operatorname{chs} i_{-} t+w_{-} t
\]
[2] \(\quad c h s i_{-} t+1=F s t\left(X s_{-} t\right) *\) chsi_ \(t+m u+v_{-} t+1\)
with \(t=1, \ldots\), capt,
\(\begin{array}{ll}{[3]} & \operatorname{Cov}\left(w_{-} t\right)=R s t\left(X s_{-} t\right) \\ {[4]} & \operatorname{Cov}\left(v_{-} t\right)=R s t\left(X s_{-} t\right)\end{array}\)
Generalized version in order to allow Time Varying Restrictions via Augmentation of the Measurement Equation (Doran, 1992).

Restrictions like:
[5] \(\quad R R_{-} t *\) chsi_t \(=c n_{-} t\)
Input: th = starting values for coefficients to be estimated
Output: f0 = maximum value of likelihood function
Global variables:
\(r x=\) dimension of state-space
\(n=\) dimension of observation vector
\(k=\) dimension of exogenous vector
capt \(=\) sample size
\(X X=(\) capt \(x k)\) matrix of observations on exogenous variables
\(y=(\) capt \(x n)\) matrix of observations on endogenous variables
chsi \(=(\) capt \(x r)\) matrix in which chsi \(-t / t\) is stored
chsif \(=(\) capt \(x r)\) matrix in which chsi_ \(t+1 / t\) is stored
chsis \(=(\) capt \(x\) r) matrix in which chsi_t \(/ T\) is stored
\(P=\left(\right.\) capt \(x r^{\wedge}\) 2) matrix in which \(P_{-} t / t\) is stored
\(P f=\left(\right.\) capt \(x r^{\wedge}\) 2) matrix in which \(P_{-} t+1 / t\) is stored
\(P s=\left(\right.\) capt \(x r^{\wedge}\) 2) matrix in which \(P_{-} t / T\) is stored
scal \(=\) scale factor on \(y\)
\(S b b=\) selection matrix for exogenous variables
(Sbb=eye(rx) if all the exogenous are considered for each endogenous)
\(R R \#=\) time-varying constrains matrix
cn\# = time-varying constrains vector

proc ofn(th);
local
FX, @ transition matrix @
Q, @ variance-covariance matrix of \(v_{-} t @\)
R, @ variance-covariance matrix of \(w_{-} t\) @
it, @ index of the iteration @
ydp, @y[it..]' augmented of cn @
Xs, @ (Xs augmented of RR@
A, @ fromast(Xs-t)@
H, @ from Hst(Xs_t)@
chsi10, @ chsi_t/t-1@
chsi11, @chsi_t/t@
P10, @variance-covariance matrix of chsi10 @
P11, @ variance-covariance matrix of chsi11@
yvar, @ yvar =( \(\left.H^{*} P 10^{*} H+R\right) @\)
yvarinv, @inv(yvar)@
yhat, @estimated dependent variable @
eps, @ prediction errors @
f0; @ likelihood function @
@ read in and translate time-invariant parameters into standard state-space matrices@
\(\mathrm{FX}=\mathrm{Fst}(\mathrm{th}, \mathrm{rx}) ;\)
\(\mathrm{Q}=\mathrm{Qst}(\mathrm{th}, \mathrm{rx})\);
\(\mathrm{A}=\operatorname{ast}(\mathrm{th}, \mathrm{rx})\);
/*-_ likelihood function
\(\mathrm{f} 0=0\); @ f0 will be the log likelihood function @
it \(=1\); @ it will index the iteration @
do until it > capt;
@ read in and translate time-varying parameters into standard state-space matrices@
\(\{y d p, \mathrm{Xs}\}=\operatorname{readin}(\mathrm{it}, \mathrm{y}, \mathrm{XX}, \mathrm{n}, \mathrm{Sbb})\);
\(\mathrm{R}=\operatorname{Rst}(\mathrm{th}, \mathrm{n})\);
if skipcon \(==0\); goto aftcon;
endif;
\(\{\mathrm{Xs}, \mathrm{ydp}, \mathrm{R}\}=\mathrm{constr}(\mathrm{it}, \mathrm{Xs}, \mathrm{ydp}, \mathrm{R})\); @ time varying constraints @ aftcon:
\(\mathrm{H}=\mathrm{Hst}(\mathrm{Xs})\);
@ set initial value for filter @
if it \(>=2\);
goto after;
endif;
chsi10 \(=\operatorname{must}(\mathrm{th}, \mathrm{rx})\);
P10 \(=\) prior* \({ }^{*}\);
if \(\operatorname{det}(\mathrm{P} 10)<=0\); @ This corrects initial variance to be robust
for case of explosive eigenvalues in FX @
\(\mathrm{P} 10=\) prior \({ }^{*} \mathrm{Q}[1,1]^{*}\) eye(rx);
\(\mathrm{P} 10=\) reshape \((\mathrm{P} 10\) ',rx,rx \() ;\)
endif;
after:
chsif[it,.] = chsi10';
\(\operatorname{Pf}[i t,]=.\operatorname{vec}(\mathrm{P} 10)^{\prime} ;\)
yhat \(=\mathrm{A}+\mathrm{H}^{\prime *}\) chsi10;
\(y \operatorname{var}=\left(\mathrm{H}^{*} \mathrm{P} 10 * \mathrm{H}+\mathrm{R}\right)\);
yvarinv \(=\operatorname{inv}(\) yvar \() ;\)
eps \(=y d p-y h a t ;\)
\(\mathrm{f} 0=\mathrm{f} 0-\ln (\operatorname{det}(\mathrm{yvar}))-\) eps'* \({ }^{\text {yvarinv*eps; }}\)
chsi11 \(=\) chsi10 \(+\mathrm{P} 10^{*} \mathrm{H}^{*}\) yvarinv*eps;
chsi \([\mathrm{it},]=\). chsi11';
chsi10 \(=\mathrm{FX}^{*}\) chsi11 + must( \(\mathrm{th}, \mathrm{rx}\) );
\(\mathrm{P} 11=\mathrm{P} 10-\mathrm{P} 10^{*} \mathrm{H}^{*}\) yvarinv \(^{*} \mathrm{H}^{*}{ }^{*} \mathrm{P} 10\);
\(\mathrm{P}[\mathrm{it},]=.\operatorname{vec}(\mathrm{P} 11)^{\prime} ;\)
\(\mathrm{P} 10=\mathrm{FX}{ }^{*} \mathrm{P} 11^{*} \mathrm{FX}^{\prime}+\mathrm{Q}\);
it \(=\) it +1 ;
endo;
\(\mathrm{f} 0=-\left(\text { capt }^{*} \mathrm{n} / 2\right)^{*} \log \left(2^{*}\right.\) pi \()+\mathrm{f} 0 / 2\);
retp(-f0);
endp;

\section*{Gauss procedure to augment the Kalman filter}

Filename: AUGMENT
Author: Filippo Moauro
Date: 13/10/1997
Type: Gauss procedure
Description:
Given a general state-space model and a set of restrictions (like in GENX1) the procedure augments the measurement equation following Doran (1992).
Input:
\(c n=\) vector of restrictions
\(R R=\) matrix of restrictions
Xs \(=\) matrix of regressors
\(y s m=\) vector of dependent variables
\(R=\) variance-covariance matrix
it \(=t\)-th iteration of the Kalman filter
intr \(=\) time-interval of the restriction
(scalar or 2-vector, if zero no augmentation)
Output:
Xstar \(=\) augmented \(X s\)
ystar \(=\) augmented ysm
Rstar \(=\) augmented \(R\)
\(====================================2 /\)
\(\operatorname{proc}(3)=\operatorname{augment}(\mathrm{cn}, \mathrm{RR}, \mathrm{Xs}, \mathrm{ysm}, \mathrm{R}\), it, intr);
local Xstar, ystar, Rstar, maxint, minint;
minint \(=\operatorname{minc}(\operatorname{vecr}(\operatorname{intr}))\);
maxint \(=\operatorname{maxc}(\operatorname{vecr}(\operatorname{intr}))\);
Xstar = Xs;
ystar \(=\mathrm{ysm}\);
Rstar \(=R\);
if it \(>=\) minint and it \(<=\) maxint;
Xstar \(=\mathrm{Xs} \mid \mathrm{RR}\);
ystar \(=\mathrm{ysm} \mid \mathrm{cn}\);
Rstar \(=\) R \(^{\sim}\) zeros \((\) rows \((\mathrm{R})\),rows \((\mathrm{RR})\) );
Rstar \(=\) Rstar|zeros(rows(RR),cols(Rstar));
endif;
retp(Xstar, ystar, Rstar);
endp;

\section*{Gauss procedure for deterministic interpolation}

Filename: INTERP
Author: Filippo Moauro
Date: 10/10/1997
Type: Gauss-procedure
Description:
Deterministic interpolation of a matrix over the time given two observed conditions
Input:
M1: ( \(n x k\) ) matrix: first observed matrix
M2: ( \(n x k\) ) matrix: second observed matrix
t1: ( \(n x k\) ) matrix: observation period of \(M 1\)
t2: ( \(n \times k\) ) matrix: observation period of M2
capt: period of interpolation
Output:
Mint: (capt \(\left.x\left(n^{*} k\right)\right)\) matrix (interpolated matrixes over the time in vec-form)
```

$======================================* /$
$\operatorname{proc}(1)=\operatorname{interp}(\mathrm{M} 1, \mathrm{M} 2, \mathrm{t} 1, \mathrm{t} 2$, capt $)$;
local Mint, it, a, b, n, k, beta;
$\mathrm{n}=\operatorname{rows}(\mathrm{M1})$;
$\mathrm{k}=\operatorname{rows}\left(\mathrm{M1}{ }^{\prime}\right)$;
$\mathrm{a}=\operatorname{vec}(\mathrm{M} 1)^{\prime} ;$
$\mathrm{b}=\operatorname{vec}(\mathrm{M} 2)^{\prime}$;
Mint $=$ zeros $\left(\operatorname{capt}, n^{*} k\right)$;
beta $=(\mathrm{b}-\mathrm{a}) /(\mathrm{t} 2-\mathrm{t} 1)$; @ slope of interpolation @
it $=1$;
do until it > capt;
$\operatorname{Mint}[\mathrm{it},]=.\mathrm{a}+(\mathrm{it}-\mathrm{t} 1)^{*}$ beta;
it $=\mathrm{it}+1$;
endo;
retp(Mint);
endp;

```

\section*{Gauss codes on the smoothing algorithm}
```

/* ======================================= **/
chsis[capt,.] = chsi[capt,.];
Ps[capt,.] = P[capt,.];
it = 1;
do until it > capt - 1;
ii = capt - it ;
PPs = reshape(Ps[ii+1,.],rx,rx)';
Ptt = reshape(P[ii,.],rx,rx)';
Pt_tt = reshape(Pf[ii+1,],rx,rx)';
J = Ptt*FX**inv(Pt_tt);
chsis[ii,.] = chsi[ii,.] + (chsis[ii+1,.] - chsif[ii+1,.])*J';
PPs = Ptt + J*(PPs - Pt_tt)*J';
Ps[ii,.] = vec(PPs)';
it = it +1;
endo;
/* ======================================= */

```

\section*{Bibliography}
[1] Anderson B.D.O. and Moore J.B. (1979) Optimal Filtering, Englewood Cliffs: Prentice-Hall.
[2] Doran H.E. (1992) "Constraining Kalman Filter and Smoothing Estimates to Satisfy Time Varying Restrictions", The Review of Economics and Statistics, 74, 568-572.
[3] Doran H.E. (1996) "Estimation under Exact Linear Time-Varying Constraints, with an Application to Population Projections", Journal of Forecasting, 15, 527-541.
[4] Doran H.E. and Rambaldi A.N. (1996) "Application of Linear TimeVarying Constraints: A Different Approach", University of New England, Department of Econometrics, Working Papers in Econometrics and Applied Statistics, n.95-December 1996, Armidale, NSW 2351, Australia.
[5] Doran H.E. and Rambaldi A.N. (1997) "Applying Linear Time-Varying Constraints to Econometric Models: With an Application to Demand Systems", Journal of Econometrics, 79, 83-95.
[6] Eurostat (1996) European System of Accounts ESA 1995, Eurostat, Luxemburg.
[7] Gomez V. and Maravall A. (1994) "Estimation, Prediction and Interpolation for Non-Stationary Series with the Kalman Filter", Journal of the American Statistical Association, 89, 611-624.
[8] Gomez V. and Maravall A. (1996) "Program TRAMO and SEATS", Banco de España, Servicio de Estudios, Documento de Trabajo n. 9628.
[9] Hamilton, J.D. (1994a) "State-Space Models", in Engle R.F. and McFadden D.J. (eds), Handbook of Econometrics, Volume IV, Amsterdam: North-Holland.
[10] Hamilton, J.D. (1994b) Time Series Analysis, Princeton, N.J., Princeton University Press.
[11] Harvey, A.C. (1990) Forecasting, Structural Time Series Analysis and the Kalman Filter, Cambridge University Press, Cambridge.
[12] Jones R. (1980) "Maximum Likelihood Fitting of ARMA Models to Time Series With Missing Observations", Technometrics, 22, 389-395.
[13] Magnus, J.R. and Neudecker H. (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. New York: Wiley.
[14] United Nations (1969) International Standard Industrial Classification of All Economic Activities, Bureau of Statistics of United Nations, Series M, N.4, Rev.2, New York.
[15] United Nations (1989) International Standard Industrial Classification of All Economic Activities, Bureau of Statistics of United Nations, ISIC Rev.3, CITI Rev.3, New York.```


[^0]:    ${ }^{1}$ The overview of the Kalman filter given in this and in sections 2 and 3 follows the more recent literature surveys on the topic by Harvey (1990) and Hamilton (1994a, 1994b, chapter 13).

[^1]:    ${ }^{2}$ See, for example, Hamilton (1994b, p.379).

[^2]:    ${ }^{3}$ See, for example, Magnus and Neudecker (1988).

[^3]:    ${ }^{4}$ For a full detailed illustration of fixed-lag and fixed-point smoothing algorithm see Anderson and Moore (1979). A concise introduction to the latter can be also found in Harvey (1990).

[^4]:    ${ }^{5}$ For a complete survey of the development in the literature on missing observations and related topics see Harvey (1990). For more recent contributions in a Kalman filter framework and for a computer program performing estimation, forecasting and interpolation of regression models with missing observations and ARIMA errors see Gomez and Maravall (1994, 1996).

[^5]:    ${ }^{6}$ An application to population projections can be found in Doran (1996). Nevertheless, that paper concerns with the use of the Kalman filter as a technique to gain interpolations which should obey time-varying linear constraints.

[^6]:    ${ }^{7}$ For instance, $n$ could be the number of considered sectors or branches for the National Accounts estimates.

[^7]:    ${ }^{9}$ Sometimes Statistical Agencies compute conversion matrices for a significant economic variable (e.g. employment) to have a first criterion for conversion of other variables.

[^8]:    ${ }^{10}$ This is a not irrelevant aspect when revision of sectoral aggregates is referred to National Accounts. Often new goods, new services, specific transactions or the introduction of new methodologies have to be considered so that new macro sectors implyes additive terms. Then, the $p$-vector $\mu_{t}$ summarizes the effects on the system given by situations in which classification changes are accompanied by inclusion of relevant variables. In this form the sum over the $p$ elements of $\mu_{t}$ represents the difference between $Y_{t}$ and $Z_{t}$.

[^9]:    ${ }^{11}$ For a discussion of the steady-state Kalman filter see Hamilton (1994b).

[^10]:    ${ }^{12}$ For a definition of the MP-inverse of a matrix and its properties see, for instance, Magnus and Neudecker (1988).

[^11]:    ${ }^{14}$ In fact, estimation of these parameters gives as results values not significatively different from zero.

[^12]:    ${ }^{15}$ Standard errors of the estimates are obtained by square root of diagonal terms of the information matrix, estimated by second derivatives of the sample $\log$ likelihood function.

[^13]:    ${ }^{16}$ Results and tests of estimations considering $F$ and $H$ as free diagonal matrices have not been reported here. Anyhow, significant difference from the identity and the null matrices, respectively, has not been observed.

[^14]:    ${ }^{17} \mathrm{~A}$ way to handle the problem could be the extended Kalman filter, which allows nonlinear state space forms in order to incorporate sign-restrictions on the state-vector. For an introduction to the issue see Harvey (1990, pp.160-162).

