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Preface

As a Researcher of the Italian National Statistical Office (ISTAT) and, in
particular, working in the National Accounts Department and Economic
Research, the last two years have been spent on the transition towards the
new European System of National Accounts (Eurostat, 1996). As a result,
a general revision of the System has been carried out. In this activity,

my interest has been captured by the econometric implications that the
introduction of new Classification Standards has involved in compiling
Accounts by Sector.

The National Accounts System consists of a wide set of economic figures
compiled at different and detailed sectoral levels over a long time period.
The System provides an “internationally compatible accounting framework
for a systematic and detailed description of a total economy (that is a region,
country or group of countries), its components and its relations with other
total economies” (Eurostat, 1996, p.1).

Under normal conditions, each Accounts is compiled by aggregating data from
the related survey which is coherent in terms of standards and definitions.
Estimates are produced just for more recent time periods (quarters or years),
updating previous estimates to the last available time period.

When a general revision occurs National Accounts have to be completely
refounded. Estimates have to be recompiled over all the sample period,
following the new framework to be introduced. As an implication, long and
consistent time series of related surveys for the Accounts to be reconstructed

are needed. But, it is a matter of fact that surveys are periodically revised



to follow changes in investigated phenomena so that time series suffer from
structural breaks. Furthermore, over a long sample period surveys are often
available under different sectoral classifications with respect to the standards
to be introduced.

Consequently, when new standards are introduced, reconstruction of sectoral
Accounts proceeds first through a benchmark producing new levels from a
given time period and, secondly, by giving to data new coherence in a time
series sense. As a result of the first step, two different measures of the same
sectoral aggregates are observed: the former, for a longer period of time, in
terms of old classification standards and the latter, just from the benchmark,
in terms of new standards. At the second step, retrapolation techniques are
adopted to gain new Accounts even in the past.

In this thesis a framework for a conversion of sectoral time series from old
to new classification standards is provided. This is based on the definition
of a conversion matriz to express time-varying compositional effects among
different sectoral definitions. State space representations are presented

to handle data reconstruction and modelling change of classification. A
new approach for data reconstruction is suggested. The time series to be
reconstructed is considered as an unobserved variable in a state space model:
the estimates are so obtained satisfying the restrictions imposed by the few
available observations.

The Kalman filter provides a well-established procedure to obtain optimal
parameter estimation of state space forms. This has been largely used in
this work obtaining reliable results on a preliminary experimental application

based on Italian Quarterly Accounts.
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1 Introduction

The goal of this thesis is to provide a discussion on time series reconstruction.
In particular, the problem for economic sectoral time series when a change of
classification in economic activities occurs is approached.

In fact, a given economic variable (e.g. industrial production, GDP,
consumption, income) gives a different composition among sectors depending
on which sectoral standards is adopted. If by a given time period the way
Statistical Agencies collect data changes, problems of comparing pre- and
post-change time series arise.

In the following chapters a new approach for data reconstruction is suggested.
The time series to be reconstructed is considered as an unobserved variable in
a state space model: the estimates are so obtained satisfying the restrictions
imposed by the few available observations. State space representations are
even provided to handle modelling a change of classification.

A two step procedure to achieve both data reconstruction and parameter
estimation of a change of classification model is suggested. It is shown as
the Kalman filter provides the instrument to carry out optimal parameter

estimation of the suggested state space forms even when models are subject

to time-varying restrictions.

1.1 Motivations

An opportunity for statistics to capture economic structural change is to

upgrade the methods, classification standards and definitions underlying their



construction. Historically, developed economies have been going through

a fast and significant de-industrialization: the service sectors, notably
distribution, banking, business services and communications, have been
growing very rapidly. At the same time we have observed the relative decline
of agriculture, extractive industries and manufacturing. Note that qualitative
changes have been as important as quantitative changes: in fact growth goes
with a large diversification of economic activities, commodities and services
in such a way that new ones have been created and others have disappeared.
To perform surveys adequately representative of structural changes,
International Statistical Agencies propose periodically to National Offices
new classification standards, schemes and methods to be followed both for
commodities and monitoring of firms.

Generally, new classifications introduce more accuracy and detail in the
specification of economic activities. Because progress has introduced a
relative diversification of services strictly linked with traditional processes
(i.e. Agriculture and Industry), new classifications split up some activities
previously belonging only to the latter processes. As a result, grouping
economic activities into industrial sectors or into economy-wide aggregates
incurs compositional incoherences when a comparison among different
standards is performed.

Furthermore, a change of classification produces a structural break in sectoral
time series and an historical reconstruction has to be realized. Usually, when
new standards are introduced, reconstruction of sectoral data proceeds first
through a benchmark producing new levels from a given time period and,
secondly, by giving to data new coherence in a time series sense.

Considering the introduction of the new Furopean System of National

Accounts (Eurostat, 1996) these aspects will be particularly important. By



that date new sectoral classifications will be adopted by those Countries
joining the Furopean Unification and a problem of historical reconstruction
of Sectoral National Accounts will arise. In fact, two different measures of
the same sectoral aggregates will be observed: the former, for a longer period
of time, in terms of old classification standards and the latter, just from the
benchmark, in terms of new standards.

In the following chapters a framework for a conversion of sectoral time series
from old to new classification standards is provided. This is based on the
definition of a conversion matriz to express time-varying compositional effects
among different sectoral definitions. State space representations are presented
to handle data reconstruction and modelling change of classification.

The Kalman filter provides a well-established procedure to obtain optimal
parameter estimation of state space forms. Moreover, the Doran (1992) and
Doran and Rambaldi (1996) methodologies of constraining the Kalman filter
to obey time varying restrictions is revealed as an useful instrument to obtain
efficient smoothed estimates. These allow us to incorporate contemporaneous

aggregation constraints and available observations into the model.

1.2 Plan of the Thesis

The plan of this thesis is as follows. In chapter 2 an introduction of the
Kalman filter as an instrument for data reconstruction has given: the main
tools on the Kalman filter are provided in order to get the material of this
thesis self contained. After the description of a general state space form,
the typical recursions of the Kalman filter and initial conditions, section 2
provides the basic issues on the maximum likelihood estimation; particular

attention has given to the developments involved in the Kalman filter when



some parameters to be estimated are concentrated out of the likelihood;
furthermore, available solutions to the problem of missing observations are
shortly mentioned. The smoothing algorithm is the issue of section 3, while
section 4 introduces the discussion on constraining the Kalman filter to obey
time varying restrictions: the Doran (1992) and Doran and Rambaldi (1996)
methodology is summarized. Finally, in section 5 a new approach to the
problem of data reconstruction is shown by proposing a state space form for
a simplified data generating process.

Chapter 3 provides the framework for a change of classification by a formal
exposition. In section 1, basic concepts on classification standards give a
preliminary introduction; then deterministic preliminaries and the definition
of the conversion matrix are provided. The extension to a dynamic model is
the subject of section 2, where a state space representation for modelling the
change of classification is proposed.

In chapter 4 results of a preliminary application on Italian quarterly accounts
are shown. After a first section where data in terms of new classification
standards are artificially generated, sections 2 and 3 provide a two stage
procedure to gain both data reconstruction and modelling a change of
classification.

Finally, chapter 5 provides a concluding summary discussion.



2 The Kalman Filter as an Instru-
ment for Data Reconstruction

2.1 The Kalman Filter

2.1.1 State Space Form

Let z; be a p-vector of observed variables at time t. A general state space
form relates z in the sample period ¢ = 1,2, .., T with a possibly unobserved

k-vector p; by the following system!:

ze = X + we, (2.1)

pepr = Fg+p=+ v, (2.2)

where (2.1) and (2.2) are, respectively, the observation equation and the
state equation. In equation (2.1), X, is a (p x k) matrix of exogenous

or predetermined variables and w; is a p-vector of serially uncorrelated
disturbances with mean 0 and covariance matrix H. In equation (2.2), p
is generated by a first order vector-autoregressive process, with the k-vector
p as a drift and v, as a k-vector of white noise with mean 0 and covariance

matrix ). The disturbances w; and v, are assumed to be uncorrelated at any

lags.

!The overview of the Kalman filter given in this and in sections 2 and 3 follows the

more recent literature surveys on the topic by Harvey (1990) and Hamilton (1994a, 1994b,

chapter 13).



Usually, the system (2.1)-(2.2) is used to describe a finite series of observations
{z1, 29, ..2r}, so that assumptions about the initial value of the state vector
uy are needed. In particular, p, is assumed to be uncorrelated with any
realizations of v; or w;,. Moreover, the mean of i is assumed to be equal to

my with covariance matrix P;.

The system (2.1)-(2.2) is enough flexible and it can be easily generalized to a

system in which the matrices H, F', p and @ are time-varying.

2.1.2 Recursions

A model like (2.1)-(2.2) is suitable for the application of the Kalman filter.
This is a recursive procedure for computing the optimal estimator of the
state vector u; based upon the information available at time t.

Let m;_; denote the optimal estimator of 1, ; based on all the observations up
to and including time (¢ — 1). Let Z, 1 = {z_1, 29, -, 21, Xi—1, Xi—2, .., X1}

denote this information, so that
my1 = Epe1/Zi-1]. (2.3)
The covariance matrix of the estimation error is denoted as P,_1, i.e.
Fa=E {(ut—l — my—1) (o1 — mt—l)/} . (2.4)

It can be proved from the law of iterating projections® that, given m;_; and

P, 1, the optimal estimator of p; is given by
M1 = Fmy_1 + p, (2.5)
with covariance matrix of the estimation error

Pyi1 = FP_F' + Q. (2.6)

2See, for example, Hamilton (1994b, p.379).
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Equations (2.5) and (2.6) are known as prediction equations.
Once new observations z; become available the estimator of u;, m; and its

covariance matrix F;, can be updated by the following updating equations

I ! -1

my = My + B X, (XtPt/t—lXt + H) (Zt — Xymygy1 — P) ,(2.7)
-1

P, = Py — Pt/t—1X£ (XtPt/t—lXtI + H) Xl (2.8)

From starting values specified both in terms of mg and F, or my/y and
P, o, the Kalman filter produces the optimal estimator of the state vector
as each new observation becomes available. At time 7" the filter yields
optimal estimator of the current state vector based on the full information
set. Moreover, optimal predictions of future values of both m; and z, can be
performed.
In particular, computing predictions Z,/,_; of z, conditional on Z;_; and X;
gives

2t/t~1 =k [Zt/Xt, Zt—ﬂ = Xtmt/t—l- (2-9)
Note that X; contains no information about p; beyond that contained
in Z;_1, because it is assumed predetermined or exogenous. As a result,
Elp/ Xy, Zyq] = Epe/ Zy1] = myp—q and equation (2.9) can be derived by

the law of iterated projections. The mean square error of this forecast is

G =E [(zt = Zpr) (2 — 4 /H)] =~ X,Py_1 X| + H. (2.10)

2.1.3 Initial Conditions

In the state space form (2.1)-(2.2) the starting values for the Kalman filter
can be given by the mean and covariance of the unconditional distribution
of the state vector denoted, respectively, as m and X, only if eigenvalues

of the matrix I’ are all inside the unit circle. In other terms, only if 1, is

covariance-stationary.



This being the case, taking expectations of both sides of (2.2) and considering

that E (u;) = F (f—1) = m because of stationarity of ., it yields
m=FE(u)=(I-F)"p, (2.11)

where the matrix (I — F') is nonsingular because no ecigenvalue of F' equals

to 1.

The unconditional variance of u;, i.e. 3, can be derived by the following

steps: postmultiplying
(Hes1 = B lpe]) = F (pe — B [pe]) + vea
by its transpose and taking expectations it yields
Var(ug1)=F-Var (u) - F' '+ Q. (2.12)

Because the process p; is covariance-stationary, Var (ur1) = Var () = X

and it can be shown? that solution is given by
vec(X) = Iz — (FQ F)] ' vec (Q), (2.13)

where vec (+) is the operator that transforms a matrix in a vector by stacking
the columns,  indicates the Kronecker product and Iz is the k? identity
matrix.

If, instead, some eigenvalues of /' are on or outside the unit circle, the state
equation is not stationary and the unconditional distribution of u; is not
defined. The distribution of u; is given by genuine prior information or by
a diffuse prior; my g is replaced with the best guess for the initial value of

p and Py is a positive definite matrix summarizing the confidence in this

guess.

3See, for example, Magnus and Neudecker (1988).



2.2 Maximum Likelihood Estimation

2.2.1 Computing the Likelihood Function

As stressed in the previous section, the forecasts m;;; 1 and 2,1 calculated
by the Kalman filter are linear functions of (X;, Z;_1). Furthermore, if
the initial state vector my o and the disturbances (v;,w,) are multivariate
Gaussian, myy,_; and 2y, are optimal among any function of (X, Z;_1).
Then, the distribution of z; conditional on (X;, 7, ;) is also Gaussian with
mean given by equation (2.9) and variance by equation (2.10).

Gaussian assumption, therefore, allows the construction of the sample log

likelihood L starting from the usual expression of a multivariate normal

distribution, that is
. pT 1 T 1T “ / -1 A
L="Flog2m— o N log|Gi -5 52 (2= 2p1) Gt (2= Zapn) 5 (214)

where 2,1 and G, are values defined in equations (2.9) and (2.10),
respectively. Maximization of I with respect to the unknown parameters
in the matrices F, p, H and @ can be found by a numerical optimization
routine.

The log likelihood function L can be computed iterating on the Kalman
filter from proper starting values mq, and P,/ and initial guesses of F, p,
H and Q. Employing an optimization routine (e.g. the Newton-Raphson
method), these initial guesses are gradually improved until equation (2.14) is

maximized.

2.2.2 (Generalized Least Squares

Running an optimization routine to maximize the likelihood function (2.14)
with respect to the unknown parameters could be very risky when the

parameter space is high; difficulties can arise in locating the global maximum

9



of L. So, it becomes very important to exploit any linearities in the state
space form, in order to reduce the dimension of the search.

In other terms, it is convenient to find proper reparametrizations of the state
space form, so that a concentrated likelihood function could be computed.

This section provides an explanatory example of Generalized Least Squares

(GLS) estimation of p.

For convenience, let’s rewrite here the general state space model (2.1)-(2.2):

Zr = Xt,ut+wt, (215)

fevr = Fpg+p+ v (2.16)

When the state-vector p; is covariance-stationary, equation (2.11) has shown
that
p=(I—F)m.

Defining & = py — m, the system (2.15)-(2.16) can be put as follow:

Zy = Xt£t+Xtm+'lUt, t = 1,..,T, (217)

§ir1 = F&+ v (2.18)

This allows the following regression form representation:

ze = Xem+uy, (2.19)

Uy = tht—{«wt. (220)

If it is assumed that & has a mean of zero and a bounded covariance matrix

Py, then the expected value of w; is zero for all t but is, in general, serially

10



correlated and heteroskedastic. In this form, the GLS estimation of m can
be performed by the generalized formula

T
m = {Z X:’Gt—lxg} N X7 Gz, (2.21)
i=1 t=1

where G, is the variance-covariance matrix of ;.

In a Kalman filter framework, m results from a concentrated likelihood
function, without any need to evaluate, as usual, the Cholesky decomposition
of the variance-covariance matrix of wu,.

However, a brief explanation of equation (2.21) is needed:

z; and X} result from the Cholesky decomposition of the variance covariance
matrix that the Kalman filter implicitly performs. In fact, decomposing X;

into k n-vectors such that
Xt = [xlt Lot «vn. xkt}

and applying k£ + 1 times the Kalman filter where the state equation is given

from the same (2.18) and the measurement equations are given separately

from
2 = Xy& +wp, (2.22)
T = X+ wit,
e = Xp&F 4+ wit,

serially uncorrelated innovations z;, X; = [z}, 23, .... 7] with identical

covariance matrix G can be performed. In particular, z; and X[ are given

from
z = Zt—XtétZ/t—h (2.23)

11




K Fry
Ty = xlt—tht/tq’

Izt = Tpt — Xtéf/kt_la
where éf/t_l, éf/lt_l, ey éf/’jt_] are obtained from the following recursions
ff/t—l = Fgf—l/t——la (2-24)
ff/lt—l = Fgfil/t—l7
ff/kt—1 = Fgffl/t—lv
with
51&2/15 = ff/t_1 + Pt/t—lXth_lz:v (2.25)
5?/175 = tm/lt-—l + Pt/t—IXth_lwft:
tI/kt = gf/];—l + Pt/t~1Xth_1IZt-

The matrix F,/,_; is the mean squared error of &, iteratively computed from

the following equations:

Pt/t—l =L [(ft - ét/t—l) (ft - ét/t—l)lJ = FPt~1/t—1F/ + Qa

(2.26)

Pp=FE [(é} - é:t/t> (& - ét/t) } =P+ Pt/t—lXt,Gt_lXtPt/t—l- (2.27)

Note that recursions of P, and P, are fully independent with respect to

ét /t—1 and ét /i, allowing the calculations above.

Finally, the variance-covariance matrix G, is estimated as

G = X;Pyy 1 X, + H.

12

(2.28)



As a result of the formalization above, m can be concentrated out of the
likelihood. Then, estimation of the parameters F', H and () are obtained by

a concentrated likelihood function L. such that

Tn 1 1z
Lo=——log2mr — =Y log|Gi| - = > &,G; 4, (2.29)
2 2 t=1 2 t=1

in which G is estimated by equation (2.28), residuals &; are defined as
=z — X (2.30)

and, conditional on given values of ', H and @), m is performed by equation

(2.21).

2.2.3 Missing Observations

All observations are assumed to be available in the discussion provided so far.
In fact, some observations may be missing or subject to contemporaneous
aggregation. It means that the full p-vector, now denoted as Z , is not
necessary equal to the p;-vector of observations z;. Possible solutions to this

problem are introduced in this sub-section for the following three cases:

1. po > 1 for all t — only some components of 2z} are missing or

contemporaneously aggregated. In this case the identity
n=Wyzl, t=1,..,T, (2.31)

is defined, where W is a p; X p matrix of fixed weights. The measurement
equation is now given by combining equation (2.1) with (2.31). The main
difference is that the dimension of z is time-varying, without particular

consequences on the Kalman filter and the prediction error decomposition

of the likelihood function.

13



p; = 0 for some t — no observations are available for certain ¢. In this
case, equation (2.31) is no longer defined, so that it is assumed that
observations are available only at the points ¢,, 7 = 1, .., T, where the
t,’s are integers such that 0 < t; < ty -+ < tr. So, equation (2.31) is
replaced by

ze=Wyzl , 7=1,..,T. (2.32)
The system generates t7 values of th at unit intervals, but observations
on this vector are only made in T not-evenly time periods. In this case
as well, the particular form of the system does not affect the prediction
error decomposition. Prediction errors associated with the observations
z;, 7 = 1, .., T can be obtained by skipping the Kalman filter, updating
equations for the state space form of 2zl at the points where there are
no observations (Jones, 1980). Thus, if missing observations are at
t=n, values given by the updating equations (2.7) and (2.8) are simply

substituted by their corresponding prediction equations:

My = Mp/n-1, Pn = Pn/n—l- (233)

p; = 0 for some t — no observations are available for certain ¢. In this
case the same problem as point 2. is handled in an alternative way: a
value of zero is given to a missing observation and a dummy variable is
introduced into the model. The dummy variable takes a value of unity
at the point where missing occurs and zero elsewhere. The likelihood is
then constructed for the full sample period but it needs to be maximised
with respect to the coefficient of the dummy variable as well. When
several observations are missing, problems could arise because of the
high number of parameters to be estimated. For this reason this method

seems suitable just for handling a small number of observations.

14



2.3 Smoothing

If filtering performs the expected value of the state vector u, conditional on
information at time ¢, smoothing concerns an inference on pu; based upon
information available after time ¢. Let’s denote Z, the information up to
and including time 7, for 7 > ¢. Then, like the notation in previous sections

suggests, the smoothed estimator of y; can be expressed as
Myjr = E Lut/ZT] fOT T >, (234>

with covariance matrix denoted by

Pye = B (= muse) (i = muz) | (2.35)

When 7 = T, then myr is called fized-interval smoother. If t = 7 — j for
j=1,..,M, where M is some maximum lag, then m,_;/, is called fized-lag
smoother. Finally, fized-point smoothing is the algorithm concerning the
estimation of the state vector u; at some fixed point in time.

In economic literature the fixed interval smoothing is the most spread, so
that only a short introduction of this algorithm is provided in this section?. It
consists of a set of backward recursions for time ¢t = 7-1, T-2, .., 1, starting
from the final estimates mqs and Pr of the standard Kalman filter. m,,, and

P,r are given by the following 3 recursive equations:

My = Ty + Jt (th/T — Fmt) s
Pyr = B+, (Pt+1/T — 1Dt+1/t) Ji,
J, = BF' t:fl/t, (2.36)

with mrp = Mr and PT/T = Pr.

4For a full detailed illustration of fixed-lag and fixed-point smoothing algorithm see

Anderson and Moore (1979). A concise introduction to the latter can be also found in

Harvey (1990).
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2.4 Incorporating Time-Varying Restrictions

When exogenous informations provide estimates of u; for some i, its
estimation by the Kalman filter using the methodologies introduced in
the previous sections is efficient only if the original model (2.1)-(2.2)

is appropriately constrained by the observed values. Such eztraneous
information can be incorporated into the model in the form of linear
constraints that the parameters of the model should satisfy.

A property of the Kalman filter which is of fundamental importance at this

purpose is that time-varying restrictions in the linear form
Rt/Lt = T¢ (237)

can be incorporated into the model (2.1)-(2.2) so that estimates [i; can

be obtained to satisfy equation (2.37). Considering that additional
information, aggregation constraints or specific hypothesis could be available,
methodologies to handle constrained estimates have to be applied.

Two different approaches can be mentioned. The more general one (Doran,

1992), consists of augmenting the observation equation (2.1) defining

Zt Xt Wi

z = , X = , Wy = ; (2.38)
Tt Ry 0
with
H 0
E(wjwy') = : (2.39)
0 0

so that the observation equation
zf = X[ +wy (2.40)

can be associated with the state-equation (2.2). The usual Kalman filter

methodology applied to equations (2.40) and (2.2) provides optimal smoothed

16



estimates of u; which satisfy linear time-varying constraints. Note that this
approach is extremely flexible because no mention of the row dimension

of R; and r; is given: it can actually vary across time. This allows the
incorporation of non-homogeneous information into the model whatever the
linear form of equation (2.37).

Anyhow, as stressed in Doran and Rambaldi (1997), practical problems arise
when computation of the Kalman filter is performed with an high number
of parameters to be estimated. Difficulties in locating the global maximum
of the likelihood function may occur. Thus, it becomes important to find

a proper reparametrization of the state space model (2.40)-(2.2), in order
to reduce the dimension of the parameter-space. Simple reparametrizations
are available which allow p to be estimated by generalized least squares,
computing a concentrated likelihood function.

The second approach (Doran and Rambaldi, 1996), more computationally
efficient but less flexible, can be applied only when the row dimensions of
R; and 7, are constant over time. Instead of augmenting the observation
equation, time-varying constraints are substituted out, reducing the dimension
of the parameter space. The Singular Value Decomposition (SVD) Theorem
(see for example Magnus and Neudecker, 1988, p.18) is used to achieve a
convenient reparametrization of the model (2.1)-(2.2).

Suppose that the row dimension of R; is J for all . Then, by definition,
the rank of R; is J. The SVD states that two square matrices U, and V;
of dimension J and k, respectively, corresponding to the left and right

eigenvectors of R; exist such that
Rt - UtStV;j, (241)

where S is a (J X k) diagonal matrix with non-zero singular values sy, S,

..., 8¢ on the principal diagonal. Alternatively, the following standard result

17



can be obtained:

PRV, =17 055-,4], (2.42)

where P, = S;,'U/, and Sy, = diag(s1s, Sat, -y Ssi), L7 is the J identity
matrix and 07—y a (J X £ — J) null matrix.

From equation (2.42) it is possible to reparametrize the constrained model
given by equations (2.1) and (2.37) recognizing that equation (2.37) can

alternatively be written as
Ty = [Pt_l OJ,k—J:[ Vi (2.43)
= [P O] i,
with pf = V, ;. If the partition of u} such that pf = [,uﬂ MSQJ/ is considered,

we obtain

piy = Pery (2.44)
and the following reparametrization of (2.1) is achieved:
z o= XViV 4w (2.45)

= Xip +w

= Xikt/fl‘t + Xoig, + wy,

where X}, and X3, are the first J and the remaining k-J columns of X/
respectively.

Finally, substituting equation (2.44) into (2.45),
z — X Py = 2] = X5 p5, + we, (2.46)

it should be observed that it is enough to estimate the parameter vector us,

to obtain estimates of the original parameter f,.
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2.5 Data Reconstruction

Assume that in the model (2.1)-(2.2) z; is observed only for the last [ time
periods (for t = T-I+1, ..., T'). Restricted estimation of the parameters p, F,
H, ) in order to obtain smoothed estimates of u; for ¢ = 1, 2, ..., T' cannot
be directly reached by the Kalman filter. In fact, the skipping approach
(Jones, 1980) for which all the missing observations of z, are substituted by
the Kalman filter updated estimates cannot gain reliable results when the
number of observed values of z; (i.e. [) is too small with respect to the full
sample (i.e. T'). For the same reason, handling missing observations by giving
them a value of zero and introducing dummy variables into the model is also
inefficient. Moreover, serious theoretical problems occur when missings are
located at the beginning of the sample period.

As a solution, alternative state space representations could be set up when
many observations are missing or subject to contemporaneous aggregation.
The Kalman filter together with the smoothing algorithm can be applied
to gain efficient estimates of missing observations®. Another possible choice
has given by retrapolation procedures, even if less flexible in accommodating
restrictions which change in each time period.

In this section a new approach for data reconstruction is suggested. The
time series to be reconstructed is considered as an unobserved state variable
in a state space model and the few available observations as time-varying

restrictions. The methodology of section 4 is then applied to get efficient

5For a complete survey of the development in the literature on missing observations
and related topics see Harvey (1990). For more recent contributions in a Kalman filter
framework and for a computer program performing estimation, forecasting and interpolation

of regression models with missing observations and ARIMA errors see Gomez and Maravall

(1994, 1996).
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smoothed estimates of z, satisfying restrictions given by those observations of
z; which are available.

Reconstruction for the period t = 1, 2, ..., T-l of each element z; (i = I,
2, ..., p) of z, is obtained estimating, separately, parameters of p different
state space models, one for each element of z;. In order to obtain the
reconstruction, it is supposed that an n-vector y; of related stochastic
indicators of z, are available over all the sample period®.

Let y;* be a x;-vector of selected indicators from the n-vector y;, that is the
most convenient selection of elements of y; to reach the reconstruction of z;.

Then, the following state space representation can be considered:

Y = Gl + e, (2.47)
Eitr1 = i+ A+ Nigg1- (2.48)

G, is a (k; X 2) matrix of parameters with a x;-vector of ones as first column;

&q is a bwariate state vector such that

§it = [dit ZH,- (2-49)

z}t and d; express, respectively, the unobserved i-th element of z; to be
reconstructed and an identical time-varying coefficient; e;; and n; are the
usual i.7.d. Gaussian white noise errors uncorrelated with each other at any
lags and with covariance matrix, respectively, Hf and Q7; finally, A, is a
bivariate drift on the state equation (2.48).

Observed values for z; enter into the model as time-varying restrictions on

&i; notably, for ¢+ = T-I+1, ..., T, constraints imply

6 An application to population projections can be found in Doran (1996). Nevertheless,
that paper concerns with the use of the Kalman filter as a technique to gain interpolations

which should obey time-varying linear constraints.
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0 1) & = 2. (2.50)

Restricted maximum-likelihood estimation of G; A; Hf, Q)7 and an optimal
estimation of &; by the Kalman filter is carried out through the methodologies
explained in the previous sections.

In practice, the observation equation (2.47) is a generalized regression with an
unobserved regressor zjt and a time-varying coeflicient d;; to fit the difference
between each element of ¥ and z),.

Assuming non-stationarity of 1, reconstructed values of z; should be
non-stationary too. Then, the state equation (2.48) captures the dynamics of
z}t and d;; in terms of a random walk where the drift A; affects the direction
of the random movement of z;[t and d;; over the time. Since restrictions in
the form of equation (2.50) are imposed, the estimation of ); is strongly
dependent on the observed value of z; in the last [ time periods.
Assumptions behind the state space form of equations (2.47)-(2.48) refer to
a basic but significant case: in fact each element z; of z; is assumed to be
equally generated by a trend component only which is additive with respect
to the trend of y;*. In particular this trend component is assumed to be
generated by a random walk with drift process. Cycle or seasonal components
are not considered, even if the state space form (2.47)-(2.48) could be easily

extended to incorporate more complicated data generating processes of z.
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3 A Framework for a Change of
Classification

3.1 Basic Concepts

Generally, statistical information is collected from National Statistical
Agencies using conventional procedures. Among countries, harmonized
survey schemes allow the collection of economic statistics directly from firms
or individuals (Economic Activity Unit, FAU) and International standards
are provided in order to harmonise sectoral definitions.

Classification standards univocally define the economic activities, their
number and aggregation levels. According to the last international revision
(United Nations, 1989), 5 aggregation levels are considered. Notably, 874
categories of economic activities, make up 512 classes, 222 groups, 60
divisions and 17 sections.

A larger degree of detail has been introduced with respect to the previous
standards: only 675 categories and 4 aggregation levels (United Nations,
1969). The goal has been to guarantee more accuracy of coverage in the
diversification of economic activities, sampling previously non-existent
activities.

Not only the introduction of new activities, but even the implicit split within
different aggregations that new classification implies lets the comparison
in terms of old and new standards be formalized. It is possible that new

standards split up economic activities in such a way that some EAUs joining
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some old activities fall into different new aggregates.

In practice, because of the historical de-industrialization process, new
standards attempt to capture economic structural change from a qualitative
point of view. Qualitative change means new commodities, services and a
diversification of economic activities. The diversification goes from traditional
to service-oriented activities.

Assume that over a given time period EAUs available for a given economic
variable are classified with respect to two different classification standards.
Following both the definitions, aggregating on economic activities in classes,
groups and so on determines a compositional effect among aggregates. As a
limit case, a uniform aggregation in Agriculture, Industry and Services (i.e.
macro sectors) gives the advantage to let the compositional effect express in
terms of differences among uniform aggregates.

In the following subsections a formal exposition of the problem is attempted.

3.1.1 Deterministic Preliminaries

Let z; denote a my-vector of EAUs values for a given economic variable

at time ¢. It is assumed that z} is evenly sampled at a given frequency
and it is available for the time period ¢t = 1, 2, ..., T. Its dimension is
time-variant because of the variability over time in the number of sampled
EAUs. Aggregation of x7 into n (n < m; for all t) sectors is obtained defining

a binary 0/1 (n x my) aggregation matriz A, such that
v = Az}, (3.1)

y; represents a n-vector of aggregated data in n sectors”. A, is a full row

rank matrix where every column sums to unity and it is unique for each

“For instance, n could be the number of considered sectors or branches for the National

Accounts estimates.
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classification standard. A scalar sum Y; of the elements of y; (e.g. GDP) is

also defined.

In these terms, a different classification standard means a new (p x m;)

aggregation matrix B; (with n < p < m, for all ¢) such that
2 = By, (3.2)

where z; represents the new p-vector of aggregated data in p sectors and By,
as A, is a full row rank matrix where every column sums to unity. Moreover

a scalar Z; as sum of the elements of z; can be defined with the same meaning

of Y;.

3.2 Conversion Matrix

Suppose now that the new classification modifies only the composition,
without any changes for the total aggregate so that ¥; = Z;. Then, a (p X n)

conversion matriz Cy is uniquely defined given A, B; and z, such that
ze = Cyy, (3.3)

where

-1
Cy = B A; (A} AY) (3.4)

and z;¢ is a my-square matriz defined as
*d __ - * * Lk
z;¢ = diag (:clt, Ty ey 1mtt) . (3.5)

In detail, equations (3.3) and (3.4) can be obtained as follows: denoting as i,
a row of ones, the equality ¢, A, = i/, is given as the columns of A, sum to
unity. Taking the transposes, it implies A7, = 4,, from which, by repeated

substitutions,
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:cfim = 1z, (3.6)

Yo = Amy = Azlin, = A AL, (3.7)

(At:cfAQ - Ye = ip, (3.8)

A (Aaf )y = A =i, (3.9)

zl Al (At:cfAQ_l y = a2, =, (3.10)
Byaf A, (Awa;) - v = By = z. (3.11)

B; is an allocation matrix as well, then i;Bt =i/ and the equality Y; = Z,

results from previous results, given that
Zt = Z';Zt = i;Btﬂft = 'L,lmfl?t = Xt = Z'ant.'L‘t = ,L;lyt = Y; (312)

Cy is a full column rank matrix and, as for A; and B;, every column sums to
1. Bach element of Cy, ¢ (i =1,2,..,pand j = 1,2,..,n) is bounded between

zero and one
0< ¢! <1; i=1,2,..p; j=1,2,..,n.

In other terms, each element ¢’ of the conversion matriz C, gives a transition
weight from a sector of the old classification to a sector of the new one. If the
definition of the i-th new sector (in terms of either joined economic activities
or EAUs) is precisely the same as the j-th sector of the old classification
cij = 1; if there is a split from the j-th old sector into more than one new
sectors, then 0 < ¢ < 1; finally, if there are no linkages ¢ = 0. Then, for
every 1, j such that ¢ = 0 or ¢/ = 1, this holds for all ¢ (t=1,2,..T) and
time-invariant restrictions on C; have to be imposed.

Note that by equation (3.3) it results a mapping from y; to z; by the matrix
C; which is defined only for given A;, B; and z;. In fact, when the available

25



information is referred only to y; and z; the matrix C; is not uniquely defined
since equation (3.3) is a system of p equations into p X n unknowns. Anyhow
equation (3.3) should be meant as a relation among aggregated data in
terms of a matrix of weights, for which the information on detailed sectoral
allocations is definitely lost.

A more convenient representation of equation (3.3) in order to eliminate

time-invariant restrictions in terms of zero elements of C} is the following:
z = (y, ® Ip) vec (Cy) (3.13)

where @ denotes the Kronecker-product, I, the p-identity matriz, and vec(-)
the vec-operator that transforms a (p x n) matrix in a np-vector by stacking
the columns. Then, using a (k* x np) selection matriz Sg®, a k*-vector 3
can be defined such that

By = Sp vec(Cy) (3.14)

or, equivalently,

Sp6 = vec(Cy). (3.15)
Notably, Ss is a block diagonal matrix given by
Sﬁ = dmg (Sﬂh SﬁZ: - Sﬁn) ) (316)

where Sg; (j = 1,2,..,n) is the proper (k} x p) selection matriz for
time-varying coefficients of each column of C;. Obviously k} < p; k* = 3_; k;

and Sg is a full rank matrix.

8A ((k —d) x k) selection matriz S is an operator such that

=35z,

where z is a k-vector and z* a (k - n)-vector equal to selected elements of z. S is an identity

matrix without those rows corresponding to elements of z to be eliminated.
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Then, through a (n x k*) block diagonal matrix Rg defined by

where lk; is a (k} x 1) vector of 1s, it is possible to express, in terms of /3,

the property that every column of C; sums to one as the following:
Rgfy = 1,, (3.18)

where 1,, denotes a n-vector of ones

The analytical framework of a change of classification given so far is
extremely useful when full information in terms of the matrices A;, B; and
7, is available®. Diversification of economic activities and split within sectors
have been expressed in a matriz notation so that the conversion matrix C;
can be analytically computed.

Nevertheless, homogeneous and very detailed data sets are rarely available
across several years. Whenever they are available, classifying the £AUs with
respect to different standards is possible only for more recent observations,
since new standards have typically been introduced. As a result, if A;, By
and z} are given only for t = T -1 + 1, ..., T, then (3 is available only for
the last [ time periods. Then, assuming that y; and z; are observed for ¢ =

1, 2, ..., T, a model to capture the dynamics of §; has to be considered.

3.3 Dynamics

The dynamics of the conversion matriz can be represented through a state
space model in which (3, is the unobserved state variable and the measurement
equation is a generalization of the deterministic equality given by (3.13). In

particular, the following system is considered:

9Sometimes Statistical Agencies compute conversion matrices for a significant economic

variable (e.g. employment) to have a first criterion for conversion of other variables.
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Zy = Xt/,Lt—i—U)t, (319)

per = Fpu+p+uv. (3.20)

Equation (3.19) is the observation equation in which z; is the p-vector of
sectoral composition in terms of the new classification as in (3.2); X, is a

(p x k) matrix, where k£ = p + k* and such that
Xe=(y'® 1) S/Iu (3.21)
with y; the (n+1)-vector defined by
v =1 wl, (3.22)

in which y; is the n-vector of sectoral composition in terms of the old
classification as in equation (3.1), I, is the p identity matriz, S, the

(k x (p+ np)) selection matriz such that

I, 0
_ 3.23
o [0 Sfj ’ (3.29)

with I, the p-identity matriz and Ss as defined in equation (3.16); u; is the
following k-vector

pi =[x foge..Jipt B (3.24)
in which , represents the k*-vector as in equation (3.14); finally, w; is a

p-vector of i.i.d. Gaussian white noise errors with mean 0 and

H fort=r

0 otherwise

B fwat] = {

where H is a (p X p) positive definite and symmetric matri.
From the deterministic latent variable framework of Section 3.2 a more

general device has been provided with the state space model of equations
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(3.19)-(3.20). This is justified by considering that a flexible fitting method
with quadratic objective is needed to obtain an estimate of unrestricted
elements of C.

Note that with respect to the deterministic representation given in equation
(3.13), in each equation of (3.19) a time-varying constant term [iy has
been added in order to take into account scale effects in measuring sectoral
aggregates. So, Y, is allowed to differ from Z,*°.

Equation (3.20) is the state equation in which p is a drift on p,, F is a

(k x k) matrix of parameters and v; is a k-vector of i.i.d. Gaussian white
noise errors with mean 0 and

Q fort=r
F "= 3.26
[or7] {O otherwise '’ ( )

where @ is a (k x k) positive definite and symmetric matriz. The disturbances
w; and v, are assumed to be uncorrelated at all lags.

In equation (3.20) the dynamics of p; are modelled as a first order
vector-autoregressive process. The first p elements of u; are free, whereas
each element of 3, is positive, satisfying the restrictions given by equation
(3.18).

Such a representation is appropriate to capture the dynamics of the
compositional effect within sectors that is a characteristic of economic
development. The conversion matrix C, is assimilated to a stochastic process

that switches over time from a matrix with weights close to 1 concentrated

10T his is a not irrelevant aspect when revision of sectoral aggregates is referred to National
Accounts. Often new goods, new services, specific transactions or the introduction of new
methodologies have to be considered so that new macro sectors implyes additive terms.
Then, the p-vector u; summarizes the effects on the system given by situations in which
classification changes are accompanied by inclusion of relevant variables. In this form the

sum over the p elements of y; represents the difference between Y; and Z;.
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on the principal diagonal, to one with lower and more distributed weights
among all the elements of C;. Actually, higher weights on the principal
diagonal of C; correspond to a low conversion effect within classifications,
whereas distribution of weights among all the elements of C; corresponds to
a higher compositional effect.

As t — 0, the old classification standards should be considered fully adequate
to represent the structure among economic activities: any conversion effect
should be taken into account. For the limit case when p=n, Cy can be
assumed equal to the (p X p) identity matriz I,.

As t — oo the properties of C; depend on F' and on the restrictions given in
equation (3.18). Provided that the eigenvalues of F' are all inside the unit
circle the process for p,; in (3.20) is covariance stationary and a steady-state
value'* u of p; can be obtained. Taking the expectations of both sides of

equation (3.20), rearranging the terms and defining p = E [p] produces
(I—-F)u=np. (3.27)
Observing that equation (3.18) can be rewritten as
Onp  Rglp = 1n, (3-28)

where 0,,, is a (n x p) null matriz and p, has been replaced with p,

combining (3.27) and (3.28) the following expression is reached:

Aup = Lpn } (3.29)

where A, is the ((n + k) x k) full column rank matrix such that

A, = Mjp_ ];)J (3.30)

HFor a discussion of the steady-state Kalman filter see Hamilton (1994b).

30



The solution for 4 is found pre-multiplying (3.29) by (A;Au)ﬁl A, so that

w=(A4,) A, L’; ] . (3.31)

Alternatively, if some eigenvalues of F' lie on or outside the unit circle, then
A, is singular. Unique information as ¢ — oo is given by equation (3.18)

which provides the limit value 8 of 3; through the MP-inverse of Rz'%:

=R, (RsR}) L. (3.32)

2For a definition of the MP-inverse of a matrix and its properties see, for instance,

Magnus and Neudecker (1988).
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4 An Application

In this section results of an experimental application are provided. A two
step procedure to achieve data reconstruction and a parameter estimation of
the change of classification model is suggested.

Let the following system be the analytical extension of the observation

equation (3.19):

zZ1e = M+ Cglylt + .+ Ctlnynt + Wiy <4'1)
Zoy = o+ cglylt + ..+ Cthyme + Wy

Zpt = ﬂpt+cglylt+'-+c€nynt+wpt fOT t = 17"'7T‘

The example considers the actual Ttalian quarterly value added at market

prices as the n-vector y; = (Y1t ... Ynt)', observed for the period 1970.1-1996.4
(T=108). Data are at constant prices for 1990 and seasonally adjusted. The
dimension of y; is n=3 corresponding to the old sectors Agriculture, Indusiry
and Services. z; = (21t ... zpt)' is the p-vector of sectoral value added in terms
of the new classification. The example tries to model the conversion among
same sectors of two different classifications, so that p = n = § and 2y, 2

and z3 are, respectively, the new definitions of the same sectors as yis, Yot

and ys;.
g = (B¢ ... [p) is the p-vector summarizing the scale effect of the
introduction of new accounting methods; ¢ fori=1,.,pandj=1,.,n

are the element of the time-varying conversion matriz C,. Finally, w, = (w1,
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. wp)' is a p-vector of i.i.d. Gaussian white noise errors with mean 0 and

variance-covariance matrix H.

4.1 The Generating Process of z;

The application requires that z; is provided for the last [ observations. For [
= 20 a simulation of z; is performed so that a short series in terms of new
standards is available for the period 1992.1-1996.4 (t = 89, ..., 108).

The generating process of z; for t = 89, ..., 108 starts from an arbitrary guess
of the (3 x 3) conversion matriz C” and the (3 x 1) vector i at time ¢
= 89'3. Since no crossing among definitions of old Agricultural economic
activities and new Services has been found (United Nations, 1989), the
element ¢}® of C; is equal to zero for all t. Eliminating out this time-invariant
restriction of Cy, the combination in an only vector of fi; and each element of
C;, column by column, produces the k-vector u;, with k = 8 + x5 -1 = 11.
A first non-restricted sampling uﬁ” of u; for ¢t = 89, ...108 can be performed

by the state equation (3.20)

uih = Ful + p 4+ 0. (4.3)

. . 0
In this exercise standard errors v” have been drawn from a normal
i
distribution with mean 0 and variance-covariance matriz Q@, where Q®

is diagonal with identical values for each sector given, respectively, by the

13

o = (H #H el ) (1.2
A% = (1.03)yse — Csoyso.

For ﬂé%) an identical revaluation of 3% among sectors has been assumed for an hypothetical

introduction of new accounting methods.
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sample standard deviations of y14, Yo and ys, over the full time period (¢ =

1, ..., 108). Notably,

©) — g5 (A A A A Ao i o a2
Q" = diag (JyuUy270y3>0y1>0y2a0y330y1> Oyos Oyszs Uygaays) . (4-4>

For the drift, p(© has been determined as follows:

(0) Mf(s%) - Mgo)
- . 4.
p 91 (4.5)
with

¥ =00010001001). (4.6)

Equation (4.5) represents the slope of 11 straight lines passing through the

points ,ug?) and ,ué%)i, for i = 1, ..., 11. Note that u&?) is a vector that implies
non-conversion among classifications at time ¢ = 1 and non-scale effect: in
practice z; = ;.

Assuming that each element of ,ugl) is non-stationary, the parameter matrix I
is equal to the identity matriz. Starting from ué%), by iterative substitutions

equation (4.3) can be rewritten as

t
u = 1+ O (1 —89)+ 3 %y, for t=89,..,108. (4.7)
1=89

For t = 89, ..., 108, z is obtained by substituting each element of ,ugl)
into equation (4.1), where the wvariance-covariance matriz H of w; is
assumed equal to the null matrix. Finally, for the same time period,
restricted sampling values of y; have been generated running the Kalman
filter iterations by augmenting equation (4.1) following the Doran (1992)
methodology.

Restrictions on fy, in the form R;u; = 7, have been fixed for ¢t = 89
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!
Ry =1[0s3 Is], e = <M51?§9"'M§2)789) ; (4.8)

and for t = 90, ..., 108

00011100000\
Re={00000011100 ,m=<111>/, (4.9)

00000O0O0O0CO0T11

where 0g 3 is a (8 x 3) null matrix and Iy is the (8 x 8) identity matriz. Note

that, for ¢t = 89, equation (4.8) constraints the conversion matrix C; to be

equal to the given initial guess Cég). For t = 90, .., 108, R; equation (4.9)

restricts every column of C; to sum to unity. Finally, the coeflicients of the

(3 x 1) vector fi; are free for every t.

4.2 Reconstruction of z,

Reconstruction of z; for the period 1970.1-1991.4 (¢t = 1, ..., 88) is
carried out by the Kalman filter estimating, separately, parameters of three
univariate state space models as in equations (2.47)-(2.48). In particular,
y;* in the observation equation (2.47) is 100-times the logarithm of y;; for
i=1,2 8and t = 1, ..., 108. Furthermore G, = G5 = G3 = [1 1] and
H¢ = H: = I = 0" so that the system (2.47)-(2.48) becomes

Yo = diy+ th (4.10)
d; ds ¢ nd
{M — T’f + 4| e (4.11)
Zit+1 Zit A7 771'Z,t+1

14In fact, estimation of these parameters gives as results values not significatively different

from zero.
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. . . / . - B
The variance-covariance matriz Q) of n; = (nft nft) is diagonal for every i,

such that
U?d 0 2
QZ] = z * (4'12)
0 o
Restrictions in the form
dy
[0 1] = 21 (4.13)
P
it

are imposed for t = 1, z;} = y;1, that implies non-conversion among
classifications; and for ¢t = 89, .., 108, ziTt = z;; because observations are
available. Restricted estimates of z; for t = 2, .., 88 are obtained by the
Kalman filter augmenting the observation equation (4.10).

Results of estimation are shown in Table 1. For each sector (i = 1, 2, 3), L
is the maximum of the sample log likelihood reached by the Newton-Raphson
optimization routine; ¢ and 5\;" are the estimates for the bivariate drift of
the state equation (4.11); Ef?d and 67 are the estimates of the diagonal terms
of Q7. In brackets are the standard errors of the estimates'®.

Graphic results of the reconstruction of z; are in figure 1, where the smoothed
estimates (dashed line) for each new sector is shown together with the actual
value added (solid line). For the last 20 observations generated values of 2
are considered. Both y; and z; are seasonally adjusted. Values are in billions
of Italian lira at 1990 prices.

The ordinary Kalman filter has been used for estimating the state vector.

Because of non-stationarity of (4.11) the iterations cannot be started with

15Standard errors of the estimates are obtained by square root of diagonal terms of the
information matriz, estimated by second derivatives of the sample log likelihood function.

For a discussion see Hamilton (1994b, p.143).
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Table 1: Results of reconstruction for the period 1970-91 of the Italian value
added following a simulated new sectoral classification. Quarterly seasonally

adjusted data at constant prices.

Sector L 5\5 5\: &) ’ o) ?z
‘ —.0340 2268 1565 3.9737
1. Agriculture —230.6
(.0152) (.4369) (.0237) (.2721)
—.0532 5753 .2640 1.5724
2.Industry —144.0
(.0257) (.1519) (.0403) (.1104)
, —.0376 7362 .2032 5414
3.Services —~33.3

(0190)  (.0523)  (.0316)  (.0422)

Note: L is the restricted magimum of the sample log likelihood for the model (4.10)-(4.11);
Ail; Mg, Er_?l and 6?2 are, respectively, the estimates for the bivariate drift and for the standard
errors of the state equation. In brackets are the standard errors.
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/
the unconditional mean and variance of ( dy 2z, ) . Then, the starting

/
values ( da 2l ) have been arbitrary drawn from the following normal

distribution:

2
di1 0 gl 0
N

z}L Yi1 0 &;7

1

(4.14)

where the factor 10? registers the prior for the relative uncertainty about the
true value of ( dia 2 )l.

No significant difference has been found between smoothed estimates and
simulated observations of z, (¢t = 89, .., 108). Over the reconstruction time
period (t = 1, .., 88) the pattern of z is very accurate, respecting the sample
path of y;. The implicit interpolation between the first observation and the
last 20s seems well fitted, distributing gradually over the time the difference
among new and old classification.

Crucial has been the choice of the prior distribution of the initial state
vector: this strongly affects the smoothed estimates for the first observations.
In practice, constraining the Kalman filter to obey time-varying restrictions
often generates breaks over unobserved values of z;. Because in this exercise
a model to fit the generating process of z; is based only on the last 20
observations and a restriction is imposed on ¢ = 1, it can happen that
iterating back the smoothing algorithm, the free path does not converge
towards constraints. The result is a break in the time series. A delicate

starting-prior is the only way to handle the problem.

4.3 Change of Classification Model
For convenience, we rewrite here the state space representation (3.19)-(3.20):
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Figure 1: Results of reconstruction. Seasonally adjusted Italian value added

following new and old classification standards. Values in billion of lira at 1990

prices.
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Zy = Xt,ut—l—wt, (415)

perr = Fpe+p+ v (4.16)

2ty Xy pe, wy, F, p and v, hold the same definitions set out so far. Now
X; and z, are available for the full sample period (¢t = 1, ..., 108) and a
restricted maximum likelihood estimation of I, p and wariance-covariance
matrices H and @), respectively, of w;, and v, is attempted.

Restrictions on 4, in the usual form R,u; = r;, are referred only to the
conversion matrix. Then, for ¢t = 1, .., 88 restrictions regard the sum to
unity of every column of the conversion matrix as equation (4.9). For ¢ =
89, .., 108, since p; is hypothetically observed, p; is constrained as equation

(4.8). Notably,

Ry =103 Is], re = </~L4,t~-,u11,t)l- (4.17)

Optimal estimation of F', p, H and Q is achieved by using a numerical
optimization routine. A practical problem in using such optimizers for
estimating multivariate models is the high number of parameter to be
estimated. It gets into difficulties in seeking the global maximum of the
likelihood function.

A reparametrization of the model (4.15)-(4.16) can be considered to overcome
a large parameter space. Provided that the eigenvalues of F' are all inside
the unit circle, if we set pf = puy — p, where u is the average or steady-state
value of p,, from equation (3.27) p = (I — F) p and the system (4.15)-(4.16)

becomes

ze = Xop+ Xopy + wy, (4.18)

40



Table 2: Results of a change of classification model on the Italian value added.

Quarterly seasonally adjusted data at prices of 1990.

Parameter value st.error
P 2512E-4 1.251E-5
pre 9.926E-3 7.493E-4
pHs 5.731E-3 1.044E-3
P 1.664E-4 1.251E-5
e 1.621E-4  6.199E-4
i -6.068E-4 6.112F-4
P 5.309E-4 6.112E-4
e -1.504E-4  6.015E-4
Q1 1.240E-4 7.220E-6
g2 7.516E-3 3.287E-4
ds 1.065E-2 4.027E-4

Note: Rescaled values of zrand yiby the factor 1075, Estimation of Fand Hin equations (4.15)-(4.16)
1s restricted, respectively, to the identity and null matrices. L= 5096.5.

i = Fui+ou. (4.19)

The advantage is that p can be estimated by generalized least squares
separate from the optimization routine as stressed in section 2.2.2.
Nevertheless 4 is not defined if F is equal to the identity matriz: the state
equation (4.16) changes in a multivariate random walk with drift p. p is the
slope over which u; randomly runs. Since every column of the conversion
matrix sums to one, the sum of p is constrained too. In particular, among
the elements of p representing the conversion matrix (p + 1, ..., k), every p
elements sum to zero. Instead of estimating & parameter of p it is enough to
consider only k - p parameters in the optimization routine.

Results of estimation with respect to values of z; and y; rescaled by the factor

10° are shown in Table 2. Estimation of F' and H is restricted, respectively,
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to the identity and null matrices® so that, considering that ¢3! = 0 for all ¢,

the observation equation (4.15) becomes

Zie = fiu Y+ oy + o yse (4.20)
Z = [oe+ G Y+ 6y + G Yse
23 = [y + C?ngt + Ct33y3t

and the state equation (4.16)

f1,t41 H1t P v
Hat+1 ot P U?jl
H3.t41 fi3t P Vi
C%Jlrl ¢! PCH "Ufi
Cﬁ& C% 2 ,0012 Uffl
o3, e - B I T I Utcfl , (4.21)
C?—%—l Cfl “PC22 - PC% Utcj:l
o i
C?—?—l 63?2 _PCSS Uffl
0?31 C? s PCSB v tcfl

because for p every tern of elements representing the conversion matrix

11 33 . . .
(p° , p°) sum to zero. The variance-covariance matriz ¢ of v; has

been assumed diagonal with identical standard deviations i, G2, g3 for each
sector. This parametrization allows the sample log likelihood L depending

only on 8§ + & = 11 unknown parameters. The maximum L reached by

16Results and tests of estimations considering F and H as free diagonal matrices have not
been reported here. Anyhow, significant difference from the identity and the null matrices,

respectively, has not been observed.
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the Newton-Raphson optimization routine is 3096.3. Standard errors of the
estimates are obtained by the second derivative method (Hamilton, 1994b,
p.143).

For each sector, -first, second and third row of equation (4.20)- smoothed
estimates of [i;, cit, ¢ and ¢!® for ¢ = 1,2, 3 are represented, respectively,
in figures 2, 3 and 4. For the last 20 observations generated values are
considered. The starting values p; have been arbitrarily drawn from the

following normal distribution:

p1~ N (u§°>, 10 x Q) 7 (4.22)

where the mean M§O> reflects the hypothesis of no conversion among

classification for ¢ = 1, see equation (4.6), and the factor 10 registers the
prior for the relative uncertainty about the true value of p;.

Among different sectors, no significant differences have been observed
between smoothed estimates and simulated observations of py, i.e. when

t = 89, .., 108. With regard to the reconstruction period (i.e. t = 1, ..,
88), aggregation constraints among conversion parameters have always been
respected but with different performances among sectors:

for the Industry sector (figure 3), fiz, é1, é7%and ¢2° well interpolate the
actual observations starting from hypothetical points 0 or I at the beginning
of the sample. For these observations a small but significant break has
been observed only for the conversion parameters ¢22and ¢2°, revealing the
difficulties stressed in section 4.2 in fitting the smoothed estimates to the
initial constraints;

for the Agriculture and Service sectors (figure 2 and 4) the exercise seems
to be particularly complicated: conversion parameters are highly irregular

and very close to the boundary limits. Difficulties have been encountered
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Figure 2: Smoothed estimates of time-varying coefficients for the Agriculture
sector.
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Figure 3: Smoothed estimates of time varying coefficients for the Industry

sector.
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Figure 4:

sector.
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since estimates of the state vector give often values which tend to be less
than zero or greater than one, even if never more than 0.5%. In fact, by
using the ordinary Kalman filter estimates are not guaranteed to be inside
a defined interval or to satisfy non-linear constraints'’. Estimates against
boundary conditions always involve first observations, revealing problems in

the definition of the initial conditions of the Kalman filter.

17A way to handle the problem could be the ertended Kalman filter, which allows non-
linear state space forms in order to incorporate sign-restrictions on the state-vector. For

an introduction to the issue see Harvey (1990, pp.160-162).
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5 Conclusions

In this thesis a framework for a conversion of sectoral time series from old
to mew classification standards has been suggested. This is based on the
definition of a conversion matriz to express time-varying compositional
effects among different sectoral definitions.

The change of classification is an important practical problem considering
European Unification. By that date all European countries will adopt
National Accounts obeying new sectoral standards, causing problems of
comparing pre- and post-change time series.

State space representations have been presented to handle historical
reconstruction and modelling change of classification. The Doran (1992)
and Doran and Rambaldi (1996) methodology of constraining the Kalman
filter to satisfy time varying restrictions has provided a flexible instrument to
obtain efficient smoothed estimates.

A two step experimental application has provided the Italian Value Added
reconstruction and parameter estimation of a three-sector model. The
proposals of Doran and Rambaldi (1996, 1997) to reparametrise the original
model in order to reduce the parameter space have not been applied
because of non-stationarity of original time series and time variability in the
dimension of restrictions. A simpler reparametrization of the state equation
has been effective in overcoming the usual convergence problems associated
with numerical search procedures.

Reconstructed smoothed estimates have shown a good fit, well interpolating

over time the difference among new and old classifications. On the other
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hand, the pattern across the first observations has shown a strong dependence
on the arbitrary prior distribution of the initial state vector.

The fit of the smoothed conversion matrix estimates is revealed to be
good, always respecting aggregation constraints. Nevertheless, the exercise
has stressed difficulties in restricting reconstructed values to vary within
defined intervals. In particular this behaviour seems to involve the observed
conversion parameters which are highly irregular and close to the boundary
limits. Such a problem could be solved by considering the extended instead
of the ordinary Kalman filter. Then, extended state space forms could be
formulated to incorporate non linear constraints which are appropriate to the

definition of the conversion matrix.
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Appendix A:Data

Data used for the application of chapter 4 are shown in this appendix. These
correspond to the Italian quarterly value added figures at market prices for
the period 1970.1-1996.4. The seasonally adjusted release in terms of billion
of Ttalian lira at 1990 prices is considered.

Agriculture

Q. Q2 Q3 o4
1970 9731 9771 9983 9649
1971 9833 9792 9972 9594
1972 9406 8769 8674 8833
1973 9325 0449 9613 9851
1974 9543 9727 9721 9759
1975 9779 9897 10276 10140
1976 9904 9846 9541 9361
1977 10005 9311 9673 9710
1978 10023 9808 9805 9811
1979 9917 10546 10446 10531
1980 10358 10840 10873 11351
1981 10189 10755 10846 10820
1982 10565 10538 10485 10405
1983 10916 11049 11436 12462
1984 11175 11335 10597 10064
1985 10454 10795 10657 11384
1986 10600 11159 11307 11025
1987 10926 11358 11507 11487
1988 11108 10662 10847 10843
1989 10966 10623 11043 11136
1990 10924 10704 10878 9627
1991 11235 11441 11106 11760
1992 11451 11608 11913 11727
1993 11563 11367 11188 11869
1094 12000 11579 11343 11274
1995 12080 11512 11128 11672
1996 11726 11815 12002 11961
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Industry

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

Q1
65218
66088
68696
70342
80128
72906
75083
83427
81677
87289
04958
90274
89921
88052
91216
91337
93277
95321

102184

105538

109722

108639

110444

106769

106837

114340

115787

Q2
66646
65630
68069
72922
79762
72607
77513
82041
82089
86723
93329
91145
89832
88802
90237
02268
04858
08351

102534

106406

109251

108304

110451

107072

110288

113853

113823

Q3
67602
66309
68332
76997
78848
73384
81007
79804
84000
89293
90552
90534
88228
89347
90496
92972
96130
98152

103342
106923
109733
110065
109361
105609
111474
115202
114871

ol

Q4
66513
67474
69607
78336
75114
74427
83362
79567
86698
93641
90662
90360
87490
89490
90575
03493
95905

100033

104653

108464

108923

110127

108388

106912

112381

115534

114013



Service

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996

Q1
104342
107993
113128
117208
126620
124932
130154
136688
141214
149026
155139
156875
160698
162731
168549
172137
178605
183772
190507
195949
202009
204614
207930
209508
211593
215657
218394

Q2
104528
108894
113953
119681
126454
124787
132640
137408
142891
150078
155797
158452
161565
163125
169441
174648
179618
185147
192202
197038
202652
205393
208762
200685
212365
216738
219108

Q3
105892
110317
115356
122619
126092
126407
135390
138297
144892
151608
155619
159042
161676
164267
170014
176774
180725
186331
193516
198440
203483
206373
209114
210247
213559
217772
220089
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Q4
106736
111287
115852
124353
124630
128155
136633
139340
146725
154226
155721
159609
162484
166501
170939
177704
182561
188733
195176
200934
204283
207172
208748
211068
214103
218047
220354



Appendix B:Codes

In this appendix codes to perform the application of Chapter 4 are provided.
All the codes are compiled in Gauss, version 3.2. The material, quite
complicated, is arranged in different sections, where main programs and
procedures are shown separately.

Following the organization of Chapter 4, first codes on the generating
process of z; are considered: the main program GENXI1 presents the
instructions to control the simulation of data in terms of a new hypothetical
classification. Then, the program GENXMAII performs the reconstruction
of z; as it is shown in section 4.2. Finally, TVCSMAIN is the main program
to control the Kalman filter and the Maximum Likelihood estimation of the
parameters of the state space form concerning the change of classification
model of section 4.3.

The three mentioned main programs need specific Gauss-procedures, which
are compiled separately. These are:

TVC8KF, which is the general routine to control the Kalman filter and to
evaluate the Likelihood Function;

AUGMENT, to augment the state space form in terms of the Doran (1992)
methodology;

INTERP, to perform a deterministic interpolation over the time of matrices
provided at two given periods.
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Gauss codes for the generating process of z

/>'< e S s e e e S s e s )
Filename: GENX1

Author: Filippo Moauro
Date: 24/11/1997
Type: Gauss main program

Description:
Simulate data by the Kalman filter under time-varying constraints, starting

from a synthetic conversion matriz. General state space form like:

/1] y-t = ast(Xs_t) + Hst(Xs_t) * chsi_t + w_t,
/2] chsit+1 = Fst(Xs_t) * chsi_t + mu + v_t+1,

with t = 1, ..., capt,

y = (capt x n) matriz of endogenous variables,
XX = (capt z k) matriz of exogenous variables,
chsi_t = rx-state vector, mu = drift,

/3] Xst = XXt ® I, (nz(n*k)) matriz,
[4] ast(Xs_t) = 0,

/5] Hst(Xs_t) = Xs.t,

6] Cov(w-t) = R = 0,

[7] Fst(Xs_t) = I,

/8] Cov(v_t) = Q (diagonal).

Restrictions like:

[9] RR_t * chsi-t = cn_t.

Include:

INTERP => deterministic matriz interpolation,
TVCSKF => Kalman filter and likelithood evaluation,
AUGMENT=> Augmentation of the measurement equation.

@ Set global variables and Kalman filter control parameters @

n = 3; @ dimension of observation vector @

k = n+1; @ dimension of exogenous vector @

rx = n¥k; @ dimension of state-space (eventually Sbb correction) @
cap0 =108;@ n.observations dataset @

capt = 20; @ sample size generated y.t @
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sige = .00001; @ coefficient on standard errors for every sector @
idgp = .03; @ arbitrary percentage of increasing of GDP @
scdata = 1; @ scale factor on dataset @

scal = 1; @ scale factor on y @

prior = le+3; @ diffuse prior on P_1/0 @

ind= seqa(1992.25,0.25,capt); @ time sequence @
Sbb={100000000000,

010000000000,

001000000000,

000100000000,

000010000000,

000001000000,

000000100000,

000000010000,

000000001000,

000000000010,
00000000000 1}; @ selection matriz for time invariant constraints @

rx = 1x - (rows(Sbb’)-rows(Sbb)); @ dimension-correction @
Smu={10000000,

01000000,

00100000,

00010000,

00001000,

000-1-1000,

00000-1-10,

00000100,

00000010,

0000000 -1,

0000000 1} @ selection matriz for restrictions on mu @;
chsi = zeros(capt,rx); @ filter inferences chsi_t/t @

P = zeros(capt,rx"2); @ filter variances P-t/t @

startl = 1; @ quarter 70.1 @

startob = 89; @ quarter 92.1 @

C1 = eye(n); @ hypothesized conversion matriz for 70.1 @
Cob={.985498549317 .006719179210 .0,

.014001400665 .944885039408 .010105882315,

.000500050018 .048395781382 .989894117685}; @ obs. conversion matriz @

@ Read dataset @
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@ wvalue added agriculture, industry and service - old classification @
load XXX[cap0,n] = va3sec.prn;

XX = XXX]capO-capt+1:cap0,.]/scdata;

GDPold = sumc(XX’); @ GDP old classification @

XX = ones(capt,1) "XX; @ add constant @

@ CC1 and CCob @

#include interp;

yl = (1 + idgp)*XX][1,2:4]’ /scdata;

constob = y1 - Cob*XX][1,2:4]’; @ observed constants in t = startob @
CC1 = zeros(n,1) "Cl; @ conversion matriz in t = 70.1 @

CCob = constob ~ Cob; @ constant extended conv.matriz @

CCinterp = interp(CC1,CCob,startl,startob,cap0); @ interpolation @
CCinterp = CCinterp[cap0-capt+1:cap0,.];

XXinterp = CCinterp*(XX.*.eye(n))’.*(eye(capt).*.ones(1,n))*
(ones(capt,l).*.eye(n));

/*:::::::::::::::::::::::::::::::::::::::*/

@ Simulated parameter values @

mu = inv(Smu*Smu)*Smu’*Sbb*(vec(CCob) - vec(CC1))/(startob - startl);
sigv = sige*stde(XX[.,2:4]); @ variance-covariance matriz of vt @
th = vec(mu)|vec(sigv);

/*:::::::::::::::::::::::::::::::::::::::*/

@ Read in and translate parameters into standard state-space matrices @

proc(2) = readin(it, y, XX, n, Sbb);
local Xs, ydp;
Xs = XX]it,.] .*. eye(n); @ as in [3] @
Xs = Xs*Sbb’;
ydp = ylit,.J’;
retp(ydp, Xs); endp;

proc(1l) = ast(th,rx);
local A;
A=0; @asin [4] @
retp(A); endp;
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proc(1) = Hst(Xs);

local HH;

HH = Xs’; @ as in [5] @
retp(HH); endp;

proc(1) = Rst(th, n);

local R;

R = zeros(n,n); @ as in [6] @
retp(R); endp;

proc(1) = Fst(th, rx);

local Fx;

Fx = eye(rx); @ as in [7] @
retp(Fx); endp;

proc(1) = must(th, rx);
local aver;
aver = Smu*th[l:rx-n,1];
retp(aver); endp;

proc(1) = Qst(th, rx);

local @, sigvsq;

sigvsq = thlrx-n+1:rx,1]"2;

sigvsq = Sbb*(vec(ones(1,k).*.sigvsq));

Q = diagrv(zeros(rx,rx),sigvsq); @ as in [8] @
retp(Q); endp;

S ————————————Se~

@ Time-varying constrains @

int89 = 1;

RR89 = zeros(rx-n,n) ~ eye(rx-n);
cn89 = scal*vec(Cob);

cn89 = Sbb[4:rx,4:n*k]*cn89;

intob = zeros(2,1);

intob[1,1] = 2; intob[2,1] = capt;

RRob = zeros(n,n) ~ eye(n).*.ones(1,n);
RRob = RRob*Shb’;

cnob = scal*ones(n,1);

skipcon = 1; @ flag 0-1 to constraint the Kalman filter @
proc(3) = constr(it, Xs, ydp, R);
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local smacn;

{Xs, ydp, R} = augment(cn89, RR89, Xs, ydp, R, it, int89);

{Xs, ydp, R} = augment(cnob, RRob, Xs, ydp, R, it, intob);
retp(Xs, ydp, R); endp;

/* S U */

@ Generate y before constraints @

dseed = 162443;

v_t = rndns(capt,rx,dseed)*Qst(th, rx);

slope = vec(CCob -~ CC1)/(startob - startl);

slope = Sbb*slope;

drift = seqa(0,1,capt).*.slope’;

CCgenr = drift + ones(capt,1).*.(Sbb*vec(CCob))’ 4+ cumsumec(v_t);

CCgenr = CCgenr*Sbb;

y = ((CCgenr*(XX.*.eye(n))’). *(eye(capt).*.ones(1,n)))* (ones(capt,1).*.eye(n));

@ Results @

Fx = Fst(th, rx);

#include tve8kf;

#include augment;

z=-ofn(th);

convob = chsi*Shb;

yyy = convob*(XX.*.eye(n))’ . *(eye(capt).*.ones(1,n))*
(ones(capt,1).*.eye(n));

save yyy;

save convob;
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Gauss codes for the reconstruction of z;

/* L L S T L T e L L T L e L T L T e L L L L L L T T L L o o T T T
Filename: GENXMAII

Author: Filippo Moauro

Date: 25/11/1997

Type: Gauss main program

Description:

The program controls the Kalman filter for data reconstruction. For each

sector the model is:

[1] yt = [1 1] [at zt]” + w-t,
(2] Ja_t+1 zt+1] = [a_t xt]” + [a z]” + vt+1,

with t = 1, ..., capt,
y_t = log of value added old-classification i-th sector,
x_t = log of value added new-classification i-th sector to be reconstructed.

/3] Cov(w-t) = 0,

4] Cov(v_t) = Q (diagonal),

Restrictions like:

/5] x_1=y_1

6] x_t = z*.t for t = startob, startob+1, .., capt
Include:

TVCSKF => Kalman filter and likelihood evaluation
OPTMUM => Gauss numerical optimizer
AUGMENT=> Augmentation of the measurement equation

@ Set global variables and Kalman filter control parameters @

startob = 89; @ 92.1 @

sec = 1; @ select sector (1, 2, 3) @

n = 1; @ dimension of observation vector @

k = n+1; @ dimension of exogenous vector @

rx = 2; @ dimension of state-space (eventually Sbb correction) @
capt = 108; @ sample size @

scal = 100; @ scale factor @

prior = le+6; @ diffuse prior on P.1/0 @

ind= seqa(1970.25,0.25,capt); @ time sequence @
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chsi = zeros(capt,rx); @ filter inferences chsi_t/t @

chsif = zeros(capt,rx); @ forecasted inferences chsi-t+1/t @
chsis = zeros(capt,rx); @ smoothed inferences chsi-t/T @

P = zeros(capt,rx"2); @ filter variances P-t/t @

Pf = zeros(capt,rx"2); @ forecasted variances P-t+1/t @
Ps = zeros(capt,rx”2); @ smoothed variances P_t/T @
output file=junk reset;

/* o o T L L L e L L L T T L T L L T I S L S L L I I o o i
@ Read dataset @

@ value added agriculture, industry and service - old classification @
load vagg[capt,3] = va3dsec.prn;

load yyy; @ generated series new class. from 92.1 (see GENX1) @
ly = scal*In(vagg].,sec]);

Ix = zeros(startob-1,1) | scal*In(yyy][.,sec]);

-

@ Guess nitial parameter values @

mu = -.2396 -.0025;

sigv = -.5161, 1;

th = vec(mu) | vec(sigv);

thO = th; @ backup @

proc startval; @ This defines starting value for iteration to be th @
retp(th); endp;

JE e e e

@ Read in and translate parameters into standard state-space matrices @

proc(2) = readin(it, y, XX, n, Sbb);
local Xs, ydp;
Xs = HH’;
ydp = lylit,.J;
retp(ydp, Xs); endp;
proc(l) = ast(th,rx);
local A;
A =0
retp(A); endp;
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proc(1) = Hst(Xs);

local HH;

HH = {1, 1}; @ asin [1] @
retp(HH); endp;

proc(1) = must(th, rx); @ as in [2] @
local mean;
mean = th[1,1] | th[2,1];
retp(mean); endp;

proc(1l) = Rst(th, n); @ as in [5] @
local R;
R=0;

retp(R); endp;

proc(1l) = Qst(th, rx); @ as in [{] @
local Q, sigvsq;
sigvsq = th[3:4,1]°2;
Q = diagrv(zeros(rx,rx),sigvsq);
retp(Q); endp;
proc(1) = Fst(th, 1x); @ as in [2] @
local FF;
FF = eye(rx);
retp(FF); endp;

/* Sy */

@ Time-variant constrains @

intl = 1;
RR1 = {0 1};
enl = ly[1,1]; @ as in [5] @

intobl = zeros(2,1); intob1[1,1] = startob; intob1[2,1] = capt;
RRobl = RRI;

cnobl = Ix; @ as in [6] @

skipcon = 1; @ flag 0-1 to constraint the Kalman filter @

proc(3) = constr(it, Xs, ydp, R);

local Ren;

{Xs, ydp, Ren} = augment(cnl, RR1, Xs, ydp, R, it, intl);

{Xs, ydp, Ren} = augment(cnobl[it,.]’, RRobl, Xs, ydp, R, it, intobl);
retp(Xs, ydp, Ren); endp;
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/*:::::::::::::::::::::::::::::::::::::::*/

@ Echo initial parameter values @

format /rds 10,6;

"starting values of th as follows”; th;
#include tve8kf;

#include augment;

?Value of log likelihood”; z=-ofn(th);z;
format /ml;

”Do you wish to continue (y or n)?”;;
778 = COnS;

if zzs $== "n”; end; endif;

/*:::::::::::::::::::::::::::::::::::::::*/

@ Set parameters to use Gauss numerical optimizer @

library optmum;
#include optmum.ext;
__btol = 1.e-06; @ This controls convergence criterion for coefficients @
__gtol = 1.e-06; @ This controls convergence criterion for gradient @
—algr = 1; @ This chooses BF'GS optimization @
—_miter = 400; @ This controls the mazimum number of iterations @
—output = 1; @ This causes extra output to be displayed @
_covp = 0; @ This speeds up return from OPTMUM; note that the program
makes a reparameterization to calculate std. errors @
output off;
{x,f,g,h} =optmum(&ofn,startval); @ GAUSS numerical optimizer @
output file=junk on;
7 2 P NLE as parameterized for numerical optimization 7;
”Coeflicients:” ;x’;
77 -2Value of log likelihood:”;;-f;
777 Gradient vector:”;g’;
h = (hessp(&ofn,x));
va = eigrs(h);
call ofn(x);
if minc(eigrs(h)) <= 0;
”Negative of Hessian is not positive definite”;
"Either you have not found local maximum, or else estimates are up ”
”against boundary condition. In latter case, impose the restricted ”
”params rather than estimate them to calculate standard errors”;
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else;
h = invpd(h);
std = diag(h)".5;
"standard errors”;std’;

"variance-covariance matrix”;

format /ma3; h;
format /ml;
endif;

R = Rst(x, n);
FX = Fst(x, rx);
Q = Qst(x, rx);

"prior:”; format /rds 20,0; prior;
"Rst:”; format /rds 20,16; R;
"Fst:”; format /rds 20,16; FX;
?Qst:”; format /rds 20,16; Q;

»Ln M”00,
Y ?

output file=junk off;
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Gauss codes for a change of classification model

/* e ———————— e ——— P A — i ——— ———— A ——
Filename: TVOSMAIN

Author: Filippo Moauro
Date: 18/10/1997
Type: Gauss main program

Description:
Modelling a change of classification for sectoral time series via a conversion

matriz approach. The program controls the Kalman filter estimation of a
time-varying regression model under time-varying constraints (Doran,1992).
General model like:

/1] y-t = ast(Xs.t) + Hst(Xs_t)" * chsi-t + w_t

/2] chsit+1 = Fst(Xs_t) * chsi_t+ mu + v_t+1

with t = 1, ..., capt,

/3] Cov(w-t) = Rst(Xs-t)

[4] Cov(v_t) = Qst(Xs_t)

y_t = sectoral Italian value added old-classification

Xs_t = sectoral Italian value added new-classification. It is assumed that

Xs_t is observed only for a given period at the end of the sample (t = startob,
startob+1, .., capt). Interpolation via the Kalman filter to reconstruct the
previous period

Restrictions like:

/5] RR_t * chsit = cn.t

Include:
TVCSKF => Kalman filter and likelihood evaluation

OPTMUM => Gauss numerical optimizer
AUGMENT=> Augmentation of the measurement equation

@ Set global variables and Kalman filter control parameters @

n = 3; @ dimension of observation vector @

k = n+1; @ dimension of exogenous vector @

rx = n*k; @ dimension of state-space (eventually Sbb correction) @
capt = 108; @ sample size @

scdata = le+4; @ scale factor on dataset @
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scal = 1; @ scale factor on y @

prior = le+2; @ diffuse prior on P_1/0 @

ind= seqa(1970.25,0.25,capt); @ time sequence @

load Sbb; @ selection matriz for time-invariant constraints (see GENX1) @
rx = rx - (rows(Sbb’)-rows(Sbb)); @ dimension-correction @

load Smu; @ selection matriz for restrictions on mu @

chsilOpr = scal®*Sbb*(zeros(n,1) | vec(eye(n))); @ prior on chsi-1/0 @
chsi = zeros(capt,rx); @ filter inferences chsi_t/t @

chsif = zeros(capt,rx); @ forecasted inferences chsit+1/t @

chsis = zeros(capt,rx); @ smoothed inferences chsi_t/T @

P = zeros(capt,rx"2); @ filter variances P_t/t @

Pf = zeros(capt,rx”2); @ forecasted variances P-t+1/t @

Ps = zeros(capt,rx”2); @ smoothed variances P_t/T

y = capt x n matriz of observations on endogenous variables

XX = capt x k matriz of observations on exogenous variables @
startl = 1; @ quarter 70.1 @

startob = 89; @ quarter 92.1 @

CC1 = zeros(n,1) eye(n); @ simulated conversion matriz for 70.1 @
load convob; @ observed conversion matrices for 92.1-96.4 @

output file=junk reset;

@ Read dataset @

@ value added agriculture, industry and service - old classification @
load XX[capt,n] = va3sec.prn;

XX = XX/scdata;

XX = ones(capt,1)"XX; @ add constant @

load agrllpr6; @ reconstructed series - agriculture (see GENXMAIL) @
load ind11pr6; @ reconstructed series - industry (see GENXMAIL) @
load ser11pr8; @ reconstructed series - service (see GENXMAIL) @

y = (agrllpr6 ind11pr6 ~serl1pr8)/scdata;

/>'< e e e e R e e e S F e e S */
@ OLS estimation of time-invariant coefficients (bb0).
Starting values for the mazimum likelthood estimation @

Cob = reshape(convob[l,n41:n*k],nn)’;

constob = y[startob,.]’ - Cob*XX[startob,2:4]’; @ observed constants in
t=startob @
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CCob = constob™Cob; @ constant extended conv.matriz @

y = scal*y;

_output=0;

bb = zeros(n*k,1); @ Time-invariant coefficients @
stderr = zeros(n*k,1); @ Coefficient standard errors @
sighat = zeros(n,1); @ Standard errors of regressions @
rsq = zeros(n,1); @ R "2 of regressions @

dw = zeros(n,1); @ Durbin- Watson statistics @

ii=1; ip=1; do until ii > n;
id=ii*k;
{vnam, m, bols, stb, vc, ste, sh, cx, r_sq, resid, dws} =
ols(””, y[.,ii], XX[.,2:k]);
bb[ip:id,1] = bols;
stderr[ip:id,1] = ste;
sighatlii,1] = sh;
rsqii,1] = r_sq;
dwlii,1] = dws;

fi=ii+1;
ip=id+1;
endo;

bb = vec(reshape(bb,n,k));
stderr = vec(reshape(stderr,n,k));
bb0=bb:

—output=1;

[ ==mmmemmm—s=m— s === ===

@ Guess initial parameter values @

mu = inv(Smu*Smu)*Smu’*Sbb*(vec(CCob) - vec(CC1))/(startob - 1);
sigv = sighat;

th = vec(mu) | vec(sigv); @ parameters to be estimated @

proc startval; @ This defines starting value for iteration to be th @
retp(th); endp;

J¥ ==m==m=m==cm—mc———oc——s=m——==——=m==========

@ Read in and translate parameters into standard state-space matrices @

proc(2) = readin(it, y, XX, n, Sbb);
local Xs, ydp;

66



Xs = XX[it,.] .*. eye(n);
Xs = XS*Sbb’;
ydp = ylit,.]’;

retp(ydp, Xs); endp;

proc(1l) = ast(th,rx);

local A;

A=0; @asin [1], ast(Xst) =0 @
retp(A); endp;

proc(1) = Hst(Xs);

local HH;

HH = Xs’; @ as in [1], Hst(Xs_t) = Xs @
retp(HH); endp;

proc(1) = Rst(th, n);

local R;

R = zeros(n,n); @ as in [3], Rst(Xs_t) = 0 @
retp(R); endp;

proc(1) = Fst(th, rx);

local Fx;

Fx = eye(rx); @ as in [2], Fst(Xst) =1,, @
retp(Fx); endp;

proc(1) = must(th, rx); @ mean of state vector @
local aver;
aver = Smu*th[l:rx-n,1];
retp(aver); endp;
proc(1) = Qst(th, rx);
local QQ, sigvsq;
sigvsq = th[rx-n+1:rx,1]"2;
sigvsq = Sbb*(vec(ones(1,k).*.sigvsq));
Q = diagrv(zeros(rx,rx),sigvsq); @ as in [4], Qst(Xs-t) diagonal @
retp(Q); endp;

/* B P PR S */

@ Time-varying constrains @
int2 = zeros(2,1);

int2[1,1] = 1; int2[2,1] = startob-1;
RR2 = zeros(n,n) eye(n).*.ones(1,n);
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RR2 = RR2*Sbb’;
cn2 = scal*ones(n,1);

intob = zeros(2,1);

intob[1,1] = startob; intob[2,1] = capt;

RRob = RR1;

cnob = zeros(startob-1,n"2) | scal*convob|[.,n+1:n*k];
cnob = cnob*Sbb[n+1:rx,n+1:n%k]’;

skipcon = 1; @ flag 0-1 to constraint the Kalman filter @

proc(3) = constr(it, Xs, ydp, R);

local smacn;

{Xs, ydp, R} = augment(cn2, RR2, Xs, ydp, R, it, int2);

{Xs, ydp, R} = augment(cnoblit,.]’, RRob, Xs, ydp, R, it, intob);
retp(Xs, ydp, R); endp;

/* D */

@ Echo initial parameter values @

format /rds 10,6;

»OLS estimation of a time-invariant conversion matrix”; reshape(bb0,k,n)’;
"sum for column”; sume(reshape(bb0,k,n)’)’;

"with coefficient standard errors”; reshape(stderr,k,n)’;

"standard errors of regression”; sighat’;

”R-squared”; rsq’;

7and Durbin-Watson statistics”; dw’;

"starting values of th as follows”; th;

#include tve8kf;

#include augment;

”Value of log likelihood”; z=-ofu(th);z;

format /ml;

”Do you wish to continue (y or n)?”;;

778 = CONS;

if zzs $== "n”; end; endif;
jE——————————.-————

@ Set parameters to use Gauss numerical optimizer @
library optmum;

#include optmum.ext;
__btol = 1.e-06; @ This controls convergence criterion for coefficients @
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_gtol = 1.e-06; @ This controls convergence criterion for gradient @
_algr = 1; @ This chooses BFGS optimization @
_miter = 400; @ This controls the maximum number of iterations @
—output = 1; @ This causes extra output to be displayed @
_covp = 0; @ This speeds up return from OPTMUM; note that the program
makes a reparameterization to calculate std. errors @
output off;
{x,f,g,h} = optmum(&ofn, startval); @ GAUSS numerical optimizer @
output file=junk on;
77 I NLE as parameterized for numerical optimization 7;
format /rds 14,9;
"Coeflicients:” ;x’;
772 Value of log likelihood:”;;-f;
777 Gradient vector:”;g’;
h = (hessp(&ofn,x));
va = eigrs(h);
call ofn(x);
if minc(eigrs(h)) <= 0;
”Negative of Hessian is not positive definite”;
?Either you have not found local maximum, or else estimates are up’
”against boundary condition. In latter case, impose the restricted ”
”params rather than estimate them to calculate standard errors”;

ol

else;
h = invpd(h);
std = diag(h)".5;
"standard errors”;std’;
”variance-covariance matrix”;
format /m3; h;

endif;

R = Rst(x, n);

FX = Fst(x, rx);

mu = must(x,rx);

Q= QSt(X7 I"X);

bbbf = chsif*Sbb; @ beta t+1/t @

bbb = chsi*Sbb; @ beta t/t @

yyyf = bbbf*(XX *.eye(n))’ . *(eye(capt).*.ones(1,n))*
(ones(capt,1).*.eye(n)); @ yhat_t+1/t @

yyy = bbb*(XX *.eye(n))’.*(eye(capt).*.ones(1,n))*
(ones(capt,1).*.eye(n)); @ yhat_t/t @
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"Rst:”; format /rds 14,9; R;

"mu:”; format /rds 14,9; mu;
"Qst:”; format /rds 14,9; Q;
"scal:”; format /rds 14,0; scal;
7prior:”; format /rds 14,0; prior;
"scdata:”; format /rds 14,0; scdata;
7Sbh:”; format /rds 4,0; Sbb;
”Smu:”; format /rds 4,0; Smu;

33900 MWLM
b 9

output file=junk off;
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Gauss procedure to perform the Kalman filter and to
evaluate the likelihood function

/* L L L T L L L e L L L L e L L T L e L L L L e L L L T T e e e o T I o T T
Filename: TVCSKEF

Author: Filippo Moauro

Date: 80/09/1997

Type: Gauss procedure - ofn

Description:

The proc ofn(th) performs Kalman filter and evaluates likelihood function for
general model like:

[1] y-t = ast(Xs_t) + Hst(Xs_t)’ * chsi_t + w_t
/2] chsit+1 = Fst(Xs_t) * chsi-t + mu + v_t+1
with t = 1, ..., capt,

/3] Cov(w_t)=Rst(Xs_t)

[4] Cov(v-t)=Rst(Xs_t)

Generalized version in order to allow Time Varying Restrictions via
Augmentation of the Measurement Equation (Doran, 1992).

Restrictions like:
/5] RR_t * chsit = cen_t

Input: th = starting values for coefficients to be estimated
Qutput: f0 = mazximum value of likelihood function

Global variables:

rr = dimension of state-space

n = dimension of observation vector

k = dimension of exogenous vector

capt = sample size

XX = (capt x k) matriz of observations on exogenous variables
y = (capt  n) matriz of observations on endogenous variables
chsi = (capt x v) matriz in which chsi-t/t is stored

chsif = (capt © ) matriz in which chsi-t+1/t is stored

chsis = (capt x v) matriz in which chsit/T is stored

P = (capt z r°2) matriz in which P_t/t is stored

Pf = (capt x r°2) matriz in which P_t+1/% is stored

Ps = (capt x r°2) matriz in which P-t/T is stored

scal = scale factor on y

Sbb = selection matriz for exogenous variables
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(Sbb=eye(rz) if all the exogenous are considered for each endogenous)
RR# = time-varying constrains matriz
cn# = time-varying constrains vector

proc ofn(th);

local

FX, @ transition matriz @

Q, @ variance-covariance matriz of v_t @

R, @ wvariance-covariance matriz of w_t @

it, @ index of the iteration @

ydp, @ yfit,.]” augmented of cn @

Xs, @ (Xs augmented of RR @

A, @ from ast(Xs-t) @

H, @ from Hst(Xs-t) @

chsil0, @ chsi_t/t-1 @

chsill, @ chsi_t/t @

P10, @ wvariance-covariance mairixz of chsil0 @
P11, @ wvariance-covariance matriz of chsill @
yvar, @ yvar = (H'*P10*H + R) @

yvarinv, @ inv(yvar) @

vhat, @ estimated dependent variable @

eps, @ prediction errors @

f0; @ likelihood function @

@ read in and translate time-invariant parameters into standard state-space
matrices @

FX = Fst(th, rx);

Q = Qst(th, rx);
A = ast(th, rx);

/* likelihood function */

f0 = 0; @ f0 will be the log likelihood function @
it = 1; @ 1t will index the iteration @
do until it > capt;

@ read in and translate time-varying parameters into standard state-space
matrices @

{ydp, Xs} = readin(it, y, XX, n, Sbb);
R = Rst(th, n);
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if skipcon == 0;
goto aftcon;
endif;
{Xs, ydp, R} = constr(it, Xs, ydp, R); @ time varying constraints @
aftcon:

H = Hst(Xs);
@ set initial value for filter @

if it >= 2;
goto after;
endif;

chsil0 = must(th, rx);
P10 = prior*Q;

if det(P10) <= 0; @ This corrects initial variance to be robust
for case of explosive eigenvalues in FX @
P10 = prior*Q|1,1]*eye(rx);
P10 = reshape(P10’,rx,rx);

endif;

after:

chsiflit,.] = chsil0’;

Pflit,.] = vec(P10)’;

yhat = A + H’*chsil0;

yvar = (H*P10*H + R);

yvarinv = inv(yvar);

eps = ydp - yhat;

f0 = {0 - In(det(yvar)) - eps’*yvarinv*eps;
chsill = chsil0 + P10*H*yvarinv*eps;
chsifit,.] = chsill’;

chsil0 = FX*chsill + must(th, rx);
P11 = P10 - P10*H*yvarinv*H*P10;
Plit,.] = vec(P11)’;

P10 = FX*PII*FX + Q:

it =it +1;

endo;

f0 = -(capt™n/2) * log(2*pi) + 0/2;
retp(-f0);

endp;
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Gauss procedure to augment the Kalman filter

/>l< e i S s e S N —— T — i ——
Filename: AUGMENT

Author: Filippo Moauro
Date: 13/10/1997
Type: Gauss procedure

Description:
Given a general state-space model and a set of restrictions (like in GENX1)

the procedure augments the measurement equation following Doran (1992).
Input:

en = vector of restrictions

RR = matriz of restrictions

Xs = matriz of regressors

ysm = vector of dependent variables

R = variance-covariance matriz

it = t-th iteration of the Kalman filter

intr = time-interval of the restriction

(scalar or 2-vector, if zero no augmentation)
Output:

Xstar = augmented Xs

ystar = augmented ysm

Rstar = augmented R

proc(3) = augment(cn, RR, Xs, ysm, R, it, intr);
local Xstar, ystar, Rstar, maxint, minint;
minint = minc(vecr(intr));
maxint = maxc(vecr(intr));

Xstar = Xs;

ystar = ysm;

Rstar = R;

if it >= minint and it <= maxint;
Xstar = Xs|RR;

ystar = ysm|cn;
Rstar = R zeros(rows(R),rows(RR));
Rstar = Rstar|zeros(rows(RR),cols(Rstar));
endif;
retp(Xstar, ystar, Rstar);
endp;
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Gauss procedure for deterministic interpolation

/>I< s a0 e el s —
Filename: INTERP

Author: Filippo Moauro
Date: 10/10/1997
Type: Gauss-procedure
Description:
Deterministic interpolation of a matriz over the time given two observed
conditions
Input:
M1: (n z k) matriz: first observed matrix
M2: (n z k) matriz: second observed matriz
t1: (n z k) matriz: observation period of M1
t2: (n z k) matriz: observation period of M2
capt: period of interpolation
Output:
Mint: (capt x (n*k)) matriz (interpolated matrizes over the
time in vec-form)

proc(1) = interp(M1, M2, t1, t2, capt);
local Mint, it, a, b, n, k, beta;
n = rows(M1);

k = rows(M1’);
a = vec(M1)’;
b = vec(M2)’;

Mint = zeros(capt,n*k);
beta = (b - a)/(t2 - t1); @ slope of interpolation @
it =1;
do until it > capt;
Mintlit,.] = a + (it - t1)*beta;
it =it - 1
endo;
retp(Mint);
endp;
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Gauss codes on the smoothing algorithm

——.
chsis[capt,.] = chsi[capt,.];
Ps[capt,.] = Plcapt,.];
it = 1;
do until it > capt - 1;
ii = capt - it ;
PPs = reshape(Ps[ii+1,.],rx,rx)’;
Ptt = reshape(P[ii,.],rx,1x)’;
Pt_tt = reshape(Pf[ii+1,.],rx,rx)’;
J = Ptt*FX *inv(Pt_tt);
chsis[ii,.] = chsilii,.] + (chsis[ii+1,.] - chsif[ii+1,.])*J’;
PPs = Ptt + J*(PPs - Pt_tt)*J’;
Pslii,.] = vec(PPs)’;
it = it +1;
endo;
A e
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