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Many countries in the world conduct censuses of their populations. The UK is no 

exception, and every ten years there is a census undertaken in England and Wales, 

Scotland, and Northern Ireland. Although in theory it is three separate censuses, in 

practice these are planned and conducted as a joint project. The 1991 Censuses 

suffered from an increased level of underenumeration relative to the 1981 Censuses. 

This underenumeration was not detected by the 1991 follow-up survey that was 

designed to estimate this underenumeration. 

The work presented in this thesis develops the design of a new follow-up survey for 

the 2001 Censuses that will be able to measure the level of census underenumeration. 

Much of the work presented in this thesis deals with the development of an effective 

estimation strategy for this follow-up survey that utilises all the available data. In 

addition the thesis contains an analysis that adjusts this design and estimation strategy 

to facilitate its implementation within Northern Ireland. The ultimate goal for the 

2001 Censuses will be to create a 'One-Number Census'. This is a census database 

where the estimated underenumeration has been fully integrated into the output 

database so that all tabulations are consistent with the agreed national population 

adjusted for underenumeration. This thesis considers the development of an 

imputation system for this purpose. The system utilises a donor imputation approach 

but also makes use of the estimates already available to ensure that the resulting 

database is consistent with agreed population estimates. 
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Chapter 1 - Introduction 

1.1) The Research Problem 

The Encyclopaedia Britannica defines a census in general terms as 'an enumeration of 

people, houses, firms, or other important items in a country or region at a particular 

time'. It extends this for the modem population census to 'a complete enumeration of 

all the people and their important characteristics for purposes of understanding the 

basic structure and trends of the society'. Every ten years such a population census is 

undertaken in each of the countries that constitute the United Kingdom (UK). In legal 

terms there are three independent censuses but in reality the planning and organisation 

are interlinked to such an extent that to the public it appears as one census for the 

whole UK. The main difference is a few country specific questions. The aim of each 

Census is to inform national and local government about the basic social and 

demographic characteristics of the nation by providing descriptive information at a 

very small geographic level of aggregation. It is for this reason that a census is 

necessary. 

The theory of a census is straightforward, carrying it out is not. Steinberg et al (1962) 

in their paper discussing the accuracy of the 1960 United States (US) Census list 

population mobility, difficulty locating housing units, difficulty finding people at 

home, people with multiple homes, and inexperienced enumerators as just some of the 

problems faced by a census. The Office for National Statistics (ONS) in England and 

Wales is planning for many of these practical problems to be worse in 2001 than ever 

before (Jones, 1997). In other words, even when the census is compulsory, achieving 

a complete and accurate count with restricted resources is impossible, and so 

individuals and households get missed and the census 'underenumerates' the 

population by some amount. Overenumeration can also occur, with people being 

included more than once, or erroneously enumerate with people included once but in 

the wrong place. In general these problems are small relative to underenumeration and 

the net result is a census that does not count enough people. 



The main problem with underenumeration in a census is typically not the total number 

of people missed. For example, the UK censuses still count about ninety eight per cent 

of the population. The real problem is the variation in underenumeration across 

different demographic groups and geographic areas. Therefore, underenumeration 

becomes a problem when comparing small areas or domains as one domain or area 

may have suffered a greater underenumeration than another. 

1.2) Historical Context 

The work in this thesis has a definite historical context. In particular, to understand 

the motivation underpinning this thesis it is necessary to consider briefly the 1991 

Censuses of the UK. These Censuses encountered unforeseen problems, which 

affected their perceived success by the users of census data, with the level of net 

underenumeration in Great Britain rising from 0.45 per cent in 1981 to over two per 

cent in 1991. However, that fact alone is not sufficient to class the 1991 Censuses as a 

failure, since similar levels of net underenumeration had been observed in Canada, the 

US, Australia, and other comparable countries. So why did they produce the headline 

1.8 million Britons 'disappear 

There are probably at least three reasons for this. Firstly, it was a big increase in 

underenumeration from 1981. Secondly, the political climate at the time had been 

influenced by the poll tax, leading to further newspaper articles including 'Missing 

million indicates poll tax factor in census^. While the Office for Population Censuses 

and Surveys (OPCS) was quoted in the article as denying any evidence for this, they 

did point to the third reason. The follow-up survey in 1991 had not found the missing 

people. The article reports that OPCS estimated that over 0.5 million people had been 

missed by both the Census and the follow-up survey. Ultimately it was the failure of 

the follow-up survey that caused the perception that the Censuses had 'failed' as 

OPCS had no estimate of the national population based on the 1991 Census adjusted 

for net underenumeration. OPCS also had no real evidence from the 1991 follow-up 

survey to place the missed people in local authority districts around the country. This 

will be discussed in greater detail in the following chapter. 

Article by Rosie Waterhouse in The Independent on Sunday, 13 September 1992, p i . 



There is also an international context to this thesis. During the same inter-censal 

period of 1980 to 1990 the US Census Bureau had come under increasing pressure to 

'adjust' its census count for estimated net underenumeration. The US Census Bureau 

already had a long history of using a follow-up survey with other demographic 

techniques to assess the coverage of the census. The first such survey had followed 

the 1950 Census. However, the role had always been to inform users of the census 

about the accuracy of the census count and not to actually correct the count by 

adjusting the census counts to reflect the estimated net underenumeration. 

Following the 1980 US Census, the State of New York and New York City took the 

US Census Bureau to court to force their census counts to be adjusted. The plaintiffs 

argued that they were being caused 'injury' through the loss of federal funds as a 

direct consequence of the census count missing people. The Bureau's defence was not 

a denial of the existence of the underenumeration but a claim that there was no 

'statistically defensible' method to adjust the 1980 Census. The ruling, reproduced in 

Werker (1981), went against the US Bureau of the Census, along with other 

defendants including the then President Jimmy Carter. This led to more hearings 

during the 1980s and the original ruling was subsequently overturned. 

While this was happening the US Census Bureau was planning for the 1990 Census. 

Barbara Bailar^ states that the 1986 pre-test showed that adjustment was technically 

feasible so the decision to not adjust, which had been taken by the Bureau for 

technical reasons in 1980, was taken for political reasons following the 1990 Census. 

This decision not to adjust the 1990 Census again led to court hearings and the setting 

up of National Academy panels to address the problem. The Bureau felt that a 

weakness of the 1990 Census had been the perception that the estimation of 

underenumeration was an 'add-on' to the actual Census rather than an integral part of 

it. They therefore started to plan for a 'One Number Census' in 2000. This is a census 

where the estimation of, and adjustment for, underenumeration is an integral part of 

the whole census process. 

• Article by Rosie Waterhouse in The Independent, 17"' October 1992, p8. 



As the OPCS, and later the Office for National Statistics (ONS), started to plan for the 

2001 Census there was a similar move towards the idea of a 'One Number Census' 

but without the difficult political climate of the US. The main users of the census 

outputs were already familiar with the idea of adjustment for net underenumeration. 

Following both the 1981 and 1991 Censuses the population counts by age and sex for 

each local authority district had been adjusted for net underenumeration estimated 

using the follow-up survey in 1981 and demographic methods in 1991. These counts 

formed the basis of the inter-censal series of mid-year population estimates. To extend 

this adjustment to all census outputs, integrate the follow-up survey as a major 

component of the whole census process, and plan the project well in advance was an 

obvious way to avoid the problems of 1991 and to deliver a 'better' product to the 

users. This thesis is a part of that project, leading to a One-Number Census throughout 

the UK in 2001. 

1.3) Objectives of the Research 

The research in this thesis does not cover every aspect of the processes associated 

with undertaking a One-Number Census in the UK. Its main objective is to present the 

statistical methods that have been proposed to enable a follow-up survey to deliver the 

data needed for the production of a One-Number Census. Consequently, the research 

described here does not deal with the many practical problems that arise such as 

fieldwork procedures to collect the data, the editing and coding of data, or matching 

information between the follow-up survey and the census. These are all extremely 

important for the success of a One-Number Census and are reported in the many 

working papers produced by ONS as part of the planning for the 2001 Census. 

It is also important to realise that this research is based on the assumption that there 

will be underenumeration in the 2001 Censuses and therefore its extent must be 

estimated. However, it does not deal with the issue of what causes the 

underenumeration. It also does not deal with other census errors such as mis-

reporting. Both of these issues are important issues understanding them for one census 

will inform the planning of the next census. However, they are beyond the scope of 

•" Ruminations on the Census. Article by Barbara Bailar in Amstat News, August-September 1997, p i . 



this research. In general they have received less attention than the measurement of 

underenumeration although a recent paper by Iversen, Furstenberg Jr., and Belzer 

(1999) considers mis-reporting in the 1990 US Census. 

1.4) Organisation of the Thesis 

The next chapter reviews in more detail the estimation of underenumeration in the 

census and particularly looks at the statistical methods used for this purpose in the 

US. It also looks at what was done following the 1991 Censuses of the UK. Chapter 

three looks at the proposed design for the follow-up survey in 2001. Chapter four then 

deals with the estimation of underenumeration for large sub-national populations 

using data from the proposed follow-up survey. The estimation methods are assessed 

using a simulation study. Chapter five looks at the design of the follow-up survey and 

its use for estimation of census under enumeration with respect to the production of a 

One-Number Census database for Northern Ireland. Chapter six goes into detail on 

the proposed method for taking the results of chapter four and chapter five to produce 

a One-Number Census. Some of this is joint work done with Dr. Fiona Steele from 

LSE and where that is the case it will be made clear in the text. Finally, chapter seven 

draws some conclusions and points to where research is still needed to ensure that a 

One-Number Census for the UK can successfully be undertaken in 2001. 



Chapter 2 - Review of the Literature 

2.1) Introduction 

The role of this chapter is to place the estimation of underenumeration in the 2001 

Censuses of the UK in both a national and international context. The first section will 

look at the post-war censuses of the US up to and including the developments for the 

2000 Census. The US is considered first due to its long history of estimating census 

underenumeration using a follow-up survey. The second section will look at the last 

two sets of censuses in the UK, particularly concentrating on the 1991 Censuses. This 

is important as it is the 1991 Censuses that provide the back-drop for the 2001 

Censuses. The final section will review in more detail the methodology that has 

traditionally been used to measure census underenumeration, with particular emphasis 

given to dual system estimation. 

2.2) History of the Estimation of Census Errors in the US 

2.2.1) The 1950 Census 

The 1950 Census was the first post-war census of the US population; it was also the 

first to make a serious attempt to measure census errors beyond estimates of net 

underenumeration at the national level using demographic techniques. Work on the 

1948 Census of Agriculture suggested that it was possible to use sampling techniques 

to design a follow-up survey to measure all types of census errors. The basic principal 

was to re-enumerate a sample of areas after the traditional census. The logic behind 

this approach was that since the survey was on a much smaller scale than the census it 

would only use well trained and highly motivated enumerators who would be easier to 

manage. Therefore, the repeated count in the sample of areas would be of higher 

quality. In particular, the methodology used in 1950 required the repeat count to 

identify all missed households and individuals in the sample areas. By any standard 

this is and was an unrealistic expectation and recent work in Darga (1999) argues that 

on the ground, at least, any follow-up survey to a census will face all the same 

problems as the census and some of these may even be worse. 



The view in 1950 was not so pessimistic. The survey had a standard population survey 

design. The US was stratified into different groups and within each stratum a sample 

of areas was drawn. Marks, Parker Maul din, and Nisselson (1953) review in detail the 

design issues that were considered, in particular choices between clustering for cost 

efficiency verses sampling efficiency. The survey then attempted to 'correctly' re-

enumerate the sampled areas. This re-enumeration was designed to: 

a) identify households completely missed by the census and the individuals contained 

within them {underenumeration). 

b) identify individuals missed by the census within households counted by the census 

{un deren um eration). 

c) identify households and individuals incorrectly included in the census 

{overenumeration). 

d) identify errors in the answers given to questions regarding households and 

individuals correctly counted by the census {reporting errors). 

The last aim required a 'dependent' re-enumeration in the sense that survey 

enumerators needed a record of exactly what the census had recorded. This enabled 

differences between answers given in the survey and census to be identified in the 

field and probes used to determine the 'correct' answer. The identification of 

overenumeration in the field also required the survey enumerator to know at the very 

least that the census had counted a particular person to be able to check whether their 

inclusion was correct. However, subsequent analysis of the 1950 Census by Coale 

(1955) and the US Census bureau (see Marks and Waksberg, 1966) agree that the 

survey failed at identifying underenumeration although there is disagreement about 

the extent. This appeared to be the case, particularly for persons missed in counted 

households where having the census record tended to mean the survey enumerator just 

repeated the census listing. It was also due to this requirement that the survey 

enumerators were 'perfect' at finding households. Any individuals in household 

missed by both the 1950 Census and the follow-up survey would remain as undetected 

underenumeration. 



In their review of the initial results Hansen, Hurwitz, and Pritzker (1953) raised an 

important issue, the fact that both the original census results and any results based on 

the follow-up survey would be subject to error. They finished their review with a 

challenge to census users to consider the issue of errors in census data and what level 

is acceptable. The debate that has followed the 1990 Census, and is particularly raised 

by Darga (1999), suggests that this is unresolved. Following the 1950 Census, while 

there was discussion regarding the deficiency of the follow-up survey results, it also 

appears to have been accepted that the census results were at least equally deficient. 

This is reflected in attempts to get alternative estimates of census errors at the national 

level. Coale (1955) produced a set of adjusted population counts at the national level 

by age, sex and race. This was based on a combination of methods to build-up the 

1950 population using the 1950 Census, the 1940 and 1930 Census, vital registration 

data, and information from the follow-up survey. The essence of the method was 

based on an assumption that census errors had been constant over time so cohorts 

could be followed through time, adjusting for deaths and migration to build the 1950 

population. The paper acknowledges its own weaknesses (any method of estimating 

underenumeration requires some assumptions) and Coale rejects his method for the 

older ages and relies on the follow-up survey as do the 'minimum reasonable' 

estimates produced by the US Census Bureau. The final estimate of net 

underenumeration in Coale (1955) was 5.4 million persons, considerably higher than 

the US Census Bureau 'minimum reasonable' estimate of 3.7 million persons (Marks 

and Waksberg, 1966) produced by a combination of demographic methods and the 

follow-up survey estimates. However, both are higher than the estimate based on the 

follow-up survey alone of 2.1 million persons plus or minus 340,000 reported by 

Hansen et al (1953). 

2.2.2) The 1960 Census 

Estimation of net underenumeration in the 1960 Census built on the knowledge 

gained from 1950. Steinberg, Gumey, and Perkins (1962) highlight the much shorter 

period between the two counts as the single most important improvement. There was 

also a change to a more independent count, hi 1960 the survey enumerators had no 

information about the number or characteristics of individuals found by the census in 

8 



an occupied housing unit. Differences were reconciled using a third visit. This 

resulted in Steinberg et al (1962) reporting the 1960 estimate of those missed from 

counted units as being roughly two million compared to less than a million in 1950. 

They conclude that the initial results from the re-interview approach suggest that work 

using this approach had reached 'maximum intensity' and any future improvements 

would be through improved processing and better questionnaire design rather than 

changes to the design and conduct of the survey. 

The review by Taeuber and Hansen (1964) gives a preliminary evaluation of the entire 

1960 Census including both coverage and quality of the census. They consider the 

impact of introducing sampling for some of the more detailed questions and therefore 

the use of a long-form for a sample and a short-form for everyone. The paper looks at 

general problems such as response bias and variance as well as more specific issues 

such as age heaping and comparisons with the 'Current Population Survey' to assess 

employment data in the 1960 Census. Their short section reviewing census coverage 

concludes that the improvements introduced between 1950 and 1960 resulted in more 

reasonable estimates of census net underenumeration, consistent with the independent 

demographic estimates presented by Akers (1962). 

The review by Marks and Waksberg (1966) looks in more detail at the different 

evaluation programmes used after the 1960 Census to assess coverage. In particular, 

they consider the two surveys that generated the coverage results reported in both 

Steinberg et al (1962) and Taeuber and Hansen (1964). The first was a survey of 

areas, similar to 1950, to assess the coverage of housing units and those individuals 

missed in housing units. However, unlike 1950, this survey did not collect information 

on the individuals' characteristics and gave no estimate for people missed in 

enumerated units. This was assessed from a second sample of 15,000 census addresses 

that were then re-interviewed. It is this second sample where the independent re-

enumeration reported by Steinberg et al (1962) is carried-out. The second sample also 

attempted to estimate coverage of housing units by checking whether the neighbour 

had been counted in the census. Both Marks and Waksberg (1966) and Steinberg et al 

(1962) considered these estimates of missed housing units generated by the second 

sample to be too low. This results in the 1960 Census estimates of coverage being a 



Combination of estimates due to complete housing units being incorrect (the area 

sample) and estimates due to enumerated housing units being partially incorrect (the 

list sample). 

The US Census Bureau did not rely solely on re-interview surveys to generate 

estimates of coverage errors. Marks and Waksberg (1966) report the results of an 

evaluation using record checks. The approach involved the generation of an 

alternative population list to the 1960 Census. In the absence of a population register 

for the US this was generated from the 1950 Census adjusted for those known to have 

been missed using the 1950 follow-up survey, birth registration data, and data on 

registered aliens. Marks and Waksberg (1966) suggest that the coverage of this 

independent list was considered to be about 98 per cent. A sample of individuals was 

drawn from this list and the individuals were contacted. The aim was to estimate gross 

underenumeration in the 1960 Census by establishing whether the sample from the 

independent list had been counted in the census. The major problem with the approach 

was updating the address information for the sample, which meant that about 1,000 

out of approximately 7,000 sampled units were not contacted. Therefore, to use these 

data, Marks and Waksberg (1966) make assumptions about the coverage in these 

remaining addresses and generate a minimum and maximum estimate of 

underenumeration. Both the demographic estimates and the estimates from the 

surveys lie within these extreme estimates. 

Marks and Waksberg (1966) acknowledge that this approach has some deficiencies, 

not least the fact that up-to-date address information proved very difficult to obtain. It 

also only generated estimates of gross underenumeration whereas the re-enumeration 

surveys measured both overenumeration and underenumeration. However, its main 

advantage was that it could be considered independent of the current census. Even 

where the list was mostly generated from the previous census, Marks and Waksberg 

(1966) argue that this independence still holds as the considerable variation in census 

coverage by age means that there is little correlation between census errors and list 

omissions. Consequently, despite the problems associated with setting-up the lists, 

they argued that this approach warranted further research with much larger samples of 

records being drawn. 
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2.2.3) The 1970 Census 

The review of the re-enumeration surveys of the 1960 Census in the previous section 

certainly suggests that they were reasonably successful at getting the net 

underenumeration correct (at the national level) in so far as they gave results that were 

consistent with the demographic analysis. However, Siegel (1974) calculated national 

estimates of underenumeration based on 'demographic techniques' and made the 

following statement criticising re-enumeration surveys. 

"The leading alternative methods for evaluating census data, 

namely case-by-case checking or matching techniques, involving a re-

interview survey, a prior sample survey, or independent lists and 

records, have, in our experience, shown such serious limitations as 

devices for measuring the coverage of the total population and the 

accuracy of the counts by age, sex, and race that the principal reliance 

has been placed on the methods of demographic analysis for measuring 

coverage and accuracy in 1960 and 1970. These alternative methods 

either greatly understated the undercoverage rate or provide too broad a 

range of estimates in 1950 and 1960; the estimate obtained by 

demographic analysis proved to be much more reasonable. The case-by-

case methods are handicapped by problems of matching, and the results 

are affected by sampling error." 

This move away from using re-enumeration surveys to measure coverage is also 

reported in Kaplan (1970) and Waksberg and Perkins (1971). The latter argue that: 

"One plausible hypothesis for the failure of the re-interview method 

to provide reasonable estimates of undercoverage in the census is that 

the re-interview method is so closely patterned on the census 

enumeration procedure that errors in census coverage are highly 

correlated with coverage errors in the re-interview." 
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Both these statements seem at odds with the evaluation of the 1960 Census but are in 

line with the problems found in 1950. In fact, changes to the evaluation programme in 

1960, highlighted in the previous section, were designed to overcome the problem of 

correlated errors and ensure more independence. They also ignore the strengths of the 

re-enumeration surveys in that they give estimates of both overenumeration and 

underenumeration as well as giving some insights into why people are missed (Marks 

and Waksberg, 1966). 

The 1970 Census did use re-enumeration surveys as part of the complete evaluation 

programme. For example, Waksberg and Perkins (1971) highlight the use of re-

enumeration samples to check the ability of the census enumerators to both find 

housing units and to then correctly classify them as vacant or non-vacant. A large re-

enumeration sample was also used to look at content errors as in both 1950 and 1960. 

However, it only focused on a limited number of variables with much of the analysis 

coming from a match between 1970 Census data and the Current Population Survey. 

2.2.4) The 1980 Census 

The evaluation programme for the 1980 Census moved back to the explicit use of 

surveys to measure census coverage. However, the main tool used to measure 

underenumeration was not a special survey, as in 1950 and 1960, but the sample of 

individuals responding to the Current Population Survey for two months during 1980. 

In addition, a sample of 100,000 households that had been enumerated in the 1980 

Census was selected and re-enumerated in order to estimate the different sources of 

overenumeration. The bringing together of these different sources is summarised in 

Bailar and Jones (1980). They also mention the use of dual system methodology 

(Sekar and Deming, 1949) with both the census and the Current Population Survey as 

well as with these sources and administrative lists for different population groups. 

Along with demographic methods, these methods were designed to give a set of 

estimates (as in 1960 and 1970) that could be combined and reviewed to get agreed 

estimates of underenumeration. The use of dual system methodology recognised the 

fact that any re-enumeration survey is also likely to suffer from underenumeration and 

therefore also miss people in the sampled areas. 
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However, the 1980 Census evaluation programme had to face problems that had not 

previously occurred. Bailar and Jones (1980) observed that in previous censuses 

estimates of underenumeration were mainly as a measure of the quality of the census. 

However, by 1980 there was an increasing use of the census counts to distribute 

federal funds, meaning that the underenumeration was now politically important. It 

was this climate that led to the ruling against the Census Bureau, although it was 

subsequently overturned on appeal. The full initial ruling is reported in Werker (1981) 

and states that while the methodology for the 1980 Census was reasonable it was not 

efficiently applied to New York State and specifically to New York City. Therefore, 

the high underenumeration would cause a loss of funds to the plaintiffs. For the first-

time, the ruling states the need to use the estimates firom evaluation programmes to 

'adjust' the 1980 Census. The judgement acknowledges the difficulty of doing this but 

states that the issue is not a perfect adjustment but an adjustment that makes the 

imperfect census more closely reflect the true population. 

In his paper addressing the issue of adjustment, Trussell (1981) discusses the issue of 

what would be acceptable. He points to the problem of not knowing what the truth is, 

an obvious but important point, and argues for an adjustment procedure that is robust 

to the assumptions that are needed for the procedure to work. He suggests a synthetic 

approach to producing adjusted counts; combing estimates from demographic 

methods that are considered very good at high levels of aggregation, with possibly 

poorer quality estimates at lower levels of aggregation obtained by matching to other 

lists. The higher the aggregation of the estimates of underenumeration the more 

extreme is the assumption of homogeneity required for this synthetic approach. 

Trussell (1981) completes his paper by supporting the view of the US Census Bureau 

that estimates of underenumeration generated from the 1980 Census are not 

sufficiently good quality to be assured that the adjusted data would be of 'better' 

quality. He concludes by stating that many politicians miss the point that it is the 

distribution of the population that is crucial for allocation purposes and not just getter 

closer to the true total. 



Following the 1980 Census there was considerable interest shown by statisticians in 

the topic of adjustment, both from those in favour and those against. Ericksen and 

Kadane (1985) developed what they claimed to be a defensible method of adjustment 

after rejecting the 'complete-coverage' model that the US Census Bureau pursued in 

1980. They argued that the latter was a futile exercise both on grounds of spiralling 

costs and the fact that procedures aimed to increase coverage often also increase 

erroneous inclusions. In particular, these authors developed procedures for combining 

all the available data from the follow-up studies and demographic methods to produce 

what they claimed to be statistically defensible estimates. The approach involves 

applying dual system estimation but using external population estimates for subgroups 

to allow for the situation when the data sources are not independent or none of the 

lists can be considered perfect. The estimates of the odds ratio of census coverage 

relative to coverage by other sources calculated for certain subgroups were then 

applied to other subgroups for which population estimates were not available. They 

also briefly discussed the use of many lists but rejected this approach for the 1980 

Census as the US Census Bureau only had the Current Population Survey data 

augmented by a couple of additional administrative lists including IRS records. 

The second stage of the procedure is the production of counts for much smaller areas. 

Ericksen and Kadane (1985) use a synthetic model based on age, sex, and race but 

then extend this to a regression model. This extends the ideas of Ericksen (1974), 

building a regression model that predicts the ratio between the 'truth' and the census 

in terms of 'symptomatic' variables that include factors such as age, sex, and race but 

may also include more qualitative measures of, for example, how the census went in a 

particular area. They also borrow ideas from Fay and Herriot (1979) amongst others to 

allow for the fact that the ratios are themselves survey estimates. Essentially, this type 

of regression model helps to smooth out the variability in estimates derived from the 

follow-up survey. 

A critique of this approach is given in Freedman and Navidi (1986). They focus 

particularly on the use of the regression model and the statistical assumptions behind 

the model, for example the assumption that sampling variances are known without 

error, an assumption that cannot be true as they must be estimated from the sample 
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data. They also point out the fact that the estimates are unstable to changes in the 

independent variables in the model. This is contrary to a criterion that Trussell (1981) 

argues would be desirable, that is, stability to small changes. They also consider some 

of the practical problems with applying dual-system estimation, particularly the 

implications of matching two data sources where imputation has been used to fill-in 

missing data on the sources and also to fill in the match status when it cannot be 

determined. Ericksen and Kadane (1985) acknowledge problems with the matching 

and recommend that some cases should be excluded at the start when there is concern 

over the quality of the data rather than allowing possibly poor data to introduce bias 

into the estimates. 

A detailed response to the criticisms made by Freedman and Navidi (1986) is given in 

Ericksen, Kadane, and Tukey (1989). In particular, they consider the concerns 

surrounding the use of the regression model and its assumptions, the choice of which 

series generated fi-om the coverage evaluation programme to choose, model fitting, 

and the 'best' set of independent variables. They tackle these issues by repeating much 

of the analysis for several different sets of data and demonstrate that the results are 

usually 'robust' to the different choices. They argue strongly that, just because it is 

'hard' to decide on the statistically 'best' approach to adjustment, this is not an excuse 

for not making an adjustment. In fact, they reference the work of Schirm and Preston 

(1987) which demonstrates that under plausible assumptions about the distribution of 

underenumeration by geography and socio-demographic variables even a very simple 

approach using synthetic estimation is an improvement over the unadjusted census in 

terms of the distribution at the state level. Another issue raised by Freedman and 

Navidi (1986) is whether it is sensible to take the model and apply it outside the 

sample. On this point Ericksen et al (1989) consider some strategies for dealing with 

the 1980 Census. However, the key point they raise is the need to design any follow-

up survey for the 1990 Census to make the blocks used as the basis for the design as 

homogeneous as possible. This makes any extrapolation from the sample areas to the 

non-sample areas more defensible. 

The main complaint against adjustment seems to be based on the practical issues 

surrounding matching between the census and the follow-up survey and which of the 
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Several data sets, generated using different assumptions and two waves of the Current 

Population Survey, to use. Freedman and Navidi (1986) also challenge the statistical 

assumptions behind the model. However, Ericksen et al (1989) point out that their 

statements against the independence assumption in the regression model are 

somewhat far fetched. They also point out that the underestimation of standard errors 

claimed by Freedman and Navidi (1986) would not alter the outcome of the modelling 

and the adjustment would still be an improvement. 

The issue of the regression approach is taken-up by Cressie (1989) who also 

challenges the appropriateness of some of the assumptions, particularly the 

assumption of a constant residual variance when modelling counts. He develops an 

Empirical Bayes estimator as an alternative. One major advantage of the approach is 

that it is what Cressie (1989) calls level consistent. In other words it easily allows 

aggregation of say North and South Dakota or the disaggregation of Los Angeles from 

California. The approach developed by Cressie (1989) also allows for more general 

models than the work by Ericksen and Kadane (1985), but the price is a greater level 

of complexity that makes explanation to census users more difficult. Again, the 

estimator relies on knowledge of the variances for the stratum means model, a model 

in which underenumeration is constant within specified strata, which is used to 

smooth out the estimates of underenumeration, and the sampling variances of the 

original dual-system estimators, as well as some well estimated population totals. 

Cressie (1989) acknowledges that the estimation of the variance parameters can be 

unstable and introduces an initial stage that smoothes the variances by collapsing 

across the strata in the model. 

The approach in Cressie (1989) gives an efficient way to model underenumeration 

through "appropriate stratification and heteroscedastic modelling of variances". The 

paper applies the models to the 1980 Census data. Using a squared error loss function 

he shows that there is always a greater risk from using unadjusted census data. The 

models and assumptions in the paper were specifically designed for the 1980 Census 

but can easily be applied to any census. He also states that introducing spatially 

dependent variation would also be possible rather than making independence 

assumptions throughout the modelling. 
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2.2.5) The 1990 Census 

The US Census Bureau claimed that there was no "statistically defensible" (Werker, 

1981) method of adjustment for the 1980 Census, but this claim was based on the 

quality of the data that was available on underenumeration in 1980 rather than the 

availability of statistical methods to carry-out an adjustment. Therefore, the plans for 

the 1990 Census included a large-scale evaluation programme based on both 

demographic estimates and a post-enumeration survey (PES). An overview of the 

design of the PES and the practicalities, such as matching and producing estimates, is 

given in Hogan (1992). The design was very similar to the approach used in previous 

dedicated surveys of census underenumeration. A national sample of block clusters 

was selected after stratifying at the national level based on what was known about the 

distribution of census underenumeration in 1980. To estimate underenumeration the 

survey attempted to construct an independent list of housing units and enumerate all 

those individuals within the housing units who should have been enumerated as 

residents on census night. To estimate overenumeration all the census returns for the 

sampled block clusters were also checked to ensure that all the individuals and 

households were correctly included. (In reality, it is only necessary to check those 

individuals and households for whom there is a census return but no subsequent 

survey response.) 

The estimation strategy required the formation of post-strata and the application of a 

weighted dual-system estimate within the post-strata. The original strategy used 1,392 

post-strata defined using region, census division, race, place/size, and housing tenure 

as well as age and sex. There was also a special group for American Indians. The 

estimation strategy then proceeded along the lines of Cressie (1989) by estimating 

'raw' adjustments using the dual-system estimates, using these to fit a regression 

model to predict adjustment factors, and then using a weighted average of the 'raw' 

adjustment and the predicted adjustment to get a final smoothed adjustment. As 

suggested by Cressie (1989) the sampling variances were pre-smoothed as their 

estimation was considered unstable for some of the post-strata with small samples. 
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This approach received some criticism both in respect to the formation of the post-

strata and the variance assumptions in the smoothing. In response to the concerns 

Hogan (1993) presents results of a modified approach that used a new set of post-

strata that were considered more homogeneous with respect to census 

underenumeration but which were also fewer in number. The matching was also re-

visited and this resulted in some modifications. There were also corrections to errors 

that had occurred during the original processing. The results of the changes are "more 

stable estimates with a sharper distinction between groups" (Hogan, 1993). Another 

important conclusion made by Hogan (1993) is that operationally the PES succeeded 

and the processing of the data was achieved in the specified time-frame demonstrating 

the practical feasibility of adjustment. 

As in 1980, the issue of the estimation of underenumeration was subject to 

considerable debate and litigation, once the Secretary of Commerce announced his 

decision not to adjust the 1990 Census on July 15'̂ , 1991. As with the post-1980 

debate, much of the criticisms focused on the application of dual-system estimation 

and the models for making the adjustment. A particularly interesting set of papers is 

published in Statistical Science (November, 1994). The paper by Breiman (1994) re-

visits the concept of 'total error' in the proposed 1990 adjustments. This is based on 

work done by the US Census Bureau reported in Mulry and Spencer (1993). The key 

point of both papers is that there are significant sources of error in the proposed 

adjustments although the resulting conclusions are somewhat different. This point is 

picked-up by Belin and Wolf (1994), who criticise the conclusions of Breiman (1994). 

A clear message from this criticism is that any future attempts at estimation of 

underenumeration and a subsequent adjustment should carefully address the sources 

of error in both the statistical models and the processes involved with the collection 

and preparation of the data. 

This point is at the core of the paper by Freedman and Wachter (1994) who address 

the issue of heterogeneity in the post-strata and its subsequent impact on an 

adjustment process. Diamond and Skinner (1994) in their discussion of the paper 

point out that care should be taken to not confuse this with biases in the dual-system 

estimator due to heterogeneity. The issue being assessed here is that an estimate for 
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the State of Cahfbmia is calculated by applying synthetic estimates to individuals in 

the different post-strata that appear in the State. However, the same post-strata may 

also apply to people in another State, New York for example, and this assumption of 

homogeneity between States may have an impact on the estimated State totals. The 

result is that, for the variables Freedman and Wachter (1994) analyse as proxies for 

underenumeration, the synthetic adjustments have failings. This is perhaps not 

surprising to anyone who has attempted to make small area estimates from survey 

data. This suggests that any subsequent PES needs to have a large enough sample to 

facilitate the production of direct estimates for state totals. This will have two positive 

outcomes, remove the issue of bias due to an untrue synthetic assumption, as well as 

make synthetic assumption for sub-state populations more plausible, or indeed allow 

the use of more complex small area models such as those extensively reviewed in 

Ghosh and Rao (1994). 

2.2.6) Plans for the 2000 Census 

The complexities of the court rulings surrounding the 1990 Census have impacted on 

the US Census Bureau's plans for the 2000 Census. The initial plan was to fully 

integrate coverage improvement into the census and produce a single set of numbers 

by the deadline of 31®' December 2000. However, the controversy of the 1990 Census 

adjustment has not gone away and as recently as the 25^ January 2000 the Supreme 

Court ruled against the use of adjusted census data for apportionment of the House of 

Representatives. The original plan for the 2000 Census included an element of 

sampling during the fieldwork follow-up of the actual census count. The advantage of 

this was a cost saving in terms of the number of temporary enumeration staff that 

would be required as well as requiring less time to achieve the coverage targets. As a 

consequence of finishing census fieldwork earlier, the independent coverage 

measurement would be more effective by getting it in the field more quickly. The 

original plans and resulting changes are outlined in Wright and Hogan (1999). 

The plan that has been implemented involves a 'traditional' census count followed by 

an independent coverage measurement survey very similar to the 1990 Census. The 

key difference is that there has been extensive research by US Census Bureau in the 

19 



preceding ten years to plan for adjustment, and the follow-up survey will be 

considerably bigger, 300,000 housing units compared to 165,000 housing units in 

1990. Hogan (2000) reports some of this research in respect to the application of dual-

system estimation and references the more detailed work by Griffin (2000) on the 

calculation of the DSE and the treatment of movers, Griffin and Haines (2000) on the 

formation of post-strata, and Cantwell (2000) on the treatment of unresolved match 

status and on missing data procedures. The philosophy for 2000 has emphasised 

simplicity over complexity. Although the intention is to form more post-strata, the 

larger sample size means that variance smoothing is unnecessary, and this approach is 

certainly more 'transparent' to the users. In addition, the allocation of unresolved 

cases after matching in 1990 using a hierarchical logistic regression model, as 

reported by Belin et al (1993), was criticised by Breiman (1994) who argued that the 

results were not well supported by the error studies carried-out following the 1990 

Census. While Belin and Wolf (1994) argue that the same studies show it to have 

been successful, the approach in 2000 will form classes by demographic and 

geographic characteristics, and simple cell probabilities will be used rather than 

predicted probabilities. As in 1990 synthetic estimation will be used to adjust the 

census down to the census block level. This will give adjusted block totals for 

individuals and households. The current proposal is then to release a two-number 

census, the unadjusted census database and a census database where imputation has 

been used to add the 'missing' housing units and the 'missing' individuals. 

2.2.7) Underenumeration Measurement in US Censuses - Conclusions 

Work done by the US Census Bureau demonstrates that estimation of census 

underenumeration is technically feasible with an adjustment to the census database for 

that estimated underenumeration. This is based on a large-scale re-enumeration of a 

sample of small groups of housing units that is undertaken independently of the 

census. This sample allows for the estimation not only of those missed by the census 

but those incorrectly counted by the census. Estimation also accounts for the fact that 

the survey will not count its areas perfectly and consequently some individuals will be 

missed by both the census and the survey. This is based on the experience of using 

follow-up surveys in 1950 and 1960 where, especially in 1950, there is evidence to 
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support the fact that the follow-up survey also missed people. The problems faced in 

1980 and 1990 relate more to the practical issues of carrying out this survey and the 

subsequent estimation. In 1990 the issue of deciding when one approach is better than 

another also surfaces. What the 1990 experience in the US very clearly demonstrates 

is the need to ensure that whatever approach is adopted for the UK Censuses in 2001 

it has been openly discussed with all parties and all parties are agreed. It is vital that 

this happens before interested groups can see the data and the possible impact of 

adjustment. 

The US Census Bureau has also looked at other approaches and has relied heavily on 

demographic estimates at a national level to give the definitive results on net 

underenumeration. There has also been work following the 1960 Census and prior to 

the 1990 Census on the use of administrative data as alternative lists of the population 

to compare to the census. In both cases these approaches have been hampered by the 

lack of a single good list, such as the population register in Sweden (see Lyberg and 

Lundstrom, 1994) and have not been pursued further. 

2.3) Estimation of Underenumeration in the 1991 Censuses of the UK 

Since the 1971 Censuses of the UK, there has been a process of evaluating both the 

quality and coverage of the results. This evaluation has included the adjustment of 

population counts, used in the mid-year population estimates, for estimated net 

underenumeration. The intention in the 1991 Censuses of the UK was that the basis of 

the evaluation programme be a follow-up survey called the Census Validation Survey 

(CVS). This strategy was based on the successful 1981 Census evaluation programme. 

The 1981 Census evaluation programme was reviewed in Britton and Birch (1985), 

where the following three main objectives are stated: 

(i) to check whether all persons present on census night in a private household had 

actually been correctly enumerated by the census; 

(ii) to verify the classification by census enumerators of unoccupied residential 

accommodation; 

(iii) to assess the quality of replies given to census questions, and hence the accuracy 

of the published 1981 Census results. 
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The original plan for the 1981 Censuses evaluation programme addressed assessment 

of the actual coverage of households via a separate survey. However, late in the 

planning stage it was decided all these objectives would be addressed by a single 

follow-up survey. 

The basis of the design of this survey was a stratified multi-stage sample of blocks of 

enumeration districts (EDs) referred to as census districts. At the first stage the census 

districts were stratified by region and type of area (metropolitan, non-metropolitan, 

inner and outer London) and fi"om the strata a sample of 300 census districts 

(including 29 from Scotland) was selected with probability proportional to an 

estimated population size that had been developed for use in planning the 1981 

Census. In addition all EDs were graded according to the likelihood of census 

response based on the 1971 Census, using a classification suggested by Webber 

(1977). In particular, a census district containing EDs graded as difficult to enumerate 

was selected with probability proportional to twice its estimated size. The second 

stage then selected a cluster of four EDs per selected census district with probability 

proportional to its estimated number of households. Again, the size was doubled for 

graded EDs. The final survey can then essentially be thought of as several samples of 

households and individuals all drawn firom the same sample of enumeration district 

(ED) clusters. Each sample of households fi'om the selected ED cluster then assesses a 

particular component of the census fieldwork procedures. In 1981 this included a 

sample of properties identified as vacant in the 1981 Census, a sample of households 

that responded to the 1981 Census that was used to check the quality of census data as 

well as the coverage of individuals within counted households, and all households 

within the ED cluster identified as missing firom the 1981 Census. 

The above strategy was highly successful in 1981 in detecting the whole spectrum of 

census errors. The net level of underenumeration of 0.45 per cent reported in Britton 

and Birch (1985) for persons was, with the exception of estimates for 0 to 4 year olds, 

consistent with demographic estimates. Based on this success an integrated coverage 

and quality approach was again taken in 1991, and a very similar approach to the 

design of the Census Validation Survey (CVS) is reported in Heady, Smith, and Avery 

(1994). This involved a multi-stage strategy to select census districts and then clusters 
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of enumeration districts, with the enumerator then selecting samples of households to 

assess the different sources of census errors. 

The above strategy was not successful in 1991. Demographic estimates in Heady e/ a/ 

(1994) suggest an underenumeration of about two per cent (p. 43) for England and 

Wales after adjusting for definitional differences compared to the 'best' CVS estimate 

of 0.5 per cent ± 0.22 per cent (p. 31). The decision to accept, in most cases, the 

demographic estimates in preference to the 1991 Census adjusted by the CVS is 

outlined in OPCS (Spring 1993). The decision was based partly on an analysis of the 

sex ratios in the unadjusted census, the adjusted census, and demographic estimate. 

The sex ratios in the adjusted census for young men were below one leaving only two 

possible explanations; mass undetected emigration between 1981 and 1991 by young 

men but not young women, or a differential underenumeration of young men that the 

CVS had not detected. Further work focused on other possibilities for the differences 

between the adjusted census and the demographic estimate. The work concluded that 

there was no evidence to support a major over estimate by the demographic method as 

this was based on birth registration, death registration, net migration estimated from 

the International Passenger Survey, with the 1981 Census as the base. Birth and death 

registration are considered more or less perfect. The article also rejects a problem with 

the 1981 Census or a problem with migration estimates as the main cause. However, 

the article lays the blame on additional underenumeration in the 1991 Census that the 

CVS had failed to measure. 

Once it was accepted that the demographic estimate was the basis of the national 

population estimate for 1991, the problem was then how to allocate the additional 

people to the local authorities. This was achieved by adjusting the sex ratios in the 

1991 Census for large groups of local authorities so that they were consistent with 

average sex ratios &om the 1971 and 1981 Censuses, while at the same time making 

an overall adjustment upwards to meet the agreed national estimate. The effect of this 

was to make particularly large adjustments to young males in the inner city areas 

relative to other age groups and relative to females of the same age. Heady et al 

(1994) sets out the method in detail and gives the final underenumeration adjustment 



factors that were used, along with the work in OPCS (Autumn 1993), to produce the 

1991 local authority mid-year population estimates. 

The 1981 population estimates had included an element of adjustment for census 

underenumeration based on the 1981 follow-up survey. The problem in 1991 was that 

the level of the adjustment made for underenumeration in some of the local authority 

districts left local demographers unsure about the validity of census counts at ward 

and ED level, particularly for the allocation of resources (Simpson, 1994). In addition, 

the fact that the adjustments were not based on the CVS meant that it was difficult to 

get a feel for the characteristics, beyond age and sex, of the people missed. The 

sample design for the CVS had, by the stratification used, assumed that 

underenumeration would be homogeneous across reasonably broad groups of the 

population (ie the major metropolitan cities were all assumed to have the same level 

of underenumeration). Even if the CVS had made an acceptable estimate at the 

national level it is questionable whether this homogeneity assumption would have 

been sensible. The result of this was an attempt by the Economic and Social Research 

Council funded project 'Estimating with Confidence' to look at the issue of adjusting 

the census at levels lower than the local authority district. Simpson, Cossey, and 

Diamond (1997) describes a set of publicly available adjustments. The adjustments 

were the result of a consultation process and were based on a regression model that 

used unemployment and the level of census imputation to share out the 

underenumeration allocated to each local authority district. The adjustments also dealt 

with the definitional and timing differences between the 1991 Census and the 1991 

mid-year population estimates. An example of this is the movement of students from 

their 'home' address (1991 Census) to their term address. Southampton, for example, 

had an adjustment of plus 10,400 of which 3,600 were students and 6,800 was census 

underenumeration. 

There is a general perception that the underenumeration problem in 1991 was due 

operational problems with the 1991 Censuses, an easy conclusion to make as 

underenumeration increased by three or four times compared to the level in 1981. 

Therefore, one solution to underenumeration would be to ensure that those operational 

problems did not occur in 2001. Unfortunately, the situation is not quite so simple. It 
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was harder in 1991 than previous censuses for the census enumerators to contact 

households and individuals during the census period. This appears to have been 

associated with changes in society resulting in more single person households, more 

multi-occupancy, and more purpose built blocks of flats in new or converted buildings 

that utilise electronic entry systems. All these issues make the identification of and 

contact with households more difficult for census enumerators and it is likely that they 

will cause greater problems in 2001. This difficulty with contact has resulted in 

households being allowed to post back census forms in 2001 but this will not alleviate 

the problem with identification of households in the first place when the forms are 

delivered, hi addition, the actual level of around two per cent underenumeration in 

1991 for the national population was certainly in line with estimates for the United 

States 1990 Census and the 1996 Censuses of Australia, Canada, and New Zealand 

(Dunstan, Heyen, and Paice, 1999). hi other words, compared to other countries, at the 

national level, the 1991 Census was not a particularly poor census. At the sub-national 

level, the 1991 Census encountered specific problems counting certain small (in 

national terms) but important special populations such as students and the armed 

forces. This is also an issue for the way the census conducts itself and in 2001, for 

example, the Census will count students at their term-time address to try and alleviate 

the problems of adjusting the location of students for the mid-year population 

estimates. 

The more serious problem was not so much the existence of the underenumeration, 

but the inability of the CVS to measure the underenumeration. The 1991 CVS used a 

methodology that could be described as a dependent re-enumeration, as it started with 

the census and then checked each procedure (Diamond, 1994). The main problem 

with this approach is that in the sampled areas the CVS enumerators need to be 

essentially perfect. There is also the problem of correlated error, where a CVS that 

uses very similar methodology to the census, without any kind of maliciousness on the 

part of the target population, also misses those missed by the census procedures, hi 

such a scenario a near perfect CVS would still fail to detect adequately census 

underenumeration. Heady et al (1994) finish their report on the CVS by suggesting 

possible improvements. They argue for an independent re-enumeration that would 

allow the use of capture-recapture methods to account for those missed by both the 
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census and any follow-up survey. This approach is also advocated by Diamond (1994) 

in a thorough review of the types of individuals missed by the CVS. It is also the 

approach used by the US Census Bureau in 1990 and the approach proposed for the 

2000 US Census. 

Other alternatives considered by Heady et al (1994) do not require the use of a follow-

up survey. One such method would be to use another population list generated from 

some other administrative source such as health records. The advantage of such an 

approach is that large samples could be generated very cheaply and matched to census 

data. The problem is then matching large numbers of records that were never intended 

for such a purpose. Large overenumeration on the administrative data also becomes an 

issue. Another method mentioned by Heady et al (1994) is the 'reverse record check' 

used in Canada (see Belley et al, 1999). The major potential shortcoming here is the 

need to determine what has happened to people in the inter-censal period, and in 

Canada this requires a lot of time and effort using administrative data sources. This 

would be even more problematic in the UK where the inter-censal period is ten years, 

twice as long as Canada, and in general administrative data in the UK on population 

mobility is poor. Heady et al (1994) do not formally recommend any method for 

subsequent censuses but do seem to suggest that no method using administrative data 

is likely to be sufficiently good to replace some attempt at an independent follow-up 

survey. 

2.4) Methods for Estimating Census Underenumeration 

The previous sections of this review have looked at how the estimation of census 

underenumeration, and the moves to adjust censuses, have developed over time. This 

has included the use of dual-system estimation as a method of estimating census 

underenumeration and some of the practical issues associated with this particular 

methodology. In this section some of the theoretical aspects of this technique and 

other methods for the estimation of census underenumeration are briefly considered. 
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2.4.1) Dual-System Estimation and Capture-Recapture Methods 

One of the problems with the approach used following the 1991 Censuses of the UK 

was that the survey needed to be perfect at finding those households and individuals 

missed by the 1991 Census. However, it seems sensible that this will not be the case 

and some individuals will possibly be missed by both the census and the follow-up 

survey. Under such a scenario one can use Dual-System Estimation to estimate the 

number of such individuals. This approach has been used extensively for the 

estimation of wildlife populations (see Seber, 1982) as well as estimation in human 

populations. An early example is Sekar and Deming (1949) who apply the approach to 

the estimation of total births using both a register and a survey and therefore obtains 

an estimate of under-registration of births. This was the approach used by the US 

Census Bureau following both the 1980 and 1990 US Censuses. 

hi general, suppose that shortly after the census a follow-up survey, often referred to 

in the literature as a Post-Enumeration Survey (PES), is used to obtain an independent 

re-count of the population in a sample of areas. After matching it is possible, within 

those areas in the PES sample, to produce Table 2.1. 

TABLE 2.1 

Classification of enumeration status 

PES 

Counted Missed 

Census Counted nu nio ni+ 

Missed noi noo nof 

n+i n+o n++ 

Individuals can be assigned to the cells in Table 2.1, and the counts nu, nio, and noi 

observed. By definition, noo and any margins that depend on it, including the overall 

population total n++, cannot be observed. Therefore, the problem is to construct an 

estimate of n++ based on the observed data. 
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Assuming n++ is known, the observed counts for the cells in Table 2.1 can be thought 

of as realisations of random variables generated by an underlying multinomial process 

with parameters (n++, pu, pio, poi, 1-pii-pio-Poi), where py is the probability of being 

in cell ij of Table 2.1, and the four cell probabilities are constrained to sum to one. 

Assuming that the same multinomial model applies independently to each individual 

in the population, the expected value of those counted in both the census and the PES 

is 

IiDn,, 111++]==]!++ X P,, (2.1) 

and an unbiased estimator for nn would follow from (2.1) by replacing pn with an 

unbiased estimator p,, to give =n++ xp,, . If the census and PES are independent 

of each other, the expected value of ni i can also be expressed as 

E [n„ |n+J = n++xp,^xp^, (2.2) 

where pi+ is the probability of inclusion in the census and p+i is the probability of 

inclusion in the PES. An estimator for nn again follows by plugging-in unbiased 

estimators for the probabilities to give n,, x p ^ . (This estimator is not 

exactly unbiased as E[p,^xp^,] is only approximately equal to E[p,+ ]xE[p+,].) 

Therefore, replacing the probabilities in (2.2) with appropriate estimators gives 

n,, ==11++ X (2.3) 
n++ n++ 

which is an approximately unbiased estimator of nu under the independence 

assumption. After the census and PES a value for nn is available but the true 

population total n++ is unknown. Therefore, re-arranging (2.3) yields the dual-system 

estimator (DSE) defined as 

a (:2.4) 
n 11 
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Although the theory used to motivate the DSE given in (2.4) is straightforward, its 

practical application creates problems relating both to the plausibility of the 

underlying multinomial model assumed above and the practical issues of getting a 

value for nn. These are highlighted below. 

a) The DSE assumes that in the target population the matched PES and census counts 

follow a multinomial distribution. That is, the probabilities of being counted by 

either or both the PES and the census are homogeneous across the population that 

dual-system estimation is applied to. This is unlikely for most populations. 

b) Approximately unbiased estimation requires statistical independence between the 

census count and the PES count. This is impossible to guarantee. 

c) It is necessary to match the two data sources to determine whether individuals on 

the lists were counted once or twice. Errors in matching become biases in the DSE. 

hi the 1990 Census the US Census Bureau tackled problem a) by splitting the 

population up into post-strata (Hogan, 1992 and Hogan, 1993) based on factors (e.g. 

race) which were thought to affect an individual's probability of being counted, a 

method originally proposed by Sekar and Deming (1949). Problem b) is typically 

handled by operational procedures that ensure the operational independence of the 

census and the PES. Problem c) is essentially unavoidable but it is absolutely essential 

to ensure that errors due to matching are minimised. This is highlighted in the earlier 

review of the literature criticising adjustment of both the 1980 Census and 1990 

Census in the US. 

If the PES samples the whole population (in other words is another census), the DSE 

defined by (2.4), under the assumptions already stated, would give an estimate of the 

total population in a particular post-stratum. However, only a sample of areas are 

included and therefore the simplest approach is to plug-in design unbiased Horvitz-

Thompson estimators of the population quantities in (2.4) to give 
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Y X y 
^ / 71- ^ / n-

N++ ' (2.5) 
Z 

n,,i. 
, n, 

IS PES 

where ni+i is the census count, n+u is the PES count, nm is the number of matched 

individuals and Kj is the probability of inclusion for sampled area i within the post-

strata. However, the estimator (2.5) ignores the fact that the census provides auxiliary 

information in the shape of the population counts for all areas, and if these counts are 

correlated with the true population counts, this can be used in a ratio estimator to give 

n ^ , ; 

, xN|. 5-xN,, (2.6) 

I Z ' , ^ / K-
i sPES / > i e P E S 

where Ni+ is the total census count for a particular post-strata. Alternatively Wolter 

(1986) motivates estimator (2.6) directly from (2.4) by replacing the unknown 

population quantities in the DSE with estimates and develops approximations for the 

bias and variance of (2.6) accounting for the fact that they are generated from two 

sources; the underlying multinomial model that drives the DSE in (2.4) and the fact 

that population quantities in the DSE are unknown and estimated from a sample. 

Equation (2.6) forms the basis of the approach taken by the US Census Bureau. 

Further modifications are also applied to account for estimated overenumeration in the 

census due to erroneous enumerations and imputation at the processing stage. This 

essentially means that Ni+ is not the actual census count but some adjusted count 

based on the census. A full discussion of this is in Hogan (1993). 

2.4.1.1) Properties of the Dual-System Estimator 

Wolter (1986) examines the properties of estimator (2.6) with respect to both the 

underlying multinomial model and the sampling process, which generates estimates of 

the unknown population quantities. Of particular interest are the properties of the 

estimator with respect to the underlying multinomial model outlined above, in other 



words the properties of (2.4) ignoring the use of sampling to estimate parameters in 

the DSE. Using a second order taylor series expansion Welter (1986) shows that the 

bias of (2.4) is approximately 

(1-P,+ ) (1-P+,) 2̂ 7) 

Pi+ P+i 

where pi+ is the response probability of the first list (usually the census) and p+i is 

response probability of the second list (usually the follow-up survey). He further 

shows that the variance of (2.4) can be approximated using a first order taylor series 

expansion, and ignoring covariance terms, this resolves to 

\far(n.,+ )s;n++ (2.8) 
]^+P^ 

The key point firom (2.8) is that the variance is proportional to the population size n++ 

while the first order bias given by (2.7) does not depend on the population size. 

Therefore, while the relative variance is high for small populations and decreases as 

the size increases, it is the bias that is particularly important when the population is 

small. 

This property has long been recognised in the wildlife literature and an alternative 

estimator to (2.4) was suggested by Chapman (1951). In Seber (1982) this modified 

estimator is given by 

c _(n,+ +l)x(n+, +1) 

O u + l 
-1 (2.9) 

With some manipulation, see Appendix 2.1, it is possible to re-express (2.9) into the 

following form 

n^^ -h terms of 0(n+_ )̂ and smaller (2.10) 
Pl+XP+l 
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from which it is possible to see that the second term in (2.10) will always correct for 

the positive first order bias of the DSE given in (2.7) with the remaining terms tending 

to zero. Seber (1982) states that Chapman (1951) goes further to show that provided 

ni+ + n+i is greater than or equal to n++, the unknown population total, the estimator 

given in (2.9) is exactly unbiased. In most scenarios when one capture is the census 

and the second is a high coverage follow-up survey this is likely to be true. However, 

as Wolter (1986) points out, when using dual-system estimation in the form given by 

(2.6) correcting for the bias in (2.7) is going to be unnecessary anyway as the 

population sizes involved will typically be 'large'. Therefore, such corrections have 

not been used by the US Census Bureau. 

2.4.1.2) Relaxing the Assumptions in Capture-Recapture Analysis 

All the estimators and their properties given in the previous section assume that the 

counts in Table 2.1 are generated from a closed population by an independent 

homogenous multinomial process. Wolter (1986) demonstrates that it is actually only 

necessary to have homogeneity for one of the capture probabilities. Therefore, as 

recommended by Sekar and Deming (1949), the approaches outlined above rely on the 

ability to post-stratify the data sufficiently to approximate this. An alternative to 

homogeneity would be complete heterogeneity of all capture probabilities across 

individuals but, as Wolter (1986) points out, while this may be the most plausible 

model, there are insufficient data to estimate all the required parameters. Work by 

Alho (1990) using a logistic regression model to estimate the capture probabilities is 

an extension of the post-stratification approach in that it allows formal modelling of 

the variables that explain the heterogeneity. This approach was applied to data from 

the 1990 US Census (Alho et al, 1993) and the properties of this estimation approach 

are further discussed in Alho (1994). However, this approach has yet to be used on a 

large-scale, although it is being further investigated in the 2000 US Census. 

The second key assumption is that of independence between the first list that attempts 

to count the population (usually the census) and the second list (usually a follow-up 

survey). From the wildlife literature these attempts to list the population are referred 
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to as capture. When the assumption of independence between the captures fails the 

dual-system estimator will have a negative bias if the two captures are positively 

correlated and a positive bias if the two are negatively correlated. The argument is that 

as both the census and the follow-up survey tend to use similar fieldwork procedures a 

positive correlation is likely and therefore there will be a negative 'correlation bias'. 

Ericksen and Kadane (1985) recognised this as a potential problem as do Mulry and 

Spencer (1993) in their analysis of 'total error' in the proposed adjustments for the 

1990 Census. They suggested estimating the dependence for groups of the population 

where very accurate administrative or demographic counts are available and use this 

knowledge of how the dependence behaves with respect to the different characteristics 

of the groups to make sensible 'guesses' for the rest of the population. Another 

possibility they suggest is the use of multiple lists, citing the work of Fienberg (1972). 

This approach uses a log-linear model to analyse the multi-way contingency table and 

allows for dependence between lists, although the highest order interaction is always 

missing. 

The use of multiple lists was rejected as a possible approach for the 1980 US Census, 

due to the absence of a suitable third list, but was investigated as a possible approach 

for the 1990 Census. An administrative list was constructed for the 1990 Census 

Dress Rehearsal and a report of initial investigations using different triple-system 

models is given in Zaslavsky and Wolfgang (1990). Further developments are given in 

Darroch et al (1993). Despite the statistical advantages of such an approach it was not 

pursued as a possibility for the 1990 Census and is not part of the plans for the 2000 

Census. The problem the US Census Bureau encountered was the construction of a 

third list which could only be accomplished by a very time-consuming process of 

combining data from several administrative sources to create a list. There were also 

concerns regarding how the public would view the confidentiality issues involved 

with linking census data to tax records, medicare data, school data, social security 

records, and so on. 

hi the UK there does exist a list of individuals held as part of the National Health 

Service records. The problem then becomes the quality of the data on the 

administrative list, in particular erroneously included individuals and those included 



in the wrong place will positively bias any estimate of the population total. This is 

demonstrated by looking at the estimator given by Darroch et al (1993), which 

assumes independence across all three lists, as the numbers in the numerator are either 

individuals on all three lists (not subject to erroneous inclusions) or individuals found 

only on one list. In addition, the use of a third list adds to the complexity of matching 

the lists, especially when the data held on the administrative source are not designed 

to help match individuals to either the census or a follow-up survey. For these reasons 

this approach was also rejected, after initial investigations, by the ONS for use with 

the 2001 Censuses of the UK. 

A final, but less obvious assumption is that the multinomial process is applied 

independently to each individual. This will not, in general, be the case when the data 

collection process is not a simple random sample of individuals. Cowan and Malec 

(1986) consider the problem when first listing households and then listing individuals 

within households generate the data from each capture. The problem occurs as 

missing individuals are 'clustered' within households that are missed. Cowan and 

Malec (1986) develop a model that allows for this, when the capture of households is 

independent across households and between lists, and within households the capture 

of individuals is independent across individuals within the household and between 

lists. They apply the EM algorithm to get an unbiased (first order approximation) 

estimate of the total number of individuals. Cowan and Malec (1986) also assess the 

performance of the DSE (2.4) under different scenarios. They demonstrate that 

ignoring the clustering will matter if the capture probabilities for households vary by 

size and the magnitude of the (first order) bias will depend on how the observed 

average household size differs from the true average household size. However, 

empirical results demonstrate that this is reasonably unimportant in relation to other 

possible causes of bias such as a failure in matching. To see this, consider the 

situation given in Table 2.2 
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TABLE 2.2 

Indicative example of household capture probabilities by household size 

Household 

Size 

True 

Distribution 

Census 

Coverage 

PES 

Coverage 

1 
&25 0.9 0.8 

2 
033 0.95 &85 

3 
0U5 0.99 &89 

4 
' 0U4 0.99 0.89 

5 
0.05 0.99 0.89 

6 
0.03 0.98 OjW 

7 
0.02 0.97 &87 

8 
0.01 0.96 &86 

9 
0.01 0.95 &85 

10 
0.01 0.95 &85 

The data in Table 2.2 presents an indicative example, based on the experience of the 

1991 Censuses reported in Heady et al (1994), of a population with a particular 

distribution of households by size and a varying pattern of both census and PES 

coverage by household size. The key point is that the variation in coverage will result 

in missed individuals being clustered within missed households and therefore violate 

one of the assumptions underpinning dual-system estimation. Using the bias formula 

in Cowan and Malec (1986) the standard dual-system estimator would under estimate 

the population total of individuals by 0.09 per cent because of the clustering of missed 

individuals within missed households. To put this in perspective, if the matching 

process failed to match 0.1 per cent of the individual records that should be matched 

this would result in a positive bias of the same magnitude when applying the standard 

DSE. Based on this empirical result it is perhaps not surprising that this approach was 

not applied by the US Census Bureau in 1990 and is not mentioned in the plans for the 

2000 Census. 



2.4.2) Other Survey-Based Methods 

This review has concentrated heavily on the work of the US Census Bureau and the 

past experience in the UK. However, Statistics Canada, the Australian Bureau of 

Statistics, and Statistics New Zealand all carry out thorough evaluation programs. Of 

particular interest as an alternative method is the Reverse Record Check approach 

used by Statistics Canada. This has been used in Canada since 1966. An early review, 

based on the 1976 Census, can be found in Felligi (1980). The application to the 1996 

Census is given in Belley et al (1999). At the heart of the method is the concept that a 

population frame, for the same population being counted by the census, can be 

created. This is done by combining the previous census database with other 

administrative sources such as births since the last census, deaths since the last census, 

those known to have been missed by the last census, and migration data. 

A sample of individuals is selected from this combined frame and an intensive tracing 

exercise is carried out to contact the individuals at their current address. As a result of 

this interview and a subsequent matching exercise to the current census database, it is 

possible to evaluate whether the sampled person was correctly and uniquely counted 

by the census, missed by the census, or erroneously counted by the census. Additional 

studies also estimate overenumeration through extensive matching within the census 

database. The results are weighted for non-response and non-classification, combined 

with results from the additional overenumeration studies, and then used to estimate 

the gross underenumeration ratio and the net underenumeration ratio. The key 

assumption is that the population list created from the various sources includes the 

entire population or alternatively, those missing can be considered as missing at 

random. The first assumption is unlikely to be true in the UK context, especially as 

sampling from those missed by the 1991 Census would basically be impossible. Under 

the second assumption the estimator given in Belley et al (1999) is essentially a dual-

system estimator adjusted for overenumeration. It is also important that the approach 

is independent of the census so that those who remain unclassified or non-contacted in 

the sample can also be considered as missing at random. If not independent of the 

census, it could be argued that those people the survey could not trace are also more 
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likely to be missed by the census, and hence introduce a bias into the estimate of 

underenumeration. 

Like the follow-up survey approach used in the US, the reverse record check has some 

practical problems, especially with respect to tracing a current address for sampled 

individuals. In Canada using other administrative sources, such as health records, 

helps to update the addresses. The fact that the inter-censal period is only five years 

also helps. Issues relating to matching are also important for both the reverse record 

check and the other overenumeration studies. In the UK, where administrative data are 

of poorer quality and there are issues of data access, and w^ith the inter-censal period 

being ten years, constructing a population list of sufficient quality and then tracing the 

sampled individuals would be extremely difficult. 

The approach taken by the Australian Bureau of Statistics and, in 1996, Statistics New 

Zealand, is to use a follow-up survey. The strategy is outlined in Dunstan et al (1999). 

The survey design is very similar to the US, being a stratified multi-stage sample that 

selects small areas of housing units to be enumerated. The actual design used is based 

on the design of the labour force surveys in each country and professional interviewers 

are used to carry out the survey. An important difference is the fact that there is no 

special sample to collect information on erroneous census counts, this is all collected 

from the single survey. As with other methods this involves matching between the two 

databases. The estimation approach in Dunstan et al (1999) does not directly use dual-

system estimation. However, the approach used is effectively (2.6) but directly stated 

as a ratio model and assuming that the survey achieves 100 per cent coverage in the 

sample areas or alternatively, lack of coverage by the survey is at random independent 

of the census. The survey is used to estimate the 'true' population after correcting for 

non-response in the survey and to estimate the census count. The estimated population 

counts are used to define a ratio that is applied to the actual census count to adjust it 

for net underenumeration in the census. The approach is also discussed by Steel 

(1994) with respect to the 1991 Census in Australia. This also includes a brief 

description of the process of reconciliation with demographic estimates and the use of 

synthetic estimates to adjust the census data for the use of population estimates in the 

five-year inter-censal period. 
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2.5) Conclusion 

Lyberg and Lundstrom (1994) argue that the statistician should use all the available 

information to compile their estimates. In the case of the census this implies not 

ignoring the problem of differential underenumeration but instead attempting to 

correct for it using additional information from a fbllow-up survey, administrative 

sources, demographic estimates, and matching exercises. However, the debate in the 

US, for example Breiman (1994), highlights that the combining of data sources must 

be carried-out carefully or else errors introduced may swamp the error that is being 

corrected. The debate in the US also highlights the fact that statistics alone will not be 

able to say that the adjusted database is better as there will always be some 'loss 

function' at a low level of aggregation for which the unadjusted census is better. Belin 

and Rolph (1994) have the following quote from Citro and Cohen (1985); 

"It must be accepted that no adjustment procedure can be expected 

to simultaneously reduce error of all census information for every 

location." 

As a consequence of this, Belin and Rolph (1994) argue for the need for consensus 

amongst the statisticians, politicians, and other census users regarding realistic goals 

for an adjusted database to achieve. 

In his discussion of the 1991 Censuses of the UK Simpson (1994) further develops 

this theme of consensus. He argues that this consensus should be possible with careful 

and thorough planning and makes the following statement with respect to the 2001 

Censuses of the UK. 

"The challenge is to gain widespread acceptance in advance of the 

next census for: 

• A target level of accuracy for estimates of non-response, for 

statistics for national and stated sub-national areas; 



• A model to derive non-response estimates for smaller sub-

populations; 

® A timescale for publication of non-response estimates, that permits 

and better still requires their use in the main governmental 

applications of census data; 

and to create the tools that can fulfil these targets." 

The following chapters dealing with the design of a follow-up survey and subsequent 

estimation strategies represent a contribution towards achieving the challenge set by 

Simpson (1994) in the 2001 Census of the UK. 



Appendix 2.1 - Re-expressing the Chapman estimator 

The calculations here show how the Chapman estimator can be re-expressed as the 

standard DSE with a bias correction. Starting with the Chapman Estimator in the form 

of (2.9) 

c _ (̂ 1+ +l)x(n^, +1) ^ _ n,+ xn+, +n,+ +n^, + l - n „ -1 
= 

n,| +1 
n, 

V 1̂1 y 

This can now be expressed as a power series expansion ignoring second and higher 

order terms to give 

/ , \ 
- n „ 

" + + = 

n,, 
1 

1 

V 1̂1 y 

. c , n,+ -hn+, -n„ xn+, +n+, -n„ 
n++=n+++ ; 

n 11 n 11 n 11 

Conditioning on the underlying multinomial model and the unknown population total 

n++ the Chapman estimator can be written as 

=n , ^++(Pi++P+i-P!+^P+i) -p,+ x p ^ J 
xp^^ xp^, n++xp^,xp^, 

Ignoring terms of 0(n++) and smaller the above simplifies to 

, Pl+ +P+] -Pl+ Xp^, -1 _ . ( l - P , J x ( l - P + i ) 

P1+XP+] 

which is the form of (2.10). 

Pi+ x p + 1 
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Chapter Three - Census Coverage Survey Design 

3.1) Introduction 

In response to the problems with underenumeration and its estimation for the 1991 

Census, ONS initiated a census underenumeration research programme in 1996 to 

consider options available to be used with the 2001 Census. This was part of a wider 

programme considering all aspects of the conduct of the census, and innovations 

relating to the organisation, data collection, and processing of the 2001 Census can be 

found in the Government White Paper^ presented to the U K Parliament. The obvious 

solution to census underenumeration is a complete census. However, the US 

experience with the 1990 Census demonstrates the impossibility of such an 

undertaking. Therefore, the goal in 2001 is to leam from 1991 by conducting a well-

planned census but have in place the methods to estimate for any underenumeration. 

As called for by Simpson (1994), the aim was that these methods should be well 

researched, have general acceptance amongst the census user community, and involve 

a re-think of the approach used in any follow-up survey. 

Early internal research within ONS focused on the need for some kind of independent 

follow-up survey to the census and the need to integrate estimation of census 

underenumeration into the census database. This built on the comments by Heady et 

al (1994) and the perceived quality and access problems associated with the use of 

administrative data in the UK. Users responded very positively to a discussion of 

these issues by Ian Diamond (University of Southampton) and Andy Teague (ONS) at 

the Royal Statistical Society Cathie Marsh Memorial Lecture in November 1997. 

They strongly expressed the desire for census underenumeration to be an integrated 

part of the census database. The response to this was the strategy for a One-Number 

Census (ONC) presented at the Leeds Conference for Census Users (May, 1998) and 

outlined in Brown et al (1999). The main aim of the strategy is to integrate estimates 

of census underenumeration, derived by combining the census with data from a 

follow-up survey and administrative sources, into the 2001 Census database. 

' The Government White Paper entitled 'The 2001 Census of Population' was presented to Parliament 
in March 1999 by the Economic Secretary to the Treasury, the Secretary of State for Scotland, and the 
Secretary of State for Northern Ireland. Ref Cm 4253. 
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A key part of the strategy is the Census Coverage Survey (CCS), which is to be the 

main source of information on census underenumeration in 2001. In designing this 

survey, three important lessons learnt from the 1991 CVS need to be kept in mind: 

i) the 1991 survey was not independent of the 1991 Census and, as a 

consequence of this, the methodology implicitly assumed that the survey 

would find everybody; 

ii) the small sample size meant that estimates were only available for very large 

populations and geography was not preserved (Birmingham was in the same 

group as Newcastle-upon-Tyne and Durham was in the same group as Exeter); 

iii) the combination of coverage and quality assessment meant a complex 

questionnaire needed to be used for the interviews. 

In 1991 the third point was the main factor. The quality side of the survey required 

survey interviewers to know about the census forms for co-operating households to 

check answers, thereby compromising independence between the two counts. The US 

Census Bureau found, following the 1950 Census, that this approach would at the 

very least understate census underenumeration of individuals within counted 

households (Steinberg et al, 1962). One way to avoid this is the use of a third follow-

up interview to reconcile differences between the survey and the census. The US 

Census Bureau used this approach in 1960 (Steinberg et al, 1962). However, the 

implications of a second survey are increased costs as well as an increased burden on 

the public. The use of a single survey in 1991 to assess coverage and quality also 

required a complex and time consuming interview using professional survey 

interviewers. Cost constraints consequently prevented the selection of a large sample 

size. 

The combined approach of looking at census quality and underenumeration together 

had been successful in 1981, see Britton and Birch (1985), but the experience of 1991 

suggested that in a climate of increased difficulty for the census to achieve a complete 

count, census underenumeration needs to be treated separately. This break 

immediately makes an independent re-enumeration possible. In addition, it is only 

necessary to collect the limited number of census variables, such as age, sex, 

ethnicity, and household tenure, which prior research has identified as being 

important for the modelling of census underenumeration. Therefore, simplifying the 
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questionnaire and data collection implies that, for a fixed cost, a larger sample size 

can be achieved. 

Since the main aim of the survey is to check census coverage, its target population 

must be the same as that of the census, that is, all households and the individuals 

within them. In principle, this could be achieved by selecting a sample of households 

from a frame of all households. The postcode address file (PAF) is sometimes used to 

achieve this, an example being the current UK Labour Force Survey. However, as 

pointed out in Brown et al (1999), there are problems with using the PAF as a frame 

to check census coverage. The PAF is an electronic file that identifies all address 

points known to the post office. In many areas address points correspond to 

households. However, this is not the case in areas of multi-occupancy where one 

address point corresponds to an unknown number of households. There is also the 

travel cost considerations associated with drawing a sample of households that has no 

geographic clustering. The Labour Force Survey overcomes this by utilising 

telephone interviewing for those units sampled in a previous wave. Again, this is not 

an option for a survey of census coverage. 

An alternative is to select small geographic areas and then re-enumerate all the 

households within the sampled area. This is the basis of the approach used in the US 

PES of 1990 and the planned approach for 2000. In the UK, one approach is to select 

a sample of postcodes^. Postcodes cover all private households and communal 

establishments in the UK and therefore constitute a possible sample frame. Such a 

frame naturally clusters households together and so sampling postcodes is cost 

efficient. In particular, interviewers will be given a map of each sampled postcode 

area and will then attempt to enumerate all households and individuals within the 

postcode who were usual residents on census night. The following sections in this 

chapter consider how best to select this sample of postcodes and expand the 

description of the design given in Brown et al (1999). 

" A postcode is an identifier for a small collection of address points (on average 15) used by the Post 
Office to organise the delivery of mail in the UK. 
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3.2) The Basic Approach 

Since the 1971 Censuses of the UK the mid-year population estimates for each local 

authority district (LAD) by age and sex have been based on census counts adjusted for 

underenumeration. The main aim of the CCS must be to deliver estimates of 

underenumeration by age and sex for each LAD to allow a similar adjustment to occur 

in 2001. This is of primary importance as the mid-year population estimates are used 

in the allocation of money from national to local government. Therefore, the aim of 

the CCS is to select a sample that can estimate the age-sex distribution for each LAD. 

hi England and Wales there are about 400 LADs ranging in population size from less 

than 100,000 to over one million. (London consists of about 30 local authority 

districts, of varying population sizes and demographic make-up, that were grouped as 

Inner London and Outer London in 1991.) The ideal would be to select a sufficiently 

large sample to allow direct estimation for each LAD, but the sample size 

requirements to achieve that with the necessary precision would be prohibitive. 

Instead, the design aims to generate direct estimates of high precision for groups of 

contiguous LADs, called estimation areas, with approximately equal population sizes. 

This approach preserves geography and should deliver high quality estimates of the 

main variable of interest, the age-sex distribution, down to a low level of aggregation. 

The problem can now be thought of as designing a survey such that the selected 

sample of postcodes will yield the age-sex distribution for each estimation area. 

Conceptually, the data available for designing this survey are the 1991 Census counts 

by age and sex for each postcode, represented by Zakeig (age-sex group a, from 

postcode k, within 1991 enumeration district (ED) e, of LAD 1 and estimation area g) 

although, in practice accessing the data at the postcode level is difficult. These counts 

are used in the design as a proxy variable for Yakeig, the true population count. In the 

subsequent analysis dropping the geographic subscripts (k for postcodes and e for 

EDs) will represent summing the counts across that geographic level. For example 

Zaeig is the age-sex count summing across all the postcodes within ED e of LAD 1 and 

estimation area g. The estimation area can now be treated as a level of stratification 

and the aim is to draw an efficient sample of postcodes from within each estimation 

area stratum, hi what follows a model-based approach to survey design will be taken. 
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with the same approach applied independently within each estimation area. (See 

Royall (1970) for a description and justification of the model-based approach.) 

3.3) One-Stage Design 

3.3.1) Postcode Level Model 

A simple approach to the design problem would be to select a simple random sample 

of postcodes from within each estimation area. However, while simple to implement 

this would be a very inefficient strategy with little control over the types of postcodes 

within the selected sample. Such control is possible by allowing postcodes to be first 

stratified into different types (indexed d) and then by population size. A super-

population model that reflects this structure is one where the postcode counts by age 

and sex satisfiy 

E {Ykehd } - /"hd 

T/ar rfkchd) (31) 

G o v } = 0for allm^ 1 , e f ; h j , a n d d 9 ^ c 

where the subscripts a, 1, and g have been dropped as the same model applies 

independently to each age-sex group across all LADs within each estimation area. 

The model given by (3.1) implies that for a particular age-sex group, once the 

postcodes have been stratified by type and some measure of population size, the 

distribution of counts across the postcodes is generated by independent draws from a 

model with constant mean and variance. The best linear unbiased estimator of the 

total population for a particular age-sex group under (3.1) is 

T = (3-2) 
d = lh = l k = l 

where nhd is the number of postcodes sampled from population size stratum h within 

type stratum d and Nhd is the corresponding population size. The prediction error 

variance for the estimator (3.2) is 

45 



V a r { f - T } = X E 
d = 1 h = 1 ^ hd 

o-,L (3.3) 

This variance can be estimated from the sample by substituting an unbiased estimator 

for into (3.3). 

The problem is now the efficient allocation of the sample to the pre-defined strata of 

D 
postcodes. Under optimal allocation we need to minimise Y, — ^ h d > the only term 

d = ih = 1 

in (3.3) that depends on the sample size Uhd, subject to a fixed sample size constraint 

D Hj 
n = 2] S ^hd • There is a fixed sample size constraint assuming that cost constraints 

d = lh = 1 

are not postcode specific but just define a total number of postcodes that can be 

sampled. This leads to an allocation of the sample given by 

ĥd " D Hj Kw ==nx n Z (3 4) 

d = 1 h = 1 

By substituting (3.4) back in the variance (3.3) the problem is now simply the choice 

of the total sample size n. Therefore, assuming optimal allocation the variance 

formula given by (3.3) simplifies to 

V a r { f - T } . l | f g N , . a ^ | - Z Z N . X . (3-5) 
/ D % 

n Vd = lh = l 

D Hj 

d = Ih = 1 

The form of the variance given by (3.5) can now be used to specify a value for n, to 

satisfy a condition that the relative standard error (RSE) or coefficient of variation of 

the estimator equals a fixed percentage a . That is, we require 

(3.6) 
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and substituting the form of the variance given by (3.5) leads to a total sample size 

specified as 

/ D Hj 
Z E n 

V d = l h = l 
hd'̂ hd 

' (3 7) 

100= ^ ^ 

D Hj 
Often the ^ term in (3.7) is dropped from the formula as this is of lower 

d = Ih = ] 

order compared to the term in T^. 

The problem with (3.7) is it requires knowledge of the population total and variance 

of the variable of interest, in this case Yakehd, the postcode counts for each age-sex 

group. These are unknown and therefore, to get an approximate value for n, a design 

variable is used and in this case any one of the Zakehd's is a possible choice or some 

combination of them such as the total count for the postcode in the 1991 Census. This 

means that the sample size should satisfy the RSE constraint for the design variable 

and implies an 'expected' RSE of the same value will be achieved for the actual 

variables of interest. 

3.3.2) ED Level Model 

The design described in section 3.3.1 should be efficient in statistical terms but may 

actually be costly as there is no control within an estimation area of the geographical 

spread of the selected postcodes. Such a design will either involve the recruitment and 

training of a large number of interviewers who will each do very few interviews, or 

wasted time and travel costs while interviewers travel between postcodes. A highly 

clustered, but equally straightforward, alternative is to select EDs and then to re-

enumerate all the postcodes within the selected ED. The problem is now the selection 

of a sample of EDs and this can be tackled using the same approach as (3.1) but 

specifying the model at the ED rather than postcode level. Such an approach has high 

cost advantages, as the postcodes that the interviewer has to cover are all close 
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together. An ED level approach also has data advantages, as the population counts for 

1991 EDs are readily available. Conversely, the postcode level information from the 

1991 Census is not easy to access, and there is the additional problem of changes to 

postcodes between 1991 and 2001. 

3.4) Prototype Designs 

To demonstrate the two approaches outlined in Section 3.3, 1991 Census data for a 

large LAD, with a 1991 Census population of around half a million individuals, is 

utilised. For this LAD, data are available at the postcode level for 1991 postcodes. For 

the purposes of comparing the two approaches, the assumption is that postcodes have 

not changed since 1991. A practical consideration is that in 1991 (and in 2001) some 

postcodes cross ED boundaries. One possible solution is to allocate postcodes to EDs 

based on the ED that contains the postcode centroid or alternatively the ED that 

contains the most households from the ED. However, for the purpose of this study it 

was considered unnecessary and postcodes split by EDs are treated as separate 

postcodes. The consequence of this is an increase in the number of postcodes within 

the LAD by approximately 2,000 and a decrease in the average number of households 

per postcode from 15.5 to 13. The RSE chosen is consistent with the estimated RSE 

for the estimated population total in 1981 with a national (England and Wales) level 

RSE of approximately 0.06%. Assuming the national estimate T is the sum of one 

hundred similar independent estimation area-estimates, T„, 

J100 
X100 = 0.06% ^ a , = — X100 = 0.6% (3.8) 

The approximation in (3.8) gives an RSE at the estimation area level. The remainder 

of this section considers the practical aspects of applying the two design models to 

these data. 
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3.4.1) National Hard to Count Index 

In the design of the surveys that followed both the 1981 and 1991 Censuses, the EDs 

were graded based on their expected difficulty to count and this was used to over-

sample areas that were expected to be hard to count. This is not necessarily efficient, 

especially if the graded EDs or postcodes are all at least as homogeneous as the non-

graded EDs. The designs described in Section 3.3 introduce this idea of graded EDs 

through two levels of stratification, the first level being the type of ED. The aim is to 

stratify the EDs into different types based on how difficult they were to count in 1991. 

The US Census Bureau used a similar approach when designing the PES for the 2000 

Census (see Hogan, 2000). 

Standard indexes for classifying small population areas are not necessarily appropriate 

for this purpose as they concentrate on health and deprivation. While census 

underenumeration may be linked to areas of deprivation it is not by any means an 

exact mapping. What is needed is an index that utilises the variables associated with 

census underenumeration, such as high levels of multi-occupancy but not necessarily 

factors that create more work for the census enumerator such as a large geographic 

area. The work presented in Brown et al (1999) used a prototype hard to count (HtC) 

index, which is also used here. The index is constructed from a score calculated for all 

EDs in the 1991 Census. The prototype index ranks the EDs using each of the 

following variables: 

• percentage of heads of household who experienced language difficulty; 

• percentage of young people who migrated into the ED in the last year; 

® percentage of imputed residents for the enumeration district; 

• percentage of households in multiply-occupied buildings; and 

• percentage of households which were privately rented; 

assigns normal scores based on the ranks and then sums across the variables to get an 

overall score for the ED. This is spht into quintiles to create a five level index. All 

postcodes within EDs are assigned the same HtC index as the ED. 

Since this prototype index was proposed, extensive work has been done in England 

and Wales to create the 'best' index based on analysis of underenumeration in the 
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]'999 Census Rehearsal and analysis of the 1991 Census (see Simpson g/ aZ, 1997). 

This work is summarised in ONS (2000a). Similar work has been done in Scotland 

and the approach for Northern Ireland is described in chapter five. 

For the purposes of comparing design strategies it does not matter if the prototype 

differs from the index used by ONS in the final CCS design. This is because the same 

prototype is being used in all the designs being compared and in addition, it is not 

expected that the final index will be dramatically different. 

3.4,2) Postcode Level Design 

In applying the model given in (3.1) to the data, a second level of stratification based 

on some measure of population size is proposed to improve efficiency. Any one of the 

age-sex counts for the postcodes could be used but in an attempt to get some 

efficiency gain across all the age-sex groups, the total population is used as a design 

variable for the purposes of defining size strata. The Dalenius-Hodges rule for 

specifying stratum boundaries is used, see Cochran (1977), with additional boundaries 

formed for the largest and smallest postcodes in each level of the HtC index. Using 

(3.7) it is possible to calculate the required sample size, which is then allocated to the 

specified strata using (3.4). The final design and stratum allocations are given in 

Table 3.1. 

The design in Table 3.1 specifies a sample of 531 postcodes, a sampling firaction of 

just less than four per cent. Sample design is not an exact science and the specification 

of the size strata involved some trial and error. In the final design, eight size strata are 

defined within each HtC category based on the Dalenius-Hodges rule. The rounding-

up of sample sizes means that the expected RSE for the estimated 1991 population 

total is 0.59 per cent. 
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TABLE 3.1 

One-stage postcode level design using 1991 total population for size stratification 

HtC Index Number of Size Strata Number of Postcodes Sample Size 

1 8 2258 87 

2 8 3379 121 

3 8 3041 108 

4 8 2881 109 

5 8 2202 106 

All 40 13761 531 

The design in Table 3.1 uses the total population as the design variable to define 

strata, specify the sample size, and allocate that sample to the strata. However, the real 

interest is in how well the design in Table 3.1 might be expected to perform for 

estimating the population distribution by age and sex. Using five-year age groups for 

males and females, with the last category 85+, and collapsing together the age groups 

between 45 and 79 as there was little evidence of underenumeration across these ages 

in 1991 (see Heady et al, 1994), generates 24 age-sex groups. Applying the design in 

Table 3.1 to each of the age-sex groups gives a median RSE of 3.88 per cent across 

these age-sex groups, while the maximum RSE is 14.49 per cent for males in the 

oldest age group. (This high RSE is not necessarily a problem as this particular age-

sex group represents less than 0.5 per cent of the population in the estimation area.) 

Therefore, while the stratification is efficient in terms of the total population, for the 

individual age-sex groups the achieved efficiency depends both on the population size 

of the particular group and more importantly, whether the distribution of the total 

population is a good proxy for the distribution of the particular age-sex group. This 

issue of choosing a design variable that is a good proxy across the age-sex groups is 

considered in section 3.5.2. 

3.4.3) ED Level Design 

To generate an ED design the same approach is used to stratification, but at the ED 

level rather than postcode level. As with the postcode model, the EDs are stratified by 

the HtC index and then size, defined as the total population of the ED in 1991. As 
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before, when allocating the sample all non-integer samples have been rounded-up to 

give the final sample sizes. The final design is given in Table 3.2 and specifies a 

sample of 109 EDs, a sampling fraction of over ten per cent. On average, this would 

translate into a sample of postcodes that would be three times higher than the sample 

of postcodes required for approximately the same degree of accuracy using a postcode 

level model. The rounding-up of sample sizes means that the expected RSE of the 

survey estimate of the total 1991 population is 0.56 per cent. 

TABLE 3.2 

One-stage ED level design using 1991 total population for size stratification 

HtC Index Number of EDs Number of Sample Size (EDs) Sample Size^ 

Size Strata (Postcodes) 

1 144 6 16 249 

2 210 6 22 354 

3 186 6 22 356 

4 193 6 24 358 

5 197 6 25 261 

All 930 36 109 1578 

a. Based on the expected number of postcodes per ED within each stratum. 

As with the postcode level design, the design in Table 3.2 uses the total population as 

the design variable to define strata, specify the sample size, and allocate that sample 

to the strata. However, it is of interest to see how well the design will perform across 

the age-sex distribution. Using the same 24 age-sex groups as before, and applying 

the design in Table 3.2 to each group, gives a median RSE across the age-sex groups 

of 3.16 per cent. As with the postcode model, the maximum RSE of 9.35 per cent is 

for males in the oldest age group. Therefore, while at the total population level the 

design in Table 3.2 requires a much larger sample of postcodes to achieve the same 

accuracy, the increased sample size improves estimates across the age-sex groups. 

This suggests that at the ED level, the distribution of the total population is a better 

proxy for the distributions of each age-sex group. This makes sense as, at the ED level 

there is generally a better spread across all the age-sex groups while at the postcode 

level the population often does not include all age-sex groups. Therefore, at the ED 
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I'evel a high total population is likely to represent high counts across all the age-sex 

groups but this will be less true at the postcode level. The second advantage of the ED 

level model is based on the assumption that one interviewer can re-enumerate more 

than one postcode. This leads to cost and time advantages from using the ED level 

design, as each interviewer does not need to spend time or money travelling between 

their sample of postcodes. The third, as already mentioned, relates to the fact that 

population counts are readily available at the ED level. 

3.5) Two-Stage Design 

Clustering the selected postcodes together within EDs has cost advantages but this 

must be traded against a loss in efficiency evident by the difference in the estimated 

number of sampled postcodes compared to the design at the postcode level outlined in 

Table 3.1. However, the design at the ED level outlined in Table 3.2 is in effect over-

clustered if all the postcodes within one ED are more than the workload for a single 

interviewer. Therefore, there is a natural compromise between the two extremes; a 

two-stage approach of sampling EDs and then a fixed sample of postcodes per ED 

that represents the workload for an interviewer. A super-population model that allows 

for postcode counts within EDs to be correlated but still uncorrelated between EDs 

can be used to represent such a design. Again, dropping the age-sex subscript, but 

applying the same model to each age-sex group gives 

E { } - /̂ hd 

(3.9) 
G o v } = forallk^m,e = f,h = j,andd = c 

= 0 otherwise 

The model given by (3.9) represents a design that stratifies the postcode counts by 

HtC index and population size and allows for the selected postcodes being clustered 

within EDs. In (3.9) the within ED correlation is constant across all the strata but in 

practice it could vary. Under model (3.9) the optimal predictor of the within stratum 

population total (but for simplicity not including the stratum subscripts) is given by 
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B[T I s ] = Y , + X E E[ Y J s J + 2 ; 2 ; E[ Y J (3.10) 
e e S k e S . eeS k e R . e e R k e e 

where S represents the sample of EDs from within the particular stratum and Se 

represents the sample of postcodes from within ED e while R and Re represent the 

corresponding non-sampled EDs and postcodes. The overall total population is then 

given by summing across the strata. The first term in (3.10) is the sum of the sample 

postcode counts, the second term is predicting counts for non-sampled postcodes in 

sampled EDs, and the third term predicts counts for the rest of the non-sampled 

postcodes from non-sampled EDs. From (3.9) the expectation in the third term is // 

while the expectation in the second term can be modelled as 

E [Yk |SJ = ( l -a , ) / / -Kz ,ys (3T1) 

which is a weighted average of the mean for the postcodes in the population as a 

whole and the sample average for the observed data from within the particular ED. 

Under an assumption of normality for the distribution of the postcode counts it is 

possible to derive 'optimal' weights, but a 'safe' alternative is to set equal to one 

and use sample data to estimate the mean within the sampled EDs. The within stratum 

predictor in (3.10) can now be written as 

E[T|S] = ^ m , y s ^ + E ( ^ e - m j y g , +/ / 
eeS eeS 

N - ^ M . 
eeS 

(3.12) 

where Mg is the total number of postcodes in ED e, me is the number sampled from 

ED e, and N is the total number in the population. From (3.12), a linear unbiased 

estimator follows by plugging-in a linear unbiased estimator for the model parameter 

/J., defined in general terms as , to give 
eeS 

T = + Z ( K - m j y s , n - X M , 
f e S 

(3.13) 
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The form of the estimator (3.13) has intuitive appeal. The first term is the sum of the 

sampled postcodes, the second term estimates for the non-sampled postcodes within a 

sampled ED using data from the sampled postcodes within the ED, while the third 

term estimates for the postcodes from non-sampled EDs using all the sample data. 

To estimate the variance of (3.13) it is easier to re-write the estimator as 

eeS ceS m. 
(M, 

f e S 

(3.14) 

so that the first term in (3.14) is the sum over the sampled postcodes and the second 

term is a weighted sum of the sampled postcodes that estimates for the non-sampled 

postcodes. After some simplification, see Appendix 3.1 for the details, the variance of 

(3.14) is given by 

Var[T-T] = 

+(M, - (M, - m j ) ' 
eeS 

eeR 

(3 15) 

The estimator of total given by (3.13) and its variance given by (3.15) can be further 

simplified when a constant sample size is used for the within ED sample, in other 

words me equals m across the sampled EDs. In particular, ^ w^yg^ , the sample 
eeS 

based linear estimator for the model parameter jj., is then just the equally weighted 

average of the sample means yg as the sample of postcodes from each sampled ED 

contains the same amount of information about the overall mean /u . The option of a 

constant second stage sample also has attractions in terms of survey management, as it 

tends to make the allocation of interviewer workloads more straightforward. 

3.5.1) Comparison of Different Postcode Selections 

Optimal design based on (3.9) is a complex process as it depends on the correlation of 

postcode counts within EDs, as well as the distribution of the number of postcodes per 
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ED, and will typically lead to variable sample sizes of postcodes within EDs. In 

addition, as stated earlier, postcode counts from the 1991 Census are not readily 

available across the country. However, the approach to design specified by (3.9) 

allows for stratification of the sample of postcodes using ED information but then 

spreading the postcode sample across more EDs than the design in Table 3.2. While 

an 'optimal' solution may not be possible, the efficiency of this approach can be 

assessed for different values of the within ED postcode sample and different levels of 

correlation making use of the same data as analysed in section 3.4. 

To apply the model given by (3.9) the EDs were again stratified by the HtC index and 

then by the size of the ED population. However, as the model specifies homogeneity 

of postcode counts within strata, a third stratification using number of postcodes 

within the ED was also added to distinguish between EDs that have the same total 

population with quite different numbers of postcodes. The final design is given in 

Table 3.3. To allocate the sample, optimal allocation using the ED total population 

specifies the within stratum ED sample, as with the ED level design. The final 

postcode sample is then specified by selecting a fixed number of postcodes per 

selected ED. Table 3.3 gives the postcode samples under the assumption of three 

postcodes sampled per ED, four postcodes sampled per ED, and five postcodes 

sampled per ED. 

The samples specified in Table 3.3 are the same size, in terms of the total postcode 

sample, as the design in Table 3.2. The difference is the number of EDs, which vary 

from 526 EDs for three postcodes down to 316 EDs for five postcodes, compared to 

109 EDs in Table 3.2. The efficiency of the approach used in Table 3.3 will depend 

the level of the intra ED correlation of the postcode counts and the choice of the 

number of postcodes per ED. To assess this, RSEs were calculated using the variance 

given by (3.15) for different levels of correlation and the three sample sizes in Table 

3.3. (The variance also depends on exactly what EDs are selected so the calculations 

were based on applying the three possible designs in Table 3.3 to the data and in each 

case selecting a specific sample of EDs.) The results are presented in Figure 3.1 for 

both the RSE for the estimate of the total population, and the median RSE across the 

individual age-sex groups. 
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Tryus].!? 3.3 

Two-stage design using ED total population in 1991 and number of postcodes per ED 

for size stratification 

Number of Sampled Postcodes 

HtC Index Number of Three Postcodes Four Postcodes Five Postcodes 

'Size' Strata Per ED Per ED Per ED 

1 24 207 228 220 

2 24 342 340 345 

3 24 345 328 340 

4 24 330 320 325 

5 24 354 364 350 

All 120 1578 1580 1580 

FIGURE 3.1; Comparison of the performance of different sized within ED samples 

for a fixed total postcode sample and a fixed ED stratification at both 

the total population and across the age-sex groups. 

Postcode Sample 

01 02 OJ 04 Qj Oa 07 04 08 1 
Correlation of Postcode Counts withm EDs 

Postcode Sample 

CM OJ oa 04 M &6 07 08 08 
Correlation of Postcode Counts within EDs 

Figure 3.1 demonstrates two important points. Firstly, provided the level of 

correlation is low or moderate, there is little to choose in efficiency terms between the 

three different within ED postcode samples. In the data used for this example, once 

age and sex are controlled for, there is effectively zero correlation of postcode counts 

within EDs. This was confirmed by fitting a two level random intercepts model, 

postcode counts by age and sex clustered within EDs, and estimating the intra-cluster 

correlation. While the correlation may not be zero everywhere this suggests that the 

assumption of low correlation is reasonable. Therefore, this fact leads to the choice of 
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the within ED postcode sample being made on management grounds and early 

fieldwork tests conducted by ONS in Brent, following the 1997 Census Test, 

suggested that on average five postcodes per ED would be an acceptable workload for 

an interviewer. 

The second point shown by Figure 3.1 is the fact that across the age-sex groups, for a 

low level of correlation, the median RSE is in line with the result from the ED level 

model where the same sized postcode sample generated a median of 3.16 per cent. 

However, at the total population level the RSE is significantly higher, around 2.5 per 

cent in Figure 3.1 compared to less than 0.6 per cent for the ED level model. This is a 

result of the fact that the model given by (3.9) assumes efficient stratification at the 

postcode level, while what has been achieved by the design in Table 3.3 is a proxy for 

this using ED level information. This contrasts with the ED level model where the 

stratification is very efficient for estimating the total population as it uses the total 

population to define the size strata in the design. 

The question then is why use the two-stage approach? One potential weakness of the 

ED level design is that it concentrates the sample in a relatively small number of EDs 

based on out-of-date information while the two-stage design spreads the sample over 

many more EDs. It is intuitive that this second approach of spreading the sample 

across more EDs will be more robust to changes in the population between the 

censuses compared to the sample that concentrates the sample of postcodes within 

fewer EDs. The two-stage approach also has the appeal of covering more of the 

population in geographic terms, again a property that has intuitive appeal. 

3.5.2) Multivariate Stratification 

The aim of the designs outlined in the previous sections is to facilitate efficient 

estimation across the age-sex distribution. A key component of this has been 

stratification and so far the approach has been to use the total population of the ED or 

postcode as a design variable or proxy for the 24 possible variables generated by the 

age-sex groups. An alternative approach based on multivariate methods is outlined in 

Brown et al (1999). The aim is to construct a design variable and set of strata within 

the HtC index that better reflect the variability across the age-sex distribution than 
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using total population. This has several stages. The first stage uses principal 

component analysis to summarise the age-sex counts. Taking the first three 

components, cluster analysis using Ward linkage (SAS Institute, 1990) is applied to 

form strata that minimise the within stratum variance. Using more components makes 

the cluster analysis unstable. A proxy variable We on which to base the design is then 

constructed for each ED from the first three principal components using 

w . = , . (3.16) 

j Z V a r ( p , ) 
j=l 

where Pje represents the principal component score for the e"̂  ED and Q is the 

variance-covariance matrix of the original age-sex counts calculated across all the 

EDs. The motivation for (3.16) comes from the desire to construct a design variable 

that has a variance similar to the original data. Assuming that the determinant of the 

variance-covariance represents a summary of that original variability, (3.16) achieves 

this as the variance of We is | Q |^. 

Initial work found that using all 24 age-sex counts in (3.16) was rather cumbersome 

and therefore the work in Brown et al (1999) simply concentrated on six age-sex 

groups; males aged 0 to 4, females aged 0 to 4, males aged 20 to 24, males aged 25 to 

29, males aged 30 to 34, and females aged 85 and over. The age-sex groups were 

chosen based on the identification of them as being highly associated with 

underenumeration in the 1991 Census (see Heady et al, 1994). In addition, an initial 

stage selects a small number of EDs that due to the size of one, or several, of the six 

counts is a Targe' outlier and would therefore unduly influence the principal 

component analysis and subsequent cluster analysis. The same approach is taken here 

in applying multivariate stratification to the data used for the three previous designs. 

Only two EDs were identified as outliers at the initial stage, with both allocated to 

'take air stratum. The remaining sample was allocated using multivariate 

stratification and optimal allocation based on a design variable calculated using 
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(3.16). The within ED sample of postcodes was set at five postcodes per sampled ED. 

The resulting design is given in Table 3.4. 

TABLE 3.4 

Two-stage design using a multivariate approach for size stratification 

HtC Index Number of EDs Number o f 'S ize ' 

Strata 

Sample Size (EDs) 

1 144 10 49 

2 210 16 66 

3 186 12 64 

4 193 16 69 

5 197 16 68 

All 930 70 316 

The design represents the same total postcode sample (1580) as the design in Table 

3.3 assuming a sample of five postcodes per ED. As with the design in Table 3.3, it is 

possible to assess the efficiency of this approach in terms of the RSE, and compare it 

with the previous approach, by selecting a sample and calculating the RSE using the 

variance formula given by (3.15) for different levels of correlation of postcode counts 

within EDs. For estimating the total population, the two approaches are very similar 

with an RSE of 2.46 per cent for the design in Table 3.3 compared to 2.44 per cent for 

the design in Table 3.4, assuming the correlation of postcode counts within EDs is 

zero. Both increase as the correlation increases but the gap between the two also 

widens so that at a correlation of one the gain from using multivariate stratification is 

0.5 per cent. Figure 3.2 compares the distribution of the RSEs generated by the age-

sex groups for the two designs. 

Figure 3.2 more clearly demonstrates an advantage from using the multivariate 

approach. The minimum RSE generated by the age-sex groups is slightly lower and, 

as with the RSE for the total population, the gap increases as the correlation increases. 

The same is true for the median RSE. This drops from 3.9 per cent using the design in 

Table 3.3 to 3.7 per cent using multivariate stratification with a correlation of zero. 

The biggest gain is in reducing the maximum RSE, generated for the males aged 85 
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and over, from 11.1 per cent to 9.6 per cent. Therefore, the multivariate stratification 

proposed in Brown et al (1999) achieves its aim as the resulting sample performs 

better across the age-sex groups both in terms of the median RSE and the spread of 

the RSEs. 

FIGURE 3.2: Comparison of the performance across the age-sex groups of ED 

stratification by total population and number of postcodes {red) with 

multivariate ED stratification {blue) for a within ED sample of five 

postcodes. 

D) 15-

Maximum RSE 
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Correlation of Postcode Counts within EDs 

3.6) Conclusions 

The work presented here has described the CCS design and shows that the proposed 

design strategy, while not 'optimal', is efficient in the sense that it best makes use of 

the available data, is simple in terms of the management of interviewer workloads, as 

well as having cost advantages. This conclusion is based on a comparison with other 

approaches to the design. The advantage of the two-stage approach is its ability to use 

the readily available ED data while still generating a sample of postcodes that is 

spread across the estimation area. The analysis in section 3.5 additionally 

61 



demonstrates that the application of multivariate techniques for stratification of the 

population leads to a design that captures the variability across the age-sex 

distribution better than a design based solely on the total population. 

The final design in Table 3.4 achieves comparable performance across the age-sex 

groups to the ED level design in Table 3.2 for the same sized sample of postcodes 

assuming a sensible level of correlation between postcode counts within EDs. 

However, it has the already stated advantage of spreading the sample over a wider 

geographic area. The most efficient approach in terms of sample size is the postcode 

level design in Table 3.1. The postcode sample for the design in Table 3.4 is three 

times the size of the postcode level design. However, as the final design clusters the 

sample of postcodes within EDs to form interviewer workloads this would suggest 

that on average the strategy outlined in section 3.5.2 will be cheaper than the postcode 

level sample for comparable RSEs across the age-sex distribution. It also does not 

have the data problems associated with designing at the postcode level. 

The final issue that needs consideration is the formation of the estimation areas. The 

data in this chapter have assumed an estimation area of approximately 0.5 million 

people which in the case of the data used here represents a single large LAD in 1991. 

Ideally, the CCS would treat each local authority district as its own estimation area as 

the age-sex distribution is required for each local authority district adjusted for census 

underenumeration. Unfortunately, the national sample size to support such a design 

with direct estimates of sufficient quality would be prohibitive. However, the 

estimation areas do want to be as small as possible so that it is not necessary to group 

large numbers of local authority districts together. The simulations in ONS (1998a) 

suggest that 0.5 million is a good compromise between the two extremes, a decision 

endorsed by the One Number Census Steering Committee. ONS has now formed the 

estimation areas for England and Wales and the final groupings are presented in ONS 

(2000b). Similar work has been undertaken in Scotland and the formation of 

estimation areas for Northern Ireland is covered in chapter five of this thesis. 

As a final comment, the sample size of 1,580 postcodes used in this chapter is based 

on achieving an RSE that would be approximately in line with the achieved accuracy 

in 1981. If this were interpolated to a sample size at the national level, the design in 
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Table 3.4 would represent a sample of 170,000 postcodes (over 2.5 million 

households) for England and Wales, a rather daunting proposition. The key point is 

that the design strategy, due to a lack of suitable information from 1991, cannot take 

account of efficiency gains from using auxiliary information at the estimation stage. 

Work presented in ONS (1998a), using an extensive simulation study, demonstrates 

that an RSE of approximately 0.05 per cent is achievable for the national level 

population total with a sample of approximately 20,000 postcodes or 300,000 

households. The efficient use of auxiliary information at the estimation stage is 

considered in detail in the following chapter. 
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Appendix 3.1 - The variance of the estimated population total assuming a clustered 

super-population model 

For the model given by (3.9) the population total can be estimated as 

eeS eeS " 1 , 

and therefore the variance can be written as 

(M, - m J + w , { N - ^ M r } 
feS 

Var(T-T) = Var 

Var(f-T) = Var 

- Z g Y . . - E Z Y . - Z 
eeS keSg eeS k e R , eeR keRg eeS eeS 

I m . u . y , , - Z E Y . - Z S Y , 
eeS keRg esR keRg eeS 

Remembering that postcodes in sampled EDs are independent of postcodes in non-

sampled EDs due to independence between EDs gives 

VarCr-T) = Var - ^ ( M , - m j y ^ ^ + Var Z E Y , , 
_ eeS eeS eeR k e R j 

Again, remembering that EDs are independent but the postcodes within the same ED 

are not 

Var(T - T) = mjuj Var(y;_) + ^ ( M . - m.) ' Var(y,_) 
eeS eeS 

- 2 ^ m , u , ( M , - m j Cov(ys ,9^ Var(yJ 
eeS eeR 

Using the model each quantity can now be expressed in terms of model parameters so 

that 

Var(y, ): 

Me 

( l - /7 4-/3nJ 

m. 
Var(y, ): 

(1-/7 + X M , -nie^o-z 

(A4c-rn,) 

Cov(ys ,yR ) = y9o-" 

Substituting back into the variance formula gives 
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Var(T-T) = o-' 

^ ( l - / ) ) ( m , u ^ + ( M , - m j ) 
eeS 

+ -™c)^ -2m,u , (M, - m j ) 
eeS 

+ Z ^ X l - / 7 + /7MJ 
eeR 

The variance can be further simplified to give 

+(M, -mj j+XmeT^e - (M, - m j ) ' 
esS Var[T-T]: 

ceR 

which is the form given in (3.15). 
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Chapter Four - Estimation of Census Underenumeration for 

Estimation Areas 

4.1) Introduction 

The previous chapter considered the design of a Census Coverage Survey (CCS) and 

the expectation for the 2001 Census is that the CCS will be the main source of data on 

census underenumeration and provide the necessary data for creating a One-Number 

Census (ONC). A key component in that creation is a strategy for estimating the age-

sex distribution of the population within each estimation area that utilises data from 

both the census and the CCS. It is also essential that estimates of underenumeration be 

available for individual LADs by age and sex to facilitate the adjustment of the 2001 

Census as a basis for the mid-year population estimates. By necessity, the CCS design 

is based on data from the 1991 Census. However, when CCS estimates are produced, 

the available data will include the 2001 Census counts for all postcodes as well as the 

CCS counts for the sampled postcodes. The purpose of this chapter is to develop an 

age-sex specific estimation strategy for the CCS that makes efficient use of this 

information. Consequently, in what follows it is assumed that; the 2001 Census has 

been carried out in all postcodes and the data are available at the postcode level; the 

CCS has been carried out independently of the 2001 Census in a sample of postcodes 

as per the design in chapter three; and the ONC matching strategy, outlined in ONS 

(1998b) and ONS (2000c), has successfully matched the two data sources. 

The US Census Bureau approach to estimation, as outlined in Hogan (1993), is to 

construct post-strata based on age, sex, race, tenure, and geography within which it is 

assumed that the multinomial model outlined in section 2.4 is an appropriate 

representation of the relationship between the census and the follow-up survey counts. 

Dual-system estimation, as outlined in Wolter (1986), is then used to estimate the 

population total within each post-stratum. In other words, the US Census Bureau use a 

single dual-system estimator (DSE) per post-stratum, with estimates for the 

population quantities required for calculating that DSE computed from the survey 

data. 
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The proposed approach to the estimation problem in the context of the CCS and the 

2001 Censuses of the UK is slightly different. If the CCS was a 'perfect' survey in the 

sense that within the sampled postcodes the CCS obtained complete coverage, there 

are standard estimation techniques that would allow the estimation of the population 

total from the data collected in the sampled postcodes. These techniques would utilise 

the 2001 Census data in the non-sampled postcodes as an auxiliary variable to 

improve precision. Examples of such techniques are ratio and regression estimation, 

and the application of these methods would produce a set of age-sex estimates for the 

estimation area. However, the reality is that the CCS will also miss people and the 

issue then becomes one of dealing with non-perfect CCS counts. Under the 

assumptions required for dual-system estimation, a DSE can be calculated in each 

sampled area to 'correct' the CCS count for underenumeration. This leads to a set of 

counts for the CCS sampled areas, corrected for underenumeration, and standard 

estimation techniques can then be applied to the corrected counts to estimate the true 

population total and its distribution by age and sex. In Brown et al (1999) dual-system 

estimation was combined with regression estimation techniques to achieve this goal. 

Brown et al (1999) used a simulation model to test the robustness of this estimation 

strategy to departures from the assumptions underpinning dual-system estimation. In 

particular, the issue of dependence between the census and CCS is considered. Other 

alternatives to correcting the CCS count, such as just combining the census and CCS 

and assuming no individuals are missed by both, are also compared to dual-system 

estimation. The work in this chapter expands Brown et al (1999). In particular, the use 

of ratio estimation is developed as an alternative to regression estimation. A refined 

version of the simulation model used in Brown et al (1999) is developed to compare 

the performance of several alternative strategies. A robust alternative to the standard 

ratio estimator is also developed and tested using the same simulation model. Finally, 

variance estimation for the proposed estimation strategy is also considered. 
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4.2) Population Estimation Using the 2001 Census Coverage Survey 

As already stated, the work in this chapter assumes that the CCS has been designed as 

outlined in chapter three. It is further assumed that both the census and CCS have 

been carried out and that the two databases have been successfully matched using 

computer and computer-assisted probability matching. It follows that, for individuals 

counted in postcodes from the CCS sample it is possible to determine whether they 

were counted in both the census and the CCS, the census only, or the CCS only. There 

will also be some individuals who are missed by both the census and CCS. The 

estimation strategy then consists of two parts. The first is to estimate the true 

population in the CCS postcodes; the second part then builds on the first part to 

produce an estimate for the whole estimation area. Section 4.2.1 considers the first 

part and Section 4.2.2 considers different approaches to the second part. 

4.2.1) Estimation Within the CCS Postcodes 

Dual-system estimation was reviewed as a method of estimation for an unknown 

population total in section 2.4, particularly its use in the estimation of census 

underenumeration. The dual-system estimator is defined as 

. = , (4.1) 
++ 

n II 

where in this application ni+ is the total number of people counted by the census, n+i 

is the total number counted in the CCS, and nn is the total number counted in both. 

As pointed out in chapter two, for dual-system estimation to be applicable the 

following assumptions need to be plausible. 

a) The DSE assumes that in the target population the matched CCS and census counts 

follow a multinomial distribution. That is, the probabilities of being counted by 

either or both the CCS and the census are homogeneous across the population of 

interest. This is unlikely for most populations. 
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b) Approximately unbiased estimation requires statistical independence between the 

census count and the CCS count. While impossible to guarantee this can be 

approximated. 

For estimation following the 1990 Census in the US, assumption a) was approximated 

by forming post-strata defined by variables thought to be associated with census 

underenumeration. Assumption b) was approximated by carefully planning the follow-

up survey to be independent of the census. See Hogan (1993) and the discussion in 

chapter two. The formation of the post-strata is crucial as the population parameter 

estimated under this strategy is the value that would be taken by a dual-system 

estimator (DSE) if the post-strata had been completely enumerated in their PES. This 

is achieved by replacing the resulting population quantities n+, and nn in (4.1) with 

survey estimates. A failure of the homogeneity assumption within the post-strata will 

therefore lead to a biased estimate of the population total. Unlike the bias of the DSE 

under the multinomial model discussed in section 2.4, which is unimportant as the 

population size increases, the bias due to heterogeneity can be considerable and does 

not decrease as the population size increases. In fact it can be argued that as the 

population size increases the likelihood of heterogeneity bias also increases. 

The motivation of the work by Alho (1990) is the desire to get away firom broad post-

strata where heterogeneity can cause assumption (a) above to fail. This is achieved 

using a logistic model. Underlying the approach is the concept that the joint census / 

PES response of each individual can be modelled as a multinomial outcome, with 

response probabilities that depend on the characteristics of the individual. However, 

as noted in chapter two, this approach has yet to be applied on a large scale. The 

strategy for the UK takes a slightly different approach but the ethos is the same as in 

Alho (1990), in the sense that the aim is to not use dual-system estimation for large 

post-strata. Instead, dual-system estimation is thought of as a way of adjusting the 

sample counts generated by the CCS to account for those missed by the CCS. These 

adjusted counts are then treated as 'observed' sample data and used to estimate the 

total population. Assumption a) is approximated by splitting the population into 

groups by age and sex within the sampled postcodes of each HtC category, resulting in 

the DSE being calculated at a very low level of aggregation. Along with operational 
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independence, this also helps ensure that assumption b) is well approximated. In 

addition, work presented in Brown et al (1999) shows that some dependence between 

the census and the CCS has only a limited effect on the overall approach. This issue 

will be considered in more detail in subsequent sections of this chapter. 

As the proposal is to carry out dual-system estimation at a low level of aggregation, 

the standard DSE defined by (4.1) is corrected for its small sample bias to give 

( n , . + l ) x ( n (4.2) 
( n „ + l ) 

The estimator defined in (4.2) was proposed by Chapman (1951) for use in wildlife 

populations and its use is discussed by Seber (1982). It is discussed in more detail in 

section 2.4 but the key point is the correction gives an exactly unbiased estimator 

provided ni+ + n+i is greater than n++, which is a reasonable assumption in most 

situations. 

4.2.2) Models for Population Estimation Using the CCS 

After the CCS has been carried out, there will be two population counts for each 

postcode in the CCS sample. One approach would be to assume that the CCS count is 

equal to the population count in the sampled postcodes and that, therefore, there is no 

underenumeration in the CCS. However, it is more sensible to assume that there will 

be underenumeration in both census and CCS and hence for each sampled postcode 

the two counts generated by these sources will contain non-response. Under the 

assumptions of homogeneity and independence previously outlined (4.2), the DSE 

with Chapman correction can be used to estimate the true population counts, Yaked, for 

age-sex group a in postcode k from enumeration district e in HtC stratum d. The 

problem is then how to estimate the overall population total in the estimation area, Ta, 

for age-sex group a using this information together with the corresponding 2001 

Census counts defined as Xaked-
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4.2.2.1) Simple Approach 

The simplest way to construct population estimates is to assume that information is 

only available for the census and the CCS in the sample areas. In this situation Alho 

(1994) proposes an adaptation of the Horvitz-Thompson estimator (Horvitz and 

Thompson, 1952) for Ta defined by 

T . = I ' (4.3) 
k . e e C C S / ked 

where Hked is the probability of inclusion in the sample for postcode k from 

enumeration district e of HtC category d and is the corresponding DSE estimate 

with Chapman correction for age-sex group a. Note that (4.3) involves calculation of 

the DSE at postcode level for each age-sex group. Since sample sizes for this can be 

extremely small, an alternative is to use the clustered nature of the sample, five 

postcodes per enumeration district (ED), and to compute a single DSE for the cluster 

of five postcodes giving 

T. = E (4.4) 
e e C C S / ^ 

where 6ed is the probability of inclusion in the sample for the cluster of postcodes 

selected from enumeration district e of HtC category d and is the corresponding 

DSE estimate for age-sex group a. (It is important to note that the DSE Y^ ĵ only 

estimates the total population in the cluster of sampled postcodes, since sample 

weights are not introduced into the calculation of the DSE.) Within the CCS design, 

the postcode sample from within the sampled enumeration districts is a simple 

random sample and so Tiked does not depend on k and equals 6ed- Therefore, the 

difference between (4.3) and (4.4) is whether you apply the DSE at the postcode level 

and then sum across the five postcodes sampled within the ED or alternatively sum 

across the postcodes and then apply the DSE. In general, (4.3) and (4.4) will not lead 

to the same estimate unless Yaked is known without error. One would expect (4.4) to 
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Be more 'stable' than (4.3) due to the use of larger counts in the DSE. However, it will 

be more susceptible to 'correlation bias' caused by the violation of assumptions a) and 

b). 

4.2.2.2) Ratio Model for Population Estimation 

In reality, census counts are available for all postcodes and can be used as auxiliary 

information to improve on the Horvitz-Thompson estimator. The simplest way to 

introduce these auxiliary data is to assume that the true count is approximately 

proportional to the census count. This leads to the classical ratio model for each age-

sex group. Dropping the age-sex group indicator a, and representing the census count 

in postcode k from ED e of HtC stratum d by Xked, this model can be written as 

= (4.5) 

Gov { I X , Xj J = 0 for all k ^ j 

where R j and crj are unknown model parameters to be estimated from the data. 

Under (4.5) it is straightforward to show (Royall, 1970) that the best linear unbiased 

estimator for the true population total T of an age-sex group is the stratified ratio 

estimator 

T K . T = E R d Z S x „ (4.6) 
d=l e=l k=i 

where N j is the total number of enumeration districts in HtC stratum d. Me is the total 

number of postcodes in ED e, and R^ is the least squares estimate of the population 

ratio of true counts to census counts. Strictly speaking the assumption in (4.5) of zero 

covariance between postcodes counts is violated, as the design of the CCS has 

postcodes clustered within enumeration districts. However, this is not a serious 

problem for estimation of the population total, as (4.6) remains unbiased when this 

assumption is violated with only a small loss of efficiency (Scott and Holt, 1982). 
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"d 5 

Typically R j =-i-LlJ where is the number of enumeration districts sampled 

6 " ! k= I 

in HtC index d and there are five postcodes sampled from enumeration district e. This 

is the best linear unbiased estimator of the ratio when (4.5) is a true representation of 

the population. However, (4.5) ignores the differential sampling from the size strata in 

the design, as well as the clustering of postcodes within EDs. Therefore, an alternative 

estimator of the ratio includes the sample weights to account for this. The estimator 

including sample weights would not be as efficient when (4.5) holds but may be more 

robust to model failure. 

In practice, of course, the Yked are unknown and replaced by their corresponding DSEs 

within each postcode, given by , and this leads to (4.6) being expressed as 

X, (4.7) 

e=I k=l 

where Xa is the census count across all postcodes in HtC category d for the age-sex 

group being estimated. As with the HorvitzrThompson approach the estimator of R<j 

can also be adapted to allow for calculating the DSE at different levels. If the DSE for 

each cluster of five postcodes is represented by , an alternative version of (4.6) is 

S E X . • • '-M 
e=l k = l 

where again the difference is whether you sum postcode DSEs within the ED or sum 

postcode counts within the ED and then calculate the DSE. A third alternative is to 

compute one DSE across all the CCS sample postcodes within a HtC stratum, then 
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'ratio' this total up to a population estimate for that stratum. If the single DSE is 

represented by , then this third alternative version of (4.6) is 

I ' X, (4.9) 

" I Z x , , 
em] 

This is analogous to treating the HtC stratum as a post-stratum in the US Census 

context and applying the ratio estimator in the form proposed by Alho (1994). If the 

true counts are known in the sampled areas (ie the CCS has no non-response) all three 

estimators given by (4.7), (4.8), and (4.9) are equivalent and reduce to the same 

estimator for Ta. 

A reasonable expectation is that the approaches based on (4.8) and (4.9) will have 

lower variances due to the larger counts contributing to the DSE but be increasingly 

subject to correlation bias due to heterogeneity of capture probabilities within each 

HtC stratum and possible dependence. Defining the HtC strata after the census can 

reduce this correlation bias as is done by the US Census Bureau. However, it appears 

unlikely that all the necessary data for such a post-stratification will be available in 

time for such an exercise to be carried out on the UK data after the 2001 Census. 

4.2.2.3) The Impact of Dual-System Estimation on the Ratio Model 

The ratio model defined by (4.5) assumes that fi-om the survey the true population 

counts are known in the sampled postcodes. The reality is that the true count for 

postcode k is replaced with its DSE , where 

Var [Y^ , j | Y , ^ ] = 
(4.10) 

The variance term in (4.10) uses the fact that the variance of the DSE is proportional 

to the population size being estimated multiplied by a term that depends on the 
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coverage probabilities of the census and the CCS (see equation 2.8). In general, this 

term will vary from postcode to postcode as the homogeneity assumption for the DSE 

only needs to hold independently within each postcode. In reality, it is feasible that 

these coverage probabilities will not vary tremendously across postcodes within the 

same ED or same category of the HtC index. Seber (1982) demonstrates that for the 

DSE with the Chapman correction, the variance is also proportional to the population 

size being estimated. 

Replacing the true population count by the DSE in (4.5) requires an expression for 

E[Ym | X „ ] = E[E[Y^,J Y „ , X , , J ( X „ ] (4.11) 

Under the assumption that the DSE is independent of the census count conditional on 

the truth, (4.11) can be re-expressed as 

I = I 3(k,d] (4.1:2) 

The assumption of independence is crucial but unfortunately it can not be justified in 

general and so the following analysis is mainly illustrative. However, given the 

independence assumption and (4.10), the expected value for the DSE conditional on 

the truth, (4.12) becomes 

E[Y^„ I X „ ] = E [ Y „ | X „ ] = R.X^., (4.13) 

SO that provided the DSE is an unbiased estimator of the true count (4.13) 

demonstrates that replacing the true count by the DSE in (4.5) will not affect the 

expectation. The variance follows as 

Var(Y,^ |X ,^ ) = E[Var(Y,^ | Y , ^ ) | X , ^ ] + Var(E[Y,^ |Yk=d]|Xk«i) 

Var(Yj ,JX^.J = E[<TLY„ |X^.J +Var(Y„ IX,.,) (4.14) 

Var(Y^gj I ^ked) ~'''rked^d^ked +<^al^ked ~ ^ ked Aed^d + ) 
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by again using the relationships in (4.10) and (4.5). Although (4.13) implies that 

replacing the true count with the DSE in (4.5) will not affect the expected value, 

(4.14) shows it will impact on the variance, the relationship being more variable when 

the DSE is used. The best linear unbiased estimator for R<j is now the weighted least 

squares estimator given by 

^ ked /((^iked^d ^ ) 

fid = _ F-t (4.15) "d 
keS, 

keSj 

keSj / 

Using (4.15) does not lead to the same estimator of the total given by (4.7) unless the 

capture probabilities are constant across the sampled postcodes implying = cr^. 

However, even when this does not hold, ignoring the weights in (4.15) will have little 

impact provided is 'small' compared to . This is a reasonable assumption 

based on (2.8). In conclusion, ignoring the fact that the true count is estimated by the 

DSE and estimating the total using (4.7) will in general be approximately unbiased 

and exactly unbiased when the capture probabilities are homogeneous across all 

sampled postcodes in the HtC category. 

4.2.2.4) Regression Model for Population Estimation 

The model (4.5) specifies a proportional relationship between the census and true 

counts. However, such a relationship does not hold in the case where census counts 

are zero, but the CCS counts individuals. Therefore, Brown et al (1999) proposed the 

use of a simple regression model to explicitly allow for such situations. This model is 

given by 

E { | X k e d } ~ ^ d +^d^ked 

I iCkcd} ==(?; (4-10 

(Zovflfkd, I } ==()fbr alllc * j 
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Under (4.16) it is straightforward to show (Royall, 1970) that the best linear unbiased 

estimator for the true population total T of an age-sex group is then the stratified 

regression estimator 

5 NjM. 
T a B o ' S ! ! ( « . + A X „ ) (4.17) 

d=l e=I k= I 

where and are the OLS estimates of the model parameters and in 

(4.17). Like the ratio estimator defined in (4.6), (4.17) is robust to the intra ED 

correlation of postcodes due to the sample design (Scott and Holt, 1982). 

There are two problems with the regression model (4.16). The first is the 

appropriateness of the constant variance assumption when using count data. This was 

a criticism made by Cressie (1989) regarding the use of regression models by Ericksen 

and Kadane (1985). Secondly, it is not robust to a large number of zero census / CCS 

counts, since a large number of sample postcodes with the same census / CCS counts 

can significantly influence the fitted regression line. However, no statistical model is 

perfect and considering the regression model provides an alternative with which to 

compare to the ratio model. As with the ratio model, actual estimation involves 

replacing the unknown true postcode counts with their DSEs. 

4.3) Simulation Study 

The work in section 4.2 presented a two-stage strategy for estimating the population 

by age and sex for an estimation area using data from the 2001 Census and the CCS. 

The first stage acknowledges that both the 2001 Census count for an age-sex group 

within a postcode, and the corresponding CCS count, will be subject to 

underenumeration. Under the assumptions specified above, dual-system estimation, 

corrected for its small sample bias, can be used to combine the two counts and 

estimate the true counts by age and sex for all postcodes in the CCS sample. The 

second stage then considers the problem of estimating a population total fi-om a 

sample. 
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Section 4.2.2 outlines three approaches to the second stage. The first ignores the 

existence of the 2001 Census counts for non-sampled postcodes. This is essentially 

the estimation approach underpinning the design of the CCS and, as already pointed 

out in chapter three, is inefficient. The second and third strategies use the 2001 Census 

counts as an auxiliary variable, assuming either a proportional (ratio model) or linear 

(regression model) relationship between the true postcode counts and the 2001 Census 

counts. 

In this section we develop and implement a simulation model based on data fi"om the 

1991 Census in order to assess all three strategies as well as the basis of the approach 

taken by the US Census Bureau. Underpinning this is a model of census response 

patterns and likely CCS response patterns constructed from the evidence available on 

the patterns of underenumeration in the 1991 Census. The model is applied to a set of 

anonymous individual records for a single local authority district (LAD) from the 

1991 Census, augmented by the prototype HtC index described in section 3.4, and 

these form the basis for the simulation. The population is the same data as used in 

chapter three. As the LAD contains approximately half a milhon individuals, in 930 

EDs, it is treated as a single estimation area. 

4,3.1) Applying the CCS Design to the Simulation Population 

One of the problems with designing the CCS is that the only detailed information 

available is the previous census, in this case the 1991 Census, and this information is 

out of date. This means that the design is based on a certain population structured that 

will almost definitely no longer exist in the current population. If the population used 

in the simulation study were also the exact population that the CCS design was based 

on this source of variability would not be captured by the simulation study. 

To overcome this problem the ED data for the simulation population was 'aged' 

backwards using data from the mid-year population estimates, produced by ONS, for 

LADs in England and Wales between 1991 and 1996. For each LAD, a simple 

exponential growth curve was fitted over the six years for each of 24 age-sex groups 
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defined as; males aged 0 to 4, males aged 40 to 44, males aged 45 to 79, males 

aged 80 to 84, males aged 85+, and the corresponding 12 age groups for females. 

(These correspond to the same 24 groups specified in chapter three.) This defined a 

population of about 400 different sets of growth curves. Taking a simple random 

sample with replacement, each of the 930 EDs in the simulation population was 

assigned one set of growth curves. The growth curves were then used to predict the 

ED population by age and sex for a point ten years in the past. This approach was 

used, rather than just applying the actual growth curve for the LAD to all EDs within 

the simulation population, to capture the fact that while at the LAD level the 

population may be quite stable over the ten years, changes at the ED level can vary 

quite dramatically. 

The design using multivariate stratification outlined in section 3.5 was then applied 

the set of 'aged' ED populations using the same prototype HtC index as applied in 

chapter three. This is an issue where the simulation is not completely realistic. The 

HtC classification used at the design stage, and at the estimation stage, is also used as 

a variable that defines census response. However, in reality the design is based on a 

HtC classification constructed from the previous census and while the variables 

related to census underenumeration will probably change little, mobility of individuals 

will mean that the actual population in the ED in 2001 may not exactly reflect the HtC 

classification made from the 1991 Census. The US Census Bureau tackles this 

problem through post-stratification. The vanables used are chosen prior to the census 

but then membership of the post-strata is defined after the census based on where 

individuals are actually found. This is of particular importance in the US context as 

the homogeneity assumption, underlying the dual-system estimator (DSE), must be 

approximated at the post-strata level. However, in the context of the estimation 

strategy outlined in section 4.2, postcodes incorrectly categorised with respect to the 

HtC index will simply increase the variance in either the ratio or regression model 

rather than lead to heterogeneity bias in the DSE. In extreme cases, postcodes may 

need to be treated as outliers when estimating the model parameters. 

The sampling fraction chosen represents a sample of 20,000 postcodes (4,000 EDs) 

for England and Wales as specified in ONS (1998a). This implies a total sample of 
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approximately 35 EDs with a simple random sample of five postcodes per selected 

ED (or less if the ED does not contain five postcodes). Table 4.1 shows the 

distribution of EDs by the HtC index in the estimation area and the number of EDs 

selected in each stratum. 

TABLE 4.1 

Distribution of enumeration districts by HtC index for the total population of EDs and 

the ED sample 

HtC Index Value Number of Sample of 

Enumeration Districts Enumeration Districts 

Very Easy 144 6 

Easy 210 7 

Medium 186 6 

Hard 193 7 

Very Hard 197 9 

TOTA^ 930 35 

4.3.2) Simulating a Census and its CCS 

The first stage of simulating census underenumeration was to build a model for census 

underenumeration based on the experiences of 1991. The starting point for this was 

the set of ED adjustment factors by age and sex, calculated as part of the 'Estimating 

with Confidence (EwC) Project'. These are available for academic research via the 

Manchester computing facilities. Each ED on the EwC data set was assigned its HtC 

category based on the prototype index. Then, using sampling with replacement, each 

individual was assigned at random an adjustment factor firom the EwC data based on 

their age, sex, and the HtC category of their ED. The inverse of the adjustment factor 

assigned to the individual forms the basis of their probability of being counted in a 

census. Using this approach has four advantages. 

a) The EwC data represents the 'best' estimate available of the patterns of 

underenumeration in the 1991 Census by age and sex at the ED level. 
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B) The EwC data is consistent with higher-level estimates of census 

underenumeration and so at the estimation area level the censuses generated by the 

simulation should have plausible underenumeration patterns. 

c) The EwC data does not just adjust for census underenumeration; it also corrects 

the location of students to account for definitional differences between the 1991 

Census and the mid-year population estimates. The advantage of this is that some 

ED adjustment factors for young adults are large, greater than ten, and 

correspondingly, in the simulation population, some young adults have a very low 

probability of being included in the census. This does also mean that some 

adjustment factors are less than one. For those individuals the probability of 

coverage by the census is set equal to one. 

d) By assigning a different ED adjustment factor at random to the individuals means 

that within a postcode, two individuals with the same age and sex will have a 

similar propensity to go missing from the census but not the same probability. 

This is important so that the census underenumeration model does not exactly 

satisfy the DSE assumption of homogeneity. 

While age and sex dominate the patterns of census underenumeration, they are not the 

only factors. Based on anecdotal evidence from the 1991 Census and further research 

by the 'Estimating With Confidence Project' (Simpson et al, 1997), the probabilities 

assigned to each individual were also adjusted based on the census variable 'Primary 

Activity Last Week' so that the categories representing unemployed had lower census 

coverage than those representing paid employment. A small ED effect was also 

introduced to represent local factors that may affect all the individuals within an ED, 

such as a poorly motivated enumerator. Within the simulation data, each household 

was also assigned a probability of being counted in a census. The starting point for 

this was the average of the probabilities across the individuals within the household. 

This was then adjusted so that those households with 'Tenure' categories of private 

rented had lower probabilities than those households with homeowner categories. In 

addition, households containing only one individual were also given lower census 

coverage probabilities than larger households. The household and individual 

probabilities remain fixed throughout the simulation study. 
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Each individual and household is also assigned a value that defines the differential 

nature of response in the CCS. These mirror the same pattern as the census coverage 

probabilities but the differentials are much less extreme. This extends the simulation 

study in Brown et al (1999) so that there is some heterogeneity in both the census and 

the CCS for age-sex groups at the postcode level. Further details of the assigning of 

census and CCS coverage probabilities are given in Appendix 4.1. 

To generate a census and its corresponding CCS, independent Bernoulli trials are used 

to determine first whether the household is counted and second whether the 

individuals within a counted household are counted. There is also a check that 

converts a counted household to a missed household if all the adults in the household 

are subsequently missed at the individual stage. In these simulations the census and 

CCS outcome for households and individuals are independent. This assumption can 

be investigated by specifying the odds ratio between the two outcomes to be different 

from one, see Brown et al (1999). Two levels of coverage are used in the CCS. First a 

perfect CCS is simulated and then coverage in the CCS is set at approximately 90 per 

cent for households with 98 per cent of individuals within those households being 

counted. For each census ten CCS postcode samples are selected based on the design 

in Table 4.1. The estimators described in section 4.2.2 are then applied to each age-

sex group and population totals are calculated. The whole process is repeated for 100 

independent censuses. 

4.3.3) Population Estimation Results 

For the simulation of 100 censuses the average census coverage for the total 

population is 94.90 per cent, which drops to 85 per cent for males aged 20-29 and 

females aged 85+. Details of the census coverage for each age-sex group are given in 

Appendix 4.2. The coverage is rather less than observed nationally in 1991 where it 

was around 98 per cent. However, the simulation aims to assess the robustness of the 

procedure to the levels of underenumeration that were observed in certain areas such 

as areas of inner London and the major cities such as Birmingham and Manchester. 

For such areas, the census response patterns for the simulation population are in line 

with the census adjustment factors reported in Heady et al (1994). 
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In section 4.2.2 three strategies for estimating from the CCS postcodes to the total 

population are discussed. However, there are actually eight estimators being evaluated 

and they are: 

a) Weighted DSE - (2.5) 

b) US Census Bureau weighted DSE - (2.6) 

c) The Horvitz-Thompson (HT) estimator with the DSE at the postcode level - (4.3) 

d) The Horvitz-Thompson (HT) estimator with the DSE at the cluster level (4.4) 

e) The ratio estimator with the DSE at the postcode level (4.7) 

f) The ratio estimator with the DSE at the cluster level (4.8) 

g) The ratio estimator with the DSE at the HtC index level (4.9) 

h) The regression estimator with the DSE at the postcode level (4,17) 

where the number refers to the equation that defines the estimator. In estimators c to h 

the Chapman correction is applied to the unweighted DSEs. 

As this is a simulation study the true population is known. Therefore, the relative root 

mean square errors (RRMSE) and the relative biases, calculated from the empirical 

distributions for the estimators based on the simulation study, can be used to assess 

the performance of the estimators relative to each other (and the census) over the 1000 

CCSs. For each estimator the RRMSE is defined as: 

RRMSE: 
1 1 100& \ 

(observedj - truthf x 100 (4.18) 
truth w 1000 j=i 

and can be considered as a measure of the total error due to bias and variance. 

Relative bias is defined as: 

1 1 1000/ \ 
Relative Bias = — — x x V observed •- t ruth )x 100 (4.19) 

truth 1000 J 
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The usual aim is to opt for an estimation strategy that will give unbiased estimation, as 

bias is not easily estimated from the sample. (If the bias of an estimator can be 

estimated with precision that would imply that an efficient unbiased estimator is also 

available.) However, it can be better overall to adopt a slightly biased estimator if its 

total error is small. In addition to estimating the bias of a particular estimation strategy 

using (4.19), the standard error for the estimated bias can also be estimated by 

assuming independent iterations and ignoring the fact that ten independent CCS 

simulations were carried out for each of 100 independent census simulations. As a 

consequence of this the standard errors are likely to be slightly under-estimated and 

some care may be needed when using them in inference. However, any standard error 

can still be used to calculate an indicative Z-value and assuming normality, this can be 

used to indicate whether the bias is significantly different fi-om zero. This allows for 

the fact that any estimated bias might be due to Monte Carlo variation where the 

simulation has not run for sufficient iterations. 

TABLE 4.2 

Performance of the population estimators based on weighted DSEs 

Type of Estimator Relative Bias (%) Relative RMSE 
(%) 

Z-value for Bias 

Weighted DSE 026 &82 L23 

US Weighted DSE 0.23 0.61 13.31 

TABLE 4.3 

Performance of the population estimators based on unweighted DSEs 

Type of Estimator Relative Bias (%) Relative RMSE 
(%) 

Z-value for Bias 

Horvitz-Thompson 
Perfect CCS 0.24 6.83 1.11 
Postcode DSE 0.11 6.82 0.50 
Cluster DSE 0.22 6.82 1.03 

Ratio Estimator 
f CC9 0.52 
Postcode DSE 0.10 A'/P 6.70 
Cluster DSE AJ.) 73.95 
Index DSE 

Regression Estimator 
Perfect CCS 0.37 0.64 22.77 
Postcode CCS 0.23 0.57 13.97 
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Table 4.2 and Table 4.3 summarise the results for the estimation of the total 

population derived by summing the individual age-sex estimates. Across the different 

types of estimator the relative bias for each is similar although the bias estimated from 

the simulations for the simple weighted DSE in Table 4.2 and the Horvitz-Thompson 

estimators in Table 4.3 are not statistically significant at the 95% level. This can be 

seen from the Z-values for the bias, which are less than two. However, when you look 

at the total error measured by the relative RMSE those estimators are much less 

efficient. This is exactly what you would expect as the Horvitz-Thompson estimators 

with unweighted DSEs and the simple weighted DSE make no use of extra 

information available from the 2001 Census for postcodes not in the CCS sample. 

Based on the results in Table 4.3, estimators based on the ratio model are generally 

better than the regression estimator both in terms of bias and total error. The bias for 

the ratio model with a perfect CCS, which based on the Z-value of 15.92 caimot be 

due to Monte Carlo error, will primarily come from two sources. The first is the fact 

that with respect to repeated sampling, ratio and regression type estimators are not 

exactly unbiased, whereas Horvitz-Thompson estimation is. Both regression and ratio 

estimators have a bias that tends to zero as the sample size increases. However, with 

the CCS as the ratio and regression estimators are applied independently within each 

HtC category the sample sizes are only between 30 and 45 postcodes. The second 

source is likely to be a failure of the appropriateness of the estimation model for 

certain censuses and CCSs. 

Considering the relative biases and relative RMSEs across all the estimators in Table 

4.2 and Table 4.3, the postcode DSE with the ratio model looks 'best', as the relative 

bias of this estimator is less than for a perfect CCS. Based on the simple analysis of 

combining the DSE with the ratio model in section 4.2.2.3, this should not be the case, 

introducing the DSE should have negligible impact on the bias of the estimator with 

some increase in variance. (In fact, introducing the DSE at the postcode level does 

increase the RSE from 0.46 per cent to 0.48 per cent but in terms of the total error the 

drop in the bias hides this.) In addition, there is a similar reduction in bias when the 

DSE component is introduced at the postcode level for the regression model and the 
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Horvitz-Thompson approach. Caution is required; it is not the case that the postcode 

level DSE 'fixes' the problems causing the bias for a perfect CCS but that the 

unweighted DSE at the postcode level introduces an additional negative bias. The 

results in Table 4.3 suggest this additional bias is not introduced when the DSE is 

used at either the cluster or index level. This is further confirmed by the results in 

Table 4.4. 

TABLE 4.4 

Performance of the DSE at two levels for estimating the sample population 

Relative Bias (%) Z-value for Bias 

DSE at Postcode Level -0.10 -22.01 
DSE at Cluster (5 Postcode) Level 0.0086 1^2 

Table 4.4 presents results for just estimating the population in the sample postcodes 

(by simply summing the unweighted DSEs) over the 1,000 iterations of the 

simulation. The Z-values show that at the postcode level the DSE has a highly 

significant negative bias. Looking more closely at the simulation population suggests 

that one cause is the very small counts in the individual age-sex groups leading to zero 

cells. The consequence of this is that the multinomial model on which the DSE is 

based will not always be appropriate at the postcode level. In addition, the Chapman 

correction requires n,^ + > n^^ for exact unbiasedness and this will also be more 

likely to fail when observed counts get close to or equal zero. Presented in Seber 

(1982), the work of Robson and Regier (1964) gives the following approximation for 

the bias of the DSE with the Chapman correction when the above condition for 

unbiasedness fails. 

E[n^^ I , n^i ] = N - Nb where b = exp< 
(n,+ +l)(n+, +1) 

(4.20) 
n, 

This shows that when the estimator is biased, unlike the standard DSE the bias given 

by (4.20) can be non-negligible; especially when the number of individuals counted in 

both the census and CCS is small relative to the true population. However, the results 

in Table 4.4 confirm that the DSE at the cluster level is essentially unbiased over the 
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simulation. Therefore, the cluster level DSE with the ratio model looks the 'best' 

option as a compromise between the unstable DSE at the postcode level due to very 

small (zero) counts and the increased risk of correlation bias with the index level 

DSE. 

Comparing the US weighted DSE in Table 4.2, essentially a design-based ratio 

estimator, with the model-based ratio estimators in Table 4.3 highlights two additional 

points. Excluding the postcode level DSE ratio estimator for the reasons above, all 

give approximately the same bias due to 'model failure' and 'ratio bias' over repeated 

sampling. The second point is a gain in terms of total error, implying reduced variance 

for the model-based approach which, when the model is appropriate, is what would be 

expected. 

Looking at the total population can hide problems with the estimation of the 

individual age-sex population estimates. Figure 4.1 presents the results for the male 

age groups using the ratio estimator with both weighted and unweighted DSEs. The 

results for females are in Appendix 4.3. 

Figure 4.1; Ratio estimators combined with weighted and unweighted dual system 

estimation for males by age 
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Figure 4.1 demonstrates that across the age groups for males the four estimators are 

very similar in terms of RRMSE with the exception of men aged 85 years and over 

where there are more noticeable differences. In particular, the results for the US 

weighted DSE are not displayed as these are 12.85 per cent for males age 80-84, and 
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24.88 per cent for males age 85+. This is not a problem in the context of estimation 

after the US Census as the post-stratification is for much broader age-sex groups. 

However, in the UK context the current decision is to produce estimates by sex for 

five-year agegroups and therefore this would require consideration. (The use here of a 

single group for 45-79 reflects the fact that there is no variation by age in 

underenumeration for this group in the simulation.) 

With respect to bias Figure 4.1 shows that for the three estimators based on the ratio 

model, with unweighted DSEs, the postcode DSE has a consistently lower bias. This 

reflects the negative bias in the DSE at this level demonstrated by Table 4.4 and 

discussed previously. In general it is not good practice to rely on biases cancelling 

each other to get a 'better' estimator and in terms of total error there is very little 

impact confirming that any reductions in bias are balanced by increased variance. 

Comparing the US weighted DSE with the cluster level and index level unweighted 

DSEs, the US approach has a smaller bias for the young males. This is a crucial age 

group for the estimation of total underenumeration. However, as seen in Table 4.2 and 

Table 4.3, this does not translate into a gain in terms of bias for the total population as 

the US weighted DSE has a much higher bias for the oldest agegroups. 

4.3.4) Conclusions on the Simulation Study Results 

Taking the results of Tables 4.2, 4.3, and 4.4 with Figure 4.1, the estimators based on 

the ratio model with unweighted DSEs are best overall with little to choose between 

the cluster level DSE and the index level DSE. However, in practice the estimator 

using the index level DSE needs to be treated with care as it relies heavily on the HtC 

index defining homogeneous strata with respect to the response rate in either the 

census or the CCS. This is the condition for the bias term in Wolter (1986) due to 

heterogeneity to equal zero. In the simulation, although not exactly satisfied, once age 

and sex are controlled for, this is approximately true for the CCS response rate. 

In 2001 assumptions of homogeneity across all postcodes in each HtC category will be 

shakier when the index has been defined for postcodes based on their 1991 

characteristics and there will certainly be postcodes that will have changed in ten 
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years. This will cause the DSE calculated at the HtC stratum level to be biased. For 

the postcode-based estimator this will not impact on the individual DSEs to cause bias 

but it will increase the variance as the relationship between the census and CCS 

counts within each stratum will not be as strong. However, as demonstrated by the 

simulation results, at this level of aggregation the DSE is unstable. Therefore, 

estimators with a cluster level DSE are, as already stated, a good compromise between 

the two 'extremes' of potential heterogeneity bias and problems with small population 

counts. 

4.4) A 'Robust' Estimation Strategy 

The results from the simulation presented in section 4.3.3 demonstrate the existence 

of problems with both the ratio and the regression model as the census count gets 

small causing model failure and potentially bias. As stated in Section 4.2.2.4, the 

regression model will fit well when census counts are approaching zero and the CCS 

is finding extra people but it will not be robust to a large number of postcodes where 

both the census and CCS counts are zero. As the postcode is a very small geographic 

area the count for a particular age-sex group will often be zero. While such postcodes 

do not affect the ratio model, as it is constrained to pass through the origin, postcodes 

where the census count is zero and the CCS is greater than zero do. These happen in a 

few postcodes for all the age-sex groups. 

There is a second issue that impacts on the estimation. The ratio estimator essentially 

uses the ratio estimated from the sample to predict the count in the non-sample areas. 

This becomes a problem when there exist census counts in the non-sample postcodes 

that are greater than those in the sample postcodes. In such situations, the danger is 

making a prediction where there is no sample to support such a prediction and a few 

outlying census counts can have a considerable impact on the final estimate. 

There is a third situation that can occasionally occur. It happens when there are large 

numbers of census counts in the sample areas that are zero, some with a non-zero 

CCS count, combining with an extreme form of problem two where the non-zero 

census counts in the sample areas are all close to zero. This results in the situation 
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where zero census non-zero CCS counts have a large impact on the estimated ratio 

which is then used to predict for counts well outside the range of the sample data. The 

oldest age groups are particularly vulnerable to this happening leading to the positive 

bias observed in Figure 4.1. 

4.4.1) A Model for Robust Estimation 

The previous section highlights three problems with the ratio model that are causing 

model mis-specification bias. This section takes each problem in turn and proposes a 

strategy to deal with it. The first problem is a zero census count with a non-zero CCS 

count. Initial work considered a mixture type model to cope with this problem but 

simulations showed that the sample provided insufficient data to facilitate estimation 

of all the necessary parameters. Therefore, a simpler approach is proposed below. 

If Xked > 0; 

V a r { Y , ^ | X ^ } = (7^X,^ (4.21) 

C o v { , Yj,, I X ^ , X g = 0 for all k j 

IfXkcd = 0; 

Cov{Y, , „YjJ = Ofora l lk ;^ j 

The approach outlined in (4.21) and (4.22) works by splitting the estimation into two 

parts, one for postcodes with a zero census count (4.22) and one for postcodes with a 

non-zero census count (4.21). Here, the model proposed for the zero census counts is 

just the simple stratified homogeneous model and for the non-zero counts the standard 

ratio model. 

The second problem is the prediction outside the range of the sample data. Empirical 

evidence from the simulations suggests that this is important and causes large 'over-
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estimates'. To reduce the bias caused by this the ratio part of the estimator generated 

by (4.21) and (4.22) is modified such that the overall estimator is given by 

X ked " ^ 0 < X ^ 

Z { ( 2 - R . K . a + 2 x r ( R , - i ) ) + 
Xk-i > 2x̂  

(4.23) 

d=I 

where is the largest census count for a CCS sample postcode in a particular age-

sex HtC combination and is the unweighted mean of the Yked's in the sample with 

Xked - 0. Graphically, these modifications to the ratio part of the estimator (4.21) can 

be represented as 

Y 
A 

y 
• 

0 x : Census Count 

where the aim is to reduce the influence of outliers in the census on the final estimate 

of f . The choice of 2 X™" is arbitrary. It is chosen to reflect a point beyond which it 

is felt that no adjustment can be made to census counts for postcodes not in the 

sample based on the postcodes in the sample. The justification for this is that these 

large census postcodes are not part of the general population of postcode counts. An 

example of this would be where the census has enumerated a small communal 
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establishment within a postcode, such as an old people's home, as a set of households, 

thus creating a very high count of old people. 

The final problem does not occur often but when it does the result is usually a 

dramatic over-estimate. The older ages are most vulnerable but it can occur for any 

age-sex group within a HtC category for a given sample. To combat this, in the 

situations where there are not three distinct non-zero census counts in the CCS 

sample, the estimation strategy outlined by (4.21)-(4.23) is not used for that particular 

age-sex HtC combination. Instead, an alternative model is used given by 

Var{Y,^ |X,^} = Q^ (4.24) 

G o v I , Xgjfg} = 0 for all k ^ j 

which is just a regression model where |3d is constrained to one. The resulting 

estimator of the total for the particular age-sex HtC combination is then given by 

(4.25) 
e=l i.I 

where Na is the number of EDs in stratum d. Me is the number of postcodes in ED e, 

and 5^ = y^ -x^ where y^ and x^ are the unweighted sample means. The justification 

of (4.24) in this situation is that the model does not attempt to estimate a slope 

parameter from very little information. However, it does utilise the fact that the CCS 

has identified some extra people and combines this with the fact that census counts 

are available for all postcodes. 

The standard ratio estimator is level consistent in the sense of Cressie (1989). hi other 

words, the ratio is applied uniformly to census counts and the overall adjustment 

would not change if a postcode were split in half However, this robust strategy does 

not lead to such an estimator as a 'large' postcode may get no adjustment while two 

smaller postcodes, formed from splitting this large postcode, could each get some 
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adjustment. However, in the context on the 2001 Census this is not a problem as the 

postcode geography will be fixed just prior to the 2001 Census day and all subsequent 

census outputs will be based on this fixed set of postcodes. 

4.4.2) Statistical Motivation for the Prediction in Non-Sampled Areas 

The robust approach to prediction of postcode counts in non-sampled areas, outlined 

in section 4.4.1, is motivated by considering scenarios that can occur based on the 

output of the simulation study and then applying common sense. An alternative is to 

consider it in the context of the philosophy behind M-estimation, used in robust 

estimation of model parameters, extended to the problem of prediction from a model. 

The approach used in M-estimation is to allow observations to have full influence on 

the estimation of model parameters over a certain range and then reduce that influence 

as the residual associated with an observation increases. It is then a case of choosing a 

sensible function that defines how this happens. There are three basic ideas (see 

Andrews et al, 1972): 

a) Trim observations so once residuals exceed some value they have no influence. 

b) Decrease the influence of observations once residuals exceed some value such that 

eventually very large residuals mean the observation has no influence (Hampel 

type influence functions). 

c) Keep the influence of observations at a constant level once residuals exceed some 

value (Huber type influence functions). 

hi the context of the CCS and (4.23), the parameter being estimated is the total 

underenumeration in the population. This is achieved by predicting the true count for 

all the non-sampled postcodes based on the estimated ratio model, and each 

postcode's contribution to the estimate of underenumeration is the difference between 

this predicted count and the observed census count, hi this problem the 'residual' is 

how far the census count for a non-sampled postcode exceeds the census counts in the 

sampled postcodes and the influence exerted on the total is through applying a ratio to 
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the observed census count to get a predicted true count. Therefore, the approach to 

prediction for non-sampled postcodes presented in section 4.4.1 can be considered as 

an approach with the same ethos as (b). Within the range of the sample data, each 

postcode exerts full influence on the estimate of underenumeration. Beyond the range 

of the sample data, reducing the ratio applied to the census counts reduces the 

influence. Beyond some ^extreme'' point, the ratio applied is one meaning the postcode 

exerts no influence on the estimation of underenumeration. 

4.4.3) Applying the Strategy 

The same simulation as used in section 4.3 can now be applied to the robust 

estimation strategy. For a perfect CCS the above strategy can be applied directly to the 

sample of postcode counts generated by the simulation. However, in reality Y w will 

not be known but will be estimated using dual-system estimation. It has already been 

shown that at the postcode level the DSE is unsatisfactory but for prediction purposes 

the models and estimators proposed in section 4.4.1 are at the postcode and not cluster 

level. Therefore, the postcode level DSE is used but scaled to the cluster level DSE so 

that they do sum to an unbiased estimate of the population in the sample postcodes. In 

other words, if Fked is the raw CCS count and Bked is the matched count for postcode k 

of the cluster of postcodes selected from ED e of HtC category d then 

" p V "5^ * k e d " - ked - y D S E 

TfTWE k,d w and lirosE = k" , ==> d"*, == givirig 
Kked 

k = l 

vr TLfDSE 
iked "'^ed ^ k̂ed 

where is the postcode level DSE, is the cluster level DSE, and scales 

Y^j^ so that Y^gj, the count used for estimation, is consistent with Y^^^. 

In addition to the strategy outlined in section 4.4.1, postcodes are treated as outliers if 

when estimating the overall ratio Rd, the ratio defined for that postcode exceeds pre-

specified bounds when using the model given in (4.21) in conjunction with the 
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estimator defined by (4.23). The bounds are; greater than or equal to three for HtC 

categories one and two, greater than or equal to four for HtC categories three and four, 

and greater than or equal to five for HtC category five. Currently, these bounds have 

been chosen based on examining output generated by the simulation. There is the 

possibility of further work to refine the bounds and make them age-sex and HtC 

specific. If a postcode is defined as an outlier it is removed from the estimation 

process and then simply added on to the estimate of T at the end. 

Having some method for dealing with extreme counts, generated after dual-system 

estimation has been applied, is necessary. Occasionally, purely due to random 

variation, the DSE will simply be an unrealistic estimate of the population total. For 

example, consider a postcode where the census counts six individuals, the CCS counts 

two, and one person is in both. The DSE, with the Chapman correction, would 

estimate the total population as 9.5, and the adjustment factor for underenumeration 

would be 1.58. This may be a little high but hardly extreme. However, consider the 

same postcode but this time the census counts two and the CCS counts six. The 

estimated adjustment factor for underenumeration would now be 4.25. For the specific 

postcode it may well be the correct representation, but unless the 2001 Census has 

been subject to extreme levels of underenumeration in a particular area, is unlikely to 

represent a large number of postcodes. In addition, as the HtC index is based on the 

1991 distribution of the variables that constitute the index, it is likely that a few 

postcodes will have dramatically changed 6om, for example, HtC category two in 

1991 to HtC category five in 2001. This small number of postcodes may produce 

estimates of underenumeration that are inconsistent with the rest of the sample and 

likely to be unrepresentative of the population as a whole. The existence of cases 

caused by either of the above should be rare. Therefore, in the context of section 4.4.2 

and m-estimation, the influence of postcodes is being trimmed, approach (a), beyond 

the pre-specified cut-off points. 
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4.4.4) Results from the Robust Estimation Strategy 

The simulation study was repeated using the methodology described in section 4.3 

with the same census and CCS coverage rates. In this case there is an additional 

estimator being evaluated; 

i) The 'robust' ratio estimator with the DSE at the postcode level constrained to the 

DSE at the cluster level. 

where 'robust' ratio estimator refers to the whole strategy outlined in section 4.4.1 and 

applied as per section 4.4.3. Table 4.5 summarises the results for the estimation of the 

total population derived by summing the individual age-sex estimates and compares 

this with estimators (2.6) and (4.8) that were analysed in section 4.3. 

TABLE 4.5 

Performance of the 'robust' ratio estimators for the population total compared with 

simpler approaches 

Type of Estimator Relative Bias (%) IkkdvelUWSE 
(%) 

Z-value for Bias 

IJSWey^^kdlDSE 0.23 (161 1331 
Ratio Estimator 

Perfect CCS a 2 4 0.52 15.92 
Cluster DSE &22 0.53 13.95 

Robust Ratio Estimator 
Perfect CCS -A 02 0.47 -UO 

Postcode DSE -A07 0.48 
Constrained to 
Cluster DSE 

Table 4.5 demonstrates that for a perfect CCS, the adjustments to the estimation 

strategy are working as expected to reduce bias. This is demonstrated by comparing 

the bias of -0.02 per cent in Table 4.5 for the robust strategy with 0.24 per cent for the 

standard ratio estimator. In addition, the bias for the robust ratio estimator is no longer 

significantly different from zero. Once the DSE is introduced into the estimation 

strategy, the negative bias does increase slightly and becomes significant. As 

expected, introducing the DSE also leads to a slight increase in the variance. 
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However, the constraining of the unweighted postcode DSEs to the unweighted 

cluster DSEs is reducing the impact of the bias seen in Table 4.4; a consequence of 

applying the DSE at low levels of aggregation. 

The bias of -0.07 per cent in Table 4.5, for the robust strategy combined with dual-

system estimation, can be compared to the bias of 0.22 per cent for the standard ratio 

estimator with cluster level DSE and the bias of 0.23 per cent for the US weighted 

DSE. This suggests that there is an 'over-correction' for the bias, and the z-value 

confirms that it is significant. However, the aim of applying these adjustments is not 

to produce an 'unbiased' estimator with respect to repeated sampling but to make the 

strategy more robust and produce a better estimate for a given set of data. The results 

in Table 4.5 suggest that this is being achieved, as there is also a decrease in the total 

error to 0.48 compared to 0.53 and 0.61. This reduction not only represents the 

reduction in absolute bias but also a slight reduction in variance by reducing the 

impact of a few extreme iterations from the simulations on the overall performance. 

As before, looking at the total can hide what is happening across the age-sex groups. 

Figure 4.2 presents results for males that compares the robust approach using the 

postcode level DSE constrained to the cluster level DSE with the standard ratio model 

using cluster level DSE and the US weighted DSE. 

Figure 4.2: Comparison of the robust ratio model using a postcode DSE 

constrained to a cluster DSE with the standard ratio model using 

cluster DSE and the US weighted DSE for males by age 

4%. 4%, % 

us weighted DSE 

Standard ratio 

RobuAfmbo 

US weighted DSE 

Standard ratio 

Robust ratio 

Age Group (years) Age Group (years) 
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The graph in Figure 4.2 for relative RMSE shows a gain at all ages in terms of total 

error from using the robust approach. The graph for the bias shows that the robust 

procedures do introduce some negative bias into the estimator, particularly at the 

youngest age groups. However, it also shows that the procedures are doing well to 

correct the large positive bias for males in the age groups 20-34 that is present with 

the standard estimators. The robust procedures also work better for the oldest age 

groups in terms of bias and total error where the standard ratio model is particularly 

unsatisfactory due to very low population counts in many postcodes. 

By looking at the empirical distribution of the estimators generated from the 

simulation study, Figure 4.3 demonstrates more clearly exactly what the robust 

procedures are doing. The introduction of a negative bias into the estimation strategy 

has been achieved by preventing the estimator producing extreme over-estimates of 

the population through reducing the influence of outlying points in the estimation 

procedures. Therefore, the reduction in total error seen in Figure 4.2 reflects not only a 

reduction in absolute bias but also a reduction in variance and Figure 4.3 demonstrates 

that this can be attributed to the application of the robust strategy. 
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Figure 4.3: Distributions of the errors for the standard and robust strategies 

Errors from a standard ratio estimator with a cluster level DSE Errors from a robust ratio estimator with a constrained postcode 
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4.4.5) The Impact of Dependence 

The simulation results presented so far for both the standard estimators in section 4.3, 

and the robust approach, were based on the assumption that the census and the CCS 

are independent of each other. In other words, the probability that an individual is 

counted in both the census and CCS is the product of the probability that they are 

counted in the census with the probability that they are counted in the CCS. A failure 

of this assumption can occur for two reasons. The first is a failure of the homogeneity 

assumption. Suppose the DSE is applied to a group of individuals where the responses 

for 80 per cent of the group are generated from a particular multinomial model but 20 

per cent are generated by a different multinomial model. The census and CCS can be 

independent of each other in both models but at the level the DSE is applied the data 

will not follow the independence model. An element of this is already in the 

simulations as there is an element of heterogeneity in both the census and CCS 

response probabilities at the level of aggregation the DSE is applied to. 

The second reason refers to a failure to keep the census and CCS operationally 

independent. In other words, the response of an individual to the CCS starts to 

'depend' on their response to the census. An example of this would be using a census 

enumerator in the CCS and sending them to postcodes sampled from the ED they had 

enumerated in the census. If the enumerator missed a housing unit when carrying out 

the census they will probably miss it in the CCS. Therefore, for individuals in the 

housing unit their response to the CCS is 'dependent' on the fact that they had been 

missed by the census. In the plans for the 2000 Census in the US, the pre-listing of 

areas in the follow-up survey prior to the 2000 Census is noted as a possible source of 

dependence if those individuals contacted in the pre-listing confuse this with the 

actual census. 

In the UK in 2001, dependence between the census count and the CCS count could 

occur due to the use of address data on a computer system called Address Point in 

planning for both the 2001 Censuses and the CCS. In the 2001 Censuses of the UK, 

enumerators will be given an initial list of addresses in their ED based on address 

point. If a housing unit is missing from this list the Census enumerator should add it to 
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the list but it seems reasonable that such housing units will have higher census 

underenumeration. The dependence can then occur in the construction of postcode 

maps for the CCS enumerators. Postcode boundaries do not 'exist' but have to be 

constructed from Address Point based on the location of addresses within the 

postcode. The inaccuracy in Address Point that caused a housing unit to be missing 

fi-om the census enumerator's list may also cause the postcode boundary constructed 

from Address Point to exclude it; and hence the housing unit 's non-response in the 

CCS is not independent of its non-response in the census. To prevent such dependence 

between the census and the CCS, CCS enumerators are required to check whether 

housing units at the boundaries of their sampled postcodes are in or out of the 

postcodes. 

The simulations in Brown et al (1999) introduced the concept of dependence by 

changing the odds ratio between the probabilities that generate whether an individual 

is counted in both the census and the CCS (pn), just the census (pio), just the CCS 

(poi), or missed by both (poo)- The odds ratio is defined as 

tL27) 
PioPol 

and this equals one when the census and CCS are independent. For each individual in 

the simulation data, a value is specified'for pi+ (their overall census coverage 

probability) and p+i (their overall CCS coverage probability). When the census and 

CCS are independent, pu is simply the product of these two probabilities and the 

remaining probabilities follow. For a general odds ratio, the simulation programme 

solves a quadratic equation to get pn and then the remaining probabilities follow. The 

same approach as in Brown et al (1999) has been used to introduce dependence in the 

simulations presented in this section. 

The outcome of a failure to preserve independence between the census and CCS will 

be bias in the DSEs for the sampled postcodes. The actual value and nature of the bias 

will depend on the level of dependence, the coverage probability in the census, and the 

corresponding coverage probability for the CCS. For example, in the simulations 
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already presented the average census coverage probability is 95 per cent and the 

corresponding CCS coverage probability is approximately 88 per cent. Under 

dependence the relative bias of the DSE could range from - 5 per cent (the CCS finds 

no new people - large odds ratio) through zero per cent (the CCS is independent -

odds ratio = 1) to 0.7 per cent (the CCS finds all the missed people - odds ratio = 0). 

If the CCS coverage probability increased to 90 per cent, the range of the bias would 

then be -5 per cent to 0.6 per cent. If census coverage also improves to 98 per cent the 

range becomes - 2 per cent to 0.2 per cent. 

In the estimation strategy the relationship is not quite so simple. To test the actual 

impact of dependence, odds ratios of eight and 0.125 are applied to the individuals 

and households in the simulation data. (The choice of 8 and 0.125 is rather arbitrary 

but they do relate to l o g e odds of 2 and -2, which would generally be considered 

extreme). For the overall coverage probabilities in the simulation population, an odds 

ratio of eight would generate a bias in the DSE o f - 2 per cent. In the simulation, the 

actual impact of the dependence at the estimation stage will vary from postcode to 

postcode and by age-sex group as the coverage probabilities also vary by these factors. 

Therefore, an overall odds ratio of eight will mean a negative bias in the estimation, 

but not necessarily - 2 per cent, and an odds ratio of 0.125 will mean a positive bias. 

The actual impact of dependence on the estimated population total, using the robust 

estimation strategy, is presented in Table 4.6. 

TABLE 4.6 

The impact of dependence in the simulation on the estimate of total population 

Relative Bias (%) Relative RMSE (%) Z-value for Bias 

Independence -&07 &48 -443 

Odds Ratio = 8 -0.96 1.05 -74J2 

Odds Ratio =1/8 0^3 1L69 

As expected, Table 4.6 shows that for an odds ratio of eight, representing the scenario 

where those counted by the census have a higher coverage in the CCS than those 

missed by the census, there is a negative bias in the estimation. However, this is less 

than the two per cent that may have been expected based on the overall coverage of 
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both the census and the CCS. Conversely, Table 4.6 shows that for an odds ratio of an 

eighth, representing the scenario where those counted by the census have a lower 

coverage in the CCS than those missed by the census, there is a positive bias in the 

estimation. In both cases, the dependence results in an increase in total error. Figure 

4.4 gives the relative bias for the individual age-sex estimates. 

Figure 4.4; The impact of dependence in terms of relative bias on estimates of the 

total population by age and sex based on the robust strategy 

Independence 
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The results in Figure 4.4 demonstrate the varying impact of dependence. For young 

adult males, the low census coverage of these age groups means and odds ratio of 

eight has a much greater impact than say for females aged 45 to 79. The positive bias 

generated when the odds ratio is an eighth also reflects the pattern of varying census 

and CCS coverage across the different age-sex groups. 

The results in Table 4.6 and Figure 4.4 are not startling in the sense that they simply 

confirm that the estimation strategy behaves as one would expect under dependence, 

and therefore highlight the need to preserve operational independence as much as 

possible. Caution is needed when interpreting the actual level of the impact. As 

already explained, the relationship between bias and dependence is not simple and the 

complexity of the estimation strategy further compounds this. In addition, and perhaps 

most importantly, the simulation takes an extreme level of dependence that may occur 

in a few isolated areas, and applies that everywhere. In other words, it really does 

represent a worst-case scenario. 
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4.4.6) Variance Estimation 

So far this chapter has concentrated on the strategy to get population estimates by age 

and sex for each estimation area. However, estimated variances for these estimates of 

the population are essential to allow quality assurance with other external estimates of 

the population in 2001, such as those produced nationally using demographic 

methods. Work in Brown et al (1999) used the ultimate cluster variance estimator. 

This has a general form for the variance of an estimator 0 given by 

VarOT = - i - X (4.28) 

where n is the number of PSUs in the sample, and ^ is an estimator based only on 

the data from PSU g. 

Another common, and related, variance estimator is the jackknife estimator. This has 

a general form for the variance of an estimator 9 given by 

Var(<9) = — — f ( W - ( n - l ) ^ ( ^ ) - < 9 y (4.29) 

where n is the number of PSUs and 6̂ °̂  is an estimate based on all the data excluding 

PSU g. hi both (4.28) and (4.29) a finite population correction can be included but for 

large population sizes it will make very httle difference. Both can also be generalised 

to allow the estimation of covariances between the estimates of the different age-sex 

groups. These are needed to estimate a variance on the total population estimate when 

it is derived from summing the estimates for the age-sex groups. 

The two variance estimation techniques were applied to the simulation data for the 

robust ratio estimator (4.23). To do this the ED is treated as the PSU. For the ultimate 

cluster variance estimator this implies that 6^ is based on data from the five postcodes 

in sampled ED g while for the jackknife estimator (9'®̂  is based on all the EDs except 
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the five postcodes in sampled ED g. Variances are estimated across the size strata but 

within the HtC strata. The number of EDs sampled from each size stratum is too 

small, usually only one or two EDs, to allow variance estimation within each size 

stratum. In addition, the estimation strategy based on (4.5) assumes the same value for 

Rd across all size strata within a given HtC stratum. Based on these two points it 

makes sense to apply variance estimation within the HtC but across the size strata. 

Therefore, n in both (4.28) and (4.29) refers to the number of EDs sampled within a 

specific HtC stratum and the overall variance is computed by summing the variances 

across the independent HtC strata. 

As already stated estimates of the complete variance-covariance matrix are required to 

allow the computation of a variance for the estimate of the total population. From the 

simulation, the empirical variance for the estimator of the total population, which 

represents the true variance of the estimator of the total population, is 4,478,323. 

Table 4.7 gives the corresponding mean value and coverage over the simulation for 

the two variance estimators given by (4.28) and (4.29). 

TABLE 4.7 

Performance of variance estimators for the total population 

Type of Estimator 

Ultimate cluster 

Jackknife 

Mean Value 

7,936,568 

5,065,500 

1. Based on estimated 95 per cent confidence interval 

Coverage' 

0.963 

0.944 

s 

Table 4.7 demonstrates that both estimators are conservative (positively biased) when 

compared to the empirical variance, and this is particularly true for the ultimate cluster 

variance estimator. However, in both cases the coverage for a 95% confidence interval 

is approximately correct, the ultimate cluster variance estimator being one per cent 

over and the jackknife being 0.5 per cent under. Figure 4.5 presents the same results 

but for the individual age-sex estimates. 

Figure 4.5 shows that the jackknife variance estimator tracks the true variance more 

closely than the ultimate cluster variance estimator. This is particularly true for young 
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adult males and, to a lesser extent, the same age groups for females. For these age 

groups, particularly males, there is considerable underenumeration and it is intuitive 

that the complex estimator (4.23) will be more stable when estimated with more data. 

Therefore, although the two approaches are related, the ultimate cluster variance 

estimator, which relies on estimates based on single PSUs, appears to be more 

unstable and over states the variability of the estimator for certain age-sex groups. 

Figure 4.5: Performance of the variance estimators for the individual age-sex 
estimates 
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Another consideration is the fact that the simple ultimate cluster variance estimator 

given by (4.28) is only appropriate if each cluster has the same expected value under 

the model used to estimate the population total. This is true for linear estimators and 

while the regression estimator reported in Brown et al (1999) and the standard ratio 

estimator are both linear estimators the robust ratio strategy does not, in general, lead 

to a linear estimator. For age-sex groups where levels of underenumeration are high. 
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the adjustments for outliers will in particular lead to a non-linear estimator causing 

problems for variance estimation based on the ultimate cluster variance estimator. One 

solution is to use a taylor series to approximate the non-linear estimator with a linear 

estimator and apply ultimate cluster techniques to the linear estimator. However, in 

the case of the robust strategy it is hard to see how taylor series linearisation could be 

applied as this would require differentiating the robust estimator. 

It can still be desirable to use a slightly conservative estimator if it has better 

coverage. However, Figure 4.5 also shows that in fact both estimators have coverage 

problems in that they do not give 95% coverage for 95% confidence intervals across 

the age-sex groups. This is a particular problem for males aged 80 to 84 and males 

aged 85 and over. For these particular population groups, the cause of the problem is 

that for some of the generated CCS samples, the CCS fails to find any extra people 

over the census in the CCS sampled postcodes. Such samples lead to an estimated 

level of underenumeration of zero per cent with an associated estimated variance of_ 

zero. Both estimators suffer from the problem and as such situations will definitely 

arise in 2001, further work is needed to specify a strategy for collapsing age-sex 

groups to allow variances to be estimated. Overall, taking the results of Table 4.7 with 

Figure 4.5, the jackknife estimator performs best at the total population level and 

across the age-sex groups. This is with respect to both unbiased estimation of the 

variance and reasonable coverage of confidence intervals. 

4.4,7) Implementing the Robust Estimation Strategy in 2001 

The work presented in this section has taken the basic estimation strategy outlined in 

section 4.2, and evaluated by the simulation study in section 4.3, and looked at 

methods to make the strategy more 'robust' against problems that may, and will, occur 

with the CCS data in 2001. In particular, the strategy applies an approach similar in 

ethos to that of M-estimation to the prediction problem of true counts for non-sampled 

postcodes. The approach taken was based on option (b) in section 4.4.2. It was 

suggested that this approach be compared to an approach with a similar ethos to (c) 

such that all postcodes with census counts beyond the range of the sample data have a 

constant adjustment for underenumeration. In other words they all have the same 
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influence on the estimated underenumeration regardless of the actual value of the 

census count. This can be thought of as a line that is parallel to the Y=X Hne; the 

vertical distance between the two lines is determined by the slope of the ratio line at 

the point of the largest CCS postcode. 

In general M-estimators based on influence functions like (b) have a greater negative 

bias than those based on (c). However, the advantage of this is usually a gain in the 

overall error (Mean Square Error) from reductions in variance due to the approach 

having a greater impact on the extreme values that increase variance. The counter 

argument to this is the intuitive appeal of the approach based on (c), as census users 

may be unhappy with an estimation strategy that essentially assumes zero 

underenumeration in postcodes with a large census count. Further simulations 

presented in ONS (2000d) indeed show that this second approach introduces less 

negative bias, the relative bias at the total population level is 0.06 per cent compared 

to -0.07 per cent in Table 4.6. Across the age-sex groups the relationship with respect 

to bias is also the same, one approach with a slight positive bias, one with a slight 

negative bias. With respect to total error measured by the relative RMSE, ONS 

(2000d) confirms that the approach outlined in section 4.4.1 does better for all age-sex 

groups although the gains are slight. Based on the simulation evidence, ONS are 

planning to implement the revised approach as it was felt that the intuitive appeal of 

the revised approach outweighed the very slight efficiency gains of the original 

approach. 

4.5) Additional Considerations 

Up to this point, the work presented here has to some extent ignored some of the more 

difficult issues surrounding the actual implementation of dual-system estimation. This 

section briefly considers two of those issues. The first is the handling of people who 

move between the 2001 Census day and the day the CCS interviewer attempts to 

contact the residents. The second is the issue of overenumeration in the 2001 Census. 

In addition, the work presented here has concentrated on the estimation strategy for 

estimation areas. In general, more than one LAD constitutes an estimation area so to 
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obtain estimates by age and sex for each LAD requires an additional phase that is 

briefly discussed here. 

4.5.1) Movers and the CCS 

Ideally the 2001 Census and CCS would take place on the same day or certainly 

during the same period as they are attempting to enumerate the resident population 

with respect to the same day. This is not feasible from an implementation point of 

view but is also not possible from a statistical point of view as the two collections 

must be independent. Therefore, if due to practical and statistical constraints the CCS 

cannot be in the field at the same time as the 2001 Census, it is desirable that the CCS 

is in the field as soon after the census as possible. Current plans in the UK suggest 

about four weeks after the 2001 Census day. This is because the CCS should be 

attempting to count the same population as the census. Inevitably people will move 

and therefore, when the CCS interviewer arrives in a sampled postcode some of the 

people who were resident on census night will no longer be resident (out-movers), and 

in some instances, the out-movers will have been replaced by new residents who were 

not there on census night (in-movers). Griffin (2000) considers three possible ways to 

deal with movers that were proposed first by Marks (1979). 

a) From current residents collect proxy information to construct the resident 

population in the postcode as per census night. The US Census Bureau refers to 

this as procedure A. 

b) Construct the population of the postcode as per the time of the CCS interview and 

for in-movers collect additional information relating to their residence on census 

night. At the matching stage look for a census record for the individuals concerned 

at the alternative location provided by the respondent. The US Census Bureau 

refers to this as procedure B. 

c) At households with movers, collect basic proxy information on the out-movers 

and detailed information on the in-movers. The proxy information on out-movers 

is matched to the census returns within the sampled area and the achieved match-
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rate is applied to the in-movers in the calculation of the post-stratum DSEs. The 

US Census Bureau refers to this as procedure C. 

The analysis in Griffin (2000) treats the issue of movers as a potential source of 

heterogeneity. In particular, it is argued that the response rate for data collected on 

out-movers via proxy information in the follow-up survey will be lower than that 

achieved for non-movers. This is a disadvantage of procedure A. In 1990 the Census 

Bureau used procedure B, the argument in favour of procedure B being that the survey 

just needs to enumerate the current residents. This was not without problems in terms 

of matching to census records in other locations but this is the preferred approach of 

the US Census Bureau. The problem in the 2000 Census was that the original plan for 

data collection in the Census would have prevented the use of procedure B, hence the 

development in Griffin (2000) of procedure C. The paper argues that, assuming the 

match-rate estimated for out-movers is an unbiased estimate of the match-rate that 

would have been achieved for the in-movers if the matching could be done for in-

movers, procedure C will be similar to procedure B. 

The problem in the UK context is that DSE estimation takes place in individual 

postcodes and clusters of postcodes enumerated in the CCS sample rather than at 

some aggregate level with the survey data weighted-up to represent the population at 

that level. The strategy relies on the DSE being a good estimate of the population in 

the postcode on census night. This would make the application of either procedure B 

or procedure C problematic. Procedure A is a possibility and the CCS form has been 

designed to allow the collection of proxy data on out-movers. (The reality is that most 

data in the CCS is proxy data as the interviewer obtains the information on all the 

residents in the household fi-om a single household member.) There are still two 

outstanding issues. The first is a concern regarding the quality of proxy data in the 

CCS when the entire household has moved and therefore, none of the individuals 

resident on census night are available to respond to the survey. The second is the legal 

position of collecting such data and processing it, when the survey is voluntary. The 

final decision with respect to the treatment of movers is still under consideration by 

ONS. It may well be that the treatment of movers in the 2001 CCS will rely heavily on 
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the short period between the Census and CCS, with out-movers being treated as 

missing at random non-response in the CCS. 

4.5.2) Overenumeration in the 2001 Census 

In the UK, the general perception of overenumeration is that compared to 

underenumeration it is a 'second-order' problem. The last reliable estimates, reported 

in Britton and Birch (1985) for the 1981 Census, estimated gross underenumeration as 

0.62 per cent against gross overenumeration of 0.17 per cent. The evidence available, 

and general perception, suggests that while underenumeration increased quite 

dramatically in the 1991 Census overenumeration basically remained unchanged from 

the 1981 Census and therefore becoming a secondary issue. (Following the 1991 

Census, imputation was carried out for completely missed households and there is 

evidence that shows that this imputation did introduce too many people (see Diamond, 

1994). However, if a similar imputation exercise is performed in 2001, this potential 

source of overenumeration is easily handled by excluding the imputed data from the 

estimation of the true population.) The UK scenario contrasts with the situation in the 

US where overenumeration is a more serious issue. Hogan (1993) gives a brief 

discussion of gross errors and Dunstan et al (1999) report that gross underenumeration 

was estimated at 4.7 per cent balanced against an overenumeration (made-up of a 

range of erroneous enumerations including census imputations, fictitious census 

returns, and duplicates) of 3.1 per cent. Therefore, the PES in the US explicitly tackles 

estimation of overenumeration through the E-Sample and P-Sample design (see 

Hogan, 1993). The P-S ample is essentially equivalent to the CCS but the E-Sample is 

a sample of census returns that are check for fictitious data and erroneous or incorrect 

enumerations. This estimates an adjustment for overenumeration that is applied in the 

calculation of the DSE. 

The current plan in the UK is to assume that the CCS will count people in the correct 

location as per their interpretation of the census definition. The CCS will also collect 

data on possible locations where individuals could have been counted in the census. 

This is similar to the Australian approach. In the UK the data processing will not 

allow this information to be used directly in the estimation but it is envisaged that 
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towards the end of data processing a secondary matching exercise will be able to give 

estimates for broad sub-groups and regions of the extent of overenumeration. The 

current working assumption is that this will be a minor issue but as a result of the 

exercise and the quality assurance programme, adhoc adjustments may be made to 

some of the age-sex estimates in a few estimation areas. 

hi the context of the estimation strategy, not adjusting for overenumeration in the 

census will inflate the DSEs for the sampled postcodes. The US approach estimates 

the overenumeration and corrects for it in the calculation of the DSE. In the UK 

context, ignoring overenumeration will not be a problem when estimating the ratio 

between the true count and the census, provided its impact is reasonably constant 

across the group for which the ratio is being estimated, as it will inflate the numerator 

and denominator by approximately the same factor. (If overenumeration is constant it 

cancels top and bottom in the estimation of the ratio.) The problem then occurs if this 

ratio is applied to the total census count including overenumeration as the ratio 

measure gross and not net underenumeration. If it is found to be a problem, adhoc 

adjustments could then be made to the census count. While this is a possible 

framework to deal with a minor overenumeration problem it still requires further 

investigation and the final decision on the treatment of overenumeration is still to be 

taken by ONS in the coming months. 

4.5.3) Estimation for Individual LADs 

As stated at the beginning of chapter three, the main aim of the CCS is to provided the 

basis for the mid-year population estimates by age and sex at the LAD level, adjusted 

for census underenumeration. This chapter applies to estimating the population in 

estimation areas, groups of LADs for which the CCS sample is considered sufficiently 

large to yield high quality direct estimates. Considerable additional research has been 

undertaken by ONS to assess different small area estimation strategies for obtaining 

LAD estimates. The chosen strategy, and the research that supports that choice, is 

presented in ONS (2000e). The basis of the approach is a synthetic estimator that 

assumes that the underenumeration patterns at the estimation area level apply in each 

of the LADs that constitute the estimation area. This is supplemented by an 'LAD 
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effect' that allows for the pattern to vary slightly from LAD to LAD based on the CCS 

data collected in each LAD. 

4.6) Concluding Remarks 

The work presented in this paper has shown that the proposed estimation strategy of 

combining dual system estimation with ratio / regression estimation techniques works 

well and compares favourably with the approach outlined in Wo Iter (1986) that was 

used by the US Census Bureau in 1990. The basic application of the strategy presented 

in section 4.2 and assessed by a simulation study in section 4.3 is not without 

problems. The DSE has a negative bias when applied to small areas of aggregation, 

such as the postcode by age-sex group. The standard ratio and regression estimators 

suffer from a positive bias due to model failure and outliers. Section 4.4 develops a 

robust strategy that addresses the problems and further simulation results suggest that 

the adjustments are successful in reducing the bias and variance of the estimator. 

Section 4.4 also addresses the important issue of variance estimation and the 

simulations support the use of a jackknife variance estimator. 

The strategy has specifically focused on the estimation of the population for each age-

sex group ignoring all the others. The justification for this is a preference for 

simplicity in the underlying approach to estimation. However, it seems plausible that 

there would be scope for further improvements in efficiency when estimating some 

age-sex groups by using information from other age-sex groups. For example, the 

number of young children is likely to be related to the number of young women. 

'Borrowing strength' in this way can be achieved by the inclusion of additional 

auxiliary variables in either the ratio or regression model. However, the estimator no 

longer has a simple interpretation with the model parameters simply relating to the 

rate of underenumeration for each specific age-sex group. 

Some of the discussion in section 4.5 points to the fact that the work in this chapter 

has been about creating a theoretical framework for the estimation and an overall 

strategy. Current work at ONS is dealing with the outstanding practical and theoretical 
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issues, such as movers and overenumeration, and working towards implementation of 

the estimation strategy for use on CCS data following the 2001 Census. 
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Appendix 4.1 - Creating census and CCS coverage probabilities for the simulation 

population. 

The basic construction of the coverage probabilities for the simulation data is given in 

section 4.3.2. The basis of the individual probabilities are the EwC ED adjustment 

factors and these vary at an individual level with an underlying structure that depends 

on age, sex, and the HtC category of the ED. In addition, these are adjusted based on 

economic status measured by the census variable 'Primary Activity Last Week'. This 

is done by applying a power to the base probability that is greater than one to reduce 

coverage and less than one to increase coverage. Assume that all individuals have the 

same base probability p = 1 - q. If the power ai is applied to each individual i then 

P [ = G - ^ i q ) and 

which equals p provided the average of the aj's is one. In other words, the overall 

coverage remains approximately the same but across individuals it now varies by a 

new variable. In the simulation data the following powers are used for economic 

status. 

Individual under 16 1 
Full-time employee 0.629 
Part-time employee 0.629 
Employer 0.629 
Self-employed 0.629 
Government training scheme 2 
Waiting to start a job 2 
Unemployed 3 
Full-time education 2 
Unable to work 1 
Retired 1 
Homemaker 1 
Other inactive 1 

These average to one over all the individuals in the simulation data. The base 

probabilities for census coverage of households are constructed by averaging the 

probabilities for the individuals within each household. For households with tenure of 

private rented the coverage is reduced by a factor of 0.95. Further variation is 

introduced by using the power 2/size so households of size one have a lower coverage 
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and large households have a higher coverage. Note that this does not mean that within 

a large household the census necessarily counts the individuals correctly. 

For the CCS coverage rates a constant base is set for households and then individuals 

in counted households. For households this base is adjusted using powers that vary by 

household size 

One person household 1.1 +/- e 
Two person household 1.05+/-e 
Three person household 1 +/- e 
Four plus person household 0.83 +/- e 

where e ~ N(0, 0.01) so that there is some extra heterogeneity at low levels of 

aggregation. As with the census, smaller households are harder to count. These 

powers approximately average to one over all the households so the approximate 

household coverage is whatever is set in the simulation. For individuals the base is 

adjusted using powers that vary by age and sex. 

Age Males Females 
0-4 1 1 
5-9 0.98 0.98 
10-14 0.98 0.98 
15-19 0.98 0.98 
20-24 1.1 1.05 
25-29 1.075 1 
30-34 1.075 1 
35-39 0.98 0.98 
40-44 0.98 0.98 
45-79 0.98 0.98 
80-84 1 1 
85+ 1.05 1.075 

The following graphs give the variation in the individual coverage probabilities in the 

census and the overall coverage in the CCS for males in FItC category five after 

controlling for age. (The base CCS coverage is set at 0.9 for households and 0.98 for 

individuals and the overall coverage is the product of the two). The important point is 

that for the census there is considerable heterogeneity and in the CCS there is enough 

to ensure that the homogeneity assumption will not be completely met in the 

simulations at the level the DSE is applied. 
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Appendix 4.2 - Census coverage by age-sex group for the 100 simulated censuses 

Sex Age (years) Mean Census Coverage (%) 
Male 0-4 92.74 
Male 5-9 93.79 
Male 10-14 95.65 
Male 15-19 91.23 
Male 20-24 84.09 
Male 25-29 85.47 
Male 30-34 91.31 
Male 35-39 95.12 
Male 40-44 95.95 
Male 45-79 98.38 
Male 80-84 94.87 
Male 85+ 94.91 

Female 0-4 93.37 
Female 5-9 94.65 
Female 10-14 96.42 
Female 15-19 94.90 
Female 20-24 92.23 
Female 25-29 93.12 
Female 30-34 96.28 
Female 35-39 98.02 
Female 40-44 97.72 
Female 45-79 98.62 
Female 80-84 91.62 
Female 85+ 84.26 
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Appendix 4.3 - Ratio estimators combined with weighted and unweighted dual 

system estimation for females by age 
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Chapter Five - CCS Design and Estimation in Northern Ireland 

5.1) Introduction 

The history of recent census underenumeration in Northern Ireland is different from 

the rest of the UK. For Great Britain, the 1981 Census was considered a successful 

census while the 1991 Census is judged to have had problems with underenumeration 

(see section 2.3). In Northern Ireland the reverse is generally considered to be the 

case. However, the success of the 1991 Census does not mean there was zero 

underenumeration and therefore it is important that Northern Ireland has a CCS in 

2001 to check the coverage of the census and adjust for any estimated 

underenumeration, particularly as previous surveys in the U K have excluded Northern 

Ireland. 

The make-up of Northern Ireland, both in political and geographic terms, is also 

rather different from the rest of the UK. It has a total population of just over 1.5 

million people, and is the smallest of the countries that constitute the UK. Within 

Northern Ireland there are 26 local government districts (LGDs) and while they play a 

role in government they do not have the same relevance as LADs in the rest of Great 

Britain. The exception is Belfast, with a population of around 300,000 people. 

The population of Northern Ireland implies that three estimation areas would be 

appropriate based on the fact that the total population is approximately 1.5 million 

persons and the design strategy is based on estimation areas with populations of 

approximately 0.5 million persons. The LGDs can be grouped into three based on 

combining a five level standard classification. This creates one estimation area for 

Belfast, a second for the LGDs that surround Belfast in the 'East' of Northern freland, 

and a third for the more rural LGDs in the 'West' of Northern Ireland. This chapter 

first considers the implementation of the CCS design discussed in chapter three to 

Northern Ireland. The chosen approach is assessed through a simulation study similar 

to the approach used in chapter four but based on the 1991 Census data for Northern 

Ireland. Finally, an approach is developed and tested using a simulation for the 

estimation of census underenumeration for other variables apart from age and sex. 
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This includes estimation for variables that relate to households as well as other 

variables that relate to individuals. 

5.2) The CCS Design Applied in Northern Ireland 

5.2.1) Classification Index for EDs 

The design outlined in chapter three uses an index to stratify EDs into different types 

based on the underenumeration patterns observed in the 1991 Census. There is much 

less information on the patterns of underenumeration within Northern Ireland from 

the last census to replicate such a strategy exactly. However, an index can be 

constructed by considering certain unique features of Northern Ireland. Within 

Northern Ireland religion is an important variable. The two communities are still 

polarised in many areas meaning that approximately two thirds of EDs were 

dominated either by Protestant families or by Catholic families in the 1991 Census. 

This pattern is still expected to be true in 2001. The structure of each of the LGDs still 

tends to be a town, that is the administrative centre of the LGD, surrounded by its 

rural hinterland. Finally, each ED can be classified as deprived or not deprived based 

on the 1991 Census. These three factors can be combined to produce an eight-way 

classification of EDs. 

There is little evidence to directly link the three factors to patterns of 

underenumeration in the 1991 Census. However, using data from the 1999 Census 

Rehearsal, the eight-way classification of the factors can be ordered based on census 

response rates achieved in the rehearsal. The ordering is given in Table 5.1 from the 

highest expected census response rate to the lowest. The distribution of the population 

is not even across the eight categories with the last three categories containing most of 

the population. Therefore, while it is desirable to spread the sample over all the eight 

categories to ensure the sample contains all types of EDs it will not be possible to 

estimate independently in all eight. This is because the small number of EDs in some 

categories would require very large sampling fractions to allow efficient estimation, 

the consequence being that when the total sample size is fixed other much larger areas 

would have their samples reduced, the overall effect being less efficient estimation. 

Instead, estimation will use a three level categorisation that combines the categories in 
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Table 5.1. Levels one to five will form an 'easy to count' group containing about 33 

per cent of the population, levels six and seven will form a middle group containing 

about 50 per cent of the population, with level eight forming a 'hard to count' group. 

As a consequence, the three level structure also needs to be reflected in the design to 

ensure there is sufficient sample to allow this. 

TABLE 5.1 

Ranking of the ED classification index 

Level of Index Religion Location Deprivation Status 

1 Protestant Rural Not Deprived 

2 Protestant Rural Deprived 

3 Catholic & Mixed Rural Not Deprived 

4 Protestant Urban Not Deprived 

5 Protestant Urban Deprived 

6 Catholic & Mixed Urban Not Deprived 

7 Catholic & Mixed Rural Deprived 

8 Catholic & Mixed Urban Deprived 

5.2.2) CCS Design for Northern Ireland 

The design for Northern Ireland is considered as a whole rather than a series of 

designs for each estimation area. To be consistent with a sample of approximately 

300,000 households in England and Wales, the corresponding sample size for 

Northern Ireland would be about 10,000 households. Assuming 15 households per 

postcode and five postcodes per ED this specifies an ED sample of between 130 and 

135 EDs. The basic strategy outlined in section 3.5 is applied to the three estimation 

areas; within each estimation area the EDs are stratified by the ED classification index 

outlined in Table 5.1, then by size using the multivariate approach of section 3.5.2. 

The major difference now occurs in that the approach in section 3.5 used optimal 

allocation while in Northern Ireland proportional allocation is used to distribute the 

ED sample across the strata. A sample of postcodes is then chosen fi-om the selected 

EDs. Proportional allocation is chosen as there is much less information, with respect 

to underenumeration in the 1991 Census, on which to base any assumptions about the 
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distribution of underenumeration. Therefore, it is safer to spread the sample evenly 

over all types of ED. 

Starting with a target sample of approximately 130 EDs and a fixed set of strata for 

Northern Ireland the allocation proceeds in two stages. The first stage allocates the 

sample to the three estimation areas, and within that the three levels of the collapsed 

ED classification index proportional to the total population as recorded by the 1991 

Census. At this stage population is used, rather than number of EDs, as the West 

design group has a large number of rural EDs and therefore a lower population in 

relation to the number of EDs when compared to the other two estimation areas. The 

allocation is subject to a minimum sample of eight EDs so that there is considered 

sufficient sample to support the use of ratio estimation within the three levels of the 

ED classification by estimation area. The minimum sample constraint forces the 

sample to eight in two levels for the Belfast estimation area and one level of the East 

estimation area. This specifies a fixed sample size for each of the nine groups, the 

three estimation areas by the three levels of the index. The second stage then allocates 

this fixed sample for each group to the full eight categories of the ED classification 

index, as per Table 5.1, and then strata defined by the multivariate approach 

proportional to the number of EDs. The resulting design using the 1991 Census data 

for Northern Ireland is given in Table 5.2. 

Table 5.2 specifies a sample for Northern Ireland of 130 EDs from 3,725. In addition 

to this the multivariate specification of strata classified four EDs to a completely 

enumerated stratum based on their 1991 population counts so the final sample is 134 

EDs fi-om the 3,729 EDs. The use of proportional allocation initially based on 

population counts rather than number of EDs means that the sampling fraction with 

respect to number of EDs is slightly lower in the West estimation area due to the large 

number of rural EDs with small population counts. In addition the minimum sample 

constraint increases the sample in Belfast. However, the use of proportional allocation 

has led to a sample that is reasonably evenly spread across the three estimation areas 

and the different types of EDs. 
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TABLE 5.2 

Specification of the CCS for the Belfast estimation area 

ED Classification Index 

FuU Collapsed Number of EDs Sample 

4 1 130 5 

5 1 154 6 

6 2 131 8 

8 

ED Classifi 

3 

"Afication of the CCS f 

cation Index 

152 

or the East estimation 

Number of EDs 

8 

area 

Sample FuU Collapsed 

152 

or the East estimation 

Number of EDs 

8 

area 

Sample 

1 1 199 6 

2 1 80 3 

3 1 83 3 

4 1 540 17 

5 1 122 4 

6 2 234 9 

7 2 145 5 

8 

ED Classifi; 

3 

ification of the CCS fc 

:ation Index 

121 

r the West estimation 

• Number of EDs 

8 

area 

Sample FuU Collapsed 

121 

r the West estimation 

• Number of EDs 

8 

area 

Sample 

1 1 79 2 

2 1 139 4 

3 1 127 4 

4 1 79 2 

5 1 31 1 

6 2 233 7 

7 2 694 17 

8 3 252 11 
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5.3) Northern Ireland Simulation Study 

The design strategy outlined in section 5.2 differs slightly from the strategy in chapter 

three due to the fact that Northern Ireland is somewhat different from England and 

Wales. Therefore, to see the effect, if any, of these slight differences on the estimation 

strategy outlined in section 4.2 a simulation study similar to section 4.3 is used but 

based on Northern Ireland data. 

5.3.1) CCS Design for the Simulation Population 

The basis for the simulation study is the set of anonymous individual census returns 

for the 1991 Census in Northern Ireland. The CCS design as outlined in section 5.2 is 

applied to the simulation population. However, as with the simulation study in section 

4.3, the CCS design is not based directly on the ED counts in the simulation 

population. This is because the actual design uses 1991 data but the CCS will be 

conducted in 2001. Instead the design is based on ED counts derived from the 

simulation population but adjusted to represent the ten year gap. The adjustment is 

based on the proportionate changes to the LGD populations of Northern Ireland 

between 1981 and 1991, and is constant across EDs within the same LGD. The 

consequence of this is that while the simulation population corresponds approximately 

to the data used for the design in Table 5.2, the CCS design for the simulation is based 

on data that does not. Therefore, while the simulation design is indicative of Table 

5.2, the total sample is still 134 EDs and the estimation area samples are similar, the 

actual design is not identical. There are also slight differences in the distribution of 

the ED classification index. 

5.3.2) Running the Simulations 

The simulation study developed in section 4.3 utilised a set of probabilities that 

defined the coverage of individuals in each simulated census. These were constructed 

from studies of census coverage following the 1991 Censuses. However, no such 

studies were undertaken for Northern Ireland. Therefore, to generate probabilities for 

the Northern Ireland simulation, a model was fitted to the individual probabilities 

defined in section 4.3. The model was then used to generate three census response 

124 



probabilities for individuals that represent three levels of census coverage in the 

Northern Ireland data. The probabilities vary by age, sex, and the ED classification 

index. In addition, LGD effects were also introduced and in particular the census 

coverage for Belfast was reduced relative to the other LGDs. Household probabilities 

were constructed from the individual probabilities, as outlined in section 4.3 and 

appendix 4.1, by averaging the probabilities for the individuals and adjusting them for 

tenure and household size. 

For the simulations, CCS coverage is fixed at 90 per cent for households and 98 per 

cent of individuals within counted households. These then vary across households and 

individuals using the same approach as in appendix 4.1. The simulations then proceed 

in the same way by generating 100 independent censuses with 10 independent CCS 

samples generated for each census. The estimation strategy using the cluster level 

DSE with ratio estimation, defined by (4.8), is applied to each set of sample data and 

the whole process is repeated for the three levels of census coverage. For the high 

census coverage this is compared to results from applying the robust approach 

developed in section 4.4 and the estimator defined by (4.23). 

5.3.3) Results 

When analysing the simulation results, as with the analysis in section 4.3.3, the truth 

is known as the simulation is based on a known population. Therefore, it is possible to 

calculate the relative bias (4.19) and relative root mean square error (RMSE) (4.18) 

for the estimators over the 1,000 iterations of the simulations. The results in Table 5.3 

are for estimating the total population of Northern Ireland at three different levels of 

census coverage using the 'standard' estimation strategy of the cluster level dual-

system estimator (DSE) with ratio estimation. 
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TABLE 5.3 

Results of the simulation study for estimates of the total population 

Performance of the Estimator 

Census Coverage (%) Relative Bias (%) Relative RMSE (%) 

92.55 0.39 1.10 

95.38 0.22 0.72 

97.26 0.12 0.46 

The results in Table 5.3 demonstrate that, as with the results seen in Table 4.3 of 

section 4.3.3, the use of ratio estimation combined with dual-system estimation at the 

cluster level generates a positive bias in the estimator. However, the results in Table 

5.3 demonstrate that as census coverage increases, in this case from 92.55 per cent to 

97.26 per cent, the bias decreases from 0.39 per cent to 0.12 per cent. In addition, the 

decrease in the relative RMSE from 1.10 per cent to 0.46 per cent also reflects a drop 

in the variance. It is reasonable to expect that as the census coverage approaches 100 

per cent both the variance in the DSE and the variance in the ratio model will be 

reduced. In addition, as census coverage approaches 100 per cent the ratio between 

the truth and the census will approach one. Situations where the ratio model will not 

be robust will also decrease, contributing both to the drop in bias and the drop in 

variance. 

Figure 5.1 considers the performance of the estimator by age and sex, by plotting the 

distribution of errors over the simulation. The plots demonstrate the phenomenon also 

seen in Table 5.3. As the census coverage increases the estimator becomes less 

variable. This is reflected in Figure 5.1 by the fact that the box plots are more tightly 

located around zero as census coverage increases. In addition, the impact of outliers 

and extreme values for the estimator decreases as census coverage increases. 

The equivalent error plots for the census are in appendix 5.1. The pattern of high 

underenumeration in the census for young men, which can be seen in appendix 5.1, is 

reflected in Figure 5.1 by the more variable nature of the estimator, particularly for 

the ages 20 to 29. This demonstrates the trade-off between using the adjusted data 

rather than the census. The estimation strategy significantly reduces the error in terms 
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of bias but the price is an increase in variance. As the underenumeration in the census 

increases, the variance of the estimated population totals also increases. The estimator 

is also more variable for the oldest ages for both men and women. For women, the 

high underenumeration is partly responsible but it also reflects the fact that the group 

is relatively small in population terms and the ratio estimator, as discussed in chapter 

four, will be more variable when there is little data in the sample on which to base 

estimation. This problem of small populations is an even greater problem for males at 

the oldest ages. 

The results so far have only considered estimation at the Northern Ireland level. This 

is of particular interest for Northern Ireland where the LGDs are of less political 

importance and government of the Province is more centralised. However, the 

estimation area results are also of importance, especially as these amalgamate to form 

the Northern Ireland estimates and are the basis for getting LGD estimates. Table 5.4 

gives the results for the total population by estimation area from the simulations with 

the highest census coverage. 

TABLE 5.4 

Results of the simulation study for estimates of the total population by estimation area 

Performance of the Estimator 

Estimation Area Census Coverage (%) Relative Bias (%) Ilelatrve RJVISI3 (%,) 

Belfast a i 9 L74 

East 98.68 039 

West 97.81 a 2 4 &75 

Northern 

Ireland 

9%26 &12 &46 
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Figure 5.1: Distribution of the errors for the estimator of the total population of 

Northern Ireland by age and sex for three levels of census coverage 
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The results by estimation area in Table 5.4 are from the simulation and do not 

necessarily reflect real differences between the different estimation areas. Part of the 

difference will be due to LGD effects introduced into the simulation. However, some 

of the differences do reflect the variable distributions of EDs by the classification 

index. In particular, the West estimation area has a large number of rural Catholic 

EDs and Belfast has none of the groups that are considered the easiest to count by the 

classification given in Table 5.1. Therefore, these differences do partly represent the 

pattern that is expected in 2001. 

Table 5.4 demonstrates that for the estimation area with the best census coverage, the 

East estimation area, the standard procedure of combining the DSE with ratio 

estimation does not result in a bias as observed in Table 4.3 of section 4.3.3 and the 

other two estimation areas. This links with the results reported in Table 5.3 and Figure 

5.1 for all of Northern Ireland. As census coverage increases the bias and variance of 

the estimator decrease. In addition, the East estimation area has the largest overall 

sample. The results suggest that the use of the robust adjustments to the ratio 

estimator developed in section 4.4 will have little impact in the East estimation area, 

but there is the possibility of improvement in the other two estimation areas. 

Table 5.4 gives results at the total population level but this can hide important patterns 

across estimates by age and sex. Figure 5.2 presents the relative bias of the counts 

adjusted using the standard estimation strategy by age and sex for the three estimation 

areas and Figure 5.3 presents the relative RMSE. The results in Figure 5.2 

demonstrate the much higher levels of census underenumeration at all ages and for 

both sexes in Belfast. However, the estimation strategy corrects for the bias but gives 

a slight positive bias for the young men aged 20 to 29 and the oldest women. This 

reflects the very high underenumeration in the census, over 20 per cent for males aged 

20 to 24, and follows the same patterns seen in Figure 4.1 of section 4.3.3. This 

suggests that the robust approach developed in section 4.4 should be effective at 

reducing the positive bias. 
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Figure 5.2; Relative bias of the census data and the data adjusted using the 

standard estimator by age and sex for the three estimation areas 
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Figure 5.3: Relative RMSE of the census data and the data adjusted using the 

standard estimator by age and sex for the three estimation areas 
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Figure 5.2 shows that the level of census underenumeration in the East estimation area 

is much lower but the estimation strategy still corrects for it and as Table 5.4 suggests 

it is effectively unbiased across all ages for both males and females. However, Figure 

5.3 does demonstrate that when the level of census underenumeration is very low the 

total error measured by relative RMSE can be higher than for the census. This is the 

case in the East estimation area for people aged over 55 years. One solution to this 

would be to collapse across age groups when the level of census underenumeration is 

very low and reduce, in relative terms, the variance of the estimated population totals. 

This is the strategy adopted in the simulations in chapter four where a single age 

group is used between 45 and 79 years. However, to produce the age-sex distribution 

by five-year groups would then require the use of synthetic estimates. The second 

solution is to accept that in terms of total error, bias and variance, the estimator will 

not always be 'better' in statistical terms for every age-sex group of every estimation 

area. However, overall it will be 'better' (in Figure 5.3 the adjusted total has a lower 

relative RMSE for 80 out of the 108 age-sex by estimation area results) and it will 

always lead to a reduction in bias. There is an additional warning, Figure 5.3 

demonstrates the danger of heavily over-sampling areas of high census 

underenumeration relative to those with low census underenumeration. In areas of low 

census underenumeration it will be harder for the CCS to detect the underenumeration 

and accurately adjust for it. Therefore, reducing the sample in such areas will make 

the problem worse. 

Figure 5.2 gives a similar pattern for the West estimation area. The level of census 

underenumeration is generally low compared to Belfast but slightly higher than in the 

East estimation area. The patterns in the bias for the estimator are similar to Belfast 

again suggesting that there is the possibility of an overall gain from applying the 

robust strategy developed in section 4.4. However, as with the other two estimation 

areas, the standard estimation strategy has still been effective at adjusting for census 

underenumeration across all the age-sex groups. As with the east estimation area. 

Figure 5.3 shows that for the age-sex groups with higher levels of census 

underenumeration in the West estimation area, the estimation strategy does better than 

the census in terms of relative RMSE. However, this is reversed when the level of 

census underenumeration is lower (one per cent or less) with the census having a 

lower relative RMSE than the adjusted data. 
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5.3.3.1) Robust Strategy 

In section 4.4 a robust strategy for the ratio estimator was developed for use with 

dual-system estimation. The aim is to reduce the impact of model failure on the 

estimator and therefore reduce the variance. As a consequence, this tends to induce a 

negative bias as well, which should also reduce the impact of the positive bias 

reported in Table 5.4 and Figure 5.2. The robust strategy has been used in the 

simulations for Northern Ireland and Table 5.5 compares the robust strategy with the 

standard ratio estimator combined with a cluster level DSE for censuses with a high 

coverage. 

TABLE 5.5 

Comparison of simulation results for the standard and robust estimators for the total 

population of Northern Ireland by estimation area 

Standard Estimator Robust Estimator 

Estimation Area Relative Relative Relative Relative 

Bias (%) RMSE (%) Bias (%) RMSE (%) 

Belfast 0.19 L74 -&19 1^3 

East -&02 0J9 -0.03 037 

West &24 &75 0.23 &73 

Northern Ireland 0.04 0.41 

1. Cluster level DSE combined with ratio estimation 
2. Estimator based on the robust strategy outlined in section 4.4 

Table 5.5 shows that in the East estimation area, where census underenumeration is 

particularly low, the application of the robust strategy makes very little impact both in 

terms of bias and variance. In Belfast, where census underenumeration is much 

higher, the robust strategy has indeed induced a negative bias overall, but this has also 

resulted in a drop in the relative standard error from 1.73 per cent to 1.52 per cent. In 

the West estimation area the application of the robust strategy has had very little 

impact on the overall bias and there is only a small reduction in variance. This 

suggests that in the West estimation area, the bias and variance in the standard 

approach is not due to model failure caused by zero census counts or extreme census 



counts. Therefore, the application of the robust strategy will have very little overall 

impact. The cause of the bias is likely to be the fact that the ratio estimator is not 

unbiased over repeated sampling, and that the bias will be increasingly important for 

smaller sample sizes. 

The results in Table 5.5 consider the total population by estimation area. Figure 5.4 

gives the results for the bias across age-sex groups for each estimation area. As 

suggested by the results in Table 5.5, the application of the robust strategy has had 

little impact in both the East and the West estimation areas. In contrast, Figure 5.4 

demonstrates that the robust strategy has had an impact in Belfast, particularly 

amongst the young men where a positive bias of approximately one per cent is 

replaced by a negative bias of approximately 0.75 per cent. This, on its own, is not 

necessarily a good result but when combined with the relative RMSE results for 

Belfast shown in Figure 5.5, there has been a drop in total error across all age-sex 

groups. This is particularly noticeable for the young men and also at the oldest ages 

for men and women. Figure 5.5 shows that there are also slight gains across the age-

sex groups in both the East and West estimation areas. At oldest ages, population 

groups with small counts, this means the advantage of the census relative to an 

estimated population count is reduced and for females in Belfast the robust strategy 

has a lower total error than both the census and the standard estimator. 

The analysis of the simulation results has so far concentrated on whether the counts 

produced by combining the census and CCS are 'better' than just using the census. 

However, as stated by Trussell (1981), it is not the count but the proportion or share 

of the population that matters for allocation purposes. Table 5.6 considers the mean 

population shares for males and females within estimation areas as a proportion of the 

Northern Ireland population produced by the census and the robust estimator over the 

1,000 iterations of the simulation. 
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Figure 5.4; Relative bias for counts adjusted using the standard and robust 

estimators by age and sex for the three estimation areas 
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Figure 5.5: Relative RMSE of the census counts compared to counts adjusted 

using the standard and robust estimators by age and sex for the three 

estimation areas 
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TABLE 5.6 

Comparison between the census and the robust estimation strategy for population 
shares by sex and estimation area 

Census' Adjusted' Truth 
Estimation Area Males Females Males Females Males Females 
Belfast 7.78 9.10 8.31 9.39 8.34 9.40 

(-0.56) (-0.30) (-0.03) (-0.01) 
East 21.84 23.15 21.58 22.74 21.59 22.75 

(0.25) (0.40) (-0.01) (-0.01) 
West 18.80 19.33 18.84 19.14 18.80 19.12 

(0.00) (0.21) (0.04) (0.02) 
1. Difference from truth in brackets 

The results in Table 5.6 demonstrate two features of census adjustment. Overall, 

differential levels of census underenumeration will distort population shares. In the 

Northern Ireland simulations the size of the male population is lower than it should be 

relative to the female popuation, and high levels of underenumeration in Belfast cause 

its size relative to the other estimation areas to be reduced. In general, the estimated 

counts correct for the differential underenumeration and therefore, the shares 

produced from the estimated counts are much closer to the truth. There is one 

exception in Table 5.6. If the levels of census underenumeration result in the census 

getting the share correct, as with males in the West estimation area, the data produced 

from an estimation strategy will not be able to improve on that and, as any adjusted 

counts will be subject to some level of sampling variation, may do slightly worse. 

This comes back to the discussion in the US following the 1990 Census; no 

adjustment procedure can be expected to improve every population distribution 

simultaneously. However, as Table 5.6 shows, the use of adjusted data would lead to 

an overall improvement with five out of six groups having a population share closer to 

the truth, the exception being males in the West estimation area. 

5.4) Estimation for Other Variables 

The work presented so far in this chapter, and in chapter four, has concentrated solely 

on the estimation of the population by age and sex for an estimation area. However, 

while this is the key characteristic for which census counts adjusted for 

underenumeration need to be available, the production of a One-Number Census 

database will require knowledge of the impact of underenumeration on other 
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variables. These may relate to individuals (ethnicity or in the case of Northern Ireland 

religion), households and individuals (tenure), or just households (household size). 

The estimation strategy outlined in section 4.2 applies dual-system estimation at 

different levels of aggregation to the matched census CCS data for counts defined by 

age and sex. However, to get estimates for individuals by another variable, such as 

religion, dual-system estimation can be applied to counts defined by the alternative 

variable. In other words, instead of applying dual-system estimation to counts for each 

age-sex group in can be applied to counts for each religion group or each ethnicity 

group. Ratio estimation, within strata defined by the hard to count (HtC) index or ED 

classification index, can then be used to get estimates at the estimation area level by 

this alternative variable. The work in section 4.3.3 demonstrates that dual-system 

estimation applied to the cluster of postcodes works well and this approach is adopted 

here. However, the robust strategy developed in section 4.4 is not applied to ratio 

estimation. It is considered an unnecessary level of complication, as these estimates 

are purely control totals in the production of the One-Number Census database. In 

addition, estimates of the total number of individuals derived 6om these alternative 

variables will not be consistent with the estimate of the total population derived firom 

the estimates by age and sex. Therefore, these alternative estimates will be scaled to 

the estimates by age and sex. The choice of calibrating to the estimates by age and sex 

reflects the fact that the homogeneity and independence assumptions underpinning 

dual-system estimation are most likely to hold when applied to counts partitioned by 

age and sex. 

The approach outlined above gives a strategy for estimation of the total population by 

any individual variable collected in both the census and CCS. This can be extended to 

estimates for household variables by applying dual-system estimation to households 

rather than individuals, and combining this with ratio estimation as outlined above. 

Therefore it is possible to obtain estimates of the total number of occupied households 

by tenure within an estimation area and therefore, an estimate of the total number of 

occupied households. 

138 



5.4.1) Household Size 

Implicit in the work on estimation that has been previously described is the fact that 

the characteristic being estimated does not 'change' between the census and the CCS. 

For example, an individual counted in the census and CCS will have the same age and 

sex. Any discrepancies will be due to respondent errors and in such cases the census 

response will be chosen. This reflects the fact that the CCS is not measuring quality 

and that results in the sample areas must be generalised to the non-sample areas where 

only census responses are available. 

Not all variables fit this assumption. For example, the household size is a household 

variable that is derived from the number of individuals counted in the household. 

Although the true value does not change the response in the census and CCS will in 

general be different due to people being missed within counted households by both 

the census and the CCS. In other words, neither response can be considered a good 

estimate of the true value. Therefore, such variables require a slightly different 

approach than simply combining dual-system estimation with ratio estimation. To 

proceed it is necessary to state some assumptions relating to the data available from 

the sample areas. 

a) For households identified as counted in both the census and CCS by the matching 

procedures it is possible to define household size as the number of individuals 

counted in either the census, or the CCS, or both. In other words the assumption is 

that for households counted by both the census and CCS no individuals within 

those households are missed by both and the reconciled household size is a good 

estimate of the true household size. 

b) For households only counted by the CCS it is assumed that no individuals within 

the households are missed. 

c) For households only counted by the census it is assumed that no individuals 

within the households are missed. 
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It is not expected that the above assumptions will hold exactly but it is certainly 

reasonable to assume that a) and b) will be closely approximated. This is based on the 

assertion that for households where the CCS makes contact the interviewer should 

obtain a good count of the total number of usual residents. For example, probes 

should reduce the phenomena seen in censuses where young babies are missed from 

census returns for households. The assumption c) is less tenable but for households 

the CCS misses and the census counts the census is the only source of information 

that is available. 

TABLE 5.7 

Proportions within the sample areas 

Reconciled Census-CCS Household Size 

Census Household Size 1 2 3 4 5 6+ 

0 PdOl Pd03 P d 0 4 Pd05 Pd06 1 

1 Pdl l Pm2 P d l 4 P d l 5 Pdl6 1 

2 0 Pd22 Pd23 P d 2 4 Pd25 Pd26 1 

3 0 0 P d 3 4 Pd35 Pd36 1 

4 0 0 0 P d 4 4 Pd45 Pd46 1 

5 0 0 0 0 Pd55 Pd56 1 

6+ 0 0 0 0 0 1 1 

Using the above assumptions, and once matching has taken place, within the sampled 

areas for a particular stratum d defined by the HtC index or ED classification index, it 

is possible to get estimates of the proportions defined in Table 5.7. They are estimated 

as Pjjj = Njjj / where Ndij is the unweighted sample count of households with 

census household size i and reconciled household size j within stratum d and Ndi+ is 

the unweighted sample count of all households with census household size i within 

stratum d. The proportions represent transition probabilities between the household 

size in the census and the true household size as measured in the sample areas by the 

reconciled census-CCS household size. For example, Pdu represents the probability 

that within stratum d the census will record the household size as one when it is 

actually 3 and in general, Pjij represents the probability that the census will record the 

household size as i when it is actually j. There is an implicit assumption in Table 5.7; 
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there is no overenumeration in either the census or the CCS and that therefore the 

reconciled household size is always greater than or equal to the census household size. 

Using estimates of the probabilities in Table 5.7 it is now possible to adjust the census 

counts for households by size. 

Before this can be done there is an additional problem. The count of the total number 

of occupied housing units, as estimated from the distribution of households by tenure, 

will include an estimate of households missed by both the census and the CCS. To 

estimate household size for these households an additional assumption is made. For 

households missed by the census, non-response in the CCS is random with respect to 

household size. Therefore, the first row in Table 5.7 can be used to get an estimate of 

the size distribution for households completely missed by the census regardless of 

whether they were missed by the CCS. 

To demonstrate how the estimation proceeds, let Xd,- be the census count of 

households of size i from stratum d defined by the HtC index or ED classification 

index, Xd be the corresponding total census count of households, Ydj be the true count 

of households of size j from stratum d, and Yd the corresponding true total count of 

households. Therefore, assuming an estimate of Yd is available, X^g = Y^ -X^, and 

the true distribution of households by size will be estimated as 

Y a , = i ; X „ x P , • (5,1) 
!=0 

where (5.1) is repeated for all values of j from one to six plus. Xdo is replaced by its 

estimate and Pjj are the estimates of the probabilities defined in Table 5.7. This 

approach will produce a set of estimates of the number of households by size that will 

be consistent with the estimate of the total number of occupied households produced 

by summing estimates of numbers of occupied households by tenure. 
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5.4.2) Simulation Results 

The simulation study outlined in section 5.3 can now be applied to assess the 

performance of the estimation strategy with respect to other variables defined at the 

household and individual level. Figure 5.6 gives the results of the estimation strategy 

applied to the estimation of the number of individuals by religion across the three 

estimation areas. In terms of bias, in all three of the estimation areas the adjusted data 

corrects for the differential census underenumeration. (The higher level of 

underenumeration for Catholics is driven by the ED classification index, which 

assigns EDs that are predominantly Catholic the highest levels of census 

underenumeration.) The relative RMSE graphs show that the adjusted data in general 

has a lower total error than the census data and therefore gives a better overall 

representation of the population. In other words, the reduction in bias from using 

adjusted data more than compensates for any increase in variance. The one exception 

in Figure 5.6 is for Methodists in the West estimation area. The adjusted data have a 

higher relative RMSE than the census. In the West estimation area Methodists are a 

small proportion of the total population (about 8,000 out of half a million individuals) 

and as discussed earlier, the adjusted data will not always be better than the census, 

especially for small population groups and low census underenumeration. 

As with the population by age and sex, it is not just the counts that are important but 

the population shares are also of interest. Population shares by religion are of 

particular importance in Northern Ireland. For example, some equal opportunities 

legislation requires information on proportions of the population by religion. Table 

5.8 gives the population shares across the estimation areas for the two main religious 

groups estimated from the census and the data adjusted using the estimation strategy. 

The results in Table 5.8 show that in the simulations the census underestimates both 

of the shares in Belfast. However, in the other two estimation areas the population 

shares for Protestants are over-estimated. Both of these results reflect the structure of 

the census in the simulations in which Belfast has relatively lower census coverage 

and the ED classification index rates Catholic EDs as, in general, harder to count. In 

all cases, the expected values of the shares based on the adjusted data (calculated by 

averaging across the simulations) are closer to the truth than the census. 
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Figure 5.6: Performance of the census compared with the standard estimator by 

religion for the three estimation areas 
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TABLE 5.8 

Comparison between the census and the robust estimation strategy for population 
shares by religion and estimation area 

Census' Adjusted' Truth 
Estimation Catholic Protestant Catholic Protestant Catholic Protestant 
Area 
Belfast 6.49 6.90 6.99 7.11 6.96 7.12 

(-0.47) (-0.22) (0.03) (-0.01) 
East 10.29 24.09 10.21 23.66 10.21 23.68 

(0.08) (0.41) (0.00) (-0.02) 
West 21.37 12.06 21.36 11.89 21.34 11.90 

(0.03) (0.16) (0.02) (-0.01) 
1. Difference from truth in brackets 
Note that the proportions do not sum to 100 per cent as about 20 per cent of the population fall into the 
'other' category (which may include a few small Protestant groups). 

TABLE 5.9 

Results of the simulation study for estimates of the total number of occupied 

households by estimation area 

Performance of the Estimator 

Estimation 

Area 

Census Coverage (%) Relative Bias (%) Relative RMSE (%) 

Belfast 95.19 0.24 1.07 

East 99.23 0.03 0.22 

West 98.80 0.04 0.38 

The results in Table 5.9 consider households rather than individuals and are based on 

summing up household counts by tenure. The levels of underenumeration are not as 

high for households as they are for individuals but this reflects the fact that 

individuals are missed in counted households and also missed in missed households. 

The results in Table 5.9 show that at the total population level the strategy is effective 

at getting the number of households correct within each estimation area. This is true 

even in the East estimation area where the level of underenumeration is very low at 

less than one per cent. 

Figure 5.7 presents the household results by the tenure variable rather than just the 

totals for each estimation area. As with religion for individuals, Figure 5.7 

demonstrates that the estimation strategy is effective at correcting the census 
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underenumeration. However, Figure 5.7 again demonstrates that, in terms of total 

error measured by relative RMSE, the adjusted data are not always as good. For 

example, the relative RMSE for the adjusted data for the 'other' category and the 

'housing association' category tend to be higher for the adjusted data. However, those 

categories only represent a small proportion of households. As with the earlier results, 

the adjusted data are not 'better' in every case but overall they are 'better' than the 

census data. 

The final set of results is presented in Figure 5.8 for the household size distribution. A 

peculiar feature of household size is the fact that the census can overestimate the 

count for a particular size category due to high levels of within household 

underenumeration of individuals from larger households. This occurs in the Northern 

Ireland simulations for households of size three in the East and West estimation areas. 

The same phenomena results in the census getting the count correct for households of 

size two. As a consequence of this, the adjusted data will not have a lower relative 

RMSE for those particular categories but again; overall the adjusted data correct the 

differential underenumeration in the census. In addition, the resulting increase in 

variance from using the adjusted data compared to census data is usually small 

relative to the bias reduction and therefore overall the relative RMSE is lower. 
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Figure 5.7; Performance of the census compared with the standard estimator by 

household tenure for the three estimation areas 
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Figure 5.8: Performance of the census compared with the standard estimator by 

household size for the three estimation areas 
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5.5) Other Issues Specific to Northern Ireland 

5.5.1) Estimation of Population Counts for Local Government Districts (LGDs) 

As mentioned in section 4.5.3, getting counts for the population by age and sex for the 

estimation areas is not the final requirement. There is an additional stage needed to 

produce estimates for each of the LGDs that constitute the estimation area. As alluded 

to earlier this subsequent step is of less importance in Northern Ireland than the 

production of LAD counts in England and Wales. However, mid-year population 

estimates are still required at the LGD level and they are used in the allocation of 

Government funding. The strategy for LAD estimation presented in ONS (2000e) was 

developed assuming that most estimation areas would contain only a few (less than 

ten) LADs. This is the case when considering estimation areas in England and Wales. 

However, in Northern Ireland both the East and the West estimation areas contain 

over ten LGDs and estimating the necessary LGD effects would be problematic. 

The proposal for LGD estimation in Northern Ireland utilises the fact that LGDs can 

be categorised into five groups, one for Belfast and four others, based on a standard 

Eurostat classification. The groups are formed so that within each group the LGDs are 

homogeneous in terms of their social and demographic make-up. The estimation areas 

are based on this, the East estimation area contains two groups and the West 

estimation area contains two groups. Therefore, within estimation area, the ONS 

strategy outlined in ONS (2000e) can be used to estimate for these smaller groups of 

LGDs within the estimation areas and then synthetic estimation within the ED 

classification index can be used to share the estimated underenumeration across the 

individual LGDs. Synthetic estimation at this level is not considered unreasonable as 

within each category of the Eurostat classification by age, sex, and the ED 

classification index, the constituent LGDs should be approximately homogeneous 

with respect to census underenumeration. 
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5.5.2) Selection of the Postcode Sample 

The design strategy in section 3.5 suggests a fixed random sample of Gve postcodes 

within each selected ED. One motivation for this was the assumption that the cluster 

of postcodes would form an interviewer workload and the fixed sample would lead to 

approximately similar sized workloads in terms of number of households, hi reality 

the problem is a little more complex as the distribution of households by postcode is 

highly skewed, large numbers of postcodes with one or two households and a few 

postcodes with over 50 households. The solution under consideration by ONS is to, 

where necessary, group together small workloads or alternatively give a large 

workload to a pair of interviewers. However, this is subject to change when the final 

data for drawing the CCS postcodes becomes available. 

The original plan in Northern Ireland was to adopt the same strategy. However, the 

budget for the CCS only allows for an expected sample of about 10,000 households 

and the ED sample size was specified assuming an average of 15 households per 

postcode and five postcodes per ED. Across all postcodes in Northern Ireland the 

average number of households per postcode is indeed about 15. The problem with the 

final design for the CCS in Northern Ireland is it oversamples EDs in Belfast. The 

average number of households per postcode in Belfast is actually over 20. Conversely, 

in the rural West estimation area where the sample of EDs is, in relative terms, 

smaller the average number of households per postcode is less than 12. Therefore, 

applying a fixed sample of postcodes per ED results in a sample size of around 11,000 

households. To overcome this problem, the approach being taken in Northern Ireland 

for the selection of the actual CCS sample is to select postcodes at random until the 

expected count of households (based on information &om the Royal Mail) in the 

selected postcodes exceeds some value. For Belfast it will be set at around 65 

households and slightly higher for the other two estimation areas. This means that on 

average each sample of postcodes selected from an ED will contain approximately 75 

households (although this is not guaranteed) and overall the total number of 

households will be much closer to the target number of 10,000. However, the final 

postcode sample is unknown. 
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The overall impact of such a selection procedure on the estimation strategy should be 

minimal. The robust estimation strategy applies dual-system estimation at the 

postcode level but the postcode estimates are constrained to the cluster estimates (see 

section 4.4). This selection procedure should therefore improve estimation in the West 

estimation area as, in general, the cluster level DSEs will be more stable (based on 

more individuals). In addition there will, on average, be more postcodes on which to 

base the ratio component of the estimation strategy. Conversely, there may be a slight 

disadvantage in Belfast where, on average, the postcode sample will be reduced. 

However, it should still be around 30 postcodes per level of the ED classification 

index used in estimation. 

5.6) Conclusions 

The work in this chapter has taken the CCS design as developed in chapter three and 

applied it to the data available in Northern Ireland for designing the CCS. This has 

involved some adaptation of the design, particularly the formulation of an index to 

stratify EDs in to different types that reflect different expected levels of census 

underenumeration. The resulting design is a sample of 134 EDs with five postcodes 

selected per sampled ED. 

A simulation for Northern Ireland has been developed using a similar strategy to the 

one used in section 4.3. This has been used to test the effectiveness of the estimation 

strategy developed in chapter four when combined with the CCS design adapted for 

Northern Ireland. The simulation study has demonstrated that, while applying the 

robust procedures developed in section 4.4 does not always lead to major reductions 

in variance, it is never worse than the standard approaches for counts across the age-

sex distribution. For age-sex groups with very low census underenumeration, the 

adjusted data do not always have a lower relative RMSE than the census data. 

However, considering all the age-sex groups together the adjusted data have a lower 

relative RMSE the majority of the time. In addition, the results show that the 

estimated counts better represent the population in terms of population shares. 

Additional work in this chapter has considered the estimation of counts for other 

variables at the individual level apart from age and sex and results are presented for 
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the religion variable. The results show that the general estimation strategy can be 

applied to the estimation of other individual characteristics such as ethnicity and 

economic status. The strategy has been further generalised to household variables 

such as tenure. A specific strategy to accommodate the estimation of household size 

has also been developed. Simulation results presented for religion, household tenure, 

and size demonstrate that the strategy works well for other variables in addition to age 

and sex. 

At this stage it will not necessarily be clear to the reader why estimates adjusted for 

underenumeration for other individual variables apart from age and sex along with 

household variables would be needed. However, chapter six will demonstrate the 

importance of such estimates if the final goal is to create a 'One-Number Census' by 

adjusting the census database to correct for census underenumeration rather than 

simply informing users about the quality of the census with respect to coverage. 
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•Appendix 5.1 - The distribution of census errors for Northern Ireland by age, sex, 

and three levels of census coverage. 

Low 

nj -10 

05 -20 

Age (years) Age (years) 

Medium 

-£ -10 o: 
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Age (years) Age (years) 

High 

Age (years) Age (years) 
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Chapter Six - Adjusting for Census Coverage at the Household and 

Individual Level 

6.1) Introduction 

The work in chapters three and four has concentrated on the revised design of the 

follow-up survey, to be called the Census Coverage Survey (CCS), and the 

subsequent estimation of the population by age and sex from the 2001 Census 

augmented by the CCS data. Achieving this must be seen as a fundamental aim of the 

survey and hence the concentration on this in chapter four. However, achieving 

accurate estimates of underenumeration by age and sex would only get UK Census 

users to effectively the same point they were at after the 1981 Census, although the 

level of disaggregation would be much lower. It would not address the concerns that 

census users expressed following the 1991 Census related to the higher levels of 

underenumeration at the national level. Users of census data would remain unsure of 

what to do if a particular local authority district (LAD) is estimated to have a ten per 

cent underenumeration for young men, but only a two per cent underenumeration for 

young women. This can be adjusted for in the mid-year population estimates to get 

the main allocation of government funds correct, but what is the impact of this on the 

rest of the census data at the LAD and lower levels. In statistical terms, 

underenumeration in the census cannot be thought of as simply missing at random; it 

certainly distorts the distribution of the population by age and sex, and based on the 

1991 experience it will also impact on the distribution of the population by other 

characteristics such as employment status, housing tenure, and geographic location. 

Estimates of the true population by these characteristics, and household variables, are 

available via the estimation strategy developed in section 5.4. 

The ONS response to these problems has been to research possible strategies for 

creating a 'One-Number Census' for the UK in 2001. A basic description of what 

would be involved is given in Brown et al (1999), the key component being the 

integration of estimated underenumeration into the final census database. The US 

Census Bureau refer to this as the creation a 'transparent file' because to the end user 

of the census data it appears the same as if they were working with a standard census 
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database but all the tabulations sum to one number, the agreed population of the UK 

on census night in 2001. As stated in chapter one, much of the development of this is 

not due to the author of this thesis. In particular. Professor Ray Chambers, with 

contributions from Dr. Marie Cruddas (ONS), Professor Ian Diamond, and Tim Jones 

(ONS), was responsible for much of the early conceptualising of the imputation and 

weighting framework, which the work presented in this chapter utilises. Subsequently, 

Dr. Fiona Steele (LSE) has made a substantial contribution in developing the actual 

imputation system and specifically, wrote SAS programs that enabled a simulation 

study to assess the proposed system. Over the last year, further development by ONS 

has taken the basic system developed for the simulation study and made substantial 

developments towards a fully implemented system for use on the 2001 Census. 

The main contribution of the author of this thesis has been in the development of the 

modelling strategy that is a requirement for the imputation system although a 

description of the full simulation system, with some basic results, is presented for 

completeness. A fuller description can be found in Steele, Brown, and Chambers 

(1999). 

6.2) Development of the Framework 

After the census and the CCS, in the sampled areas we have a lot of information on 

the counted individuals and their households. In particular, we can identify 

individuals the census missed from households it counted and individuals it missed 

because it missed the whole household. An early attempt to model the process at the 

individual level defined the following multinomial outcome; 

Yijkedig = 0 when individual i of household j is counted in the census 

Yijkedig = 1 when individual i is missed in the census but household j is counted 

Yijkedig - 2 when household j is missed in the census 

for individual i, a member of household j, located in postcode k, of ED e, with HtC 

category d, in LAD 1 of estimation area g. The attraction of this approach was that it 

attempted to capture, in a single model, the two types of underenumeration that 

individuals experience resulting in some missing individuals being clustered within 
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missing households and other missing individuals being spread throughout the 

counted households. 

For the postcodes in the CCS sample it is possible to model this multinomial outcome. 

In general, the outcome will depend on the characteristics of the individual, the type 

of household, ED level characteristics such as HtC index and the relationships 

between these variables and the outcome will vary across LADs and estimation areas. 

The work in Brown et al (1998a) develops a modelling strategy for this approach and 

defines coverage weights for individuals based on predicted probabilities from a 

multinomial model. The strategy allows for the inclusion of random effects to account 

for the geographic clustering and Brown et al (1998b) investigated the possibility of 

estimating random effects that were spatially correlated. The simulations undertaken 

to assess the strategy found that the computing software used to estimate multilevel 

models meant it would be impractical to implement on a large-scale following the 

2001 Census, hi addition, the simulation results suggested that including random 

effects gave little or no benefit with respect to the ability to construct coverage 

weights. 

The work in Brown et al (1998a) and Brown et al (1998b) effectively only considered 

estimating the coverage of individuals although the approach accounted for the 

clustering of missed individuals within missed households. What it did not address is 

the fact that if a One-Number Census database is to be created it needs to not only 

'create' missed individuals (either by weighting or imputation) but also needs to 

'create' missed households, which will represent some but not all of the missed 

individuals. Isaki et al (2000) comment that the work in the US following the 1990 

Census did not attempt to create households for missed individuals and although 

census users had accepted that with respect to the 1990 Census they wanted 

something that was more realistic from the 2000 Census. 

The work by Chambers, Cruddas, and Jones (1998), presented at the Leeds 

Conference for Census Users in May 1998, was the first attempt in the UK to properly 

consider a framework for not only estimating the missed individuals, but also missed 

households (and the individuals within them) and more importantly; a process either 

through weighting or imputation to create the individuals and households on the 
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database. The discussion at the conference was strongly in favour of imputation. In its 

favour is the fact that conceptually it is much easier to understand and much easier to 

get consistency over all possible census tabulations. Once an individual has been 

imputed onto the database, either within a counted household or as a member of an 

imputed household; provided this imputation has been done it such a way as to satisfy 

the 2001 Census edit and consistency rules the individual exists and simply 

contributes to any tabulation that is required. 

The problem with a weighting strategy is ensuring this kind of consistency when 

weights are applied to both households and individuals when there are not two 

separate databases that represent households and individuals but a single individual 

level database that generates all the tabulations. Achieving such consistency would 

require a very careful calibration between the two sets of weights. There is an 

additional conceptual issue with weighting. Assume that in an ED, a young man 

counted by the census has been assigned a weight of two as the modelling suggests 

that young men have gone missing from counted households, hnputation would then 

'create' a record for that missed young man and place it in a counted household. With 

a weighting strategy the young man will appear on the weighted ED tabulations of 

individuals, he will even be accounted for through the weights for households. The 

issue is that he does not exist as a member of any household on the database. 

6.3) Controlled Imputation Methodology , 

As a result of the Leeds Conference research has concentrated on developing an 

imputation strategy based on the framework in Chambers et al (1998). The strategy 

that has been developed can be thought of as a series of steps in the creation of a 

database that is fully adjusted for underenumeration. 

1) Modelling the census coverage of households and individuals. 

2) Imputation of households completely missed by the census. 

3) Imputation of individuals missed by the census in counted households. 

4) Final adjustments to the database in order to satisfy the consistency requirements 

for a ONC. 

156 



The methodology for each step is outlined in the following sections. It should be 

noted that the author has made a significant contribution to the development of stage 

one but that the development of the subsequent stages is mainly attributable to the 

work of Dr. Fiona Steele. 

6.3.1) Estimation of Household and Individual Coverage Weights 

The difference in the modelling stage between the framework in Chambers et al 

(1998) and the modelling used in Brown et al (1998a) is the splitting of the two types 

of underenumeration. The former strategy first models the coverage of households 

and then conditional on the fact that the census counted a household models the 

coverage of individuals within that counted household. This is then reflected at the 

imputation stage by imputing missed households (with individuals) and missed 

individuals within counted households separately. 

6.3.1.1) Derivation of household coverage weights 

Following the census and the CCS each household within a CCS area can be placed in 

one of following four categories: 

(1) Counted in the census, but missed by the CCS 

(2) Counted in the CCS, but misspd by the census 

(3) Counted in both the census and the CCS 

(4) Missed in both the census and the CCS 

A simplifying assumption is that category four contains no households, that is no 

household is missed by both the census and the CCS. While an unrealistic 

assumption, the households missed by both are accounted for in the dual-system 

estimates at the estimation area level, and the final imputed database is constrained to 

satisfy those estimated totals. Excluding category (4), categories (1), (2), and (3) 

define a multinomial outcome that can be modelled for each estimation area as 

follows: 
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log 

. "12. 
t==I,2 (6.1) 

where is the probability that household j in postcode k in enumeration district 

(ED) e within an estimation area, with characteristics defined at the household (i.e. 

tenure), ED (i.e. HtC index), and LAD level by Zjke, is in category t. (Model (6.1) uses 

category 3 as the reference category.) With matched data from the census and CCS, 

this model is straightforward to fit. 

The estimated model based on the CCS areas is extrapolated to non-CCS areas within 

the estimation area to obtain predicted probabilities of being in a particular response 

category for each household. The probabilities for each response category estimated 

under model (6.1) are then used to calculate a coverage weight for each household 

(h/h) counted in the census that can be applied to the household database. The 

household coverage weight is defined as 

W 
h/h (6.2) 

However, the resulting weighted sums of counted households will not, in general, 

match corresponding totals estimated at the estimation area level. Therefore the 

weights are calibrated to the estimation drea marginal totals for key household 

variables estimated via the strategy in section 5.4, such as tenure, using iterative 

proportional scaling. 

6.3.1.2) Derivation of Individual Coverage Weights 

To calculate coverage weights for those individuals counted in counted households, 

two assumptions are necessary regarding coverage of individuals in CCS areas. If a 

household is only counted by the census, then no individuals from that household are 

missed by the census. Similarly, if only the CCS counts the household then no 

individual from that household are missed by the CCS. These assumptions are 

necessary because a household counted by only one source has no second list against 
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which counted individuals can be compared. Although this assumption does not hold 

in general, people missed as a consequence are accounted for through constraining to 

population totals at the estimation area level. In this case the possible categories of 

counted individuals are: 

(a) Counted in the census, but missed by the CCS 

(b) Counted in the CCS, but missed by the census 

(c) Counted in both the census and the CCS 

These categories are then used to define the outcome in a second multinomial model: 

log = r = a,b (6 .3 ) 

where is the estimated probability that individual i in household j in postcode k in 

ED e within an estimation area with individual characteristics defined by Xyke and 

household/ED/LAD characteristics defined by Zjke is in category r. (Model (6.3) uses 

category c as the reference category.) As the work in Brown e? al (1998b) suggests, 

(6.3), and if desired (6.1), can be extended to include random effects but as noted 

earlier in section 6.2, their inclusion requires considerable additional computations 

and the early simulations implied little or no gain for the extra complexity. 

As with the household model, the fitted model for individuals in counted households 

is then extrapolated to non-CCS areas to obtain predicted probabilities of being in a 

particular response category for each individual. The probabilities estimated under the 

model are used to calculate a coverage weight for each individual (ind) that can be 

applied to the individual database. The individual coverage weights are calculated as 

( 6 . 4 ) 

As before, the resultant weighted sums of census counted individuals will not be equal 

to the corresponding estimation area totals. At the final stage of the imputation 
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procedure, further ac^ustments are necessary to meet agreed estimation area totals by 

age, sex and household size. To minimise the amount of adjustment required at this 

stage, individual coverage weights are calibrated to the agreed age-sex totals 

following the household imputation but before the imputation of individuals. 

6.3.2) Imputation of Households 

The household-based file of counted households in an estimation area is matched to 

the file of calibrated household coverage weights (as described in Section 6.3.1.1). 

This file is sorted by coverage weight, and by geographical location. For more 

efficient processing, households are then grouped into impute classes defined by the 

characteristics on which the household coverage weights are based. Weights are 

grouped into bands to give impute classes. The processing block is an impute class 

within an estimation area. 

Within each processing block, households are processed sequentially and running 

totals are retained of the unweighted household count and the weighted household 

count (calculated using calibrated coverage weights). Whenever the weighted count 

exceeds the unweighted count by more than 0.5, households are imputed into the ED 

currently being processed until the difference between the weighted and unweighted 

running totals is less than or equal to 0.5. An imputed household is assigned a 

household coverage weight of zero. In order to assign characteristics to the imputed 

households, a donor imputation method is used. For each imputed household, a donor 

is selected at random from among the counted households with the same weight and 

in the same ED as the counted household that was processed immediately before the 

imputation. Once a donor has been selected, the characteristics of the household and 

its occupants are copied to the imputed household. The imputed household is then 

assigned at random to a postcode within the ED. 

6.3.3) Imputation of Individuals into Counted Households 

The individual weights estimated in section 6.3.1.2 are not calibrated to population 

totals when calculated. However, it is necessary to do this to ensure that enough extra 

individuals with the correct characteristics are added. This is achieved by using 
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iterative scaling to calibrate the weights to population totals that reflect the individuals 

already imputed by the household imputation described in section 6.3.1. 

The individual-based file of counted individuals is then sorted by weight, and by 

geographical location. Impute classes are defined by the characteristics on which the 

individual coverage weights are based. Individual coverage weights are grouped into 

bands to give impute classes. Within a processing block (impute class within an 

estimation area), counted individuals are processed sequentially. When the weighted 

count of individuals exceeds the unweighted count by more than 0.5, individuals are 

imputed in the current ED until the difference is less than or equal to 0.5. 

Individual and household characteristics are assigned to the imputed individuals in 

two separate stages. Some of an imputed individual's characteristics are determined 

by the weight of the last counted individual that was processed before the imputation. 

The remaining individual characteristics are copied from a suitable donor. The search 

for a donor is carried out in the same way as described above for the household 

imputation. The donor is selected at random from among the counted individuals with 

the same coverage weight and in the same ED as the counted individual that was 

processed immediately before the imputation. When a donor is found, the LAD is 

searched for a suitable recipient household in which to place the imputed individual. 

The household characteristics for an imputed individual come from the selected 

recipient. 

In order to maintain sensible household structures for households into which 

individuals have been imputed, the type of recipient household sought depends on 

certain characteristics of the donor. In the simulation study that follows the choice of 

recipient depends on the age, marital status and household structure of the donor. 

Household structure is defined using both census and CCS information. Therefore, if 

an individual who was missed by the census is found in the CCS, the structure of their 

household will be edited accordingly. To illustrate the recipient search, consider an 

individual that the coverage weights suggest needs to be imputed. Suppose that a 

married person went missing from a 'couple without children' household. The 

household structure(s) that would result after exclusion of the imputed person defines 

the structure required for the recipient household. Thus the recipient for this 
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individual must be a single person household. In this case, the marital status of the 

single person would be edited to married after the imputed person is added to the 

household. In a further attempt to maintain sensible households, the age-sex 

composition of the donor's household is also taken into account in the search for a 

recipient. After selection of a suitable recipient, the imputed individual is placed in 

the chosen household and is assigned the recipient's household characteristics. 

6.3.4) Final Calibration ('pruning and grafting') 

Due to the calibration of household coverage weights carried out before the household 

imputation, the number of households in each impute class will be within one 

household of the weighted total for that class. Further, the distribution of the 

household variables to which household weights are calibrated will be almost exactly 

the same as the target distributions. However, the household size distribution will be 

incorrect. This is due to individuals being imputed in both Step 2 and Step 3 that 

leads, in general, to too many larger households. In the final calibration stage, the 

post-imputation database is adjusted to ensure that the household size distributions 

and age-sex distributions derived firom the ONC database agree with the ONC 

estimates of their distributions at the LAD level. To achieve this aim some addition 

and/or deletion of imputed individuals from imputed and counted households will be 

necessary. 

The basic idea of the 'pruning and grafting' procedure is to start at the largest 

households and work down to households of size one, adding ('grafting') and deleting 

('pruning') people to move households up or down in size. The addition of individuals 

follows the same process as individual imputation while the deletion is at random 

from a set of possible imputed individuals. This is controlled so that the age-sex 

distribution after pruning and grafting is exactly calibrated to the control distribution. 

6.4) Simulation Study 

A comprehensive simulation study has been developed and a full description of its 

implementation is given Steele et al (1999). However, to illustrate that the imputation 

is feasible, results indicative of the overall performance of the imputation system are 
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presented. The basis for the simulation is the same data previously analysed in chapter 

four. In this case ten censuses have been simulated using the methodology outlined in 

section 4.3, with each census a CCS sample is also selected as per Table 4.1 with a 

household coverage of 90 per cent and a 98 per cent coverage of individuals within 

counted households. An important point to note is that the development of the 

imputation methodology has so far only considered estimation areas that contain a 

single LAD, as is the case with the data used in the simulation. As part of developing 

a fully implementable imputation system for the 2001 Census, ONS are undertaking 

research to assess the most appropriate way to incorporate estimation areas containing 

multiple LADs. 

6.4.1) The Household Coverage Model 

For the purposes of modelling household coverage some additional variables have 

been calculated based on the households and individuals counted in each simulated 

census. These are household structure and household ethnicity. For modelling 

purposes, the household structure variable needs to be calculated based on the 

household structure including the CCS data as, in general, individuals found by the 

CCS will change the structure of a household. Household structure is categorised as 

follows: 1) single person, 2) single parent with all children aged under 16, 3) married 

couple, 4) married couple with all children under 16, 5) unrelated adults, and 6) mixed 

(including families with children aged 16 or over). The explanatory variables used in 

the household model (6.1) are tenure, household ethnicity, household structure, and 

the enumeration district's HtC index. 

In general, unless necessary as with the household structure variable, census values 

for variables are preserved over the CCS values as the model is applied to census (and 

not CCS) data in the non-sampled areas. For example, if a household changes from 

owner-occupied in the census to private rented in the CCS the census answer is used 

in the model. In addition, it is important to remember that the CCS does not measure 

quality, it is just an independent re-enumeration and having two different values for 

the tenure variable reflects that individuals within the household give different 

answers to the same question. We do not know which one is correct. 
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The household coverage weights defined by (6.2) are calibrated to satisfy marginal 

distributions estimated at the estimation area level. For this simulation the 'true' 

marginal distributions have been used, as the aim here is to test the imputation 

methodology rather than the ability to estimate totals at a higher level. The weights 

have been calibrated to the true distributions by tenure, household ethnicity, and HtC 

index. Using the HtC index ensures that, in general, the hardest to count enumeration 

districts will get more imputed households. The calibration was carried out using an 

iterative scaling algorithm that converged very rapidly. 

6.4.2) The Individual Coverage Model 

In the model for individual coverage within counted households children have been 

considered separately from adults, as they do not have an economic status (as 

measured by the census). Therefore, two versions of (6.3) are fitted, one for children 

(those aged under 16) and one for adults. The explanatory variables in the model for 

children are sex and age group at the individual level, tenure and the number of 

counted adults based on the household structure variable at the household level, along 

with the enumeration district's HtC index. The model for adults extends the 

explanatory variables to include economic status and marital status at the individual 

level with the full household structure variable at the household level. It is important 

to remember that census data are always used when these are available. CCS data are 

only used for the individual characteristics of individuals missed by the census in 

counted households. 

The individual coverage weights defined by (6.4) are approximately calibrated to 

marginal distributions after accounting for the individuals added by the household 

imputation. As with the household calibration the 'true' marginal distributions have 

been used and these are for the 24 category age-sex variable, the HtC variable, the 

tenure variable at the individual level, and the economic status variable. The 

calibration is only approximate as it is possible that the household imputation will 

have added too many women aged 85+. If, for example, this is the case all the 

individual coverage weights associated with women aged 85+ are constrained to one 

and means that too many individuals will exist on the database after the two 
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imputations. It is such situations that mean the final stage (pruning and grafting) is 

necessary to get the age-sex distribution exactly correct at the estimation area level. 

6.4.3) Simulation Results 

A more rigorous evaluation of the simulation results is given in Steele et al (1999) but 

the results included here demonstrate that the imputation process to produce a One-

Number Census (ONC) is viable. In the evaluation, census underenumeration is 

thought off as being a negative bias in the estimation procedure of the census. The 

imputation procedure aims to reduce the bias by adding households and people into 

the database. However, to achieve this the imputation procedure introduces variability 

into the database. Therefore, to evaluate the accuracy of estimates at the ED level this 

trade-off is considered by comparing census and adjusted estimates. The relative 

average bias and relative root average mean square error (RRAMSE), a combination 

of variance and bias, are calculated across EDs for selected household and individual 

variables. Relative average bias is calculated as 

,00 tt(TT"-T.) 
Relative Average Bias = - = - x -S-LlI (6.5) 

r 10 jv 

where Te is the true number of households (individuals) in ED e, T is the true mean 

number of households (individuals) per ED, and is the number of households 

(individuals) in ED e in the adjusted census database for simulation i. In other words, 

the bias for a particular ED is estimated across the ten simulations and then this is 

averaged over all the EDs. The RRAMSE is calculated as 

RRAMSE = ^ x 
T 
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where as above Tg is the true number of households (individuals) in ED e, T is the 

true mean number of households (individuals) per ED, and is the number of 

households (individuals) in ED e in the adjusted census database for simulation i. In 

other words, this is the mean squared error for an ED over the ten simulations 

averaged over all EDs. The measures (6.5) and (6.6) are calculated within each 

category of selected household and individual level variables. To assess the 

performance of the imputation procedure relative to the census, these are compared to 

the relative average bias and RRAMSE that contrast ED totals in the unadjusted 

census file with the true ED totals. 

TABLE 6.1 

Relative average bias and relative root average mean square error across EDs for ten 

simulations: number of households by HtC index 

Adjusted Data Census Data 

HtC Index Relative RRAMSE Relative RRAMSE 

Average Bias Average Bias 

Very easy -0.05 L29 -1.75 2.04 

Easy 0.02 L42 -Z27 261 

Medium 0.00 L72 -2.99 3^2 

Hard -0.02 2J^ -4^9 4.69 

Very hard 0.04 3^4 -7.14 7j^ 

Overall 0.00 1.95 -3.56 4J3 

The results in Table 6.1 first consider the placement of households within EDs for 

each category of the HtC index and then for the estimation area as a whole. The 

results across the HtC index demonstrate that in terms of bias the adjusted data is an 

improvement over the census data and there is also an improvement in terms of 

overall error. In other words, not only is the imputation putting in the right number of 

households by HtC index, but they are also being placed in sensible EDs. The overall 

result of zero bias in the adjusted data in Table 6.1 just reflects the use of true 

distributions at the calibration stage and the fact that the imputation process preserves 

this calibration. In reality this implies that provided the estimated control totals are 
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unbiased, the imputation process will produce a database that, with respect to the 

calibrated variables, is also unbiased. 

TABLE 6.2 

Relative average bias and relative root average mean square error across EDsfor ten 

simulations: number of individuals by HtC index 

Adjusted Data Census Data 

HtC Index Relative 

Average Bias 

RRAMSE Relative 

Average Bias 

RRAMSE 

Very easy CU6 2.02 -280 3.06 

Easy 0T4 L46 -3.57 3.89 

Medium L58 -L26 4.60 

Hard 0.04 LSI -5.76 &21 

Very hard -0.49 2T7 -9J4 lOXB 

Overall 0.00 2.98 -5^0 5jW 

The results in 6.2 are for the same variable but at the individual level. As with 

households, the imputation system is placing individuals in sensible EDs although the 

bias results for the adjusted data by HtC index are not quite so good as the household 

results in Table 6.1. However, compared to households individuals need considerably 

more correction, an overall bias of over five per cent in the census compared to three 

and a half per cent. In addition, the pruning and grafting stage of the imputation 

process has a much greater impact on individuals and their distributions. As with 

Table 6.1, the overall zero bias in the adjusted data in Table 6.2 just reflects the use of 

true distributions at the calibration stage and the fact that the imputation process 

combined with pruning and grafting preserves this calibration. 

6.5) Discussion 

Since the completion of the simulation study, of which some basic results are 

presented in section 6.4.3, ONS has been working on developing a full imputation 

system for use on the 2001 Census data. Linked with this has been the need to 
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develop the interfaces between the actual census database and the imputation system 

to facilitate the creation of the final adjusted database. 

The results from the simulation study demonstrate that imputation can be done, but 

further work by ONS is considering the use of 'dummy forms' to further improve the 

system. A dummy form is returned by an enumerator when they consider there to be a 

non-vacant household in their ED for which they are unable to get a completed census 

form. It is expected that if the dummy forms are of reasonable quality, they can be 

used in the imputation system to place 'missed' households and this should further 

reduce the RRAMSE for the adjusted data by placing households in EDs where there 

is evidence from the field to support the fact that a household was indeed missed by 

the 2001 Census. Development work at ONS has also included a rethink of the 

pruning and grafting strategy. This has resulted in a system that is more stable, this 

part of the imputation caused considerable problems in the simulations reported by 

Steele et al (1999), and one that achieves the adjusted database in considerably less 

time. 

All the work so far has concentrated on the use of an estimation area with a single 

LAD. The final area of research and development facing ONS is to include multiple 

LAD estimation areas into the system. How this is achieved is particularly important 

at the final pruning and grafting stage where the constraints on the age-sex 

distribution must be at the LAD and not estimation area level so that the database is 

consistent with the LAD age-sex estimates that will have already been produced firom 

the CCS via the strategy in chapter four and ONS (2000e). 
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Chapter Seven - Conclusions 

7.1) Introduction 

As stated in chapter one of this thesis, the aim of the work presented here has not been 

to cover all the aspects involved in undertaking a 'One-Number Census' in the UK in 

2001. Instead, the thesis describes the development of much of the methodology that 

will be needed. It should be noted that the practical issues are very important: issues 

such as efficiently conducting the 2001 Censuses, carrying-out independent follow-up 

surveys, accurately processing the data from both data collections and, perhaps most 

challenging, matching the two datasets. Much research has been done by ONS to 

ensure that the practical problems are effectively overcome. This chapter reviews the 

work that has been presented in this thesis. The following section considers the design 

of the census coverage survey, followed by a section on estimation using the survey, 

and finishing with a section on the imputation methodology for creating the final 

'One-Number Census' database. 

7.2) The Census Coverage Survey Design 

The first goal of this thesis has been to re-consider the design of census follow-up 

survey in the UK. The 1991 follow-up survey, called the 1991 Census Validation 

Survey (CVS), was unable to estimate the increased level of underenumeration in the 

1991 Censuses. As the two per cent underenumeration was not particularly different 

from that observed in other countries such as the US, Canada, Australia, and New 

Zealand, it is reasonable to assume that a similar level of underenumeration will exist 

in 2001. Therefore, as there were methodological issues with the CVS it is unlikely 

that adopting the same strategy for the estimation of census underenumeration in 2001 

will be any more successful than it was in 1991. 

Chapter three specified the basic framework for the design of a follow-up survey for 

the 2001 Censuses to be called the Census Coverage Survey (CCS) and evaluated 

several different options within that framework for the allocation of the sample. As 

the name suggests the biggest change in the proposed approach from the CVS in 1991 
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has been to separate estimation of coverage from assessment of census quality. This 

change alone makes undertaking an independent follow-up survey more practical, can 

simplify the data collection procedures for the interviewer, and reduces the amount of 

information the follow-up survey needs to collect. The first point opens the door to a 

range of estimation techniques that could not be utilised by the 1991 survey, and these 

are addressed in chapter four. The second point relates to the fact that the 1991 CVS 

required the interviewers to re-list a large area, compare their results with the 1991 

Census listing, and then sample the different types of households (vacant, multi-

occupied, co-operated with census, missed by census) at different rates. This desire to 

check each part of the census data collection process is important for quality but, from 

a coverage only point of view, the survey just needs to find the missed people. 

Therefore, measurement of coverage can be achieved by getting interviewers to re-

enumerate small areas without any reference to what the census did. The CCS intends 

to give interviewers maps of postcodes and ask them to re-enumerate all households 

identified by the map as being in the postcode, as well as to check the boundaries of 

the postcode. 

The third point has particular relevance for the CCS design strategy adopted in 

chapter three as it allows for a much larger sample size. The problem with census 

underenumeration is that many users are not particularly interested in the national 

level. It is the underenumeration at much smaller geographic levels such as local 

authority districts (LADs) and by characteristics such as age and sex that is of more 

interest. The 1991 CVS could only achieve this by grouping the LADs into very broad 

groups. The strategy in chapter three utilised the increased sample size to form 

estimation areas at a much lower level of geographic aggregation to avoid the need to 

make homogeneity assumptions that, for example, assumed Birmingham, Liverpool, 

Manchester, Leeds, and Bradford to be the same with respect to census 

underenumeration. 

Within the estimation area, the design strategy looks to spread the sample across all 

types of EDs. This is achieved by using a national hard to count (HtC) index to 

stratify the EDs within estimation areas. The aim is to ensure that the sample contains 

all types of EDs including those that are expected to be easy to count as well as those 

that will be hard to count. Within the HtC index the EDs are further stratified based 
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On 1991 Census age-sex counts. The sample of EDs is then allocated using optimal 

allocation based on a design variable constructed by combining several age-sex 

counts for the EDs based on the 1991 Census. The final stage selects a sample of five 

postcodes per selected ED. The work in chapter three considered several other options 

for selecting the postcode sample but this approach has the advantage of clustering the 

postcode sample for cost efficiency as well as giving good statistical efficiency, based 

on 1991 Census data, for the estimation of all the age-sex groups. 

7.2.1) The Census Coverage Survey Design for Northern Ireland 

Chapter five of the thesis considers the implementation of the design strategy 

developed in chapter three within Northern Ireland. Northern Ireland is unique in the 

fact that religion defines two communities that have quite different demographic 

characteristics and in many areas are highly clustered geographically. This is reflected 

by the fact that the equivalent of the HtC index, the ED classification index, includes 

dominant religion of the ED as one of its constituent variables. The other variables are 

an urban / rural identifier for each ED and whether, based on the 1991 Census, the ED 

was classified as deprived. The urban / rural variable reflects the fact that the local 

government areas within Northern Ireland are still often a single town or well defined 

urban area surrounded by rural areas. Th6 final variable reflects the fact that census 

underenumeration is often associated with variables such as high unemployment 

which are also associated with measures of deprivation. 

The formation of estimation areas in Northern Ireland has also required a slightly 

different approach. In chapter three a bottom-up approach is taken, with local 

authority districts grouped to form estimation areas. However, in Northern Ireland the 

local government districts are much smaller and the approach has been more top 

down, utilising a standard Eurostat' classification of Northern Ireland into three areas 

based on an analysis of the 1991 Census. In general, each estimation area contains 

many more local government districts than in England and Wales; except for the 

estimation area that just contains Belfast. The reason that Belfast is on its own is that. 

' Eurostat are the agency with responsibility for the collection and quality of comparable statistics from 
across all member states of the European Union. 
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in terms of population size, and its social and demographic characteristics, it is 

significantly different from all other local government districts in Northern Ireland. 

The sampling strategy is also slightly different in the Northern Ireland design. Rather 

than using optimal allocation based on the distribution of a variable constructed from 

1991 Census data, proportional allocation is used with respect to population size and 

the number of EDs. This use of proportional allocation with respect to the number of 

EDs helps spread the sample evenly across all areas within each estimation area, 

while the use of proportional allocation with respect to population size ensures that 

the sample in the West estimation area, a large mainly rural area with a low 

population, is not over-inflated due to large numbers of small EDs. An approach that 

spreads the sample as evenly as possible has two advantages. Firstly, as there is very 

little information from the 1991 Census on which to base assumptions about the likely 

patterns of underenumeration in 2001, such an approach is sensible and should lead to 

a sample that is 'representative' of all areas. Secondly, to a politician it looks 'fair' as 

all groups are evenly represented, particularly important if a full One-Number Census 

is to undertaken. The potential disadvantage is a slightly less efficient design. 

7.3) The Census Coverage Survey Estimation Strategy 

As stated in section 7.2, the move to an independent follow-up survey allows for the 

use of different estimation methodologies, specifically capture-recapture estimation 

methods. When there are only two 'captures', in this case the census and the CCS, this 

is referred to as dual-system estimation. A multinomial model that assumes 

independence between the census count and the CCS count underpins the classical 

dual-system estimator. This is impossible to guarantee but careful implementation of 

the two data collections should ensure it is well approximated. It also assumes that the 

same 'capture probability' applies independently to each individual in the population. 

On the practical side, it requires very accurate matching of individuals in the census to 

individuals in the CCS. This allows the identification of individuals counted twice, 

those counted only once, and then the dual-system estimator accounts for those 

missed by both. 
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The approach taken to the use of dual-system estimation in chapter four is different 

from the general methods reviewed in chapter two. The main difference is that the 

strategy in chapter four treats dual-system estimation as a method of adjusting the 

CCS count for non-response so that it gives a 'good' estimate of the true population in 

each sample postcode. The advantage of such an approach is that the homogeneity 

assumption required for dual-system estimation is most plausible for small 

populations. These estimated true counts are then combined with 2001 Census data to 

get an estimate at the total population level. Initial work in chapter four considered 

both ratio and regression models for combining census counts as an auxiliary variable 

with these estimated 'true' counts. Simulations showed the ratio model to be more 

appropriate and the variance assumption in a ratio model is certainly more appropriate 

when using count data. However, the approach was not without problems. One 

advantage of the approach adopted in chapter four is that as it does not calculate the 

DSE for 'large' sub-populations the homogeneity and independence assumptions only 

need to be satisfied at a much lower level of aggregation. However, the results in 

chapter four demonstrated problems with using dual-system estimation at very low 

levels of aggregation that meant unconstrained estimation at the postcode level was 

not possible. The simulation results demonstrated that using the DSE for each cluster 

of five postcodes lead to more stable estimates. 

There were two further problems. First, while the ratio model is preferable to the 

regression model when using count data, it is sensitive to situations where the census 

count is zero but the CCS count is greater than zero. Such situations did occur in the 

simulations and will occur in practice. In addition, the estimated counts for a non-

sample postcode that were much larger than any sampled postcodes were rather 

unstable. 

The result is the development of an estimation strategy in chapter four that attempts to 

be robust to these problems. In particular, the strategy separates estimation for 

postcodes with a zero census count from postcodes with a non-zero census count and 

applies adjustments to the ratio model when predicting for postcodes with census 

counts larger than those in the sample. Finally, although the approach uses postcode 

counts, the DSEs for the individual postcodes within a cluster of five postcodes are 

constrained to sum to the single DSE calculated by combining the five postcodes 
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within a selected ED. Simulation results in chapter four demonstrate that the approach 

introduces a small negative bias into the estimation. However, it also leads to a drop 

in variance and a drop in the mean square error of the estimator. In particular, the 

robust strategy is less subject to extreme overestimates of the population total. 

7.3.1) Estimation of the Population by Other Characteristics 

The simulations in chapter four considered the estimation of the population by age 

and sex for each estimation area. However, if the intention is to adjust the census 

database to reflect underenumeration it is necessary to understand the impact of 

underenumeration on the distribution of other variables such as ethnicity, economic 

status, and tenure. Simply to adjust the database to reflect underenumeration by age 

and sex would miss for example the fact that in 1991 it is thought that those in 

privately rented accommodation had higher underenumeration than those in 

accommodation with other tenures (e.g. homeowners). 

An approach to overcoming this estimation problem is outlined in chapter five and, 

using simulations for Northern Ireland, is applied to the estimation of the population 

by rehgion. Religion was chosen because of its sensitivity within the Northern Ireland 

context. The simulation results demonstrate that the proposed strategy is effective at 

not only producing estimates of counts that are closer to the true counts but it also 

corrects for the impact of the differential underenumeration on the underlying 

distribution. 

7.3.2) Estimation of Occupied Housing Units 

A census is not just a count of individuals; it is a count of both households and then 

the individuals within those households. Therefore, underenumeration of individuals 

suggests the possibility that some households will have been completely missed by 

the census. If a full 'One-Number Census' is to be created it is necessary to know 

about the number and type of households that have been missed. Chapter five 

develops a strategy for estimating the number of households by tenure and tests the 

strategy using simulations for Northern Ireland. A special approach is also adopted for 

the estimation of households by size. The results demonstrate that overall the 
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estimation strategy works well. However, they also highlight the important point that 

the estimation strategy will not always be 'better' than the census for every category 

of every variable within all estimation areas. In the simulations the proposed strategy 

always reduces bias but sometimes the increase in variance from using sample data 

leads to an increase in the mean square error. 

7.4) Production of a One-Number Census 

Much of the work presented in chapter six is not the sole work of the author of this 

thesis whose main contribution was in the development of the models to estimate the 

coverage weights needed by the imputation system. However, the imputation system 

in its entirety is included to allow the reader to have a complete picture of the 'One-

Number Census' methodology. The imputation system recognises the fact that 

individuals are missed by the census through one of two processes. The census misses 

the entire household in which the individual resides or alternatively, the census misses 

an individual or individuals within a household but counts the households and some 

of its residents. Therefore, the imputation system approaches the problem through a 

series of stages. It first models the types of households that are missed and then uses a 

donor imputation system to add households (and as a consequence the individuals 

within those households) to the database. It then models the individuals missed from 

counted households and again uses a donor imputation system to add the individuals 

into counted households on the census database. At all stages the imputation system 

utilises a whole range of estimated totals to control the counts of individuals and 

households by certain variables within the final database. There is also a final stage 

that ensures an exact match with the agreed population estimates for the 2001 Census. 

Simulation results are presented at the end of chapter six to demonstrate that the 

approach is feasible. 

7.5) Concluding Remarks 

The work in this thesis shows the development of some of the key aspects of the 

methodology needed to create a 'One-Number Census' for the UK in 2001. It does 

not cover all areas of this methodology. In particular, work at ONS has developed the 

methodology to be used to estimate populations at the local authority district level 
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(ONS, 2000e) and there is still work to be done on the exact implementation of the 

imputation system within an estimation area that contains more than one local 

authority district. 

The work presented in this thesis has also included a brief discussion of some of the 

practical problems associated with the use of dual-system estimation. These include 

the treatment of movers between the census and the CCS as well as the adjustment for 

overenumeration, although the exact approach that ONS will use in 2001 is still to be 

finalised. Unlike the situation in the US, there is no history of using dual-system 

estimation for estimating census underenumeration in the UK. Consequently, the main 

task has been to develop an appropriate methodology for its use in the UK context. 

The work presented in this thesis goes some considerable distance towards that aim 

and demonstrates a viable and efficient methodology to create a 'One-Number 

Census' for the UK in 2001. 
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