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Nomenclature

A(8) Longitudinal sectional area function of the body

Cy Nondimensional wave resistance coefficient = -%—p—ﬁ{?g

d Maximum diameter of the body

E(z,y) Magnitude of the free surface strain vector = , fu2 + v?

F, Froude number = —[{:E

f Depth of the axis of revolution of the prolate spheroid from the undisturbed free surface = —¢

Gij(z,8) Greens function in Oxyz

g Gravity acceleration

H(z) Heaviside unit step function

h; Vertical separation of the #*# interface and free surface

h; Vertical separation of the origin and free surface

i Layer number, 1%t layer = upper layer

i Layer number in which the bedy is located

L Length of body

l Summation index (1 < I < N;)

N{z) Brunt-Vaisala frequency

N, Number of roots of nonzero D(k,8) =0

Ozy:z Moving reference coordinate system located vertically above the body’s centroid
on the undisturbed free surface or interface

O(z) Landau order symbol

o{x) Landau order symbol

PV Cauchy’s principal value integral

41(3] Longitudinal source strength distribution representing the body

q(z, 1) Magnitude of the free surface velocity vector = vu? + v2

Ry Wave resistance

s Surface area of body, for a prolate spheroid s = %w(dz + % aresin €)

13 Thickness of upper layer

ty Thickness of middle layer

Ua Lower critical velocity of the fluid system

Ueu Upper critical velocity of the fluid system

Uy Velocity of body

u(z,y,z) Disturbance velocity vector in Ozyz = (u, v, w)

x Position vector of the field point (z,y, z) in Ozyz

oy I'™ non zero root of k from D(k,8) = 0

by Upper density ratio = £L

o - Lower density ratio = %}

byj Kronecker delta function

: = /1= (&)

Gi(z,y) Free surface elevation

Calz,y) Upper interface elevation

(3(z,y) Lower interface elevation

£ Position vector of source point (£,1,¢) in Ozy:

p1 Density of fluid in the upper layer

P2 Density of fluid in the middle layer

f3 Density of fluid in the lower layer

oii(z, €) Disturbance velocity potential in Ozyz

Yij(x, §)

Disturbance stream function in Ozyz
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Abstract

Velocity potential solutions are derived {or an arbitrary shaped body moving horizontally in a fluid
system consisting of three layers, the lower layer of infinite depth. The body may be located in any
one of the three layers. The boundary conditions on the free surface and interface are linearised and
a radiation condition imposed. Expressions for the far field free surface and interface elevations are
derived. A three dimensional extension of Lagally’s theory provides a method which allows the wave
resistance of the body to be determined. The application of a slender body approximation permits
the derivation of analytical expressions for the elevations and wave resistance. Plots of the far field
free surface and interface wave systems are presented when the body is located in each layer. The
wave resistance of a prolate spheroid length L to diameter d for a series of L/d ratios is calculated
over a Froude number range. The “dead water” effect being apparent in every case. The results of
other parametric studies are also included.

1 Introduction

Generally the fluid in which vessels navigate is not homogeneous, a degree of stratification is present. This
stratification may be weak, one or two parts in one thousand occur in the ocean; in estuaries and fjords
stratification may reach thirty parts in one thousand. The presence of stratification 1s due to a variation
of density, temperature or salinity with depth. Stratifications due to a change in density, temperature or
salinity are known as pynoclines, thermoclines and haloclines respectively. The effects of stratification on
the forward motion and control of ships has been recorded by many mariners, many compiled by Ekman
(1904). The most noticeable effect observed was a decrease in the forward speed of the vessel caused by an
increase in resistance due to the additional energy expended creating waves within the fluid. This effect
initiated research into the generation of ship waves in a stratified fluid. More recently the application
of remote sensing technigues to the oceans surface has revealed ‘v’ shape images in the wake of ships,
the cause of which is suspected to be due to internal wave generation. Experimenters have reproduced
these images under controlled conditions (Apel and Gjessing, 1989). Accurate mathematical models of
the fluid pertabations caused by the body are required in order that the mechanism which produces these
images can be fully explained.

Although stratification in the ocean is continuous with depth, many theoretical studies idealise this
continnous medium by a series of discrete layers each of finite depth and of constant fluid density. The
overall fluid density profile is not constant and discontinuities occur at the layer interfaces. Stratified
fluid models have been considered previously, see for example, Hudimac (1961), Sabuncu (1961), Crapper
(1967), Rarity (1967), Keller and Monk (1970) , Miles (1971), Hughes {1986), Price et al (1988), Dysthe
and Trulsen (1989), Wang (1989) and Tulin and Miloh (1990) but many of these studies concentrate on the
description of the wave patterns generated on the free surface and interface(s) by an isolated source rather
than detailed descriptions of the interaction between a defined body shape and the surrounding medium.
Because of fluid stratification, internal waves occur naturally in oceans and these can be generated locally
by turbulence or externally by a distant storm. A body moving in a stratified fluid produces a pressure
field within the fluid creating internal and free surface disturbances. Since waves always radiate energy
away from the region where they are being formed, the stratification of the fluid provides an additional
outlet for this radiation to occur.

» For a ship or submerged body moving horizontally with constant forward speed in a constant density
fluid medium which is assumed “idealised”, Baar and Price (1988) developed numerical procedures to
determine solutions of the steady body motion problem. That is, predictions of wavemaking resistance,
wave patterns generated on the free surface, pressure fields within the fluid, etc. These were derived from
a linearised three dimensional flow formulation and they describe the disturbance potential of the steady
perturbed flow about the moving body. The solutions were obtained by means of a Kelvin wave source
distribution method. This is based on an integral identity for the Neumann-Kelvin potential involving
an integral distribution of Kelvin wave sources over the body’s surface and waterline contour (if the
vessel is surface piercing). The unknown source strength is determined by solving the Fredholm integral
equation of the second kind which ensures that the kinematic condition at the hull surface is satisfied.
This theoretical approach and iterative numerical approximation procedure were applied to six different
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hull forms and the calculated results showed good agreement with experimental data in both a qualitative
and quantative manner. see for example, Andrew et al (1988).

This approach was extended by Price et al (1988) to solve the similar problem in a stratified fluid. A
panel method was developed allowing the modelling of the geometric shape of an arbitrary shaped body.
This method was, applied to a prolate spheroid and the predicted results were compared with those derived
using a slender body approach. A comparison of the predicted values revealed only minor variations thus
justifying the use of the slender body approach for this body shape. This has the advantage of reducing
the computational effort significantly without diminishing the description of the physical processes arising
tn the stratified fluid - structure interaction. For these reasons, the slender body approach is used in the
calculations described herein.

2 Model definition

This report describes the first stage of an investigation into the problem of a body moving in a stratified
fluid. Here the mathematical model describing a stably stratified fluid is discretised into three layers. In
each layer the density of the fluid is constant and the lower layer is of infinite depth. A prolate spheroid,
which is completely contained in any one of the three layers, moves with constant horizontal velocity
along a straight track extending from its axis of revolution. The disturbance created within the flnid is
described by velocity potential functions.

2.1 Fluid Model

The fluid in each layer is assumed inviscid, incompressible and the fluids are immiscible at the interfaces.
The disturbance produced in each layer by the moving body may therefore be represented by a velocity
potential flow theory.

The density profile can be expressed as:

plz)=pmH(-2) + (ﬁz —p)H[-(z+ )]+ {pa—p)H[-(z+t1 +12)] p1 < p2< p3 (1)

where the plane z = 0 denotes the undisturbed free surface. The coordinate z is defined negative pointing
into the fluid and H{:) denotes the Heaviside unit step function.
The Brunt-Vaisala frequency, N(z) is defined as

N2(z) = _;(%"’fif) (2)

which for this model is discontinuous across the interfaces and zero within each layer.

2.2 Body Model

In general, a submarine, idealised here by a prolate spheroid, has a streamline form with a maximum
diameter, d, substantially smaller than its length, L. A slender body approximation may therefore be
employed to simplify the hydrodynamic analysis. The disturbance velocity potential is represented by a
source distribution along the longitudinal axis of the body, the strength @Q(£) of a source at position £ |
—% <E<L % is given by:

- _UodA(g)
Q) = -5 3)
For a prolate spheroid this becomes:
_Uo, d 2
Q&) = - f) 3 (4)

The achievement of exact body shape cannot be fully realised using this method due to the proximity
of the free surface and interface wave systems which modify the streamline v;;(=,£€) = 0. An accurate
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description of the shape of the body can only be achieved using an additional boundary condition ensuring
no fluid particles penetrate the wetted surface of the body. The problem can then be regarded as
a Neumann-Kelvin problem, a soluticn of which can be obtained using panel methods and numerical
computation. However, it has been shown that for slender bodies the discrepancy between the two
methods does not merit the increase in computational effort required for the Neumann-Kelvin theory, see
Price et al (1988).

2.3 Coordinate System

Figure 1 illustrates the location and orientation of the orthogonal, right handed, coordinate axis system
chosen to simplify the mathematics of the three layer system. For example, for a body in the upper layer
the undisturbed free surface is the plane z = 0, the z-axis lies along the direction of motion of the body
and the positive y-axis is chosen to satisfy the orthogonality condition. The origin of the coordinate
system lies vertically above the body’s centroid. For a body in one of the lower layers the undisturbed
interface above the body becomes the plane z = 0.

3 Statement and solution of the boundary value problem

3.1 Boundary Conditions

Using a body fixed coordinate system the linearised boundary conditions imposed to describe the velocity
potential disturbance ¢;;{z ,£ } in the #** layer created by the steady motion of the body moving in the
7** layer of a three layer fluid system are given by (Wang, 1989, pages 51-62) :

(1) The continuity equation

V2¢i; =0 fori=1,2,3 {5)
(2} The free surface condition

@15, +kot1;, =0 onz=h; (6)

(3) The interface condition
qS(,-_l)J-‘ =¢i;, onz="h;—h; fori=23 (7)
Pi-1)[G-1)i.. + kobi-1);,] = pildss,, + kodij,] onz=hj—h; fori=23 (8)

(4) The radiation condition

O(I:BL[) forz >0 .

qB,,-{ o(1)  for z <0 as || — o0 fori=1,2,3 (9)

(5) The bottom condition
V¢3J-—+0 as z — —00 (10)

where ko = 5, O(z) and o(z) denote the Landau order symbols as defined by Erdelyi (1956). Here h; is
o

the vertical separation of the free surface and i*? interface, h; is the vertical separation of the origin and
the free surface.

Equation 5 ensures the fluid disturbance can be described by potential flow theory. Equation 6
describes a combination of the kinematic and dynamic conditions applied on the free surface. The
kinematic condition ensures that the fluid particles cannot pass through the disturbed free surface, the
dynamic condition constrains the pressure in the fluid at the disturbed free surface to be atmospheric. The
application of this boundary condition allows the presence of wave systems on the free surface. Equation 7
ensures the vertical velocity is continuous across the interfaces. Equation 8 describes a similar condition
to equation 6 but applied at the interfaces. Equation 9 requires that the waves only exist behind the
body and there are no waves upstream. Equation 10 imposes the condition that the disturbance velocity
potential decays with increasing depth.
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3.2 Derivation of Green’s Functions

The disturbance velocity potential solution can be obtained from the summation of a Green’s function
solution, G;;(x ,£). That is, the Green’s function solution is an expression modelling a single source of
unit strength in the fluid system.

§
btz 0= [ QOGy(:6,0,¢= ~1de )

This implies that ¢;;(z ,£) in the boundary conditions 5 - 10 can be replaced by Gi;(z ,£)
To ensure that equation 5 is satisfied, it is assumed that the Green’s functions are of the form

i [T % i —({<0
G:‘j(ﬂ!;f)z'ﬁf _/0 eklivE(-Olgrdg t i—g>0

T oo i
+f f [As; (k,8)e** + Bi;(k,0)e~**] e** dkdd (12)
—-xJO
for j=1,2,3 and i=1,2,3. Here §;; denotes the Kronecker delta function,

w=1{(x—§)cosd + (y — n)sin b (13)

and Bs;(k,f) = 0 to comply with the condition stated in equation 10.

The method of solution involves the substitution of the Green’s functions into the free surface and
interface conditions, thus forming a system of equations from which the unknown coefficients Ak, 0)
and B;;(k,0) can be determined.
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3.6 Application of the radiation condition

The Green’s functions 15 - 17, 19 - 21 and 23 - 25 now satisfy the boundary conditions 5-8 and 10,
the radiation condition however has yet to be addressed. The wavenumber integration, involving the
circumvention of the singularities present in the Green’s functions, provides an opportunity to examine
the functions as £ — oo. The upstream expressions are then subtracted from the Green’s functions to
provide equations satisfying all boundary conditions. An example of this process for a body located in
the upper layer of a two layer fluid is given by Wang (1989), pages 70-78.

.

3.7 Complete velocity potentials
The following Green’s functions comply with all the boundary conditions described in 3.1

N o1 1y, 1 f3 © Fii(k,0)C(k,0) § Fo,(0)S(ky,8)
Gij(z ,£) = —&; (n + ﬁ) + w/[, PV i _(kj— k,)D_(k,ﬂ)dkdB+/o __Do(a) dg

S~ [¥ Fiy(e1,0)S(,6)
+§/90 (ﬂfr—’CJ')DJ:(C‘NJ’)CI19 (26)

here P.V. denotes Cauchy’s principal value integral, a; is the I*® root of k determined from the equation
D(%,8) = 0 and N, is the number of non zero roots of D(k,8) =0,

C(k,8) = cos[k(z — &) cos 6] cos[k(y — n)sinf) (27)

D{k, 8} = §:k(1 - 82)(k + ky)e~*2 sinh(kt,)

k(1 — &) tanh(kt;),., k(1 — &) tanh(kt.)

~[cosh(kt1)+6; sinh(kt )] [cosh(ktz)+ 8, sinh(kty)] [k - —— e e o Fanh(i) ) )

Do(k,8) = ~[6:16 + (1 - b1)b2e™ 251 4 (1 = §p)e~ 2k (h1H1a)) (29)
Di(k,0) = a{—%";-’-@le-*(‘ﬁ'ﬂ (30}

Fo,(8) = —46,65ke*r 540 _ (31)

‘ Fo,(8) = _462k,e*ff=+<-2*1> (32)

Fo(6) = —4ksets (=+¢-201-2t2) (33)
n=VE-*+ -2 +(=-¢? (34)

ro=V{E -2+~ 02+ (2 +()? (35)

S(k,8) = sink(z — €) cos 6] cos[k(y — 1) sin 0] (36)

and the ‘F° functions are defined as
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In these expressions the lower limit of the theta integral, 8y, is given by

1] N,-=2 UOSUcE
_ |1 0<t<b,y
=40 M=9, <<t Uet < Up < Ueu (46)
_ 1 f2<8<b
62 Nr— 2 BISBS% U0>Ucu
where
1 fVa
By = ipre 47
1 = Cos (Uo) (47)
U
By = cos™1 [ =2 48
y = oS (Uo) (48)
H
Ug = (—9—) (49)
54
g 5 |
u = (;:-) (50)
_ b+ (b —4da)?
S = — e : {51)
a = (]. - 61 )(1 — 62)t112 (52)
b= (1 — 61)t1 + (1 - 62)t2 +6;(1 - 52)11 (53)

Substituting the Green’s functions into equation 11 and completlng the £ integration produces the velocity
potential for the i** layer we find that when the body is moving in the j*» layer

e ey S8 (1 i) 13 Fij(k, 8)Pi(k, 0) Fo,(6)Pa(ky ,0)
$il@ . §) = 2 (1"1 + ry + ﬂ/; P'V'/O {k — k;)D(k, 0} Tk —k,)D(F,5) Fd¥ + f T Do) — Doe) %
1] Q], PQ(O’I,H)
Z/ﬂo (a1~ &) De(ar,0) " &9
where
Py(k,6) = sin(kx cos 6) cos [k(y — 1) sin 0] Ps(k, 8) (55)
Py(k,0) = = cos(kx cos #) cos [k(y — n) sin 6] Ps(k,6) (56)
2

Ps(k,6) = Uy (ﬁ;@—) [sin (kL (;DSB) - %Lucosﬂcos (kL ;059)] (57

and the far field expressions for the velocity potentials are

y _ % Fo(0)Pa(ks.0)
tﬁ;,(z,f)—[) _D?(ET'*M

N, "
X [7 Fij(oq, ) Py, ) _
+a=1 -[90 (a1 = ks) D (e, 8) 9 (58)
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The velocity potentials defined in equation 54 reduce to the velocity potentials describing a body
moving in a two layer fluid when either of the density ratios §, or §; is equated to unity. The reduction
also occurs when either of the layer thicknesses is zero. Finally the velocity potential for a body moving
in a homogenecus fluid can be obtained when an appropriate combination of two of the four eptions
above are applied to equation 54.

4 Far field free surface and interface disturbances

The linearised disturbance on the free surface, (1, is given by

Ui

Gi(z,y) = —fm,-, (59)
and on the #*® interface
1 Uy .
G(z,y) = m?lpﬂf’i;‘, = pi-1dii-1y,}  fori=2,3 (60)

Substituting equation 58 inte equation 59 yields the far field surface elevation caused by the moving
prolate spheroid and this may be written In the form

2U0 3 F[}j(ﬂ)P.;(kj,B)
Gz, y) = — /0 —D(}("g)—"—dg

2U° Fij(eq, ) Py(au, 0)
Z[oo (e~ kj)Dk(afg,ﬁ)da (61)

and the far field interface elevation on the #*® interface is given by

Gz, ) = ZUD /: o, O ulky 9) o

Do(8)
2UU lJ O'h B)P*!(al: £) -
Z]e %) Dk(a:,a)dg fori=2,3 (62)
where
Py(k,8) = é‘_ﬂ_’gfj_ﬂ - (63)

5 Wave resistance

An expression for the wave resistance of the body can be derived using a three dimensional extension of
Lagally’s method (Sabuncu, 1961; Wang, 1989). In an ideal fluid a singularity = ({', q‘,(') experiences
a resultant force due to the free stream and other singularities. The summation of these forces is equal
to the wave resistance. Mathematically for a slender body this can be written in the form

i .
Ro=—tnp; [ Q€I85 (20 [oaie ) % (64)

The substitution of equations 4, 11 and 26 into equation 64 gives

Ry = —anp; 27TU0 ] ] [ €€Gj. (=.€) |a: =(¢' m.() dedg’ (65)
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and with the substitution of G;;(=, €) together with the results

£ 5 : ,
[ [ €esinli(e’ - &) costiagar’ = 0 (66)
LI B 1 1 ,
/ \ [ e -9 (; + E), o= my 46’ =0 (67)
we find that
~ d\?]" [# k; cos0F,(O)T(k;, )
o == [2“U” (E) ] / Do®)
N, z
- 3 x; cO8 GFJ'J‘(&;,Q)T(CU,G)
+§/ﬂ =)Dt % (68)
where
2
L 1 . kL EL
T(k,0) = {kcosﬂ (%I; p— sm(T cos §) — cos(—z— cosﬁ)) } (69)

The wave resistance of a body moving in a two layer or homogeneous fluid may be obtained through
reducing the number of fluid layers as detailed in section 3.7.

6 Discussion of results

Figures 2, 3 and 4 are the free surface and interface elevations generated by a prolate spheroid moving in
the upper, middle and lower layers respectively. Only the port half of the disturbance is plotted as the
wave system Is symmetrical about the body centreplane (ie the plane y = 0). The area shown commences
one body length behind the stern and extends nine body lengths longitudinally and six body lengths
transversely from the centreline. The direction of motion of the body is towards the lower right hand
side of the page. In all three cases the density of the upper layer, p; = 1025 K g/m3, the density of the
middle layer, p2 = 1026.5 K g/m> and the density of the lower layer, p3 = 1028 K g/m3. The speed of
the body is 2 m/s which lies in the supercritical region (Up > Uy ) for this fluid system. Therefore only
the divergent part of the wave system is present. Additional information relevent to the each figure can
be found in the captions.

The free surface shears corresponding to figures 2, 3 and 4 are the figures 5, 6 and 7 respectively. As
previously, only the port half of the disturbance is plotted and the area shown is the 9L x 6L rectangle
described in the paragraph above. The direction of motion of the body is towards the bottom of the
page.

Figure 8 demonstrates the effect of the ratio L/d on the wave resistance experienced by the body.
Here L/d = 15, 10 and 5 whilst a constant displacement is maintained. The effect of the diameter can
readily be seen in equation 68, for the diameter dimension appears only outside the integral as a fourth
power, the effect of length cannot be so easily determined as L also appears in the function T(k,8). The
non dimensional wave resistance coeficient is defined as Ry /1p;sUZ. When the body is in the upper
layer the effect of the free surface on C, can clearly be observed. The presence of the stratification in
the form of fluid layers produces a large spike at low Froude numbers when the body is moving in any
layer. It is this spike which causes the “dead water” effect.

Figure 9 reveals how the maximum values of free surface and interface elevations are related to
the speed of the body when the body is located in each layer. The maximum values of free surface
and interface elevations are the maximum values present in the area behind the body (ie 9L x 6L) as
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previously described. The interfaces closest to the body display two maxima and a minimum, other
interface disturbances have single peaks then decay monotonically with increasing speed.

Figures 10, 11, 12 and 13 display the change in the appearance of the free surface and interface wave
patterns when the speed of the body is increased. At Up = 0.25 m/s the speed of the body is below the
lower critical speed. The wave system consists of transverse waves and no divergent waves are present.
As Uy increases to 0.50 m/s, a speed which is between the lower and upper critical speeds a transition
appears, a divergent contribution to the wave system is also apparent. Above the upper critical speed the
tranverse portion of the wave system disappears and the disturbance consists of only the divergent waves.
Any further increase in U causes the disturbance to be contained within a decreasingly small angle given
by § — 6o. These transitions are continuous, the divergent part of the wave system gradually becomes
more prominent whilst the transverse part slowly decays. This implies that as the speed of the body
increases the energy in the wave system shifts from a conc entration at low frequency to a concentration
at high frequency.

The free surface shears corresponding to the wave systems generated at U; = 0.25, 0.50, 1.50 and
3.00 m/s, ie the figures 10, 11, 12 and 13 are the figures 14, 15, 16 and 17 respectively.

Figures 18 and 19 display the effect of the variation of the middle layer density when all other variables
remain constant. The maximum values of elevations, currents and strains are the maximum values present
in the area behind the body (ie 9L x 6L) as previously described. When py = p; or py = p3 the three
layer fluid system reduces to a two layer fluid system. The points marked by triangles are the maximum
values of the disturbance obtained from two layer theory. The trend clearly is towards the two layer
results. The free surface disturbance increases when p; tends to p; whilst the first interface disturbance
displays a maximum when p; is the average of the densities of the fluid from above and below the middle
layer. The second interface disturbance has a maximum and minimum value over the density range.

7 Conclusion

The three layer model qualitively and quantitatively predicts the fluid disturbances and body forces
produced by a body moving in a three layer fluid. The velocity potential, free surface elevation and wave
resistance expressions reduce firstly to two layer expressions then to expressions describing a body in a
homogeneous fluid. The “dead water” effect popularised by Ekman has been demonstrated to exist, its
magnitude now calculable from a velocity potential solution. The results of the three layer fluid system
will provide a useful comparison when the second stage of this investigation, a continuously stratified
fluid, requires validation.

From a submarine operational viewpoint, if we assume a correlation between wavemaking resis-
tance and wave pattern characteristics, there is evidence presented herein (e.g figure 8) to suggest that
there is a small window of Froude numbers where the wavemnaking resistance is a minimum and hence
the wave pattern generated within the stratified fluid is less detectable. However before this operational
benefit can be substantiated, more theoretical and experimental studies are needed.
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Figure 2: Free surface and interface wave systems when the body is in the upper layer. Uy = 2.0 m/s

(Fo, = 0.064) L = 100.0md = 10.0m p, = 1025.0 Kg/m? p,
ty, = 300mit: = 300m f = 15m

1026.5 Kg/m? p3 = 1028.0 Kg/m?
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Figure 3: Free surface and interface wave systems when the body is in the middle layer. Uy = 2.0 m/s
(Fn = 0.064) L = 100.0md = 10.0m p; = 1025.0 Kg/m® p; = 1026.5 Kg/m® p3 = 1028.0 Kg/m®
t] = 300mity = 30.0m f = 45 m



Ship Science Report No. 62 23

Metres

i

L
:

NEREREEEE ||

I

:

Metres

;
5

i

NERERERRE ||
T
it

I—EII!DD
|

Figure 4: Free surface and interface wave systems when the body is in the lower layer. Uy = 2.0 m/s
(Fo = 0.064) L = 100.0md = 10.0mp; = 1025.0 Kg/m® p; = 1026.5 Kg/m> p3 = 1028.0 Kg/m®
t, = 300mit;, = 300mf = T5m
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Figure 5: Free surface shear when the body is in the upper layer. Uy = 2.0 m/s (F, = 0.064)

L = 1000md = 100mp, =
t), = 300mty, = 300mf = 15m
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Figure 6: Free surface shear when the body is in the middle layer. Uy = 2.0 m/s (F, = 0.064)
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Figure 7: Free surface shear distribution when the body is in the lower layer. Uy = 2.0m/s (F,, = 0.064)
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1028.0 Kg/m3 ¢, = 30.0m
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Figure 10: Free surface and interface wave systems for Uy = 0.25 m/s ( F,, = 0.008 ) when the body
is in the upper layer. L = 1000 m d = 10.000 m p;, = 1025.0 Kg/m® p» = 10265 Kg/m?
ps = 1028.0 Kg/m®*t; = 30.0mi; = 300m f=15m
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Figure 11: Free surface and interface wave systems for Uy = 0.50 m/s ( F, = 0.016 ) when the body
is in the upper layer. L = 1000 md = 10000 m p; = 1025.0 Kg/m® p = 1026.5 Kg/m®
ps = 1028.0 Kg/m3t; = 300mt, = 300m f=15m
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Figure 12: Free surface and interface wave systems for Uy = 1.50 m/s ( F,, = 0.048 ) when the body
is in the upper layer. L = 100.0 m d
1028.0 Kg/m®t; = 30.0mi, = 30.0m f =15m

1026.5 Kg/m?
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Figure 17: Free surface shear for U/, = 3.00 m/s when the body is in the upper layer. L = 100.0 m
d = 10000 m p = 1025.0 Kg/m® p» = 10265 Kg/m® p3 = 1028.0 Kg/m®* t;, = 300 m
tp = 300m f= 1bm




Ship Science Report No. 62 37

0.%35
0.2

0.1

2etal {mm)

0.1

0.09-

0.08

T 1 L) 1
1025 1026 027 028
rho2 {Kg/m=~3).

/—_\

8
|

zeta2 {mm)

8
I

0 T T
026 w27 128
rho2 (Kg/m=3)

T T T 1
025 1026 027 028

rho2 (Kg/m~3)
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Nomenclature

A(€) Longitudinal sectional area function of the body

Cuw Nondimensional wave resistance coefficient = -%—f:ﬂb,—g

d Maximum diameter of the body

E(z,y) Magnitude of the free surface strain vector = , fuZ + vZ

F, Froude number = UyL

f Depth of the axis of revolution of the prolate spheroid from the undisturbed free surface = —(

Gii(x,8) Greens function in Oxyz

g Gravity acceleration

H(z) Heaviside unit step function

h; Vertical separation of the i*? interface and free surface
h; Vertical separation of the origin and free surface

] Layer number, 1°! layer = upper layer

i Layer number in which the body is located

L Length of body

{ Summation index (1 <1< N,)

N
N,

(z) Brunt-Viisald frequency
- Number of roots of nonzero D{k,#) =0
Ozyz Moving reference coordinate system located vertically above the body’s centroid
on the undisturbed free surface or interface
O(z) Landau order symbol
o(x) Landau order symbol
PV Cauchy’s principal value integral
Q&) Longitudinal source strength distribution representing the body
q(z, y) Magnitude of the free surface velocity vector = v/u? + v2
R, Wave resistance
& Surface area of body, for a prolate spheroid s = %ﬂ'(dz + % arcsin €)
t1 Thickness of upper layer
123 Thickness of middle layer
U Lower critical velocity of the fluid system
Ueu Upper critical velocity of the fluid system
Uy Velocity of body :
u(z,y,2)  Disturbance velocity vector in Ozyz = (u, v, w)
z Position vector of the field point (z,y, z) in Ozyz
ap I** non zero root of k from D(k,8) =0
& Upper density ratio = &
6y Lower density ratio = ;"—:
i Kronecker delta function
€ = 1-(3)’
Gz, y) Free surface elevation
Ca(z,y) Upper interface elevation
Ca(z,y) Lower interface elevation
£ Position vector of source point (£,7,¢) in Oxyz
1 Density of fluid in the upper layer
P2 Density of fluid in the middle layer

73 Density of fluid in the lower layer
¢ii(z,8) Disturbance velocity potential in Ozyz
tij(x,€) Disturbance stream function in Ozyz
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Abstract

Velocity potential solutions are derived for an arbitrary shaped body moving horizontally in a fluid
system consisting of three layers, the lower layer of infinite depth. The body may be located in any
one of the three layers. The boundary conditions on the free surface and interface are linearised and
a radiation condition imposed. Expressions for the far field free surface and interface elevations are
derived. A three dimensicnal extension of Lagally’s theory provides a method which allows the wave
resistance of the body to be determined. The application of a slender body approximation permits
the derivation of analytical expressions for the elevations and wave resistance. Plots of the far field
free surface and interface wave systems are presented when the body is located in each layer. The
wave resistance of a prolate spheroid length L to diameter d for a series of L/d ratios is calculated
over a Froude number range. The “dead water” effect being apparent in every case. The results of
other parametric studies are also included.

1 Imntroduction

Generally the fluid in which vessels navigate is not homogeneous, a degree of stratification is present. This
stratification may be weak, one or two parts in one thousand occur in the ocean; in estuaries and fjords
stratification may reach thirty parts in one thousand. The presence of stratification is due to a variation
of density, temperature or salinity with depth. Stratifications due to a change in density, temperature or
salinity are known as pynoclines, thermoclines and haloclines respectively. The effects of stratification on
the forward motior and control of ships has been recorded by many mariners, many compiled by Ekman
(1904). The most noticeable effect observed was a decrease in the forward speed of the vessel caused by an
increase in resistance due to the additional energy expended creating waves within the fluid. This effect
initiated research into the generation of ship waves in a stratified fluid. More recently the application
of remote sensing techniques to the oceans surface has revealed ‘v’ shape images in the wake of ships,
the cause of which is suspected to be due to internal wave generation. Experimenters have reproduced
these images under controlled conditions (Apel and Gjessing, 1989}, Accuraie mathematical models of
the fluid pertabations caused by the body are required in order that the mechanism which produces these
images can be fully explained.

Although stratification in the ocean is continuous with depth, many theoretical studies idealise this
continuous medium by a series of discrete layers each of finite depth and of constant fluid density. The
overall fluid density profile is not constant and discontinuities occur at the layer interfaces. Stratified
fluid models have been considered previously, see for example, Hudimac (1961), Sabuncu (1961), Crapper
{1967), Rarity (1967), Keller and Monk (1970) , Miles (1971), Hughes (1986), Price et al (1988), Dysthe
and Trulsen (1989), Wang (1989) and Tulin and Miloh (1990) but many of these studies concentrate on the
description of the wave patterns generated on the free surface and interface(s) by an isolated source rather
than detailed descriptions of the interaction between a defined body shape and the surrounding medium.
Because of fluid stratification, internal waves occur naturally in oceans and these can be generated locally
by turbulence or externally by a distant storm. A body moving in a stratified fluid produces a pressure
field within the fluid creating internal and free surface disturbances. Since waves always radiate energy
away from the region where they are being formed, the stratification of the fluid provides an additional
outlet for this radiation to occur.

For a ship or submerged body moving horizontally with constant forward speed in a constant density
fluid medium which is assumed “idealised”, Baar and Price (1988) developed numerical procedures to
determine solutions of the steady body motion problem. That is, predictions of wavemaking resistance,
wave patterns generated on the free surface, pressure fields within the fluid, etc. These were derived from
a linearised three dimensional flow formulation and they describe the disturbance potential of the steady
perturbed flow about the moving body. The solutions were obtained by means of a Kelvin wave source
distribution method. This is based on an integral identity for the Neumann-Kelvin potential involving
an integral distribution of Kelvin wave sources over the body’s surface and waterline contour (if the
vessel is surface piercing). The unknown source strength is determined by solving the Fredholm integral
equation of the second kind which ensures that the kinematic condition at the hull surface is satisfied.
This theoretical approach and iterative numerical approximation procedure were applied to six different
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hull forms and the calculated results showed good agreement with experimental data in both a qualitative
and quantative manner. see for example, Andrew et al (1988).

This approach was extended by Price et al (1988) to solve the similar problem in a stratified fluid. A
panel method was developed allowing the modelling of the geometric shape of an arbitrary shaped body.
This method was, applied to a prolate spheroid and the predicted results were compared with those derived
using a slender body approach. A comparison of the predicted values revealed only minor variations thus
Justifying the use of the slender body approach for this body shape. This has the advantage of reducing
the computational effort significantly without diminishing the description of the physical processes arising
in the stratified fluid - structure interaction. For these reasons, the slender body approach is used in the
calculations described herein.

2 Model definition

This report describes the first stage of an investigation into the problem of a body moving in a stratified
fluid. Here the mathematical model describing a stably stratified fluid is discretised into three layers. In
each layer the density of the fluid is constant and the lower layer is of infinite depth. A prolate spheroid,
which is completely contained in any one of the three layers, moves with constant horizontal velocity
along a straight track extending from its axis of revolution. The disturbance created within the fluid is
described by velocity potential functions.

2.1 Fluid Model

The fluid in each layer is assumed inviscid, incompressible and the fluids are immiscible at the interfaces.
The disturbance produced in each layer by the moving body may therefore be represented by a velocity
potential flow theory.

The density profile can be expressed as:

p(z) = pH(=z)+(p2 — p)H[-(z + )]+ (pa —p2)H[~(z+t1 + 82)] p1<p2<pa (1)

where the plane z = 0 denotes the undisturbed free surface. The coordinate z is defined negative pointing
into the fluid and H(z) denotes the Heaviside unit step function.
The Brunt-Viisala frequency, N(z) is defined as

V(s = —L 2 @

which for this model is discontinuous across the interfaces and zero within each layer.

2.2 Body Model

In general, a submarine, idealised here by a prolate spheroid, has a streamline form with a maximum
diameter, d, substantially smaller than its length, L. A slender body approximation may therefore be
employed to sumplify the hydrodynamic analysis. The disturbance velocity potential is represented by a
source distribution along the longitudinal axis of the body, the strength Q(£) of a source at position £ ,
—% <E<L % is given by:

UpdA
Q) = ~4—7‘;—df) (3)
For a prolate spheroid this becomes:
Up,d.?
Q) = —22 f) ¢ (4)

The achievement of exact body shape cannot be fully realised using this method due to the proximity
of the free surface and interface wave systems which modify the streamline 9;;(,€&) = 0. An accurate
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description of the shape of the body can only be achieved using an additional boundary condition ensuring
no fluid particles peneirate the wetted surface of the body. The problem can then be regarded as
a Neumann-Kelvin problem, a solution of which can be obtained using panel methods and numerical
computation. However, it has been shown that for slender bodies the discrepancy between the two
methods does not merit the increase in computational effort required for the Neumann-Kelvin theory, see
Price et al {1988).

2.3 Coordinate System

Figure 1 illustrates the location and orientation of the orthogonal, right handed, coordinate axis system
chosen to simplify the mathematics of the three layer system. For example, for a body in the upper layer
the undisturbed free surface is the plane z = 9, the z-axis lies along the direction of motion of the body
and the positive y-axis is chosen to satisfy the orthogonality condition. The origin of the coordinate
systemn lies vertically above the body’s centroid. For a body in one of the lower layers the undisturbed
interface above the body becomes the plane z = 0.

3 Statement and solution of the boundary value problem

3.1 Boundary Conditions

Using a body fixed coordinate system the linearised boundary conditions imposed to describe the velocity
potential disturbance ¢;;(x ,£ ) in the i*» layer created by the steady motion of the body moving in the
j** layer of a three layer fluid system are given by (Wang, 1989, pages 51-62) :
(1) The continuity equation

Vtﬁ;'jIU fori=1,2,3 (5)
(2) The free surface condition

$1j.. + ko¢1j, =0 onz=hy (6)

(3) The interface condition
(}5(;_1)]" = qﬁ.','s on z = hJ‘ —h; fori=2,3 (7)
Pi-)[bG-1)j_. + kobi-1);,] = pildij,, +kodi;,] onz=h;—h; fori=2,3 (8)

(4) The radiation condition

O(lsz) forz>0 .

qb,_,_{ o(1)  forz <0 as [¢| oo fori=1,2,3 {9)

(5) The bottom condition
V¢3j —0 asz— -0 (10)

where ko = iz, O(z) and o(z) denote the Landau order symbols as defined by Erdelyi (1956). Here &; is
o

the vertical separation of the free surface and #** interface, h; is the vertical separation of the origin and
the free surface.

Equation 5 ensures the fluid disturbance can be described by potential flow theory. Equation 6
describes a combination of the kinematic and dynamic conditions applied on the free surface. The
kinematic condition ensures that the fluid particles cannot pass through the disturbed free surface, the
dynamic condition constrains the pressure in the flnid at the disturbed free surface to be atmospheric. The
application of this boundary condition allows the presence of wave systems on the free surface. Equation 7
ensures the vertical velocity is continuous across the interfaces. Equation 8 describes a similar condition
to equation 6 but applied at the interfaces. Equation 9 requires that the waves only exist behind the
body and there are no waves upstream. Equation 10 imposes the condition that the disturbance velocity
potential decays with increasing depth.
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3.2 Derivation of Green’s Functions

The disturbance velocity potential solution can be obtained from the summation of a Green’s function
solution, Gyj(# ,£). That is, the Green’s function solution is an expression modelling a single source of
unit strength in the fluid system.

L
¢ij(e , &) = QE)Gij(=;€,0,{ = —f)d¢ (11)

wft

This implies that ¢;;(z ,&) in the boundary conditions 5 - 10 can be replaced by G;j(z ,£)
To ensure that equation 5 is satisfied, it is assumed that the Green’s functions are of the form

bij . 00 iwt(z— + -¢(<0
Gij(z,ﬁ)z—z"—;/ jo HlvrG-Olgpag T §_§>0
-

Ed oo
+ f f [Asj (k, 0)e** + Bij(k,8)e**] e*vdkdo (12)
w0
for j=1,2,3 and i=1,2,3. Here 6;; denotes the Kronecker delta function,

w=(x—E)cost + (y— n)siné (13)

and Bs;(k,#) = 0 to comply with the condition stated in equation 10.

The method of solution involves the substitution of the Green’s functions into the free surface and
interface conditions, thus forming a system of equations from which the unknown coefficients 4;;(k,0)
and B;;j(k,0) can be determined.
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3.6 Application of the radiation condition

The Green’s functions 15 - 17, 19 - 21 and 23 - 25 now satisfy the boundary conditions 5-8 and 10,
the radiation condition however has yet to be addressed. The wavenumber integration, involving the
circumvention of the singularities present in the Green’s functions, provides an opportunity to examine
the functions as £ — oco. The upstream expressions are then subtracted from the Green’s functions to
provide equations satisfying all boundary conditions. An example of this process for a body located in
the upper layer of a two layer fluid is given by Wang (1989), pages 70-78.

3.7 Complete velocity potentials
The following Green’s functions comply with all the boundary conditions described in 3.1

_ {11 F;i(k,0)C(k, 8) 5 Fo,(8)S(ky,0)
Gij(x ,&) = —6; (5+3)+—/ PV/ (k’ Dk g)dkd9+/0 —m—)-——dﬂ

Fij(ai, 0)5(u, 8)
+ dé 26
E/o (o1 — kg )Dg (o, 6) (26)
here P.V. denotes Cauchy’s principal value integral, a; is the I*" root of k determined from the equation
D{k,8) = 0 and N, is the number of non zero roots of D(k,8) =0,

C(k,8) = cos[k(z — &) cos 6] cos[k(y — 7) sin F] (27)

D(k,8) = 61k(1 — 82)(k + ks)e™**2 sinh(kt,)

E(1 — & )tanh(kty) . k(1 — 6,)tanh(kis)

—[cosh(kt1)+ 86, sinh(kt,)][cosh(kts)+82 sinh(ktz)][k— 1% 3, tanh(kt;) k- L7 6, tanh (kL) ] (28)

Do(k,8) = —[6165 + (1 = 8, )82~ K111 (1 — §,)e™2H(t143)) (29)
Dy(k,8) = Q{Lg”k’ﬁe—mﬁfﬂ (30)

Fo,(8) = —45162@?*!(”0 _ (31)

Fo,(0) = —482k; ehéﬁHn) (32)

Fo,(6) = —akpebr(+¢=2h-28) (33)

=V(z - - +(z—-¢)? (34)

r=V(z - & +y— 12 +(z+()? (35)

S(k, 6) = sin[k(z — £) cos 8] cos[k(y — n) sin 0] (36)

and the ‘F’ functions are defined as
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(sp) {esge-2 (3= N+ Cy+ D3 — 1)+ Fy + D]+ + ) = 9)(% = 1990 = 1D} (r150-54952(F4 + sm -
{eae-a[(FA =%+ Py + (e — D+ [Py + )0 + Ty = 9)] (%0 — 1)} (54028 — )P + &VMI = (9‘¥)s84
) {Dy-2(1 =00 —1) = 52 [Py — 00 + Py + DY g2y + ) + [55-2 (4 + 0) 9 + (T3 — )] — 52(F1 + 0) (70 — 1)] (/y — )} o242~ = (9 “9)784
(ev) oy [59-2073 = 9) = 52(F3 + )] 3%z~ = (9 ‘%) 18y
@) {23+ D09 = D+ 7+ 099+ (= 0] 132900 = 1) = Luayg2 (U= 010+ Py + D]+ (1 =000 = D] (i 032(71 +3) } 5309 = (0°0)%%

(%)
{2+ (9 — 1) — 5,2 [P = D'+ U+ 9] rige 23+ ) + [5y-2 [ + )70 + (' = 9] — 52077 + 109 ~ D] (4 — 1)} (crgra-2(F1 — 1) (T — Hm -

lage=2 [(F3 = )9+ (Fy + 0 + Uy + 9) (9 — 1)} ?3%-@3 — 3N — 1)+ y2 (11 + ¥)%0 + (Fy - t; e (F + *vml =(g'¥)°%d

(0%) Tni:ntrlug -9 -+ 2 [Py +9)% + (Jy - s& [sy-2(7y — 3) — 52(F7 + )] 9%9— = (g ‘¥) 2%y

(6) TJQE — %) = (rgergg-n?(fA + i 597248~ = (9

(s¢) (1201 = 1) = (r0?UT + 0] { Grmapi-2(0 = D@ = D + 5 [+ 0% + (U3 = 9]} 4~ = (g 0)la

{29) {2 =N+ U3+ DG~ D+ [Py + )% + (P = 0] (19— 1)} [54-2(43 = 9) ~ 552003 + )] (2a0039-20F7 — &m -

?L}%,u [(Fy =)o+ (Fa + 1l + 542000 — (P31 + u&, (esg—)y?(%¢ — T(Fy — (/3 + ﬁwu

?L}%-xa —DUT -1 + 2 [Py + )%+ (y - 5; [Py + )% + (F4 — )] .2U3 + smn = (9N
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In these expressions the lower limit of the theta integral, 6g, is given by

0 N, =2 UD S Ua

_J1 0<o<t
60 - 0 N,- = 9 91 S . S % U.:f < UO S Ucu (46)

_ 1 92 < 8 < 9]_

92 N,--— 9 91595% U0>Ucu
where

Ua
6, = ol [ 47
| = Ccos (Uu) (47)
85 = cos™! (U;:) (48)

3
Ua = (i) (49)

53

H

Use = (f?) (50)
bt (b —4a)7

=N 1
54 oa _ (51)
a= (1 - 61)(1 — 52)t1t2 (52)
b= (1 - 61)t1 + (1 — éz)tz + 61(1 - 62)t1 (53)

Substituting the Green’s functions into equation 11 and completing the £ integration produces the velocity
potential for the i** layer we find that when the body is moving in the j** layer

‘#’ij(:B,E)-_——éi"s}‘j‘(— ) jPVf Bk Pk O) g / Lo, (OPulky B)

2 (k — k;)D(k, ) Dy(8)

o 5 Filar, 0)Py(an, 0)

2 /eo {on — ks)Di(a, 0) 4 (54)
where
Py(k,8) = sin{kxz cos 8} cos [k(y — ) sin 0] Ps(k, 8) (55)
Py(k,0) = — cos(kx cos ) cos [k(y — n) sin 0] Ps(k, 0) (56)
d I (kLcosé kL kl cos8

.P3(k,8) = U(] (m) [S]Il ( ) ) - ?COSG ( 2 )] (57)

and the far field expressions for the velocity potentials are

: _ [7 Fo,(8)Pa(ky,6)
$ij(x ;f)—/o “""—D-'(;(T)—dﬂ

Fi; (a;,B)Pz(m, ) .
+E/o ] 0 Dk(ahﬂ)dg (58)

(e —
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The velocity potentials defined in equation 54 reduce to the velocity potentials describing a body
moving in a two layer fluid when either of the density ratios & or §; is equated to unity. The reduction
also occurs when either of the layer thicknesses is zero. Finally the velocity potential for a body moving
in a homogeneous fluid can be obtained when an appropriate combination of two of the four options
above are applied to equation 54.

4 Far field free surface and interface disturbances

The linearised disturbance on the free surface, {1, is given by

U,
Gz, y) = —g{l¢1j, (59)
and on the #** interface

1
Gz, y) = T — [P G, — pi19G-1);]  fori=2,3 (60)

Substituting equation 58 into equation 59 yields the far field surface elevation caused by the moving
prolate spheroid and this may be written in the form

2o [F FaOPGy,0)
“CED=T L T o

2Uo Fij(eq,0)Psy(ay,0)
L 2

de

and the far field interface elevation on the i** interface is given by

_ 2o [7 Fo;(0)Pa(ky,0)
Gilz,y) = _—.[o Do(0) 4
2U0 Fy; ((Il, P4(a;,€) .
Z] aj - kf)Dk(ar,H)dH fort=23 o
where
Py(k,0) = @g’i} (63)

5 Wave resistance
An expression for the wave resistance of the body can be derived using a three dimensional extension of
Lagally’s method (Sabuncu, 1961; Wang, 1989). In an ideal fluid a singularity @ = (¢, % ,( ) experiences

a resultant force due to the free stream and other singularities. The summation of these forces is equal
to the wave resistance. Mathematically for a slender body this can be written in the form

Ru=—tnp; [ QEIW55.(28) [omig ) & (64)

The substitution of equations 4, 11 and 26 into equation 64 gives

d 2 2 % % : ]
Ry = —47p; [2ﬂUu (f) I _/:L -[_kf £Gjj (=, &) |;¢=(f‘,q,() dédg (65)
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and with the substitution of G;;(=, £) together with the results

j Y sinfk(E — €) cos f]dgde’ = 0 (66)
A & 1 1 )
f_£ j_£ (¢ -8) (H + 3), |E=(£:'n,0 déde =0 (67)
we find that
2
B d\?|" [7 kscos8F,,(0)T(ks,0)
o =0 [”“’ (7) l / N0
7 a cosBFH (ar, YT, 8)
/e -~ ki)Di(ar,8) a6 (68)
where
2
T(k,8) = {k cis 5 ( iosﬂ sm(kTL cos8) — cos(%r"- cos 9)) } (69)

The wave resistance of a body moving in a two layer or homogeneous fluid may be obtained through
reducing the number of fluid layers as detailed in section 3.7.

6 Discussion of results

Figures 2, 3 and 4 are the free surface and interface elevations generated by a prolate spheroid moving in
the upper, middle and lower layers respectively. Only the port half of the disturbance is plotted as the
wave system is symmetrical about the body centreplane (ie the plane i = 0). The arca shown commences
one body length behind the stern and extends nine body lengths longitudinally and six body lengths
transversely from the centreline. The direction of motion of the body is towards the lower right hand
side of the page. In all three cases the density of the upper layer, p; = 1025 Kg/m?3, the density of the
middle layer, p» = 1026.5 Kg/m® and the density of the lower layer, p3 = 1028 K¢/m®. The speed of
the body is 2 m/s which lies in the supercritical region (Up > Uy ) for this fluid system. Therefore only
the divergent part of the wave system is present. Additional information relevent to the each figure can
be found in the captions.

"The free surface shears corresponding to figures 2, 3 and 4 are the figures 5, 6 and 7 respectively. As
previously, only the port balf of the disturbance is plotted and the area shown is the 9L x 6L rectangle
described in the paragraph above. The direction of motion of the body is towards the bottom of the
page.

Figure 8 demonstrates the effect of the ratio £/d on the wave resistance experienced by the body.
Here L/d = 15, 10 and 5 whilst a constant displacement is maintained. The effect of the diameter can
readily be seen in equation 68, for the diameter dimension appears only outside the integral as a fourth
power, the effect of length cannot be so easily determined as L also appears in the function T(k ). The
non dimensional wave resistance coeflicient is defined as R,/ 2p,sU0 When the body is in the upper
layer the effect of the free surface on Cy, can clearly be observed. The presence of the stratification in
the form of fluid layers produces a large spike at low Froude numbers when the body is moving in any
layer. It is this spike which causes the “dead water” effect.

Figure 9 reveals how the maximum values of free surface and interface elevations are related to
the speed of the body when the body is located in each layer. The maximum values of free surface
and interface elevations are the maximum values present in the area behind the body (ie 9L x 6L) as
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previously described. The interfaces closest to the body display two maxima and a minimum, other
interface disturbances have single peaks then decay monotonically with increasing speed.

Figures 10, 11, 12 and 13 display the change in the appearance of the free surface and interface wave
patterns when the speed of the body is increased. At Uy = 0.25 m/s the speed of the body is below the
lower critical speed. The wave system consists of transverse waves and no divergent waves are present.
As Uy increases to 0.50 m/s, a speed which is between the lower and upper critical speeds a transition
appears, a divergent contribution to the wave system is also apparent. Above the upper critical speed the
tranverse portion of the wave system disappears and the disturbance consists of only the divergent waves.
Any further increase in Uy causes the disturbance to be contained within a decreasingly small angle given
by % — 8. These transitions are continuous, the divergent part of the wave system gradually becomes
more prominent whilst the transverse part slowly decays. This implies that as the speed of the body
increases the energy in the wave system shifts from a conc entration at low frequency to a concentration
at high frequency.

The free surface shears corresponding to the wave systems generated at Uy = 0.25, 0.50, 1.50 and
3.00 m/s, ie the figures 10, 11, 12 and 13 are the figures 14, 15, 16 and 17 respectively.

Figures 18 and 19 display the effect of the variation of the middle layer density when all other variables
remain constant. The maximum values of elevations, currents and strains are the maximum values present
in the areca behind the body (ie 9L x 6L) as previously described. When ps = p; or p3 = p3 the three
layer fluid system reduces to a two layer fluid system. The points marked by triangles are the maximum
values of the disturbance obtained from two layer theory. The trend clearly is towards the two layer
results. The free surface disturbance increases when ps tends to p; whilst the first interface disturbance
displays a maximum when g5 is the average of the densities of the fluid from above and below the middle
layer. The second interface disturbance has a maximum and minimum value over the density range.

7 Conclusion

The three layer model qualitively and quantitatively predicts the fluid disturbances and body forces
produced by a body moving in a three layer fluid. The velocity potential, free surface elevation and wave
resistance expressions reduce firstly to two layer expressions then to expressions describing a body in a
homogeneous fluid. The “dead water” effect popularised by Ekman has been demonstrated to exist, its
magnitude now calculable from a velocity potential solution. The results of the three layer fluid system
will provide a useful comparison when the second stage of this investigation, a continuously stratified
fluid, requires validation.

From a submarine operational viewpoint, if we assume a correlation between wavemaking resis-
tance and wave pattern characteristics, there is evidence presented herein (e.g figure 8) to suggest that
there is a small window of Froude numbers where the wavemaking resistance is a minimum and hence
the wave pattern generated within the stratified fluid is less detectable. However before this operational
benefit can be substantiated, more theoretical and experimental studies are needed.
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Figure 2: Free surface and interface wave systems when the body is in the upper layer. Uy = 2.0 m/s

(F, = 0.064) L = 100.0md = 10.0mp; = 1025.0 Kg/m® p, = 1026.5 Kg/m3 p3 = 1028.0 Kg/m®
f, = 300mt, = 300mf = 15m
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Figure 3: Free surface and interface wave systems when the body is in the middle layer. Uy = 2.0 m/s
(Fo = 0.064) L = 100.0md = 10.0m p; = 1025.0 Kg/m? p; = 1026.5 Kg/m® p3 = 1028.0 Kg/m®
t1 = 300mt; = 300m f = 45m
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Figure 4: Free surface and interface wave systems when the body is in the lower layer. Uy = 2.0 m/s

(Fa = 0.064) L = 100.0md = 10.0mp;, = 1025.0 Kg/m® p; = 1026.5 Kg/m® p5 = 1028.0 Kg/m?
ty = 300mity, = 300mf = T5m
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Figure 5: Free surface shear when the body is in the upper layer. Up = 2.0 m/s (F, = 0.064)
L = 1000md = 100mp;, = 1025.0 Kg/m® p, = 10265 Kg/m® ps = 1028.0 Kg/m®
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Figure 6: Free surface shear when the body is in the middle layer. Up = 2.0 m/s (F, = 0.064)
L = 1000md = 100mp, = 10250 Kg/m® p, = 10265 Kg/m® ps = 1028.0 Kg/m®
ti = 300mit, = 300m f = 45m
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Figure 7: Free surface shear distribution when the body is in the lower layer. Uy = 2.0 m/s (F, = 0.064)
L = 1000md = 10.0mp, = 1025.0 Kg/m® p» = 1026.5 Kg/m3 ps = 1028.0 Kg/m3t, = 30.0m
ty = 300m f = H5m
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Figure 10: Free surface and interface wave systems for Uy = 0.25 m/s ( F, = 0.008 ) when the body
is in the upper layer. L = 1000m d = 10000 m p; = 1025.0 Kg/m® p, = 1026.5 Kg/m?
ps = 10280 Kg/m®*t; = 300miy; = 300m f=15m
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Figure 11: Free surface and interface wave systems for Uy = 0.50 m/s ( F;, = 0.016 ) when the body
is in the upper layer. L = 1000 md = 10.000 m p; = 1025.0 Kg/m® p, = 10265 Kg/m?
pa = 10280 Kg/m®t; = 300mit, = 300m f=156m
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Figure 12: Free surface and interface wave systems for Uy = 1.50 m/s ( F, = 0.048 ) when the body
is in the upper layer. L = 1000 md = 10.000 m py = 1025.0 Kg/m® p» = 1026.5 Kg/m®
ps = 1028.0 Kg/m®t, = 30.0mt; = 300m f =15m
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Figure 13: Free surface and interface wave systems for Uy = 3.00 m/s ( F, = 0.096 ) when the body
is in the upper layer. L = 1000 md = 10.000 m p; = 1025.0 Kg/m® p; = 1026.5 Kg/m?
ps = 10280 Kg/m®t; = 300mt, = 300m f =15m
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Figure 14: Free surface shear for Uy = 0.25 m/s when the body is in the upper layer. L 100.0 m
d = 10000 m p; = 1025.0 Kg/m® p» = 10265 Kg/m® p3 =
t = 300m f= 15m

= 1028.0 Kg/m3 1,

30.0 m
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Figure 15: Free surface shear for Uy = 0.50 m/s when the body is in the upper layer. L

d
iy
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300m f= 16m
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Figure 16: Free surface shear for U; = 1.50 m/s when the body is in the upper layer. L

d
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Figure 17: Free surface shear for Us = 3.00 m/s when the body is in the upper layer. L
d = 10000 m p; = 10250 Kg/m® p; = 10265 Kg/m® p3 =
ts = 30.0m f= 16m

= 1028.0 Kg/m3 t;



Ship Science Report No. 62

0.13

0.1

zetal (mm)

0.1

0.09

.08

1025

T T
1026 027 028
rho2 (Kg/m™3)

,’/\

zeta3 {mm)
$

8
|

;

T
w27 1028
rho2 (Kg/m~3)

T
1025

T L 1
1026 027 w0228
rho2 (Kg/m™3)

37

Figure 18: Maximum values of free surface and interface elevations for a variation of p» when the body

is in the lower layer. Uy = 2.0 m/s (F, = 0.064) L = 100.0 md = 10.000 m py = 1025.0 Kg/m?
ps = 10280 Kg/m®t; = 300mi, =

300m f = 75m
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Figure 19: Maximum values of the free surface velocity (¢) and shear (E) for a variation of p» when
the body is in the lower layer. Uy = 20 m/s (F, = 0.064) L = 1000 md = 10.000 m
pr = 1025.0 Kg/m3 p3 = 1028.0 Kg/m® ¢, = 300mit, = 300m f = 75 m



