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This thesis explores the phenomenon of target space duality at the 

quantmn level. Aspects of Abehan and non-Abehan variants are consid-

ered in the context of Batalin-Vilkovisky quantisation in order to de&ne 

path integrals. Obstacles to the construction of non-Abelian duals are 
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ther investigation relying upon any supersymmetry. 
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Chapter 1 

Quantization of Field Theories 

1.1 Introduction 

Field theory is the mainstay of modern particle physics. Lagrangian and 

Hamiltonian formulations of interacting fields have provided the most promis-

ing framework to date describing the observed fundamental forces. Whilst a 

Lagrangian density is a famihar object to all individuals working with Seld 

theories, it does not follow that it is always a conceptually simple matter to 

discuss such objects in a Quantum theoretical framework. One should not 

forget that the Lagrangians from which we draw the majority of our inspi-

ration are Classical objects; to be regarded as limits of the Quantum theory 
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10 CHAPTER 1 QC/ANTJZATfON O F FIELD THEOBJES 

that we aapire to describe. 

The framework in which the most progress has been made in describing 

held theories was introduced by Feynman and Kacs. This elegant description 

unihes one's approach to statistical mechanics and field theory. Physical 

observables pertaining to a set of generic fields are derived from what is 

referred to as a generating functional, or path integral, ^ 

Z = y [2:^] 

This is only a formal statement of how one calculates the generating func-

tional; it is tacitly assumed that one can synthesize a suitable quantum action 

5" [1̂ ] by some undiscussed means. This is not necessarily a simple task. A 

pertinent question to ask is: what can possibly go wrong? 

1.2 Symmetries of the Classical Act ion 

Since all of our understanding is derived from the existence of a Classical 

hmit, one's starting point is the Classical action. Is it sufhcient to insert 

such an object into the path integral? How might a Classical action disrupt 

the calculation of the path integral? One such failure arises if the action 

contains a redundancy in terms of the number of fields describing the phys-
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ical system, i.e. gauge symmetries make the transition from Classical to 

Quantum theoretical descriptions problematic. Why so? Imagine a local 

transformation of the fields labelled by a set of objects {A} which form a 

group under the action of a composition law 

Such that 

Under such transformations the action is unchanged, which is what we mean 

when we refer to a symmetry of the action. Such a degeneracy of the action 

may well interfere in the computation of the path integral, since it leads to 

an overcounting of physical states. 

Under this set of circumstances a means of control is required to dehne 

the required sum over histories. Roughly speaking, one ought to dehne a 

new measure of integration that 'divides out' the redundant integrations; 

mathematicians refer to this as determination of the Haar measure. 

Having had this possible inconvienience drawn to one's attention it is 

perhaps obvious how one controls such overcounting; one should fohate the 

summation over the phaae space dehned by the generic fields ^ in such a 
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way that, in any one such sheet, there is contained only one conhguration 

corresponding to any particular physical state of the system so described. 

Having stated the means by which one intends to attack the problem, there 

remains the matter of devising a suitable method to implement this approach. 

The prefered method in this publication, Batalin-Vilkovisky quantiza-

tion, is possibly not famihar to many readers. One proposes to look at a 

familiar tool in order to gain some insight into the reasons why one requires 

more refined methods. 

1.3 The De-Witt—FadeeV—Popov Method 

Most introductory level quantum Held theory textbooks make reference to 

the De-Witt-Fadeev-Popov Method [14, 22, 29, 3, 37], and so readers will 

be reassured when one considers functional of the form 

Z = y [D^]e -^MB[ / ]de t :F (1.1) 

The objects within this functional have certain properties which one shall 

describe. 

Under the action of a gauge transformation 
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These objects; the components of the meagnre of integration and the expo-

nentiated action, are invariant under the action of the gauge group. Often it 

is true that these objects are separately invariant. 

The functions z]} are a set of gauge variant functions of the Selds; 

there are as many / as there are parameters to describe the gauge group, it 

is in this sense that one might hope to factor out the redundancy inherent 

in a gauge Eeld theory. These / are employed in 'gauge &dng' the action 

when inserted into the functional B [/]. In addition, the / give rise to a 

Faddeev-Popov determinant in the path integral 

det.F = lA=I (1.2) 

Where continues to represent the gauge transformed fields, represent 

the parameters that allow one to describe elements of the gauge group. The 

Faddeev-Popov determinant is evaluated at the identity element of the gauge 

group, %. From this point one might ordinarily introduce a pair of Faddeev-

Popov ghost fields in order to promote the matrix.7^(a;,?/) into the action. 

In many cases it is true to say that the path integral, so assembled, is 

independant of the gauge hxing functionals /a and depends only on the choice 
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of functional B [/] through an irrelevant, constant normalizing factor. 

Let us examine this construction in greater detail and expose those prob-

lems which may arise. We begin with a trivial change of variables in (1.1) 

by an arbitrary gauge transformation 

Such a changing of variables naturally has no effect on the integration. 

Now we may make use of the invariance of the action and under local 

gauge transformations in order to write the path integral partly in terms of 

the original variables. 

Z - y [2)̂ ] [/ de t j r ^ 

The choice of gauge transformation was arbitrary, so it follows that the 

left hand side of (1.3) does not depend upon it. We are therefore free to 

integrate over all possible gauge transformations A with some appropriately 

chosen weighting functional p [A] 

Z y [ m ] P [A] = y M (1.5) 
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Where C [(̂ ] is given by the expression 

C [9̂ ] - y [DA] p [A] B [ / det F (1 .6) 

Equation (1.2) states that 

K] 
;a; 

(^A'^(^) 
(1.7) 

A'=I 

Now, A and A' are elements of a group, it follows that they can be composed 

to form another element of the same group 

A . A ' = A " ^ A , A ' j (1.8) 

From which it foUows that one may write the twice transformed 5eld ^ in 

(1.7) as 

(1.9) 

Having made this observation, one may re-write the m a t r i x JF 

Where we employ the (DeWitt) convention of summing over aU repeated 

indices including the spacetime variety. In order to construct this product 

one uses the chain rule and defines 

e%[A.A] s 
<>7' 

(̂ A"'y(z) 
A =A 
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and 

(̂ AT 

_ ^A"T'(z; A, A') 

- (^A'^(^) 

(1.10) 

(1.11) 
A'=I 

It then follows that 

det ^ = det ^ - det % 

One observes that det^ appears explicitly in (1.10) as the necessary Jacobian 

for the transition from integration over the parameters describing the group 

to integration over the gauge Sxing functionals [D/]. 

If it were then possible for one to make the choice for the weighting 

functional p [A] in the measure such that 

1 

p [A] = 
de fH 

It would then be true that the expression (1.6) would be an irrelevant con-

stant determined by ones choice of the functional B [/]. This much is stan-

dard lore in quantum held theory. It is important t h a t we remember how 

we arrived at this point, however. RecaU (1.8); we have mad6 use of one 

of the properties of group elements under composistion, in addition we have 

assumed that this mapping is unique. That is to say tha t for every X acting 

upon aji arbitrary group element A one will arrive at a distinct element of the 
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same group A". This is not the only possible complication, we also assume 

that the generators of the group are hnearly independent. If this fails to be 

the cage, then the determinant of will be singular and hence the proposed 

choice of weighting functional will be inadmissable. 

The appearance of additional redundancy in one's description of a given 

symmetry lead to comphcations in quantization of a Seld theory. This is 

far from a hopeless state of aEairs to arrive at. What one ought to do, 

is 'gauge fix the gauge fixing'. It follows that one's experience with the 

DeWitt-Faddeev-Popov method is far hrom wasted, all that one needs to do 

is extend (1.1) in order to foliate the path integral correctly. This is where 

the Batalin-Vilkovisky formalism comes to the fore. 

1.4 Batalin—Vilkovisky Formalism 

The Anti-Eeld or Batalin-Vilkovisky formalism is a well established means of 

describing quantum field theories that contain arbitrary degrees of reducible 

symmetry. There are certainly many papers that utilise and describe the 

implementation of this method [4, 5, 6]. One intends to discuss this method 

in some detail as it will be of considerable signiEcance elsewhere in this thesis. 
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Let us begin by describing a theory which at the classical level contains 

a set of Eelds labelled by these Eelds will, in general, be a mixture of 

Graasmann odd and even objects. These fields will be permitted to undergo a 

set of local, Held dependent transformations, where an arbitrciry inhnitesimal 

change can be written 

Where one denotes a set of gauge parameters by and one continues to 

employ a De-Witt summation convention; the index (to representing a set 

of internal and space-time indices, which are summed over on repetition. 

If the Classical action, (9c('̂ ) is left invariant under (1.12) then this is, of 

course, a symmetry of the theory. If the set of generators are linearly 

independent in the vicinity of stationary points of the theory, then the theory 

is said to possess an irreducible symmetry. One may feel free to use the 

Fadeev-Popov procedure in order to quantize such a theory. In Batalin-

Vilkovisky terminology such a class of theory would be known aa a 'zero 

stage' theory, at this point one may weU understand the purpose of the 

numerical subscript attached to the gauge parameter. A hrst stage theory is 

such that R^g (î ) possesses non-trivial zero eigenvectors ((̂ ) with respect 

to the index ao. One can extend this notion to a theory of second stage 
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reducibility, should possess non-trivial zero eigenvectors with respect 

to the index cti; furthermore should subsequent eigenvectors also possess 

non-trivial zero eigenvectors then one can continue this notion indefinitely to 

an stage of reducibihty. For the purposes of this thesis it will be suScient 

to restrict the discussion to 6rst stage theories only. 

1.4.1 Notat ion and Conventions 

Before one elaborates on this notion it would be wise to introduce some 

conventions that will be employed in discussing this formalism. In order to 

discuss helds of Grassmann odd or even character one introduces the operator 

0 If is Grassmann even 
(1.13) 

1 If is Grassmann odd 

In this instance ,8̂  is intended to represent a held, a generator or any com-

bination of these objects; it is often convienient to refer to the Gragsmann 

character of an object via reference to the index attached to it. Similarly one 

shall employ an operator which reveals the ghost number o f ^ \ 

The formalism demands that one calculates functional derivatives of the 

fields. When the Grassmann character of an object is not specihed then it is 
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useful to employ two distinct derivatives 

^ Which acts from the right hand side. (1-14) 

66' Which acts from the left hand side. (1 15) 

The notation employed readily allows one to discuss various operations in 

terms of actions carried out upon matrices, as is common practise in quantum 

held theory. For example, if one wishes to determine whether a propagator 

is invertible, one must consider the rank of such an operator. The rank of a 

matrix is, aa always, the maximal size of its invertible square minor. For an 

even parity matrix, X, the rank of such a matrix may be decomposed into 

the ranks of its Bose-Bose and Fermi-Fermi blocks. 

X = X + X 

refers to the Bose-Bose and Fermi-Fermi blocks respectively. 

In general one's sets will contain objects of Grassmann odd and Grass-

mann even character 

i=l,2,. . . ,n 

However, when one wishes to distinguish between these objects then we will 

make further use of to separate Grassmann even and Grassmann odd 



14. BATAlJN-VILKOVJSKy FORMALISM 21 

quantities respectively, always remembering that 

i = l , 2 , . . . ,n+ 4- n_ 

It is now appropriate to begin describing the framework in which one 

shall operate. 

1.4.2 First Stage Reducible Theories 

It is assumed the the classical action up to gauge transformations, 

possesses at least one stationary point î o 

= 0 (1.16) 
<̂0 

In other words one requires the action to be capable of describing phenom-

ena that can be understood at the classical level. This is essential to our 

interpretation Irrespective of the formulation employed to place the theory 

on the quantum level. It is necessary to be able to dehne clear in and out 

states which one can observe at the macroscopic level, aa this is the scale at 

which any experimentalist would exist and, aa such, forces (1.16) upon one. 

In addition we expect the action to be infinitely smooth (diSerentiable) in 

the vicinity of (;6o. 
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It has already been expressed (1.12) that one begins with the expectation 

that the theory will be invariant under the action of a local gauge transfor-

mation; therefore we also assume the existence ofmo(= mo+ Noether 

identities in a diSerentiable neighbourhood of the classical solution 

a o ^ l , .,n%o (1.17) 

In addition, the generators of the transformations are taken to be regular 

and diEerentiable. The Grassman parity of the generator is easily deduced 

when one considers (1.12) 

e (-RL(9!')) = G, + Gao (mod 2) (1.18) 

This guarantees that gauge transformed helds have the correct Grassman 

character, relative to the initial set of helds. 

One shall be discussing theories classified by a Erst stage reducible sym-

metry; which, as previously stated, implies the existence of a set of non-trivial 

zero eigenvectors for the generators of the gauge transformation, (^) 

= 0 (1.19) 

The index a i labels the set of non-trivial zero eigenvectors and is such that 

CKi = 1 , . . . , m i (= 4- mi_). One sees in general t ha t one can write the 
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parameters for a local gauge transformation 

(1.20) 

All gauge transformations connected by the new gauge parameter are 

seen to be equivalent, with respect to transformations acting upon the Eelds 

upon examination of (1.12) and (1.19). The Grassmann character ofZ^° 

is seen, after examination of (120) to be 

^ (mod 2) (1.21) 

One has stated in advance that the symmetry is Erst stage reducible. 

This implies that there cannot be found a set of non-trivial zero eigenvectors 

for 

J [ K i m I = o (1-22) 

If the statement (1.22) is not satished, then the theory will have a symmetry 

that is at least second stage reducible. 

Having established what one means by first stage reducibility, it is simple 

to re-state this information in the language of matrices 

= W - (1.23) 

Equation (1.23) makes transparent the fact that gauge trajisformations are 

unique only after factoring out the action of upon the parameters of the 
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transformation (1.20). The inequality in (1.23) must also be inserted, were 

it not to hold the gauge group would have a trivial action; it being possible 

to identify all transformations with the identity element by (1.20). 

Having insisted that (1.22) is true, then by construction 

(1.24) 

Having gathered this information, one is in a posistion to make a statement 

about an operator of particular interest in Eeld theory 

.Rant ± = — (mo — mi)j_ Mj. > (mo± — (1-25) 
<Ao 

The inequality in (125) is necessary in order for the action to describe a 

physically interesting system. Were the inequahty not satisfied then aU Eeld 

conEgurations could be identiEed with a constant set of Eelds via the trans-

formation (1.12). 

It is already known that the Eeld conEgurations are physically equiva-

lent up to gauge transformations (112). In addition gauge transformations 

are only unique up to the action of upon the gauge parameters (1.20). 

Having factored out the action of then it is seen that there are only 

(mo — mi) true gauge parameters. Factoring out true gauge transformations 

from the Eeld conEgurations allows one to construct physical objects such 
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as propagators. A properly gauge Exed action will have mo gauge fixing 

conditions and conditions to fix the gauge fixing; this will lead to (1.25) 

possessing maximal rank in the gauge Exed action, and thus invertible propa-

gators for the physical degrees of freedom. These two sets of necessary gauge 

fixing conditions will lead to two families of ghost Eelds being introduced into 

the action; ghosts and 'ghosts-for-ghosts% so named for the reasons outhned 

above. 

One can go on to describe Selds with higher degrees of reducibihty. One 

might guess that further families of ghosts would appear, associated with 

additional redundancy in the description of the gauge symmetry; and one 

would be correct in this assumption. 

1.5 Gauge Fixing by the Anti-Field M e t h o d 

Central to the formahsm of Batalin-Vilkovisky in the gauge fixing of a Clas-

sical action is the notion of the anti-Reld. These objects will be introduced 

into the action in order to insert gauge Exing conditions in a logical fashion. 

In order to gauge 6x an action it is necessary to enlarge the space of fields 

employed to accomodate the ghosts. The Classical fields^' wiU be members 
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of a larger set the content of which is to be determined i. e. 

C 0"^ 

It is to the larger set that one associates the set of anti-fields 

The anti-helds possess opposite Grassmann character to the corresponding 

held 

e 

4-1 (mod 2) (1-26) 

The anti-helds will implement gauge fixing, this is achieved by selecting 

surface on the phase space of $* described by 

E : r = (1.27) 

The functional ^ ( $ ) is of Grassmann odd character, and is known as the 

gauge fixing fermion. 

Having introduced two abstract sets of helds and anti-fields, one deSnes 

the action of the anti-bracket which may act upon two arbitrary functionala 

X,Y 

y. _ 4% StY S,X 6,Y 

With these tools in hand, one can proceed to develop the means to deter-

mine how one extends the Classical action 5c (î ) to incorporate the ghosts 
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and anti-Eelds. Consider a bosonic functional W($,0*) tha t satisRes the 

constraint 

A exp = 0, where A = ^ (1.29) 
h 

Observe that one has not adopted a system of natural units in which/i = 1, 

as the Planck constant will be employed later aa a counting parameter. The 

compact equation (1.29) can be re-expressed 

A expI — 
h 

Ignoring zero valued terms, 

E 
TJ—O 

oo 

n=0 

1 / 
Ml \ (̂ 0"̂  /I \ ^ 

/ 
RZ I A 

.4 

_ n fzW 
y /I I A V y 

1 - w 
Ti! \ 

^ 1 grW azW 
A2 

- l A W 

(1.30) 

That is, 

^ ( ^ ) = " p ( ^ ) 

This manipulation (1.31) allows one to re-express the condition onW (1.29) 

in the following form 

1 
( w , yy) = a A w (1.32) 
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Equation (1.32) shall be referred to as the moafer egwô z'oTi 

It would not be unnatural to ask why one might be particularly interested 

in functional sa t i s^ng (1.32). In order to answer this question one should 

consider a path integral of the functional W constrained as in (1.27) 

= W = (1.33) 

So that one may write the path integral 

= y M exp ^ (1.34) 

Having so expressed the path integral, let us consider the consequences of 

changing the gauge hxing fermion by an inhnitesimal amount 

^ ( 0 ) - 4 . ^ ( $ ) + ' ^ ( $ ) 

It is sufficient to restrict attention to such inhnitesimal deformations of the 

functional since hnite deformations may be obtained by integration of such 

inhnitesimal transformations. One simultaneously makes a trajisformation of 

the helds, $ which for inhnitesimal transformations may be written as 

$ — 0 — $ + 

(1.35) 
n 

1 W , 
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This transformation is the generahzation of the Becchi-Rouet-Stora-Tyutin 

(BRST) transformation. 

Performing a change of variables in a path integral requires one to calcu-

late a Jacobian. The associated matrix is obtained by di&rentiating (1.35) 

(1.36) 

From which the Jacobian is a simple matter to obtain for inEnitesimali/' 

= 1 _ 1 ^ ^ + O (1.37) 

One can make use of the Grassmann character of the gauge fixing fermion 

and the functionally diSerentiated action to write 

= V' -

-AW-i/ ' (1.38) 

The Snal observation may be made after examining the deiinition of A, 

(1.29), and making use of the fact that both and AW are of Graasmann 

odd character. 

It is also useful to make the observation that 

(1.39) 
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Which follows from the dehnition of the surfcice, 2 (127) . The two observa-

tions (1.38), (1.39) can be used to simplify the expression for the Jacobian 

when substituted into (1.37); exphcitly one can write that for inEnitesimal 

transformations 

1 
(1.40) = 1 + ' V' 

One should also relate the transformed action to the original functional 

(1.41) 

One may substitute the explicit form for the transformation of the Eelds $ 

using (1.35). Also, making use of the dehnition of t h e surface S, (1.27), one 

arrives at the expression 

(5yv = —— 
1 

2a ^ y 

2% ' (̂ 0* (^0^ y 

• ^ 

VJ 

(1.42) 

The Enal form foUows after the change in sign that results from changing a 

right to a left fermionic derivative when acting upon a bosonic functional. In 

addition the definition (128) was also employed to arrive at (142). 
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One may write the path integral in the transformed Helds in the form 

1 / / AW 
M exp ^ j exp j (1.43) 

J* 

It is straightforward to substitute the expressions (1.40) and (1.42) into the 

path integral, which will allow one to examine the eEect of selecting a diEerent 

gauge Hxing fermion. 

— + (144) 

Since one conGnes the discussions to functionals satisfying the quantum mas-

ter equation (1.32) it is true that 

= y [ % ] e x p ^ - ^ ^ (1.45) 

= 

One sees that the path integral, Z, is independent of the choice of gauge 

fixing fermion provided that it satisfies the quantum master equation 

(1.32). It follows that the choice of gauge fermion is completely arbitrary, 

provided that the path integral is non-degenerate following t h e selection of 

this gauge Exing device. 
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Chapter 2 

Dualities in Quantum Field 

Theories 

2.1 Introduction 

Duality is a word seen frequently in the literature in the fields of elementary 

particle physics [19, 35, 18, 36] and statistical mechanics [24]. Duality, as 

may perhaps surprise some readers, was recognized aa a powerful concept 

some time ago in both held theory [13, 28] and statistical mechanics. 

In some instances it is possible to discover two formulations that describe 

a physical system. If it is possible to End two such complementary perspec-

33 
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tives then the system is said to exhibit 

There are numerous examples of dual formulations. The most well known 

example of a duality relation is the identtBcation between the two dimensional 

Sine-Gordon and massive Thirring models [11, 26]. The duality transforma-

tion relates the free bosons of the Sine-Gordon model with the free fermions 

of the Thirring model. Two features of this example stand out as character-

istic of duality relations. Strong coupling in one model is exchanged for weak 

coupling in the other. Fundamental objects in the weakly coupled theory are 

identiBed with solitonic excitations of the dual construction. 

Amongst the many categories that exist labelling dualities, one shall con-

sider target space, or T- , duality in particular [23]. In particular, it is one's 

aim to consider duality within the context of quantum, rather than Classi-

cal, held theory. This is a major departure from those discussions that are 

already located within the literature. 

Whilst Lagrangian densities are famihar objects to all individuals working 

with held theories, it does not foUow that it is always a conceptually simple 

matter to discuss such objects in a Quantum theoretical framework. One 

should not forget that the Lagrangians from which one draws the majority of 

our inspiration are Classical objects; to be regarded as limits of the Quantum 
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theory that one aspires to describe. 

The framework in which the most progress has been made in describing 

field theories was introduced by Dirac [28], Feymnan [15, 16] and Kacs. This 

elegant description miifies one's approach to statistical mechanics and held 

theory. Physical observables pertaining to a set of generic helds^, are derived 

from what is referred to as a generating functional, or path integral, Z 

Z = f [IM] 

This is only a formal statement of how one calculates the generating func-

tional; it is tacitly assumed that one can synthesize a suitable quantum action 

5' [<̂ ] by some undiscussed means. This is not necessarily a simple taak. 

2.2 Description of T-Duali ty 

T-Duahty can be understood in the context of the two dimensional sigma 

model construction[8, 10, 7, 30]. Sigma models map one from a base to 

a target space, with coordinates in the target space identiEed with scalar 

excitations from the perspective of the base. The action of the sigma model 

contains quantities that one identifies as possessing geometrical significance 

in the target space. In particular, the target space is endowed with a metric 



36 CHAPTER 2. DUAMTJES 2N QUANTC/M MELD TEEORJES 

and torsion. 

T-duality connects target spaces with apparently diSerent characteristics. 

T-duahty is a symmetry which relates physical measurements made within 

a large space-time radius to those made within space-times of small radii. 

2.2.1 Abelian Discussion 

There are a number of ways of demonstrating T-duality. Buscher [8, 10, 7] de-

scribes a manifold containing a metric, torsion and dilaton Held One requires 

that the manifold contains at least one Abelian symmetry, in this instance. 

The action of the symmetry is such that the helds are left invariant, up to 

an exterior derivative in the case of the torsion. One may choose a system 

of coordinates adapted to the abelian symmetry group, with each Abelian 

symmetry acting purely upon one coordinate. In order to familarise oneself 

with the practice, consider the most general dualizable bosonic non-linear 

sigma-model; deEned on a manifold M of dimension (n -)-1) and containing 

an Abelian isometry: 

y 4- -I- (2.1) 

Where Greek indices are understood to reside on the world-sheet and 
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Roman characters belong to M. The fields present are the dilaton ^ coupled 

to the two dimensional Ricci scalar derived &om metric 

The metric g- and torsion potential A on M are understood to be con-

structed within a coordinate system adapted to the isometry and will be 

independant of one of the coordinates, say. We begin by 'gauging' the 

isometry, replacing world-sheet partial derivatives acting on with a co-

variant operator D, i.e. : 

(2-2) 

In addition, we restrict the new held via a Lagrange multiplier term,.$2,: 

s . = ^ / (2.3) 

is the famihar held strength tenaor; 

(2.4) 

The Lagrange multiplier is Constraining the held A by Lagrange 

multiphers in this fashion allows these helds to return the derivatives of the 

original model. Integrating over the multiphers returns one t o the original 
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state of affairs, integrating over the vector helds constructs the dual model. 

Explicitly the modihed action is written; 

<$ = — ^ / d ĉr 
47ra 

^ (^ooA,,A^ + 2p[HA^a^a;" + ^ 

(2.5) 

This with the understanding that summation overz, j does not include 1°. 

Furthermore, one has used the gauge freedom available to reduce expressions 

involving covariant derivatives to ehminate exphcit reference to^^a;''. If one 

does integrate over the vector held, then the following result is arrived at; 

0 = (2gooA^ + 2g(xa^z') + e'''' - 8^:0°) (2.6) 

Substituting this result back into (2.5) leads to the following to the identifi-

cation of a dual sigma model; 

The new field set are to be related to the previous model like so; 

= (2.8) 

The dual metric is given by; 

m = i s«. = t m-m- P-9) 
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With the torsion potential described by; 

K. = ~h,n = H h„ = - h „ = ft,,. + (2 .10) 

The duality transformation is then seen, by (2.9), to act in the fashion dis-

cussed eazher, inverting radii. 

Having absorbed this observation made at the Classical level, it is in-

tended that one's thesis will expand upon this notion and discuss T- Duahty 

at the Quantum level, using a path integral Batalin-Vilkovisky formulation. 

In addition, the T - Duality symmetry group will be further expajided be-

yond the Abelian, and further perturbative Quantum Geld theoretical results 

presented. Significantly the held theory that will be considered will contain 

Bosonic and Fermionic sectors but will not be augmented by any amount of 

Supersymmetry; which further sets this work apart from that of others. 

2.3 Non-Abel ian Discussion 

The act of implementing non-Abelian duality in two dimensional sigma mod-

els results unavoidably in an additional reducible symmetry. The Batahn-

Vilkovisky formalism is employed to handle this new symmetry. Valuable 

lessons are learnt here with respect to non-Abelian duality. We emphasise. 
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in pazticular, the eEects of the ghost sector corresponding to this symmetry 

on non-Abehan duahty. 

Duality transformations have understandably brought about a surge of 

new interests in string theory. The importance of these transformations hes 

in their ability to connect seemingly diEerent string backgrounds. This might 

shed some light on one of the longstanding problems in superstring theory, 

namely the non-uniqueness of the low energy physics expected from this 

theory. As it is well-known, the phenomenology predicted by superstring 

theory depends upon the way the extra six dimensions are compactihed. 

Hence, if the space on which one carries out the compactihcation are related 

to each other by duality transformations, then their corresponding low energy 

physics should also be related. This is also the idea behind mirror symmetry 

[33] which might well be another manifestation of duality transformations 

[2, 20]. 

The duality transformation that concerns us here is the so-called T -

duality [9]. These can be understood as canonical transformations on the 

phase space of a sigma model [25]. There is, however, a well defined procedure 

at the level of the Lagrangian which allows the construction of dual theories 

[31]. It consists in gauging an isometry group of a non-hnear sigma model 
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and at the same time restricting, by means of a Lagrange mnltipher, the 

gauge field to be pure gauge. The integration over the gauge fields (without 

a kinetic term) leads to the dual theory. 

The duality transformation is termed Abelian or non-Abelian depending 

on whether the isometry group is Abeliaji or not. Abelian duality haa proved 

to be of crucial importance in string [1] and membrane [34, 17] theories. On 

the other hand, its non-Abelian counterpart has not yet been fully exploited 

[17]. This is because non-Abelian duality is hampered by conceptual prob-

lems. In particular, performing the transformation twice does not return the 

original model [21, 32], and as such the term duality can only be understood 

to refer to the Lagrange term that connects the original and t h e dual model. 

One of the issues in non-Abehan duality is the appearance, as explained 

below, of a new local symmetry in the action [27]. 

As stated, it is our aim to deal with the quantisation of such theories and 

hence it will be necessary to deal with this new symmetry. The understanding 

of this symmetry is crucial to any possible exploitation ( and probably to the 

understanding of the other issues) of non-Abelian duality. We outline below 

the manifestation of this symmetry. As this symmetry is reducible we wiU 

employ the previously discussed Batalin-Vilkovisky method in order to arrive 
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at a sensibly deEned path integral [5]. Recalling previous discussion it should 

then be obvious that the new symmetry will have an impact upon the ghost 

sector of a properly quantized action. 

Suppose that one has a two-dimensional theory described by an action 

S (y)) which is invariant under some global symmetry for the generic fields 

y. Let us also assume that the generators of this symmetry form a closed 

Lie algebra Furthermore it is also assumed tha t one can gauge these 

symmetry in an anomaly-free way. It is then straightforward to End the dual 

of this theory at the classical level. This is found by considering the gauge 

invariant action [31] 

= ^ ( y , A ) + yd^a ; t r (AE) 

E = . (2.11) 

Here 5" (y, v4) is the gauged version of 5" (y;). The gauge field takes value 

in the Lie algebra ^ and is the corresponding 

Aeld strength. The trace tr is the invariant bi-linear form of the Lie algebra 

^ such that tr (%%) = 

The new Seld A is a Lagrange multiplier which, at the classical level, 

imposes the constraints = 0. This is then solved by where 

p is an element in the Lie group corresponding t o^ . Recall now that and 
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A transform as 

A — ( 2 . 1 2 ) 

where is the Lie algebra valued gauge function. Of course, the transforma-

tion of the generic Aeld yp is also governed by this same function. Using this 

gauge freedom, we can choose a gauge such thatg = 1. Hence, in this gauge, 

the gauge held vanishes and the action 7 (y, A, A) is classically equivalent to 

the original action 5" (y?). 

At the classical level, the dual theory is obtained by keeping the Lagrange 

multiplier and eliminating instead the gauge helds by their equations of mo-

tion. We are supposing that the gauge fields appear quadratically at most 

and without derivatives in the gauged action 5" (y, A). To get the right de-

grees of freedom in the dual theory a gauge fixing condition must be chosen. 

The issues that concerns us in this paper are those necessary to imple-

ment the duality transformation at the quantum level. This is a well-known 

procedure if the Lie algebra ^ is Abehan. However, if ^ is non-Abelian then 

the matter must be considered carefuUy. This is mainly because the action 

(2.11) now hag another local symmetry which must be taken into account 

in the path integral. Due to the properties of the trace, the gauge invariant 
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action 7 is also invariant under 

A —> A + [ ( , E] 

A^ —>- A,, , —>- y; , (2.13) 

where ^ is the new local gauge function corresponding to this extra sym-

metry. It should be noted that if the gauge function ^ takes value in the 

centre (or maximal ideal) of the Lie algebra^, then the transformation of A 

vanishes; thus the new symmetry is reducible (i.e., not all the components 

of A enter the transformation). This fact will have consequences, as we will 

see, on the Faddeev-Popov ghosts required to gauge fix this new symmetry. 

In the rest of the paper and for simplicity, we will consider only the caae 

when ^ is semi-simple (that is, no maximal ideals are present in^) ; hence 

the new transformation is reducible only when ^ is proportional to F . In 

this cage in the formalism of Batahn-Vilkovosky, which suitably deals with 

reducible symmetries, our symmetry is hrst-stage reducible. We will apply 

this formahgm to quantise the extra symmetry. 

To obtain the dual theory, we have to perform the path integral over the 

A^ and A in the action (2.11). There are, therefore, two symmetries that 

one needs to gauge 5x. The hrst one is the usual local gauge transformation 

in (2.12) and the second is the extra symmetry in (2.13). Since the two 
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symmetries are completely independent and diEerent in nature, it is therefore 

essential to keep one symmetry intact if the other is being Exed. 

We choose Srst to fix the extra symmetry in (2.13) keeping the gauge 

symmetry in (2.12) intact. This is easily achieved if we choose a gauge fixing 

condition for the symmetry (2.13) which transforms covariantly with respect 

to the local gauge transformation (2.12). 

2.4 Construction of Batalin—Vilkovisky Ac-

tions 

The Batalin-Vilkovisky formalism manages theories with reducible symme-

tries. The Faddeev-Popov procedure is, in general, not sufficient for such 

theories. A simplistic use of the Becchi-Rouet-Storei-Tyutin (BRST) quanti-

sation is also inappropriate in this case. We will expand the formal discussion 

of the earher chapter to provide some useful results for later use. 

Let be a classical action for some generic fields 2 = 1,. . . , M (fermionic 

or bosonic in nature). The equations of motion of this gauge action are as-

sumed to possess at least one solution î o. Let mo be the number of gauge 

parameters (fermionic and bosonic) of this gauge invariant action; hence mo 
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Noetber identities hold 

d S 
Q!o = l, . . ,mo . (2.14) 

Kg (^) 9^6 the generators of the gauge transformations and are supposed 

to be regular functionals of the fields . These transformations are written 

as where are the gauge parameters. We will denote by 

and the right ajid left functional derivatives, respectively. We also use 

the de Witt convention that summation over repeated indices includes an 

integration over spacetime. 

The gauge symmetry is then reducible if there exists (at least on-shell) a 

set of mi zero-eigenvalue eigenvectors such that 

, a i = l, . (2.15) 

The symmetry is said to be first-stage reducible if the null vectors 

independent. We will consider here only symmetries such as these. 

The Eelds are part of a larger set of Selds A = 1 , . . . , # (the rest of 

the Selds being the diSerent ghosts and some Lagrange multipliers necessary 

for gauge Exing). The Batahn-Vilkovisky formalism associates with each Eeld 

an anti-Eeld possessing opposite statistics. These anti-Selds are just 

tools for constructing a BRST invariant action. If we denote by e 
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the statistics of the Eeld then the fermion number of the anti-Eeld is 

e ^ + 1 (mod2). 

It is then guaranteed that there exists a BRST invariant quantum action 

S ($, $*) which satisGes the two requirements [5] 

The 5rst expression demands that one can retrieve thet correct classical Eeld 

theory. The second equation is what is known as the maater equation and 

its solution will be our main concern. 

The minimum number of Eelds contained within a first-stage reducible 

theory is the number of fields in j The helds 

C^° ajre assigned a ghost number equal to 1 and are the usual Faddeev-Popov 

ghosts, whilst are the ghosts-for-ghosts fields and have ghost number 

equal to 2. Of course, the 6eld has zero ghost number. The statistics of 

a 6eld, or anti-Eeld, is the sum of the statistics of its index and the absolute 

value of its ghost number. The first stage in constructing a BRST invariant 

theory is to associate an action S ($min, ^min) ^^th this minimum set of Eelds. 

This action can be expanded in powers of the anti-helds, where each term in 

the expansion haa zero ghost number. The leading terms in this expemsion 
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are of the form [51 

'(0)oo 
yao I /yao /̂ 7o /̂ /)o 
^(1)ai^(]) +-(;8o70^(0)^(0) 

+ c ; (l)aii 
J oil /-fCno/̂ A I pai 

K<p; 

«̂O!0 I niao /̂ î o /^o 
'-"(0)^(1) + "̂ -̂Yogo (-'(0)^(0)^(0) 

(2.17) 

There are no more terms in this expansion for the usual Srst-stage reducible 

theories. 

The master equation then imposes the following conditions on the diEer-

ent coeGcients in the above expansion 

D* r'ao _ n 
(0) ^ ^ ' 

(2.18) 

(2.19) 

( - 1 ) " = <<2.20) 

'' /̂ o7o (0) (0) pj f̂ So I nrpao i^lo rpflo /̂ l̂ o /̂ Sq , yao rpdi /̂ i5q ^70 /̂ So 

^ ^ ^ o W o ^ ( 0 ) ^ ( 0 ) ^ ( 0 ) l -"-J 0 (2.21) 

(1)A (1) n j /̂ fo I o/y-iao ŷ To y^o (̂(1 , yao /I /3i /̂ ^o 
-̂ ')o (̂O) + ^'^^o7o^(0)^(l),;i^(l) + ^(l),9i "^71^0^(0) (-̂ (1) 

+ (-1)"'" = 0 • (2.22) 
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Here e, = e whilst Ea,, is the Grassmann parity of the gauge parameter. 

The minimum sets of fields $nun Emd of anti-6elds can be enlarged to 

include more helds and their corresponding anti-Helds. The master equation 

implies that, if S ($rnin, is a solution, then 

s («, * ' ) = s + c-g-nwA + n;?; (2.23) 

is also a solution. The new helds may be employed in gauge Gxing as we will 

see shortly, and are assigned the ghost numbers 

g h ( n ( 0 ) « J = g h ( c { r ; ) = 0 

gh = - g h (C(o).o) = - g h (n(i)m) = gh = 1 

gh(c[^:) = - g h 2 . (2.24) 

The Helds with a star denote their corresponding anti-helds. 

The anti-helds are not physical fields and should be ehminated from the 

theory. This is achieved through the introduction of what is known as the 

gauge-hxing fermion ^ ($). This is a functional of odd statistics and having 

a ghost number equal to —1. The anti-helds in the full action (2.23) are then 

replaced by 
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The functional ^ has to satisfy certain conditions in order to make all 

the ghost propagators invertible. The simplest choice of functional ^ for 

first-stage reducible theories takes the form 

$ (4) = C,0)o..X°" + , (2,26) 

where (< '̂) is an admissible gauge condition for the classical Eelds 

The matrices and are some suitable maximal rank matrices which 

remove the degeneracy of the kinetic term of the ghosts and (7(0)0 -

Note that the integration in the path integral over the H's of (2.23) leads 

to three sets of gauge conditions. These conditions are in the form of 

functions. To obtain the usual quadratic gauge-Exing Lagrangian (the 't 

Hooft method), a hnear term in the H's is added to In the simplest cases 

the following gauge fermion leads to to a quadratic gauge-Exing Lagrangian 

^ = ^ + 

(2.27) 

where ^ is given in (2.26) and and 0^ ' are some invertible matrices 

assumed to contain no derivatives. The integration over the H's will give 

Gaussian averages of gauge conditions instead of6-functions. This issue will 

be of considerable relevance when we consider non-Abelian duality in sigma 
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models. 

To end this brief review of the Batalin-Vilkovisky formalism, we provide 

a means to determine the BRST transformations of the diSerent Gelds. A 

generic quantity _P ($, $*) having statistics ep, has a BRST transformation 

given by 

( f , S ) . (2.28) 

This transformation is nilpotent = 0) by virtue of the master equation 

satisSed by S. This deSnition of the BRST transformation guarantees that 

S is, by construction, BRST invariant. The factor (—1)̂ ^ has been chosen 

to enforce graded Leibniz rules for 

Upon elimination of the anti-helds through (2.25), the actionS (0, 0* = 0^) 

is still BRST invariant. In general, however, the nilpotency of the BRST 

transformation holds only when the equations of motion of the quantum 

action S ($, = ^ ) are used. 

We are now at a stage where we can apply the Batalin-Vilkovisky formal-

ism to theories of the form given in (2.11). 
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2.5 Application of the Batalin- Vilkovisky For-

malism 

In order to become familiar with the general ideas of the anti-Eeld formalism, 

let ns start by quantising the action (2.11). We will deal with the symmetry 

(2.13) leaving the usual gauge symmetry (2.12) untouched throughout the 

procedure. This may be regarded as a prehminary exercise before one tackles 

more comphcated cages. 

The variation of this action with respect to A leads to the equation of 

motion 

F" = - 0 , (2.29) 

where we have written = A^T^, A — A'̂ TL- The 3^ are 

the generators of the Lie algebra ^ such that [T), , 

The set of classical helds is A^jA"}. The transformation we 

are dealing with is Abelian and closes oE-sheU; hence the structure constants 

vanish. Let us now investigate which of the coeScients of the expansion 

(2.17) survive in this case. 

The tranformation (2.13) leads to which are nonzero only when the 
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index % refers to the held A'' 

< ; ' = A"-F* W-S (^ - y) , (2.30) 

where the index % = {a, a;} and ao = {6, ?/}. Due to the anti-symmetry of the 

structure constants the null vectors of are given by 

zt?,U = F" (y) S (y-^ z) , (2.31) 

where the index /3i — {z}. It is clear that these null vectors are linearly 

independent o5-shell.; hence this theory is said to be hrst-stage reducible. 

Since and do not depend on the held A'̂ , a solution to the 

master equation is obtained by setting all the other coe@cients in (2.17) to 

zero. 

Hence, keeping the Batahn-Vilkovisky notation, we are left with 

S = S («) + 9 : K , C ; ] + c;; ; . (2.32) 

The full quantum action is then written in the suggestive form 

S ( $ , $ * ) = (l^) + (Sghoat + "Sgauge 

^ghost = + 

"̂ gauge = n(o)ao + . (2.33) 
0(^(0)00 
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The anti-Eelds have been ehminated using the gauge-Axing fermion 

The next step in determining the full quantum action is to construct the 

gauge-hxing fermion As mentioned ear her, we would hke to gauge hx the 

transformation (2.13) without breaking the usual gauge symmetry in (2.12). 

This can be achieved by choosing a gauge Exing condition which transforms 

covariantly under (2.12). A gauge hxing condition which has this property 

is given by 

. (2.34) 

This is a set of [dim^ — rank^] equations which are compatible with the 

transformation (2.13). The gauge fermion then takes the form 

^ = y d ' z . (2.35) 

Under the gauge transformations (2.12), the ghost helds ajre obviously re-

quired to transform in the adjoint representation of The matrices 

and are chosen such that the gauge covariance (2.12) is maintained. 

These matrices are also assumed to be independent of the held A. 

The ghost action is therefore given by 

(2.36) 
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It is clear that (Sghost is invariant under 

Ao). — Q o ) . + a % b F ' ' (2.37) 

where a and a are two local Grassmanian parameters. In this sense the 

ghost action is degenerate (that is, the gauge Exing did not remove all the 

symmetries of our theory). It is the role of the gauge hxing Lagrangian to 

remove all the degeneracies. 

The integration over the II's in «$gauge leads to three conditions 

+ = C , 2 = 0 . (2.38) 

The Srst condition Axes the gauge transformation in (2.13) and eliminates 

Multiphcation by of the Erst equation yields = 0. 

This is sufEcient to ehminate provided that does not vanish 

identically. The remaining two conditions Ex the ghost transformation men-

tioned in (2.37). We found that the two matrices 

= = (2.39) 

satisfy all the above mentioned requirements. 

In this way we have constructed a BRST invariant quantum theory. If 

one wishes to ehminate the anti-Eelds using the gauge fermion ^ then the 
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BRST transformations are given by 

(2.40) 
0* = 

It is then a simple matter to write down the BRST trajisformations for the 

helds 

i5$C(i) = 11(1) 

(7(1) = = i^$nrn = = 0 5'-'--1(0) a — (2.41) 

It then follows that the BRST transformations are nilpotent. 

Finally, we would Hke to investigate a point which is relevant to non-

Abehan duality. This concerns the addition of linear terms in the II's to the 

gauge fermion In this case the new gauge fermion takes the form 

^ ^ / d^a; qo).Mn(o)b + - n(i)8C(i (2.42) 

where ^ is the gauge fermion given in (2.35). In order to maintain covariance 

under (2.12), a simple choice for the two matrices and 8^^ is 

, 8 — m , (2.43) 



26. C0NCLL/S70NS 57 

where is the inverse of and n and m are two constant parameters. 

The integration over the H's results in the quadratic gauge-breaking La-

grangian 

= / ( / i A ' f ) - ic,»)<.-F"*F=q'o) 

(2.44) 

iSgauge 

This is the usual Gaussian gauge Gxing Lagrangian. The hrst term removes 

the gauge freedom of the original action while the second te rm removes the 

degeneracy of the ghost Lagrangian (2.36). The last term is required for 

BRST invariajice and is a characteristic of the anti-Eeld formalism. 

This completes the quantisation of the new symmetry (2.13). Let us now 

list the consequences of our work on non-Abelian duality. 

2.6 Conclusions 

We have shown in here that the procedure by which non-Abelian duality is 

implemented in sigma models naturally leads to the prescence of a reducible 

symmetry. We have dealt with this symmetry using the Batalin-Vilkovisky 

formalism. This unavoidably introduces new helds into the theory. Some of 

these fields are bosonic in nature f C(i), Qi) andC^U and could play a role 



58 CEAPTER 2. DUAMT2ES iN Q U A N T W FIELD TEEOBJES 

similar to that of the Lagrange multipher A. Recall also that as far as the 

usual gauge transformations (2.12) is concerned, these new Eelds tremsform 

in the adjoint representation of the gauge group g. This fact strengthens the 

above statement about these fields. 

In order to proceed further in the determination of the dual theory one 

must Ccirry out an integration over the gauge helds in the full action (2.33). 

However, this is no more straightforward aa this action includes terms quadratic 

in the held strength of the gauge helds. This fact is worsened if we consider 

the gauge fermion ^ instead of The integration over the gauge helds would 

lead to a dual theory containing non-local terms. T h e latter can no longer 

be interpreted as a sigma model corresponding to a string background. This 

issue, in fact, is particularly specific to our choice of gauge hxing condition 

which contains the held strength. It is possible to End a gauge breaking term 

which does not contain any gauge fields. These types of gauge are discussed 

later and involve only the sigma model helds y; and the Lagrange multiplier 

A. 

In this paper we have started by quantising the symmetry (2.13) keeping 

manifest the usual gauge symmetry (2.12). It is then natural to address the 

following question: could we have started the other way around? That is. 
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to quantise Erst the symmetry in (2.12). This is an important issue. Let us 

simply mention that there are two ways in which to gauge &x the symmetry 

(2.12). The Erst is, for instance, to choose a standard gauge of the Landau 

type = 0. This could be solved by setting and leads to a 

non-vanishing held strength. Therefore, this type of gauge fixing does not 

break the new symmetry in (2.13). The second type of gauge Exing is a non-

standard one and involves setting some helds (y; and A) to zero. In general, 

however, this gauge automatically breaks the new symmetry in (2.13). This 

is the type of gauge fixing which haa been considered in the literature on 

non-Abelian duahty. 
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Chapter 3 

Perturbative Investigation 

In this chapter we will investigate the duahty procedure in the context of 

perturbative quantum held theory. For reasons of clarity and time we will 

concern ourselves with two simple models which will contain both a bosonic 

and a fermionic sector. Both theories will of course be constructed to be 

covariant on the two dimensional base space so as to maintain the geometrical 

interpretation of the duality process which waa previously discussed. Having 

chosen our candidate theories we will then construct dual versions of these 

theories. Using the Batahn-Vilkovisky technique we shall isolate interesting 

quantum features arising from the duahty transformation. 

61 
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3.1 Free Field Theory 

The simplest theory containing bosons and fermions that one can imagine 

is a free theory, with no interactions between bosons or fermions and indeed 

excluding any iteraction within either sector. For later convenience, we will 

compose the bosonic helds of the free theory into a single complex valued 

scalar, 

'̂ free = ^ (3.1) 

Note that with this casting (3.1) the bosonic coordinate is dimensionless, 

whilst the fermionic held has the dimension of [length]"^/^ in the base space. 

Note also that whilst we will only consider two scalar fields this action should 

always be regarded as a sub-sector of a larger theory. 

Free theories are entirely soluable; construction of the integration mea-

sure is trivial in the absence of local gauge symmetries and integration of the 

generating function is to act upon a set of Gaussian Eelds. Given this one can 

write a generating function in terms of minimally coupled source terms and 

conventional held propagators and compute any process without difhculty. 

Furthermore the lack of interaction means that the theory has no interesting 
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behaviour with changing energy scales ajid does not require renormalisa-

tion; without loop diagrams there is no opportunity to introduce inanities 

by naieve action of functional derivatives. Given the apparently trivial form 

of the candidate held theory one might question why it would be selected for 

investigation. The answer is entriely because of its simple structure, in con-

structing the dual to such a theory one might hope to isloate features which 

are in some sense 'pure' and so not inhibit any discussion of this duahty 

procedure in the quantum context. Having gained these hrst principles one 

could then be more ambititious and introduce coupling between and within 

bosonic and fermionic sectors. 

The choice of coordinates implies a change in the manifestation of the 

symmetry which we act upon to construct the dual representation. Since we 

have effectively chosen a set of Cartesian, rather than polar, coordinates (^) 

in the target space rather than polar, the action of rotation now manifests 

itself in the following fashion. 

^ (3.2) 

Having observed this distinction, we can now implement Abelian duality 

by adding a gauge like held, and a Lagrange multiplier, A, to ensure 
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equivalence of the new and old (3.1) action 

(%ree — ^ <̂ 3̂7 |(9 — %A)(̂ | + l/'(2 + Af (3 3) 

The gauge like held, as will be famihar from the study of electromagnetism 

responds to the U(l) transformation (3.2) by acting as a connection to the 

partial derivative, minimally coupling the matter helds to the gauge group. 

A^ — A ^ — (3 4) 

Note that from the outset, we have chosen for the fermionic sector to 

transform under the action of this symmetry acting with the prejudice that 

the fermionic coordinates are partners in this duality. Whilst this is hardly 

the weakest assumption one could make in constructing a dual theory, it is 

perhaps obvious that there would be little point in considering such helds if 

we were not to adopt this position. In the abscence of any interaction these 

fermions would enjoy the same role on either side of the duahty procedure and 

would add no further complications to the discussion and as such one could 

well have ignored such fields and selected a purely bosonic theory as a starting 

position. The fermions are chosen to transform in the same representation of 

the rotation group as the scalar helds and have a transformation equivalent 
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to (3.2) 

V" —> (3.5) 

Having so constructed the action (3.3) with the intention of integrating 

over the connecting held v4 in the path integral it would now be appropriate 

to consider gauge hxing issues in order for the operation to be well dehned. 

Since we have constrained ourselves to consideration of Abelian T-duahty 

this theory is irreducible in the Batahn-Vilkovisky sense and as such will 

have a simpler ghost sector than non-Abehan theories (2.32). The enlarged 

quantum action, prior to elimination of anti-helds takes on the simpler form 

($($, $*) = «$(<;6, 'i/')frce + + V'*(-l) '^ (3-6) 

The simple form of the quantum action (3.6) requires only two ghost 

fields, 7; nd CK with the Grassmaim characters 

6(7)) = 1 

((a) — 0 (3 7) 

In summary, the simplicity of the minimal held action is entirely due to 
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the generators of the ( U(l) ) symmetry possessing no null directions and as 

such the path integral can be fohated into 'slices' of a particular gauge by 

simply adding one ghost degree of freedom for each Held participating in the 

transformation. 

The gauge fixing fermion ^ can be selected in a fashion that does not 

depend upon the gauge like field and hag a simple geometric interpretation. 

Bearing in mind that we maintain a concept of interchanging radii as a 

fundamental of T-duality, we can select a gauge which focuses upon rotations 

such a concept remaining coherent on either of our target spaces. Specifically 

we can choose a gauge fermion of a form such eis 

^ (3.8) 

This simple form of the gauge fLxing fermion will align the scalar exci-

tation along the real direction, naturally this choice of direction is entirely 

arbitray and other directions could be selected equally well. Having chosen 

our gauge Gxing scheme, we may proceed to eliminate the anti-Eelds from 

(3.6) using (3.8) and the usual deSnition of the physical surface of Eeld/anti-

Eeld phase space (1.27). 
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5 ( 0 ) = . S ( ^ , i/;)free + a(9!' - (3.9) 

Notice that this choice of gauge retains only the minimal number of ghost 

helds for the symmetry, the other factors integrating out to irrelevant vol-

ume factors. Furthermore, this choice of gauge will lead to no additional 

complications in integrating out the gauge like 5eld since it introduces no 

further operators carrying dependence, gathering hke terma we can write 

the action in the following fashion 

8(̂ : 

2 *' 
"4;̂  + a:/ 

" 2|( |̂2 

Where the current appearing in (3.10), is dehned by 

(3.10) 

^ (3.11) 

The appearance of is natural since this would be the sum of the bosonic 

and fermionic currents were we to be considering a dynamical v4, i.e. elec-

tromagnetism. 
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The choice of gauge Axing (3.8) leads to a delta functional appearing in 

the path integral, additionally we see that we may make a linear and irrele-

vant change of coordinates in the gauge hke Eeld, resulting in a simple 

Gaussian contribution of this held which generates an ignorable normahza-

tion. Since the introduction of the former integrand guarantees the dehnition 

of the latter we may proceed and write down the dual action. 

+ + (3 12) 

Where the scalar held is now reduced to real values by virtue of the 

gauge fixing and the Lagrange multipher has been endowed with dynamic 

quahties as might have been anticipated. In addition we see that this dual 

model has been endowed with a pair of interactions. A Thirring style fermionic 

self-coupling and an exchange between fermionic current and the momentum 

of the new dynamic held. We could envisage rotations in the scalar direction 

giving rise to a compensating flow of fermionic charge. Since interactions 

have appeared where previously there were none, one might become con-

cerned about the renormalized behaviour of the pair of theories. Free held 

theory has no interesting dynamic behaviour with variations in energy scale. 



3.2. ONE I,OOP BEHAVIOC/R OF DUAL MODEL 69 

this is most apparently not the case in the interacting model. 

From the priviledged position which we occupy having arrived at (3.12) 

it is known that this is simply a free Held theory cast in a perverse system 

of coordinates. This can be revealed by either repeating the previous steps, 

since the duality transformation is reversible or by identifying the line element 

on the plane cast in polar coordinates. By applying such techniques one can 

reduce the theory to the free case. It is not always a simple matter to reduce 

a collection of fields to the simplest possible description of their degrees of 

freedom, in particular when less trivial interactions are present within the 

action. We wiU proceed with the dual model action and calculate results 

based upon the Eelds as presently described to produce results consistent 

with the underlying free Geld theory. Without the benefit of the mechanism 

of duality the results that we shall arrive at would appear surprising. 

3.2 One Loop Behaviour of Dual M o d e l 

The form of the dual ax:tion (3.12) contains terms which appear to make 

a perturbative analysis diScult. However, if we are willing to permit the 

original scalar excitation to gain a vacuum expectation value then it will be 
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possible to analyse the model in perturbation theory. We could conceive of 

adding a symmetry preserving potential to the action which would generate 

a large expectation value for in principle one large enough to eliminate 

quantum Suctuations. 

(̂  = .R + 0! (3.13) 

Equation (3.13) is a background field expansion o f ^ based upon the above 

modiScation of the dual theory. This expansion is in terms of the classical 

expectation value for the coordinate radius, A, and the quantum Huctuation, 

CK. We assume that the background radius R is large enough to permit a 

power series expansion of in (3.12), so to lowest order the action becomes. 

+ (3.14) 
2ji!2 

To lowest order in this expansion the variation in the original bosonic Held 

is decoupled from the dual coordinate and the fermionic sector, restoring to 

an extent the original form of the theory. The interactions in this expansion 

are then associated with rotations within the dual target space. The classical 
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radius of the original bosonic Seld remains associated to the new interaction 

and can be used in a perturbative evaluation of the theory in 1/_R. This 

perturbative expansion then is best understood for large radius spaces, i.e. 

flatter target manifolds. 

In order to perform calculations within this theory, one connects the dy-

namic field to a set of external currents, upon which one may act with func-

tional derivatives in order to construct amphtudes for interesting processes. 

In perturbation theory, one talces further advantage of the external sources 

and uses functional calculus in order to build the ineracting theory from free 

field theory. Generically, for a theory containing a set of Eeld $ with a 

classical action that may be composed in the following fashion 

"^interacting — <Sfreg($) + 5 i n t e r a c t i n g ( ^ ) ( 3 . 1 5 ) 

If we minimally couple these fields to a set of currents J one might write 

the path integral in the following fashion 

= y GXp ^2<Sintcracting ^ ' exp(i (<Sfrce(^) + J $)) (3.16) 

If one then can write the propagator for the free theory as P, by which 

we may mean either the bosonic or fermionic object depending upon which 
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element of $ we are considering, then it would appear that we may integrate 

(3.16) and obtain the perturbatively useful expression 

Z[J] = exp ^%(Smteractmg j ' GXp (J - t P - J) (3.17) 

The expression (3.17) is of a form amenable to a perturbative analysis, if 

there is a parameter contained within the interacting component of the action 

'small enough' to justify the expansion of the exponentiated operations as a 

series which may be truncated after a Enite number of steps. Naturally this 

ignores any transgressions which one may have committed in compounding 

functional derivatives which is why one has to renormalise such calculations. 

The preceding discussion should suggest that we are proposing that the clas-

sical radius, or rather its reciprocal, is the desired parameter about which to 

perform a perturbative investigation. We will ignore the radial held a hrom 

henceforth as it does not contribute renormalising terms. If the helds are 

renormalised with factors and Za 

A —4. (3.18) 
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Similarly, the renormalisation of the three point and four point interaction 

will be denoted Z3 and Z4 respectively. The renormahsed action is then 

expressed as 

- (3.19) 

Examining the expression (3.19) the behaviour of the coupling is of in-

terest under renormalisation. We see that the renormalised couplings Eow in 

the following fashion 

1 \ 1 Z, 

4 ) , = 

These two distinct behaviours are a signiGcant problem. In order to 

preserve the geometric interpretation of the dual theory we require that these 

two Hows be identical, i.e. 

= ZAZ4 (3.21) 
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If (3.21) can be veriSed then the relation between coupling and geomet-

ric radius of the target space is preserved after quantum corrections. It is 

interesting to note that the role of the fermion is implicit. What follows is a 

one loop test of this requirement. 

3.2.1 Evaluating Graphs 

If the dynamic helds are coupled to external Eelds {a, a , J } which have the 

appropriate scalar or fermionic characteristics then expectation values of any 

given field conhguration can be calculated by 

(0 .$(a:n)| 0) = 

• "''p ( i j ) - h ' 

. e x p ( m ^ / a + j2AyJ)|(g^_^)_o (3.22) 

Where $ refers to any dynamic held and J to the appropriate external 

current. Remembering to act on the left when diEerentiating with respect 

to a and on the right when diEerentiating with respect to a. Right and left 

action is not distinguished for the Grassman even current, J . 

The operators ,9^ and A/ are the usual Feynznan free 5eld fermion and 
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scalar propagators respectively, in my cavalier notation these are written aa 

^ + %e 

(323) 

Note that for the purposes of this investigation two abstract couplings 

and ^2 have been introduced, the hope being that they may be set equal at 

one-loop level as we have previously had them in the classical theory. 

The contributions to any one expectation value can be composed ag a 

sum of Feymnan diagrams, such diagrams and accompanying rules provide a 

useful mnemonic to generated amphtudes and minimise the number of direct 

functional derivatives that one need perform upon the generating functional. 

It is my intention throughout these perturbative calculations to be exceed-

ingly lax in the use of momentum conserving delta functions and simply to 

apply these rules, which wiU make notation a little more compact, any re-

lated integration over momentum must be considered to have been implictly 

performed. The rules for evaluating the Feynman graphs for evaluating am-

plitudes of (3.22) are the following 

1. Draw each distinct diagram for the coreUator at the desired perturba-
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tive order. 

2. To each three point vertex associate a factor 

3. To each four point vertex associate a factor 

4. To each internal hne associate the correct propagator. 

5. Integrate over internal momenta A:/(27r)^ 

6. For each internal fermionic loop attach a factor of -1 and trace over 

spinor indices. 

7. Contract external spinor indices with an outgoing spinor carrying the 

correct momentum. 

8. Divide each diagram by the size of the permutation group of vertex-

hxed lines. 

Anticipating the need to renormahse this model a method for regularising 

it must be selected. Dimensional regularisation will be the preferred method 
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here. In order to regularise we introduce an arbitrary mags scale, and a 

controlling parameter, e, that dehnes how far an expression is being evaluated 

away from the two dimensional space, D = 2 — 6. The counterterms that wiU 

be introduced will be minimal, that is only the pole terms will be eliminated 

by the selected renormalising factors. Results that are useful in evaluating 

amplitudes can be found in the appendix. 

3.2.2 Scalar Renormalisation 

At one loop there is only one diagram, generated by two three-point interac-

tions that contributes to renormalisation of the scalar propagator. In order to 

calculate the renormalisation of the scalar propagator, , one must evaluate 

the following expectation value 

' 47r e ^ ^ 

= (3.24) 

Therefore the minimal renormalsation of the scalar field is given by 
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— 1 — — (3.25) 
Tre 

3.2.3 Fermion Renormalisation 

At one loop there are two diagrams which potentially could lead to renor-

mahsation of the fermion held. The hrst is due to contraction of a pair of 

legs on a four point interaction. 

= (3 26) 

However this contribution vanishes and the only contribution to fermion 

renormahsation arises from a contraction of two three-point interactions, with 

an inner bosonic loop. 

(̂ 5"/ gi / + A:)yw(A;) - ^ 

The desired one loop renormalisation of the fermion is then 

= (3.28) 
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3.2.4 Three Point Re nor rnal i s at i o ii 

There are two diagrams that could modify the three point interaction. Firstly 

a contraction of two fermionic legs of a three-point interaction with two legs 

of the four point interaction. 

(3.29) 

This diagram is finite and can be ignored. The remaining contribution is 

a QED-like vertex correction composed of three three-point vertices. 

= (3.30) 

From which the one-loop three-point renormalisation is seen to be 

% - 1 4- (3.31) 
TTE 
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3.2.5 Four Point Renormalisation 

There is only one diagram that can renormahse the four-point interaction, it 

is formed by contracting to four-point interactions along two legs. 

^2\2 
"Y" ^ + A:)''ŷ %5'y(g — A:) 

To one-loop we renormahse the four-point interaction like so 

Z4 = 1 - — (3.33) 
Tre 

3.2.6 Geometric Interpretation After One-Loop 

The preceding calculations have yielded enough information for the relation 

(3.21). Using (3.31),(3.25) and (3.28) we can calculate 

' 

^9 — 1 1-0(^2) (3.34) 
TTC 

Similarly the right hand side of (3.21) can be evaluated. 



3.2 ONE I/OOP BEHAWOL/R OF DUAL MODEI, 81 

%% = (i - 1 ) (i - i ) 

= 1 - "'J'"' + 0{g') (3.35) 

We then see that (3.34) and (3.35) are equal if and only i fg i = g2- That 

is the geometric interpretation is preserved to one loop and we may safely 

replace with 1/ A. Having established that the notion of target space radius 

is preserved after these quantum corrections, we may wish to see how the 

radius varies with changing energy scale. We may select either of the two 

expressions in (3.20) in order to see how the radius scales 

= 1 + 0(A-'^) (3.36) 

To one-loop order, not only does the theory preserve the interpretation 

of the target space radius, but this radius remain invariant. Quantum cor-

rectiona appear then to renormalise the dual scalar held and the fermions 

that it interacts with, however the cumulative effect is to preserve the target 

space. 
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3.3 Interacting Model 

Having observed some success working with the target space dual to a free 

Aeld theory, it is tempting to attempt to introduce some interactions into the 

original model. Starting from a clean slate, one has considerable freedom of 

choice as to which interactions to introduce. To take a concrete example, we 

will insert additional coupling between the original scalar excitations with a 

pair of fermionic fields, A}. 

(3.37) 

Writing the fermions as column vectors, the operators which acts to 

select members of i.e. 

/ \ 
0 0 

MA- = 

= 

V 

1 0 

0 1 

0 0 / 
(3.38) 

So that f = M_ + M+ is the permutation matrix. The purpose behind 
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the exercise is to construct another action which will remain invariant under 

rotations within the target space. If we permit the fermions to carry a charge 

under the action of rotation, such that 

^ (3.39) 

Then (3.37) is invariant under rotations in the target space. Furthermore, 

these simple three point interactions will require no modiScation under the 

duality transformation and will be passed directly into the dual theory. Once 

more we introduce the gauge-like Eeld A and dual scalar A, if in addition we 

also introduce a U(l) charge operator Q then the original action may be 

written as 

+ Af ^ (3.40) 

Furthermore we may choose employ the same gauge fixing scheme as in 

the previous model = Q gq that the dual model, in the background 
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Held expansion, reads 

% = +1/;* ^ 

+ (3.41) 

Examining (3.41) we see that the action decomposes into two distinct 

interacting sectors. That which is common between the original and dual 

models and a sector of new interactions between the dual scalar and the 

fermionic sector. For the purposes of this investigation the interaction be-

tween the original scalar and the Savour changing fermion term are irrelevant 

as it adds no new graphs in perturbation theory on the dual side of the for-

mulation. 

That leaves those terms with which the dual scalar interacts with the 

pair of fermions. The form of the intera<:tions with the dual scalar is similar 

to that of the free held dual, including a Thirring style interaction and a 

transverse couphng to the scalar. The new interactions contain only the 

charge operator and as such the fermionic Eelds act as two independent 

sectors where graphs generated from these interactions are concerned. Since 

there is no couphng between these sectors and since we would simply be 

drawing graphs that are topologically identical to those considered in the free 
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Seld case, we can evaluate the graphs simply by allowing for the modified 

charge of the fermions. It follows that we arrive back at the condition (3.35) 

and then since we only require the running charges to be equal when squared 

all of the previous observations apply. At the one loop level, the Eelds and 

interactions will receive renormalisations such that the radius of the target 

space is left invariant. 

3.4 Conclusions 

In this chapter we have considered quantum aspects of Abelian target space 

duality. Beginning with a free Held theory of scalars and fermions we were led 

to a dual model containing interactions between a dual scalar and fermions. 

Expanding the theory at large radius in the original model it was seen that 

the geometric interpretation of the transformation was unspoiled at the one 

loop level (3.21),(3.34),(3.35). Most significantly it was seen tha t whilst fields 

and new interactions received perturbative renormalisations their combined 

egect was to leave target space radii invariant (3.36). 

Suitably encouraged by the free Held results, an interacting model was 

constructed bearing interactions between a pair of fermions and a pair of 
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scalars. A demand made of the interacting model was tha t it remain invariant 

under rotations within the target space and this in term implied that the 

fermions each gained a novel charge ±1/2 under the action of target space 

rotation. In eSect, the fermions were wrapped twice around the scalar axial 

direction. Having arrived at a suitable model calculation of the dual theory 

was performed in the fainiliar fashion and examined. The free field primer 

with which we began the chapter was found to be extremely useful aa a labour 

saving device. The dual interacting model could be decomposed into an 

invariant and a dual sector; the invariant sector requiring no further attention 

in this context. The dual sector was deeply similar to that of the dual free 

model and a one loop evaluation of the theory could be performed with no 

real effort, it was apparent that (3.21) also held for the interacting model. 

Therefore, target space radii are also invariant for this class of interacting 

model at the one loop level. 



Chapter 4 

Conclusions 

This material has made extensive use of the Batahn-Vilkovisky technique in 

order to develop well dehned path integrals from classically inspired theories. 

We have demonstrated in the preliminary material that these techniques 

are well developed for attacking theories which contain symmetries which 

are reducible. The formalism provides a simple and convenient method for 

progressing from classical actions and preferred gauge Gxing conditions to 

full quantum actions complete with any necessary ghost degrees of freedom. 

Having developed the means to examine theories with reducible symme-

tries, we turned our attention to a non-Abehan generahsation of target space 

duality Having been inspired by the classical method [10, 12], we identi:^ 

87 
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the conceptual diiBculty of implementing this technique at the quantum level. 

Inherent in the process of calculating the non-Abelian dual of an initial model 

is the prescence of reducible symmetry, which we attempted to resolve by the 

previously developed techniques. Whilst it is possible to arrive at a well de-

fined quantum action the choice of gauge hxing can obscure the underlying 

theory. 

Returning to the Abelian case we considered applying a novel gauge hx-

ing condition to the action. The choice of gauge hxing whilst avoiding the 

ambiguities of the previous work broke covariance within the original target 

space, focusing upon a preferred direction in that space. Proceeding at a 

low order and to one-loop in the dual model we discovered that quantum 

corrections in the dual model do not interfere with the radius of the target 

space. It was then found that for a class of interacting model that the same 

assertion could be made. As interesting as these results are, it should always 

be bourne in mind that they were only computed to a single loop in perturba-

tion theory and that this action in turn was based upon the simplest possible 

background Seld approximation. It remains to be seen whether more general 

results can be arrived at. Furthermore, assuming tha t a more in-depth in-

vestigation reveals this to be a fruitful area of study there is still the matter 



of non-Abelian duality to be considered in this context. One might go on to 

look at similar classes of gauge fixing on target spaces with more complex 

symmetries and look for more complex conservation of geometry but this is 

signihcantly beyond the scope of this present work. 
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Appendix A 

Momentum Space Integrals 

In a purely Euclideaji D - space the following integral can be obtained [29] 

^ r (A - D/2) 1 
^ (A:2 + 2A:. p + (47r)^/2r(v4) (M^ - p2)A-D/2 ^ 

The (A.l) expression can be used ag a generating function for a series of 

useful results, by differentiating with respect top^. Furthermore the results 

can be analytically continued back to Minkowski space by Wick rotation 
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APPENDIX A. MOMENT[/M SPACE JNTEGRALS 

1. No momentum in numerator 

(A;2 -2A: .p -M2)^ 

% ( - l ) ^ r ( A - Z ) / 2 ) 1 
(47r)^/2 r ( A ) (p2 + 52)/i-D/2 

(A.2) 

2. One power of momentum in numerator 

kn 2 ( - l ) ^ r ( A - Z ) / 2 ) % 
(A2 _2A; .p -62 ) / i (4^)D/2 (^2+62)^-0/2 

(A.3) 

3. Two powers of momentum in numerator 

ki^hi/ _ ^ %(-l)^ 1 
( ^2_2A; .p -62) / i - (4%)^/2r(A) 

r(A-D/2)puP. 

2(p2+b2);i-i-f/2 

4. Three powers of momentum in numerator 

(A,4) 

ffk 
hijhu hp 1 

(A:2 - 2A:. p - 6^)^ 2(47r)^/2 r (A) 

V( A 1 n inWfipPv+'QvpPiJ^+Vi^vPp 
11^—-!- — ^/':,) (p2+t2)A-l-D/2 

- 2 r ( A - D / 2 ) y ™ 5 f l 

(A-5) 



Appendix B 

Gamma Matrix Results 

The Dirac gamma matrices are such that 

1 = 277':'' (B.l) 

The deEning relationship (B.l) allow one to simpli^ products of gamma 

matrices. 

= D (B.2) 

= (2 - D ) y (B.3) 

" (2 " (B.4) 
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100 ;LPPf%VI%XB. 

= - 4 ^ ^ ' ) ' ' (B.5) 

+ 4(7;'''''}'̂  — + Tŷ '̂ 'y'') (B.6) 

+ (2 - D ) ^ ^ " / (B.7) 

'IY(l) = D (B.8) 

/ i = 2 n + l \ 

Tr Y1 7^' ) = 0 (B.9) 


