
UNIVERSITY OF SOUTHAMPTON 

T/trnnaoLPf iriBric upwiririEic) 

by 

Andrew Richard Young 

A thesis submitted for 
the degree of 

Doctor of Philosophy 

Department of Geography October 2000 



UNrvERsrrY(%FsoiniiA%nnxiN 

ABSTRACT 

(DIP SCZIEbJCIEL 
GEOGRAPHY 

Doctor of Philosophy 

/ilDvMOLY IVIC)DEL TArriTHON TTflliUlSmrED 

by Andrew Richard Young 

Access to daily stream flow data, at the river reach scale is a central component of many 

aspects of water resource and water quality management. However, the majority of river 

reaches within the UK are ungauged. Hence, there is an operational requirement for a quick, 

consistent and reliable method for simulating historical stream flow records within ungauged 

catchments. The overall objective of this research has been to develop a rainfall runoff model 

for predicting natural daily stream flows within a catchment without recourse to the calibration 

of model parameters against observed stream flow data. Implicit within this objective is a 

requirement that the model parameters can be estimated from readily available data describing 

the physical characteristics of the catchment. 

The fundamental approach to the research has been to develop and calibrate suitable models 

within a large, representative sample of UK catchments and to subsequently develop 

predictive, statistical relationships for estimating model parameters from the climatic and 

physiographic characteristics of the catchments. The predictive capacity of the regionahsed 

model forms has been extensively evaluated through comparisons with gauged flow data, 

calibrated models and existing industry-standard methods for estimating historical flow time 

series within ungauged catchments. 

The regionalised model forms developed represent a significant advance over existing, low-

cost methods for estimating historical flow regimes within ungauged river catchments. The 

errors in the simulated stream flows are sufficiently small for the techniques to be a useful aid 

in the management of water resources within the UK. 
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1 Introduction 

1.1 (]rV]Ein/]]E\%rOF RICSWE/LltCH ()Bj]C(:Trr\ E:s 

Information on the magnitude and variability of flow regimes, at the river reach scale is a 

central component of most aspects of water resource and water quality management. For 

some activities, such as the setting of discharge consents and licencing of small 

abstractions, it is sufficient to encapsulate this information using a statistical description of 

the flow regime. The flow duration curve (NERC, 1980) is an example of this type of 

analysis. However, there are many applications for which a time series of stream flows is 

required. These include the assessment of yield for water resource schemes, the in-stream 

flow requirements of aquatic flora and fauna and the assessment of the impacts of climate 

change at the catchment scale. 

At the broadest scale, natural river flow regimes are dependent on rainfall, temperature and 

evaporation. At the catchment scale, the flows will be controlled by the physical properties 

of a catchment, including geology and land use. A rainfall runoff model predicts stream 

flow by using a mathematical description of the processes controlling the catchment stream 

flow response to climatic inputs of precipitation and evaporation demand. The response of 

the model is controlled by parameters, which normally have to be estimated through 

calibration. 

The overall research objective of this thesis has been to develop a rainfall runoff model for 

predicting the natural variation of daily stream flows within a catchment without recourse 

to the calibration of model parameters against observed stream flow data. Implicit within 

this objective is a requirement that the model parameters can be estimated from the 

physical characteristics of the catchment. The focus of the research has been on an 

operational requirement for a quick, consistent and reliable method for simulating 

historical stream flow records within ungauged catchments. Hence, as part of this overall 

objective, it is essential that the data required by the model are restricted to those data that 

are readily available in a digital form. 
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For water management purposes, it is essential to differentiate between the natural and 

artificial components of stream flow data. The artificial component is the nett influence of 

water use within the catchment. Common influences include surface and groundwater 

abstractions, discharges from sewage Ueatment plants and industrial sources, impounding 

reservoirs, canal transfers and inter-basin transfer schemes. A review of over 1600 gauging 

stations has identified that less than 20% of gauged catchments within the UK can be 

regarded as being natural (Gustard et al, 1992). In assessing the available resource within 

a catchment, it common practice to separate the natural and artificial components of stream 

flow. This separation of components enables practitioners to assess the natural reliable 

yield of the catchment, based upon the climatically driven variability of the natural stream 

flow. The impacts of actual, and planned water use scenarios are subsequently 

superimposed upon the natural flow regime to assess both the reliable yield under the 

current water use and/or scenarios of future water use and the environmental impacts of 

that water use. 

The temporal resolution for both managing and regulating water use is commonly between 

a week and a month. For assessing the yield of some storage schemes, it is not necessary to 

consider stream flow at a finer temporal resolution than this; for example the estimation of 

natural inflows into an impounding reservoir. However, for run-of- river water use 

schemes, and cases where the impact of a scheme on aquatic flora and fauna is to be 

assessed it is essential to consider stream flow at a finer temporal resolution. The 

commonly used resolution is a calendar day. This finer resolution is important for assessing 

the frequency of failure of a scheme (for example a direct abstraction), the ecological 

impacts of flow derogation and, in the case of discharges, the impact of flow on water 

quality and hence the flora and fauna of the stream. 
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In estimating the time seiies of natural stream flows at a site it is not necessary to exactly 

replicate all aspects of the true natural time series. Rather, the requirement is to simulate 

important facets of the regime including: 

• an acceptable simulation of mean flow- consei-vation of mass; 

• how the stream flow reduces in the absence of rainfall- termed recession behaviour; 

• the correct representation of seasonal patterns within the flow regime; 

• the correct stream flow response to precipitation and the dependencies of that response 

on antecedent catchment conditions. 

With regard to the last point, it is not important to accurately simulate individual high flow 

events. The only restrictions on the modelling of high flows are that mass must be 

conserved over a longer time period and the observed sequencing of high flow events 

should be replicated. In the context of run-of-river schemes, the high flows are not a 

resource that can be readily utilised, due to the high concentrations of suspended solids. As 

the cause-effect links between flow and habitat for aquatic species cannot be accurately 

quantified, predictive methods for assessing the ecological impacts of high flows are not 

sensitive to the absolute magnitude of the flows. 

The industry best current practice for estimating the natural stream flow record from a 

gauged record is to naturalise the flow record through decomposition (Hall and Nott, 1994; 

Young and Sekulin, 1996). This technique is based on identifying the nett influence within 

the catchment above a gauging station and subtracting that nett influence from the gauged 

flow record. As data describing the volumetric impact of artificial influences are commonly 

inaccurate and archived at a monthly resolution, the technique is both time consuming and 

error prone. 

Within the UK there are approximately 1600 permanent gauging stations, these gauged 

river reaches represent less than one percent of the total number of river reaches mapped at 

a scale of 1:50,000. The majority of water management decisions are therefore being taken 

within catchments for which there are no measured stream flow data. Historically, 

practitioners have quantified flow regimes within ungauged catchments using simple, 

statistically based models for predicting natural and artificially influenced flow statistics 
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(Natural Environment Council, 1980, Southern Water Authority, 1979; Gustard and 

Sutcliffe 1986; Gustard gr aZ 1987, 1992; Holmes and Young, 2000a&b). Currently, the 

low cost solution to the requirement for historical time series of river flows at ungauged 

catchments is to transpose gauged data from a similar, nearby gauged catchment. 

Commonly, these gauged flows will be naturalised prior to transposition. 

The objective of this research has been to develop a model for predicting stream flows 

within ungauged catchments directly from historical climatic data and the physical 

characteristics of the catchment. The science of relating hydrological phenomena to 

physical and climatic characteristics of a catchment, or region, is commonly called 

regionalisation. As will be discussed, there are many examples within the international 

literature of studies directed at the regionalisation of rainfall runoff models. These have 

generally been undertaken at a spatial or temporal scale that is inappropriate for catchment 

scale water management. 

Experience has shown that, for a study into the regionalisation of a daily conceptual rainfall 

runoff model to be successful and substantive, the following aspects must be addressed. 

• The model must be applied to a representative sample of catchment types across the 

country. To date regionalisation studies have been restricted to relatively small sample 

sets of catchments. 

• In catchment specific applications, the model must be able to accurately simulate those 

aspects of the flow regime that are of importance for water resource assessment and 

management decisions - and this must hold over the full range of catchment types. 

• The calibrated parameter vectors must, within the uncertainty of the input data, be 

identifiable for specific catchment types, and the model fit must be stable when applied 

to an independent evaluation period. 

• The model structure, and hence the parameters must have physical meaning to enable 

the parameters to be estimated from the physical characteristics that can be used to 

differentiate between catchment types. 
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The scope of the research has been restricted to catchments in which precipitation falls 

primarily as rainfall, rather than as snow. This restriction is only an issue for some highland 

catchments within the north of the country. The research has addressed the estimation of 

climatic data with the emphasis on selecting/deriving methods for estimating climatic data 

using modifications of best practice techniques that do not incur a prohibitive cost. The 

solution used for estimating evaporation demand has meant that catchments within 

Northern Ireland have been excluded from the research as historical MORECS (see 

Chapter 2) data are not available for Northern Ireland. The evaluation of success of the 

research is based on whether: 

• the regionalised model forms developed represent an advance over existing methods for 

estimating historical flow regimes within ungauged river catchments; 

• The errors in the simulated stream flows are sufficiently small for the techniques to be a 

useful aid in the management of water resources within the UK. 

An overview of rainfall runoff modelling and the issues associated with the structure and 

calibration of this class of model are discussed in Section 1.2. Previous regionalisation 

studies within the UK, and elsewhere within the world are reviewed within Section 1.3. 

The innovative aspects of this thesis are discussed within Section 1.4. The structure of the 

thesis is also presented within this section. 

1.2 RAINFALL RUNOFF MODELLING 

The objective of rainfall runoff modelling, in it's broadest sense, is to simulate the 

translation of precipitation, that is incident upon the surface of a stream or river catchment, 

to stream flow at the catchment outlet taking into account evaporative losses from the 

system. Todini (1988) gives a useful review of the development of the science of rainfall 

runoff modelling and modelling philosophies. He introduces the concept of a mathematical 

model consisting of two parts; one part consisting of the physical model structure which 

encapsulates the a priori knowledge of the system and the second part a stochastic 

component that cannot be explained by the physical model structure. This led him into a 

four-class model classification scheme based on the degree of prior knowledge. This 

classification is summarised in Figure 1.1. The system differentiates between models on 
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the initial basis of whether processes are represented statistically or physically and then 

how these processes are distributed and solved mathematically across the catchment. Other 

classifications have been proposed by Singh (1995) and Hughes (1995), amongst others. 

In reality, the boundaries between classifications and between the individual boxes within a 

classification are not clearly defined. Many models are essentially hybrid with constituent 

parts drawing from stochastic and deterministic components. The deterministic 

components may seek to describe the physics of the process, using differential equations, 

commonly called physically based, or may use a conceptual representation of the physical 

processes, in which integral equations are used to represent the processes. Physically based 

models are distributed in that the model equations include space co-ordinates and are 

differential in nature (thus requiring the definition of boundary conditions) as opposed to 

integral, as in the case of the conceptual rainfall runoff model. Additionally, stochastic 

techniques are now commonly used when formulating the catchment implementation of 

deterministic model components; for example, the semi-distributed soil moisture module 

of the Probability Distributed Model (Moore, 1985) and the ARNO (Todini, 1996), 

XINANJIANG (Zhao, 1980) and VIC (Wood, 1992) models. 

Singh in his 1995 paper states: 

"A vast majority of the (available) models are deterministic, and virtually no model is fully 

stochastic. In some cases, only some parts of the model are described by the laws of 

probability, and other parts are fully deterministic. It is then fair to characterise them as 

quasi-deterministic or quasi-stochastic.'' 

In summary, it is true to say that models grade in the complexity (both with respect to the 

model structure and spatial resolution) from purely empirical statistical models through to 

differential physically based distributed models. Conceptual models, whether lumped or 

with some degree of spatial discretisation, lie between these extremes. In the context of this 

study a model is considered as "lumped" if the input data, output data and model equations 

do not include a spatial description. This definition does not make a distinction between 

stochastic or deterministic formulations. 
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A Priori Knowledge > 
M O D E L S 

L. I . D. I . D. D. 

S. 

5 . • Stochast ic; 
P. « Physical; 
L . I . « Lumped Integral; 
0 . 1 . " Distributed Integral; 
D.D. • Distributed D i f f e r e n t i a l . 

Figure 1.1 Classification based on level of prior knowledge (Source: Todini, 1988). 

An argument can be constructed that no model components are truly physically based. Any 

mathematical description of a process is an approximation of that process and thus is 

always a conceptualisation. The preservation of the physicality of physically based 

deterministic model components is called into question in the application of the model. 

Whilst the process descriptions may model the transport of water under well-defined 

laboratory conditions, they may not when applied to the complexities of a real catchment. 

The scale of the spatial and temporal discretisation of the model is extremely important. In 

practice, it is necessary to limit the resolution of distributed models to a grid scale that is 

commensurate with the input data describing catchment properties, the climatological 

variations and computing power available. This lumping and the uncertainty in the input 

climatic data and field measurement of catchment properties (and hence parameter values) 

will generally mean that the model will require calibration to compensate for these 

uncertainties (Seven, 1993). Hence, the true physicality of the model is compromised. For 

a further discussion of the relative merits of this type of model compared with the simpler, 

integral conceptual class of deterministic models the reader is directed to the work of 

Seven (1989 & 1993), Todini (1988) and Singh (1995) as an inroad to this topic. This 

study is concerned with the question of the regionalisation of lumped, conceptual models 

on a scale where the application of differential distributed models is not a practical 

proposition. 
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1.3 REGIONALISATION OF RAINFALL RUNOFF MODELS 

The development of a model of the rainfall runoff process that can be applied without 

recourse to calibration data, and hence applied within un-gauged catchments, has been the 

subject of research since the 1960s. The theory is that if the structural description is correct 

the parameters of the model are more likely to be related to physical characteristics of the 

catchment that can be measured. This has lead in many cases to large, complex models 

that, from a systems-engineering point of view, are over parameterised. By a systems 

engineering point of view it is meant that the parameters of the model are calibrated in 

accordance with some scheme to minimise the differences between observed and simulated 

stream flows. As discussed in the previous section a degree of calibration is necessary with 

all models. 

The international literature on the regionalisation of rainfall runoff models falls into two 

basic categories. 

• The calibration of a model on a range of catchments types and the subsequent 

development of statistical relationships between model parameters and the physical and 

climatological characteristics of the catchments. These relationship then enable model 

parameters to be estimated for the un-gauged site. 

• The a priori estimation of model parameters, that purport to have physical realism, 

through direct measurement of the physical characteristics of the catchment to which 

the parameters pertain. 

Models have been regionalised both for simulating catchment response to extreme 

precipitation events at an hourly time step and for simulating the much longer-term 

temporal variation of river flows, at either a daily or longer time step, for resource 

evaluation purposes. These studies have all generally been conducted using a relatively 

small number of study catchments (less than 40). The studies that are of relevance to the 

current study, irrespective of the purpose, are reviewed here according to purpose. 
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1.3.1 Model regionalisation for flood estimation. 

The United Kingdom Flood Studies Report (FSR) (Natural Environment Research Council, 

1975) presents a method for flood frequency analysis based on the use of a unit hydrograph 

model to estimate the peak flow corresponding to a design rainfall event. The two primary 

parameters for this model are the "Time to Peak" parameter for the unit hydrograph, Tp 

and the standard percentage runoff, SPR. A third parameter, the peak flow of the one-hour 

unit hydrograph, Qp is estimated from Tp. Within the FSR, SPR and Tp are estimated from 

regression relationships for five geographic regions within the UK. These regression 

relationships were revised in the Flood Studies Supplementary Report No. 16 (Institute of 

Hydrology, 1985). 

Bum and Boorman (1993) used the regionalisation of Tp and SPR as a vehicle for 

evaluating methods, other than regression relationships, for classifying catchments and 

estimating model parameters. In this approach, 99 catchments within the UK were 

clustered into groups based upon their hydrological similarity, as represented by principal 

components of key catchment characteristics. A derivative of discriminant analysis was 

then used to assign catchments to the predefined groups. Several options were then used, 

based on the knowledge of group membership and the characteristics of the groups, to 

estimate the model parameters for catchments that were treated as ungauged catchments. 

The baseline for evaluation of various options was the revised FSR regression models for 

predicting Tp and SPR. The study concluded that SPR was estimated most efficiently by 

identifying the groups of nearest neighbour catchments and taking a weighted (based on 

distance in catchment characteristic space) average of the SPR parameters for those 

catchments. The results for estimating Tp were more ambiguous with no particular option 

being identified as the preferred approach. The study did not consider the impact of the 

various parameter estimation methods on the simulation of stream flow for example events. 

Pirt and Bramley (1985) present regression-based equations for estimating parameters for 

an eight-parameter version of the isolated event model. These equations were derived 

through applying the model to fourteen small sub-catchments within the River Trent. The 

relationships were evaluated by applying the regionalised model over three events within 

two further catchments within the Trent basin and two catchments from Yorkshire. The 
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catchment characteristics used within the study were based on data describing the 

variations in topography, catchment geometry and soils. The evaluation gave good results 

in two of the catchments and poor results in the other two catchments, and must therefore 

be regarded as being inconclusive. 

Hughes (1989) adopted a similar approach to that of Pirt and Bramley for an eight-

parameter isolated event model called 0SE2. In this study, the model was applied to 29 

catchments from a study set of 21 catchments drawn from the United States (Vermont, 

Arizona, Mississippi and Oklahoma) and 12 catchments from South Africa. Relationships 

between model parameters and catchment characteristics were then derived graphically. 

These relationships were based on readily derived deterministic measures, such as drainage 

density, and empirical "scores" or indices of characteristics, such as soil depth and channel 

roughness. Hughes draws a comparison between the results of his study and those of Pirt 

and Bramley, stating that, whilst his results were substantially poorer, his study covered a 

much greater physiographic and climate range in terms of the catchments considered. 

Calver et al (1999) presents the results from a pilot study of the regionalisation of two 

models for the purposes of flood frequency estimation. The models were the TATE model 

(Calver, 1996) and a version of the PDM model of Moore (1985). The study considered 40 

catchments and 379 station-years of continuous hourly data. Model parameters were 

related, using multivariate regression relationships, to the Flood Estimation Handbook 

catchment descriptors discussed in Chapter 5 of this thesis. The performance of the 

regionalised models was assessed by the capacity of the models for accurately predicting 

flood frequency distributions. 

1.3.2 Model regionalisation for annual, monthly or daily flow regime estimation 

Jarboe and Hann (1974) report the results of study in which a four-parameter water yield 

model, running on a monthly time step, was regionalised using a group of 24 catchments in 

the State of Kentucky. An approach of calibrating the model on 17 of the catchments and 

subsequently relating the model parameters to catchment characteristics using multivariate 

regression models was adopted. The regionalised model was evaluated against the gauged 

annual runoff within the remaining catchments. Errors were in the range 2-12 percent. The 
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authors highlight the model deficiencies and rainfall errors as being the limiting factor on 

the results and acknowledge the limited sample size of the study in restricting the wider 

application of the approach. The study presented results for annual water balance 

predictions only. 

Magette et al (1976) present a regionalisation of the Kentucky Watershed Model (a 

derivative of the Stanford Watershed model of Crawford and Linsley (1966)) based on 21 

catchments. The regionalised model was used for estimating mean annual flows 

(aggregated from the model when run on a daily time step) and stream flow response to 

specific storm events (using an hourly time step). The calibrated model parameters were 

statistically related to physical and land use characteristics of the catchments. Five 

catchments were retained as an independent test data set. The results obtained were 

inconclusive, there were appreciable errors in predicted mean annual runoff (>20%) for 

four catchments and a mixture of reasonable and poor simulations of storm events. 

Egbuniwe and Todd (1976) present the calibration of the Stanford Watershed Model IV on 

two Nigerian catchments that have similar highly seasonal climatic regimes but dissimilar 

hydrogeological controls. The authors transposed the parameters from one catchment to the 

other and evaluated the model fit obtained with the transposed parameters. An acceptable 

water balance was obtained, but there were appreciable discrepancies between the observed 

and simulated monthly and daily time series. 

In the UK Manley (1977) presents the application of the HYSIM model (See Chapter 3) to 

the River Dove, which is an 883 km^ tributary of the River Trent. Manley partitioned the 

basin into a number of gauged sub-catchments and used an a priori definition of most 

parameters using the channel, soils and geological characteristics of the Dove and the 

gauged flows from the adjacent River Derwent catchment. He concluded that that over half 

of the a priori parameters were within a factor of 1.5 of the calibrated values and that both 

calibrated and estimated parameter gave acceptable simulations. 

The approach reported by Tulu (1991) is similar to that of Egbuniwe and Todd (1976). The 

author calibrated an existing deterministic conceptual model against monthly stream flow 

data for the Guder River (central Ethiopian Highlands) and then applied the model using 

the Guder parameter set to a tributary of the basin, the Teltele basin, with satisfactory 
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results. There will obviously be a high degree of serial correlation between the stream 

flows within the two basins due to their nested nature. 

Agung and Cordery (1995) describe the regionalisation of a simple four parameter lumped 

conceptual model run on a monthly time step. The model was calibrated on 18 catchments 

with New South Wales (Australia) covering catchment areas between 10 and 1530 km^. In 

South Africa, Hughes and Sami (1995) describe the conceptual basis and structure of a 

semi-distributed, conceptual model, VTI-HYMAS that can be run on a variable time step. 

In the paper the authors discuss the physical relevance of the model parameters and outline 

a procedure for parameter estimation. The Assessment of Surface Water Resources of 

South Africa (Midgley et al, 1994) describes a regionalisation approach for a version of the 

monthly time step Pitman model (Pitman and Kakebeeke, 1991). In this approach, the 

drainage basins in South Africa were sub-divided in to Quaternary catchments. These 

represent the fourth, and finest, sub-division of catchments for the assessment. The model 

was calibrated for these catchments. The catchments were subsequently empirically 

grouped into hydrologically similar groups based on climate, topography, soils, geology 

and vegetation. Model parameters were then averaged within groups for application at 

ungauged sites. 

Post and Jakeman (1996) present graphical relationships obtained between the calibrated 

model parameters for a second order configuration of the IH-ACRES model (described 

within Chapter 3) and physical catchment characteristics for sixteen small 

hydrogeologically homogenous catchments within the state of Victoria, Australia. The 

physical catchment characteristics used described the drainage network, catchment 

geometry and vegetation classes within the catchments. Sefton and Boorman (1997) 

present the results from a study into the feasibility of regionalising IHACRES within the 

UK. The study presents the results from applying a second order configuration of 

IHACRES to 39 natural catchments which have catchment areas of less than lOOOkm .̂ The 

model parameters were related to catchment characteristics using linear regression 

modelling. Within the paper the regression relationships are graded from good to poor but 

the utility of the relationships in predicting stream flow in ungauged catchments was not 

directly evaluated. 
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1.3.3 Model regionalisation for linking with Global Circulation Models. 

One class of model in which research is aligned to the objectives of this study is the macro-

scale model. Amell (1999) provides a useful review of this type of model. He deOnes a 

macro-scale model as a model that can be applied i epeatedly over a large geographic 

domain, without the need for local calibration. Macro-scale models are regionalised models 

of land-surface hydrological processes that can simulate these processes accurately at an 

appropriate temporal resolution, and that can be incorporated within climate simulation 

models. The model maybe run at a daily time step, however the model output is aggregated 

into a monthly or annual time series for subsequent use. The end point use of such models 

is primarily, but not exclusively, for predicting the effect of future climate change. This 

necessitates the use of a deterministically based representation of the hydrological 

processes involved in the rainfall-runoff process. This class of model is generally based on 

a gridded representation of the modelling of soil moisture availability. Each grid cell is 

treated as a discrete entity, although cell outputs may subsequently be passed though a 

routing mechanism (Jolley and Wheater, 1997a&b). 

Amell (1999) points out that the availability of input data will significantly constrain the 

form of a macro-scale model, and that this will commonly determines the grid scale. Jolley 

and Wheater (1997a) investigated the effect of spatial scale on the performance of a 1-D 

water balance model based upon the Penman drying curve concept (Penman, 1949). This 

concept has been widely used within the Thames Catchment Model (TCM) (Greenfield, 

1988) and is discussed in more detail within Chapter 3. The study indicated that the 

performance of the model was more sensitive to the averaging of the climatic data in higher 

rainfall catchments and to the averaging of soil moisture behaviour in lower rainfall 

catchments. 

The use of a distribution function to describe the spatial variation in grid based storage 

capacities has been successfully used by Amell in his derivatives of Moore's Probability 

Distributed Model (Moore, 1985). This work was initially undertaken in the UK (Amell 

and Reynard, 1996) and has since been developed to give global coverage (Amell and 

King, 1997). Wood has also successfully applied the approach in the VIC model (Wood et 

al 1992). In application, Amell assigns a priori parameter estimates that are either fixed or 
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allowed to vary through space. These parameter estimates are derived from catchment scale 

experience of applying the PDM and process based catchment studies. Abdulla gf aZ (1997a 

&b) have demonstrated for a 2 layer version of the VIC model how this a pnon approach 

may be expanded in continental scale river basins where good quality data describing the 

climatic variations and physical characteristics of catchments are available. Within the 

model, a Pareto distribution function is used to describe the variability of storage capacities 

across a grid cell of specified resolution. The study was based upon application of a lumped 

version of the model to 34 natural catchments within the Arkansas-Red River basin within 

the United States. The model was run on a daily time step with the outputs aggregated to 

monthly values for calibration against observed monthly stream flow data. Of the nine 

model parameters, two were defined a priori from catchment soils information and the 

remainder calibrated against stream flow data. The parameters were then subsequently 

related to catchment characteristics using multivariate regression techniques. The authors 

make the point that climate can play an important role in model descriptions of 

hydrological response, primarily due to limitations of models in describing the full 

complexities of the rainfall runoff process. 

Abdulla (1997b) presents an assessment of the performance of the Macro version of VIC-

2L within the Red River basin. The assessment covered the case when the model was run 

with parameter fields derived from the regression relationships and the case when the 

model was run with parameter fields derived by interpolation from the calibrated 

catchments. The comparison demonstrated that the use of the regression models gave 

acceptable simulations of monthly hydrographs and significantly improved performance in 

reducing model bias. 

There is a conceptual problem that needs to be considered when grid based macro models 

are run with parameters that have been estimated on the basis of the behaviour of the model 

when applied in a lumped mode. The problem is that the model structure is conceptually 

different when applied within a uniform grid mode. In the lumped mode the parameters are 

a function of the whole catchment processes. If the grid resolution is small compared to the 

size of the catchment the whole catchment processes are described as a summation of 

parallel models in the gridded mode. If the grid resolution is large then the catchment 

processes are represented by a fraction of the response from one cell. The biggest impact of 
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this will be on parameters related to hill slope routing where the geometry of the catchment 

and potentially the drainage network are likely to have an impact on the routing of effective 

rainfall. This limitation is offset by the use of a monthly or longer time step in most 

applications of this class of model. At these resolutions the hill slope routing of runoff is 

not as important. 

Pilling and Jones (1999) present the application of a 10-km resolution gridded application 

of a seasonal macro-scale model. The model was based on an application of HSYIM with a 

priori defined parameters. The approach of treating grid cells as independent entities was 

adopted within the model. The authors claim that this work represents a significant 

enhancement over the work of Amell and Reynard (1996) both in terms of scale (true) and 

physical realism, which is debatable. The prediction of annual runoff by the model was 

evaluated against stream flow data for 865 catchments that were classified by Gustard et al 

(1992) as suitable for the regionalisation of flow statistics. The authors evaluated the model 

fit by averaging the grid cell predictions of annual runoff and comparing that prediction 

with the gauged runoff. The results are then presented as the percentage of grid cells that 

have annual runoff errors of less than 10%, between 10% and 20% and the percentage of 

cells that have errors of greater than 20%. This is incorrect, as although the simulated 

catchment average value of runoff may have an error of less than 10% the individual cells 

may well have errors greater or less than this. A more correct representation would be to 

present the percentage of catchments where errors are less than 10%. Holmes and Young 

(2000) demonstrate that it is within smaller catchments that the larger errors occur in the 

regional modelling of annual runoff. This is because it is in these catchments that the 

biggest errors in the averaging of spatial rainfall fields are observed and where inaccuracies 

in catchment definition have the greatest impact on the assumption of a closed water 

balance. 
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1.4 NEW RESEARCH AND THESIS STRUCTURE 

1.4.1 New research 

With the exception of the study of Sefton and Boorman (1997), this study is the first 

reported study in which the objective has been to regionalise a model for predicting daily 

stream flows within ungauged catchments. Other studies have concentrated on flood 

estimation or the prediction of monthly and/or annual-resolution stream flow data. At these 

longer time steps, a regionalised model has to be capable of closing an effective water 

balance, but the processes controlling the routing of effective rainfall through a catchment 

do not have to be accurately modelled as these processes tend to operate over a shorter time 

scale. 

The study of Sefton and Boorman is inconclusive due to the relatively small sample size 

and the fact that the utility of the regionalised model for predicting historical stream flows 

was not explicitly explored within the study. The regionalisation of the model was only one 

aspect of the paper. The authors recognised the poor quality of some of the relationships 

between model parameters and catchment characteristics and the inconclusive nature of the 

results obtained for the regionalisation part of the study. 

The research that is reported within this thesis is innovative for the following reasons. 

• It is one of only two studies to focus on the regionalisation of a daily resolution, 

catchment scale rainfall runoff model. 

• It is the largest study of this type within the UK, with nearly 180 catchments 

successfully incorporated into the analysis. 

• It is the first study to take a holistic approach: addressing, input data errors, model 

structure, model calibration and parameter identifiability and regionalisation strategies. 

• The results of the study have been extensively evaluated. 

This study is the first to have demonstrated that, in the UK context, a conceptual model 

structure for predicting daily stream flows can be defined such that conceptually justifiable 

relationships can be derived between model parameters and the physical characteristics of 

the catchment being modelled. Furthermore, the stream flow simulations derived using the 
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regionalised model are certainly applicable for many water resource assessment 

appHcabons. 

1.4.2 Structure of the thesis 

Chapter 2 presents an evaluation of methods for estimating daily spatial rainfall grids at a 

resolution of Ikm^ within the UK. The chapter also presents the derivation of a method for 

predicting daily spatial grids of potential evaporation demand. 

Chapter 3 presents an evaluation of a range of conceptual model structures for five 

catchments within the Anghan region of the UK. The catchments selected are some of the 

driest catchments within the UK. As will be discussed in this chapter, the correct modelling 

of soil moisture behaviour, and the relationship between soil moisture deficits and 

evapotranspiration losses are crucial to the successful application of a conceptual rainfall 

runoff model for water resources purposes. This evaluation guided the selection of the 

preferred basic model structure for the research. 

The development of two appropriate deterministic conceptual model structures for the 

regionalisation research is presented within Chapter 4. The focus of this development was 

to develop model structures that had a strong physical basis whilst minimising the number 

of parameters that were to be calibrated. 

The selection of good hydrometric quality natural catchments for use within the study is 

presented in Chapter 5. This identified 318 candidate catchments for use within study of 

which nearly 180 catchments were subsequently used within regionalisation studies. The 

derivation of candidate catchment characteristics and descriptors for these catchments is 

also reported within this chapter. 

The development and application of a novel, multi-objective function calibration scheme is 

presented within Chapter 6. A detailed analysis of the model behaviour was made over a 

range of catchment types using this scheme. This is illustrated within Chapter 6 with 

reference to four case study catchments. This analysis led to a simplified form of the initial 

model structure. The simplifications were made to reduce the issue of parameter covariance 

within the model. 
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The model fits obtained via the calibration procedure are evaluated across the catchment 

data set in Chapter 7. The development of predictive relationships between model 

parameters and catchment characteristics/descriptors is also presented within this chapter. 

The utility of the relationships for predicting model parameters from catchment 

characteristics is assessed with Chapter 8. This was assessed through comparisons between 

the fits obtained with the models when using regionalised parameter estimates with those 

obtained using the calibrated model parameters. For two of the Anglian catchments, 

considered in Chapter 3, a comparison between the performance of the regionalised models 

and the models used in the original model evaluation studies is presented. These 

catchments were not used in the regionalisation studies. 

As discussed in Section 1.1, the current practical approach to estimating stream flows at 

ungauged sites is based on the transposition of natural or naturalised stream flows from 

suitable analogue gauged catchments. The fit obtained using commonly used transposition 

methods is assessed in Chapter 9 for the catchments used in the regionalisation studies. A 

comparison is then made between the fit obtained with the best of these methods and the fit 

obtained through the use of one of the regionalised model forms. 

The results from the studies forming this thesis are discussed in Chapter 10. This chapter 

presents the conclusions from the research and makes recommendations for further work. 
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2 Estimation of climatic data 

The optimisation of parameters of any model will tend to compensate for measurement 

error within both the input data and the calibration flow data. It is therefore essential that 

the methods used for estimating climatic input data are both accurate and consistent in 

approach across the study area, in this case the United Kingdom. One objective of the 

research has therefore been to define and evaluate techniques for estimating time series of 

catchment rainfall and potential evaporation for any catchment. It has not been necessary to 

consider temperature explicitly, as the regionalisation of snow storage and melt processes 

is not part of this study. This chapter reviews the literature on the consequences of 

measurement errors in climatic data for hydrological modelling and describes the selection 

of methods for estimating areal rainfall and the development of a method for estimating 

potential evaporation on a daily basis and at a 1km grid resolution. 

2.1 CONSEQUENCES OF MEASUREMENT ERRORS IN CLIMATIC DATA 

Errors in the spatial fields of rainfall used to derive catchment average values may result 

from measurement and/or interpolation error. The standard rain gauge within the UK is the 

Meteorological office MKH rain gauge (Meteorological Office, 1981) set into the ground 

with the rim located at 300mm above the ground surface. However, increased turbulence 

around the gauge can lead to the gauge catch being significantly reduced. This has led to 

gauges being increasing set at ground level with a variety of devices to minimise in-splash. 

Based on measurements at Wallingford and the work of other researchers Rodda (1967) 

hypothesised that these error may lead to significant systematic error of about 5% in the 

estimation of average annual rainfall and that the degree of this systematic error might vary 

within the year. This is illustrated in Figure 2.1 for Rodda's Wallingford site. This data 

excluded months of snow, obviously precipitation that falls as snow may not be fully 

caught by a standard rain gauge. The issue of snow is really only a major issue in the 

mountainous areas of the UK and the Highlands of Scotland in particular. The analysis 

presented in this chapter has been restricted to assessing the potential errors of spatially 

interpolating point rainfall data rather the consequences of inherent systematic errors in the 

point measurements. 
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The potential for evaporation demand at a point is a derived measure based upon 

measurements of humidity, the energy balance and wind speed, amongst other variables. 

When spatially interpolating point measurements of evaporation consideration needs to be 

given as to whether it is better to interpolate the meteorological variables or the derived 

evaporation measures. 

</> 3 
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Figure 2.1 Mean monthly differences between ground-level and standard gauge, 
July 1961 to August 1966 (excluding months of snow) (Source: Rodda, 

The importance of errors in rainfall fields derived from point measurements is a function of 

the spatial and temporal extent of the required rainfall surfaces. The type of precipitation is 

also important; errors are likely to be smaller for frontal precipitation rather than 

thunderstorms and/or localised showers associated with warm sector weather. Taking the 

temporal consideration the errors are likely to be higher for hourly or 15 minute data where 

the spatial extent of individual rain events needs to be considered. The errors for daily 

rainfall surfaces tend to be smaller as an average of the depth of all rainfall events within a 

day is taken. 

Faures et al (1995) looked at the implications of spatial errors in rainfall data for single 

events for the modelling of a small, 4.4 ha semi arid catchment using a distributed rainfall 

runoff model. The results of the analysis demonstrated that the model output (peak rate and 

total runoff volume) was extremely sensitive to the characterisation of rainfall using 

between 1 and 4 rain gauges. Obled et al (1994) evaluated the sensitivity of the 

TOPMODEL to the spatial characterisation of hourly rainfall. This was undertaken within 

a 71-km2 catchment in Southeast France over a number of events. They tested two network 
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densities against a baseline assumption of uniform rainfall. They concluded that the spatial 

variability of rainfall, although important, was not sufficiently organised in space and time 

to overcome the effects of catchment averaging within this size of catchment. 

The majority of the literature on the impacts of errors in climatic data on stream flow 

simulation has been driven by the need to understand the relationship between errors in 

rainfall data and the ability of models to simulate catchment response to individual rainfall 

events. However, there are a number of studies that have looked at this issue from a 

resource perspective. Storm, et al (1988) considered the sensitivity of the NAM model to 

the uncertainty in catchment average daily rainfall time series derived for a Danish 

catchment using a kriging based interpolation technique. This analysis demonstrated that 

the largest errors in stream flow occurred in the winter months when the evaporation 

demand is smallest. 

Paturel et al (1995) considered the sensitivity of the simple GR2M model to errors in input 

data in 5 medium sized catchments on the Ivory Coast of Africa. They considered the 

impacts of systematic (both under and over estimation) errors in monthly rainfall and 

evaporation demand on simulated monthly stream flow. The systematic errors in rainfall 

led to equivalent systematic errors in simulated stream flow with a linear relationship 

between the two. When expressed as a percentage error, the errors in stream flow were 

higher as, crudely speaking, the stream flow is the balance between rainfall and evaporation 

demand. The simulated stream flow was also more sensitive to percentage errors in the 

rainfall data than the evaporation data. They also considered the impact of random errors in 

the climatic data and identified that there was a non-linear relationship between the random 

errors and stream flow errors - a consequence of the non-linear relationship between 

rainfall, evaporation and resultant stream flow. Nandakumar and Mein (1997) evaluated the 

sensitivity of the Monash HYDROLOG model to errors in climatic data and parameter 

uncertainty at five experimental sites in Victoria, Australia. They again considered 

systematic errors in rainfall and both random and systematic errors in evaporation. The 

analysis identified that the simulated annual runoff was most sensitive to systematic errors 

(as would be expected) and that the more permeable catchments were less sensitive to the 

errors in the estimation of evaporation demand. The percentage error in simulated stream 

flow was much more sensitive to percentage errors in rainfall than evaporation. 
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These studies indicate that simulated stream flow is more sensitive to errors in precipitation 

and that the ability of a model to close a water balance (zero systematic error in simulated 

stream flow) is much more sensitive to systematic rather than random errors. From water 

balance considerations these results are intuitively correct. 

2.2 METHODS FOR DETERMINING A REAL RAINFALL 

Areal precipitation methods seek to represent the spatial distribution of precipitation over a 

catchment. If r(x,y,t) is taken to be the depth of precipitation at the point (x,y) within time 

interval (t) areal rainfall can be derived from the integral 

nr(%,y,t)dxdy y% 

jjdxdy 
= ^ , . (2.1) 

yx 

In practice the function r(x,y,t) is not known and is thus estimated from the precipitation 

values measured at rain gauges. These can be regarded as point measurements across the 

rainfall surface r(x,y) at time, t. Most methods express the areal rainfall integral as a 

weighted average of the values measured at the individual gauges, expressed as 

=-r iw,r , , , ' 

where: 

n = the number of gauges; 

Wi = the weight applied to rain gauge, r,. 

The weight given to a rain gauge is commonly the fraction of the catchment r(x,y,t) surface 

whose rainfall is represented by the rain gauge (r). The most common methods for 

estimating areal rainfall are domain based methods such as Thiessen polygons (Thiessen, 

1911). In these methods the area of interest is subdivided into polygonal areas with a rain 

gauge within each. The polygons are constructed from perpendicular bisectors of nearest 

neighbour arcs between rain gauges. The weight for each gauge is the area of the 

corresponding polygon, which in turn is that part of the catchment that is closest to the 

gauge. This is demonstrated diagrammatically in Figure 2.2. The main disadvantages of 

domain based methods for areal rainfall estimation are that the gauge may not be 

representative of the domain and that there are discontinuities in the estimated r(x,y,t) 

surface at the domain boundaries. The British Standards Institute standard "Guide to the 
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acquisition and management of meteorological precipitation data" (British Standards 

Institute, 1996) recommends the use of either the triangular planes method (Jones, 1983) or 

Voronoi interpolation (Sibson, 1982) for generating area! rainfall estimates. These are both 

weighted mean methods amenable to implementation using a computer on a grid basis. The 

principle advantage of these methods is that they produce smooth rainfall surfaces without 

the boundary discontinuities that occur between adjacent polygons in the Thiessen polygon 

method. This is of particular importance in small catchments where domain polygons may 

be of a similar spatial resolution to the catchment. Within this study both the triangular 

Planes and Voronoi methods were adapted, implemented and evaluated for estimating daily 

rainfall time series for any cell within a Ikm^ grid across the UK. 

Figure 2.2 A diagrammatic representation of Thiessen Polygons. 

The study has not considered statistical methods such as kriging (Matheron, 1963) as these 

are not British standard methods. These methods use rain gauge weights derived on the 

basis of ensuring the estimates of rainfall for each time interval at a point are both unbiased 

and that errors are minimum variance errors. The method assumes that these estimates are 

uncorrected through time. The spatial dependency of the rainfall field is described by an 

auto covanance function (derived for measured points) that varies through space and 

through time. 
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Triangular planes method 

The triangular planes method evaluated within this study was a simplified version of the 

original Jones' method which in addition to the interpolation of the point data also 

considered the most appropriate grid scale for application of the scheme. Taking advantage 

of increased computing power a standard grid of resolution Ikm^ was used for this study. 

maximum 
d i s t a n c e 

Figure 2.3 A diagrammatic representation of the Triangular planes method. 

The starting point for the rainfall estimation procedure is a catchment boundary. The 

boundary is used to delineate the Ikm^ cells from a regular grid for which daily rainfall 

estimates have to be derived. For each day the three closest rain gauges capable of forming 

an enclosing triangle are identified for each cell centroid. This is demonstrated 

diagrammatically in Figure 2.3. A rainfall value, rc, for a cell, i, at time, t, is then derived 

using a weighted average based upon the inverse distance of each gauge from the 

estimation point according to 

(2.3) 
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The weight for each rain gauge rj is a Euclidean based distance measure given by 

Ud^ 
= T — . (2-4) 

J = 1 

where: 

w = Weight for rain gauge, j, in time interval, t, when used in the estimation of 

rainfall for target cell, i; 

d]j = the geographic distance between rain gauge, j, and target cell, i. 

If a triangle cannot be formed, using gauges within a circle of radius 60-km from the cell 

centriod, the value at the nearest rain gauge is used. The areal average for the catchment is 

the average value for all cells subtended by the catchment boundary. This method can be 

further refined by normalising the measured rainfall for each gauge, rj, by the Average 

Annual Rainfall (AAR) for the gauge and multiplying the estimated value for the target cell 

rci by the average annual rainfall of the cell. This obviously requires a priori knowledge of 

the average annual rainfall for the target cell. This step minimises the impact of differences 

in total rainfall depth between source gauges and the target cell. 

The Meteorological Office have derived a digital 1 km resolution grid of average annual 

rainfall for the United Kingdom at a mapped scale of 1:625,000 for the 1961-1990 standard 

period (Spackman, 1996). The procedure used to generate this map was based upon the 

derivation of node values of average annual rainfall values for a 10-km grid using monthly 

data from approximately 13,100 rain gauges. These values were then contoured and 

gridded at a 1km resolution using a bi-cubic spline interpolation procedure. Estimates of 

annual rainfall derived from this map (henceforth referred to as Standard Period Average 

Annual Rainfall, SAAR (61-90) estimates) were used to describe the AAR for each Ikm^ 

ceH. 

Voronoi interpolation 

Voronoi interpolation is essentially an extension of the Thiessen polygon approach. In 

Voronoi interpolation Thiessen polygons are constructed for the gauge network. Within 

the computer implementation, based upon a 1 km resolution grid, polygons are constructed 

by assigning grid cells to gauges on a closest distance basis so each gauge rj will have a set 
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of cells, C| associated with it. The next step is to sequentially estimate an interpolated 

rainfall value for each cell within the catchment boundary and for each day. For each cell, 

rc, the centriod of the cell is introduced as a new "rain gauge" into the network, and the 

Thiessen polygons re-calculated taking into account the new "rain gauge". These process 

results in the cell centroid, lying at the centre of a polygon which overlaps the original 

polygons developed for the true rain gauge network. The cell polygon consists of a set of 

cells, Crc The rainfall value for the cell is then obtained by taking a weighted average of the 

values at rain gauges whose original polygons are intersected by the polygon associated 

with the target cell. The weight assigned to a rain gauge is the fraction of the cell polygon 

that is overlapped by the original polygon for the gauge. The rainfall value for the cell is 

therefore obtained from the n gauges whose original polygons intersect the cell polygon 

using 

rc.,t = — ^ ( C r e u c j r , . (2.5) 
' - r e J = 1 

Whereas the surface produced by Thiessen polygons is a series of single value domains 

with discontinuities between them, the Voronoi method produces a gradually varying 

surface. The method can also be enhanced by use of average annual rainfall using the same 

approach as described for the triangular planes method. 

2.2.1 The evaluation of rainfall estimation methods 

The approach 

The performance of the Voronoi interpolation and triangular planes methods was evaluated 

within four test areas (A, B, C & D) each covering an area of 50 km^. The locations of 

these areas are presented in Figure 2.4. The objective of the testing was to evaluate the 

performance of the methods within both high and low rainfall areas of the United 

Kingdom. For each class two areas were selected, one with a dense rain gauge network and 

one with a sparse network. The characteristics of the test areas are summarised in Table 

2.1. This table presents for each area the total number of rain gauges operating within the 

1961-90 period, record length statistics and the Meteorological Office estimate of 1961-90 

rainfall for each area. 
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Area A is located in East Anglia around the town of Newmarket. It was selected as a low 

rainfall area with a dense rain gauge network, as demonstrated by the summary statistics 

from Table 2.1. Area B is located over the North Pennine Moors, and represents a well-

instrumented area with above average rainfall. Areas C and D are both sparsely gauged. 

Area C is a low rainfall area in the Grampian region of Scotland to the east of the 

Grampian Mountains and Area D is a high rainfall area within the Highlands region. While 

the total number of rain gauge years over the period 61-90 varies markedly between areas 

the mean record length per gauge does not. 

Table 2.1 Summary characteristics of test areas 

A 
Area 
B C D 

Total number of gauges 1961-90 67 49 17 24 

Record length (yrs) Max. 30 29 26 27 
Min. 5 5 5 5 
Mean 15 14 14 13 

Total gauge years 1025 667 244 313 
61-90 SAAR (mm/yr) 586 1249 988 1980 

The performance of each of the methods was assessed through the ability of a method to 

replicate the observed daily rainfall pattern for each gauge within an area. Within an area, a 

rainfall time series was generated for each gauge over the period 1961-90 by removing the 

rain gauge in question and using the surrounding gauges to estimate the daily rainfall time 

series at the gauge site. The analysis was undertaken for the two methods both with and 

without enhancement through the use of SAAR data. Goodness of fit measures were used 

to evaluate the differences between observed and predicted time series for a gauge. These 

were the statistic and the BIAS in the simulated annual rainfall. The R^ is that 

proportion of the variation in the observed rainfall time series explained by the variation in 

the simulated time series. The BIAS is given by 

BIAS = 
ro. 

• 100 , (2.6) 

where; 

rsi = the simulated rainfall on day, i, within the year (mmd"'); 

roi = the observed rainfall on day, i, within the year (mmd"'). 
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Figure 2.4 The location of the test areas within the UK. 

For both of these measures only those days when rainfall was either observed or simulated 

were used. Using these analyses a time series of annual and BIAS statistics were 

obtained for each gauge within a test area. The R^ statistics are a measure of the correlation 

between the observed and predicted rainfall time series. The BIAS statistics are a measure 

of whether or not the errors in daily rainfall predictions are random or whether there is a 

tendency for the method to over or under predict daily rainfall within a year (a systematic 
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error). Figure 2.5 presents an example of the BIAS time series for an example gauge in area 

A for both methods with and without standardisation by AAR. As can be seen the average 

BIAS over the 61-90 period is low however the inter year variability can be up to ± 

Ideally it would have been more rigorous to select a subset of gauges from each area for 

evaluation purposes. Due to the low sample sizes in areas C and D this was not a practical 

option and thus all gauges were used for both evaluation and prediction. The consequence 

of this is that there will inevitably be a degree of covariance between errors at adjacent rain 

gauges. This is best explained by considering nearest neighbour gauges A and B. It is quite 

likely if gauge A is used to predict rainfall at the site of gauge B that gauge B will be used 

to predict rainfall at the site of gauge A. 
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Figure 2.5 An example of the variation in annual bias for a gauge in Area A. 

This will not always be the case, for example, at gauges near the edges of the areas where 

one or more of gauges used to estimate the rainfall at a gauge site may be drawn in from 

outside of the area. Within the Triangular planes methodology it is not axiomatic that if A 

is one of three nearest neighbours used to triangulate the site of gauge B that gauge B will 

be one of the equivalent nearest neighbours for site A. The consequence of potential error 

covariance between sites will be that the variance of the spatial distribution of errors at 

points within the areas considered will be under-estimated. It is reasonable to expect that a 

method that will result in poor point predictions will result in poor estimates of areal 

rainfall. 
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In practice the variation in performance between methods was found to be small. The 

general variation in performance between areas is therefore presented with respect to the 

performance of the Triangular Planes Method using the standardising by AAR (henceforth 

call the TP A method). The performance of the other methods is presented in the context of 

differences between these methods and the TP A method. 

Evaluation of the differences in the performance of the TP A method between areas 

To summarise the performance of methods for all gauges within an area the time series of 

annual statistics for each gauge were summarised as the average value for each statistic 

over the (61-90)-sample period and the standard deviation of the variation of the annual 

statistic for the sample period. Summary statistics about the variation in the value of the 

mean annual bias for gauges in each area and the "at gauge" variation in the annual bias 

statistic (as represented by the Coefficient of Variation (CV) of the annual bias statistic for 

each gauge) are presented in Table 2.2. The CV of annual bias at a gauge was calculated 

u&ing 

(ZT/ = — , (2.7) 
bias +100 

where: 

bias = mean annual bias over the 61-90 period expressed as a percentage; 

Obias = standard deviation of annual bias over the 61-90 period. 

Table 2.2 Summary bias statistics for the TPA method 

A 
Area 
B C D 

Mean annual Max 10.1 1&5 4.9 1&5 
bias statistics Min -&6 -18.7 -5.4 -9.6 
for gauges Mean 0.0 0.0 0.0 0.0 

Annual bias Max &10 (^61 5.67 &71 
CV statistics Min L21 :LOi 2 3 7 L83 
for gauges Mean 3.74 4.83 4.62 4.79 

Percentage of Ho: |.#0 49 59 35 46 
gauges (9!;9& C.L) 
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The summary statistics, presented in Table 2.2, do not identify any large differences 

between the performance of the TP A method in each of the areas. This is somewhat 

surprising given the low rain gauge density in areas C and D, and is perhaps a measure of 

the effectiveness of using the standardisation by AAR within the estimation procedure. If 

anything. Area C shows that the absolute variation in mean annual bias and annual bias 

CV, as represented by the maximum and minimum values, is less than for the other areas. 

However it should be remembered that area C has fewer rain gauges that the other areas 

and thus these differences are likely to be associated with differing sample sizes between 

areas. 

A good simulation of the daily rainfall at a gauged site would have a minimal annual 

variance and a mean annual bias of zero. For the example gauge (Figure 2.5) it can be seen 

that the variation in annual bias is fairly random over the 61-90 period. This gauge was 

fairly representative of all gauges considered. The CV of the sample for each gauge can be 

taken as a first approximation to the standardised variance of the underlying population. 

From Table 2.2 it can be seen that the mean CV for rain gauges in each area was less than 

5% and the maximum was less than 10%. 

The departure from zero for the mean annual bias (indicating a systematic error) for a 

gauge may be a result of the sample size considered. A two tailed t test was therefore 

applied to the data for each gauge to test whether the mean annual BIAS for each gauge 

was significantly different from a ideal population mean (|li) of zero, given the sample size 

and the variation of annual BIAS within the sample. The null hypothesis for this test was 

Hq: P-=0 and the alternative hypothesis was Hâ ^O. The percentage of gauges in each area 

for which the mean annual BIAS was significantly different from zero is summarised in the 

last row of Table 2.2. With the exception of Area B, this percentage was less than 50%, 

although the variation between areas may be attributable to the different number of gauges 

in each area. The same analysis is presented in Table 2.3 for the annual R^ statistic with the 

exception of the t test, which is not applicable in this case. 

The summary statistics presented for R^ again do not identify large differences between the 

performance of the TP A method in each of the areas. There is some evidence of a trend 

towards lower mean R^ values in areas C and D, this indicates that gauge density does have 



an impact upon the correct simulation of the daily variations in rainfall for this method. 

Considering the CV statistics for the range of CV is similar for all areas except for area 

C where the maximum value of 5% is much lower than that for the other areas. The mean 

values for the CV of are similar to those for the BIAS statistics in each area. 

Table 2.3 Summary statistics for the TPA method 
Area 

A B C D 
Mean annual Max 0.99 0 96 0.91 &95 

statistics Min OJS 0J9 &81 0J9 
for gauges. Mean 0.91 &90 &86 0.88 

Annual R^ Max 9.81 9.90 9.99 
CV statistics Min 1.06 IJJ 2^9 &95 
for gauges (%). Mean 4.3 4J1 4J7 

In the study areas considered it appears that the performance of the TPA method is not very 

sensitive to either the density of rain gauges considered or the magnitude of average annual 

rainfall, and the associated increased probability of greater spatial heterogeneity in rainfall 

patterns. The error in determining annual rainfall totals using the TPA method is primarily 

random in nature with approximately 50% of the gauges in an area demonstrating a small, 

but significant systematic error. The mean CV appears to be in the order of less than 5%. 

The correlation between simulated and observed rainfall is high in areas A, B and D with 

some evidence to indicate that the denser networks do facilitate a more accurate simulation 

of the daily variation in rainfall depths. Again the mean CV for appears to be in the 

order of 5%. 

If the relationship between long term annual rainfall and annual runoff is strongly linear (as 

will be the case when evaporation rates are rarely limited by soil moisture deficits) the 

random errors in annual BIAS will not propagate into major errors in the prediction of long 

term runoff. However it should noted that BIAS errors in years where significant soil 

moisture deficits can potentially build up might lead to potentially large water balance 

errors in simulated runoff over the full period of record. Evaporation rates will be rarely 

limited by soil moisture deficits in the wetter catchments in the north and west of the 

United Kingdom but will occur in most years in drier parts of the country. 



Comparison of the performance of the TP A method with that of the other methods 

To determine whether differences between methods as determined by mean annual BIAS 

were significantly different from that of the TP A method two tailed t-tests were applied to 

each gauge using the estimates of mean annual BIAS and the standard deviation of annual 

BIAS for each method. The null hypothesis tested was Ho; where |Li, is the mean 

annual BIAS for the TP A method and |i2 the mean annual BIAS for the method being 

tested. Where the t-test demonstrated that differences were significant the differences were 

grouped according to whether the mean annual BIAS for the method being tested was 

greater or smaller than that obtained using the TP A method. 

The results from these tests are presented in Table 2.4. The results demonstrate that, where 

significant differences exist between the methods, the differences are for those methods 

which do not normalise by AAR, and are invariably a consequence of larger BIAS values 

than those observed for the TP A method. The numbers of gauges where values are 

significantly different represent a relatively small percentage of the total number of gauges 

within the area except for the Voronoi method in area C. This result is probably a 

consequence of the small gauge sample size for C. The mean BIAS values are not 

significantly different for any of the methods for gauges in area A and only for the Voronoi 

method without normalisation by AAR in Area C. 

In the wetter areas, B and D, instances of gauges where predictions are significantly 

different if normalisation by AAR is not used are observed. In all cases these result from a 

poorer simulation of annual rainfall (and hence higher mean BIAS) that that obtained using 

the TP A method. This result implies that the value of standardising by AAR increases as 

the mean AAR within an area increases and the associated spatial heterogeneity increases. 

The association between the magnitude of annual rainfall and spatial heterogeneity is 

illustrated within Figure 2.4. 

The variation in CV of annual BIAS relative to that for the TP A method is summarised in 

Table 2.5 in which the subscripts 1 and 2 respectively refer to the TP A method and the 

method being evaluated. Here t-tests were not applied. 



This table generally demonstrates that more gauges within an area have a higher CV for the 

Triangular planes based methods than for the Voronoi based methods, particularly for 

Voronoi normalised by AAR. It important to note that the improvement is less than 2% and 

that where the TP A method performs better the advantage the TP A method has is generally 

larger. However, all of these differences must be considered as being marginal. 

Table 2.4 Variations in mean annual BIAS between methods 
% of gauges mean % differences 
Tri.Planes Voronoi Voronoi Tri.Planes Voronoi Voronoi 

Area no AAR AAR No AAR no AAR AAR no AAR 
Area A 

0 0 0 
0 0 0 
100 100 100 

Area B 
0 0 0 

PL2>ii1 6 0 8 -25.13 -19.95 
94 100 92 

Area C 

/Ll] 0 0 0 
0 0 18 -15.53 
100 100 82 

Area D 
0 0 0 
4 0 4 -10.40 -10.60 
96 100 96 

The same analysis undertaken for annual BIAS was also under taken for the R statistics. 

The analysis for R^ demonstrated that in all cases the performance of the methods in all 

cases was not significantly different. Furthermore differences between the CV values for R^ 

were in all cases less than 1%. 

The analysis has demonstrated that there is little to choose between the Triangular planes 

method and the Voronoi interpolation methods when the rainfall estimates from the source 

gauges are normalised by the average annual rainfall for the gauge prior being used in the 

either of the weighted averaging schemes. The standardisation process appears to offer best 

improvements in wetter areas, in terms of BIAS. The temporal variation in simulated daily 

rainfall, as represented by the mean annual R^ value, tends to be insensitive to the method 



used although the methods do appear to simulate daily variations more effectively in drier 

areas and where the rain gauge network is more dense. This is intuitively correct, as the 

spatial heterogeneity in rainfall is lower over these dryer, lower elevation areas. 

Table 2.5 Variations in the CV of annual BIAS between methods 

Area 

Percentage of gauges 
Tri.Planes Voronoi Voronoi 

no AAR AAR No AAR 

mean % differences 
Tri.Planes Voronoi Voronoi 

no AAR AAR no AAR 
Area A CV2<CV] 36 

cy2>cyy 63 
cy2=cy; 1 

AreaB Cy2<Cy; 33 
67 

cy2=cy; 0 

j u e a C 41 
cy2>cy; 59 
cy2=cy; 0 

29 
CV2>Cy; 71 

0 

51 
46 
3 

59 
41 
0 

76 
24 
0 

67 
33 
0 

51 
49 
0 

45 
55 
0 

53 
47 
0 

38 
63 
0 

0J8 
4119 

0.98 
-3.23 

0.21 
L36 

0.92 
251 

&36 
-0.26 

&83 
-0.42 

1.11 
- L 2 2 

0.69 
-1.13 

039 
-032 

-2.24 

L20 
-1.17 

L09 
-1.95 

2.2.2 The influence of standardising by AAR on catchment estimates of average 
annual rainfall 

The Triangular planes method is more computationally efficient than the Voronoi based 

methods and thus Triangular planes method enhanced through the standardisation by AAR 

was used to generate daily rainfall series for all catchments used within this study (see 

Chapter 5). The 61-90 average annual rainfall estimates generated for each catchment using 

the triangular planes method, with and without additional enhancement through the use of 

AAR are plotted as a function of Meteorological Office 1961-90 SAAR in Figure 2.6. The 

strong correspondence between estimated AAR generated using the TPA, incorporating the 

normalisation by AAR, and the published 61-90 data is not surprising as this estimate of 

AAR is used to re-scale the normalised estimated rainfall in the method. However the plot 

demonstrates that the 61-90 SAAR for high rainfall catchments is consistently 

underestimated when AAR is not included within the estimation procedure. High rainfall 

catchments lie in the west and north of the UK in which the high rainfall is a consequence 
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of orographically enhanced precipitation arising from rainfall associated with depressions. 

Furthermore the spatial heterogeneity in rainfall is higher within the areas with higher 

topographic relief. More that 60% of the annual rainfall in the UK is associated with 

depressions (Shaw, 1988). This systematic under estimation in high rainfall catchments 

demonstrates that the siting of rain gauges tends to be biased towards accessible low 

altitude areas. From a simplistic viewpoint these areas are either coastal or areas in which 

rainfall is generally lower as a consequence of rainfall shadowing. 
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Figure 2.6 1961-90 AAR estimates, derived using the Triangular Planes method, 
with and without standardisation by SAAR (61-90), and plotted as a 
function of SAAR. 

2.3 ESTIMATION OF POTENTIAL EVAPORATION TIME SERIES 

2.3.1 National UK Potential Evaporation Estimation: MORECS 

The term "potential" evaporation can be equated to an upper limit to evaporation in a given 

environment. Within the rainfall runoff model potential evaporation is treated as an 

intermediate parameter in the estimation of actual evaporation. This is obtained by 

reducing the potential evaporation estimate in proportion to soil moisture deficit as 

described in Chapter 4. In this situation, the potential evaporation estimates need to provide 

a correct, spatially and temporally consistent reference on which the actual evaporation 

scheme can subsequently be based. It is essential therefore that the physical basis for these 

estimates must be consistent with evaporation theory. 



Calder ef aZ (1983) and Anderson and Harding (1991) have suggested that using a single 

value of potential evaporation applied across the entire United Kingdom (but varying with 

time) does not produce large errors in the estimation of soil moisture deficits, with the 

exception of mountainous areas. This would imply that the spatial variation of 

meteorological variables is not of key importance. However, these studies used a range of 

actual evaporation estimation schemes to simulate changes in soil moisture deficit 

evaluated against those estimated experimentally using a neutron probe. 

The Meteorological Office Rainfall and Evaporation Calculation System (MORECS) 

(Hough, 1996) is the only consistent, national model for estimating historical potential 

evaporation in the UK. Potential evaporation estimates within MORECS are based upon 

the Penman-Monteith equation (Monteith, 1965) and are output on a 40km resolution grid 

basis. The use of a physically based equation, such as Penman-Monteith is likely to give a 

more consistent basis for PE estimation and thus MORECS FE estimates were used as a 

basis for the current study. The biggest limitation of the MORECS system for PE 

estimation is the spatial resolution of the system. This limitation was addressed during the 

course of this study. 

The origins of the Penman Monteith equation can be traced back to the Penman (1948) 

equation for evaporation from open water: 

13. = , (2.8) 

— + 1 

where: 

Eg = evaporation from open water (mm day"̂ ); 

A = slope of the curve of saturation vapour pressure with temperature 

(PaK-'); 

A = available energy (mm day"^); 

u = wind speed (m day ^*); 
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= saturated vapour pressure at the ambient temperature (Pa); 

Cj = saturated vapour pressure at the dew point (Pa), where the dew point is 

the temperature at which a parcel of air must be cooled for it to become saturated; 

y = psycrometer constant (66 Pa K"̂  at Standard Temperature and Pressure). 

Penman adapted the wind function in light of further experimental evidence to give direct 

estimates of potential transpiration (Penman, 1963). In this equation potential evaporation 

is defined as "a measure of the transpiration rate from an extensive short green cover, 

completely shading the ground and adequately supplied with water". The equation for 

potential evaporation is 

E„ = ^ [ R . ( l - c ( ) ] - ^ R , „ + ^ f ( u ) ( e . - e , ) , (2.9) 
A + y A + y A + y 

where: 

R; = solar radiation (mm day '); 

a = surface albedo; 

Rg] = nett long wave radiation (mm day"^). 

Both the solar radiation and net long wave radiation are determined from empirical 

formulae, the former based on the number of hours of bright sunshine and the latter based 

on sunshine hours, air temperature and vapour pressure. Allen et al (1994) describes 

equations for the calculation of the Penman variables. 

The Penman-Monteith equation is based on the Penman model but incorporates a revised 

physical representation of evaporative water loss from by including vegetation effects as 

defined by a "surface resistance" to represent the resistance to the diffusion of water vapour 

from the intercellular spaces of the leaves to the atmosphere. 
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The Penman-Montejth equation given by 

A(R - G j + p c le - e J, r 

where: 

Ej = evaporation rate (kg m"̂  day"'); 

Rn = nett solar radiation (kg m"̂  day"'); 

G = soil heat flux (kg m"̂  day"'); 

p = density of air (kg 

c = specific heat of air at constant pressure (J kg"' K"'); 

r̂  = nett resistance to water vapour diffusion from the surface to the height of the 

measurement instrument (day m"'); 

A, = latent heat of vaporisation of water (J kg"'); 

r̂  = nett resistance to water vapour diffusion from leaf and soil surfaces (day m"'). 

MORECS is a discrete grid based lumped model. Within MORECS the evaporation from 

(potentially) 14 land cover categories from each of three different soil types (virtual soils 

with a high, medium and low available water capacity) is calculated. Although MORECS 

uses the Penman-Monteith equation it does not calculate specific reference evaporation 

rates for individual land cover categories. The MORECS potential evaporation is the 

Penman-Monteith evaporation from grass that is freely supplied with water. 

The meteorological data used to run the MORECS model is supplied by a network of 59 

climate stations reporting sunshine hours and 156 stations additionally reporting rainfall, 

wind speed, humidity and temperature. The interpolation procedure used within MORECS 

is as follows. Daily averaged station data are, initially, normalised by: 

® converting sunshine hours into a percentage of the mean monthly number of hours; 

® reducing temperature and vapour pressure measurements to sea level values; 

* standardising the wind speed using an empirical factor related to terrain roughness. 



The nearest nine stations to a MORECS grid cell are then selected as long as they are 

within 100 km of the centre of the square. If there is a station within 0.5 km of the square 

centre then its measurements are used alone. The nine stations selected are reduced to a 

maximum of six dependent on data availability and excluding stations where there are 

more than two in a single octant of the grid square. If less than three stations have been 

identified in this way then inverse distance weighted averaging is used, otherwise plane 

fitting is employed. The values calculated in this way are then de-normalised. Hough et al 

(1996) state that these procedures will produce estimates of temperature, humidity and 

wind speed within acceptable error limits as their spatial variation is small. The sparseness 

of the sunshine recorders and the poor representation of daily rainfall, however, lead to less 

accurate estimates of these variables. The reference PE estimates generated by MORECS 

are not influenced by the poor rainfall characterisation within MORECS. 

The Meteorological Office operates MORECS as a commercial system. Although the 

model runs on a daily time step the output is available at either a weekly or monthly 

resolution. The data used in this study was restricted to monthly data due to the prohibitive 

cost of the weekly data. The primary limitation of MORECS, as a source of historical PE 

data, is the grid resolution of 40km. The impacts of this are twofold; the scale means that 

the majority of the spatial variations in PE associated with variations in elevation and wind 

speed are averaged out and the discontinuities between adjacent cells are significant at the 

scale of catchments modelled within the study. The variables in the Penman Monteith 

equation that are sensitive to temperature and/or pressure variations related to elevation are 

the: 

• slope of the curve of saturation vapour pressure with temperature( A )(Pa K"'), 

• wind speed, u , (m day"'); 

• saturated vapour pressure at the ambient temperature, , (Fa); 

• saturated vapour pressure at the dew point temperature, , (Pa); 

# psycrometer constant, y , (PaK'^); 

net radiation ( ) (kg m"̂  day"'). 

A temperature lapse rate of -0.6°C/100m and a saturated vapour pressure lapse rate of -

0.0025kPa/100m are used within MORECS (Hough, 1996). The importance of adjusting 
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for elevation is further highlighted by experimental evidence from the Balquidder 

catchments (Wright and Harding, 1993) that indicates grass evaporation ceases at the low 

temperatures encountered in the Highlands of the UK. A study earned out by Beven (1979) 

showed that estimates of actual evaporation made using the Penman-Monteith equation are 

highly sensitive to all other meteorological inputs (and especially radiation measurements). 

However, this sensitivity was found to be far less important than the sensitivity of the 

equation to changes in vegetation as mediated by the resistance values. This is not a factor 

within this study as the PE estimates are being used. 

For this study an approach was developed for disaggregating the 40-km resolution 

MORECS grid estimates to a 1-km grid empirically taking into account taking in to 

account the effect of sub-MORECS cell scale variations in elevation. This has been 

achieved through the development of lumped lapse rates that encapsulate the 

meteorological dependencies on elevation. 

2.3.2 Enhancement of MORECS Potential Evaporation estimates taking into 

account spatial heterogeneity related to elevation 

A generalised 1-km resolution grid of mean cell elevation has been derived at the Centre 

for Ecology and Hydrology - Wallingford from the Ordnance Survey 50-m grid of 

elevation data. This grid was used as the basis for the spatial interpolation of MORECS PE 

estimates to a 1-km grid accounting for spatial heterogeneity in elevation. Empirical PE 

lapse rates were derived and used in an interpolation scheme based upon the triangular 

planes method of Jones used for rainfall estimation. 

Derivation of mean monthly lapse rates 

Empirical monthly Lapse Rates (LR) for PE were derived by analysing the within month 

variations in PE between MORECS grid cells as a function of elevation. The Penman 

Monteith equation is sensitive to the impact of latitude variations on nett radiation 

estimates, which is one of the primary variables affected by changes in elevation. To 

identify whether there were any latitude variations in monthly PE lapse rates the variation 

in monthly PE as a function of elevation was investigated across several "strips" of 

MORECS cells across regions where there is a reasonable variation in elevation. Those 
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considered were cells; 33-39, 60-66, 75-80, 83-87, 111-121 and 143-153. The MORECS 

grid structure is presented in Figure 2.7. 

For each of the six "strips" the mean (61-90) PE was estimated for January (low PE) and 

July (high PE) for each cell within a strip. Lapse rates were estimated from linear 

regressions of PE against elevation for each month and for each strip; in this context the 

lapse rate is the gradient of the relationship. Lapse rates for each strip considered are 

presented in Table 2.6 and example plots of the relationships for strips with Northings 760 

km and 320 km respectively are presented in Figure 2.8. The data show that lapse rates are 

generally higher in the summer months, a function of the increased nett radiation and the 

elevation dependency of nett radiation. However, there is no firm evidence of a relationship 

between lapse rate and latitude dependent variations in nett radiation. This indicates that 

any latitude effects are being masked by uncertainties introduced by the small and different 

sized cell samples between strips and the varying degrees of elevation variation across 

strips. 

Table 2.6 Predicted January and July lapse rates for example strips of MORECS 
cell with constant Northings 

Strip Lapse Rates (mm/m) 
Northing January July 
760 -0.0093 -0.0142 
600 -0.0202 -0.0164 
520 ^10101 -&0086 
480 410112 ^L0036 
320 -0.0086 -6.0001 
200 -0.0064 -4.0010 

PE data from all 190 MORECS cells were consequently used to derive the final monthly 

lapse rates. The frequency distribution of mean cell elevation for all MORECS cells is 

presented in Figure 2.9. This demonstrates the skew to lower elevations and that the 

highest mean cell elevation is less than 560 m, which demonstrates the averaging effect of 

the 40-km resolution. 
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Figure 2.7 MORECS 2.0 grid structure annotated with sunshine hours, week 
ending 12th September 1995 (Source: Hough, 1996, ©Crown Copyright 
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Mean monthly lapse rates were derived for each month using linear regression to relate the 

rate of change of mean 1961-90 monthly PE estimates to changes in elevation. As 

examples the relationships are plotted for January and July in Figure 2.10a and Figure 

2.10b respectively. The annual PE relationship is plotted in Figure 2.10c for comparison. 

The estimated lapse rates are presented for all months in Table 2.7 and are presented 

graphically in Figure 2.11. The standard error for the individual lapse rates are also 

presented in Table 2.7 with the associated 95% upper and lower confidence limits, these 

are also presented in Figure 2.11. 

The largest confidence intervals are associated with the lapse rates during the summer 

months. This is related to the impact of elevation variation on nett radiation which is high 

in summer and which will exhibit a relatively large, climatically driven inter year 

variability. One limitation of the derived lapse rates is that the maximum elevation in the 

data set is 558m and thus when the lapse rates are applied to elevations greater than this 

there will be a degree of uncertainty. In practice PE is generally much lower than rainfall in 

these areas and thus the impact on the performance of the rainfall runoff model will be less 

sensitive to errors in PE in these areas than those in low rainfall areas. 

Table 2.7 Derived mean monthly lapse rates 

Lapse rate Standard Lower 95% Upper 95% 
(mm m^) Error c.l c.l 

(mm m"̂ ) (mm m^) (mm m"̂ ) 
January -0.0143 0.0012 -0.0166 -0.0120 
February -0.0140 0.0009 410158 -0.0122 
March 410180 0.0015 -0.0209 -0.0150 
April -0.0237 &0024 -0.0284 410191 
May -0.0344 0.0038 -0.0418 -0.0269 
June 410314 0.0046 -0.0404 -0.0224 
July -0.0388 0.0061 -0.0509 -0.0268 
August -0.0411 (10051 410511 -0.0311 
September -0.0316 &0028 -0.0371 -0.0262 
October -0.0225 0.0017 -0.0258 410191 
November -0.0177 0.0015 -0.0207 -0.0147 
December 410136 0.0012 -0.0161 -0.0112 

Annual 413011 0.0276 413557 -0.2466 
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Figure 2.8 Examples of the variation in PE with elevation across MORECS cells 
with constant Northings. 
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Figure 2.9 Histogram of mean cell elevation for all MORECS cells. 

2.3.3 The interpolation scheme 

An inverse distance-weighting scheme was used to interpolate the MORECS monthly 

values from the 40-km resolution grid to a Ikm-resolution grid. In the scheme the PE 

estimate and mean cell elevation for each MORECS cell are associated with the cell 

centriod. When interpolating to a 1 km cell, the four MORECS cells (or three at the extent 

of the coverage) that define a minimum area box containing the target cell are identified. 

The time series of monthly PE estimates for each MORECS cell are then re-scaled to the 

elevation of the target cell by using the appropriate monthly lapse rates in conjunction with 

the difference in elevation between the centriod of the target cell and that of the source 

MORECS cell. A weighted average of the re-scaled PE time series from the four 

MORECS cell is then taken. The inverse distance weight used in this average is a two 

dimensional Euclidean distance weight. The first component of the weight is the square of 

the distance between the MORECS grid cell centroids and the centroid of the target cell. 

The second component is the square of the difference in average elevation of the MORECS 

cell and the target cell. The weight is then the reciprocal of the product of these two 

components normalised by the sum of this reciprocal for the MORECS cells being 

considered. 
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Figure 2.10 Relationships between PE, the month and elevation for all MORECS 
cells over the period 1961. 
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Figure 2.11 Derived mean monthly Lapse Rates. 

The is expressed algebraically as 

l/(dLh:,) 
w 

i.J n 

j=i 

where: 

Wij 

GUI) 

= 2D inverse Euclidean distance weight for MORECS cell, j, with respect to 

target cell, i; 

dij = geographic distance between target cell, i, and MORECS cell ,j;, 

hij = difference in mean elevation between the target cell, i, and MORECS cell, j. 

The PE estimate for a cell, i, in month, m, is estimated from 

C112) 

where PEC i,m is the PE estimate for cell, i, in month, m and PE'j ,m is the height adjusted 

PE for MORECS cellj . 
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PEj ^is given by 

=PE. +IJi . | h . - h i , (2JI3) 
j jn ^ 1 jJ' 

where: 

PE,,m = MORECS PE estimate for cell j in month, m; 

LRm = lapse rate for month, m; 

hi = mean elevation of the 1-km target cell; 

hj = mean elevation of the 40 km MORECS cell. 

The implications for catchment estimates of annual PE demand. 

Figure 2.11 presents a 1-km resolution grid of 1961-90 average annual PE derived from the 

interpolated monthly time series of PE for each cell over the period. The percentage 

differences between the MORECS 61-90 estimates of annual PE and the interpolated 

estimates of annual PE within the catchments selected for this study are presented as a 

histogram in Figure 2.13a. This demonstrates that in most of the catchments the catchment 

PE estimates derived from the interpolated PE data are lower than those derived using the 

raw MORECS data. The percentage differences are plotted as a function of catchment 

elevation in Figure 2.13b which demonstrates a strong positive relationship between the 

size of the difference and the mean catchment elevation. This demonstrates the advantage 

gained through the use of the 1km interpolation procedure in deriving more realistic PE 

estimates, particularly for higher elevation catchments. 

2.4 SUMMARY 

A comparison of the two British Standards Institute methods for estimating daily rainfall 

surfaces was undertaken over a range of climatic conditions within the United Kingdom 

and for low and high density monitoring networks. The analysis has demonstrated that 

there is little to choose between the Triangular planes method and the Voronoi 

interpolation methods when the rainfall estimates from the source gauges are normalised by 

the average annual rainfall for the gauge prior to being used in the either of the methods. 

The normalising process appears to offer best improvements in wetter areas, in terms of 

BIAS. The temporal variation in simulated daily rainfall, as represented by the mean annual 

R^ value, tends to be insensitive to the method used although the methods do appear to 



simulate daily variations more effectively in drier areas and where the rain gauge network 

is more dense. 
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Figure 2.12 The 1-km standard period (1961-90) average annual potential 
evaporation grid based on MORECS Penman Monteith estimates for 
short grass. 
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The Triangular planes method is more computationally efficient than the Voronoi based 

methods and thus Triangular planes method enhanced through the normalisation by AAR 

(TPA) has been used for to generate annual rainfall time series for all of the catchments 

used in the research. 

In the study areas considered it appears that the performance of the TPA method is not very 

sensitive to either the density of rain gauges considered or the magnitude of average annual 

rainfall, and the associated increased probability of greater spatial heterogeneity in rainfall 

patterns. The errors in determining annual rainfall using the TPA method are primarily 

random in nature with approximately 50% of the gauges in an area demonstrating a small, 

but significant systematic error. The mean CV for the variation in annual bias for 

individual gauges is in the order of less than 5%. The correlation between simulated and 

observed is high with some evidence to indicate that the denser networks do facilitate a 

more accurate simulation of the daily variation in rainfall depths. 

If the relationship between long term annual rainfall and annual runoff is strongly linear (as 

will be the case when evaporation rates are rarely limited by soil moisture deficits) the 

random errors in annual BIAS will not propagate into major errors in the prediction of long 

term runoff. However it should noted that BIAS errors in years where significant soil 

moisture deficits can potentially build up might lead to potentially large water balance 

errors in simulated runoff over the full period of record. Evaporation rates will be rarely 

limited by soil moisture deficits in the wetter catchments in the north and west of the 

United Kingdom but will occur in most years in drier parts of the country. 

A comparison between 61-90 average annual rainfall estimates generated for each 

catchment using the triangular planes method, with and without additional enhancement 

through the use of AAR, demonstrated that the 61-90 SAAR for high rainfall catchments is 

consistently underestimated when AAR is not included within the estimation procedure. 

This systematic under estimation in high rainfall catchments is attributed to a biased siting 

of rain gauges. The siting of gauges tends to be biased towards accessible low altitude 

areas, these are either coastal areas, or areas in which rainfall is generally lower as a 

consequence of rain shadowing. 
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A scheme for estimating monthly time series of a reference Potential Evaporation demand 

for any point within the United Kingdom at a 1-km resolution has been developed. This 

scheme uses monthly MORECS 11 Penman Monteith PE estimates for short grass. The 

scheme is based on the interpolation of these estimates to a 1-km grid using empirically 

derived lapse rates in conjunction with a 1-km resolution elevation grid. This scheme was 

used to derive a time series of monthly PE data for the catchments used within the study. 

The differences between 61-90 average annual PE estimates derived using this scheme and 

those derived directly from MORECS were evaluated for these catchments. This 

comparison demonstrated that in most of the catchments the catchment PE estimates 

derived were lower than those derived using the raw MORECS data with a strong positive 

relationship between the size of the difference and the mean catchment elevation. This is a 

consequence of the skew within the catchment data set to higher elevation catchments 

(discussed in Chapter 5). This demonstrates the advantage gained through the use of the 

1km interpolation procedure in deriving more realistic PE estimates, particularly for higher 

elevation catchments. 
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regionalisation scheme 

3.1 MODEL SELECTION 

The primary objective of this part of the research was to identify a suitable rainfall runoff 

model structure for generalisation studies within the United Kingdom. The approach 

adopted has been to evaluate the utility of selected lumped rainfall runoff models within 

five case study catchments within East Anglia. Other researchers have used this approach 

to evaluating models. The World Meteorological Organisation (1974) commissioned the 

testing of 10 different models on six rivers distributed throughout the world from a flood 

assessment perspective. Weeks & Hebbeit (1980) tested four models on three catchments 

within South Western Australia. A further study was undertaken by Chiew et al (1993) in 

which six rainfall runoff models were evaluated through their performance in eight 

Australian catchments while Franchini & Pacciani (1991) evaluated seven well-known 

models within the Amo basin in Italy. 

From a water resources perspective, the basic requirements of a rainfall runoff model are 

that the model should reliably simulate the processes that control actual evaporation losses 

and the routing of effective precipitation through the catchment. The low rainfall regime of 

East Anglia means that summer actual evaporation rates are much lower than the potential 

evaporation rate. Consequently the application of models within the region represents a 

good test of the ability of the model loss modules to model the complex relationships 

between actual evaporation and soil moisture deficit, which in turn are dependent on land 

use and the soils within a catchment. The small difference between rainfall and actual 

evaporation within the Anglian region implies that model performance will be extremely 

sensitive to the ability of a model to accurately model actual evaporation. 

A literature review of conceptual and empirical rainfall runoff models suitable for 

continuous simulation of daily mean flows was undertaken. The review considered the 

following questions: 
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• Is there peer reviewed evidence of the use of the models within a generalised context? 

• Is there peer reviewed evidence of the model's capabilities? 

• Is the model commercially available, public domain or published in full within the 

literature? 

• What are the input data requirements? 

• Is the model stochastic, deterministic or hybrid? 

• If a model is deterministic, is the model conceptualisation physically based, or 

empirical in nature, or a mixture of both? 

• How complex is the model (a subjective decision made on the basis of the number of 

parameters and the complexity of the input data requirements)? 

• If calibration schemes exist for a model, what optimisation routines and associated 

objective functions are employed within the schemes? 

• If the model is packaged, what analysis functions are available? 

This review was not intended to be a definitive review of models, but rather a broad review 

of approaches to rainfall runoff modelling. The review identified 19 distinct models, these 

are summarised in Table 3.1. For each model this table presents the author (based on 

affiliated institution), the processes represented within the model, a subjective measure of 

complexity based on the number of model parameters (high, medium or low) and a primary 

reference. From the review the following four models were selected as being broadly 

representative of the model classes reviewed: 

• The Hydrological Simulation Model (HYSIM); 

• The Climate, Land-use and Abstraction Model (CLAM) implementation of the 

Thames Catchment Model (TCM)); 

• The Probability Distributed Model (PDM); 

• Identification of unit Hydrograph And Component flows from Rainfall, Evaporation 

and Stream flow data (IHACRES). 

As discussed in Chapter 1 all of these models, or components of these models have been 

used to some extent for estimating stream flow within ungauged catchments. The key 

features of these models are summarised in the following sub-sections 
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Table 3.1 Summary of the models reviewed 

Model Author Conceptual Corn-
processes plexity 

Reference 

Hydiological Rainfall RunOff 

Model (HYRROM) 

Piobability Distributed Model 

ARNO 

Hydrological, Simulation 

Model HYSIM 

Thames Catchment Model 

TANK Model 

UBC 

Piecipitation - Runoff 

Modelling System (PRMS) 

Saciemento Catchment Model 

Streamflow Synthesis and 
Reservoir Regulation 
(SSARR) 
The HBV Model 

NAM (mc m MIKE II) 

IH-ACRES 

Great Ouse Resource Model 
(GORM) 
SFB 

MODHYDROLOG 

STANFORD IV 

XINANJIANG 

CREC 

VTI-HYMAS 

GR3 

Institute of Hydrology 

Institute of Hydiology 

Inst Hyd Con Univ Bologna, 
IT 

R E Manley, Cambndge 

B Greenfield, Thames EA 

M Sugawara, Tokyo 

Univ Brit Colombia CA 

USGS-Wat Resources Div 

US-Dept Of Commerce 

Nat Weather Set vice 

Hydrologic Engineering Center 

-US Army Corp 

Swedish Met & Hydrol 
Institute 

Marketed by DHI 

Institute of Hydrology / CRES-

Austraha 
WRc 

Houghton 

Univ Melbourne 

NOAA, NWS 

East China College of 
Hydraulic Engineering 
N/A 

Rhodes University 

CEMAGREF, France 

IS, SM, DR.GW LOW 

SS, PDSM, DR,GW LOW 

SS, PE, PDSM, MED 
DR,GW 

SS, IS, DR, MLSM, MED 
MLGW, CR 

N zones M L S M , LOW 

GW 

TF LOW 

SS, SM. DR. 
MLGW, 

HIGH 

B , SM, PE. D & 
GW 

HIGH 

PDSM. DR. 
MLGW 

HIGH 

SS, IS, Sfd . DR, 
GW 

MED 

SS, SM, DR, GW LOW 

SS, SM, DR, GW LOW 

ELM.TF LOW 

DR, MLGW LOW 

SS. GW LOW 

I S , S M , D R , GW MED 

IS. MLSM, DR. 
GW 

HIGH 

PDSM, DR, GW HIGH 

SM, DR, G W LOW 

IS. MLSM, DR. 
GW 

HIGH 

ELM. DR, G W LOW 

Blackie & Eeles, 

1985 

Moore, 1985 

Todmi, 1996 

Manley, 1978 

Gieenfield, 1984, 
NRA R&D Note 
268 
Sugawara, 1995 

Quick, 1995 

Leavesly & 

Stannard, 1995 

Bumash, 1995 

Speeis 1995 

Bergstrom & 
Forsam 1973 
Nielson & Hansen, 
1973 
Littlewood & 
Parker, 1997 
W R c , 1990 

Boughton, 1984 

Chiew & 
McMahon, 1991 
Crawford & 
Linsley, 1966 

Zhao et al, 1980 

Servat & Dezetter, 

1991 
Hughes& Sami, 

1994 

Edijatno & Michel, 

1989 

Key for "Conceptual processes" column, Table 3 1 
PE = Potential Evaporation DR = Direct Runoff (interflow and overland 
IS = Interception Storages flow, lumped or explicit) 
SM = Soil Moisture store GW = Ground Water store 
PDSM = Probability Distributed Soil Moisture MLGW = Multi-Layer Ground Water store 

Store CR = Channel Routing 
MLSM = Multi-Layer Soil Moisture store TF = Transfer Function 

ELM = Empirical Loss Module 
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3.1.1 The Hydrological Simulation Model (IIYSIM) 

HYSIM (Manley, 1977,1978,1992a, 1992b) is a complex conceptual model in which the 

response of the conceptual representation of the hydrological processes is controlled by 

parameters, many of which the author has sought to relate to physical catchment properties. 

HYSIM is a seven store conceptual model coupled to a simple hydraulic routing model. 

This structure is summarised in Figure 3.1. When developing the model the author had the 

stated primary requirement that the parameters of the model should be physically 

significant (Manley, 1978). This summary is based on the published information for the 

model. 

PREOMTATION 
POTENTIAL EVAP0TRAN8PIRATI0N 

POTENTIAL MELT 

Intercept ion 

Impermeable Area 

Overland Flow 

SEWAGE FLOW / 

RIVER ABSTRACTIONS 

Upper Soil 
Horizon 

Lower Soil 
Horizon 

Transitional 
Groundwater 

Groundwater 

Minor 
Channels 

Minor 
Channels 

EVAPOTRANSPIRATION 

GROUNDWATER 
' ABSTRACTIONS 

HYDRAULICS 

SUBROUTINE 

Figure 3.1 The HYSIM model structure (Source: Manley, 1992a). 

The Snow and interception stores 

Precipitation in the form of snow (as defined in the input data) enters a semi - infinite store. 

If there is snow in storage within time step the outflow is equal to the input melt rate within 

the time step. The interception store represents detention of water on vegetation. The 
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maximum depth of the interception store is a calibration parameter. The store receives 

water from precipitation and snow melt (if any) and loses water by evaporation at the 

potential rate. Excess precipitation (EP) is partitioned between the upper soil horizon and 

minor channel storage according to the fractional extent of the catchment defined as being 

impermeable. 

Soil Moisture Store 

The soil moisture store consists of two stores, the Upper Soil Horizon (USH) and the 

Lower Soil Horizon (LSH). The USH represents moisture held in the topsoil (the A soil 

horizon) whilst the LSH represents moisture below the USH but still within the rooting 

depth (the B and C soil horizons). The maximum rate at which the store can accept EP is 

determined by an approximation to Philip's infiltration equation (Philip, 1957). This 

relationship facilitates the calculation of the maximum, or potential, infiltration rate across 

the time step. EP routed to the USH in excess of this limiting rate is routed to the minor 

channels store as overland flow. Evaporation takes place from the USH at the potential rate 

(minus any loss from the interception storage) if the capillary suction, P, calculated by the 

model is less than 15 atmospheres. If P is greater than 15 atmospheres then evaporation 

takes place at a rate reduced in proportion to the remaining depth of water in storage. 

The next transfer of moisture is via inter-flow laterally through the USH. The conceptual 

representation of inter-flow is based on the Brookes and Corey (1971) empirical model for 

the effective permeability of porous media. The final transfer of moisture is by percolation 

from the USH to the LSH, where percolation is estimated in an analogous way to inter flow 

using a non-linear relationship relating percolation to effective saturation. The change in 

storage within the USH is estimated by combining the equations for infiltration, inter flow 

and percolation with the continuity equation. 

The percolation from the USH forms the input to the LSH. The LSH is configured in a 

similar way to the USH where the infiltration of percolation is controlled by the ability of 

the LSH to accept percolation from the USH. Percolation in excess of the infiltration 

capacity is routed to the minor channels store. Loss from the LSH through inter-flow and 

percolation to the groundwater is controlled by similar equations to the USH. Evaporation 

potential that is not met by the USH is met from the LSH, subject to the same suction 
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pressure constraint that operated in the USH. 

The Groundwater reservoirs 

The groundwater store is subdivided into two infinite linear resei-voirs (Horton, 1938) 

called the transitional groundwater and deep groundwater stores. The transitional 

groundwater store which receives percolation from the LSH, is taken to represent the first 

stage of groundwater storage where direct discharge to surface waters may occur via fissure 

flow, etc. The outflow from the transitional groundwater store is partitioned between the 

minor channels store and the deep groundwater store. The deep groundwater store 

discharges to the minor channels. 

The Minor Channels Store and Hydraulic Routing 

The minor channels store conceptually represents the routing of flows in minor streams, 

ditches and, if the catchment is saturated, ephemeral streams. This store uses a triangular 

Instantaneous Unit Hydrograph (lUH), with the time base equal to 2.5 times the time to 

peak. The time to peak is estimated using the Flood Studies Report event model equation 

(Natural Environment Research Council, 1975). The "main" river within HYSIM is 

represented as a number of hydraulically homogenous reaches. 

Velocity of water along a reach is described by the kinematic wave approximation to the 

Saint Venant equations (Lighthill and Witham, 1955). In this approximation, the wave 

velocity is the ratio of the incremental changes in flow and hydraulic cross-sectional area 

along the reach. An empirical model is used within HYSIM for estimating cross-sectional 

area. 

Depending on the configuration, HYSIM has 22 hydrological parameters and six hydraulic 

routing parameters. 

3.1.2 The Thames Catchment Model (TCM)j 

The TCM, which was originally developed by Greenfield (1984), is a conceptual model, 

based on a simple Penman drying curve based loss module coupled with a series 

combination of a linear reservoir and a quadratic reservoir. The model is used operationally 
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within the Thames basin (Moore gr a/, 1989, 1994) and has been used to model the relative 

impact of weather, land use and groundwater abstraction on low flows in case study 

catchments across England and Wales Wilby et al (1994a &b). This summary of the model 

is based on the published work of Wilby. The version of the model used for the study was 

the PC version developed by Wilby. 

The structure of the TCM hydrological model is based on the subdivision of a basin into 

different response zones representing, for example, runoff from aquifer, clay, riparian and 

paved areas. The zones share the same model structure but have different, appropriate 

parameter sets. The zonal flows are combined to yield the total catchment runoff. A 

response zone may be considered to represent a combination of sub-areas within a 

catchment having similar hydrological characteristics. The conceptual representation of a 

hydrological response zone in the TCM is illustrated in Figure 3.2. Each zone consists of a 

two-stage soil moisture store, a linear reservoir, and a quadratic non-linear reservoir 

connected in series. 

The soil moisture store 

Within a given zone, water movement in the soil is controlled by the Penman storage 

model (Penman, 1949) in which a near-surface storage, of depth equal to the rooting depth 

of the associated vegetation (the root constant depth), drains only when full into a lower 

storage of infinite capacity. Evaporation occurs at the potential rate (P.E), whilst the upper 

store contains water and at a lower, actual rate (A.E), when only water from the lower store 

is available. The threshold deficit at which this lower rate evaporation is initiated is 

optimised though calibration. The A.E rate is set to 0.3P.E rather than 0.08P.E, as in the 

original Penman model based on the work of Hyoms (1980) during the 1976 drought. The 

upper Penman soil moisture store is replenished by rainfall, but a fraction called direct 

percolation (typically 0.15) is bypassed to contribute directly as percolation to the linear 

reservoir which may be conceptualised as unsaturated storage. Percolation occurs from the 

upper Penman store only when the total soil moisture deficit has been made up. 

The linear reservoir and non linear reservoirs 

The outflow from this reservoir is proportional to the water held within the store. This 

outflow acts as the input to the non-linear reservoir. The constant of proportionality, the 
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time constant, controls the response of this resei-voir. A quadratic storage function is used 

to represent the response of the saturated zone. The inflow mto this storage is the outflow 

from the linear reservoir. The outflow from this reservoir is proportional to the square of 

the volume in storage. To obtain a volumetric flow rate it is necessary to multiply the 

outflow from the non-linear reservoir by the area of the zone being considered. Each zone 

within the TCM has nine parameters 

precipitation 
evaporation 

precipitation 
soil moisture 
evaporation 

A 
surface 

abstraction 

emuent 
retum 

saturation 
percolation total 

percolation 
percolation 

HHCZir SI 

abstraction 
A rediarge 

baseflow 

ninofT 

Figure 3.2 The Structure of the Thames Catchment Model (Source: Wilby et al. 

1994a). 

3.1.3 The Probability Distributed Model (PDM) 

Moore (1985) developed the Probability Distributed Model (PDM). In the context of this 

evaluation, a fixed configuration was used which represented the most common 

configuration of the model (Moore et al, 1994). The PDM uses a probability-distributed 

approach for modelling soil storage capacity. The general form of the model is illustrated 

in Figure 3.3. This summary of the model is based upon the published works of Moore. 
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Runoff production at a point in the catchment is controlled by the absorption capacity of 

the soil to take up water. Instead of conceptualising this as a simple store with a given 

storage capacity, the differing point storage capacities and that the spatial variation of 

capacity is described by a probability distribution. The most commonly used distribution is 

the Pare to, or reflected power, distribution. Based on this it is possible to formulate a 

simple runoff production model which integrates the point runoffs to yield the catchment 

surface runoff into smface storage. Groundwater recharge from the soil moisture store 

passes into sub-surface storage. The outflow from surface and sub-surface storages (or 

reservoirs) forms the model output. This probability-distributed approach to soil storage 

capacity has also been used by other researchers notably within the ARNO, XIN AN JIANG 

models (referenced in Table 3.1), the grid based VIC model, Amell implementation of the 

PDM and Jolley and Wheater grid based implementation of the TCM soil moisture store. 

These grid-based models are discussed in Chapter 1. 

Sur face 
s torage Di rect 

runo f f — > — 

S u r f a c e 
s r u n o f f 

Recharge 
P r o b a b i l i t y - d i s t r i bu ted 

soi l mo is tu re s to rage 

% B a s e f l o w 

Groundwater 
s torage 

Figure 3.3 The Structure of the PDM rainfall-runoff model (Source: Moore, 1985). 

As the PDM was finally selected to form the basis of the rainfall runoff model it is 

described briefly here with the probability distributed concepts discussed more thoroughly 

in Chapter 4, in the context of model development for this study. The discussion in Chapter 

4 also draws from Moore et al (1994). The configuration of the PDM used in the 

evaluation was a Pareto based soil moisture store with the surface runoff routed through 

two linear reservoirs in series with identical time constants. That part of the effective 

rainfall attributed to base flow was routed through a cubic non-linear reservoir. Two 
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options for determining the partitioning of effective rainfall between surface and 

groundwater flow paths were tested. The first was based on a simple Rxed split of runoff 

from the soil moisture store, with the split parametej- optimised during calibration. In the 

second option a drainage term was included in which the drainage to the slow flow 

reservoir was inversely proportional to the soil moisture deficit. This conRguration is 

similar to Amell's grid based implementation. The constant of proportionality was 

optimised during calibration. This configuration of the PDM has nine parameters. 

3.1.4 Identification of unit Hydrographs And Component flows from Rainfall, 
Evaporation and Stream flow data (IHACRES) 

Overview 

The version of IHACRES selected for this study is the PC implementation of the model, 

PC-IHACRES, VI.0 (Littlewood and Parker, 1997). The first published account of the 

IHACRES methodology and it's application to two small research catchments in Wales is 

by Jakeman et al, (1990). IHACRES comprises a non-linear loss module in series with 

either a single linear unit hydrograph (UH) model or, alternatively, two linear unit 

hydrograph models in parallel or series. This summary of IHACRES is based on the 

information published by Littlewood & Parker (1997), Jakeman et al (1990), Jakeman & 

Homberger (1993) and Littlewood & Jakeman (1994). 

The input data requirements are restricted to time series of rainfall, stream flow, and 

temperature. The latter is used within the model to approximate evaporation. The model 

comprises two modules, in series, as shown in Figure 3.4 

Within IHACRES an assumption is made that there is a linear relationship between 

effective rainfall and stream flow. This allows the application of unit hydrograph theory in 

which the catchment is represented as a configuration of linear reservoirs acting in series 

and/or parallel. All of the non-linearity commonly observed between rainfall and stream 

flow is accommodated in the loss model. Although this does not puiport to conceptualise 

the physical relationships between soil moisture, evaporation and drainage a comparison 

may be made with the soil moisture stores considered within the preceding models. 
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Conceptualisation of spatially distributed processes in both the non-linear and linear 

modules of the IHACRES model is restricted. An advantage of the approach, however, is 

that the model requires only a small number of parametei-s. In the typical configuration of 

the non-linear loss module in series with two parallel linear modules there are three 

parameters in the non-linear loss module and another three in the linear module, making a 

total of six parameters overall. 

The non-linear (loss) module 

The loss module, which estimates effective rainfall, accounts for all of the non-linearity in 

the catchment-scale rainfall-runoff process. The underlying conceptualisation in this part of 

the model is that catchment wetness varies with recent past rainfall and actual evaporation. 

A catchment wetness index is computed at each time step on the basis of recent rainfall 

and, usually, temperature. The catchment wetness index reflects that a catchment that is 

already wet will generate more effective precipitation than if it is previously dry. The 

percentage of rainfall which becomes effective rainfall in any time step varies linearly 

between 0% and 100% as the index varies between zero and unity. If input data to the loss 

model are restricted to those for rainfall the catchment wetness is calculated as 

Sk ~ Cik + So — 0) (3.1) 

where r^ is the rainfall depth within the time step and Xw is the time constant, or inversely, 

the rate at which the catchment wetness declines in the absence of rainfall. This time 

constant is termed the catchment drying constant. A larger value of x^ gives more weight to 

the effect of antecedent rainfall on catchment wetness than a smaller one. The parameter C 

is a constant of proportionality optimised during calibration so that the volume of excess 

rainfall is equal to the total stream flow volume over the calibration period, after 

adjustment for the change in catchment storage between the beginning and the end of the 

period. The excess or effective rainfall within the time step is calculated from the product 

of the rainfall and the catchment wetness index. To account for fluctuations in evaporation 

the catchment drying constant can be modulated by a function that relates this to the third 

variable, usually temperature. 
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The linear fUHl module 

A full desciiption of the Imear hydrograph module is given within the literature. The 

module is essentially an extension of the simple discrete-time hydrograph such that unit 

effective rainfall over one data time step produces stream flow 6 (<1) over the same time 

step. In each subsequent time step, stream flow is a fixed proportion (a < 1) of what it was 

in the previous time step and thus the flow decays exponentially (at a rate determined by a). 

The area under the UH (volume of flow) is given by the sum of the infinite geometric 

series {b + ab + a^b + a'^b +...) and, by definition, this is one unit. With 0 < a < 1, this 

infinite geometric senes sums to bl{\ - a). The shape of the UH is completely defined, 

therefore, by one parameter (either a or b). Experience has demonstrated that two UHs in 

parallel is the optimal configuration identifiable from the input data (Littlewood, pers. 

IHACRES transfer function (Unit Hydrograph) 
rainfall - njnoff modelling scheme 

Rainfall (mm/day) 

a 

Ramta* excess (mm/day) Streamflow (mm/day) 

Non-linear 

loss module 

(3 parameters) 

Air temperature (deg C) 

Linear transfer 
function (Unit 
Hydrograph) module 
(3 parameters) 

Unit Hydrographs (curneos) Hydrograph separation (cumecs) 

Figure 3.4 Structure of the IHACRES modelling methodology (Source: Parker and 
Littlewood, 1997). 

One of these corresponds to a quick flow component and the other to a slow flow 

component. The separate UHs sum to give a UH for total stream flow which has a mixed-

exponential decay. The response of this second order transfer function can be controlled by 

any three of the parameters for the two linear reservoirs. A central component of the 
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IHACRES methodology is the use of the Simple Refined Instrumental Variable (SRTV) 

technique to estimate the parameters of the linear module for a given set of stream flow 

data and effective rainfall data received as output from the non-linear module. The detail of 

the SRIV technique is beyond the scope of this study, however the reader is referred to the 

work of Jakeman gf aZ (1990) for further information. 

3.2 APPLICATION OF THE MODELS WITHIN THE CASE STUDY 
CATCHMENTS 

3.2.1 The case study catchments 

The case study catchments selected for the evaluation were the: 

• Babingley Brook above the Castle Rising gauging station ( IH Gauge No.33054); 

• Sapiston Brook above the Rectory Bridge gauging station (IH Gauge No.33013); 

• River Nene above the Orton gauging station (IH Gauge No.32001); 

• River Blackwater above Appleford Bridge (IH Gauge No.37010); 

• River Box above Pol stead Bridge (IH Gauge No.36003). 

These catchments were selected to represent a broad cross section of catchment types 

across the Anglian region and are described in more detail below. The objective of the 

exercise was to apply the models to the 22-year period of record between 1970 and the end 

of 1992, where available. The selection of the period of record was restricted by the 

availability of naturalised flow data for the Blackwater and the Nene. The three-year period 

1986-1988 was used as a calibration period (as the flow variability within this period is 

broadly representative of that across the full 22-year period) and the period either side of 

the calibration period used for model evaluation. The periods selected for the Babingley 

Brook and the Sapiston were respectively 1976-1992 and 1970-1990. The Castle Rising 

gauging station, which replaced an unreliable upstream gauge, became operational in 1976 

whilst significant utilisation of the groundwater resources within the Sapiston catchment 

commenced post 1990. 
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The Babingley Brook above the Castle Rising gauging station (33054) 

The Babingley Brook above Castle Rising has a topographic catchment area of 47.7 km ,̂ 

however the mean groundwater catchment area is believed to be approximately 86 km .̂ 

The gauging station is a triangular profile flow V crump weir and was assigned an A Grade 

for hydrometric quality at low flows by the Institute of Hydrology (Gustard gf aZ, 1992). 

The catchment average value of the Meteorological Office Standard Period 1961-90 

Average Annual Rainfall (SAAR) is 670 mm/year and the catchment has a gauged runoff 

of 150-200 mm/yr. The catchment is predominantly unconfined Chalk and thus the flow 

regime is heavily dominated by groundwater discharge. The land use within the catchment 

is primarily arable. 

The artificial influences within the catchment are dominated by the utilisation of 

groundwater for public water supply, which constitute 98% of the licenced abstractions. 

The abstraction time series over the period 1976-1992 have been accumulated at a monthly 

resolution as part of a naturalisation study undertaken by the Anglian Region of the 

Environment Agency in 1992 (Watts, 1994). For the model simulations the monthly 

influence series was partitioned to generate a daily series. The daily flow series at the 

gauging station were subsequently naturalised by adding in the abstraction time series. This 

was considered to be appropriate as the significant boreholes are close to the river channel 

and the abstraction time series has little seasonal variation. 

The Sapiston Brook above the Rectory Bridge gauging station (33013) 

The Sapiston at Rectory Bridge is a rectangular thin-plate weir gauging an upstream 

catchment of 206 km^ and was assigned an IH grade A for hydrometric quality at low 

flows. The catchment SAAR(61-90) is 590 mm/year and the gauged runoff is 

approximately 105 mm/year. Prior to 1990 the catchment was essentially natural with only 

minor abstraction for public water supply and agriculture. The catchment is agricultural in 

nature with geology dominated by Chalk with Boulder Clay cover. 
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The Nene above the Orton gauging station (32001) 

The flow record for the Nene at Orton is a composite record. Flows below 17 m ŝ ' are 

measured at Orton . Flows above 17 m ŝ'̂  are derived by re-scaling flows measured at 

Wansford, which lies some 12-km upstream from Orton. The structure at Orton consists of 

a series of sluices, weirs and a lock. The station was assigned a B grade for hydrometric 

quality under the IH grading system. The station is the lowest on the Nene and gauges an 

upstream catchment area of 1634km^. The SAAR(61-90) across the catchment is 616 

mm/year and the catchment has a gauged runoff of 180-190 mm/yr. The catchment is 

mainly clay and rural in nature. 

The flow record is heavily artificially influenced by direct and indirect abstractions for 

public water supply, agricultural abstraction and effluent returns. The system is 

complicated by the abstraction at Wansford for Rutland Water, which is used to supply 

towns within the catchment, such as Northampton that discharge back into the Nene. In 

1992 the Anglian Region of the Environment Agency undertook a programme of 

naturalising the record flow through decomposition (Fawthrop, 1992). The resultant 

naturalised flows were used for this study. 

The River Blackwater above Appleford Bridge (37010) 

The Blackwater above Appleford Bridge is a very rural catchment with a catchment area of 

247.3 km^. The gauging structure is a double throated trapezoidal flume assigned an A 

grade for hydrometric quality at low flows. The catchment SAAR(61-90) is 572 mm/year 

and the catchment has a gauged runoff of approximately 160mm/yr. The hydrogeology of 

the catchment is principally Boulder clay over London Clay with Chalk in the headwaters. 

The majority of artificial influences on the flow record are associated with small 

abstractions for agricultural, public water supply and industrial purposes and small sewage 

treatment works discharges. The primary influence is water transferred from the Stour to 

the Blackwater as part of the Ely Ouse Transfer Scheme. The transferred water is 

discharged into the River Pant at Great Sampford in the headwaters of the river. During the 

1970-1992 period considered within this study extensive transfers have been made in 

1973/4, 1976 and 1989-1992. Small but significant transfers have also been made during 

1980, 1984,1986 and during testing in 1971. The gauged flow record was naturalised by 
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Young & Sekulin (1996). This naturalised record was used for the current study. 

The River Box above Polstead Bridge (36003). 

The Box above Polstead is rural, natural catchment with a catchment area of 53.9 km .̂ 

The gauging structure is a trapezoidal flume with a high flow rated spillway that rarely 

drowns. The structure was assigned an IH A grade for hydrometric quality. The catchment 

SAAR(61-90) is approximately 566mm/yr with a gauged runoff oF 130 mm/yr. London 

Clay with Chalk dominates the catchment hydrogeology in the north, all overlain by 

superficial deposits. The minor artificial influences on the flow record are mainly 

associated with abstractions for agricultural purposes and sewage treatment plant 

discharges. The flow record was naturalised for the influence of these minor influences by 

Young & Sekulin (1996). This naturalised flow record was used for this study. 

3.2.2 The derivation of input climate data 

A catchment, average daily rainfall time series was generated for all catchments using the 

method of triangular planes with normalisation by AAR as described and evaluated in 

Chapter 2. The PDM, HYSIM and TCM models all require a time series of catchment 

average potential evaporation as input to the model, whereas the PC version of IHACRES 

requires catchment average temperature time series data. This evaluation of suitable rainfall 

runoff models preceded the development of the national MORECS based PE estimation 

method described in Chapter 2. For this evaluation MORECS n weekly PE estimates for 

short grass and temperature estimates were utilised. As discussed in Chapter 2 these data 

are available at a grid resolution of 40km. Where a catchment intersected more than one 

MORECS grid cell an area weighted average of cell values was taken. The resultant weekly 

time series were partitioned to give daily time series for input into the models. This method 

of generating PE estimates does not take into account the spatial interpolation and altitude 

corrections described in Chapter 2. However given the low relief of East Anglia this was 

not thought to be an issue. 
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3.2.3 Application of the models within the case study catchments 

The evaluation of the model results is presented in Section 3.3. This section summarises 

the mode of application of each model. 

HYSIM 

In all catchments, the objective function used from the model package was the Extremes 

Error of Estimate (Manley 1992b) (based on the product of the explained and unexplained 

variance normalised by the product of the simulated and observed stream flow summed 

over all time steps) which is recommended for use as a general objective function. The 

recommended procedure for fitting the model, as discussed in the user guide, was adopted. 

Firstly default values were set for all parameters using the guidance given in the reference 

manual. The second step was to optimise a potential evaporation correction factor using the 

Newton-Raphson single parameter optimisation option to ensure mass is conserved over 

the calibration period. The third step was to use the Rosenbrock search algorithm 

(Rosenbrock, 1960), in conjunction with visual inspection and manual intervention, to 

optimise the remaining parameters in the model. 

IHACRES 

The approach for calibrating IHACRES is based around incremental searching through the 

parameter space of the loss model and the subsequent solving of the linear, routing model 

using the SRIV technique. The fit of the model is assessed through visual examination of 

the modelled flows, the coefficient of determination between observed and simulated flows 

and the uncertainty associated with the parameter values for the linear module as measured 

by the Average Relative Percentage Error statistic (ARPE). In the calibration procedure 

conservation of mass is ensured through the inclusion of a volume-forcing coefficient in 

the loss module. For this study the full loss module was employed; in this the time 

constant, tw, within a time step is modulated according to a temperature dependent 

function. In this configuration the response of the loss module is controlled by the volume 

forcing coefficient, C, the time constant, Xw, and / , the modulation constant which 

determines how sensitive the modulation function is to temperature. A further term to be 

considered is a pure time delay between the non-linear and linear modules. The model was 

calibrated over the period from October 1985 to October 1989. The manual recommends 
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starting the simulation in October when runoff is generally low to minimise the error in 

estimating the volume-forcing coefficient. The approach adopted for searching the 

parameter space in the loss module was to set the time delay to zeio and search the 

parameter space defined by Tw. and / for both the Rrst and second order configurations of 

the linear module. Following the selection of an optimal pairing of and/further 

simulations were undertaken to optimise the time delay. In all catchments the first order 

configuration was the optimal one. Where a viable second order solution was obtained the 

high associated ARPE values indicated that the additional complexity was not warranted. 

The Thames Catchment Model 

The CLAM implementation of the Thames catchment model was the most problematical 

model to apply. The primary reasons for this is that it is a complicated model when more 

than one zone is used. This, coupled with the lack of an interactive or incremental 

parameter search facility, makes it very difficult to apply. The other consideration is that it 

was very difficult to assess the model fit using the evaluation statistics available within the 

package (BIAS (error at mean flow) and Nash-Sutcliffe efficiency (Nash Sutcliffe, 1970)) 

when more than one zone was used as the statistics were applied to individual zones. 

Visual inspection of the observed and simulated hydrographs was therefore the major tool 

used to judge the goodness of fit. The strategy adopted was to set up a zone to model the 

slow flow component of the hydrograph coupled with a second, quick response zone to 

capture the residual variability. 

Probability Distributed Model 

The most common version of the PDM, summarised in Section 3.1.3, was applied within 

the catchments. In practice it was found that either the direct split or the soil moisture based 

configurations gave the best results, as judged by visual inspection of the hydrographs and 

the value of the sum of squares objective function available within the PDM package. The 

direct split option was used within the Babingley and Box catchments. The calibration 

strategy was to use the automatic calibration facility in conjunction with manual 

intervention to obtain a best fit based on the value of the objective function, the 

reasonableness of parameter values that have a clear physical correspondence and visual 

inspection of the hydrograph. 
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3.3 EVALUATION OF MODEL PERFORMANCE WITHIN THE CASE STUDY 

CATCHMENTS 

The objective of the evaluation exercise was to look at the performance of the individual 

models within each catchment and, from this analysis to identify whether any general 

statements can be made about the relative merits of the four models and their packages. 

The models were applied using the packaged objective functions and graphical displays. To 

make comparisons between the models it was necessary to use a set of common goodness 

of fit tests, these are presented in Section 3.3.1. 

The individual catchment assessments undertaken using the goodness of fit tests are 

presented in Section 3.3.2. A ranking scheme was applied to draw out general statements 

about model performance across the five catchments. This ranking scheme and the 

application to case study catchments is presented in Section 3.3.3. 

3.3.1 Evaluation criteria 

All of the packages for the models under evaluation advocated the use of one or more 

mathematical descriptions, or objective functions. The authors also generally recommend 

that visual inspection of the hydrograph should form part of the calibration process. This 

combination of quantitative and qualitative goodness of fit tests represents the classical 

approach employed when calibrating a rainfall runoff model. A full discussion of 

quantitative objective functions and qualitative goodness of fit measures is presented in 

Chapter 6 in the context of fit criteria used in the calibration of the regional!sation rainfall 

runoff model. For the purposes of evaluating the models the following measures were 

employed: 

• BIAS - expressed as the difference between observed and simulated mean flow 

presented as a percentage of the observed mean flow; 

• -the proportion of observed variance explained by the modelled flows; 

• graphical comparison of observed and simulated flow duration curves; 

• graphical comparison of observed and simulated hydrographs; 

• graphical analysis of summary statistics for the observed flow duration curve. 
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For the last measure the flow duration curve was derived for the observed flow time series 

by ranking in order of size and calculating an exceedence percentile for each flow, whilst 

retaining the date associated with each flow. This is equivalent to assigning a flow 

exceedence percentile to each date. Twelve key percentile points were considered. For each 

percentile point, the observed flow data and associated dates falling within the data range 

of ±0.5% around the point were extracted. For each extracted date the corresponding flow 

was extracted from the simulated time series. This selection process yields N/100 

simulated and observed pairs for each exceedence percentile, where N is the total number 

of data points in the period being considered. 

The performance of the model at each percentile point is assessed by calculating the BIAS 

(the average of the difference between the observed and simulated flows expressed as a 

percentage of the observed flow) and Coefficient of Variation (CV) across the N/100 pairs 

at each point. These are then plotted as a function of exceedence percentile. The BIAS plot 

provides information as to whether the model consistently under or over predicts at 

particular flows, whilst the CV plot provides information as to the consistency of the model 

at particular flows, which can be regarded as a measure of model stability at the percentile 

point. The CV is used to facilitate comparison between different parts of the flow regime. 

As the number of pairs for each percentile point is much smaller for the calibration period 

than for the validation period, direct comparison between the results of a model within the 

calibration period and the validation period should not be made. 

3.3.2 Evaluation of model performance within the case study catchments 

Within the reporting constraints of this thesis it is not possible to review the results for all 

catchments in detail. The results for the Babingley Brook are presented in this section to 

illustrate the process. Within each catchment, the models were assessed both within the 

calibration period and across the modelled period either side of this period, termed the 

evaluation period. The graphs for the Babingley Brook are presented in Appendix A. This 

appendix contains graphs for the observed and simulated example hydrographs, flow 

duration curves, percentile BIAS and percentile CV plots for both the calibration and 

evaluation periods. 
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The Babinsley Brook at Castle Rising 

From inspection of the observed and simulated hydrographs for 1988 (Figure A.l) it 

appears that none of the models simulated the winter storm events well and that general 

flow recession characteristics through the year are best modelled by IHACRES and the 

TCM. The rate of recession for the PDM and HYSIM is too low. HYSIM also fails to 

model the recovery of flows at the end of the year. None of the models seem to model the 

response to summer storms well. The TCM does not respond at all whilst HYSIM over 

predicts the response to large summer storms and fails to pick up the smaller events. The 

recession rates for response to the summer events are too low for both the PDM and 

IHACRES. All models route the majority, if not all, of the effective rainfall through a 

single slow response reservoir. This explains the poor response of PDM, IHACRES and 

the TCM to summer storms. The origin of the behaviour of HYSIM to large summer 

storms is less clear, although the behaviour may be associated with the conceptualisation of 

inter flow within the upper and lower soil horizons. 

The flow duration curves presented in Figure A.2 and the mean error at percentile points 

(Figure A.3) demonstrate that the PDM and HYSIM are the closest in simulating the 

observed distribution of flows. The CV plot (Figure A.3) shows that the PDM consistently 

has the lowest CV, followed by IHACRES. The TCM has a low CV at low flows and 

HYSIM has a high CV. 

Table 3.2 Summary statistics for the Babingley Brook 

PDM IHACRES TCM HYSIM 
Calibration 
Bias -1.97 2.73 -15.61 -0.76 

0.95 0.88 0.88 0.86 
Evaluation 
Bias -2.11 1.58 -24.91 -2.46 
R^ 0.93 0.89 0.66 0.88 
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Summary BIAS and statistics are presented within Table 3.2 for model simulations 

within the calibration and evaluation periods. In the calibration periods the highest 

values were for the PDM, HYSIM had the lowest BIAS, whilst the TCM had the largest 

BIAS but has the same R^ value as IHACRES. 

Evaluation period 

The observed and simulated hydrographs are presented for a dry yeai" (1992) in Figure A.4. 

The flows simulated by the TCM are consistently lower than the observed, with little or no 

response to either short-term events or the onset of recharge in the September. HYSIM did 

not simulate the onset of recharge until November and also consistently underestimates the 

base flow. Once again the "spiky" response to summer storms is observed. The PDM and 

IHACRES markedly overestimate the flows at the start of the year but correctly pick up the 

catchment response to recharge. For the majority of the time both the PDM and IHACRES 

also significantly over estimate the flows, although the overall bias for the evaluation 

period is low for both models. The flow duration curve plots, Figure A.5, show that the 

gradient and hence the variance of the flow distribution simulated by the TCM is close to 

that of the observed, although the simulated flows are consistently lower than the observed. 

The distribution fits of both IHACRES and HYSIM simulated flows are good, The PDM 

underestimates the high flows and overestimates the low flows. The mean error plots 

(Figure A.6) are consistent with the flow duration plots although the CV plots (Figure A.7) 

demonstrate that the PDM is much more consistent in the predictive error than the other 

models. HYSIM and IHACRES are broadly similar with respect to consistency whilst the 

TCM has the largest CV. The summary statistics over the evaluation period show that the 

PDM has the highest R^ value whilst IHACRES has the lowest BIAS. 

3.3.3 Inter-catchment and model comparisons 

The analysis of the results from the case study catchments (presented in Section 3.3.2 for 

the Babingley Brook) demonstrated how difficult it is to draw firm conclusions about the 

performance of the individual models within the case study catchments with goodness of fit 

tests often providing conflicting, or inconclusive results. However the results of the 

exercise demonstrated that a reasonable distributional fit (as described by the flow duration 

curve) maybe obtained when the time series fit may be very poor. This is of concern when 
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evaluating model peifoi-mance and as a consequence the flow duration statistics are not 

included in the comparison of model performance across catchments. A generalised 

ranking scheme for target goodness of fit tests was developed and used to assess: 

• how amenable the flow regimes of the individual catchments were to modelling using 

simple lumped models; 

• if any of the models could be identified as performing more consistently better than 

others. 

The application of the ranking scheme in these contexts is presented below. The goodness 

of fit test statistics used within the ranking scheme were; 

• Bias; 

' R"; 

• mean percentile eiTor (the average of the dimensionless error for the 5, 10, 15, 20, 30, 

50, 70, 80, 90 and 95 exceedence percentiles); 

• stability (the average of the CV of the dimensionless error for the 5, 10, 15, 20, 30, 50, 

70, 80, 90 and 95 exceedence percentiles). 

The latter two test statistics, whilst not statistically rigorous, attempt to numerically 

summarise the information presented graphically for individual catchments. In the ranking 

scheme analysis three scenarios were considered the: 

goodness of fit over the calibration period; 

goodness of fit over the evaluation period; 

goodness of fit over the calibration period and the change in goodness of fit between 

the calibration and evaluation periods. 

For the third scenario, the sum of the modulus of the departure from a perfect fit in the 

calibration period and the difference between the quality of fit in the calibration period and 

the evaluation period was used to summarise the performance of the individual goodness of 

fit tests over the two periods. 
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Inter-catchment comparisons 

This comparison exercise was undertaken to assess, relatively, how well the flow regimes 

of the catchments could be represented by lumped rainfall runoff models. The application 

of the ranking scheme in this comparison is discussed with respect to one statistic. For each 

model the goodness of fit was assessed in each catchment according to each of the test 

statistics and the catchments ranked according to the value of the test statistic. The average 

rank across the four models was then taken to given an overall catchment rank for each test 

statistic. An example for the BIAS statistic over the calibration period is shown in Table 

3.3. The average ranks for each test statistic were then collated for each scenario. These are 

presented in Table 3.4. 

Table 3.3 Example ranking of catchments by model for the BIAS statistic 

Calibration Period 
Catchment PPM IHACRES TCM HYSIM Mean Rank 
Babingley 1 3 3 1 1 
Sapiston 3 4 1 3 2 
Nene 2 5 4 2 3 
Blackwater 4 2 2 5 3 
Box 5 1 5 4 5 

The overall picture produced by this ranking scheme shows that for all scenarios the best 

model fits were obtained for the Babingley Brook and the worst for the River Box. The 

Blackwater was consistently fourth. The Nene had an over all rank of 2 over the calibration 

and 3 over the evaluation period. The Sapiston a rank of 3 over the calibration period but 

has a rank of 2 over the evaluation period. When considering the goodness of fit in the 

calibration period and the stability of that goodness of fit between the calibration period 

and the evaluation period (scenario 3) the rank for the Sapiston is 2 compared with 3 for 

the Nene. 
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Table 3.4 Ranking of catchments by model and scenario 

Calibration 
Babingley S apis ton &̂ me Blackwater Box 

Bias 1 2 3 3 5 
1 3 2 4 5 

Mean % err. 1 3 2 4 5 
Stability 1 2 2 5 4 
Overall 1 3 2 4 5 

Evaluation 
Babingley Sapiston Blackwater Box 

Bias 1 4 2 3 5 
R^ 1 2 3 4 5 
Mean % err. 1 2 3 4 5 
Stability 1 2 3 4 5 
Overall 1 2 3 4 5 

Combined 
Babingley Sapiston Nene Blackwater Box 

Bias 1 4 3 2 5 
R^ 1 2 3 4 5 
Mean % err. 1 2 3 4 5 
Stability 1 2 4 3 4 
Overall 1 2 3 4 5 

Inter-model comparisons 

A similar approach to the inter-catchment comparisons was adopted for the inter-model 

comparisons. For each catchment the goodness of fit was assessed for each model 

according to each of the test statistics and the models ranked according to the value of the 

test statistic. The average rank across the five catchments was then taken to given an 

overall model rank for each test statistic. An example for the BIAS statistic over the 

calibration period is shown in Table 3.5. 

Table 3.5 Example ranking of models by catchment for the BIAS statistic 

Calibration Period 
Catchment PDM IHACRES TCM HYSIM 
Babingley 2 3 4 1 
Sapiston 4 2 1 3 
Nene 2 4 3 1 
Blackwater 3 1 2 4 
Box 3 1 4 2 
Mean rank 3 1 3 1 
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The average ranks for each test statistic were then collated for each scenario. These are 

presented in Table 3.6. Within the calibration phase the PDM scores the highest overall 

rank followed by HYSIM, IHACRES and the TCM in that order. With the exception of the 

BIAS statistics the scorings for individual test statistics is very consistent. The BIAS 

rankings reflect that both IHACRES and HYSIM include calibration factors to ensure that 

mass is conserved over the calibration period. 

Over the evaluation period, HYSIM scores the highest overall rank followed jointly by 

IHACRES and the PDM with the TCM scoring the lowest rank. The scorings for 

individual statistics are consistent with the calibration period for HYSIM and the TCM. 

The promotion of HYSIM to rank 1 for the mean error and stability indices is a 

consequence of the degradation of the PDM scores for these indices. IHACRES retains the 

highest rank for the BIAS statistics demonstrating the utility of calibrating to ensure mass 

is conserved. 

Table 3.6 Ranking of models by catchment and scenario 

Calibration 
PDM IHACRES TCM HYSIM 

Bias 3 1 4 2 
R^ 1 3 4 2 
Mean % err. 1 3 4 2 
Stability 1 3 3 2 
overall 1 3 4 2 

Evaluation 
PDM IHACRES TCM HYSIM 

Bias 3 1 3 2 
R^ 1 3 4 2 
Mean % err. 3 2 4 1 
Stability 2 4 3 1 
overall 2 2 4 1 

Combined 
PDM IHACRES TCM HYSIM 

Bias 3 1 4 2 
R^ 1 3 4 1 
Mean % err. 2 3 4 1 
Stability 1 3 3 1 
overall 2 3 4 1 

3-26 



When looking at the rankings for the combined score, HYSIM scores the highest rank. This 

is consistent across all statistics, with the exception of BIAS, where IHACRES has the 

highest combined rank. The PDM scores the second highest rank and, with the exception 

of BIAS, the PDM is ranked either second or joint first with HYSIM. IHACRES is ranked 

third and the TCM is ranked fourth. The overall ranks for the models are very consistent 

with the ranks for the individual test statistics for scenario 3. 

3.4 SUMMARY OF THE MODEL EVALUATION STUDY 

Looking at the calibration and evaluation periods, the best model Rts were consistently 

obtained for the Babingley Brook and the worst for the River Box. The model fits for the 

Blackwater were consistently fourth. During the calibration periods the model fits were 

better for the Nene than the Sapiston, however over the evaluation period better model fits 

were obtained for the Sapiston than for the Nene. The analysis did not identify whether 

particular models were more suitable than others for specific catchment types. 

During the period of record considered, the Sapiston and Box catchment were relatively 

natural. When the Ely Ouse scheme is not operating, the Blackwater catchment is 

essentially natural and, given the transient nature of the schemes operation, the errors in the 

naturalised flow records associated with the Ely Ouse transfer scheme will not have a 

major impact upon the quality of the flow record. As the hydrometric quality of the flow 

record is good, it is difficult to see why the performance of the models should be worse in 

the Blackwater and Box catchments than the other catchments without further 

investigations. 

The Nene is subject to some complex artificial influences and, given the poor data quality 

associated with the majority of influences and the temporal variability of the quality, it is 

quite likely that time dependent artifacts of the influences remain within the naturalised 

flow record. This may account for why, generally, the quality of the model fits were much 

better in the calibration period than the evaluation period. Recent discussions staff within 

the Anglian region supports this view. The parameters identified over the calibration period 

may well be compensating for these errors. 
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The case study catchments are amongst some of the driest gauged catchments within the 

United Kingdom. The treatment of evaporation and the modelling of actual evaporative 

losses are primary issues when modelling these catchments. Modelling in these dry 

catchments is thus a good test of the performance of the loss modules within rainfall runoff 

model. However the issue of errors in the input data must not be ignored. In these dry 

catchments the gauged runoff is in the order of 100-150 mm/yr, the consequence of 

relatively small eirors in the estimation of catchment rainfall and evaporation/temperature 

may result in quite major errors in the modelled runoff. For example, taking a crude water 

balance a 5% error in an estimated rainfall of 600mm/yr may result in a water balance error 

of up to 30% in the gauged runoff. The issues associated with the propagation of error in 

climatic data within rainfall runoff models were discussed in Chapter 2. 

Obviously the model parameters derived during optimisation will tend to compensate for 

any errors within the input data, including stream flow data. However, this may lead to 

structural problems within the model which, coupled with the likely random nature of 

errors in the input data, will reduce the quality of the model fit over the evaluation period, 

as in the case of the Nene. 

It is important to draw the distinction between the model structure and the packaged 

optimisation procedures and associated objective functions. The performance of the model 

will be strongly influenced by the choice of objective function and the efficiency of the 

optimisation scheme will be strongly influenced by how identifiable, or unique model 

parameters are, which is a function of the model structure. All of the aforementioned will 

be influenced by input data quality. On the basis of these considerations it is not possible to 

definitively conclude that one model is better than another model. 

From a technical viewpoint, the ranking scheme adopted demonstrated that the PDM was 

the most consistent model across the calibration period followed by HYSIM, IHACRES 

and then the TCM. HYSIM gave better results over the evaluation period than the PDM 

and when jointly considering the performance in the calibration period and the departure 

from that performance in the evaluation period HYSIM was the most consistent of the four 

models. The PDM was the second most consistent model overall, followed by IHACRES 

and the TCM in that order. 
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On first sight, it is somewhat surprising that the PDM is the most consistent model across 

the calibration period but not across the evaluation period. This behaviour is related to the 

fact that the PDM package was ranked third with regard to minimising BIAS over the 

calibration period. The mean BIAS for the PDM was 12% over the calibration period and 

24% over the evaluation period. This contrasts markedly with IHACRES and HYSIM 

where the BIAS is small both over the calibration and simulation period. This can be 

attributed to the fact that both of these models formally ensure that mass is conserved over 

the calibration period as part of the calibration procedure; IHACRES by means of the 

volume forcing constant and HYSIM by a scaling factor applied to the P.E. estimates. The 

PDM, in contrast, has no such calibration procedure; the calibration is based on visual 

interpretation and the value of a least square objective function. Within the PDM the BIAS 

error in calibration propagates over the evaluation period and consequently impacts upon 

the other evaluation measures. The measures used in IHACRES and HYSIM for 

minimising BIAS appear to also be effective over the evaluation period. This highlights the 

importance of ensuring that mass is conserved during the calibration period. 

One issue that arose during the trials was that of parameter covariance. Whilst this was not 

formally investigated within the model evaluation process this problem was observed 

during the calibration procedures for all models and was particularly noticeable within 

HYSIM. HYSIM is a very complex model, and the use of default values for many of the 

parameters within the model must raise the question of whether this level of complexity is 

warranted. Furthermore the strong structural interrelationships between the primary 

parameters must be a cause for concern regarding parameter identifiability if the model is 

to be calibrated as opposed to being populated with a priori parameter estimates. The 

model evaluation study has highlighted the: 

• importance of ensuring mass is conserved by the model; 

• limitations of least square based objective functions when calibrating a model for water 

resource issues; 

• need to separate the performance issues relating to the model from those related to the 

packaging of the model (including calibration schemes). 
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When considering the performance of the models over a range of objective functions, 

HYSIM and the PDM were markedly more effective that IHACRES and the TCM. The 

evaluation study did not address the issues of parameter identifiability or the ability of the 

model package to identify the global minimum of the objective function space. These 

issues become more complex as the number of parameters a model has increases. 

On these considerations the PDM philosophy of a statistically distributed soil moisture 

store was selected to form the basis of a rainfall runoff model for UK regionalisation. The 

development of the regionalisation model and calibration framework is discussed in 

Chapter 4. 
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4 Rainfall Runoff Model Development 

When assessing the resource available within a catchment, it is necessary to be able to 

quantify both the average and reliable yield from the catchment. The reliable yield will be 

dependent upon the competing requirements for water and the availability of that water. 

The availability is normally constrained by the magnitude of low flow events within the 

catchment and the frequency of the low flow events. If a regionalised model is to be useful 

for quantifying resource availability at the ungauged river reach, it is essential, therefore, 

that the model can model catchment daily mean flows, particularly low flows effectively 

and replicate the mean daily flow. It is not necessary for the model run on a shorter time 

step than a day or for the model to be able replicate the catchment behaviour at high flows, 

other than to ensure that mean flow is modelled correctly. 

In the context of a model for regionalisation, it is also advantageous to assume a catchment 

water balance approach. In this approach, it is assumed that all parts of a catchment 

enclosed by a boundary defining the extent of the catchment above a point can contribute to 

river flow at the point. In the context of this study, this boundary has been defined as the 

topographic boundary. This assumption is useful, as the catchment area is then a model 

parameter that is defined a priori. The assumption also ensures that it is possible to 

identify meaningful extents for catchment climatic data and characteristics. The limitation 

of the approach is that systematic errors may be introduced through errors in the estimation 

of the contributing catchment area or violation of the closed water balance at the point in 

question. Both these problems commonly occur in phreatic groundwater catchments. The 

closed water balance assumption is flawed in these catchment as groundwater boundaries 

tend not be static and rarely coincide with the topographic divide. Furthermore, as the river 

can be regarded as an exposure of the water table in this type of catchment, it is quite 

common to have a significant bypass of the channel as result of subsurface groundwater 

flow. 

Following on from the model evaluation study presented in Chapter 3, the Probability 

Distributed Soil-moisture Module (PDSM) component of the PDM model of Moore (1985) 

was selected as the basis of a model for the regionalisation studies. The PDSM was used in 

a modelling scheme with a conventional quick and slow flow routing module for 
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representing the hillslope and ground water routing of effective precipitation from the soil 

moisture store. Two configurations were used for the PDSM. 

• Configuration A (MODA). A treatment of soil moisture behaviour in which a drainage 

term for the loss module was included. In MODA the drainage from the PDSM was 

routed through the slow flow reservoir and the outflow from the PDSM routed through 

the quick flow reservoir. An interception model was included within MODA to provide 

some provision for rainfall evaporating at the potential rate, even when soil moisture 

deficits were significant. 

• Configuration B (MODS). A simple treatment of soil moisture and evaporation 

mechanisms was used for this model. The interception losses from different vegetation 

types were ignored and the division of effective rainfall between the quick and slow 

flow routing components was based upon a fixed division. 

MODE was introduced to address some of the parameter identifiability problems found 

with MODA. These issues are discussed in detail within Chapter 6. The model structure for 

the model configurations is presented in Figure 4.1. The models each consist of three 

modules: 

• the distributed soil moisture store; 

• an evaporation module; 

• a routing module consisting of two linear storage reservoirs. 

These three modules are presented in Sections 4.1 to 4.3. with the distinction made 

between the two model structures in each case. 

4.1 THE PROBABILITY DISTRIBUTED SOIL-MOISTURE MODEL 

The soil moisture store within the PDSM is presented here in the context of the distribution 

form adopted for the soil moisture store, the treatment of evaporative losses and the 

partitioning of effective runoff between quick and slow routing paths. Runoff production at 

a point in the catchment is controlled by the absorption capacity of the soil to take up 

water. This can be conceptualised as a simple store with a given storage capacity, c'. 
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Within a time interval, the store receives water from rainfall, P, and loses water by 

evaporation, E, until either the storage fills and spills, generating direct runoff, q, or 

empties and ceases to lose water by evaporation. The behaviour of this store is given by 

[ P - E - ( c ' - S „ ) P>c'+E 

|0 P < c ^ E 

where So is the initial depth of water in storage. 

In the PDSM it is considered that different points in a catchment have differing storage 

capacities and that the spatial variation of capacity can be described by a probability 

distribution. The points differ from each other only with regard to their storage capacity. 

The storage capacity at any point, c, may then be considered as a random van ate with 

probability density function, f(c), so that the proportion of the river basin with capacities in 

the range (c, c + dc) will be f(c)dc. In the PDSM it is assumed that all points are inter-

connected so that hydraulic gradient between the point stores at any point in time is zero. 

The water balance for a catchment, with storage capacities distributed in this way, is 

constructed as follows. Assuming that the catchment is initially dry at the start of a time 

interval and receives a rainfall depth P over a time interval. Over the interval the point 

stores will fill to a depth P unless they are of lesser depth than P, in which case they will 

fill during the time interval and generate runoff. The frequency of occurrence of a given 

store depth is given by the probability density function. The actual runoff produced over 

the catchment must therefore be obtained by weighting the depth produced by a store of a 

given depth by its frequency of occurrence, as expressed by f(c). 

At the end of the time interval stores of depth less than P are generating runoff. Calling the 

capacity below which all stores are full at some time t the critical capacity, C*, (C*=P in 

the present example), the proportion of the basin containing stores of capacity less than or 

equal to C* is 

prob(c < c") = F(C*) = Jo f(c)dc. (4.2) 
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The function F(c) is the distribution function of store capacity and is related to the density 

function, f(c), through the relation f(c) = dF(c)/dc. This proportion is also the proportion of 

the basin generating runoff, so that the contributing area at time t for a catchment of area A 

is 

y\c(t) = F'((:'(t))v\. (4.3) 

The direct runoff rate per unit area from the basin is the product of the net rainfall rate, 7t(t), 

and the proportion of the basin generating runoff, F(C*(t)), after taking into account 

interception, evaporative and potential drainage losses from the store. This given by 

(l(t) =;r(t)F((:*(t)). (4.4) 

Considering now the i'th wet time interval, (t, t+At), in which precipitation, P„ exceeds 

evaporation, E;, yielding a nett rainfall within the interval of Tij = Pi - Ei. Then the critical 

capacity, C * ( t ) , will increase over the interval according to 

( Z ' C r ) = ( : * ( t ) 4 - 7 [ , (T - 1 ) t < T < t + / k , 0 4 . 5 ) 

the contributing area will expand according to (4.3), and the volume of basin direct runoff 

per unit area produced over this interval will be 

0 = 11+ 'q(%-)(lf = ')];(c)dc. (4.6) 

During dry periods potential evaporation will deplete the water content of the storages with 

water moving between stores to equalise the depth of stored water at different points within 

the basin. Therefore, at any time all stores will have a water content, C , irrespective of 

their capacity, unless this is less than C , when they will be full. 
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Figure 4.1 Diagrammatic representation of conceptual mode! structures. 
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Crucial to the PDSM is that a unique relationship exists between the water in storage over 

the basin as a whole, S(t), and the critical capacity, C (t), and in turn to the instantaneous 

rate of basin runoff production, Q(t). The total water in storage, at any point in time, is 

given by the sum of the water held in the proportion of the stores that have a depth less 

than or equal to the critical capacity and the water held in the proportion of stores which 

have a capacity greater than the critical capacity, and are not full. This is expressed 

mathematically as 

S(t) = cf(c)dc + (t) f(c)dc 

(47) 

= |^'(')(1-F(c))dc. 

For a given value of storage, S(t), this can be used to obtain C (t) which allows the volume 

of direct runoff, V(t+At), to be calculated using equations (4.6) together with (4.5). The 

total available storage in the basin, Smax, is given by 

s:max = jlcf(c)ck:==j% (l-]F(c))(ic:= c, (4.8) 

where c is the mean storage capacity over the catchment. During a period when no runoff 

is generated the soil moisture storage accounting is given by 

S(r) = S(t) + /r, (r - 0 t < t < t + At, 0 < S(f) < . (4.9) 

When runoff generation does occur then the volume of runoff produced, V(t+At), is 

obtained using (4.6), and then continuity gives the final storage as 

SO: + A,,) = |S(') + -- "/(t + AO S(l+A.)<s„,ax. (4.10) 
I Smax Otherwise 
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If the basin storage capacity is met fully within the interval (t, t+At) then V(t+At) is 

calculated from continuity as 

V(t + At) = % At - (s_x - S(t)} (4.11) 

A Pareto distribution was used to describe the distribution of soil depths for MODA The 

distribution function and probability density function for this distribution are: 

I%c) = l - ( l - c / cm»y 0 < c < C m x , (4.12) 

f(c) = 
dF(c) b 

dc 

c 

Cmax y 

0 < c < C m » . 0 L 1 3 ) 

The parameter Cmax is the maximum storage capacity in the basin and b is the shape 

parameter controlling the degree of spatial variability of storage capacity over the basin. 

These functions are illustrated in Figure 4.2 for a maximum storage capacity of 250mm. 

Not only is this the distribution that is most widely used in practice but, depending on the 

choice of shape parameter of storage capacity the distribution can be used to simulate a 

wide variety of catchment types. A very large value of b implies that the majority of stores 

are shallow stores whilst a very small value of b implies that the majority of store 

capacities are skewed towards Cmax. A uniform distribution of storage capacities is 

obtained as a special case when b=l. A constant storage capacity over the entire catchment 

equal to Cmax is obtained for b=0. For MODA the parameter b was left as a free parameter 

to be identified during calibration whereas a uniform distribution was assumed for MODE 

to reduce parameter identifiability problems within the model. The following relations can 

be derived for Pareto distributed storage capacities: 

Cmx/(6 + l) 0114) 

S(t) = s „ . {l - (1 - C »(t)/C„„ ) ' • '} , (4.15) 
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C*(t) = C„„{l - ( l -S(t ) /S , (4.16) 

v(t + At) = jtAt -S,.„{(1 -C»(t)/C,.. .)'" - (1 - C » ( t + At)/C,.,„)'*'}. (4.17) 

The relationship between rainfall and runoff implied by the above expressions, for given 

conditions of soil moisture, is presented in Figure 4.3 

Lmax 

100 150 200 250 50 100 150 200 250 

C(nE# C(nm̂  

(a) Probability density function (b) Distribution function 

Figure 4.2 The Pareto distribution of storage capacity. 

Loss terms for the soil moisture store are the evaporation loss term (Ei) which is discussed 

in the subsequent section, the generation of direct runoff and, for MODA, a drainage loss 

term in which water from the PDSM is drained to the slow flow, or groundwater routing 

path. In this drainage term it is assumed that the rate of drainage over the interval, d;, 

depends linearly on basin soil moisture content at the start of the interval where 

di-
SO) (4.18) 

The constant of proportionality, 1/kg, is a drainage time constant with units of inverse time 

(hf^). With both losses to evaporation and recharge, the net rainfall, Tii, is defined as 

Tii - Pi - Ei - di • (4.19) 

4-8 



In this formulation, it arguable as to whether an interception module is necessary. The 

distinction that intercepted water is evaporated at the potential rate is only important when 

the SMD is limiting evaporation. Furthermore, this could probably be compensated for by 

the Cmax and b parameters. The interception model is potentially important when the 

drainage to the slow flow routing component is limited by soil moisture deficit. The 

incorporation of the interception store to intercept a fraction of the daily rainfall implies 

that a greater rainfall depth is required before the SMD is alleviated thus resulting in an 

increased drainage rate. 

- 1 4 0 max Direc* 

Runoff 
V m m 

100 

8 0 I n i t i a l 

S t o r a g e 

6 0 S m m 

N e t r a i n f a l l P - E m m 

Figure 4.3 Example relationships between rainfall and runoff for the Pareto 

distribution. 

In MODE it is assumed that there is no soil drainage, di. Direct runoff from the PDSM is 

split between a fraction |3, which goes to groundwater storage and a fraction (1-P) going to 

make up surface runoff. 
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4.2 THE EVAPORATION MODEL 

Within the modelling framework developed for this study, the maximum evaporation that 

can take place in a time interval is equal to the Penman-Monteith based estimate of 

Potential Evaporation for that time step (Chapter 2). 

Looking at evaporation from a process view-point it can be defined as the physical process 

by which water is converted from a liquid into a gas. The degree to which evaporation 

takes place is dependent on the vapour pressure of the air immediately above the 

evaporating surface. When the vapour pressure is low, water molecules can diffuse freely 

into the atmosphere. However, as the vapour pressure rises it becomes increasingly difficult 

for a net movement of water molecules into the atmosphere. At the saturation point it 

ceases entirely. Evaporation is therefore proportional to the vapour pressure deficit below 

the saturated vapour pressure at the air surface interface. The temperature of the 

atmosphere, the wind speed and vegetation canopy architecture, largely controls this 

deficit. The latter two factors control the rate at which water vapour is moved away from 

the air-surface interface and the degree of mixing which is related to turbulence over a 

canopy. 

Evaporation from water, which is held on the catchment surfaces and water intercepted by 

vegetation evaporates at the potential rate defined by the atmosphere. Given an unlimited 

atmospheric demand, the amount lost from such sources is dependent on the amount held. 

For bare soils, the volume of surface storage is primarily dependent on small-scale 

topography and the infiltration capacity of the soil. For plants, canopy storage volume is 

dependent on leaf number, shape and size and canopy architecture. 

The transfer of energy through the soil controls the rate at which evaporation can take place 

from within the soil. The soil matrix will also determine the rate of evaporation from the 

soil. The surface tension forces binding the water molecules to the soil particles (a function 

of size) and the tortuosity of the path connecting the water molecule to the soil surface 

primarily restrict this rate. 



Evaporation from plant canopies is dependent on plant physiology. Evaporation takes place 

through leaf stomata and its magnitude is dependent on the size of the stomatal aperture. 

This is primarily dependent on climatic factors (temperature, vapour pressure, partial 

pressure of CO2) and amount of water present in the plant. The amount of the water present 

in the plant is in turn dependent on the amount of the water in the soil and the ability of the 

vegetation to extract this water which is a function of the root structure and the type of soil. 

These complex processes controlling evaporation are represented within MODA by two 

conceptual processes: 

• interception of precipitation and the subsequent evaporation at the potential rate 

determined by the atmosphere; 

• evaporation from plant and catchment surfaces, which may take place at a rate equal to 

or less than the potential rate from the PDSM - with any reductions being a non-linear 

function of the soil moisture deficit within the PDSM. 

As soil drainage is not considered in MODE the interception store was omitted from this 

model formulation. The modelling of interception losses and evaporation from the 

catchment surfaces is presented in the following sub-sections. 

4.2.1 The Interception Model 

The largest impact of changing the land use within a catchment, from a quantitative 

viewpoint, is the impact on evaporation processes. The largest modification of evaporation 

processes is generally associated with changes in interception losses, associated with 

vegetation architecture; leaf and stem structure. Enhancement of evaporation from these 

surfaces is primarily a function of aerodynamic resistance (Calder, 1990). The biggest 

increases in interception losses are associated with the transition from grass to coniferous 

afforestation. A number of approaches to the conceptual modelling of interception losses 

have been formulated (Rutter et al, 1971, Gash, 1979, Aston, 1979 and Calder 1986a & b). 

These models all use the same Penman Monteith equation to estimate evaporative losses 

from intercepted water but vary in the way the intercepted water is partitioned between 

different interception components. The interception model adapted for this study is based 

upon the daily interception model proposed by Calder (1986a). This model, which is the 
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simplest model, has been tested through observation on a number of vegetation types in the 

UK (Hall and Harding, 1993 and Harding gr aZ, 1992). Considering vegetation class, j, 

covering a fraction of the catchment, Aj, the intercepted depth of rainfall on day i is given 

by 

I „ = A , t il-e-"'}, (4.20) 

wha^: 

Iji = The interception depth within the day from vegetation class, j (mm); 

Yj= maximum daily interception loss for vegetation class, j (mm); 

6j= scaling constant for vegetation type, j (mm"^); 

Pi= precipitation depth within the day (mm). 

Preliminary results, described in the subsequent section, demonstrate that interception 

losses can be adequately modelled (i.e. within experimental error) by re-parameterising this 

as a one-parameter model. This parameter, y, " the maximum daily interception loss" is 

intrinsically related to vegetation type. The scaling constant, 6, controls at what rainfall 

depth this maximum interception loss is reached, as demonstrated in Figure 4.4. 
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Figure 4.4 The sensitivity of the interception model to the value of 5 (y = 6.43 mm). 



The model has primarily been tested by previous researchers using data from interception 

losses associated with mature coniferous afforestation but has also been applied in the 

modelling of interception losses from heather and broadleaf, deciduous woodland. 

Published parameter values for the model are summarised in Table 4.1. 

Table 4.1 Published parameter values for the daily interception model 

Source Period Interception Parameters 
Fraction y (mm) 5 (mm^) 
of annual 
Rainfall, a 

Coniferous Forest 
All sites: Dolydd Plynlimon, 035 6.99 0.099 
Crinan, Aviemore (Calder, 
1986b) 
Plynlimon 1974-1976 OJO 6.1 0.099 
Dolydd 1981-1983 039 7.6 0.099 
Crinan 1982-1984 036 6.6 0.099 
Aviemore 1982-1984 0.45 7.1 0.099 
Balquidder-Kirkton (Calder 1984-1985 6.4 0.092 
et al, 1986a) 

Heather 
Balquidder(Hall and 1981 - 2.7 0360 
Harding, 1993) 
Law's heather lysimeters 0.16 _ -

(Calder et al, 1983) 
Sneaton moor lysimeter 1980 &19 - -

(Wallace et al, 1982) 

Broadleaf Woodlands 
Beech annual (Harding et al 1989-1991 0 J 4 2.1 0.099 
1992) 
Ash annual (Harding et al, 1989-1991 
1992) 

As can be observed from this table the parameter values are relatively consistent for 

afforested catchments. Using daily rainfall data from 1961 to 1990 for Balquidder, it was 

found that the parameter values for the model, when applied within the Kirkton catchment 

(one of the pair of Balquidder catchments), can be recast as y=6.2 mm and 5=0.099 mm'\ 

This does not introduce any bias in predicted daily losses and maintains an value of 1 

between the two model configurations. The Balquidder calibrated model parameter values 

for heather are lower than the equivalent values for coniferous trees indicating that the 
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maximum interception loss from heather is lower but that a higher precipitation rate is 

required to achieve the maximum loss rate. Re-parameterising this equation with a value 

of 8=0.099 mm"̂  yields a value of y=4.1 mm without introducing any bias into predicted 

daily losses and maintaining an value of 0.91 between the two model configurations. It 

should be noted that the recast equation under predicts at low precipitation values, due to 

the lower value of 5, and over predicts at high precipitation values due to the increased 

maximum daily interception loss. 

The annual precipitation loss expressed as a fraction of the annual rainfall (a) is 0.2 which 

is consistent with the published figures for heather listed in Table 4.1. It should be noted 

however, the average annual rainfall figures for the two published sites at 960mm yr ' for 

Stocks and approximately 1000 mm y f ' for the Sneaton Moor site are much lower than 

that of the Kirkton catchment. 

C alder and New son (1979), published a set of data presenting annual interception losses for 

a number of experimental sites afforested with coniferous trees with the annual interception 

losses presented as a fraction of annual rainfall. For this study M.Robinson (CEH-

Wallingford) has made data from additional experimental sites available. These data are 

presented, together with the data of Calder and Newson in graphical form in Figure 4.5. 

The data are presented as annual interception loss data points, annotated with the name of 

the site, plotted as a function of average annual rainfall. The fraction of annual rainfall lost 

through interception increases as the annual rainfall decreases, which is as would be 

expected. Also presented in the figure are annual loss curves modelled using the daily 

interception model for: 

• Coniferous Forest (calibrated) 

• Heather (recast Balquidder) 

# 

# 

Heather (calibrated) 

Beech - annual (calibrated) 

Ash - annual (calibrated) 
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These loss curves were derived by applying the model to synthetic daily rainfall time series 

for the 10-year period 1980-89 covering the range of average annual rainfall from 485 

mm/yr to 3000 mm/yr. These synthetic rainfall time series were constructed by taking a 

weighted averages of 1961-90 daily rainfall time series for the Box catchment in East 

Anglia (average annual rainfall of 495mm/yr) and the Balquidder catchments (average 

annual rainfall of 2400 mm/yr). Rainfall records from a wet catchment and a dry 

catchment were used to construct the synthetic rainfall time series (rather than just re-

scaling a single rainfall time series) to try and capture the variations in rainfall intensity and 

number of rain days between wet and dry catchments. The percentage of rain days for the 

Box and Balquidder over the 10 year period were 59% and 71% respectively and the mean 

rainfall intensities over rain days were 2.2 and 9.2 mm/day. 
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Figure 4.5 Annual loss-rainfall curves for different vegetation types. 

Within the figure there is a breakpoint in the loss curves corresponding to an annual rainfall 

of 2400 mm/yr, above which the rainfall records were constructed solely from the 

Balquidder data. This indicates that the model is sensitive to the distribution of rainfall in 

terms of intensity and number of rain days. The maximum interception depth in the model 

will be exceeded more frequently for high intensity rainfall catchments with a greater 
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number of rain days. Above the 2400mm rainfall threshold, the number of rain days does 

not increase within the synthetic rainfall time series. The parameter values for the 

simulated loss curves are presented in Table 4.2 and were derived as follows: 

This loss curve was derived by optimising the value of the maximum interception loss 

parameter by minimising the sum of standardised squared differences between the 

observed annual losses and those predicted by the model. 

• Heather 

Two loss curves were generated for Heather; one with the recast Balquidder parameters 

(Heather (recast Balquidder)) and one where the model was calibrated against the 

published annual interception loss values for the Stocks reservoir and Sneaton Moor 

lysimeter data (Heather Calibrated). The latter curve underestimates the experimental 

Balquidder data by 44%. As the average annual rainfall for Stocks and Sneaton Moor sites 

are more indicative of the average across the UK the calibrated Heather Curve is believed 

to be more representative. 

• Beech and Ash annual (calibrated) 

Beech and Ash are deciduous trees and consequently intercept more of incident 

precipitation when foliated during the summer months. This is offset by the fact that the 

seasonal distribution of rainfall means that winter precipitation is generally higher than that 

for summer. Harding et al (1992) developed seasonal model parameters for the daily 

interception model for Beech and Ash using experimental data from the Black Wood 

experimental site near Winchester, Hants over the period 1989-1991. The average annual 

rainfall over this period at Black Wood was 744mm/yr. For the purpose of this study, a 

single annual model is required for modelling interception losses. Annual models were 

developed by using a synthetic rainfall series with an annual mean of 744 mm/yr and 

optimising the model against the annual interception losses published by Harding et al. The 

weakness of these annual models is that they will underestimate the summer interception 

losses and over estimate the winter interception losses. It is interesting to note that the loss 

curves lie slightly below those for heather. 
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Table 4.2 Parameter values for simulated loss curves 

Vegetation type Parameters 
Y (mm) 5 (mm^) 

Coniferous Forest 5.9 0.099 
Heather (recast Balquidder) 4.1 0.099 
Heather (calibrated) 2.6 0IW9 
Beech - annual (calibrated) 2.1 0IW9 
Ash-annual (calibrated) 1.4 0IW9 

One criticism of the interception model is that it assumes that all the intercepted water 

within a time step is evaporated and thus it does not necessarily maintain continuity 

between time steps. To address this the model was modified for use within MODA by the 

inclusion of an interception store equal to the maximum interception depth, y. The 

conceptual structure of the interception store is presented in Figure 4.6. 

p(t) 

p(t) - ip(t) 

ip(Q 

ID(M) 

Ep{t) 

(Ep(t) - Ie(t)) X 
S(t) 

Figure 4.6 The conceptual structure of the interception module. 

Taking the potential depth of rainfall in time step (t+At) that could be intercepted from the 

precipitation depth within the time step, Ip(t+At), the potential depth of water stored in the 

interception store I(t+At) is calculated from continuity as 

I (t+ 0 — !( +Ip(t+At) 0L21) 

4-17 



For the condition l'(t+At) ^ 0, the actual depth of water intercepted, I(t+At), is zero, and the 

residual potential evaporation demand to be met from the soil moisture store, PE'(t+At), and 

the residual precipitation input into the soil moisture store, P̂ (t+At), are given by: 

-(I^ +IPa+&)), 

P (t+At) — P(t+At)- Ip(t+At) • 

If the lies in the interval [0,y ] then; 

PE'(t+At)=0, 

I(t+At) — I (t+At), 

P (t+At) - P(t+At)- IP(t+At) . 

If l'(t+At) is greater than y then PE' is equal to zero, I(t+At) is equal to y and 

P'(t+At) = P (t+At)- IP(t+At) + I (t+At) - y . 

4.2.2 Estimation of Evaporative Losses from the PDSM 

If the potential evaporative demand within a time step is not met by evaporating water from 

the interception store, the residual evaporative demand is met from the PDSM. The 

dependence of the evaporation rate on soil moisture content within the PDSM is introduced 

by assuming a simple Pareto distribution function between the ratio of actual to residual 

potential evaporation, Ei/PEr,, and soil moisture deficit, Smax - S(t): 

= . (4J2) 
I f 



A plot of Ei/PEri as a function of soil moisture deficits is presented in Figure 4.7 for a range 

of values of the shape parameter, be. For a value of be=6 this figure demonstrates that 

evaporation takes place at the potential rate until an SMD of 50% is reached. Beyond this 

point the evaporation rate reduces below the potential rate. The rate of change of this 

reduction rapidly increases with increasing SMD. 

In the formulation of the PDSM Smax is equal to the mean store depth, c. Consider the 

special case of the Pareto distribution, b=0, in which the PDSM is represented by a single 

depth, as defined by Cmax, in this case Smax =Cmax. In this case the formulation of the 

evaporation model is similar to the Penman Drying Curve model (Penman, 1949, Grindley, 

1970) implemented within the Thames Catchment Model (Chapter 3). The parameter 

Cmax, under these circumstances, can be thought of as being equivalent to twice the 

"rooting depth" within the Penman model. The rooting depth is an effective depth, which is 

a function of the root structure of vegetation and the soil. Vegetation can easily extract 

water from the soil up to an SMD equivalent to the rooting depth, water is not limiting and 

evaporation takes place at the potential rate. As the SMD increases beyond the rooting 

depth the extraction of water becomes harder and thus the evaporation rate decreases 

accordingly. 

In the original Penman model a constant reduction factor is used once the SMD exceeds the 

rooting depth and the vegetation is can only extract a further 25mm of water until 

extraction becomes minimal and evaporation ceases. The model used in this study allows 

evaporation to continue, albeit at an ever decreasing rate, until the SMD approaches twice 

the rooting depth. 
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Figure 4.7 The sensitivity of the evaporation model to the value of be-

4.3 

As discussed in the previous sections the PDSM partitions effective rainfall into direct 

runoff, groundwater recharge and soil moisture storage. Direct runoff is routed through the 

surface storage, or quick response path. The effective rainfall partitioned into groundwater 

recharge is routed through a subsurface storage or slow response path. Both routing 

systems can be defined by a variety of Hortonian non-linear storage reservoirs 

(Horton,1938). The basic form for a non-linear reservoir defining the outflow at a point in 

time, q(t), is given by 

where: 

s(t) = the volume of water in storage at time,t; 

k = a constant (with units of time); 

n = the order of the reservoir. 

(4.23) 

The response of a linear (n=l), quadratic (n=2) and cubic (n=3) non-linear reservoirs, with 

the same time constant (50 time units) to a unit impulse is presented within Figure 4.8. The 

response of a cascade of two linear reservoirs in series is also presented. As can be 

observed from this figure the non-linear reservoirs have a higher initial recession rate than 
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the linear reservoir but in the tail of the recessions the rates are fairly similar. Horton noted 

the insensitivity of response to the value of the exponent n, provided k could be adjusted to 

compensate. In rainfall runoff modelling it is common practice to choose an appropriate 

value of n, and to optimise k to avoid the problem of covariance between k and n . As the 

focus of the study is on modelling the lower parts of recession curve accurately the choice 

of configuration is not critical. A linear reservoir was selected to represent the routing for 

both the quick and slow routing paths. Selection of the same configuration for both paths 

facilitates a direct comparison of time constant when applying the model to a catchment. 
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R= reservoir, L=linear, Q=quadratic, C=cubic, 2L = two linear reservoirs in series 

Figure 4.8 Response curves for routing reservoirs. 

The explicit formulation of equation 4.24 neglects that, within a time step, the 

instantaneous value of s is dependent on the function of the outflow, q. Combining 4.24 

with the continuity equation: 

dt" 
u - q , (4.24) 

in which u is the inflow over the time period yields for a linear reservoir: 

(4.25) 
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Rearranging 4.26 and integrating over the time period (t,t+At) gives the explicit recursive 

solution for q as 

At r A' 
Q(t+At) ~ ̂  k Qt uj l"e k (4.26) 

The parameters for MODA and MODS are summarised in Table 4.3. This table also lists 

units, where applicable. For convenience the units for K1 and Kb were set as hours. 

Table 4.3 Model Parameters 

Parameter name Unit Description 
Interception store 
Y mm 
Probability-distributed soil 
Moisture store 

Cmax mm 

b none 

kg 

Routing Module 
K1 

hour 

none 

hour 

Depth of interception store in MODA 

The maximum store capacity within 
the catchment. 

The exponent of the Pareto 
distribution, controlling the spatial 
variability of store capacities. 

The groundwater recharge time 
constant for MODA. 

The runoff factor, which controls the 
split of direct runoff between surface 
and groundwater storage routing for 
MODE. 

The time constant for the quick flow 
linear reservoir. 

Kb hour The time constant for the slow flow, or 
base flow linear reservoir 
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5 The selection of catchment data sets and derivation of 
catchment characteristics 

The development of relationships between model parameters and/or parameter vectors and 

catchment characteristics has to be based on catchments with good quality data and 

relatively natural flow regimes as the river flows must approximate a natural response to 

the physical properties of the catchment. This chapter discusses the selection of usable 

gauged catchments and the development of a catchment characteristics database describing 

the climate, soils, land use and topographical variations within the useable catchments. 

5.1 DERIVATION OF USABLE CATCHMENT DATA SET 

5.1.1 Initial catchment classification 

The selection of catchments built upon the work of Gustard et al (1992). In this study all of 

the stations on the National River Flow Archive (held at CEH-Wallingford) were graded 

using a hydrometric classification and a degree of artificial influences classification based 

on the data available up to the end of 1989. 

The hydrometric classification (A, B or C) was based upon a Low flows Sensitivity Index 

(SI) that measured the percentage change in the Q95 flow represented by a +10mm stage 

variation above the Q95 stage and a Factorial standard error of estimate at the Q95 stage. This 

error statistic describes the scatter of check gaugings about the low flow discharge, derived 

from the theoretical or empirical rating. This was derived from actual data or more commonly 

derived from graphs of rating curves with superimposed check gaugings. At purpose-built 

structures with no check gaugings available, a theoretical estimate based on the probable error 

in deriving a gauged flow from the head was used. In addition to these quantitative measures, 

qualitative information regarding station maintenance, gauge bypass, etc. was also used. 

The artificial influence classification (A, B, C) was based upon an assessment of the impact 

of artificial influences on the ratio of the natural Q95 and the natural mean flow (MF). 

Essentially the assessment procedure identified those catchments with a biased value of Q95 
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due to a nett loss (abstraction) or gain (effluent returns) to the catchment. This was calculated 

by semi naturalising the flow statistics, using data collated on major artificial influences 

within the catchments. The influence considered were abstractions (with licenced maximum 

abstraction rates greater than 10 Is"'), consented discharges (for all discharges greater than 

10 Is"'), reservoir yield and compensation flows for reservoirs exceeding capacity of 500 ML. 

Information on abstraction licences and discharge consents were provided by the regions of 

the Environment Agency. Data on reservoir yields and compensation flows were extracted 

from Gustard et al. (1987). The major limitations of this method with respect to the current 

study are that the approach sought to maintain the ratio of Q95/MF, information about 

artificial influences were authorised quantities (rather than actual) and in practice not all 

artificial influences will have been included. 

Table 5.1 Classification scheme for low flow suitability grading (source: Gustard 
etal, 1992) 

Classification of hydrometric quality 

G R A D E A 

Accurate low flow measurement over a sensitive control (Sensitivity index, SI less than 20%) with the scatter of spot 
gaugings about the rating curve at the Q95 discharge having a factorial standard error of estimate of less than 1.1, and 
no obvious deterioration of the gauging station due to siltation, weed growth or vandalism 

G R A D E S 

Less accurate low flow measurement with either a less sensitive control (SI between 20% and 50%) or a factorial 
standard error of estimate of between 1.1 and 1.2, and/or observed periodic deterioration of the gauging station due to 
siltation, weed growth or vandalism. 

G R A D E C 

Station with low accuracy of low flow measurement due to either an insensitive control (SI in excess of 50%), and/or 
with the scatter of gaugings about the rating curve at the Q95 discharge having a factorial standard error of estimate in 
excess of 1.2, and/or observation of sustained deterioration of the gauging station due to siltation, weed growth or 
vandalism. 

GRADE U Unclassifiable due to insufficient information. 

Classification of degree of artificial influence 

GRADE A 
The gauged Q95/mean flow ratio differs by less than 20% from the estimated natural Q95(l)/mean flow ratio. 

G R A D E S 

The gauged Q95/mean flow ratio differs by more than 20% but less than 50% from the estimated Q95(l)/mean flow 
ratio. 

GRADE C 
The gauged Q95/mean flow ratio differs by more than 50% from the estimated Q95/mean flow ratio. 

GRADE U 
Unclassifiable due to insufficient information. 
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The criteria used for classifying gauging stations according to hydrometric quality at low 

flows and the degree of artificial influences are summarised in Table 5.1. For this study the 

pool of gauged catchments was expanded to take into account both new gaugings stations 

and those catchments whose records were too short (<6 years) to be considered by Gustard 

et al (1992). An alternative assessment of these stations was undertaken. Hydrometric 

quality was assessed using the following criteria. 

• The Environment Agency's internal procedure for hydrometrically classifying gauging 

stations. The Agency Regions provided a list of hydrometric grades derived using their 

internal classification method. 

• Use of the Sensitivity Index. Some station files, held on the National Water Archive at 

CEH Wallingford, have a rating equation from which the sensitivity index was 

calculated. 

• Qualitative Gauging station descriptions. Gauging station descriptions are held on the 

National Water Archive. Whilst the descriptions do not providing a means by which the 

station may be graded, they provide useful information of the station in terms of rating, 

accuracy of the station and factors which may affect that accuracy, such as weed 

growth. This information may be used to qualitatively deteraiine the usability of a 

station. 

The artificial influence grading was based upon the catchment descriptions, held on the 

National Water Archive, describe the nature of the artificial influence in the catchment. 

This method of identifying usable gauging stations is useful because catchments without 

any influence are described as 'natural'. However, it is more difficult to distinguish 

between those stations that may be either B or C graded. Lists of these additional stations 

(with provisional grades) were circulated to Environment Agency and SEP A Regions for 

comment. Feedback was received from the North West region of the Environment Agency 

and the North and East regions of SEP A. This feedback was used to revise grades 

accordingly. 
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5,1.2 Catchment selection 

Catchments with significant influences, and/or significant hydrometric errors at low flows 

were excluded from this study. This was achieved by initially selecting those stations 

graded AA under the classification scheme discussed above. Stations from Northern 

Ireland were omitted because of the lack of MORECS PE data for Northern Ireland 

(Chapter 2). For the additional stations it was assumed that these were of AA quality unless 

there was evidence to the contrary. This initial selection reduced the number of candidate 

stations to 437. A major weakness of the artificial influence classification scheme, from the 

perspective of this study, was that the classification only considered the impact on the 

Q95/MF ratio. This was addressed by extracting the estimated artificial influence quantities 

from the original paper records of Gustard et al (1992). The selected stations were then re-

assessed and stations where the nett influence was greater than 10% of the naturalised MP 

or 20% of the naturalised Q95 flow were excluded. Stations where the contiguous period of 

record was less than 12 years were also excluded. This latter criterion was used because a 

minimum calibration record length of 10-years (with a 2 year model 'warm up') was to be 

used for the modelling studies. A missing data criterion was applied to reject years if more 

than 30 days of data were missing. The use of this criterion reduced the number of 

candidate gauging stations for the modelling work to 318. The location of these stations is 

presented in Figure 5.1. 

There are greater numbers of candidate catchments in the wetter west and north of the UK 

(Figure 5.1). This is confirmed by the mean and 95% limit (95% of catchments have values 

between these limits) summary statistics for gauged Average Annual Runoff (AARO) and 

BFI derived from the gauged flow presented in Table 5.2. The dimensionless Base Flow 

Index is a useful measure of how permeable a catchment is; a value near unity is indicative 

of large, groundwater derived base flow, a small value indicates a flashy, impermeable 

catchment. The derivation of BFI is discussed in more detail within chapter 6. The values 

of BFI in Table 5.2 indicate that the range of catchment types seen in the UK is represented 

by the data set. 
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Table 5.2 Summary statistics for candidate catchments 

Statistic AARO (mm/yr.) BFI 
95% u.l. 2300 0.92 
Mean 650 0.46 
95% 1.1. 117 0.19 
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Figure 5.1 The locations of the gauging stations for the candidate catchments. 
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5.2 rHEC&TCIHWEAnr CHARACTERISTICS 

The catchment characteristics used in this study can be grouped into three classes: 

• Topographical characteristics 

• Climatological characteristics 

• Soils and Land cover 

These are described in the subsequent sub-sections. 

5.2.1 Topographical characteristics 

The topographical catchment characteristics were derived using the former Institute of 

Hydrology's Digital Terrain Model (DTM) (Morris and Flavin, 1990). This DTM consists 

of five 50m-resolution grids, the three that have been used to derive topographical 

characteristics are; 

• Altitude grid - the altitude of each node above mean sea level, derived from Ordnance 

Survey contour data using an interpolation procedure described by Morris and Flavin, 

(1990). 

• Drainage direction grid - from the altitude data the gradient between a node and its 

nearest eight neighbours is calculated and the drainage direction is taken as the steepest 

"down slope" gradient to it's nearest neighbour. 

• Inflow grid - This grid identifies for each node, as an eight-bit code, the number of the 

eight nearest neighbour nodes that drains towards it, effectively defining a 50 m grid of 

drainage areas. 

Catchment area estimation 

The accurate definition of the catchment boundary and hence the area draining to each 

catchment is extremely important. The area is an a priori model parameter used in the 

modelling studies and the boundary is used to identify the extent of each catchment 

characteristic grid within a catchment boundary. The DTM was used to generate catchment 

5-6 



boundaries and areas for each of the study catchments using the method described by 

(Morris and Heerdegen, 1988). A comparison was then made between the estimates of area 

derived using the DTM and the manually derived catchment area estimates held for most 

gauged catchments on the National River Flow Archive. 

The same exercise has been undertaken for the catchment data set used in the development 

of the Flood Estimation Handbook (FEH) (Bayliss, 1999). The results of this analysis were 

used for catchments that occur within the data set used for this study and extended to cover 

those catchments not used within the FEH. Bayliss identified that only 5% of FEH 

catchments differed in area by 10% or more. Some of these catchments have boundaries 

that, through drainage diversion, do not always follow the topography, which the DTM-

derived watershed must always do. In other cases, the generation of DTM flow paths has 

been flawed by difficulties encountered when using digitised rivers to fix the location of 

valleys (a key element of the generation of the DTM). Where initial estimates differed by 

more than 10% it was possible, for a number of catchments, to correct the DTM where it 

had chosen an incorrect stretch. Where the differences in catchment area were greater than 

10% and could not be resolved the catchments were excluded from the initial data set of 

AA graded stations. Therefore, for all of the catchments used in the study the error between 

DTM generated catchment areas and manually derived catchment areas is less than 10%. 

Flood Estimation handbook catchment descriptors 

A set of topographical catchment characteristics has been derived for the FEH. These are 

described fully by Bayliss (1999). Using FEH nomenclature these are called catchment 

descriptors. To differentiate between these descriptors and characteristics for this study the 

term descriptor is defined as a catchment property that is function of the structure of a 

specific catchment and cannot be generalised as a grid. The catchment descriptors that were 

thought to be potentially important in controlling the variability in daily flows and hence 

the parameters of a calibrated rainfall runoff model were used for this study. These 

descriptors are summarised in Table 5.3. 

ASPVAR is derived using circular statistics (Mardia, 1972). Each slope direction within a 

catchment is resolved as x and y components. ASPVAR is the resultant of the mean x and 

y components. 
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Table 5.3 Glossary of FEH catchment descriptors 

Catchment descriptor Units Description 
ALTBAR 
ASPBAR 

ASPVAR 

DPLBAR 

DPLCV 

DPSBAR 

LDP 

m 
Degrees 
(0,360=Nth) 

none 

km 

km 

m/km 

km 

The mean altitude of the catchment 
The mean direction of all 50m slopes in the 
catchment. Represents the dominant aspect of 
catchment slopes 
The invariability of slope direction. Values 
approaching one indicate dominance of one 
direction 
The mean of the distances measured between 
each node (on regular 50-m grid) and the 
catchment outlet. Characterizes catchment size 
and configuration. 
The CV of the distances measured between 
each node and the catchment outlet. Descriptor 
of drainage path configuration 
The mean of all the inter-nodal slopes for the 
catchment. Characterizes the overall steepness 
within the catchment 
The longest drainage path defined by measuring 
the distance from each node to the defined 
catchment outlet. Principally a measure of 
catchment size but also reflects catchment 
configuration 

5.2.2 Climatological characteristics 

Standard period 1961-90 Average Annual and monthly Rainfall 

The generation of the Meteorological Office 1961-90 SAAR 1km grid has been described 

in Chapter 2. Monthly 61-90 Ikm-rainfall grids were derived from the Meteorological 

Office daily rainfall archive using the modified triangular planes methodology described in 

Chapter 2. The average annual and monthly rainfall statistics were derived for all 

catchments using the catchment boundaries described in section 5.2.1. Monthly rainfall 

statistics were used to derive the PP catchment characteristic. 
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Standard period 1961-90 Average Annual and monthly Potential Evaporation 

The development of a Ikm-resolution grid of Penman Monteith estimates for short grass is 

described in Chapter 2. The same methodology was used to generate standard period 

monthly PE estimates. These estimates were used in conjunction with the monthly rainfall 

statistics to derive the PP catchment characteristic. 

Potential for Soil Moisture Deficits (PP) 

Soil moisture deficits potentially occur in a catchment when the evaporative demand and 

drainage from the soil exceeds the incident precipitation. As significant soil moisture 

deficits build up the rate at which water evaporates reduces. This process is described in 

more detail within Chapter 4. The PP characteristic was developed to represent this process 

in a relatively crude way. The difference between the catchment average monthly rainfall 

and potential evaporation was calculated for each month within the year. The difference 

was summed for months in which it was negative (potential evaporation demand exceeds 

precipitation) and express as a fraction of the annual potential evaporation estimate. The 

interpretation of the PP statistic is that is represents that fraction of the potential 

evaporation demand that might occur when water availability is limited. The larger the 

value of PP for a catchment, the more likely there are to be significant soil moisture deficits 

occurring within the catchment. 

5.2.3 Land cover and soils 

HvdroloEV of Soil Types Classification. BHHOST. SPRHOST and HOSTRES 

The Hydrology of Soil Types (HOST) project is a soil association (mapped at a scale of 

1:250,000) based hydrological response classification (Boorman et al, 1995) of soils across 

the United Kingdom. 

The HOST classification was developed by grouping soil associations into self-similar groups 

based upon their physical properties. The physical properties considered are presented in 

Table 5.4. The association of HOST classes with hydrogeological units is presented in Table 

5.5. The depths to an aquifer or groundwater are based on observed and estimated depths for 

each soil series. Thus although the HOST project makes extensive use of a soil database it 

does incorporate hydrogeological data. 

5-9 



Table 5.4 Physical properties of soil series used in HOST classification (source: 
Boorman et al, 1995) 

1 Soil hycb ogeology 
A soil hydrogeology classification was denved specially for the HOST pioject using soil parent material definitions and 

the 1 625,000 scale Hydrogeological Map of England and Wales (Institute of Geological Sciences 1977) The scheme is 
used to diffeientiate between mechanisms of vertical water movement (e g mtergianular or fissure flow), and to 
distinguish between permeable, slowly permeable and impermeable substrates Definitions of permeability are based on 
Bell (1985) Penneable substrates have a vertical saturated conductivity of more than lOcm/day and an aquifer or 
shallow water table Slowly permeable substrates have a vertical saturated conductivity of 10 to 0 1 cm/day and may 
contain a local or concealed aquifer Impermeable substrates have a vertical saturated conductivity of less than 0 1 cm/day 
and contain no aquifers 

2 Depth to aquifer or groundwater 
This indicates the time taken for excess water to reach the water table 

3 Presence of a peaty topsoil 
A raw peaty subsoil indicates saturated surface conditions for most of the year, limits infiltration and provides lateral 

pathways for rapid response in the uppermost part of the soil 
4 Depth to a slowly permeable layer 
A slowly peimeable layer impedes downward percolation of excess soil water causing periodic saturation m the 
ovei lying layei Storage is reduced and there is an increased response to heavy rainfall 
5 Depth to gleyed layer 
Gleymg is the presence of grey and ocherous mottles within the soil caused by intemnttent waterlogging The particular 
definition of gleymg used (Hollis 1989) identifies soil water layers wet for at least 30 days each year, or soils that are 
aitificially drained 
6 Integrated air capacity 
The air capacity, or 'diainable' pore space of a soil layer, is defined as its volumetric air content at a tension of 5 Kilo 
Pascals (KPa) (approximately field capacity) Integrated air capacity (lAC) is the average percentage air volume over a 
depth of one metre This provides a surrogate for permeability m permeable soils and substrates (Mollis and Wood 
1989) In slowly permeable soils or impermeable soils and substrates, lAC indicates the capacity of a soil to store excess 
water 

Simple conceptual models describing the flow paths of water provided a structure to the 

classification scheme. Initially the 969 soil series were analysed and those with similar 

flow paths (indicated by their physical properties) were grouped together into a single 

HOST class. This produced a more manageable data set for further analysis. The 

percentage cover of the reduced number of classes were then related to gauged BFI values 

using multiple regression analysis, and by inspection of the response of individual 

catchments. The regression analysis provided further guidance on discriminating and 

grouping soil series. The process resulted in a final 29-class system. The classification is 

summarised in Table 5.6 in which classes grouped by physical characteristics. 

Table 5.7 presents the fractional extent of the 29 HOST classes within the United 

Kingdom. The table also presents the percentage of the candidate catchments containing 

each HOST class and the mean fractional extent within those catchments. The spatial 

extent of urban coverage and lakes is not included as the catchments used within the study 

had a negligible urban component and did not contain major surface water bodies. The 



table highlights that not only are some HOST classes not well represented within the 

catchment data set but also that these classes are not well represented in the UK. Another 

issue is that a small amount of some HOST classes occur in a large number of catchments. 

However, subject to these provisos, the HOST classes observed within the UK are well 

represented within the sample of catchments selected for use within this study. 

Table 5.5 Hydrogeological units within HOST classes (source: Gustard et al, 1992) 

Hydrogeological unit HOST classes 
1 Soft sandstone, weakly consolidated sand 
2 Weathered/fissured intrusive/metamorphic rock 
3 Chalk, chalk rubble 
4 Soft Magnesian, brashy or Oolitic limestone and 
ironstone 
5 Hard fissured limestone 
6 Hard coherent rocks 
7 Hard but deeply shattered rocks 
8 Soft shales with subordinate mudstones and siltstones 
9 Very soft reddish blocky mudstones (marls) 
10 Very soft massive clays 
11 Very soft bedded loams, clays and sands 
12 Very soft bedded loam/clay/sands with subordinate 
sandstone 
13 Hard fissured sandstones 
14 Earthy peat 
15 River alluvium 
16 Marine alluvium 
17 Lake marl or tufa 
18 Colluvium 
19 Blown sand 
20 Coverloam 
21 Glaciolacustrine clays and silts 
22 Till, compact head 
23 Clay with flints or plateau drift 
24 Gravel 
25 Loamy drift 

26 Chalky drift 
27 Disturbed ground 
34 Sand 
35 Cryogenic 
36 Scree 
43 Eroded blanket peat 
44 Raw peat 

2, 9,12, 14 
3 ,8 ,11, 12, 13,14 
1. 8. 12 
12, 29 

3, 14 
1 8 , 2 1 , 2 6 
7, 8, 14, 16 
17, 20, 23, 25 
17, 20, 23 
19, 22, 24 
15,17, 23 
15,17, 23, 25 

3, 12, 14 
10 
7, 8, 9, 11 
7, 8 ,9 
9 
5, 13, 14, 16 
4, 6, 9, 11 
5, 7, 8, 9, 12,13 
17, 23, 25 
8, 15, 17, 20, 23, 25 
1, 17, 23, 25 
4, 5, 8, 9, 11, 14 
5, 7, 8, 9, 12, 13, 14, 
16 
I , 7 , 9 , 12 
20, 23 
4, 6 , 9 
16 
8 
27 
I I , 2 8 
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Table 5.6 The HOST classification (Source: Boorman et al 1995) 

s u b s t r a t e h y d r o g e o l o g y m i n e r a l s o i l s 

GmundwjKT or No impermeable 
orgle)ed layer 
within 100 cm 

Impermeable 

Ijycr wirhin 

100 cm 

OR 
glc)ed layer 
within 40 c m 

Gkyed la)er wirhin 40 cm 

p e a t s o i l s 

Weakly consolidated, microporous bypass flow 
uncommon (Chalk; 

Weakly conholidared rmcroporous, bypass flow 
uncommon (Limestone) 

Weakly consolidated, mocroporous, 
b) pass How uncommon 

SrrongI) consolidated, non or sbghtly 
porou& B}pass flow common 

Normal I) 

present 

and at > 2m 

UnconsolKlaied macroporou*. hypa% flow 
\er\ uncommon 

Unconsolidated microporous, bypass flow 
common 

29 

12 13 14 

Unconsolidated, macroporous bypass flow 
very uncommon 

Unconaolidated, microporous, bypas& flow 
common 

Normally 

present 

and at < 2m 

lAC < 12 5 

|< Imday' ] 

lAC > 12 5 

Imday' j 

10 11 

Slowly permeable 

Impermeable (hard) 

Impermeable (soft) 

15 

No 

significant | ' " 

groundwater 

or aquifer 

17 20 

IN 

IV 

! 

23 

Deriving multivariate statistical relationships between a dependent variable and the 

fractional extent of HOST classes can give rise to parameter identifiability problems for 

poorly represented classes. In developing the BFI model (used to aid classification) 

Boorman et al (1995) resolved this problem by using a bounded regression approach. An 

unbounded regression yielded parameter estimates in excess of unity and parameter 

estimates of high uncertainty. The bounds placed on the maximum and minimum 

parameter estimates for a HOST class was based on the conceptual models underlying the 

HOST classification, and effectively maintained realistic parameter estimates. A regression 

equation derived from the catchment data set would have difficulty estimating the BFI 

parameters associated with poorly represented HOST classes such as HOSTl 1 and 

HOST20. A bounded regression approach effectively applies conceptual knowledge of the 

relative magnitudes of the model parameters prior to the derivation of model coefficients. 

The BFI model developed by Boorman et al was used to generate the BFTHOST catchment 

characteristic for this study. Boorman et al also developed a model for estimating the 

Standard Percentage Runoff (a measure of the percentage of rainfall that generates runoff 

(NERC, 1970)). This second model was used to verify the HOST classification. A third 
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characteristic HOSTRES was also derived based on HOST. This characteristic is the 

residua] from a linear regression model fitted between SPRHOST and BFIHOST. This 

characteristic was originally promulgated and used by Robson and Reed (1999) in the 

development of an equation for predicting the median flood (QMED) from catchment 

characteristics/descriptors. HOSTRES indicates the extent to which BFIHOST is higher or 

lower than that anticipated from SPRHOST, and as such is uncorrelated with both 

BFIHOST and SPRHOST. 

Table 5.7 Fractions of HOST classes within the UK and within gauged 
catchments 

Class Fractional % of catchments class mean fractional 
Extent in UK occurs extent of occurrence 

HOSTl 4.5 14.8 32.2 
HOST2 1.7 14.5 12.5 
H0ST3 3.5 19.2 6.9 
HOST4 5.4 43.5 8.1 
H0ST5 1.8 61.3 5.8 
HOST6 0.8 51.3 5.3 
HOST? 1.6 51.5 1.3 
HOSTS 3.8 61.3 0.9 
H0ST9 2.9 58.8 1.3 

HOSTIO 0.6 64.6 2.1 
HOSTll 0.5 10.0 1.5 
H0ST12 0.9 38.2 5.2 
H0ST13 0.7 37.0 2.3 
H0ST14 10.4 23.7 3.1 
H0ST15 0.4 68.8 19.6 
H0ST16 10.7 23.7 3.6 
H0ST17 5.7 61.8 22.3 
HOSTl 8 2.3 57.4 9.6 
H0ST19 0.7 35.9 5.0 
HOST20 4.2 15.6 4.6 
H0ST21 1.2 29.0 12.3 
H0ST22 1.4 38.2 4.2 
HOST23 14.6 14.2 8.4 
HOST24 3.8 78.8 16.9 
H0ST25 2.6 18.1 21.5 
H0ST26 0.9 43.7 11.3 
HOST27 0.6 17.0 3.4 
H0ST28 8.5 7.0 8.6 
H0ST29 2.2 61.6 14.7 
HOST30 0.6 34.0 0.8 
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The Institute of Terrestrial Ecology Landcover Map of Great Britain 

The ITE Remote Sensing Unit derived the land cover map from 1990 and 1991 LANS AT 

satellite images (Fuller et al, 1994). The derived classes represent an aggregation of many 

subclasses: for example, wheat, barley and oilseed rape would be subclasses of the 'arable' 

class. The objective when deriving the classification was to derive a set of classes that are 

considered ecologically meaningful, consistently recognisable from the selected imagery, 

and realistic in terms of their likely accuracy. Classes were only mapped if they were 

greater than 0.125 ha in extent. 

The classes distinguish lowland and upland categories that are similar, for example 

lowland heather and upland dwarf shrub. The version of the map used for the study was the 

1km resolution full 25-class map in which the fractional extents of cover classes within 

each grid cell are held. 

One concern when using land cover data relates to whether the land cover classification for 

a catchment is representative of the cover across the period of record for which there is 

flow data. If not (as is likely to be the case), serious consideration needs to be given to 

whether the data is included in the analysis. In practice the Landcover map was not found 

to be a particularly useful characteristic other than providing a mechanism for setting 

interception parameters for MODA as described in Chapter 6. The 25 classes are also 

presented in Chapter 6. 

5.3 SUMMARY OF CATCHMENT CHARACTERISTICS AND DESCRIPTORS 

The sampling of the spatial variability of HOST within the set of catchments selected for 

this study is discussed within the preceding section. The median and 95 percentile limits 

(95% of catchments have values between these limits) for the values of the continuous 

(rather than class based) characteristics/descriptors across the candidate catchments is 

presented in Table 5.8. 



Table 5.8 Summary statistics for continuous catchment characteristics and 
descriptors 

Percentile LDP DPLBAR DPLCV ALTBAR DPSBAR ASPBAR ASPVAR 
95% u.l. 102.79 54^5 054 556.63 29&09 351.72 o j a 
Median 2431 12.99 0 ^ 3 22&10 107^2 133.30 CU9 
95% 1.1 3.59 1.89 035 47 J 3 1&71 4U4 0.05 

AREA SAAR(61-90) PE(61-90) PP BFIHOST SPRHOST HOSTRES 

95% u.l. 150&67 251L75 62272 0.28 0.89 55^2 0.09 
Median 11&25 1064.00 511.95 0.03 &45 40^0 &01 
95% 1.1 59443 422J6 0.00 0.25 10.63 -&11 

It is useful to review the sampling of catchment characteristics and some of the catchment 

descriptors (which are a function of the specific catchments) in the context of the spatial 

variability in the United Kingdom. 

The figures for catchment AREA and LDP illustrate that the sample of catchments is 

skewed towards smaller catchments. This is a function of the necessity for selecting natural 

catchments, which tend to be headwater catchments. This is advantageous from the 

perspective that smaller catchments also tend to be more homogenous in terms of 

hydrogeology and also means that it is not necessary to address channel routing 

considerations. This does leave the question to be answered on how a regionalised model 

should be applied to large catchments. This question is returned to within Chapter 10. The 

relatively high values observed for ALTBAR demonstrate that headwater catchments tend 

to be at higher altitudes than their lowland larger counteiparts. This is also demonstrated to 

a lesser extent in the values for DPSBAR where the median mean catchment slope is 

approximately 10%. There appears to be no bias in catchment aspect (ASPBAR) and 

catchments are not highly elongated (DPLCV lower limit of 0.35). 

Considering the climatological characteristics, the range of PE values is commensurate 

with the range of PE across the United Kingdom (Chapter 2). The 95% upper limit of 

2500mmyr"^ for SAAR is considerably lower than the range observed across the UK and 

illustrates the point that very high rainfall catchments tend to be at high altitude and are not 

gauged. The reasons for this are access and the lack of an operational requirement for 

routine monitoring of flows in upland catchments. The range of PP values demonstrates 

that there is the potential for summer soil moisture deficits to commonly occur in 

approximately 50% of the study catchments. 
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6 The model calibration scheme and an evaluation of 
model behaviour 

6.1 INTRODUCTION 

Model parameters may be classed as physical parameters and process parameters 

(Sorooshian and Gupta, 1995). The former class represents measurable catchment 

properties, the commonest example of which is the catchment area. Process parameters are 

those that are not directly measurable. Common examples include soil storage capacities 

and time constants for routing reservoirs. The process of calibration seeks to identify a 

combination of parameters such that the simulated stream flow response to precipitation 

closely matches that which is observed. The common practice for identifying a suitable 

parameter set, or vector, for the model consists of automatic calibration coupled with visual 

inspection of the hydrographs of simulated and observed stream flow and manual 

intervention in the selection of model parameters. The model calibration scheme for this 

research was required to automatically calibrate the models on a large number of 

catchments in a consistent manner, such that the values for parameters, within the 

identified parameter vector, for each catchment should: 

• have physical meaning, that the parameters can potentially be expressed as a function 

of the physiographic and climatic characteristics differentiating between catchment 

types; 

• provide a good simulation, from a water resources perspective, of stream flow. 

Due to large number of catchment involved, it was not a logistically feasible proposition to 

calibrate the models using large-scale manual intervention. Furthermore, manual 

intervention involves the making of subjective decisions. As discussed in Chapter 1, a good 

simulation from a water resources perspective requires an assessment of many different 

aspects of the simulated time series. Additionally, the calibrated model must also be stable 

when it is applied to an independent evaluation period. 
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The objective of the work described within this chapter was to develop a scheme that could 

automatically implement the sort of decisions that an experienced hydrologist would make 

as a set of fuzzy rules. As will be discussed, the scheme developed is a constrained random 

walk scheme that utilises a number of objective functions, allows for trade off between 

different aspects of model fit and recognises that the input stream flow data have an 

associated uncertainty. Within a catchment, the scheme identifies a large number of 

parameter sets, or vectors, that can be considered equally likely given these constraints. 

The final selection of a model parameter vector (to represent the catchment with the 

regionalisation analysis) is made on the basis of the performance of the calibrated model 

for each vector over the calibration period and the stability of the model when applied to an 

independent evaluation period. 

The issues associated with model calibration and the rationale for the model calibration 

scheme are discussed within section 6.2. The selection of appropriate objective functions 

and additional goodness of fit measures is presented within Section 6.3. The calibration 

scheme is presented within Section 6.4. 

The calibration scheme, as it realises a large number of equally likely parameter vectors, 

was also used to investigate parameter identifiability and covariance issues within the 

model structures across a range of catchment types. The issues raised by these 

investigations are discussed within Section 6.5. These issues are illustrated using four 

contrasting case study catchments. The rationale underlying the development of MODE is 

also discussed within this section. The objectives of the parameter identifiability research 

described in Section 6.5 were: 

• to define a generalised, consistent approach for calibrating the models across a wide 

range of catchment conditions; 

® aid the definition of model structures that minimise the identifiability and covariance 

issues associated with parameter redundancy; 

® aid the definition of a consistent procedure for identifying an optimal parameter vector, 

from many such vectors, that provides a good, stable simulation of stream flow from a 

water resources perspective. 
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optimal in this context does not imply identifying the vector that corresponds to the global 

minimum of the objective function surface (discussed within the next section) - which may, 

in part, be an artefact of the calibration period selected and the errors associated with the 

input data for the period. Rather, the approach seeks to identify a parameter vector that is 

stable, and that can not be said to be significantly different from the optimal solution, in the 

context of the uncertainties associated with the input data. The procedure derived for the 

final selection of a model parameter vector for a catchment is presented within Section 6.6. 

6.2 ISSUES WITHIN MODEL CALIBRATION 

Automatic calibration requires the definition of a measurable quantity, termed the objective 

function, that is a measure of how closely the simulated time series matches the observed 

time series. These functions are commonly structured so that the best simulation is 

represented by a minimum value. The minimum value of the objective function will be a 

function of the model structure, the parameter values and the input data for the calibration 

period, including the errors within the input data. The simulation errors that can be 

introduced through errors in climatic input data are discussed within Chapter 2. An 

automatic calibration scheme consists of two basic components. 

• The objective function(s), which describes the quality of fit between the observed and 

the simulated stream flow derived using a particular parameter vector (or set of 

parameters). 

• An automatic search algorithm, including stop criteria, for searching the objective 

function response surface, that is described by the feasible parameter space for the 

model, with the objective of identifying a minimum, or optimal value of the objective 

function. 

In addition to these basic components, there is also the potential a priori determination of 

model parameters and the sensitivity of the model response to the choice of model 

parameters. Considering one objective function, the allowed ranges for the n model 

parameters therefore describe an n-dimensional objective function space. There is the 

concept of a global minimum within the objective function space. This minimum is 

described by the parameter set that gives the lowest, attainable value of the selected 

objective function. Model calibration is, normally, directed at identifying the parameter 

6-3 



vector describing the location of this global minimum that represents the unique solution. 

It may not be possible, in practice to identify a parameter vector describing the location of 

the unique, or global, minimum solution. A major problem associated with identifying the 

location of a global minimum is that local minima may operate on different scales. The 

objective function surface may contain several large areas of attraction (i.e. areas where the 

objective function appears to be converging to a minimum), and within these areas there 

may be discrete local minima representing "pockets" within the larger areas (Duan et al, 

1992). The global minimum is the deepest of these pockets that contains the minimum 

value of the objective function. The problem of identifying the global minimum generally 

scales with the complexity of the model, and hence the number of model parameters. 

Jakeman and Homberger (1993) suggest that a maximum of about six model parameters 

can be identified from stream flow data for temperate catchments. Beven (1989) suggests 

that three to five parameters should be sufficient to describe most aspects of an observed 

hydrograph. 

Research into the identification of the global minimum for a model over a specified 

calibration period has been the subject of many papers, for example; Ibbit, (1970), 

Johnston and Pilgrim (1976), Soorooshian and Gupta, (1983) and Duan et al, (1992). 

Furthermore, it has been identified that the regions of the objective function surface where 

"optimal" solutions might lie can vary markedly between selected calibration periods (e.g. 

Yapo et al, 1996) due to errors in the data and/or in-adequate representation of all 

hydrological process that the model has to simulate. Beven (1993) disputes the existence of 

the global minimum as a general concept, recognising that there may be many different 

parameter vectors providing indistinguishable minimum values for the objective function, 

he terms this the equi-finality of solution. 

Search algorithms used within automatic calibration schemes can be classed as either local 

or global search schemes. Examples of common local search schemes include the 

Rosenbrock method (Rosenbrock, 1960) and the Simplex method (Nelder and Mead, 

1965). The stop point for all search algorithms is either a minimum value for the objective 

function, or a convergence criterion specifying under what conditions can it be assumed 

that no further improvements will be identified. Local search algorithms are structured to 

6-4 



follow a direction of an improving objective function. The path taken is a function of the 

initial starting point, and the methods are susceptible to becoming "trapped" in a local 

minimum. 

Global search strategies are structured to search objective function surfaces that are multi-

modal (i.e. contain local minima). The strategies fall in to two classes: random walks and 

Multi-Start Local (MSL) searches. Multi-start algorithms are basically a large number of 

independent runs of a local search procedure using randomly selected starting point 

parameter vectors, selected from a specified parameter space for the model (e.g. Johnston 

and Pilgrim, 1976). Duan et al (1993) extended a simplex-based MSL concept by sharing 

knowledge between individual parallel searches. This method, called the Shuffled Complex 

Evolution Algorithm (SCE-UA) has been demonstrated to be to be superior to both local 

and MSL search algorithms (Duan et al, 1993, Franchini et al, 1998). The other class of 

global search algorithms are based on random walks of the feasible parameter space using 

probability distributions (usually uniform) to describe the frequency of occurrence of 

parameters across the feasible space. The pure random search assumes that the optimal 

parameter vector may lie anywhere within the feasible space. The Adaptive Random 

Search (ARS) (Masri et al, 1978 and Pronzato et al, 1984) uses knowledge about prior 

randomly obtained parameters vectors to guide the search. 

A more recent development in random walk algorithms is the Generalised Likelihood 

Uncertainty Estimation (GLUE) method (Binley et al, 1991; Beven & Binley, 1992; Beven, 

1993). A large number of simulations are made by randomly selecting parameters from a 

feasible parameter space for the model. Where two parameters are demonstrably covariant, 

the feasible space for these parameters can be defined by a conditional bi-variate density 

function. Each simulation is assigned a "likelihood" weight in the range [0,1]. This is based 

on a subjective "likelihood" function. This function may be based on statistical 

considerations and/or on a subjective measure of what is a desirable simulation in the 

context of model output. The pool of simulations can, at any point, be used to derive a 

probability density function based on the values of the likelihood function. From this, non-

parametric uncertainty intervals (analogous to the confidence interval from classical 

statistics) can be derived forjudging whether simulations are acceptable model realisations 

on the basis of the likelihood function. As knowledge of the model behaviour improves, the 
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likelihood function can be further constrained to reduce the uncertainty bounds. The 

method does require a definition of a feasible parameter space and knowledge about 

covariance issues, however these can be further refined as the knowledge base of model 

behaviour expands. 

Calibration errors can be introduced through errors in input data, the use of incorrectly 

specified objective functions and/or the failure to identify the global minimum, or at least a 

stable local minimum, within the objective function space. Careful selection and quality 

control of input data and selection of appropriate objective functions can reduce these 

errors. The presence of multiple minima is normally associated with structural model errors 

(Sorooshian and Gupta, 1985). Structural issues can commonly arise from models being 

over-parameterised in quest for physically realism, leading to parameter covariance. 

Parameter covariance is when the same quality of fit may be obtained for a wide range of 

parameter combinations for two or more parameters. The issue of parameter covariance can 

be a primary cause of failure to identify a global or acceptable minimum. 

Two examples of parameter covariance are presented in Figure 6.1a and Figure 6.1b. These 

are drawn from this study and relate to the calibration of MODA on the River Finn at 

Uxbridge (see Section 6.5 for details of this catchment). These show contoured plots of the 

value of the simulation BIAS objective function (discussed in the subsequent section) for 

combinations of loss module parameters for MODA. Figure 6.1a presents BIAS contours 

for combinations of Cmax and b. Contours of simulation BIAS for Cmax and Kg are 

presented within Figure 6.1b for the same simulation runs. The values of simulation BIAS 

vary between - 3 and +3%. The ideal value for simulation BIAS is obviously zero. The 

contour plot for BIAS, as a function of Cmax and b describes a long valley encompassing a 

wide range of values for Cmax and b. The valley bottom has a BIAS value of - 3 and the 

optimal value of zero lies on the flanks of the valley. This is the classic example of 

covariance, where the same value of an objective function is realised for a wide range of 

covariant parameters, and is an example of potential structural defect within the model. 

Cmax and Kg are not significantly covariant. In the case of Cmax and Kg, the BIAS 

contours describe a number of areas of attraction in which the ideal minimum BIAS of zero 

is to be found. This is an example of the occurrence of local minima. 
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On this basis of this data there appears to be major structural defects within the model. 

However, considering the [-3,3] data range for simulation BIAS there is a strong argument 

that this range lies within the measurement error for stream flow measurement. Thus all of 

these simulation runs could be considered as being equally good in the context of closing 

an acceptable water balance for this catchment. 

In practice, it is generally accepted that two or more model parameters will exhibit some 

degree of covariance, and that the parameter vector identifying the theoretical global 

minimum may not be distinguishable from many equally likely parameter vectors, 

particularly when considering the accuracy of calibration input data. 

The issue of equi-finality is of importance in regionalisation for two reasons. Firstly the 

optimal fit obtained over the calibration period may not be stable when the model is 

applied, with that parameter vector, to an independent evaluation period. Secondly, if for a 

particular model similar optimal solutions, and hence parameter vectors, cannot be 

identified for similar catchment types, then it is unlikely that research into the relationships 

between those parameters and the characteristics of the catchment is going to be successful. 

Even if a global minimum can be identified for an objective function, the objective 

function itself may not adequately summarise all of the facets of the flow regime that are of 

interest for the application. In the context of water resources the practitioner is interesting 

in a number of facets of the stream flow simulation. These include the closure of an 

adequate water balance as represented by model BIAS and the correct simulation of 

recessions. This requires the use of more than one objective function. In the automatic 

calibration schemes described, the model fit is generally optimised according to one best 

compromise, objective function and subsequently other aspects of the model fit are 

evaluated using a range of secondary measures of fit. The primary reason for this is that 

differing objective functions may, in the worst case, be orthogonal to one another within 

the parameter space. 
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Figure 6.1 Examples of parameter covariance for model BIAS. 
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With manual intervention, subjective decisions about the trade off between different 

measures of fit and judgements about the quality of fit, in the context of the likely accuracy 

of the input data can be made. These types of decision cannot be addressed within the type 

of automatic search algorithms described. In the context of the large number of catchments 

used within this study it was not a practical option to manually intervene in a standard 

automatic calibration scheme to make these types of decision. 

The automatic calibration scheme developed for the study is a random walk scheme that 

seeks to mimic these human decisions. There are some parallels with GLUE in that it is 

recognised within the scheme that many parameter vectors may be considered as being 

equally likely in representing a best fit vector. However, where GLUE does not define a 

specific parameter set, or vector, as an optimal solution, the current scheme does identify a 

feasible, best compromise vector for a catchment. The scheme uses a number of objective 

functions to measure the quality of a solution. In identifying potential "best fit" parameter 

vectors a trade off between objective functions, subject to the uncertainty within the input 

data is allowed. The scheme identifies a large number of potential "best fit" parameter 

vectors that can be considered as being equally likely when the uncertainty of model input 

data and the requirements of differing objective functions is considered. The parameter 

vector that is ultimately selected for the regionalisation studies is the vector that represents 

the best compromise between the quality of the model fit over the calibration period and 

the stability of the model fit when the vector is applied to a evaluation period. This 

selection builds on the discrete model evaluation scheme developed in Chapter 3 to 

evaluate model performance. This scheme was also used to investigate the degree of 

parameter covariance within different catchment types with the objective of understanding 

the model response within different catchment types leading to an identification of a model 

structure that had minimal inherent parameter covariance. 

The scheme developed for this study uses four objective functions for identifying equi-

likely parameter vectors and an additional evaluation function describing the "goodness" 

of fit at low flows. The distinction between the function types is that the objective 

functions are used to select model parameter vectors within the calibration phase. The 

choice of objective functions and goodness of fit measures is discussed in Section 6.3. 
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6.3 SELECTION OF OBJECTIVE AND GOODNESS OF FUNCTIONS 

The choice of objective function for the study was based on the requirements of a good 

simulation for water resources purposes. For water resources assessments it is important to 

ensure that mass is conserved, i.e. mean flow is accurately simulated, and that low flows 

(taken as flows below the mean) and low flow extremes are modelled correctly. The fit at 

high flows is less important, as long as mass is conserved. The issue of whether a selected 

objective function accounts for the time series element of flow, or whether it is distribution 

based is also influenced by the intended use of the model. If the results are to be 

summarised statistically, then the accuracy of the sequencing may be less important. 

However, if the sequencing is correct this gives much greater confidence to the validity of 

the model, and thus there is a strong case for it always to be considered. 

Whilst the evaluation of particular objective functions is not a widely researched area in 

hydrology, examples of such evaluations are given in Thian et al (1997), Houghton-Carr 

(1999) and Servat & Dezetter (1991). Further examples of particular objective functions 

can be found within the literature on model inter-comparisons; for example Hughes (1995) 

and Chiew et al (1993). 

The most widely used, quantitative objective functions are ones that draw from linear 

regression analysis. The most common and simplest formulations of these functions 

include the sum of squares error (S.S.E), the mean of the sum of squares error (M.S.E.) 

and the root mean sum of squares error (R.M.S.E.). The R.M.S.E. function is the more 

familiar standard error, or expression of unexplained variance, from linear regression. The 

formulation of the S.S.E is presented here for discussion purposes: 

SSIi = (cij -(1;)2 , (6.1) 

i = 1 

where: 

qi = observed flow in time step, i; 

q. = simulated flow in time step, i; 

n = number of time steps within the modelled period. 



As stated, sum of squares based objective functions arise out of linear regression, the basic 

principles of which are: 

• the underlying relationship between the dependent variable and the independent 

variable is linear, or can be made so by a suitable transformation; 

• the independent variables are without error; 

• the errors in the dependent variable (in this case predicted stream flows) are normally 

distributed with zero mean, and furthermore they are independent of one another; 

• the conditional variance of the dependent variable should be constant across all values 

of the independent variable; 

• the independent variable data set should be uncorrected, and therefore independent. 

Measured daily mean flow data violate the independence test for the independent variable 

in that the observed flow within a time step is strongly related to the flow in the previous 

time step. This is demonstrated in the partial auto correlation plots for the Babingley Brook 

(used within the model evaluation studies) and the Teifi given in Figure 6.2. The Babingley 

Brook (33054) is predominantly unconfined Chalk, and thus the flow regime is heavily 

dominated by groundwater discharge. The BFI for the catchment is 0.98. In contrast the 

Teifi at Glan Teifi (62001) has a catchment area of 894 km^ and Ordovician and Silurian 

deposits dominate the geology of the catchment. The BFI of the catchment is 0.53 

indicating a more responsive flow regime. 

Partial auto-correlation plots identify the correlation between the ith and (i-n)th element 

within a time series, but remove the influence of the correlation between the ith and the (i-

(n-l))th elements on the correlation between the ith and the (i-n))th elements of the time 

series. The plots demonstrate that a high degree of correlation exists between adjacent 

elements within the time series of daily mean flows in both permeable high storage 

systems, such as the Babingley, and in low storage impermeable catchment, such as the 

Teifi. The same constraints apply to the dependent variable, simulated stream flow, the 

consequence of which will be that errors are not independent. 
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Figure 6.2 Partial auto-correlation plots for the Babingley Brook and the Teifi. 

The errors in simulated stream flow data are also not of a constant variance. The non-

constant behaviour of variance is a consequence of the strong non-linearity of the rate of 

change (the second derivative) of river flows over the range of the flow regime. 

Furthermore, within the distribution of daily stream flows, the low and high flow extremes 

are poorly sampled, yet these extremes (particularly the high flows) have a strong influence 

on the value of the S.S.E. The S.S.E. for observed and simulated stream flow in a 

catchment is likely to be biased toward minimising the difference between a relatively 

small number of high flows. Furthermore, the error structure may be complicated due to the 
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correlation between flows within adjacent time steps - although this is less of a problem at 

high flows than low flows. This can be ameliorated; either by minimising the sum of 

squares for the logarithms of flows or by applying a time dependent weighting factor 

related to the magnitude of flow within the time step. This weighting factor is commonly 

structured such that it transforms errors to a constant variance using a maximum likelihood 

estimator (Sorooshian & Gupta, 1995). Although the influence of poorly sampled high 

flow events on the sum of squares can be minimised by taking logarithms, this does not 

address the associated problem at low flows. The influence of low flows in the sum of 

squares is affected by two factors; the low frequency of occurrence and the relatively small 

differences observed at low flows. 

Other commonly used "sum of squares" objective functions are the measure of explained 

variance from linear regression, R^: 

n „ 

;,2:= i-zJi , (6.21) 

1=1 i = 1 
3: (q, --Ch)2 + ]:(q, - q j 2 

where q is the mean of the observed flows, and the Nash-Sutcliffe efficiency criterion 

(Nash and Sutcliffe (1970): 

n ^ 
Z(q,-q,)^ 

i = 1 . (6.3) Efficiency = 1 

i = l 

n ^ 
2:(q,-(1)2 

The sum of squared differences in the numerator of the efficiency criterion can be 

considered as the residual variation, or unexplained variation, whilst that in the 

denominator is the total variation. The efficiency tends towards one as the simulated flow 

tends to the observed. If the efficiency is negative it indicates that a better model fit would 

be obtained if the simulated flows were replaced by the observed mean flow. It is worth 

noting the close similarity of the Nash-Sutcliffe efficiency criterion to the definition of 

given in equation 6.2. 
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If the least square relationships between observed and simulated flows is linear and 

observed and simulated flows comply with the assumptions of linear regression then 

E ( q . - q ) ' = E ( q . - q . ) ' + E ( < ) , ( « . 4 ) 

Substituting equation 6.4 for the total variance within equation 6.3 yields the definition of 

given in equation 6.2. As the efficiency is not constrained to lie between zero and one, it 

is quite common to obtain a simulated time series that has a reasonable value but a 

negative value for efficiency. This is a consequence of the limitations of assuming the data 

complies with the assumptions of linear regression. 

The measures R^ and efficiency have the advantage that they are dimensionless and thus 

can be used for inter-catchment comparisons. It is important to recognise that the 

sensitivity of the measures to model errors is a function of the inherent variability of the 

flow regime. For a given quality of fit, one would expect to observe higher (better) values 

of these measures in impermeable, flashy catchments than in more permeable catchments 

with an inherently lower variability. Nielsen & Hansen (1973) recognised this problem 

with respect to correlation coefficient dependencies on mean seasonal variations in 

observed flows and proposed an alternative correlation measure. In this measure the R^ 

between observed and simulated flows for each calendar day across the n years of data 

being modelled is calculated and the average of the resultant 365 coefficient values is 

taken. The limitation of this approach is that there is the inherent assumption that the 

calendar day is a hydrological significant time unit. 

6i l4 



The objective functions used in the calibration scheme were: 

• simulation bias (BIAS); 

• the modulus of the difference between observed and simulated Base Flow Index 

(DBFI); 

• Nash Sutcliffe efficiency criterion (EFF); 

• the mean sum of squared differences between observed and simulated flows for 

observed flows that less than the flow that is equalled or exceeded for 67% of the time 

(i.e. periods within the observed stream flow when recessions occur): LF_OBJ. 

The simulation BIAS is a measure of whether the model is closing a water balance or not 

(and hence modelling mean flow correctly), and is calculated within the study using 

BIAS: 9 - 1 xWX) . 

In this configuration a negative value indicates an underestimate of mean flow, and a 

positive value an over estimate of mean flow. 

The BFI is the ratio of the volume of water derived from the slow flow component of a 

hydrograph to the total volume of water over a specified period of record, and is a good 

general measure of hydrological response. In this case it was used as a measure of the 

realism of the partitioning of effective rainfall within a model run. The BFI for a catchment 

was calculated from the gauged flow data using a hydrograph separation algorithm 

described in Natural Environment Research Council (1980), and illustrated in Figure 6.3. 
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Figure 6.3 Summary of the base flow separation algorithm for observed data 
(Source: Gustard et al, 1992). 

The simulated BFI for a model run was calculated as the ratio of the volume of the 

effective rainfall routed through the slow flow response path, Uy of the model to the total 

volume of effective rainfall over the simulation period, Ub+Ug: 

BFI 

n 
Z Ub 

i = 1 1 

s n 
E(us, + ub,) 

i — 1 

(6.6) 

Simulation trials demonstrated that, even for permeable catchments with large time 

constants for the slow flow routing reservoir, this ratio is close to the ratio of simulated 

base flow volumes (output from the slow flow routing reservoir) to total simulated volume 

for simulation periods of greater than three years. This demonstrates that the change in 

storage within the routing reservoirs is negligible compared to the total volume of water for 

simulation periods of greater than two to three years. Effective rainfall volumes, rather than 
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model output volumes were used to estimate the simulated base How as the measure was 

used as part of the identification of the realistic parameter space for loss module parameters 

during the calibration procedure as described in the next section. For the same reasons the 

trials were also used to demonstrate that the calculation of the BIAS statistic was 

insensitive to whether the mean simulated effective rainfall, or the mean simulated stream 

flow was used in the calculation of the BIAS statistics. 

The LF_OBJ objective function reflects the requirement to model recession periods, i.e. 

periods of low flow, accurately. This objective function was used in the calibration of the 

routing module parameters and the final calibration of the loss module parameters. The use 

of the Nash-Sutcliffe Efficiency Criterion reflects the requirement to model the general 

variation in the time series accurately. In addition to the formal objective functions 

described the mean bias error at the observed Q95 flow (BEQ95) was used as an 

additional goodness of fit measure. This measure was calculated by extracting from the 

observed time series all flows that had exceedence percentiles lying between limits of 

Q94.49 and Q95.49 (inclusive). The corresponding simulated flow values were also 

extracted for the selected time steps and the value of BEQ95 calculated using the same 

formulation as used for the BIAS statistic. This additional statistic was used to provide 

information on whether there is a consistent bias in a simulation at a key low flow 

percentile. This is useful to distinguish between biased and unbiased values of LF_OBJ. 

6.4 THE CALIBRATION SCHEME 

6.4.1 The calibration algorithm 

The calibration scheme developed is a three-stage approach based upon a Monte Carlo 

sampling strategy of the feasible parameter space. The scheme initially identifies a realistic 

parameter space prior to identifying parameter vectors that result in equally acceptable 

simulations of stream flow over the calibration period. A feasible parameter space is one in 

which the parameter ranges are suitable for all catchments, and is defined by upper and 

lower limits for parameter values. The realistic parameter space is defined as a catchment 

specific subset of the feasible parameter space that contains the significant areas of 

attraction within the objective function surface(s). For the majority of catchments, in the 
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context of this scheme, the realistic parameter space is a reduced space that contains those 

regions of the feasible space where the model BIAS is less than ±3% and the simulated BFI 

is within ±0.15 of the BFI estimate from the observed data. 

The BFI criterion ensures that only regions of the feasible space in which the models 

realistically partition effective rainfall between quick and slow-flow routing paths are 

selected. The BIAS criterion of ±3% represents an estimate for what a good quality, well 

maintained gauging station structure should be able to achieve in terms of hydrometric 

accuracy at a confidence level of approximately one standard deviation. This is a stringent 

criterion. In practice, if the criterion could not be met within a catchment, it was relaxed to 

±5% to boost the sample size of successful calibrations. Assuming a gaussian measurement 

error distribution for gauged flow, this relaxed constraint is tighter than a 95% confidence 

interval, which would be approximately ±6%. 

The calibration scheme consists of three stages. In the first stage the loss module is 

calibrated to identify a realistic parameter space for the loss module, starting from initial 

upper and lower feasible limits for the individual parameters. In the second stage realistic 

optimal, or target values for the LF_OBJ and EFF objective functions are estimated, given; 

• the constraints of input data accuracy; 

• the (sometimes) conflicting regime requirements for optimising the LF_OBJ and EFF 

functions; 

• the necessity for closing an effective water balance and maintaining a realistic 

partitioning of effective rainfall, as defined by the end point criteria for BIAS and the 

difference in simulated and observed BFI (DBFI). 

In the third stage these target values are then used to identify 300 equally likely, or valid 

parameter vectors for the model that, given the accuracy of the input data and the 

requirement from the simulated flows can be considered as giving equally good stream 

flow simulations. A fuzzy logic approach is adopted for testing whether a particular shot is 

valid. 
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A shot is accepted as being valid if: 

• the shot values of BIAS and DBFI are less than or equal to the end point criteria from 

the loss module, 

• AND the value of one of the routing objective functions (LF_OBJ or EFF) is equal to 

or better than the reasonable target limit identified within the second stage, 

• AND the value of the second objective function is within +20% of the identified 

reasonable target limit for the second objective function. 

The setting of a fuzzy limit allows for a trade off between the quality of fit over the whole 

time series and that at low flows. This is an attempt to mimic the type of trade off a 

modeller will make when evaluating the quality of a model fit through visual inspection. 

The 300 parameter values obtained in this way can be considered as being equally likely, 

given the various requirements for accurate simulation, as represented by the objective 

functions, and the inaccuracies within the input data. 

The method requires a definition of the parameter space for each parameter (discussed in 

the subsequent sub-section) and the definition of a probability distribution function for the 

parameter space from which to draw samples. This involves a degree of subjectivity. As 

will be discussed, the setting of a feasible limit for Kg in MODA was difficult. To address 

this, the limits for Kg were programmed in as "fuzzy" limits. During the first three iteration 

loops for the loss module the feasible limits for Kg are not fixed. If a valid shot has a value 

of Kg that occurs within 5% of either limit, the space for Kg is moved by 10% in that 

direction. After loop three it was empirically demonstrated, over a wide range of catchment 

types, that the scheme had found the feasible space containing the significant areas of 

attraction within the Kg parameter space. The same approach was adopted for the initial 

setting of feasible limits for the time constant for the quick-flow routing reservoir, Kl.The 

detail of the calibration scheme is presented within Appendix B.l . 

This heuristic, Monte-Carlo based calibration procedure differs from conventional search 

algorithms, in that the selection of individual valid parameter vectors are independent of 

one another. The approach is computationally intensive, despite the use of the first stage to 

reduce computational overheads. It does mean however, that the parameter space is well 
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sampled to provide a range of valid parameter vectors from which to make the final 

selection of a parameter vector for use within the parameter regionalisation studies, 

described in Chapter 7. The final choice of parameter vector is described in section 6.5. 

The calibration period used for each catchment was 10 years. This period is much longer 

than that commonly used in model calibration. Sorooshian and Gupta (1995) suggest that 

between 2 and 3 years of representative flow data should be sufficient. A 10-year period 

was used to ensure that the underlying population of stream flows was being adequately 

sampled. Where possible, the calibration period corresponded to the latest 10 year period 

encompassing the 1990-1992 period over which the land cover data set (used as one of the 

catchment characteristics) was developed (Chapter 5). A two-year model "warm up" period 

was included so that the choice of initial conditions did not impact upon the calibration 

period. The initial conditions adopted were that the soil moisture deficit within the loss 

module was assumed to be zero and the routing reservoirs were assumed to be empty. The 

behaviour of the calibrated model over an independent evaluation period forms a key 

component of identifying a "best" parameter vector within a catchment. The evaluation 

period was taken as the remainder of the period of record data available for a catchment. 

The mean length of record for the evaluation period within the catchment data set was 15 

years. 

6.4.2 The definition of the feasible parameter space and a priori determination of 
model parameters 

The model parameter ranges that were used to define the feasible parameter space at the 

start of a calibration run are summarised within Table 6.1 for both model configurations. 

Of these parameters, the interception depth parameter, y, for MODA, the split parameter, (3, 

controlling the split of effective rainfall between quick and slow routing paths for MODE 

and catchment area were defined a priori. The remaining parameters were adjusted during 

calibration, as described within the previous section. 

A basic assumption within both forms of the model developed for the regionalisation 

research is that of a closed catchment water balance, and thus an a priori estimate of 

catchment area is required. The estimation of catchment (or contributing) for a catchment 

was based on the topographic catchment boundary, the derivation of which is presented in 
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Chapter 5. The split parameter, p, for MODE was based on the value of the BFIHOST 

catchment characteristic (Chapter 5), as discussed within Chapter 4. The derivation of a 

priori estimates of the y parameter for the interception model used within MODA was 

based upon the fraction extent of land cover classes within a catchment. The derivation of 

these estimates is presented within Appendix E.2. 

The feasible parameter space for model parameters that were to be calibrated was defined 

on the following basis. The parameter space [25,1000] for Cmax was specified on the basis 

of the conceptual representation used within the model to simulate evapotranspiration. As 

discussed in Chapter 4, the formulation of the evaporation function is based on the 

concepts of the Penman drying curve theory and the concept of a root constant reflecting 

vegetation and soil type. The threshold at which the evaporation rate is impacted upon by a 

soil moisture deficit is approximately Smax/2. This threshold is roughly equivalent to a 

rooting depth. Grindley (1970) cites feasible rooting depth of between 25 and 250mm, 

depending on vegetation and soil type. As discussed in Chapter 4, Smax is a function of 

Cmax for both the Pareto distribution used in MODA (Smax=Cmax/(b+l)) and the 

uniform distribution used in MODE (Smax=Cmax/2). In terms of rooting depths, the Cmax 

feasible parameter space equates approximately to a maximum rooting depth parameter 

space of [13, 500] for MODA and [6, 250] for MODE, both of which encapsulate the 

Grindley values. In trails on various catchment types these limits were rarely approached 

by valid model shots during the first loop of the calibration scheme. 

The feasible parameter space for the MODA drainage constant of proportionality, Kg, was 

more problematical to define, as in practice it varies widely without an obvious pattern. For 

this reason, a wide space was defined for the parameter and, in the first phase of the 

calibration scheme, the limits were treated as being fuzzy, as discussed in the previous 

section. 

The initial, feasible parameter space for the time constant for the quick flow routing 

reservoir was defined through trials on a wide range of catchments, and represents a 

conservative feasible parameter space for this parameter within the UK. Again, these limits 

were treated as fuzzy limits. However, in practice, the initial limits were only revised in a 

small number of catchments. 
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The procedure for defining a catchment specific feasible parameter space for the time 

constant for the slow flow routing reservoir, Kb, was based on the analysis of recession 

periods within the observed flow records for a catchment. The full detail of this procedure 

is presented within Appendix B.3. 

Table 6.1 Feasible parameter ranges for MODA and MODB 

Parameter (units) Minimum Maximum 
y (MODA) (mm) defined a pnofi 
Cmax (mm) 25 800 
b MODA (none) 0 4 
K1 (hr) 2 200 
Kb(hr) Catchment Specific limits 
Kg (MODA) (hr) 1000 50000 

P (MODB) (none) defined a priori 
Area (km )̂ defined a priori 

6.5 PARAMETER IDENTIFIABILITY FOR MODA AND THE DEVELOPMENT 

OF MODB 

As discussed, the approach to calibration of the models for this study recognises that 

uniqueness of solution is unlikely to exist given the uncertainty associated with the input 

data and the sometimes-conflicting simulation requirements of different objective 

functions. The result is that there are ranges of stream flow simulations (with associated 

objective function values) that are regarded as equally likely realisations of the optimal 

simulation. As discussed, non-uniqueness of solution is a particular problem if parameters 

are to subsequently regionalised through relationships with catchment properties. The 

calibration scheme was used to assess the degree to which non-uniqueness exists among 

the parameters within the more complex MODA configuration of the model and to 

investigate relationships with catchment type. Evidence of structural identifiability 

problems led to the development of the simpler MODB model configuration by limiting the 

parameter identifiability problem at the expense of the conceptual structure and flexibility 

of the model. The results of this type of analysis are presented for four contrasting 

catchments within Appendix C.l for MODA. Within this appendix, the four catchments 

are used to illustrate; the dependencies of the models on catchment type, the potential 

parameter covariance issues for MODA and the impact of errors in the input data upon the 

loss module parameters. 
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6.5.1 The case study catchments 

The four case study catchment selected for the discussion represent the following 

climatological and hydrological permutations; 

• dry- permeable:- The Sure at Ingworth (34003); 

• dry-impermeable;- The Finn at Uxbridge (39098); 

• wet- permeable;- Sydling Water at Sydling St. Nicholas (44006); 

• wet-impermeable; - The Gelyn at Cynefail (67010). 

These particular catchments were selected as being representative of the quality of model 

fit obtained using MODA. The locations of the catchments are presented within Figure 

6.4. Summary information about these catchments is presented in Table 6.2. The column 

entitled "% time SMD > 75mm" refers to the percentage of time that a simple modified 

Penman drying curve based model predicts a significant Soil Moisture Deficit (SMD) 

occurring, using the calibration period rainfall and PE input time series for the catchment. 

The drying curve model assumes that evaporation continues at the potential rate until the 

SMD exceeds a threshold rooting depth value, termed the Rooting Constant (RC). The 

evaporation rate then reduces gradually until it is zero at an SMD equivalent to twice the 

rooting depth. When the SMD is greater than the RC, the ratio of the actual evaporation 

rate (AE) to the potential evaporation rate (PE) is determined by 

AE 

PE 

SMD-RC^ 
1 

RC 
(6.7) 

V 

A rooting depth of 75 mm is equivalent to the reference rooting depth for short grass on 

good quality soils (Grindley, 1970). This Penman model is approximately equivalent to the 

evaporation model used in MODA for a catchment in which the catchment stores are a 

constant depth, and where the rooting constant is equal to Cmax/4 in the case of MODS. 
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Table 6.2 Catchment summary information 

Catchment SAAR 
mm 

Mean 
Flow m̂ s"̂  

BFI % time 
SMD > 
75mm 

Area 
km^ 

Comments 

Sure at 
Ingworth 
(34003) 

686 

Finn at 
Uxbridge 
(39098) 

665 0.20 

0.83 36 164.7 Two ogee profile 
weirs beneath bridge 
arches bypassed at 4.3 
cumecs but maintains 
modularity. Rural land 
use catchment 
comprises sands 
gravels and loams. 

0.09 40 33.3 Electromagnetic 
gauging station 
(overhead coil) in 
formalised trapezoidal 
section. Suburban 
catchment to the west 
of London, largely 
impermeable. 
Headwaters rise in 
countryside but 
substantial 
development down 
stream. 

Sydling 
Water at 
Sydling St. 
Nicholas 
(44006) 

1030 0J8 &86 18 

Gelyn at 
Cynefail 
(67010) 

2051 0.62 a26 1 

12.4 Crump profile weir. 
Modular under all 
flow conditions. 
Predominantly Lower 
Chalk with small 
outcrops of Middle 
and Upper Chalk 
forming the higher 
ground flanking the 
catchment. Mainly 
pastoral with some 
arable agriculture on 
flatter ground. 

13.1 Compound crump 
profile weir. 
Impermeable Lower 
Ordocician volcanic s 
with occasional 
heavily indurated 
shales. Drift cover 
minimal. Upland 
pasture, rural. 
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Figure 6.4 The locations of the case study catchments, 

6.5.2 Summary of model behaviour for MOD A 

In all catchments there was very strong covariance exhibited between the loss module 

parameters Cmax and b and, to a lesser extent, between these parameters and Kg, the 

drainage time constant. A trade off between Cmax and b, in determining C , and hence 

controlling evaporation losses was identifed. In the dryer catchments, Kg was also 

significantly co-variant with Cmax and b. There was also strong evidence of these 

parameters compensating for errors within the input data by adjusting the evaporation rate 

within the model. This is explained as follows, consider a fixed set of climatic input data 

that can potentially lead to the build up of evaporation limiting soil moisture deficits. A 

large value of C (high Cmax and low value of b) will minimise the time that evaporation 

limting soil moisture deficits occur, and hence will maximise the evaporation losses. 

Conversely, a low value of C will tend to minimise evaporation losses. 
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For a low value of Kg, the rate at which water is drained from the store will be high, 

although there is a negative feed back loop as the drainage rate is proportion to the depth of 

water held in storage with the soil store. This will have two effects; evaporation limiting 

soil moisutre deficits will build up more frequently and water will also be removed from 

the store, thus making it unavailable for evaporation. A low value of Kg will therefore 

tend to minimise evaporation losses. A high value of Kg will result in a reduction of 

drainage, and hence (for given values of Cmax and b) retention of water within the soil 

moisture store. This retion of water will lead to enhanced evaporation losses as signficant 

soil moisture deficits will not occur as frequently. This effect will be offset by enhanced 

direct runoff, and the fact that the drainage rate is proportion to the depth of water held in 

storage. 

The role of the b and Kg parameters in controlling both the partitioning of effective rainfall 

between routing paths, and the relationship between precipitation and direct runoff (and 

hence the variation of EFF, LF_OBJ and BEQ95) was also identified. This role was more 

clearly demonstrated within high rainfall catchments. The role of these parameters within 

lower rainfall catchments was less clear, which is a consequence of the greater role that 

these parameters also play in controlling evaporation losses in this type of catchment. 

The role of the routing reservoir time constants, Kb and Kl, and hence the sensitivity of the 

model response to changes in these parameters also varied between catchments. For 

example, in base flow dominated catchments the model behaviour was sensitive to the 

value of Kb. Conversely, in impermeable catchments the model was relatively insensitive 

to the value of Kb - as a relatively small proportion of the effective rainfall was passing 

through the slow-flow reservoir. The parameter, Kb, is therefore only really identifiable if a 

significant proportion of the effective rainfall is passing through the slow-flow reservoir. 

A related pattern was observed for the drainage time constant. Kg. In very impermeable 

catchments the absolute value of this parameter is unimportant, as long as it is large and 

thus preventing significant drainage into the slow-flow routing reservoir. This is not the 

case within permeable catchments. In permeable catchments the partitioning of effective 

rainfall between quick and slow flow paths is critically dependent on the value of Kg. To 

take an extreme case as an example, a Kg value of one would mean that the soil moisture 
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store would entirely drained at the beginning of each time step. 

All of the formal objective functions BIAS, EPF and LF_OBJ are important in defining 

parameter values, and hence model fit for MODA. Furthermore, the BEQ95 statistic also 

appears to be of value in optimising the fit of the hydrograph at low flows. The BIAS and 

BEQ95 measures appear to be orthogonal, both to the other measures and to each other. 

In all of the catchments there was evidence of a trade off between optimising EPF and 

LF_OBJ for MODA, indicating an inverse relationship between EFF and LF_OBJ. This 

behaviour is exacerbated through the choice of high and low BFI catchments for the 

discussion, but will probably still be present in catchments where there are both significant 

slow and fast routing paths. BEQ95 did not appear to be consistently related to any of the 

objective functions and appeared to be evaluating different aspects of model fit within 

different catchments. 

6.5.3 Summary of model behaviour for MODE 

The strong covariance between the parameters of the loss module within MODA is a 

significant issue for regionalisation. The soil moisture store parameters are not independent 

of one another, resulting in similar model fits for a wide r a n g e of parameter combinations. 

This is particularly important in catchments where significant SMDs are likely to build up. 

MODE was developed to reduce this parameter covariance within the soil moisture store 

parameters by including only one free parameter for calibration. This was achieved by 

assuming a uniform distribution of soil depths across the catchment and replacing the soil 

moisture dependent drainage term with a fixed partition of runoff from the soil moisture 

store, as discussed in Chapter 4. The coefficient controlling this split is analogous to the 

BFI. An a priori value for this coefficient was estimated for each catchment using the 

BFIHOST estimate (Chapter 5) derived from the fractional extent of HOST classes within 

each catchment. The interception store was omitted from MODB as the potential 

importance of the store in preventing the SMD being prematurely alleviated during the 

summer was negated by the omission of the soil moisture related drainage term. 

This approach left three parameters for optimisation within the calibration scheme: Cmax, 

K1 and Kb. The trade off in reducing the number of free parameters in the loss module is 
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that the model is less flexible in closing a water balance. The model is also no longer 

dynamically routing effective rainfall between slow and fast routing paths on the basis of 

the status of the soil moisture deficit within the loss module. This is less conceptually 

attractive. 

The number of catchments for which an acceptable water balance could be closed was 

reduced from 179 to 171. One of the catchment for which a water balance could not be 

closed was 44006. This is very likely to be either a consequence of errors in the input data 

or a violation of the closed water balance assumption, which can commonly occur within 

ground water fed catchments. This is discussed further within Appendix C. The behaviour 

of MODE is discussed with respect to the four case study catchments within Appendix C.2. 

For MODE the parameters were uncorrelated with one another within all catchments. 

BIAS is strongly correlated with Cmax, as would be expected. There was no evidence of 

the trade off between the overall fit of the hydrograph and the fit at low flows for MODE, 

as was observed with MODA. This is a consequence of the use of a fixed split for 

partitioning effective rainfall. The time series fit statistics EFF, LF_OBJ and EEQ95 were 

strongly correlated with either Kb and/or Kl . The degree of correlation was dependent on 

the catchment type. In impermeable catchments EFF was strongly correlated with the 

quick-flow reservoir, Kl. In the permeable catchment EFF was correlated with Kb, as the 

majority of effective rainfall is routed through this store. The LF_OBJ function was 

correlated with both routing reservoir time constants. The degree of correlation was 

dependent upon the catchment type. In permeable systems the function and is associated 

with Kb and with both time constants in impermeable systems. There was evidence that the 

EEQ95 statistic can be correlated with all model parameters. 

For MODE the EIAS objective function was strongly related to Cmax. The value of using 

all three EFF, LF_OEJ and EEQ95 to evaluate the fit of the simulated hydrograph was less 

certain. However the inter-correlations between these objective functions were not as high 

as the correlation between the individual functions and the appropriate time constant of the 

routing module. This indicates that they are evaluating the fit of different aspects of the 

simulated hydrograph. 
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6.6 SUMMARY, DEVELOPMENT OF THE EUCLIDEAN OBJECTIVE 
FUNCTION AND FINAL PARAMETER VECTOR SELECTION 

The discussions within Appendix C and the summary of the results from the catchment 

studies presented within this chapter must be read in the context that all of the shots for a 

catchment were regarded as being acceptable. The focus of the analysis was to identify 

covariance, and hence identifiability issues within these acceptable shots. It was not to 

draw conclusions about the covariance relationships between parameters and objective 

functions over the whole of the feasible parameter space. An example of this is the case of 

the time constant for the routing reservoirs. Within the acceptable shots, the correlation 

between Kb and K1 and the objective functions LF_OBJ and EFF was small for some 

catchments. This is not the case over the whole of the feasible parameter space for these 

time constants. Calibration trials demonstrated that there is a strong correlation, particularly 

between LF_OBJ and Kb in permeable catchments and K1 and EFF within impermeable 

catchments. The lack of correlation within the range of acceptable shots is indicative of the 

lack of sensitivity of the model to smaller scale variations in the time constants compared 

with equivalent variations in the other parameters. The sensitivity of the model behaviour 

to individual parameter values, and hence the identifiability of the parameters, was clearly 

linked to the catchment type and climatic regime. This is also true with regard to parameter 

covariance issues. For example, the loss module parameters for MODA were much more 

covariant in catchments in which the parameters control the evaporation losses from the 

soil moisture store. 

The calibration scheme ensures that model parameter vectors can only be drawn from 

regions of the feasible parameter space in which the model can close a water balance. If the 

errors in input data are appreciable, leading to potential over-estimation or under-

estimation of mean flow, the model will tend to compensate for this by selecting loss 

module parameters that will simulate high or low evaporation losses. As these loss module 

parameters also control the generation of direct runoff, and in the case of MODA the 

drainage from the soil moisture store this can result in a poor simulation of the time 

dependency of stream flows. 
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The experience with MODA and MODE does imply that if BIAS is to be used as an 

objective function then, if more than one parameter can influence the simulation of 

evaporative losses there are likely to be covariance issues between these parameters in low 

rainfall catchments. 

As discussed in Section 6.2, each of the 300 model parameter vectors can be regarded as, 

potentially, being the optimal, or near optimal solution for the model - given the 

uncertainties associated with the input data and conflicting simulation requirements of 

objective functions. For the regionalisation studies it is essential to represent each 

catchment by one parameter vector. The predictive capacity of the model, when applied to 

an independent evaluation period of record is a good mechanism for identifying a stable 

model parameter vector. For the purposes of this research, the identification of a stable, 

near optimal model parameter vector is more important than the identification of an 

optimal model parameter vector for a specific period of record - which maybe an artefact of 

the input data for that period. 

The approach adopted to derive this vector for each catchment was to select a best 

compromise parameter vector through the use of a Euclidean based objective function. This 

function is based on the sum of distances of the value of each of the BIAS, EFF, LF_OBJ 

and BIAS statistics within the calibration period and the departure from these over the 

evaluation period. The Euclidean objective function for a model vector was derived using 

g Q P ^ N c C O F + NgEVW 

Nc+Na 
0&8) 

where COF is the calibration period function given by 

COF' 
bias - bias 

I 11 I I m m 

Ibiasl - Ibiasl 
I I m M I 

+ 
OBJ L F - O B J LF„ 

^ O B J _ L I L x - O B J _ L I L . y 

+ 
( l - E F F X - ( l - E F F L 

( l - E F F L - ( l - E F F l 

lBEQ95| -|BEQ95| 
+ 

|BEQ95| -|BEQ95| 
I I h 

(6.9) 
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and EVOF is the evaluation period function given by 

EVOE 
bias i - bias 

bias •bias 

OBJ L F i - O B J LF 

OBJ LF OBJ LF 

+ 
( l -EFF) i - ( l - E F F ) mi 

( l -EFF) m̂  - ( l - E F F ) . 
+ 

^ BEQ95i-BEQ95min ^ 

BEQ95 BEQ95 

(6.10) 

Within these functions, the values of the original objective functions for all valid parameter 

vectors are normalised to vary in the range [0,1] within each period. A value of zero 

represents a perfect simulation for the function concerned. The dashes for the fit statistics 

within the EVOF function denote that the value is the difference between the value of the 

objective function during the calibration period and the evaluation period. The BIAS, EFF 

and BEQ95 statistics were normalised prior to subtracting the values for the calibration 

period from those for the evaluation period. The variables Nc and Ne are respectively the 

number of years in the calibration period and evaluation period respectively. This approach 

is directed at identifying the best compromise between the fit of the model during the 

calibration period and the stability of the model fit over the evaluation period. The weight 

given to COF and EVOF is based on the respective record lengths of the periods. The 

parameter values and objective function values for the shots selected in the case study 

catchments using the EOF are presented in Table 6.3 for MODA and MODE. Values are 

presented for both the calibration and evaluation periods. 

These results demonstrate that the selected vectors produce relatively stable estimates over 

both the calibration and evaluation periods. Noting that for two of the catchments the 

evaluation period is restricted to two years of record, the models conserve mass over both 

the calibration and evaluation periods. In all cases, the fit of the model at low flows 

(LF_OBJ and BEQ5) is better over the evaluation period than the calibration period, a 

consequence of the calibration period containing the drought years of the early 1990s. The 

EFF values do not follow a consistent pattern between the calibration and evaluation 

periods. 
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The performance of the calibrated parameter vectors selected using this approach for these 

catchments is discussed in more detail within Chapter 8, Section 8.1. In this section the 

performance of regionalised parameter estimates for these catchments is compared to the 

performance of the calibrated model parameters. The discussion also includes a visual 

assessment of simulated hydrographs. 

Table 6.3 Selected parameters and corresponding objective function values for 
MODA and MODE 

Objective function values years of 
Calibration Evaluation record 

K g L F _ O B J B I A S E F F BEQ95 L F _ O B J B IAS E F F BEQ95 N C N V 

Parameter Values 
Cmax B K1 Kb 

M O D A 

34003 793 1.07 57 1639 6374 27 2 0.526 -20 20 -3 0.54 6 10 10 

39098 373 0.95 26 144 51601 63 1 0.684 -11 5 3 -7 0.43 -6 10 2 

44006 433 0.03 384 505 7365 25 0 0.60 24 2 4 3 0.72 28 10 10 

67010 110 3.04 30 496 762 46 -3 0.734 -6 45 -2 0.76 4 10 2 

M O D B Beta 
34003 251 1 112 1770 0 .779 35 0 0.174 -47 30 0 0.29 -22 
39098 386 1 32 398 0.174 75 0 0.733 -22 6 7 -4 0.68 -5 

67010 37 1 22 492 0.25 48 2 0.78 -9 51 3 0.81 9 
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7 The development of regionalised model parameters 

7.1 INTRODUCTION 

This chapter presents the development of predictive models that link the rainfall runoff 

model parameters to catchment characteristics, thus facilitating the application of the 

rainfall runoff models to ungauged catchments. As discussed in Chapter 1, the process of 

identifying models that describe the relationship between a variable and co-variant 

catchment characteristics is commonly called regionalisation. The evaluation of the utility 

of the models for predicting rainfall runoff model parameters that yield acceptable stream 

flow simulations is presented within Chapter 8. 

Catchment characteristics/descriptors are defined as the physical characteristics of a basin 

that control the generation of stream flow, corresponding to precipitation inputs and 

evaporative losses from the catchment surface, and climatic characteristics that can be used 

to summarise the spatial patterns within the climate data over the catchment. The 

catchment characteristics/descriptors used in this research are fully described within 

Chapter 5. Conceptually correct models for predicting model parameters were sought in the 

regionahsation studies; that is, models that can, conceptually, describe cause and effect. 

Two approaches were developed and evaluated in detail, these were a multivariate 

regression approach and a Region of Influence approach (ROI). In the regression based 

approach, the parameters within a rainfall runoff model parameter vector are assumed to be 

independent of one another, this is contrary to the evidence from the catchment specific 

studies discussed in Chapter 6. As discussed in Chapter 1, multivariate regression analysis 

has been used by other researchers seeking to relate model parameters to catchment 

characteristics, and has also been widely used to develop simple, statistically based 

hydrological models for predicting natural and artificially influenced flow statistics. Linear 

regression is a special case of the family of Generalised Linear Models (GLM) (Cox and 

Hinkley, 1974). More sophisticated models can be used from this family by ascribing a 

probability distribution to the dependent variable, in this case a model parameter. Some 

function,/, known as the link function of the distribution parameters, is then modelled as a 

linear combination of the independent predictor variables. The use of GLM was rejected 
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because of the demonstrable covariance between model parameters within individual 

catchments. The degree of covariance varies as an undeRned function of catchment type, as 

demonstrated empirically within Chapter 6. It was not therefore possible to define a 

defendable underlying distribution for the individual model parameters that were to be 

regionalised. 

The parameters within individual vectors are not assumed to be independent in the ROI 

approach. In this approach, likely parameter vectors are selected for the target-ungauged 

catchment from vectors for a pool of source catchments. The selection is based upon the 

catchment characteristic similarity of the source catchments to the target catchment. The 

ROI approach is a logical extension of cluster analysis. The objective of cluster analysis is 

to place elements in to self-similar groups to make some value judgements about the 

properties of the self-similar groups. In this context, similarity would be assessed on the 

basis of catchment characteristics that are co-variant with the model parameters. The 

objective in the ROI approach was to develop a method for identify a group of catchments 

with similar characteristics, and hence (ideally) model parameters, with the catchment of 

interest located at the centre of the group. 

The data sets used for this analysis consisted of the calibrated MODA and MODE 

parameter vectors and catchment characteristics for the catchments for which the 

calibration scheme (discussed in Chapter 6) was successfully applied. Section 7.2 of this 

chapter presents a discussion of the calibrated model fits obtained for both model structures 

across the catchment data sets. A discussion of the variation in catchment 

characteristics/descriptors for these catchments, and the relationships between individual 

characteristics/descriptors is presented within Section?.3. The development of multivariate 

regression based models for predicting model parameters is presented in Section 7.4 for 

both models. The section presents both the methodological approaches used within the 

derivation of these parameter estimation models and the models derived. In practice, the 

stream flow simulations obtained using the ROI approach were not as good as the 

simulations obtained using the multivariate regression models. The derivation of the ROI 

analysis and the application to the estimation of parameters for MODA is therefore 

presented within Appendix D. The results from the studies presented within this chapter 

are summarised in Section 7.5. 
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7.2 AN EVALUATION OF THE (Z/lIvIBRVlTTIDI) MODEL FITS ACROSS THE 

As discussed in Chapter 6, it was possible to obtain calibrated model fits that closed an 

effective water balance in 179 catchments using MODA and 170 catchments using MODB. 

Histograms of the values of the BIAS and EPF objective functions and the and BEQ95 

goodness of fit statistics obtained within these catchments, for both model configurations 

are presented in Figure 7.1 for the calibration period and Figure 7.2 for the evaluation 

periods. These statistics are fully described within Chapter 6. The LF_OBJ objective 

function used in the calibration period is not normalised, and is therefore not easy to 

interpret in the context of inter-catchment comparisons. The fit at low flows is represented 

by the BEQ95 statistic only. Catchments in which the BEQ95 error was greater than 300% 

were omitted from the histograms for plotting purposes. For MODA there were nine 

catchments with BEQ95 values greater than 300%, and for MODB there were three 

catchments. The large BEQ95 errors observed within these catchments are discussed 

further within Section 8.2 of Chapter 8. 

The statistic, commonly used to describe the fit of a model, is presented here as a 

comparison to the EPF statistic. Both histogram figures demonstrate that higher values are 

observed for R^ than for EPF, which is indicative of the complex error structures within 

stream flow data, as discussed in Chapter 6. Summary statistics (median and 68% 

confidence interval (c.i.) limits) for the BIAS, EPF and BEQ95 statistics are presented in 

Table 7.1 for both the calibration and evaluation periods. Summary statistics about the 

percentage departures, or differences, between the fit in the calibration period and 

evaluation period for these statistics are also presented within the table. 

To differentiate between statistics drawn from different periods, the statistic name is 

suffixed with underscore "c" to represent a calibration period statistic and "v" to represent 

a verification, or evaluation period statistic. The suffix "d" is used to represent the 

percentage differences in the value of a statistic between the two periods. 

Spearman rank correlation analysis was used to demonstrate that the objective functions 

used were uncorrected across the catchments. The same analysis was used to demonstrate 

than there was no consistent dependency of the performance of the model (as measured by 
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LF_OBJ, BIAS, EFF and BEQ95) on the permeability of the catchments (as represented by 

BFI) or how wet the catchments are (as represented by SAAR). The Gts for individual 

statistics are discussed within the following sub-sections. 

Table 7.1 Summary statistics for model fits over the calibration and evaluation 
periods 

MODA MODB 
68% c i 68% c.i 

Median u.lim l.lim median u.lim l.lim 
Calibration BIAS_c 0 1 -2 1 3 -1 
period R^_c &86 0.91 &78 0.86 0.90 &79 

EFF_c &73 0.81 0.57 OJl 0.80 0.59 
BEQ95_c 16 78 -7 -6 35 -28 

Verification BIAS_v -6 0 -11 -4 2 -10 
period R"_v 0.83 0.88 &75 a 8 4 0.89 a 7 6 

EFF_v 0.67 0.77 0.55 0.68 0.77 &54 
BEQ95_v 22 75 -4 -6 27 -28 

percentage BIAS_d -4 -2 -10 -3 0 -9 
differences EFF_d -4 1 -8 -3 1 -7 

BEQ95_d -2 26 -27 1 24 -21 
Note: negative percentage differences indicate the calibration fit for the statistic is better 

7.2.1 The BIAS statistic 

The calibration procedure constrained BIAS over the calibration period to within ±3% for 

the majority of catchments. Within this range, MODA has a tendency to under-estimate 

MF (negative BIAS) over the calibration period and MODB has a tendency to over-

estimate MF (positive BIAS). This is confirmed by the 68% c.i for BIAS for each model. 

Both models have a tendency to under-predict mean flow over the evaluation period, this is 

possibly a function of the calibration period (generally the 10-year period of record 

preceding 1997) being dryer than the evaluation period (generally 1976-1985) for most 

catchments. MODB tends to under predict mean flow slightly less than MODA. 
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7.2.2 The EFF statistic 

The performance of both models with respect to EFF is similar over the calibration period. 

At 10 years, the calibration period is longer than for conventional model applications in 

which a 2 to 3 year period is more commonly used. The calibrations of MODA within the 

case study catchments, used in Chapter 6 to explore the behaviour of the models, were used 

to explore the impact of record length on the calculation of EFF. The 10-year calibration 

periods were partitioned into two-year blocks and a value of EFF was calculated for each 

block. The mean of these two year EFF values, and the EFF values calculated over the 

entire calibration period are presented for each catchment within Table 7.2. This 

demonstrates that, in all catchment the mean EFF values calculated from the two-year 

blocks are much higher than the corresponding 10-year value, despite being calculated 

using exactly the same data. This is a direct consequence of the complex error structures 

introduced by the strong serial correlation within both the observed and simulated time 

sene& 

Returning to the values of EFF obtained for the calibration and evaluation periods over all 

the catchments used in the study, the performance of both models is good with 84% of 

catchments having EFF values over the calibration period of greater than 0.57 for MODA 

and 0.59 for MODE. Six catchments have low values of EFF (<0.4) for MODA. The 

station numbers for these catchments are 28008, 42014, 34002, 55028 and 28008. The EFF 

value for these catchments all improved to above 0.4 over the evaluation period, although 

the EFF values for a number of other catchment dropped below 0.4 during the same period. 

Four catchments have poor values of EFF (39029, 31017, 34003, 42023) for MODE, again 

the EFF values over the evaluation period improved. Looking at the distribution of 

percentage changes over all catchments, the degradation of model fit over the evaluation 

period is small with 68% of catchments having EFF values that are within 8% of the 

calibration period for MODA and 7% for MODE. The upper limit for the 68%c.i. is 

positive for both models at 1%. This indicates that, in at least 16% of catchments the value 

of EFF was higher over the evaluation period than over the calibration period. EFF values 

for MODA are slightly higher over the calibration period than for MODE. Over the 

evaluation period the MODE model fits are slightly more stable than the MODA fits with 

respect to EFF. 
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Table 7.2 Impact of record length on the value of EFF 

Catchment E F F full 
calibration period 

Mean EFF from 
two year blocks 

34003 0.53 0.91 
39098 0.68 0.82 
44006 0.60 0.89 
67010 a73 0.78 

7.2.3 The BEQ95 Statistic 

The histograms and 68% c.i for BE95 demonstrate that MODA tends to over-estimate Q95 

flows over both the calibration and evaluation periods. The median value of BEQ95 is 16% 

for MODA, and the 68% upper limit is high at 78%. The performance of MODE is better 

(smaller 68%c.i. and less biased), with a tendency to under-predict slightly. Nine 

catchments with errors greater than 300% over the calibration period have been excluded 

from the histogram for MODA, and 3 catchments excluded from the MODE histogram. 

Only two of the MODA exclusions (39065: 338% and 47005; 310%) were amongst the 

nine catchments that were excluded from the calibration analysis for MODE, due to an 

inability to close a water balance. All of the excluded catchments had low Q95 values. In 

these catchments a given absolute EEQ95 error will represent a larger percentage 

difference. Analysis of the observed data for the catchments with the three largest errors 

(36009, 40027, and 39042) showed that all three have a tendency to dry up during the 

summer months. The median and 68%ci for percentage differences between the calibration 

and evaluation periods demonstrate that the performance of both models in modelling Q95, 

and hence low flows is better over the evaluation period than the calibration period. This is 

a consequence of the low flows being generally higher over the wetter evaluation period. 
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7.2.4 Summary 

The performance of both model configurations is fairly similar across the study catchments. 

The majority of model fits are very good; particularly when the long (10 year) calibration 

period used is considered. MODA is better at predicting mean flow and MODE is better at 

predicting low flows. Both models are stable when applied to an evaluation period; the 

mean length of record for the evaluation period was 15 years. A factor in this result is that 

the evaluation period was generally wetter than the calibration period for the majority of 

catchments, thus making the modelling of soil moisture behaviour less critical. The fits for 

MODE are generally more stable than those for obtained for MODA. This indicates that 

MODA may be over specified. In some catchments, poor fits for either the EFF or BEQ95 

statistics were obtained over the calibration period. As the fits improved over the 

evaluation period, these catchments were not rejected from the regionalisation studies in 

the interests of maintaining sample size for the analysis. 

The use of Spearman rank correlation analysis demonstrated that there was no significant 

inter-correlation between the objective functions used across the catchments. Furthermore 

and there were no consistent dependencies of model performance on the permeability and 

wetness of the catchments. 

7.3 THE CHARACTERISTICS OF THE CASE STUDY CATCHMENTS 

The catchment characteristics/descriptors used for the study can be broadly classed into 

three types: 

• Topographical; 

• Climatological; 

• Soils and Land cover. 

The catchment characteristics/descriptors, their derivation and nomenclature are described 

in more detail within Chapter 5. The characteristics within the topographic and climatic 

classes are continuous variables. The HOST (soils) and Land Cover characteristic are 

fractional extents of discrete classes (30 and 25 respectively), and are constrained so that 

fractional extents within a catchment sum to one. This places a constraint on regression 
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modelling using these characteristics, as the fractional extents of classes within a catchment 

are not independent of one another. This issue is discussed further in Section 7.4. 

Spearman rank correlation analysis was used to identify the significant correlation 

coefficients between the continuous catchment characteristics/descriptors. These are 

presented in Table 7.3 for the MOD A catchments. The correlation values are grouped into 

bands, based on values and highlighted in colour, for ease of interpretation. A scatter plot 

matrix for the characteristics is presented in Figure 7.3. 

Table 7.3 Spearman rank correlation between catchment characteristics for MODA 

SAAR SAAPE PP SPR BFI AREA LDP DPLBAR DPLCV ALTBAR DPSBAR ASPBAR ASPVAR 

SAAR 1.00 

SAAPE -0.58 1.00 

PP -0.® 0.79 1.00 

Q5 0.18 -0.03 -0,09 

Q95 -0.29 0.11 0.22 

SPR 0.43 -0.50 -0.53 

BFI -0.43 0.34 0.43 

RO (SB -0.67 -0 93 

AREA -0.04 -0.29 -0.13 

LDP -0.02 -0.31 -0.17 

DPLBAR -0.02 -0.30 -0.16 

DPLCV 0.19 -0.18 -0.20 

ALTBAR 0.73 -0.75 -0.84 

DPSBAR 0.75 -0 61 -0.76 

ASPBAR -0.07 0.20 0.11 

ASPVAR -0.05 0.19 0.11 

-0 77 1.00 

0.48 -0.43 

0.47 -0.28 

0.30 -0.15 

1.00 

1.00 

0<^ 1.00 

0.06 -0.02 1.00 

0.20 0.19 0.24 1.00 

0.05 0.05 0.16 0.83 

-0.17 -0.17 0.00 -0.16 

-0.54 -0.54 0.02 -0.11 

0.5^<0.6 I l0.6a-^<0.8 r^>0.8 

1.00 

-0.09 

-0.15 

1.00 

0.02 1.00 

The histograms from the scatter plot matrix demonstrate that the majority of the 

characteristics are approximately normally distributed. The exceptions are the potential for 

soil moisture deficits (PP) and catchment area (AREA). The histogram for AREA 

demonstrates the catchment data set is skewed towards small catchments. The histogram 

for PP demonstrates that a significant number of the catchments are high rainfall 

catchments that have a zero PP value. Some of the relationships between characteristics are 

fairly linear, for example BFIHOST and SPRHOST, others are either non-linear, or 

indicate that values for one characteristic are constrained with respect to the variation with 
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a second characteristic. For example, high values of the variability in catchment 

( A S P V A R ) d o n o t o c c u r f o r c a t c h m e n t s w i t h l o n g d r a i n a g e p a t h s ( L D P ) , this d e m o n s t r a t e s 

that the variability in aspect is always low in the larger catchments. The corre la t ion 

between SPRHOST and BFIHOST led to the use of the HOSTRES characteristic, 

described in Chapter 5. HOSTRES is uncorrelated with both SPRHOST and BFIHOST. 

Principal Components Analysis (PCA), also known as empirical orthogonal function 

analysis, was used to explore how the continuous characteristics could be summarised to 

explain the variance within the data set. PCA is used to construct linear combinations Zi, 

Z2, Z3.. .Zp of p variables Xi, X2, X3.. .Xp (in this 13 characteristics (including HOSTRES)) 

that are uncorrelated where 

Z; = a^ix, + a^^X^ + a^gxg + a^^X^ +.... + a^^X^ 

(7.1) 

1̂1 + + + îp - 1 

As they are uncorrelated the combinations are measuring different dimensions within the 

data. The coefficients, aip, are a measure of the contribution of variable, Xp, to Zi. A PCA 

involves finding the Eigen values of the sample covariance matrix for Xp. For the PCA the 

normal practice of coding Xp so as they have means of zero and variance of one was 

adopted. This avoids one, or more variables having an undue influence on the principal 

components as a result of scale effects. 

Where two or more variables within a component analysis are correlated with one another, 

the coefficients, a, are not independent and are therefore not easily interpretable. To resolve 

this, it is common practice to look at the loading for component variables, X,, with the 

principal component Zi. The loading for a component variable is the correlation of that 

variable with the principal component. Plotting the component loadings may reveal that a 

variable has a sizeable loading for more than one principal component. One refinement is 

to use rotated loadings with the PCA (termed orthogonal PCA). In this analysis, if a 

variable has a sizeable loading for more than one PC, the plot axes for the PC are rotated 

with the aim of maximising the component loading for a variable with one PC and 

minimising it with respect to the others. This generally maximises the larger un-rotated 

loadings for a PC and minimises the smaller loadings. 
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F i g u r e 7 . 3 S c a t t e r p l o t m a t r i x f o r M O D A c a t c h m e n t c h a r a c t e r i s t i c s . 

The sum of Eigen values for all PC is equal to the sum of the trace (diagonal) of the 

covariance matrix. As the diagonal of a covariance matrix contains the variance of each of 

the variables within the sample, the Eigen value for a PC is the variance of the PC. The 

scree plot, presented in Figure 7.4 (Eigen values plotted as a function of PC number) for 

the PCA of catchment characteristics, demonstrates that there are three PC with Eigen 

values greater than one. The rotated component loadings for these PC, together with the 

Eigen values, X, and the percentage of the total variance explained by the components are 

summarised in Table 7.4. The variables with rotated component loadings greater than 0.6 

are highlighted in bold. The three PC explain 69% of the total variance within the 

catchment characteristic/descriptor data set. 



T h e c h a r a c t e r i s t i c s a s s o c i a t e d w i t h c l i m a t e ( S A A R , S A A P E , a n d P P ) , c a t c h m e n t a l t i tude 

(ALTBAR) and mean slope (DPSBAR) are dominant within the first component. These 

variables are also strongly c o r r e l a t e d with one another. It is apparent from the signs of the 

l o a d i n g that t h e f irst c o m p o n e n t i s l a r g e f o r w e t , h i g h , s t e e p c a t c h m e n t s w i t h l o w e r 

potential for evaporation (related to altitude) and negligible potential for developing 

significant soil moisture deficits. This component explains nearly 30% of the total variance 

within the data set. The second component is primarily associated with variables that are 

related to catchment size and configuration. This component is larger for smaller (AREA, 

LDP) catchments that have a more variable aspect (ASPVAR) and that tend not to be linear 

in shape (DPLBAR). The third component is associated with BFIHOST, SPRHOST and 

HOSTRES (note HOSTRES is uncorrelated with either of the other two characteristics). 

This component is larger for impermeable catchments that tend to have a higher standard 

percentage runoff than expected. This last component only explains 16% of the variance 

within the sample data set. 

The dominance of the climatological, altitude and slope characteristics in explaining the 

variance within the data set is a r e f l e c t i o n of both the strong correlation relationships 

between these variables, and the large variation in the magnitude of these variables across 

the UK. This variation may be in excess of one order of magnitude. This large variation is 

also seen within the LDP and AREA characteristics within the second component. The 

relative importance of the PC in explaining the variation within the catchment data set does 

not imply that the characteristics within the components will carry the same importance in 

controlling the variability in model parameters. However, the fact that ASPBAR and 

DPLCV are not useful in explaining the variation within the catchment characteristics data 

set does imply that these are unlikely to be useful co-variates for the rainfall runoff model 

parameters. The PCA analysis does provide useful guidance on determining whether it is 

justifiable to include more than one characteristic from a particular PC in the regression 

analysis between model parameters and characteristics. 
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T a b l e 7 . 4 P C A a n a l y s i s r e s u l t s 

P r i n c i p a l C o m p o n e n t s 

1 2 3 

D P S B A R 0 . 9 0 0 . 0 0 - 0 . 0 4 

A L T B A R (188 4 1 1 0 0 . 2 2 

P P - 0 . 8 4 O J ^ 4 1 2 8 

S A A R 0 . 8 4 0 . 2 3 0 J 4 

S A A P E - 0 . 7 4 O J O 4 1 2 7 

L D P & 0 5 0.98 0 . 0 6 

D P L B A R 0 . 0 4 - 0 . 9 8 0 . 0 4 

AREA O J O - 0 . 9 3 0.06 
A S P V A R 0 . 0 4 0 . 6 0 0 . 2 2 

B F f f l O S T - 0 . 2 3 - & 1 4 - 0 . 9 2 

S P R 0 . 4 2 0 . 7 7 

H O S T R E S 0 . 4 3 - 0 . 0 9 - 0 . 6 1 

D P L C V 0 J 4 - 0 . 0 9 0 . 2 8 

A S P B A R - 0 . 0 7 ( 1 2 1 - 0 . 2 0 

Eigen values 4 . 0 0 2 . 2 0 

% tot Variance 2 9 2 4 16 

5 1 0 

Number of Factors 

F i g u r e 7 . 4 S c r e e P l o t f o r c a t c h m e n t c h a r a c t e r i s t i c P C A . 
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7 . 4 T H E D E V E L O P M E N T O F L C S E A R R E G R E S S I O N B A S E D M O D E L S F O R 

P R E D I C T I N G M O D E L P A R A M E T E R S 

7 . 4 . 1 M e t h o d o l o g y 

T h e p r i m a r y m e t h o d o l o g y u s e d f o r d e v e l o p i n g r e g r e s s i o n r e l a t i o n s h i p s b e t w e e n m o d e l 

p a r a m e t e r s a n d c a t c h m e n t charac ter i s t i c s w a s t o s e e k r e l a t i o n s h i p s b e t w e e n t h e c o n t i n u o u s 

characteristics and the parameters before seeking relationships between the parameters and 

the discrete characteristics. If the HOST derived characteristics (BFIHOST or SPRHOST) 

proved to be dominant in a particular relationship, then models relating the parameter 

directly to the fractional extents of HOST were developed to maximise the relationship. 

As an example, scatter plot matrices for the relationships between the continuous 

catchment characteristics and model parameters for MODA are presented in Figure 7.5. 

These demonstrate that, for some characteristics there are no obvious relationships with 

model parameters, for some the relationships are linear and for some the relationships 

appear to be non-linear. Additionally, the distributions for some characteristics, and some 

parameters appear to be skewed with evidence of potential outliers. Similar results were 

observed for relationships between catchment descriptors and model parameters. In 

developing the regression models, logarithmic or square root transformations were applied 

to the dependent and/or the independent variables, as appropriate, to linearise relationships, 

where necessary and to transform distributions to a better approximation of uniformity and 

thus reducing heteroscedacity issues within the regression analysis. The value of 

transforming variables was assessed through graphical and Pearson correlation analysis 

prior to the regression analysis. 

In the case of fitting regression relationships between parameters and the fractional extent 

of HOST classes, the regressions were constrained to have a zero intercept, as the fractional 

extents must sum to unity. This was essential to resolve the non-independence of fractional 

extents, as represented by high condition indices within the analysis. By extension, other 

characteristics could not be included directly within fractional extent based regressions. To 

resolve this, the relationship between the parameter in question and fractional extent of 

HOST classes was maximised in a first stage. A second model was then fitted to the 
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r e g r e s s i o n r e s i d u a l s u s i n g t h e c o n t i n u o u s charac ter i s t i c s . In a l l i n s t a n c e s w h e r e this w a s 

a t t e m p t e d t h e s e c o n d s t a g e f a i l e d t o y i e l d u s e f u l ( s i g n i f i c a n t ) r e l a t i o n s h i p s . T h e u s e o f 

fractional e x t e n t s o f LANDCOVER and a simple combination of LANDCOVER and 

HOST were also investigated as an alternative to HOST for the loss model parameters. 

These parameters conceptually, could be a function of soils and vegetation. These 

coverages did not provide significant improvements over the use of HOST, probably 

because the land cover types tend to correlate with soil type. As the LANDCOVER may 

not be stable through time (Chapter 5) it was not used further. 

The philosophy behind model development was to develop relationships that were robust, 

not over-fitted and that were physically interpretable. To test for robustness the data set was 

randomly split into three sets of 80:20 percent samples. For each set, the models for a 

particular parameter were calibrated on the full sample and the 80% sample. The resultant 

models were compared to ensure that the differences in the coefficients for the independent 

variables were not significantly different between models. The model was re-evaluated if 

one or more coefficients were significantly different for more than one set. The robustness, 

or stability, of each model was checked by plotting the values predicted using the 80% 

models against the values predicted using the "100%" model for one of the 20% 

independent samples. 

The models were developed using backwards stepwise regression with manual intervention 

(Systat, 1998). Continuous independent variables (transformed where appropriate) that 

correlated with the dependent variable were entered into the regression together with 20 

sets of randomly generated numbers. The first step in the analysis was to identify 

significant independent variables using automatic elimination. The second step was to 

remove independent variables that were less significant than any of the random number 

variables. The random numbers which, by chance, proved to be significant were also 

removed at this stage. 
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c h a r a c t e r i s t i c s a n d m o d e l p a r a m e t e r s f o r M O D A . 

One issue was that of c o - l i n e a r i t y amongst the independent variables. The PCA of 

catchment characteristics and the Pearson correlation analysis identified those 

characteristics/descriptors that were not independent, and that could thus cause potential 

problems with model stability. The regression tolerance figures (one minus the squared 

multiple correlation between an independent variable and the other independent variables 

included in the model) were used to identify variables to be removed from the model 

during the automatic procedure (Tolerance <0.15). The tolerance values for parameters 

were used, in conjunction with analysis of conditions indices to further reduce co-linearity 

issues, and hence parameter redundancy. 

Condition indices are derived by factoring the unit scaled (diagonal values of 1) X^X 

matrix for independent variables to yield, n, principal components, where n is the number 

of independent variables. The condition indices are the square roots of the ratios of the 

largest Eigen values to each successive Eigen values. Condition indices of greater than 15 

indicate potential problems with co-linearity (Systat, 1998). Potential problems are 

identified from the loadings for each variable within a PC with a high condition index. The 

co-linearity problem is confirmed if the loadings are high for more than one variable. 

Instances where co-linearity was a significant problem were resolved by removing one, or 

more variables from the analysis. The choice as to which variable(s) to remove from the 
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model was conditioned by the conceptual interpretation of the influence of the variable(s) 

on the particular rainfall runoff model parameter being modelled and the condition indices 

a n a l y s i s . 

Outliers were identified within models based upon identifying the studentised residuals 

which were greater than ±2.5. Outliers are those observations that should not be included in 

the model because they most probably belong to different populations for which the model 

is not intended. Outliers were only removed if their removal was supported by appropriate 

physical evidence. 

Where either BFIHOST or SPRHOST dominated models, alternative models were 

constructed using HOST directly. The final decision as to which model was finally selected 

for use was based on model R^, SE estimates and visual inspection of plots of predicted 

versus observed values for the dependent variable. 

The major problem encountered with fitting the HOST based models was the issue of the 

poor representation of certain HOST classes, both within the modelled catchments and 

nationally. As discussed in Chapter 5, Boorman et al (1995) resolved this issue for the 

development of the BFIHOST and SPRHOST by bounding the parameter estimates for 

poorly represented HOST classes using knowledge of the upper and lower bounds on BFI 

(0,1) and hydrologist knowledge. As the upper and lower bounds for the rainfall runoff 

model parameters being considered are not clearly defined, the alternative approach of 

Gustard et al (1992) was adopted in this study. In this approach poorly represented classes 

(with parameter estimates that are not significantly difference from zero) are amalgamated 

with better-represented HOST classes. This is subject to the provisos that the classes can be 

considered to be similar in terms of physical properties, and that the addition of the poorly 

represented class(es) does not unduly modify the parameter estimate for the well 

represented class. This is equivalent to constraining parameters for poorly represented 

classes to be equal to the parameter values identified for "similar" classes that are well 

represented. 
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7 . 4 . 2 R e s u l t s 

A summary of the results of the regression analysis is presented within this section. The 

results are presented for each model by parameter. In each case, the structure of the 

regression model for predicting the parameter is presented and the physical interpretation 

of the model structure is discussed. The full detail of the development of the regression 

models is presented within Appendix E. For each regression model the appendix presents a 

discussion of model outliers and residuals, the explained variance and an assessment of the 

stability of the model. 

M O D A 

The maximum storage capacity, Cmax 

To obtain significant relationships between Cmax and the candidate catchment 

characteristics, it was necessary to express Cmax as the mean storage capacity, C . This is 

derived by expressing Cmax as a fraction of (b+1), as discussed in Chapter 4. 

The best regression relationship between C and catchment characteristics was based on 

regressing log (C +1) against a grouping of the fractional extents of HOST classes, called 

Cbar_HG. The structure of this model is given by 

log(C:4-l) = , (7.2:) 

where a; are the coefficents of the model. The consituent hydrogeological units for 

Cbar_HG classes, together with the model coefficients, ai, and the standard error from the 

model are summarised in Table 7.5. 

The grouping of HOST classes is based on the soil integrated air capacity (as a surrogate 

for permeability) and geological substrate. Permeable soils, particularly when underlain by 

permeable geologies have higher coefficients and hence higher values of C . This is 

conceptually correct as these soils will have high infiltration rates and will have a greater 

storage capacity. Conversely, thin impermeable soils, or thin soils underlain by 

impermeable geologies will have low storage capacities. 



T a b l e 7 . 5 T h e C b a r _ H G c l a s s i f i c a t i o n a n d m o d e l c o e f f i c i e n t s 

C b a r _ H G Hydrogeologica l un i t s Coefficient (a) 

1 Chalk, chalk diift 0 . 0 2 6 

2 Oolitic limestone, soft magnesian (X019 

3 Blown sand, giavels 0 . 0 2 3 

4 Colliivium, coverloam, gravel, loamy drift 0 . 0 1 9 

5 Very soft massive clays & 0 2 

6 Hard rock 0 . 0 1 9 

7 Soft bedded clays, loams, till, shales 0 . 0 2 

8 Soft shales, siltstones, bedded clays/loams, clay and flints 0 . 0 1 7 

9 Weathered mtr/meta rock, raw peats, eroded peats 0 . 0 0 8 

1 0 Soft sandstone 0 . 0 2 7 

11 Weatheied mtr/meta rock, hard limestone and sandstone 0 . 0 2 3 

1 2 Weathered mtr/meta rock, colluvtum, coverloam, loamy, drift gravels/loams, sandstone 0 . 0 1 6 

13 Weathered mtr/meta rock, chalky drift, loams Earthy peats. Shattered rock, alluviums. 0 . 0 1 2 13 
covei loam, chalky drift 

0 . 0 1 2 

a d j u s t e d R ^ = 0 . 9 8 8 S . E = 0 . 1 9 9 

The model is essentially a weighted average of percentage coverages of the HOST 

groupings, with the weight given by the coefficient estimate. This is conceptually 

attractive, as C is an average value of storage capacities. The logarithm of (C +1) is used 

within the regression so that the model can predict a zero value of C for a catchment with 

zero fractional extents. This cannot occur in practice as it implies a zero catchment area, 

but it is mathematically correct. The adjusted value is very high, a function of the f a c t 

the model has a zero intercept and is therefore not constrained to pass through the mean of 

the data. Of more importance is the Standard Error (SB) of 0.199. Once antilogs are taken, 

this equates to a Factorial Standard Error of 1.58, that is (given the number of data points 

is high) the predicitve accuracy of the model is approximately ±58% at the 68% 

confidence level. 

The Pareto shape parameter, b 

The optimal model for the Pareto shape parameter b was a linear model that related b to the 

fractional extent of a six-class grouping of HOST classes, b_HG, given by 

b = , CA3) 
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where b, are the model coefficients. The grouping, regression coefficients and model fit 

statistics are presented in Table 7.6 for this model. 

T a b l e 7 . 6 T h e b H G c l a s s i f i c a t i o n a n d m o d e l c o e f f i c i e n t s 

b _ H G H y d r o g e o l o g i c a l u n i t s C o e f f i c i e n t ( b ) 

1 Weatheied mtr/meta Rock, sandstone, colliivmm, gravels/loams 0 . 0 2 3 

2 Weathered intr/raeta Rock, hard hmestone and sandstone Blown sand, gravels 0 . 0 0 7 2 
Colluvium, coverloam, gravel, loamy drift Soft shales, silts tones, bedded 

0 . 0 0 7 

clays/loams, clay and flints Weatheied mti/meta Rock, colluvium, coverloam. 
loamy drift 

3 Chalk, chalk drift Oolitic limestone, soft magnesian Weathered intr/meta rock. 0 I W 4 
chalky diift, loams Shattered rock, alluviums, cover loam, chalky drift Very 

0 I W 4 

soft massive clays Soft bedded clays, loams, till, shales Soft sandstone 

4 
Weathered mti/meta Rock, law peats, eroded peats Eaithy peats 0 . 0 5 2 

5 Hard rock ( X 0 1 4 

Adjusted R ^ = 0 . 6 5 8 S E = 1 I W 6 

The regression model fit was very poor, this is probably due in part to the covariance 

between Cmax and b. The standard error is 1.046, giving an approximate predictive 

accuracy of ±1 at the 68% level. The mean and standard deviation of the raw observed data 

set are 1.2 and 1.3 respectively. This indicates that the model does not give a major 

improvement over just using the mean, although it should be noted that the parameters are 

all significant. 

The HOST grouping was obtained using the grouping strategy that was used for the mean 

storage capacity, C . Classes corresponding to thin soils overlying hard rock substrate have 

a high coefficient value of b, which implies that the storage distribution will be skewed 

towards the shallow soil storage capacities. The model predicts that the distribution of soil 

capacities on permeable soils, particularly when overlying permeable substrates, will be 

skewed towards the maximum soil capacity (low value of b). The implications of this are 

that the impermeable soils will start to generate direct runoff earlier than permeable soils 

for a given precipitation event. Furthermore, significant soil moisture deficit will occur 

more frequently in these lower storage soils. This is conceptually correct, and it is 

consistent with the observations of model behaviour for MODA, discussed within Chapter 

6. 



The loss model drainage constant, Kg 

The optimal model identified for the drainage constant was one relating the logarithm of 

(Kg+1) to the logarithms of PP, LDP and HOSTRES. The form of the model is given by 

log (Kg + 1 ) = 8 . 5 9 3 log (PP + 1 ) - 0 . 3 0 6 log ( L D P + 1 ) 

- 4 . 2 5 7 log ( H O S T R E S + 1 ) + 3 .341 
( 7 j ) 

R " = 0 . 5 8 S.E. = 0 .23 

The model explains 58% of the variance and the S.E. for the model equates to a F.S.E. of 

1.7. The predictive accuracy of the model is therefore approximately ±70% at a confidence 

l e v e l o f 6 8 % . 

The model implies that Kg will be larger and therefore limiting drainage for catchments 

that have a greater tendency to build up soil moisture deficits, as represented by PP. The 

negative coefficient for LDP indicates Kg is smaller in large catchments, which i m p l i e s 

that the drainage, and hence base f l o w , is potentially greater in larger catchments. This is 

an indication that the model is representing the averaging effects of larger catchments by 

increasing the drainage from the soil store, and thus the fraction of effective rainfall routed 

through the slow f l o w reservoir. Kg decreases with increasing HOSTRES. A high value of 

HOSTRES indicates that the catchment has a higher BFI (and hence base f l o w ) than would 

be expected based upon anticipated SPR, again this is intuitively correct. 

The slow flow routing reservoir time constant, Kb 

The optimal, stable model identified for this parameter was one that relates Kb to 

BFIHOST and the logarithm of AREA. The structure of the model is given by: 

K b = 1389 B F I H O S T + 1 7 0 l o g ( A R E A + 1 ) - 2 6 0 

( 7 . 5 ) 

R ^ = 0 . 5 1 S.E. = 2 9 8 

The model has a relatively low adjusted R^ and significantly under predicts large values of 

Kb. The model predicts higher values of Kb for both high base flow (BFI) and larger 
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c a t c h m e n t s . T h i s i s c o n c e p t u a l l y correc t , p e r m e a b l e s y s t e m s a r e h i g h s torage s y s t e m s i n 

w h i c h s t r e a m f l o w i s d o m i n a t e d b y r e l e a s e o f w a t e r f r o m g r o u n d w a t e r , w i t h a g e n e r a l l y 

small direct runoff component. As a result, rates of recession rates are low in these 

catchments, which is reflected in the rainfall runoff model by higher values of Kb. In larger 

catchments, both hill slope and groundwater routing will become more damped and 

channel routing and storage effects may start to become important. One effect of this would 

be to reduce both the variance of stream flow data and the rates of changes within stream 

flow. Therefore, a relationship with area for the routing time constants is conceptually 

acceptable. 

Quick flow routing reservoir time constant, Kl 

The best, stable model fits were obtained for a model that related Log (Kl+1) to the 

fractional extents of a grouping of HOST classes (K1_HG). The fit obtained with the 

model was similar to the fit of a model based on BFIHOST and LOG (AREA+1), but the 

HOST-based model gave a better fit at low values of Kl. The structure of the model is 

g i v e n b y 

l o g ( K l 4 - l ) = , ( 7 . ( 0 

where c, are the coefficents of the model. The consituent hydrogeological units for K1_HG 

classes, together with the model coefficients, ci, and the fit statistics for the model are 

summarised in Table 7.7. The grouping of HOST classes is based on permeability and the 

physical charatceristics of the substrate geology. Permeable soils that are underlain by 

permeable geologies have higher coefficients. Overland f l o w that reaches the stream, and 

or minor channels will not normally be generated within very permeable systems. The 

direct runoff that there is will be dominated by inter-flow giving a more damped response, 

and hence higher values of Kl. This is conceptually correct. The FSE for the model is 1.57, 

that is the predicitive accuracy of the model is approximately ±57% at the 68% level. 

Analysis of residuals demonstrated that the model has a tendency to over predict very low 

values of Kl. 
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T a b l e 7 . 7 T h e K 1 _ H G c l a s s i f i c a t i o n a n d m o d e l c o e f f i c i e n t s 

K 1 _ H G H y d r o g e o l o g i c a l u n i t s C o e f f i c i e n t ( c ) 

1 C h a l k , c h a l k dr i f t 0 . 0 2 3 

2 Oolitic limestone, soft magnesian 0.022 
3 B l o w n s a n d , g r a v e l s 0 . 0 2 1 

4 Very soft massive clays 0.016 
5 H a r d rock 0.019 
6 Soft bedded clays, loams, till, shales 0.018 
7 Soft shales, siltstones, bedded clays/loams, clay and flints 0.017 
8 Weathered intr/meta. Rock, raw peats, eroded peats 0.015 
9 Soft sandstone 0.018 
10 Weathered intr/meta. Rock, hard limestone and sandstone 0.019 
11 Weathered intr/meta. Rock, sandstone, colluvium, loamy drift, 0.015 

gravels/loams 
12 Earthy peats 0.021 

Colluvium, coverloam, gravel, loamy drift 
Weathered intr/meta. Rock, chalky drift, loams 

adjusted R^=0.99 SE=0.195 

M O D B 

The MODB parameters to be regionalised were Cmax, K1 and Kb. The regression models 

for the MODB parameters are presented in the subsequent sub-sections. 

The maximum storage capacity, Cmax 

The modelling of Cmax proved to very problematical. The optimal model derived related 

the logarithm of (Cmax+1) to the logarithms of (PP+1) and (DPLBAR+1), and is given by 

log( Cmax + 1 ) = 5 .58 l o g ( P P + 1 ) - 2 .61 l o g ( D P L B A R + 1 ) + 2 .17 

( 7 . 7 ) 

R ^ = 0 . 3 6 S.E. = 0 . 2 9 6 

The fit of the model is poor, explaining 36% of the variance and has a FSE of 1.98. The 

physical interpretation of the model is not clear, but may be related to the role of Cmax in 

controlling the evaporation rate. A uniform distribution of soil storage capacities is 

assumed for MODB. The relationship between (precipitation-evaporative losses) and 

outflow from the soil store is therefore quadratic (Chapter 4). Cmax controls the gradient 

of this relationship and fixes the storage capacity at which the catchment is fully saturated. 
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Cmax also directly controls the relationship between the evaporation rate and simulated 

Soil Moisture Deficit (SMD). However, Cmax can only influence evaporation rates if the 

summer evaporation demand exceed the rainfall inputs (hence generating an SMD). Cmax 

is probably only really identifiable under these circumstances. PP is a measure of the 

potential for significant SMDs to build up in a catchment. The regression model predicts 

that Cmax increases as PP increases. If PP is high the model will certainly generate a soil 

moisture deficit, and will potentially result in a reduced evaporation rate. Given the 

formulation of the evaporation function, this tendency will be offset by an increased value 

of Cmax. The relationship between Cmax and PP may well be an artefact of the rainfall 

runoff model structure. The dependency on DPLBAR implies that Cmax is larger for 

catchments with larger mean drainage path lengths. This characteristic is high for both 

large catchments and catchments that tend to be linear. This is difficult to explain, but may 

be associated with the longer runoff concentration times within these catchments. 

The routing reservoir time constants, K1 and Kb 

Under ideal circumstances the time constants obtained for MODA would be identical to 

those obtained for MODE, as they were un-correlated with the loss module parameters. 

However, the values are i n f l u e n c e d by the differences in the partitioning mechanism for 

effective rainfall between the two models. In practice, they were identified as being very 

comparable. The optimal, stable regression model structures identified are very similar to 

those obtained for MODA and are given by 

K b = 1 8 7 2 B F I H O S T + 2 0 6 l o g ( A R E A + 1 ) - 4 9 1 

CA8) 

=0.50 S.E. = 306 

and 

l o g (K1 + 1 ) = 1 .279 B F I H O S T + 0 . 2 2 4 log (LDP + 1 ) + 0 . 8 1 2 

(7^0 

R 2 = 0 j 2 S j l = 0 T 8 2 

The model for Kb is identical in structure to that obtained for Kb with MODA. The 

coefficients are different and the model is a slightly poorer fit. This may a consequence of 
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the cruder treatment of the partitioning of effective rainfall in MODE. The model for K l 

u s e s a l o g - t r a n s f o r m e d r e p r e s e n t a t i o n o f K l , w h i c h i s a f u n c t i o n o f B F I H O S T a n d L o g 

(LDP+1). This formulation gave similar results for Kl with MODA, and was only a 

slightly poorer fit than the HOST based model finally selected for MODA. The same 

formulation applied to MODE gives a predictive accuracy of ±52%, which is an 

improvement of ± 5% over the predictive capacity of the HOST-based Kl model for 

MODA The use of LDP gave a significant advantage over the use of AREA. Whilst these 

are strongly corre la ted , they are different characteristics. The relationship indicates a 

damping of direct runoff response to precipitation events in long drainage path catchments. 

This is conceptually attractive as it represents catchment and channel routing 

considerations that are not explicit within the model structure. 

7 . 5 S U M M A R Y O F T H E R E G I O N A L I S A T I O N S T U D I E S 

The evaluation of the calibrated fit of both model configurations within the full catchment 

set demonstrated that the quality of model fits was similar across the catchments. The 

majority of model fits were very good; MODA is better at predicting mean flow and hence 

conserving mass and MODE is better at predicting low flows. Both models were stable 

when applied to a evaluation period, this was probably aided by the evaluation period being 

generally wetter than the calibration period for the majority of catchments, thus making the 

modelling of soil moisture behaviour less critical. The model fits obtained for MODE are 

generally more stable that those obtained for MODA, this indicates that MODA may be 

over specified. 

Principal Components Analysis was successfully applied to the physiographic and climatic 

catchment characteristics/descriptors for the catchments where MODA was successfully 

calibrated. The analysis demonstrated that the variation in the data set was dominated by 

the climatological, altitude and slope characteristics. This dominance is a reflection of the 

strong correlation relationships between these variables and the large variation across the 

UK within these characteristics. 
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Relationships between model parameters and catchment characteristics/descriptors were 

developed using a multivariate regression approach for both MODA and MODE, and a 

ROI approach for MODA. The ROI approach for regionalising MODA, in which the 

internal structure of the individual parameter vectors is retained, was found to be not as 

effective as the use of the regression-based approach. Good or acceptable regression 

relationships were identified for all model parameters with the exception of the Pareto 

shape parameter (b), in the case of MODA and Cmax, in the case of MODE. These are 

both parameters for the soil moisture store. The parameter b controls the distribution of soil 

storage capacities within MODA, and hence influences the generation of direct runoff, 

evaporation rates and drainage rates from the base of the store. Cmax is the maximum 

storage capacity per unit area within the store. In MODE this parameter controls the 

sensitivity of the rainfall runoff relationship to soil moisture status, and the relationship 

between evaporation rates and soil moisture deficits within the soil store. 

The uncertainties in the relationships between model parameters and catchment 

characteristics are a function of the physical reality of the structure of the rainfall runoff 

model, the errors in input data, calibration errors, errors in catchment characteristic data 

and errors, or assumptions in structure of the relationships themselves. In the context of 

this study it was prerequisite that the calibrated rainfall runoff model could close an 

effective water balance over the calibration period, and that this closure was stable when 

the model was applied to an independent evaluation period of record. The assumption of a 

closed water balance is very sensitive to errors in climatic data (particularly precipitation), 

an effective estimate of contributing area and the assumption that flows do not bypass the 

gauging station. The analysis presented in Chapter 6 demonstrated that, during calibration, 

the loss module parameters compensate for these types of error through manipulation of 

both the evaporation rate and the time that water is retained in the soil store. This is one 

major reason for the poor relationships between b and catchment characteristics in MODA, 

and Cmax and catchment characteristics in MODE. A second issue for MODA is the 

strong covariance between Cmax and b. This issue was demonstrated by the fact that 

significant relationships between Cmax for MODA and catchment characteristics could not 

be identified, and yet a good relationship for predicting C (which is a function of Cmax 

and b) was identified. 
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8 Assessment of the performance of the regionalised 
rainfall runoff models 

8 . 1 I N T R O D U C T I O N 

The predictive capacity of the regression models for estimating model parameters is of 

importance, however it is the predictive performance of the rainfall runoff models, when 

run with the estimated parameters, that is ultimately of interest. The performance of the 

regionalised models was assessed by: 

• evaluating the fits obtained within the case study catchments, considered in Chapter 6, 

with respect to the observed f l o w s and the simulated flows obtained with the calibrated 

model parameters; 

• evaluating general patterns in the quality of model fit obtained using the regression 

based parameter estimates across all of the catchments for which calibrated parameters 

were obtained; 

• developing a classification scheme for classifying model simulations in the context of 

their applicability for use within water resource assessments; 

• comparing the performance of the regionalised model fits within two of the Anglian 

catchments used in the model evaluation studies presented in Chapter 3; 

• comparing the performance of the regionalised model fits with those obtained by 

transposing local data from analogue catchments. 

The evaluation with the specific case study catchments is presented in Section 8.2 and the 

evaluation across all catchments is presented in Section 8.3. A classification of results for 

water resources assessment is presented within Section 8.4. The comparisons with the 

Anglian modelling studies are presented in Section 8.5. A summary of the results from 

these sections is presented in Section 8.6. The use of data transposed from analogue 

catchments, and a comparison of this approach with the use of a regionalised model is 

presented within Chapter 9. 

8 - 1 



8 . 2 T H E P E R F O R M A N C E O F R E G R E S S I O N M O D E L S W I T H I N T H E 

(:/iTr(:i3MicNTrs: 

The locations and characteristics of the case study catchments are discussed in detail within 

Section 6.5.1 of Chapter 6. As discussed in Chapter 6, the four case study catchments 

represent the following climatological and hydrological permutations: 

• dry- permeable:- The Bure at Ingworth (34003); 

• dry-impermeable:- The Pinn at Oxbridge (39098); 

• wet- permeable:- Sydling Water at Sydling St. Nicholas (44006); 

• wet-impermeable:- The Gelyn at Cynefail (67010). 

T a b l e 8 . 1 M o d e l p a r a m e t e r s a n d f i t s t a t i s t i c s f o r t h e c a s e s t u d y c a t c h m e n t s 

G a u g e M o d e l p a r a m e t e r s Q u a l i t y o f m o d e l 

fit 
gamma Cmax b Kg/Beta K1 Kb BIAS E F F BEQ95 BIAS EFF BEQ95 

M O D A Calibrated Parameters Calibration Period Evaluation Period 

3 4 0 0 3 2 0 3 793 1.07 6 3 7 4 5 7 1 6 3 9 2 0 . 5 3 - 2 0 - 1 0 . 5 4 6 
3 9 0 9 8 L 0 8 3 7 3 0 . 9 5 5 1 6 0 1 2 6 1 4 4 1 -11 -7 0.43 -6 
4 4 0 0 6 1 . 6 7 4 3 3 0 . 0 3 7 3 6 5 3 8 4 5 0 2 0 0 ^ 0 2 4 3 & 7 2 2 8 

6 7 0 1 0 1 . 7 8 IILO 3 . 0 4 7 6 2 3 0 4 9 6 - 3 ().7:s -6 - 2 0 . 7 6 4 
M O D A Estimated Parameters 

3 4 0 0 3 2 0 3 :!41 0X56 4 1 0 8 1 1 1 1 2 0 1 4 & 2 5 - 4 7 3 0 3 4 - 2 9 

3 9 0 9 8 L 0 8 1 3 9 0 . 4 0 1 3 6 2 3 3 9 2 4 7 2 3 0 . 5 2 2 8 1 5 0 . 6 2 5 1 

44006 1 . 6 7 4 4 7 0 . 4 2 4 1 0 1 6 5 1 1 5 3 2 4 0 . 7 3 6 4 2 0 0 7 2 57 
6 7 0 1 0 L 7 8 6 6 3 3 3 9 8 1 40 2 8 4 - 2 0 . 7 3 - 2 0 -1 0.77 - 3 0 

Calibrated Parameters Calibration Period Evaluation Period 

3 4 0 0 3 0 2 5 1 1 0 . 7 8 1 1 2 1 7 7 0 0 0.17 -47 0 0 . 2 9 - 2 2 

3 9 0 9 8 0 3 8 6 1 0.17 3 2 3 9 8 0 & 7 3 - 2 2 - 4 0 . 6 8 -5 

4 4 0 0 6 

6 7 0 1 0 0 3 7 1 0 . 2 5 2 2 4 9 2 2 & 7 8 -9 3 & 8 1 9 
MODE Estimated Parameters 

3 4 0 0 3 0 2 4 2 1 0 . 7 8 1 3 2 1 4 2 7 1 o i m -55 1 0 1 4 -33 

3 9 0 9 8 0 2 6 7 1 a i 7 2 0 1 5 7 18 & 5 8 - 5 5 11 & 6 3 - 4 8 

4 4 0 0 6 

6 7 0 1 0 0 8 8 1 0 . 2 5 21 2 1 6 - 1 & 7 8 - 5 8 0 & 8 1 - 3 6 
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The models, MODA and MODE, were run over the calibration and evaluation periods for 

t h e c a s e s t u d y c a t c h m e n t s u s i n g t h e r e g r e s s i o n b a s e d p a r a m e t e r e s t i m a t e s . T h e resu l t s 

obtained using these regression based parameter estimates were c o m p a r e d to those 

obtained with the calibrated model parameters over both the calibration and evaluation 

period. 

The model parameters and goodness of fit measures obtained are presented for both models 

within Table 8.1. For each model, and each catchment this table presents: the selected 

calibration parameters used in the regression modelling; the parameters estimated using the 

regression models and an assessment of the goodness of model fit over the calibration and 

evaluation periods - as represented by the BIAS, EPF and BEQ95 statistics. The results 

obtained for the individual catchments are discussed in the following sub-sections. 

8 . 2 . 1 C a t c h m e n t 3 4 0 0 3 

Within this catchment, the fit of MODA using calibrated parameters is better than that 

obtained for MODB using the calibrated parameters over both the calibration period and 

the evaluation period. The EFF values for MODB are very low indicating a poor time 

series fit for this model. The fit of MODA using the calibrated parameters, as judged by the 

goodness of fit measures, is better than that obtained using the regression-based parameters 

over both the calibration and evaluation periods. This pattern is repeated for MODB. The 

fit obtained using the calibrated parameters for MODB is approximately equivalent to that 

obtained for MODA using the regression-based parameters. Both models adequately close 

a water balance with both calibrated and estimated model parameters over both the 

calibration and evaluation periods. Simulated and observed hydrographs for the period 

1987-88 are presented in Figure 8.1. This period falls within the calibration period used for 

the catchment. The simulated hydrographs are those obtained for both models using the 

calibrated and regression estimated parameter estimates. The corresponding soil moisture 

status of the loss module is presented within Figure 8.2 for the same period. In this figure, 

the depth of water held in storage within the catchment per unit area is expressed as a 

fraction of the maximum storage depth, Smax, for each model configuration. If this ratio is 

less than 0.5, then the evaporation rate will be reduced to below the potential rate, as 

discussed within Section 4.2.2 of Chapter 4. As is discussed within Chapter 4, Smax is 

equal to C m a x / ( b + l ) for MODA, and is equal to Cmax/2 for MODB. 
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MODA adequately simulates the observed hydrograph for flows above Im^s ' for both 

calibrated and estimated parameter vectors. MODS tends to over estimate flows in the 

wetter periods, probably due to an i n c o r r e c t partitioning of effective rainfall on the basis of 

BFIHOST. This catchment is permeable with a high infiltration capacity, and thus the 

direct runoff component will be low for all but the largest rainfall events. The over-

estimation of higher flows (but not extreme events) by MODE probably accounts for the 

poor EPF values observed for the m o d e l for both calibrated and regionalised model 

configurations. 

The soil moisture behaviour is similar for the two MODA model configurations. The two 

MODE configurations also have a similar soil moisture behaviour, however MODA 

predicts that the loss module is never more than 90% full whereas MODE predicts that the 

catchment can become fully saturated within the winter months. This behaviour is a 

consequence of the m u c h lower values of Smax for the MODE configurations. Even 

though the catchment is a low rainfall catchment, it would be anticipated that the 

catchment would be saturated at points within the winter months. On this basis, the MODE 

simulation of soil moisture behaviour is more realistic. The model predicts that SMDs are 

at a minimum at the end of the winter recharge season (normally March), and that 

evaporation limiting SMDs occur within the summer months. As can be seen from the 

stream flow hydrographs, the observed and simulated runoff response to rainfall events is 

very low during these periods of high SMD, as would be expected. This behaviour is 

consistent with the permeable nature of the catchment. 

There appears to be a sustained observed base flow within the catchment of lm^s'\ This 

may be a natural base f l o w ; or it may be a consequence of a discharge that was not 

accounted for, or it may be a hydrometric error. B o t h models are unable to simulate this 

base flow but are both able to simulate the catchment response to rainfall events when the 

observed f l o w s are above lm^s'\ The inability to model the observed flow regime at low 

f l o w s accounts for the large negative systematic errors at Q95 f l o w s observed for all 

configurations over the calibration period. The evaluation period was considerably wetter 

than the calibration period, with generally higher base flows, and thus the systematic error 

at Q95 is much less for both models, and both sets of parameters. MODA, when used with 

the calibrated parameter vector, consistently over estimates Q95 over the evaluation period. 
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Within the example hydrograph, it can be seen that the errors in base f l o w are generally 

larger for MODE using estimated parameters and smaller for MODA using estimated 

p a r a m e t e r s . T h i s i s c o n f i r m e d b y t h e B E Q 9 5 s tat i s t ic f o r t h e c a l i b r a t i o n p e r i o d . 

8.2.2 Catchment 39098 

Within this catchment, the fit of MODA using the calibrated parameters is better than that 

obtained using the regression based parameters over both the calibration and evaluation 

periods. This pattern is repeated for MODE. The calibrated fit of MODA is marginally 

poorer than that obtained for the calibrated form of MODE over both the calibration and 

the evaluation periods. This pattern is repeated for the estimated parameters, with the 

MODE model performing better than MODA over both periods. When using the 

regionalised model parameters, both models over estimate mean f l o w (positive B I A S ) by 

more than 10% over both the calibration and evaluation periods. This tendency to over 

predict is greater for MODA than MODE, particularly over the evaluation period. The 

tendency to over predict is linked to the significant under estimation of Cmax by the 

regression models for both models. Significant SMD will build up in this dry catchment, 

and a small value of Cmax results in evaporation rates being reduced to below the potential 

rate more frequently and to a greater extent leading to an over-prediction of mean f l o w . 

Simulated and observed hydrographs for 1987-88 are presented in Figure 8.3 for both 

models using the calibrated and regression based parameter estimates. This period falls 

within the calibration period used for the catchment. The corresponding soil moisture 

status of the loss module is presented within Figure 8.4 for the same period. Both models 

simulate the catchment response to rainfall events well. During recession periods the 

simulated f l o w for MODA is slightly too high when using the regionalised parameters. 

This is a consequence of the underestimation of Kg, which results in more of the effective 

rainfall passing through the slow f l o w routing reservoir. The predicted recession rate at low 

flows is too high for MODE when using the regionalised parameters. This is a consequence 

of the under estimation of the time constant for the slow flow routing reservoir and results 

in an under-estimation o f Q95 flows. These f l o w s are small for this catchment, and thus a 

large percentage error does not equate to a large volumetric error. The performance of the 

two models, when used with the calibration parameters is very similar, and is close to the 

observed behaviour during recession periods. 
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The soil moisture behaviour is similar for all model configurations. The variation is slightly 

lower for MODE when run with the calibrated model parameters, this is a consequence of 

the greater storage capacity for the loss module within the configuration, compared to the 

others. S o i l moisture deficits exist for the majority of the time; the catchment is rarely 

fully saturated, and is only saturated within the winter months when evaporation demand is 

lowest. Evaporation-limiting SMDs occur within the summer months. As can be seen from 

the stream flow hydrographs the observed and simulated runoff response to rainfall events 

is lower during these periods of high SMD, as would be expected. This behaviour is 

commensurate with the impermeable nature of the catchment and the low rainfall regime of 

the catchment. There is evidence that evaporation l i m i t i n g SMDs are greater for the 

regionalised model forms which results in an over estimate of mean f l o w , as discussed. 

8 . 2 . 3 C a t c h m e n t 4 4 0 0 6 

There are no results for MODE for this catchment as the model was unable to close an 

adequate water balance during the calibration period. Simulated and observed hydrographs 

for 1987-88 are presented in Figure 8.5. These simulated hydrographs are those obtained 

for MODA when using the calibrated and regression estimated parameter estimates. This 

period again lies within the calibration period used for the catchment. These hydrographs 

demonstrate that the model cannot simulate the catchments quick response to rainfall 

events when it is run with the calibrated parameters, even though the goodness of fit 

statistics are good over the calibration period. The simulation of the base f l o w is quite 

reasonable. 

The corresponding soil moisture status of the loss module is presented within Figure 8.6 

for the same period. The calibrated parameter estimate for Kg is relatively high, indicating 

that a significant proportion of runoff is being routed through the quick flow reservoir. The 

time constant for K1 is high and the time constant for Kb is relatively low for a permeable 

catchment. The simulated base flow is therefore controlled by the outflow from both 

reservoirs. The relative proportion of the effective rainfall passing through the two stores is 

controlled by the BFI calculated from the flow record during calibration (Chapter 5). This 

indicates that the calculated BFI is not a true measure of the partitioning of effective 

rainfall within this catchment, leading to a calibration error. This may well be a 
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consequence of the fact that the catchment at 12km^ is very small and that the calculation 

of BFI is influenced by local channel controls on stream flow generation. 

The estimated parameters yield a more realistic simulation of the quick flow response of 

the hydrograph, however the base f l o w component of the simulation is too high. The 

estimated parameter estimates for Kg, K1 and Kb are similar to the calibrated values 

obtained for similar p e r m e a b l e catchments. The drainage is high (small Kg). The slow flow 

time constant is high giving a very damped base flow response, and K1 is small thus 

providing the quick response to rainfall. 

The large calibrated values of Kg and Cmax, and the low value of b will result in water 

being retained within the loss module and hence lost through evaporation, as discussed in 

Chapter 6. This enables a water balance to be closed within this catchment. The lower 

regression based estimate of Kg and higher estimate of b will result in the loss module 

having a lower residence time, and thus less water will be evaporated off at the potential 

rate - resulting in an over-estimate of base f l o w and mean f l o w . This strongly indicates that 

the calibration procedure was compensating for errors in the input data that result in a 

violation of the water balance assumption. The simulated soil moisture behaviour observed 

for this catchment confirms this. The calibrated form is retaining more water within the 

loss module than the regionalised form. The regionalised form predicts that evaporation-

limiting SMDs occur for the majority of the time. Given the relatively high rainfall regime 

for the catchment, this is incorrect. This catchment is a small, groundwater fed catchment 

and the most likely explanation for this behaviour is that the topographic divide is an 

underestimate of the contributing groundwater catchment, leading to an underestimate of 

the true precipitation inputs to the catchment. This also explains why M O D E could not 

close a water balance within this catchment. MODE has a fixed partitioning of effective 

rainfall and uniform distribution of soil moisture stores and thus does not have the same 

flexibility for closing an adequate water balance on erroneous input data. 
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8.2.4 Catchment 67010 

All model configurations are effective in closing a water balance within this catchment 

over both the calibration and evaluation periods. The time series fit, as assessed using EPF, 

is also very good for all simulations. Both models are unbiased at the Q95 flow when the 

calibrated model parameter vectors are used and tend to under estimate Q95 when used 

with the regression based parameter estimates. The Q95 f l o w s within this catchment are 

very low and, from a volumetric perspective, the errors at Q95 are still very small when the 

regression-based parameters are used. This tendency for the regression based parameters to 

result in an under prediction of low f l o w s can be seen within the example hydrographs for 

this catchment, Figure 8.7. When the models are run with the regression-based parameters, 

the base f l o w recession rates are too high. This is a consequence of the under estimation of 

the slow f l o w reservoir time constants, Kb. For MODA the calibrated and estimated values 

of Cmax and Kg are small and the calibrated and estimated values of b are large. The 

drainage rate for the loss module is low, despite the small value of Kg. The reason for this 

is that the maximum soil moisture store depth is low, and the distribution of soil moisture 

stores is low. This results in a greater proportion of the effective rainfall forming a quick 

stream flow response to rainfall events in this catchment. 

The corresponding soil moisture status of the loss module is presented within Figure 8.8 

for the example period. The soil moisture behaviour is similar for all model configurations. 

All model configurations predict that soil moisture deficits can build up very rapidly within 

the catchment. This is a function of the low values of Smax predicted for the catchment, 

which in turn is a function of the highly impermeable nature of the catchment. Evaporation 

limiting soil moisture deficits are only sustained during summer months, and rarely last for 

more than a few weeks. Examples are July 1979 and the May 1980. As can be seen from 

the stream flow hydrographs, the observed and simulated runoff response to any rainfall is 

negligible during these periods of high SMD, as would be expected. Inspection of the 

rainfall records shows that these periods were both low rainfall periods (particularly May 

1980) and any rainfall that did fall was retained within the soil. The catchment is 

commonly fully saturated within the winter months when evaporation demand is lowest. 

The model behaviour is commensurate with the highly impermeable nature of the 

catchment and the high rainfall regime of the catchment. 
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For MODE the regression based estimate of Cmax is higher than the calibrated one by 

m o r e than a f a c t o r o f t w o . T h i s d o e s n o t u n d u l y i m p a c t o n t h e p e r f o r m a n c e o f t h e m o d e l . 

This indicates that the model is insensitive, in this case, to the value of C m a x . This is a 

c o n s e q u e n c e o f t h e f a c t that s i g n i f i c a n t S M D d o n o t o c c u r f r e q u e n t l y w i t h i n th i s c a t c h m e n t 

and hence Cmax plays no major role in ensuring a water balance is closed within this 

catchment. 

8 . 2 . 5 D i s c u s s i o n 

Eoth models generally simulate the observed f l o w s well, over both the calibration and 

evaluation periods, when run with the calibrated parameters. The two exceptions to this are 

this simulation of direct runoff for catchment 44006 by MODA and the simulation of high 

flows within 34003 by MODE. The former can be attributed to a calibration eiTor whilst 

the latter is probably a structural error, as MODE also cannot simulate the high f l o w s when 

run with the regionalised model parameters. 

The performance of both models is good when run with the regionalised parameters. The 

fits obtained are generally not as good as those obtained by using the calibrated parameters. 

A good water balance is closed within two of the catchments using the regionalised 

parameters and is closed to with 25% within the other two catchments. The time series 

obtained using the regionalised models are good, and are very comparable to those 

obtained using the calibrated parameters. The two exceptions to this are catchment 44006 

for MODA and catchment 34003 for MODE. In 44006 the regional form of MODA 

overestimates Q95 flows and in 34003 MODE is unable to simulate high flows well, 

leading to poor EFF values for both the regionalised and calibrated parameter vectors. 
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8.3 AN ASSESSMENT OF THE PERFORMANCE OF THE REGIONALISED 

MODELS ACROSS ALL CATCHMENTS USED WITHIN THE STUDY 

8.3.1 Evaluation of the quality of the fit of the stream flow simulations obtained 

using the regionalised model parameters 

The assessment of the fit obtained using both model configurations with the regression-

based parameter estimates was extended to the full catchment data set. The assessment was 

made over both the period used for calibrating the models and the corresponding evaluation 

period. The quality of the model fits obtained using the regression based parameter 

estimates was assessed using the BIAS, R^, EPF and BEQ95 statistics. Comparing them to 

the fits obtained using the calibrated model parameters (discussed in Chapter 7) assessed 

the individual catchment fits. Histograms of these fit statistics over the catchment data set 

were generated for both model formulations, using the regionalised model parameters, for 

both the calibration and evaluation periods. The histogram ranges for both BEQ95 and EFF 

were constrained to omit catchments where the BEQ95 value was greater than 300% and/or 

EFF was negative. A negative value of EFF indicates that the mean of the observed flows 

represents a better fit to the hydrograph than the simulated data). Catchments omitted from 

the EFF histograms are summarised in Table 8.2 for both models. The summary 

information presented consists of the: 

• calibrated and regression-based values of Cmax and, in the case of MODA, b; 

• EFF values over the calibration and evaluation period obtained using the calibrated 

model parameters; 

• BIAS values over the calibration and evaluation periods obtained using the regionalised 

model parameters. 

The observed Q95 flow expressed as a percentage of mean flows (Q95% MF) and 

catchment average SAAR statistics for the catchments are also included within the table. 

Catchments in which the EFF over the evaluation period for the regionalised model 

parameters was greater than zero are highlighted in bold. The remaining catchments within 

the table had negative values of EFF over both the calibration and evaluation periods. 
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The Q95%MF statistic is a useful measure of the responsiveness of the catchment flow 

regime. Low values are associated with impermeable, quick response catchments that have 

a low base flow. Conversely, high values are associated with high base flow, permeable 

catchments. SAAR is presented as a measure of how wet the catchment is. 

Table 8.2 Catchments with negative values of EFF 

Calibrated Estimated EFF (cal) BIAS (reg) Q95 
Station Cmax b Cmax b Cal Eval Cal Eval %MF SAAR 
MODA 

15021 85 0.22 54 0.52 &82 0.80 5 2 9 877 
31017 150 0J3 111 0.51 0.45 0.27 35 30 6 647 
34002 137 0.06 96 0.62 0.23 &45 37 22 23 610 
39029 762 037 539 &40 0.53 0.51 37 30 59 810 
39065 350 0.02 493 &40 0.60 OJ^ 105 74 14 695 
42014 291 0.07 215 0.41 0.10 0.57 44 13 18 837 

MODE 
28008 429 1 90 1 -1.43 0.57 22 -8 23 1020 
31017 417 1 225 1 &13 &32 31 18 6 647 
34003 251 1 242 1 &17 &29 1 1 51 669 
39028 785 1 231 1 0.91 &83 56 39 38 786 
39029 494 1 177 1 -&57 -0.62 36 30 59 810 

A common theme with all of the catchments within this table is that they are relatively dry. 

For MODA the calibrated parameters for Cmax and b indicate that the distribution of 

catchment stores is skewed towards Cmax. For MODE the calibrated value of Cmax is 

high. In both cases this equates to a large value of Smax. As discussed in the review of the 

model behaviour (Chapter 6), this indicates that, within the models of these catchments, 

significant Soil moisture deficits will not occur frequently. The models will therefore 

evaporating water from the soil store at the potential rate for a lot of the time. Given that 

significant soil moisture deficits are likely to occur frequently during the summer within 

these catchment, this indicates that the models are maximising evaporative losses to 

compensate for either an overestimation of rainfall or under-estimation of evaporation 

and/or an overestimate of the contributing catchment area. 

The MODA regionalised parameter estimates for the Pareto shape parameter, b, are much 

higher than the calibrated parameter estimates within these catchments. Furthermore, the 

MODE regionalised parameter estimates for Cmax are much lower than the calibrated 
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parameter estimates. In both cases, this results in a lower value of Smax and a modification 

of the rainfall- runoff relationship. This analysis is confirmed by the observation that, with 

the exception of 15021 for MODA and 34003 for MODE, the models significantly over-

estimate mean flow (large positive BIAS) for all catchments when run with the 

regionalised parameter estimates. 

Considering the time series fit for MODA when the model is run with the calibrated 

parameters, with the exception of catchments 15021 and 42014, the values of EPF for all of 

the other catchments are lower than 0.5 over either the calibration or evaluation periods, or 

both. This pattern is repeated for MODE, with four out of the five catchments listed 

having low values of efficiency. One of these catchments is the case study catchment, 

34003. Whilst this has a low model efficiency, the discussion in the previous section 

demonstrated that this was a consequence of a poor model fit at high flows only. 

The catchments that were excluded from the histograms because the simulated values of 

BEQ95 were greater than 300% when the models were run with the regionalised model 

parameters are summarised in Table 8.3. In this table results are only presented for a period 

(calibration or evaluation) if the use of either the calibrated or the regionalised parameters 

gave a BEQ95 error greater than 300% over the period in question. Where results are not 

included for a period, both parameter sets gave EEQ95 values of less than 300%. The 

observed values for Q95%MF are also presented as a measure of the catchment 

permeability. Those catchments in which the BEQ95 value obtained using the calibrated 

parameters was greater than 300%, over either the calibration or evaluation period are 

highlighted in bold for both models. 

All of the catchments within the table are very flashy and/or ephemeral in nature with the 

majority of Q95 values being less than 5% of the mean flow. Rainfall runoff models 

generally have difficulty in accurately simulating very small flows. As discussed, a BEQ95 

error of 300% will not equate to a large volumetric error in these flashy catchments. A 

further constraint is that this type of conceptual rainfall runoff model cannot model the 

behaviour of ephemeral streams as the outflow from the routing reservoirs become 

asymptotic with the time axis. 
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Table 8.3 Catchments with BEQ95 errors greater than 300% over either the 
calibration or evaluation periods of record 

BEQ95 errors over the BEQ95 errors over the Observed 
Calibration period (%) evaluation period (%) Q95%MF 

Station Calibrated Regionalised Calibrated Regionalised 

MODA 
6008 369 564 166 365 2 

21023 298 418 346 519 3 
31017 210 741 6 
31023 262 741 0 
33045 178 318 11 
36009 1161 1679 658 951 2 
39042 434 459 9 
39054 34 352 5 
39065 338 973 102 414 14 
40027 544 689 2 
46818 424 699 0 
47005 311 336 4 
47008 214 341 4 
54025 381 556 147 306 3 
55028 195 437 9 

MODE 
21023 287 392 3 
31017 335 654 6 
31023 350 654 0 
36009 1283 1309 2 
40027 572 644 2 
46818 214 566 0 
39042 315 437 9 
54025 172 377 3 
6008 73 371 2 

In the majority of catchments, in which the use of the regionalised parameters gave BEQ95 

errors in excess of 300% for a model, the use of the calibrated model parameters also 

resulted in errors in excess of 300%. More catchments had errors of greater than 300% 

over the calibration period than over the evaluation period. This is a consequence of the 

evaluation period being generally wetter than the calibration period in most catchments, 

thus resulting in higher observed Q95 values. 

The use of MODA results in a BEQ95 error greater than 300% in a greater number of 

catchments than the use of MODE. This is influenced by the fact that MODE could not 

close a water balance in some of these catchments. Whether MODE was successfully 
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applied to the catchments in which MODA appears to give large errors is summarised in 

Table 8.4 for both the calibration and evaluation periods. Catchments within the columns 

titled "yes" represent those catchments in which MODE could close a water balance and 

the regionalised and calibrated parameters both gave BEQ95 errors of less than 300%. This 

table shows that for the calibration period more of these catchments were adequately 

modelled using MODE than not. This is not the case for the evaluation period catchment. 

This evidence suggests that the use of the regionalised parameters with MODE will result 

in fewer gross eiTors at the Q95 flow than the use of the regionalised parameters with 

MODA. 

Table 8,4 Catchments for which MODB could close a water balance and had 
BEQ95 error <300% but MODA had BEQ95 errors>300% 

Calibration Period Evaluation Period 
Yes No Yes No 

33CW5 21023 39065 54025 
39W65 33l}# 6008 
47005 39054 47008 
55028 

The calibration period histograms of the BIAS, R^, EFF and BEQ95 statistics over the 

catchment data set are presented in Figure 8.9 for MODA and MODB. The equivalent 

histograms for the evaluation period are presented within Figure 8.10. These histograms are 

summarised statistically, in terms of the median and non-parametrically derived 68% 

confidence interval limits, in Table 8.5. This table also presents statistics summarising the 

differences between the value for a fit statistic obtained within a catchment using the 

calibrated parameters and the regionalised parameters. These difference statistics are 

presented for both the calibration and evaluation periods. The difference between a fit 

statistic is structured so that a negative value indicates that the use of the regionalised 

parameters is giving a poorer fit than that obtained with the calibrated parameters. A suffix 

is added to each statistic to differentiate between periods and to differentiate between the 

statistics and the differences between those statistics. The nomenclature for these suffixes 

is presented within Table 8.6 
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Table 8.5 Summary of regionalised model fit statistics 

MODA MODB 
Statistic 68% c.i 68% c.i 

median u.lim l.lim median u.lim l.lim 
(CiiUlbriitioii I3I/V5;_(:_JE;STr 0 14 -7 1 13 -7 
Period R2_C_EST &86 0.90 a 7 9 a 8 6 0.91 0.80 

EFF_C_EST OJO &80 0.54 (170 &79 a 5 8 
BEQ95_C_EST 21 129 -27 -19 76 -47 

Evaluation BIAS_V_EST -3 7 -12 -2 7 -11 
Period R2_V_EST 0.83 0.89 &75 0.84 &89 0.75 

EFF_V_EST 0.65 &75 0.50 0.66 &76 0.53 
BEQ95_V_EST 25 116 -13 -8 70 -38 

Differences BIAS_CD_EST -4 -1 -16 -3 0 -14 
Calibration R2_CD_EST 0.00 0.02 -01% 0 00 0.01 -0.02 
Period EFF_CD_EST -0.01 0.03 -0.11 0.00 0.03 -0.07 

BEQ95_CD_EST 7 52 -35 -3 41 -27 

Differences BIAS_VD_EST -1 4 -8 0 3 -7 
Evaluation R2L_T/I)_JE%ST 0.00 0.03 -0.02 0.00 0.02 -0.02 
Period EFF_VD_EST ^101 0.03 -&09 -0.01 0.02 -&06 

BEQ95_VD_EST -8 18 -55 -8 11 -48 

Note 1: The differences are the differences between statistics obtained when using the calibrated model 
parameters and when using the regionalised model parameters 
Note 2: Differences are negative where the use of the regionalised model parameters yields a poorer model 
fit. 

Comparing the objective function histograms over the calibration period (Figure 8.9), it can 

be seen that the fit statistics for the calibration period are, generally, very similar for both 

model configurations. This is confirmed by the summary statistics. MODA is marginally 

better (zero median, but slightly larger 68% confidence interval) in terms of BIAS while 

MODE is marginally better in terms of and EFF (higher values for the 68% lower limit). 

MODA has a tendency to over estimate Q95 flows while MODE tendency to under 

estimate Q95. The 68% c.i. for BEQ95 for MODE is 33 percentile points smaller than that 

for MODA. This pattern is repeated over the evaluation period. The 68% c.i. for BIAS and 

BEQ95 over the evaluation period are smaller for both models than over the calibration 

period. The performance with respect to and EFF is marginally worse over the 

evaluation period than over the calibration period. 
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Table 8.6 Nomenclature for statistic suffixes 

SufOx Explanation 
_C_EST Value of the statistic obtained using the regionalised model 

parameters over the calibration period 
_V_EST Value of the statistic obtained using the regionalised model 

parameters over the evaluation period 
_CD_EST Difference between the values of the statistics obtained using the 

calibrated and regionalised model parameters over the calibration 
period. 

_VD_EST Difference between the values of the statistics obtained using the 
calibrated and regionalised model parameters over the evaluation 
period. 

Considering the summary statistics in Table 8.5 describing the differences between the fit 

statistics obtained when using the calibrated and regionalised model parameters, the 

biggest departures are seen in the two bias statistics: BIAS and BEQ95. The values of 

BIAS are considerably worse over the calibration period. For MOD A, 68% of catchments 

have an increase in BIAS of between one and 16 percent. This increase is lower for 

MODB; 68% of catchments have an increase in BIAS of between 0 and -14 percent for 

MODB. This not surprising as the calibrated model parameters, for the majority of 

catchments, are constrained to give BIAS values of between ±3% over the calibration 

period (Chapter 6). 

With both models there are a small number of catchments for which the model BIAS is 

lower when the model is run using the regionalised parameters than with the calibrated 

parameters. This behaviour is more marked over the evaluation period. Over the evaluation 

period the calibrated parameters do not necessarily ensure that the models are constrained 

to close an acceptable water balance. Over the evaluation period the median values for the 

BIAS_VD_EST statistic are - 1 for MOD A and zero for MODB. This means that, in 50% 

of the catchments a larger BIAS is obtained when using the regionalised model parameters 

and, conversely, a smaller BIAS is obtained in 50% of catchments. Considering the whole 

catchment data set, this result demonstrates that the distribution of BIAS statistics obtained 

when the models are run with the regionalised model parameters is comparable to that 

obtained for the use of the calibrated parameters. However, the asymmetric 68% c.i. 

implies that, if the use of the regionalised parameters results in a larger value of BIAS then 

it is likely to be a larger degradation that the improvement observed if the regionalised 

8 - 2 0 



parameters give a reduced value for BIAS. This is true for both model configurations. 

Following the same logic, the regionalised model parameters give a better fit for BEQ95 

over the calibration period than the calibrated model parameters. This is a somewhat 

surprising result, and is probably a consequence of the trade-off between objective 

functions during the selection of the calibrated parameter vectors. This does not hold true 

over the evaluation period, where the regionalised parameters overall result in a poorer fit 

at Q95 flows. The measure of the time series fit, EFF, and the closely related statistic 

demonstrate that the time series fit obtained with the regionalised model parameters is very 

comparable to that obtained with the calibrated parameters, with only a very slight 

degradation of the fit over 68% of the catchments. In evaluating the time series fit of the 

model over the catchment data set, it should be remembered that the simulations obtained 

running the models with the regionalised model parameters resulted in negative values of 

EFF for a number of catchments. However, as discussed, there is evidence that there were 

significant errors in the input data for these catchments. 
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Figure 8.9 Histograms of calibration period objective functions for the 
regionalised model parameters. 
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Figure 8.10 Histograms of objective function histograms over the evaluation period 
for the regionalised parameters. 
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8.3.2 Relationships between the quality of the regionalised model fits and catchment 

climate and hydrogeology 

The relationships between the difference in the quality of fit between the calibrated and 

regionalised model parameters and the climate and hydrogeology of the catchments were 

investigated. SAAR was used to represent climatic regime and gauged Q95%MF was used 

as a surrogate variable for hydrogeology. The analysis identified that the magnitude of the 

differences in BEQ95 and EEF were related to Q95%MF and that the magnitude of the 

differences in EPF and BIAS were related to how wet the catchments were, as represented 

by SAAR. The relationship between EPF and SAAR may in part be a reflection of the 

negative correlation between Q95%MF and SAAR. 

The difference statistics for BEQ95 and EFF for individual catchments (summarised 

statistically in Table 8.5) are graphed in Figure 8.11 as a function of catchment gauged 

Q95%MF for both model configurations, and over both the calibration and evaluation 

periods. These plots demonstrate that BEQ95 differences are larger for small values of 

Q95%MF (flashy catchments) than for permeable catchments over both the calibration and 

evaluation periods. This is primarily a result of a given numerical error representing a 

larger percentage difference of the Q95 flows within these flashy catchments, as discussed 

in previous sections. The departures are generally smaller for MODE than for MODA, 

indicating the quality of the fit obtained when using the regionalised parameters for MODE 

is closer to that obtained with the calibrated model parameters across the catchment data 

set. The distribution of the fit is asymmetric around zero for MODE within catchments 

with low Q95%MF values, this indicates that negative differences (degradation of model 

fit) are likely to be larger than positive (improvement of fit) differences. The total variance 

of departures of MODA is larger than that for MODE and departures are more 

symmetrically distributed for MODA. For both models there is a greater variation over the 

evaluation period that for the calibration period. 

The patterns for the relationships between differences in the EFF statistic and catchment 

Q95%MF are less well defined. There is a tendency for larger differences to occur in 

permeable catchments than for impermeable catchments, although it should be noted that 

departures are both small and relatively symmetrically distributed around zero for both 
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models. Furthermore, the range of flows within permeable catchments tends to be smaller, 

and hence the EPF statistic is more sensitive to simulation errors within this type of 

catchment. Once again, MODA tends to show a greater variation for these differences than 

MODE and the differences cover a larger range over the evaluation period compared with 

the range over the calibration period. 

The difference statistics for BIAS and EPF for individual catchments (summarised 

statistically in Table 8.5) are graphed as a function of catchment SAAR within Figure 8.12. 

These plots are presented for both model configurations, and are presented for both the 

calibration and evaluation periods. The patterns in the BIAS differences are similar for both 

models. There is strong relationship with SAAR, with bigger differences observed for 

catchments with low SAAR values. In these catchments, the models are simulating the 

complex relationships between soil moisture deficits and evaporation rates and thus the 

model fits will be sensitive to the values of the soil store model parameters. Over the 

calibration period the majority of departures are negative - indicating a degradation of fit. 

The calibrated model parameters constrain BIAS to within 3% for the majority of 

catchments and to within 5% for a smaller number (particularly for MODA), thus this 

result is as would be expected. Over the evaluation period the departures are much more 

symmetrical. Over this period the regionalised parameters perform better than the 

calibrated parameters in approximately 50% of the catchments, although, as already 

discussed, the small number of very large departures do tend to be associated with a 

degradation in fit. 
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Figure 8.11 Departures between calibrated and regionalised model values of 
BEQ95 and EFF plotted as a function of Q95%MF. 
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For the EPF statistic there is a greater variation in the differences in low runoff catchments. 

Within the calibration period the distribution of differences is fairly symmetrical for these 

catchments, with the calibrated parameters giving, on average, better results. This pattern is 

repeated over the evaluation period except that large departures appear to be restricted to 

cases where the regionalised parameters give a poorer fit. The differences in EPF tend to be 

smaller for MODE than MOD A, once again indicating that the fit obtained for MODE 

when using the regionalised parameters tends to be more stable than that for MODA. The 

value of EFF, as it is a sum of squares based statistic, is sensitive to the fit of the model to 

large, direct runoff events. The relationship between EFF and SAAR is probably a function 

of the role that the loss module plays in determining direct runoff corresponding to rainfall 

events during periods in which there are appreciable soil moisture deficits. The simulations 

of direct runoff events will be more sensitive to the correct estimation of parameter values 

for the soil store within these catchments. The picture is further complicated by the fact 

that the measure is also more sensitive in permeable catchments and that these catchments 

tend to be located within the lower rainfall areas of the UK. 

8.4 CLASSIFICATION OF MODEL RESULTS FOR WATER RESOURCES 

ASSESSNCBNT 

The analysis of results, presented within Sections 8.2 and 8.3, have examined the goodness 

of fit measures individually. To examine the ability of the models to both close an 

adequate water balance and maintain a reasonable hydrograph fit when run with the 

regionalised parameter estimates the catchments were partitioned into classes based on the 

BIAS and EFF goodness of fit statistics over the evaluation period. The evaluation period 

was selected as the calibration period was used to calibrate the model parameters that were 

subsequently used to develop the regionalised relationships for estimating parameters from 

catchment characteristics. This is not thought to be an important consideration as the 

regression models for predicting model parameters were rigorously tested for stability, as 

described in Chapter 7. 

A classification of catchments is presented in Table 8.7. This table presents the class limits, 

the numbers of catchments falling within each class for each model, the percentage of the 

total number of catchments within each class and the cumulative frequency as the class 
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interval moves from small BIAS, high EFF to high BIAS, low EFF. The frequency 

statistics facilitate comparisons between the model as eight more catchments were 

successfully modelled with MODA than MODE. It should also be noted that two 

catchments, 12008 and 18014, had less than three years of record over the evaluation 

period thus reducing the number of catchments to 176 for MODA and 168 for MODB. The 

class intervals were based on four main BIAS classes and one EFF class. The main BIAS 

classes are: 

• Class A: model BIAS of less than 5%, equivalent to a good quality gauged flow record; 

« Class B: model BIAS between 5 and 10%, the 10% level is equivalent to the acceptable 

artificial influence allowed during catchment selection (Chapter 5); 

• Class C: model BIAS between 10-20%, approximately equivalent to the accuracy of a 

Micro LOW FLOWS estimate of mean flow; 

• Class D: model BIAS greater than 20%, classed as a large BIAS error. 

Micro LOW FLOWS is an software package used by regulators within the UK for 

estimating natural and artificially influenced flow statistics within ungauged catchments 

(Young et al, 2000). Each of the first three BIAS classes was subdivided into two EFF 

classes; a good fit class (Class 1) in which the EFF is greater than 0.6 and an acceptable fit 

class (Class 2) in which the EFF was between 0.5 and 0.6. One additional class, Class E, 

was used for catchments in which the model failed to explain more than 50% of the 

variance (EFF<0.5), irrespective of the value of BIAS. The threshold of EFF<0.5 is 

conservative. Many catchments with EFF values of between 0.3 and 0.5 had low BIAS 

errors, high values and good stream flow fits during recession periods. These model fits 

would be perfectly acceptable for many water resources applications. An example of this is 

the case study catchment 34003 as discussed within Section 8.2. 

Table 8.7 demonstrates that MODB outperforms MODA with respect to the numbers of 

catchments lying within Class A and Class B. There are slightly fewer catchments in Class 

C for MODB than MODA. There are 17 catchments that cannot adequately close a water 

balance for MODA (Class D) compared with seven for MODB. All seven catchments 

within Class D for MODB are also in Class D for MODA. Of the remaining 10 MODA 

catchments, for which MODA could not close an adequate water balance, only two were 
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excluded from the catchment set for MODE as a result of the model being unable to 

adequately close a water balance during calibration. The number of catchments failing to 

give EFF values greater than 0.5 (Class E) was broadly similar for the two model 

configurations. The value of EFF was between 0.3 and 0.5 in 17 of the 19 catchments 

within Class E for MOD A. For MODE the model EFF was between 0.3 and 0.5 for 13 out 

of the 19 catchments within Class E. The number of catchments that had completely 

unacceptable time series fits will therefore be considerably lower for both models than the 

membership of class E suggests. 

The spatial distribution of the catchments, by class, is presented in Figure 8.13 for both 

models. This demonstrates that Class D and Class E model fits obtained with MODA tend 

to be associated with dry catchments on the east of the country (primarily low EFF values) 

and in the south (primarily high BIAS values). A satisfactory model fit (classes A, B or C) 

is obtained with MODE for many of the catchments classed as D (large BIAS) for MODA. 

The catchments for which MODE does not close an adequate water balance tend to be 

unconfined chalk catchments. The implicit assumption of a closed water balance is likely 

to be violated within these catchments. 

There is a cluster of catchments in the north east of Scotland, which have Class E value of 

EFF. On closer inspection, the rain gauge networks in these catchments was found to be 

very sparse raising a question about the accurate spatial representation of precipitation 

events leading to direct runoff. This in turn could lead to the poor modelling of higher flow 

events, and hence poor efficiencies. 
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Table 8.7 Model fit classification based on evaluation period BIAS and EFF 
statistics 

Class BIAS EFF No. in class % in class cum.freq 
(%) 

MOD n=176 
A 

A1 <5 >a6 50 28 28 
A2 0.5416 9 5 34 
B1 5^0 >&6 30 17 51 
B2 0.5416 13 7 58 
CI 1(1-20 :^16 14 72 
(:2 0.5-CL6 1() 6 78 
D >20 17 10 88 
E <&5 22 13 100 

MOD n=168 
B 

A <5 >0^, % 31 31 
(15416 17 10 41 

B 5-m >4^6 33 20 61 
0.5416 10 6 67 

C K120 >0X) ^ 13 80 
0.5416 8 5 85 

D >20 7 4 89 
E <&5 19 11 100 
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Figure 8.13 The spatial distribution of model fit classes across the UK. 
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8.5 PERFORMANCE OF REGIONALISED MODELS ON TWO CASE STUDY 

yirvGiji/LPf (Z/iTMZBDviiEisrr;; 

The analysis of the fit of the regionalised rainfall runoff models within the preceding 

sections has focussed upon the catchments used to develop the regression models for 

predicting the regionalised parameters. This analysis is certainly valid as the split sample 

testing of the regression equations for individual parameters demonstrated that the 

equations were robust when applied to an independent sample set. 

As an independent test, the regionalised model forms for MODA and MODE were applied 

to two of the five case study Anglian catchments used in the model evaluation work 

presented in Chapter 3. As these catchments were not used in the regionalisation study they 

represent a totally independent test data set. Furthermore, the results obtained using the 

models evaluated within the catchments provide a useful set of results against which to 

compare the performance of the two regionalised models within these catchments. This is a 

stringent test of the regionalised models as the evaluation models were specifically calibrated 

for use within these catchments. 

The five catchments are fully described in Chapter 3. The Babingley Brook and Sapiston 

Brook catchments were selected for a comparison of simulations obtained using the 

regionalised model forms with those obtained using the four models (PDM, HYSIM, 

IHACRES and TCM) that were calibrated and evaluated within these catchments. The Box 

catchment was not considered for the analysis, as it was not possible to obtain adequate 

simulations within this catchment using any of the models evaluated within Chapter 3. The 

Blackwater and Nene catchments were excluded due to the degree of artificial influences 

within the catchments and questions that have been subsequently raised about the quality of 

the naturalised flow time series by Environment Agency staff (Cadman, pers comms). 

The regionalised rainfall runoff models, MODA and MODE, were applied to the two 

catchments using rainfall and PE data derived using the methods described in Chapter 2. The 

rainfall inputs were therefore the same as those used for the model evaluation work but the 

PE inputs were derived using monthly MORECS data interpolated to a 1km grid. The main 

impact of these differences was in the Sapiston catchment. The PE estimates derived using 
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the interpolated MORECS data gave annual PE estimates that were 20% higher than the 

weekly MORECS data used for the evaluation work within Chapter 3. 

The regional!sed models were applied over both the calibration and evaluation periods used 

in Chapter 3 and the model fits assessed using the BIAS, R^, EFF and BEQ95 statistics. 

Values for the first three of these were available from the results obtained for the application 

of the PDM, IHACRES, HYSIM and TCM models. These statistics are summarised for the 

Babingley Brook and the Sapiston Brook within Table 8.8 and Table 8.9 respectively. 

Results are presented for both the calibration and evaluation periods. The figures within the 

tables demonstrate that the fit obtained with MODA and MODE over the evaluation period is 

very comparable to that obtained with the PDM within the Babingley catchment, better that 

that obtained for the TCM but not as good as that obtained with IHACRES and HYSIM. 

Within the Sapiston the fit over the evaluation period is again comparable to that obtained 

with the PDM but better that that obtained with the other models. 

Table 8.8 Goodness of fit statistics for the Babingley Brook 

PDM IHACRES TCM HYSIM MODA MODB 
Calibration 
BIAS 1.97 -2J3 15^1 0.76 -1.7 -3.37 

0.95 &88 0.88 0.86 ().91 0.95 
EFF &87 &72 0.67 0.73 &72 &41 
BEQ95 - l&l 8.08 
Evaluation 
BIAS 2.11 -1.58 24^1 2.46 <186 -9J6 
R2 0.93 &89 0.66 0.88 0.85 &89 
EFF (168 &78 0.27 a 7 5 0.66 &51 
BEQ95 9.41 -12.99 

Over the calibration period, the fit obtained for MODA in the Babingley Brook is not as good 

as that obtained with the PDM but is similar to that obtained with IHACRES and HYSIM, 

and is better than that obtained with the TCM. MODB closes the water balance over the 

calibration period but the time series fit is not as good as that obtained with the other models, 

although the fit at low flows is better than that obtained with MODA. In the Sapiston 

catchment, MODA and MODB significantly under estimate mean flow over the calibration 

period (negative BIAS) by more than 10%. The time series fit for MODA is comparable to 

that obtained with HYSIM, but is not as good as that obtained with the PDM. 
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Table 8.9 Goodness of fit statistics for the Sapiston Brook 

PDM IHACRES TCM HYSIM MODA MODB 
Calibration 
BIAS -7.49 4T6 2.50 5T0 -1T25 -12.7 
R^ 0.91 0.72 &25 &85 &85 0.82 
EPF 0J7 027 -030 0.67 0.67 0.59 
BEQ95 2262 29.82 
Evaluation 
BIAS -18.94 6.90 2&28 1L50 0.43 -9.35 
R^ 0.84 OJT 0T6 0.82 0.8 &79 
EPF 0.65 0T7 -1.49 &55 0.64 0.61 
BEQ95 113^1 5&78 

Example hydrographs from the years 1987 and 1988 for the Babingley Brook are presented in 

Figure 8.14a for the PDM, HYSIM and IHACRES models and in Figure 8.14b for MODA 

and MODB. The TCM is not presented, as the model fits obtained with the TCM were poor. 

It is important to note that this period was part of the calibration period used within the model 

evaluation studies, and thus represents a calibrated fit for the three evaluation models. The fit 

of the evaluation models is discussed in detail within Chapter 3, however the figure 

demonstrates that, visually, the best hydrograph fits are obtained with PDM and IHACRES. 

With all models the catchment is essentially modelled as a first order catchment, with most of 

the effective rainfall being routed through a slow flow routing path (the catchment is 

extremely permeable). The hydrograph fits obtained for MODA and MODB demonstrate that 

the estimated time constant for the slow flow routing reservoir is too low, resulting in steeper 

recessions rates and quicker response to recharge than that observed. The same hydrographs 

are presented for the Sapiston Brook in Figure 8.15a and Figure 8.15b. In this catchment the 

best calibrated model fit is for the PDM, IHACRES fails to simulate the base flow and the 

recession rates obtained with HYSIM are too low. Furthermore, all models tend to under 

predict the highest observed flows. The hydrographs obtained with MODA and MODB are 

both excellent, from a water resources perspective, with the models simulating all the 

observed features of the hydrograph except for a tendency to significantly under predict high 

flow events. This latter behaviour is the reason for the under prediction of mean flow by 

MODA and MODB over this calibration period. 
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Figure 8.14 Example observed and simulated hydrographs for the Babingley 
Brook. 
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Figure 8.15 Example observed and simulated hydrographs for the Sapiston Brook. 
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8.6 SLmfMUJ&y 

The objective of the analysis presented within this Chapter was to assess the performance 

of the MODA and MOB models when run with parameters predicted using the regression 

based models described within Chapter 7. The performance of the models was assessed by: 

1. evaluating the fits obtained within the case study catchments, considered in Chapter 6, 

with respect to the observed flows and the simulated flows obtained with the calibrated 

model parameters; 

2. evaluating general patterns in the quality of model fit obtained using the regression 

based parameter estimates across the catchments used to originally calibrate the 

models; 

3. developing a classification scheme for classifying model simulations in the context of 

their applicability to water resource assessments; 

4. comparing the performance of the regionalised model fits within two of the Anglian 

catchments used in the model evaluation studies presented in Chapter 3. 

These assessments are discussed in detail within the preceding sections, and are 

summarised here. The objective of the first pair of assessments was to compare the 

performance of the regionalised rainfall runoff models with what could be expected from 

the same model structures if stream flow data were available for calibration purposes. The 

objective of the second pair was to assess whether the errors in the simulated stream flows, 

obtained using the regionalised models, are sufficiently small for the techniques to be a 

useful aid in the management of water resources within the UK. The models that were 

evaluated within the Anglian case study catchments are all in general use with practitioners 

within the field. 

Considering the behaviour of the models within the case study catchments (Section 8.2), 

both models generally simulated the observed flows well over both the calibration and 

evaluation periods when run with the calibrated model parameters. The exception to this 

was the performance of MODE within catchment 34003 where the calibrated model failed 

to simulate high flows well leading to a poor value of efficiency. The fits obtained for both 

models, by running the models with the regionalised parameters were generally not as good 
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as those obtained by using the calibrated parameters. A good water balance was closed 

within two of the catchments using the regionalised parameters and was closed to within 

25% within the other two catchments. With two exceptions (catchment 44006 for MODA 

and 34003 for MODE), the time series obtained using the regionalised models was good 

and were very comparable to those obtained using the calibrated parameters. 

The assessment of the fit obtained using both model configurations with the regression-

based parameter estimates was extended to the full catchment data set within Sections 8.3 

and 8.4. For each catchment, the assessment considered both the periods used for 

calibrating the models and the corresponding evaluation periods. The quality of the model 

fits obtained using the regression based parameter estimates was assessed using the BIAS, 

R^, EPF and BEQ95 statistics. The assessment considered: 

• histogram analysis of the variation in these fit statistics over the full catchment data set 

over both the calibration and the evaluation periods; 

• a comparison of the quality of the regionalised model fits obtained within individual 

catchments with the fits obtained using the calibrated model parameters (discussed in 

Chapter 7); 

• the relationships between the climate and hydrogeology of the study catchments and the 

differences in model fit observed between the regionalised and calibrated models; 

• classification of the suitability of the regionalised models for support water resource 

assessments within the UK. This classification considered both model BIAS and EFF 

statistics. 

Examples of catchments for which simulations had negative values of EFF were observed 

for both MODA and MODB. A common theme with all of the catchments, where this 

occurred, is that they were relatively dry catchments. From a knowledge of model 

behaviour, there was evidence of the calibrated model parameter vectors, for both models, 

compensating for errors in climate (overestimation of rainfall or under-estimation of 

evaporation) and/or an overestimate of catchment area to ensure the model could close a 

water balance. The regionalised model parameters therefore differed significantly from the 

calibrated parameters within these catchments, leading to large errors in the estimation of 

effective rainfall and hence the water balance. These errors propagate through the model 
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resulting in the poor values observed for the EPF statistic. 

Errors in BEQ95 greater than 300% were identified for a number of catchments for both 

regionalised models. All of the catchments were very flashy and/or ephemeral in nature. A 

BEQ95 error of 300% does not equate to a large volumetric error in these flashy 

catchments. Rainfall runoff models generally have difficulty in accurately simulating very 

small flows; the constraint is that the outflow from the routing reservoirs becomes 

asymptotic with the time axis and thus a zero outflow occurs only at infinity. In the 

majority of catchments, the use of the calibrated model parameters also resulted in errors in 

excess of 300%. There was evidence that the regionalised form of MODE gave fewer gross 

errors at Q95 than MODA in these flashy catchments. 

Considering the variation in fit statistics over the calibration period, the fit of the two 

regionalised models was judged to be very similar. MODA is marginally better in terms of 

BIAS while MODE is marginally better in terms of the overall time series fit and 

significantly better than MODA in simulating low flows. Over the evaluation period both 

models generally have better fits for BIAS and BEQ95, indicating that they are better at 

predicting mean flow and low flows over the evaluation period. However the overall time 

series fit was marginally worse. 

Comparing the fit of the regionalised models with the calibrated models identified that over 

the calibration period the calibrated parameters resulted in much lower water balance 

errors. This was as would be expected, as closing a water balance was a key part of the 

calibration scheme. Over the evaluation period the BIAS statistics obtained with the 

regionalised models were very comparable to those obtained for the calibrated model 

parameters. There was evidence for both model forms that, if the use of the regionalised 

parameters resulted in a poorer BIAS then it was likely to be much poorer than the 

improvement observed if the regionalised parameters give a reduced value for BIAS. 

The regionalised model parameters give a better fit for BEQ95 over the calibration period 

than the calibrated model parameters. This is a somewhat surprising result and is probably 

a consequence of the trade-off between objective functions during the selection of the 

calibrated parameter vectors. Over the evaluation period, the use of the regionalised 
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parameters overall tended to give a marginally poorer fit at Q95 flows that the fit obtained 

using the calibrated model parameters. The overall time series Rt obtained with the 

regionalised model parameters was found to be, generally, very comparable to that obtained 

with the calibrated parameters over both periods, with only a very slight degradation of the 

fit over 68% of the catchments. 

The differences (corresponding to both better and worse simulations) between the values of 

the BEQ95 statistic obtained with the regionalised and calibrated parameters tend to be 

larger for impermeable catchments over both the calibration and evaluation periods. This is 

primarily a result of a given numerical error representing a larger percentage difference of 

the Q95 flows within these flashy catchments, as previously discussed. The departures are 

generally smaller for MODE than for MODA indicating the quality of the fit obtained 

when using the regionalised parameters for MODE is closer to that obtained with the 

calibrated model parameters across the catchment data set. For both models there is a 

greater variation in these differences over the evaluation period that for the calibration 

period. 

There is a tendency for larger differences in efficiency to occur in permeable catchments 

than for impermeable catchments, although it should be noted that the differences were 

small. The differences for MODA tended to be larger than for MODE and the differences 

covered a larger range over the evaluation period compared with the calibration period. 

The analysis also identified relationships between catchment S AAR and the difference 

statistics for EIAS and EPF for individual catchments. The patterns in the BIAS differences 

are similar for both models. There was a strong relationship between the magnitude of the 

EIAS differences with SAAR. Larger differences occur for catchments with low SAAR 

values. In these catchments the models are simulating the complex relationships between 

soil moisture deficits and evaporation rates and thus the model fits will be sensitive to the 

values of the soil store model parameters. Over the calibration period the majority of 

difference were biased towards a smaller BIAS error being obtained for the use of the 

calibrated parameters. This is because the calibrated model parameters constrain BIAS to 

within 3% for the majority of catchments over this period. Over the evaluation period the 

differences were much more random, with the regionalised parameters giving lower BIAS 
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statistics than the calibrated parameters in approximately 50% of the catchments. 

For the EFF statistic there was a greater variation in the magnitude of differences in low 

runoff catchments for both models and both periods. The differences in EFF were smaller 

for MODE than MODA. This gives added weight to the evidence that the fits obtained for 

the regionalised form of MODE were more stable than those obtained for the regionalised 

form of MODA. The relationship between EFF and SAAR was attributed to the role that 

the loss module plays in determining direct runoff corresponding to rainfall events during 

periods in which there is an appreciable soil moisture deficit. The simulations of direct 

runoff events will be more sensitive to the parameter values for loss module within these 

catchments. The picture is further complicated by the fact that the measure is also more 

sensitive to simulation errors in permeable catchments, which tend to be located within 

lower rainfall areas of the UK. 

The classification of the ability of the models to both close an adequate water balance and 

maintain a reasonable hydrograph demonstrated that MODE gave acceptable simulations in 

more of the catchments than MODA. For MODE 67% of catchments were within classes A 

and E compared with 58% of catchments for MODA. Classes A and E represent 

simulations that are good, or very good. For MODE 85% of catchment were Class C or 

better compared within 78% of catchments for MODA. Two further classes. Class D (poor 

closure of a water balance) and Class E (lower quality time series, EFF statistic <0.5) 

accounted for the remaining catchments. The value of EFF was between 0.3 and 0.5 in 17 

of the 19 catchments within Class D for MODA. For MODE the value of EFF was 

between 0.3 and 0.5 for 13 out of the 19 catchments within Class D. Many catchments with 

EFF values of between 0.3 and 0.5 had low EIAS errors, high values and good stream 

flow fits during recession periods. These model fits would be perfectly acceptable for many 

water resources applications. An example of this is the case study catchment 34003. The 

number of catchments that had completely unacceptable time series fits will be 

considerably lower for both models than the membership of class D suggests. 

The spatial distribution of the catchments by class was mapped. This demonstrated that the 

Class E and Class D model fits obtained with MODA tend to be associated with dry 

catchments on the east of the country (primarily low EFF values) and in the south 
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(primarily high BIAS values). A satisfactory model fit (class A, B or C) was obtained with 

MODB for many of the catchments classed as E (large BIAS) for MODA. Many of the 

catchments for which MODB does not close an adequate water balance were unconfined 

chalk catchments. The implicit assumption of a closed water balance is likely to be violated 

within these catchments. 

As a completely independent test, the regionalised model forms for MODA and MODB 

were applied to the Babingley Brook and Sapiston catchments. These catchments were 

used within the model evaluation work that is presented within Chapter 3. The results 

obtained were compared within the results obtained for the four models (PDM, HYSIM, 

IHACRES and TCM) calibrated and evaluated within these catchments. These catchments 

were not used within the regional! sation work and therefore represent a totally independent 

test of the regionalised models. 

These Anglian case study catchments are amongst some of the driest gauged catchments 

within the United Kingdom. The treatment of evaporation and the correct modelling of 

actual evaporative losses are primary issues when modelling these catchments. The 

simulations obtained using MODA and MODB, particularly in the Sapiston, demonstrate 

that the use of the regionalised parameters can simulate the behaviour of soil moisture well. 

The performance of the regionalised models is very comparable with the results obtained 

through the bespoke calibration of a range of models on flow data from the catchment. The 

fit of the regionalised models is not quite as good over the calibration period used for the 

bespoke model application, as would be expected, but is very comparable over the 

evaluation period, and in the Sapiston catchment is actually better than three of the four 

bespoke model applications. 
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9 Evaluation of alternative approaches to estimating 
historical time series at ungauged river reaches 

The estimation of stream flow for ungauged catchments by transposing gauged stream flow 

data from an analogue catchment is a widely used technique within the water industry. This 

chapter presents an evaluation of the fit of transposed to observed data for commonly used 

techniques, and compares the fit obtained using the best of these techniques with that 

obtained using a regionalised rainfall runoff model. In addition to the commonly used 

transposition techniques, another technique based on normalising by predicted average 

annual runoff has also been evaluated. The objective of the comparison was to determine 

whether is it possible to predict the conditions under which the use of a regionalised 

rainfall runoff model will result in a better fit than that obtained by transposing data from 

the best available analogue catchment, and vice versa. The evaluation of methods for 

transposing gauged flow data from analogue catchments is presented in Section 9.1 The 

results obtained using the best of these methods are compared with those obtained using 

MODE within Section 9.2. An evaluation of whether it is feasible to predict when the use 

of analogue data will provide a better simulation of stream flow is presented in Section 9.3. 

9.1 EVALUATION OF METHODS FOR TRANSPOSING GAUGED FLOW 

DATA FROM ANALOGUE CATCHMENTS 

9.1.1 Methods for transposing gauged flow data to ungauged catchments 

In the United States a number of researchers have published techniques for scaling gauged 

stream flow from an gauged catchment to an ungauged catchment. These techniques draw 

from systems engineering, and are all of the form; 

GA'r=.^ (&1) 
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where: 

QXT = the flow of interest in the ungauged catchment; 

QXA = the flow of interest in the analogue cacthment; 

At = the catchment area for the ungauged catchment; 

Aa = the catchment area for the analogue catchment; 

fn = a scaling constant, or function. 

Murdock and Gulliver (1993) present the derivation of a scaling function for the upper mid-

western states (Minnesota, North Dakota, South Dakota, Wisconsin and Iowa). The paper 

also explores a methodology for assessing the uncertainty associated with annual stream flow 

predictions obtained by using the proposed scaling function. Vogel and Sankarasubramanian 

(2000) present a technique for scaling annual mean flows within the US, this technique is 

based on the analysis of 1433 gauged flow records and the definition of scaling functions for 

17 broad hydrological/climatological regimes covering the US. Hughes and Smakhtin 

(1996) present a daily stream flow scaling methodology for infilling gaps in flow records by 

transposing flow data from an analogue catchment. In this method, the scaling is dependent 

on the relationships between flow duration curves for concurrent periods of record. This is 

similar in concept to short record techniques, described by NERC (1980) and Shaw (1988), 

for use within the UK. 

All techniques for transposing flow data from an analogue catchment to an ungauged 

catchment rely on identifying a suitable analogue catchment, and all make the assumption 

that the flows within the ungauged and analogue catchments are synchronous; i.e. the flows 

increase and decrease together. Within the UK the spatial heterogeneity of both climate and 

catchment hydrogeology is high. Both of these issues are important if the objective is to 

simulate the daily time series of flows at the ungauged site. This has resulted in the use of 

more deterministic approaches to scaling within the UK that seek to address this 

heterogeneity. The UK techniques all attempt to adjust the flow record for the analogue for 

differences in hydrological scale (differences in rainfall and catchment area) between the 

analogue and ungauged catchments. 
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An analogue catchment is usually a catchment that is: 

• geographically close to the ungauged catchment, and hence has the same climatic regime; 

• hydrogeological similar; 

• similar in size; 

• either a natural catchment, or a catchment for which there is a naturalised flow record. 

Ideally, the analogue catchment should lie upstream or downstream of the ungauged 

catchment. For this study such an analogue would be termed connected. In the case of a 

connected analogue, there is a strong serial correlation between the flow measured at the 

analogue gauge and the flows at the ungauged site as the water that flows past both points has 

a common component. It is quite common that there is no connected analogue available, and 

thus a catchment from an adjacent system or tributary for the same system is selected as the 

analogue for the ungauged catchment. For this case the analogue would be termed 

unconnected. 

If there is a short period of measured flow data at the target site, it is common practice to 

build these data into the transposition methods through the use of regression based 

relationships between the flows for the target and the analogue catchments (e.g. Shaw, 1988). 

This study is concerned with the case where there are no measured flow data for the target 

catchment. The fits obtained using three methods have been evaluated. The methods tested 

were: 

1. Re-scaling by catchment area. The flow record for the analogue catchment is normalised 

by the topographic catchment area for the analogue catchment and re-scaled by the 

catchment area for the ungauged, or target catchment. 

2. Re-scaling by catchment area and estimated standard period Average Annual Runoff 

(AARO(61-90)). The AARO(61-90) estimates were derived using the runoff model, 

developed by Holmes & Young (2000a) to replace the simple water balance model 

(Gustard et al, 1992) currently used within the Micro LOW FLOWS software package 

(Young et al, 2000) for estimating catchment mean flow for ungauged river reaches. In 

this method the gauged flows for the analogue catchment are normalised by the 
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catchment area and the catchment estimate of AARO(61-90). The normalised flows are 

then re-scaled by the target catchment area and estimated AARO(61-90) for the target 

catchment. As mean flow can be estimated as the product of catchment area and AARO, 

this technique is equivalent to re-scaling by estimated 1961-90 mean flow. The approach 

is a refinement of the common practice of re-scaling by area and SAAR. Re-scaling by 

SAAR implies a linear relationship between the difference in catchment rainfall and the 

difference in catchment runoff between the two catchments. This approximation may be 

justified in high rainfall catchments, but it does not take into account differences in 

evaporation losses, and the non-linear relationships between these losses, rainfall and soil 

moisture behaviour. This is particularly important in low rainfall catchments where 

evaporation limiting soil moisture deficits commonly occur within the summer months. 

3. Re-scaling by the estimated flow distribution. In this method the differences in the 

distribution of flows, as represented by differences in an estimated annual Flow Duration 

Curve (FDC), are taken into account. An estimated FDC is obtained for both the 

analogue and target catchments, a correction factor for each percentile point is then 

obtained by dividing though the flow values for each percentile point for the target 

catchment by the corresponding percentile point flow value for the analogue catchment. 

The nearest percentile point is then identified for each flow value within the analogue 

flow record and the flow value is re-scaled by the corresponding percentile correction 

factor. An important assumption within this method is that the flows within the catchment 

pairs are synchronous. This has been demonstrated not to be the case at low flows by 

Young et al (2000) for the timing of the occurrence of low flows. 

Method 3 is not a commonly used method due to the computational effort used. Methods for 

estimating FDC at ungauged sites are presented by Holmes & Young (2000b). These methods 

for estimating the FDC are used within the replacement system for Micro LOW FLOWS, 

Low Flows 2000, and are based around a region of influence approach. In this approach ten 

catchments are selected from a pool of 653 source catchments, based on the similarity of the 

source catchments to the ungauged catchment. Similarity is measured in terms of the 

fractional extents of HOST classes found within the ungauged catchment. A weighted 

Euclidean distance measure is used to evaluate similarity. The flow duration curve 

(standardised as a percentage of mean flow) for the ungauged site is then estimated by taking 
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a weighted average of the observed standardised flow duration curves for the selected source 

catchments. The weight for an individual FDC is based upon the Euclidean distance measure 

for the catchment. The dimensionless curves are then re-scaled by the catchment estimate of 

mean flow obtained from the topographic catchment area and the estimate of AARO(61-90). 

9.1.2 The evaluation of transposition methods 

The three methods for transposing analogue data were evaluated by selecting analogue 

catchments for each of the 179 MODA case study catchments, henceforth called target 

catchments. These target catchments were selected as the process of calibrating the rainfall 

runoff models on these catchments identified that there were no major errors in the estimates 

of input data; rainfall, evaporation demand, catchment area and stream flow data. For each 

method, the flow data from the selected analogue catchment was transposed to the target 

catchment and the fit of the transposed flows to the observed flows evaluated for the target 

catchment. The statistics of BIAS, EPF, R2 and BEQ95, used for evaluating the fit of the 

regionalised rainfall runoff models (Chapter 8), were used to evaluate the fit of the transposed 

flow record. To avoid confusion with the use of these statistics within other chapters in other 

contexts, the statistic are prefixed with "A_" to denote that they relate to the transposition of 

gauged data from analogue catchments. 

For each catchment, the potential analogue catchments were identified from the pool of 

natural catchments identified as potential candidates for the regionalised rainfall runoff model 

work. The selection of these catchments is described in Chapter 5. Potential analogues were 

identified for each of the MODA catchments using the following criteria: 

• the distance between the analogue and target catchment had to be less than 50km; 

• the difference in BFIHOST had to be less than 0.1. 

BFIHOST is used as a surrogate for hydrogeological similarity in this context. The figure of 

0.1 is the threshold necessary to identify whether two catchment estimates of BFIHOST are 

significantly different from one another, this is based on the standard error of estimate for the 

BFIHOST model (Boorman, et al, 1995). The distance threshold of 50km represents an 

empirical trade off between identifying a sufficiently large pool of candidate catchments, and 
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identifying catchments that are still close enough to the target catchment such that the two 

catchments experience similar climate patterns. Analogues resulting in duplicate pairs were 

rejected. For example, if catchment B was selected as the analogue for catchment A then 

catchment A was excluded from being selected as the analogue for catchment B. 

The differences in area, catchment SAAR(61-90), AARO(61-90) and actual BFI between the 

target and the corresponding pool of potential analogue catchments were calculated for each 

target catchment. Where applicable, those potential analogues that were connected to the 

target catchment were also identified. The target catchments were then subdivided into two 

groups: those target catchments for which there were connected analogues (the connected 

group) and those for which all analogues were unconnected (the unconnected group). The 

best analogue catchment was selected for each target catchment within a group by selecting 

the analogue catchment with the smallest difference in catchment area. The connected group, 

selected in this manner, contained 42 target catchment pairs and the unconnected group 

contained 125 catchment pairs. 

The characteristics of the catchment data set for MODA, the target set, are discussed in 

Chapter 7. For each catchment pair the similarity of analogue and target catchment areas and 

AARO(61-90) estimates was assessed by using distance measures representing the difference 

between the characteristic as a percentage of the smallest value of the characteristic for the 

pair. This statistic is respectively termed P_AREA and P_RUNOFF. Cumulative histogram 

plots for the geographic distance (DISTANCE) between pairs, P_AREA, P_RUNOFF and 

the difference in actual BFI are presented in Figure 9.1a for the unconnected data set and 

Figure 9.1b for the connected data set. For the unconnected data set these plots demonstrate 

that the distance and P_AREA statistics are fairly uniformly distributed between limits of 

[0,50] km for distance and [0,200] percent for P_AREA. The distributions for P_RUNOFF 

and the difference in actual BFI are skewed towards smaller values. It is worth noting that 

only 60% of catchment pairs have a difference in actual BFI of less than 0.1, which was the 

selection criterion forjudging hydrological similarity on the basis of BFIHOST. 
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The patterns observed within the unconnected data set are generally also seen within the 

connected data set, although there are many fewer catchment pairs within the latter data set. 

The exceptions are that the majority of catchment pairs have a difference in BM of less than 

0.1 and that P_RUNOFF covers a much smaller range. 

The three methods under evaluation were applied to each catchment pair over the period used 

for the calibration of MODA (Chapter 6). This calibration period was typically the 10 years 

leading up to and including 1997. This period was selected as the nearly all of the first choice 

analogues had flow data covering this period and, furthermore, the selection of the period 

meant that direct comparisons could be made with the results obtained with the regionalised 

form of MODE (Chapter 8). The results obtained for all catchments are summarised 

statistically in Table 9.1 for the unconnected group and within Table 9.2 for the connected 

group. For each group the distribution of the fit statistics obtained with each method over the 

catchments within the group are summarised as median and 68% upper and low limits. For 

the unconnected group, results obtained by re-scaling with catchment area and SAAR(61-90) 

are also presented for comparison with Method 2. 

Table 9.1 Analysis of transposition methods (Unconnected set) 

Transposing 
Method 

Median 68% 1.1. 68% uJ 

Method 1 A _BIAS 7 -30 59 
A. _EFF 0.01 -1.53 0.66 
A. _BEQ95 63 -20 440 

Method 2 A_ _BIAS 3 -15 23 
A. _EFF 0.62 -0.09 ().81 
A. _BEQ95 5 -42 156 

AREA A. BIAS 0 -22 34 
&SAAR A_ EFF 0.63 0.05 (X83 

A_ BEQ95 9 -43 142 
Method 3 A_ _BIAS 1 -57 261 

A_ EFF 0.61 0.10 0.82 
A_ BEQ95 11 -35 122 
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Figure 9.1 Distance histograms for catchment pairs. 
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The method that gave the best fit is highlighted for each statistic in both tables. 

Considering the fit estimates for the unconnected data set, the smallest 68% c.i. for 

A_BIAS is obtained using Method 2 and the largest 68% c.i. is obtained using Method 3. 

Method 2, rescaling by estimated mean flow, offers a substantial improvement over solely 

rescaling by area (Method 1). Re-scaling by area and SAAR is an improvement over 

rescaling by area only, but it is not as efficient as re-scaling by estimated mean flow. Re-

scaling by estimates of mean flow is an attempt to take into account the non-linearity 

between differences in rainfall and the resultant change in runoff. The results obtained 

using Method 3 are interesting, as re-scaling by estimated mean flow is implicit within this 

method. The much larger confidence interval for A_BIAS is probably a function of 

differences in the timing of flow between these unconnected pairs, particularly at higher 

flows percentiles. 

Considering now the time series fit, as measured by the EFF statistic. Method 1 has a 

substantially larger 68% c.i. than the other methods. The median value of 0.01 is also very 

low, this indicates that, within 50% of catchments the mean of the observed flow data 

would represent a better fit than the use of the transposed data. Methods 2 and 3 and re-

scaling by area and SAAR gave very similar results in terms of the upper 68% confidence 

limit and the median values, however Method 3 does have a marginally higher 68% lower 

limit that the other methods. The 68% lower limit for re-scaling by area and SAAR is 

higher than that for Method 2, although all of the methods have low 68% lower limits. A 

similar pattern is seen in the bias at Q95 flows (A_BEQ95), with Method 3 marginally 

outperforming the methods that take into account differences in rainfall regime as well as 

catchment area. Again re-scaling by catchment area alone results in a large confidence 

interval, and a marked tendency to over predict at the Q95 flow for the ungauged site. 

These results indicate that the lowest errors in predicted mean flow are obtained when 

using Method 2 but, in terms of the time series fit there is a marginal advantage in using 

Method 3. However, this advantage does not offset the much larger errors at mean flow 

seen with the use of Method 3. 

Considering the results for the connected data set, all three methods gave much better fits 

when applied to the connected data set than the unconnected set. Poorer fits were obtained 
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with Method 1 than with the other methods, however the use of this method still resulted in 

better fits than those obtained with any of the methods on the unconnected data set, 

although it should be remembered that the data set is much smaller. In the connected data 

set, the best fits are obtained when using Method 2 for all three measures of fit. The 

marginal improvements in the time series fit (as measured by A_EFF and A_BEQ95) 

observed in the un-connected set, when using Method 3 are not seen within this data set. 

This indicates that, when the target and analogue catchments are connected, the strong 

serial correlation between the flows measured at the two reaches ensures a good time series 

fit without the need for any need for the marginal improvements Method 3 gives in the 

unconnected data set. Indeed, Method 3 tends to yield poorer time series fits than Method 

2, particularly for the bias error at Q95. This is probably a result of the uncertainty 

associated with the estimates of the flow duration curves from catchment characteristics, 

and hence in the estimation of correction factors. The factorial standard errors for the flow 

duration curve estimation model range from 1.08 at Q20 to 1.8 at Q99 (Holmes and Young, 

2000b). 

Table 9.2 Analysis of transposition methods (Connected set) 

Transposing 
Method 

Median 68% 1.1 68% u.l. 

Method 1 BIAS 8 -12 28 
Efficiency &86 0.67 0.95 
BEQ95 20 -12 56 

Method 2 BIAS 3 -6 13 
Efficiency 0.89 0.72 0.96 
BEQ95 13 -4 49 

Method 3 BIAS 85 -24 496 
Efficiency &89 0.51 0.96 
BEQ95 20 -14 106 

Over the two data sets, the best overall method for transposing analogue data is Method 2. 

Pearson correlation analysis was employed to look for correlation between the quality of fit 

(as measured by the BIAS, EPF and BEQ95 fit statistics), the characteristics of the target 

catchment (catchment area (AREA), estimated runoff (AAR) and estimated BFI, 

(BFIHOST)) and the distance measures for the distance of the analogue from the target 

cakdiinLent D_]3]FIHC)6)T). 
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Figure 9.2 Relationships between fit statistic and distance measures for the 
unconnected set. 

For the unconnected data set, the only significant correlation (at the 95% confidence level) 

were ones of-0.62 and 0.34 between EPF, BEQ95 and P_RUNOFF and one of 0.4 

between EPF and DISTANCE. These relationships are graphed in Figure 9.2. These graphs 

demonstrates that EPF decreases as the percentage dissimilarity in runoff (P_RUNOFF) 

between the catchment pairs increases, although cases of very low efficiency where the 

mean of the observed would give a better fit (less than 0) occur across the entire 

P_RlJNOFF range. The relationship between BEQ95 and P_RUNOFF is restricted to gross 

errors occurring only at high values of P_RUNOFF. The relationship between EPF and 

DISTANCE shows that efficiency decreases with increasing distance, and that efficiencies 

of less than zero are not observed for catchment pairs that are less than 13km apart. All of 

these correlations are likely to be related to the similarity of climatic regimes, although it 

should be noted that P_RUNOFF and DISTANCE are not significantly correlated. 

For the connected data set the only significant correlation was one of -0.64 between 

P_RUNOFF and EFF. The pattern of this relationship, presented in Figure 9.3, was the 

same as that seen for the uncorrected data set except that, with two exceptions, the 

efficiency values are all greater than 0.25. 

This simple correlation analysis demonstrated the importance of the similarity of the 

climatic regimes experienced by the target and analogue catchment in determining the time 

series fit of the transposed data. Furthermore, this confirms that a good analogue catchment 

is one that is close, similar in terms of climatic regime and that is hydrogeologically 

similar, and thus has a similar runoff response to rainfall. 
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Figure 9.3 Relationship between P_RIJN0FF and the Efficiency statistic for the 
connected set. 

9.1.3 Summary 

The evaluation studies have demonstrated that, of the methods tested, transposing gauged 

from data from an analogue catchment on the basis of a estimate of catchment mean flow, 

derived from the Low Flows 2000 regional model for predicting mean flow is the most 

efficient method for transposing data. This method, Method 2, gave the best results within 

the connected catchment pairs and provided the best trade off between simulating the time 

series structure of the flow data at the target site and maintaining an acceptable water 

balance within the unconnected catchment pairs. Correlation analysis has demonstrated the 

importance of the similarity of the climatic regimes experienced by the target and analogue 

catchment in determining the time series fit of the transposed data. The evaluation has 

confirmed that a good analogue catchment is one that is close and similar in terms of 

climatic regime and hydrogeology to the target catchment. Furthermore, the transposing of 

data from connected pairs results in a good simulation of the times series structure of the 

flow data at the target site for the majority of cases. This is in contrast with the case where 

the target and analogue catchments are unconnected, in this instance the quality of the time 

series simulations obtained varies widely in terms of the fit statistics used. 
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9.2 COMPARISONS WITH REGIONALISED MODE MODEL FITS 

Section 9.1 presented an evaluation of methods for transposing gauged flow records from 

suitable analogue sites. An important issue to be considered is the conditions under which a 

transposed gauged flow record will result in a better simulation at a target site than the 

application of a regionalised rainfall runoff model. To evaluate this, a comparison was 

made between the quality of the fit statistics (BIAS, EFF and BEQ95) obtained using 

MODE with regionalised model parameters with that obtained by transposing gauged flow 

data using Method 2. MODE was used as the analysis of model fit described in Chapter 8 

indicates that the model fits obtained with the regionalised form of MODE were better than 

those obtained with the regionalised form of MOD A. 

The differences between the fit statistics obtained using the analogue Method 2 and those 

obtained using the regionalised model were used to compare the two approaches. 

Differences were calculated such that a negative result indicates that the regionalised 

rainfall runoff model yields a better result that the use of transposed data from the analogue 

gauge. This analysis considered the calibration period originally used for the rainfall runoff 

modelling work. Histograms of the differences between fit statistics are presented in Figure 

9.4a for the unconnected data set and Figure 9.4b for the connected set. For the 

unconnected set there were 110 catchments for which MODE estimates were available, and 

for the connected data set there were 30 catchments. In these figures the statistics are 

prefixed by "D_" to denote that the differences in the statistics are being graphed. Within 

the unconnected data set there were a number of catchments that gave significantly poorer 

results than the regionalised rainfall runoff model for one or more statistics. These 

catchments were screened out for graphing purposes. The screening criteria used were: 

• differences in bias (D_EIAS)> -100; 

• differences in efficiency (D_EFF)> -2; 

9 differences in Eias at Q95 (D_BEQ95)> -500. 

The catchments pairs removed using these screening criteria are summarised in Table 9.3, 

together with the criterion that led to them being excluded. The actual EFI and catchment 

SAAR(61-90) values for the target catchment are also presented within the table. 
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Figure 9.4 Difference histograms for fit statistics. 
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Table 9.3 Catchments pairs excluded from the histograms for the unconnected set 

Exclusion Catchments Target catchment Regionalised M O D B Analogue method 
criteria Characteristics fit statistics Fit statistics 

target source Area BFI SAAR BIAS EFF BEQ95 BIAS EFF BEQ95 
km^ (mm) 

D_BEQ95<-500 6008 7001 106 OJO 1291 3 &67 371 20 0 ^ 3 n 6 6 
36009 37011 26 OJG 598 3 &61 1309 82 0.79 2094 
21023 21012 113 035 671 5 &61 290 18 CU6 1034 
39054 41CG9 34 &24 816 25 &72 92 298 -573 654 
46818 47009 3 0 3 8 1250 5 OJ l 566 -7 0.59 1080 
27051 27043 8 &45 855 -1 a 7 3 -9 3 0.46 515 

I)_Ei:F<-2 23CKM 23008 750 0 3 3 1147 2 OJO -10 177 -5.56 208 
39016 39065 1033 0 87 759 16 &61 -33 -99 -L76 -98 
52010 52011 140 &47 867 0 a 7 0 -7 221 -10.58 58 
27(#5 27057 131 &69 882 -8 &55 -57 3 -1.96 -61 
51(M1 52007 74 &67 911 1 &90 -24 35 -278 11 
40(W7 41029 252 0.48 830 18 a 6 8 -56 218 -13.65 -1 

D_BIAS_100 55035 55033 1 &29 2467 -2 &79 -38 145 0.93 13 

Those catchments with large BEQ95 values and/or poor general time series fits (as judged 

by the values of EPF) all tend to be low rainfall catchments. Significant soil moisture 

deficit might be expected to occur during the summer months in these catchments. The 

catchments with very poor BEQ95 values also tend to be relatively small catchments. The 

catchment excluded on the basis of BIAS error is an extremely small, wet catchment. 

Catchment pairs that were excluded on the basis of one fit statistic, but where transposition 

gave a better result than the rainfall runoff model for one or more of the other fit statistics 

are highlighted within the table. In the majority of catchments the fit obtained by 

transposing the data from an analogue gauge gave a poorer fit for the other statistics, as 

well as the excluding statistic. Within the one catchment that failed on the BIAS estimate, 

the analogue method gave very good fits for both efficiency and BEQ95. These were better 

than the values obtained using the regionalised rainfall runoff model. 

Considering the histograms in Figure 9.4b for the connected data set. In the majority of 

cases the quality of the time series fit (EPF) and fit at low flows (BEQ95) obtained by 

transposing gauged flow data was generally better than that obtained using the regionalised 

rainfall runoff model. This is not the case for overall BIAS (error in mean flow), in this 

case the use of the regionalised rainfall runoff model generally gave better results. Of the 

30 catchment considered, the use of the analogue data gave higher values of efficiency in 

27 catchments with an average improvement of 0.19 over the values obtained with the 
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regionalised rainfall runoff model. This is reduced to 17 catchment pairs for BEQ95 with 

an average reduction in bias error at low flows of 23%. For overall BIAS only 11 of the 30-

catchment pairs gave a better result than that obtained using the regionalised rainfall runoff 

model, with an average reduction in BIAS of 4%. In the 19 catchments, where the use of 

the regionalised rainfall runoff model gave a smaller overall BIAS the average 

improvement in BIAS was 10%. 

Considering the unconnected data set, Figure 9.4b, the use of the regionalised model 

generally gave better results for all fit statistics. Of the 110 catchment pairs considered, the 

use of analogue data gave better results in only 23 catchments with respect to a reduction in 

BIAS, 33 for an improved efficiency and 50 for a reduction in bias at Q95. The average 

improvements were 4%, 0.18 and 18% respectively. These figures are much smaller than 

the average improvements obtained when the use of the regionalised rainfall runoff model 

gave better results. These improvements were 14% for BIAS, 0.25 for EFF and 165% for 

the BEQ95. The last figure is biased by a small number of catchments in which very poor 

fits were obtained when using data from the analogue catchment. 

This analysis has demonstrated that, in that majority of cases, if the analogue catchment is 

connected to the ungauged catchment, and both are natural the transposing of gauged flow 

data generally yields a better time series fit that that obtained through using a regionalised 

rainfall runoff model. However, the use of a regionalised rainfall runoff model will generally 

give a marginally better water balance. These conclusions are subject to the condition that a 

suitable analogue catchment, meeting the selection criteria used, can be identified. In the case 

where the analogue and ungauged catchments are not connected, the use of a regionalised 

rainfall runoff model will generally give better results than the use of data from the analogue 

site. Furthermore, the use of analogue data can result in very large errors, both from the 

perspective of replicating the time series nature of the data and the closing of an adequate 

water balance. The good replication of the time series nature of the flow data for the 

connected data set is a consequence of the strong serial correlation between the flows 

observed at the target site and the analogue site. 
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9.3 THE PREDICTION OF THE APPROPRIATE ESTIMATION METHOD 

The analysis in the previous section considered each of the flow statistics independently. 

From a practical viewpoint, it is important to consider whether it is feasible to predict under 

what conditions the use of a regionalised rainfall runoff model will give a better result than 

that which would be obtained by transposing measured data from the most appropriate 

analogue catchment. In order to provide guidance on this issue it is necessary to consider the 

fit statistics as a group of statistics that describe the quality of a simulated time series, rather 

than as individual measures. To address this prediction issue, discriminant analysis has been 

used to evaluate whether the characteristics of the target catchment and the distance of the 

analogue from the characteristics of the target catchment can be used to determine which 

method is more appropriate for a given set of conditions. The basic data used for this 

investigation were the sets of target-analogue catchment pairs used within the comparison 

work, described in the previous section. 

Initially, Pearson correlation analysis was used to look for relationships between the 

differences in the goodness of fit statistics for the two data sets and the characteristics of the 

target catchment and the distance measures between the catchment pairs. The variables 

entered for the target catchment were AREA, AARO(61-90), BHHOST and the distance 

measures were P_AREA, P_RUNOFF, P_BFIHOST and DISTANCE. The goodness of fit 

statistics were BIAS, EFF and BEQ95. 

There were no significant correlations identified for the connected data set. For the 

unconnected data set, significant negative correlations of -0.3, -0.6 and -0.3 were identified 

between P_RUNOFF and the differences in BIAS, EFF and BEQ95. The correlations, 

confirmed by scatter plots, indicate that the use of analogue data can give better results that 

the use of the regionalised rainfall runoff model if the difference in estimated runoff between 

the two catchments is small. There was a significant positive correlation of 0.3 between the 

estimated runoff for the target catchment and the differences in BIAS. This correlation 

indicates that the use of analogue data can give a better result than the use of a regionalised 

rainfall runoff model in high rainfall, and hence high runoff catchments. In these catchments 

significant soil moisture deficits are not generated and evaporation will tend to take place at 

the potential rate. Under these conditions, transposing data from analogue catchments with 
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similar climatic regimes is more likely to give acceptable water balances as the catchment 

losses will not be as sensitive to, potentially, subtle differences between the rainfall-runoff 

regimes of the two catchments. There was also a negative correlation of -0.3 between 

DISTANCE and D_EFF indicating that good time series fits can be obtained using analogue 

data when the distance between the catchments is small, and hence the climatic regime 

(particularly with respect to rainfall patterns) is likely to be similar. 

The frequency of obtaining a better fit for more than one of the statistics, for a given method, 

was assessed for both data sets. The number of catchments in which a method for estimating 

flow at the target site gave significantly better results for BIAS and EFF, and BIAS, EPF and 

BEQ95 is presented in Table 9.4 for the analogue Method 2 and the regionalised form of 

MODB. The thresholds for determining whether one method gave a better fit than the other 

for each statistic were: 

• the reduction in the magnitude of BIAS had to be greater than 5%; 

• an increase in efficiency had to be demonstrated; 

• the reduction in the magnitude of the bias at Q95 had to be greater than 10%. 

These thresholds are somewhat arbitrary in nature, but the thresholds do reflect the 

hydrometric uncertainty with the measurement of the statistics and the degree of artificial 

influence allowed for in the original catchment selection criteria (Chapter 5). The results from 

this analysis are summarised in Table 9.4. The last line in the table summarises the number of 

catchments where neither method gave a better result for all the statistics concerned. 

For the unconnected data set, the numbers within this table demonstrates that the rainfall 

runoff method give better results for BIAS and EFF in 66% of the catchments and gave better 

results for all three statistics within 48% of catchments. The analogue method does not 

perform well across two or more statistics within the unconnected data set, with the number 

of catchments being lower than the number of catchments where mixed results were 

obtained. This situation is reversed across the connected data set, in this set the analogue 

method is significantly better than the regionalised model. The number of catchments where 

the regionalised model out performed the analogue method is very small. 
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Table 9.4 Catchments classified according to two or more fit statistics 

Unconnected set connected set 
BIAS and BIAS, EFF BIAS and EFF BIAS, EFF and 

EFF and BEQ95 BEQ95 
Analogue method 2 15(7/̂ %) 9 18 (60%; i5(jo%,; 
MODE 73 (66%; 53 (4&%; 3(70%; 2(7%V 
(regionalised) 
Mixed results 22 (20%; 48 (4^%; 9 (.)o%; 13 (^^%; 

Discriminant analysis was used on the unconnected data set to identify whether the catchment 

pairs can be classified on the basis of the fit statistics. This analysis was not applied to the 

connected data set as the regionalised model outperformed the analogue Method 2 in only a 

few catchments. For the unconnected data set the individual catchment pairs were coded 

according to whether the best fits for BIAS and EPF were obtained with; the analogue 

methods (code=l), the use of a regionalised rainfall runoff model (code=2) or whether the 

results were mixed (code=0). 

The first step in the analysis was to use backwards stepping discriminant analysis to identify 

which of the variables entered were useful in explaining the variation between groups. The 

test for usefulness was the F statistic, this statistic is based on the ratio of the between group 

variation in the mean value of the variable to the mean of the within group variation between 

members and the group mean. The larger this statistic is for a variable, the more useful the 

variable is in determining the classification of group members. The threshold for removal of a 

variable was an F statistic of 3.9. This choice, which equates to a mean within group variance 

equal to 25% of the between group variance is a recommended threshold (Systat, 1998). The 

analysis was not sensitive to small variations in the value of the F to remove statistic. This 

process confirmed the results from the Pearson correlation analysis that the predicted BFI 

value for the target catchment (T_BFIHOST), P_RlJNOFF and DISTANCE were all useful 

in differentiating between groups. 

A multi-layer scatter plot matrix showing the relationships between the classes and the 

differentiating variabless is presented in Figure 9.5. The ellipses are the 68% bivariate normal 

confidence intervals for the differentiating variables for each class. This plot demonstrates 

that there is a high degree of overlap between groups for all differentiating variable pairs. The 

plots do demonstrate that the analogue method is most effective in flashy catchments (low 

T_BFIHOST), where the difference in runoff between the analogue and target catchments is 
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small (P_RUNOFF) and the two catchments are in close proximity to one another (small 

DISTANCE). 
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Figure 9.5 The relationships between classes of fit and the classifying variables. 

The within group mean values of variables, and the mean F statistics for each group mean 

compared to it's neighbouring groups are presented in Table 9.5 and Table 9.6. These 

demonstrate that groups 1 and 2 are equally distinct from the mixed group, but these 

groups are more distinct from one another. 

Table 9.5 Group mean values 

Class Mean 
Variable Class 0 Class 1 Class 2 

T_BFIHOST 0.52 0.41 0.49 
DISTANCE (km) 21 15 26 

P_RUNOFF % 21 21 38 

Table 9.6 F statistics for the groups 

Class 0 1 2 
0 0.00 
1 3.92 0.00 
2 3.92 8.24 0.00 
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The classification functions obtained from the discriminant analysis are presented in 

Table 9.7. The classification of target catchments according to the classification functions 

(the class assigned is the one for which the function has the largest value) is summarised in 

Table 9.8. The jack-knifed classification of catchments is presented in Table 9.9. A jack-

knifed classification is one where the classification functions are re-evaluated for each 

catchment assignment with the catchment to be assigned omitted from the data set. These 

tables present the actual class for catchment in rows and the class assigned on the basis of 

the classification function in the columns. For each class, there is also a column 

summarising the percentage of catchments that are correctly assigned to classes. 

The jack knifed sample assignments do not vary that much from those obtained using the 

full classification functions. This indicates that the analysis is not over specified, and that 

the classification functions are stable. Looking at the full classification, 61% of catchments 

are classified correctly. The percentage is highest for Class 1 and lowest for Class 0, the 

mixed result class. Where catchments are incorrectly classified, the allocation of these 

catchments to the remaining classes is fairly random because of the large overlap between 

all classes. 

The classification of catchments to classes 0 and 1 is better than that which would be 

obtained by chance (20% and 14% respectively (Table 9.4)), however the classification of 

catchments to Class 2 is lower than that which would obtained by chance (66%). 

Furthermore, 20% of Class 2 catchments are incorrectly assigned to Class 1. 

Table 9.7 Group classification functions 

Function coefficients for Classes 
Variables Class 0 Class 1 Class 2 

CONSTANT -14.811 -9.588 -15.530 
T_BFIHOST 43.428 34.307 41.843 
DISTANCE 0J^5 0JT7 0J^5 
P_RUNOFF 0.058 0.053 0.085 
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Table 9.8 Classification Matrix 

Class "n" 
Class assignments of 

catchments from Class "n" 
Class 0 Class 1 Class 2 

% assigned 

Correctly 
Class 0 
Class 1 
Class 2 

Total 

12 
2 
13 
27 

6 
11 
15 
32 

5 
2 
45 
52 

52 
73 
62 
61 

Table 9.9 Jack-knifed classification matrix 

Class "n" 
Class assignments of 

catchments from Class "n" 
Class 0 Class 1 Class 2 

% assigned 

Correctly 
Class 0 
Class 1 
Class 2 

Total 

10 
2 
17 
29 

6 
11 
15 
32 

7 
2 
41 
50 

43 
73 
56 
56 

To represent the overlap between classes, the discriminant analysis was repeated using 

canonical classification functions. These are factor functions that are orthogonal to one 

another and which sequentially maximise the possible F ratio for the variation within, and 

between groups. There are m-1 functions identifiable from the data, where m is the number 

of classifying variables - in this case three. The plots of classified catchments against the 

two functions identified from the data are presented in Figure 9.6. Bi-variate normal 68% 

confidence interval ellipses are also plotted within this figure for each class. This plot 

clearly demonstrates the overlap between classes. 
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FACT0R(1) 

K_BIAS_EFI 

o 0 
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2 

Figure 9.6 Canonical scores plots for catchment assignments. 
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9.4 SimiMUJiY 

The evaluation of transposition methods has demonstrated that the most efficient method 

for transposing gauged data from an analogue catchment is one based on an estimate of 

catchment mean flow derived from the Low Flows 2000 regional model for predicting 

mean flow. This method gave the best results within connected catchment pairs, and 

provided the best trade off between simulating the time series structure of the flow data at 

the target site and maintaining an acceptable water balance within unconnected catchment 

pairs. The evaluation analysis also demonstrated the importance of the similarity of the 

climatic regimes experienced by the target and analogue catchments in determining the 

time series fit of the transposed data. The evaluation studies have confirmed that a good 

analogue catchment is one that is close, similar in terms of hydrogeology and climatic 

regime, and thus has a similar response to rainfall inputs to that of the target catchment. 

Furthermore, the analysis has demonstrated that transposing of data from a connected 

analogue resulted in a very good simulation of the times series structure of the flow data at 

the target site for the majority of cases that met the catchment selection criteria. This 

contrasts with the case where the target and analogue catchments are unconnected, in this 

instance the quality of the simulations, in terms of the fit statistics used, obtained by 

transposing the data from the analogue catchment was often poor. 

The quality of fit obtained by transposing data from a "best" analogue catchment was 

compared with the fit obtained by applying the regionalised form of the MODE rainfall 

runoff model. The analysis demonstrated that, in the majority of cases, if the analogue 

catchment is connected to the ungauged catchment, and that both are natural, the transposing 

of gauged flow data generally yields a better time series fit that that obtained through using a 

regionalised rainfall runoff model. However, the use of the regionalised rainfall runoff model 

generally gave a marginally better water balance. The good replication of the time series 

nature of the flow data for the connected data set is a consequence of the strong serial 

correlation between the flows observed at the target site and the analogue site. 

9-23 



In cases where the analogue and ungauged catchments are not connected, the use of a 

regionalised rainfall runoff model will generally give better results than the use of data from 

the analogue site. Furthermore, the use of flow data from an unconnected analogue can result 

in very large errors, both from the perspective of replicating the time series nature of the data 

and the closing of an adequate water balance. 

Discriminant analysis was used to investigate whether it is possible to predict when the use of 

a regionalised rainfall runoff model will yield a better overall stream flow simulation that that 

obtained by transposing data from an analogue catchment. The BIAS and EPF statistics were 

used to define what constituted a better simulation. A better simulation for a method was 

defined as one that gave an improved model fit for one statistic, compared with the other 

method, and a model fit that was at least as good as the fit obtained using the other method 

for the other statistic. The discriminant analysis was only applied to the unconnected set due 

to small sample size available for the connected data set. Within the connected data set the 

use of analogue data generally gave a better time series fit than the use of a rainfall runoff 

model whereas the regionalised rainfall runoff model was often marginally more effective in 

closing a water balance. 

The application of discriminant analysis to the unconnected set considered the 

characteristics of the target catchment and the runoff, area and geographic distance 

measures for discriminating between simulation classes. The results from the analysis 

demonstrated that, on the basis of these characteristics and distance measures, it was not 

possible to develop a robust method for predicting which method is most appropriate. This 

is primarily due to the large overlap of classes. However, in the unconnected site there is a 

much greater chance that the use of the rainfall runoff model will give a better simulation 

of stream flow than the use of the analogue method. 

The catchments used in the original rainfall runoff modelling calibration work (Chapter 5) 

have been used as the basis of the comparison analyses presented within this Chapter. These 

catchments are natural, of good hydrometric quality, and the climatic data and the definition 

of catchment boundary used within the modelling work have been demonstrated to be 

acceptably free from error. The conclusions from the comparison studies must be viewed in 

the context of a comparison where the climatic data required for applying the regionalised 
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rainfall runoff models can be assumed to be without error. The flow data for the analogue 

catchment also has to be assumed to be both natural and without error. The catchment area 

defined by the catchment boundary is used in both methods, and thus the overall results must 

be viewed in the context of being able to define an accurate hydrological catchment boundary 

for both methods. In the context of the analogue method, this consideration also applies to the 

analogue catchment. 
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10 Conclusions 

10.1 ACHIEVEMENTS AND CONCLUSIONS 

The overall research objective of this thesis has been to develop a rainfall runoff model for 

predicting the natural variation of daily stream flows within a catchment without recourse 

to the calibration of model parameters against observed stream flow data. As discussed 

within Chapter 1, there is an implicit requirement within this objective that the model 

parameters can be estimated from the physical characteristics of the catchment. 

The thesis is the largest study of this type within the UK, and is also larger than any 

international studies reported within the scientific literature. The study has focused on data 

errors, model structure and calibration and subsequent regionalisation strategies. Through 

this approach, it is the first to have demonstrated that, in the UK context, a conceptual 

model structure for predicting daily stream flows can be defined such that conceptually 

justifiable relationships can be derived between model parameters and the physical 

characteristics of the catchment being modelled. Furthermore, it has been demonstrated 

that the errors in the simulated stream flows are sufficiently small for the techniques to be a 

useful aid in the management of water resources within the UK. 

The fundamental approach to the research was to calibrate suitable models on stream flow 

within a large, representative sample of catchments and to subsequently relate the model 

parameters to the climatic and physiographic characteristics of the catchments. As 

discussed in Chapter 6, the parameters of a calibrated model are a function of the: 

input data (including observed stream flow) and errors within the input data; 

• the model structure; 

structure of the catchment being modelled; 

the calibration scheme (including the selection of objective functions). e 
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The chapters of this thesis have been structured as a logical progression from the 

evaluation and development of techniques for estimating requisite input data, through to 

the final evaluation of the success in meeting the overall research objective. The 

achievements of the research within each chapter are discussed fully within the chapter 

concerned. This chapter brings together the key achievements and the increase in the 

hydrological knowledge base from each research area. 

The history of international research within this area was reviewed in Chapter 1. The 

chapter highlighted that previous studies had been restricted to relatively small sample sets 

of catchments. Commonly previous studies have been directed at simulating single events 

or monthly stream flow and/or annual runoff. The reason for this was either a function of 

requirement, or a practical consideration based on data availability and/or a desire to not 

consider the detailed hydrological processes that have to be considered if the objective is to 

simulate daily stream flows. The study of Sefton and Boorman (1997) which reported on 

the regionalisation of daily resolution models within the UK was inconclusive, a 

consequence of the small sample size considered (less than 40 catchments) and the 

inconclusive nature of the derived relationships between model parameters and catchment 

characteristics. 

The literature on the impacts of errors in climatic input data on model behaviour was 

reviewed within Chapter 2. The chapter presented an evaluation of derivatives of the 

British Standard methods for the areal estimation of daily rainfall time series. The analysis 

highlighted the sparseness of rain gauge data within the north and upland areas of the UK. 

This was found to impact upon the accuracy of the daily variation in rainfall but not to 

unduly impact upon the accuracy of the estimation of annual rainfall totals, if information 

from long term average annual rainfall maps was included within the estimation procedure. 

There was some evidence that annual rainfall totals were more poorly estimated during 

"dry" years. It is in these years, particularly in the south and east of the UK, that the correct 

modelling of resultant soil moisture deficit is critical for accurately modelling the stream 

flow response of a catchment to precipitation and closing an adequate water balance. 
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Chapter 2 also presented the developed of a scheme for dis-aggregating MORECS Penman 

Montieth PE estimates from a 40 to a 1 km resolution grid taking into account the impact 

of increased spatial heterogeneity of topographic controls on PE. This addresses the major 

criticism of the use of MORECS in rainfall runoff modelling. 

If a daily rainfall runoff model is to be successfully regionalised, from a water resources 

perspective, it is essential that the model, when calibrated, can accurately simulate the 

important aspects of the observed stream flow within a catchment. Furthermore, it is 

essential that the model is stable when evaluated against an independent period of stream 

flow data. From a water resources perspective, this implies that the model can close a water 

balance, that recession periods are modelled effectively and that the overall time series 

variation in stream flow is adequately modelled. It is therefore pre-requisite that a model 

can accurately simulate the behaviour of soil moisture in controlling evaporation losses, the 

generation of effective rainfall, drainage to groundwater if appropriate, and the correct hill 

slope routing of direct runoff. The model should also be physically realistic, such that the 

parameters are physically relevant. This latter consideration requires a compromise 

between the physical realism of the conceptual representation of process within the model 

and over-specification, which commonly results in structural errors. 

The evaluation of a range of rainfall runoff model philosophies within five catchments in 

East Anglia was presented within Chapter 3. These catchments are very low rainfall 

catchments, thus necessitating the accurate simulation of soil moisture behaviour. A novel 

multi-function approach to evaluating combined model performance over both a calibration 

and evaluation period of record was also prototyped within this analysis. Based on the 

results of the model evaluation studies, two model structures, MODA and MODE were 

developed for application within a regionalisation scheme. The development of these 

models was presented within Chapter 4. In developing these models, attention was paid to 

the conceptual representation of the hydrological processes within the models. Both 

structures utilised the concept of a probability-distributed representation of soil storage 

capacities, developed and used by Moore (1985) amongst other researchers. Both models 

used a second order linear routing reservoir scheme for simulating quick and slow flow 

routing of effective rainfall. MODA, the more complex model, included an interception 

store and a soil moisture related drainage term, and had five free parameters for calibration. 
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MODE had three parameters and employed a fixed partitioning of effective rainfall 

between quick and slow flow routing paths, based on the soil classes within each 

catchment. 

The development of a large catchment data set, with good quality gauged stream flow 

records and a comprehensive set of catchment characteristics and descriptors was presented 

within Chapter 5. This data set is the largest reported data set used within a rainfall runoff 

regionalisation study. Characteristic and descriptors for the catchments included: 

topographic descriptors of the catchment and stream network within the catchment, derived 

using a DTM; a range of climatic regime characteristics; characteristics describing the 

catchment soils (HOST, Boorman et al, 1995) and characteristics describing catchment 

vegetation classes (Fuller et al, 1994). It was demonstrated that the variation of the 

characteristics within the data set were representative of the variation of these 

characteristics across the UK. 

The classical approach to calibrating a rainfall runoff model employs the use of an 

automatic search algorithm to search a feasible parameter space coupled with manual 

intervention. Manual intervention enables the hydrologist to make non-linear fuzzy 

decisions about the trade off between different aspects of model fit, based on experience. A 

review of automatic calibration schemes, problems associated with parameter 

identifiability and the impacts of uncertain input data were discussed in Chapter 6. 

The development of a novel, global, search scheme was presented in Chapter 6. The 

objective was to develop a scheme that could automatically implement the sort of decisions 

that an experienced hydrologist would make as a set of fuzzy rules. The scheme developed 

is a constrained random walk scheme that utilises a number of objective functions, allows 

for trade off between different aspects of model fit and recognises that the input stream 

flow data have an associated uncertainty. Within a catchment, the scheme is used to 

identify a large number of parameter sets, or vectors, that can be considered equally likely 

given these constraints. The final selection of a model parameter vector, to represent the 

catchment with the regionalisation analysis, is made on the basis of the combined 

performance of the calibrated model for each vector over both the calibration period and 

the stability of the model when applied to an independent evaluation period. A combined 
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Euclidean objective function was developed for this selection. The components of the 

function assess the model fit from the perspective of closing a water balance, the general 

time series structure of the data and the fit over recession periods, with a particular 

emphasis on low flows. The selection of a best compromise parameter vector reflects that a 

good, stable model fit is more likely to be a function of the catchment type than one that 

just gives a good fit over a calibration period, and hence may be incorrectly specified. 

This scheme also enabled the behaviour of the model to be evaluated within specific 

catchments. The results for four such catchments are also discussed in Chapter 6. This 

analysis identified that even a simple model such as MODA had potential structural 

problems giving rise to parameter covariance issues. This led to the development of 

MODE. These type of behaviour analyses identified how the model parameters 

compensated for errors in input data and also produced evidence that the importance of 

model components, and hence the identifiability of parameters, could potentially vary 

between catchment types. The choice of parameters in low rainfall catchments was found 

to be very sensitive to the requirement that the model should be capable of closing a water 

balance. This is an essential requirement from a water resources perspective, but is not one 

that is widely recognised within the literature of model calibration. The inability to close an 

adequate catchment water balance led to a number of potential catchments being rejected at 

this stage. A review of these catchments identified potential errors within rainfall data and 

the presence of groundwater, which makes the assumption of a catchment water balance 

questionable- as being the primary reasons for the exclusion of catchments. 

An evaluation of the calibrated model performance (Chapter 7) identified that both models 

simulated stream flow extremely well in the majority of catchments. Over the calibration 

period, MODA was better at predicting mean flow and MODE was better at predicting low 

flows. Over the evaluation period, the model fits for MODE were generally more stable 

than those for obtained for MODA, also indicating that MODA was over specified. 

Within Chapter 7 the development of conceptually supportable relationships between 

model parameters and catchment characteristics/descriptors is presented. These were 

developed using a multivariate regression approach for both MODA and MODE. Good or 

acceptable relationships were identified for all model parameters with the exception of one 
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of the soil store parameters for MODA and the sole soil storage parameter for MODE. The 

uncertainties in the relationships between model parameters and catchment characteristics 

are a function of the physical reality of the structure of the rainfall runoff model, errors in 

input data, calibration errors, error in catchment characteristic data and errors, or 

assumptions, in structure of the relationships themselves. The two parameters in question 

were identified in Chapter 6 as being sensitive to errors in climatic data (particularly 

precipitation), an effective estimate of contributing area and the assumption that any 

regional ground water flow does not bypass the gauging station. The poor relationships 

were attributed to the requirement to close a water balance during calibration. Extensive 

split sample tests were used to demonstrate that the regression models were not over 

specified, and hence were independent of the catchment sample used to develop the 

models. 

The performance of the regionalised models was assessed in Chapters 8 and 9. In Chapter 8 

a comparison was made between the regionalised and calibrated model forms across the 

catchment data set used for the study. Comparing the fit of the regionalised models with 

the calibrated models identified that over the calibration period the calibrated parameters 

resulted in much lower water balance errors - as would be expected as closing a water 

balance was a key part of the calibration scheme. Over the evaluation period, the 

performance of the regionalised models in closing a catchment water balance was very 

comparable to the calibrated models. A number of catchments in which the use of the 

regionalised model parameters gave very poor time series fits were identified. The 

calibrated models also performed less effectively in these catchments; a discussion of these 

catchments is presented in Chapter 8. However, over the majority of catchments, the time 

series fits obtained with the regionalised models were very comparable to those obtained 

with the calibrated models. This is a very significant result. 

A classification of the ability of the regionalised models to both close an adequate water 

balance and maintain a reasonable hydrograph demonstrated that, over the evaluation 

period considered, MODE gave acceptable simulations in more of the catchments within 

the data set than MODA. For MODE simulations that were good or very good were 

obtained within 67% of catchments compared with 58% of catchments for MODA. MODE 

gave acceptable (or better) simulations in 85% of catchments compared within 78% of 

10-6 



catchments for MODA. The analysis demonstrated that the regionalised version of MODE 

was more effective in closing a water balance than the regionalised form of the more 

conceptually correct MODA. 

Spatial analysis identified that catchments in which an acceptable water balance could not 

be closed tended to be located in the south of the country, and were dominated by 

groundwater catchments in the case of MODE. Catchments where the time series model fit 

was judged to be unacceptable tended to be dry catchments on the east of the country. 

Inspection identified that the rain gauge network was sparse over these catchments, 

potentially resulting in poor estimates of precipitation inputs to the models. The time series 

criterion forjudging the acceptability of the simulation was harsh. The simulations for 

many catchments that failed on this criterion were able to close a water balance and 

simulated periods of recession well. The number of catchments that had completely 

unacceptable time series fits, from a water resources perspective, was considerably lower 

for both models than the classification suggested. 

The regionalised model forms for MODA and MODE were applied to the two of the 

Anglian catchments from the model evaluation work presented within Chapter 3. These 

catchments were not used within the regionalisation research. The results obtained were 

compared within the results obtained for the four models calibrated, and evaluated, within 

these catchments. In one of the catchments the regionalised models gave a better simulation 

of stream flow over the evaluation period than that obtained using three of the four bespoke 

model applications. This again is a significant result supporting the overall conclusion. 

The generally good performance of the regionalised models in predicting stream flow is a 

very significant result, and is not one that has been replicated in the literature on the 

regionalisation of rainfall runoff models. The study has demonstrated that the parameters 

were more identifiable and the model simulations were more stable for the three-parameter 

model (MODE) than the five-parameter model (MODA) in a calibrated application. This 

adds weight to the argument that, from a systems engineering point of view, only a very 

limited number of parameters may be identified from stream flow data (e.g. Seven, 1993; 

Jakeman and Homberger, 1993). The regionalised form of MODE was demonstrably 

superior to the regionalised form of MODA in closing a water balance, despite the relative 
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conceptual simplicity of the model. 

A comparison of the performance of the regionalised form of MODE and the current 

operational practice of transposing gauged from data from an analogue catchment was 

presented in Chapter 9. This included a rigorous evaluation of commonly used techniques 

for transposing data across 167 catchment pairs. This large-scale evaluation is unique 

within the UK. The best method identified for transposing gauged flow data was based on 

normalising the gauged flow time series by an estimate of catchment mean flow, derived 

from a regional statistical model, and re-scaling the resultant time series by an estimate of 

mean flow for the ungauged catchment. The evaluation studies confirmed current thinking 

that a good analogue catchment is one that is close, similar in terms of climatic regime and 

that is hydrogeologically similar - and thus has a similar response to rainfall inputs. 

Furthermore, the analysis has demonstrated that transposing of data from upstream or 

downstream (connected) analogues, generally, results in a very good simulation of the 

times series structure of the flow data at the target site and an acceptable simulation of 

mean flow. This contrasts with the case where the analogue catchment is from an adjacent, 

unconnected catchment. In this case the simulations obtained are generally poor. 

A comparison with the regionalised form of MODE demonstrated that if the analogue 

catchment is connected to the ungauged catchment, and meets the selection criteria 

specified, the transposing of gauged flow data will generally result in a better simulation of 

stream flow. The time series fit is generally better, however the use of the regionalised 

rainfall runoff model will generally give a marginally better water balance. In cases where 

the analogue and ungauged catchments are not connected, the use of a regionalised rainfall 

runoff model will generally give a better simulation of stream flow than the use of data 

from the analogue catchment. In this context, the regionalised model represents a 

significant advance over the current practice of transposing gauged data from analogue 

catchments. 
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10.2 FURTHER WORK 

Ideas for further research are subdivided into two areas. 

The research has identified that accurate climatic input data and an ability to identify a 

contributing catchment area are crucial to the process of closing an adequate water balance. 

Hence these issues are crucial to identifying loss module parameters that are a function of 

the catchment type rather than being an artefact of errors in the data/and or the assumption 

of a closed water balance. Further research into the relationships between these errors and 

the model structure is required. This will to give guidance on how the problem may be 

ameliorated by changes to the model structure and/or identifying critical deficiencies within 

the input data. 

Analysis of the model behaviour within different catchment types identified that in some 

catchment types parts of the model structure were redundant. The simple model MODE, in 

some respects, represented the best compromise between minimising redundancy whilst 

maintaining conceptual realism. Research on how the optimal model structure might be 

defined as a function of the catchment type could prove to be extremely fruitful, 

particularly in the extremes of groundwater catchments and impermeable, upland 

catchments. 

As discussed in Chapter 1, the study specifically did not address snow storage. This is not a 

major issue as snow storage is only important within some highland catchments within the 

north of the country. However, it is an area that should be addressed for completeness. 

The majority of catchments used within the study are small catchments. If the models were 

to be applied within large basins a strategy for subdividing the basin up into appropriate 

sub catchments needs to be developed. The issue of channel routing of stream flows from 

these sub-catchments would also need to be addressed within this strategy. 
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Within this study, model calibration and the subsequent regionalisation of parameters were 

treated as distinct areas of research. The biggest criticism of the multivariate regression 

based model for predicting parameters is that there is inevitably a degree of structural 

dependency between the parameters for a particular parameter vector; i.e. they are 

covariant to some degree. 

It may be feasible to address this by merging the model calibration and regionalisation 

schemes. In this approach, the relationships between model parameters and catchment 

characteristics could be sequentially optimised with the order based on the strength of the 

relationships with catchment characteristics. Between each sequential step, the model 

would be re-calibrated using the predicted values for those parameters that had been 

regionalised. This type of approach is currently being evaluated within the context of the 

regionalisation of continuous simulation models for predicting extreme floods at CEH-

Wallingford (Calver, pers comms). 

The time series objective functions used in the study have addressed the accuracy of the 

simulated flows within individual time steps. It is suggested that the utility of fuzzy 

functions that address the entire time series should be evaluated. An example of this type of 

function could be based on the mean and variance of the distribution of the percentage 

differences between observed and simulated flows across the entire stream flow. 

Calibration would involve the minimisation of these statistics. 
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Figure A.l: Calibration period: observed and simulated hydrographs for 1988 
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B The model calibration scheme and the estimation of 
catchment specific parameter limits 

B.l THE CALIBRATION SCHEME 

The model calibration scheme developed for the research is a three-stage approach based 

upon a Monte Carlo sampling strategy of the feasible parameter space. The scheme initially 

identifies a realistic parameter space prior to identifying parameter vectors that result in 

equally acceptable simulations of stream flow over the calibration period. A feasible 

parameter space is one in which the parameter ranges are suitable for all catchments, and is 

defined by upper and lower limits for parameter values. The realistic parameter space is 

defined as a catchment specific subset of the feasible parameter space that contains the 

significant areas of attraction within the objective function surface(s). 

• In the first stage the loss module is calibrated to identify a feasible parameter space for 

the loss module, starting from initial upper and lower feasible limits for the individual 

parameters. 

• In the second stage realistic optimal, or target values for the LF_OBJ and EFF objective 

functions are estimated. 

• In the third stage these target values are then used to identify 300 equally likely 

parameter vectors for the model given the accuracy of the input data and the 

requirement of the simulated flows to give adequate values for the four objective 

functions, defined within chapter 6. 

The following sub-sections describe the three stages, and the application of each stage to a 

catchment. In practice the whole procedure was fully automated. 

B.1.1 First stage: The loss module 

The objective functions for this stage are model BIAS and error in BFI predicted by the 

loss module. The procedure for calculating these statistics is described in Section 6.2 of 

Chapter 6. 
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There are up to 10 loops within the loss module calibration stage. Within each loop, 

parameter vectors for the loss module are randomly selected from the feasible parameter 

space, assuming a uniform distribution for each parameter between upper and lower limits, 

this is termed a shot. The model is then run over the calibration period for the shot 

parameter vector, and the BIAS and simulated BFI are calculated for the simulation run. 

This sampling of the parameter space is repeated until 3000 valid parameter vectors are 

obtained. A shot is valid if the modelled output from the loss module meets threshold 

values for BIAS and DBFI. Once the defined number of valid shots has been obtained, the 

thresholds for BIAS, DBFI and feasible parameter limits are reduced and the next loop 

initiated. This procedure is repeated until either the end point criteria for BIAS and DBFI 

are reached or 10 loops have been completed. 

The starting point values for DBFI and BIAS are that the a simulation shot must have a 

BIAS equal to, or less than 40% and that DBFI must be less than 0.2. The initial end point 

criteria were a BIAS of ±3% and a DBFI of 0.15. At the end of each loop the parameter 

limits are reset to the maximum and minimum values observed within the valid shots 

within the loop and the objective function criteria are set to the mean values of the criteria 

over the valid shots. The total number of shots required to identify the specified number of 

valid shots depends on the loop number. To obtain 3000 valid shots for loop typically 

required a total of between 100,000 and 500,000 shots for the loop. This large number of 

shots ensured that a thorough search of the loss model parameter space is made within each 

loop, such that a reduced parameter space containing the significant areas of attraction 

within the objective function surfaces is obtained. 

In application to a catchment, if the end point criteria were obtained prior to the 10^ loop 

the number of loops was truncated. If the end point criteria were not met within the 10 

loops, the end point criteria for BIAS was relaxed to ±5%. The catchment was rejected 

from the second stage of the calibration procedure on the basis of being unable to close an 

acceptable water balance if this relaxed end point BIAS criterion could not be met given 

the DBFI constraints. 

The choice of 3000 valid shots and the endpoint criteria are subjective. The choice of valid 

shots provides for a good sampling of the parameter space with a loop without incurring 
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excessive computational effort. The end point criteria for DBFI of 0.15 is a reflection of the 

empirical nature of the calculation of the observed BFI, and the lack of direct 

correspondence with the partitioning of effective rainfall by the model. What the use of this 

criterion does ensure however, is that the model will be capable of simulating the broad 

hydrological response characteristics of the observed regime (as represented by the 

observed BFI) using the final "realistic" parameter space for the loss module defined 

within this stage. 

The end point criterion of a BIAS of 3% was selected after discussions with staff of the 

National River Flow Archive at the Centre for Ecology and Hydrology - Wallingford. The 

figure represents an estimate for what a good quality, well maintained gauging station 

structure should be able to achieve in terms of hydrometric accuracy, at a confidence level 

of approximately one standard deviation. If anything, this criterion is stringent. The 

relaxation of the BIAS criterion to ±5%, if the initial end-point criterion of ±3% was not 

attainable, was introduced to boost the sample size and reflects the tight constraint that the 

first end point places upon the model. Assuming a gaussian measurement error distribution 

for gauged flow, this is tighter than a 95% confidence interval, which would be 

approximately ±6%. In practice, in the majority of catchments where the initial end-point 

criterion could not be met the relaxed criterion also could not be met. This is indicative of 

either a gross error in the climatic input data or a violation of the assumption of a closed 

water balance. The latter error may be due to an incorrectly defined contributing area or 

gauge bypass, both of which can occur in groundwater fed catchments. 

Once the realistic parameter space for the loss module parameters has been identified 

within stage 1, the parameter limits describing this space feed into the second and third 

stages of the calibration procedure. 
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B.1.2 Second Stage: Identification of realistic limits for the LF_OBJ and EFF 
objective functions. 

The objective within the second stage of calibration is to identify realistic, acceptable 

values for the LF_OBJ and EFF objective functions. Within the second stage the fit of the 

full model is optimised, constrained by the realistic parameter space for the loss module 

and a feasible parameter space for the two parameters of the routing module. The second 

stage is again based on a Monte-Carlo sampling strategy, although this time there is no end 

point criteria specified for the objective functions. The four objective functions are all used 

within this second stage. The target objective function limits for BIAS and DBFI are the 

end point values from the loss module calibration stage. These limits are not modified 

during this second stage, or the third stage of calibration. 

In application, the initial target objective function limits for LF_OBJ and EFF are set to 

5000 (i.e. a large value) and zero respectively. The endpoint values for these latter 

objective functions can not be specified, other than as the perfect fit equating to zero and 

one respectively. Within this second stage, shot samples are repeatedly selected from the 

parameter space, and for each shot that meet the target values for BIAS and DBFI, the 

values of LF_OB J and EFF are calculated. A shot is accepted as valid if both of the 

objective function values represent an improvement over current target values for the 

LF_OBJ and EFF functions. If a shot is valid, the target values for the LF_OBJ and EFF 

functions are reduced by an amount equivalent to 20% of the improvement observed, thus 

gradually tightening the target limits for these objective functions for subsequent shots. The 

process is repeated until: 

• either further appreciable improvement in the objective function limits can not be found 

(identified as four successive valid shots in which the maximum improvement for 

either objective function was less than 5% of the current target value for the function), 

• or until the total number of model runs exceeds 250,000. 

Through trials this second stage was found to successfully identify the approximate region 

within the parameter space of the minima for each objective function, given the constraints 

of input data accuracy and conflicting regime requirements from the LF_OBJ and EFF 
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functions. The gradual tightening of the objective function limits prevents the excessive 

minimisation of one or other of the objective functions at the expense of being able to 

minimise the other objective function. 

B.1.3 Third stage: Identification of equally valid parameter vectors for the model 

The objective of the third stage in the scheme is to identify 300 valid shots using the 

optimal target values of the four objective functions identified within the first and second 

stages. For this third stage the feasible parameter space is repeatedly sampled until 300 

valid shots are identified. A fuzzy logic approach is adopted for testing whether a particular 

shot is valid. A shot is accepted as being valid if: 

• the shot values of BIAS and DBFI are less than or equal to the end point criteria from 

the loss module, 

• AND the value of one of the routing objective functions (LF_OBJ or EFF) is equal to 

or better than the reasonable target limit identified within the second stage, 

• AND the value of the second objective function is within +20% of the identified 

reasonable target limit for the second objective function. 

The setting of a fuzzy limit allows for a trade off between the quality of fit over the whole 

time series and that at low flows. This is an attempt to mimic the type of trade off a 

modeller will make when evaluating the quality of a model fit through visual inspection. 

The 300 parameter values obtained in this way can be considered as being equally likely-

given the various requirements for accurate simulation, as represented by the objective 

functions and the inaccuracies within the input data. 

This heuristic, Monte-Carlo based calibration procedure differs from conventional search 

algorithms in that the selection of individual valid parameter vectors are independent of 

one another. The approach is computationally intensive despite the use of the first stage to 

reduce computational overheads. It does mean however, that the parameter space is well 

sampled to provide a range of valid parameter vectors from which to make the final 

selection of a parameter vector for use within the parameter regionalisation studies, 

described in chapter 7. The final choice of parameter vector is discussed within Section 6.6 
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of Chapter 6. 

B.1.4 Limitations of the calibration scheme 

The approach is very computationally intensive, a typical runtime for the calibration 

scheme, calibrating the model over a lOyear period of observed daily mean flows, was in 

the order of three hours, or approximately eight catchment data sets a day. This was for a 

FORTRAN implementation of both the model and calibration scheme running on a 

400mHz Intel Pentium II based PC. There is a direct trade off between the size of the 

feasible parameter space, the required number of valid shots and the length of time the 

code took to run. 

The method requires a definition of parameter space for each parameter (discussed in the 

subsequent section) and the definition of a distribution for the parameter from which to 

draw samples. This involves a degree of subjectivity. As will be discussed, the setting of a 

feasible limit for Kg in MODA was difficult. To address this the limits for Kg were 

programmed in as "fuzzy" limits. During the first three iteration loops for the loss module 

the feasible limits for Kg are not fixed. If a valid shot has a value of Kg that occurs within 

5% of either limit the space for Kg is moved by 10% in that direction. After loop three it 

was empirically demonstrated on a wide range of catchment types that the scheme had 

found the feasible space containing the significant areas of attraction within the Kg 

parameter space. The same approach was adopted for the initial setting of feasible limits 

for the time constant for the quick-flow routing reservoir, Kl . 

A problem that was not addressed was that the approach assumes that parameters are 

independent of one another. This is not the case, however it is primarily is an issue of 

sampling in-efficiency, the impact of which will again be reduced by the iterative reduction 

of the realistic parameter space in Stage 1. 
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B.2 THE ESTIMATION OF CATCHMENT SPECIFIC PARAMETER SPACES 

B.2.1 A priori estimation of the interception model depth parameter for MODA 

Early calibration trials identified a significant problem in identifying realistic values of the 

interception model parameter y within MODA, as a result of large covariance between y 

and the other parameters within the loss module: Cmax, b and Kg. An example of this is 

presented in Figure B.l for the Sure at Ingworth (34003) (a small, dry, permeable 

catchment with geology comprised of sands, gravels and loams). In this figure, the loss 

model parameters from 3000 valid shots for this catchment are plotted as a function of y. It 

can be seen that Kg is function of the value of y. Furthermore, high values of b do not 

occur at low values of y and, conversely, low values of Cmax do not occur at low values of 

y. This covariance is a consequence of the requirement for the calibration scheme to close 

an adequate catchment water balance. 

The interception store only plays a role when there is a significant Soil Moisture Deficit 

(SMD) within the model soil moisture store, that results in a reduction of the evaporation 

rate to below the potential rate (Equations 4.14 and 4.23, Chapter 4). When the SMD is not 

significant, evaporation takes place from the soil stores at the potential rate; this is the same 

rate at which evaporation takes place from the interception store. During periods with a 

significant SMD, the interception store prevents the premature alleviation of the SMD, 

within the soil moisture store by intercepting incident precipitation that would otherwise 

reduce the SMD and hence increase the drainage from the store. As y increases, resulting in 

a greater interception capacity, a increasing percentage of the precipitation incident on the 

catchment surface will be intercepted, and evaporated at the potential rate rather than 

evaporated from the soil moisture store at a rate governed by the soil moisture status of that 

store. 
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Figure B.l An example of loss module parameter covariance for catchment 34003. 

This can be compensated for within the Pareto based loss module by either increasing the 

value of b or reducing the value of Cmax, which in turn will reduce C , and hence Smax 

(Equation 4.14, Chapter 4). As C is reduced the percentage of time that significant soil 

moisture deficits exist will increase, hence the degree of covariance observed between y 

and these two parameters. If Kg is low then the drainage from the soil moisture store for a 

given soil moisture content, S(t), is high (Equation 4.18, Chapter 4), thus a low value of Kg 

will enhance the development of a significant SMD, also counteracting the impact of a 

high interception storage capacity. 

It is not surprising that the interception parameter is not that identifiable. It is only 

significant when there are significant soil moisture deficit, which represent a relatively 

small percentage of the time, particularly in the wetter areas of the UK. However the 

interception model is important within the conceptual structure for MODA for drought 

conditions A priori values for y were estimated for each catchment based on the vegetation 

classes within the catchment and the work, described in Section 4.2.1 of Chapter 4, on 

estimating annual interception losses for specific vegetation types. The interception 

capacity of a vegetation class is a function of the ability of the vegetation to catch incident 

precipitation, which is related to size and density of the plant. The fraction of the 

precipitation that can be intercepted is also controlled by the efficiency with which water 

can be evaporated from the vegetation surface. The latter is related to aerodynamic 
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roughness, which is in turn related to size and vegetation structure. Based on knowledge of 

the structure of the vegetation within each class of the ITE land cover classification class 

and the regional behaviour of the y parameter described in Section 4.2.1 of Chapter 4, an a 

priori value for y was defined for each vegetation class. These values are summarised in 

Table B.l A catchment value for y was estimated for each catchment using 

(B.l) 

where Yi is the maximum daily interception loss for vegetation class, i, and A, is the 

fractional coverage of vegetation type, i. 

The fractional extents of vegetation classes within each catchment were obtained from the 

ITE land cover classification coverage. The limitations of this approach are; 

• the values will not necessarily be optimal; 

• it is assumed that the ITE land cover classes are representative of the historical land 

cover in the catchment and that the fractional extents for individual classes are fully 

covered by the class vegetation type. 

These limitations are offset by the minor role that the interception module plays in 

determining the overall fit of the model over a wide range of climatic conditions. 
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Table B . l A priori values of the interception parameter, y, for the ITE land classes 

Land Class Y (mm) Land Class Y(mm) 
0 Unknown 0 13 Lowland Heather 3 
1 Sea 0 14 Scrub / Orchard 3 
2 Water (inland) 0 15 Deciduous 3 
3 Beach 0 16 Coniferous 5.9 
4 Saltmarsh 0 17 upland bog 0.5 
5 Lowland Grass / Heather 1.5 18 Arable 2.25 
6 Pasture 1 19 Ruderal Weed 0.5 
7 Meadow 1 20 Suburb 0.5 
8 Rough Grass 1.5 21 Urban 0 
9 Montane Grass 1.5 22 Bare 0 

10 Grass / Heather Mix 2 23 Felled Forest 445 
11 Heather 3 24 Lowland Bog 0.5 
12 Bracken 3 25 Open Shrub Heath 2.25 

B.3 THE ESTIMATION OF A CATCHMENT SPECIFIC PARAMETER SPACE 
FOR THE SLOW FLOW RESERVOIR TIME CONSTANT 

In identifying limits for the slow flow reservoir time constant, Kb, the objective was to 

determine a reduced realistic parameter space to improve the efficiency of the third stage of 

the calibration procedure. As discussed in Section 4.3 of Chapter 4, a linear reservoir 

formulation was used for both routing reservoirs. The Institute of Hydrology (1980) 

describes an automated method for identifying a time constant for an exponential recession 

function (equivalent to a linear reservoir with zero inflows), based on the extraction and 

plotting of all recession curves from observed stream flow data using this transformation. 

Drawing a line parallel to the enveloping line where individual recessions run together can 

be used to derive an estimate of the recession constant. Lamb and Beven (1997) describe a 

method for using master recession curve analysis to help in defining the form of an 

unknown underlying storage function, rather than for an assumed storage function. 

In the approach developed for this study, specific limits for Kb were determined for each 

catchment by identifying and estimating the time constants from individual gauged 

recession periods for a catchment. To restrict the recession periods to when, conceptually, 

the total flow is dominated by the outflow from the slow flow reservoir, only recession 

periods below a threshold flow of Q80 were considered. Below a QSO flow it can be 

assumed that catchment stream flow is dominated by the release of water from storage 

BIO 



within the catchment. A period of recession for this study was defined as starting when the 

flow on day (i+1) is less than the flow on day (i). The impact of the choice of threshold 

was evaluated by considering the recession behaviour in ten percentile increments between 

Q50 and Q90 for both permeable and impermeable catchments. It was found that the 

number of significant recession periods, meeting the acceptance criteria, decreased rapidly 

for flows higher than the Q80 flow. The end point of the n day recession was taken as 

either when the flow on day (i+n) is greater than the flow on day (i+n-1) or when the 

incident precipitation on day (i+n) was greater than two percent of the flow on day (i+n). 

The latter constraint was used to minimise the impact of the assumption that the inflow into 

the conceptual reservoir is zero. A further constraint of three days was placed on the 

minimum length of the recession period. For each catchment, individual periods of 

recession were identified from the calibration period flow data. Under zero inflows, and 

with a daily time step, the outflow from the reservoir within a time step can be 

approximated using Equation 4.24 (Chapter 4). A plot of the cumulative flow from the start 

of recession to day (i+n-1) represents the volume by which the reservoir is depleted. The 

gradient of a straight line fitted to this plot will be an estimate of the reciprocal of the time 

constant Kb. An estimate of Kb was obtained using a least squares fit for each of the m 

recession periods identified for a catchment. For each catchment, the mean values of Kb 

and the corresponding standard error of the mean were calculated from the sample of m 

estimates of Kb. Using the central limit theorem, a 95% confidence interval was 

constructed for the sample mean as 

Kb-1.96xS.E<Kb<Kb + 1.96xS.E, (B.2) 

where S.E is the standard error of the estimated mean value. This procedure is 

demonstrated in Figure B.2 for catchment 67010. This catchment is one of four used to 

illustrate parameter identifiability issues within Section 6.5 of Chapter 6. The recession 

curve analysis identified 56 individual recession periods over the calibration period for this 

catchment. The flow - storage depletion relationships are plotted as points in Figure B.2(a). 

These points are normalised by the flow at the start of the recession period to facilitate 

plotting on the same axis. A histogram of the length of recession periods indicates that the 

modal length of a recession period was four days with, as would be expected, a greater 

incidence of short recession periods. A histogram of the estimated values of Kb for each 
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recession period is presented in Figure B.2(c) and the relationship between Kb and length 

of recession period is presented in Figure B.2(d). Figure B.2(d) illustrates that there is a 

much greater variation in the estimate of Kb for short recession periods, primarily because 

these estimates are generated from a smaller number of points. There may also be a quick 

flow recession component, and/or the assumption of zero inflows into the reservoir may be 

violated. The longer recession periods generally yield estimates of Kb in the region of 400 

hrs. The mean value of Kb and the standard error of the mean are 447 and 25 days 

respectively. The 95% confidence interval used to define the upper and lower limits of the 

parameter space for Kb was hence [397,497]. 

For 13 stations this analysis yielded fewer than 10 recession periods, which was regarded 

as being an insufficient number for this analysis. These stations all had BFI estimates of 

less than 0.37 indicating that they were all fairly flashy. A simple regression model was 

constructed for predicting Kb from BFI estimates using the mean Kb and BFI estimates for 

the remaining 226 catchments. The relationship is presented in Figure B.3. The model 

explained 58% of the variance (R^) and had a factorial standard error of 66%. The upper 

and lower parameter limits for the 13 stations were estimated using the 95% predictive 

confidence interval from this model. 
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C An evaluation of the behaviour of MODA and MODB 
within four case study catchments 

C.l INTRODUCTION 

As discussed within Chapter 6, the approach to the calibration of the models for this study 

recognises that uniqueness of solution is unlikely to exist, given the uncertainty associated 

with the input data and the sometimes-conflicting simulation requirements of different 

objective functions. The result is that there are ranges of stream flow simulations (with 

associated objective function values) that are equally as likely realisations of the optimal 

simulation. In this appendix the results from the calibration scheme for four catchments are 

used to illustrate the dependencies of the models on catchment type, the potential 

parameter covariance issues for MODA and the impact of errors in the input data upon the 

loss module parameters. The behaviour of MODB within the same catchments is also 

discussed within the appendix. The four case study catchment selected for the discussion 

represent the following climatological and hydrological permutations; 

• dry- permeable :- The Bure at Ingworth (34003); 

• dry- impermeable:- The Finn at Uxbridge (39098); 

• wet- permeable;- Sydling Water at Sydling St. Nicholas (44006); 

• wet- impermeable;- The Gelyn at Cynefail (67010). 

These four catchments are discussed in detail within Chapter 6. 

€.2 AN EVALUATION OF MODA MODEL FITS M^ITHIN THE FOUR CASE 
STUDY CATCHMENTS. 

Range statistics regarding the parameters, the objective functions and goodness of fit 

ranges for the valid shots identified for each of the catchments are summarised in Table 

C.I and Table C.l for the catchments considered. Table C.l presents the 95, 50 and 5 

percentile values (derived non-parametrically) for the individual variables. The variance 

within the range for each variable is presented within Table C.2. 
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The variance is summarised non-parametrically using: 

VAR = 
V95 - V5 

2 \ ^ 0 
( C . 1 ) 

This measure is analogous to the more familiar coefficient of variation from gaussian 

statistics. The behaviour of MODA within each catchment is discussed in more detail 

within the following sub-sections. 

Table C.l Percentile values for parameter, objective function and goodness of fit 

ranges 

34003 39098 44006 67010 
P95 P50 P5 P95 P50 P5 P95 P50 P5 P95 P50 P5 

Cmax 794 599 273 787 5 ^ 139 543 441 374 140 109 72 
b 1.06 0.79 0.43 2 J ^ L37 0U5 0U6 0.06 0.00 3.92 3J^ 1J8 
K1 139 84 56 53 26 12 411 222 114 45 30 16 
Kb 1779 1430 1047 416 250 94 1719 803 498 496 452 401 
Kg 6661 5593 4122 104267 62879 26581 8969 6760 5624 893 803 752 
LF_OBJ 30 27 25 83 73 62 32 27 22 57 48 41 
BIAS 3 1 -3 3 0 -3 3 0 -3 -3 -3 -3 
EFF &67 0.62 0.51 &74 0.68 &56 0.76 0.64 0.60 0.77 076 0.71 
BEQ95 10 20 -33 41 -29 -60 36 26 -3 3 -7 -15 

Table €.2 Variance statistics for parameter, objective function and goodness of fit 

ranges 

34003 39098 44006 67010 
Cmax 43 61 19 32 
b 40 71 143 35 
Kg 49 79 67 49 
K1 26 64 76 11 
Kb 23 62 25 9 
LF_OBJ 9 14 17 16 
BIAS 3 3 3 0 
EFF 13 26 32 4 
BEQ95 26 71 16 9 

C.2.1 The Bure at Ingeworth, 34003 

A Pearson correlation matrix presenting significant correlations between variables of 

greater than 0.4 at a significance level of 95% is presented in Table C.3 for catchment 

34003. Scatter plot matrices for the correlation between parameters, and between the 

parameters and objective functions/goodness of fit measures are presented in Figure C.la 
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and Figure C.lb. The histograms for parameter values (Figure C.la) show that parameters 

within the middle of the range occur more frequently thus confirming that the choice of 

parameters was not constrained by the restriction on the feasible parameter space. The 

objective functions presented in Figure C.lb are BIAS, EFF and LF_OBJ, and an 

additional objective function, the Euclidean Objective Function, EOF. The use of the EOF 

is discussed in the Chapter 6, Section 6.6. The BEQ95 goodness of fit measure is also 

included within the second scatter plot. 

There is a high positive correlation between the loss module parameters: Cmax, b and Kg. 

The range of the variation, with VAR values between 22 and 44, is high (Table C.3). The 

routing parameter, K1 and Kb do not correlate with each other, or the loss module 

parameters. The range of Kg values is comparable with that for the other permeable 

catchment, 44006 (Table C.l). 

Table C.3 Correlations for 34003 

(3WAX b K1 ]Kb IJLCHUBIAS EFF BEQ95 
CMAX 1.00 
B 0.94 LOO 
K1 1.00 
Kb 1.00 
IC*, 0.9:2 ().79 l.CK) 
LF_OBJ -0.55 -0.64 -0.58 1.00 
BIAS 1.00 
EFF -0.51 0.46 
BEQ95 0.56 0.52 qJ4 -0^86 

LF_OB J is inversely correlated with both routing parameters, indicating that both of the 

routing reservoirs are important in controlling the fit of the model over the lowest third of 

the flow distribution. The LF_OBJ objective function improves (becomes smaller) as the 

routing reservoirs become less responsive (K1 and Kb become larger). 

BIAS is not strongly correlated with any of the parameters, but BEQ95 is strongly 

correlated with the loss module parameters. Evaporative losses are dependent upon the soil 

moisture deficit, this is expressed as the depth of water held in storage across the catchment 

as a fraction of the total depth of water that can be held in storage (Equation 4.23, Chapter 

4). For a given set of inputs, the ability of the model to generate a significant soil moisture 

deficit (one that limits the evaporation rate) is controlled by the value of Smax. Smax is 
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equal to the mean storage capacity over the catchment, C , which in turn is controlled by 

the values of Cmax and b (Equation 4.14, Chapter 4). 

J 

IL 
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(a) 

CMX B K1 m 

% / 
CWK B a # # 

(b) 
Figure C.l Scatter plots for catchment 34003. 

A large value for C will lead to an over prediction of losses and hence an under prediction 

of mean flow as significant SMD will not occur as frequently. A smaller value will lead to 

an under prediction of losses as significant SMD will frequently build up. As discussed in 

Chapter 6, significant SMDs do build up in this catchment, as a consequence of the low 

rainfall and thus the loss module is important in controlling the BIAS (error at mean flow) 

of a model fit. 
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The parameters Cmax and b compensate for each other in controlling C , and hence losses, 

which explains the strong covariance between these parameters in this case. The mean 

depth, C , is in the order of 200 mm at the 5% value of Cmax and 400 mm at the 95% 

value of Cmax. This would indicate that significant SMD are more likely to exist at low 

values of Cmax and b. The rate at which water drains from the soil store is inversely 

proportional to the parameter Kg. Higher values of Cmax yield correspondingly higher 

values of C , and hence Smax. The runoff for a given depth of rainfall is correspondingly 

lower. This is compensated for by an increase in Kg, which will in turn limit drainage from 

the base of the store, hence generating more direct runoff from the store. 

The EPF objective function is negatively correlated with the quick flow time constant, Kl . 

EPF is a measure of the overall time series model fit and is biased towards the fit at higher 

flows. The EPF objective function improves with a decreasing value for Kl whereas the 

LP_OB J function improves with an increasing value of Kl . There is therefore a trade off 

with Kl between the fit at low flows and the overall fit of the hydrograph. This is 

confirmed by the weak positive correlation between EPF and LP_OBJ. 

The bias at Q95 flow, BEQ95, is negatively correlated with LF_OBJ. However, it is also 

positively correlated with b and Cmax, indicating that the under estimation of BEQ95 is 

less at high values of Cmax and b (as the model consistently has a negative bias at Q95). 

The reason for this is not obvious; but it is probably associated with the partitioning of 

effective rainfall between the quick and slow flow routing paths. BEQ95 is also positively 

correlated with Kb, indicating that the under estimation is lower for larger values of Kb and 

hence a lower gradient recession curve. The model was unable to obtain a better fit at Q95 

flows within this catchment because of the trade off between LF_OB J and EPF. 

C.2.2 Finn at Uxbridge (39098) 

The correlation matrix for this catchment is presented in Table C.4 and the scatter plot 

matrices in Figure C.2. Significant SMD occur in this catchment for about 40% of the time. 

Within this catchment there is an even stronger degree of co-linearity between Cmax and b 

than that observed with 34003, but the correlation between Kg and Cmax and b is not 

significant. The range for both parameters encompasses most of their feasible parameter 

space, indicating that these parameters are not readily identifiable. The values of Kg are 
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very high, resulting in very little drainage to the slow flow routing reservoir, and again the 

values cover quite a wide range. The range of BIAS indicates that the model can easily 

close a water balance. The negligible base flow (observed BFI =0.09) within this catchment 

explains the lack of correlation between Kg and the other loss module parameters, as there 

is negligible drainage through the base of the soil moisture store to the slow flow routing 

reservoir. This also explains why Kg is not readily identifiable. The main restriction on the 

acceptable values of Kg is only that they have to be large, thus resulting in negligible 

drainage. 

Table C.4 Correlation matrix for 39098 

CMAX b K1 Kb Kg L F _ O B J BIAS EFF BEQ95 
CNLLK IXW 
B &98 LOO 
K1 1.00 
Kb 1.00 
I%g LOO 

().45 0.57 0.85 1.0() 
BIAS 1.00 
ICFF (152 0.53 (144 l.CW) 
BEQ95 072 0.44 1.00 

The range and magnitudes of values for K1 and Kb are commensurate with the values 

observed for the other impermeable catchment 67010 (Table C.l). Interestingly, 

considering the range of values within the valid shots for K1 and Kb, these time constants 

do not show a strong correlation with the LF_OBJ and EFF objective functions. This 

implies that the small-scale variations in objective function values are not sensitive to 

magnitude of the variation observed in K1 and Kb. The catchment has a very low base 

flow. The average volume of water passing through the slow flow routing path was 9% of 

the total volume of water and thus the slow flow routing path, and hence Kb, is not critical 

in the fit of the model within this catchment. 

C-6 



The LF_OBJ function correlates positively with all of the loss model parameters, 

particularly Kg, and thus the way in which effective rainfall is partitioned within the loss 

module. These positive correlations imply that better fits are obtained for smaller values of 

Kg, Cmax and b. Given the small base flow component, this in turn implies that the direct 

runoff response (in part controlled by b) to smaller rainfall events is important in 

controlling LF_OBJ. 

EPF is positively correlated with Kg, K1 and LF_OBJ implying a trade off again between 

the overall hydrograph fit and the fit at low flows. BEQ95 is positively correlated with Kg 

and thus the model will over estimate Q95 flows for larger values of Kg and under estimate 

for smaller values of Kg. This behaviour is not intuitively correct and reflects that the slow 

flow component is a negligible component of the hydrograph fit and that the model fit is 

controlled by the quick flow routing component. The role of Kg in this catchment is to 

control the volume of water per unit area held in storage and the proportion of direct runoff 

generated. This will be higher for higher values of Kg. Values for EFF and LF_OBJ are 

weakly correlated indicating that there is a trade off between the fit at low flows and the 

overall fit. BEQ95 and EFF are weakly correlated, indicating that there is a tendency to 

over estimate Q95 when the overall time series fit is optimised. 
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Figure C.2 Scatter plots for catchment 39098. 

C.2.3 Sydling Water at Sydling St. Nicholas 44006 

The correlation matrix for this catchment is presented in Table C.5 and the scatter plot 

matrices in Figure C.3a and Figure C.Bb. The simple Penman drying curve model predicts 

that significant soil moisture deficits exist for less that 20% of the time in this catchment. 

The variability in Cmax is low for this catchment, whereas the variability in b is high. 

However, b is very small (the 95% value is only 0.16) indicating that the distribution of 

soil stores within the catchment is strongly skewed towards the value of Cmax. This may 
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reflect the chalk hydrogeology of the catchment and the associated high infiltration rates 

and low direct runoff. Alternatively, it may indicate that the model is compensating for 

errors in input data by maximising the evaporation rate. There is a weaker relationship 

between Cmax and b than that observed within the previous catchments; an indication of 

the lesser importance of the loss model in determining mean flow in this higher rainfall 

catchment. Interestingly Kb is inversely weakly correlated with Cmax, although this may 

be spurious as the scatter plot indicates that the correlation is limited to not observing high 

values of Kb for high values of Cmax. Furthermore, the variability in Kg is also relatively 

small. The loss module parameters, Cmax and Kg, are more identifiable for this catchment 

than the two dryer catchments. The values of Kg are broadly similar to those observed for 

the other permeable catchment. 

The fit of the model over the lower third of the flow distribution, as represented by 

LF_OBJ, is dependent on Kg and b. The value of the objective function decreases 

(improves) with increasing values of Kg, implying a relationship with decreased drainage 

rates. The correlation with b implies that low values of LF_OB J only occur for low values 

of b, whereas high values of LF_OB J may be obtained for both low and high values of b. 

BIAS is strongly negatively correlated with Kg. The model will over predict mean flow for 

lower values of Kg and under predict for higher values. 

Table C.5 Correlation matrix for 44006 

CMAX B K1 Kb K g LF_OBJ BIAS EFF BEQ95 
C M A X 1.00 
b 0.61 1.00 
K1 1.00 
Kb -0.45 1.00 
K g 0.62 1.00 
LF_OBJ 0.50 -&58 1.00 
BIAS 0.45 -0.94 0.67 1.00 
EFF -0.53 &54 1.00 
BEQ95 0.45 0.49 &54 1.00 

Higher values of Kg would imply reduced drainage, and thus water is likely to be retained 

in the loss module preventing significant soil moisture deficit from building up resulting in 

an over-estimation of losses (and hence an under prediction of mean flow). Conversely for 

low values of Kg evaporation of water may be suppressed due to increased drainage from 
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the loss module. It should be noted that there is a negative feedback loop as the drainage 

rate is proportional to the depth of water within the loss module. For a given set of input a 

higher value of Kg will lead to an enhanced depth of water held in storage which will, in 

turn, result in a higher drainage rate. 
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(b) 
Figure C.3 Scatter plots for catchment 44006. 

EFF and LF_OBJ are negatively correlated with Kg, again implying a trade off between the 

overall hydrograph fit (EFF) and the fit at low flows (LF_OBJ), although this is not as 
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significant as that observed in the other catchments. EFF is positively correlated with 

BIAS, a function of the correlation of both statistics with Kg. BEQ95, is weakly, and 

positively correlated to Cmax, Kb and LF_OBJ. The extent of this correlation is that low 

values of BIAS do not occur at high values of Cmax, Kb or Kg. The fit of the BEQ95 

statistic represents a trade off against the LF_OBJ statistic; i.e. a good fit across the lower 

third of the flow distribution may result in a systematic over estimate of Q95 flows. 

C.2.4 Gelyn at Cynefail 67010 

The correlation matrix is presented in Table C.6 for catchment 67010. Scatter plot matrices 

are presented in Figure C.4a and Figure C.4b. There is generally lower variability in the 

parameter ranges for 67010 than the other catchments. There is a strong positive correlation 

between Cmax and b (Table C.6), but no correlations observed between other parameter 

pairs. The model within this catchment (the BIAS statistic lies between -2.5 and -3%) 

always underestimates the runoff. The catchment is a very wet catchment; Penman 

estimated soil moisture deficits occur for about 1% of the time over the calibration period. 

This underestimate of mean flow is likely to be either a result of an error in the estimated 

rainfall (too low), the catchment area (too small) or it could be a hydrometric error in the 

stream flow data. It is unlikely to be an error in the evaporation data as the evaporation 

demand represents a relatively small fraction of the water balance in this catchment. The 

model cannot close an exact water balance. The loss model parameters should play a 

negligible part in the water balance, as significant soil moisture deficits should not build up 

on a regular basis. However, the low values of Cmax and high values of b observed 

indicate that soil moisture deficits are likely to build, thus limiting evaporative losses. This 

may be an example of the model compensating for errors within the input data, or 

alternatively, this may be a consequence of the thin soils and impermeable substrate within 

this catchment. 
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Table C.6 Correlation matrix for 67010 

C M A X B K 1 K b K g I J L C M U B I A S E F F B E Q 9 5 

C M A X 

B 
K 1 

Kb 
K g 

LF_OBJ 
BIAS 
EFF 
BEQ95 

1.00 
0.95 1.00 

1.00 

-0 .81 

-0.97 

1.00 
1.00 

0/W -0.65 

1.00 

0J5 
LOO 

1.00 
1.00 

CMAX B 

(a) 

CUAX B KB EOT 

A 
= . * 

/ 
<1 KB KG EOT 

(b) 

Figure C.4 Scatter plots for catchment 67010. 
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The fit at Q95 is good, the within shot variance of BEQ95 is low at 9% with a median 

value of -7%. This error is comparatively very low, as an absolute error will represent a 

greater fraction of the observed Q95 in this flashy catchment than for one of the more 

permeable catchments. The storage capacities within the catchment are low; this causes 

surface runoff to be generated easily. The values of Kg are very low to compensate for this 

and enable a realistic base flow contribution to be estimated. 

The values of EPF are generally high, although there is a greater variation for this 

catchment than the other catchments. The value of LF_OBJ is comparable with the other 

catchments. There is a strong, positive correlation between LF_OBJ and EFF-indicating a 

trade off again between these objectives functions. This is confirmed by the strong negative 

correlations between EFF, LF_OBJ and Kl, the time constant for the quick flow routing 

reservoir. High values of Kl give a better fit over the lower third of the flow distribution 

while low values of Kl are required to model the quick response components of the 

hydrograph. Kg and Kb are respectively negatively and positively correlated with BEQ95. 

The errors at Q95 are smaller for a more damped response from the slow flow routing 

reservoir (as the majority of Q95 bias errors are negative). Smaller errors also occur when 

the drainage from the loss into the routing reservoir is greater (inversely proportional to 

Kg) for a given value of S(t). 

C.3 AN EVALUATION OF MODE MODEL FITS WITHIN THE FOUR CASE 
STUDY CATCHMENTS 

The number of catchments for which an acceptable water balance could be closed was 

reduced from 179 for MODA to 171 for MODB. One of the catchment for which a water 

balance could not be closed was 44006. The 95^, median and 5"̂  percentile parameter and 

objective function limits for MODB are presented in Table C.7 for the four case study 

catchments. The significant correlations of greater than 0.4 are presented in Table C.8. 

The parameter ranges for Kl and Kb are broadly similar to those observed for MODA. The 

range is much less for Cmax (Cmax is much more identifiable) and the median values for 

Cmax are much smaller than those observed for MODA, a consequence of not having the 

soil drainage component within the model and the assumption of a uniform distribution. 

The loss module configuration for MODB is analogous to a probability distributed form of 
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the Penman drying curve model. The values of LF_OBJ and EFF (with the exception of 

67010) and BEQ95 are all substantially worse demonstrating that poorer fits are obtained 

with MODE, particularly for EFF in 34003. The values of EFF obtained with MODE for 

67010 are substantially higher than those obtained with MODA. 

Table C.7 Ranges for parameters and objective function values for the test 
catchments using MODE 

34003 39098 67010 
% 95 50 5 95 50 5 95 50 5 
Cmax 257 237 217 422 381 354 329 129 39 
K1 242 107 34 38 24 12 26 18 6 
Kb 1783 1515 1147 402 285 114 491 446 404 
LF_OEJ 44 39 35 88 76 72 70 59 50 
BIAS 3 1 -1 3 0 -3 2 -1 -3 
EFF 0T5 T6 0.0 0.74 OJl 0.53 (181 &79 069 
BEQ95 -45 -53 -65 -20 -39 -60 34 13 -8 

The parameters are uncorrelated with one another in all catchments. BIAS is strongly 

correlated with Cmax, as would be expected. In the permeable catchment (34003) EFF, 

LF_OBJ and BEQ95 are strongly correlated with Kb, and the value of both objective 

functions improves with increasing Kb. EFF is strongly correlated with K1 in the 

impermeable catchments (39098 & 67010). For 39098, the LF_OEJ function also 

correlates with Kland BEQ95 is also strongly correlated with Kb. There is no evidence of 

the trade off between EFF and LF_OBJ observed with MODA within these catchments. 

There is therefore no evidence of trade off between the overall fit of the hydrograph and the 

fit at low flows for MODE. This is a consequence of the use of a fixed split for partitioning 

effective rainfall. 

CM4 



Table C.8 Parameter and Objective Function correlation matrices for MODE 
within the case study catchments 

Cmax K1 Kb LF_OBJ BIAS EFF BEQ95 
34003 

Cmax 1.00 
1(1 1.00 
B3) LOO 

-l.OO 1.0() 
131/lS -l.CK) l.CK) 
IiFTF (3.77 -0J8 l.CK) 
13I3Q95 ID.98 -CX98 O.fkl l.OO 

Cmax K1 Kb LF_OBJ BIAS EFF BEQ95 
39098 

Cmax 1.00 
]&1 LOO 
ICb l.CK) 
1JF_(D]3J 0.4L6 -0.86 l.CK) 
13I/LS -l.CK) 1.1)0 
lapl? ().86 l.CK) 

0.49 0.76 -0.4() l.CK) 

Cmax K1 Kb LF_OBJ BIAS EFF BEQ95 
67010 

Cmax 1.00 
ICl l.CK) 
Bib l.CK) 
LF_OBJ 1.00 
I3I/IS ^179 l.CK) 
EOPF ().76 -O.eil l.CX) 
:BEQ9j) O.IM 0.6kl -0.61 1.00 
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D A Region of Influence approach for regionalising 
MODA 

D.l INTRODUCTION 

The quality of model fits, obtained when MODA and MODS were run with model 

parameters predicted using the regression models was extensively evaluated. This 

evaluation, presented in detail within Chapter 8, demonstrated that the fits obtained with 

the regression based regionalised model parameters were generally of a higher quality for 

the simpler model configuration MODE. However, the model structure is not as 

conceptually attractive as that for MODA. This is due to the more simplistic treatment of 

soil moisture behaviour and the partitioning of effective rainfall between quick and slow 

flow routing paths. Considering the performance of the calibrated model parameters, 

MODA was found to be more effective in closing a water balance in a greater number of 

catchments, although there is strong evidence of the flexibility of the model structure 

compensating for errors in climatic data. 

One potential reason for the performance of the regionalised parameters for MODE being 

greater than that of their MODA counterparts is the strong co-linearity observed between 

the MODA loss module parameters. This co-linearity is ignored in the regression based 

regionalisation analysis, in which each parameter is treated as being independent of the 

others within the vector. An alternative approach to regionalisation was developed based 

on retaining the parameter vector as a single entity, and then using suitable catchment 

characteristics to select the most appropriate calibrated parameter vectors from the pool of 

catchments for application at an ungauged site. The type of analysis, called a Region of 

Influence (ROI) has been used in catchment classification (Bum and Boorman, 1993) and 

has been used by a number of researchers within regional flood frequency estimation (e.g. 

Eum and Goel, 2000; Robson and Reed, 1999). This approach was not applied to MODE, 

as there was negligible correlation between the parameters for this model configuration. 

The selection of catchment characteristics for assessing catchment similarity is presented 

withinD.1.1 . The ROI algorithm developed for the study is presented within D.l.2. This 

section also includes a comparison of the performance of the ROI approach in predicting 
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stream flow with that of the regression based approach for MODA. 

D.1.1 Selection of characteristics for assessing similarity 

Canonical Correlation Analysis (CCA), Manly (1994), was used to select the most 

appropriate catchment characteristics for indexing the entire model parameter vector. CCA 

is used to identify and optimise the correlation between linear combinations (V) of 

dependent (Y) variables and linear combinations (U) of independent (X) variables. It can 

be thought of as an extension of multiple regression in which several Y variables are 

simultaneously related to several X variables. For p X variables and q Y variables there 

can be up to r pairs of linear combinations (where r is equal to the smaller of p or q) that 

are significantly correlated. These r pairs are chosen so that the correlation between U1 and 

VI is a maximum, U2 and V2 is a maximum, subject to being un-correlated with U1 and 

VI, and so forth. The first pair will have the highest correlation, the second the second 

largest correlation, etc. 

Solving the following Eigen value problem identifies canonical variables and associated 

correlations; 

(B-'C'A-'C-Al)b = 0, (D.l) 

where: 

B= qxq dependent variable correlation matrix; 

A= pxp independent variable correlation matrix; 

C= pxq correlation matrix between dependent and independent variables; 

1 = an identity matrix. 

X and Y are standardised to have zero mean and unit variance. The eigen values are the 

squares of the correlation between the canonical variable pairs. Th eigen vectors bl,b2,...br 

give the coefficients of the Y variables for the canonical variables. The coefficients of Ui, 

the ith canonical variable for the X variables, are given by the elements of the vector; 

a = A - ' C h . (D.2) 
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As with PCA, the interpretation of coefficients for X and Y for a particular canonical 

variable pair is problematical because of the potential covariance problems between 

elements of the X vector, or the Y vector. For this reason loadings, which are the 

coiTelation between the canonical variable in question and each of the component 

variables, are often used. The plot axes for the canonical variables can be rotated if a 

variable has a sizeable loading for more than one canonical variable. The aim is to 

maximise the component loading for a variable with one PC and minimise it with respect 

to the others. 

The catchment characteristics used in the analysis were those continuous variables that 

were found to be significant in determining the regression based relationships (Chapter 7). 

Variable transformations that were found to be useful in the regression analysis were 

applied to both the catchment characteristics and the calibrated model parameters. The Y 

variables considered were therefore log(C +1), b, log(Kg+l), log(Kl+l) and Kb. The X 

variables considered were log(PP+l), log(LDP+l), log(AREA+l), log(DPL_BAR+l), 

]og(HOSTRES+l) and HOSTBFI. Initial analysis identified that there was high redundancy 

in the use of log (LDP+1), log(AREA+l) and log(DPL_BAR+l) due to the high inter-

correlation between these variables. For this reason log(LDP+l) and Log(DPL_BAR+l) 

were removed from the analysis, as the correlation between Log(AREA+l) and the model 

parameters tended to be greater. 

The resultant analysis is summarised in Table D.l. The canonical variables have been 

rotated to aid the interpretation of the loadings. The total shrunk (or population estimate) 

R^ of 0.88 indicates that the set of three independent canonical variables explains 88% of 

the variation in the set of dependent canonical variables. The first entries in the table list 

the correlation between the canonical variable pairs, both before and after rotation. This 

demonstrates that the first two pairs dominate the relationships. Looking at the coefficients 

and rotated loadings for these pairs in more detail, it can be seen that Kb and log (Kl+1) 

dominate the dependent CV in the first pair, and the independent CV is dominated by 

BFIHOST. This confirms the regression relationships for these parameters, that these 

variables are dominated by the hydrogeological nature of the catchment, as represented by 

BFIHOST. 
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Table D.l Summary of the canonical correlation analysis 

Canonical Variables 
1 2 3 

Canonical: Unrotated 0.83 0.74 0.40 
Correlations: Rotated 0.74 0.64 0.30 

Dependent variables: 1 2 3 Independent Variables: 1 2 3 
-0.09 -&03 0.40 Coefficients BFIHOST 0 96 0.48 <X37 

KB &24 0T4 OOl I.C)(]L_P'1P 0.08 -1.06 (135 
L0G_K1 0.43 -&06 ().38 I_0(jL_/URJEyi 0.05 0.18 1.01 
LOG_KG 4152 1.35 0.90 
LOG_CBAR 0.83 -0.57 -L27 

Rotated B <115 -0.74 0.29 BFIHOST 0.97 -0.22 0.09 
KB 0.86 -&02 -0.03 Loadings LOG_PP &22 -0.97 -0.04 
LOG_Kl 0 . 7 2 0.24 -&22 IJDGL/JU&A 0.08 0.04 0.99 
LOG_KG 0.03 0.99 -0.11 
LOG_CBAR 0.29 0 . 6 4 -0=66 

Total Shrunk 0.88 

In the second pair, the dependent CV is dominated by the loss model parameters whilst the 

independent CV is dominated by log (PP+1), the logarithm of the potential for the 

catchment to generate significant soil moisture deficits. The negative loading for the Pareto 

shape parameter, b, and the positive loadings for log (C +1) are understandable. For a 

given value of Cmax, a lower value of b will give rise to a higher value of C . This result 

indicates that the role of parameters in controlling evaporation is more important within 

high PP catchments. The positive loading for Kg supports this theory. The nett effect of a 

higher value of Kg will be to retain water within the loss module leading, potentially, to an 

enhanced evaporation loss. The third pair of CV are not highly correlated. The pair is 

dominated by Log (C +1) within the dependent variable and Log (AREA+1) within the 

independent variable. This indicates a weak relationship between C and catchment size, as 

was found to be the case in the regression modelling of Cmax for MODE. On the basis of 

this canonical correlation analysis, BFIHOST and PP were selected as the catchment 

characteristic indices that dominate the relationships between the variation in parameter 

vectors and the variation within the continuous catchment characteristics. 
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D.1.2 The ROI algorithm 

The utility of three schemes was evaluated for selecting analogue catchments, based on the 

similarity in BFIHOST and PP from a source pool of catchments. These schemes were 

evaluated by considering each catchment from the data set of m calibrated catchments for 

MODA in turn -termed the target catchment - and then selecting n nearest neighbours from 

the remaining pool of {m-1) catchments- termed the source catchments. The model for the 

target catchment was run using calibrated parameters from each of the n catchments and 

the catchment area and climatic data for the target catchment. This process yields n 

simulated time series of flows for the target catchments. Taking an arithmetic average to 

give the final simulated flow time series for the un-gauged catchment combined these time 

series. The fit of this time series was then evaluated against the gauged flow time series. 

The three schemes for selecting nearest neighbour catchments were: 

1. To rank the m-1 source catchments in order of absolute difference in HOSTBFI 

between the source gauge and the target gauge. To then select the gauges from the pool 

of (m-1) for which the difference in HOSTBFI was less than 0.07 (The 68% prediction 

limit for the HOSTBFI regression model). This identified K catchments, which do not 

have significantly different BFIHOST values at the 68% confidence level. These K 

gauged were then ranked in order of the absolute difference in PP. Taking the n nearest 

neighbour catchments in terms of PP from these K source catchments then identified 

the ROI for the target gauge. 

2. As for (a) but using the 95% prediction limit for the HOSTBFI model assuming 

normality. 

3. As for (a) but using a further condition that the difference in catchment area should not 

exceed 20%. The sensitivity of the results to the value of this condition was evaluated. 

These three schemes gave very similar results. The 68% confidence interval is plotted as a 

function of n for the goodness of fit statistics BIAS, EFF and BEQ95 for scheme (a) in 

Figure D.l over the pool of m catchment during the calibration period. The 68% 

confidence intervals obtained for MODA using the regression based model parameter 

estimates are also included within the plots as dashed lines. 
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This figure demonstrates that the BIAS 68% confidence interval for the ROI approach is 

larger than that for the regression based parameter estimates, and it increases in width as n 

increases. The EFF confidence interval is both wider than the regression based estimates 

and corresponds to lower median values of EFF. For some values of n, the BEQ95 

confidence interval is similar to that for the regression based estimates. In general though, 

the confidence interval is wider. The differences in BIAS, R^, EFF and BEQ95 between the 

results obtained using the ROI approach for n=l and the regression based model parameter 

estimates are summarised as histograms in Figure D.2. Within the figure negative values 

indicate degradation in performance when using the ROI based estimates. These 

histograms confirm that the ROI based approach is marginally worse for BIAS, 

significantly worse for EFF and similar in performance for BEQ95. Given these results the 

ROI approach was not considered further. 

D-6 



40 

30 

20 

U) 
.2 10 
m 

0 

- 1 0 

- 2 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

number of stations 

" 0.6 

200 

s 
o 150 
in o> 
O 100 

(0 
o 50 

0> 
(D n 
ra 
m 

-50 

5 6 7 8 9 10 11 12 13 14 15 

number of stations 

0 1 2 3 4 5 6 7 

number of stations 

9 10 11 12 13 14 15 

Figure D.l Comparison of the performance ROI and regression based parameter 
estimates. 

D-7 



02 

0 1 

00 
.01 OJO -100 

r r f r f 
-90 0 

0:3 

^ oo ^ 
R2 

o 

00 

0 1 
01 

00 00 
OOO 300 100 0 100 2C0 300 dOO 00 

Err 
OOO 300 100 0 100 2C0 300 dOO 

BB̂9S 

Figure D.2 Comparison of ROI results and regression based results for MODA. 

D-8 



Appendix E: 
The development of regression models 

for regionalising MOD A and MODB: Results 



E The development of regression models for 
regionalising MOD A and MODE: Results 

The full results for the development of regression models for predicting the rainfall- runoff 

model parameters are presented within this appendix. The results are summarised within 

Chapter 7. The results of the regression analysis are presented by parameter for each model. 

In each case, a summary table describing the structure of the 100% model is presented. 

This is accompanied by plots of residuals and the predicted values as a function of the 

observed values. In each case outliers are identified, and the quality of the model fit and 

physical interpretation of the model structure are discussed. 

E.l REGRESSION MODELS FOR PREDICTING MODA PARAMETERS 

E.1.1 The maximum storage capacity: Cmax 

Correlation analysis coupled with un-transformed and transformed variable regression 

analysis demonstrated that there were no significant relationships between Cmax and any 

of the candidate catchment characteristics. To investigate whether this was a consequence 

of the strong covariance between Cmax and b (Pareto shape parameter) in many of the 

catchments, Cmax was expressed as the mean storage capacity, C , derived by expressing 

Cmax as a fraction of (b+1) as discussed in Chapter 4. The resultant distribution of C 

values was positively skewed. This is in part due to large Cmax and low b values in some 

catchments, which may be compensating for errors within the climatic data inputs as 

discussed in chapters 2 (in the context of the literature on this subject) and 6 (in the context 

of the case study catchments). To address this skew, the distribution was normalised by 

taking logarithms of (C +1). The histograms of un-transformed and transformed C 

values are presented in Figure E. I. 
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Figure E.l Histograms for C and Iog( C +1). 

Table E.l Regression model for log (C +1) 

Cbar_HG HOST 
Classes 

Hydrogeological units Coefficient Std 
error 

Tolerance P 

1 1 Chalk, chalk drift 0.026 0.001 0.932 0 

2 2 Oolitic limestone, soft ().019 0.001 0.913 0 
magnesian 

3 5 , 7 Blown sand, gravels 0.023 0.002 0.758 0 

4 6 Colluviiim, coverloam, gravel, 0.019 0.002 (1849 0 
loamy drift 

0.019 (1849 

5 2 0 2 3 soft massive clays 0.02 OIWl C1816 0 

25 
6 17,19, Hard rock (1019 OIWl (1796 0 

22,27 
7 16,18, Soft bedded clays, loams, till, 0.02 OIWl (1861 0 16,18, 

shales 
0.02 

21 
8 24,26 Soft shales, silts tones, bedded 0.017 OIWl C1722 0 24,26 

clays/loams, clay and flints 

9 12,28, Weathered intr/meta. rock, raw 0XW8 OIWl (1721 0 12,28, 
peats, eroded peats 

29 
peats, eroded peats 

10 3 Soft sandstone 0.027 0.002 (1858 0 

11 4 Weathered intr/meta. rock, hard 0.023 0IW2 (1924 0 
limestone and sandstone 

12 14J^ Weathered intr/meta. rock. (X016 OIWl 0 . 7 7 5 0 14J^ 
colluvium, coverloam, 

(X016 
loamy,drift gravels/loams, 
sandstone 

13 13,8, Weathered intr/meta. rock, 0.012 0IW5 (1685 0.01 
chalky drift, loams Earthy peats. 

0.012 
9, Shattered rock, alluviums, cover 

10,11 loam, chalky drift 

adjusted R^= 0.988 SE= (X199 N = 1 7 7 

The best regression relationship between log (C +1) and catchment characteristics was 

based on a grouping of HOST called Cbar_HG. Two potential outliers were identified 

catchments 54022 the Severn at the Plynlimon Flume and 84022. Duneaton at Maidencots. 

These catchments are dominated by HOST class 15, which consists of weathered rock, 
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sandstone, colluvium and gravels/loams. On inspection, other catchments dominated by 

HOST 15 tend to have high values of b indicating the distribution soils is skewed toward 

shallow storage capacities, as would be expected. The two outliers identified have very low 

b values of 0.013 and 0.176 (respectively) and consequently high values of C . From the 

analysis of model behaviour presented in Chapter 6 this is normally associated with errors 

in climatic data/and or catchment area (over estimation of catchment rainfall) and the 

response of the model in trying to close a water balance by maximising the evaporation of 

water at the potential rate. The Plynlimmon experimental catchment is very small and lies 

in an area of heterogenous rainfall fields. The Duneaton catchment, on inpection, lies in an 

area with a very sparse rain gauge network. These catchments were therefore removed from 

the model. 

The plot of residuals, Figure E.2, and of predicted versus observed log (C +1), Figure 

E.3a, demonstrate that the model tends to under predict for high values of C . Furthemore, 

there are some large negative (under estimates) around observed log( C +1) values of 2.0-

2.5 (C values between 100 and 300mm). Inspection of these catchments identified that 

these were all high rainfall catchments in which the optimal value of b is low compared 

within similar catchments, and the model is thus likely to be compensating for errors in the 

climatic data. 

The groupings, regression coefficients and model fit statistics for all catchments are 

presented in Table E.l. The grouping of HOST classes is based on the soil integrated air 

capacity (as a surrogate for permeability) and geological substrate. Permeable soils, 

particularly when underlain by permeable geologies have higher coefficients and hence 

higher values of C . This is conceptually correct as these soils will have high infiltration 

rates and will have a greater storage capacity. Conversely, thin impermeable soils or thin 

soils underlain by impermeable geologies will have low storage capacities. The model is 

essentially a weighted average of percentage coverages of the HOST groupings with the 

weight given by the coefficient estimate. This is conceptually attractive, as C is an average 

value of storage capacities. The logarithm of (C +1) is used within the regression so that 

the model can predict a zero value of C for a catchment with zero fractional extents. This 

cannot occur in practice, as it implies a zero catchment area, but it is mathematically 

correct. 
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Figure E.2 Regression residuals for log (C +1). 

All parameter coefficients are significant at the 95% confidence level and the standard 

errors are low, although this in part a consequence of the model being constrained to pass 

through the origin. The tolerance values are high indicating that there are no covariance/ 

redundancy issues within the model. The adjusted value is very high, a function of the 

fact the model has a zero intercept and therefore is not constrained to pass through the 

mean of the data. Of more importance is the Standard Error (SE) of 0.199. This equates to 

a Factorial Standard Error of 1.58, that is (given N is reasonably large) the predicitve 

accuracy of the model is approximately ±58% at the 68% level. 

The comparison of estimates generated using the same model calibration on 80% of the 

catchments for the remaining 20% (42) catchments (Figure E.3b) demonstrate that the 

model is stable. This graph, which is for one of the 80:20 split tests is included as an 

example of this type of plot. The observed scatter is representative of that observed for 

regression models based on the discrete HOST classes, irrespective of the rainfall runoff 

model parameter being modelled. The small scatter observed with the HOST based 

relationships is due to the low representation of particular HOST classes. The sensitivity of 

the model coefficients for these classes is sensitive to the fractional representation of these 

classes within the 80:20 spUt samples. 
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Figure E.3 Graphs of model fit for log (C +1). 

E.1.2 The Pareto shape parameter, b 

The optimal model for the Pareto shape parameter b was a linear model that related b to the 

fractional extent of a grouping of HOST classes, b_HG. It was not possible to obtain a 

significant relationship between b and the continuous characteristics that explained more 

than 10% of the variance. The grouping, regression coefficients and model fit statistics for 

all catchments are presented in Table E.2. The 80:20 split sample tests demonstrated that 

the model is stable. 
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Table E.2 Model for the Pareto shape parameter, b 

b_HG HOST Hydrogeologica! units Coefficient Tolerance P 
Classes 

2 15 Weatheied mtr/meta Rock, sandstone, 0 0 2 3 0 7 8 1 0 
colluviiim, gravels/loams 

2 4, 5, Weatheied intr/meta Rock, hard q q q y q - y g g q 
7 ,6 ,24 , 2 6 limestone and sandstone Blown sand, 

gravels Colluvium, coverloam, giavel, 
loamy diift Soft shales, siltstones, bedded 
clays/loams, clay and flints Weathered 
mti/meta Rock, colluvium, coveiloam, 

loamy diift 

3 1 ,2 ,13,8 ,9 , Chalk, chalk drift Oohtic limestone, soft 0 0 0 4 0 9 5 6 0 0 1 
1 0 , 2 0 , 2 3 , magnesian Weathered mtr/meta rock, 
2 5 16 18 chalky diift, loams Shattered rock, 
2 J ' 2 ' alluviums, cover loam, chalky di ift Vei y 

soft massive clays Soft bedded clays, 
loams, till, shales Soft sandstone 

A 1 2 , 2 8 . Weathered mtr/meta Rock, raw peats, f ) O S ? 0 7 1 S 0 
29,11 eroded peats Earthy peats 

5 17, 1^22. Hard rock Q QM 0.867 0 
2 7 

adjusted R^= 0.658 SE= 1.046 N= 179 

The regression model fit is very poor, probably due in part to the covariance between Cmax 

and b. The residuals plot, Figure E.4a and plot of predicted against observed, Figure E.4b, 

indicate that the model fails to adequately describe the variance within the data set. The 

Standard error is 1, giving an approximate predictive accuracy of ±1 at the 68% level. The 

mean and standard deviation of the raw observed data set are 1.2 and 1.3 respectively. This 

indicates that the model does not give a major improvement over just using the mean, 

although it should be noted that the parameters are all significant. Outliers were not 

identified, due to the lack of variance explained by the model. 

The optimal grouping of HOST is a 6-class grouping. The grouping was obtained using the 

grouping strategy used for the mean storage capacity C . Thin soils overlying hard rock 

substrate have a high value of b (implies a distribution skewed towards the shallow soil 

storage capacities). The model predicts that the distribution of soil capacities on permeable 

soils, particularly when overlying permeable substrates, will be skewed towards the 

maximum soil capacity (low value of b). The implications of this are that the impermeable 

soils will start to generate direct runoff earlier than permeable soils for a given 

precipitation event. Furthermore significant soil moisture deficit will occur more frequently 

in these lower storage soils. This is conceptually correct and is consistent with the 

observations of model behaviour of the model within the case study catchment analysis 

presented within Chapter 6. 
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Figure E.4 Graphs of model fit for the Pareto shape parameter, b. 
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E.1.3 The loss model drainage constant, Kg 

The optimal model identified for the drainage constant was one relating the logarithm of 

(Kg+1) to the logarithms of PP, LDP and HOSTRES. A logarithmic model was used as Kg 

is skewed and a logarithmic transformation was found to optimise the correlation between 

Kg and the dependent variables. One was added to each of the variables prior to taking the 

logarithms, as a zero value is feasible for all of the elements of the model; the logarithm of 

which is infinity. Two outliers were removed from the model: 31023, West Glen at Easton 

Wood and 39017, the Ray at Grendon Underwood. These catchments are both small (4.4 

and 18.6 km^ respectively), clay (respectively Boulder and Oxford) catchments. The daily 

flow records showed that both catchments were ephemeral, drying up in the summer 

months. The model is not structured to model an ephemeral stream as it assumes a non-

zero outflow from the routing reservoirs and thus these catchments were removed from the 

analysis. 

Table E.3 Regression model for log (Kg+1) 

Variable Coefficient Std error Tolerance P 
CONSTANT 3341 0T14 0 
LOG_PP 8.593 0.663 0.979 0 
LOG_LDP -0.306 0.074 0.99 0 
LOG_HOSTRES -4.257 IXWl 0.989 0 

Adjusted R^= 0.58 SE= = 0.23 N=177 

The regression coefficients and model fit statistics for the all catchments model are 

presented in Table E.3. All coefficients are significant at the 95% level. The independent 

variables are all orthogonal (tolerance values of >0.9). The 80:100 split model tests 

demonstrated that the model was very stable. The two models were very stable with a near 

one to one relationship over the 42 catchments within the 20% samples. A example of the 

relationships between the values of log (Kg+1) predicted for an independent 20% test using 

the 100% model and an 80% model is presented within Figure E.5. This is a typical 

example of this relationship for models based upon continuous variables, irrespective of 

the rainfall runoff model parameter being estimated. 
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The plot of residuals and the fit of the model are presented in Figure E.6a and b 

respectively. These indicate that the model has a tendency to over-predict at low values and 

under-predict at high values. The FSE for the model is 1.70 and the model explains 58% 

of the variance. 
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Figure E.5 Graph of the stability of the log (kg+1) model. 

The model implies that Kg will be larger and therefore limiting drainage, for catchments 

that have a tendency to build up soil moisture deficits, as represented by PP. The negative 

coefficient for LDP indicates Kg is smaller in large catchments, which implies that 

drainage, and hence base flow, is potentially greater in larger catchments. This is an 

indication that the model is representing the averaging effects of larger catchments by 

increasing the drainage from the soil store, and hence the fraction of effective rainfall 

routed through the slow flow routing reservoir. Kg decreases with increasing HOSTRES. A 

high value of HOSTRES indicates that the catchment has a higher BFI (and hence base 

flow) than would be expected based upon anticipated SPR. This again is intuitively correct. 
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Figure E.6 Graphs of model fit for the drainage constant, Kg. 
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E.1.4 The slow flow routing reservoir time constant, Kb 

The optimal, stable model identified for this parameter was one that relates Kb to 

BFIHOST and the logarithm of AREA. The regression coefficients and model fit statistics 

for all catchments are presented in Table E.3. All coefficients are significant at the 95% 

level. The independent variables are all orthogonal (tolerance values of >0.9). 

Table E.4 Regression model for Kb 

Variable Coefficient Std error Tolerance P 
CONSTANT -260.0 110.3 . 0.019 
LOG_AREA 170.1 40.9 0.965 0 
BFIHOST 1389.2 167.6 0.965 0 

adjusted R^= 0.51 S.E.=298 N=179 

LOG_AREA was used as area (as with LDP) has a very skewed distribution. The average 

annual rainfall SAAR was found to be significant when included within the model. 

However, it was omitted from the final model as, although the coefficient was significantly 

different from zero at the 95% limit, the condition indices between it and the constant were 

very high and furthermore the parameter estimate was low. Removal of SAAR reduced the 

R^ and for the model from 0.465 to 0.46 and increased the SE by 2. The model has a 

relatively low R^ and from the plots of residuals (Figure E.7a) and the plot of estimated as 

a function of calibrated values (Figure E.7b) it can be seen that the model significantly 

under predicts for high observed values of Kb. An alternative model was identified using 

the fractional extents of HOST classes (using a grouping based on hydrogeological units 

for the soil classes). The fit of this model was similar at high values of Kb to the one 

presented but grossly over estimated at low values of Kb. The final model predicts higher 

values of Kb for high base flow (BFI) and larger catchments. This is conceptually correct. 

Permeable systems are high storage systems in which stream flow is dominated by release 

of water from groundwater with a generally small direct runoff component. As a result 

rates of recession rates are low in these catchments, reflected in the model by higher values 

of Kb. In larger catchments both hill slope and groundwater routing will become more 

damped and channel routing and storage effects may start to become important. One aspect 

of this is to reduce the variance of stream flow data and rates of changes within stream 

flow. A relationship with area for the routing time constants is therefore conceptually 

acceptable. 
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Figure E.7 Graphs of model fit for the slow flow routing time constant, Kb. 
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E.1.5 Quick flow routing reservoir time constant, K1 

A logarithmic transformation was applied to K1 to reduce the skew of the data set. 

Histograms of the K1 and the logarithm of (Kl+1) are presented in Figure E.8. Models 

constructed using the log-transformed data gave the best overall fit in terms of model fit. 

The best, stable model fits were obtained for a model based on HOST groupings (K1_HG). 

The fit obtained with the final HOST based model was similar to the fit of a model based 

on BFIHOST and LOG (AREA+1) but gave a better fit to low values of Kl. The model is 

summarised in Table E.5 and plots of residuals and predicted versus observed are 

presented in Figure E.9a and b. 

1 . 5 2 D 

Figure E.8 Histograms of Kl and log (Kl+1). 

Two outliers were identified. The first of these was the Frome at Bishops Frome, 55028, 

(catchment area 77km^, BFI 0.5) the observed value of 9.96 hr for Kl was much lower than 

the predicted value. Evidence from hydrograph showed that although the catchment has a 

relatively high base flows there is evidence of a quick flow response to rainfall events. The 

catchment is sandstone in the headwaters, which may provide a large component of the 

base flow whilst the lower part of the catchment is impermeable drift giving rise to a quick 

response component. In contrast, the second outlier, 15021 the Almond at Newtown 

Bridge (94km^) has a large value of Kl 198 hr, this is equivalent to two thirds of the 

calibrated value of Kb (the slow flow routing time constant) for the catchment. Visual 

inspection of the hydrograph showed that the catchment does not respond quickly to 

rainfall events justifying the large value of Kl identified through calibration. As there was 

no physical evidence to support the removal of these catchments they were left in the 

analysis. 
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Table E.5 Regression model for log (Kl+1) 

K1_HG HOST Hydrogeological units Coefficient Tolerance P 

1 1 Chalk, chalk drift 0.023 0.949 0 
2 2 Oolitic limestone, soft 0.022 (X918 0 

magnesian 
3 5,7 Blown sand, gravels 0.021 0.783 0 

4 20,23,25 Very soft massive clays 0.016 0.821 0 
5 17,19,22, Hard rock 0.019 (1816 0 

27 
6 16,18,21 Soft bedded clays, (1018 0.882 0 

loams, till, shales 
7 24,26 Soft shales, siltstones, (X017 0.751 0 

bedded clays/loams, 
clay and flints 

8 12,28,29 Weathered intr/meta. 0.015 0.716 0 
Rock, raw peats, eroded 

peats 
9 3 Soft sandstone (X018 &892 0 
10 4 Weathered intr/meta. &019 0.925 0 

Rock, hard limestone 
and sandstone 

11 15J4 Weathered intr/meta. 0.015 0.761 0 
Rock, sandstone. 

colluvium, loamy drift, 
gravels/loams 

12 11,6,13 Earthy peats 0.021 (1751 0 
Colluvium, coverloam. 

gravel, loamy drift 
Weathered intr/meta. 
Rock, chalky drift. 
loams 

adjusted R^=0.99 SE=0.195 N=179 

The grouping of HOST classes is logical, based on permeability and physical 

charatceristics of the substrate geology. Permeable soils underlain by permeable geologies 

have higher coefficients. Overland flow that reaches the stream, and or minor channels will 

not normally be generated within very permeable systems. The direct runoff that there is 

will be dominated by inter-flow giving a more damped response, and hence higher values 

of Kl. This is conceptually correct. The FSE for the model is Standard Error of 1.57, that 

is (given N is reasonably large) the predicitive accuracy of the model is approximately 

±57% at the 68% level. 
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Figure E.9 Model fits for the logarithm of the quick flow routing time constant, log 
(Kl+1). 

The plot of residuals. Figure E.9a, and the plot of estimated values as a function of 

predicted values Figure E.9b, demonstrates there is a tendency to over predict very low 

values of K1 (including catchment 55028). 
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E.2 REGRESSION MODELS FOR PREDICTING MODE PARAMETERS 

The MODE parameters to be regionalised were Cmax, K1 and Kb. The loss model outliers 

identified in the modelling of C and Kg for MODA did not occur within the regionalisation 

of MODE parameters. The catchments generating the C outliers were rejected during the 

calibration of MODE, as the model was unable to close a satisfactory water balance. The 

Kg outliers did not arise as MODE uses a fixed partition coefficient to determine the 

partitioning of effective rainfall between quick and slow flow components. The MODA 

K1 outliers also did not appear as outliers in the analysis for MODE. Station 55028 was 

rejected, as MODE could not close a water balance. The MODA loss module is very non-

linear (b=0.043 Cmax =151.76) for this catchment suggesting a potential error in the 

climatic data. The modelled value of K1 for 15021 with MODE was lower at 194.847 and, 

in the context of the other values of K1 for MODE did not constitute an outlier. The 

regression models for the MODE parameters are presented in the subsequent sub-sections. 

E.2.1 The maximum storage capacity, Cmax 

The modelling of Cmax proved to very problematical. The optimal model derived related 

the logarithm of (Cmax+1) to the logarithms of (PP+1) and (DPLBAR+1). The structure of 

the model is summarised in Table E.6 and plots of residual and estimated versus calibrated 

values are presented in Figure E. 10a and b. The model fit is poor explaining 36% of the 

variance with a FSE of 1.98. The residual plot demonstrates that the model overestimates at 

low values of Cmax and under-estimates at high values of Cmax and therefore cannot 

explain the full variance within the calibrated parameter data set. 



Table E.6 Regression model for Cmax 

Variable coefficient Std error Tolerance P 
CZCXNST/LhfT 2.168 0.[K)7 
LOG_PP 5.580 0.640 0.989 0.000 
LOG_DPLBAR -0.261 0.075 0.989 0.000 

Adjusted R^= 0.357 S.E.= .296 N=171 

The physical interpretation of the model is not clear but may be related to the role of Cmax 

in controlling the evaporation rate. A uniform distribution of soil storage capacities is 

assumed for MODE and a fixed partition of effective rainfall is used within the model. The 

relationship between (precipitation-evaporative losses) and outflow from the soil store is 

therefore quadratic. Cmax controls the gradient of this relationship and fixes the storage 

capacity at which the catchment is fully saturated. Cmax also directly controls the 

relationship between the evaporation rate and simulated Soil Moisture Deficit (SMD). 

However, Cmax can only influence evaporation rates if the summer evaporation demand 

exceed the rainfall inputs (hence generating an SMD). 

Cmax is probably only really identifiable under these circumstances. PP is a measure of the 

potential for significant SMDs to build up in a catchment. The regression model predicts 

that as PP increases so does Cmax. If PP is high the model will generate a soil moisture 

deficit and will potentially result in a reduced evaporation rate. Given the formulation of 

the evaporation function this tendency will be offset by an increased value of Cmax. The 

relationship between Cmax and PP may well be an artefact of the rainfall runoff model 

structure. The dependency on DPLBAR implies that Cmax is larger for catchments with 

larger mean drainage path lengths. This characteristic is high for large catchments and 

catchments that tend to be linear. This is difficult to explain but may be associated with the 

longer runoff concentration times within these catchments. The model structure is valid as 

it was found to be stable under the 80:20 split sample tests. The predictive capacity of the 

model is ±98% at a confidence level of 68%. 
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Figure E.IO Graphs of model fits for log (Cmax+1). 

E.2.2 The routing reservoir time constants, K1 and Kb 

Under ideal circumstances the time constants obtained for MODA would be identical to 

those obtained for MODB, as they were un-correlated with the loss module parameters. 

However the values are influenced by the partitioning mechanism for effective rainfall. 

The relationships between K1 and Kb for the two model configurations are summarised in 

Figure E . l l . This Figure demonstrates that, in general, the values obtained for the two 

models are very comparable. The optimal, stable regression model structures identified are 
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very similar to those obtained for MODA and are summarised in Table E.7 and Table E.8 

respectively. The model for Kb is identical in structure to that obtained for Kb with 

MODA. The coefficients are different and the model is a slightly poorer fit. This may a 

consequence of the cruder treatment of the partitioning of effective rainfall in MODE. The 

model for K1 uses a log-transformed representation of Kl, which is dependent on 

BFIHOST and Log (LDP+1). This formulation gave similar results for Kl with MODA 

and was only a slightly poorer fit than the HOST based model finally selected for MODA. 

The same formulation applied to MODE gives a predictive accuracy of ±52% which is an 

improvement of ± 5% over the predictive capacity of the HOST based Kl model for 

MODA The use of LDP gave a significant advantage over the use of AREA. Whilst these 

are strongly correlated they are different characteristics. The relationship indicates a 

damping of direct runoff response to precipitation events in long drainage path catchments. 

This is conceptually attractive as it represents catchment and channel routing 

considerations that are not explicit within the model structure. 

Table E.7 Regression model structure for Kb 

Variable Coefficient Std error Tolerance P 
(:c)}js:T\AJ\rr -490 .9 1:23.6 

BFIHOST 1871.8 198.0 0.94 
lJO(j .AJRJEvl 2()6.2: 4(5.9 0.941 

0.00 
0.00 
0.00 

Adjusted R 0.50 SE= 305.5 N=171 

Table E.8 Regression model structure for log (Kl+1) 

Variable Coefficient Std error Tolerance P 
CONSTANT 
BFIHOST 
LOG LDP 

&812 
L279 
0.224 

0.09 
OJ^ 
0.05 

0.95 
0.95 

0 
0 
0 

Adjusted R = 0.522 SE=ai82 N=171 
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Figure E . l l Comparison of the calibrated values of K1 and Kb parameters for 
MODA and MODE. 
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