UNIVERSITY OF SOUTHAMPTON

REGIONALISING A DAILY RAINFALL RUNOFF MODEL
WITHIN THE UNITED KINGDOM

by

Andrew Richard Young

A thesis submitted for
the degree of
Doctor of Philosophy

Department of Geography October 2000



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE
GEOGRAPHY

Doctor of Philosophy

REGIONALISING A DAILY RAINFALL RUNOFF MODEL WITHIN THE UNITED
KINGDOM

by Andrew Richard Young

Access to daily stream flow data, at the river reach scale is a central component of many
aspects of water resource and water quality management. However, the majority of river
reaches within the UK are ungauged. Hence, there is an operational requirement for a quick,
consistent and reliable method for simulating historical stream flow records within ungauged
catchments. The overall objective of this research has been to develop a rainfall runoff model
for predicting natural daily stream flows within a catchment without recourse to the calibration
of model parameters against observed stream flow data. Implicit within this objective is a
requirement that the model parameters can be estimated from readily available data describing

the physical characteristics of the catchment.

The fundamental approach to the research has been to develop and calibrate suitable models
within a large, representative sample of UK catchments and to subsequently develop
predictive, statistical relationships for estimating model parameters from the climatic and
physiographic characteristics of the catchments. The predictive capacity of the regionalised
model forms has been extensively evaluated through comparisons with gauged flow data,

calibrated models and existing industry-standard methods for estimating historical flow time

series within ungauged catchments.

The regionalised model forms developed represent a significant advance over existing, low-
cost methods for estimating historical flow regimes within ungauged river catchments. The
errors in the simulated stream flows are sufficiently small for the techniques to be a useful aid

in the management of water resources within the UK.
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DEFINITIONS FOR MODA AND MODB MODEL PARAMETERS

Parameter name Unit Description

Interception store

Y mm Depth of interception store in MODA

Probability-distributed soil

Moisture store

Cmax mm The maximum store capacity within
the catchment.

b none
The exponent of the Pareto
distribution, controlling the spatial
variability of store capacities.

kg hour
The groundwater recharge time
constant for MODA.

B none
The runoff factor, which controls the
split of direct runoff between surface
and groundwater storage routing for
MODB.

Routing Module

K1 hour The time constant for the quick flow
linear reservoir.

Kb hour The time constant for the slow flow, or

base flow linear reservoir




1 Introduction

1.1 OVERVIEW OF RESEARCH OBJECTIVES

Information on the magnitude and variability of flow regimes, at the river reach scale is a
central component of most aspects of water resource and water quality management. For
some activities, such as the setting of discharge consents and licencing of small
abstractions, it is sufficient to encapsulate this information using a statistical description of
the flow regime. The flow duration curve (NERC, 1980) is an example of this type of
analysis. However, there are many applications for which a time series of stream flows is
required. These include the assessment of yield for water resource schemes, the in-stream

flow requirements of aquatic flora and fauna and the assessment of the impacts of climate

change at the catchment scale.

At the broadest scale, natural river flow regimes are dependent on rainfall, temperature and
evaporation. At the catchment scale, the flows will be controlled by the physical properties
of a catchment, including geology and land use. A rainfall ranoff model predicts stream
flow by using a mathematical description of the processes controlling the catchment stream
flow response to climatic inputs of precipitation and evaporation demand. The response of

the model is controlled by parameters, which normally have to be estimated through

calibration.

The overall research objective of this thesis has been to develop a rainfall runoff model for
predicting the natural variation of daily stream flows within a catchment without recourse
to the calibration of model parameters against observed stream flow data. Implicit within
this objective is a requirement that the model parameters can be estimated from the
physical characteristics of the catchment. The focus of the research has been on an
operational requirement for a quick, consistent and reliable method for simulating
historical stream flow records within ungauged catchments. Hence, as part of this overall
objective, it is essential that the data required by the model are restricted to those data that

are readily available in a digital form.
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For water management purposes, it is essential to differentiate between the natural and
artificial components of stream flow data. The artificial component is the nett influence of
water use within the catchment. Common influences include surface and groundwater
abstractions, discharges from sewage treatment plants and industrial sources, impounding
reservoirs, canal transfers and inter-basin transfer schemes. A review of over 1600 gauging
stations has identified that less than 20% of gauged catchments within the UK can be
regarded as being natural (Gustard et al., 1992). In assessing the available resource within
a catchment, it common practice to separate the natural and artificial components of stream
flow. This separation of components enables practitioners to assess the natural reliable
yield of the catchment, based upon the climatically driven variability of the natural stream
flow. The impacts of actual, and planned water use scenarios are subsequently
superimposed upon the natural flow regime to assess both the reliable yield under the

current water use and/or scenarios of future water use and the environmental impacts of

that water use.

The temporal resolution for both managing and regulating water use is commonly between
a week and a month. For assessing the yield of some storage schemes, it is not necessary to
consider stream flow at a finer temporal resolution than this; for example the estimation of
natural inflows into an impounding reservoir. However, for run-of- river water use
schemes, and cases where the impact of a scheme on aquatic flora and fauna is to be
assessed it is essential to consider stream flow at a finer temporal resolution. The
commonly used resolution is a calendar day. This finer resolution is important for assessing
the frequency of failure of a scheme (for example a direct abstraction), the ecological
impacts of flow derogation and, in the case of discharges, the impact of flow on water

quality and hence the flora and fauna of the stream.



In estimating the time series of natural stream flows at a site it is not necessary to exactly
replicate all aspects of the true natural time series. Rather, the requirement is to simulate

important facets of the regime including:

e an acceptable simulation of mean flow— conservation of mass;

e how the stream flow reduces in the absence of rainfall- termed recession behaviour;

e the correct representation of seasonal patterns within the flow regime;

e the correct stream flow response to precipitation and the dependencies of that response

on antecedent catchment conditions.

With regard to the last point, it is not important to accurately simulate individual high flow
events. The only restrictions on the modelling of high flows are that mass must be
conserved over a longer time period and the observed sequencing of high flow events
should be replicated. In the context of run-of-river schemes, the high flows are not a
resource that can be readily utilised, due to the high concentrations of suspended solids. As
the cause-effect links between flow and habitat for aquatic species cannot be accurately
quantified, predictive methods for assessing the ecological impacts of high flows are not

sensitive to the absolute magnitude of the flows.

The industry best current practice for estimating the natural stream flow record from a
gauged record is to naturalise the flow record through decomposition (Hall and Nott, 1994;
Young and Sekulin, 1996). This technique is based on identifying the nett influence within
the catchment above a gauging station and subtracting that nett influence from the gauged
flow record. As data describing the volumetric impact of artificial influences are commonly

inaccurate and archived at a monthly resolution, the technique is both time consuming and

error prone.

Within the UK there are approximately 1600 permanent gauging stations, these gauged
river reaches represent less than one percent of the total number of river reaches mapped at
a scale of 1:50,000. The majority of water management decisions are therefore being taken
within catchments for which there are no measured stream flow data. Historically,
practitioners have quantified flow regimes within ungauged catchments using simple,

statistically based models for predicting natural and artificially influenced flow statistics
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(Natural Environment Council, 1980, Southern Water Authority, 1979; Gustard and
Sutcliffe 1986; Gustard er al 1987, 1992; Holmes and Young, 2000a&b). Currently, the
low cost solution to the requirement for historical time series of river flows at ungauged
catchments is to transpose gauged data from a similar, nearby gauged catchment.

Commonly, these gauged flows will be naturalised prior to transposition.

The objective of this research has been to develop a model for predicting stream flows
within ungauged catchments directly from historical climatic data and the physical
characteristics of the catchment. The science of relating hydrological phenomena to
physical and climatic characteristics of a catchment, or region, is commonly called
regionalisation. As will be discussed, there are many examples within the international
literature of studies directed at the regionalisation of rainfall runoff models. These have

generally been undertaken at a spatial or temporal scale that is inappropriate for catchment

scale water management.

Experience has shown that, for a study into the regionalisation of a daily conceptual rainfall

runoff model to be successful and substantive, the following aspects must be addressed.

e The model must be applied to a representative sample of catchment types across the
country. To date regionalisation studies have been restricted to relatively small sample
sets of catchments.

e In catchment specific applications, the model must be able to accurately simulate those
aspects of the flow regime that are of importance for water resource assessment and
management decisions — and this must hold over the full range of catchment types.

e The calibrated parameter vectors must, within the uncertainty of the input data, be
identifiable for specific catchment types, and the model fit must be stable when applied
to an independent evaluation period.

e The model structure, and hence the parameters must have physical meaning to enable
the parameters to be estimated from the physical characteristics that can be used to

differentiate between catchment types.
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The scope of the research has been restricted to catchments in which precipitation falls
primarily as rainfall, rather than as snow. This restriction is only an issue for some highland
catchments within the north of the country. The research has addressed the estimation of
climatic data with the emphasis on selecting/deriving methods for estimating climatic data
using modifications of best practice techniques that do not incur a prohibitive cost. The
solution used for estimating evaporation demand has meant that catchments within
Northern Ireland have been excluded from the research as historical MORECS (see
Chapter 2) data are not available for Northern Ireland. The evaluation of success of the

research is based on whether:

e the regionalised model forms developed represent an advance over existing methods for
estimating historical flow regimes within ungauged river catchments;
e The errors in the simulated stream flows are sufficiently small for the techniques to be a

useful aid in the management of water resources within the UK.

An overview of rainfall runoff modelling and the issues associated with the structure and
calibration of this class of model are discussed in Section 1.2. Previous regionalisation
studies within the UK, and elsewhere within the world are reviewed within Section 1.3.
The innovative aspects of this thesis are discussed within Section 1.4. The structure of the

thesis is also presented within this section.
1.2 RAINFALL RUNOFF MODELLING

The objective of rainfall runoff modelling, in it’s broadest sense, is to simulate the
translation of precipitation, that is incident upon the surface of a stream or river catchment,
to stream flow at the catchment outlet taking into account evaporative losses from the
system. Todini (1988) gives a useful review of the development of the science of rainfall
runoff modelling and modelling philosophies. He introduces the concept of a mathematical
model consisting of two parts; one part consisting of the physical model structure which
encapsulates the a priori knowledge of the system and the second part a stochastic
component that cannot be explained by the physical model structure. This led him into a
four-class model classification scheme based on the degree of prior knowledge. This

classification is summarised in Figure 1.1. The system differentiates between models on
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the initial basis of whether processes are represented statistically or physically and then
how these processes are distributed and solved mathematically across the catchment. Other

classifications have been proposed by Singh (1995) and Hughes (1995), amongst others.

In reality, the boundaries between classifications and between the individual boxes within a
classification are not clearly defined. Many models are essentially hybrid with constituent
parts drawing from stochastic and deterministic components. The deterministic
components may seek to describe the physics of the process, using differential equations,
commonly called physically based, or may use a conceptual representation of the physical
processes, in which integral equations are used to represent the processes. Physically based
models are distributed in that the model equations include space co-ordinates and are
differential in nature (thus requiring the definition of boundary conditions) as opposed to
integral, as in the case of the conceptual rainfall runoff model. Additionally, stochastic
techniques are now commonly used when formulating the catchment implementation of
deterministic model components; for example, the semi-distributed soil moisture module
of the Probability Distributed Model (Moore, 1985) and the ARNO (Todini, 1996),
XINANJIANG (Zhao, 1980) and VIC (Wood, 1992) models.

Singh in his 1995 paper states:

“A vast majority of the (available) models are deterministic, and virtually no model is fully
stochastic. In some cases, only some parts of the model are described by the laws of
probability, and other parts are fully deterministic. It is then fair to characterise them as

quasi-deterministic or quasi-stochastic.”

In summary, it is true to say that models grade in the complexity (both with respect to the
model structure and spatial resolution) from purely empirical statistical models through to
differential physically based distributed models. Conceptual models, whether lumped or
with some degree of spatial discretisation, lie between these extremes. In the context of this
study a model is considered as “lumped” if the input data, output data and model equations
do not include a spatial description. This definition does not make a distinction between

stochastic or deterministic formulations.
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Figure 1.1 Classification based on level of prior knowledge (Source: Todini, 1988).

An argument can be constructed that no model components are truly physically based. Any
mathematical description of a process is an approximation of that process and thus is
always a conceptualisation. The preservation of the physicality of physically based
deterministic model components is called into question in the application of the model.
Whilst the process descriptions may model the transport of water under well-defined
laboratory conditions, they may not when applied to the complexities of a real catchment.
The scale of the spatial and temporal discretisation of the model is extremely important. In
practice, it is necessary to limit the resolution of distributed models to a grid scale that 1s
commensurate with the input data describing catchment properties, the climatological
variations and computing power available. This lumping and the uncertainty in the input
climatic data and field measurement of catchment properties (and hence parameter values)
will generally mean that the model will require calibration to compensate for these
uncertainties (Beven, 1993). Hence, the true physicality of the model is compromised. For
a further discussion of the relative merits of this type of model compared with the simpler,
integral conceptual class of deterministic models the reader is directed to the work of
Beven (1989 & 1993), Todini (1988) and Singh (1995) as an inroad to this topic. This
study is concerned with the question of the regionalisation of lumped, conceptual models
on a scale where the application of differential distributed models is not a practical

proposition.
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1.3 REGIONALISATION OF RAINFALL RUNOFF MODELS

The development of a model of the rainfall runoff process that can be applied without
recourse to calibration data, and hence applied within un-gauged catchments, has been the
subject of research since the 1960s. The theory is that if the structural description is correct
the parameters of the model are more likely to be related to physical characteristics of the
catchment that can be measured. This has lead in many cases to large, complex models
that, from a systems-engineering point of view, are over parameterised. By a systems
engineering point of view it is meant that the parameters of the model are calibrated in
accordance with some scheme to minimise the differences between observed and simulated

stream flows. As discussed in the previous section a degree of calibration is necessary with

all models.

The international literature on the regionalisation of rainfall runoff models falls into two

basic categories.

e The calibration of a model on a range of catchments types and the subsequent
development of statistical relationships between model parameters and the physical and
climatological characteristics of the catchments. These relationship then enable model

parameters to be estimated for the un-gauged site.

e The a priori estimation of model parameters, that purport to have physical realism,

through direct measurement of the physical characteristics of the catchment to which

the parameters pertain.

Models have been regionalised both for simulating catchment response to extreme
precipitation events at an hourly time step and for simulating the much longer-term
temporal variation of river flows, at either a daily or longer time step, for resource
evaluation purposes. These studies have all generally been conducted using a relatively
small number of study catchments (less than 40). The studies that are of relevance to the

current study, irrespective of the purpose, are reviewed here according to purpose.
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1.3.1 Model regionalisation for flood estimation.

The United Kingdom Flood Studies Report (FSR) (Natural Environment Research Council,
1975) presents a method for flood frequency analysis based on the use of a unit hydrograph
model to estimate the peak flow corresponding to a design rainfall event. The two primary
parameters for this model are the “Time to Peak” parameter for the unit hydrograph, Tp

and the standard percentage runoff, SPR. A third parameter, the peak flow of the one-hour
unit hydrograph, Qp is estimated from Tp. Within the FSR, SPR and Tp are estimated from
regression relationships for five geographic regions within the UK. These regression
relationships were revised in the Flood Studies Supplementary Report No. 16 (Institute of

Hydrology, 1985).

Burn and Boorman (1993) used the regionalisation of Tp and SPR as a vehicle for
evaluating methods, other than regression relationships, for classifying catchments and
estimating model parameters. In this approach, 99 catchments within the UK were
clustered into groups based upon their hydrological similarity, as represented by principal
components of key catchment characteristics. A derivative of discriminant analysis was
then used to assign catchments to the predefined groups. Several options were then used,
based on the knowledge of group membership and the characteristics of the groups, to
estimate the model parameters for catchments that were treated as ungauged catchments.
The baseline for evaluation of various options was the revised FSR regression models for
predicting Tp and SPR. The study concluded that SPR was estimated most efficiently by
identifying the groups of nearest neighbour catchments and taking a weighted (based on
distance in catchment characteristic space) average of the SPR parameters for those
catchments. The results for estimating Tp were more ambiguous with no particular option
being identified as the preferred approach. The study did not consider the impact of the

various parameter estimation methods on the simulation of stream flow for example events.

Pirt and Bramley (1985) present regression-based equations for estimating parameters for
an eight-parameter version of the isolated event model. These equations were derived

through applying the model to fourteen small sub-catchments within the River Trent. The
relationships were evaluated by applying the regionalised model over three events within

two further catchments within the Trent basin and two catchments from Yorkshire. The
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catchment characteristics used within the study were based on data describing the
variations in topography, catchment geometry and soils. The evaluation gave good results
in two of the catchments and poor results in the other two catchments, and must therefore

be regarded as being inconclusive.

Hughes (1989) adopted a similar approach to that of Pirt and Bramley for an eight-
parameter isolated event model called OSE2. In this study, the model was applied to 29
catchments from a study set of 21 catchments drawn from the United States (Vermont,
Arizona, Mississippi and Oklahoma) and 12 catchments from South Africa. Relationships
between model parameters and catchment characteristics were then derived graphically.
These relationships were based on readily derived deterministic measures, such as drainage
density, and empirical “scores” or indices of characteristics, such as soil depth and channel
roughness. Hughes draws a comparison between the results of his study and those of Pirt
and Bramley, stating that, whilst his results were substantially poorer, his study covered a

much greater physiographic and climate range in terms of the catchments considered.

Calver et al (1999) presents the results from a pilot study of the regionalisation of two
models for the purposes of flood frequency estimation. The models were the TATE model
(Calver, 1996) and a version of the PDM model of Moore (1985). The study considered 40
catchments and 379 station-years of continuous hourly data. Model parameters were
related, using multivariate regression relationships, to the Flood Estimation Handbook
catchment descriptors discussed in Chapter 5 of this thesis. The performance of the
regionalised models was assessed by the capacity of the models for accurately predicting

flood frequency distributions.
1.3.2 Model regionalisation for annual, monthly or daily flow regime estimation

Jarboe and Hann (1974) report the results of study in which a four-parameter water yield
model, running on a monthly time step, was regionalised using a group of 24 catchments in
the State of Kentucky. An approach of calibrating the model on 17 of the catchments and
subsequently relating the model parameters to catchment characteristics using multivariate
regression models was adopted. The regionalised model was evaluated against the gauged

annual runoff within the remaining catchments. Errors were in the range 2-12 percent. The
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authors highlight the model deficiencies and rainfall errors as being the limiting factor on
the results and acknowledge the limited sample size of the study in restricting the wider

application of the approach. The study presented results for annual water balance

predictions only.

Magette et al (1976) present a regionalisation of the Kentucky Watershed Model (a
derivative of the Stanford Watershed model of Crawford and Linsley (1966)) based on 21
catchments. The regionalised model was used for estimating mean annual flows
(aggregated from the model when run on a daily time step) and stream flow response to
specific storm events (using an hourly time step). The calibrated model parameters were
statistically related to physical and land use characteristics of the catchments. Five
catchments were retained as an independent test data set. The results obtained were
inconclusive, there were appreciable errors in predicted mean annual runoff (>20%) for
four catchments and a mixture of reasonable and poor simulations of storm events.
Egbuniwe and Todd (1976) present the calibration of the Stanford Watershed Model IV on
two Nigerian catchments that have similar highly seasonal climatic regimes but dissimilar
hydrogeological controls. The authors transposed the parameters from one catchment to the
other and evaluated the model fit obtained with the transposed parameters. An acceptable
water balance was obtained, but there were appreciable discrepancies between the observed

and simulated monthly and daily time series.

In the UK Manley (1977) presents the application of the HY SIM model (See Chapter 3) to
the River Dove, which is an 883 km” tributary of the River Trent. Manley partitioned the
basin into a number of gauged sub-catchments and used an a priori definition of most
parameters using the channel, soils and geological characteristics of the Dove and the
gauged flows from the adjacent River Derwent catchment. He concluded that that over half
of the a priori parameters were within a factor of 1.5 of the calibrated values and that both

calibrated and estimated parameter gave acceptable simulations.

The approach reported by Tulu (1991) is similar to that of Egbuniwe and Todd (1976). The
author calibrated an existing deterministic conceptual model against monthly stream flow
data for the Guder River (central Ethiopian Highlands) and then applied the model using

the Guder parameter set to a tributary of the basin, the Teltele basin, with satisfactory
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results. There will obviously be a high degree of serial correlation between the stream

flows within the two basins due to their nested nature.

Agung and Cordery (1995) describe the regionalisation of a simple four parameter lumped
conceptual model run on a monthly time step. The model was calibrated on 18 catchments
with New South Wales (Australia) covering catchment areas between 10 and 1530 km?. In
South Africa, Hughes and Sami (1995) describe the conceptual basis and structure of a
semi-distributed, conceptual model, VTI-HYMAS that can be run on a variable time step.
In the paper the authors discuss the physical relevance of the model parameters and outline
a procedure for parameter estimation. The Assessment of Surface Water Resources of
South Africa (Midgley et al, 1994) describes a regionalisation approach for a version of the
monthly time step Pitman model (Pitman and Kakebeeke, 1991). In this approach, the
drainage basins in South Africa were sub-divided in to Quaternary catchments. These
represent the fourth, and finest, sub-division of catchments for the assessment. The model
was calibrated for these catchments. The catchments were subsequently empirically
grouped into hydrologically similar groups based on climate, topography, soils, geology
and vegetation. Model parameters were then averaged within groups for application at

ungauged sites.

Post and Jakeman (1996) present graphical relationships obtained between the calibrated
model parameters for a second order configuration of the [H-ACRES model (described
within Chapter 3) and physical catchment characteristics for sixteen small
hydrogeologically homogenous catchments within the state of Victoria, Australia. The
physical catchment characteristics used described the drainage network, catchment
geometry and vegetation classes within the catchments. Sefton and Boorman (1997)
present the results from a study into the feasibility of regionalising [HACRES within the
UK. The study presents the results from applying a second order configuration of
IHACRES to 39 natural catchments which have catchment areas of less than 1000km”. The
model parameters were related to catchment characteristics using linear regression
modelling. Within the paper the regression relationships are graded from good to poor but
the utility of the relationships in predicting stream flow in ungauged catchments was not

directly evaluated.



1.3.3 Model regionalisation for linking with Global Circulation Models.

One class of model in which research is aligned to the objectives of this study is the macro-
scale model. Arnell (1999) provides a useful review of this type of model. He defines a
macro-scale model as a model that can be applied repeatedly over a large geographic
domain, without the need for local calibration. Macro-scale models are regionalised models
of land-surface hydrological processes that can simulate these processes accurately at an
appropriate temporal resolution, and that can be incorporated within climate simulation
models. The model maybe run at a daily time step, however the model output is aggregated
into a monthly or annual time series for subsequent use. The end point use of such models
is primarily, but not exclusively, for predicting the effect of future climate change. This
necessitates the use of a deterministically based representation of the hydrological
processes involved in the rainfall-runoff process. This class of model is generally based on
a gridded representation of the modelling of soil moisture availability. Each grid cell is
treated as a discrete entity, although cell outputs may subsequently be passed though a

routing mechanism (Jolley and Wheater, 1997a&b).

Armell (1999) points out that the availability of input data will significantly constrain the
form of a macro-scale model, and that this will commonly determines the grid scale. Jolley
and Wheater (1997a) investigated the effect of spatial scale on the performance of a 1-D
water balance model based upon the Penman drying curve concept (Penman, 1949). This
concept has been widely used within the Thames Catchment Model (TCM) (Greenfield,
1988) and is discussed in more detail within Chapter 3. The study indicated that the
performance of the model was more sensitive to the averaging of the climatic data in higher
rainfall catchments and to the averaging of soil moisture behaviour in lower rainfall

catchments.

The use of a distribution function to describe the spatial variation in grid based storage
capacities has been successfully used by Arnell in his derivatives of Moore’s Probability
Distributed Model (Moore, 1985). This work was initially undertaken in the UK (Arnell
and Reynard, 1996) and has since been developed to give global coverage (Arnell and
King, 1997). Wood has also successfully applied the approach in the VIC model (Wood et

al 1992). In application, Arnell assigns a priori parameter estimates that are either fixed or
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allowed to vary through space. These parameter estimates are derived from catchment scale
experience of applying the PDM and process based catchment studies. Abdulla et al (1997a
&b) have demonstrated for a 2 layer version of the VIC model how this a priori approach
may be expanded in continental scale river basins where good quality data describing the
climatic variations and physical characteristics of catchments are available. Within the
model, a Pareto distribution function is used to describe the variability of storage capacities
across a grid cell of specified resolution. The study was based upon application of a lumped
version of the model to 34 natural catchments within the Arkansas-Red River basin within
the United States. The model was run on a daily time step with the outputs aggregated to
monthly values for calibration against observed monthly stream flow data. Of the nine
model parameters, two were defined a priori from catchment soils information and the
remainder calibrated against stream flow data. The parameters were then subsequently
related to catchment characteristics using multivariate regression techniques. The authors
make the point that climate can play an important role in model descriptions of
hydrological response, primarily due to limitations of models in describing the full

complexities of the rainfall runoff process.

Abdulla (1997b) presents an assessment of the performance of the Macro version of VIC-
2L within the Red River basin. The assessment covered the case when the model was run
with parameter fields derived from the regression relationships and the case when the
model was run with parameter fields derived by interpolation from the calibrated
catchments. The comparison demonstrated that the use of the regression models gave
acceptable simulations of monthly hydrographs and significantly improved performance in

reducing model bias.

There is a conceptual problem that needs to be considered when grid based macro models
are run with parameters that have been estimated on the basis of the behaviour of the model
when applied in a lumped mode. The problem is that the model structure is conceptually
different when applied within a uniform grid mode. In the lumped mode the parameters are
a function of the whole catchment processes. If the grid resolution is small compared to the
size of the catchment the whole catchment processes are described as a summation of
parallel models in the gridded mode. If the grid resolution is large then the catchment

processes are represented by a fraction of the response from one cell. The biggest impact of
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this will be on parameters related to hill slope routing where the geometry of the catchment
and potentially the drainage network are likely to have an impact on the routing of effective
rainfall. This limitation is offset by the use of a monthly or longer time step in most

applications of this class of model. At these resolutions the hill slope routing of runoff is

not as important.

Pilling and Jones (1999) present the application of a 10-km resolution gridded application
of a seasonal macro-scale model. The model was based on an application of HSYIM with a
priori defined parameters. The approach of treating grid cells as independent entities was
adopted within the model. The authors claim that this work represents a significant
enhancement over the work of Arnell and Reynard (1996) both in terms of scale (true) and
physical realism, which is debatable. The prediction of annual runoff by the model was
evaluated against stream flow data for 8§65 catchments that were classified by Gustard et al
(1992) as suitable for the regionalisation of flow statistics. The authors evaluated the model
fit by averaging the grid cell predictions of annual runoff and comparing that prediction
with the gauged runoff. The results are then presented as the percentage of grid cells that
have annual runoff errors of less than 10%, between 10% and 20% and the percentage of
cells that have errors of greater than 20%. This is incorrect, as although the simulated
catchment average value of runoff may have an error of less than 10% the individual cells
may well have errors greater or less than this. A more correct representation would be to
present the percentage of catchments where errors are less than 10%. Holmes and Young
(2000) demonstrate that it is within smaller catchments that the larger errors occur in the
regional modelling of annual runoff. This is because it is in these catchments that the
biggest errors in the averaging of spatial rainfall fields are observed and where inaccuracies

in catchment definition have the greatest impact on the assumption of a closed water

balance.



1.4 NEW RESEARCH AND THESIS STRUCTURE

1.4.1 New research

With the exception of the study of Sefton and Boorman (1997), this study is the first
reported study in which the objective has been to regionalise a model for predicting daily
stream flows within ungauged catchments. Other studies have concentrated on flood
estimation or the prediction of monthly and/or annual-resolution stream flow data. At these
longer time steps, a regionalised model has to be capable of closing an effective water
balance, but the processes controlling the routing of effective rainfall through a catchment

do not have to be accurately modelled as these processes tend to operate over a shorter time

scale.

The study of Sefton and Boorman is inconclusive due to the relatively small sample size
and the fact that the utility of the regionalised model for predicting historical stream flows
was not explicitly explored within the study. The regionalisation of the model was only one
aspect of the paper. The authors recognised the poor quality of some of the relationships
between model parameters and catchment characteristics and the inconclusive nature of the

results obtained for the regionalisation part of the study.
The research that is reported within this thesis is innovative for the following reasons.

e It is one of only two studies to focus on the regionalisation of a daily resolution,
catchment scale rainfall runoff model.

e It is the largest study of this type within the UK, with nearly 180 catchments
successfully incorporated into the analysis.

e It is the first study to take a holistic approach: addressing, input data errors, model
structure, model calibration and parameter identifiability and regionalisation strategies.

e The results of the study have been extensively evaluated.

This study is the first to have demonstrated that, in the UK context, a conceptual model
structure for predicting daily stream flows can be defined such that conceptually justifiable
relationships can be derived between model parameters and the physical characteristics of

the catchment being modelled. Furthermore, the stream flow simulations derived using the
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regionalised model are certainly applicable for many water resource assessment

applications.

1.4.2 Structure of the thesis

Chapter 2 presents an evaluation of methods for estimating daily spatial rainfall grids at a
resolution of 1km* within the UK. The chapter also presents the derivation of a method for

predicting daily spatial grids of potential evaporation demand.

Chapter 3 presents an evaluation of a range of conceptual model structures for five
catchments within the Anglian region of the UK. The catchments selected are some of the
driest catchments within the UK. As will be discussed in this chapter, the correct modelling
of soil moisture behaviour, and the relationship between soil moisture deficits and
evapotranspiration losses are crucial to the successful application of a conceptual rainfall
runoff model for water resources purposes. This evaluation guided the selection of the

preferred basic model structure for the research.

The development of two appropriate deterministic conceptual model structures for the
regionalisation research is presented within Chapter 4. The focus of this development was
to develop model structures that had a strong physical basis whilst minimising the number

of parameters that were to be calibrated.

The selection of good hydrometric quality natural catchments for use within the study is

presented in Chapter 5. This identified 318 candidate catchments for use within study of
which nearly 180 catchments were subsequently used within regionalisation studies. The
derivation of candidate catchment characteristics and descriptors for these catchments is

also reported within this chapter.

The development and application of a novel, multi-objective function calibration scheme is
presented within Chapter 6. A detailed analysis of the model behaviour was made over a
range of catchment types using this scheme. This is illustrated within Chapter 6 with
reference to four case study catchments. This analysis led to a simplified form of the initial
model structure. The simplifications were made to reduce the issue of parameter covariance

within the model.
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The model fits obtained via the calibration procedure are evaluated across the catchment
data set in Chapter 7. The development of predictive relationships between model

parameters and catchment characteristics/descriptors is also presented within this chapter.

The utility of the relationships for predicting model parameters from catchment
characteristics is assessed with Chapter 8. This was assessed through comparisons between
the fits obtained with the models when using regionalised parameter estimates with those
obtained using the calibrated model parameters. For two of the Anglian catchments,
considered in Chapter 3, a comparison between the performance of the regionalised models
and the models used in the original model evaluation studies is presented. These

catchments were not used in the regionalisation studies.

As discussed in Section 1.1, the current practical approach to estimating stream flows at
ungauged sites is based on the transposition of natural or naturalised stream flows from
suitable analogue gauged catchments. The fit obtained using commonly used transposition
methods is assessed in Chapter 9 for the catchments used in the regionalisation studies. A
comparison is then made between the fit obtained with the best of these methods and the fit

obtained through the use of one of the regionalised model forms.

The results from the studies forming this thesis are discussed in Chapter 10. This chapter

presents the conclusions from the research and makes recommendations for further work.
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2 Estimation of climatic data

The optimisation of parameters of any model will tend to compensate for measurement
error within both the input data and the calibration flow data. It is therefore essential that
the methods used for estimating climatic input data are both accurate and consistent in
approach across the study area, in this case the United Kingdom. One objective of the
research has therefore been to define and evaluate techniques for estimating time series of
catchment rainfall and potential evaporation for any catchment. It has not been necessary to
consider temperature explicitly, as the regionalisation of snow storage and melt processes
is not part of this study. This chapter reviews the literature on the consequences of
measurement errors in climatic data for hydrological modelling and describes the selection
of methods for estimating areal rainfall and the development of a method for estimating

potential evaporation on a daily basis and at a 1km grid resolution.

2.1 CONSEQUENCES OF MEASUREMENT ERRORS IN CLIMATIC DATA

Errors in the spatial fields of rainfall used to derive catchment average values may result
from measurement and/or interpolation error. The standard rain gauge within the UK is the
Meteorological office MKII rain gauge (Meteorological Office, 1981) set into the ground
with the rim located at 300mm above the ground surface. However, increased turbulence
around the gauge can lead to the gauge catch being significantly reduced. This has led to
gauges being increasing set at ground level with a variety of devices to minimise in-splash.
Based on measurements at Wallingford and the work of other researchers Rodda (1967)
hypothesised that these error may lead to significant systematic error of about 5% in the
estimation of average annual rainfall and that the degree of this systematic error might vary
within the year. This is illustrated in Figure 2.1 for Rodda’s Wallingford site. This data
excluded months of snow, obviously precipitation that falls as snow may not be fully
caught by a standard rain gauge. The issue of snow is really only a major issue in the
mountainous areas of the UK and the Highlands of Scotland in particular. The analysis
presented in this chapter has been restricted to assessing the potential errors of spatially

interpolating point rainfall data rather the consequences of inherent systematic errors in the

point measurements.
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The potential for evaporation demand at a point is a derived measure based upon
measurements of humidity, the energy balance and wind speed, amongst other variables.
When spatially interpolating point measurements of evaporation consideration needs to be

given as to whether it is better to interpolate the meteorological variables or the derived

evaporation measures.
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Figure 2.1 Méan monthly differences between ground-level and standard gauge,
July 1961 to August 1966 (excluding months of snow) (Source: Rodda,
1967).

The importance of errors in rainfall fields derived from point measurements is a function of
the spatial and temporal extent of the required rainfall surfaces. The type of precipitation is
also important; errors are likely to be smaller for frontal precipitation rather than
thunderstorms and/or localised showers associated with warm sector weather. Taking the
temporal consideration the errors are likely to be higher for hourly or 15 minute data where
the spatial extent of individual rain events needs to be considered. The errors for daily
rainfall surfaces tend to be smaller as an average of the depth of all rainfall events within a

day is taken.

Faurés et al (1995) looked at the implications of spatial errors in rainfall data for single
events for the modelling of a small, 4.4 ha semi arid catchment using a distributed rainfall
runoff model. The results of the analysis demonstrated that the model output (peak rate and
total runoff volume) was extremely sensitive to the characterisation of rainfall using
between 1 and 4 rain gauges. Obled ef al (1994) evaluated the sensitivity of the
TOPMODEL to the spatial characterisation of hourly rainfall. This was undertaken within

a 71-km?2 catchment in Southeast France over a number of events. They tested two network
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densities against a baseline assumption of uniform rainfall. They concluded that the spatial
variability of rainfall, although important, was not sufficiently organised in space and time

to overcome the effects of catchment averaging within this size of catchment.

The majority of the literature on the impacts of errors in climatic data on stream flow
simulation has been driven by the need to understand the relationship between errors in
rainfall data and the ability of models to simulate catchment response to individual rainfall
events. However, there are a number of studies that have looked at this issue from a
resource perspective. Storm, et al (1988) considered the sensitivity of the NAM model to
the uncertainty in catchment average daily rainfall time series derived for a Danish
catchment using a kriging based interpolation technique. This analysis demonstrated that

the largest errors in stream flow occurred in the winter months when the evaporation

demand is smallest.

Paturel er al (1995) considered the sensitivity of the simple GR2M model to errors in input
data in 5 medium sized catchments on the Ivory Coast of Africa. They considered the
impacts of systematic (both under and over estimation) errors in monthly rainfall and
evaporation demand on simulated monthly stream flow. The systematic errors in rainfall
led to equivalent systematic errors in simulated stream flow with a linear relationship
between the two. When expressed as a percentage error, the errors in stream flow were
higher as, crudely speaking, the stream flow is the balance between rainfall and evaporation
demand. The simulated stream flow was also more sensitive to percentage errors in the
rainfall data than the evaporation data. They also considered the impact of random errors in
the climatic data and identified that there was a non-linear relationship between the random
errors and stream flow errors — a consequence of the non-linear relationship between
rainfall, evaporation and resultant stream flow. Nandakumar and Mein (1997) evaluated the
sensitivity of the Monash HYDROLOG model to errors in climatic data and parameter
uncertainty at five experimental sites in Victoria, Australia. They again considered
systematic errors in rainfall and both random and systematic errors in evaporation. The
analysis identified that the simulated annual runoff was most sensitive to systematic errors
(as would be expected) and that the more permeable catchments were less sensitive to the
errors in the estimation of evaporation demand. The percentage error in simulated stream

flow was much more sensitive to percentage errors in rainfall than evaporation.



These studies indicate that simulated stream flow is more sensitive to errors in precipitation
and that the ability of a model to close a water balance (zero systematic error in simulated
stream flow) is much more sensitive to systematic rather than random errors. From water

balance considerations these results are intuitively correct.

2.2 METHODS FOR DETERMINING AREAL RAINFALL

Areal precipitation methods seek to represent the spatial distribution of precipitation over a
catchment. If r(x,y,t) is taken to be the depth of precipitation at the point (x,y) within time

interval (t) areal rainfall can be derived from the integral

[ [r(x,y,t)dxdy
yX

[ [dxdy
yX

2.1

R, =

In practice the function r(x,y,t) is not known and is thus estimated from the precipitation
values measured at rain gauges. These can be regarded as point measurements across the
rainfall surface r(x,y) at time, t. Most methods express the areal rainfall integral as a

weighted average of the values measured at the individual gauges, expressed as

_ 1&
R1 =— (2.2)
2 W.T,
where:
n = the number of gauges;
Wi = the weight applied to rain gauge, 1.

The weight given to a rain gauge is commonly the fraction of the catchment r(x,y,t) surface
whose rainfall is represented by the rain gauge (r). The most common methods for
estimating areal rainfall are domain based methods such as Thiessen polygons (Thiessen,
1911). In these methods the area of interest is subdivided into polygonal areas with a rain
gauge within each. The polygons are constructed from perpendicular bisectors of nearest
neighbour arcs between rain gauges. The weight for each gauge is the area of the
corresponding polygon, which in turn is that part of the catchment that is closest to the
gauge. This is demonstrated diagrammatically in Figure 2.2. The main disadvantages of
domain based methods for areal rainfall estimation are that the gauge may not be
representative of the domain and that there are discontinuities in the estimated r(x,y,t)

surface at the domain boundaries. The British Standards Institute standard “Guide to the
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acquisition and management of meteorological precipitation data” (British Standards
Institute, 1996) recommends the use of either the triangular planes method (Jones, 1983) or
Voronoi interpolation (Sibson, 1982) for generating areal rainfall estimates. These are both
weighted mean methods amenable to implementation using a computer on a grid basis. The
principle advantage of these methods is that they produce smooth rainfall surfaces without
the boundary discontinuities that occur between adjacent polygons in the Thiessen polygon
method. This is of particular importance in small catchments where domain polygons may
be of a similar spatial resolution to the catchment. Within this study both the triangular
Planes and Voronoi methods were adapted, implemented and evaluated for estimating daily

rainfall time series for any cell within a Tkm? grid across the UK.

Figure 2.2 A diagrammatic representation of Thiessen Polygons.

The study has not considered statistical methods such as kriging (Matheron, 1963) as these
are not British standard methods. These methods use rain gauge weights derived on the
basis of ensuring the estimates of rainfall for each time interval at a point are both unbiased
and that errors are minimum variance errors. The method assumes that these estimates are
uncorrelated through time. The spatial dependency of the rainfall field is described by an

auto covariance function (derived for measured points) that varies through space and

through time.
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Triangular planes method

The triangular planes method evaluated within this study was a simplified version of the
original Jones’ method which in addition to the interpolation of the point data also
considered the most appropriate grid scale for application of the scheme. Taking advantage

of increased computing power a standard grid of resolution 1km?* was used for this study.

maximum
distance

o7

Figure 2.3 A diagrammatic representation of the Triangular planes method.

The starting point for the rainfall estimation procedure is a catchment boundary. The
boundary is used to delineate the 1km? cells from a regular grid for which daily rainfall
estimates have to be derived. For each day the three closest rain gauges capable of forming
an enclosing triangle are identified for each cell centroid. This is demonstrated
diagrammatically in Figure 2.3. A rainfall value, rc, for a cell, i, at time, t, is then derived
using a weighted average based upon the inverse distance of each gauge from the

estimation point according to

rc. = W, . T . 2.3)
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The weight for each rain gauge r;is a Euclidean based distance measure given by

: 1/d;
W, = 2 , (2.4)

> il/dfj

=

where:

w, = Weight for rain gauge, j, in time interval, t, when used in the estimation of
rainfall for target cell, i;

d,  =the geographic distance between rain gauge, j, and target cell, i.

If a triangle cannot be formed, using gauges within a circle of radius 60-km from the cell
centriod, the value at the nearest rain gauge is used. The arcal average for the catchment is
the average value for all cells subtended by the catchment boundary. This method can be
further refined by normalising the measured rainfall for each gauge, r;, by the Average
Annual Rainfall (AAR) for the gauge and multiplying the estimated value for the target cell
rc, by the average annual rainfall of the cell. This obviously requires a priori knowledge of
the average annual rainfall for the target cell. This step minimises the impact of differences

in total rainfall depth between source gauges and the target cell.

The Meteorological Office have derived a digital 1 km resolution grid of average annual
rainfall for the United Kingdom at a mapped scale of 1:625,000 for the 1961-1990 standard
period (Spackman, 1996). The procedure used to generate this map was based upon the
derivation of node values of average annual rainfall values for a 10-km grid using monthly
data from approximately 13,100 rain gauges. These values were then contoured and
gridded at a 1km resolution using a bi-cubic spline interpolation procedure. Estimates of
annual rainfall derived from this map (henceforth referred to as Standard Period Average

Annual Rainfall, SAAR (61-90) estimates) were used to describe the AAR for each 1km?

cell.

Voronoi interpolation

Voronoi interpolation is essentially an extension of the Thiessen polygon approach. In
Voronoi interpolation Thiessen polygons are constructed for the gauge network. Within
the computer implementation, based upon a 1 km resolution grid, polygons are constructed

by assigning grid cells to gauges on a closest distance basis so each gauge 1; will have a set
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of cells, C, associated with it. The next step is to sequentially estimate an interpolated
rainfall value for each cell within the catchment boundary and for each day. For each cell,
rc, the centriod of the cell is introduced as a new “rain gauge” into the network, and the
Thiessen polygons re-calculated taking into account the new “rain gauge”. These process
results in the cell centroid, lying at the centre of a polygon which overlaps the original
polygons developed for the true rain gauge network. The cell polygon consists of a set of
cells, C,. The rainfall value for the cell is then obtained by taking a weighted average of the
values at rain gauges whose original polygons are intersected by the polygon associated
with the target cell. The weight assigned to a rain gauge is the fraction of the cell polygon
that is overlapped by the original polygon for the gauge. The rainfall value for the cell is

therefore obtained from the n gauges whose original polygons intersect the cell polygon

using

1

1
Lt C_rc - (Crc Y Cj)r_] . (2.5)

Whereas the surface produced by Thiessen polygons is a series of single value domains
with discontinuities between them, the Voronoi method produces a gradually varying
surface. The method can also be enhanced by use of average annual rainfall using the same

approach as described for the triangular planes method.

2.2.1 The evaluation of rainfall estimation methods

The approach
The performance of the Voronoi interpolation and triangular planes methods was evaluated

within four test areas (A, B, C & D) each covering an area of 50 km?. The locations of
these areas are presented in Figure 2.4. The objective of the testing was to evaluate the
performance of the methods within both high and low rainfall areas of the United
Kingdom. For each class two areas were selected, one with a dense rain gauge network and
one with a sparse network. The characteristics of the test areas are summarised in Table
2.1. This table presents for each area the total number of rain gauges operating within the

1961-90 period, record length statistics and the Meteorological Office estimate of 1961-90

rainfall for each area.
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Area A is located in East Anglia around the town of Newmarket. It was selected as a low
rainfall area with a dense rain gauge network, as demonstrated by the summary statistics
from Table 2.1. Area B is located over the North Pennine Moors, and represents a well-
instrumented area with above average rainfall. Areas C and D are both sparsely gauged.
Area C is a low rainfall area in the Grampian region of Scotland to the east of the
Grampian Mountains and Area D is a high rainfall area within the Highlands region. While
the total number of rain gauge years over the period 61-90 varies markedly between areas

the mean record length per gauge does not.

Table 2.1 Summary characteristics of test areas
Area
A B C D

Total number of gauges 1961-90 67 49 17 24
Record length (yrs) Max. 30 29 26 27

Min. 5 5 5 5

Mean 15 14 14 13
Total gauge years 1025 667 244 313
61-90 SAAR (mm/yr) 586 1249 988 1980

The performance of each of the methods was assessed through the ability of a method to
replicate the observed daily rainfall pattern for each gauge within an area. Within an area, a
rainfall time series was generated for each gauge over the period 1961-90 by removing the
rain gauge in question and using the surrounding gauges to estimate the daily rainfall time
series at the gauge site. The analysis was undertaken for the two methods both with and
without enhancement through the use of SAAR data. Goodness of fit measures were used
to evaluate the differences between observed and predicted time series for a gauge. These
were the R?statistic and the BIAS in the simulated annual rainfall. The R* is that
proportion of the variation in the observed rainfall time series explained by the variation in

the simulated time series. The BIAS is given by

rs
BIAS:(1~ 2 ’}100 s 2.6)
2 ro,
where:
IS = the simulated rainfall on day, i, within the year (mmd'l);
I0; = the observed rainfall on day, i, within the year (mmd’l).

29



Figure 2.4  The location of the test areas within the UK.
For both of these measures only those days when rainfall was either observed or simulated
were used. Using these analyses a time series of annual R? and BIAS statistics were
obtained for each gauge within a test area. The R? statistics are a measure of the correlation
between the observed and predicted rainfall time series. The BIAS statistics are a measure

of whether or not the errors in daily rainfall predictions are random or whether there is a

tendency for the method to over or under predict daily rainfall within a year (a systematic
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error). Figure 2.5 presents an example of the BIAS time series for an example gauge in area
A for both methods with and without standardisation by AAR. As can be seen the average

BIAS over the 61-90 period is low however the inter year variability can be up to = 8%.

Ideally it would have been more rigorous to select a subset of gauges from each area for
evaluation purposes. Due to the low sample sizes in areas C and D this was not a practical
option and thus all gauges were used for both evaluation and prediction. The consequence
of this is that there will inevitably be a degree of covariance between errors at adjacent rain
gauges. This is best explained by considering nearest neighbour gauges A and B. It is quite
likely if gauge A is used to predict rainfall at the site of gauge B that gauge B will be used

to predict rainfall at the site of gauge A.
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Figure 2.5  An example of the variation in annual bias for a gauge in Area A.

This will not always be the case, for example, at gauges near the edges of the areas where
one or more of gauges used to estimate the rainfall at a gauge site may be drawn in from
outside of the area. Within the Triangular planes methodology it is not axiomatic that if A
is one of three nearest neighbours used to triangulate the site of gauge B that gauge B will
be one of the equivalent nearest neighbours for site A. The consequence of potential error
covariance between sites will be that the variance of the spatial distribution of errors at
points within the areas considered will be under-estimated. It is reasonable to expect that a

method that will result in poor point predictions will result in poor estimates of areal

rainfall.
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In practice the variation in performance between methods was found to be small. The
general variation in performance between areas is therefore presented with respect to the
performance of the Triangular Planes Method using the standardising by AAR (henceforth
call the TPA method). The performance of the other methods is presented in the context of

differences between these methods and the TPA method.

Evaluation of the differences in the performance of the TPA method between areas

To summarise the performance of methods for all gauges within an area the time series of
annual statistics for each gauge were summarised as the average value for each statistic
over the (61-90)-sample period and the standard deviation of the variation of the annual
statistic for the sample period. Summary statistics about the variation in the value of the
mean annual bias for gauges in each area and the “at gauge” variation in the annual bias
statistic (as represented by the Coefficient of Variation (CV) of the annual bias statistic for

each gauge) are presented in Table 2.2. The CV of annual bias at a gauge was calculated

using
CV = _ Ovias , 2.7)
bias + 100
where:
bias = mean annual bias over the 61-90 period expressed as a percentage;
Obias = standard deviation of annual bias over the 61-90 period.

Table 2.2 Summary bias statistics for the TPA method

Area
A B C D
Mean annual Max 10.1 10.5 49 18.5
bias statistics Min -8.6 -18.7 -5.4 9.6
for gauges Mean 0.0 0.0 0.0 0.0
Annual bias Max 9.10 9.61 5.67 8.71
CV statistics Min 1.21 2.01 2.37 1.83
for gauges Mean 3.74 4.83 4.62 4.79
Percentage of Hyp: p=0 49 59 35 46

gauges 95% c.i.)
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The summary statistics, presented in Table 2.2, do not identify any large differences
between the performance of the TPA method in each of the areas. This is somewhat
surprising given the low rain gauge density in areas C and D, and is perhaps a measure of
the effectiveness of using the standardisation by AAR within the estimation procedure. If
anything, Area C shows that the absolute variation in mean annual bias and annual bias
CV, as represented by the maximum and minimum values, is less than for the other areas.
However it should be remembered that area C has fewer rain gauges that the other areas

and thus these differences are likely to be associated with differing sample sizes between

arcas.

A good simulation of the daily rainfall at a gauged site would have a minimal annual
variance and a mean annual bias of zero. For the example gauge (Figure 2.5) it can be seen
that the variation in annual bias is fairly random over the 61-90 period. This gauge was
fairly representative of all gauges considered. The CV of the sample for each gauge can be
taken as a first approximation to the standardised variance of the underlying population.
From Table 2.2 it can be seen that the mean CV for rain gauges in each area was less than

5% and the maximum was less than 10%.

The departure from zero for the mean annual bias (indicating a systematic error) for a
gauge may be a result of the sample size considered. A two tailed t test was therefore
applied to the data for each gauge to test whether the mean annual BIAS for each gauge
was significantly different from a ideal population mean (1) of zero, given the sample size
and the variation of annual BIAS within the sample. The null hypothesis for this test was
Hp: p=0 and the alternative hypothesis was Ha#0. The percentage of gauges in each area
for which the mean annual BIAS was significantly different from zero is summarised in the
last row of Table 2.2. With the exception of Area B, this percentage was less than 50%,
although the variation between areas may be attributable to the different number of gauges
in each area. The same analysis is presented in Table 2.3 for the annual R? statistic with the

exception of the t test, which is not applicable in this case.
The summary statistics presented for R again do not identify large differences between the

performance of the TPA method in each of the areas. There is some evidence of a trend

towards lower mean R? values in areas C and D, this indicates that gauge density does have

2-13



an impact upon the correct simulation of the daily variations in rainfall for this method.
Considering the CV statistics for R* the range of CV is similar for all areas except for area
C where the maximum value of 5% is much lower than that for the other areas. The mean

values for the CV of R? are similar to those for the BIAS statistics in each area.

Table 2.3 Summary R* statistics for the TPA method

Area
A B C D
Mean annual Max 0.99 0.96 091 0.95
R? statistics Min 0.78 0.79 0.81 0.79
for gauges. Mean 0.91 0.90 0.86 0.88
Annual R® Max 7.88 9.81 9.90 9.99
CV statistics Min 1.06 1.17 2.19 0.95
for gauges (%). Mean 4.3 4.31 5.10 4.77

In the study areas considered it appears that the performance of the TPA method is not very
sensitive to either the density of rain gauges considered or the magnitude of average annual
rainfall, and the associated increased probability of greater spatial heterogeneity in rainfall
patterns. The error in determining annual rainfall totals using the TPA method is primarily
random in nature with approximately 50% of the gauges in an area demonstrating a small,
but significant systematic error. The mean CV appears to be in the order of less than 5%.
The correlation between simulated and observed rainfall is high in areas A, B and D with
some evidence to indicate that the denser networks do facilitate a more accurate simulation
of the daily variation in rainfall depths. Again the mean CV for R? appears to be in the

order of 5%.

If the relationship between long term annual rainfall and annual runoff is strongly linear (as
will be the case when evaporation rates are rarely limited by soil moisture deficits) the
random errors in annual BIAS will not propagate into major errors in the prediction of long
term runoff. However it should noted that BIAS errors in years where significant soil
moisture deficits can potentially build up might lead to potentially large water balance
errors in simulated runoff over the full period of record. Evaporation rates will be rarely
limited by soil moisture deficits in the wetter catchments in the north and west of the

United Kingdom but will occur in most years in drier parts of the country.



Comparison of the performance of the TPA method with that of the other methods

To determine whether differences between methods as determined by mean annual BIAS
were significantly different from that of the TPA method two tailed t-tests were applied to
each gauge using the estimates of mean annual BIAS and the standard deviation of annual
BIAS for each method. The null hypothesis tested was Ho: u;=u, where L, is the mean
annual BIAS for the TPA method and i, the mean annual BIAS for the method being
tested. Where the t-test demonstrated that differences were significant the differences were
grouped according to whether the mean annual BIAS for the method being tested was

greater or smaller than that obtained using the TPA method.

The results from these tests are presented in Table 2.4. The results demonstrate that, where
significant differences exist between the methods, the differences are for those methods
which do not normalise by AAR, and are invariably a consequence of larger BIAS values
than those observed for the TPA method. The numbers of gauges where values are
significantly different represent a relatively small percentage of the total number of gauges
within the area except for the Voronoi method in area C. This result is probably a
consequence of the small gauge sample size for C. The mean BIAS values are not
significantly different for any of the methods for gauges in area A and only for the Voronoi

method without normalisation by AAR in Area C.

In the wetter areas, B and D, instances of gauges where predictions are significantly
different if normalisation by AAR is not used are observed. In all cases these result from a
poorer simulation of annual rainfall (and hence higher mean BIAS) that that obtained using
the TPA method. This result implies that the value of standardising by AAR increases as
the mean AAR within an area increases and the associated spatial heterogeneity increases.
The association between the magnitude of annual rainfall and spatial heterogeneity is

illustrated within Figure 2.4.

The variation in CV of annual BIAS relative to that for the TPA method is summarised in
Table 2.5 in which the subscripts 1 and 2 respectively refer to the TPA method and the

method being evaluated. Here t-tests were not applied.

2-15



This table generally demonstrates that more gauges within an area have a higher CV for the
Triangular planes based methods than for the Voronoi based methods, particularly for

Voronoi normalised by AAR. It important to note that the improvement is less than 2% and
that where the TPA method performs better the advantage the TPA method has is generally

larger. However, all of these differences must be considered as being marginal.

Table 2.4 Variations in mean annual BIAS between methods
% of gauges mean %  differences
Tri.Planes Voronoi Voronoi | Tri.Planes Voronoi  Voronoi

Area no AAR AAR No AARno AAR AAR no AAR
Area A
M #Z L <My 0 0 0

u2>pl 0 0 0
M=k 100 100 100
Area B
M1 # Wy o<l 0 0 0

u2>ul 6 0 8 -25.13 -19.95
M= 94 100 92
Area C
W #Z  <U 0 0 0

MH2>ul 0 0 18 -15.53
MHi=1b 100 100 82
AreaD
i # W o<ty 0 0 0

uz>ul 4 0 4 -10.40 -10.60
M= 96 100 96

The same analysis undertaken for annual BIAS was also under taken for the R? statistics.
The analysis for R* demonstrated that in all cases the performance of the methods in all

cases was not significantly different. Furthermore differences between the CV values for R?

were in all cases less than 1%.

The analysis has demonstrated that there is little to choose between the Triangular planes
method and the Voronoi interpolation methods when the rainfall estimates from the source
gauges are normalised by the average annual rainfall for the gauge prior being used in the
either of the weighted averaging schemes. The standardisation process appears to offer best
improvements in wetter areas, in terms of BIAS. The temporal variation in simulated daily

rainfall, as represented by the mean annual R* value, tends to be insensitive to the method

2-16



used although the methods do appear to simulate daily variations more effectively in drier
areas and where the rain gauge network is more dense. This is intuitively correct, as the

spatial heterogeneity in rainfall is lower over these dryer, lower elevation areas.

Table 2.5 Variations in the CV of annual BIAS between methods

Percentage of gauges mean % differences
Tri.Planes Voronoi Voronoi| Tri.Planes Voronoi  Voronoi

Area no AAR AAR No AARno AAR AAR no AAR

Area A CV,<CV; 36 51 51 0.18 0.36 0.39
CVy,>CV,; 63 46 49 -0.19 -0.26 -0.32
CV,=CV,; 1 3 0

Area B CV><CV; 33 59 45 0.98 0.83 1.19
CV,>CV; 67 41 55 -3.23 -0.42 -2.24
CVy,=CV, 0 0 0

Area C CV,<CV; 41 76 53 0.21 1.11 1.20
CV,>CV; 59 24 47 -1.36 -1.22 -1.17
CVy=CV, 0 0 0

AreaD CV,<(CV; 29 67 38 0.92 0.69 1.09
CVy>CV; 71 33 63 -2.51 -1.13 -1.95
CVy=CV; 0 0 0

2.2.2 The influence of standardising by AAR on catchment estimates of average
annual rainfall

The Triangular planes method is more computationally efficient than the Voronoi based
methods and thus Triangular planes method enhanced through the standardisation by AAR
was used to generate daily rainfall series for all catchments used within this study (see
Chapter 5). The 61-90 average annual rainfall estimates generated for each catchment using
the triangular planes method, with and without additional enhancement through the use of
AAR are plotted as a function of Meteorological Office 1961-90 SAAR in Figure 2.6. The
strong correspondence between estimated AAR generated using the TPA, incorporating the
normalisation by AAR, and the published 61-90 data is not surprising as this estimate of
AAR is used to re-scale the normalised estimated rainfall in the method. However the plot
demonstrates that the 61-90 SAAR for high rainfall catchments is consistently
underestimated when AAR is not included within the estimation procedure. High rainfall

catchments lie in the west and north of the UK in which the high rainfall is a consequence
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of orographically enhanced precipitation arising from rainfall associated with depressions.
Furthermore the spatial heterogeneity in rainfall is higher within the areas with higher
topographic relief. More that 60% of the annual rainfall in the UK is associated with
depressions (Shaw, 1988). This systematic under estimation in high rainfall catchments
demonstrates that the siting of rain gauges tends to be biased towards accessible low
altitude areas. From a simplistic viewpoint these areas are either coastal or areas in which

rainfall is generally lower as a consequence of rainfall shadowing.
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Figure 2.6  1961-90 AAR estimates, derived using the Triangular Planes method,
with and without standardisation by SAAR (61-90), and plotted as a
function of SAAR.

2.3 ESTIMATION OF POTENTIAL EVAPORATION TIME SERIES

2.3.1 National UK Potential Evaporation Estimation: MORECS

The term “potential” evaporation can be equated to an upper limit to evaporation in a given
environment. Within the rainfall runoff model potential evaporation is treated as an
intermediate parameter in the estimation of actual evaporation. This is obtained by
reducing the potential evaporation estimate in proportion to soil moisture deficit as
described in Chapter 4. In this situation, the potential evaporation estimates need to provide
a correct, spatially and temporally consistent reference on which the actual evaporation
scheme can subsequently be based. It is essential therefore that the physical basis for these

estimates must be consistent with evaporation theory.
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Calder er al (1983) and Anderson and Harding (1991) have suggested that using a single
value of potential evaporation applied across the entire United Kingdom (but varying with
time) does not produce large errors in the estimation of soil moisture deficits, with the
exception of mountainous areas. This would imply that the spatial variation of
meteorological variables is not of key importance. However, these studies used a range of
actual evaporation estimation schemes to simulate changes in soil moisture deficit

evaluated against those estimated experimentally using a neutron probe.

The Meteorological Office Rainfall and Evaporation Calculation System (MORECS)
(Hough, 1996) is the only consistent, national model for estimating historical potential
evaporation in the UK. Potential evaporation estimates within MORECS are based upon
the Penman-Monteith equation (Monteith, 1965) and are output on a 40km resolution grid
basis. The use of a physically based equation, such as Penman-Monteith is likely to give a
more consistent basis for PE estimation and thus MORECS PE estimates were used as a
basis for the current study. The biggest limitation of the MORECS system for PE

estimation is the spatial resolution of the system. This limitation was addressed during the

course of this study.

The origins of the Penman Monteith equation can be traced back to the Penman (1948)

equation for evaporation from open water:

B =8+t 2.8)

where:

E, = evaporation from open water (mm day’l);

A = slope of the curve of saturation vapour pressure with temperature
(PaK™);

A = available energy (mm day™);

E, = f(u)(ea-€q);

u = wind speed (m day 7);



e = saturated vapour pressure at the ambient temperature (Pa);

a
€, = saturated vapour pressure at the dew point (Pa), where the dew point is
the temperature at which a parcel of air must be cooled for it to become saturated;

Y = psycrometer constant (66 Pa K at Standard Temperature and Pressure).

Penman adapted the wind function in light of further experimental evidence to give direct
estimates of potential transpiration (Penman, 1963). In this equation potential evaporation
is defined as “a measure of the transpiration rate from an extensive short green cover,
completely shading the ground and adequately supplied with water”. The equation for

potential evaporation is

A A Y
E = R{l-a)- R+ fluje, —e,), 2.9
tg A+'Y[ s( )] A+Y nl A+'Y ( )(a d) ( )
where:
R, = solar radiation (mm day’l);
o = surface albedo;
R,  =nett long wave radiation (mm day™).

Both the solar radiation and net long wave radiation are determined from empirical
formulae, the former based on the number of hours of bright sunshine and the latter based
on sunshine hours, air temperature and vapour pressure. Allen et al (1994) describes

equations for the calculation of the Penman variables.

The Penman-Monteith equation is based on the Penman model but incorporates a revised
physical representation of evaporative water loss from by including vegetation effects as

defined by a “surface resistance” to represent the resistance to the diffusion of water vapour

from the intercellular spaces of the leaves to the atmosphere.
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The Penman-Monteith equation given by

A(Rn —G)+ pcp (ea —ey )/ra

TR ) .
where:
E, = evaporation rate (kg m™* day'l);
R, = nett solar radiation (kg m* day™);
G = soil heat flux (kg m™> day’l);
p = density of air (kg m?);
c, = specific heat of air at constant pressure (J kg K™Y,
T, = nett resistance to water vapour diffusion from the surface to the height of the
measurement instrument (day m'l);
A = latent heat of vaporisation of water (J kg™);
I = nett resistance to water vapour diffusion from leaf and soil surfaces (day m'l).

MORECS is a discrete grid based lumped model. Within MORECS the evaporation from
(potentially) 14 land cover categories from each of three different soil types (virtual soils
with a high, medium and low available water capacity) is calculated. Although MORECS
uses the Penman-Monteith equation it does not calculate specific reference evaporation
rates for individual land cover categories. The MORECS potential evaporation is the

Penman-Monteith evaporation from grass that is freely supplied with water.

The meteorological data used to run the MORECS model is supplied by a network of 59
climate stations reporting sunshine hours and 156 stations additionally reporting rainfall,
wind speed, humidity and temperature. The interpolation procedure used within MORECS

is as follows. Daily averaged station data are, initially, normalised by:
e converting sunshine hours into a percentage of the mean monthly number of hours;

e reducing temperature and vapour pressure measurements to sea level values;

e standardising the wind speed using an empirical factor related to terrain roughness.
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The nearest nine stations to a MORECS grid cell are then selected as long as they are
within 100 km of the centre of the square. If there is a station within 0.5 km of the square
centre then its measurements are used alone. The nine stations selected are reduced to a
maximum of six dependent on data availability and excluding stations where there are
more than two in a single octant of the grid square. If less than three stations have been
identified in this way then inverse distance weighted averaging is used, otherwise plane
fitting is employed. The values calculated in this way are then de-normalised. Hough er al
(1996) state that these procedures will produce estimates of temperature, humidity and
wind speed within acceptable error limits as their spatial variation is small. The sparseness
of the sunshine recorders and the poor representation of daily rainfall, however, lead to less
accurate estimates of these variables. The reference PE estimates generated by MORECS

are not influenced by the poor rainfall characterisation within MORECS.

The Meteorological Office operates MORECS as a commercial system. Although the
model runs on a daily time step the output is available at either a weekly or monthly
resolution. The data used in this study was restricted to monthly data due to the prohibitive
cost of the weekly data. The primary limitation of MORECS, as a source of historical PE
data, is the grid resolution of 40km. The impacts of this are twofold; the scale means that
the majority of the spatial variations in PE associated with variations in elevation and wind
speed are averaged out and the discontinuities between adjacent cells are significant at the
scale of catchments modelled within the study. The variables in the Penman Monteith

equation that are sensitive to temperature and/or pressure variations related to elevation are

the:

e slope of the curve of saturation vapour pressure with temperature( A )(Pa K™,
e wind speed, u, (m day‘l);

e saturated vapour pressure at the ambient temperature, e, , (Pa);

e saturated vapour pressure at the dew point temperature, e, , (Pa);
e psycrometer constant, ¥ , (PaK™);

e netradiation (R) (kg m? day™).

A temperature lapse rate of -0.6°C/100m and a saturated vapour pressure lapse rate of -

0.0025kPa/100m are used within MORECS (Hough, 1996). The importance of adjusting
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for elevation is further highlighted by experimental evidence from the Balquidder
catchments (Wright and Harding, 1993) that indicates grass evaporation ceases at the low
temperatures encountered in the Highlands of the UK. A study carried out by Beven (1979)
showed that estimates of actual evaporation made using the Penman-Monteith equation are
highly sensitive to all other meteorological inputs (and especially radiation measurements).
However, this sensitivity was found to be far less important than the sensitivity of the
equation to changes in vegetation as mediated by the resistance values. This is not a factor

within this study as the PE estimates are being used.

For this study an approach was developed for disaggregating the 40-km resolution
MORECS grid estimates to a 1-km grid empirically taking into account taking in to
account the effect of sub-MORECS cell scale variations in elevation. This has been
achieved through the development of lumped lapse rates that encapsulate the

meteorological dependencies on elevation.

2.3.2 Enhancement of MORECS Potential Evaporation estimates taking into

account spatial heterogeneity related to elevation

A generalised 1-km resolution grid of mean cell elevation has been derived at the Centre
for Ecology and Hydrology - Wallingford from the Ordnance Survey 50-m grid of
elevation data. This grid was used as the basis for the spatial interpolation of MORECS PE
estimates to a 1-km grid accounting for spatial heterogeneity in elevation. Empirical PE
lapse rates were derived and used in an interpolation scheme based upon the triangular

planes method of Jones used for rainfall estimation.

Derivation of mean monthly lapse rates

Empirical monthly Lapse Rates (LR) for PE were derived by analysing the within month
variations in PE between MORECS grid cells as a function of elevation. The Penman
Monteith equation is sensitive to the impact of latitude variations on nett radiation
estimates, which is one of the primary variables affected by changes in elevation. To
identify whether there were any latitude variations in monthly PE lapse rates the variation
in monthly PE as a function of elevation was investigated across several “strips” of

MORECS cells across regions where there is a reasonable variation in elevation. Those
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considered were cells; 33-39, 60-66, 75-80, 83-87, 111-121 and 143-153. The MORECS

grid structure is presented in Figure 2.7.

For each of the six “strips” the mean (61-90) PE was estimated for January (low PE) and
July (high PE) for each cell within a strip. Lapse rates were estimated from linear
regressions of PE against elevation for each month and for each strip; in this context the
lapse rate is the gradient of the relationship. Lapse rates for each strip considered are
presented in Table 2.6 and example plots of the relationships for strips with Northings 760
km and 320 km respectively are presented in Figure 2.8. The data show that lapse rates are
generally higher in the summer months, a function of the increased nett radiation and the
elevation dependency of nett radiation. However, there is no firm evidence of a relationship
between lapse rate and latitude dependent variations in nett radiation. This indicates that
any latitude effects are being masked by uncertainties introduced by the small and different

sized cell samples between strips and the varying degrees of elevation variation across

strips.

Table 2.6 Predicted January and July lapse rates for example strips of MORECS
cell with constant Northings

Strip Lapse Rates (mm/m)

Northing January July

760 -0.0093 -0.0142
600 -0.0202 -0.0164
520 -0.0101 -0.0086
480 -0.0112 -4.0036
320 -0.0086 -6.0001
200 -0.0064 -4.0010

PE data from all 190 MORECS cells were consequently used to derive the final monthly
lapse rates. The frequency distribution of mean cell elevation for all MORECS cells is
presented in Figure 2.9. This demonstrates the skew to lower elevations and that the
highest mean cell elevation is less than 560 m, which demonstrates the averaging effect of

the 40-km resolution.
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Mean monthly lapse rates were derived for each month using linear regression to relate the
rate of change of mean 1961-90 monthly PE estimates to changes in elevation. As
examples the relationships are plotted for January and July in Figure 2.10a and Figure
2.10b respectively. The annual PE relationship is plotted in Figure 2.10c for comparison.
The estimated lapse rates are presented for all months in Table 2.7 and are presented
graphically in Figure 2.11. The standard error for the individual lapse rates are also
presented in Table 2.7 with the associated 95% upper and lower confidence limits, these

are also presented in Figure 2.11.

The largest confidence intervals are associated with the lapse rates during the summer
months. This is related to the impact of elevation variation on nett radiation which is high
in summer and which will exhibit a relatively large, climatically driven inter year
variability. One limitation of the derived lapse rates is that the maximum elevation in the
data set is 558m and thus when the lapse rates are applied to elevations greater than this
there will be a degree of uncertainty. In practice PE is generally much lower than rainfall in
these areas and thus the impact on the performance of the rainfall runoff model will be less

sensitive to errors in PE in these areas than those in low rainfall areas.

Table 2.7 Derived mean monthly lapse rates

Lapserate Standard Lower 95% Upper 95%

(mm m™) Error cl cl
(mmm?) (mm m'l) (mm m™)
January -0.0143 0.0012 -0.0166 -0.0120
February -0.0140 0.0009 -0.0158 -0.0122
March -0.0180 0.0015 -0.0209 -0.0150
April -0.0237 0.0024 -0.0284 -0.0191
May -0.0344 0.0038 -0.0418 -0.0269
June -0.0314 0.0046 -0.0404 -0.0224
July -0.0388 0.0061 -0.0509 -0.0268
August -0.0411 0.0051 -0.0511 -0.0311
September -0.0316 0.0028 -0.0371 -0.0262
October -0.0225 0.0017 -0.0258 -0.0191
November -0.0177 0.0015 -0.0207 -0.0147
December -0.0136 0.0012 -0.0161 -0.0112
Annual -0.3011 0.0276 -0.3557 -0.2466
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Figure 2.9  Histogram of mean cell elevation for all MORECS cells.

2.3.3 The interpolation scheme

An inverse distance-weighting scheme was used to interpolate the MORECS monthly
values from the 40-km resolution grid to a 1km-resolution grid. In the scheme the PE
estimate and mean cell elevation for each MORECS cell are associated with the cell
centriod. When interpolating to a 1 km cell, the four MORECS cells (or three at the extent
of the coverage) that define a minimum area box containing the target cell are identified.
The time series of monthly PE estimates for each MORECS cell are then re-scaled to the
elevation of the target cell by using the appropriate monthly lapse rates in conjunction with
the difference in elevation between the centriod of the target cell and that of the source
MORECS cell. A weighted average of the re-scaled PE time series from the four
MORECS cell is then taken. The inverse distance weight used in this average is a two
dimensional Euclidean distance weight. The first component of the weight is the square of
the distance between the MORECS grid cell centroids and the centroid of the target cell.
The second component is the square of the difference in average elevation of the MORECS
cell and the target cell. The weight is then the reciprocal of the product of these two

components normalised by the sum of this reciprocal for the MORECS cells being

considered.
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Figure 2.11 Derived mean monthly Lapse Rates.

The is expressed algebraically as

1/(d? h?
Wys——— Qo) (2.11)
PRYUCKLI
=
where:
wij = 2D inverse Euclidean distance weight for MORECS cell, j, with respect to
target cell, i;
di = geographic distance between target cell, i, and MORECS cell j;,
h;; = difference in mean elevation between the target cell, i, and MORECS cell, ;.

The PE estimate for a cell, i, in month, m, is estimated from

4 ,
PPCim = & Vi PEjm > @.12)

where PEC ; , is the PE estimate for cell, i, in month, m and PE’j,m is the height adjusted

PE for MORECS cell, j.
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PE’J,mis given by
PE. =PE. +LR -(h. -h .), (2.13)
J,m mi| 1 ]

where:

PE,, =MORECS PE estimate for cell j in month, m;

LR, = lapse rate for month, m;
h, =mean elevation of the 1-km target cell;
hj = mean elevation of the 40 km MORECS cell.

The implications for catchment estimates of annual PE demand.

Figure 2.11 presents a 1-km resolution grid of 1961-90 average annual PE derived from the
interpolated monthly time series of PE for each cell over the period. The percentage
differences between the MORECS 61-90 estimates of annual PE and the interpolated
estimates of annual PE within the catchments selected for this study are presented as a
histogram in Figure 2.13a. This demonstrates that in most of the catchments the catchment
PE estimates derived from the interpolated PE data are lower than those derived using the
raw MORECS data. The percentage differences are plotted as a function of catchment
elevation in Figure 2.13b which demonstrates a strong positive relationship between the
size of the difference and the mean catchment elevation. This demonstrates the advantage
gained through the use of the 1km interpolation procedure in deriving more realistic PE

estimates, particularly for higher elevation catchments.

24 SUMMARY

A comparison of the two British Standards Institute methods for estimating daily rainfall
surfaces was undertaken over a range of climatic conditions within the United Kingdom
and for low and high density monitoring networks. The analysis has demonstrated that
there is little to choose between the Triangular planes method and the Voronoi
interpolation methods when the rainfall estimates from the source gauges are normalised by
the average annual rainfall for the gauge prior to being used in the either of the methods.
The normalising process appears to offer best improvements in wetter areas, in terms of
BIAS. The temporal variation in simulated daily rainfall, as represented by the mean annual

R? value, tends to be insensitive to the method used although the methods do appear to
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simulate daily variations more effectively in drier areas and where the rain gauge network

is more dense.

L]

30

Figure 2.12 The 1-km standard period (1961-90) average annual potential
evaporation grid based on MORECS Penman Monteith estimates for

short grass.
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The Triangular planes method is more computationally efficient than the Voronoi based
methods and thus Triangular planes method enhanced through the normalisation by AAR

(TPA) has been used for to generate annual rainfall time series for all of the catchments

used in the research.

In the study areas considered it appears that the performance of the TPA method is not very
sensitive to either the density of rain gauges considered or the magnitude of average annual
rainfall, and the associated increased probability of greater spatial heterogeneity in rainfall
patterns. The errors in determining annual rainfall using the TPA method are primarily
random in nature with approximately 50% of the gauges in an area demonstrating a small,
but significant systematic error. The mean CV for the variation in annual bias for
individual gauges is in the order of less than 5%. The correlation between simulated and
observed is high with some evidence to indicate that the denser networks do facilitate a

more accurate simulation of the daily variation in rainfall depths.

If the relationship between long term annual rainfall and annual runoff is strongly linear (as
will be the case when evaporation rates are rarely limited by soil moisture deficits) the
random errors in annual BIAS will not propagate into major errors in the prediction of long
term runoff. However it should noted that BIAS errors in years where significant soil
moisture deficits can potentially build up might lead to potentially large water balance
errors in simulated runoff over the full period of record. Evaporation rates will be rarely
limited by soil moisture deficits in the wetter catchments in the north and west of the

United Kingdom but will occur in most years in drier parts of the country.

A comparison between 61-90 average annual rainfall estimates generated for each
catchment using the triangular planes method, with and without additional enhancement
through the use of AAR, demonstrated that the 61-90 SAAR for high rainfall catchments is
consistently underestimated when AAR is not included within the estimation procedure.
This systematic under estimation in high rainfall catchments is attributed to a biased siting
of rain gauges. The siting of gauges tends to be biased towards accessible low altitude
areas, these are either coastal areas, or areas in which rainfall is generally lower as a

consequence of rain shadowing.
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A scheme for estimating monthly time series of a reference Potential Evaporation demand
for any point within the United Kingdom at a 1-km resolution has been developed. This
scheme uses monthly MORECS 1I Penman Monteith PE estimates for short grass. The
scheme is based on the interpolation of these estimates to a 1-km grid using empirically
derived lapse rates in conjunction with a 1-km resolution elevation grid. This scheme was
used to derive a time series of monthly PE data for the catchments used within the study.
The differences between 61-90 average annual PE estimates derived using this scheme and
those derived directly from MORECS were evaluated for these catchments. This
comparison demonstrated that in most of the catchments the catchment PE estimates
derived were lower than those derived using the raw MORECS data with a strong positive
relationship between the size of the difference and the mean catchment elevation. This is a
consequence of the skew within the catchment data set to higher elevation catchments
(discussed in Chapter 5). This demonstrates the advantage gained through the use of the

1km interpolation procedure in deriving more realistic PE estimates, particularly for higher

elevation catchments.
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3 Evaluation of rainfall runoff models for use within a
regionalisation scheme

3.1 MODEL SELECTION

The primary objective of this part of the research was to identify a suitable rainfall runoff
model structure for generalisation studies within the United Kingdom. The approach
adopted has been to evaluate the utility of selected lumped rainfall runoff models within
five case study catchments within East Anglia. Other researchers have used this approach
to evaluating models. The World Meteorological Organisation (1974) commissioned the
testing of 10 different models on six rivers distributed throughout the world from a flood
assessment perspective. Weeks & Hebbert (1980) tested four models on three catchments
within South Western Australia. A further study was undertaken by Chiew et al (1993) in
which six rainfall runoff models were evaluated through their performance in eight
Australian catchments while Franchini & Pacciani (1991) evaluated seven well-known

models within the Arno basin in Italy.

From a water resources perspective, the basic requirements of a rainfall runoff model are
that the model should reliably simulate the processes that control actual evaporation losses
and the routing of effective precipitation through the catchment. The low rainfall regime of
East Anglia means that summer actual evaporation rates are much lower than the potential
evaporation rate. Consequently the application of models within the region represents a
good test of the ability of the model loss modules to model the complex relationships
between actual evaporation and soil moisture deficit, which in turn are dependent on land
use and the soils within a catchment. The small difference between rainfall and actual
evaporation within the Anglian region implies that model performance will be extremely

sensitive to the ability of a model to accurately model actual evaporation.

A literature review of conceptual and empirical rainfall runoff models suitable for

continuous simulation of daily mean flows was undertaken. The review considered the

following questions:
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e Is there peer reviewed evidence of the use of the models within a generalised context?

e [s there peer reviewed evidence of the model’s capabilities?

e s the model commercially available, public domain or published in full within the
literature?

e What are the input data requirements?

e Is the model stochastic, deterministic or hybrid?

e If a model is deterministic, is the model conceptualisation physically based, or
empirical in nature, or a mixture of both?

e How complex is the model (a subjective decision made on the basis of the number of
parameters and the complexity of the input data requirements)?

e If calibration schemes exist for a model, what optimisation routines and associated
objective functions are employed within the schemes?

e If the model is packaged, what analysis functions are available?

This review was not intended to be a definitive review of models, but rather a broad review
of approaches to rainfall runoff modelling. The review identified 19 distinct models, these
are summarised in Table 3.1. For each model this table presents the author (based on
affiliated institution), the processes represented within the model, a subjective measure of
complexity based on the number of model parameters (high, medium or low) and a primary
reference. From the review the following four models were selected as being broadly

representative of the model classes reviewed:

e The Hydrological Simulation Model (HYSIM);

e The Climate, Land-use and Abstraction Model (CLAM) implementation of the
Thames Catchment Model (TCM));

e The Probability Distributed Model (PDM);

e Identification of unit Hydrograph And Component flows from Rainfall, Evaporation

and Stream flow data IHACRES).
As discussed in Chapter 1 all of these models, or components of these models have been

used to some extent for estimating stream flow within ungauged catchments. The key

features of these models are summarised in the following sub-sections
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Table 3.1 Summary of the models reviewed
Model Author Conceptual Com- Reference
processes plexity
Hydiological Ramfall RunOff Institute of Hydrology Blackie & Eeles,
Model (HYRROM) I5,SM, DR.GW  LOW  gg5
Piobability Distributed Model Institute of Hydiolog Moore, 1985
(1;]031\2/11)1 ity Distributed Mode nstitute of Hydiology $S.PDSM. DR.GW LOW
ARNO Inst Hyd Con Umniv Bologna, Todini, 1996
g oo My RO gs PR PDSM, MED
DR, GW
Hydrological, Simulat R E Manley, Cambuid Manley, 1978
Mil)dr:l ?{c;csaIM 1mulation anley, Cambnidge $S.15, DR, MLSM. MED y
MLGW, CR
Thames Catchment Model B Greenfield, Thames EA Gieenfield, 1984,
NW zones MLSM. LOW NRA R&D Note
G 268
TANK Model M Sugawara, Tokyo TE LOW Sugawara, 1995
k, 1995
UBC Univ Brit Colombia CA ss, SM. DR, HIGH Quic
MLGW,
Piecipitation — Runoff USGS-Wat Resources Div Leavesly &
Modelling System (PRMS) SW SM, PE. DR. HIGH gy 104004 1995
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PE = Potential Evaporation DR
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3.1.1 The Hydrological Simulation Model (HYSIM)

HYSIM (Manley, 1977,1978,1992a, 1992b) is a complex conceptual model in which the
response of the conceptual representation of the hydrological processes is controlled by
parameters, many of which the author has sought to relate to physical catchment properties.
HYSIM is a seven store conceptual model coupled to a simple hydraulic routing model.
This structure is summarised in Figure 3.1. When developing the model the author had the
stated primary requirement that the parameters of the model should be physically

significant (Manley, 1978). This summary is based on the published information for the

model.

PRECIPITATION
POTENTIAL EVAPOTRANSPIRATION
POTENTIAL MELT

* EVAPOTRANSPIRATION

[ Interception }————

Impermeable Area

Upper Soil

Hiorjzon

Horizon
Groundwater

c r!l'umrl HYDRAULICS
canels SUBROUTINE

SEWAGE FLOW / RIVER FLOW
RIVER ABSTRACTIONS

GROUNDWATER
ABSTRACTIONS

Figure 3.1 The HYSIM model structure (Source: Manley, 1992a).

The Snow and interception stores

Precipitation in the form of snow (as defined in the input data) enters a semi - infinite store.
If there is snow in storage within time step the outflow is equal to the input melt rate within

the time step. The interception store represents detention of water on vegetation. The
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maximum depth of the interception store is a calibration parameter. The store receives
water from precipitation and snow melt (if any) and loses water by evaporation at the
potential rate. Excess precipitation (EP) is partitioned between the upper soil horizon and

minor channel storage according to the fractional extent of the catchment defined as being

impermeable.

Soil Moisture Store

The soil moisture store consists of two stores, the Upper Soil Horizon (USH) and the
Lower Soil Horizon (LSH). The USH represents moisture held in the topsoil (the A soil
horizon) whilst the LSH represents moisture below the USH but still within the rooting
depth (the B and C soil horizons). The maximum rate at which the store can accept EP 1s
determined by an approximation to Philip’s infiltration equation (Philip, 1957). This
relationship facilitates the calculation of the maximum, or potential, infiltration rate across
the time step. EP routed to the USH in excess of this limiting rate is routed to the minor
channels store as overland flow. Evaporation takes place from the USH at the potential rate
(minus any loss from the interception storage) if the capillary suction, P, calculated by the
model is less than 15 atmospheres. If P is greater than 15 atmospheres then evaporation

takes place at a rate reduced in proportion to the remaining depth of water in storage.

The next transfer of moisture is via inter-flow laterally through the USH. The conceptual
representation of inter-flow is based on the Brookes and Corey (1971) empirical model for
the effective permeability of porous media. The final transfer of moisture is by percolation
from the USH to the LSH, where percolation is estimated in an analogous way to inter flow
using a non-linear relationship relating percolation to effective saturation. The change in
storage within the USH is estimated by combining the equations for infiltration, inter flow

and percolation with the continuity equation.

The percolation from the USH forms the input to the LSH. The LSH is configured in a
similar way to the USH where the infiltration of percolation is controlled by the ability of
the LSH to accept percolation from the USH. Percolation in excess of the infiltration
capacity is routed to the minor channels store. Loss from the LSH through inter-flow and
percolation to the groundwater is controlled by similar equations to the USH. Evaporation

potential that is not met by the USH is met from the LSH, subject to the same suction
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pressure constraint that operated in the USH.

The Groundwater reservoirs

The groundwater store is subdivided into two infinite linear reservoirs (Horton, 1938)
called the transitional groundwater and deep groundwater stores. The transitional
groundwater store which receives percolation from the LSH, is taken to represent the first
stage of groundwater storage where direct discharge to surface waters may occur via fissure
flow, etc. The outflow from the transitional groundwater store is partitioned between the
minor channels store and the deep groundwater store. The deep groundwater store

discharges to the minor channels.

The Minor Channels Store and Hydraulic Routing

The minor channels store conceptually represents the routing of flows in minor streams,
ditches and, if the catchment is saturated, ephemeral streams. This store uses a triangular
Instantaneous Unit Hydrograph (IUH), with the time base equal to 2.5 times the time to
peak. The time to peak is estimated using the Flood Studies Report event model equation
(Natural Environment Research Council, 1975). The “main” river within HYSIM is

represented as a number of hydraulically homogenous reaches.

Velocity of water along a reach is described by the kinematic wave approximation to the
Saint Venant equations (Lighthill and Witham, 1955). In this approximation, the wave
velocity is the ratio of the incremental changes in flow and hydraulic cross-sectional area

along the reach. An empirical model is used within HYSIM for estimating cross-sectional

arca.

Depending on the configuration, HYSIM has 22 hydrological parameters and six hydraulic

routing parameters.
3.1.2 The Thames Catchment Model (TCM))
The TCM, which was originally developed by Greenfield (1984), is a conceptual model,

based on a simple Penman drying curve based loss module coupled with a series

combination of a linear reservoir and a quadratic reservoir. The model is used operationally
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within the Thames basin (Moore et al, 1989, 1994) and has been used to model the relative
impact of weather, land use and groundwater abstraction on low flows in case study
catchments across England and Wales Wilby er al (1994a &b). This summary of the model
is based on the published work of Wilby. The version of the model used for the study was

the PC version developed by Wilby.

The structure of the TCM hydrological model is based on the subdivision of a basin into
different response zones representing, for example, runoff from aquifer, clay, riparian and
paved areas. The zones share the same model structure but have different, appropriate
parameter sets. The zonal flows are combined to yield the total catchment runoff. A
response zone may be considered to represent a combination of sub-areas within a
catchment having similar hydrological characteristics. The conceptual representation of a
hydrological response zone in the TCM is illustrated in Figure 3.2. Each zone consists of a
two-stage soil moisture store, a linear reservoir, and a quadratic non-linear reservoir

connected in series.

The soil moisture store

Within a given zone, water movement in the soil is controlled by the Penman storage
model (Penman, 1949) in which a near-surface storage, of depth equal to the rooting depth
of the associated vegetation (the root constant depth), drains only when full into a lower
storage of infinite capacity. Evaporation occurs at the potential rate (P.E), whilst the upper
store contains water and at a lower, actual rate (A.E), when only water from the lower store
is available. The threshold deficit at which this lower rate evaporation is initiated is
optimised though calibration. The A.E rate is set to 0.3P.E rather than 0.08P.E, as in the
original Penman model based on the work of Hyoms (1980) during the 1976 drought. The
upper Penman soil moisture store is replenished by rainfall, but a fraction called direct
percolation (typically 0.15) is bypassed to contribute directly as percolation to the linear
reservoir which may be conceptualised as unsaturated storage. Percolation occurs from the

upper Penman store only when the total soil moisture deficit has been made up.

The linear reservoir and non linear reservoirs

The outflow from this reservoir is proportional to the water held within the store. This

outflow acts as the input to the non-linear reservoir. The constant of proportionality, the
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time constant, controls the response of this reservoir. A quadratic storage function is used
to represent the response of the saturated zone. The inflow into this storage is the outflow
from the linear reservoir. The outflow from this reservoir is proportional to the square of
the volume in storage. To obtain a volumetric flow rate it is necessary to multiply the
outflow from the non-linear reservoir by the area of the zone being considered. Each zone

within the TCM has nine parameters

precipitation

evaporation
recipitati soil moisture
precipitation evaporation
A
— surface
Aan abstraction
s A
J slmotmestopry | |
< effluent
requrmn
direct saturation
percolation total percolation
percolation
y
____>total
runoff
; A
abstraction recharge
i baseflow

Figure 3.2  The Structure of the Thames Catchment Model (Source: Wilby et al.
1994a).

3.1.3 The Probability Distributed Model (PDM)

Moore (1985) developed the Probability Distributed Model (PDM). In the context of this
evaluation, a fixed configuration was used which represented the most common
configuration of the model (Moore et al, 1994). The PDM uses a probability-distributed
approach for modelling soil storage capacity. The general form of the model is illustrated

in Figure 3.3. This summary of the model is based upon the published works of Moore.
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Runoff production at a point in the catchment is controlled by the absorption capacity of
the soil to take up water. Instead of conceptualising this as a simple store with a given
storage capacity, the differing point storage capacities and that the spatial variation of
capacity is described by a probability distribution. The most commonly used distribution is
the Pareto, or reflected power, distribution. Based on this it is possible to formulate a
simple runoff production model which integrates the point runoffs to yield the catchment
surface runoff into surface storage. Groundwater recharge from the soil moisture store
passes into sub-surface storage. The outflow from surface and sub-surface storages (or
reservoirs) forms the model output. This probability-distributed approach to soil storage
capacity has also been used by other researchers notably within the ARNO, XINANJIANG
models (referenced in Table 3.1), the grid based VIC model, Arnell implementation of the
PDM and Jolley and Wheater grid based implementation of the TCM soil moisture store.

These grid-based models are discussed in Chapter 1.

Surface
P ) t
l " ‘ ‘ Direct storage
runoff
32 -
q, Surface
s runoff
b - q,
Probability - distributed
soil moisture storage
CL Baseflow
b
S3 P
Groundwater
storage

Figure 3.3  The Structure of the PDM rainfall-runoff model (Source: Moore, 1985).

As the PDM was finally selected to form the basis of the rainfall runoff model it is
described briefly here with the probability distributed concepts discussed more thoroughly
in Chapter 4, in the context of model development for this study. The discussion in Chapter
4 also draws from Moore et al (1994). The configuration of the PDM used in the
evaluation was a Pareto based soil moisture store with the surface runoff routed through
two linear reservoirs in series with identical time constants. That part of the effective

rainfall attributed to base flow was routed through a cubic non-linear reservoir. Two
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options for determining the partitioning of effective rainfall between surface and
groundwater flow paths were tested. The first was based on a simple fixed split of runoff
from the soil moisture store, with the split parameter optimised during calibration. In the
second option a drainage term was included in which the drainage to the slow flow
reservoir was inversely proportional to the soil moisture deficit. This configuration 1s
similar to Arnell’s grid based implementation. The constant of proportionality was

optimised during calibration. This configuration of the PDM has nine parameters.

3.1.4 Identification of unit Hydrographs And Component flows from Rainfall,
Evaporation and Stream flow data {1HACRES)

Overview

The version of IHACRES selected for this study is the PC implementation of the model,
PC-IHACRES, V1.0 (Littlewood and Parker, 1997). The first published account of the
THACRES methodology and it’s application to two small research catchments in Wales is
by Jakeman et al, (1990). IHACRES comprises a non-linear loss module in series with
either a single linear unit hydrograph (UH) model or, alternatively, two linear unit
hydrograph models in parallel or series. This summary of IHACRES is based on the
information published by Littlewood & Parker (1997), Jakeman et al (1990), Jakeman &
Hornberger (1993) and Littlewood & Jakeman (1994).

The input data requirements are restricted to time series of rainfall, stream flow, and
temperature. The latter is used within the model to approximate evaporation. The model

comprises two modules, in series, as shown in Figure 3.4

Within IHACRES an assumption is made that there is a linear relationship between
effective rainfall and stream flow. This allows the application of unit hydrograph theory in
which the catchment is represented as a configuration of linear reservoirs acting in series
and/or parallel. All of the non-linearity commonly observed between rainfall and stream
flow is accommodated in the loss model. Although this does not purport to conceptualise
the physical relationships between soil moisture, evaporation and drainage a comparison

may be made with the soil moisture stores considered within the preceding models.
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Conceptualisation of spatially distributed processes in both the non-linear and linear
modules of the IHACRES model is restricted. An advantage of the approach, however, is
that the model requires only a small number of parameters. In the typical configuration of
the non-linear loss module in series with two parallel linear modules there are three

parameters in the non-linear loss module and another three in the linear module, making a

total of six parameters overall.

The non-linear (loss) module

The loss module, which estimates effective rainfall, accounts for all of the non-linearity in
the catchment-scale rainfall-runoff process. The underlying conceptualisation in this part of
the model is that catchment wetness varies with recent past rainfall and actual evaporation.
A catchment wetness index is computed at each time step on the basis of recent rainfall
and, usually, temperature. The catchment wetness index reflects that a catchment that is
already wet will generate more effective precipitation than if it is previously dry. The
percentage of rainfall which becomes effective rainfall in any time step varies linearly
between 0% and 100% as the index varies between zero and unity. If input data to the loss

model are restricted to those for rainfall the catchment wetness is calculated as
sk =Cr +(1-1/(t )sis  s0=0, 3.1

where ry is the rainfall depth within the time step and T, is the time constant, or inversely,
the rate at which the catchment wetness declines in the absence of rainfall. This time
constant is termed the catchment drying constant. A larger value of t,, gives more weight to
the effect of antecedent rainfall on catchment wetness than a smaller one. The parameter C
is a constant of proportionality optimised during calibration so that the volume of excess
rainfall is equal to the total stream flow volume over the calibration period, after
adjustment for the change in catchment storage between the beginning and the end of the
period. The excess or effective rainfall within the time step is calculated from the product
of the rainfall and the catchment wetness index. To account for fluctuations in evaporation
the catchment drying constant can be modulated by a function that relates this to the third

variable, usually temperature.

3-11



The linear (UH) module

A full description of the linear hydrograph module is given within the literature. The
module 15 essentially an extension of the simple discrete-time hydrograph such that unit
effective rainfall over one data time step produces stream flow b (<1) over the same time
step. In each subsequent time step, stream flow 1s a fixed proportion (a < 1) of what it was
in the previous time step and thus the flow decays exponentially (at a rate determined by a).
The area under the UH (volume of flow) is given by the sum of the infinite geometric
series (b + ab + a’b + a’b +...) and, by definition, this is one unit. With 0 <a <1, this
infinite geometric series sums to b/(1 - a). The shape of the UH is completely defined,
therefore, by one parameter (either a or b). Experience has demonstrated that two UHs in

parallel 1s the optimal configuration identifiable from the input data (Littlewood, pers.

comms).
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Figure 3.4  Structure of the IHACRES modelling methodology (Source: Parker and
Littlewood, 1997).

One of these corresponds to a quick flow component and the other to a slow flow
component. The separate UHs sum to give a UH for total stream flow which has a mixed-
exponential decay. The response of this second order transfer function can be controlled by

any three of the parameters for the two linear reservoirs. A central component of the
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IHACRES methodology is the use of the Simple Refined Instrumental Variable (SRIV)
technique to estimate the parameters of the linear module for a given set of stream flow
data and effective rainfall data received as output from the non-linear module. The detail of
the SRIV technique is beyond the scope of this study, however the reader is referred to the

work of Jakeman et al (1990) for further information.

3.2 APPLICATION OF THE MODELS WITHIN THE CASE STUDY
CATCHMENTS

3.2.1 The case study catchments
The case study catchments selected for the evaluation were the:

e Babingley Brook above the Castle Rising gauging station ( IH Gauge No0.33054);
e Sapiston Brook above the Rectory Bridge gauging station (IH Gauge No.33013);
e River Nene above the Orton gauging station (IH Gauge No0.32001);

e River Blackwater above Appleford Bridge (IH Gauge No.37010);

e River Box above Polstead Bridge (IH Gauge No.36003).

These catchments were selected to represent a broad cross section of catchment types
across the Anglian region and are described in more detail below. The objective of the
exercise was to apply the models to the 22-year period of record between 1970 and the end
of 1992, where available. The selection of the period of record was restricted by the
availability of naturalised flow data for the Blackwater and the Nene. The three-year period
1986-1988 was used as a calibration period (as the flow variability within this period is
broadly representative of that across the full 22-year period) and the period either side of
the calibration period used for model evaluation. The periods selected for the Babingley
Brook and the Sapiston were respectively 1976-1992 and 1970-1990. The Castle Rising
gauging station, which replaced an unreliable upstream gauge, became operational in 1976
whilst significant utilisation of the groundwater resources within the Sapiston catchment

commenced post 1990.
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The Babingley Brook above the Castle Rising gauging station (33054)

The Babingley Brook above Castle Rising has a topographic catchment area of 47.7 km?,
however the mean groundwater catchment area is believed to be approximately 86 km?.
The gauging station is a triangular profile flow V crump weir and was assigned an A Grade

for hydrometric quality at low flows by the Institute of Hydrology (Gustard et al, 1992).

The catchment average value of the Meteorological Office Standard Period 1961-90
Average Annual Rainfall (SAAR) is 670 mm/year and the catchment has a gauged runoff
of 150-200 mm/yr. The catchment is predominantly unconfined Chalk and thus the flow

regime is heavily dominated by groundwater discharge. The land use within the catchment

is primarily arable.

The artificial influences within the catchment are dominated by the utilisation of
groundwater for public water supply, which constitute 98% of the licenced abstractions.
The abstraction time series over the period 1976-1992 have been accumulated at a monthly
resolution as part of a naturalisation study undertaken by the Anglian Region of the
Environment Agency in 1992 (Watts, 1994). For the model simulations the monthly
influence series was partitioned to generate a daily series. The daily flow series at the
gauging station were subsequently naturalised by adding in the abstraction time series. This
was considered to be appropriate as the significant boreholes are close to the river channel

and the abstraction time series has little seasonal variation.

The Sapiston Brook above the Rectory Bridee gauging station (33013)

The Sapiston at Rectory Bridge is a rectangular thin-plate weir gauging an upstream
catchment of 206 km” and was assigned an IH grade A for hydrometric quality at low
flows. The catchment SAAR(61-90) is 590 mm/year and the gauged runoff is
approximately 105 mm/year. Prior to 1990 the catchment was essentially natural with only
minor abstraction for public water supply and agriculture. The catchment is agricultural in

nature with geology dominated by Chalk with Boulder Clay cover.
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The Nene above the Orton gauging station (32001)

The flow record for the Nene at Orton is a composite record. Flows below 17 m’s” are
measured at Orton . Flows above 17 m’s™ are derived by re-scaling flows measured at
Wansford, which lies some 12-km upstream from Orton. The structure at Orton consists of
a series of sluices, weirs and a lock. The station was assigned a B grade for hydrometric
quality under the IH grading system. The station is the lowest on the Nene and gauges an
upstream catchment area of 1634km®. The SAAR(61-90) across the catchment is 616
mm/year and the catchment has a gauged runoff of 180-190 mm/yr. The catchment is

mainly clay and rural in nature.

The flow record is heavily artificially influenced by direct and indirect abstractions for
public water supply, agricultural abstraction and effluent returns. The system 1s
complicated by the abstraction at Wansford for Rutland Water, which is used to supply
towns within the catchment, such as Northampton that discharge back into the Nene. In
1992 the Anglian Region of the Environment Agency undertook a programme of
naturalising the record flow through decomposition (Fawthrop, 1992). The resultant

naturalised flows were used for this study.

The River Blackwater above Appleford Bridee (37010)

The Blackwater above Appleford Bridge is a very rural catchment with a catchment area of
247.3 km®. The gauging structure is a double throated trapezoidal flume assigned an A
grade for hydrometric quality at low flows. The catchment SAAR(61-90) is 572 mm/year
and the catchment has a gauged runoff of approximately 160mm/yr. The hydrogeology of

the catchment is principally Boulder clay over London Clay with Chalk in the headwaters.

The majority of artificial influences on the flow record are associated with small
abstractions for agricultural, public water supply and industrial purposes and small sewage
treatment works discharges. The primary influence is water transferred from the Stour to
the Blackwater as part of the Ely Ouse Transfer Scheme. The transferred water is
discharged into the River Pant at Great Sampford in the headwaters of the river. During the
1970-1992 period considered within this study extensive transfers have been made in
1973/4, 1976 and 1989-1992. Small but significant transfers have also been made during
1980, 1984,1986 and during testing in 1971. The gauged flow record was naturalised by
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Young & Sekulin (1996). This naturalised record was used for the current study.

The River Box above Polstead Bridee (36003).

The Box above Polstead is rural, natural catchment with a catchment area of 53.9 km?>.
The gauging structure is a trapezoidal flume with a high flow rated spillway that rarely
drowns. The structure was assigned an IH A grade for hydrometric quality. The catchment
SAAR(61-90) is approximately 566mm/yr with a gauged runoff of 130 mm/yr. London
Clay with Chalk dominates the catchment hydrogeology in the north, all overlain by
superficial deposits. The minor artificial influences on the flow record are mainly
associated with abstractions for agricultural purposes and sewage treatment plant
discharges. The flow record was naturalised for the influence of these minor influences by

Young & Sekulin (1996). This naturalised flow record was used for this study.

3.2.2 The derivation of input climate data

A catchment, average daily rainfall time series was generated for all catchments using the
method of triangular planes with normalisation by AAR as described and evaluated in
Chapter 2. The PDM, HYSIM and TCM models all require a time series of catchment
average potential evaporation as input to the model, whereas the PC version of IHACRES
requires catchment average temperature time series data. This evaluation of suitable rainfall
runoff models preceded the development of the national MORECS based PE estimation
method described in Chapter 2. For this evaluation MORECS I weekly PE estimates for
short grass and temperature estimates were utilised. As discussed in Chapter 2 these data
are available at a grid resolution of 40km. Where a catchment intersected more than one
MORECS grid cell an area weighted average of cell values was taken. The resultant weekly
time series were partitioned to give daily time series for input into the models. This method
of generating PE estimates does not take into account the spatial interpolation and altitude
corrections described in Chapter 2. However given the low relief of East Anglia this was

not thought to be an issue.
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3.2.3 Application of the models within the case study catchments

The evaluation of the model results is presented in Section 3.3. This section summarises

the mode of application of each model.

HYSIM

In all catchments, the objective function used from the model package was the Extremes
Error of Estimate (Manley 1992b) (based on the product of the explained and unexplained
variance normalised by the product of the simulated and observed stream flow summed
over all time steps) which is recommended for use as a general objective function. The
recommended procedure for fitting the model, as discussed in the user guide, was adopted.
Firstly default values were set for all parameters using the guidance given in the reference
manual. The second step was to optimise a potential evaporation correction factor using the
Newton-Raphson single parameter optimisation option to ensure mass is conserved over
the calibration period. The third step was to use the Rosenbrock search algorithm
(Rosenbrock, 1960), in conjunction with visual inspection and manual intervention, to

optimise the remaining parameters in the model.

IHACRES

The approach for calibrating IHACRES is based around incremental searching through the
parameter space of the loss model and the subsequent solving of the linear, routing model
using the SRIV technique. The fit of the model is assessed through visual examination of
the modelled flows, the coefficient of determination between observed and simulated flows
and the uncertainty associated with the parameter values for the linear module as measured
by the Average Relative Percentage Error statistic (ARPE). In the calibration procedure
conservation of mass is ensured through the inclusion of a volume-forcing coefficient in
the loss module. For this study the full loss module was employed; in this the time
constant, Ty, within a time step is modulated according to a temperature dependent
function. In this configuration the response of the loss module is controlled by the volume
forcing coefficient, C, the time constant, Ty, and f, the modulation constant which
determines how sensitive the modulation function is to temperature. A further term to be
considered is a pure time delay between the non-linear and linear modules. The model was

calibrated over the period from October 1985 to October 1989. The manual recommends
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starting the simulation in October when runoff is generally low to minimise the error in
estimating the volume-forcing coefficient. The approach adopted for searching the
parameter space in the loss module was to set the time delay to zero and search the
parameter space defined by T, and f for both the first and second order configurations of
the linear module. Following the selection of an optimal pairing of T, and f further
simulations were undertaken to optimise the time delay. In all catchments the first order
configuration was the optimal one. Where a viable second order solution was obtained the

high associated ARPE values indicated that the additional complexity was not warranted.

The Thames Catchment Model

The CLAM implementation of the Thames catchment model was the most problematical
model to apply. The primary reasons for this is that it is a complicated model when more
than one zone is used. This, coupled with the lack of an interactive or incremental
parameter search facility, makes it very difficult to apply. The other consideration is that it
was very difficult to assess the model fit using the evaluation statistics available within the
package (BIAS (error at mean flow) and Nash-Sutcliffe efficiency (Nash Sutcliffe, 1970))
when more than one zone was used as the statistics were applied to individual zones.
Visual inspection of the observed and simulated hydrographs was therefore the major tool
used to judge the goodness of fit. The strategy adopted was to set up a zone to model the
slow flow component of the hydrograph coupled with a second, quick response zone to

capture the residual variability.

Probability Distributed Model

The most common version of the PDM, summarised in Section 3.1.3, was applied within
the catchments. In practice it was found that either the direct split or the soil moisture based
configurations gave the best results, as judged by visual inspection of the hydrographs and
the value of the sum of squares objective function available within the PDM package. The
direct split option was used within the Babingley and Box catchments. The calibration
strategy was to use the automatic calibration facility in conjunction with manual
intervention to obtain a best fit based on the value of the objective function, the
reasonableness of parameter values that have a clear physical correspondence and visual

inspection of the hydrograph.
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3.3 EVALUATION OF MODEL PERFORMANCE WITHIN THE CASE STUDY
CATCHMENTS

The objective of the evaluation exercise was to look at the performance of the individual
models within each catchment and, from this analysis to identify whether any general
statements can be made about the relative merits of the four models and their packages.
The models were applied using the packaged objective functions and graphical displays. To
make comparisons between the models it was necessary to use a set of common goodness

of fit tests, these are presented in Section 3.3.1.

The individual catchment assessments undertaken using the goodness of fit tests are
presented in Section 3.3.2. A ranking scheme was applied to draw out general statements
about model performance across the five catchments. This ranking scheme and the

application to case study catchments is presented in Section 3.3.3.

3.3.1 Evaluation criteria

All of the packages for the models under evaluation advocated the use of one or more
mathematical descriptions, or objective functions. The authors also generally recommend
that visual inspection of the hydrograph should form part of the calibration process. This
combination of quantitative and qualitative goodness of fit tests represents the classical
approach employed when calibrating a rainfall runoff model. A full discussion of
quantitative objective functions and qualitative goodness of fit measures is presented in
Chapter 6 in the context of fit criteria used in the calibration of the regionalisation rainfall

runoff model. For the purposes of evaluating the models the following measures were

employed:

e BIAS - expressed as the difference between observed and simulated mean flow
presented as a percentage of the observed mean flow;

e R? -the proportion of observed variance explained by the modelled flows;

e graphical comparison of observed and simulated flow duration curves;

e graphical comparison of observed and simulated hydrographs;

e graphical analysis of summary statistics for the observed flow duration curve.
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For the last measure the flow duration curve was derived for the observed flow time series
by ranking in order of size and calculating an exceedence percentile for each flow, whilst
retaining the date associated with each flow. This is equivalent to assigning a flow
exceedence percentile to each date. Twelve key percentile points were considered. For each
percentile point, the observed flow data and associated dates falling within the data range
of £0.5% around the point were extracted. For each extracted date the corresponding flow
was extracted from the simulated time series. This selection process yields N/100
simulated and observed pairs for each exceedence percentile, where N is the total number

of data points in the period being considered.

The performance of the model at each percentile point is assessed by calculating the BIAS
(the average of the difference between the observed and simulated flows expressed as a
percentage of the observed flow) and Coefficient of Variation (CV) across the N/100 pairs
at each point. These are then plotted as a function of exceedence percentile. The BIAS plot
provides information as to whether the model consistently under or over predicts at
particular flows, whilst the CV plot provides information as to the consistency of the model
at particular flows, which can be regarded as a measure of model stability at the percentile
point. The CV is used to facilitate comparison between different parts of the flow regime.
As the number of pairs for each percentile point is much smaller for the calibration period
than for the validation period, direct comparison between the results of a model within the

calibration period and the validation period should not be made.
3.3.2 Evaluation of model performance within the case study catchments

Within the reporting constraints of this thesis it is not possible to review the results for all
catchments in detail. The results for the Babingley Brook are presented in this section to
illustrate the process. Within each catchment, the models were assessed both within the
calibration period and across the modelled period either side of this period, termed the
evaluation period. The graphs for the Babingley Brook are presented in Appendix A. This
appendix contains graphs for the observed and simulated example hydrographs, flow
duration curves, percentile BIAS and percentile CV plots for both the calibration and

evaluation periods.
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The Babineley Brook at Castle Rising

Calibration period

From inspection of the observed and simulated hydrographs for 1988 (Figure A.1) it
appears that none of the models simulated the winter storm events well and that general
flow recession characteristics through the year are best modelled by IHACRES and the
TCM. The rate of recession for the PDM and HYSIM is too low. HYSIM also fails to
model the recovery of flows at the end of the year. None of the models seem to model the
response to summer storms well. The TCM does not respond at all whilst HYSIM over
predicts the response to large summer storms and fails to pick up the smaller events. The
recession rates for response to the summer events are too low for both the PDM and
[HACRES. All models route the majority, if not all, of the effective rainfall through a
single slow response reservoir. This explains the poor response of PDM, IHACRES and
the TCM to summer storms. The origin of the behaviour of HYSIM to large summer
storms is less clear, although the behaviour may be associated with the conceptualisation of

inter flow within the upper and lower soil horizons.

The flow duration curves presented in Figure A.2 and the mean error at percentile points
(Figure A.3) demonstrate that the PDM and HYSIM are the closest in simulating the
observed distribution of flows. The CV plot (Figure A.3) shows that the PDM consistently
has the lowest CV, followed by IHACRES. The TCM has a low CV at low flows and
HYSIM has a high CV.

Table 3.2 Summary statistics for the Babingley Brook

PDM IHACRES TCM HYSIM

Calibration
Bias -1.97 2.73 -15.61 -0.76
R® 095 0.88 0.88  0.86
Evaluation
Bias 211 1.58 2491 -2.46
R? 0.93 0.89 0.66  0.88
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Summary BIAS and R” statistics are presented within Table 3.2 for model simulations
within the calibration and evaluation periods. In the calibration periods the highest R’
values were for the PDM, HYSIM had the lowest BIAS, whilst the TCM had the largest
BIAS but has the same R* value as IHACRES.

Evaluation period

The observed and simulated hydrographs are presented for a dry year (1992) in Figure A .4.
The flows simulated by the TCM are consistently lower than the observed, with little or no
response to either short-term events or the onset of recharge in the September. HYSIM did
not simulate the onset of recharge until November and also consistently underestimates the
base flow. Once again the “spiky” response to summer storms is observed. The PDM and
IHACRES markedly overestimate the flows at the start of the year but correctly pick up the
catchment response to recharge. For the majority of the time both the PDM and IHACRES
also significantly over estimate the flows, although the overall bias for the evaluation
period is low for both models. The flow duration curve plots, Figure A.5, show that the
gradient and hence the variance of the flow distribution simulated by the TCM is close to
that of the observed, although the simulated flows are consistently lower than the observed.
The distribution fits of both IHACRES and HYSIM simulated flows are good, The PDM
underestimates the high flows and overestimates the low flows. The mean error plots
(Figure A.6) are consistent with the flow duration plots although the CV plots (Figure A.7)
demonstrate that the PDM is much more consistent in the predictive error than the other
models. HYSIM and THACRES are broadly similar with respect to consistency whilst the
TCM has the largest CV. The summary statistics over the evaluation period show that the

PDM has the highest R? value whilst IHACRES has the lowest BIAS.
3.3.3 Inter-catchment and model comparisons

The analysis of the results from the case study catchments (presented in Section 3.3.2 for
the Babingley Brook) demonstrated how difficult it is to draw firm conclusions about the
performance of the individual models within the case study catchments with goodness of fit
tests often providing conflicting, or inconclusive results. However the results of the
exercise demonstrated that a reasonable distributional fit (as described by the flow duration

curve) maybe obtained when the time series fit may be very poor. This is of concern when
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evaluating model performance and as a consequence the flow duration statistics are not
included in the comparison of model performance across catchments. A generalised

ranking scheme for target goodness of fit tests was developed and used to assess:

e how amenable the flow regimes of the individual catchments were to modelling using
simple lumped models;
e if any of the models could be identified as performing more consistently better than

others.

The application of the ranking scheme in these contexts is presented below. The goodness

of fit test statistics used within the ranking scheme were:

s Bias;

e R%

e mean percentile error (the average of the dimensionless error for the 5, 10, 15, 20, 30,
50, 70, 80, 90 and 95 exceedence percentiles);

e stability (the average of the CV of the dimensionless error for the 5, 10, 15, 20, 30, 50,
70, 80, 90 and 95 exceedence percentiles).

The latter two test statistics, whilst not statistically rigorous, attempt to numerically
summarise the information presented graphically for individual catchments. In the ranking

scheme analysis three scenarios were considered the:

e goodness of fit over the calibration period;
e goodness of fit over the evaluation period;
e goodness of fit over the calibration period and the change in goodness of fit between

the calibration and evaluation periods.

For the third scenario, the sum of the modulus of the departure from a perfect fit in the
calibration period and the difference between the quality of fit in the calibration period and
the evaluation period was used to summarise the performance of the individual goodness of

fit tests over the two periods.
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Inter-catchment comparisons

This comparison exercise was undertaken to assess, relatively, how well the flow regimes
of the catchments could be represented by lumped rainfall runoff models. The application
of the ranking scheme in this comparison is discussed with respect to one statistic. For each
model the goodness of fit was assessed in each catchment according to each of the test
statistics and the catchments ranked according to the value of the test statistic. The average
rank across the four models was then taken to given an overall catchment rank for each test
statistic. An example for the BIAS statistic over the calibration period is shown in Table
3.3. The average ranks for each test statistic were then collated for each scenario. These are

presented in Table 3.4.

Table 3.3 Example ranking of catchments by model for the BIAS statistic

Calibration Period
Catchment PDM IHACRES TCM HYSIM Mean Rank

Babingley 1 3 3 1 1
Sapiston 3 4 1 3 2
Nene 2 5 4 2 3
Blackwater 4 2 2 5 3
Box 5 1 5 4 5

The overall picture produced by this ranking scheme shows that for all scenarios the best
model fits were obtained for the Babingley Brook and the worst for the River Box. The
Blackwater was consistently fourth. The Nene had an over all rank of 2 over the calibration
and 3 over the evaluation period. The Sapiston a rank of 3 over the calibration period but
has a rank of 2 over the evaluation period. When considering the goodness of fit in the
calibration period and the stability of that goodness of fit between the calibration period
and the evaluation period (scenario 3) the rank for the Sapiston is 2 compared with 3 for

the Nene.
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Table 3.4 Ranking of catchments by model and scenario

Calibration

Babingley Sapiston Nene Blackwater Box
Bias 1 2 3 3 5
R? 1 3 2 4 5
Mean % err. 1 3 2 4 5
Stability 1 2 2 5 4
Overall 1 3 2 4 5

Evaluation

Babingley Sapiston Nene Blackwater Box
Bias 1 4 2 3 5
R? 1 2 3 4 5
Mean % err. 1 2 3 4 5
Stability 1 2 3 4 5
Overall 1 2 3 4 5

Combined

Babingley Sapiston Nene Blackwater Box
Bias 1 4 3 2 5
R? 1 2 3 4 5
Mean % err. 1 2 3 4 5
Stability 1 2 4 3 4
Overall 1 2 3 4 5

Inter-model comparisons

A similar approach to the inter-catchment comparisons was adopted for the inter-model
comparisons. For each catchment the goodness of fit was assessed for each model
according to each of the test statistics and the models ranked according to the value of the
test statistic. The average rank across the five catchments was then taken to given an
overall model rank for each test statistic. An example for the BIAS statistic over the

calibration period is shown in Table 3.5.

Table 3.5 Example ranking of models by catchment for the BIAS statistic

Calibration Period

Catchment PDM IHACRES TCM HYSIM
Babingley 2 3 4 1
Sapiston 4 2 1 3
Nene 2 4 3 1
Blackwater 3 1 2 4
Box 3 1 4 2
Mean rank 3 1 3 1
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The average ranks for each test statistic were then collated for each scenario. These are
presented in Table 3.6. Within the calibration phase the PDM scores the highest overall
rank followed by HYSIM, IHACRES and the TCM in that order. With the exception of the
BIAS statistics the scorings for individual test statistics is very consistent. The BIAS
rankings reflect that both IHACRES and HYSIM include calibration factors to ensure that

mass is conserved over the calibration period.

Over the evaluation period, HYSIM scores the highest overall rank followed jointly by
IHACRES and the PDM with the TCM scoring the lowest rank. The scorings for
individual statistics are consistent with the calibration period for HYSIM and the TCM.
The promotion of HYSIM to rank 1 for the mean error and stability indices is a
consequence of the degradation of the PDM scores for these indices. IHACRES retains the
highest rank for the BIAS statistics demonstrating the utility of calibrating to ensure mass

is conserved.

Table 3.6 Ranking of models by catchment and scenario
Calibration
PDM IHACRES TCM HYSIM
Bias 3 1 4 2
R’ 1 3 4 2
Mean % err. 1 3 4 2
Stability 1 3 3 2
overall 1 3 4 2
Evaluation
PDM IHACRES TCM HYSIM
Bias 3 1 3 2
R’ 1 3 4 2
Mean % err. 3 2 4 1
Stability 2 4 3 1
overall 2 2 4 1
Combined
PDM IHACRES TCM HYSIM
Bias 3 1 4 2
R? 1 3 4 1
Mean % err. 2 3 4 1
Stability 1 3 3 1
overall 2 3 4 1
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When looking at the rankings for the combined score, HYSIM scores the highest rank. This
is consistent across all statistics, with the exception of BIAS, where IHACRES has the
highest combined rank. The PDM scores the second highest rank and, with the exception
of BIAS, the PDM is ranked either second or joint first with HYSIM. IHACRES is ranked
third and the TCM is ranked fourth. The overall ranks for the models are very consistent

with the ranks for the individual test statistics for scenario 3.
3.4 SUMMARY OF THE MODEL EVALUATION STUDY

Looking at the calibration and evaluation periods, the best model fits were consistently
obtained for the Babingley Brook and the worst for the River Box. The model fits for the
Blackwater were consistently fourth. During the calibration periods the model fits were
better for the Nene than the Sapiston, however over the evaluation period better model fits
were obtained for the Sapiston than for the Nene. The analysis did not identify whether

particular models were more suitable than others for specific catchment types.

During the period of record considered, the Sapiston and Box catchment were relatively
natural. When the Ely Ouse scheme is not operating, the Blackwater catchment is
essentially natural and, given the transient nature of the schemes operation, the errors in the
naturalised flow records associated with the Ely Ouse transfer scheme will not have a
major impact upon the quality of the flow record. As the hydrometric quality of the flow
record is good, it is difficult to see why the performance of the models should be worse in
the Blackwater and Box catchments than the other catchments without further

investigations.

The Nene is subject to some complex artificial influences and, given the poor data quality
associated with the majority of influences and the temporal variability of the quality, it is
quite likely that time dependent artifacts of the influences remain within the naturalised
flow record. This may account for why, generally, the quality of the model fits were much
better in the calibration period than the evaluation period. Recent discussions staff within
the Anglian region supports this view. The parameters identified over the calibration period

may well be compensating for these errors.
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The case study catchments are amongst some of the driest gauged catchments within the
United Kingdom. The treatment of evaporation and the modelling of actual evaporative
losses are primary issues when modelling these catchments. Modelling in these dry
catchments is thus a good test of the performance of the loss modules within rainfall runoff
model. However the issue of errors in the input data must not be ignored. In these dry
catchments the gauged runoff is in the order of 100-150 mm/yr, the consequence of
relatively small errors in the estimation of catchment rainfall and evaporation/temperature
may result in quite major errors in the modelled runoff. For example, taking a crude water
balance a 5% error in an estimated rainfall of 600mm/yr may result in a water balance error
of up to 30% in the gauged runoff. The issues associated with the propagation of error in

climatic data within rainfall runoff models were discussed in Chapter 2.

Obviously the model parameters derived during optimisation will tend to compensate for
any errors within the input data, including stream flow data. However, this may lead to
structural problems within the model which, coupled with the likely random nature of
errors in the input data, will reduce the quality of the model fit over the evaluation period,

as in the case of the Nene.

It is important to draw the distinction between the model structure and the packaged
optimisation procedures and associated objective functions. The performance of the model
will be strongly influenced by the choice of objective function and the efficiency of the
optimisation scheme will be strongly influenced by how identifiable, or unique model
parameters are, which is a function of the model structure. All of the aforementioned will
be influenced by input data quality. On the basis of these considerations it is not possible to

definitively conclude that one model is better than another model.

From a technical viewpoint, the ranking scheme adopted demonstrated that the PDM was
the most consistent model across the calibration period followed by HYSIM, IHACRES
and then the TCM. HYSIM gave better results over the evaluation period than the PDM
and when jointly considering the performance in the calibration period and the departure
from that performance in the evaluation period HYSIM was the most consistent of the four
models. The PDM was the second most consistent model overall, followed by IHACRES
and the TCM in that order.
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On first sight, it is somewhat surprising that the PDM is the most consistent model across
the calibration period but not across the evaluation period. This behaviour is related to the
fact that the PDM package was ranked third with regard to minimising BIAS over the
calibration period. The mean BIAS for the PDM was 12% over the calibration period and
24% over the evaluation period. This contrasts markedly with IHACRES and HYSIM
where the BIAS is small both over the calibration and simulation period. This can be
attributed to the fact that both of these models formally ensure that mass is conserved over
the calibration period as part of the calibration procedure; IHACRES by means of the
volume forcing constant and HYSIM by a scaling factor applied to the P.E. estimates. The
PDM, in contrast, has no such calibration procedure; the calibration is based on visual
interpretation and the value of a least square objective function. Within the PDM the BIAS
error in calibration propagates over the evaluation period and consequently impacts upon
the other evaluation measures. The measures used in [HACRES and HYSIM for
minimising BIAS appear to also be effective over the evaluation period. This highlights the

importance of ensuring that mass is conserved during the calibration period.

One issue that arose during the trials was that of parameter covariance. Whilst this was not
formally investigated within the model evaluation process this problem was observed
during the calibration procedures for all models and was particularly noticeable within
HYSIM. HYSIM is a very complex model, and the use of default values for many of the
parameters within the model must raise the question of whether this level of complexity is
warranted. Furthermore the strong structural interrelationships between the primary
parameters must be a cause for concern regarding parameter identifiability if the model is
to be calibrated as opposed to being populated with a priori parameter estimates. The

model evaluation study has highlighted the:

e importance of ensuring mass is conserved by the model,
o limitations of least square based objective functions when calibrating a model for water

resource issues;
e need to separate the performance issues relating to the model from those related to the

packaging of the model (including calibration schemes).
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When considering the performance of the models over a range of objective functions,
HYSIM and the PDM were markedly more effective that IHACRES and the TCM. The
evaluation study did not address the issues of parameter identifiability or the ability of the
model package to identify the global minimum of the objective function space. These

issues become more complex as the number of parameters a model has increases.

On these considerations the PDM philosophy of a statistically distributed soil moisture
store was selected to form the basis of a rainfall runoff model for UK regionalisation. The
development of the regionalisation model and calibration framework is discussed in

Chapter 4.
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4 Rainfall Runoff Model Development

When assessing the resource available within a catchment, it is necessary to be able to
quantify both the average and reliable yield from the catchment. The reliable yield will be
dependent upon the competing requirements for water and the availability of that water.
The availability is normally constrained by the magnitude of low flow events within the
catchment and the frequency of the low flow events. If a regionalised model is to be useful
for quantifying resource availability at the ungauged river reach, it is essential, therefore,
that the model can model catchment daily mean flows, particularly low flows effectively
and replicate the mean daily flow. It is not necessary for the model run on a shorter time
step than a day or for the model to be able replicate the catchment behaviour at high flows,

other than to ensure that mean flow is modelled correctly.

In the context of a model for regionalisation, it is also advantageous to assume a catchment
water balance approach. In this approach, it is assumed that all parts of a catchment
enclosed by a boundary defining the extent of the catchment above a point can contribute to
river flow at the point. In the context of this study, this boundary has been defined as the
topographic boundary. This assumption is useful, as the catchment area is then a model
parameter that is defined a priori. The assumption also ensures that it is possible to
identify meaningful extents for catchment climatic data and characteristics. The limitation
of the approach is that systematic errors may be introduced through errors in the estimation
of the contributing catchment area or violation of the closed water balance at the point in
question. Both these problems commonly occur in phreatic groundwater catchments. The
closed water balance assumption is flawed in these catchment as groundwater boundaries
tend not be static and rarely coincide with the topographic divide. Furthermore, as the river
can be regarded as an exposure of the water table in this type of catchment, it is quite

common to have a significant bypass of the channel as result of subsurface groundwater

flow.

Following on from the model evaluation study presented in Chapter 3, the Probability
Distributed Soil-moisture Module (PDSM) component of the PDM model of Moore (1985)
was selected as the basis of a model for the regionalisation studies. The PDSM was used in

a modelling scheme with a conventional quick and slow flow routing module for
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representing the hillslope and ground water routing of effective precipitation from the soil

moisture store. Two configurations were used for the PDSM.

e Configuration A (MODA). A treatment of soil moisture behaviour in which a drainage
term for the loss module was included. In MODA the drainage from the PDSM was
routed through the slow flow reservoir and the outflow from the PDSM routed through
the quick flow reservoir. An interception model was included within MODA to provide
some provision for rainfall evaporating at the potential rate, even when soil moisture
deficits were significant.

e Configuration B (MODB). A simple treatment of soil moisture and evaporation
mechanisms was used for this model. The interception losses from different vegetation
types were ignored and the division of effective rainfall between the quick and slow

flow routing components was based upon a fixed division.

MODB was introduced to address some of the parameter identifiability problems found
with MODA. These issues are discussed in detail within Chapter 6. The model structure for

the model configurations is presented in Figure 4.1. The models each consist of three

modules:

o the distributed soil moisture store;
e an evaporation module;

e arouting module consisting of two linear storage reservoirs.

These three modules are presented in Sections 4.1 to 4.3. with the distinction made

between the two model structures in each case.
4.1 THE PROBABILITY DISTRIBUTED SOIL-MOISTURE MODEL

The soil moisture store within the PDSM is presented here in the context of the distribution
form adopted for the soil moisture store, the treatment of evaporative losses and the
partitioning of effective runoff between quick and slow routing paths. Runoff production at
a point in the catchment is controlled by the absorption capacity of the soil to take up

water. This can be conceptualised as a simple store with a given storage capacity, c’.
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Within a time interval, the store receives water from rainfall, P, and loses water by
evaporation, E, until either the storage fills and spills, generating direct runoff, q, or
empties and ceases to lose water by evaporation. The behaviour of this store is given by
P-E—(c-S,) P>c*E
q= RN (4.1)
0 P<c*E

where S, is the initial depth of water in storage.

In the PDSM it is considered that different points in a catchment have differing storage
capacities and that the spatial variation of capacity can be described by a probability
distribution. The points differ from each other only with regard to their storage capacity.
The storage capacity at any point, ¢, may then be considered as a random variate with
probability density function, f(c), so that the proportion of the river basin with capacities in
the range (c, ¢ 4 dc) will be f(c)dc. In the PDSM it is assumed that all points are inter-

connected so that hydraulic gradient between the point stores at any point in time is zero.

The water balance for a catchment, with storage capacities distributed in this way, 1s
constructed as follows. Assuming that the catchment is initially dry at the start of a time
interval and receives a rainfall depth P over a time interval. Over the interval the point
stores will fill to a depth P unless they are of lesser depth than P, in which case they will
fill during the time interval and generate runoff. The frequency of occurrence of a given
store depth is given by the probability density function. The actual runoff produced over
the catchment must therefore be obtained by weighting the depth produced by a store of a

given depth by its frequency of occurrence, as expressed by f(c).
At the end of the time interval stores of depth less than P are generating runoff. Calling the

capacity below which all stores are full at some time t the critical capacity, C*, (C*=P in

the present example), the proportion of the basin containing stores of capacity less than or

equal to C* is

prob(c £ ") =F(C") = [ f(c)dc. 4.2)
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The function F(c) is the distribution function of store capacity and is related to the density
function, f(c), through the relation f(c) = dF(c)/dc. This proportion is also the proportion of

the basin generating runoff, so that the contributing area at time t for a catchment of area A

1S
AO=F(C )A. (4.3)

The direct runoff rate per unit area from the basin is the product of the net rainfall rate, 7(t),
and the proportion of the basin generating runoff, F(C*(t)), after taking into account

interception, evaporative and potential drainage losses from the store. This given by
q(t) =z (OF(C* (1)) 4.4

Considering now the i'th wet time interval, (t, t+At), in which precipitation, P,, exceeds
evaporation, E;, yielding a nett rainfall within the interval of 7; = P; - E;. Then the critical

capacity, C*(t), will increase over the interval according to
C@=C"O+qxt-1) t<T<t+AL, “4.5)

the contributing area will expand according to (4.3), and the volume of basin direct runoff

per unit area produced over this interval will be

Vit+ =[""qr)dr= jgg; YF(c)de. 4.6)
During dry periods potential evaporation will deplete the water content of the storages with
water moving between stores to equalise the depth of stored water at different points within
the basin. Therefore, at any time all stores will have a water content, C*, irrespective of

their capacity, unless this is less than C , when they will be full.
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Crucial to the PDSM is that a unique relationship exists between the water in storage over
the basin as a whole, S(t), and the critical capacity, C (t), and in turn to the instantaneous
rate of basin runoff production, Q(t). The total water in storage, at any point in time, 18
given by the sum of the water held in the proportion of the stores that have a depth less
than or equal to the critical capacity and the water held in the proportion of stores which
have a capacity greater than the critical capacity, and are not full. This is expressed

mathematically as

S =[§" ct(e)de +C (V) [2, fc)de
4.7)

=[P (1-F(c))de.

For a given value of storage, S(t), this can be used to obtain C'(t) which allows the volume
of direct runoff, V(t+At), to be calculated using equations (4.6) together with (4.5). The

total available storage in the basin, Smax, is given by

Smax = |7 cf(c)de = [T (1-F(c))de =, 4.8)
where T is the mean storage capacity over the catchment. During a period when no runoff

is generated the soil moisture storage accounting is given by

S(7) = S(t) + 7, (7 —1) t<z<t+At, 0<S(7)<S,, . (4.9

When runoff generation does occur then the volume of runoff produced, V(t+At), is

obtained using (4.6), and then continuity gives the final storage as

SO +mAt—V(t+At)  S(t+A) <Smax

S(t+At) = {s (4.10)

otherwise

max



If the basin storage capacity is met fully within the interval (t, t+At) then V(t+At) is

calculated from continuity as

V(t +At) = 7, At - (S - S()). 4.11)

A Pareto distribution was used to describe the distribution of soil depths for MODA The

distribution function and probability density function for this distribution are:

F(e)=1-(1-¢/ cpux) 0<¢ < e 4.12)
dF(c) b .
f(c) = - (1 i~ ) 0<c<ep- (4.13)
dC Cde CITMX

The parameter Cmax is the maximum storage capacity in the basin and b is the shape

parameter controlling the degree of spatial variability of storage capacity over the basin.

These functions are illustrated in Figure 4.2 for a maximum storage capacity of 250mm.
Not only is this the distribution that is most widely used in practice but, depending on the
choice of shape parameter of storage capacity the distribution can be used to simulate a
wide variety of catchment types. A very large value of b implies that the majority of stores
are shallow stores whilst a very small value of b implies that the majority of store
capacities are skewed towards Cmax. A uniform distribution of storage capacities is
obtained as a special case when b=1. A constant storage capacity over the entire catchment
equal to Cmax is obtained for b=0. For MODA the parameter b was left as a free parameter
to be identified during calibration whereas a uniform distribution was assumed for MODB
to reduce parameter identifiability problems within the model. The following relations can

be derived for Pareto distributed storage capacities:

Sde = Cl'ﬂﬂX /(b + 1) (4'14)
>

s =S, fl-(1-c*w/c,, )"}, (4.15)
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cr@)y=C, {l-(1-s@ys, )"0}, (4.16)
vt+ A = At =S, {1-C*@®/C,, ) —=(1-C*(t+A)C,, )"}, (@17)

The relationship between rainfall and runoff implied by the above expressions, for given

conditions of soil moisture, is presented in Figure 4.3

F(c)

4 bet
Cmax
= i
0 T T 1

0.005
0 50 100 150 200 250 0 50 100 150 200 250
C (mm) C (mn)
(a) Probability density function (b) Distribution function

Figure 4.2  The Pareto distribution of storage capacity.

Loss terms for the soil moisture store are the evaporation loss term (E;) which is discussed
in the subsequent section, the generation of direct runoff and, for MODA, a drainage loss
term in which water from the PDSM is drained to the slow flow, or groundwater routing
path. In this drainage term it is assumed that the rate of drainage over the interval, d;,

depends linearly on basin soil moisture content at the start of the interval where

_S® (4.18)

di .
ke

The constant of proportionality, 1/kg, is a drainage time constant with units of inverse time

(hr’l). With both losses to evaporation and recharge, the net rainfall, m;, is defined as

=P -Ei-d;- 4.19)
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In this formulation, it arguable as to whether an interception module is necessary. The

distinction that intercepted water is evaporated at the potential rate is only important when

the SMD is limiting evaporation. Furthermore, this could probably be compensated for by

the Cmax and b parameters. The interception model is potentially important when the

drainage to the slow flow routing component is limited by soil moisture deficit. The

incorporation of the interception store to intercept a fraction of the daily rainfall implies

that a greater rainfall depth is required before the SMD is alleviated thus resulting in an

increased drainage rate.

S 100
o c 140
Direct max 80 trnetial
Runoff b-04 Storage
vV mm 1S may = 100! 60 S mm
40
20
8- 0
7
O T [, 1 |
0 100 200
s Net rainfall P-E mm
max
Figure 4.3  Example relationships between rainfall and runoff for the Pareto

distribution.

In MODRB it is assumed that there is no soil drainage, d;. Direct runoff from the PDSM 1is

split between a fraction 8, which goes to groundwater storage and a fraction (1-f3) going to

make up surface runoff.



4.2 THE EVAPORATION MODEL

Within the modelling framework developed for this study, the maximum evaporation that
can take place in a time interval is equal to the Penman-Monteith based estimate of

Potential Evaporation for that time step (Chapter 2).

Looking at evaporation from a process view-point it can be defined as the physical process
by which water is converted from a liquid into a gas. The degree to which evaporation

takes place is dependent on the vapour pressure of the air immediately above the
evaporating surface. When the vapour pressure is low, water molecules can diffuse freely
into the atmosphere. However, as the vapour pressure rises it becomes increasingly difficult
for a net movement of water molecules into the atmosphere. At the saturation point it
ceases entirely. Evaporation is therefore proportional to the vapour pressure deficit below
the saturated vapour pressure at the air surface interface. The temperature of the
atmosphere, the wind speed and vegetation canopy architecture, largely controls this

deficit. The latter two factors control the rate at which water vapour is moved away from

the air-surface interface and the degree of mixing which is related to turbulence over a

canopy.

Evaporation from water, which is held on the catchment surfaces and water intercepted by
vegetation evaporates at the potential rate defined by the atmosphere. Given an unlimited
atmospheric demand, the amount lost from such sources is dependent on the amount held.
For bare soils, the volume of surface storage is primarily dependent on small-scale
topography and the infiltration capacity of the soil. For plants, canopy storage volume is

dependent on leaf number, shape and size and canopy architecture.

The transfer of energy through the soil controls the rate at which evaporation can take place
from within the soil. The soil matrix will also determine the rate of evaporation from the
soil. The surface tension forces binding the water molecules to the soil particles (a function
of size) and the tortuosity of the path connecting the water molecule to the soil surface

primarily restrict this rate.
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Evaporation from plant canopies is dependent on plant physiology. Evaporation takes place
through leaf stomata and its magnitude is dependent on the size of the stomatal aperture.
This is primarily dependent on climatic factors (temperature, vapour pressure, partial
pressure of CO,) and amount of water present in the plant. The amount of the water present
in the plant is in turn dependent on the amount of the water in the soil and the ability of the
vegetation to extract this water which is a function of the root structure and the type of soil.

These complex processes controlling evaporation are represented within MODA by two

conceptual processes:

e interception of precipitation and the subsequent evaporation at the potential rate
determined by the atmosphere;

e evaporation from plant and catchment surfaces, which may take place at a rate equal to
or less than the potential rate from the PDSM - with any reductions being a non-linear

function of the soil moisture deficit within the PDSM.

As soil drainage is not considered in MODB the interception store was omitted from this
model formulation. The modelling of interception losses and evaporation from the

catchment surfaces is presented in the following sub-sections.

4.2.1 The Interception Model

The largest impact of changing the land use within a catchment, from a quantitative
viewpoint, is the impact on evaporation processes. The largest modification of evaporation
processes is generally associated with changes in interception losses, associated with
vegetation architecture; leaf and stem structure. Enhancement of evaporation from these
surfaces is primarily a function of aerodynamic resistance (Calder, 1990). The biggest
increases in interception losses are associated with the transition from grass to coniferous
afforestation. A number of approaches to the conceptual modelling of interception losses
have been formulated (Rutter et al, 1971, Gash, 1979, Aston, 1979 and Calder 1986a & b).
These models all use the same Penman Monteith equation to estimate evaporative losses
from intercepted water but vary in the way the intercepted water is partitioned between
different interception components. The interception model adapted for this study is based

upon the daily interception model proposed by Calder (1986a). This model, which is the
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simplest model, has been tested through observation on a number of vegetation types in the
UK (Hall and Harding, 1993 and Harding et al, 1992). Considering vegetation class, j,

covering a fraction of the catchment, A;, the intercepted depth of rainfall on day i is given

by

I,=Ay, fi—e ], (4.20)

where:

;i = The interception depth within the day from vegetation class, j (mm);
Y ;= maximum daily interception loss for vegetation class, j (mm);
O= scaling constant for vegetation type, j (mm™);

P;= precipitation depth within the day (mm).

Preliminary results, described in the subsequent section, demonstrate that interception
losses can be adequately modelled (i.e. within experimental error) by re-parameterising this
as a one-parameter model. This parameter, v, *“ the maximum daily interception loss” is
intrinsically related to vegetation type. The scaling constant, 3, controls at what rainfall

depth this maximum interception loss is reached, as demonstrated in Figure 4.4.
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Figure 4.4 The sensitivity of the interception model to the value of 0 (y = 6.43 mm).
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The model has primarily been tested by previous researchers using data from interception
losses associated with mature coniferous afforestation but has also been applied in the
modelling of interception losses from heather and broadleaf, deciduous woodland.

Published parameter values for the model are summarised in Table 4.1.

Table 4.1 Published parameter values for the daily interception model
Source Period Interception Parameters
Fraction vy (mm) & (mm™)
of annual

Rainfall, o

Coniferous Forest

All sites: Dolydd Plynlimon, 0.35 6.99 0.099
Crinan, Aviemore (Calder,

1986b)

Plynlimon 1974-1976  0.30 6.1 0.099
Dolydd 1981-1983  0.39 7.6 0.099
Crinan 1982-1984 0.36 6.6 0.099
Aviemore 1982-1984 045 7.1 0.099
Balquidder-Kirkton (Calder  1984-1985 6.4 0.092
et al, 1986a)

Heather

Balquidder(Hall and 1981 - 2.7 0.360
Harding, 1993)

Law’s heather lysimeters 0.16 - -
(Calder et al, 1983)

Sneaton moor lysimeter 1980 0.19 - -

(Wallace et al, 1982)

Broadleaf Woodlands

Beech annual (Harding et al  1989-1991  0.14 2.1 0.099
1992)

Ash annual (Harding et al, 1989-1991

1992)

As can be observed from this table the parameter values are relatively consistent for
afforested catchments. Using daily rainfall data from 1961 to 1990 for Balquidder, it was
found that the parameter values for the model, when applied within the Kirkton catchment
(one of the pair of Balquidder catchments), can be recast as y=6.2 mm and 6=0.099 mm.
This does not introduce any bias in predicted daily losses and maintains an R?value of 1
between the two model configurations. The Balquidder calibrated model parameter values

for heather are lower than the equivalent values for coniferous trees indicating that the
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maximum interception loss from heather is lower but that a higher precipitation rate is
required to achieve the maximum loss rate. Re-parameterising this equation with a v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>