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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Channel Coding and Space-Time Coding For Wireless Channels 

by LIEW Tong Hooi 

This thesis is based on the research of channel coding. First, we give an introduction 

to the family of conventional Bose-Chaudhuri-Hocquenghem (BCH) codes, characterising 

the performance of various BCH codes. Then we further our research into turbo codes 

employing BCH codes as the component codes. Various decoding algorithms are presented 

for turbo codes. This is followed by our simulation results, studying the effects of various 

parameters, affecting the performance of turbo codes. 

Subsequently, another form of non-binary block codes, referred to as Redundant Residue 

Number System (RRNS) codes, which exhibit identical distance properties to the well-

established Reed-Solomon (RS) codes, are investigated. Different bit-to-symbol mapping 

schemes are proposed, which result in systematic and non-systematic RRNS codes. An 

RRNS decoder is proposed, which accepts soft inputs and provide soft outputs. This facil-

itates the iterative decoding of turbo RRNS codes. 

Our investigations into channel coding are also expanded to study space-time codes, which 

are constituted by jointly designed channel coding, modulation, transmit diversity and op-

tional receiver diversity schemes. Specifically, combined space-time block codes and different 

channel codecs studied. Various simulation results are presented for space-time block codes 

using no channel coding. This is followed by the investigations of the bit-to-symbol mapping 

of the binary channel coded bits to higher modulation constellations. Finally, the perfor-

mance of various channel codecs is compared by considering their estimated complexity in 

conjunction with space-time block coding. 

In the last chapter, space-time trellis codes are then compared to the class of space-time 

block codes in conjunction with a range of channel codes over wideband channels. Various 

factors affecting the performance of space-time block codes are investigated. Finally, space-

time coded adaptive Orthogonal Frequency Division Multiplexing (AOFDM) is investigated. 
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Chapter 1 

Introduction 

1.1 A Historical Perspect ive on Channel Coding 

The history of channel coding or forward error correction (FEC) coding dates back to 

Shannon's pioneering work [1] in 1948, predicting that arbitrarily reliable communications 

is achievable with the aid of channel coding, upon adding redundant information to the 

transmitted messages. However, Shannon refrained from proposing explicit channel coding 

schemes for practical implementations. Furthermore, although upon increasing the amount 

of redundancy added the associated information delay increases, he did not specify the 

maximum delay that may have to be tolerated, in order to be able to communicate near the 

Shannonian limit. In recent years researchers have been endeavouring to reduce the amount 

of latency inflicted for example by a turbo codec's interleaver that has to be tolerated for 

the sake of attaining a given target performance. 

Historically, one of the first practical FEC codes was the single error correcting Hamming 

code [2], which was a block code proposed in 1950. Convolutional FEC codes date back 

to 1955 [3], which were discovered by Elias, while Wozencraft and Reiffen [4,5], as well as 

Fano [6] and Massey [7] proposed various algorithms for their decoding. A major milestone 

in the history of convolutional error correction coding was the invention of a maximum 

likelihood sequence estimation algorithm by Viterbi [8] in 1967. A classic interpretation of 

the Viterbi algorithm (VA) can be found, for example, in Forney's often-quoted paper [9]. 

One of the first practical applications of convolutional codes was proposed by Heller and 

Jacobs [10] during the seventies. 

We note here that the VA does not result in minimum bit error rate (BER), it rather 

finds the most likely transmitted sequence of transmitted bits. However, it performs close 

to the minimum possible BER, which can be achieved only with the aid of the extremely 
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complex full-search algorithm evaluating the probability of all possible 2^ binary strings of 

a A—bit message. The minimum BER decoding algorithm was proposed in 1974 by Bahl 

et al. [11], which was termed the Maximum A-Posteriori (MAP) algorithm. Although the 

MAP algorithm slightly outperforms the VA in BER terms, because of its significantly 

higher complexity it was rarely used in practice, until turbo codes were contrived by Berrou 

eZoA hi 1993 

Focusing our attention on block codes, the single-error correcting Hamming block code 

was too weak for practical applications. An important practical milestone was the discov-

ery of the family of multiple error correcting Bose-Chaudhuri-Hocquenghem (BCH) binary 

block codes [14] in 1959 and in 1960 [15,16]. In 1960, Peterson [17] recognised that these 

codes exhibit a cyclic structure, implying that all cyclically shifted versions of a legitimate 

codeword are also legitimate codewords. The first method for constructing trellises for lin-

ear block codes was proposed by Wolf [18] in 1978. Due to the associated high complexity, 

there was only limited research in trellis decoding of linear block codes [19,20]. It was in 

1988, when Forney [21] showed that some block codes have relatively simple trellis struc-

tures. Motivated by Forney's work, Honary, Markarian and Farrell et al. [19,22-25] as well 

as Lin and Kasami et al. [20,26,27] proposed various methods for reducing the associated 

complexity. The Chase algorithm [28] is one of the most popular techniques proposed for 

near maximum likelihood decoding of block codes. 

Furthermore, in 1961 Gorenstein and Zierler [29] extended the binary coding theory to 

treat non-binary codes as well, where code symbols were constituted by a number of bits, 

and this led to the birth of burst-error correcting codes. They also contrived a combination 

of algorithms, which is referred to as the Peterson-Gorenstein-Zierler (PGZ) algorithm. In 

1960 a prominent non-binary subset of BCH codes was discovered by Reed and Solomon [30]; 

they were named after their inventors Reed-Solomon (RS) codes. These codes exhibit certain 

optimality properties, since their codewords have the highest possible minimum distance 

between the legitimate codewords for a given code-rate. This, however, does not neces-

sarily guarantee attaining the lowest possible BER. The PGZ decoder can also be invoked 

for decoding non-binary RS codes. A range of powerful decoding algorithms for RS codes 

was found by Berlekamp [31,32] and Massey [33,34]. Various soft decision decoding algo-

rithms were proposed for soft decoding of RS codes by Sweeney [35-37] and Honary [19]. 

In recent years RS codes have found practical applications, for example, in Compact Disc 

(CD) players, in deep-space scenarios [38], and in the family of Digital Video Broadcast-

ing (DVB) schemes [39], which were standardised by the European Telecommunications 

Standardisation Institute (ETSI). 



Inspired by the ancient theory of Residue Number Systems (RNS) [40-42], which consti-

tute a promising number system for supporting fast arithmetic operations [40,41], a novel 

class of non-binary codes referred to as Redundant Residue Number System (RRNS) codes 

were introduced in 1967. An RRNS code is a maximum-minimum distance block code, ex-

hibiting similar distance properties to Reed-Solomon (RS) codes. Watson and Hastings [42] 

as well as Krishna et al. [43,44] exploited the properties of the RRNS for detecting or cor-

recting a single error and also for detecting multiple errors. Recently, the soft decoding of 

RRNS codes was proposed in [45]. 

During the early 1970s, FEC codes were incorporated in various deep-space and satellite 

communications systems, and in the 1980s they also became common in virtually all cellular 

mobile radio systems. However, for a long time FEC codes and modulation have been 

treated as distinct subjects in communication systems. By integrating FEC and modulation, 

in 1987 Ungerboeck [46-48] proposed Trellis Coded Modulation (TCM), which is capable 

of achieving significant coding gains over power and band-limited transmission media. A 

further historic breakthrough was the invention of turbo codes by Berrou, Glavieux, and 

Thitimajshima [12,13] in 1993, which facilitate the operation of communications systems 

near the Shannonian limits. Turbo coding is based on a composite codec constituted by 

two parallel concatenated codecs. Since its recent invention turbo coding has evolved at 

an unprecedented rate and has reached a state of maturity within just a few years due to 

the intensive research efforts of the turbo coding community. As a result of this dramatic 

evolution, turbo coding has also found its way into standardised systems, such as for example 

the recently ratified third-generation (3G) mobile radio systems [49]. Even more impressive 

performance gains can be attained with the aid of turbo coding in the context of video 

broadcast systems, where the associated system delay is less critical, than in delay-sensitive 

interactive systems. 

More specifically, in their proposed scheme Berrou et al. [12, 13] used a parallel con-

catenation of two Recursive Systematic Convolutional (RSC) codes, accommodating the 

turbo interleaver between the two encoders. At the decoder an iterative structure using a 

modified version of the classic minimum bit error rate Maximum A-Posteriori Algorithm 

(MAP) invented by Bahl et al. [11] was invoked by Berrou et al, in order to decode these 

parallel concatenated codes. Again, since 1993 a large body of work has been carried out 

in the area, aiming for example for reducing the associated decoder complexity. Practi-

cal reduced-complexity decoders are for example the Max-Log-MAP algorithm proposed 

by Koch and Baier [50], as well as by Erfanian et al. [51], the Log-MAP algorithm sug-

gested by Robertson, Villebrun and Hoeher [52], and the SOVA algorithm advocated by 

Hagenauer as well as Hoeher [53,54]. Le Goff, Glavieux and Berrou [55], Wachsmann and 



Huber [56] as well as Robertson and Worz [57] suggested to use these codes in conjunction 

with bandwidth efficient modulation schemes. Further advances in understanding the ex-

cellent performance of the codes are due, for example to Benedetto and Montorsi [58,59], 

Perez, Seghers and Costello [60]. During the mid-nineties Hagenauer, Offer and Papke [61], 

as well as Pyndiah [62] extended the turbo concept to parallel concatenated block codes as 

well. Nickl et al. shows in [63] that Shannon's limit can be approached within 0.27 dB by 

employing a simple turbo Hamming code. In [64] Acikel and Ryan proposed an efficient 

procedure for designing the puncturing patterns for high-rate turbo convolutional codes. 

Jung and Nasshan [65,66] characterised the achievable turbo coded performance under the 

constraints of short transmission frame lengths, which is characteristic of interactive speech 

systems. In collaboration with Blanz they also applied turbo codes to a CDMA system 

using joint detection and antenna diversity [67]. Barbulescu and Pietrobon addressed the 

issues of interleave! design [68]. The tutorial paper by Sklar [69] is also highly recommended 

as background reading. 

Driven by the urge to support high data rates for a wide range of bearer services, Tarokh, 

Seshadri and Calderbank [70] proposed space-time trellis codes in 1998. By jointly design-

ing the FEC, modulation, transmit diversity and optional receive diversity scheme, they 

increased the throughput of band-limited wireless channels. A few months later, Alam-

outi [71] invented a low-complexity space-time block code, which offers significantly lower 

complexity at the cost of a slight performance degradation. Alamouti's invention motivated 

Tarokh et al. [72,73] to generalise Alamouti's scheme to an arbitrary number of transmitter 

antennas. Then, Tarokh et al., Bauch et al. [74,75], Agrawal [76], Li et al. [77,78] and 

Naguib et al. [79] extended the research of space-time codes from considering narrow-band 

channels to dispersive channels [70,71,73,79,80]. 

In Figure 1.1, we show the evolution the channel coding research over the past fifty years 

since Shannon's legendary contribution [1]. These mile-stones have been incorporated also 

in the range of monographs and text-books summarised in Figure 1.2. At the time of 

this writing, the Shannon limit has been approached within 0.27 dB [63] over Gaussian 

channels. Now the challenge is to contrive FEC schemes, which are capable of achieving 

a performance near the capacity of wireless channels. The design of an attractive channel 

coding and modulation scheme depends on a range of contradictory factors, which are por-

trayed in Figure 1.3. The message of this illustration is multi-fold. For example, given a 

certain transmission channel, it is always feasible to design a coding and modulation ('codu-

lation') system, which can further reduce the BER achieved. This typically implies however 

further investments and/or penalties in terms of the required increased implementational 

complexity and coding/interleaving delay as well as reduced elective throughput. Different 
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Figure 1.1: A brief history of channel coding. 



solutions accrue, when optimising different codec features. For example, in many applica-

tions the most important codec parameters is the achievable coding gain, which quantifies 

the amount of bit-energy reduction attained by a codec at a certain target BER. Natu-

rally, transmitted power reduction is extremely important in battery powered devices. This 

transmitted power reduction is only achievable at the cost of an increased implementational 

complexity, which itself typically increases the power consumption and hence erodes some 

of the power gain. 

Viewing this system optimisation problem from a different perspective, it is feasible to 

transmit at a higher bit rate in a given fixed bandwidth by increasing the number of bits per 

modulated symbol. However, when aiming for a given target BER, the channel coding rate 

has to be reduced, in order to increase the transmission integrity. Naturally, this reduces 

the effective throughput of the system and results in an overall increased system complexity. 

When the channel's characteristic and the associated bit error statistics change, difi'erent 

solutions may become more attractive. This is because Gaussian channels, narrowband and 

wideband Rayleigh fading or various Nakagami fading channels [104,105] inflict difi'erent 

impairment. These design trade-ofi's constitute the subject of this thesis. 

1.2 Organisat ion of Thesis 

Below, we present the outline of the thesis: 

• Chapter 2: An overview of the conventional BCH codes is given. The Viterbi Al-

gorithm is detailed using a BCH code as our example. This is followed by simulation 

results of various BCH codes employing hard decision and soft decision decoding meth-

ods. The classic Chase algorithm is introduced and its performance is investigated. 

• Chapter 3: The concept of turbo codes using BCH codes as component codes, is 

introduced. A detailed derivation of the MAP algorithm is given. Then, the MAP 

algorithm was modified in order to highlight the concept of the Max-Log-MAP and 

Log-MAP algorithms. Furthermore, the SOVA algorithm is introduced. Then a sim-

ple turbo decoding example is given, highlighting how iterative decoding assists in 

correcting multiple errors. We propose a novel MAP algorithm for decoding extended 

BCH codes. Finally, we show how the various coding parameters afi'ect the perfor-

mance of turbo BCH codes. 

» Chapter 4: The concept of Residue Number Systems (RNS) is introduced and ex-

tended to Redundant Residue Number Systems (RRNS), introducing the family of 
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Figure 1.2: Mile-stones in channel coding. 
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Figure 1.3: Factors affecting the design of channel coding and modulation scheme. 

RRNS codes. Some coding theoretic aspects of RRNS codes are investigated, demon-

strating that RRNS codes exhibit similar distance properties to RS codes. A procedure 

for multiple error correction is then given. Different bit-to-symbol mapping methods 

are highlighted, yielding non-systematic and systematic RRNS codes. A novel bit-

to-symbol mapping method is proposed, which results in efficient systematic RRNS 

codes. The classic Chase algorithm is then modified in order to create a Soft-Input 

Soft-Output (SISO) RRNS decoder. This enables us to implement the iterative de-

coding of turbo RRNS codes. Finally, simulations results are given for various RRNS 

codes, employing hard decision and soft decision decoding methods. The performance 

of the RRNS codes is compared to that of RS codes and the performance of turbo 

RRNS codes is studied. 

• Chapter 5: Space-time block codes are introduced. The derivation of the MAP 

decoding of space-time block codes is then given. A system is proposed by concate-

nating space-time block codes and various channel codes. The complexity and memory 

requirements of various channel decoders are derived, enabling us to compare the per-

formance of the proposed channel codes by considering their decoder complexity. Our 

simulation results related to space-time block codes using no channel coding are first 

presented. Then, we investigate the effect of mapping data and parity bits from binary 

channel codes to non-binary modulation schemes. Finally, we compare our simulation 

results for various channel codes concatenated with a simple space-time block code. 

Our performance comparisons are conducted by also considering the complexity of 

the associated channel decoder. 

• Chapter 6: The encoding process of space-time trellis codes is highlighted. This 

is followed by employing an Orthogonal Frequency Division Multiplexing (OFDM) 

modem in conjunction with space-time codes over wideband channels. Turbo codes 



and RS codes are concatenated with space-time codes in order to improve their per-

formance. Then, the performance of the advocated space-time block code and space-

time trellis codes is compared. Their complexity is also considered in comparing both 

schemes. The effect of delay-spread and maximum Doppler frequency on the per-

formance of the space-time codes is investigated. A Signal Interference Ratio (SIR) 

related term is defined in the context of dispersive channels for the advocated space-

time block code, and we will show how the SIR affects the performance of the system. 

In our last section, we propose space-time coded Adaptive OFDM (AOFDM). We 

then show by employing multiple antennas that with the advent of space-time coding, 

the wideband fading channels have been converted to AWGN-like channels. 

• Chapter 7: The main findings are summarised and suggestions for future research 

are presented. 

The novel contributions of the thesis are as follows: 

• The extended MAP algorithm was proposed for extended BCH codes. The algorithm 

was employed in both extended turbo BCH codes and in turbo equalisers [106]. 

• Different bit-to-symbol mapping methods were proposed for systematic and non-

systematic RRNS encoders. The classic Chase algorithm was then invoked for con-

triving soft decision decoding of RRNS codes [45]. 

• The classic Chase algorithm was adapted for accepting soft inputs and to provide 

soft outputs. Using the proposed Soft Input Soft Output (SISO) Chase algorithm, 

iterative decoding of turbo RRNS codes was contrived [107]. 

• A system which concatenates space-time block codes with various channel codes was 

proposed. Different bit-to-symbol mapping methods were studied for the data and 

parity bits from binary channel codes to non-binary modulation schemes [108]. The 

performance of various concatenated space-time and channel codes was compared. 

The issues of performance versus complexity was also addressed [109]. 

• Low complexity space-time block codes were concatenated with turbo codes. The 

performance of the concatenated scheme was comparatively studied in conjunction 

with the more complex family of space-time trellis codes using OFDM [108]. 



Chapter 2 

Conventional BCH Codes 

2.1 In t roduc t ion 

Bose-Chaudhuri-Hocquenghem (BCH) codes were discovered by Hocquenghem [14] and 

independently by Bose and Chaudhuri [15] in 1959 and 1960, respectively. These codes 

constitute a prominent class of cyclic block codes that have multiple-error detection and 

correction capabilities. 

In this chapter, we will commence with an introduction to BCH codes in Section 2.2. 

Their state and trellis diagrams are constructed in Section 2.2.2. The trellis decoding of 

BCH codes using the Viterbi Algorithm (VA) [8] is detailed in Section 2.3.2. Simulation 

results of various BCH codes employing the Berlekamp-Massey Algorithm (BMA) [31-34] 

and the Viterbi algorithm are given in Section 2.3.5. Finally, in Section 2.4 we investigate 

the low-complexity Chase algorithm [28] in the context of the soft decision based decoding 

of BCH codes. 

2.2 B C H codes 

A BCH encoder accepts k information data bits and produces n coded bits. The mini-

mum Hamming distance of the codewords is dmin and the BCH code concerned is denoted 

as BCB.{n,k,dmin)- Table 2.1 lists some commonly used code generators, g{x), for the 

construction of BCH codes [110]. The coefficients of g{x) are presented as octal numbers 

arranged so that when they are converted to binary digits, the rightmost digit corresponds 

to the zero-degree coefficient of g{x). 

10 
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n k d-min 

7 4 3 13 
15 11 3 23 

7 5 721 
31 26 3 45 

21 5 3551 
16 7 107657 

63 57 3 103 
51 5 12471 
45 7 1701317 
39 9 166623567 
36 11 1033500423 

127 120 3 211 
113 5 41567 
106 7 11554743 
99 9 3447023271 
92 11 624730022327 
85 13 130704476322273 
78 15 26230002166130115 
71 19 6255010713253127753 
64 21 1206534025570773100045 

255 247 3 435 
239 5 267543 
231 7 156720665 
223 9 75626641375 
215 11 23157564726421 
207 13 16176560567636227 
199 15 7633031270420722341 
191 17 2663470176115333714567 
187 19 52755313540001322236351 
179 21 22624710717340432416300455 
171 23 15416214212342356077061630637 
163 25 7500415510075602551574724514601 
155 27 3757513005407665015722506464677633 
147 29 1642130173537165525304165305441011711 
139 31 461401732060175561570722730247453567445 
131 37 215713331471510151261250277442142024165471 

Table 2.1: Table of generators for BCH codes [110] ©IEEE, Stenbit. 
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2.2.1 B C H Encoder 

Since BCH codes are cyclic codes, their encoders can be implemented using shift register 

circuits [111-113]. The codes can be encoded either non-systematically or systematically. 

However, systematic BCH codes were found to perform slightly better, than their non-

systematic counterparts. Hence, only systematic BCH codes will be discussed in this report. 

For systematic codes, the generator polynomial, g{x), is written as follows; 

9 W = g o + 9 i a ; + g2a;̂  + . . . ^ * (2.1) 

The generator polynomial, g{x)^ formulates n codeword bits by appending (n — k) parity 

bits to the k information data bits. The encoder employs a shift register having (n — k) 

stages as depicted in Figure 2.1, where ® represents multiplication, whereas © modulo two 

addition. In simple plausible terms the code exhibits error correction ability, since only 

certain encoded sequences, obeying the encoding rules are legitimate and hence corrupted 

or illegitimate codewords can be recognised and corrected. The parity bits are computed 

from the information data bits according to the rules imposed by the generator polynomial. 

—Qn-k-l Y"—9n-k —fi'o T — 

Switch 2 

n—A) stages shift register 

Switch 

Figure 2.1: Systematic encoder for BCH codes having (n — k) shift register stages. 

The following steps describe the encoding procedures: 

1. Switch 1 is closed during the first k shifts, in order to allow the information data bits, 

d{x), shift into the n — k stages of the shift register. 

2. At the same time. Switch 2 is in the down position to allow the data bits, d{x), to be 

copied directly to the codeword, c{x). 

3. After Mh shifts. Switch 1 is opened and Switch 2 is moved to the upper position. 

4. The remaining n — k shifts clear the shift register by appending the parity bits to the 

codeword, c{x). 
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Let us consider the BCH(7,4,3) code as an example for illustrating the process of encoding. 

From Table 2.1, the generator polynomial is 

9 ^^octal 

lOllwn 

+ ic -|- 1. (2.2) 

Switch 2 

Switch 

Figure 2.2: Systematic encoder for the BCH(7,4,3) code having n — k — 3 register stages. 

Figure 2.2 shows the specific encoder, which is a derivative of Figure 2.1. Observe that all 

the multipliers illustrated in Figure 2.1 are absent in Figure 2.2. Explicitly, if the generator 

polynomial coefficient is 1, the multiplier is replaced by a direct hard-wire connection as 

shown in Figure 2.2, whereas if the coefficient is 0, no connection is made. 

Let us use the shift register shown in Figure 2.2 for encoding four (k = 4) information 

data bits, d = 1 0 1 1 {d{x) = I + + x^). The operational steps are as follows: 

Input queue Shift index Shift register Codeword 

rorirg C0C1C2C3C4C5C6 

1 0 1 1 0 0 0 0 

1 0 1 1 1 1 0 1 

1 0 2 1 0 1 1 1 

1 3 1 0 0 O i l 

4 1 0 0 - - - 1 0 1 1 

5 0 10 - - 0 1 0 1 1 

6 0 0 1 - 0 0 1 0 1 1 

7 0 0 0 1 0 0 1 0 1 1 

The shift registers must be reset to zero before the encoding process starts. After the 

fourth shift. Switch 1 is opened and Switch 2 is moved to the upper position. The parity 

bits contained in the shift register are appended to the codeword. The codeword is c = 
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1 0 0 10 1 1 {c{x) = l+x^ + + x^). The binary representation of both d{x) and c{x) is 

shown in Figure 2.3. 

0̂ 0 0̂ 2 

: 1 0 1 1 

Co q C2 C3 C4 C5 C6 
c(z): 1 0 0 1 0 1 1 

Figure 2.3: Binary representation of the uncoded data bits and coded bits. 

2.2 .2 S t a t e and Trellis D i a g r a m s 

Let us study Figure 2.2 in the context of the example outlined in Section 2.2.1. As the data 

bits are shifted into the register by one bit at a time, the parity bits, {ro,ri,rg}, represent 

the state of the register. The corresponding operations are shown below: 

Input queue Shift index Shift register State output bit 

rorirg 

1 0 1 1 0 0 0 0 0 -

1 0 1 1 1 1 0 6 1 

1 0 2 1 0 1 5 1 

1 3 1 0 0 4 0 

- 4 1 0 0 4 1 

- 5 0 1 0 2 0 

- 6 0 0 1 1 0 

- 7 0 0 0 0 1 

In the example above, there are a few points worth noting: 

• The encoding process always starts at the all zero state and ends at the all zero state. 

• The number of the output bits is always one following a clock pulse. 

• For the first k (which is four for this example) shifts, the output bit is the same as 

the input bit. 

After the Mh shift, the parity bits of the shift register are shifted to the output. 
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Figure 2.4: State transition diagram for the BCH(7,4,3) code having 2 71 — t 8 states. 

The number of states is equal to 2" ^ increasing exponentially, when n — k increases. 

For the BCH(7,4,3) code, n — A: is 3 and the total number of encoder states is 2^ = 8. 

By using the shift register shown in Figure 2.2, we can find all the subsequent states when 

the register is in a particular state. Figure 2.4 shows all possible state transitions at any 

encoder state for the BCH(7,4,3) code. The branch emanating from the present state to the 

next state indicates the state transition. The broken line branch is the transition initiated 

by a databit of logical 0, whereas the solid branch is due to the databit being logical 1. 

The number of branches emanating from the present state is 2, which corresponds to the 

number of possible input bits, namely 1 and 0. As explained earlier, the output bit is the 

same as the databit. 

The state diagram corresponding to the state transition diagram is shown in Figure 2.5. 

It consists of a total of 2""* = 8 states connected by all the possible transitions shown in 

the state transition diagram of Figure 2.4. By using the state diagram in Figure 2.5, we 

can encode the databits, d = 1 0 1 1, without using the shift register shown in Figure 2.2. 

The first databit is a logical 1, hence the state changes from 000 to 110, as illustrated by 
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110 101 

100 oil i l l 

Databit 001 010 

000 

Figure 2.5: State diagram for the BCH(7,4,3) code having 2" ^ = 8 states. 

the solid branch emanating from state 000 in Figure 2.5. The encoder output is the same as 

the input databit, which is a logical 1. At the next instant, the present state becomes 110 

and the databit is logical 1. This causes the state transition from 110 to 101. The encoding 

cycle is repeated for subsequent databits, which change the states. By following the change 

of states throughout the first k cycles of the encoding process, a particular path associated 

with states 000 —>• 110 -> 101 -4- 100 —> 100, can be observed. 

After the Mh cycle, the state changes correspond to shifting out the parity bits from the 

shift register. In our example, the parity bits are 100 at the &th cycle. In the following 

cycle, the parity bits are shifted to the right. The rightmost bit of the parity bits is shifted 

out to become the output bit and the leftmost bit is filled with logical 0. As a result, the 

state changes are 100 —)• 010 —)• 001 -4- 000. The whole encoding process can be associated 

with state transitions of 000 —)• 110 —>• 101 -4- 100 -> 100 —> 010 -4 001 -4 000. 

Another representation of the encoding process is the trellis diagram shown in Figure 2.6. 

This is formed by concatenating the consecutive instants of the state transition diagram of 

Figure 2.4 starting from the all zero state. The diagram illustrates all the possible 2^ = 16 

paths for the BCH(7,4,3) code. The trellis has = 8 rows (8 different states) and 

n + 1 = 8 columns. The nodes in the same row represent the same state, whereas the nodes 

in the same column illustrate all the possible states 000 (State a), 001 (State b), 010 (State 

c), ..., I l l (State h). The state transitions between adjacent columns are drawn either by 

a solid line or broken line, according to whether the encoder output bit is logical 1 or 0, 

respectively. 

Initially, there is only one state, which is the all zero state (State a). The number of trellis 

states increases, as each new databit is inserted into the encoder. The symbol signalling 

instants corresponding to the column positions in the trellis, shown in Figure 2.6, are indexed 
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Figure 2.6: Trellis diagram for the BCH(7,4,3) code having 2" ^ = 8 states and n + 1 
consecutive stages. 

by the integer T. On inserting the first databit into the encoder, T = 0, two different nodes 

are possible at the next instant. The arrival of the second databit, when T = 1, causes 

the number of possible nodes at the next instant to increase to 2^. The number of possible 

nodes continues to increase with T, until the maximum number of 2^"* = 8 is reached. The 

maximum number of states is reached, when T = n — k = 3, and from then on the number 

of possible states is constant. After T = k, the number of possible states is thus divided 

by two at every instant in the trellis merging towards the zero state, which is reached at 

T = n. 

2.3 Trellis Decoding 

2 .3 .1 I n t r o d u c t i o n 

The trellis decoding of linear block codes was first introduced by Wolf [18] in 1978. However, 

this technique is only feasible for certain BCH codes, since the number of states increases 

exponentially, when n — k increases. The reason was outlined in the earlier sections. 
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2 .3 .2 V i t e r b i A l g o r i t h m 

The Viterbi Algorithm (VA) was proposed by Viterbi in 1967 [8]. The algorithm searches all 

the possible paths in the trellis and either their Hamming or their Euclidean distances from 

the received sequence at the decoder's input are compared depending on whether hard or 

soft decision decoding is used. The path exhibiting the smallest distance from the received 

sequence is selected as the most likely transmitted sequence and the associated informa-

tion data bits are regenerated. This method is known as maximum likelihood sequence 

estimation, since the most likely path is selected from the set of all the paths in the trellis. 

Instant T=0 T=1 T=2 

Decoded n n n 
Bits U U U 

Received 
Bks 
State o 

000 

State b 
001 

State c 
010 

State 
Oil 

r=3 r=4 r = 5 T=6 T=7 

0 0 0 0 

0 0 0 

0 _ _ 0 _ _ 0 

State e 
100 

State / 
101 

State g 
110 

State h 
111 

Output Bit 
0 

Figure 2.7: Example of Viterbi decoding of the BCH(7,4,3) code. 

Figure 2.7 records the 'history' of the paths selected by the BCH(7,4,3) Viterbi decoder. 

Suppose that there are no channel errors and hence the input sequence of the decoder is the 

same as the encoded sequence, i.e. 0 0 0 0 0 0 0 . At the first instant, T = 1, the received 

bit is logical 0, which is compared with the possible transmitted bits 0 and 1 of the branches 

from node a to a and from node a to g, respectively. The metrics of these two branches 

are their Hamming distances, namely the differences between the possible transmitted bits 
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0 or 1 and the received bit 0. Their Hamming distances are 0 and 1, respectively. 

Now, we define the branch metric as the Hamming distance of an individual branch from 

the received bits, and the path metric at the T-th instant as the sum of the branch metrics 

at all of its branches from T = 0 to the T-th instant. Hence the path metrics, printed on 

top of each branch in Figure 2.7, at instant T = 1 are 0 and 1 for the paths a —)• a and 

a g, respectively. At the second instant T = 2, the received bit is 0 and the branch 

metrics are 0, 1, 0 and 1 for the branches a-^a, a ^ g , g-^d and g —> / , respectively. 

The path metrics are 0 ,1 , 1 and 2 for the corresponding paths a ^ a ^ a , a - ^ a ^ g , 

a g ^ d and a —> g —> / . At the third instant, the received bit is 0. There are eight 

possible branches and their path metrics, which are shown in Figure 2.7, are 0, 1, 2, 1, 3, 

2, 1 and 2 for the paths a - ^ a ^ a ^ a , a - ^ a - ^ a ^ g , a - ^ g - ^ d - ^ b , a - ^ g - ^ d - ^ h , 

a - ^ g ^ f ^ c , a ^ g ^ f ^ e , a ^ a ^ g ^ d and a —> o —> g —> / , respectively. 

Let ai and og denote the corresponding paths a-^a-^a-^a^a and a g d ^ 

b a that begin at the initial node a and remerge in node a at T = 4. Their respective 

path metrics are 0 and 3. Any further branches associated with T > 4 stemming from node 

o at T = 4 will add identical branch metrics to the path metrics of both paths a i and a2, 

and this means that the path metric of 02 is larger at T = 4 and will remain larger for 

T > 4. The Viterbi decoder will select the path having the smallest metric, which is the all 

zero state sequence, and therefore discards the path 0:2- The path a i is referred to as the 

survivor. This procedure is also applied at the other nodes for T > n — A; = 3. Notice that 

paths a ^ g ^ f ^ c and a —>• a ^ y —)• / etc cannot survive, since their path metrics are 

larger than that of their counterparts of the merging pairs and they are therefore eliminated 

from the decoder's memory. Thus, there are only 2""* = 8 paths that survive from instant 

T = n — k to T = k. Following instant T = k, the number of surviving paths reduces by a 

factor of two for each instant. 

Sometimes, two paths will merge, which have the same path metrics. At instant T = 5, 

the paths a — a n d a — > / - ^ e - 4 c — > ^ 6 remerge at node b. Both 

paths have the same path metric, which is 2. Normally, the Viterbi decoder will choose the 

survivor randomly and discard the other path. However, this situation never (or rarely) 

occurs in the Soft Decision Viterbi Algorithm or Soft Output Viterbi Algorithm (SOVA), 

which is the preferred algorithm in practical applications, since the quantised soft decision 

metrics are unlikely to become identical. 
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2 .3 .3 H a r d D e c i s i o n V i t e r b i D e c o d i n g 

For hard decision decoding, the demodulator provides only hard-decisions (logical 1 or 0) 

when regenerating the transmitted sequence. In this case, the Hamming distances between 

the received bits and the estimated transmitted bits in the trellis are used as a metric, i.e., 

as a confidence measure. 

2.3.3.1 Correct Hard Decision Decoding 

Inatant T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 

Q Q Q Q Q Q Q 

Received 
Bits 

State a«. 1 
000 

State b 
001 

State c 
010 

State d 
Oil 

Sb^ee 
100 

Sb^ef 
101 

State g 
110 

State h 
111 

Output Bit 
0 

1 

Figure 2.8: Hard decision Viterbi decoding of the BCH(7,4,3) code. 

Let us illustrate the philosophy of hard decision decoding using the BCH(7,4,3) code that 

was previously used as an example. Assume that the transmitted sequence is 0 0 0 0 0 0 0. A 

channel error is introduced to the first transmitted bit and the received sequence provided by 

the demodulator is 1 0 0 0 0 0 0. The decoder compares the demodulator's output bit with 

both of the possible decoded bits indicated by the continuous and broken lines in Figure 2.8, 

which correspond to a binary one and zero, respectively. When the demodulator's output 

bit and the decoded bit are identical, their Hamming distance is zero. By contrast, when 
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these two bits are different, a Hamming distance of one is added to the accumulated path 

metrics, which is written on the corresponding trellis transition. As we traverse through 

the trellis, the above mentioned branch metrics are summed and at T = 7 the path having 

the lowest Hamming weight is deemed the survivor path. Hence the decoded sequence is 

the associated string of ones and zeros. 

Again, Figure 2.8 demonstrates, how the Viterbi decoder selects the survivor path (marked 

by the thick broken line) at the top of the figure, which has the smallest path metric, and 

hence decodes the received sequence correctly. Note that the path metric of the survivor 

is equivalent to the number of errors in the received sequence, as long as the decoder is 

capable of correcting the errors. This is not true, when due to channel errors the decoder 

diverges from the error-free trellis path. 

2.3.3.2 Incorrect Hard Decision Decoding 

Instant T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 

Decoded 
Bits 

Received 
Bits 

State a, 
000 

State b 
001 

Stc^ec 
010 

State d 
Oil 

State e 
100 

101 

State g 
110 

State h 
111 

Output Bit 
0 - - - - -

Figure 2.9: Incorrect hard decision Viterbi decoding of the BCH(7,4,3) code. 

When the number of channel errors exceeds the correcting capability of the code, incorrect 
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decoding will occur, as illustrated in Figure 2.9. Two channel errors are introduced in the 

first and third position of the received sequence. The incorrect decoding occurs in the four 

initial branches (marked by thick line), which results in the decoded sequence of 1 0 1 1 0 0 0. 

The last two examples of correct and incorrect decoding, are related to decisions that 

depend on whether the Hamming distance of the received sequence with respect to the 

correct path is smaller than the distance of the received sequence to other paths in the 

trellis. Observe furthermore that, the surviving path's metric is now different from the 

number of errors encountered. 

2.3.4 Soft Decision Viterbi Decoding 

Instant T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 

0 0 0 0 0 0 0 

+&8 +&6 -&2 -&4 -L3 -&9 
+ 3 ' % ^ + 4 . ^ 

Decoded 
Bits 

Received 
Signals 

State a^-Q-§ +?-Q; 

Stc^eb 
001 

Sk^ec 
010 

State d 
Oil 

State e 
100 

State f 
101 

State g 
110 

State h 
111 

+2.4'' +1.G' 4-4.5-' 

Output Bit 
0 

Figure 2.10: Soft decision Viterbi decoding of the BCH(7,4,3) code. 

So far, we have discussed hard decision decoding. We now explore the techniques of soft 

decision decoding. In this approach, the received signal at the output of the demodulator 

is sampled. The sampled values are then directly input to the Viterbi decoder. 

Assuming that we are using Binary Phase Shift Keying (BPSK) at the transmitter, a 



logical 0 will be transmitted as —1.0 and a logical 1 is sent as +1.0. The transmitted sequence 

is —1 — 1 — 1 — 1 — 1 — 1 — 1, if we are transmitting a sequence of logical Os. At the receiver, 

the soft outputs of the demodulator are+0.8, —1.2, +0.6, —2.2, —0.4, —1.3, —0.9, 

which corresponds to the sequence of 1 0 1 0 0 0 0 , if we use hard decision decoding, as in 

our last example. 

The demodulator's soft outputs are used as a measure of confidence, which are shown in 

Figure 2.10. The first demodulator soft output signal is +0.8, implying that the transmitted 

signal is likely to have been +1 and the confidence measure of the decision is 0.8. Considering 

the path a g, corresponding to a logical 1, the branch metric of the path is +0.8. However, 

path o —> o does not tally with the received signal, and the branch metric of the path is 

therefore —0.8, accumulating a negative path metric, or a 'penalty' due to its dissimilarity. 

At second instant, the received signal is —1.2 which results in path metrics (accumulated 

confidence) of +0.4, —2.0, +2.0 and —0.4 for the paths a ^ a ^ a , a - ^ a - ^ g , a - ^ g - ^ d 

and a g ^ f , respectively. 

Let us denote a i and 02 the paths a ^ a - ^ a - ^ a ^ a and a - ^ g - ^ d - ^ b - ^ a . 

The total accumulated path metrics for paths a i and 0:2 are +2.0 and +0.4, respectively. 

The Viterbi decoder selects the path associated with the larger path metric because of its 

stronger accumulated confidence. Hence, path a i is selected (instead of path 02 which was 

selected in our previous hard decision example). Hence, it was shown that soft decision 

decoding performs better than hard decision decoding. 

2.3.5 Simulation Results 

The following simulation results were obtained using simple Binary Phase Shift Keying 

(BPSK) over an Additive White Gaussian Noise (AWGN) channel. 

2.3.5.1 The Berlekamp-Massey Algorithm 

In this section, we characterise the performance of different BCH codes using the Berle-

kamp-Massey algorithm. 

Figures 2.11, 2.12, 2.13 and 2.14 show the performance of the BCH codes having the same 

codeword length n. In figure 2.14, we can see that the BCH(127,120,3) code, which has a 

coding rate of about 0.95, exhibits the worst performance at a Bit Error Rate (BER) of 10^®. 

The BCH(127,113,5) code, which has a coding rate of 0.89, gives a slightly better result than 

the BCH(127,120,3) scheme, with an improvement of 0.75 dB at BER=10~®. As the coding 

rate decreases, the performance of the family codes from the BCH(127, k, t) becomes better. 
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B E R a g a i n s t Ey/Ng 

• Uncoded 
A BCH(7,4,3),R=0.57 
* BCH(15,11,3),R=0.73 
V BCH(15,7,5),R=0.47 
0 BCH(15,5,7),R=0.33 

w z z s : 

Eb/No(dB) 

Figure 2.11; BER performance of the BCH codes with n = 7 and n=15 over AWGN channels. 

However, this is not true when the coding rate decreases to about 0.5 or below since the 

amount of code redundancy becomes excessive, inevitably reducing the amount of energy 

per transmitted bit. For example, the BCH(127,71,19) code (code rate=0.56) performs 

better, than the BCH(127,64,21) code (code rate=0.50). This applies to other families of 

the BCH code as well. These trends become more explicit in the context of Figure 2.19 and 

2.20 which will be explained later. 

Figure 2.15 shows our performance comparison for different-rate BCH codes selected 

from each family. By contrast. Figure 2.16 provides the comparison of a set of near-half-

rate codes. From these figures we surmise that the BCH coded performance improves, when 

n increases. 

2.3.5.2 Hard Decision Viterbi Decoding 

Figure 2.17 shows the performance of the BCH(31,21,5) and BCH(15,7,5) codes using two 

different decoding algorithms, namely the Hard-Decision Viterbi Algorithm [HD-VA] and 

that of the Hard-Decision Berlekamp-Massey algorithm [HD-BM]. The performance of the 

algorithms appears to be fairly similar. 



C%fAP:rER2. 25 

B E R against Ey/N[ 

Uncoded 
BCH(31,26,3), R=0.84 
BCH(31,21,5), R=0.68 
BCH(31,16,7), R=0.52 
BCH(31,11,11),R=0.35 
BCH(31,6,15), R=0.19 

Eb/No(dB) 

Figure 2.12; BER performance of the BCH codes with n=31 over AWGN channels. 

2.3.5.3 Soft Decision Viterbi Decoding 

Figure 2.18 shows our performance comparison between the Soft-Decision Viterbi Algorithm 

[SD-VA] and Hard-Decision Berlekamp-Massey algorithm [HD-BM]. As it is seen in the 

figure, there is an improvement of about 2 dB at a BER of 10"^. 

2.3.6 Conclusion On Block Coding 

The performance of a range of BCH codes using the Berlekamp-Massey decoding algorithm 

has been investigated through simulations. The coding gain of the various BCH codes at 

BER= and BER= 10"® over AWGN channels was tabulated in Tables 2.2, 2.3 and 

2.4. 

Figure 2.19 and 2.20 shows the coding gain against the code rate for different BCH codes 

at BER= 10"^ and BER= 10~®, respectively, suggesting the following conclusions. As k 

and the code rate R = ^ increases, there is a maximum coding gain for each family (n is 

constant) of the BCH codes studied. Furthermore, the maximum coding gain is typically 

found, when the code rate is between 0.5 and 0.6. For example, in Figure 2.20, the maximum 
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B E R against Ey/Ng 

Uncoded 
BCH(63,57,3), R=0.90 
BCH(63,51,5), R=0.81 
BCH(63,45,7), R=0.71 
BCH(63,39,9), R=0.62 
BCH(63,36,11),R=0.57 
BCH(63,30,13), R=0.48 

5 6 7 
Eb/No(dB) 

Figure 2.13: BER performance of the BCH codes with n=63 over AWGN channels. 

coding gain of the BCH codes having a codeword length of n = 127 is 4.1 dB when the code 

rate is 0.56. For BCH codes with n = 63, the maximum coding gain is 3.5 dB when the 

code rate is 0.57. 

Observe the sudden coding gain improvement at BER=10^^ in Figure 2.19 at coding 

rate of i? = 0.23, as seen in Table 2.4 for the BCH(127,29,43) code. This is a consequence 

of the relatively modest coding rate reduction from 0.28 to 0.23 in comparison to the 

BCH(127,36,31) code. Explicitly, while the BCH(127,29,43) code is capable of correcting 

21 errors, the BCH(127,36,31) code can only correct 15 errors. The same phenomenon is 

observed in Figure 2.20 at BER=10^® in the context of these two codes. 

2.4 Soft I npu t Algebraic Decoding 

2.4 .1 I n t r o d u c t i o n 

In this section we investigate the benefits of using soft inputs in the context of the classic 

algebraic decoding. The decoding techniques, our simulation results and related conclusions 
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BER against Ey/Ng 

Uncoded 
A BCH(127,120,3), R=0.94 
0 BCH(127,113,5),R=0.89 
O BCH(127,106,7),R=0.83 

BCH(127,92,11), R=0.72 
V BCH(127,78,15), R=0.61 

BCH(127,71,19),R=0.56 
X BCH(127,64,21), R=0.50 

5 6 7 
Eb/No(dB) 

Figure 2.14: BER performance of the BCH codes with n=127 over AWGN channels. 

Code Code 
Rate R 

(dB) Gain (dB) 
Code Code 

Rate R 
BBR Code Code 

Rate R 10-3 10-G 10-3 10-G 
Uncoded 1.00 6.78 10.53 0.00 0.00 
BCH(7,4,3) 0.57 6.65 10.05 0.13 0.48 
BCH(15,11,3) 0.73 &12 9.27 0.66 1.26 
BCH(15,7,5) 0.47 6.37 9.42 0.41 1.11 
BCH(15,5,7) 0.33 6.52 9.50 0.26 1.03 
BCH(31,26,3) 0.84 5.98 8.90 0.80 L63 
BCH(31,21,5) OjW 5.61 8.23 1.17 2.30 
BCH(31,16,7) 0.52 5.77 8.37 1.01 2.16 
BCH(31,11,5) 0.35 5.75 8.29 1.03 2.24 
BCH(31,6,7) OJ^ 6.89 9.62 -&11 0.91 

Table 2.2: Coding gain of BCH codes with n 
Massey Algorithm over AWGN channels. 

7, n = 15 and n = 31 using the Berlekamp-
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BER against Ey/Ng 

• Uncoded 
A BCH(15,11,3),R=0.73 
0 BCH(31,21,5),R=0. 
O BCH(63,36,11),R=0.57 
* BCH(127,71,19), R=0.56 

5 6 7 
Eb/No(dB) 

Figure 2.15; BER performance comparison of selected BCH codes over AWGN channels. 

Code Code 
Rate R 

Eb/ATo (dB) Gain (dB) 
Code Code 

Rate R 
BER Code Code 

Rate R 10-3 10-G 10-3 lO-o 

Uncoded 1.00 6.78 10.53 0.00 0.00 
BCH(63,57,3) 0.90 6.03 8.75 0.75 1.78 
BCH(63,51,5) 0.81 5.50 7.97 1.28 2.56 
BCH(63,45,7) 0.71 5.29 7.60 1.49 2.93 
BCH(63,39,9) 0.62 5.24 7.34 1.54 3.19 
BCH(63,36,11) 0.57 5.02 7.05 1.76 3.48 
BCH(63,30,13) 0.48 5.28 7.33 1.50 3.20 
BCH(63,24,15) 0.38 5.78 7.77 1.00 2.76 
BCH(63,18,21) 0.29 5.70 7.80 1.08 2.73 
BCH(63,16,23) 0.25 5.80 7.83 0.98 2.70 
BCH(63,10,27) 0.16 7.03 9.09 -0.25 1.44 
BCH(63,7,31) 0.11 7.76 10.03 -0.98 0.50 

Table 2.3: Coding gain of the BCH codes with n = 63 using the Berlekamp-Massey algo-
rithm over AWGN channels. 
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BER against Eb/No 

1 0 ' 

1 0 ' ' 

• Uncoded 
A BCH(15,7,5),R=0.47 
0 BCH(31,16,7),R=0.52 
O BCH(63,30,13),R=0.48 
* BCH(127,64,21),R=0.50 

E j N o ( d B ) ^ 

Figure 2.16: BER performance comparison of near-half-rate BCH codes over AWGN chan-
nels. 

will be outlined in this section. Since the discovery of BCH codes in 1960, numerous 

algorithms [17,29,31,32,34,114] have been suggested for their decoding. The Berlekamp-

Massey algorithm [31-34] is widely recognised as an attractive decoding technique. 

However, the Berlekamp-Massey algorithm assumes that the output of the demodulator 

is binary. This implies that the algorithm is incapable of directly exploiting the soft outputs 

provided by the demodulator at the receiver. In Section 2.3.5.3, we have shown that for the 

trellis decoding of BCH codes, there is an improvement of 2 dB, if we use the soft decision 

Viterbi algorithm rather than the hard decision Viterbi algorithm. 

In 1972, Chase [28] invented a class of decoding algorithms that utilise the soft outputs 

provided by the demodulator. At the receiver the demodulator provides the received signal 

value Uk, given that the corresponding data bit was either 1 or 0, indicating two different 

features: 

• Its polarity shows, whether % is likely to be 1 (positive or 0 (negative yk). 

» Its magnitude \yk\ indicates the confidence measure provided by the demodulator. 
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BER against Ey/Ng 

Uncoded 
A BCH(31,21,5),HD-VA 
0 BCH(31,21,5),HD-BM 
O BCH(15,7,5),HD-VA 
* BCH(15,7,5),HD-BM 

Eb/No(dB) 

Figure 2.17: BER comparison between hard decision Viterbi decoding and Berlekamp-
Massey decoding for various BCH codes and decoding algorithms over AWGN channels. 

As mentioned earlier, the hard-decision based Berlekamp-Massey algorithm only utilises 

the binary bit provided by the demodulator. The error correcting capability t of the 

BCH(n, k, dmin) code is related to the minimum Hamming distance dmin between the code-

words. In general, the error correcting capability, t, of the BCH code is defined as the 

maximum number of guaranteed correctable errors per codeword, given by [96]: 

dn 1 
J (2.3) 

where [ij means the largest integer not exceeding i. 

Figure 2.21 shows a stylised example of conventional algebraic decoding. There are four 

valid codewords ci,..., C4 shown in Figure 2.21 and the minimum separation between them 

is dmin- Each codeword is surrounded by a decoding sphere of radius t. Let us assume 

that we have transmitted two identical BCH codewords, say Cg, over the noisy channel. 

The associated received vector of n binary bits Zi and Zg, is provided by the demodulator. 

As we can see, Zi is not within the decoding sphere of any valid codeword. Hence, the 

conventional algebraic decoder is incapable of correcting the errors in On the other 

hand, the binary n-tuple Zg falls within the decoding sphere of codeword C4 and hence it 
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Figure 2.18: BER comparison between soft decision Viterbi decoding and Berlekamp-
Massey decoding over AWGN channels. 

is decoded to the valid codeword C4. However, if we additionally consider the soft-decision 

based confidence measures \y^\ provided by the demodulator, the decoder might be able to 

correct more than t errors in the n-tuple Moreover, the received n-tuple Z2 might be 

more likely to be due to codeword Cg rather than C4. These problems are circumvented by 

the Chase algorithm of the forthcoming section. 

2.4.2 Chase Algorithms 

Figure 2.22 shows the geometric sketch of the decoding process aided by channel measure-

ment information, which is elaborated on below. Accordingly, the received binary n-tuple 

Zi is perturbed with the aid of a set of test patterns T P , which is a binary sequence that 

contains Is in the location of the bit positions that are to be tentatively inverted. By adding 

this test pattern, modulo two, to the received binary sequence, a new binary sequence is 

obtained: 

(2.4) 
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Gain against rate at BER=10 

A BCH codes with n=15 
<0 BCH codes with n=31 
O BCH codes with n=63 
^ BCH codes with n= 127 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Code rate 

em-Figure 2.19: Coding gain against code rate for different BCH codes at BER= 10" 
ploying Berlekamp-Massey algorithm over AWGN channels using the codes summarised in 
Table 2.1. 
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Gain against rate at BER=10 
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Figure 2.20: Coding gain against code rate for different BCH codes at BER= 10"^ em-

ploying Berlekamp-Massey algorithm over AWGN channels using the codes summarised in 

Table 2.1. 
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Code Code 
Rate R 

Eb/No (dB) Gain (dB) 
Code Code 

Rate R 
BER Code Code 

Rate R 10-^ 10-*̂  10-^ 10-^ 

Uncoded 1.00 6.78 10.53 0.00 0.00 

BCH(127,120,3) 0.94 6.20 8.63 0.58 1.90 

BCH(127,113,5) 0.89 5.64 7.90 1.14 2.63 

BCH(127,106,7) 0.83 5.31 7.40 1.47 3.13 

BCH(127,99,9) 0.78 5.10 6.94 1.68 3.59 

BCH(127,92.11) 0.72 4.99 6.77 1.79 3.76 

BCH(127,85,13) 0.67 4.93 6.77 1.85 3.76 

BCH(127,78,15) 0.61 4.99 6.74 1.79 3.79 

BCH(127,71,19) 0.56 4.75 6.40 2.03 4.13 

BCH(127,64,21) 0.50 4.92 6.53 1.86 4.00 

BCH(127,57,23) 0.45 5.13 6.75 1.65 3.78 

BCH(127,50,27) 0.39 5.17 6.83 1.61 3.70 

BCH(127,43,29) 0.34 5.57 7.07 1.21 3.46 

BCH(127,36,31) 0.28 6.10 7.58 0.68 2.95 

BCH(127,29,43) 0.23 5.66 7.31 1.12 3.22 

BCH(127,22,47) 0.17 6.40 8.08 0.38 2.45 

BCH(127,15,55) 0.12 7.20 8.88 -0.42 3.25 

BCH(127,8,63) 0.06 9.05 10.86 -2.27 -0.33 

Table 2.4: Coding gain of the BCH codes with n = 127 using the Berlekamp-Massey 
algorithm over AWGN channels. 

Figure 2.21; Stylised example of conventional algebraic decoding. 

Figure 2.22: Stylised illustration of the Chase algorithm. 



As shown in Figure 2.22, r represents the maximum Hamming distance of the perturbed 

binary received sequence from the original binary received sequence By using a 

number of test patterns, the perturbed received binary sequence may fall within the 

decoding sphere of a number of valid BCH codewords. If we increase r, the perturbed 

received sequence will fall within the decoding sphere of more valid BCH codewords. 

If the perturbed received binary sequence falls within the decoding sphere of a valid 

BCH codeword ci, by invoking algebraic decoding a new error pattern e' is obtained, which 

may be an all-zero or a non-zero tuple. The actual error pattern e associated with the 

binary received sequence z^ is given by 

e = e' (B T f , (2.5) 

which may or may not be different from the original test pattern T P , depending on whether 

the perturbed received binary sequence z^ falls into the decoding sphere of a valid codeword. 

However, only those perturbed received binary sequences z^ that fall into the decoding 

sphere of a valid codeword are considered. 

A maximum-likelihood decoder is capable of finding the codeword that satisfies 

minweight(z @ c^) , (2.6) 

where the range of m is over all possible codewords. Based on similar principles. Chase [28] 

defined a new channel decoder. However, for the sake of low complexity only a certain 

limited set of valid codewords are considered by Chase's technique, namely those surrounded 

by the decoding spheres that the perturbed received binary sequence z^ may fall into. In 

this case, we are concerned with finding the error pattern e of minimum analogue weight, 

where the analogue weight of an error sequence e is defined as 

a 
= (2.7) 

i—l 

The Chase algorithm can be summarised in the Sow-chart shown in Figure 2.23. Each 

time, the algorithm considers an n-tuple codeword of the BCH code, which is constituted 

by n number of the received bits z and their soft metrics y_. The received bits z and their 

confidence values y are assembled, which is the first step shown in Figure 2.23. Then, a 

set of test patterns TP is generated. For each test pattern, a new sequence z' is obtained 

by modulo two addition of the particular test pattern TP and the received sequence z. 

The conventional algebraic decoder is invoked to decode the new sequence z', as seen in 

Figure 2.21. If the conventional algebraic decoder found a non-zero error pattern e', we 

are able to find the actual error pattern e, using Equation 2.5, associated with the received 
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Received binary sequence: z 
ConHdence values: 2/ 

Generate new 
test pattern TP 

NO 

NO 
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error pattern 
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Can e' be found by 
algebraic decoding? 

YES 

Calculate the 
weight of e 

Is this the 
lowest weight^ 

Store TP 

YES Decoded 
= z @ e 

NO NO Decoded 
= z 

Figure 2.23: Flow Chart of Chase algorithm. 
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binary sequence z. Using Equation 2.7, the analogue weight W of the actual error pattern 

e can be calculated. The generated test pattern T P will be stored in the memory, if the 

associated analogue weight W is found to be the lowest. The above procedure will be 

repeated for every test pattern generated. Upon completing the loop in Figure 2.23, the 

memory is checked. If there is an error pattern stored, the binary decoded sequence will be 

zQe. Otherwise, the binary decoded sequence is the same as the received sequence z. 

The number of test patterns used can be varied according to the tolerable complexity, 

which also has an effect on the achievable performance. In the following sections, we present 

two variants of this algorithm, namely the Chase Algorithm 1 and Chase Algorithm 2. The 

nature of both algorithms depends essentially on the number of test patterns used. 

2.4.2.1 Chase Algorithm 1 

For this particular algorithm, typically a large set of test patterns TP is considered. In 

fact, the algorithm considers the entire set of possible test patterns within a sphere of 

radius r = dmin — 1 surrounding the received binary sequence z. Thus, all possible test 

patterns of binary weight less than or equal to dmin — 1 are considered. 

Let us illustrate the operation of the algorithm with the aid of an example, where the 

BCH(7,4,3) code is used, which has dmin = 3. Hence, all the test patterns having a binary 

weight less than or equal to dmin — 1 = 2 are generated, which is the second step in 

Figure 2.23. A fraction of the test patterns TP, which have a binary weight less than or 

equal to 1 are shown below: 

T f o = 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 1 

T f b = 0 0 0 0 0 1 0 

= 0 0 0 0 1 0 0 

= 0 0 0 1 0 0 0 

= 0 0 1 0 0 0 0 

= 0 1 0 0 0 0 0 

= 1 0 0 0 0 0 0 . (&8) 

Using the test patterns TP, which have binary weights equal to 1, we are also able to 

generate the test patterns that have binary weights larger than 1. 

Let us assume that BPSK is used and the transmitted sequence is—1 —1 —1 —1 —1 —1 —1. 

The soft demodulator outputs y, the hard decision decoded binary sequence z and the 
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confidence measures \y\ are shown in Table 2.5. 

i 0 1 2 3 4 5 6 

Vi -&9 -1.3 -&4 -2.2 4-0.6 -1.2 4-0.8 

Zi 0 0 0 0 1 0 1 
0.9 1.3 0.4 2.2 0.6 1.2 0.8 

Table 2.5: Example of soft demodulator outputs, hard-decision decoded sequence and con-
fidence measures. 

Using for example the second test pattern TPi in Equation 2.8, the perturbed received 

sequence z is 

2̂  == 

= 0 0 0 0 1 0 1 GBOOOOO 0 1 

= 0 0 0 0 1 0 0 . 

(2.9) 

Due to this perturbation, we now have a sequence within a Hamming distance of one 

from a legitimate codeword, namely the 0 0 0 0 0 0 0 sequence, and hence the perturbed 

received binary sequence z' is decoded by the algebraic decoder and the decoded sequence 

is 0 0 0 0 0 0 0. Therefore, the associated error sequence e' is 

= 0 0 0 0 1 0 0 

and the actual error sequence e is 

e = e ® TPi 

= 0 0 0 0 1 0 0 (50 0 0 0 0 0 1 

= 0 0 0 0 1 0 1 . 

(2.10) 

(2.11) 

As we will show below, this is the most likely error sequence e, allowing us to correct two, 

rather than just one error, which was a limitation of the hard-decision Berlekamp-Massey 

algorithm. 

In order to quantify the probability of the possible error sequences, their analogue weight 

is determined next. The analogue weight of the actual error sequence e is 

tt^rpi(e) := (2-12) 
i=l 

=• 0.9 X 0 + 1.3 X 0 + 0.4 X 0 + 2.2 x 0 -I- 0.6 x 1 + 1.2 x 0 + 0.8 x 1 

— 1.4 . 
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i 0 1 2 3 4 5 6 7 

TPs 
(e) 2.2 1.4 1.6 1.4 2.2 1.6 2.2 2.2 

Table 2.6: Analogue weights associated with the test patterns in Equation 2.8, for the 
BCH(7,4,3) Chase decoding example. 

This process is repeated for other test patterns of binary weight less than or equal to 

dmin — 1 as shown in Equation 2.8. The analogue weights associated with each test pattern 

in Equation 2.8 are shown in Table 2.6. The lowest possible analogue weight is 1.4, taking 

into consideration all test patterns of binary weight less than or equal to dmin — 1. As 

we can see from Table 2.6, test patterns TPi and TP3 have produced the lowest analogue 

weight, which is 1.4. It can be readily shown that the associated actual error pattern e of 

both test patterns TPi and TP3 is the same. Therefore, the Chase-decoded sequence z is 

2 = g i G z 

== 1 0 1 0 0 0 0 8 1 0 1 0 0 0 0 

= 0 0 0 0 0 0 0 . (2J3) 

Computer simulations have shown that the performance of this algorithm is similar to that 

of the soft decision Viterbi algorithm. 

The BCH(7,4,3) code has a minimum free distance dmin of 3 and the number of possible 

test patterns is 29. If we employ the algorithm to decode the BCH(31,21,5) code, the 

minimum free distance dmin is now 5. Hence, we need to consider all the test patterns 

having a binary weight less than or equal to 4. In this case, the number of test patterns 

is over 36000. Generally, the number of test patterns increases exponentially with n and 

dm.in, • 

2.4.2.2 Chase Algorithm 2 

For this variant of the Chase algorithm, a considerably smaller set of possible error patterns 

is used. Only the positions of the lowest confidence measures are considered. The 

test patterns TP have any combination of Is, which are located in the positions of 

the lowest confidence values. Hence, there are only 2̂  "2'" J possible test patterns, including 

the all-zero pattern. 

For the BCH(7,4,3) code, the number of legitimate test positions is equal to one and the 
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number of test patterns is two. Computer simulations have shown that the BER perfor-

mance curve of this simplified algorithm is about a quarter of a dB worse, than that of 

the soft decision Viterbi algorithm. If the number of test positions were equal to three, i.e. 

there were eight test patterns, then the performance would be the same as that of the soft 

decision Viterbi algorithm. 

Using the same example as in Section 2.4.2.1, we have to search for the three test positions 

associated the lowest confidence measures. The eight test patterns are 

T f b = 0 0 0 0 0 0 0 

= 0 0 0 0 0 0 1 

T f b = 0 0 0 0 1 0 0 

= 0 0 0 0 1 0 1 

= 0 0 1 0 0 0 0 

= 0 0 1 0 0 0 1 

= 0 0 1 0 1 0 0 

GTPr == 0 0 1 0 1 0 1 , (&14) 

while their associated analogue weights are summarised in Table 2.7. Notice that in the 

Chase Algorithm 2 the associated error sequence e' of test pattern TP3 is not considered. 

i 0 1 2 3 4 5 6 7 
TPi T f o T f z TPs T f k TPr 

(e) 2.2 1.4 1.4 - 1.6 2.5 1.9 1.4 

Table 2.7: Analogue weights, associated with the test patterns in Equation 2.14, for the 
BCH(7,4,3) example. 

Computer simulations have shown that a better performance is achieved, when the num-

ber of test positions increases, approaching that of the soft decision Viterbi algorithm, as 

the number of test positions approaches dmin-

In closing, we note that unlike in the Chase Algorithm 1, the number of test patterns does 

not increase, when n increases. However, the associated algorithmic complexity increases 

exponentially, if the number of test positions increases. 

2 .4 .3 S i m u l a t i o n R e s u l t s 

Simulation results were obtained using simple BPSK over an AWGN channel. Figure 2.24 
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Figure 2.24: Performance comparison between algebraic decoding, the Chase Algorithm 1 
and the soft decision Viterbi algorithm using the BCH(31,21,5) code over AWGN channels. 

shows our performance comparison between the algorithms considered namely algebraic de-

coding, the Chase Algorithm 1 and the soft decision Viterbi algorithm using the BCH(31,21,5) 

code. It is shown in Figure 2.24 that the performance of the Chase Algorithm 1 and that 

of the soft decision Viterbi algorithm is identical. 

Figure 2.25 portrays our performance comparison between algebraic decoding, the Chase 

Algorithm 2 and the soft decision Viterbi algorithm using the more powerful BCH(31,21,5) 

code. For the Chase Algorithm 2, the performance of using = 2 test positions is 1.25 

dB better, than that of the algebraic decoding. As the number of test positions increases, 

the performance of the Chase Algorithm 2 improves. However, the relative improvement 

becomes smaller, as the number of test positions increases. It is shown in Figure 2.25 that 

the performance lower bound, i.e. the best possible performance of the Chase Algorithm 

2, is the same as that of the soft decision Viterbi algorithm. The lower bound is achieved, 

when the maximum number of test positions is equal to the minimum free distance dmin of 

the BCH code. 

Often it is impractical to implement the Chase Algorithm 1, because the number of test 
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Figure 2.25: Performance comparison between algebraic decoding, the Chase Algorithm 
2 (different number of test positions) and the soft decision Viterbi algorithm using the 
BCH(31,21,5) code over AWGN channels. 

patterns increases exponentially, when n and dmin increase. However, a similar performance 

can be achieved using the Chase Algorithm 2 and the maximum number of test positions 

is equal to the minimum free distance dmin of the code. The Chase Algorithm 2 is less 

complex to implement than trellis decoding, if dmin is small. However, the number of test 

patterns increases exponentially, when dmin increases. 

2.5 Summary and Conclusion 

This chapter served as a brief introduction to the trellis and Chase decoding of BCH codes, 

before we consider the more complex and novel turbo BCH codes in the next chapter. We 

commenced with the introduction of BCH codes and the associated definitions in Section 2.2. 

The detailed encoding process of systematic BCH codes was described in Section 2.2.1. We 

also showed in Section 2.2.2 that the BCH encoder could be implemented using its state 

diagram. The conventional Viterbi decoding algorithm was employed in Section 2.3.2 for 

decoding BCH codes. Several examples of hard decision and soft decision Viterbi decoding 



were given in the section as well. In Section 2.3.5, we presented simulation results for both 

the Viterbi and Berlekamp-Massey decoding algorithms. It was found that the performance 

of employing the soft decision Viterbi decoding algorithm is about 2 dB better, than that of 

hard decision decoding. The coding gains of various BCH codes having the same codeword 

length were evaluated and tabulated in Tables 2.2, 2.3 and 2.4. Then, the coding gain 

versus code rate was plotted in Figure 2.19 and 2.20 for different BCH codes having the 

same codeword length n. Prom both figures, we inferred that the maximum coding gain 

was achieved, when the code rate was between 0.5 and 0.6. 

Viterbi decoding of the BCH codes becomes prohibitively complex if n — A: increases, 

since the number of decoding states increases exponentially. The Chase algorithm, which 

offers a lower complexity associated with a slight performance degradation was detailed in 

Section 2.4.2. Two variants of the Chase algorithm were described and the Chase Algorithm 

2 was found more favourable due to its lower complexity. A detailed example of the Chase 

decoding process was given in Section 2.4.2. Our simulation results were presented in 

Section 2.4.3. It was found that there is a lower and upper performance bound for the 

Chase algorithms. The upper bound performance is the same as that of the conventional 

algebraic decoding, whereas, the lower bound performance is the same as that of the soft 

decision Viterbi algorithm. For the Chase Algorithm 2, the lower performance bound can 

be achieved, if the maximum number of test positions is equal to the minimum free distance 

dmin of the code. However, the complexity of the Chase Algorithm 2 increases exponentially 

with the minimum free distance dmin-



Chapter 3 

Turbo B C H Coding 

3.1 In t roduc t ion 

Turbo coding [12] is a novel form of channel coding capable of achieving a performance 

near the Shannon limit [1], Generally, so-called Recursive Systematic Convolutional (RSC) 

codes are used as their component codes. However, block codes can also be employed 

as their component codes and they have been shown for example by Hagenauer [61, 63] 

to perform impressively even at near-unity coding rates. Block codes are typically more 

appropriate for near-unity coding rates, since lower-rate block-based turbo codes exhibit a 

high decoding complexity. Hence usually convolutional constituent code based turbo codes 

are used for coding rates lower than 2/3 [61]. In this chapter, we will concentrate entirely 

on the standard turbo code structure using binary BCH codes as the component codes. 

Block-coding based turbo codes can be decoded either using algebraic decoding principles 

[115-117] or employing trellis-based decoding [61, 63]. However, only trellis-based turbo 

decoding will be discussed in this chapter. 

Following a rudimentary introduction to the turbo encoder and decoder structures as well 

as to the employment of the log likelihood ratio and soft channel outputs, we embark on 

the detailed derivation of the Maximum A-Posteriori (MAP) algorithm [11] in Section 3.3.3. 

In order to reduce its complexity, the MAP algorithm is then modified, in order to derive 

the Max-Log-MAP and Log-MAP algorithms [50-52]. Beside this, the Soft Output Viterbi 

Algorithm (SOVA) algorithm is discussed in detail in Section 3.3.5. A simple example 

of turbo decoding is then given in Section 3.4. In Section 3.5, we propose a novel MAP 

algorithm for the family of extended BCH codes. The extended MAP algorithm is then 

also simplified for deriving the extended Max-Log-MAP and Log-MAP algorithms. Finally, 

various simulations are presented in Section 3.6. 

44 
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3.2 T u r b o Encoder 

Input Bits 

Output Bits 

Interleaver 
BCH 

Encoder 2 

BCH 
Encoder 1 

Puncturing 
And 

Multiplexing 

Figure 3.1: Turbo encoder schematic. 

The basic structure of the turbo BCH encoder is shown in Figure 3.1. Two BCH encoders, 

which we have been introduced in Section 2.2.1, are used and an interleaver is placed before 

the second BCH encoder in Figure 3.1. A number of interleaving techniques, such as block 

interleaving and random interleaving [68,112] could potentially be employed for ensuring 

that the two BCH encoders are fed with near-uncorrelated bits. The significance of this will 

become clear during our further discourse. 

Due to its structure, the turbo encoder shown in Figure 3.1 is also often referred to as 

a parallel concatenated code [12,61,117]. Parallel concatenated codes constitute specific 

product codes [19,62,85]. In general, product codes consist of two linear block codes Ci 

and Cg where Ci and Cg have parameters and (M2,A:2,dm:n2), respectively. 

Typically, Ci = Cg. As shown in Figure 3.2, product codes are obtained by placing the 

ki X &2 information data bits in an array of ki columns and rows. The ki columns and 

k2 rows of the information data bits are encoded using Ci and C2, respectively. It is shown 

in [118] that the (ni — ki) last columns of Figure 3.2 are codewords of C2, exactly as the 

(712 — ̂ 2) last rows are codewords of Ci by construction. Furthermore, the parameters of the 

resulting product codes are given by n = x Mg, A — x A;2 and x while 

the code rate is given by ^ x The structure of parallel concatenated codes is the same 

as that of product codes, except that the redundancy part arising from checking the parity 

of the parity part of both codes Ci and Cg is omitted. The major disadvantage of parallel 

concatenated codes is the loss in minimum free distance, which is only dmini + <̂ min2 — 1, 

compared to dmini x (4nin2 ill product codes. 

The output bits from the two BCH encoders of Figure 3.1 are then punctured and multi-

plexed. Table 2.1 shows a wide range of the BCH codes exhibiting a variety of coding rates. 

By appropriately designing the puncturer and the multiplexer, we are capable of achieving 

an overall coding rate, which is identical to that of the original BCH codes. However, it is 

not a common practice to apply puncturing of the parity bits in turbo block codes [61,117], 
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ki m - ki ki ni - ki 

n2 - &2 

a) Product Code b) Parallel Concatenated Code 

Figure 3.2: Construction of product codes and parallel concatenated codes. 

since their puncturing significantly degrades the achievable performance. Having considered 

the encoder structure, let us now concentrate on the decoder schematic in the next section. 

3.3 Turbo Decoder 

L{uk) :Intrinsic Information 

Le{uk) :Extrinsic Information 

L{uk\y) ;A Posteriori Information 

Sampler 

BCH 
Decoder 1 

BCH 
Decoder 2 

D e -
Interleaver 

Interleaver 

D e -
Interleaver 

D e -
Multiplexer 

Figure 3.3: Turbo decoder schematic. 

Figure 3.3 shows the general structure of a turbo BCH decoder. We summarise below 

the definition of the various quantities used in the figure. 

Soft Channel Output, Ley. The soft channel output is simply the matched filter based 

demodulator's output, y^, multiplied by the so-called channel reliability value, Lc- Both of 
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these quantities are described in more depth in Section 3.3.2. 

Intrinsic Information, L{uk): The intrinsic information concerning a data bit % is the 

information known before decoding starts. It can be achieved from any source other than 

the received channel output sequence or the code constraints and it is also known as a-priori 

information . 

Extrinsic Information, Le{uh): The extrinsic information related to a data bit % is the 

information carried by the bits surrounding u^, which was imposed by the code constraints. 

In other words, as indicated by the terminology 'extrinsic', no information directly concern-

ing the data bit itself is part of the extrinsic information. 

A-Posteriori Information, L{uk\y)- The a-posteriori information of a data bit Uk is given 

by the decoder after taking into account all the available sources of information about 

i.e. both the intrinsic and extrinsic sources. 

Again in this chapter, the turbo decoder of Figure 3.3 is constituted by two BCH decoders. 

Since we opted for employing the trellis decoding method, two algorithms, namely the 

Maximum A-Posteriori (MAP) [11] and the Soft Output Viterbi Algorithm (SOVA) [53,54] 

can be used. 

The decoder uses the soft channel output Ley and the intrinsic information L{uk) to 

provide the a-posteriori information L{uk\y) at its output, as shown in Figure 3.3. The 

extrinsic information, Le{uk) is given by subtracting the soft channel output Ley and the 

intrinsic information !,(%) from the a-posteriori information L{uk\y), which will be justified 

during our further discourse in Section 3.3.3. After being interleaved or de-interleaved, as 

seen in the figure, the extrinsic information Le{uk) becomes the intrinsic information 

of the second decoder. Similarly, the extrinsic information gained by the second decoder is 

passed back to the first decoder as its intrinsic information. Basically, both decoders assist 

each other by exchanging their information related to the data bits and this results in the 

iterative decoding process, which constitutes the subject of this chapter. We note, however 

that there is no intrinsic information for the first decoder in the first iteration, since the 

extrinsic information of the other decoder is unavailable at this stage. 

3.3 .1 Log L ike l ihood R a t i o 

The Log Likelihood Ratio (LLR) is a quantity, which was introduced in the context of turbo 

coding by Robertson [52], in order to simplify the exchange of extrinsic information between 

the decoders. Let Uk be the data bit at time instant k and the probability of Uk being -1-1 
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be P{uk = +1) while that oiuk = —1 be P{uk = —1). We can define the LLR oiu^ as [52]; 

P{uk = +1) 
L{uk) In 

In 

In 

f (u* = - 1 ) 

P{Uk = +1) 

1 - f (lit = +1) 
1 - P{Uk = - 1 ) 

f K = - 1 ) 

(3.1) 

Notice that the two possible values for the data bit % are taken to be +1 and -1, rather 

than 1 and 0. This definition of the two values of the binary variable makes no conceptual 

difference, but simplifies the mathematics in the derivations which follow. 

Pi 0 

^ - 2 

- 1 0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.! 

Prob(Uk=+l) 
0.9 1.0 

Figure 3.4: Log Likelihood Ratio L{uk) versus the probability = +1. 

Figure 3.4 shows how L{uk) varies as the probability of = +1 varies. From the figure, 

we can see that the LLR indicates two different things: 

• Its polarity shows, whether Uk is more likely to be +1 (positive LLR) or -1 (negative 

LLR). 

Its magnitude {\L{uk)\) indicates, how likely is the symbol to be +1 or -1. 
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From Equation 3.1, we derive 

+1) = 1 --jP(%& = --1) 

1 - })(%* = 4-1) .P(%A = --1) ' 

and accordingly, 

.=LL(%&) f K = ±1) 
1 — P{uk = ±1) 

(3.3) 

After solving Equation 3.3 for P ( % = ±1), we arrive at 

g±Z,(u&) 
P{uk = ±1) = 

e 2 
.er 2 1 1 + 

= (3.4) 

where C is a constant, which is independent of the polarity of Uk. 

3 . 3 . 2 S o f t C h a n n e l O u t p u t 

Apart from the LLR L{uk), which is based on the unconditional probabilities _P(% = ±1), 

we are also interested in the LLRs based on conditional probabilities. We will use the 

conditional LLRs based on the probability that the matched filter output would be 

given that the corresponding transmitted bit Xk was either 4-1 or -1. This conditional LLR 

isdieEnedaa 

HVM := • '3.5) 

We assume that the transmitted channel coded bit Xk has been sent over an AWGN 

channel using BPSK modulation. Then, the probability density function of the received 

symbol yk i.e. that of the soft output of the demodulator, conditioned on the transmitted 

channel coded bit x^ can be expressed by simply stating that the received signal amplitudes 

are Gaussian distributed around the transmitted bit values according to the noise variance 

which is formulated as: 

JP(?%kc&: == ̂ :1) == (3.6) 
CTV27r 

where, 

cr̂  is the noise variance 

Eb is the energy per bit 

a is the fading amplitude (=1 for a non-fading AWGN channel). 



We can rewrite Equation 3.5 as 

= In 

2,2 " " • » 

Lc ' Vk ; (3.7) 

where 

Efi 
:= ^̂ 2̂ ' 4a (3.8) 

is the so-called channel reliability value, which depends only on the Signal to Noise Ratio 

(SNR) and on the fading amplitude a of the channel. Explicitly, if the SNR or the fading 

amplitude exhibits a low value, the reliability of the associated bit is low. Hence, for BPSK 

over an AWGN channel, the conditional LLR L{yk\xk) of Equation 3.7 is referred to as 

the soft channel output, which is simply the matched filter demodulator's soft output % 

multiplied by the channel reliability value Lc- Following the definition of the LLR, let us 

now review the maximum a-posteriori decoding algorithm. 

3.3 .3 T h e M a x i m u m A - P o s t e r i o r i A l g o r i t h m 

The MAP algorithm was proposed by Bahl et al. [11] in 1974, with the aim of contriving 

an algorithm for the decoding of convolutional codes. Although it is the minimum BER 

algorithm, this optimahty is achieved at a high complexity and hence in most applications 

the lower complexity maximum likelihood sequence estimation Viterbi algorithm (VA) was 

preferred. However, in turbo coding the MAP algorithm is preferred, since it gives a better 

estimate of the probability of each data bit in terms of the a-posteriori information L{uk\y)-

Throughout this section Bayes' rule will be used repeatedly, which defines the relationship 

between the joint probability P{i A j), and the conditional probability P{i\j) of i given j, 

as follows: 

JP(% A ; ) = f(%b) - f ( j ) . (3.9) 

Using Equation 3.9, we can show that: 

})({% A ;}|&) = &}) - f ( ; l & ) . (3.10) 

Motivated by this aim, let us define A = iAj and B = j Ak. Then using Equation 3.9 we 



arrive at; 

P ( { i A i } | i ) = P{A\k) ^ 

A ; AA) _ f ( % A B ) 

f ( A ) " f(A;) 

= f ( % | { ; A A } ) . f ( ; | A ; ) . (3.11) 

The goal of the MAP algorithm is to find the LLR of each channel decoded bit i.e. 

original information bit, given that the demodulator's corresponding soft output values are 

the elements of the vector y. Note that we do not necessarily have to find the LLRs for the 

parity bits. This is equivalent to finding the LLR of 

(3-12) 

where k is the index of the data bits. Upon applying Bayes' law, we can rewrite Equa-

tion 3.12 as 

f (lit = + 1 A !/) - f ({/) 
= In 

P{uk = -1 A y) • P{y) 

Figure 3.5 shows a simple state transition diagram. If the previous decoder state Sk-i 

and the present state Sk are known, then the data bit which caused the transition 

between these two states will be also known. Hence, the probability of Ujt = + 1 is equal to 

the summation of all the probabilities of state transitions caused by = +1. 

From Figure 3.5, we can write the probability of P{uk = +1) as 

P{uk = +1) = P{Sk-i = a Sk = d) + P{Sk~i = h Sk = a) + 

P{Sk-i = c A S'fc = c) + P ( 5 f c _ i = d A Sk = b) 

= ^ P{Sk-i = s A Sk = s) , (3.14) 
(s,s)=> 
Uf,= + 1 

where (a, a) => % = + 1 indicates all the state transitions from the previous state Sk-i to 

the present state Sk that were caused by the data bit Uk = +1. Using Equation 3.14, we can 

rewrite Equation 3.13 quantifying the LLR affecting the probability that the information 

bit Uk was transmitted, given that the demodulator's corresponding soft output values were 
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Previous Present 
state state 
Sk-i Sk 

State a a- State a 

State b 8i' State b 

State c *—y\ ^ State c 
Decoded bit 

+1 
—1 -=> 

State d w • State d 

Figure 3.5: Simple state transition diagram. 

stored in y, as follows: 

Liukly) = In < Uĵ =+1 

Ui,=—1 

> . 

For simplicity, we shall write P{Sk-i = s A Sk = s Ay) as P{s A s Ay). 

^k — 3 ^k — l Sk ^k^2 

3/& 

Figure 3.6: Simple trellis diagram. 

Decoded bit 
+1 
— 1 

(3.15) 

We now consider the individual probabilities P{sAsAy) in the numerator and denominator 

of Equation 3.15. As shown in the simple trellis diagram of Figure 3.6, we can split the 

vector of soft demodulator outputs y into three sections: 

• yfc, the soft demodulator output sample associated with the present transition; 

• the vector of soft demodulator outputs received prior to the present transition; 
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* vector of soft demodulator outputs received after the present transition. 

We can then rewrite the individual probabilities P{s A s Ay) as: 

f (g A a A ^) = f (a A a A A A . (3.16) 

Let us assume that the channel is memory less. Then the future vector of soft demodulator 

outputs y will depend only on the present state s and not on the previous state s nor 

will it depend on the present and previous vector of soft demodulator outputs and 3/ 

Applying Bayes' rule, we derive from Equation 3.16: 

/ \ a /\2/) == /\ %&) 

= ^ ^ ^ (a A 8 A A ?/&) 

= A A (a A J 

= ^"(5 A ({i/t A 5}|8).f 

= a t - i ( 5 ) . 7 t ( 8 , a ) . A W , (3.17) 

where, 

q;/c_i(s) := P{s A is the probability that the decoder is in trellis state s at time 

k — 1 and the vector of soft demodulator outputs up to this point 

Jk{s,s) := P{{yk A a}|A), is the probability that given the decoder was in trellis state s 

at time k — 1, it traverses to state s and the soft demodulator 

output sample for this transition is 

f3kis) := P{y^^^\s), is the probability that given the decoder is in trellis state s at 

time k, and the future vector of soft demodulator outputs will 

Equation 3.17 has shown that the individual probabilities P{sAsAy) in Equation 3.15 can 

be represented by the product of three independent trellis transition probabilities, namely 

ak-i{s), Jk{s,s) and Pkis), which are also shown in Figure 3.6. The MAP algorithm 

first finds the probabilities jk{s,s) for all possible transitions throughout the trellis from 

state Sk-i = s to state Sk = s. Using the calculated %(&, s), the MAP algorithm then finds 

0!t-i(a) &nd ,8^(5) using the so-called /orwar j recuramm and (lactworff recurgmn, respectively. 

Let us now describe, how the values 0!t-i(a), Jk{s,s) and Pkis) can be calculated. 
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3.3.3.1 Calculation of the jk{s,s) Values 

First we consider how the 7fc(s,s) values can be calculated from the demodulator's soft 

output sequence y_. Using Bayes' rule given in Equation 3.10, we expand the definition of 

7i:(s,s) in Equation 3.17 to: 

== A a}) . f (a |a) 

= f ' b / t K s A , (3.18) 

where % is the original uncoded information bit necessary to cause the transition from 

state Sk-i = s to state Sk = s. From Equation 3.4 we have: 

(3.1^1 

where Ci is a constant, which depends only on the LLR L{uk) and not on whether the 

estimated data bit Uk is —1 or +1. Again, as we have shown in Figure 3.3, L{uk) is the 

intrinsic or a-priori information. 

In the trellis, a transmitted channel coded bit Xk is associated with a single transition 

from state Sk-i = s to state Sk = s. Hence, we can rewrite the first term of Equation 3.18 

as: 

A a}) = . (3.20) 

We substitute Equation 3.6 in Equation 3.20, yielding: 

jsOytKa A s } ) = OCA):} 
-s/zna 

1 

where 

\ / ^ ( 7 

(3.21) 

C2 = . (3.22) 
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Let us substitute Equation 3.19 and Equation 3.21 into Equation 3.18, which results in: 

'yA;(a,a) = f(?/A;|{aAg})-f(%&) 

== (Cq - C2-

= ^ (3 23) 

where C = Ci • which does not depend on the sign of the uncoded data bit or on that 

of the transmitted channel coded bit Xf̂ . Hence C is a constant for the summations in the 

numerator and denominator of Equation 3.15 and hence it cancels out. 

3.3.3.2 Forward Recursion 

From the definition of in Equation 3.17 upon proceeding from stage A: — 1 to stage 

k, we can write 

all 3 

where the probability P{s A is equal to the sum of the joint probabilities P{s As A 

HjKk+O possible previous states s. Again, we assume that the channel is memoryless 

and upon applying Bayes' rule, we can rewrite Equation 3.24 as follows: 

all s 

all s 

all A 

= ^ a A : - i ( 8 ) ' 7 t ( 5 , a ) . (3.25) 

all a 

In Section 3.3.3.1 we have seen that jk{s,s) can be calculated from the demodulator's soft 

output sample yk and from the intrinsic information L{uk)- Using the previously computed 

7fc(s, s) values, we can calculate the ttjt(s) values, recursively using Equation 3.25. Figure 3.7 

shows a simple example of the forward recursion calculation of %(s) . For a binary trellis, for 

example in binary BCH codes, there are only two legitimate transitions from the previous 

state Sk-i = 3 to any present state Sk = s, as shown in Figure 3.7. Furthermore, one of 

these will be associated with an information input bit of Uk = +1, and the other with an 



, Decoded bit 
at--i(a2)*' 1*2' 

+1 
- 1 

Figure 3.7: Forward recursion for the computation of a&(g). 

input bit of Uk = —1. Hence, we can expand Equation 3.25 as: 

0!A:(a) = 0! t_ i (a i ) -7 j^^(g i ,5 )+a t - i (a2) 

where jI^{s,s) is the value of 7^(3,5) for the transitions between states, when the trans-

mitted bit is a;yt = —1 or +1, as indicated in Figure 3.7. 

In Section 2.2.2, we have shown that the trellis of the BCH code always commences from 

the all zero state So = 0. Hence, we have P{So = 0) = 1 and P{So = s) = 0) for all s 7̂  0. 

The initial conditions for the forward recursion are: 

«o(5'o = 0) = 1 

ao{So = s) = 0 for all g ^ 0 . (3.27) 

3.3.3.3 Backward Recursion 

Similarly, the values of Pk{s) can be calculated recursively. From the definition of A(5) in 

Equation 3.17, we can write as: 

all s 

where the probability is equal to the sum of the joint probabilities A 

s}|s) over all possible future states s. Again, we assume that the channel is memoryless 
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and upon applying Bayes' rule we can rewrite Equation 3.28 as follows: 

== A 5}|a) 

all s 

all s 

all s 

= ^ A ( 8 ) - 7 t ( 5 , a ) . (3.29) 
all s 

Similarly to the forward recursion, once the jk{s,s) values are known, backward recursion 

can be used for calculating the values of from the values ofPk{s) using Equation 3.29. 

Figure 3.8 shows a simple example of the backward recursive calculation of Pk{s)- As for 

A - i ( 5 ) Decoded bit 

7 / ( 5 , 5 2 ) + 1 

- 1 

Figure 3.8: Backward recursion for the computation of /3t-i(a). 

the forward recursion, there are only two transitions from the present states Sk = s to the 

previous state Sk-i = s, as shown in Figure 3.8. Hence similarly to Equation 3.26, we 

expand Equation 3.29 to: 

/?t- i (5) = A ( a i ) ' 7 ) ^ ^ ( a , a i ) 4 - A ( 8 2 ) - (3.30) 

Again in Section 2.2.2, we have shown that the trellis of the BCH code always ends at 

the all-zero state Sn = 0. Hence, we have P{Sn = 0) = 1 and P{Sn = s) = 0) for all a ^ 0. 

The initial conditions for the backward recursion are: 

7̂1(5"̂  = 0) = 1 

Pn{Sn = s) = 0 for all a ^ 0 (3.31) 

3.3.3.4 Summary of the M A P Algorithm 

Figure 3.9 shows a summary of the key operations in the MAP algorithm, which constitutes 

the BCH decoder in Figure 3.3. Initially, the algorithm relies on the demodulator's soft 
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Channel Intrinsic 
values information 
LcUk 

Calculate 
7 t (a , a ) 

Foward 
recursion 
of Ot- i f s ) 

SoA output 
Backward 
recursion 

Figure 3.9: Summary of the key operations in the MAP algorithm, which constitutes the 
BCH decoder in Figure 3.3. 

output sequence y and on the intrinsic information L{uk), provided by the second component 

decoder shown in Figure 3.3. Both y_ and L(uk) are then used to calculate the %(s, s) values 

according to Equation 3.23. After that, we use the 7/c(.s,s) values in order to calculate the 

ak{s) and I3k{s) values by employing forward recursion of Equation 3.25 and backward 

recursion of Equation 3.29, respectively. 

In Equation 3.17, we have shown that P(sAsAy) depends on the values %(g), jkiK s) and 

Pkis), which we have already described. Using Equation 3.17, we can rewrite Equation 3.15 

as follows: 

==5/\.St ==g/\?/) ' 

== bi 

In 

==s/\.St == 
(s,s)=^ 

^ 0!t_i(a)"yA:(a,8)-A(a) ' 
(S,3)=> 
"A= + l 

(A,a)=> 

(3.32) 

Equation 3.32 is then used in the final stage of the decoding process to derive the conditional 

LLR of Uk, given the demodulator's soft output sequence y and the intrinsic information 

Let us consider the expression of 7fc(s,s) in Equation 3.23, which is re-stated here for 
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convenience, 

%(a,a) = C ' e (3.33) 

As we have shown in Section 2.2.2, the systematic BCH coded transmitted sequence consists 

of the original data bit sequence, followed by the parity bit sequence. However, in Equa-

tion 3.32 we are interested in deriving the conditional LLRs of the original uncoded data 

bits Uk- Hence, the channel coded transmitted bits Xk are replaced by in Equation 3.33, 

yielding: 

Ik (a, a) = C - (3.34) 

Using Equation 3.34 and remembering that in the numerator we have Uk = +1 for all 

terms in the summation, whereas in the denominator we have % = —1, we can rewrite 

Equation 3.32 yielding the a-posteriori information for our decision concerning the bit 

as: 

-['(I'tl!/) In 

In 

^ a!A:-l(5)'7A:(a,g)'A(8) 
(i,s)=> 

"k=+l 

^ a!t-i(a) 7t(8,a) A(a ) 
(s,s)=̂  

E c . , _ i ( A ) . e { - ^ } . e { - ^ } A ( . ) 
(s,s)=> 

E 0!t-l(5) A(8) 
(s,s)^ 
nf.=+l 

Z at_i(g)- /3t (a) 
(A,»)=> 
"t=-l 

(3.35) 

where 

^e(l^t) = In 

and the following notations apply: 

Z at_i(a)./3t(8) 
(s,s)=> 
"fc=+l 

Z 0!t-l(5).A(5) 
(s,s)=̂  

(3.36) 



yk the demodulator's soft output for the transmitted data bit 

X]^ — 

LcVk soft channel output of yk 

L{uk) intrinsic or a-priori information 

Lf,{uk) extrinsic information 

L{uk\y) a-posteriori information. 

Now, we are ready to relate Equation 3.35 to Figure 3.3. In the figure, we can see that 

the decoder accepts two inputs, the intrinsic information L{uk) of the original uncoded 

information bits and the soft channel output Ley constituted by the product of the demod-

ulator's soft output y and the channel reliability value Lc of Equation 3.8. At its output, 

it produces the a-posteriori information L{uk\y)- The decoder then calculate the extrinsic 

information imposed by the code constraints from the demodulator's soft output 

sequence y, but excluding the demodulator's soft output sample % due to the transmitted 

data bit, 

3 .3 .4 M o d i f i c a t i o n s of t h e M A P a l g o r i t h m 

3.3.4.1 Introduction 

The MAP algorithm, in the form described in Section 3.3.3, is extremely complex due to the 

floating point multiplication needed in Equations 3.25 and 3.29 for the recursive calculation 

of akis) and /?jt(s), as well as because of the multiplications and exponential operations 

required to calculate jk{s, s) using Equation 3.23. Further factor increasing the complexity 

are the multiplication and natural logarithm operations required to calculate L{uk\y) using 

Equation 3.35. 

The Max-Log-MAP algorithm was initially proposed by Koch and Baler [50] and Erfanian 

et al. [51] for reducing the complexity of the MAP algorithm. This technique transfers the 

computation of the recursions into the logarithmic domain and invokes an approximation 

for dramatically reducing the complexity. Due to the approximation, its performance is 

sub-optimal. However, Robertson et al. [52] later proposed the Log-MAP algorithm, which 

partially corrected the approximation made in the Max-Log-MAP algorithm. Hence the 

performance of the Log-MAP algorithm is similar to that of the MAP algorithm, but at 

a fraction of its complexity. Let us now consider the Max-Log-MAP algorithm and the 

Log-MAP algorithm in more detail. 



3.3.4.2 Max-Log-MAP Algorithm 

The MAP algorithm calculates the a-posteriori LLRs L{uk\y) using Equation 3.32 and hence 

it requires the following values: 

1. The 0!fe-i(s) values, which are calculated in a forward recursive manner using Equa-

tion 3.25; 

2. The /3fc(>s) values, which are calculated in a backward recursive manner using Equa-

tion 3.29; 

3. The transition probabilities 7^(5, s), which are calculated using Equation 3.23. 

The Max-Log-MAP algorithm simplifies these preceding equations by transferring them 

into the logarithmic domain and then using the approximation [50,51]: 

I n ^ ^ e ^ ' ^ % max (a;;) , (3.37) 

where max(a;i) means the maximum value of z,. 

Let us deSne .4*(a), aa follows: 

v4t (5)Aln[o! t (a) ] , (3.38) 

J8t(a) hi%%k(s)] , (3.39) 

and 

r t ( 8 , a) ^ ^ ^ ( a , a)] . (3.40) 

Upon substituting Equation 3.26 into Equation 3.38 and using Equation 3.37, we arrive at: 

At(5) = h i [ a t - i ( a i ) ' l ' j ^ \ a i , a ) + a t - i (a2) '7 t^(^2 , '^ ) ] 

= In -t-

« m & x [ { A t _ i ( a i ) + r j ^ ^ ( a i , a ) } , { A t - i ( a 2 ) + r;^^(a2,8)}] - (3.41) 

Similarly to Equation 3.41, we can rewrite Equation 3.39 as: 

-8^-1(5) = ln[ /3t (a i ) -7j^^(a ,8i )+A(52)-7jrX^,^2)] 

In 

m a x [ { B t ( a i ) + r j ^ ^ ( a , a i ) } , { B t ( 8 2 ) + r j ( . ^ ( 5 , 3 2 ) } ] - (3.42) 
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We have shown in Equation 3.41 and 3.42 that the complex floating point multiplications 

in Equation 3.25 and 3.29 are simplified to simple floating point additions and comparisons. 

In Figure 3.7, we have shown that there are two converging paths at the present state 

Sk = s. Equation 3.41 implies that the path with the maximum + rt(a, a)} 

will be chosen by the decoder. This path can be viewed as the survivor path, i.e. the 

maximum likelihood path while we discard any other paths reaching the state. Due to the 

approximation in Equation 3.37, the value of in the Max-Log-MAP algorithm actually 

gives the probability of the most likely path through the trellis to state % = s, rather than 

that of any path. This approximation is one of the reasons for the sub-optimal performance 

of the Max-Log-MAP algorithm compared to the MAP algorithm. 

Using Equation 3.34, we can rewrite the branch metrics Tk{s,s) in Equation 3.40 as 

follows: 

= In 

— InC + -UkL{uk) + -UkLcUk 

= ^ {^(%) + LcVk} , (3.43) 

where C" = InC does not depend on U}. and hence it can be considered a constant for all 

paths and omitted from Equation 3.43. Explicitly, in Equation 3.43, we have converted 

the complex multiplications and exponential operations required to calculate 7^(5,5) in 

Equation 3.23, into simple additions. 

Finally, the a-posteriori LLRs L{uk\y) can be derived from Equation 3.32 according to 

the Max-Log-MAP algorithm as follows: 

L{uk\y) = In 

(s,s)=> 

In 
Uf,=+1 

(s)+ri.(s,s)+Bfc(s)} 

max + + 
(s,s)=> 

max [.4jt_i(a)-|-rt(g,a) + Bt(a)] (3.44) 

For each original uncoded data bit Uk, the a-posteriori LLR L{uk\y) is calculated by con-

sidering every transition from the previous state = s to the present state Sk = s. 



These transitions are grouped into those that might have occurred if we had % = +1, 

and those that might have occurred if = —1. From each group, the maximum of 

[Ak^i{s) + Ti;{s,s) + Bi;{s)] is found and the difference is taken. The difference is the 

a-posteriori LLR L{uk\y)-

3.3.4.3 L o g - M A P Algor i thm 

The Max-Log-MAP algorithm suffers from a slight performance degradation compared to 

the MAP algorithm due to the approximation of Equation 3.37. However, the approximation 

can be rendered exact by using the Jacobian logarithm [95]: 

ln(e® + e^) = max{i,j) + ln(l + 

= max( i , ; ) + /c(|z - J I) , (3.45) 

where fdS) = fc{\i — i | ) can be viewed of as a correction term and 5 = \i — j\ is the 

magnitude of the difference. The correction term fc{S) need not be computed for every 

value of 5, but instead it can be stored in a look-up table. Robertson et al. [52] found that 

such a look-up table needs to contain only eight values for J, ranging between 0 and 5 for 

achieving a good accuracy. 

3 .3 .5 T h e S o f t O u t p u t V i t e r b i A l g o r i t h m 

The Soft Output Viterbi Algorithm (SOVA) was proposed by Hagenauer [53] in 1989. The 

SOVA can be implemented in the so-called register exchange mode [53] or in the trace back 

mode [54]. The trace back mode is used in this treatise. 

The SOVA has two modifications with respect to the soft decision Viterbi Algorithm (VA) 

that we have discussed in Section 2.3.4. Firstly, the path metrics used are modified, in order 

to take account of the intrinsic information L{uk)- Secondly, the algorithm is modified so 

that it provides the a-posteriori information L{uk\y) for each decoded data bit. 

First of all, we revisit the fundamental idea of the Viterbi algorithm, where the state 

sequence of the maximum likelihood (ML) path is decided on the basis of the demodula-

tor's soft output sequence The state sequence Sf. gives the states along the surviving 

path at state 5"̂  = s at instant k in the trellis. Notice that the state sequence Sj. is chosen 

based purely on the demodulator's soft output sequence y before and at instant k, j < k. 

Based on these arguments, we need to maximise the following equation; 

f (gjL A 3/. ) 
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where Bayes' rule was invoked. Since the probability of encountering the received sequence 

constant 

the path metrics as 

is constant for all the paths, we can equally maximise f A ^ Let us define 

jkr(gk) :=l i i j3(ak A . (3.47) 

Assuming a memoryless channel, we will have 

^ = 5 A = a) . (3.48) 

Upon substituting Equation 3.48 into Equation 3.47, we arrive at; 

M ( 5 t ) = M(8j;._J + l i i { f (5"*; = a A = a)} 

= M ( a j ; . _ J + l i i { ' y ( 5 , 5 ) } , (3.49) 

and 7(s, s), is the branch transition probability for the path from state Sk-i = s to Sk = s 

which has been defined in Section 3.3.3. Using Equation 3.34, we can rewrite Equation 3.49 

as: 

a)} = InC + 

= C + — {L{uk) + LcUk} , (3.50) 

where C = InC is constant and it will cancel out, when we consider the path metric 

differences in the trellis. Hence, it can be omitted. Upon using Equation 3.50, we can 

rewrite Equation 3.49 as: 

-^(sfc) = -^(sfc-i) + {L{uk) + LcUk} • (3.51) 

In Equation 3.51, we have shown how the intrinsic information L(uk) is included in the 

path metric calculation. Hence, we have accomplished the first required modification of the 

conventional VA. 

In Section 2.2.2 we have seen that a BCH codeword consists of data and parity bits. In 

turbo decoding, only the soft outputs of the original data bits are passed from one decoder 

to another. There is no intrinsic information L{uk) for the parity bits. Therefore, for the 

parity bits Equation 3.51 is further reduced to 

M ( ^ ) = M(5;;.-l) + . (3.52) 

Let us now discuss the above mentioned second modification of the VA, namely the 

generation of the a-posteriori information L{uk\y), which allow us to compute the extrinsic 
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information Le{uk) from Equation 3.36. In the binary treUis there are two paths reaching 

state Sk = s and one of the paths, namely the one having the smaller path metric, will be 

discarded. Let and denote the ML path, exhibiting the highest path metric, and the 

discarded path at instant k, having the lower path metric, respectively. Then we can define 

the path metric difference as: 

Ayk = -JkrCSt) 0 . (3.53) 

The probability of the ML path ^ is 

e^iS-k) -(-

1 + 
(3.54) 

Therefore, the LLR of the decision concerning the ML path is defined as follows: 

-G{-F'(^)} = In ^ ^ 

We have shown previously how to derive the LLR of the ML path Sf. at instant k. Now, we 

Sk+i 
State o 

State 6 

State c ' * # # I)ecodkxil%t 
0 — 

State d • 
1 

Figure 3.10: Simple SOVA decoding example. 

need to find the LLR of the decoded bits associated with the survivor path Sj.. Figure 3.10 

shows a simplified section of a trellis, where the ML path is the all-zero state sequence. We 

can see from the figure that path c ^ 6 —> a, namely and path c c —)• 6 —>• a, namely 

i t+ i , are the discarded paths at instants k and& + 1, respectively. Let and be the 

decoded bit at instant A, which would have been the output associated with the discarded 

paths s_f. and 1^+1, had they not been discarded, respectively. As shown in Figure 3.10, 

Uk and differ. Hence, the LLR of the actually decoded bit is proportional to the 



LLR Afc of the survivor path. On the other hand, Uk and are the same, namely '0'. 

Therefore, we would have made no mistake concerning the decoded bit % , irrespective of 

whether path or was chosen as the most likely state sequence at trellis stage Sk+i-

The LLR of the decoded bit % is then oo. We define the LLR of taking into account a 

discarded path as: 

oo if 
:= , (3.56) 

where % > 0. 

However, Equation 3.56 considers only one discarded path, while along the ML path, 

we would have a number of discarded paths. In Figure 3.10, at any node of the trellis 

there is a survivor and a discarded path. Upon tracing the trellis backwards across i trellis 

stages, we have to consider a total o f ; f 1 discarded paths in deriving the a-posteriori 

information L{uk\y). It was shown by Hagenauer [54] that the LLR of the decoded bit Uk 

can be approximated by 

— 'Ut' min A , . (3.57) 
— 

In order to interpret Equation 3.57, let us consider the following arguments. The algorithm 

aims to explore, whether any unreliable decisions have been encountered, while traversing 

through the trellis, which may have resulted in a decision error. These potentially unreli-

able decisions are associated with discarding paths in the trellis, which had a metric value 

similar to that of the survivor. These decisions are associated with a low difference A be-

tween the metrics of the survivor and that of discarded path. This is, why the algorithm 

attempts to find the trellis node, where the path metric difi'erence was the lowest and, addi-

tionally, favouring the similar confidence discarded oath would have resulted in a different 

bit decision. 

3.3.5.1 SOVA Decoding Example 

In this section we will augment the concept of the SOVA decoding process using the same 

example as in Section 2.3.4. We employ BPSK modulation and hence a logical 0 will be 

transmitted as —1.0 and a logical 1 is sent as +1.0. Instead of producing the hard output 

of the decoded bits, we are going to calculate their soft outputs. In order to simplify the 

calculations, we assume that = 1 in Equation 3.8. Furthermore, initially there is no 

intrinsic information for the data bits Uk- Hence, the LLR values L{uk) are all reset to 0, 

implying a probability of 0.5. 
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Instant T=0 T=1 T=2 

0 0 0 

1 0 0 

+0-8 -1'2 

State a »-Q-§ .>«. +Q-4>«-'Q-? ->•• Q 
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Stc^ec 
010 
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State e 
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State / 
101 

State g 
110 

+0.8 

+2.4-' +l.(J-' +4.5.' 

Decoded 
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Decoded bit 
-1 

State h 
111 

Figure 3.11: An example of SOVA decoding using the BCH(7,4,3) code. 

Figure 3.11 shows our example of the SOVA decoding procedure using the BCH(7,4,3) 

code. The trellis diagram of the figure is the same as that in Figure 2.10 and so are the 

demodulator soft output values as well as the accumulated path metrics. The Viterbi 

decoder proceeds in the usual way, finding the ML path which is the all zero sequence 

in this example, by calculating the path metrics. At the end of the trellis, i.e. at stage 

T = 7, the ML path is found and the trace-back procedure [54] begins, in order to find all 

discarded paths, which would have resulted in different bit decisions. 

As seen in Figure 3.11, at instant T = 7, the path metric difference between the survivor 

path and the discarded path Sj., according to Equation 3.53 is given by: 

A? 

2 
= 0.5 

^ (4.6 - 3.6) 
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In this SOVA decoder scenario the decoder starts tracing back the survivor path gy and 

the discarded path which merge at T = 7. Hence their associated decoded bits are found, 

which are summarised in Table 3.1 for both paths. For each decoding instant, the exclusive-

or (XOR) of the decoded data bits is taken, which will give '1', if and only if and are 

different. If the decoded bits are different at an instant, then according to Equation 3.56 

the associated LLR becomes Lg^{uk) = Uk-Aj. On the other hand, if the decoded data bits 

are the same for an instant, then there is no ambiguity about the data bit given by the ML 

path. Therefore, the corresponding value of jCg (ut) is Ufe.oo. 

Instant T 
0 1 2 3 4 5 6 

ut 0 0 0 0 0 0 0 

1 0 0 0 1 0 1 

1 0 0 0 1 0 1 
0.5 oo CX3 oo 0.5 oo 0.5 

Table 3.1: Decoded bits for path Sf. and 

We can see from Figure 3.11 that there are four discarded paths along the all-zero ML 

path, yielding the path metric of 4.6. Table 3.2 shows the calculated \Ls^{uk)\ of the data 

bits for each discarded path in Figure 3.11. Specifically, the survivor path Sj and the dis-

carded path are associated with the decoded bits 0, 0, 0, 0, 0, 0, 0 and 1, 0, 0, 0, 1, 0, 1, 

respectively. When considering the associated decoded bits %, they are different for A: = 0, 

but identical for A: = 1,2 and 3. Hence in Table 3.2 we have (ut) | = 0.5,oo,oo and oo 

for & == 0,1,2 and 3, respectively. 

Similarly, at T = 6 the survivor path results in the decoded bits 0, 0, 0, 0, 0, 0, 0, 

while the discarded path in 1, 1, 0, 0, 0, 0, 1. Hence for & == 0 and 1 they are different, 

while for A: = 2 and 3 the decoded bits are identical, yielding |L|g(uo)| = = 1.7 

and |L|g(ii2)| = jZ/gg (%)! = 0, as seen in Table 3.2. The remaining values in Table 3.2 can 

be derived similarly. Referring to Equation 3.57, we have to find the smallest A^ for which 

Uk 7̂  Uk, i.e. the smallest \Ls^{uk)\ since this approximates the LLR of the survivor path. 

Hence, the minimum is taken along each column in Table 3.2 . According to Equation 3.57, 

the a-posteriori information of bit Uk is then the polarity of the decoded data bit 

Uk times the minimum path metric difference A in Table 3.2. 

In Section 3.3.3.4, we have derived the relationship between the a-posteriori information 

L{uk\y) and the extrinsic information L^{uk). In order to calculate the extrinsic information, 
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Data bits Uk 

1(0 Ui U2 Us 
I-^It I 0.5 oo CX3 oo 

1.7 1.7 OO oo 

1 ) 1 0.2 0.2 0.2 oo 

1-̂ 14 (^t)l 0.8 oo 0.8 0.8 

Minimum A 0.2 0.2 0.2 0.8 

-1 -1 -1 -1 
-0.2 -0.2 -0.2 -&8 

Table 3.2: LLR for the decoded data bits. 

we rewrite Equation 3.35 as: 

L'ei'^k) — L(^Uf;\y) L^yj^ L[ui^) (3.58) 

Applying Equation 3.58, we can find the extrinsic information Le{uk) of the data bits by 

removing the soft channel output LcUk and the intrinsic information L{uk) from the a-

posteriori information L{uk\y). Specifically, L{uk\y) is given at the bottom of Table 3.2, 

LcUk is demodulator's soft output seen as 'received signal' in Figure 3.11, while L[uk) = 0 

in the first iteration, since all bit probabilities are 0.5. In summary. Table 3.3 shows the 

extrinsic information of the data bits in our example. The extrinsic information will then 

be passed to the second decoder in Figure 3.3. 

Data bits Uk 

Ul U2 U3 
--0.2 --0.2 - & 2 —0.8 

L'cUk 4-0.8 -1 .2 4-0.6 - & 2 

0.0 0.0 0.0 0.0 

Lie{Uk) - 1 . 0 - L 4 --0.8 + L 4 

Table 3.3: The a-posteriori information, soft channel outputs, intrinsic and extrinsic infor-
mation of the data bits. 

3.4 T u r b o Decoding Example 

In this section, we discuss an example of turbo decoding using the SOVA algorithm de-

tailed in Section 3.3.5. This example illustrates how iterative decoding assists in correcting 

multiple errors. Our elaborations are based on Sections 2.2, 2.3 and 3.3.5. 
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U3U2Ul%0 BCH(7,4,3) 
encoder 1 

2x2 Block 
interleaver 

BCH(7,4,3) 
encoder 2 

2x2 Block 
interleaver 

BCH(7,4,3) 
encoder 2 

Puncturing 
and 

multiplexing 

P2 P2 Pi Pi Po PO "3 "2 Ul Uo 

Figure 3.12: BCH(7,4,3) turbo encoder. 

The component codes used in this example are two BCH(7,4,3) codes, which are combined, 

as shown in Figure 3.12, with a 2 x 2 block interleaver [112] for creating a simple turbo code. 

As we can see from Figure 3.12, the parity bits p]., generated by BCH encoder 1, and the 

parity bits of BCH encoder 2, are not punctured. Since the data bits of both component 

codes are the same, all the data bits of the second component code are punctured. The 

transmitted sequence therefore contains four data bits and six parity bits, resulting in a 

coderaWofOXL 

For the sake of simplicity, we assume that all data bits are binary zeros. Hence, both 

BCH(7,4,3) encoders generate an all-zero output sequence. Assuming that BPSK modu-

lation is used, a logical 0 is transmitted as —1, whereas a logical 1 is sent as +1. The 

transmitted sequence of the turbo BCH encoder is hence a series o f t e n consecutive —Is. 

T ransmi t t ed 
sequence 

Ml M3 Po PI Pi P2 9 
P2 

AWGN 

1 ' 
Received 
sequence 

-1-1.0 - 3 . 7 + 0 . 9 - 0 . 3 - 3 . 9 + 0 . 3 + 0 . 6 + 0 . 2 - 2 . 9 - 1 . 2 

Demult iplexing 

UQ Ui U2 Pn p] 
+1.0 - 3 . 7 +0 .9 - 0 . 3 - 3 . 9 +0 .6 - 2 . 9 

^0 U2 Ui U3 Pn P? P? 
+1 .0 +0 .9 - 3 . 7 - 0 . 3 +0 .3 +0 .2 - 1 2 

Firs t decoder input sequence Second decoder inpu t sequence 

Figure 3.13: Demultiplexing process of the received sequence. 

As we can see in Figure 3.13, the transmitted sequence, which has an energy per bit of 

Eh = 1, is conveyed through an AWGN channel. Since there is no fading in an AWGN 

channel, the fading amplitude is a = 1 and the variance of the AWGN is cr = \/2. Hence 
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the channel reliability value Lc of Equation 3.8 is given by: 

L, = 0 . 4 a 

= 1 . (3.5^ 

The received sequence y has been corrupted by noise, which is passed to the demultiplexer 

that separates the received sequence to give the input sequence of the first and second 

decoder, as shown in Figure 3.13. In both decoders, the received samples due to the original 

data bits are the same, except that the sequence of the data bits of the second decoder was 

interleaved. This assists in increasing the error correction capability. This is because if 

the first decoder fails to correct the errors, the second decoder will use the rearranged 

received data bit sequence to correct the errors, and vice versa. In our following discourse 

we demonstrate how both decoders assist each other in correcting the errors. 

The path metric of the SOVA algorithm is given by Equation 3.51, which is repeated here 

for convenience: 

Jkr(at) =: 4- . (3.60) 

Here M{si._i) is the path metric for the surviving path traversing through the state Sk-i = s 

at stage A: — 1 in the trellis, Uk is the estimated transmitted bit associated with a given 

transition, is the demodulator's soft output sample for that transition and Lc is the 

associated channel reliability value, which was found to be unity in Equation 3.59. Hence, 

Lcyk — yk-

Initially, we consider the operation of the first decoder during its first iteration, where 

the associated trellis is shown in Figure 3.14. There is no a-priori information and hence 

we have L{uk) = 0 for all k, which corresponds to the a-priori probability of 0.5, as shown 

in Figure 3.4. The received signal Lcyk constituted by the demodulator's soft output is the 

first decoder's input sequence in Figure 3.13. According to Equation 3.60, the transition 

metrics are derived by the summation of the intrinsic information L{uk) and the received 

signal Lcyk constituted by the demodulator's soft output, at each trellis transition. The 

values of the intrinsic information, the received signals and the resultant transition metrics 

are shown at the top of Figure 3.14 for every instant. 

The SOVA proceeds in the same way as the Viterbi algorithm in order to find the ML 

path (or survivor path) which is shown by the bold line in Figure 3.14. As we can see in 

the figure, the ML path of the first decoder in the first iteration is the state sequence of 

a - ^ g - ^ d - ^ b ^ a ^ a ^ a - ^ a, which is not the all-zero state sequence. Similarly 

to our example in Section 3.3.5.1, there are four discarded paths along the ML path. The 

decoded bits, of the ML path and those that would have been produced by the four 
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Instant T=0 T=1 T=2 T=3 T=4 T=5 
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Transition 
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000 

0.0 0.0 0.0 0.0 0.0 0.0 

+1.0 -3.7 +&9 -0.3 -3.9 +0.6 

+L0 -3.7 +&9 -0.3 -3.9 +0.6 

+ 1 . 8 ^ +2T^ + 9 . ^ +8.6 
A 4 y A ^ 

T=6 T=7 

0.0 .L(ut) 

-2.9 LcUk 

State b 
001 

State c 
010 

State d 
Oil 

Stc^ee 
100 

State / 
101 

State g 
110 

+ 1L5 

+10.4 Path metric 
difference 
A4 

Decoded bit 
1 

Decoded 
bits + 1 - 1 + 1 + 1 - 1 - 1 - 1 

Discarded 
path I4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 

Dsicarded 
path 85 + 1 + 1 + 1 - 1 + 1 — 1 - 1 

Discarded 
path Ig + 1 + 1 - 1 - 1 - 1 +1 - 1 

Discarded 
path I7 + 1 - 1 + 1 - 1 - 1 +1 + 1 

Figure 3.14: Trellis diagram for the SOVA decoding during the first iteration of the first 
decoder. 
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discarded paths , are shown at the bottom of Figure 3.14 for the convenience of the 

reader. In Section 3.3.5, we defined the path metric diff'erence and here we restate this 

equation as follows: 

(3.61) 

where M{sf,) and M ( | | ) are the path metrics of ML path s and the discarded path 

respectively. Since there are four discarded paths along the ML path, there will be four 

path metric differences A^. The path metric difference for instants 4 to 7 is shown 

at the right of the trellis in Figure 3.14. Specifically, at T = 4 in state a the discarded 

path is a ^ g ^ d - ^ b ^ a and the path metric diff'erence is A4 = (5.3 — 2.1)/2 = 1.6. 

Similarly, at T = 5 in state a the discarded path > c — a n d we 

have A5 = {9.2 — (—5.4)}/2 = 7.3. The remaining path metric difference can be derived 

similarly. 

k Min Uk LcVk ^(ut) k (w&)| l- l̂s (^*)l \Ls^{uk)\ \L's^ (w&)| Min Uk LcVk ^(ut) 

0 1.6 00 00 00 1.6 +1 + L 6 + 1.0 0.0 +&6 
1 00 7.3 3.7 00 3.7 - 1 - 3 J - 3 J 0.0 0.0 
2 1.6 00 3.7 00 1.6 + 1 +1.6 4-0.9 0.0 + 0 J 
3 1.6 7.3 3.7 2.0 1.6 +1 + L 6 - 0 . 3 0.0 + L 9 

Table 3.4: SOVA output for the first iteration of the first decoder in terms of the a-posteriori 
information L{uk\y), soft channel outputs LcVk, intrinsic information L{uk) and extrinsic 
information Lf,{uk)-

The a-posteriori information \L-s^{uk)\ of the decoded bit Uk taking into account the 

discarded path is shown in Table 3.4, for all four discarded paths. We have shown in 

Equation 3.56 that \Ls^{uk)\ = At if Uk and uj!' differ, while \Ls^{uh)\ = 00, if the decoded 

bits associated with both the survivor path and the discarded path are the same. Again 

in Figure 3.14 the ML path S4 converges with the all-zero state sequence at instant T = 4 

and the path metric difference is A4 = 1.6. Since the decoded bits of the ML path and the 

discarded path diff'er at instant k = 0,2 and 3, the values of the a-posteriori information 

\Ls^{uk)\ for the decoded bits Uk, k = 0,2 and 3, are equal to the path metric difference 

A4 = 1.6. By contrast, at A; = 1 we have |-L|^('Ui)| = 00. This is shown in the second 

column of Table 3.4. Similarly, at T = 5 the survivor path is associated with the data 

bits 1, 0, 1, 1 while the discarded path with bits 1, 1, 1, 0. Hence at k = 0 and 2, we 

have \Ls^{uk)\ = 00, while &t k = 1 and 3, iZ/gg(%)| = 7.3, as seen in the third column of 

Table 3.4. The associated a-posteriori information for other discarded paths are shown in 

the consecutive columns as well. 
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In order to derive the a-posteriori information L{uk\y) of the decoded bit u*, we can 

approximate the LLR as follows: 

L{uk\y) = Uk • ^min^ At • (3.62) 

Equation 3.62 is the same as Equation 3.57 and restated here for convenience. In Table 3.4, 

at trellis stage k = 3, the values of |iy|^(u3)|, |L|g(u3)|, and |L|^(w3)| are 1.6, 7.3, 

3.7 and 2.0 corresponding to the four discarded paths respectively and the minimum path 

metric difference in this set is 1.6. Using Equation 3.62, we can derive the a-posteriori 

information of W4, yielding L{u4\y) = +1.6, since the decoded bit is U4 = +1. Figure 3.3 

shows that now we have to derive the extrinsic information _Lg(%), which is given by 

Equation 3.58 in Section 3.3.5.1 as: 

^ei'^k) — L(̂ Uĵ \y) LcHk • (3.63) 

This equation states that the extrinsic information _Lg(%) is given by subtracting the intrin-

sic information L{uk) and the received signal LcUk from the a-posteriori information L{uk\y) 

of the decoder. The last column in Table 3.4 shows the extrinsic information calculated 

from Equation 3.63. 

We now proceed to describing the operation of the second component decoder during its 

first iteration. The a-priori information L{uk) of the second decoder is then the extrinsic 

information produced by the first decoder, after interleaving by a 2 x 2 block interleaver 

which was shown in Figure 3.3. It also uses the interleaved demodulator soft outputs LcUk 

and the received parity bits produced by the second BCH encoder, i.e. the second decoder 

input sequence in Figure 3.13. 

Figure 3.15 shows the SOVA decoding trellis of the second decoder during its first it-

eration. The extrinsic information values extracted from Table 3.4 — after interleaving — 

are shown as the a-priori information Z,(%) at top of the trellis. Also shown is the re-

ceived signal LcUk constituted by the demodulator's soft output and the transition metrics 

L{uk) 4- LcUk- The decoded bits of the ML path and those of the four other discarded paths 

are shown at the bottom of the trellis. 

The ML path chosen by the second component decoder is shown by the bold line in 

Figure 3.15. The associated state sequence is a ^ g ^ d ^ h - ^ d ^ b ^ a - ^ a and 

again, it is not the all-zero state sequence. Using Equation 3.61, we can calculate the path 

metric difference of the ML path and the discarded paths, which are shown at the right 

of the trellis in Figure 3.15. Note that in Figure 3.14 the intrinsic information L{uk) was 

zero, while in Figure 3.15 we have valuable intrinsic information L{uk) provided by the 
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Figure 3.15: Trellis diagram for the SOYA decoding during the first iteration of the second 
decoder. 
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first decoder. This substantially changes the associated transition metrics and path metric 

differences. 

L-s. 
i'e i'^k) k Min Uk LcUk i'e i'^k) 

0 6.9 0 0 0.2 00 0.2 +1 4-0.2 +1.0 4-0.6 -1 .4 
1 00 0.3 0.2 0.1 0.1 - 1 - 0 . 1 4H0.9 +&? -1 .7 
2 6.9 00 00 00 6.9 - 1 --6.9 - 3 J 0.0 - & 2 
3 6.9 0.3 CX3 00 0.3 - n 4-0.3 —0.3 4-1.9 - 1 . 3 

Table 3.5: SOVA output for the first iteration of the second decoder in terms of the a-
posteriori information L{uk\y), soft channel outputs Ldik, intrinsic information L{uk) and 
extrinsic information Le{uk). 

Using the same steps as described in the context of the first decoder seen in Figure 3.14, 

we can calculate the a-posteriori information L{uk\y) and the extrinsic information Le{uk), 

which are shown in Table 3.5. Table 3.5 has the same structure as Table 3.4. Considering 

Figure 3.5 in a little more depth, at T = 4 we observe in state d that the path metric 

difi'erence is A4 = 6.9 between the survivor and the discarded paths. Their decoded bit 

sequences are 1, 0, 0, 1 and 0, 0, 1, 0, respectively. The only coincident bit decision is at 

k = 1, where we therefore have |Z/|^(wi)| = 00 in Table 3.5. By contrast, for k — 0,2 and 3 

we have = |^34(u2)| = W ) | = 6.9. 

Similarly, at T = 5 and in state b the survivor and discarded paths have decoded patterns 

of 1, 0, 0, 1 and 1, 1, 0, 0, respectively, which are identical for A: = 0 and 2. Hence the 

associated a-posteriori information in Table 3.5 at A: = 0 and 2 is 00, while at k == 1 and 3 it 

is A5 = (5.6 — 5.0)/2 = 0.3. The remaining a-posteriori information values seen in Table 3.5 

accrue similarly. Their minimal are found for each value of k, which are also listed in column 

six of Table 3.5. According to Equation 3.62 the a-posteriori values L{uk\y) are given by 

the product of the decoded bits u^, k = 0, ..,3, and the above-mentioned minimum path 

metric difference. They are summarised in column eight of Table 3.5. 

Column nine of Table 3.5 repeats the soft demodulator outputs due to the received 

signal samples 4-1.0, 4-0.9, —3.7 and —0.3 extracted from Figure 3.15, while column ten 

summarises the intrinsic values of 4-0.6, 4-0.7, 0.0 and 4-1.9 provided by the other decoder. 

These values can be seen in both Figure 3.15 and in Table 3.5. Finally, the extrinsic values 

of the last column are derived from Equation 3.63. 

Let us now compare the a-posteriori information L{uk\y) of the second decoder and the 

first decoder. In the first decoder characterised in Figure 3.14, we have three decoding errors 

in the data bits sequence and the number of errors is reduced to two in the second decoder of 
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Figure 3.15. The soft outputs of the data bits tio, ui and produced by the second decoder, 

which are the interleaved data bits uq, U2 and ug of the first decoder, are relatively low and 

are close to zero which indicates a low confidence. Indeed, by comparing columns eight 

of Tables 3.4 and 3.5 we find that the confidence values on the whole have been reduced 

by invoking the second decoder. At first sight this confidence measure reduction might 

appear undesirable. However, we show that after the first decoding three of the bits were 

erroneous and hence the polarity of the associated LLRs was wrong. We expect the decoder 

to eventually change the polarity of these bits during the forthcoming iterations. This can 

only be achieved by first reducing the LLRs' magnitude and then changing their polarity 

during the successive iterations. Once the erroneous LLR polarity has been changed, it 

may become possible to increase the magnitude of the corresponding LLRs, which reflects 

their increased confidence. By contrast, data bit %, which is the interleaved data bit ui 

of the first decoder, shows a significant increase in terms of its reliability or confidence. In 

summary, we observe that the first decoder provides an estimation of the data bits and that 

the second decoder improves the reliability of the soft outputs. 

In the second, and all subsequent, iterations the first component decoder is capable of 

using the extrinsic information provided by the second decoder in the previous iteration 

as intrinsic information. As a further step. Figure 3.16 shows the trellis diagram of SOVA 

decoding in the first decoder during the second iteration. It can be seen in the figure 

that this decoder uses the same channel information LcUk, as it did in the first iteration. In 

contrast to Figure 3.14, it has however intrinsic information provided by the second decoder 

during the first iteration, in order to assist in finding the correct path through the trellis. 

The selected ML path is again shown by the bold line in Figure 3.14 and it can be seen 

that now the correct all zero path is chosen. Again, the a-posteriori information L{uk\y) 

and the extrinsic information Le{uk) are calculated and summarised in Table 3.6. 

Ls. Out) 

k 1-̂ *4 ('"*;) 1 (u&)| 
Min Uk LcUk 

0 2.8 12^ (30 3.5 2.8 -1 - & 8 +1.0 - L 4 - 1 4 
1 oo 12.0 OO oo 12.0 - 1 - l&O - 3 J --3.2 - 5 . 1 
2 2.8 12^ 4.1 3.5 2.8 - 1 --2.8 +0.9 - 1 . 7 --2.0 
3 2.8 oo oo oo 2.8 — 1 --2.8 --0.3 - 1 . 3 —1.2 

Table 3.6: SOVA output for the second iteration of the first decoder in terms of the a-
posteriori information L{uk\y), soft channel outputs LcUk, intrinsic information L{uk) and 
extrinsic information Le{uk). 

The second iteration is then completed by finding the extrinsic information generated by 
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Figure 3.16: TreUis diagram for the SOVA decoding in the second iteration of the first 
decoder. 
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the first decoder, interleaving it and using it as intrinsic information for the second decoder. 

It can be shown that the second decoder will also select the all-zero path as the ML path, 

and hence the output of the turbo decoder after the second iteration will be the correct 

all —1 sequence. This concludes our example concerning the operation of iterative turbo 

decoding using the SOVA algorithm. 

3.5 M A P Algor i thm For Ex tended B C H codes 

3 ,5 .1 I n t r o d u c t i o n 

This section presents a block turbo decoder using extended BCH codes as the component 

codes. The MAP algorithm is modified in order to incorporate the parity check bit into 

calculating the LLR of the decoded bits. Identical results are expected, when using the 

alternative approach of creating an extended trellis for the corresponding extended codeword 

length. 

Conventional BCH codes are denoted by BCH(n, A, where n, denote the 

codeword length, the number of information data bits and the minimum free distance, 

respectively. These codes are referred to as extended BCH codes [96], if a parity check bit 

is appended to the BCH codeword. This extends the primary BCH codeword by one bit, to 

n + 1, and it expands its minimum free distance from dmin to dmin + 1 • Hence the extended 

BCH code is denoted by BCH(n + 1, &, dmin + !)• The process of code extension [96] is also 

referred to as code expansion in [90]. Figure 3.17 shows the weight distribution [19] of both 

the BCH(31,26,3) and that of the extended BCH(32,26,4) codes. Notice that the extended 

BCH code has only even weight terms because of the effect of the parity check bit. 

BCH(31,26,3) 
2.e+07 

1.56+07 

1.64-07 

g 5.e+06 

0 5 10 15 20 25 30 
Hamming weight 

Extended BCH(32,26,4) 
2.e+07 

1.5e+07 

l.e+07 

g 5.6+06 

0 5 10 IS 20 25 30 
Hamming weight 

Figure 3.17: Weight distribution of the BCH(31,26,3) and BCH(32,26,4) codes. 
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3 .5 .2 M o d i f i e d M A P A l g o r i t h m 

3.5.2.1 T h e Forward and Backward Recursion 

In order to incorporate the parity check bit of extended BCH codes in the MAP algorithm, 

we have to make modifications to Equations 3.26 as well as 3.30 and then to Equation 3.32. 

Let us define o;^(s) as the probability that the current trellis state is Sk = s at time k, 

where the superscript indicates that the path arriving at this state gave an even number 

of transmitted bits, which were +1, given that the demodulator's soft output up to this 

point was ^ . Similarly, Q;^(s) is defined as the probability that the current trellis state is 

S/c = s at time k, where the superscript indicates that the path leading to this state gave an 

odd number of transmitted bits, which were +1, given that the demodulator's soft output 

up to this point was For each state in the trellis, we determine the probabilities 

and a^(s), which are shown in Figure 3.18. 

'a&(a),a%(s) 

(Output 1%̂  

+1 
- 1 

Figure 3.18: Forward recursion of q;|(s) and a^(s). The corresponding conventional MAP 
forward recursion was shown in Figure 3.7. 

Then, using Equation 3.26 and Figure 3.18, for a binary trellis we can derive the total 

probability of an even number of transmitted binary + 1 bits as the sum of the probabilities 

of having an even number of + l s at stage k — 1 and encountering a —1 during the current 

transition, plus the probability of an odd number of + l s at the previous stage and encounter 

a 4-1 during the current transition, yielding: 

= + - (3.64) 

Explicitly, since transition 7^^(s2, a) from the previous state gg to the present state s results 

in the transmitted bit being —1, Q!|_;^(S2).7^^(S2, S) is the probability of the path to state 

s, which gave an even number of transmitted bits that were +1. Conversely, is 

the probability of the path to state si, which gave an odd number of transmitted +1 bits. 

Since transition from the previous state si to the present state s results in the 

transmitted bit being +1, Q;^__^(SI).7^^(SI, s) is the probability of the path to state s, which 
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also gave an even number of transmitted bits that were +1. 

Again, using Equation 3.26 and Figure 3.18, a^(s) is derived for a binary trellis, 

« t W = a !L i (^ i ) -7 t ^ ( a i , a )+aL i ( a2 ) .7 t ^ ( a2 , a ) - (3.65) 

The same modification is made to the backward recursion and hence we derive from 

Equation 3.30: 

/ )Li (a) +/3t(g2).7t (3 66) 

and 

/ )Li(a) =^t(ai) .7;^^(a,ai) +;8]g(a2).7t^(a,g2) - (3.67) 

3.5.2.2 Trans i t i on P robab i l i t y 

*L 
a" 

Ou tpu t bit 

+ 1 — 

_ 2 
• • • • • 

Figure 3.19: Probability of a transition in the trellis. 

Figure 3.19 shows a simple trellis diagram, which commences at state a and ends at state 

e. The probability of the transition from state c to state d is formulated as: 

f (c d) = oik_i(8).i'k(8,8).j0k(s) . (3.68) 

For extended BCH codes, however, the probability of a transition in the trellis no longer 

depends purely on a/t_i(s), ^ ( a , s) and Pkis)- It also depends on whether the whole path 

gave an even or odd number of transmitted bits, which were +1. In Figure 3.19, path 

a - ^ b ^ c ^ d - ^ e gives an odd number of transmitted bits, which were +1. Hence, the 

probability of the transition c ^ d is: 

f (c -> d) = o:t-i(a)-7A(a, a)./)A:(5).f (3/n|a:n = +1) , (3.69) 
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where Xn is the transmitted parity bit, while y„ is the corresponding demodulator soft 

output. 

Similarly, if the path a — ) - e had resulted in an even number of transmitted 

bits, which were +1, the probability of the transition would be 

f (c d) = at-i(a).7A:(a, a).A W - f (z/nkn = - 1 ) - (3.70) 

3.5.2.3 A-Posteriori Information 

For each trellis state, we now have a^(s), a^(a), /5^(s) and /3^(s) in contrast to akis) and 

/5fc(s) in the generic MAP algorithm. In other words, we have separated the probabilities 

ak{s) and Pkis) into two groups, respectively, depending on the nature of the trellis paths 

that reach state s. Additionally, we also have the probability P{yn\xn) for the transmitted 

parity bit. Hence, we can derive the a-posteriori LLR L{uk\y) from Equation 3.32, as 

follows: 

E) +1) + 4- = -1 ) ] 
(i,s)=> 

(«,»)=> 

(3.71) 

where a", and are shorthands for 0!^_^(5), 0!^_^(s), ;8ĵ (a) and ^jg(5), respectively. 

By definition, in the numerator of Equation 3.71, the transition from the previous state 

Sk-i = s to the present state Sk = s always results in a transmitted bit of +1. The 

path a |_^(s) .7^^(s, s) .^ | (s) results in an odd number of transmitted bits that are +1, 

since both the paths to state Sk-i = s, and from state % = s, gave an even number of 

transmitted bits which were +1, and the transition from state Sk-i = s to state Sk — s 

results in a transmitted bit of +1. Similarly, the path s).^^(s) also results 

in an odd number of transmitted bits that are +1. Therefore, the probabilities of both 

transitions are a®.7^^(s, 5)./?®.P(y„|x„ = +1) and o;°.7^^(s, s)./3°.P(y„|a;„ = +1), respec-

tively. Conversely, paths o:^_^(5).7^^(a,5)./)]g(5) and a!^_^(5).7j^^(a,a).^jg(a) would result 

in an even number of +1 transmitted bits. Hence, the probabilities of both transitions are 

0 : ^ . 7 ) ^ ^ ( 8 , = - 1 ) and o:°.7j^^(8,8).^^.P(^n|3:n = —1), respectively. The same 

argument is applied to the denominator in Equation 3.71 in order to derive the probability 

of each transition. 
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3 .5 .3 M a x - L o g - M A P and L o g - M A P A l g o r i t h m for E x t e n d e d B C H codes 

As mentioned in Section 3.3.4.3, conceptually the Max-Log-MAP and Log-MAP algorithms 

are the same, except that the approximation made in Equation 3.37 in the context of the 

Max-Log-MAP algorithm can be made exact by using the Jacobian logarithm [95]. Hence, 

in this section, we will only describe the Max-Log-MAP algorithm. 

The proposed modified MAP algorithm calculates the a-posteriori LLRs L{uk\y) using 

Equation 3.71. Hence, it requires the following values: 

1. The and values, which are calculated in a forward recursive manner 

using Equations 3.64 and 3.65, respectively; 

2. The /5|(s) and ^^{s) values, which are calculated in a backward recursive manner 

using Equations 3.66 and 3.67, respectively; 

3. The transition probabilities jk{s, s); 

4. The probability that the number of transmitted bits, which are +1 is even, P{yn\xn = 

4-1), or odd, = - 1 ) . 

The Max-Log-MAP algorithm simplifies the preceding equations by transferring them 

into the logarithmic domain and then using the approximation [50,51]: 

In % max(a;j) , (3.72) 

where means the maximum value of a;,. 

Let us deEne ^^(g), rt(a,5) as follows: 

v4%(5) hi[a%(a)] , (3.73) 

(3 74) 

j32(a) ln[#:(a)] , (3.75) 

Bjg(5) A hi[/3^(s)] , (3.76) 

(a, a) A (a, a)] , (3.77) 
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and 

(3.78) 

Upon substituting Equation 3.64 into Equation 3.73 and using Equation 3.72, we arrive at: 

% max[{yl%_2(a)+rj^.^(a,g)},{A^_2(g) + rj^^(8,s)}] . (3.79) 

Following the same approach and substituting Equation 3.65 into Equation 3.74, we get: 

^ t (5 ) = ki[a!g_i(s). 'y-i(g,a) + a,=_^(^).'y+i(^,g)] 

^ g{ALi(a)+r+Xa,^)} In 

max [{ALi(^) + r ^ ' ( a , . ) } , {y iLi ( s ) + r+:(a , s)}] 

Similarly to Equation 3.79 and 3.80, we can rewrite Equation 3.75 as: 

- ln[/3;g(a).'y-i(g,a)+/30(g).'y+i(^,g)] 

In + g{BgW+r+'(a,.)} 

max [{Bj:(a) + r^ : (6 , a)} , {B!g(a) + r+ i (a , a)}] , 

and Equation 3.76 as: 

Bjg(a) = hi[/3;g(g).'y^\8,a) + /3jg(3).'Y^^(3,a)] 

= In | ' e { ^ % ( « ) + r t + e{^:W+rr(^'^)} 

max [{g!g(3) + r^i(3,3)} , {gjg(a) + r+:(A, a)}] 

(3.80) 

(3.81) 

(3.82) 

We quote and simplify the following equation from Equation 3.43: 

rf* (s, s) = -—L{uk) + —yk^k , (3.83) 

where L{uk) is the intrinsic information of the data bit Uk and Lc is the channel reliability 

value. 

If we assume that the bit = ± 1 has been sent over a Gaussian or fading channel using 

BPSK modulation, then we can write for the conditional probability of the matched filter 

output Un that: 

f (3/ |̂a:n ±1) = ^ = e 
<Tv27r 

(3.84) 



where Ef, is the transmitted energy per bit, cr̂  is the noise variance and a is the fading 

amplitude. For non-fading AWGN channels, the value of a is unity, i.e. a = 1. 

Using Equation 3.84, we can rewrite Equation 3.78 as: 

1 ^^=±1 = la 
a V ^ . 

where C = In 

== C"-- (7' =b , (3.85) 

oVlff ' ~ and Lc = Both C and C are independent of 

the transmitted parity check bit and hence can be considered as constants, which are 

omitted, when comparing the various paths through the trellis. 

Finally, using Equations 3.72 to 3.85, we can rewrite the a-posteriori LLRs L{uk\'^ of the 

MAP algorithm in Equation 3.71 for the Max-Log-MAP algorithm, yielding: 

L{uk\y) ^ max [ P ( s , s ) ] - max [P(s,s)] , (3.86) 
U&= + 1 1 

where 

jP(5,5) = max[{r^*(a , ^) + -^t-1 (•s) + Bl{s i) + 

{ C ( ^ , a) + [a) -k B^(8 ) +6^" ' 

{ r r ( a , a) + ^1 -1 ( :a)+B]g(8 ) + 6^"' 

{ r r ( ^ , •s) + [a)+-^^(a ) + 6"="= (3.87) 

3.6 Simulat ion Resul ts 

In this section, we are going to present our simulation results for turbo codes using simple 

BPSK over AWGN channels. We will show that some of the parameters are interlinked, 

which jointly affect the performance of turbo codes, depending on: 

• The number of decoding iterations used. 

• The decoding algorithm used. 

• The component BCH code employed. 
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• The frame length of the input data. 

• The design of the interleaver used. 

All our investigations were conducted using the turbo encoder structure shown in Fig-

ure 3.1. The data bits of the upper encoder are transmitted through the channel, whereas 

the interleaved data bits of the lower encoder are punctured. However, the parity bits from 

both encoders are multiplexed alternately and none of them are punctured. The multiplex-

ing and puncturing patterns are the same for all simulations, unless stated otherwise. 

3 .6 .1 N u m b e r of I t era t ions U s e d 

BER against Ey/Ng 

5 • Uncoded 
A 1 iteration 

2 
0 2 iterations 

10^ o 4 iterations 
5 • 6 iterations 

8 iterations 
2 * 16 iterations 

Eb/No(dB) 

Figure 3.20: Performance comparison of different number of iterations using the rate R = 
0.72 turbo BCH(31,26,3) code, in conjunction with a 26 x 26 bit block interleaver and the 
Log-MAP Algorithm over AWGN channels. 

Figure 3.20 shows the performance of the rate i? = | | = 0.72 turbo BCH(31,26,3) code, 

using a 26 x 26 bit block interleaver and the Log-MAP algorithm, versus the number of 

decoding iterations used. Again, since all the parity bits of both the upper and lower 

encoder of Figure 3.1 are transmitted through the channel, this results in a coding rate of 
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R = 0.72. As the number of iterations used by the decoder increases, the decoder performs 

significantly better. However, after 4 iterations there is only little improvement upon using 

further iterations. 

In [116], Goalie and Pyndiah used the extended BCH(32,26,4) product code for real-

time block turbo decoding. The authors invoked the soft input and soft decision output 

of algebraic decoding and achieved a coding gain of about 6 dB at a BER of 10"^ using 4 

iterations. By contrast, the coding gain of our turbo BCH(31,26,3) code used in Figure 3.20 

is about 5.5 dB at a BER of 10~®. However, in [81,116] the authors use 'factors optimised 

by simulation' for weighting the soft information. Furthermore, the associated code rate of 

IY X If = 0.66 used in their scheme was also slightly lower. Moreover, this decoding method 

is only applicable to product code. 

BER against Ey/Ng 

e Uncoded 
A 1 iteration 

10"̂  0 2 iterations 

5 o 4 iterations 
-k 6 iterations 

2 8 iterations 

Figure 3.21: Performance comparison of different number of iterations using the rate R = 
0.51 turbo BCH(31,21,5) code in conjunction with a 21 x 21 bit block interleaver and the 
Log-MAP algorithm over AWGN channels. 

Figure 3.21 shows the performance of the rate R = '^ = 0.51 turbo BCH(31,21,5) code, 

using a 21 X 21 bit block interleaver and the Log-MAP algorithm, versus the number of 

decoding iterations. It can be seen that the coding gain between each iteration is higher 

than that of the BCH(31,26,3) component code. Specifically, the gain between the first and 
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second iteration is about 1.5 dB, whereas for the previous turbo BCH(31,26,3) code we had 

an improvement of about 1 dB only. When using two iterations, the coding gain is about 

6.75 dB at a BER of 10^®. 

If we compare the complexity of both component codes, the rate R = 0.72 turbo BCH(31,26,3) 

code is significantly less complex, than the rate R = 0.51 turbo BCH(31,21,3) scheme. Since 

the trellis-decoding complexity of BCH codes is directly proportional to 2""*, the turbo 

BCH(31,21,5) code is about = 32 times more complex, than the turbo BCH(31,26,3) 

scheme. Furthermore, the associated memory requirement is also 32 times higher. As an 

example, four iterations of the turbo BCH(31,26,3) code yield a BER of about 2 x 10"^ at 

an Eh/No of 3 dB, which is about an order of magnitude better, than the BER of the turbo 

BCH(31,21,5) scheme at one iteration, while its complexity is about eight times lower. At 

two iterations however, the approximately 16 times more complex turbo BCH(31,21,5) code 

outperforms the BCH(31,26,3) turbo arrangement. 

3 .6 .2 T h e D e c o d i n g A l g o r i t h m 

BER against E /̂Nc 

Uncoded 
Log-MAP 
Log-MAP (Exact) 
Max-Log-MAP 
SOVA 

Figure 3.22: Performance comparison between different decoding algorithms for six itera-
tions using the rate R = 0.72 turbo BCH(31,26,3) code in conjunction with a 26 x 26 bit 
block interleave! over AWGN channels. 
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Figure 3.22 shows a comparison between the different turbo BCH(31,26,3) component 

decoders described in Section 3.3, using a 26 x 26 bit block interleaver. In the figure, the 

performance of the MAP algorithm [11] is not shown, because it is identical to that of 

the Log-MAP algorithm [52]. This is justified, since the Log-MAP algorithm is a specific 

version of the MAP algorithm transformed into the logarithmic domain in order to simplify 

its operation and to reduce the numerical problems associated with the MAP algorithm, as 

described in Section 3.3.4. 

The "Log-MAP (Exact)" curve refers to a decoder, which calculates the correction term 

/c(^) in Equation 3.45 of Section 3.3.4.3 exactly, i.e. using 

A W = M l + e - ' ) , (3.88) 

rather than a look-up table, as described in [52]. The Log-MAP curve refers to a decoder, 

which does use a look-up table with eight values of fc{S) stored, and hence introduces an 

approximation to the calculation of the LLRs. It can be seen in Figure 3.22 that the "Log-

MAP (Exact)" and "Log-MAP" algorithms give identical performances. In [52], Robertson 

found that the look-up table based values of the f c { S ) correction term in Equation 3.45 

introduces no degradation to the performance of the decoder. 

It can be seen from Figure 3.22 that the Max-Log-MAP and the SOVA algorithm both 

suffer some degradation in performance compared to the Log-MAP algorithm. At a BER of 

10"^, this degradation is about 0.1 dB for the Max-Log-MAP algorithm, and about 0.7 dB 

for the SOVA algorithm. However, at a BER of 10"^, the Max-Log-MAP algorithm suffers 

only insignificant degradation. The complexity of these algorithms was compared in [52]. 

Again, Figure 3.23 shows our performance comparison between different decoding algo-

rithms. However, the component code used is the BCH(31,21,5) scheme employing a 21 x 21 

bit block interleaver. The figure shows that the degradation incurred by using the Max-

Log-MAP algorithm is approximately 0.2 dB at a BER of 10"^, which is the about the same 

as that for the BCH(31,26,3) component code in the previous case. However, the SOVA 

algorithm shows a significant Eb/No performance degradation of 1.4 dB at a BER of 10"^ 

in comparison to the Log-MAP algorithm. 

3.6 .3 T h e Ef fec t of E s t i m a t i n g t h e C h a n n e l R e l i a b i l i t y Va lue Lc 

In Section 3.3 we have highlighted how the component decoders use the soft inputs, the 

soft channel outputs L^yk and the intrinsic information L{uk), in order to provide the 

a-posteriori information L{uk\y) as its soft outputs. In this section, we investigate how 

the imperfect estimation of the channel reliability value affects the performance of the 
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Figure 3.23: Performance comparison between different decoding algorithms for six itera-
tions using the rate R = 0.51 turbo BCH(31,21,5) code in conjunction with a 21 x 21 bit 
block interleaver over AWGN channels. 

algorithms. 

Figure 3.24 shows the effect of using imperfect channel reliability values Lc for three 

different decoding algorithms - namely for the Log-MAP, Max-Log-MAP algorithms and 

SOVA. For each decoding algorithm, the solid line shows the performance of the algorithm 

when the channel reliability value Lc is calculated exactly using the known channel SNR. 

The dashed curves in Figure 3.24 shows how the three algorithms perform, when the chan-

nel reliability Lc is not known. For these curves, the value Lc = 1, which according to 

Equation 3.8 corresponds to an Eh/No value of-3 dB, was used at all channel SNRs. It can 

be seen from Figure 3.24 that the Max-Log-MAP algorithm and the SOVA perform equally 

well, whether or not the correct value of Lc is known. However, the performance of the 

Log-MAP algorithm is drastically affected by the incorrect Lc value used. We can see that 

the performance of the Log-MAP algorithm is even worse than that of the uncoded case, if 

Lc = 1. 

The reason for these effects can be understood by considering the different operations 

described in Section 3.3. For the SOVA the soft channel output LcVk is used recursively in 
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BER against E /̂Nc 

Correct L 

• Uncoded 
A Log-MAP 
0 Max-Log-MAP 
O S()\(A 

2 3 
Eb/No(dB) 

Figure 3.24; Effect of using incorrect channel reliability values on the turbo BCH(31,26,3) 
code employing six iterations, the log-MAP algorithm and a 26 x 26 bit block interleaver 
over AWGN channels. 

order to calculate the path metric using Equation 3.51. In Equation 3.51, we can see that 

Lc is used to scale the demodulator's soft output and this has an effect of scaling all the 

path metrics by the same factor. Since the soft output LLRs generated by the algorithm 

are given by the path metric differences between the ML path and the discarded paths, 

the soft output LLRs are also scaled by the same factor. The same phenomenon was also 

observed for the Max-Log-MAP algorithm. 

Let us now consider the Log-MAP algorithm. This is identical to the Max-Log-MAP 

algorithm, except for a correction factor of fc{5) = ln(l + used in the calculation of 

the forward and backward recursion functions in Equations 3.25 and 3.29, respectively. The 

function fc{5) is a non linear function, which decreases asymptotically towards zero, as 5 

increases. Since 5 depends directly on Lc value, the performance of the Log-MAP algorithm 

degrades if imperfect estimation of Lc is given. 



(3H%LPT2&R.% "rLHtBOfhCKCXlCMAR? 92 

3 .6 .4 T h e Ef fec t of P u n c t u r i n g 

In their original turbo codec, Berrou et al. [13] appHed puncturing, in order to obtain a 

half rate code. An impressive performance was attained, even though half of the parity bits 

from both convolutional encoders were punctured. However, if we use block codes as the 

component codes, the parity bits are often unpunctured, since the associated performance 

loss would be excessive. 

BER against E^/No 

Uncoded 
No puncturing, R=26/36=0.72 
Puncture 2 parity bits, R=0.76 
Puncture 4 parity bits, R=0.81 
Puncture 5 parity bits, R=0.84 
BCH(31,26,3),R=0.84 

Eb/No(dB) 

Figure 3.25; Performance comparison between different puncturing patterns of the rate 
R = 0.72 turbo BCH(31,26,3) code employing six iterations, the log-MAP algorithm and a 
26 X 26 bit block interleaver over AWGN channels. 

Figure 3.25 shows our performance comparison between different puncturing patterns 

applied to the turbo BCH(31,26,3) code using a 26 x 26 bit block interleaver. We have 

seen in Section 3.2 that the turbo encoder consists of two BCH encoders. In Figure 3.25 

two BCH(31,26,3) encoders are used for the turbo encoder and each of them generates five 

parity bits. Therefore, for every block of 26 data bits, the turbo encoder will produce ten 

parity bits. In our first example in Figure 3.25 no puncturing is applied, which results in 

ten transmitted parity bits and a code rate of i? = 0.72. In our next example we show the 

performance of the code, when two parity bits are randomly selected and punctured for 

every block of 26 data bits. In the following examples, we punctured more parity bits, in 



order to attain a higher coding rate. 

We can see from Figure 3.25 that the performance of the turbo BCH(31,26,3) code de-

creases, as the coding rates R increases. In the figure we also show the performance of the 

conventional BCH(31,26,3) using the soft decision Viterbi algorithm. It can be seen that, if 

5 parity bits are punctured in the turbo code, which results in the same coding rate as that 

of the conventional BCH(31,26,3) code, the performance of the turbo BCH(31,26,3) code is 

about 1 dB worse, than that of the conventional BCH(31,26,3) code at a BER of 10"®. 

Generally, puncturing does not assist in improving the coding rate without sacrificing 

the performance of the turbo BCH code. Moreover, there are certain puncturing patterns, 

which outperform others at a certain coding rate [119]. However, it is impossible to find the 

optimum puncturing patterns for long codes by exhaustive search. One possible solution is 

to study the distance profile of the code, since the performance of the code depends on the 

distance properties and we can investigate the effects of puncturing on the distance profile. 

3 .6 .5 T h e Ef fec t of t h e Inter leaver L e n g t h of t h e T u r b o C o d e 

Many contributions [12, 13,69], have shown impressive performances for large interleaver 

lengths. Although interleaver length is afi'ordable in data transmission system (non-real 

time systems) since a delay of say 10^ bits is generally acceptable. However, for many other 

real time applications, such as for example interactive speech and video transmission, the 

system often can only tolerate a delay of approximately 100 bits. 

We show in Figure 3.26, how the interleaver length affects the performance of the rate 

R = 0.72 turbo BCH(31,26,3) code. The interleaver length of 26 and 104 bits, which 

uses a random and a 13 x 8 bit block interleaver, respectively, is suitable for the above-

mentioned real-time systems. It can seen from the figure that the performance of the turbo 

BCH(31,26,3) code using a random interleaver having an interleaver depth of 26 bits, is 

slightly better, than the conventional BCH(31,26,3) code using the soft decision Viterbi 

algorithm at a BER of 10"^. Notice also that the rate R of the turbo code is lower, than 

that of the conventional BCH code. In terms of decoding complexity, the turbo code is more 

demanding, than the conventional VA. As it was shown in Section 3.3.4, both component 

decoders of the turbo code have to calculate the values of a , (3 and 7. This results in 

about three times higher complexity, than decoding the same code using a standard Viterbi 

decoder. The curves shown in Figure 3.26 were generated using two component decoders and 

six iterations. The overall complexity of the corresponding turbo decoder is approximately 

2 X 6 X 3 = 36 times higher than that of a Viterbi decoder. Therefore, the conventional 

BCH encoding and decoding method constitute a better choice, if the affordable delay of 
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BER against E /̂Nn 
• Uncoded 
A 26 bits (random) 
0 104 bits (13x8 block) 
O 208 bits (26x8 block) 
* 676 bits (26x26 block) 
V 4992 bits (random) 

9984 bits (random) 
O BCH(31,26,3) 

Eb/No(dB) 

Figure 3.26: Performance comparison between different interleaver length for the rate 
R = 0.72 turbo BCH(31,26,3) code using six iterations, the log-MAP algorithm and the 
conventional rate R = 0.83 BCH(31,26,3) code using the soft decision Viterbi algorithm 
over AWGN channels. 

the system is low. 

The performance of turbo codes increases, as the interleaver length increases. However, 

as shown in Figure 3.26, the incremental coding gain becomes smaller, as the interleaver 

length increases. It reaches its near-optimum performance when the interleaver length 

exceeds 5,000 bits. Such a high interleaver length is only suitable for non-real time systems. 

3.6 .6 T h e Ef fec t of t h e Inter leaver D e s i g n 

It is well known that the interleaver design has a vital effect on the performance of turbo 

codes. The interleaver design together with the component codes used and the puncturing 

pattern play an important role in determining the minimum free distance dmin of turbo 

codes and in turn predetermines the performance of the code. 

In the context of turbo BCH codes we face various problems in designing the interleaver. 

Let the BCB.{ni, ki, dmini) and BCH(n2, k2,dmin2) schemes be the two component codes of a 



(Tff/LF'T'jEft 3. GTLfflBO BCfT 95 

turbo code. Since BCH codes are block codes, which encode k data bits each time, the length 

of the interleaver has to be multiple of ki and 62. Therefore, the design of the interleaver is 

not as flexible as that of turbo convolutional codes, which can have more flexibility in terms 

of the interleaver length. In this section we consider how the interleaver design affects the 

performance of the code, while keeping the interleaver length, the component codes and the 

puncturing patterns the same. 

0 1 2 3 0 9 6 15 

4 5 6 7 Interleave column 8 13 14 11 

8 9 10 11 randomly 4 5 2 3 

12 13 14 15 12 1 10 7 

(a) Block interleaver (b) Random-in-column 

block interleaver 

Figure 3.27: Bit positions in the (a) block interleaver and (b) Random-in-column block 
interleaver. 

First, we define a new type of interleaver, which is referred to as the random-in-column 

block interleaver. The bit positions of the block interleaver and random-in-column block 

interleaver are shown in Figure 3.27. In the block interleaver the data bits are entered into 

the matrix on a row-by-row basis. After the matrix is full, the data bits are read out on 

a column-by-column basis. In order to design the random-in-column block interleaver, we 

rearrange randomly the data bits within each column of the block interleaver. In Figure 3.27, 

we can see that for each column the bit positions of the block and random-in-column block 

interleaver are the same, except for the arrangement of the bit positions. 

The benefit of using the random-in-column block interleaver is shown in Figure 3.28 

in terms of its improved BER performance. The figure shows a comparison of different 

interleaver designs for an interleaver length of 676 bits using the rate R = 0.72 turbo 

BCH(31,26,3) code. It can be seen that at a BER of 10~® the performance of the random-

in-column block interleaver is about 0.2 dB better, than that of the block interleaver. Fig-

ure 3.28 also shows that the random interleaver has the worst performance of all. However, 

this is not always the case, when we use other interleaver lengths. In the following two 

figures, we show the effect of the interleaver design for both lower and higher interleaver 

lengths compared to the above mentioned 676-bit interleaver length. 

Figure 3.29 shows our performance comparison between different interleaver designs at 

an interleaver length of 104 bits using the rate R = 0.72 turbo BCH(31,26,3) code. Such 

short interleavers can be used for interactive speech transmission, for example. We can see 
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• Uncoded 
A 26x26 block interleaver 
0 Random interleaver 
O 26x26 random-in-column block interleaver 

Figure 3.28: Performance comparison between different interleaver designs at an interleaver 
length of 26 x 26 = 676 bits using the rate R = 0.72 turbo BCH(31,26,3) code, six iterations 
and the log-MAP decoding algorithm over AWGN channels. 

from Figure 3.29 at a BER of 10"^, which is often targeted by speech systems, that all 

the interleavers have essentially the same performance. The same trend is observed at low 

BERs for the 1 3 x 8 bit block interleaver, for the 104-bit random interleaver and for the 

13x8 bit random-in-column block interleaver. However, at a BER of 10"^, the performance 

of the 26 X 4 bit block interleaver is about 1 dB worse, than that of the others. 

Previously, we have seen how the interleaver design affects the performance of the code 

using small (104 bits) and medium (676 bits) interleaver sizes. Let us now characterise the 

performances of different interleaver designs at an interleaver length of 9984 bits, which 

is suitable for data transmission. Figure 3.30 shows our performance comparison between 

different interleaver designs using the turbo BCH(31,26,3) code. At a BER of 10~®, the 

performance of all the interleavers is about the same. However, for higher BERs the random 

interleaver outperforms the others. 

From the simulation results given above and from our simulation results using other 

component codes, we can draw some conclusions on the design of interleavers. Specifically, 

for a turbo BCH(n, k, dmin) code, the kxk random-in-column interleaver is preferred if the 
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Figure 3.29: Performance comparison between different interleaver designs at an interleaver 
length of 104 bits using the rate R = 0.72 turbo BCH(31,26,3) code, six iterations and the 
log-MAP decoding algorithm over AWGN channels. 

interleaver length \s k x k. For a small interleaver length, below k x k, the simple square 

block interleaver performs better. This implies that the number of columns and rows should 

not differ significantly. In a data transmission system we can have a high interleaver depth 

and it was found that the random interleaver is the best choice. 

3.6 .7 T h e C o m p o n e n t C o d e s 

Figure 3.31 shows the performance of different turbo BC'H.{n,k,dmin) codes using six iter-

ations of the Log-MAP algorithm. The interleaver length of each code is about 10,000 bits 

and the coding rate R varies from 0.3 to 0.83. 

In [61], Hagenauer, Offer and Papke showed simulation results for various Hamming 

codes, which have the same minimum free distance as BCH codes. The MAP decoding 

algorithm was employed in the authors' simulations. After comparing the results of [61] 

and the simulation results of Figure 3.31, we conclude that the BER performance of turbo 

BCH and Hamming codes is similar. 
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O 104x96 random-in-column block interleaver 
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Figure 3.30: Performance comparison between different interleaver designs at an interleaver 
length of 9984 bits using the rate R — 0.72 turbo BCH(31,26,3) code, six iterations and the 
log-MAP decoding algorithm over AWGN channels. 

In Figure 3.31, we have also included the Shannon capacity limit [1] of each BCH code, 

except for the turbo BCH(7,4,3) code. For the turbo BCH(15,11,3) code, which has a coding 

rate oi R = 0.58, the associated performance is about 4 dB away in terms of Eb /No from 

the Shannon capacity limit at a BER of 10~®. As we increase the coding rate to 0.83 by 

using the BCH(63,57,3) scheme as component codes, the performance curve is within about 

1.1 dB from the Shannon limit, again, when viewed at a BER of 10^®. In Table 3.7 we 

tabulated the Eb/No distances with respect to the Shannon capacity limit for the various 

turbo BCH codes studied. 

A simple conclusion can be drawn from Table 3.7 at this point. As we increase the 

codeword length n, while keeping the minimum free distance dmin constant, the coding 

rate R increases. As the coding rate R increases, the discrepancy between the associated 

performance curve and the Shannon limit is getting smaller. For example, we fix the 

minimum free distance to dmin = 3. Table 3.7 shows that the distance from the capacity 

limit is 4.0 dB when n = 15, which decreases to 1.1 dB, as n increases to 63. However, in [63] 

Nickl, Hagenauer and Burkert have performed several simulations over AWGN channels 
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BCH(7,4,3), R=0.40 
BCH(15,11,3),R=0.58 
BCH(31,26,3), R=0.72 
BCH(31,21,5), R=0.51 
BCH(63,57,3), R=0.83 
BCH(63,51,5), R=0.68 

Eb/No(dB) 

Figure 3.31: Performance comparison of different turbo BCH(n, fc, dmm) codes employing 
six iterations, the log-MAP decoding algorithm and an interleaver length of about 10,000 
bits over AWGN channels. The associated Shannon limits for different coding rates are 
indicated by the dotted vertical lines. 

Component Rate Distance to 
code Shannon limit 

BCH(15,11,3) 0.58 ^OdB 
BCH(31,26,3) 0.72 & l d B 
BCH(31,21,5) 0.51 &OdB 
BCH(63,57,3) 0.83 L l d B 
BCH(63,51,5) 0.68 &8dB 

Table 3.7: Distance to the Shannon capacity limit for turbo BCH codes using various code 
rates R. 
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using different (n = 2-^ — 1, A; = 2^ — 1 — A'", 3) Hamming codes as component codes and a 

& X A bit block interleaver. They have shown that the performance improvement for very 

long Hamming codes {N > 10) is marginal. Furthermore, they have also shown that the 

performance of the (1023,1013) Hamming code is only 0.27 dB away from the Shannon 

limit, which is the closest approximation to Shannon's limit reported so far for block codes. 

M 1 
EQlO 
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BCH(15,11,3),R=0.58 
BCH(31,26,3), R=0.72 
BCH(31,21,5),R=0.51 
BCH(63,57,3), R=0.83 
BCH(63,51,5), R=0.68 

1 
Eb/No(dB) 

Figure 3.32: Performance comparison of different BCH(n, k, dmin) turbo code employing six 
iterations, log-MAP algorithm and interleaver length of % 100 over the AWGN channels. 

Previously, we have studied the performance of different component codes using a high 

interleaver size of 10, 000 bits, which is suitable for non-real-time transmission systems. Let 

us now consider real-time transmission system, which requires a short delay. Hence the 

interleaver size was reduced to approximately 100 bits. Figure 3.32 shows our performance 

comparison for different turbo BCH(n, k, dmin) codes at an interleaver length of approxi-

mately 100 bits. In Figure 3.31, as we increase n while maintaining a minimum distance 

of dmin = 3, we observe that there is an increase in coding gain at a BER of 10"^. How-

ever, if we limit the interleaver size to approximately 100 bits, the situation is reversed. 

As shown in Figure 3.32, the turbo code using the BCH(15,11,3) scheme as its component 

code achieves the highest coding gain at a BER of 10"^ compared to the BCH(31,26,3) and 

the BCH(63,57,3) codes. As n increases, while keeping dmin constant, k increases as well. 
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Therefore, the number of BCH codewords that fit into an interleave! size of about 100 bits 

becomes smaller. Hence the number of BCH codewords per turbo coded block reduces, and 

hence the correlation between the upper and lower codewords also increases. As the data 

bits become more dependent on each other, the turbo decoder is less likely to correct the 

errors that occurred in the turbo block. 

In Figure 3.31, we observe that the BCH(63,51,5) component codes outperform the 

BCH(31,26,3) component codes in the context of turbo coding, even though their cod-

ing rates are nearly the same, namely 0.68 and 0.72, respectively. This is because the 

BCH(63,51,5) code has a higher minimum free distance dmin and n is twice higher. How-

ever, for a small interleaver size of about 100, the BCH(31,26,3) code performs as well as 

BCH(63,51,5) scheme at a BER of 10"^ and 0.5 dB worse at a BER of 10~®. This simply 

implies that at a BER of 10"^ we can achieve a high coding gain by using the BCH(31,26,3) 

code, which has a higher coding rate and a lower complexity. Generally, if the interleaver 

size is small, it is better to choose BCH(?t,, A;, dmin) turbo component codes, which have 

small k. 

3.6 .8 BCH(31, / c , dmm) Fami ly M e m b e r s 

Both Figure 2.19 and 2.20 in Section 2.3.6 demonstrate that for a certain family BCH code 

defined by a constant codeword length of n, a specific BCH code achieve the highest coding 

gain, which is typically has a code rate in the range of 0.5 — 0.7. 

Here, we present similar results for different turbo BCH(31, k, dmin) code family members 

at an interleaver length of about 10,000 bits in Figure 3.33. It is seen in the figure that 

the turbo code using the BCH(31,21,5) code as its component code, has the highest coding 

gain. The coding rate R of the turbo code is about 

3.6.9 Mixed Component Codes 

In the previous section, we have presented our simulation results using the same component 

code for both the upper and lower encoder shown in Figure 3.1. Let us now study the effect 

of different component codes on the performance of the turbo code. 

Figure 3.34 shows our performance comparison between turbo codes using both different 

and identical component codes, at an interleaver length of about 10,000 bits. The turbo 

coding scheme denoted by the diamond shapes in Figure 3.34 consisted of the BCH(63,67,3) 

scheme as the upper component code and the BCH(31,21,5) arrangement as the lower 

component code. This codec results in a coding rate of i? = 0.63, which is between the 
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A BCH(31,26,3),R=0.72 
0 BCH(31,21,5),R=0.51 
O BCH(31,11,11),R=0.22 
* BCH(31,6,15),R=0.11 
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Figure 3.33; Performance comparison of turbo codes using BCH(31, A, dmin) family members 
as component codes, employing six iterations, the log-MAP decoding algorithm and an 
interleaver length of about 10, 000 bits over AWGN channels. 

coding rate of the first and the third turbo code shown in Figure 3.34. 

In Figure 3.34, we have demonstrated that the performance of the rate R = 0.63 turbo 

code using mixed component codes is about 0.25 dB worse than that of the rate R = 0.51 

turbo BCH(31,21,5) code. Hence, at the cost of slight degradation of the coding gain, we 

have increased the coding rate from 0.51 to 0.63. Furthermore, the complexity of the turbo 

code using mixed component codes is lower than that of the turbo BCH(31,21,5) code, but 

higher than that of the BCH(63,57,3) scheme. 

3 .6 .10 E x t e n d e d B C H c o d e s 

In Section 3.5, we proposed the modified MAP and Log-MAP algorithms in order to in-

corporate the parity check bit of the extended BCH codes into calculating the LLR of the 

decoded bits. Figure 3.35 shows the performance of both the BCH(31,26,3) and that of the 

turbo BCH(32,26,4) code. The Log-MAP algorithm was used and the number of iterations 

was six for both cases. The interleaver was a random interleaver using an interleaving depth 



103 

BER against E^/N, 0 

10 

10 

03 10' 

10 

10 

• uncoded 
A BCH(63,57,3)&BCH(63,57,3), R=0.83 
0 BCH(63,57,3)&BCH(31,21,5), R=0.63 
O BCH(31,21,5)&BCH(31,21,5), R=0.51 

1 

0.0 0.5 1.0 1.5 2.0 2.5 
Eb/No(dB) 

3.0 3.5 4.0 

Figure 3.34: Performance comparison between turbo codes using both different and identical 
BCH component codes, employing six iterations, the log-MAP decoding algorithm and an 
interleaver length of about 10,000 bit over AWGN channels. 

of 9984 bits. 

As explained in Section 3.5, a parity check bit was appended to the BCH(31,26,3) com-

ponent code, extends it to the BCH(32,26,4) code. Explicitly, the minimum free distance 

dmin was increased from three to four. In a turbo code the extra parity bit causes only a 

small degradation of the coding rate from 0.72 to 0.68. However, as shown in Figure 3.35, 

the performance of the turbo BCH(32,26,4) code is about 0.7 dB better than that of the 

turbo BCH(31,26,3) code. 

Further simulation results were obtained for the BCH(32,21,6) and the BCH(31,21,5) 

coded based turbo codes. Unlike for the BCH(31,26,3) and BCH(32,26,4) codes, the per-

formance of both codes remained about the same. This is probably because if we increase 

the minimum free distance dmin from three to four, this results in a 33 percent increase of 

dmin- By contrast, if we increase dmin = 5 to 6, the increase is only about 20 percent. 
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Figure 3.35; Performance comparison between turbo codes using the BCH(31,26,3) or the 
BCH(32,26,4) code as the component codes, employing six iterations, the log-MAP decoding 
algorithm and a random interleaver with a depth of 9984 bits over AWGN channels. 

3 .6 .11 B C H P r o d u c t c o d e s 

In Section 3.2 we highlighted the differences between turbo codes and product codes. As 

shown in Figure 3.2, the structure of turbo codes is the same as that of product codes, 

except that in turbo codes the redundancy part arising from checking the parity of the 

parity part of both codes is neglected. Furthermore, the turbo code has a smaller minimum 

free distance than the product code, as argued in Section 3.2. 

In order to exploit the parity of the parity bits of the product code, the Log-MAP algo-

rithm was modified so that it provided the soft output LLRs for the parity bits as well. Upon 

receiving the soft channel outputs of the product code, the decoder decodes the columns 

of the product code. The decoder provides the soft output LLRs of both the data and the 

parity bits. Then, the decoder uses the soft channel outputs plus the intrinsic information of 

the data and parity bits, in order to decode the rows of the product code. The above process 

continues for a certain number of iterations. The same decoding techniques have also been 

proposed for product codes when using soft in soft out algebraic decoding [81,115-117]. 
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Figure 3.36: Performance comparison between the BCH(31,26,3) product code and the 
turbo BCH(31,26,3) code employing six iterations, the log-MAP decoding algorithm and a 
26 X 26 bits block interleaver over AWGN channels. 

In Figure 3.36, we portray our performance comparison between the BCH(31,26,3) prod-

uct code and the turbo BCH(31,26,3) code using a 26 x 26 bit block interleaver. It can be 

seen that there is no significant performance improvement when using the BCH(31,26,3) 

product code. 

3.7 S u m m a r y and Conclusion 

In this chapter our discussions revolved around turbo BCH codes, rather than the conven-

tional turbo convolutional codes. The structure of the turbo encoder, which consists of 

two component codes, was discussed in Section 3.2. The difference between product codes 

and turbo codes was also highlighted in the section. Then the more complex structure of 

turbo decoders was presented in Section 3.3. The philosophy of iterative decoding was also 

detailed. This was followed by the definition of the log likelihood ratio and the derivation 

of the soft channel outputs in Sections 3.3.1 and 3.3.2, respectively. 

The MAP algorithm is the core of generating the soft information exchanged between 
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the decoders in the turbo decoder. The detailed derivation of the algorithm was given in 

Section 3.3.3. Briefly, the algorithm can be divided into three parts. It first calculates the 

transition probabilities of each trellis transition. Using the calculated transition probabili-

ties, the algorithm performs forward and backward recursion, which are the remaining two 

parts of the algorithm. A summary of the MAP algorithm was given in Section 3.3.3.4. Due 

to the high implementational complexity of the MAP algorithm, the less complex Max-Log-

MAP and Log-MAP algorithms were derived in Sections 3.3.4.2 and 3.3.4.3, respectively. 

The even less complex SOVA algorithm, which is a derivative of the Viterbi algorithm, 

was presented in Section 3.3.5 and a decoding example was detailed in Section 3.3.5.1. In 

Section 3.4, a decoding example was given in the context of the turbo BCH(7,4,3) code. 

The SOVA decoding algorithm was employed in the example and we showed, how iterative 

decoding improves the reliability of the soft outputs and hence corrects the channel errors 

that could not be removed by non-iterative decoding. 

We modified the MAP algorithm in order to incorporate an additional parity check bit in 

extended BCH codes. The algorithm was modified such that it kept track of the probability 

of the paths, which gave odd or even number of transmitted bits that were 4-1. This was 

vital in calculating the soft outputs, since the probability of the survivor path, which gives 

odd or even number of -f-1 transmitted bits, is known, as it was detailed in Section 3.5. The 

reduced-complexity modified Max-Log-MAP and modified Log-MAP algorithms were also 

derived and presented in Section 3.5.3 for the class of extended BCH codes. 

Finally, we presented our simulation results using BPSK over AWGN channels in Sec-

tion 3.6. We first investigated the efi'ect of iterative decoding on the performance of the 

turbo BCH codes. It was found that the performance of the BCH turbo code did not 

improve significantly after four iterations. Various decoding algorithms were compared in 

Section 3.6.2 and it was found that the Log-MAP and the Max-Log-MAP algorithms gave 

a similar performance. The SOVA decoding algorithm gives the worst performance, but it 

is the least complex algorithm. It was shown in Section 3.6.3 that imperfect estimation of 

the channel reliability value had no efi'ect on the performance of the Max-Log-MAP and 

SOVA algorithms. However, the Log-MAP algorithm performs badly, if the estimation 

of the channel reliability value is imperfect. The efi'ect of puncturing was investigated in 

Section 3.6.4 and as expected, it was found that puncturing degrades the performance of 

turbo BCH codes. Hence it was concluded that no puncturing should be applied to the 

parity bits of turbo BCH codes. In Section 3.6.5, we showed that, again, as anticipated the 

performance of turbo BCH codes improves as the turbo interleaver length increases and a 

near-optimum performance was achieved, when the interleaver length exceeded about 5,000 

bits. We proposed a novel interleaver design in Section 3.6.6. This interleaver design was 



referred to as the random-in-column block interleaver and it was shown to outperform other 

conventional block and random inter leavers, if the interleaver had a dimension of k x k, i.e. 

it was rectangular. Different turbo BCH codes which employ different BCH component 

codes were investigated in Section 3.6.7. It was found that turbo BCH codes perform im-

pressively at near-unity code rates. The turbo BCH(63,51,5) code was found to perform 

within about 0.8 dB from the Shannon limit. In Section 3.6.9, two different BCH compo-

nent codes were employed in the turbo encoder. The performance of this turbo BCH code 

was found to be between that of turbo BCH codes, which employ two identical BCH codes. 

The modified MAP algorithm was employed for decoding extended BCH codes and it was 

shown in Section 3.6.10 that the extended turbo BCH(32,26,4) code outperformed the turbo 

BCH(31,26,3) code by approximately 0.5 dB at a BER of 10~®. Finally, the performance of 

BCH product codes was found to be similar to that of turbo BCH codes in Section 3.6.11. 



Chapter 4 

Residue Number System 

4.1 In t roduc t ion 

We have things of which we do not know the number, 

If we count them by threes, the remainder is 2, 

If we count them by fives, the remainder is 3, 

If we count them by sevens, the remainder is 2, 

How many things are there? 

TAe answer z'a ,95. 

The verse [40] is quoted from a third-century book, Suan-Ching, by Sun Tzu. Motivated 

by the publication of the book [40], the study of the residue number system begins. In Sun 

Tzu's historic work, he presents a formula for manipulating the remainders of an integer 

after division by 3, 5 and 7. Today, his contribution is referred to as the Chinese Remainder 

Theorem (CRT) [40,41], which is one of the common rules of converting remainders, or 

residues into integers. 

The residue number system (RNS) [40-42] represents a further departure from two estab-

lished and well known number systems, the decimal and binary number systems. In many 

ways, the RNS is different from the decimal and binary number systems. Due to their 

basic differences, the RNS exhibits an unusual set of characteristics, which intrigued many 

researchers. The most interesting one is that the RNS provides the ability to add, subtract 

or multiply in parallel, regardless of the size of the numbers involved, without recourse to 

intermediate carry digits or internal processing delays [40,41]. In addition, there is a lack 

of ordered significance amongst the residues. Hence, without adding more logic circuits, it 

is possible in principle to produce a parallel computer. 
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However, a drawback of the RNS is the awkward nature of some operations, such as 

division [42,120-122], magnitude comparison [41,123-125], sign detection [41,126], scaling 

[42,127,128], additive and multiplicative overflow detection [41, 126, 128-130], etc, which 

are significantly much simpler in the decimal and binary number systems. Furthermore, 

significant complexity is involved in the conversion from the RNS to the decimal or binary 

number system [42,131,132], 

Due to the above-mentioned disadvantages, until recently the RNS arithmetic has not 

proved popular in general purpose computers. Instead, research interest has shifted to the 

fault tolerance characteristics of the RNS [41,42,42, 133, 134], for applications in digital 

signal processing (DSP) [126,135-139], in modulation schemes [140] , etc, for the correction 

of both computational errors and transmission errors. In digital signal processing, the carry-

free and fault tolerance properties of the RNS render them attractive for the implementation 

of digital filtering, that of the Fast Fourier Transform (FFT) spectral analysis, correlation, 

matrix operations and image processing [126,131,135-139,141,142]. A RNS-based M-ary 

modulation scheme has been proposed and analysed in [140]. 

Using the RNS, Szabo et al. [41] are amongst the earliest researchers, who have derived 

a method for single error detection and correction. However, the error correction proce-

dure proposed by Szabo is computationally inefficient and it is implementationally complex. 

Watson and Hastings [42] exploited the properties of the redundant residue number system 

(RRNS) for detecting or correcting a single error and also for detecting multiple errors. The 

RRNS is based on a RNS, which has a number of redundant residues added to it. Wat-

son's method for error correction needs a correction table, which may have a high memory 

requirement, thereby rendering the proposed technique impractical for the correction of 

more than a single error. Mandelbaum [143] showed how single error correction can be 

accomplished in a RRNS with the aid of less redundancy than that required in [42]. Later, 

Bar si and Maestrini [133] derived the necessary and sufficient conditions for the minimal 

amount of redundancy allowing the correction of an arbitrary single residue error. Watson's 

method was also used by Yau and Liu [134], but Watson's correction table was replaced by 

appropriate computations. Hence, the implementation proposed by Yau and Liu required 

less memory. 

Recently, a coding theoretic approach to error control has been developed in [43,44] in 

the context of the RRNS. The concepts of Hamming weight, minimum free distance, weight 

distribution, error detection capabilities and error correction capabilities was also intro-

duced. A computationally efficient procedure was described in [43] for correcting a single 

error. In [44], the procedure was extended for correcting double errors and simultaneously 

correcting single and detecting multiple errors. 



In this chapter, we combine our discourse by a rudimentary introduction to the RNS in 

Section 4.2. Some theorems associated with the RNS will be discussed in detail. Then, 

in Section 4.3 we present the coding theory of the RRNS. The options of implementing a 

channel codec using the RNS will be investigated in Section 4.7. Finally, our simulation 

results are given in Section 4.9. 

4.2 Background 

4.2 .1 Convent iona l N u m b e r S y s t e m 

The decimal number system is the most widely used number system, in which any integer 

X can be represented by 

X = o&lO* + ajt—iio''' ^ + ... + fflilO + qq 
k - l 

j=0 

where r is the radix of the system, which is equal to 10 for the decimal number system. 

The decimal digits aj are integers in the interval [0,9]. Thus, the integer X = 17 can be 

represented in the decimal number system as 

17 = 1 X 1 0 1 4 - 7 x 1 0 ° . (4^0 

Apparently, the decimal number system is of unlimited range] i.e., any integer can be ex-

pressed in the system regardless of its magnitude. Furthermore, this is a unique representa-

tion, since each integer has only one representation and this representation is non-redundant. 

A non-redundant system is defined as the system in which every combination of the digits 

aj represents a number and there is no two different sets of digits aj, which correspond to 

the same number. 

In Equation 4.1, each digit a j is multiplied by a constant, hence the decimal number 

system is a weighted number system. In this instance, the constant or weight is ICP, which 

is a power of the radix 10. Since all the weights used in this system are powers of the same 

base or radix, the decimal number system is referred to as a fixed radix system, where the 

fixed radix is 10. 

In modern computers the binary number system is used to represent the operands. Sim-

ilarly to the decimal number system, the binary number system has an unlimited range, 

and a unique representation. It is a non-redundant, fixed-radix number system. However, 

the radix is 2 and the coefficients Uj are integers in the interval [0,1]. The integer X = 17 



is represented as 

17== 1 X 2* 4 - 0 X 2% 4 - 0 x 2% + 0 x 2^ 1 x 2° . (4.3) 

In a weighted number system there are many advantages: 

• Magnitude comparison of two numbers can be readily carried out by comparing the 

most significant digits. 

• The range of the number system is easily extended by adding more digits. 

• Overflow can be detected by checking the carry of the most significant digit. 

• Simple polarity detection. 

• Multiplication and division by a power of the radix (e.g. 2 for a binary number system) 

can be accomplished by simple arithmetic shifts. 

The attributes which lead to these advantages impose a limitation on the speed with which 

the arithmetic operations can be performed. During the arithmetic operations, the carry 

information must be passed from digits of lesser significance to those of higher significance. 

Thus, it is impossible to process all digits in parallel. Furthermore, any errors encountered 

during the process will be propagated through to the most significant digit. 

4.2 .2 R e s i d u e N u m b e r S y s t e m 

The RNS is defined in terms of a A-tuple of pairwise relatively prime positive integers, 

mi,m2, where each individual member is referred to as a modulus. Hence the great-

est common divisor of {mi,mj) is 1 for i ^ j. The product of the moduli represents the 

dynamic range, M, of the RNS which is formulated as: 

k 

M = mj . (4.4) 
i=i 

Any positive integer X in the range of 0 < X < M can be uniquely represented by a A-tuple 

residue sequence given by 

A' 4—> ( a : i , 3 = 2 , a : t ) , (4.5) 

where the quantity Xj is the least positive integer remainder of the division of X by rrij, 

which is expressed as the residue of X modulo rrij or |X| . The positive integer Xj is also 

referred to as the j-th residue digit of X. 
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Let us consider a three-modulus RNS, having moduli of mi = 2, m2 = 3 and mg = 5. 

The range M of the RNS is 

= rni X)7%! :< nig 

= 2 x 3 x 5 

== 310 , (4.6) 

which implies that the system can represent any integers in the interval [0, 29] uniquely. 

For e x a m p l e , a n in teger % — 17 cam b e represented b y 

17<-- -» (1 , !2 ,2) . (4.7) 

If another integer of X = 47 is represented by the system, one would find that the integer 

47 has the same residue representation as the integer 17, namely, (1,2,2). The ambiguity 

of the residue representation is avoided, if only numbers from X to X + 29 are considered 

in this system, where X is an integer, which is normally 0. Table 4.1 shows the residue 

representation of integers —4 to +31. Clearly, we can see that the pattern of the residue 

representation repeats itself after 30 different patterns. For example, the integers 1 and 31 

have the same residue representation. 

Residues Residues Residues Residues 
Integers Moduli Integers Moduli Integers Moduli Integers Moduli 

2 3 5 2 3 5 2 3 5 2 3 5 
-4 0 2 1 -3 1 0 2 -2 0 1 3 -1 1 2 4 
0 0 0 0 +1 1 1 1 +2 0 2 2 +3 1 0 3 

+4 0 1 4 +5 1 2 0 +6 0 0 1 +7 1 1 2 
+8 0 2 3 +9 1 0 4 +10 0 1 0 +11 1 2 1 

+12 0 0 2 +13 1 1 3 + 1 4 0 2 4 +15 1 0 0 
+16 0 1 1 + 1 7 1 2 2 +18 0 0 3 +19 1 1 4 
+ 2 0 0 2 0 + 2 1 1 0 1 + 2 2 0 1 2 + 2 3 1 2 3 
+ 2 4 0 0 4 + 2 5 1 1 0 + 2 6 0 2 1 + 2 7 1 0 2 
+ 2 8 0 1 3 + 2 9 1 2 4 +30 0 0 0 + 3 1 1 1 1 

Table 4.1: Residue representation of the integers —4 to +31 using the moduli 2, 3 and 5 

For a signed number system, we can represent any integers from —M/2+1 to M/2. Again, 

we used the previous number system, which has the moduli of 2, 3 and 5. Hence, we can 

represent any integers from —14 to 15. Each number has an n-tuple representation where, 

I VI 
I 

| M - |X| 

X > 0 

0 . 
(4.8) 

The signed RNS system is often referred to as a symmetric system. 
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4.2 ,3 M i x e d R a d i x N u m b e r S y s t e m 

In Section 4.2.1 we have seen that the conventional decimal and binary number systems are 

fixed radix number systems, since all the weights used in Equation 4.1 are powers of the 

same radices. In a mixed radix system, the weights are products of a number of the radices. 

An integer X may be expressed in mixed radix form as [41]: 

t - l t -2 
X = akY[rj + ak-i J J rj + ... + 03̂ 17-2 + 02ri + ai , (4.9) 

j=i j=i 

where Vj are the radices and aj, 0 < aj < rj, are the mixed radix digits. Exphcitly, we 

can see that any positive integer in the interval 0,11^=1 ^ 1 may be represented by 

the system and that each number has an unique representation. Given a set of radices, 

r i , r2, ...rfc, the mixed radix representation of an integer X is given as follows: 

% <—> ( o t , o t - i , - 0 2 , Gi) - (4.10) 

Let us assume that we have a three-radix system, where r i = 2, rg = 3 and rg = 5, 

respectively. Hence, we can represent any integer in the interval [0, 29], which are expressed 

as: 

X = (23 X 6 -|- 0,2 X 2 + cix . (4.11) 

In Section 4.2.1 we have shown how the integer X = 17 is represented in the decimal and 

binary number systems with the aid of Equation 4.2 and 4.3, respectively. Applying the 

same principle, we can represent the integer X = 17 in the above-mentioned mixed radix 

number system as: 

17 = 2 x 6 - | - 2 x 2 - f - l 

17 (2% =2,1) . (4 .12) 

Table 4.2 shows the mixed radix representation of the integers 0 to 29. 

4.2 .4 R e s i d u e A r i t h m e t i c Operat ions 

Let us assume that we have two integers, namely Xi and %2- The corresponding RNS repre-

s e n t a t i o n s are <—> ( a ; i i , a ; i 2 , - - , 3 : i t ) a n d %2 <—^ (a;2i ,a;22,-- ,a;2t) , respect ive ly . T h e n , 

{xii,xi2, .•.,xik) 0 {x2i,x22, •••,X2k), where 0 denotes addition, subtraction or multiplica-

tion, results in another unique fc-tuple residue sequence namely X3 i—(331,3:32, ...,a;3t), 

as long as the number X3 is in the range [0, M — 1]. This is expressed as: 

%3 <—> ( | 3 : i i 0 2;2 iL^, |a: i2 0 a : 2 2 L 2 , . . . , | a ; i t 0 a : 2 A : L j - (4.13) 
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Number 03 02 ai Number 03 02 ai Number 03 02 ai 
0 0 0 0 1 0 0 1 2 0 1 0 
3 0 1 1 4 0 2 0 5 0 2 1 
6 1 0 0 7 1 0 1 8 1 1 0 
9 1 1 1 10 1 2 0 11 1 2 1 
12 2 0 0 13 2 0 1 14 2 1 0 

15 2 1 1 16 2 2 0 17 2 2 1 

18 3 0 0 19 3 0 1 2 0 3 1 0 
21 3 1 1 22 3 2 0 23 3 2 1 

2 4 4 0 0 25 4 0 1 26 4 1 0 
27 4 1 1 28 4 2 0 29 4 2 1 

Table 4.2; Mixed radix representation of the integers 0 to 29 for radices 2, 3, 5 

Again, let us consider the previous example using moduli m i = 2, m2 = 3 and = 5. 

The dynamic range M is 30. The three arithmetic operations, namely addition, subtraction 

and multiplication, are illustrated below as: 

7 f --> (1, 1, 2) 

+ 4 4 -^ (0, 1, 4) 

11 {- (1 rnod 2, 2 rnoci 3, 6 rnoil 5) = (1, 2, 1) 

7 { - (1, 1, 2) 

4 •(-̂  (0, 1, 4) 

3 f --4 (1 mod 2, 0 mod 3, -2 mod 5) == (1, 0, 3) 

7 f -^ (1, 1, 2) 

X 4 f -^ (0, 1, 4) 

28 -4- (0 mod 2, l n m d 3 , 8 i n o d 5) = (0, 1, 3) . 

It can be seen from the above example that the j - th residue digit, namely ig j , is uniquely 

and unambiguously defined in terms of {xijQx2j) modulo rrij. That is, no carry information 

has to be communicated between the residue digits. Hence, the overhead of manipulating 

carry information in weighted number system, can be avoided. This results in high speed 

parallel operations and it makes RNS attractive. In the event of an error occurring in a 

residue digit operation, the error is confined within the operation and it does not affect the 

result of other operations. 

It should be noted that the previous examples satisfy the condition 0 < Xi Q X2 < M. 

If this conditions is not satisfied, the correct results will not be obtained. For example, 
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7 

5 

4 (1, 

(1, 

2) 

0) 

35 f / -4 (1 mod 2, 2 mod 3, 0 mod 5) = (1,2,0) 4—>-5 . 

Explicitly, the result represented by the residues is wrong, a condition, which is termed 

as overflow. In the RNS system, an overflow is difficult to detect, since the residue digits 

have the same significance. Other arithmetic operations such as, magnitude comparison, 

sign detection, division, etc. require more sophisticated procedures. Sometimes, we have 

to convert the residue digits to the decimal number system in order to accomplish the 

a b o v e - m e n t i o n e d o p e r a t i o n s . 

4.2.4.1 Multiplicative Inverse 

In certain applications of the RNS the multiplicative inverse of an operand has to be de-

termined. If 0 < i < m and \X.L\^ = 1, L is referred to as the multiplicative inverse of X 

modulo m. Table 4.3 shows the multiplicative inverse of X for moduli 2, 3 and 5. Observe 

that there exists no multiplicative inverse of X = 2 for modulus m = 4, since no L can be 

found, for which \X.L\^ = 1 

m = 3 m = 4 m = 5 
X L X L X L 
1 1 1 1 1 1 
2 2 2 - 2 3 
- - 3 3 3 2 
- - - - 4 4 

Table 4.3: Multiplicative inverse of various values of X modulo 3, 4, 5 

The multiplicative inverse L is useful for example for converting the division of a residue 

digit Xj by a number X, to the multiplication of the residue digit Xj by the multiplicative 

inverse L of the number X modulo m. It is important to note however that this only applies, 

if the remainder of the integer division ^ is zero. 

Let us now illustrate the above concepts further using an example. Let us assume that 

we have a modulus of m = 5 and the residue is Xj = 4. The result of X = 2, is to be 

calculated using the multiplicative inverse L oi X modulo m. From Table 4.3, we know that 

the multiplicative inverse L oi X = 2 modulo m = 5 is equal to 3. Therefore the required 

division can be carried out with the aid of a multiplication by the multiplicative inverse L 
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as follows: 

4 
2, Remainder = 0 

4 
2 

= 2 . ( 4 ^ ^ 

|4 X 3|g 

As stated above, the division can only be replaced with the aid of multiplication by the 

multiplicative inverse, if the remainder of the integer division ^ is zero. Hence in the 

following example we demonstrate that for a remainder of 1 the division cannot be replaced 

by the above-mentioned multiplication. Explicitly, if X = 3, the multiplicative inverse L of 

% = 3 modulo m = 5 is equal to 2, 

4 
- = 1, Remainder = 1 

g ^ |4 X 2|g 

(4.15) 

The concept of the multiplicative inverse is important, when we have to convert the RNS 

representation of an integer to the decimal number system, using the Mixed Radix Conver-

sion (MRC) method, which will be introduced in Section 4.2.5.2. 

4.2 .5 R e s i d u e t o D e c i m a l Convers ion 

There are two methods of residue to decimal conversion; the Chinese Remainder Theorem 

( C R T ) [40 ,41] a n d t h e M R C [41]. 

4.2.5.1 Chinese Remainder Theorem 

The classic CRT uses the following expression for residue to decimal conversion: 

X Ml X \xiLi\ + Mg X 13:2-̂ 2Im, + ••• + ^ \xkLk\ mod M 
mi ' 

k 

m o d M , (4.16) \xjLj I J, 
3=1 

where M = and Mj = while Lj is the multiplicative inverse of Mj mod rrij, 

which was formulated as \{LjMj)\^, = 1. 

In order to show the validity of Equation 4.16, we take the modulo value rrii of both sides 
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of the equation, yielding: 

X mod rrij 

i=i 
'J Im,- m o d M > m o d m ; 

= m o d m ; (4.17) 

since Mj mod m j = 0, except for j = i. Since we have shown previously that (LjMj) mod rrij 

1, we can reduce Equation 4.17 to 

X mod rrij = xj mod rrij 

"3 J (4.18) 

which is simply the residue of the integer X upon division by rrij and hence it is valid by 

definition. Therefore, Equation 4.16 has been proven. 

Let us now use an example in order to explain the operation of the CRT more clearly. 

A three-modulus RNS employing the moduli m i = 3, mg = 4 and ma = 5 is used. The 

residue representation of an unknown integer X is (1,3,4). The corresponding values Mj 

and Lj are: 

M = 3 X 4 X 5 = 6 0 

Ml = 20 M2 = 15 

l ^ i L i = 2 | M 2 L ^ = 3 

Li =2 L2 = 3 

= 12 

1^3 L s = 2 

L3 = 3, 

where {Lj x \Mj\^,) modulo rrij = 1. Using Equation 4.16, we arrive at; 

A" = [ M i | a ; i i ; i | ^ ^ + M 2 | a ; 2 - Z ^ 2 L 2 + - ^ 3 k 3 ^ 3 L 3 ] m o d M 

= [20 X |1 X 2|g + 15 X |3 X 3I4 + 12 X |4 X 3|g] mod 60 

= [40 + 15 + 24] mod 60 

= 1 9 . (4.19) 

In principle, this method is fairly simple and straightforward. However, the associated 

operations are not readily implementable if the range M is high. For instance, the summa-

tion of Mj{x jL j ) , in a ten-modulus RNS system having moduli ranging from 100 to 128, 

could easily exceed the typical dynamic range of 2^^ of the computer used. We can solve 

this problem by modifying Equation 4.16 according to: 

k 

X = 

j=i 
M 

mod M . (4.20) 

However, this representation requires more computational power and the dynamic range 

M has to be less than that of the computer carrying out this conversion. By contrast, the 

MRC can be readily implemented, since it requires operations modulo rrij only. 



4.2.5.2 Mixed Radix Conversion 

In Section 4.2.3 we have highlighted the fundamental philosophy of the mixed radix number 

system and that of the multiplicative inverse. Let us now consider the conversion of the 

residues Xj, in the RNS to the mixed radix digits a j . Using the mixed radix digits a j , 

the decimal number represented by the RNS can be readily calculated with the aid of 

Equation 4.9. 

If a set of moduli m i , m2,..., m/; and a set of radices r i , r2 , . . . , rh are chosen so that 

rrij = rj, the mixed radix system and the residue number system are said to be associated. 

In this case both systems have the same dynamic range of values, that is, 0,11^=1 " 1 • 

Below, we present the process of converting an operand from the residue number system to 

the mixed radix number system. 

Since rrij = rj, we can rewrite Equation 4.9 as: 

t - l &-2 
X = akj^nij + ttk-i JJ rrij + ... + 0377117712 + a2mi + ai , (4.21) 

ji=i j=i 

where a j are the mixed radix coefficients. Let us first take Equation 4.21 modulo mi . As 

we can see in Equation 4.21, all the terms, except for the last one, are multiples of the 

modulus 77̂ 1. Hence, we have 

I ^ L i = = 01 . (4.22) 

Explicitly Equation 4.22 indicates that ai is the same as the first residue digit, namely xi, 

of the RNS. 

In order to obtain the coefficient 02, we have to subtract ai from Equation 4.21: 

t - l t - 2 
X — ai = akYj^ruj + a&_i JJ rrij + ... + 0377217712 + • (4.23) 

i = i j = i 

Equation 4.23 is now divisible by mi , yielding: 

t - l t - 2 
X — ai 

= a. J J rrij + ttk-i J J 7NJ + ... + 037712 + <22 • (4.24) n 

Again, all the terms in Equation 4.24 are multiples of the modulus 777,2- Hence we take 

Equation 4.24 modulo 7712 and we arrive at: 

X — ai 

7711 
= og • (4.25) 

m2 
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If we repeat the above procedures, namely subtracting, dividing and taking modulo, all 

the mixed radix digits may be obtained. Once all the mixed radix digits, aj, have been 

found, the mixed radix conversion is accomplished using Equation 4.9. 

It is interesting to note that 

ai 

02 

as 

% ' 

mi 

X 
7712 

ms 

Ok 

where 

77117712. 

is the integer value of the quotient X 

(4.26) 

In Section 4.2.5.1 we have shown using an example, how to invoke the CRT for converting 

residue digits to a decimal number. Here, we use the same example, but we employ the 

mixed radix conversion method of Equation 4.21. The RNS has the moduli of mi = 3, 

772,2 = 4 and ms = 5. The residue representation of the unknown integer X is (1,3,4). We 

substitute m j into Equation 4.21 and we get 

^ — 03(3 X 4) + 02(3) + di , (4.27) 

which will be used to calculate the decimal representation of the unknown integer X. How-

ever, we have to determine the mixed radix coefficients a j in Equation 4.27. 

Applying Equation 4.22, 

ai = xi — 1 . (4.28) 

We subtract ai = 1 from X = 19, yielding 19 — 1 = 18, which is formulated in the residue 

domain as: 

% ^ (1, 3, 4) 

^ (1, 1, 1) 

% - 01 ^ (0, 3) 

3,4,5 where 4 -̂4- denotes the residue representation of a number in the RNS using moduli 3, 4 

and 5. 



In Equation 4.24, we have shown that X — ai is divisible by mi and the remainder is 

equal to zero. Therefore, instead of employing the more cumbersome division operation of 

we can invoke the multiplication of X — ai with the multiplicative inverse Lj of mi 

modulo mj . The required multiplicative inverse values are shown in Table 4.3, yielding: 

JT-Oi 4^^ (2, 3) 

X Lj 3 2 

^ A (I6I4, 16(5) H (2, 1). 

As shown in Equation 4.25, 

modulo 4, giving 02 = 2. 

X—ai 
mi 

= 02- Hence, 02 is equal to the residue of = 6 
7712 ^ 

We repeat the above process again and we subtract 02 = 2 from = 6, yielding 4, 

which is formulated in the residue domain as; 

(2' 1) 

02 (2, 2) 

— (% I - I I5 ) < > (0,4). 

Then again, instead of carrying out the division we multiply with Lj, yielding; 

(4) 

Lj 4 

Ql6|s) (1), 

and hence 03 is found to be 1. 

Finally, we substitute all mixed radix coefficients aj j = 1,2,3 into Equation 4.27, giving; 

X = 12 x l + 3 x 2 + l 

= 19 . (4.29) 

Having exemplified the various conversion processes between the residue and decimal do-

mains, let us now consider the construction of redundant RNSs, which are used in RNS-

based error correction coding. 

4.2 .6 R e d u n d a n t R e s i d u e N u m b e r S y s t e m 

As we have highlighted in Section 4.2.2, the RNS is defined by the choice of k moduli, namely 

mi, m2,..., mfc. The dynamic range M of the RNS is & Redundant Residue 



Number System (RRNS), extra moduli, namely mk+i,mt+2, are incorporated into 

the RNS. As in the RNS, the moduli, mi,m2, . . . ,mk,mh+i,.. . , are chosen to be pairwise 

relatively prime positive integers and mk+j > max{mi,m2, Moduli mi ,m2, 

are considered to be non-redundant moduli and moduli are the redun-

dant moduli. The redundant moduli are not considered to increase the dynamic range, 

M = 11^=1 even though the redundant residues related to an integer operand now be-

come part of the residue representation of that integer. The interval [0, M — 1] is referred 

to as the legitimate range, where M = Mk = 11^=1 and the interval M„ — 1] is the 

illegitimate range, where = 11^=1 

In Section 4.2.5.1 the RNS having moduli mi = 3, m2 = 4 and ma = 5 was used. The 

corresponding RNS representation of the integer X = 19 is (1,3,4). If we incorporate a 

redundant modulus of m^ = 7, the integer will be represented by the RRNS as: 

( 1 , 3 , 4 , 5 ) . (4 .30) 

In general, any k of the n residue digits could be used to calculate the decimal represen-

tation of the integer X, if and only if ruk^j > max{mi,m2, [41]. The conversion 

method could be either the CRT or the MRC. Let us assume that a computer uses the 

above-mentioned RRNS as its number representation system. Due to a fault of a module in 

the computer, the residue X2 associated with the modulus is no longer valid. However, 

we can still calculate the decimal representation of the integer X using the residues xi, X3 

and X4. These residues constitute the residue representation of a new RNS, which has mi, 

rus and as its moduli. The dynamic range M of the new RNS is 105, which is more 

than the legitimate range of the RRNS. This implies that any number, within the legitimate 

range of the RRNS, is represented unambiguously by the new RNS. Furthermore, the new 

RNS and the RRNS have the same residues with respect to the moduli mi , mg and m^. 

Hence, we can calculate the original decimal number, even though we only have the residue 

digits a;i,X3 and Z4. Employing the CRT, the corresponding values Mj and Lj of the new 

RNS are: 

A f : = 3 x 5 x 7 ==105 

Ml = 35 -M3 = 21 M4_ = 15 

1^1 L i = 2 1 l ^ 4 L 4 = 1 

Li = 2 L3 = 1 Z/4 = 1, 



where {Lj x |Mj| ) modulo mj = 1. Using Equation 4.16, we arrive at; 

X = [35 X |1 X 2|g + 21 X |4 X l | g + 15 x |5 x l | y ] mod 105 

= [70 + 8 4 + 75] m o d 105 

= 1 9 . (4^U) 

The above simple example demonstrated an application of the RRNS. The RRNS is 

used extensively also in the field of error detection and correction schemes. Our detailed 

discussions on RRNS-based error correction coding are postponed to Section 4.3. 

4 .2 .7 B a s e E x t e n s i o n 

In the various applications of RNS arithmetics [41] it is often necessary to find the residue 

digits with respect to a new set of moduli, given the residue digits related to another set of 

moduli. In most cases the new set of moduli will be an extension of the original set; that 

is, one or more additional moduli are incorporated in the original set. This is the case for 

example, when creating the redundant moduli from the non-redundant moduli of a RNS. 

Normally, the CRT is employed to find the decimal number represented by the original set 

of moduli. This decimal number is then used to calculate the residues of the new set of 

moduli. However, there is a simpler procedure known as base extension (BEX). It is related 

to the MRC, with an additional final step, as highlighted below. 

Consider a RNS consisting of moduli mi,m2, The dynamic range of the RNS is 

M — 11^=1 If another modulus, mt+i, is incorporated into the RNS, the dynamic range 

will be extended and becomes M — 11^=1 Therefore, we have to add another term to 

Equation 4.9, yielding the mixed radix representation of the integer X in the form of: 

k k—1 
X = Qk+i J J ruj + o/c J J m j + ... + a^mim2 + agmi + ai . (4.32) 

j = i i = i 

Any integer %, represented by the original k moduli, will be in the interval 0, ruj — 

If the integer X is represented by the extended moduli in the mixed radix form, as shown 

in Equation 4.32, ak+i clearly will be equal to zero. In performing the MRC, the fact that 

0&+1 = 0 will be used to find . The method is best illustrated with the aid of a 

numerical example. 

In Section 4.2.6, we found the residue representation of the integer X = 19 in the RRNS. 

The process is straightforward and the residue representation of the integer X = 19 is 

(1, 3,4, 5), given that the moduli are mi = 3, = 4, mg = 5 and rui = 7. Let us assume 

that in this example we have no prior knowledge of the decimal representation of the integer 



X. The residue representation of the integer X is (1, 3,4), given that the moduli are mi = 3, 

7712 = 4 and ms = 5. A redundant modulus, = 7, is appended to the RNS and hence we 

have to find |%|y. 

In the RRNS, the residue representation of X will be (1,3,4, |%|y). The process of 

determining |%|y is initiated by performing the MRC in Section 4.2.5.2 in the usual manner, 

but including the \X\j value in the operations. We commence by recalling that 

Moduli: 3 4 5 7 

Residue Representation 1 3 4 I^IT ai = 1 

Subtract ai = 1 1 1 1 1 

0 2 3 | X | y + 6 

M u l t i p l y b y = 1 3 2 5 

X—ai 
mi 2 1 5 |%|7 + 2 02== 2 

Subtract ag = 2 2 2 2 

0 4 

M u l t i p l y b y Z,j, | 4 . i : j | ^ . = 1 4 2 

m2 
1 3 |%|7 as = 1 

Subtract 03 = 1 1 1 

0 3|%|y + 6 

M u l t i p l y b y = 1 3 

-12 
2 | % | y + 4 

7713 

Since 04 corresponds to in Equation 4.32, 04 is equal to zero. Therefore, 

04 = |2|%|y + 4|y = 0 , (4.33) 

and 

^ I ~ 4|y 

= 3 . Oi&Q 

Multiplying by the multiplicative inverse of 2 modulo 7, \L x 2\j = 1 ^ L = 4: yields; 

= |3 ><<1̂  = 5 . (4.35) 

Hence, the residue representation of integer X in the RRNS is (1,3,4,5). 

The BEX operation is fundamental to several important arithmetic operations, such as 

scaling [40,41], dynamic range extension, magnitude comparison, overflow detection and 

sign determination [41,126]. 
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4.3 Coding Theory of R e d u n d a n t Residue N u m b e r Systems 

As described earlier, RRNSs have been studied extensively for the protection of arithmetic 

and data transmission operations in general purpose computers [41-44,133,134, 143], in 

digital filters [135] and in modulation schemes [140]. In this section, we will discuss a coding 

theoretic approach to error control using the RRNS [43,44], The concepts of Hamming 

weight, minimum free distance, error detection and correction capabilities of RRNS based 

codes are introduced. The necessary and sufficient conditions for the desired error control 

capability are derived from minimum distance point of view. In a special case, we are 

capable of generating the maximum distance separable RRNS (MDS-RRNS). 

4 .3 .1 M i n i m u m Free D i s t a n c e of R R N S B a s e d C o d e s 

The minimum distance is a fundamental parameter associated with any error control code 

and it very much affects the performance of the code. As shown in Section 4.2.6, the 

integer number X, which is within the legitimate dynamic range M, can be represented in 

the RRNS by a set of residues or a valid codeword x. The number of non-zero residues 

of X is the Hamming weight, weight(x) of the codeword. The Hamming distance between 

two codewords x̂  and dist{xi,xj) is the number of residue positions in which and Xj 

differ. Hence, we can define the minimum distance dmin of the RRNS based codes as: 

dmin = m i n , (4.36) 

where ^ Xj and Xj, Xj are legitimate codewords in the RRNS. However, if the number of 

possible codewords x in the RRNS is high, it may not be possible to compute dmin using a 

full-search based on Equation 4.36. 

In [43], Krishna et al. derived the necessary and sufEcient conditions imposed on the 

redundant moduli in order for an RRNS code to have a minimum distance equal to dmin-

The minimum free distance of an RRNS code is dmin if and only if the product of the 

redundant moduh satisfies the following relation [43]: 

%% ruj. I > Mn-k > max < ][[ mj^ > , (4.37) 
1=1 J I i= l J 

where the illegitimate range is given by Mn-k = 11^=^+1 1 < ji < n, is an 

arbitrary modulus of the RRNS code. In simple terms a good code aims to attain the 

highest possible minimum distance, since this maximises the error correction capabilities 

of the code, whilst maximising the code rate. Maximising the code rate is achieved by 



maximising the useful information dynamic range and hence minimising the illegitimate 

range Mn-k, since the total dynamic range • M^-k = 11^=1 is constant. 

Proof: We will show the validity of Equation 4.37 in two steps, namely the validity of 

the right hand side inequality first and then the validity of the left hand side inequality. 

Consider a codeword having a Hamming weight of a, which implies having non-zero residues 

in positions j i , j2, •••da of the codeword, and zero residues elsewhere. As a result, X which 

represents the set of residues describing a codeword is a multiple oimj,j = 1,2, . . . ,n ; j ^ 

j'l, j2, •••jia- Thus, we can write the integer X as: 

n 
= ][[ , (4^8) 

i= i 
Ja 

where X' is an arbitrary integer satisfying 

0 < %' < . (4 .39) 

For an RRNS code to have a minimum distance of dmini the following conditions must 

be satisfied [43]: 

1. There is no valid codeword of Hamming weight dmin — 1 or less, except for the all-zero 

codeword; 

2. There is at least one valid codeword having a Hamming weight of dmin-

The first condition implies that if the Hamming weight a of codeword x obeys a < dmin — 1, 

then X > Mk = 11^=1 which means that X is in the illegitimate range of the RRNS, 

because except for the all-zero codeword there are no legitimate codewords having a Ham-

ming weight of a < dmin — 1- Considering now all the legitimate codewords, for which the 

condition a > dmin — 1 is trivially satisfied, we have X < Mk, which implies that X is in 

the legitimate range. Hence a; is a valid codeword. The first condition is satisfied trivially 

if and only if X > and the number of non-zero residues obeys a < dmin — 1- Let us 

therefore show that even the smallest possible value of X is outside the legitimate range 

Mk, i.e. it falls in the illegitimate range. The smallest possible value of X according to 

Equation 4.38 is obtained upon setting X' = 1, and including the smallest (n — a) number 
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of moduli for the set of n moduli. Consequently, the moduH must satisfy [43]: 

mm n m •3i 

max 1—1 

> Mt 

> Mt 
m ] 

Mn-k > max 
1 — 1 

n 
i = l 

mi (4.40) 

The second condition implies that there is at least one codeword representing the 

integer X < M^, that has a Hamming weight of a = dmin- Again, we set X' = 1 and 

include the smallest (n — a) number of moduli from the set of n moduli in Equation 4.38. 

Hence, we have 

mm n 
i= i 

m '3i 

i= i 
Jd, 

< 

< Mt 

< loax n 
1 = 1 

(4.41) 

which completes the proof • . 

Let us now consider an example of the RRNS using the following moduH [43,133]: 

(mi, m 2 , 7 7 1 3 , ? T ^ 6 ) - (3,7,11,13,16,17) . (4.42) 

Here we show how various RRNS codes exhibiting different distance properties and error 

correction capabilities, can be derived using these moduli. As mentioned before, our aim 

is to maximise the minimum distance and the useful information dynamic range M^. This 

implies minimising M^-k^ since = M^-k ' ^ k = 11^=1 ~ C", where C is a constant. 

Specifically, according to Equation 4.37, the minimum free distance of the RRNS becomes 

for example dmin = 3 if and only if the redundant moduli of the code satisfy: 

max {mjj771^2mjg} > Mn-k > max 

3536 > M n - t > 272 . (4.43) 

Therefore, we can have an RRNS code which has a minimum free distance of dmin — 3 

by using the following set of moduli as the redundant moduli: : M^-k = 272}, 



{mi,7712,m4 : M n - t = 273}, {mi,m2,m5 : = 336}, and so on. One can also readily 

verify that if the redundant moduli of {mi, mg, mg, mg : = 3696} are chosen, then 

the RRNS has a minimum free distance of dmin = 4. 

It is plausible from Equation 4.37 and with the aid of the above example that for a 

given RRNS and for the minimum distance of dmim the choice of the redundant moduli is 

not unique. However, we can find a set of redundant moduli, which requires the minimum 

redundant range of for maintaining a given minimum distance dmin- The correspond-

ing RRNS is termed the optimal RRNS. Note that minimising M^-k means maximising the 

useful information dynamic range M^, since x M^-k is a constant. This implies 

that the number of possible codewords x or the dynamic range of the code is maximised. In 

other words, the code rate is maximised, while maintaining a given minimum distance and 

error correction capability. Since the lowest illegitimate range is associated with the choice 

of {m5,m6 : Mn-k = 272}, this is our preferred option, since it ensures the highest useful 

information dynamic range M^- Furthermore, it requires only two redundant moduli for 

achieving dmin = 3 and hence four information moduli can be used. The associated code 

can be denoted as a RRNS(6,4,3) code. 

From Equation 4.40, the smallest value of M^-k for a minimum distance of dmin is 

obtained by setting 

{ d-min 1 ^ 

r i ' (4 44) 
i=l J 

where 1 < ji < n. Equation 4.44, which was derived from the right hand side of Equa-

tion 4.37, shows that the left hand side of the inequality in Equation 4.37 is satisfied trivially. 

It also shows that an optimal RRNS having a minimum distance of dmin uses the {dmin — 1) 

number of largest moduli from the set of n moduli as its redundant moduli. Therefore, we 

can write 
dmin f — ^ ^ 

n = A -I- (fmin - 1 - (4.45) 

Using a coding theoretic terminology, we will refer to an RRNS that satisfies Equation 4.45 

as the maximum distance separable RRNS. In our previous example, if moduli and me 

are chosen as the redundant moduli, we obtain the maximum distance separable RRNS 

code having a minimum distance of 3. The useful information dynamic range of this RRNS 

is [0,3003]. At this stage it is worth noting that RRNS codes exhibit strong similarities 

with the well-known class of Reed-Solomon (RS) code. They are both non-binary codes. 

RS codes convey fixed number of bits per symbol, while RRNS codes may have a difi'erent 



number of bits per residue, as we will show in more depth during our further discourse. 

They also have similar distance properties. 

4.3 .2 Lineari ty of R R N S C o d e s 

An RRNS(n, k) code is a block code, since it accepts k information symbols and generates n 

coded symbols. There are other block codes, such as the family of BCH and Reed-Solomon 

codes, which are linear block codes. The fundamental properties of linear block codes 

are [86]: 

• All-zero vector is a valid codeword; 

• The sum of two valid codewords is also a valid codeword. 

Assume that there are two codewords Xi and X2 in an RRNS (n, A;) code. The corre-

sponding integers are Xi and X2, respectively, which are in the range of [0, M/; — 1]. Let 

X3 = X1+X2. If %3 < Mk, then vector is a valid codeword. However, if < X3 < M„, 

then x^ is not a valid codeword. Clearly, this violates the definition of a linear code. Simi-

larly, for a given scalar a such that Mk < aXi < Mn, the vector ax i is not a valid codeword 

either. Hence, in [43] the RRNS codes are termed as the semi-linear block codes. The term 

semi-linearity or conditional linearity implies that the property of linearity is satisfied under 

certain appropriate predefined conditions. 

4.3 .3 Error D e t e c t i o n and Correc t ion in R R N S C o d e s 

In this section we will relate the minimum free distance dmin of the RRNS code to the 

error detection and error correction capabilities of the code. In our forthcoming discourse, 

the triangular inequality will be used repeatedly. Consider three arbitrary residue vectors 

A, B and C in the RRNS codes, where the corresponding integer values are Xa, Xb and 

Xc, respectively. The Hamming distance among the residue vectors or RRNS codewords 

satisfies the triangular inequality [43,96]: 

dist{A,^) -i-dist{^,C) > dist{A,C_) . (4.46) 

Proof: Let us assume that Xc > Xa- Therefore, recalling the definition of Hamming 

distance and weight from the beginning of Section 4.3.1, we have: 

dist{A,C) = weight(C — A) , (4.47) 

which indicates the number of residue positions where A and C differ. 



There are three cases, depending on the value of Xb-

1. > ^ ^ 4 

2. X c > Xa > XB 

3. J ^ B > .Xc 

For case 1, we can write 

dist{A,C) = we ight ( C — A ) 

= we ight { ( C — + ( B — A ) } 

= weight(C — B) + weight (B — A) + a i + 2a2 , (4.48) 

where ai is the number of residue positions, where the non-zero residue digits of (C — B) 

and ( 5 — A) add to a non-zero number, and 02 is the number of residue positions, where 

the non-zero residue digits of {C_ — B) and (B — A) add to zero. Since ai 4- 2a2 > 0, we 

have: 

weight (C — B) + weight (B — ^4) > weight(C — A) . (4.49) 

For case 2, we can write 

= weight(C-:A) 

= w e i g h t ( C - ^ + B + m - B ) 

= w e i g h t 

= weight(C — B) + weight {m — ( 4 — B)} — 03 — 20:4 

< weight(C — M) + weight {m — (A — B)} 

= weight (C — R) + weight (A — B) , (4.50) 

where m represents the vector of all moduli, 0:3 is the number of residue positions in which 

the non-zero residue digits of (C — R) and weight {m — {A — B)} add to a non-zero number, 

and tt4 is the number of residue positions where the non-zero residue digits (C — B_) and 

weight {m — (A — B)} add to zero. Finally, case 3 is similar to case 2 and hence we have 

shown the validity of the triangular inequality in Equation 4.46. 

At the receiver of an RRNS coded data transmission system, the demodulator provides 

the received residues z in response to a transmitted codeword x, which can be modelled as: 

z = x + e (4.51) 

where e is the error vector imposed by the channel, which may have an arbitrary number of 

non-zero components in the range between 0 and n. Each received residue can be written 



as follows: 

Zi = {xi + 6;)mod rui , (4.52) 

where 1 <i <n and e, 0 < e, < m,, is the error magnitude of each residue. More explicitly, 

since the residue Xi may assume rui different values, the error values are also mj-ary. If 

ej = 0 for all i, then the received residues are error free. 

Let us denote the Hamming weight of the error vector e by a , which quantifies the 

number of non-zero e, positions in the received residue vector z. In an RRNS, there is no 

error vector e, which has a weight of 0 < a < dmin, that can change codeword x into another 

valid codeword x. Since dist{z,x) = a and 0 < a < dmin, upon applying Equation 4.46, we 

can write 

-t- i ) > 

A) > dmin - a 

> 0 , ( 4 ^ ^ 

for all possible codewords x in RRNS and xj^x. Therefore, z cannot be a valid codeword. 

Let us assume that there is another error vector e, which satisfies; 

e = x — x, (4.54) 

where x is an arbitrary codeword in the RRNS satisfying x ^ x, and dist{x,x) = dmin-

Then, the received residue vector z is equal to codeword x. Therefore, all error vectors 

having weight(e) = dmin are non-detectable. We can then characterise the error detection 

capability of a RRNS code as: 

I — dmin 1 ; (4.55) 

which is the highest possible number of errors for which the residue vector z is not a valid 

codeword. 

The error correction capability t of an RRNS code is defined as the highest possible 

number of errors that the decoder is capable of correcting. The error correction capability 

of an RRNS code is given by [43,96]: 

, (4^,6) 

where [ij means the largest integer not exceeding i. Here we note that I and t in Equa-

tions 4.55 and 4.56 are identical to the corresponding quantities in RS codes. Again, let x 



be a codeword other than x in the RRNS code. The Hamming distance among x, x and z 

satisfies the triangular inequality: 

&) . (4 57) 

Since dist{x,x) > dmin and an error vector has a weight of dist{z,x) = a, we can rewrite 

Equation 4.57 as; 

:> (&nin --(% - (4.58) 

If the weight of the error vector is: 

a < 

then 

dmin (y ^ 

Therefore, we have shown that: 

'^min 1 
(4.59) 

d%5((z,g) < d % 5 ( ( z , ^ ) , (4 .61) 

which implies that the received residue vector z is closer to x than to any other valid 

codeword x. 

4.4 Mul t ip le Er ro r Correct ion P r o c e d u r e 

Based on the properties of modulus projection and the MRC, an algorithm was proposed 

in [133] for single residue error correction. It was then used in [135,144,145] for correcting 

single errors in digital filters and error checkers. Recently, this algorithm was extended [44] 

for detecting and correcting multiple residue errors. 

In an RRNS having n moduli, we define the following quantity: 

a 
JkT* == , (4.62) 

1=1 

where 1 < ji <n and a < n. Hence, we can define the M"-projection of integer X, denoted 

Iby JCAfa, as: 

JCaf* 55 JT I mo( i ) . (4.63) 

If ^ > Mfc, it follows from Equation 4.63 that the M"-projection of any legitimate number 

X in the RRNS is still the same legitimate number, that is Xm'^ = X. 



For an RRNS (n, A;) code which has a minimum free distance dmin, as described in Sec-

tion 4.3.1, any valid codeword represents an unique integer Xi which falls in the legitimate 

range of the code, 0 < < M*. Conversely, any invalid codewords are in the illegitimate 

range, < %, < M„. It was also shown in Section 4.3.1 that any integer X' differing from 

%, 0 < % < Myfc, in at least one but no more than dmin — 1 residue digits is an illegitimate 

number. By using our previous arguments, we are able to detect if a set of residues x is 

erroneous, as long as the number of residue errors is less than or equal to I = dmin — 1-

Let us assume that no more than t number of errors occurred in a valid codeword x, 

where t is the error correction capability of the RRNS code. The altered codeword can be 

represented as: 

== + J5 (moci Afn) (4.64) 

^ (2̂ 1, •2̂ 2; • • • ? ) 

^n ) (0, .",0, 6̂ 2 , 0, ..., 0, 6J2 , 0, ..., 0, ,0, . . . ,0) , (4.65) 

where X i—> {xi,x2,..., Xn) and E 4—> (0,..., 0, , 0,..., 0, , 0,..., 0, ej^,0, . . . , 0). We have 

E = 0 (mod rrij) for all j ^ ji,i = 1 , 2 , H e n c e E is a multiple of all moduh except 

mj^,m,j2, and we can write 

E = 

= "W-

where 0 < e < M*. 

Let us now substitute Equation 4.66 into Equation 4.64 and take the M^-projection of Z, 

= Xj^ft = X < Mk . (4.67) 

Therefore, we have shown that the valid codeword x can be recovered from the received 

vector z, even though it has been corrupted by t errors. However, we have to show that 

for any other combination of t moduli, rrij^, ,mj^,, , which is denoted by M^' and 

M*' ^ M*, the -projection of the integer Z results in an integer which represents 

an invalid codeword in the illegitimate range of Mk < < M„. Note that the total 

number of moduli combinations is equal to " Q = t\(n-ty.' define the M^'-projection of 
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Z, namely as its illegitimate projection and conversely, Z^t as its legitimate projection. 

The illegitimate projection can be treated as a number originating from which was 

projected with the aid of the moduli We can then express as follows: 

® ^ h 

where 0 < e < n i = i • With the objective of quantifying the range to which an illegiti-

mate projection of Z, namely Zf^, we find the minimum of Hence we choose = 0, 

6 = 1 and we have 

min I Z 7t' \ _ 

11^=1 n i = 1 
MkMn-k 

_ MkMn-k 

^n—k 
== JkTt . (4 .69) 

This shows that an illegitimate projection of integer Z is always larger than — 1, > 

Mt . 

Let us now consider an example. We have an RRNS code based on the moduli mi = 

3, m2 = 4, 7713 = 5, m4 = 7, = 11 and me = 13, where mg, m^, mg and m% are the 

redundant moduli. Therefore, n = 6, k = 2 and 

Mk = 3 x 4 Mn = 3 x 4 x 5 x 7 x 1 1 x 1 3 

= 12 = 60,060 

The minimum free distance of the RRNS code is dmin = 5, since by applying Equation 4.37, 

we found 

4 X 5 X 7>( 11 X 13 > :> 5 x 7 x 11 )< 13 

2 0 , 0 2 0 :> 5 , ( )05 . (4 .71) 

The values of n, k and dmin satisfy Equation 4.45 and hence the designed RRNS code is a 

maximum distance separable RRNS code. The error correction capability \st = = 

2. 

Let X = 10, which is represented in the RRNS domain by, 

> . ( 1 , 2 , 0 , 3 , 1 0 , 1 0 ) . (4.72) 
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Since 0 < X < = 12, 2 is a valid codeword. Assume E = 5,720 and with the aid of 

Equation 4.64, we can write 

Z = X + E mod (M„) 

= 10 + 5720 mod (60060) 

= 5730 

(0,2,0,4,10,10) 4 - ^ 1(1,2,0,3,10,10)+ ( 2 , 0 , 0 , 1 , . ( 4 . 7 3 ) 

In order to correct the errors, their positions have to be found. Hence the integer Z is 

first calculated using the CRT of Section 4.2.5.1 and it is found that Z > Mk, which means 

that z is an invalid codeword. Errors have been detected and the error locations will have 

to be found in the next step. Since n = 6 and t = 2, we would have "Ct = (g) = 15 different 

combinations of the residue error positions. Let us for example assume that the erroneous 

residue positions correspond to mi and mg. The projection of Z using = 3 x 4 = 12, 

is then. 

M, 
== Z I'mocl 

Z I mod 
60060\ 

\ 12 

= 5730 (mod 5005) 

== 725 )> , (4.74) 

which yields an illegitimate projection. Using all 15 different possible residue error moduli 

combinations and the steps described, we find the moduli projection of each combination. 

The results are shown in Table 4.4. It can be seen from the table that the moduli projection 

M*' of all moduli combinations are larger than Mk, except that corresponding to moduli 

mi and m^. Hence, the residue positions 1 and 4 are declared to be in error. The moduH 

projection Z ^ t for moduli mi and m4 is equal to 10, which is the same as integer X. The 

correct residues in position 1 and 4 are Z ^ t modulo mi and m^, i.e. 10 mod 3 = 1 and 

10 mod 4 = 2. Alternatively, we can apply the BEX algorithm in order to find the correct 

residues for both positions. 

Above we have shown a simple example for correcting two residues errors. Let us now 

show using the same example that the same procedure can be used to correct one residue 

error in the RRNS. Again, let X = 10 i—> (1, 2, 0, 3,10,10) and assume E = 40,040. With 

the aid of Equation 4.64, we can write 

.2 EE 10 4- 40Ckl0 mo(i (60060) 

= 40050 

(0,2,0,3,10,10) 4—> ( 1 , 2 , 0 , 3 , 1 0 , 1 0 ) + ( 2 , 0 , 0 , 0 , 0 , 0 ) . (4.75) 
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h h Mn ji 32 
1 2 3 4 12 5005 725 2 6 4 13 52 1155 1110 

1 3 3 5 15 4 0 0 4 1726 3 4 5 7 35 1716 582 

1 4 3 7 2 1 2 8 6 0 1 0 3 5 5 11 55 1092 270 

1 5 3 11 33 1820 270 3 6 5 13 65 9 2 4 186 

1 6 3 13 39 1540 1110 4 5 7 11 77 780 270 

2 3 4 5 20 3 0 0 3 2 7 2 7 4 6 7 13 91 6 6 0 450 

2 4 4 7 28 2145 1440 5 6 11 13 143 4 2 0 270 

2 5 4 11 44 1365 270 - - - - - - -

Table 4.4: Results of the 15 different moduli projections of integer Z = 5730 

During the first step of the procedure we calculate the integer Z, which is found to be in 

error. In order to locate the errors, 15 different moduli combinations are to be considered 

for finding the projection of Z. The corresponding results are shown in Table 4.5. From the 

table, we can see that there is more than one moduli combination which results in moduli 

projection Zj^^t < = 12. Indeed, the moduli projections Z^t < Mk = 12 are all the 

same integers, namely 10. Actually, all moduli combinations which include modulus mi 

will produce a moduli projection of Z^ t = 10 < = 12. Hence, the procedure used to 

correct t residue errors can be applied to correct less than t errors as well. 

i i i2 ji Aft'2 
1 2 3 4 1 2 5005 1 0 2 6 4 13 52 1155 780 

1 3 3 5 1 5 4 0 0 4 10 3 4 5 7 35 1716 582 

1 4 3 7 2 1 2 8 6 0 1 0 3 5 5 11 55 1092 738 

1 5 3 1 1 3 3 1820 1 0 3 6 5 13 65 9 2 4 318 

1 6 3 1 3 3 9 1 5 4 0 10 4 5 7 11 77 780 270 

2 3 4 5 20 3 0 0 3 1011 4 6 7 13 91 660 450 

2 4 4 7 28 2145 1440 5 6 11 13 143 4 2 0 150 

2 5 4 11 44 1365 465 - - - - - - -

Table 4.5; Results of the 15 different moduli projections of integer Z = 40050 

In the previous two examples we have shown that the multiple errors correction procedure 

can be accomplished by using the CRT. However, if the number of moduli is increased in 

an effort to create larger and/or stronger RRNS codes, the range and Mn increases 

as well, which may lead to overflows. Therefore, special procedures have to be used for 

carrying out large integer operations, such as those involved in the CRT. This will impose 

extra complexity upon the decoding algorithm. In order to avoid large integer operations, 

the MRC was used by a number of authors [44,133,135] for correcting single or multiple 



errors in RRNS codes. 

In Section 4.2.7, we explained that for any integer X < represented in the mixed 

radix form, as in Equation 4.32, the redundant mixed radix digits, ak+j , j = 1,2, ...,n — k, 

will be equal to zero. Hence, we can apply the MRC to a given residue representation z in 

order to generate the redundant residues. By checking the redundant mixed radix digits, 

we are able to tell whether Z < % , i.e. whether z i s a valid codeword. If Z > 

moduli projection can be used to locate the errors. In Equation 4.63, we defined the moduli 

projection of an integer. It can be shown that the M^-projection of Z can also be represented 

as a reduced residue representation of Z with the residues ..., deleted. Using the 

reduced residue representation, we are able to find the mixed radix representation of , 

as follows [41,43,44]: 

n i—1 

I I , (4 .76) 

i^h <32'•••'it j'2, -

which reflects the structure of the MRC definition in Equation 4.21. The legitimate and 

illegitimate range of the reduced RRNS are [0, — 1] and [M^, ^ — 1], respectively. Let 

us assume that j i < j2 < ... < > < < jt and jV < k. We can then specify the legitimate 

range of the reduced RRNS separately for the specific cases, where the dropped moduli are 

from the set of non-redundant moduli, i.e. from the range ji < k, or where some of the 

redundant moduli may have been dropped. This is expressed explicitly as: 

k+r 
= I I ji ^ k 

.;2 Jr 
k 

= Mk = II mj, ji> k . (4.77) 
i = l 

We can see from the equation that Mj. > and — 1 is the highest integer that can 

be represented by Equation 4.76 with all the redundant mixed radix digits set to zero. 

Therefore, even if all the redundant mixed radix digits are zero, one can still argue that any 

legitimate projection Zj^p can be larger than M* since > M^. However, we are able to 

show that any illegitimate projection of Z will result in Zj^t' > In order to find the 

minimum of we rewrite Equation 4.68 as: 

7<' _ y f I ^k^n-k 

== + e (4J8) 



Since n — k > t + t' = 2t, we have 

Mji-k 
t - (4 .79) 

Following from Equation 4.79, we can then write 

® n^'k+l-'-l^k+r 

= X\^ + eMl , (4.80) 

where is the legitimate range of the reduced RRNS. Clearly, in Equation 4.80, any 

illegitimate projection of Z always results in > M^. Hence, if not all the redundant 

mixed radix digits are equal to zero, the projection is illegitimate and vice versa. Once 

a legitimate projection is found, we can apply BEX to find the correct residues for the 

corresponding positions. 

In order to augment our previous discussions let us explain in detail the multiple error 

correction procedure employing MRC, using the above example. Previously, we have used 

moduli mi = 3, mg = 4, mg = 5, m4 = 7, ms = 11 and me = 13. The total number 

of moduli is n = 6 and the number of information moduli is A; = 2. Therefore, we have 

Mk = 12 and = 60,060. It was shown in Equation 4.71 that the RRNS code has 

dmin = 5. Again, we have an integer message of X = 10, which has been corrupted by 

E = 5, 520 and became Z given by; 

Z = X E mod 

= 5730 

( 0 , 2 , 0 , 4 , 1 0 , 1 0 ) f - f 1 ( 1 , 2 , 0 , 3 , 1 0 , 1 0 ) + ( 2 , 0 , 0 , . ( 4 . 8 1 ) 

We first assume that the erroneous residue positions correspond to mi and mg. Then we 

find a reduced representation of Z with the residues zi and zg deleted. Since the moduli mi 

and 1712 are deleted, we have a new RRNS based on the moduli m i = 5, mg = 7, ma = 11 

and m4 = 13, where mg and are the redundant moduli and hence = 5 x 7 = 35. 

Using the reduced residue representation, we can express the mixed radix representation of 

the reduced representation of Z with the residues zi and % deleted, using the M*'-projection 

of Z Zj^t' as follows: 

' 05mim2m3m4 + 04mim2?7i3 + osmimg + + ai 

= 5005cs5 + 385ct4 + 35ci3 + Sag -\- o,\ . (4.82) 

Employing the procedures outlined in Section 4.2.5.2, we are able to calculate the values of 

Oj i = 1,2,. . , 5 given the residues Z3, Z4, % and zg. However, for the reader's convenience. 



we can assume that we have Zj^ti = 725 and hence rewrite Equation 4.82 as: 

725 = 5005(25 + 385fl4 + 35fl3 + 5<12 4̂  oi • (4.83) 

Using Equation 4.83, we readily find the values ai = 0, 03 = 5, 03 = 9, 04 = 1 and 05 = 0. 

Since 03 ^ 04 ^ 05 0, we know that: 

> Af; 

725 > 3 5 . (4 .84) 

We can therefore conclude that Zj^t' is an illegitimate projection. 

Let us now delete another set of moduli, namely mi and 1714 from the original set of 

moduli given by mi = 3, mg = 4, mg = 5, 7714 = 7, 77*5 = 11 and mg = 13. Hence the 

original RRNS was reduced to a new set of RRNS based on the moduli mi = 4, m2 = 5, 

ms = 11 and m^ = 13, where and m^ are the redundant moduli and the dynamic range 

is given by = 4 x 5 = 20. Using the reduced residue representation, we can express the 

mixed radix representation of the reduced representation of Z with the residues zi and Z4 

deleted, using the -projection of Z, Z^t' as follows: 

Zj^t' = a^mim2m-im4 + a4mim2m^ + a^mim2 + a g ^ i + ai 

= 2860^5 + 220(24 + 20(23 + 4(22 cii • (4.85) 

Given the residues zi, Z3 and 2:4, we can apply the somewhat tedious procedures of Sec-

tion 4.2.5.2 for calculating the values of i = 1 , 2 , 5 . Again, for the reader's convenience 

we assume that we have Zj^ti = 10 and hence we arrive at: 

10 = 28 60(25 + 220(24 -|- 20(23 4- 4(22 4- cii . (4.86) 

Using Equation 4.86, we calculated ai = 2, og — 2, 03 = 0, 04 = 0 and 05 = 0. Since 

03 = 04 = as = 0, Zj^t' is a legitimate projection. Once the legitimate projection is found, 

we can apply the BEX algorithm for finding the correct residues for the corresponding 

positions, namely for positions 1 and 4. 

The flow-chart of multiple error correction procedures using the MRC method is shown 

in Figure 4.1. Initially, the corrupted residues z are received and MRC is applied. The 

redundant residues 0&+1, ...,a„ are checked whether they are all zeros. If a^+i = 0&+2 = 

... = a„ = 0, the received residues z are declared error free. If not all of them are zero, a set 

of t moduli is generated in an effort to find up to t error positions. MRC is applied to the 

reduced residue representation, where the set of t chosen moduli is deleted. The redundant 

mixed radix digits are checked, whether all the redundant mixed radix digits are zero. If so. 
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Corrupted residues: z 

Apply MRC. 
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Obtain new 
moduli set, 
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by using BEX. 

Stop. 

More than t 
errors detected. 

Stop. 

Figure 4.1: Flow-chart of multiple error correction RRNS decoding. 
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the error positions have been found and the errors can be corrected using the BEX. If either 

of the redundant mixed radix digits is non-zero, another set of t moduli is obtained and the 

MRC procedure is repeated again. The above process is repeated, until all possible set of t 

moduli combinations have been tested and hence the received residue vector is declared to 

have more than t errors. 

4.5 R R N S Encoder 

In the previous section we stated that an RRNS code used is constituted by a set of residues 

with respect to a pre-defined set of moduli. Since the moduli and the residues can assume 

any positive integer value - representing an arbitrary number of binary bits - the RRNS code 

is a non-binary code, based on transmitting the residues conveying a number of bits. In 

this section, we propose two different mapping methods transforming the binary source bits 

to the non-binary RRNS code, which result in a so-called non-systematic and systematic 

RRNS code. 

4 .5 .1 N o n - s y s t e m a t i c R R N S C o d e 

mapping 
Residues Integer, kb Binary 

data bits 

Figure 4.2: Non-systematic encoding procedures. 

Here we commence by summarising the non-systematic encoding process of Figure 4.2. 

The non-systematic encoder encodes kf, number of binary data bits per RRNS(n, A:) code-

word, where the integer 2̂>> must not be higher than the legitimate range M^, hence: 

(4.87) 

In other words, the data bits are mapped to an integer X, which has to be in the range 

of [0, 2 (̂' — 1]. Note that the full legitimate range of the RRNS may not be actively 

exploited, since Mk is typically not an integer power of 2. Considering now the mapping of 

the integer X to residues for transmission in Figure 4.2 and using the moduli in the RRNS, 

the residues Xj are simply obtained by invoking the conventional modulus operation: 

(4.88) 
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where j = 1, 2,..., n. In order to represent an integer X in the RRNS seen in Figure 4.2, each 

residue Xj, non-redundant or redundant, has to be represented uniquely for transmission in 

terms of bits. Therefore, we have to ensure that 

:> , (4 89) 

where j = 1, 2,..., n and is the number of bits representing the residue Xj in Figure 4.2. 

The total number of coded bits per RRNS(n, k) codeword is therefore: 

71 

Mf, = ^ . (4.90) 
i=i 

The rate R of the code is then Since the residues Xj^ j = 1,..., k do not directly represent 

the binary data bits, we refer to the above encoding process as non-systematic encoding. 

Let us for example consider an RRNS based on the moduli mi = 53, mg = 55, mg = 59, 

rui = 61, ms = 63 and mg = 64, where mg and uiq are the redundant moduli. We have 

n = 6, k = 4: and 

Mk = 53 X 55 X 59 X 61 

= 10,491,085, (4.91) 

where is the legitimate dynamic range of the RRNS. In this case, we can represent an 

integer from 0 to 10,491, 084 uniquely by the RRNS. Since 8, 388, 608 = 2^^ < < 2^^ = 

16,777,216, kh — 23 is the number of the binary data bits encoded by the RRNS code. 

Hence, the dynamic range of the RRNS is not fully utilised. Applying Equation 4.89, we 

calculate the number of coded bits by taking into account that each of the residues requires 

six bits for its unique representation, yielding: 

nt) = 6 + 64-6 + 6 + 6 + 6 

= 36 . (4.9^ 

Therefore, the code rate is. 

23 
- = 0.639 (4.93) 

4 .5 .2 S y s t e m a t i c R R N S C o d e 

In contrast to the non-systematic encoder of Figure 4.2, Figure 4.3 characterises the sys-

tematic encoding process. Unlike the non-systematic encoder, which maps all the data bits 
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kb Binary 
data bits 

mapping ^ Non-redundant BEX Redundant kb Binary 
data bits residues residues 

Figure 4.3: Systematic encoding procedures. 

to be transmitted to a single integer X, the systematic encoder divides the bit sequence to 

be encoded into shorter groups of bits, each of which represents a non-redundant residue 

Xj. In contrast to the non-systematic mapping of Equation 4.87, in order to render this 

systematic mapping unique, the number of bits kf,. mapped to residue Xj has to satisfy: 

•J 1 (4.94) 

The total number of data bits that the systematic encoder encodes into each RRNS code-

word becomes: 

Ah 
j=i 

(4.95) 

Accordingly, as shown in Figure 4.3, the data bit sequences are mapped to the non-

redundant residues directly. Then the so-called BEX algorithm of Section 4.2.7 can be 

invoked, in order to compute the redundant residues. Similarly to the non-systematic 

encoder, the number of bits needed to represent the redundant residues has to satisfy Equa-

tion 4.89 for j = k + 1,..., n. The number of bits required for the unique representation of 

the non-redundant residues has been specified in Equation 4.94. Hence, we can write the 

number of coded bits for each residue xj as: 

2̂ ""; < m, 
"6, 

j = 1,2, .k 

> ruj j = k + 1,.. . , n 

The total number of coded bits can then be calculated using Equation 4.90. 

(4.96) 

We consider again the same moduli set, namely mi = 53, mg = 55, mg = 59, 7714 = 61, 

ms = 63 and mg = 64, as for our non-systematic coding example in Section 4.5.1. Applying 

Equation 4.94 and 4.95, the total number of data bits is: 

kf) — 5 4- 5 4- 5 4- 5 — 20 . 

The number of coded bits, calculated using Equation 4.96, is then: 

TLH = 5 4 " 5 4 - 5 4 " 5 4 ~ 6 4 - 6 = 32 . 

(4.97) 

(4.98) 
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The code rate is A — ^ ^ = 0.625. If we compare the code rate of the non-systematic 

and systematic encoders, we can see that the code rate of the systematic encoder is lower 

than that of the non-systematic encoder. Furthermore, the dynamic range of the RRNS 

code is only (2^)"^ = 1,048,576 as compared to the corresponding range of 8,388,608 for 

the non-systematic code. In order to increase the code rate and the dynamic range of the 

systematic RRNS encoder, we propose a more efficient mapping method, which is outlined 

in the next section. 

4 .5 .2 .1 M o d i f i e d S y s t e m a t i c R R N S C o d e 

As mentioned earlier, the legitimate dynamic range of a systematic encoder of Figure 4.3 

is more limited than that of the non-systematic encoder seen in Figure 4.2. This also 

causes a reduction in the code rate compared to that of the non-systematic encoder. Here, 

we propose a modification to the mapping method used in the systematic encoder of the 

previous section. Instead of using Equation 4.94, the number of binary data bits mapped 

to each non-redundant residue is now increased by one, yielding: 

2**; :> m j . (4.99) 

However, as a consequence of the new allocation of data bits, there may exist integers X, 

which are equal to or greater than the modulus, i.e. X > ruj. Hence, we define the new 

mapping method as follows: 

= I ^ , (4.100) _ ^ 1 - 1 - J f i fJf :> 

where is the number of data bits mapped to the integer X for transmission in Figure 4.3. 

The mapping in the second line of Equation 4.100 has to be implemented on the basis of 

bitwise complement, if X > rrij. Although this implies that the mapping to the integers is 

ambiguous for some of the values. Equation 4.100 ensures the maximum Hamming distance 

separation of the ambiguous values. We will show in the following that this maximum 

Hamming distance separation allows the decoder to recognise the original integer messages. 

We use the modulus 1714 = 61 as an example for further illustration. In the previous 

section, only 5 bits were assigned to this residue. Since 2® = 32, 0,1,.. . , 31 are the possible 

residues. Hence, the previous bit assignment policy does not fully utilise the dynamic range 

of the modulus = 61, which is 0,1,..., 60. Applying Equation 4.99, we now map 6 bits to 

the residue of modulus 7x14 = 61 and 0,1,..., 63 are the possible integers. However, integers 

61,..., 63 are not valid residues. By applying Equation 4.100, we map the integers 61, 62, 63 
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Bitwise 

complement 

61 2 

Figure 4.4: An example of modified systematic mapping. 

to the integers 2,1,0, respectively. Figure 4.4 shows the mapping of integer 61 to 2 by 

implementing its bitwise complement. 

Using the same moduli set as in the previous two sections, and applying Equation 4.99 

and 4.89, we arrive at A:;, = 6 + 6 + 6 + 6 = 24 and rn, = 6 + 6 + 6 + 6 + 6 + 6 = 36. 

Consequently, the code rate is now i? = | | = 0.667, which is more than in the previous 

systematic and non-systematic encoding cases. Furthermore, the dynamic range of the 

systematic RRNS code was increased from 1,048, 576 to (2®)^ = 16, 777, 216, which is more 

than = 10,491,085. 

4.6 R R N S Decoder 

demapping Ab Received 
data bits 

Received 
residues, ja;;! 

Multiple error 
correction and 
detection. 

Figure 4.5: A block diagram of the RRNS decoder. 

The structure of the systematic and non-systematic RRNS decoders is similar. Figure 4.5 

shows the simplified block diagram of the RRNS decoder. The modulo of the received 

residues, \xj \^. , is taken, where j = k + l , . . . , n for the systematic RRNS decoder and 

j = l , . . . ,n for the non-systematic RRNS decoder. Multiple residue error correction and 

detection is invoked, as described in Section 4.4, for correcting a maximum of t errors in 

the codeword. Then, the residues are de-mapped to the original k^ data bits according to 

the mapping method of the systematic and non-systematic RRNS encoders, respectively. 

For the modified systematic RRNS code of Section 4.5.2.1, the decoder structure needs 

an extra step, as shown in Figure 4.6. Due to the potentially ambiguous mapping defined in 

Equation 4.100, a residue Xj may represent two integers, which exhibit maximum Hamming 

distance separation. Hence, after the multiple error correction and detection procedures 
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Weight 
evaluation 

Received 
data bits 

Received 
residues, 

Multiple errors 
correction and 
detection. 

Figure 4.6: A block diagram of the modified systematic RRNS decoder. 

of Section 4.4, we have to determine which integer has to be used for extracting the kt,. 

transmitted data bits. Soft decision of the received bits yji can be used for calculating their 

decision metric W, which in turn determines the integer message transmitted. The soft 

decision metric W of the residue Xj is calculated as follows: 

6̂, 

W = aasign(a;;j) x , 
i=l 

(4.101) 

where 

assign(2;ji) = 
+1 if Xji = 1 

- 1 if == 0 
(4.102) 

Depending on the polarity of the soft decision metric W, the transmitted integer is then 

inferred from: 

% 
Zj rFMf 0.0 

- l - a ; j i f : y < 0 . 0 
(4.103) 

which is the reverse operation of Equation 4.100. 

Again, we use the modulus 7714 = 61 as our example in augmenting the associated op-

erations. After the multiple residue error correction and detection procedures, residue X4 

is found to be X4 = 2. From Equation 4.103 and Figure 4.4 we know that there are two 

possible transmitted integers X associated with residue X4 = 2. Therefore, soft decision 

of the received bits yji can be used for determining the transmitted integer by exploiting 

the maximum Hamming distance separation of the associated residues. Explicitly, let us 

assume that the received soft decision bits a re+1.2 , +1.5 , —0.3, +0.8, —1.0, +0.2. 

By applying Equation 4.101, we calculate the soft decision metric as follows: 

vy = - 1 . 2 - 1.5 + 0.3 - 0.8 - 1.0 - 0.2 = - 4 . 4 < 0.0 . (4.104) 

Therefore, with the aid of Equation 4.103 the transmitted integer is decided to be X = 

2® — 1 — 2 = 61. By contrast, for example the soft decision values of W > 0.0 lead to a 

decision of X = 2. 



4.7 Soft I npu t and Soft O u t p u t R R N S Decoder 

If the output of the hard-decision based demodulator is binary, the RRNS decoder is inca-

pable of exploiting the potential advantages accruing from the soft outputs. In this section 

we contrive the soft decoding of RRNS codes by combining the classic Chase algorithm [28] 

of Section 2.4 with the hard-decision based RRNS decoder. Hence only a brief account of 

the Chase algorithm will be given, since a detailed exposure to the Chase algorithm has 

been provided in Section 2.4. Recently, Pyndiah et al. [62,81,146,147] extended the Chase 

algorithm so that it became capable of providing soft outputs of the decoded bits. This 

modified algorithm was then invoked for RRNS codes [107] in order to provide the soft 

output of the decoded bits. Consequently, we contrived the Soft Input Soft Output (SISO) 

RRNS decoder. This advance allowed us to employ RRNS codes as component codes in 

turbo codes. 

4 .7 .1 So f t I n p u t R R N S D e c o d e r 

Let us consider the transmission of block coded binary symbols {-1,-1-1} using BPSK 

modulation over an AWGN channel. At the receiver, the demodulator provides the soft 

decision values y for the RRNS decoder. A maximum-likelihood decoder is capable of 

finding the codeword that satisfies; 

minweightdy — , (4.105) 

where Xji G {—1, 4-1} are the transmitted binary or bit representations of the RRNS coded 

symbols and the range of j is over all possible legitimate RRNS codewords. The decision 

given by Equation 4.105 is optimum in the minimum BER sense, but the associated compu-

tational complexity increases exponentially with k and becomes prohibitive for block codes 

with k > 6. As a remedy, the reduced-complexity Chase algorithm [28] can be invoked for 

near maximum-likelihood decoding of block codes. Again, the algorithm is sub-optimum, 

but it offers a significantly reduced complexity. 

As it was already highlighted in Section 2.4 in the context of binary BCH codes, at the 

demodulator, the soft decision outputs y are subjected to a tentative hard decision, yielding 

the binary sequence z and the associated soft decision confidence values \y\ are fed to the 

Chase algorithm. The tentative binary sequence z is perturbed with the aid of a set of test 

patterns TP, which are also binary sequences that contain binary Is in the bit positions that 

are to be tentatively inverted. By adding this test pattern, modulo two, to the tentative 
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Figure 4.7: Simple coding-space illustration of the Chase algorithm. 

binary sequence z a new sequence z' is obtained, where: 

= (4.106) 

Using the different test patterns, the perturbed received sequence z' falls within the decoding 

sphere of a number of different valid codewords, namely in that of ^ . . . cf; for example in 

Figure 4.7. In the figure, r represents the maximum Hamming distance of the perturbed 

binary sequence z' from the original tentative binary sequence z. Hence the value of r 

can be adjusted by varying the maximum Hamming weight of the TPs. If we increase 

r, the perturbed received sequence z' will fall within the decoding sphere of more valid 

RRNS codewords. In order to reduce the associated implementational complexity, typically 

only a small set of I bit positions associated with the least reliable confidence values \y\ 

is perturbed. The number of test patterns for which tentative decoding is invoked is then 

equal to 2^ 

Specifically, if the perturbed received sequence z' falls within the decoding sphere of 

a valid codeword, a new error pattern e' is obtained with the aid of a tentative hard 

decision RRNS decoding , which may be an all-zero or a non-zero tuple. Explicitly, the 

resultant error pattern is an all-zero tuple, if the original hard decision was erroneous, but 

the corruption by the TP in the low-reliability bit positions succeeded in bringing the hard 

decision based sequence z within the decoding sphere of the original transmitted codeword. 

By contrast, the resultant error pattern is a non-zero tuple, if the tentative corruption of 

the received codewords failed to move it into the decoding sphere of the original transmitted 

codeword. Instead, TP may have corrupted the received hard decision based codeword into 

the decoding sphere of another legitimate codewords. In this case the minimum number of 

decoding errors is dmin- The actual error pattern e associated with the received sequence z 

is given by 

= e'(B (4.107) 

which may or may not be different from the original test pattern TP, depending on whether 

or not the perturbed binary sequence z' falls into the decoding sphere of a valid codeword. 
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However, only those perturbed binary sequences z' are tentatively RRNS decoded that fall 

into the decoding sphere of a valid codeword. Those z' binary sequences that do not fall 

within a legitimate decoding sphere cannot lead to a legitimate RRNS codeword and hence 

are discarded from our further procedures. More specifically, we derive the error patter e' 

for all perturbed binary sequence z' within the decoding sphere of a valid RRNS codeword 

and find that particular one, which is the most likely transmitted one, since it is the closest 

one to the received binary codeword z. In this case, we are concerned with finding the error 

pattern e of minimum 'analogue weight', where the analogue weight of an error sequence e 

is defined as: 

i=l 

The generated test pattern TP will be stored, if the associated analogue weight W is found 

to be lower, than the previously registered analogue weights associated with the other TPs. 

The above procedure will be repeated for the maximum number of test patterns, which is 

tolerable in complexity terms. Upon completing this loop, the memory is checked in order 

to determine, whether any error pattern has been stored, and if so, the corrected decoded 

sequence will be z®e. Otherwise, the decoded sequence is the same as the received sequence 

z. 

4 .7 .2 Sof t O u t p u t R R N S D e c o d e r 

In the previous section, we have highlighted the philosophy of soft decoding RRNS codes. 

Following the philosophy of Section 3.3, which was cast in the context of turbo BCH codes, 

with the aim of contriving the turbo RRNS code, here let us now determine the Log Likeli-

hood Ratio (LLR) of each decoded bit % , given that the demodulator's soft output sequence 

is y. This is equivalent to finding the LLR of 

where k is a bit position in a RRNS codeword. Since the probability of n/; = +1 is equal 

to the sum of all the probabilities of all codewords x^, which have % = +1, we can rewrite 

the numerator of Equation 4.109 as follows: 

f ( l i t = +1|^) = ^ , (4.110) 



where is the set of codewords such that Uk = +1- By applying Bayes' rules, which 

was detailed in Section 3.3.3, we can rewrite Equation 4.110 as: 

.P(%t = 4-lk/) = ' (4^11) 

Similarly, the probability of%& = —lis equal to the sum of all the probabilities of all 

codewords x^, which have = —1. Hence, the denominator of Equation 4.109 can be 

written as: 

f ( u t = -1 | ^ ) = ^ 

X:£a ^ — 

where a is the set of codewords x̂  such that = —1. 

Substituting Equation 4.111 and 4.112 into Equation 4.109, and assuming that all code-

words are equi-probable, we arrive at: 

Let us assume that the transmitted bit Xk has been sent over an AWGN channel using 

BPSK modulation. Then, as we have seen in Section 3.3.2 in the context of turbo BCH 

codes, the probability density function of the demodulator soft output yk conditioned on 

the transmitted bit Xk can be expressed as: 

where. 

n is the number of coded bits which is equal to ni, in RRNS code 

is the noise variance 

Eb is the energy per bit 

a is the fading amplitude (=1 for a non-fading AWGN channel). 
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Since the probability of a specific codeword, f (z), is equal to the product of all proba-

bilities of its constituent coded bits Xj, j = 1, 2,..., n, we can then write 

f ( ^ ) = f ( a : i ) f ( z 2 ) . . f ( % n ) 

— C/eaqp 1 2 (7(3qp % % ...iCZeaqp " 2 

== , (4.115) 

L(xj) 

where P{xj) = C exp^J 2 and C is a constant, which will be cancelled out in Equa-

tion 4.113. The derivation of P{xj) can be found in Section 3.3.1, where the same problem 

was cast in the context of binary turbo BCH codes. 

Using Equation 4.114 and 4.115, we can rewrite Equation 4.113 as: 

exp^ ^ 2 

Let x^^ E a"*"̂  and G be the codewords, which are at minimum Euclidean distance 

from the demodulator's soft output sequence y. Then, upon using the approximation [50,51]: 

In exp^J^ w max(^ j ) , (4.117) 

where max(^ j ) means the maximum value of .Aj, and assuming that there were no transmis-j 

sion errors, i.e. u = x, then we have L{x) = L{u). Hence we can approximate Equation 4.116 

as: 

. (4.118) 

Since \y — ax'^^f is the Euclidean distance between the demodulator's soft output sequences 

y and the legitimate transmitted codewords we can write: 

j=i 

Upon substituting Equation 4.119 into Equation 4.118, we arrive at: 

7') - E 
j=l 

7 = 1 ^ ^ 7 = 1 ^ ^ 

1̂  -
J=1 

j=l ;=l 

A . 
2(7^ 

i=i 

j=i 

+ 11^ {4'-'=]') • (4.120) 



Since G {—1,+1}, , and Lc = ^ o , we can simplify Equation 4.120 

to: 

L{uk\y) % —^a 
71 

— t 
E » - f - E w 
j=i i=i 

iX- + E art*: _ 

Y E »(4' - -7') +1E i(%) (4' - z;') (4.121) 
i=i j=i 

r " / \ 1 " 
u-i) I xt'^ — X ^ + E ^) + 2 ^ ^ r : / 

j = l j = l 

1 ^ 
LcVk + L{uk) + - ^ [LcVj + L[uj)] — X- ^ 

i= i 

71 

LcVk + L{uk) + ^ 2 i^cVj + ^(%')] , (4.122) 
i= i 

where 

••={: ::::-;:2 • 
In harmony with the corresponding turbo BCH coding formula of Equation 3.36, here we 

define the extrinsic information of bit as: 

71 
^ , (4.124) 
j=l 

which allows us to approximate the RRNS decoder's soft output as: 

^(^/tl^) - + ^(l^t) + ^e(tfA:) , (4.125) 

constituted by the sum of the soft channel output LcUk, the intrinsic information L[uk) and 

the extrinsic information Lf,{uk)-

4 .7 .3 A l g o r i t h m I m p l e m e n t a t i o n 

Previously, we have shown in Equation 4.118 that in order to approximate the soft output 

L{uk\y), two codewords and x"^ which are nearest to Lcy+L{u) have to be found. Using 

the Chase algorithm described in Section 4.7.1, we can find a surviving codeword x, which 

generates Xk on the basis of finding the codeword x having the lowest Euclidean distance 



4. j tzasjDuis AruAfBicft siyzfsrf&kf 152 

from LcH + L{u). The algorithm can be readily extended to finding another competing (or 

discarded) codeword x which decodes to Xk ^ Xk and has the minimum Euclidean distance 

compared to all the other codewords, which decodes to x^ ^ x^- From Equation 4.121, we 

derive: 

j = i i = i 

i = i j = i 

(4.126) 

where y'̂  = Lcyj + L{uj). Given the surviving and discarded codewords and Equation 4.126, 

we approximate the soft output as: 

^(3:t|!/) 
4 

i f -- (y/)2 a/: 

l!/' - A | ^ -
(4.127) 

This expression can be interpreted physically as the difference between the Euclidean dis-

tances of the surviving codeword x and the discarded codeword x from the sequence y 

constituted by y'j = Lcyj + L{uj). In order to find the transmitted codeword x with a high 

probability, we have to increase the radius of perturbation in Figure 4.7. Therefore, we 

increase the number of least reliable bit positions I considered in the Chase algorithm and 

also the number of test patterns TP. It is clear that the probability of finding the most 

likely codeword x increases with I. However, the complexity of the decoder increases expo-

nentially with I and hence we must find a tradeoff between complexity and performance. 

This also implies that in some cases, we shall be unable to find a discarded codeword x, 

which decodes to x^ ^ Xk, given the I test positions. If no discarded codeword x is found, 

we have to find another method of approximating the soft output. Pyndiah [148] suggested 

that the soft output can be approximated as: 

=3 4-/3 X (4.128) 

where y'̂  = Lcyk + L{uk) and /3 is a reliability factor, which increases with the iteration 

index and that can be optimised by simulation. This rough approximation of the soft output 

is justified by the fact that if no discarded codewords x were found by the Chase algorithm 

which decode to x^ x^, then the discarded codewords x which decode to Xk 7̂  are 

probably far from y' in terms of the Euclidean distance. Since the discarded codewords x 



are far from y', the probability that the decision is correct is relatively high and hence 

the reliability o f u t , L{uk), is also high. 

We note here that there is a distinct similarity between this algorithm and the Soft 

Output Viterbi Algorithm (SOYA) proposed by Hagenauer [53,54], which was covered in 

Section 3.3.5. According to Equation 3.51 in the SOVA, the surviving path s is decided 

on the basis of the demodulator's soft output sequence y and the intrinsic information 

L(u). The surviving path y determines the surviving codeword x in this case. Then, the 

soft output of the SOVA is given by Equation 3.57 in Section 3.3.5. Explicitly this soft 

output is proportional to the minimum path metric difference between the surviving path 

s, which decodes to and a discarded path s, which decodes to Xk ^ Xk- Observe 

that Equation 3.57 is similar to Equation 4.127. Specifically, Equation 4.127 identifies 

the codewords having the minimum Euclidean distance difference and evaluates the weight 

difference between the surviving codeword x and the discarded codeword x. 

It was also proposed by Pyndiah [62] that a weighting factor a should be introduced in 

Equation 4.125, as follows: 

- (4.129) 

The weighting factor a takes into account that the standard deviation of the demodulator's 

soft output sequence y from its expected value and that of the intrinsic information L(y) 

are different [12, 13,62]. The standard deviation of the extrinsic information Lg{uk) is 

comparatively high in the first few decoding steps and decreases during future iterations as 

the associated reliability increases. This scaling factor a is also used to reduce the effect of 

the extrinsic information in the decoder during the first decoding steps, when the BER is 

relatively high. The value of a is small in the initial stages of decoding and it increases, as 

the BER tends to zero. 

The parameter a in Equation 4.129 and (3 in Equation 4.128 can be determined exper-

imentally, in order to achieve an optimum performance. Both a and /3 were given in [62], 

which are reproduced in Table 4.6, where the decoding index j in Table 4.6 is the index of 

the decoding steps given by: 

j = 2 X Number of iterations + Decoder Index . (4.130) 
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Decoding index j 
1 2 3 4 5 6 7 8 

(%(j) 0.0 0.2 0.3 0.5 0.7 0.9 1.0 1.0 
0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 

Table 4.6: The weighting factors a and reliability factors /3 versus the decoding index j. 

4.8 Complexi ty 

In Sections 4.4, 4.7.1 and 4.7.2, we have described the hard decision, soft decision and turbo 

decoding of RRNS codes. Let us now estimate the complexity of each decoding algorithm. 

It was shown in Section 4.7 that both the soft decision decoding and turbo decoding of 

RRNS codes is dependent on their hard decision decoding, which is the multiple error 

correction procedure highlighted in Section 4.4. In Figure 4.1, we showed the flow chart of 

the associated multiple error correction procedures, suggesting that for each new moduli set, 

the decoder has to perform MRC with t' number of moduli deleted. In Section 4.2.3, we have 

shown that in order to determine the mixed radix coefficients, one integer subtraction, one 

integer multiplication and one integer modulus operations has to be performed recursively. 

Let us denote the combined operation constituted by one integer subtraction, one integer 

multiplication and one integer modulus by <5. Since computer simulations have shown that 

MRC is the bottleneck of the decoding algorithm, the number of combined operations 5 is 

used as the basis of our estimated complexity comparison in our forthcoming discussions. 

Since the combined operation d is invoked recursively in the MRC for determining the 

mixed radix coefficients, the algorithm can be summarised by the flowchart of Figure 4.8. 

In Figure 4.8 n is the codeword length and t is the error correction capability of the 

RRNS code. Hence, we estimate the complexity of the MRC algorithm as: 

n—t—l 

- 1 ) - i x a . 
2 = 1 

comp{MRC) = n[n (4.131) 

The estimated complexity of the hard decision decoder is very much dependent on the 

number of moduli combinations to be employed with the MRC algorithm in Equation 4.131. 

In Section 4.4, we stated that the total number of moduli combinations is equal to " Q . The 

decoder has to search through the " Q number of moduli, until a combination of moduli is 

found, which matches the position of t errors, as we also have seen in the context of our 

numerical example of Section 4.4. Assuming that t residue errors are randomly distributed 

among the n residues of a codeword, the probability of each moduli combination matching 

the position o f t errors, is equal. Statistically speaking, the number of moduli combinations 
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Figure 4.8: Flow chart of MRC algorithm. 

to be tested for every codeword is equal to Since each moduli combination involves 

one MRC operation, we estimate the complexity of the hard decision decoder as: 

n—t—l 

comp (Hard decision) n(n — t — 1) — ^ 
2 = 1 

X . (4.132) 

Equation 4.132 suggests that the estimated complexity of the hard decision decoder depends 

only on the codeword length n and on the error correction capability t. Since " Q increases 

exponentially as n or t increases, the value of the "Ci term is the dominant factor in 

Equation 4.132. 

Figure 4.9 shows our estimated complexity comparisons for different hard decision based 

RRNS decoders. The estimated complexity was computed using Equation 4.132. Fig-

ure 4.9(a) shows the estimated complexity comparison of hard decision RRNS decoders 

having a different error correction capability t. The codeword length n was fixed at n = 26. 

As expected, the estimated complexity of the decoder increases exponentially with the error 

correction capability t. Figure 4.9(b) also shows our estimated complexity comparisons for 

the hard decision decoder using different codeword lengths n. The error correction capabil-

ity t was fixed at t = 2. Similarly, we can see that the estimated complexity of the decoder 

increases exponentially with the codeword length n. However, the estimated complexity 

increase rate per codeword length n appears to be slow compared to the estimated com-

plexity increase rate per error correction capability t. This is due to the dominance of the 

" Q term in Equation 4.132, since "Cj increases more rapidly with t than with n. 
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Complexity versus error correction capability, t Complexity versus codeword length, n 
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(a) Estimated complexity versus the error 
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(b) Estimated complexity versus the code-
word length n. The error correction capabil-
ity was fixed at 2. 

Figure 4.9: Estimated complexity comparison of different hard decision RRNS decoders. 

Let us now consider the estimated complexity of the soft decision and turbo decoding 

based RRNS decoder, which is directly proportional to the estimated complexity of the hard 

decision decoder. For a soft decision decoder, we have seen in Section 4.7.1 that 2' number 

of test patterns are generated, where the tentatively corrupted I bit positions are associated 

with the least reliable confidence values in the received sequence. For each test pattern, 

initially the hard decision decoder is invoked for decoding the perturbed binary codeword. 

Therefore, we can estimate the complexity of the soft decision coded RRNS decoder as: 

comp(Soft decision) = 2̂  x comp(Hard decision) 

T|Z —1 
n—t—l 

n{n — i — 1) — ^ i X ^ . (4.133) 

Likewise, 2' test patterns are generated for turbo RRNS decoding. Since the turbo RRNS 

decoding involves iterative decoding, the number of iterations has to be considered in cal-

culating the decoding complexity. Furthermore, there are two component decoders for each 

iteration. Hence, the complexity of turbo RRNS decoding is estimated as: 

comp(Turbo decoding) = 2 x Iteration no x 2 x comp(Hard decision) 
n—t—l 

Iteration no x 2' x " Ct n[n t - D - Y . ^ 
1 = 1 

x<5 

(4.134) 

Let us consider an example for comparing the estimated complexity of hard decision, soft 

decision and turbo RRNS decoding of two RRNS(28,26) and RRNS(28,24) codes. They have 

an error correction capability of t = 1 and t = 2, respectively. Assuming that I = 4 and the 
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number of iterations is four, we can apply Equations 4.132, 4.133 and 4.134 for finding the 

estimated complexity of the three decoding algorithms. The estimated complexity of each 

algorithm is shown in Table 4.7 for the RRNS(28,26) and RRNS(28,24) codes. 

Code 
Complexity, 6 

Code t Hard decision Soft Decision Turbo decoding 
RRNS(28,26) 1 5^178 84^48 675^84 
RRNS (28,24) 2 70,875 1,134,000 9,072,000 

Table 4.7: Estimated complexity of hard decision, soft decision and turbo decoding for the 
RRNS(28,26) and RRNS(28,24) codes. The number of turbo decoding iterations was four 
and I = 4 was used for both soft decision based and turbo decoding. 

Using the values tabulated in Table 4.7, we plotted the estimated complexity bar chart of 

hard decision, soft decision and turbo decoding in Figure 4.10. We can see in the figure that 

the estimated complexity of soft decision decoding is 2'̂  = 16 times higher than that of hard 

decision decoding. For turbo decoding, the estimated complexity is about 2"̂  x 2 x 4 = 128 

times higher, than that of hard decision decoding and it is 2 x 4 = 8 times higher, than 

that of soft decision decoding. Again, we can see that the error correction capability t plays 

an important role in determining the estimated complexity of the decoding algorithm. Let 

us consider turbo decoding as an example, where the estimated complexity of the turbo 

RRNS(28,24) code, which corrects t — 2 errors, is about 13.4 times higher, than that of the 

turbo RRNS(28,26) code, where t = 1. 

Finally, we conclude that error correction capability t is the major factor affecting the 

estimated complexity of all three decoding algorithms; namely that of hard decision, soft 

decision and turbo decoding. In order to obtain simulation results for t > 1, we attempted 

to simplify the considered operation S. Explicitly, we replaced the operation with one 

integer subtraction and one two dimensional table lookup operation. Explicitly, we invested 

memory for increasing the computational speed. Our computer simulations have shown 

that with the aid of this new technique, we were capable of reducing the computational 

complexity by about 70%. 

4.9 Simulat ion Resul ts 

In this section, we present our simulation results for RRNS hard decision, soft decision and 

turbo decoding. All simulation results were obtained using BPSK over AWGN channels. 

We will demonstrate how the performance of RRNS codes is affected by the following 
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Figure 4.10: Estimated complexity comparison for hard decision, soft decision and turbo 
decoding of the RRNS(28,26) and RRNS(28,24) codes. The number of iterations was four 
and I = 4 was used for both soft decision based and turbo decoding. 

parameters: 

• The RRNS encoding algorithm - non-systematic, systematic and modified systematic; 

• Error correction capability, t and length n of the codeword; 

• The decoding algorithm - hard decision, soft decision and turbo decoding; 

• The number of turbo decoding iterations used; 

• The design of the turbo RRNS inter leaver; 

All the simulation results were generated using the encoder and decoder structures de-

scribed in this chapter. The following parameters were the same for all simulations, unless 

otherwise stated; 

• The RRNS codes used were maximum distance separable; 

• The RRNS encoders used modified systematic bit-to-residue mapping; 

• The number of bits , used to represent all residues in a codeword was the same; 

• The weighting factors a and reliability factors (3 used were specified in Table 4.6; 
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» The number of turbo decoding iterations was four; 

• No puncturing of the parity bits of the upper and lower encoders was used. 

For a fixed number of Bits Per Symbol (BPS), used to represent all the residues in a 

codeword, the moduli set was chosen such that it maximised the code's legitimate dynamic 

range. Therefore, the moduli were chosen to be as large as possible, which are shown in 

Table 4.8. 

BPS max n Moduli 
4 4 11,13,15,16. 
5 8 17,19,23,25,27,29,31,32. 
6 10 37,41,43,47,53,55,59,61,63,64. 
7 18 67, 71, 73,79,83,89,97,101,103,107,109,113,119,121,123,125,127,128. 
8 28 131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211, 

217,223,227,229,233,239,241,247,251,253,255,256. 
9 50 257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349, 

353,359,367,373,379,383,389,397,401,409,419,421,431,433,437,439, 
443,449,457,461,463,467,473,479,487,491,493,499,503,505,507,509, 
511,512. 

10 82 521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617, 
619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727, 
733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829, 
839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947, 
949,953,967,971,977,983,989,991,997,1003,1007,1009,1013,1015, 
1019,1021,1023,1024. 

11 150 1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103, 
1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213, 
1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297, 
1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423, 
1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489, 
1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583, 
1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669, 
1681,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777, 
1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877, 
1879,1889,1891,1901,1907,1913,1931,1933,1943,1949,1951,1961,1973, 
1979,1987,1991,1993,1997,1999,2003,2011,2017,2021,2023,2027,2029, 
2033,2039,2041,2043,2045,2047,2048. 

Table 4.8: List of the largest moduli for a given fixed number of BPS. 
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4 .9 .1 H a r d D e c i s i o n D e c o d i n g 

4.9.1.1 Encoder Types 
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A Non-systematic RRNS(28,24), R=0.81 
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O Modified systematic RRNS(28,24), R=0.86 
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Figure 4.11: Performance comparison between the non-systematic, systematic and modified 
systematic 8 BPS RRNS(28,24) encoders over AWGN channels. The moduli set used is 
shown in Table 4.8. 

In Section 4.5, we have proposed two difierent methods for mapping the binary source bits 

to the non-binary RRNS code, which result in non-systematic and systematic RRNS codes, 

respectively. Furthermore, in Section 4.5.2.1 we modified the systematic RRNS mapping 

rule, in order to increase the associated code rate and to achieve the same number of BPS for 

every residue in a codeword. This has practical advantages in many applications and allows 

us to highlight the similarities with the well-known family of RS codes. In Figure 4.11, we 

show the performance of the non-systematic, systematic and modified systematic 8 BPS 

RRNS (28,24) code over AWGN channels. Due to the associated different mapping methods 

used, the code rate of the different encoders varied. Since the number of BPS mapped 

to every residue in a codeword was the same for the modified systematic RRNS code, it 

exhibited the highest code rate. 

In the figure, we can see that the BER performance of the non-systematic encoder is worse 



than that of the uncoded scenario for Eh/No < 8 dB. However, there is a coding gain of about 

0.8 dB at BER=10^^. Both the systematic and the modified systematic RRNS (28,24) code 

exhibit a similar performance and they are about 1 dB better in Eh/No terms, than the non-

systematic code. If there is a decoding failure, there will be about 50% bit-decoding errors 

for the non-systematic decoder which is the reason for its poor performance for EJJ/NQ < 8 

dB. By contrast, due to its systematic nature the systematic code, simply outputs the bits 

associated with the k information moduli, if a decoder failure was detected. Hence, there 

will be significantly less than 50% bit-decoding errors. Therefore, typically the systematic 

code is preferred to its non-systematic counterpart. 

Throughout the rest of this chapter, the modified systematic RRNS code was used rather 

than the systematic RRNS code of Section 4.5.2. This is because the modified systematic 

RRNS code always has a higher code rate, while the BER performance of both codes is 

similar. Moreover, the modified systematic RRNS code has fixed number of BPS, which is 

again, directly comparable to systematic Reed-Solomon (RS) codes. 

4.9.1.2 Comparison of Redundant Residue Number System codes and Reed-

Solomon Codes 

As argued earlier, RRNS codes which use the dmin — 1 number of largest moduli as their 

redundant moduli, are maximum distance separable. Hence, they are similar to RS codes 

in terms of their performance. Figure 4.12 compares the performance of the modified 

systematic RRNS code and that of systematic RS codes over AWGN channels. Both the 

RRNS(28,24) and the RS(28,24) codes constructed over GF(256) transmit 8 BPS. It can be 

seen from the figure that the performance of both codes is similar. For the RRNS(48,46) 

code, we used moduli, which transmit 6, 7 and 8 BPS, which was compared to the 8 BPS 

RS(48,46) code. Again as expected, the performance of both codes is similar. 

There are a number of advantages when using RRNS codes instead of RS codes. For 

example, if a code having a short codeword length n and high number of BPS is required, 

we have to shorten the RS code. This implies that we have to incorporate dummy symbols 

at both the encoder and decoder. Then the decoder has to decode the full-length padded 

RS codeword, which is wasteful in terms of decoding complexity. More explicitly, the 

algebraic decoding of a shortened RS code implies generating 2t number of syndromes, in 

order to determine t number of error locations. These syndromes are typically calculated by 

substituting the first 2t number of primitive elements into the received polynomial and this 

operation cannot be readily simplified in the case of shortened RS codes [90]. By contrast, 

a wide range of codeword length can be generated using RRNS codes without introducing 
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BER against Ey/N, 0 
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A RRNS(28,24),8BPS,R=0.86 
0 RS(28,24), 8 BPS, R=0.86 
O RRNS(48,46) 6,7, 8 BPS, R=0.96 
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Figure 4.12: Performance comparison between modified systematic RRNS and systematic 
RS codes over AWGN channels. The RRNS(28,24) code is compared to the RS(28,24) code 
constructed over GF(256). Both codes transmit 8 BPS. Furthermore, the performance of 
the RRNS(48,46) code transmitting 6, 7 and 8 BPS is compared to the 8 BPS RS(48,46) 
code. 

dummy symbols. This potentially reduces the decoding complexity. 

In an automatic request (ARQ) system [149], a stronger RS code will be required for 

retransmission if a weaker RS code fails. This implies the transmission of another full code-

word. However, for RRNS codes, a stronger code is obtained by introducing more redundant 

residues. If a RRNS code fails, stronger RRNS code can be obtained by transmitting more 

redundant residues without transmitting the whole codeword [150,151]. 

However, as argued in Section 4.8, the estimated complexity of the RRNS decoder in-

creases exponentially with the codeword length n and with the error correction capability 

t. Furthermore, it is extremely complex to implement a RRNS code with n w 2-̂ , where j 

is the number of BPS. 
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Figure 4.13: Performance comparison between different 8 BPS RRNS(28,A;) codes having 
an error correction capability of t over AWGN channels. 

4.9.1.3 C o m p a r i s o n Be tween Dif fe ren t E r r o r C o r r e c t i o n Capabi l i t i e s t 

Figure 4.13 shows our performance comparison between different error correction capabil-

ities t over AWGN channels. The codes used are 8 BPS RRNS(28,A;) codes, which have a 

fixed codeword length. We can see in the figure that as t increases, the coding gain also 

increases. However, the performance improvements saturate, when t = 4 and the best de-

sign trade-off is constituted by the RRNS(28,20) code. Since the complexity of the RRNS 

decoder is excessive for t > 6, no simulation results were provided. The associated theoret-

ical results [152] suggest that the achievable coding gain decreases, once the code rate R is 

below 0.6, that is for t > 4. 

The coding gain of the RRNS(28,A:) codes in Figure 4.13 were evaluated and tabulated 

in Table 4.9. The estimated complexity of the decoder was calculated using Equation 4.132 

and it was also shown in the table. Figure 4.14 shows the trend of the coding gain versus 

estimated complexity characteristic of the decoder. As we can see from the figure, increasing 

the estimated complexity does not necessary increase the coding gain and the best coding 

gain was achieved, when the estimated complexity of the decoder was relatively low. 
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Code t R Complexity, 5 Coding gain (dB) 
RRNS(28,26) 1 0.93 1.3 
RRNS(28,24) 2 0.86 70^75 1.9 
RRNS(28,22) 3 0 J 9 609,336 2.2 
RRNS(28,20) 4 OJ l 3,767,400 2.3 
RRNS(28,18) 5 0.64 17,837,820 2.2 
RRNS(28,16) 6 0.57 67,248,090 2.2 

Table 4.9: Coding gain and estimated complexity of 8 BPS RRNS(28,A;) codes using hard 
decision decoding for transmission over AWGN channels. 

Coding gain versus complexity 

l.e+07 2.e+07 3.e+07 4.e+07 5.e+07 6.e+07 7.e+07 
Complexity, 8 

Figure 4.14: Coding gain versus estimated complexity for hard decision decoding of various 
8 BPS RRNS(28,/c) codes for k = 26, 24, 22, 20,18 and 16. 
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4.9.2 Soft Decision Decoding 

4.9.2.1 Effect of t h e N u m b e r of Test Pos i t ions 

BER against Ey/N, 0 
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SoARRNS(28,24),l=l 
SoARRNS(28,24), 1=2 
SoARRNS(28,24),l=3 
SoARRNS(28,24),l=4 
SoARRNS(28,24),l=5 
HardRRNS(28,24) 

^Et/No(dB)* 

Figure 4.15: Performance of the soft decision assisted 8 BPS RRNS(28,24) decoder for 
different number of test positions / over AWGN channels. The performance of the hard 
decision decoder is also shown for comparison. 

In Section 4.7.1, we outlined how we can employ the Chase algorithm to exploit the 

soft outputs of the demodulator. In the decoder, only a limited number I bit positions 

associated with the least reliable confidence values was considered. Figure 4.15 shows the 

performance of the soft decision assisted 8 BPS RRNS(28,24) decoder for different number of 

test positions I over AWGN channels. The performance of the hard decision decoder is also 

shown in the figure for comparison. We can see from the figure that the performance of the 

soft decision decoder improves, as we increase the number of test positions I. However, the 

incremental improvement becomes more limited, when / > 4. It is surmised that the best-

case performance of the soft decision RRNS decoder is similar to that of the soft decision 

Viterbi algorithm. The estimated complexity of the decoder increases exponentially, since 

the number of test patterns is equal to 2^ In Figure 4.15, the performance of the soft 

decision RRNS(28,24) decoder using / = 4 is about 1.5 dB better, than that of the hard 
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decision assisted RRNS(28,24) decoder at a BER of 10" 

4.9.2.2 Soft Decision R R N S ( 1 0 , 8 ) Decode r 
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Figure 4.16: Performance comparison between hard decision assisted 6 BPS RRNS(10,8) 
decoder and the soft decision assisted 6 BPS RRNS(10,8) decoder for / = 4 over AWGN 
channels. The performance of the RS(10,8) code constructed over GF(64) for I = 4 is also 
shown for comparison. 

Figure 4.16 compares the performance of the hard decision assisted 6 BPS RRNS(10,8) 

decoder and that of the soft decision aided 6 BPS RRNS(10,8) decoder for / = 4 over AWGN 

channels. The soft decision aided decoder is about 2 dB better in terms of Eh/No than that 

of the hard decision based decoder at a BER of 10"^. We applied the Chase algorithm for 

decoding the RS(10,8) code constructed over GF(128), where for / = 4 we can see that the 

performance of the soft decision assisted RS(10,8) code constructed over GF(64) is similar 

to that of the soft decision aided RRNS(10,8) decoder. 
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Figure 4.17: Performance comparison between the SOVA and the SISO Chase decoding 
algorithm using the turbo BCH(7,4) code over AWGN channels. For the SISO Chase 
algorithm, the weighting factors were set to a{j) = 1 and the reliability factors to f3{j) — 1 
for every decoding index j and the number of test positions was I = 5. There were six 
decoding iterations and a 4 x 4 bit block interleaver was used. 

4.9.3 Turbo RRNS Decoding 

4.9.3.1 A l g o r i t h m C o m p a r i s o n 

In Section 4.7.3, we stated that there is a similarity between the SOVA and the SISO Chase 

algorithm. In the SOVA, the surviving path is chosen and the soft outputs are derived on the 

basis of the minimum path metric differences. Similarly, the SISO Chase algorithm searches 

for the surviving codeword and the associated soft outputs are proportional to the minimum 

weight difference. Therefore, if the weighting factors a{j) = 1 in Equation 4.129 and the 

reliability factors (3{j) = 1 in Equation 4.128 for all are significantly high values of j and 

than all the valid codewords are considered during the decoding process and hence the SISO 

Chase algorithm is fairly similar to the SOVA. In this section, we use the BCH(7,4) code as 

the component code of the turbo BCH(7,4) code. BCH codes were favoured since a Viterbi 

decoder can also be invoked for their decoding and hence the Log-MAP, Max-Log-MAP 
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and SOVA can be applied as benchmarkers of the SISO Chase algorithm. 

In Figure 4.17, we compare the performance of the SOVA and the SISO Chase decoding 

algorithm using the turbo BCH(7,4) code over AWGN channels. Since there are only 2^ = 16 

valid codewords in the BCH(7,4) code, 2*=^ = 32 test patterns are sufficient to perturb the 

received sequences to all the 16 valid codewords. The weighting factors a{j) and reliability 

factors /3{j) of Equations 4.129 and 4.128 are 1 for all decoding indices. Both algorithms 

have a total of six decoding iterations and a 4 x 4 bit block interleaver was used. From 

Figure 4.17, we can see that the performance of the algorithms is identical. Hence, we have 

shown that the concept of the SISO Chase algorithm is similar to that of the SOVA. 

CQ 10 

10 

BER against Ey/N, 0 

• Uncoded 
A SISO Chase 
0 Log-MAP 
O Max Log-MAP 
* SOVA 
V SISO Chase, a(j)=/3(j)=l 

1 
^Eb/No(dB)^ 

Figure 4.18; Performance comparison between different decoding algorithms using the turbo 
BCH(63,57) code over AWGN channels. There were six decoding iterations and a 57 x 57 
bit block interleaver was used. For the SISO Chase algorithm, a(j) and (3{j) were specified 
in Table 4.6 and we had I = 4. 

Let us now compare the performance of the SISO Chase algorithm to that of other well-

known algorithms, such as the Log-MAP, Max-Log-MAP and SOVA in the context of binary 

turbo BCH codes. Figure 4.18 shows our performance comparison between the different 

decoding algorithms using the turbo BCH(63,57) code over AWGN channels. There were 

six decoding iterations and a 57 x 57 bit block interleaver was used. For the SISO Chase 
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algorithm, a{j) and f3(j) were specified in Table 4.6 and we had I = 4. Since the Log-MAP 

decoding algorithm is optimum, its BER performance is the best in Figure 4.18. The Max 

Log-MAP decoding algorithm suffers from a slight degradation of 0.1 dB at BER= 10"® 

compared to the Log-MAP decoding algorithm. With the optimum values of a{j) and 

(3{j) given by Pyndiah [62] as shown in Table 4.6, the SISO Chase algorithm exhibits a 

slight Eb/No performance degradation of 0.2 and 0.1 dB at BER= 10"® compared to the 

Log-MAP and the Max Log-MAP decoding algorithms, respectively. As compared to the 

SOVA, the SISO Chase algorithm performs better, having a 0.8 dB E^/Nq advantage at a 

BER of 10"®. Also shown in Figure 4.18 is the performance of the SISO Chase algorithm in 

conjunction with a[j) = /3(j) = 1 for every decoding index. It can be seen that its Eb/No 

performance is about 0.4 dB worse, than that of the SISO Chase algorithm using the a{j) 

and P{j) values shown in Table 4.6. Hence, we have shown that the BER performance can 

be improved by optimising the values of a{j) and 

4.9.3.2 N u m b e r of I t e r a t i o n s Used 

BER against Ey/Ng 

Uncoded 
A 1 iteration 
0 2 iterations 
O 4 iterations 
* 6 iterations 

3 4 5 
Eb/No(dB) 

Figure 4.19: Performance comparison for different number of iterations using the rate i?0.87 
8 BPS turbo RRNS(28,26) code, a 26 x 26 symbol block interleaver, and the a{j) and /5(j) 
values shown in Table 4.6, over AWGN channels. 
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Figure 4.19 shows the performance of different number of iterations using the 8 BPS turbo 

RRNS(28,26) code, over AWGN channels. The interleaver used is a 26 x 26 symbol block 

interleaver, while the a{j) and /3(j) values used in our simulations are shown in Table 4.6. 

Since the parity symbols of both the upper and lower encoder are transmitted through 

the channel, the resultant code rate is 0.86. As the number of iterations performed by 

turbo decoder increases, the performance of the turbo code improves. However, after four 

iterations the improvement becomes insignificant. 

BER against E /̂Nq 

Uncoded 
A 1 iteration 
0 2 iterations 
O 4 iterations 
* 6 iterations 

3 4 5 
Eb/No(dB) 

Figure 4.20: Performance comparison for different number of iterations using the rate R = 
0.75 8 BPS turbo RRNS(28,24) code, a 24 x 24 symbol block interleaver, and the a{j) and 
P{j) values shown in Table 4.6, over AWGN channels. 

Figure 4.20 also shows our performance comparisons for different number of iterations over 

AWGN channels. The turbo component codes are constituted by the 8 BPS RRNS(28,24) 

code and the code rate is 0.75. The values of a{j) and /3{j) used were shown in Table 4.6 

and the turbo interleaver is a 24 x 24 symbol block interleaver. It can be seen from the figure 

that the performance improvement due to each extra iteration is higher compared to that 

of the turbo RRNS(28,26) code. For instance, at a BER of 10~^, the E^/Nq performance 

of the turbo RRNS(28,24) code using two iterations is about 2 dB better, than that of the 

first iteration. By contrast, for the turbo RRNS(28,26) code, the performance of the second 
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iteration is only 1 dB better in terms of Eb/No, than that of the first iteration. However, 

the performance of the turbo RRNS(28,24) code does not improve significantly after four 

iterations. Hence, the simulation results shown in the following sections will be based on 

four iterations. 

4.9.3.3 I m p e r f e c t E s t i m a t i o n of t h e C h a n n e l Rel iabi l i ty Value Lc 

BER against E /̂Nq 

10" 

10 

P:̂  2 

PQlO"̂  

10 

10 

• Uncoded 
A Correct 
<0 Lc=l 

1 

Figure 4.21: Effect of using incorrect channel reliability value Lc on the performance of the 
turbo RRNS(28,24) code employing four iterations, and a 24 x 24 symbol block interleaver. 
The values of a{j) and (3{j) were shown in Table 4.6. 

In Equation 4.122 of Section 4.7.2, we have shown that we can approximate the soft 

output as: 

^ 6; + -Z (̂%)] - (4.135) 
j = l 

In the first iteration of the iterative decoding process, there is no intrinsic information 
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L{uj) = L{uk) = 0 for the data bits. Therefore, we can simplify Equation 4.135 as follows: 

3/t -f-
j = l 

(4.136) 

Over AWGN channels the channel reliability value becomes a constant in Equation 4.136. 

Therefore, we can omit the channel reliability value in deriving the soft outputs of the data 

bit Uk- Equation 4.135 is then simplified and rewritten as follows: 

n 
- 3/t + ^ 6; [i/j + . (4.137) 

J=1 

Figure 4.21 shows the associated performance, when using the correct Lc value and when 

setting Lc = I for the 8 BPS turbo RRNS(28,24) code over AWGN channels. The number 

of iterations was four and a 24 x 24 symbol block interleaver was used. The values of a{j) 

and P{j) were shown in Table 4.6. The performance of the 8 BPS turbo RRNS(28,24) code 

using the correct values of Lc is shown in the figure for comparison purpose. It can be seen 

that the SISO Chase algorithm performs equally well whether or not the correct values of Lg 

are known. A similar observation is valid for the SOYA and the Max-Log-MAP algorithms, 

which were detailed in Section 3.6.3. 

4.9.3.4 T h e Effect of t h e T u r b o In te r l eaver 

Conventionally, the turbo interleaver is used to disperse the parity information incorporated 

by the encoder into the transmitted sequence. In turbo RRNS codes the parity information 

is transmitted twice. Even if a number of bits are corrupted by channel errors, the second set 

of interleaved parity information may assist the decoder in removing these errors, provided 

that these bits are not corrupted by the channel. For binary codes, such as the turbo 

BCH codes of Chapter 3, bit-based turbo interleavers were used. In this section we provide 

performance results of a variety of interleavers. 

Specifically, Figure 4.22 shows our performance comparison between a 12480 symbol (8 

BPS) random interleaver and a 99840 bit random interleaver over AWGN channels. More 

explicitly, the interleaving depth of both interleavers is about 100,000 bits. At a BER of 

10~® the performance of the bit interleaver is about 0.2 dB better in terms of Eh/No, than 

that of the symbol interleaver. This result might suggest that using a bit interleaver is 

more beneficial, than a symbol interleaver in terms of scrambling the input data bits and 

spreading the parity information. This assists in passing independent information between 

the two decoders, which is vital for decoding turbo codes iteratively. 
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BER against Ey/Ng 

• Uncoded 
A 99840 random bit interleaver 
0 12480 random symbol (8 BPS) interleaver 

10 
1 

Figure 4.22: Performance comparison of the 8 BPS turbo RRNS(28,24) code for an 12480 
random symbol (8 BPS) random interleaver and a 99840 bit random interleaver over AWGN 
channels. The number of iterations was four and values of a{j) and /5(j) were shown in 
Table 4.6. 

It is well known that the design of the turbo interleaver affects the performance of the 

turbo code [12,13,69]. One of the most important factors is the size of the turbo interleaver. 

Impressive performance results have been obtained using large interleavers [12,13,69]. How-

ever, a large interleaver implies a long delay, which is an impediment in interactive speech 

and video transmissions. Hence below we will characterise the performance of low-latency 

interleavers. 

We show in Figure 4.23, how the interleaver length affects the performance of the 8 BPS 

turbo RRNS(28,24) code employing four iterations over AWGN channels. The smallest 

interleaver size that can accommodate one RRNS(28,24) codeword is the 8 BPS 6 x 4 

symbol block interleaver, resulting in a delay of 192 bits. Due to its small interleaver depth, 

the performance of this scheme is moderate, achieving a BER of 10'^ at Eh/No = 6.8 dB. If 

we increase the interleaver size to a 12x10 8 BPS block symbol interleaver, the performance 

of the turbo code is about 1.5 dB better in terms of the required Eh/No, than in the previous 

case at a BER of 10"^. A further increase of 0.8 dB E^/Nq improvement is observed at 
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BER against E /̂No 

Uncoded 
A 6 x4 block interleaver 
0 12 X10 block interleaver 
O 24 X 24 block interleaver 
* 12480 random interleaver 

Eb/No(dB) 

Figure 4.23: Performance comparison between different length symbol interleavers for the 
8 BPS RRNS(28,24) employing four iterations over AWGN channels. The values of a{j) 
and /3{j) were shown in Table 4.6. 

BER=10~® when the interleaver size is increased to using a 24 x 24 8 BPS block interleaver. 

However, beyond this interleaver size there is no significant coding gain improvement, when 

the interleaver size increases for example to 12480 symbols or about 100,000 bits. 

4.9.3.5 T h e Effect of t h e N u m b e r of B i t s P e r Symbol 

Figure 4.24 shows the performance of various 8, 9, 10 and 11 BPS turbo RRNS (28,24) codes 

employing four iterations over AWGN channels. The interleavers were implemented using 

random symbol interleaving and their size was chosen such that the interleaver depth was 

approximately 100,000 bits. Figure 4.24 shows that the BER performance degrades as we 

increase the number of bits per symbol (BPS). This is because over AWGN channels the 

errors occur randomly and independently. Therefore, as the number of BPS increases, the 

probability of symbol errors increases. 
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BER against E^/No 

Uncoded 
BPS (28,24), 12480 8 BPS interleaver 

9 BPS (28,24), 2000 9 BPS interleaver 
10 BPS (28,24), 10080 10 BPS interleaver 
11 BPS (28,24), 9120 11 BPS interleaver 

^Eb/No(dB)^ 

Figure 4.24: Performance comparison of different number of BPS turbo RRNS(28,24) codes 
employing four iterations over AWGN channels. All interleavers used were random and the 
values of a{j) and (3{j) were shown in Table 4.6. 

4.9.3.6 C o d i n g Ga in Versus E s t i m a t e d C o m p l e x i t y 

In Section 4.8, we have studied the estimated complexity of hard decision, soft decision 

and turbo decoding assisted RRNS codes. The estimated complexity of the decoding algo-

rithms was also shown in Figure 4.10 for the RRNS(28,26) and RRNS(28,24) codes. Let us 

now investigate the amount of coding gain achievable by investing more complexity at the 

decoder. 

Figure 4.25 shows our performance comparison for the hard decision, soft decision and 

turbo decoding assisted RRNS(28,24) codes over AWGN channels. Both the soft decision 

and turbo decoding aided schemes had the same number of test positions, namely I = 4. For 

turbo decoding, the number of iterations was four and a 12480 8 BPS random interleaver 

was used. As shown in the figure, the BER performance of the RRNS(28,24) code improves 

as we invest more complexity. Specifically, with the aid of turbo decoding, the RRNS(28,24) 

code achieves a maximum coding of 5.0 dB at a BER of 10~®. The estimated complexity 

versus coding gain performance of the three decoding algorithms is tabulated in Table 4.10. 
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BER against Ey/Ng 

• Uncoded 
A Hard decision, R=0.86 
0 Soft decision, R=0.86 
O Turbo decoding, R=0.75 

4 5 6 7 
Eb/No(dB) 

Figure 4.25: Performance comparison of hard decision, soft decision and turbo decoding of 
the RRNS(28,24) code over AWGN channels. For soft decision, the number of test positions 
was I — 4. Similarly, I = 4 was used for turbo decoding and the number of iterations was 
four. The turbo interleaver was a 12480 symbol 8 BPS random interleaver and values of 
a{j) and /3(j) were shown in Table 4.6. 

Using the values seen in Table 4.10, we plotted the coding gain versus estimated com-

plexity of this code in Figure 4.26. As we can see in the figure, the estimated complexity 

of hard decision decoding is the lowest and hence the coding gain is only 1.9 dB. With 

a moderate increase of estimated complexity, a coding gain of 3.3 dB is achieved by soft 

decision decoding. However, we have to invest a significantly higher complexity, in order to 

achieve a coding gain of 5 dB by turbo decoding. 

4.10 S u m m a r y and Conclusion 

The ancient theory of the RNS was reviewed in Section 4.1. This was followed by a brief 

introduction in Section 4.2.1 to the conventional number systems, namely to the decimal and 

the binary number systems. Then the residue number system was introduced in more detail 
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Algorithm R Complexity, 5 Coding gain (dB) 
Hard decision 0.86 70,875 1.9 
Soft decision 0.86 1,134,000 3.3 
Turbo decoding 0.75 9,072,000 5.0 

Table 4.10: Estimated decoding complexity versus coding gain at BER=10 ^ for hard de-
cision, soft decision and turbo decoding assisted RRNS(28,24) codes over AWGN channels. 

a § 

3' 

Coding gain versus complexity 

Turbo decoding 

/Soft decision 

Hard decision 

0 l.e+06 2.e+06 3.e+06 4.e+06 5.e+06 6.e+06 7.e+06 8.e+06 9.e+06 l.e+07 
Complexity, 6 

Figure 4.26: Coding gain versus estimated complexity for hard decision, soft decision and 
turbo decoding of RRNS(28,24) codes. The simulation results are obtained over the AWGN 
channels. 
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in Section 4.2.2. A simple example was given and the differences between the conventional 

number systems and the residue number system were highlighted. In Section 4.2.3, we 

also discussed the differences between fixed radix number systems and mixed radix number 

systems. The conventional decimal number system is a fixed radix number system, whereas 

the residue number system is a mixed radix system. 

The various RNS-based arithmetic operations such as addition, subtraction and mul-

tiplication were demonstrated in Section 4.2.4 with the aid of simple examples. In Sec-

tion 4.2.4.1 the multiplicative inverse was defined. Two known techniques were described 

in Section 4.2.5 for the conversion of operands from the residue number system to the dec-

imal number system, which are the CRT and the MRC. In Section 4.2.6, we showed that 

by incorporating extra moduli in the existing residue number system, a redundant residue 

number system is obtained. The BEX technique was suggested for finding the residue digits 

of an extended set of moduli, given the residue digits of the existing moduli. 

In Section 4.3, we provided a brief overview of the coding theory of RRNS codes. Given a 

set of moduli, we showed that the minimum free distance dmin of the RRNS code was given 

by Equation 4.37. Furthermore we also showed that maximum distance separable RRNS 

codes are obtained, if Equation 4.45 is satisfied. In Section 4.3.2, we highlighted, why 

RRNS codes are semi-linear block codes. Then, we related the minimum free distance dmin 

of RRNS codes to their error detection and error correction capabilities. The procedure for 

multiple error correction was summarised in Section 4.4. In Section 4.5, we demonstrated 

that different mapping methods result in systematic and non-systematic RRNS codes. Fur-

thermore, we proposed a novel mapping method, which results in an increased code rates 

for systematic RRNS codes. The performance of the novel mapping method was found to 

be similar to that of the systematic RRNS codes. In Section 4.7, we modified the Chase 

algorithm so that it became capable of incorporating soft inputs and providing soft outputs. 

The estimated complexity of the hard decision and soft decision assisted decoder as well as 

that of iterative decoding was evaluated in Section 4.8. It was found that the estimated 

complexity of the algorithms depends on the codeword length n and on the error correction 

capability t. Moreover, the increase in estimated complexity is faster, when t is increased 

as compared to n. 

Finally in Section 4.9 we presented our simulation results for the proposed RRNS codes 

using BPSK over AWGN channels. It was found in Section 4.9.1.1 that systematic RRNS 

codes outperform their non-systematic counterparts. Modified systematic RRNS codes give 

a similar performance to systematic RRNS codes at a higher code rate. The performance 

of the RRNS codes was then compared to that of Reed-Solomon codes in Section 4.9.1,2. It 

was found that analogous codes of these code families give a similar performance. Fixing the 



codeword length n, the performance of the RRNS codes was evaluated by varying the error 

correction capability t. It was shown in Figure 4.14 that the increase in error correction 

capability t results in an increased estimated complexity, although no extra coding gain 

was obtained. In Section 4.9.2.1, a soft decision aided RRNS decoder was employed. It was 

found that the performance of the soft decision assisted decoder improves as the the number 

test position is increased. We also concluded that the best-case performance of the Chase 

algorithm is the same as that of the soft decision Viterbi algorithm. The performance of the 

soft decoding of RS codes was found to be similar to that of RRNS codes. The performance 

of various decoding algorithms was compared in Figure 4.18 for turbo BCH(63,57) code. It 

was shown in the figure that the SISO Chase algorithm, which offers a significantly reduced 

complexity, suffers only a small performance degradation. In Section 4.9.3.2, we concluded 

that the optimum number of decoding iterations is four. We then extended our research 

into the effects of the turbo interleaver in Section 4.9.3.4. Finally, we showed in Figure 4.26 

that the coding gain can be increased by increasing the estimated complexity. 

In conclusion, in this chapter, we have investigated a new class of codes referred to as 

RRNS codes. Their performance was found to be similar to that of the analogous Reed-

Solomon codes, with some additional advantages over the well-known class of Reed-Solomon 

codes. For example, short non-binary block codes could be readily designed using RRNS 

codes without having to shorten long mother codes, which would be inevitable in the context 

of RS codes. Furthermore, in ARQ assisted systems stronger RRNS codes are readily 

obtained for retransmission by transmitting extra redundant residues, without having to re-

transmit the whole codeword. In [150,151,153], we exploited the same principle in designing 

adaptive-rate RRNS codes for adaptive OFDM transmissions over mobile communication 

channels. 



Chapter 5 

Space-Time Block Codes 

5.1 In t roduc t ion 

The third generation (3G) mobile communications standards [154] are expected to provide 

a wide range of bearer services, spanning from voice to high-rate data services, supporting 

rates of at least 144 kb/s in vehicular, 384 kb/s in outdoor-to-indoor and 2 Mb/s in indoor 

as well as picocellular applications [154]. 

In an effort to support such high rates, the bit/symbol capacity of band-limited wireless 

channels can be increased by employing multiple antennas [155]. The classic approach is 

to use multiple antennas at the receiver and invoke Maximum Ratio Combining (MRC) 

[156-158] of the received signals for improving the performance. However, applying receiver 

diversity at the Mobile Stations (MS) increases their complexity. Hence receiver diversity 

techniques typically have been applied at the Base Stations (BS). The BSs provide services 

for many MSs and hence up-grading the BSs is economically viable. However, the drawback 

of this scheme is that it only provides diversity gain for the BSs' receivers. 

In the past, different transmit diversity techniques have been introduced, in order to 

provide diversity gain for MSs by upgrading the BSs. These transmit diversity techniques 

can be classified into three main categories: schemes using information feedback [159,160], 

arrangements invoking feedforward or training information [161-163] and blind schemes 

[164,165]. Recently, Tarokh et al. proposed space-time trellis coding [70, 80,166-169] by 

jointly designing the channel coding, modulation, transmit diversity and the optional re-

ceiver diversity scheme. The performance criteria for designing space-time trellis codes were 

derived in [70], under the assumption that the channel is fading slowly and that the fading 

is frequency nonselective. These advances were then also extended to fast fading channels. 

The encoding and decoding complexity of these space-time trellis codes is comparable to 
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that of conventional trellis codes [46-48] often employed in practice over non-dispersive 

Gaussian channels. 

Space-time trellis codes [70,80,166-169] perform extremely well at the cost of relatively 

high complexity. In addressing the issue of decoding complexity, Alamouti [71] discovered 

a remarkable scheme for transmissions using two transmit antennas. A simple decoding 

algorithm was also introduced by Alamouti [71], which can be generalised to an arbitrary 

number of receiver antennas. This scheme is significantly less complex, than space-time 

trellis coding using two transmitter antennas, although there is a loss in performance [72]. 

Despite the associated performance penalty, Alamouti's scheme is appealing in terms of its 

simplicity and performance. This proposal motivated Tarokh et al. [72, 73] to generalise 

Alamouti's scheme to an arbitrary number of transmitter antennas, leading to the concept 

of space-time block codes. 

Intrigued by the decoding simplicity of the space-time block codes proposed in [71-73], in 

this chapter, we commence our discourse by detailing their encoding and decoding process. 

Subsequently, we investigate the performance of the space-time block codes over perfectly 

interleaved, non-dispersive Rayleigh fading channels. A system which consists of space-time 

block codes and different channel coders will be proposed. Finally, the performance and 

estimated complexity of the difi'erent systems will be compared and tabulated. 

Following a rudimentary introduction to space-time block codes in Section 5.3 and to 

channel coded space-time codes in Section 5.4, the associated estimated complexity issues 

and memory requirements are addressed in Section 5.4.3. The bulk of this chapter is con-

stituted by the performance study of various space-time and channel coded transceivers 

in Section 5.5. Our aim is firstly to identify a space-time code, channel code combination 

constituting a good engineering trade-off in terms of its effective throughput, BER perfor-

mance and estimated complexity in Section 5.5.1. Specifically, the issue of bit-to-symbol 

mapping is addressed in the context of convolution codes and convolutional coding as well 

as Bose-Chaudhuri-Hocquenghem (BCH) coding based turbo codes in conjunction with an 

attractive unity-rate space-time code and multi-level modulation in Section 5.5.2. These 

schemes are also benchmarked against a range of powerful trellis coded modulation (TCM) 

and turbo trellis coded modulation (TTCM) schemes. Our conclusions concerning the mer-

its of the various schemes are drawn in Section 5.5.4 in the context of their coding gain 

versus estimated complexity. 



5.2 Background 

In this section, we present a brief overview of space-time block codes by considering the 

classical Maximum Ratio Combining (MRC) technique [71,102,170]. The introduction of 

this classical technique is important, since at a later stage it will assist us in highlighting 

the philosophy of space-time block codes. 

5.2.1 Maximum Ratio Combining 

In conventional transmission systems we have a single transmitter, which transmits infor-

mation to a single receiver. In Rayleigh fading channels the transmitted symbols experience 

severe magnitude fluctuation and phase rotation. In order to mitigate this problem, we can 

employ several receivers that receive replicas of the same transmitted symbol through in-

dependent fading paths. Even if a particular path is severely faded, we may still be able 

to recover a reliable estimate of the transmitted symbols through other propagation paths. 

However, at the station we have to combine the received symbols of the different propaga-

tion paths, which involves additional complexity. Again, the classical method often used in 

practice is referred to as the MRC technique [71,102,170]. 

Figure 5.1 shows the baseband representation of the classical MRC technique in conjunc-

tion with two receivers. At a particular instant, a symbol x is transmitted. As we can 

see from the figure, the transmitted symbol x propagates through two difi'erent channels, 

namely hi and /12. For simplicity, all channels are assumed to be constituted by a single 

propagation path and can be modelled as complex multiplicative distortion, which consists 

of a magnitude and phase response given as follows: 

Ag = , (5 2) 

where |/ii|, I/12I are the fading magnitudes and 9i, 62 are the phase values. Noise is added 

by each receiver, as shown in Figure 5.1. Hence, the resulting received baseband signals 

are: 

yi = hix + ni (5.3) 

:= h22 4-'n2 , (5.4) 

where ni and n2 are complex noise samples. In matrix form this can be written as follows: 

= X \ . (5.5) 



(ZyfyLPGTELR f). CfCtDfOS 183 

Channel 
es t imator 

Channel 
es t imator 

Max imum likelihood 
detector 

Figure 5.1; Baseband representation of the MRC technique using two receivers. 

Assuming that we have perfect channel information, i.e. a perfect channel estimator, the 

received signals yi and y2 can be multiplied by the conjugate of the complex channel trans-

fer functions hi and A2, respectively, in order to remove the channel's effects. Then the 

corresponding signals are combined at the input of the maximum likelihood detector of 

Figure 5.1 as follows: 

hiVi + h2y2 

Ai/iia; 4- + ^2/122: + ^2^2 

+ |/i2|^ ) a: + Aini + A2n2 (5.6) 

The combined signal x is then passed to the maximum likelihood detector, as shown in 

Figure 5.1. Based on the Euclidean distances between the combined signal x and all possible 

transmitted symbols, the most likely transmitted symbol is determined by the maximum 

likelihood detector. The simplified decision rule is based on choosing Xi if and only if 

(5.7) 

where dist{A,B) is the Euclidean distance between signals A, B and the index j spans 

all possible transmitted signals. From Equation 5.7 we can see that maximum likelihood 
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transmitted symbol is the one having the minimum Euclidean distance from the combined 

signal X. 

5.3 Space-Time Block Codes 

In the previous section we have briefly introduced the classic MRC technique. In this section 

we will present the basic principles of space-time block codes. In analogy to the MRC matrix 

formula of Equation 5.5, a space-time block code describing the relationship between the 

original transmitted signal x and the signal replicas artificially created at the transmitter for 

transmission over various diversity channels, is defined by an n x p dimensional transmission 

matrix. The entries of the matrix are constituted by linear combinations of the k—avy input 

symbols xi,X2, and their conjugates. The A—ary input symbols Xii = are used to 

represent the information-bearing binary bits to be transmitted over the transmit diversity 

channels. In a signal constellation having 2̂  constellation points, b number of binary bits 

are used to represent a symbol Xi. Hence, a block ot k x b binary bits are entered into 

the space-time block encoder at a time and it is therefore referred to as a space-time block 

code. The number of transmitter antennas is p and n represents the number of time slots 

used to transmit k input symbols. Hence, a general form of the transmission matrix of a 

space-time block code is as follows: 

g2i 

9 1 2 g 2 2 

9pi 

9p2 

(5.8) 

\9ln 92n 9pnJ 

where the entries gij represent linear combinations of the symbols xi ,x2, and their 

conjugates. More specifically, the entries gij, where i = are transmitted simultane-

ously from transmit antennas 1, ...,p in each time slot j = l , . . . ,n . For example, in time 

slot 3 = 2, signals 912,922, - ,9p2 are transmitted simultaneously from transmit antennas 

Tx l,Tx 2, ...,Tx p. We can see in the transmission matrix defined in Equation 5.8 that 

encoding is carried out in both space and time; hence the term space-time coding. 

The nxp transmission matrix in Equation 5.8 — which defines the space-time block code 

— is based on a complex generalised orthogonal design, as defined in [71-73]. Since there 

are k symbols transmitted over n time slots, the code rate of the space-time block code is 

given by: 

R = kin. (5.9) 
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At the receiving end, we can have an arbitrary number of q receivers. It was shown in [71] 

that the associated diversity order is p x g. A combining technique [71,73] similar to MRC 

can be applied at the receiving end, which may be generalised to q number of receivers. At 

the current state-of-the-art the associated diversity channels are often assumed to be flat 

fading channels. A possible approach to satisfying this condition for high-rate transmissions 

over frequency-selective channels is to split the high-rate bit stream into a high number of 

low-rate streams transmitted over flat-fading subchannels This can be achieved with the aid 

of Orthogonal Frequency Division Multiplexing (OFDM) [153], It is also typically assumed 

that the complex fading envelope is constant over n consecutive time slots. 

5.3.1 A Twin-Transmitter Based Space-Time Block Code 

As mentioned above, the simplest form of space-time block codes was proposed by Alamouti 

in [71], which is a simple twin-transmitter based scheme associated with p = 2. The 

transmission matrix is defined as follows; 

G9 
2:2 3=1 

(5.10) 

We can see in the transmission matrix G2 that there are p = 2 (number of columns in 

the matrix G2) transmitters, k = 2 possible input symbols, namely xi, X2, and the code 

spans over n = 2 (number of rows in the matrix G2) time slots. Since k = 2 and n = 2, 

the code rate given by Equation 5.9 is unity. The associated encoding and transmission 

process is shown in Table 5.1. At any given time instant T, two signals are simultaneously 

Time 
slot, T 

antenna Time 
slot, T Ta; 1 Ta; 2 

1 Xl 12 
2 - ^ 2 Xl 

Table 5.1: The encoding and transmission process for the Gg space-time block code of 
Equation 5.10. 

transmitted from the antennas Tx 1 and Tx 2. For example, in the first time slot associated 

with T = 1, signal xi is transmitted from antenna Tx 1 and simultaneously signal X2 is 

transmitted from antenna Tx 2. In the next time slot corresponding to T = 2, signals —X2 

and xi (the conjugates of symbols xi and X2) are simultaneously transmitted from antennas 

Tx 1 and Tx 2, respectively. 
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5.3 .1 .1 T h e S p a c e - T i m e C o d e G2 Us ing O n e R e c e i v e r 

Ta; 1 Ta; 2 

2/1 = + /̂ 2a;2 + n i 

2/2 — —hiX2 + A2Z1 + Mg 

Combiner 
Channel 
estimator 

Maximum likelihood 
detector 

Figure 5.2: Baseband representation of the simple twin-transmitter space-time block code 
G2 of Equation 5.10 using one receiver. 

Lets us now consider an example of encoding and decoding the Gg space-time block code 

of Equation 5.10 using one receiver. This example can be readily extended to an arbitrary 

number of receivers. In Figure 5.2 we show the baseband representation of a simple two-

transmitter space-time block code, namely that of the Gg code seen in Equation 5.10 using 

one receiver. We can see from the figure that there are two transmitters, namely Tx 1 as well 

as Tx 2 and they transmit two signals simultaneously. As mentioned earlier, the complex 

fading envelope is assumed to be constant across the corresponding two consecutive time 

slots. Therefore, we can write 

hi = hi{T = 1) = hi{T = 2) 

== = 1) = 2) 

(5.11) 

(5.12) 

Independent noise samples are added at the receiver in each time slot and hence the received 
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signals can be expressed with the aid of Equation 5.10 as: 

:= AlZi 4-1^23% 4-)%1 (5.13) 

:= --Aia%-H A22i-k:n2 , (5.14) 

where yi is the first received signal and 1/2 is the second. Notice that the received signal 

yi consists of the transmitted signal xi and X2, while 1/2 of their conjugates. In order to 

determine the transmitted symbols, we have to extract the signals xi and X2 from the 

received signals yi and 7/2. Therefore, both signals yi and y2 are passed to the combiner, 

as shown in Figure 5.2. In the combiner — aided by the channel estimator, which provides 

perfect estimation of the diversity channels in this example — simple signal processing is 

performed in order to separate the signals xi and X2- Specifically, in order to extract the 

signal xi , we combine the received signals yi and 3/2 as follows: 

jci == itl&l 4-/%2&% 

= hihixi + hih2X2 + hini — h2hiX2 + /i2^25i + 

= ^1 + hiUi + ^,2^2 • (5.15) 

Similarly, for signal X2 we generate: 

= h2hixi + h2h2X2 + A2M1 + hihiX2 — hih2Xi — hin2 

= { \h i \^+ \h2f^ X2 + h2ni - hin2 • (5.16) 

Clearly, from Equation 5.15 and 5.16 we can see that we have separated the signals xi and 

X2 by simple multiplications and additions. Due to the orthogonality of the space-time block 

code G2 in Equation 5.10 [72], the unwanted signal X2 is cancelled out in Equation 5.15 and 

vice versa, signal xi is removed from Equation 5.16. Both signals Xi and X2 are then passed 

to the maximum likelihood detector of Figure 5.2, which applies Equation 5.7 to determine 

the most likely transmitted symbols. 

Prom Equations 5.15 and 5.16 we can derive a simple rule of thumb for manipulating 

the received signal in order to extract a symbol Xi. For each received signal yj, we would 

have a linear combination of the transmitted signals Xi convolved with the corresponding 

Channel Impulse Response (CIR) hi. The non-dispersive CIR is assumed to be constituted 

by a single CIR tap corresponding to a complex multiplicative factor. The conjugate of the 

CIR hi should be multiplied with the received signal yy, if Xi is in the expression of the 

received signal %. However, if the conjugate of Xi, namely Xi is present in the expression, 

we should then multiply the CIR hi with the conjugate of the received signal yj, namely yj. 

The product should then be added to or subtracted from the rest, depending on the sign of 

the term in the expression of the received signal yj. 
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5.3.1.2 T h e S p a c e - T i m e C o d e Gg Us ing T w o R e c e i v e r s 

Xi 

-^2 

X2 

Ta; 1 Ta; 2 

Rx 

Ml2 

^11 = + /2'12^2 4- Mil 

2/12 = —hiiX2 + hi2Xi + ni2 

Rx 2 

3/21 — h 2 l X i + h 2 2 X 2 + M 2 I 

2/22 = —/!'21^2 + /^22^1 + )T'22 

Channel 
estimator 

Channel 
es t imator Combiner 

Maximum likelihood 
detector 

Figure 5.3: Baseband representation of the simple twin-transmitter space-time block code 
G2 of Equation 5.10 using two receiver. 

In Section 5.3.1.1 we have shown an example of the encoding and decoding process for the 

Gg space-time block code of Equation 5.10 using one receiver. However, this example can 

be readily extended to an arbitrary number of receivers. The encoding and transmission 

sequence will be identical to the case of a single receiver. For illustration, we discuss the 

specific case of two transmitters and two receivers, as shown in Figure 5.3. We will show 

however that the generalisation to q receivers is straightforward. In Figure 5.3, the subscript 

i in the notation hij, n i j and mj represents the receiver index. By contrast, the subscript j 

denotes the transmitter index in the CIR hij, but it denotes the time slot T in and % . 

Therefore, at the first receiver Rx 1 we have: 

%il == /tiia^ 4-/̂ 123% 

:= --biia%-^ Ai22;i -k ;%i2 , 

(5.17) 

(5.18) 
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while at receiver Rx 2 we have 

:= Azizi-K A22a%4-)?2i (5.19) 

1/22 = -/l21^2 + /l22^1 + "22 - (5-20) 

We can, however, generalise these equations to: 

Z/ii = + /ti2a;2 + " i i (5.21) 

2/i2 = + Ai2^1 + Mi2 , (5.22) 

where 2 = 1,..., g and q is the number of receivers, which is equal to two in this example. 

At the combiner of Figure 5.3, the received signals are combined to extract the transmitted 

signals xi and X2 from the received signals yn, yn, y2i and 2/22, as follows: 

+ /ll2m2 + ^213/21 + /l22^22 (5.23) 

^2 = ^122/11 — /tll^l2 + ^223/21 — /l21^22 - (5-24) 

Again, we can generalise the above expressions to q receivers, yielding: 

Q 

^ (Aag/zi + Ai2%2) (5.25) 
i=l 

Q 
^2 ^ ^ (^i23/ii - /iii%2) . (5.26) 

i=l 

Finally, we can simplify Equations 5.23 and 5.24 to: 

xi = + |/ii2p + \h2i\^ + |/i22|^j + hiiuii + hi2ni2 + A21M21 + ^22^22 

(5.27) 

X2 = + \h12f + |^2iP + 1^22!^^ X2 + hi2nii — hiini2 + ^22^21 ~ ^21^22 • 

(5.28) 

In the generalised form of q receivers we have: 

q 

xi = ^ + |/ii2| ^ xi + hiiHii + hi2ni2 (5.29) 
2 = 1 

^ r / \ - 1 
^2 = + |Ai2n 2:2 + /li2Mil - . (5.30) 

i=l 

Signals xi and X2 are finally derived and passed to the maximum likelihood detector seen in 

Figure 5.3. Again, Equation 5.7 is applied to determine the maximum likelihood transmitted 

symbols. 
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We observe in Equation 5.29 that signal xi is multiplied by a term related to the fading 

amplitudes, namely Ihnf + \hi2f. Hence, in order to acquire a high reliability signal xi, the 

amplitudes of the CIRs must be high. If the number of receivers is equal to one, i.e. g = 1, 

then Equation 5.29 is simplified to Equation 5.15. In Equation 5.15, we can see that there 

are two fading amplitude terms, i.e. two independent paths associated with transmitting 

the symbol xi. Therefore, if either of the paths is in a deep fade, the other path still may 

provide a high-reliability for the transmitted signal xi. This explains, why the performance 

of a system having two transmitters and one receiver is better, than that of the system 

employing one transmitter and one receiver. On the other hand, in the conventional single-

transmitter, single-receiver system there is only a single propagation path, which may be 

severely attenuated by a deep fade. To elaborate further, if the number of receivers is 

increased to g = 2, Equation 5.27 accrues from Equation 5.29. We can see in Equation 5.27 

that there are now twice as many propagation paths, as in Equation 5.15. This increases 

the probability of providing a high reliability for the signal xi . 

5.3.2 Other Space-Time Block Codes 

In Section 5.3.1 we have detailed Alamouti's simple two-transmitter space-time block code 

namely the Gg code of Equation 5.10. This code is significantly less complex, than the 

space-time trellis codes of [70,80,166-169] using two transmit antennas. However, again, 

there is a performance loss compared to the space-time trellis codes of [70,80,166-169]. 

Despite its performance loss, Alamouti's scheme [71] is appealing in terms of its simplicity. 

This motivated Tarokh et al. [72] to search for similar schemes using more than two transmit 

antennas. In [72] the theory of orthogonal code design was invoked, in order to construct 

space-time block codes having more than two transmitters. The half-rate space-time block 

code employing three transmitters was defined as [72]: 

Gq 

/ Xl 2:2 3:3 ^ 

-3=2 Xl —3:4 

-3:3 Xl 

-3:4 -3:3 372 

Xl ^2 ^3 

-^2 Xl —^4 

- ^ 3 ^4 Xl 

V - I 4 ^2 / 

(5.31) 
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and the four-transmitter half-rate space-time block code was specified as [72]: 

/ Xl X2 3:3 3:4 ^ 

-X2 Xl -X4 X3 

-3=3 374 Xl -2:2 

—2:4 -2:3 3:2 Xl 

^2 X3 Z4 

- ^ 2 Xl —^4 ^3 

- ^ 3 ^4 Xl - I 2 

- 3 3 ^2 Xl / 

(5.32) 

By employing the space-time block codes G3 and G4, we can see that the bandwidth 

efficiency has been reduced by a factor of two compared to the space-time block code G2 

Besides, the number of transmission slots across which the channels is required to have a 

constant fading envelope is eight, namely four times higher, than that of the space-time 

code G2 

In order to increase the associated bandwidth efficiency, Tarokh et al. constructed the 

rate 3/4 so-called generalised complex orthogonal sporadic codes [72,73]. The corresponding 

rate 3/4 three-transmitter space-time block code is given by [72]: 

/ 

H , 

Xl 

- ^ 2 
za. 
v/2 

3:2 

Xl 

V% 
13 
v/2 

x/2 

V2 
(—Il-Zl4-Z2—12) 

2 
(X2+X2+Xl-Xl) 

2 

(5.33) 

/ 
while the rate 3/4 four-transmitter space-time block code is defined as [72]: 

—^2 

3=2 

Xl 

$a_ 
\ / 2 
13 
x/2 

M. 
\ /2 

V2 
{-X1-X1+X2-X2) 

2 
(X2+X2^XI-XI) 

2 

Z3 \ 
\ /2 

^3 
n/2 

(-X2-X2+X1—X1) 
2 

(~Xi-Xi-X2+X2) 
2 / 

(5.34) 

In Table 5.2 we summarise the parameters associated with all space-time block codes 

proposed by Alamouti [71] and Tarokh, Jafarkhani as well as Calderbank [72,73]. The 

decoding algorithms and the corresponding performance results of the space-time block 

codes were given in [73]. 

5.3.3 M A P Decoding of Space-Time Block Codes 

Recently Bauch [171] derived a simple symbol-by-symbol Maximum-A-Posteriori (MAP) 

decoding rule for space-time block codes. The soft-outputs provided by the space-time 
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Space-time Rate No. of No. of input Code 
code transmitters, p symbols, k span ,n 

G2 1 2 2 2 

G3 1/2 3 4 8 

G4 1/2 4 4 8 

H3 3/4 3 3 4 

H4 3/4 4 3 4 

Table 5.2: Table of different space-time block codes. 

MAP decoder can be used as the input to channel decoders, such as for example turbo 

codes, which may be concatenated for further improving the system's performance. 

By using Bayes' rule, the a-posteriori probability of the transmitted &-ary symbols xi,... , Xk 

given the received signals yn , ...,yin,y2i,...,%» can be expressed as [171]: 

P (37% , ..., ..., yqn^ P (2/11; ; Vqn i (5.35) 

where P {xi,..., x^) is the associated a-priori information, of the transmitted symbols which 

can be obtained from other independent sources, for example from channel decoders. Fur-

thermore, according to Bauch [171], over non-dispersive Rayleigh fading channels we have: 

2 • 

(yii) 1^1) — exp 
2(7^ EE 1=1 2 = 1 i=i 

(5.36) 

where a is the noise variance and gij are the entries of the transmission matrix in Equa-

tion 5.8. We can, however, simplify Equation 5.35 and obtain the expression for the a-

posteriori probability of each transmitted symbol Xi as [171]: 

P ij^i\y 11) •••5 Vqu) — P (yilJ yqn\^i) ' P{xi) , (5.37) 

where i , k. 

Let us now consider as an example the simplest possible space-time code, namely G2 

associated with k = 2, n = 2 and p = 2. Assuming that there is no a-priori information, 

i.e. that P{xi,...,= C where C is a constant, we obtain the a-posteriori information of 
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the transmitted A-ary symbols from Equation 5.35 and 5.36, as [171]; 

f {x\, 12/11; • • Vgn) 

c E 
1 = 1 

3/a - ^ 
i=i 

+ 3/Z2 - ^ 
i=i 

— C' • exp •( — ^ [|yn ~ hiigii — A(2g2i|^ + \yi2 — ^nffi2 — ^Z2ff22| 
/ = 1 

C" e x p j - ^ ^ | ^ | ? / ! i - / i a a ; i - A ( 2 a ; 2 | ^ + l!/Z2 + /i(i^2-/iZ2^i|^ j , (5.38) 

:. In order to obtain the expression of the a-posteriori probability where C — C • —7==^^ 
(̂ o-\/27rJ 

for symbol xi , ccg-related terms can be eliminated in Equation 5.38 due to the orthogonality 

of the code, arriving at: 

P (^11^11 ? yq2^ 

C' • exp 
2o"2 

1 
2cr2 

y i-
y i ^|!/a — + |i/z2 — 

2 

- /i/2Zi^Z2 - ^f2a:i3/f2 + k i | ^ ^ |A(i 

/=i 
Q 

1=1 1=1 

(5.39) 

where \yiif and \yi2\^ are constants, which do not depend on xi and hence incorporated 

into C". Following a few further manipulations, we can simplify Equation 5.39 to: 

f (a:i|mi, ...,3/g2) 

C • exp 
2(j2 

Z=1 

Xl 

9 2 
+ - i + E E N |a:i 

i=l 

(5.40) 

Similarly, we can eliminate the a; 1-related terms in Equation 5.38 and simplify it to: 

-F'(a:2|mi,.-.,!/g2) 

C • exp < — 
2^2 y i {hi2yii - h i y n ) 

Z=1 
- a ; 2 

V 1=1 i=l J 

(5.41) 

It can be seen that Equations 5.40 and 5.41 resemble the equations given in [73] for the 

maximum likelihood decoding of the space-time code Gg. Besides considering the space-

time code Gg, the maximum likelihood decoding algorithms were also given for the space-

time codes G3, G4, H3 and H4 in [73]. It can be shown that Bauch's MAP algorithms 
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[171] applicable to the space-time codes Gg, G4, H3 and H4 also resemble the maximum 

likelihood algorithms given in [73]. 

5.4 Channel Coded Space-Time Block Codes 

In Section 5.3, we have given a detailed illustration of the concept of space-time block codes. 

The MAP decoding rules were also applied to space-time block codes in Section 5.3.3. 

This enables the space-time decoder to provide soft-outputs, which in turn can be used 

by the concatenated channel decoders. Hence, in this section we concatenate space-time 

block codes with Convolutional Codes (CC) [3,172,173], Turbo Convolutional (TC) codes 

[12,13], Turbo BCH (TBCH) codes [61], Trellis Coded Modulation (TCM) [46,47] and 

Turbo Trellis Coded Modulation (TTCM) [57]. The performance and estimated complexity 

of each scheme will be studied and compared. We will also address the issue of mapping 

channel coded bits of the TC and TBCH schemes to different protection classes in multilevel 

modulation [153]. 

Convolutional codes (CC) were first suggested by Elias [3] in 1955. The so-called Viterbi 

Algorithm (VA) was proposed by Viterbi [8, 9] in 1967 for the maximum likelihood de-

coding of convolutional codes. As an alternative decoder, the more complex Maximum 

A-Posteriori (MAP) algorithm was proposed by Bahl [11], which provided the optimum 

Bit Error Rate (BER) performance, although this was not significantly better than that of 

the Viterbi algorithm. In the early 1970s, convolutional codes were used in deep-space and 

satellite communications. They were then also adopted by the Global System of Mobile 

communications (GSM) [49] for the pan-European digital cellular mobile radio system. 

In 1993, Berrou et al. [12,13] proposed a novel channel code, referred to as a turbo code. 

As detailed in Chapter 3, the turbo encoder consists of two component encoders. Generally, 

convolutional codes are used as the component encoders, and the corresponding turbo codes 

are termed here as a TC code. However, BCH [49,86] codes can also be employed as their 

component codes, resulting in the so-called turbo BCH codes (TBCH). They have been 

shown for example by Hagenauer [61, 63] to perform impressively at near-unity coding 

rates, although at a higher decoding complexity than that of the corresponding-rate TCs. 

In 1987, Ungerboeck [46,47] invented trellis coded modulation (TCM) by combining the 

design of channel coding and modulation. TCM optimises the Euclidean distance between 

codewords and hence maximises the coding gain. In [57], Robertson et al. applied the basic 

idea of turbo codes [12,13] to TCM by retaining the important properties and advantages 

of both structures. In the resultant TTCM scheme, two Ungerboeck codes [46, 47] are 
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employed in combination with TCM as component codes in an overall structure similar to 

that of turbo codes. 

5.4.1 System Overview 

Sink 

Source Mapper 

Channel 

Interleaver 

Deinterleaver 

Demapper 
Space-time 

decoder 

Space-time 
encoder 

decoder 

encoder 

Figure 5.4: System overview of space-time block codes and different channel coding schemes. 

The schematic of the proposed concatenated space-time block codes and the different 

channel coding schemes is shown in Figure 5.4. As mentioned above, the investigated 

channel coding schemes are CC, TC codes, TBCH codes, TCM and TTCM. The information 

source at the transmitter of Figure 5.4 generates random data bits. The information bits 

are then encoded by each of the above five different channel coding schemes. However, only 

the output binary bits of the CC, TBCH and TC coding schemes are channel interleaved, 

as seen in Figure 5.4. The role of the interleaver will be detailed in Section 5.5.2. 

The output bits of the TCM and TTCM scheme are passed directly to the mapper in 

Figure 5.4, which employs two different mapping techniques. Gray-mapping [55, 86] is 

used for the CC, TBCH and TC schemes, whereas set-partitioning [46-48, 57] is utilised 

for the TCM and TTCM scheme. Different modulation schemes are employed, namely 

Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 8-level Phase 

Shift Keying (8PSK), 16-level Quadrature Amplitude Modulation (16QAM) and 64-level 

Quadrature Amplitude Modulation (64QAM) [153]. 

Following the mapper, the channel coded symbols are passed to the space-time block 

encoder, as shown in Figure 5.4. Below, we will investigate the performance of all the previ-

ously mentioned space-time block codes, namely that of the Gg, Gg, G4, H3 and H4 codes 

proposed in [71-73]. The corresponding transmission matrices are given in Equations 5.10, 

5.31, 5.32, 5.33 and 5.34, respectively. The coding rate and number of transmitters of the 
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associated space-time block codes is shown in Table 5.2. The channels are uncorrelated 

or — synonymously — perfectly interleaved narrow-band or non-dispersive Rayleigh fad-

ing channels. This assumption does not contradict the requirement for a constant channel 

magnitude and phase over p (number of rows in the transmission matrix) consecutive sym-

bols, since upon applying a sufficiently high channel interleaving depth the channels' fading 

envelope can become indeed near-uncorrelated. We assumed that the narrow-band fading 

amplitudes received from each transmitter antenna were mutually uncorrelated Rayleigh 

distributed processes. The average signal power received from each transmitter antenna 

was the same. Furthermore, we assumed that the receiver had a perfect estimate of the 

channels' fading amplitudes. In practice, the channels' fading amplitude can be estimated 

for example with the aid of pilot symbols [153]. 

At the receiver, the number of receiver antennas constitutes a design parameter, which 

was fixed to one, unless specified otherwise. The space-time block decoders then apply 

the MAP or Log-MAP decoding algorithm of Section 5.3.3 for the decoding of the signals 

received from the different antennas. Due to its implementational simplicity, the Log-MAP 

decoding algorithm is preferred in the proposed system. The soft outputs associated with 

the received bits or symbols are passed through the channel deinterleaver or directly to the 

TCM/TTCM decoder, respectively, as seen in Figure 5.4. The channel-deinterleaved soft 

outputs of the received bits are then passed to the CC, TC or TBCH decoders. The Viterbi 

algorithm [8, 9] is applied in the CC and TCM decoder. By contrast, all turbo decoder 

schemes apply the Log-MAP [13,57,61] decoding algorithm. The decoded bits are finally 

passed to the information sink for calculation of the BER, as shown in Figure 5.4. 

5.4.2 Channel Codec Parameters 

In Figure 5.4, we have given an overview of the proposed system. As we can see in the 

figure, there are different channel encoders to be considered, namely the CC, TC, TBCH, 

TCM and TTCM schemes. In this section, we present the parameters of all the channel 

codecs to be used in our investigations. 

Table 5.3 shows the parameters of each channel encoder proposed in the system. We 

commence with the most well-known channel code, namely the convolutional code. A con-

volutional code is described by three parameters n, k and K and it is denoted as CC{n,k,K). 

At each instant, a CC{n,k,K) encoder accepts k input bits and outputs n coded bits. The 

constraint length of the code is K and the number of encoder states is equal to 2^~^. The 
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Octal No. No. 
Code generator of Decoding of 

polynomial states algorithm iterations 
Convolutional Code (CC) 

(3(3(2,1,5) 23,33 16 VA -

CC(2,1,7) 171,133 64 VA -

(:(](2,1,9) 561J53 256 VA — 

Turbo Convolutional Code (TC) 
TC(2,1,3) 7,5 4 Log-Map 8 
TC(2,1,4) 13,15 8 Log-Map 8 
TC(2,1,5) 23,35 16 Log-Map 8 

Turbo B C H Code ( T B C H ) 
TBCH(31,26) 45 32 Log-Map 8 
TBCH(32,26) 45 64 Log-Map 8 
TBCH(31,21) 3551 1024 Log-Map 8 
TBCH(63,57) 103 64 Log-Map 8 
TBCH(127,120) 211 128 Log-Map 8 

Trellis Coded Modulat ion ( T C M ) 
8PSK-TCM 103,30,66 64 VA -

16QAM-TCM 101,16,64 64 VA -

Turbo Trellis Coded Modulat ion ( T T C M ) 
8PSK-TTCM 11,2,4 8 Log-Map 8 
16QAM-TTCM 23,2,4,10 16 Log-Map 8 

Table 5.3: Parameters of the different channel encoders used in Figure 5.4. 

channel coded rate is given by 

R = 
k 

n 
(5.42) 

However, different code rates can be obtained by suitable puncturing [174] and we will 

elaborate on this issue later in the section. The first entry of Table 5.3 is the convolu-

tional code CC(2,1, 5), which was adopted by the Groupe Speciale Mobile (GSM) commit-

tee in 1982 [49, 175]. Then in 1996, a more powerful convolutional code, the CC(2,1,7) 

arrangement was employed by the Digital Video Broadcasting (DVB) [39] standard for 

television, sound and data services. Recently, the Universal Mobile Telecommunication 

System (UMTS) proposed the use of the 00(2 ,1 ,9 ) scheme, which is also shown in Ta-

ble 5.3. The implementation of this scheme is about 16 times more complex than that 

of the 00(2 ,1 ,5 ) scheme adopted by GSM some 15 years ago. This clearly shows that 

the advances of integrated circuit technology have substantially contributed towards the 

performance improvement of mobile communication systems. 

As mentioned earlier, a turbo encoder consists of two component encoders. Generally, two 
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identical Recursive Systematic Convolutional (RSC) codes are used. Berrou et al. [12,13] 

used two constraint length K = 3, RSC codes, each having four trellis states. We denote a 

turbo convolutional code as TC(n, k, K) where n, k and K have their usual interpretations, 

as in CC. In [12,13], the MAP algorithm [11] was employed for iterative decoding. However, 

in our systems the Log-MAP decoding algorithm [52] was utilised. The Log-MAP algorithm 

is a more attractive version of the MAP algorithm, since it operates in the logarithmic 

domain, in order to reduce the computational complexity and to mitigate the numerical 

problems associated with the MAP algorithm [52]. The number of turbo iterations was set to 

eight, since this yielded a performance close to the optimum performance associated with an 

infinite number of iterations. In our investigations we will consider the turbo convolutional 

code TC(2,1, 3), as proposed in [12,13]. However, the more complex TC(2,1,4) code [176] 

was proposed by UMTS to be employed in the third generation (3G) mobile communication 

systems [49,154,177]. The TC(2,1,5) code is also interesting, since it is expected to provide 

further significant coding gains over that of the TC(2,1,3) and TC(2,1,4) code. 

BCH codes [49] are used as the component codes in the TBCH codes of Table 5.3. Again, 

TBCH codes have been shown for example by Hagenauer [61,63] to perform impressively 

at near-unity coding rates, although at high complexity. Hence in our study the BCH 

component codes BCH(31, 26), BCH(31, 21), BCH(63, 57) and BCH(127,120) are employed, 

as shown in Table 5.3. Finally, we also investigate TCM and TTCM. Both of them are 

employed in 8PSK and 16QAM modulation modes. This results in 8PSK-TCM, 16QAM-

TCM and 8PSK-TTCM, IGQAM-TTCM, respectively. 

In Table 5.3, we have given the encoding and decoding parameters of the different channel 

encoders employed. However, as mentioned earlier, we can design codes of variable code 

rates R by employing suitable puncturing patterns. By combining puncturing with differ-

ent modulation modes, we could design a system having a range of various throughputs, 

expressed in terms of the number of Bits Per Symbol (BPS), as shown in Table 5.4 and 

5.5. Some of the parameters in Table 5.4 and 5.5 are discussed in depth during our further 

discourse, but significantly more information can be gleaned concerning these systems by 

carefully studying both tables. 

In Table 5.4 we summarised the simulation parameters of the CC and TCM schemes 

employed. Since there are two coded bits (n = 2) for each data bit (fc = 1), we have two 

possible puncturing patterns, as shown in the table. A binary 1 means that the coded bit is 

transmitted, whereas a binary 0 implies that the coded bit is punctured. Accordingly, the 

puncturing pattern (1,1) simply implies that no puncturing is applied and hence results in a 

half-rate CC. However, for example in the DVB standard [39] different puncturing patterns 

were proposed for the CC(2,1,7) code, which result in different coding rates. These are 
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Code Modula- Random 
Code Rate Puncturing tion BPS interleaver 

R Pat tern Mode depth 
Convolutional Code (CC' 

0.50 1,1 QPSK 1.00 20̂ W0 
0.50 1,1 QPSK 1.00 20,000 
0.75 101,110 64QAM 4.50 13,320 
0.83 10101,11010 64QAM 5.00 12̂ W0 

(:c(2,i,9) 0.50 1,1 QPSK 1.00 20,000 (:c(2,i,9) 0.50 1,1 
2.00 20,000 

(:c(2,i,9) 0.50 1,1 

64QAM 3.00 20,004 
Trellis Coded Modulation (TCM) 

8P8K-TCM 0.67 1,1 8PSK 2.00 -

16QAM-TCM 0.75 1,1 16QAM 3.00 — 

Table 5.4: Simulation parameters associated with the CC and TCM channel encoders in 
Figure 5.4. 

also shown in Table 5.4. 

In Table 5.5 we showed the simulation parameters of three different turbo schemes, namely 

that of the TC, TBCH and TTCM arrangements. Again, different code rates can be de-

signed using suitable puncturing patterns, where the puncturing patterns seen in Table 5.5 

consist of two parts. Specifically, the associated different puncturing patterns represent the 

puncturing patterns of the parity bits emanating from the first and the second encoder, 

respectively. These patterns are different from the puncturing patterns seen in Table 5.4. 

For the TC(2,1, 3) scheme different puncturing patterns are employed for the various code 

rates R. The puncturing patterns were optimised experimentally by simulations, in order 

to attain the best possible BER performance. The design procedure for punctured turbo 

codes was proposed by Acikel et al. [64] in the context of BPSK and QPSK. 

5.4.3 Complexity Issues and Memory Requirements 

In this section we address the complexity issues and memory requirements of the proposed 

system. We will mainly focus on the relative estimated complexity and memory require-

ments of the proposed channel decoders rather than attempting to determine their exact 

complexity. Therefore, in order to simplify our comparative study, several assumptions are 

made. In our simplified approach the estimated complexity of the whole system is deemed 

to depend only on that of the channel decoders. In other words, the complexity associ-

ated with the modulator, demodulator, space-time encoder and decoder as well as channel 
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Random Random 
Code Modula- turbo (separation) 

Code Rate Puncturing tion BPS interleave! interleaver 
R Pattern Mode depth depth 

Turbo Convolutional Code (TC) 
T?(](2,l,3) 0.50 10^1 16QAM 2.00 10,000 20,000 
T?(](2,l,4) 0.33 1,1 64QAM 2.00 10,000 30̂ W0 

0.50 10^1 16QAM 2.00 lÔ WO 20̂ W0 
64QAM 3.00 10,002 20,004 

0.67 1000,0001 64QAM 4.00 10,000 15̂ W0 
0.75 100000, 16QAM 3.00 9,990 13,320 

000001 64QAM 4.50 9,990 13,320 
0.83 1000000000, 

0000000001 64QAM 5.00 lÔ WO 12̂ W0 
0.90 100000000000000000, 

000000000000000001 64QAM 5.40 10,044 11^60 
T7(](2,l,5) 0.50 10,01 16QAM 2.00 10,000 20̂ W0 

Turbo BCH Code (TBCE [) 
TBCH(31,26) 0.72 1,1 16QAM 2.89 9,984 13,824 

64QAM 4.33 9,984 13,824 
TBCH(32,26) 0.68 1,1 8PSK 2.05 9,984 14,592 
TBCH(31,21) 0.51 1,1 16QAM 2.04 9,996 19,516 
TBCH(63,57) 0.83 1,1 64QAM 4.96 10,032 12,144 
TBCH(127,120) 0.90 1,1 64QAM 5.37 10,080 11,256 

Turbo Trellis Coded Modulation (TTC M) 
8PSK-TTCM 2/3 10,01 8PSK 2.00 10,000 -

16QAM-TTCM 3/4 10,01 16QAM 3.00 13,332 -

Table 5.5: Simulation parameters associated with the TC, TBCH and TTCM channel 
encoders in Figure 5.4. 

encoders are assumed to be insignificant compared to the complexity of channel decoders. 

Since the estimated complexity of the channel decoders depends directly on the number of 

trellis transitions, the number of trellis transitions per information data bit will be used as 

the basis of our comparison. Several channel encoders schemes in Table 5.3 are composed of 

convolutional codes. For the binary convolutional code CC(2, two trellis transitions 

diverge from each of the 2^"^ states. Hence, we can approximate the complexity of a 

CC(2,1, jK") code as: 

comp {CC(2,1,K)} = 2 x 2 * - ! 

= 2 ^ . (5.43) 

The number of trellis transitions in the Log-MAP decoding algorithm is assumed to be 



three times higher, than that of the conventional Viterbi algorithm, since the Log-MAP 

algorithm has to perform forward as well as backward recursion and soft output calcula-

tions, which results in traversing through the trellis three times. The reader is referred to 

Section 3.3.3.4 for further details of the algorithm. For TC codes we apply the Log-MAP 

decoding algorithm for iterative decoding, assisted by the two component decoders. Upon 

taking into account the number of turbo decoding iterations as well, the complexity of TC 

decoding is then approximated by: 

comp{T'C(2,1,^7)} = 3 x 2 x 2^"^ x 2 x No. of Iterations 

= 3 X 2 ^ ^ i X No. of Iterations . (5.44) 

In TCM we construct a non-binary decoding trellis [48]. The TCM schemes of Table 5.3 

have trellis branches diverging from each trellis state, where BPS is the number 

of transmitted bits per modulation symbol. However, for each trellis transition we would 

have BPS — 1 transmitted information data bits, since the TCM encoder typically adds 

one parity bit per non-binary symbol. Therefore, we can estimate the complexity of the 

proposed TCM schemes as: 

c o m X T C M } = (5.45) 

Similarly to TC, TTCM consists of two TCM codes and the Log-MAP decoding algo-

rithm [57] is employed for iterative decoding. The associated TTCM complexity is then 

estimated as: 

comp {TTCM} = 3 x x of States ^ g x No. of Iterations 
JD ± b — 1 

3 X 2^^^ X No. of States x No of Iterations 
= • ( " 6 ) 

For TBCH(n, A:) codes the estimated complexity calculation is not as straightforward as 

in the previous cases. Its component codes are BCH(n, k) codes and the decoding trellis 

can be divided into three sections [18]. Assuming that k > n — k,iov every decoding instant 

j the number of trellis states is given as [18]: 

f 2-) j = 0 , 1 , . . . , n — k — I 

No. of Statesj = < 2""* j = n — k,n — k + 1, ...,k . (5.47) 

2""J j = k + l,k+ 2, ...,n 

It can be readily shown that: 

nn—k 
n—k—1 

1 = # (5JW) 
;=0 
n 

= . (&49) 
j=k+l 
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Upon using the approximation J2]=q~^ 2-) = X]j=A;+i 2""^ = 2""* — 1 % 2""*, we can write 

the number of decoding trellis states per information data bit as: 

2 x 2 * - * 4 - { & - ( n - A ) } x 2 " - * 
No. of States = 

+ (5.50) 
k 

Having derived the number of decoding trellis states per information data bit, we can 

approximate the complexity of TBCH codes as: 

(2k — T) + 2) X 2""* 
comp {TBCH(n, A:)} = 3 x 2 x x 2 x No. of Iterations 

3 X (2k — n + 2) x 2""*+^ x No. of Iterations , . 
= . (6.51) 

Having approximated the complexity of each channel decoder, we will now derive their 

approximate memory requirements. Typically, the memory requirement of a channel de-

coder depends directly on the number of trellis states in the entire coded block. Therefore 

in this section the number of trellis states per coded block serves as the basis of a relative 

memory requirement comparison between the channel decoders studied. For a binary con-

volutional code, observation of the VA has shown that typically all surviving paths of the 

current trellis state emerge from trellis states not 'older' than approximately five times the 

constraint length, K. Therefore at any decoding instant, only a section of 5 x ii" trellis 

transitions has to be stored. We can then approximate the associated memory requirement 

as: 

m e m { C C ( 2 , l , A r ) } = 2 ^ - ^ x 5 x j r . (5.52) 

Again, as highlighted in Section 3.3.3.4, the Log-MAP algorithm requires the storage of 

7, a and /? values. Hence for the same number of decoding trellis states, the Log-MAP 

algorithm would require about three times more memory, than the classic Viterbi algorithm. 

Consequently, we can estimate the memory requirement of the TC code as: 

mem {TC(2,1, K)] = 3 x 2^~^ x Block Length . (5.53) 

Similarly to CCs, we can approximate the memory requirements of TCM as: 

mem {TCM} = No. of States x Block Length . (5.54) 

Following similar arguments, the memory requirements of TTCM employing the Log-MAP 

algorithm can be approximated as: 

mem {TTCM} = 3 x No. of States x Block Length . (5.55) 
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The estimation of the memory requirements of TBCH codes is again different from that 

of the other channel codes considered. Specifically, their memory requirement does not 

directly depend on the number of decoding trellis states in a coded TBCH block. Instead, 

it depends on the number of decoding trellis states in the constituent BCH codewords. From 

Equation 5.50, we can estimate the associated memory requirements as: 

mem {TBCH(n, k)} — 3 X {2k — n + 2) x 2 n—k (5.56) 

Applying Equations 5.43 to 5.56, we summarised the estimated complexity and memory 

requirements of the channel decoders characterised in Table 5.3. Explicitly, assuming that 

there are 10,000 information data bits per coded block, the associated estimated complexity 

and memory requirements are then given in Table 5.6. Note that the block length of TCM 

and TTCM is expressed in terms of the number of symbols per coded block, since these 

schemes are symbol-oriented rather than bit-oriented. 

Code 
No. 
of 

states 

No. of 
states 
data bit 

Iteration 
No 

Block 
length 

Complexity Memory 
requirement 

Convolutional Coc le ((](]) 
(:(](2,i,5) 16 16 - 10,000 32 400 
CC(2,1,7) 64 64 — 10,000 128 2,240 
CC(2,1,9) 256 256 — lÔ WO 512 11,520 

Turbo Convolutional Code (TC) 
'r(:(2,i,3) 4 4 8 10,000 384 120,000 
TC(2,1,4) 8 8 8 10,000 768 240,000 
^70(2,1,5) 16 16 8 10,000 ^536 480,000 

Turbo B C H Code [TBCH) 
TBCH(31,26) 32 28 8 31 2,718 2,208 
TBCH(32,26) 64 54 8 32 5J49 4,224 
TBCH(31,21) 1,024 634 8 31 60,855 39,936 
TBCH(63,57) 64 60 8 63 5,713 10,176 
TBCH(127,120) 128 123 8 127 11,776 44J.60 

Trellis Coded Modulation (TCM) 
8PSK-TCM 64 32 — 5̂ W0 128 320,000 
16QAM-TCM 64 21 - 3,333 171 213,312 

Turbo Trellis Coded Modulation (TTCM) 
8PSK-TTCM 8 4 8 5,000 768 120,000 
16QAM-TTCM 16 5 8 3,333 2,048 159,984 

Table 5.6; Complexity and memory requirements of the different channel decoders in char-
acterised Table 5.3. 
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5.5 Pe r fo rmance Resul ts 

In this section, unless otherwise stated, all simulation results are obtained over uncorrelated 

or — synonymously — perfectly interleaved narrow-band or non-dispersive Rayleigh fading 

channels. As stated before, this does not contradict the requirement for a constant channel 

magnitude and phase over n consecutive time slots in Equation 5.8, since upon applying a 

sufficiently high interleaving depth the channel's fading envelope can be indeed uncorrelated. 

Our assumptions were that; 

1. The fading amplitudes were constant across n consecutive transmission slots of the 

space-time block codes' transmission matrix; 

2. The average signal power received from each transmitter antenna was the same; 

3. The receiver had a perfect knowledge of the channels' fading amplitudes. 

We note that the above assumptions are unrealistic, yielding the best-case performance, 

nonetheless, facilitating the performance comparison of the various techniques under iden-

tical circumstances. 

In the following sections, we compare the performance of various combinations of space-

time block codes and channel codes. As mentioned earlier, various code rates can be used 

for both the space-time block codes and for the associated channel codes. The different 

modulation schemes employed result in various effective throughput. Hence, for a fair 

comparison, all different systems are compared on the basis of the same effective BPS 

throughput given by: 

BPS = Rst X Rcc X modulation throughput, (5.57) 

where Rst and Rcc are the code rates of the space-time block code and the channel code, 

respectively. 

5.5.1 Performance Comparison Of Various Space-Time Block Codes With-

out Channel Codecs 

In this section, the performance of various space-time block codes without channel codes 

is investigated and compared. All the investigated space-time block codes, namely the Gg, 

Gs, G4, H3 and H4 codes [71-73] have their corresponding transmission matrices given 

in Equation 5.10, 5.31, 5.32, 5.33 and 5.34, respectively. The encoding parameters are 

summarised in Table 5.2. 
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5.5.1.1 Maximum Ratio Combining and the Space-Time Code G2 

I3UE]R.Eig;airist Iib/r4c 

No diversity (1 Tx, IRx) 
MRC (1 Tx, 2Rx) 
MRC (1 Tx, 4Rx) 
G2 (2 Tx, IRx) 
G2 (2 Tx, 2Rx) 

15 20 25 

Eb/No(dB) 

Figure 5.5: Performance comparison of the MRC technique and space-time code Gg using 
B P S K over uncorrelated Rayleigh fading channels. 

Figure 5.5 shows the performance of MRC and the space-time code G2 using BPSK over 

uncorrelated Rayleigh fading channels. It is assumed that the total power received from 

both transmit antennas in the space-time coded system using G2 of Equation 5.10 is the 

same as the transmit power of the single transmit antenna assisted MRC system. It can be 

seen in Figure 5.5 that the performance of the space-time code Gg is about 3 dB worse, than 

that of the MRC technique using two receivers, even though both systems have the same 

diversity order of two. The 3 dB penalty is incurred, because the transmit power of each 

antenna in the G2 space-time coded arrangement is only half of the transmit power in the 

MRC assisted system. It is shown in Figure 5.5 however that at a BER of 10~® a diversity 

gain of 20 dB is achieved by the space-time code G2. If we increase the diversity order 

to four by using two receivers, the space-time code G2 achieves a diversity gain of 32 dB. 

However, there is still a 3 dB performance penalty as compared to the conventional MRC 

technique using four receivers. The advantage of the space-time coded scheme is nonetheless 

that the increased complexity of the space-time coded transmitter is more affordable at the 

BS than at the MS, where the MRC receiver would have to be located. 
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5.5.1.2 Performance of 1 BPS Schemes 

BER against E^/N, 0 

(1 Tj(, 1 RjO,]BI%SB: 
0 G2(2Tx, lRx),BPSK 
O €13(3 T)[, 1 RjO, QJPSIC 

C (̂4 Tx:, i:RjO,(3PSK 

10 15 
]S%/No(d]3) 

Figure 5.6: Performance comparison of the space-time codes Gg, Gg and G4 of Table 5.2 
at an effective throughput of 1 B P S using one receiver over uncorrelated Rayleigh fading 
channels. 

Figures 5.6 and 5.7 compare the performance of the space-time codes Gg, Gg and G4 

having an effective throughput of 1 BPS over uncorrelated Rayleigh fading channels using 

one and two receivers, respectively. BPSK modulation was employed in conjunction with 

the space-time code G2. As shown in Table 5.2, the space-time codes G3 and G4 are half-

rate codes. Therefore, QPSK modulation was used in the context of G3 and G4 in order 

to retain a throughput of 1 BPS. It can be seen in Figure 5.6 that at a BER of 10^® the 

space-time codes G3 and G4 give about 2.5 and 7.5 dB gain over the Gg code, respectively. 

If the number of receivers is increased to two, as shown in Figure 5.7, the associated Eh/No 

gain reduces to about 1 and 3.5 dB, respectively. The reason is that over the perfectly 

interleaved flat-fading channel encountered much of the attainable diversity gain is already 

achieved using the G2 code and two receivers. The associated gains of the various schemes 

at a BER of are summarised in Table 5.7. 
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BER against Ey/Ng 

/ I (1 T)[, i]Rjo,]8r\SK: 
<> (;2(2Tx,2Itx),]3F':SK: 
([) (13(3 Tjt,2]tx),(3f\SK 
* €14(4 Trx,:»itx),(3ii)S]{ 

Eb/No(dB) 

Figure 5.7: Performance comparison of the space-time codes Gg, Gg and G4 of Table 5.2 at 
an effective throughput of 1 B P S using two receivers over uncorrected Rayleigh fading 
channels. 

5.5.1.3 Performance of 2 BPS Schemes 

In Figure 5.8 we compare the performance of the space-time codes Gg, G3, G4, Hg and 

H4 proposed in [71-73] using the encoding parameters summarised in Table 5.2. The 

performance results were obtained over uncorrelated Rayleigh fading channels using one 

receiver and the effective throughput of the system is about 2 BPS. For the Gg code QPSK 

modulation was used, while the G3 and G4 codes employ 16QAM conveying 4 BPS. Hence 

the effective throughput is 2 BPS, since G3 and G4 are half-rate codes. Since the code rate 

of the H3 and H4 codes is 8PSK modulation was employed in this context, resulting 

in a throughput of 3 x 3/4 = 2.25 BPS, which is approximately 2 BPS. We can see in 

Figure 5.8 that at high BERs or low Eb/No values the Gg code slightly outperforms the 

others. However, the situation is reversed, when the system is operated at a low BER or 

high Eh/No values. At a BER of 10"^ the code G4 only gives a diversity gain of 5 dB 

over the Gg code. This is a 2.5 dB loss compared to the 7.5 dB gain achieved by the 

system transmitting at an effective throughput of 1 BPS in the previous section. This is 

because the more vulnerable 16QAM scheme was used for the space-time code G4. Since 
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10" 

10 

BER against Ey/Nq 

(1 Tx, 1 Rx), QPSK 
G; (2 Tx, 1 Rx), QPSK 
G3 (3 Tx, 1 Rx), 16QAM 
G4 (4 Rx, 1 Rx), 16QAM 
H3 (3 Tx, 1 Rx), 8PSK 
la* 01 Tx, 1 Rx), SI'S*: 

m 12 14 16 
Eb/No(dB) 

Figure 5.8: Performance comparison of the space-time codes Gg, G3, G4, H3 and H4 at 
an effective throughput of approximately 2 B P S using one receiver over uncorrelated 
Rayleigh fading channels. The associated parameters of the space-time codes are sum-
marised in Table 5.2. 

the 16QAM signal constellation is more densely packed compared to QPSK, it is more prone 

to errors. Moreover, the space-time code G4 has no error correction capability to correct 

the extra errors induced by employing a more vulnerable, higher-order modulation scheme. 

Hence, this results in a poorer performance. If the throughput of the system is increased 

by employing an even higher-order modulation scheme, the space-time code G4 will suffer 

even higher performance degradations, as it will be shown in the next section. Since the 

space-time code G3 of Table 5.2 is also a half-rate code, similarly to the G4 code, it suffers 

from the same drawbacks. 

In Figure 5.8, we also show the performance of the rate | space-time codes H3 and 

H4 of Table 5.2. Both the H4 and G4 codes have the same diversity order of four in 

conjunction with one receiver. However, at a BER of 10"^ the performance of the H4 code 

is about 0.5 dB better, than that of the G4 code. This is again due to the higher-order 

modulation employed in conjunction with the half-rate code G4, in order to maintain the 

same throughput. As alluded to earlier, the higher-order modulation schemes are more 



(Tff/LF'T'jBft 5. 5%FVl(2EL/nA4]B aLfDCJC CCXCUS!? 209 

susceptible to errors and hence the performance of the system in conjunction with the G3 

or G4 code of Table 5.2 is worse, than that of the H3 or H4 code having the same diversity 

orders, respectively. The associated gains of the various schemes at a BER of 10~® are 

summarised in Table 5.7. 

5.5.1.4 Performance of 3 BPS Schemes 

m i o 

10 

BER against Ey/N^ 

(1 T)[, 1 BLx), EWPSIC 
<> (;% (2Tx, 1 Rx), EWPSK 
(D (Is (3Tx, l l l x ) , 
Tk OlTTx, 1 Itx),(y4qtA]V[ 
q? 113(3 T)(, 1 R)0, 16(2/LM 
,* Il4(4Tx, 1 Re), 

1 0 ' 
8 10 12 14 16 18 20 2:2 24 :26 

Eb/No(dB) 
28 30 

Figure 5.9: Performance comparison of the space-time codes Gg, G3, G4, H3 and H4 
of Table 5.2 at an effective throughput of 3 B P S using one receiver over uncorrelated 
Rayleigh fading channels. 

Figures 5.9 and 5.10 show our performance comparisons for the space-time codes G2, G3, 

G4, H3 and H4 of Table 5.2 at an effective throughput of 3 BPS over uncorrelated Rayleigh 

fading channels using one and two receivers, respectively. When using the Gg code we 

employed 8PSK modulation. Since G3 and G4 are half-rate codes, 64QAM was employed, 

in order to obtain an effective throughput of 3 BPS. By contrast, for the H3 and H4 codes, 

which have a code rate of | , 16QAM was used in order to ensure the same throughput of 

4/4== 3 BPES. 

In Figure 5.9 we can see that at a BER of 10~® the diversity gain of the G4 code over the 
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G2 code is further reduced to about 3 dB. There is only a marginal diversity gain for the 

G3 code over the Gg code. As alluded to in the previous section, 64QAM in conjunction 

with the space-time code G3 or G4, has a densely packed signal constellation and hence 

this scheme is prone to errors. At the higher BER of 10"^ the G2 code outperforms the G3 

and G4 codes by approximately 3 and 4 dB, respectively. 

Due to the associated higher-order modulation scheme employed, we can see in Figure 5.9 

that at a BER of 10"^ the H3 and H4 codes of Table 5.2 outperform both the G3 and the 

G4 codes. Specifically, we can see that the H3 code attains about 2 dB gain over the G4 

code, even though it has a lower diversity order. 

BER against E^/Nq 

(1 Tx, 1 Rx), 8PSK 
Gz (2 Tx, 2Rx), 8PSK 
G3 (3 Tx, 2Rx), 64QAM 
G4 (4 Tx, 2Rx), 64QAM 
H3(3 2Rx), 16QAJVI 
H4 (4 Tx, 2Rx), 16QAM 

7 8 9 10 11 12 13 14 ^ 16 17 18 19 

Eb/No(dB) 

Figure 5.10: Performance comparison of the space-time codes Gg, G3, G4, H3 and H4 
of Table 5.2 at an effective throughput of 3 B P S using two receivers over uncorrelated 
Rayleigh fading channels. 

If we increase the number of receivers to two, a scenario characterised in Figure 5.10, the 

performance degradation of the space-time codes G3 and G4 is even more pronounced. At 

a BER of 10~® the performance gain of the H4 code over the G4 code is approximately 4 

dB compared to the 0.5 dB gain, when the system's effective throughput is only 2 BPS, as 

it was shown in Figure 5.8 of the previous section. 

Having studied Figures 5.6 to 5.10, we may conclude two important points. Firstly, the 
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space-time codes G3 and G4 of Table 5.2 suffer from having a code-rate of half, since 

this significantly reduces the effective throughput of the system. In order to maintain the 

same throughput as the unity-rate Gg code, higher-order modulation schemes, such as for 

example 64QAM have to employed. This results in a preponderance of channel errors, since 

the constellation points of the higher-order modulation schemes are more densely packed. 

Due to their lack of error correcting capability, the G3 and G4 codes suffer performance 

losses compared to the Gg code. Secondly, if the number of receivers is increased to two, 

the performance gain of the G3, G4, H3 or H4 codes over the G2 code becomes lower. The 

reason behind this phenomenon is that much of the attainable diversity gain was already 

achieved using the G2 code and two receivers. The associated gains of the various schemes 

at a BER of 10~^ are summarised in Table 5.7. 

Coding gain (dB) 
One receiver Two receivers 

Code Rate IBPS 2 181)8 3 BPS IBPS 2BI)S 3 BPS 
G2 1 19.5 19.6 19.1 30.9 30.9 30.1 
G3 1/2 25.2 21.8 2&0 33.2 29.6 27^ 
G4 1/2 27.9 24^ 2&4 34.3 30J 28.8 
Ha 3/4 - 2&4 24^ — 30.1 31.9 
H4 3/4 - 24^ 2&6 — 3L2 3&0 

Table 5.7: Coding gain (dB) of the space-time block codes of Table 5.2 over uncorrelated 
Rayleigh fading channels. 

5.5.1.5 Channel Coded Space-Time Block Codes 

In the previous sections, we have shown that without channel coding the performance of 

the unity-rate space-time G2 code is inferior to the lower rate space-time codes, namely to 

that of the G3, G4, H3 and H4 schemes. Since the space-time code G2 has a unity code 

rate, half-rate turbo codes can be employed for improving the performance of the system. 

In Figure 5.11, we compare the performance of the half-rate TC(2,1,4) code concatenated 

with the space-time code G2 and with the space-time block codes G4 and H4. Both the 

space-time codes G4 and H4 have a diversity gain of four and a code rate of 5 and | , 

respectively. The associated parameters are shown in Tables 5.2, 5.3 and 5.5. Suitable 

modulation schemes were chosen so that all systems had the same throughput of 3 BPS. 

All simulation results were obtained over uncorrelated Rayleigh fading channels. 

From Figure 5.11, we can see that a huge performance improvement is achieved by con-

catenating the space-time code G2 with the half-rate code TC(2,1,4). At a BER of 10"^ 
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Figure 5.11: Performance comparison of the half-rate TC(2,1,4) code concatenated with the 
space-time code G2 and the space-time block codes G4 and H4. The associated parameters 
are shown in Tables 5.2, 5.3, and 5.5. All simulation results were obtained at an effective 
throughput of 3 B P S over uncorrelated Rayleigh fading channels. 

this concatenated scheme attains a coding gain of 16 dB and 13 dB compared to the space-

time codes G4 and H4, respectively. This clearly shows that it is better to invest the parity 

bits associated with the code-rate reduction in the concatenated turbo code, rather than in 

non-unity-rate space-time block codes. In Figure 5.11 we also show the performance of the 

space-time code H4 concatenated with the punctured two-third rate code TC(2,1,4). The 

figure shows that the TC(2,1,4) code improves the performance of the system tremendously, 

attaining a coding gain of 11 dB compared to the non-turbo-coded space-time code H4, at 

B E R = 10~®. However, its performance is still inferior to that of the half-rate TC(2,1,4) 

coded space-time code G2. 

In conclusion, in Figure 5.11 we have seen that the reduction in coding rate is best assigned 

to turbo channel codes, rather to space-time codes. Therefore, in all our forthcoming 

simulations, all channel codecs of Table 5.3 are concatenated with the unity-rate space-time 

code G2, instead of the non-unity-rate space-time codes G3, G4, H3 and H4 of Table 5.2. 
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5.5.2 Mapping Binary Channel Codes to Multilevel Modulation 

As mentioned earlier, in our investigations different modulation schemes are employed in 

conjunction with the binary channel codecs CC, TC and TBCH. Specifically, the modulation 

schemes used are BPSK, QPSK, 8PSK, 16QAM and 64QAM. Gray-mapping [86,102,153] 

is employed to map the bits to the QPSK, 8PSK, 16QAM and 64QAM symbols. In higher-

order modulation schemes, such as 8PSK, 16QAM and 64QAM we have several transmitted 

bits per constellation point. However, the different bit positions of the constellation points 

have different noise-protection distances [153]. More explicitly, the protection distance 

is the Euclidean distance from one constellation point to another, which results in the 

corruption of a particular bit. A larger noise-protection distance results in a higher integrity 

of the bit and vice-versa. Therefore, for the different bit positions in the symbol we have 

different protection for the transmitted bits within the phaser constellation of the non-

binary modulation schemes. It can be readily shown that in 8PSK and 16QAM we have 

two protection classes, namely class I and II [86, 153], where the class I transmitted bits 

are more protected. Similarly, in 64QAM we have three protection classes namely I, II and 

III [153], where the transmitted bits in class I are most protected, followed by class II and 

class III. 

In our system the parity bits are generated by binary channel encoders, such as the CC, 

TC and TBCH schemes for protecting the binary data bits. However it is not intuitive, 

whether the integrity of the data or parity bits is more important in yielding a better 

overall BER performance. For example, if the parity bits are more important, it is better to 

allocate the parity bits to the better protection classes in higher-order modulation scheme 

and vice-versa. Therefore, in this section, we will investigate the performance of different 

channel codes along with different bit mapping schemes. The effect of the bit interleaver 

seen in Figure 5.4 is studied in conjunction with binary channel codes as well. 

5.5.2.1 Turbo Convolutional Codes - Data and Parity Bit Mapping 

We commence here by studying half-rate turbo convolutional codes, which are characterised 

in Table 5.3. An equal number of parity and data bits are generated by the half-rate TC 

codes and they are then mapped to the protection classes of the 16QAM scheme considered. 

Again, in the Cray-mapping assisted 16-QAM constellation there are two protection classes 

[153], class I and II, depending on the bit position. Explicitly, there are four bits per 

symbol in the 16-QAM constellation and two of the bit positions are more protected, than 

the remaining two bits. 
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Figure 5.12: Performance comparison of various data and parity bit allocation schemes for 
the (a) TC(2,1,3), (b) TC(2,1,4) and (c) TC(2,1,5) codes, where the parameters are shown 
in Table 5.3. All simulation results were obtained upon employing the space-time code Gg 
using one receiver and 16QAM over uncorrelated Rayleigh fading channels at an effective 
throughput of 2 BPS. 
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In Figure 5.12 we compare the performance of various parity and data bit mapping 

schemes for the (a) TC(2,1,3), (b) TC(2,1,4) and (c) TC(2,1,5) codes. The curve marked 

by triangles represents the performance of the TC codes, when allocating the parity bits to 

the higher-integrity protection class I and the data bits to the lower-integrity protection class 

II. On the other hand, the performance curve marked by diamonds indicates the allocation 

of data bits to protection class I, while the parity bits are assigned to protection class II. 

In Figure 5.12(a), we can see that at low Eh/No values the performance of the TC(2,1,3) 

code, when allocating the parity bits to protection class I is worse, than upon allocating 

the data bits to protection class I. However, for Eh/No values in excess of about 4 dB, 

the situation is reversed. At a BER of 10^^, there is a performance gain of about 1 dB 

when using the TC(2,1,3) arrangement with the parity bits allocated to protection class I. 

We surmise that by protecting the parity bits better, we render the TC(2,1,3) code more 

powerful. It is common that stronger channel codes perform worse, than weaker codes at 

low Eh/No values, but outperform their less powerful counterparts for higher Ef,/No values. 

BER against Ey/Ng 

10" 

W 

lOr 

A BCH(7,4),R=0.57 
0 BCH(63,36),R=0.57 
O BCH(127,71),R=0.56 

A BCH(7,4),R=0.57 
0 BCH(63,36),R=0.57 
O BCH(127,71),R=0.56 

A BCH(7,4),R=0.57 
0 BCH(63,36),R=0.57 
O BCH(127,71),R=0.56 

g) ^ 
\ 

W X 
\ 

\ 

\\ \ 
2 3 4 

Eb/No(dB) 

Figure 5.13: Performance comparison of hard decision algebraic decoding of different BCH 
codes having approximately the same code rate of i? = 0.57, using BPSK over AWGN 
channels. 

This is further justified in Figure 5.13. Here, we showed the performance of hard decision 
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algebraic decoding of the BCH(7,4), BCH(63,36) and BCH(127,71) codes using BPSK over 

AWGN channels. All BCH codes characterised in the figure have approximately the same 

code rate, which is i? = 0.57. From the figure we can see that at a BER of 10"^ the 

performance of the BCH codes improves with an increasing codeword length n. However, 

at a high BER or low Ej,/NQ value we can see that the performance of the BCH(7,4) code 

is better, than that of the BCH(63,36) and BCH(127,71) codes, which are stronger channel 

codes. This is, because stronger codes have many codewords having a large free distance. 

At low SNRs we have bad channel conditions and hence the channel might corrupt even 

those codewords having a large free distance. Once they are corrupted, they produce many 

erroneous information bits, a phenomenon which results in a poorer BER performance. 

In Figure 5.12(b) we showed the performance of the TC(2,1,4) code using the same data 

and parity bit allocation, as in Figure 5.12(a). The figure clearly shows that the TC(2,1,4) 

scheme exhibits a better performance for Eh/No values below about 4.7 dB, if the data bits 

are more strongly protected than the parity bits. It is also seen from the figure that the 

situation is reversed for Ei,/Nq values above this point. This phenomenon is different from 

the behaviour of the TC(2,1,3) scheme, since the crossing point of both curves occurs at 

a significantly lower BER. The same situation can be observed for the BCH codes charac-

terised in Figure 5.13, where we can see that the performance curve of the BCH(127,71) 

code crosses the performance curve of the BCH(63,36) scheme at Eh/No « 4 dB. This value 

is lower, than the crossing point of the performance curves of the BCH(63,36) and BCH(7,4) 

codes. Hence the trend is that the crossing point of stronger codes is shifted to right of the 

figure. Hence the crossing point of the performance curves of stronger codes will occur at 

lower BERs and shifted to the right on the E^/Nq scale. From the above argument we can 

speculate also in the context of TC codes that since the TC(2,1,4) scheme is a stronger code 

than the TC(2,1,3) arrangement, the crossing point of the associated performance curves 

for TC(2,1,4) is at a lower BER, than that of the TC(2,1,3) code and appears to be shifted 

to right of the Eh/No scale. 

Let us now consider the same performance curves in the context of the significantly 

stronger TC(2,1,5) code in Figure 5.12(c). The figure clearly shows that better perfor-

mance is yielded in the observed range, when the data bits are more strongly protected. 

Unlike in Figure 5.12(a) and 5.12(b), there is no visible crossing point in Figure 5.12(c). 

However, judging from the gradient of both curves, if we were to extrapolate the curves 

in Figure 5.12(c), they might cross at BER% 10"®. The issue of data and parity bit map-

ping to multilevel modulation schemes was also addressed by Goff et al. [55]. However, 

the authors only investigated the performance of the TC(2,1,5) code and stated that better 

performance is achieved by protecting more strongly the data bits. Additionally, we note 
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here that the situation was reversed for the TC(2,1,3) code, where better performance was 

achieved by protecting the parity bits more strongly. 

Hence, from the three subfigures of Figure 5.12 we can draw the following conclusions for 

the mapping of the data and parity bits to the different protection classes of the modulated 

symbol. For weaker half-rate turbo codes, such as the TC(2,1,3) arrangement, it is better 

to protect the parity bits more strongly. On the other hand, for stronger half-rate turbo 

codes, such as the TC(2,1,4) and TC(2,1,5) schemes, better performance is achieved by 

protecting more strongly the data bits. From our simulation results, we found that the 

same scenario also applies to turbo codes having code rates lower or higher than half-rates, 

as shown in Table 5.5. Based on these facts, we continue our investigations into the effect 

of interleavers, in an effort to achieve an improved performance. 

5.5.2.2 Turbo Convolutional Codes — Interleaver Effects 

In Figure 5.4 we have seen that a bit-based interleaver is employed for the CC, TC and 

TBCH codes. Since our performance results are obtained over uncorrelated Rayleigh fading 

channels, the purpose of the bit-based interleaver is to disperse bursts of channel errors 

within a modulated symbol, when it experiences a deep fade. This is vital for TC codes, 

because according to the turbo code structure proposed by Berrou et al. in [12,13], at 

the output of the turbo encoder, a data bit is followed by the parity bits generated for 

its protection against errors. Therefore in multi-level modulation schemes a particular 

modulated symbol could consist of the data bit and its corresponding parity bits generated 

for its protection. If the symbol experiences a deep fade, the demodulator would provide 

low reliability values for both the data bit and the associated parity bits. In conjunction 

with low reliability information the turbo decoder may fail to correct errors induced by the 

channel. However, we can separate both the data bit and the parity bits generated for its 

protection into different modulation symbols. By doing so, there is a better chance that 

the demodulator can provide high-reliability parity bits, which are represented by another 

modulation symbol, even if the data bit experienced a deep fade and vice-versa. This will 

assist the turbo decoder in correcting errors. 

More explicitly, the random interleaver shown in Figure 5.4 has two different effects on 

the binary channel codes, namely: 

1. It separates the data bit and the parity bits generated for its protection into different 

modulated symbols; 
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2. It randomly maps the data and parity bits into different protection classes in multi-

level modulation schemes. 

The first effect of the random interleave! will improve the performance of the binary channel 

codecs. By contrast, the second effect might have a negative impact on the performance of 

the channel codecs, because the data and parity bits are randomly mapped to the different 

protection classes, rather than assigning the more vulnerable bits consistently to the higher-

integrity protection class. 

In 
u 1 2 3 4 5 6 7 8 9 

Raodoip 
e&nng 

. Ran 
mterl( Out 

Figure 5.14: Random separation based interleaving. 

In order to eliminate the potentially detrimental second effect of the random interleaver, 

we propose to invoke a so-called random separation based inter leaver. Explicitly, Figure 5.14 

shows an example of the random separation based interleaving employed. The objective of 

random separation based interleaving is to randomly interleave the bits within the same 

protection class of the multilevel modulated symbols. If 8PSK modulation is used, 3 bits 

per symbol are transmitted. Hence, for every 3-bit spaced position, the bits will be ran-

domly interleaved. For example, in Figure 5.14 we randomly interleaved the bit positions 

0,3,6,9, . . . Similarly, bit positions 1,4,7,... and 2,5,8,. . . will be randomly interleaved as 

well. 

In Figure 5.15 we investigated the effects of both a random interleaver and those of 

a random separation based interleaver on the performance of the TC(2,1,3) code. The 

encoding parameters of the TC(2,1,3) code are shown in Table 5.3. The simulation results 

were obtained in conjunction with the space-time code G2 using one receiver and 16QAM 

over uncorrelated Rayleigh fading channels. The performance curves marked by the triangles 

and diamonds were obtained by protecting the parity bits and data bits more strongly, 

respectively. Recall that the same performance curves were also shown in Figure 5.12(a). 

As mentioned earlier, the random interleaver has two different effects on the performance 

of binary channel codes. It randomly maps the data and parity bits into different protection 

classes which might have a negative impact on the performance of the channel codecs. 

Additionally, it may separate the data bits and parity bits generated for their protection 

into different modulated symbols, which on the other hand might improve the performance. 
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Figure 5.15: Performance comparison between different bit-to-symbol mapping methods 
for the TC(2,1 ,3) code in conjunction with the space-time code G2 using one receiver and 
16QAM over uncorrelated Rayleigh fading channels at an effective throughput of 2 BPS. 
The encoding parameters of the TC(2,1,3) code are shown in Table 5.3. 

In Figure 5.15 the random interleaver based performance curve is marked by the hearts, 

which is similar to that of the TC(2,1,3) coded scheme protecting the parity bits more 

strongly. This suggest that the above-mentioned positive effect of the random interleaver 

is more pronounced than the negative effect in the context of the TC(2,1,3) coded scheme. 

On the other hand, based on the evidence of Figure 5.12(a) the random separation based 

interleaver was ultimately applied in conjunction with the allocation of the parity bits, 

rather than the data bits into protection class I. The interleaver randomly interleaved the 

coded bits within the same protection class of a block of transmitted symbols. Therefore, 

the parity bits remained more protected compared to the data bits and yet they have been 

randomly interleaved within the set of parity. In Figure 5.15 the performance of the random 

separation based interleaver is marked by circles, which is about 0.5 dB better, than that 

of the TC(2,1,3) coded scheme with the parity bits allocated to protection class I. 

Similarly to Figure 5.15, in Figures 5.16 and 5.17 we show the performance of the 
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Figure 5.16: Performance comparison between different bit-to-symbol mapping methods 
for the TC(2 ,1 ,4 ) code in conjunction with the space-time code Gg using one receiver and 
1 6 Q A M over uncorrelated Rayleigh fading channels at an effective throughput of 2 BPS. 
The encoding parameters of the TC(2,1,4) code are shown in Table 5.3. 

TC(2,1,4) and TC(2,1,5) codes, respectively, using different bit-to-symbol mapping meth-

ods. All simulation results were obtained in conjunction with the space-time code G2 using 

one receiver and 16QAM over uncorrelated Rayleigh fading channels. The encoding param-

eters of the TC(2,1,4) and TC(2,1,5) codes are shown in Table 5.3. Unlike in Figure 5.15, 

the random separation based interleaver was applied in conjunction with the allocation of 

the data bits, rather than the parity bits to protection class I. It can be seen from Fig-

ures 5.16 and 5.17 that the performance of the random interleaver and random separation 

based interleaver is similar. This again suggest that the above-mentioned positive effect 

yielded by the random based interleaver is more pronounced than its detrimental effect in 

the context of both the TC(2,1,4) and TC(2,1,5) schemes. 

In conclusion, our simulation results presented in this section demonstrated that at a 

BER of 10~® the half-rate turbo codes using a random separation based interleaver attain 

the best performance, albeit for certain schemes only by a small margin. Therefore in our 

forthcoming performance comparisons we will be employing the random separation based 
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Figure 5.17: Performance comparison between different bit-to-symbol mapping methods 
for the TC(2 ,1 ,5 ) code in conjunction with the space-time code G2 using one receiver and 
1 6 Q A M over uncorrelated Rayleigh fading channels at an effective throughput of 2 BPS. 
The encoding parameters of the TC(2,1,5) code are shown in Table 5.3. 

interleaver in conjunction with the various TC codes. 

5.5.2.3 T u r b o B C H Codes 

Figure 5.18 characterises the performance of the TBCH(32,26) code in conjunction with dif-

ferent bit-to-symbol mapping to the two protection classes of 8PSK. All simulation results 

were obtained with the aid of the space-time code G2 using one receiver and 8PSK over un-

correlated Rayleigh fading channels. Again, the encoding parameters of the TBCH(32,26) 

code are shown in Tables 5.3 and 5.5. The TBCH(32,26) code was chosen for our investi-

gations, because the parity bits of the constituent encoders were not punctured and hence 

this resulted in a code rate of i? « Roughly speaking, for every two data bits, there 

is one parity bit. Similarly to 16QAM, in the Gray-mapping assisted 8-PSK constellation 

there are also two protection classes, depending on the bit position in the 3-bit symbols. 

From the three bits of the 8-PSK constellation two of the bit positions are more protected, 

than the remaining bit. In Figure 5.18, we portray the performance of the TBCH(32,26) 
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Figure 5.18: Performance comparison between different bit-to-symbol mapping methods for 
the TBCH(32,26) code in conjunction with the space-time code Gg using one receiver and 
8 P S K over uncorrelated Rayleigh fading channels at an effective throughput of 2 BPS . 
The encoding parameters of the TBCH(32,26) code are shown in Tables 5.3 and 5.5. 

scheme for four different bit-to-symbol mapping methods. Firstly, one data bit and one 

parity bit was mapped to the two better protected 8-PSK bit positions. The corresponding 

BER curve was marked by the triangles in Figure 5.18. According to the second method, 

the data bits were mapped to the two better protected bit positions of the 8-PSK symbol. 

This scenario was marked by the diamonds in Figure 5.18. As we can see from the figure, 

the first mapping method yields a substantial Et/No gain of 1.5 dB at a BER of 10"^ over 

the second method. By applying the random separation based interleaver of Figure 5.14, 

while still better protecting one of the data bits and the parity bit than the remaining data 

bits, we disperse the bursty bit errors associated with a transmitted symbol over several 

BCH codewords of the turbo BCH code. As shown in Figure 5.18, the performance curve 

marked by the circles shows a slight improvement compared to the above-mentioned first 

method, although the difference is marginal. Finally, we show the performance of applying 

random interleaving, which randomly distributes the data and parity bits between the two 

8-PSK protection classes. It can be seen that the associated performance is worse, than 
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that of the first bit-to-symbol mapping method. 

In Figure 5.18, we have shown that it is better to protect the parity bits more strongly 

for the TBCH(32,26) code and a slight further improvement can be achieved by applying a 

random separation based interleaver. More simulation results were obtained in conjunction 

with the other TBCH codes shown in Tables 5.3 and 5.5 with the aid of the space-time code 

G2 and 64QAM over uncorrelated Rayleigh fading channels. From the simulation results we 

have found that all TBCH codes shown in Tables 5.3 and 5.5 perform better, if the parity 

bits are more protected. In general, a slight further improvement can be obtained for TBCH 

codes, when a random separation based interleaver is applied. A possible explanation is 

that the component encoders of the TBCH codes are BCH encoders, where a block of parity 

bits is generated by a block of data bits. Hence, every parity bit has an influence on the 

whole codeword. Moreover, we used high-rate TBCH codes and hence there are more data 

bits compared to the parity bits. Hence, in our forthcoming TBCH comparisons, we will 

use bit-to-symbol mappers protecting the parity bits better. 

5 . 5 . 2 . 4 Convolutional Codes 

Let us now investigate the space-time code Gg in conjunction with the half-rate convolu-

tional code CC(2,1,9) proposed for UMTS. The CC(2,1,9) code is a non-systematic non-

recursive convolutional code, where the original information bits cannot be explicitly recog-

nised in the encoded sequence. Its associated performance curve is shown in Figure 5.19 

marked by the triangles. A random interleaver was then applied, in order to disperse the 

bursty channel errors and the associated performance curve is marked by the diamonds 

in Figure 5.19. At a BER of 10"^ there is a performance gain of 2.5 dB, if the random 

interleaver is applied. As a further scheme we invoked a systematic CC(2,1,9) code, which 

was obtained using a recursive convolutional code [49, 102]. Hence, in this scenario we 

have explicitly separable data bits and parity bits. In Figure 5.19 the performance curve 

marked by the circles is obtained by mapping the data bits of the systematic CC(2,1,9) 

code to protection class I of the associated 16QAM scheme in conjunction with the random 

separation based interleaver of Figure 5.14. From the figure we can see that there is only 

a marginal performance improvement over the non-systematic CC(2,1,9) code using the 

random interleaver. 
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Figure 5.19; Performance comparison between the s y s t e m a t i c a n d non - sys t ema t i c half-
r a t e CC(2 ,1 ,9) code in conjunction with the space-time code Gg and 1 6 Q A M over un-
correlated Rayleigh fading channels at a throughput of 2 B P S . The encoding parameters 
of the CC(2,1,9) code are shown in Tables 5.3 and 5.4. 

5.5.3 Performance Comparison of Various Channel Codecs Using the G2 

Space-time Code and Multi-level Modulation 

In this section we compare the G2 space-time coded performance of all channel codecs 

summarised in Table 5.3. In order to avoid having an excessive number of curves in one 

figure, only one channel codec will be characterised from each group of the CC, TC, TBCH, 

TCM and TTCM schemes. The choice of the channel codec considered depends on its 

performance, complexity and code rate. Unless otherwise stated, all channel codecs are 

concatenated with the space-time code Gg using one receiver. All comparison are carried 

out on the basis of the same BPS throughput over uncorrelated Rayleigh fading channels. 

Let us now briefly discuss in the forthcoming sections, how each channel codec is selected 

from the codec families considered. 
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Figure 5.20: Performance comparison between the half-rate codes TC(2,1,3), TC(2,1,4) 
and TC(2,1,5), where the encoding parameters are shown in Table 5.3 and 5.5. All simu-
lation results were obtained with the aid of the space-time code Gg using 1 6 Q A M over 
uncorrelated Rayleigh fading channels and the throughput was 2 B P S . 

5.5.3.1 Comparison of Turbo Convolutional Codes 

In Figure 5.20 we compare the performance of the half-rate turbo codes TC(2,1,3), TC(2,1,4) 

and TC(2,1,5), where the encoding parameters are shown in Tables 5.3 and 5.5. The 

simulation results were obtained with the aid of the space-time code Gg using 16QAM 

over uncorrelated Rayleigh fading channels. The three performance curves in the figure 

are the best performance curves chosen from Figures 5.17, 5.16 and 5.15 for the half-rate 

codes TC(2,1,5), TC(2,1,4) and TC(2,1,3), respectively. It can be seen from the figure 

that the performance of the turbo codes improves, when we increase the constraint length 

of the component codes from 3 to 5. However, this performance gain is obtained at the 

cost of a higher decoding complexity. At a BER of 10"^ the TC(2,1,4) code has an E^/Nq 

improvement of approximately 0.25 dB over the TC(2,1,3) scheme at a penalty of twice 

the complexity. However, at the cost of the same complexity increment over that of the 

TC(2,1,4) arrangement the TC(2,1,5) scheme only achieves a marginal performance gain 

of 0.1 dB at BER= 10"^. Therefore, in our following investigations only the TC(2,1,4) 
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scheme will be characterised as it exhibits a significant coding gain at a moderate complexity. 

Furthermore, the TC(2,1,4) code has been adopted by the 3G UTRA mobile communication 

system 

5.5.3.2 C o m p a r i s o n of Dif ferent R a t e TC(2 ,1 ,4 ) Codes 

BER against Ey/No 

A TC(2,1,4),R=1/3,64QAM 
0 TC(2,l ,4) ,R=l/2, 16QAM 
O TC(2,1,4),R=2/3,8PSK 

Eb/No(dB) 

Figure 5.21: Performance of the TC(2,1,4) code using coding rates of | and | , where 
the associated encoding parameters are shown in Tables 5.3 and 5.5. All simulation results 
were obtained with the aid of the space-time code G2 at an effective throughput of 2 B P S 
over uncorrelated Rayleigh fading channels. 

In their seminal paper on turbo coding [12,13], Berrou et al. applied alternate puncturing 

of the parity bits. This results in half-rate turbo codes. However, additionally a range of 

different puncturing patterns can be applied, which results in different code rates [64]. In 

Figure 5.21 we portray the performance of the punctured TC(2,1,4) code having coding 

rates of ^ and The associated coding parameters are shown in Tables 5.3 and 5.5. 

Suitable multi-level modulation schemes are chosen so that all systems have the same effec-

tive throughput of 2 BPS. Explicitly, 64QAM, 16QAM and 8PSK are used. All simulation 

results were obtained with the aid of the space-time code G2 over uncorrelated Rayleigh 

fading channels. As expected, from Figure 5.21 we can clearly see that the best performance 
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is achieved by the half-rate TC(2,1,4) scheme. At a BER of 10~® the half-rate TC(2,1,4) 

code achieved a performance gain of approximately 1 dB over the third-rate and the two-

third-rate TC(2,1,4) codes. Even though the third-rate TC(2,1,4) code has a higher amount 

of redundancy than the half-rate TC(2,1,4) scheme, its performance is worse, than that of 

the half-rate TC(2,1,4) arrangement. We speculate that this is because the constellation 

points in 64QAM are more densely packed, than those of 16QAM. Therefore, they are more 

prone to errors and hence the extra coding power of the third-rate TC(2,1,4) code is insuffi-

cient to correct the extra errors. This results in a poorer performance. On the other hand, 

there are less errors induced by 8PSK, but the two-third-rate TC(2,1,4) code is a weak code 

due to the puncturing of the parity bits. Again, this results in an inferior performance. 
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A TC(2,1,4),R=1/2,64QAM 
0 TC(2,l ,4) ,R=3/4,16QAM 
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Figure 5.22: Performance of the punctured TC(2,1,4) code at coding rates of | and 
where the associated parameters are shown in Tables 5.3 and 5.5. All simulation results 
were obtained with the aid of the space-time code Gg at an effective throughput of 3 B P S 
over uncorrelated Rayleigh fading channels. 

In Figure 5.22 we show the performance of the TC(2,1,4) code at coding rates of ^ and 

| . The associated coding parameters were shown in Tables 5.3 and 5.5. Again, suitable 

modulation schemes were chosen so that both systems have the same effective throughput, 

namely 3 BPS. All simulation results were obtained with the aid of the space-time code Gg 

over uncorrelated Rayleigh fading channels. As compared to Figure 5.21, the throughput of 



the systems in Figure 5.22 has been increased from 2 BPS to 3 BPS. In order to maintain 

a high BPS throughput, 64QAM was employed in conjunction with the half-rate TC(2,1,4) 

code. We can see from the figure that the performance gain of the half-rate TC(2,1,4) code 

over the three-quarter-rate TC(2,1,4) code has been reduced to only 0.5 dB, as compared 

to 1 dB over the two-third-rate TC(2,1,4) code characterised in Figure 5.21. Moreover, the 

three-quarter-rate TC(2,1,4) code is weaker, than the two-third-rate TC(2,1,4) code, since 

less parity bits are transmitted over the channel. Based on the fact that the performance 

gain of the half-rate TC(2,1,4) code has been reduced, we surmise that high-rate turbo codes 

will outperform the half-rate TC(2,1,4) code, if the throughput of the system is increased 

to 4 BPS or even further. 

From Figures 5.21 and 5.22 we can see that the best performance is achieved by the 

half-rate TC(2,1,4) code for an effective throughput of 2 and 3 BPS. However, we are also 

interested in the system's performance at higher effective BPS throughputs. Hence, during 

our later discourse in Section 5.5.3.6 the performance of high-rate TC and TBCH codes will 

be studied for throughput values in excess of 5 BPS. 

5 . 5 . 3 . 3 C o n v o l u t i o n a l C o d e s 

In Figure 5.23 we compare the performance of the Gg space-time coded non-recursive half-

rate convolutional codes CC(2,1,5), CC(2,1,7) and CC(2,1,9). These schemes were standard-

ised in the GSM [49,175], DVB [39] and the 3G UTRA systems [49,154,177], respectively. 

The associated coding parameters were shown in Tables 5.3 and 5.4. All simulation re-

sults were obtained with the aid of the space-time code G2 using QPSK over uncorrected 

Rayleigh fading channels. We can see from the figure that at a BER of 10"^ the performance 

of the non-recursive convolutional codes improves by approximately 1 dB, if the complexity 

is increased by a factor of 2^ = 4. However, the extra performance gain attainable be-

comes smaller, as the affordable complexity further increases. In our forthcoming channel 

code comparisons, only the CC(2,1,9) code will be used, since it has the best performance 

amongst the above three schemes and it has a comparable complexity to that of the turbo 

convolutional codes studied. Moreover, the CC(2,1,9) code is also proposed for the third 

generation UTRA mobile communication system [49]. 

5 . 5 . 3 . 4 G2 C o d e d C h a n n e l C o d e c C o m p a r i s o n — T h r o u g h p u t o f 2 B P S 

Having narrowed down the choice of the Gg space-time coded convolutional codes and the 

turbo codes, we are now ready to compare the performance of the different proposed channel 

codecs belonging to different codec families. Our comparison is carried out on the basis of 
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Figure 5.23; Performance comparison between the non-recursive half-rate convolutional 
codes CC(2,1,5), CC(2,1,7) and CC(2,1,9), where the coding parameters are shown in Ta-
bles 5.3 and 5.4. All simulation results were obtained with the aid of the space-time code 
G2 using Q P S K over uncorrelated Rayleigh fading channels. The effective throughput is 
I B P S 

the same throughput and all channel codecs are concatenated with the space-time code 

G2, when transmitting over uncorrelated Rayleigh fading channels. Figure 5.24 shows the 

performance of our channel codecs selected from the CC, TC, TBCH, TCM and TTCM 

families on the basis of the same throughput of 2 BPS, regardless of their coding rates. The 

associated coding parameters are shown in Tables 5.3, 5.4 and 5.5. The throughput is 2 

BPS. 

From Figure 5.24 we can see that the half-rate TC(2,1,4) code outperforms the other 

channel codecs. At a BER of 10~® the TC(2,1,4) code achieves a gain of approximately 

0.5 dB over the TBCH(31,21) scheme at a much lower complexity. At the same BER, 

the TC(2,1,4) code also outperforms 8PSK-TTCM by approximately 1.5 dB. The poor 

performance of TTCM might be partially due to using generator polynomials, which are 

optimum for AWGN channels [57]. However, to date only limited research has been carried 

out on finding optimum generator polynomials for TTCM over fading channels [178]. 
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Figure 5.24: Performance comparison between different CC, TC, TBCH, TCM and TTCM 
schemes where the coding parameters are shown in Tables 5.3, 5.4 and 5.5. All simulation 
results were obtained with the aid of the space-time code G2 at a throughput of 2 B P S 
over uncorrelated Rayleigh fading channels. 

In Figure 5.24 we also characterise the performance of the CC(2,1,9) and 8PSK-TCM 

schemes. The figure clearly demonstrates that the invention of turbo codes invoked in our 

TC, TBCH and TTCM Gg-coded schemes, resulted in substantial improvements over the 

conventional Gg-coded channel codecs, such as the CC and TCM schemes considered. At a 

BER of 10~®, the TC(2,1,4) code outperforms the CC(2,1,9) and 8PSK-TCM arrangements 

by approximately 3.0 dB and 7.5 dB, respectively. 

5 .5 .3 .5 G 2 - C o d e d C h a n n e l C o d e c C o m p a r i s o n — T h r o u g h p u t of 3 B P S 

In Figure 5.25 we portray the performance of various channel codecs belonging to the CC, 

TC, TBCH, TCM and TTCM codec families on the basis of a constant throughput of 3 BPS, 

regardless of their coding rates. The associated coding parameters are shown in Tables 5.3, 

5.4 and 5.5. The simulation results were obtained with the aid of the space-time code Gg 

over uncorrelated Rayleigh fading channels. 
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BER against EJ/NQ 
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Figure 5.25: Performance comparison between different CC, TC, TBCH, TCM and TTCM 
schemes where the coding parameters are shown in Tables 5.3, 5.4 and 5.5. All simulation 
results were obtained with the aid of the space-time code Gg at an effective throughput of 
3 B P S over uncorrected Rayleigh fading channels. 

From Figure 5.25 we can infer a few interesting points. As mentioned earlier, the half-

rate TC(2,1,4) code suffers from the effects of puncturing as we increase the throughput of 

the system. In order to maintain a throughput of 3 BPS, 64QAM has to be employed in 

the systems using the half-rate TC(2,1,4) code. The rather vulnerable 64QAM modulation 

scheme appears to over-stretch the coding power of the half-rate TC(2,1,4) code attempting 

to saturate the available channel capacity. At a BER of 10"^ there is no obvious performance 

gain over the TBCH(31,26)/16QAM and 16QAM-TTCM schemes. Hence, we have reasons 

to postulate that if the throughput of the system is increased beyond 3 BPS, high-rate 

turbo codes should be employed for improving the performance, rather than invoking a 

higher throughput modulation scheme. 

5 . 5 . 3 . 6 C o m p a r i s o n of G g - C o d e d H i g h - R a t e T C a n d T B C H C o d e s 

In the previous section we have shown that at the BER of 10~®, the required Eh/No is 

increased by about 2.5 dB for the half-rate turbo code TC(2,1,4), as the throughput of the 
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Figure 5.26; Performance comparison between high-rate TC and TBCH codes concatenated 
with the space-time code Gg employing 64QAM over uncorrelated Rayleigh fading channels. 
The parameters of the TC and TBCH codes were shown in Tables 5.3 and 5.5. 

system is increased from 2 BPS to 3 BPS. A range of schemes having a throughput in excess 

of 5 BPS is characterised in Figure 5.26. Specifically, the figure shows the performance 

of high-rate TC and TBCH codes concatenated with the space-time code G2 employing 

64QAM over uncorrelated Rayleigh fading channels. The parameters of the TC and TBCH 

codes used are shown in Tables 5.3 and 5.5. The performance of half-rate turbo codes 

along with such a high throughput is not shown, because a modulation scheme having at 

least 1024 constellation points would be needed, which is practically infeasible over non-

stationary wireless channels. Moreover, the turbo codes often would be overloaded with the 

plethora of errors induced by the densely packed constellation points. 

In Figure 5.26 we can clearly see that there is not much difi'erence in performance terms 

between the high-rate TC(2,1,4) and TBCH codes employed, although the TBCH codes 

exhibit marginal gains. This gain is achieved at a cost of high decoding complexity, as 

evidenced by Table 5.6. The slight performance improvement of the TBCH(31,26) code 

over the three-quarter rate TC(2,1,4) scheme is probably due to its slightly lower code rate 

of i? = 0.72, compared to the rate of i? = 0.75 associated with the TC(2,1,4) code. It is 
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important to note that all BCH component codes used in the TBCH codes have a minimum 

distance dmin of 3. We speculate that the performance of the TBCH codes might improve, 

if dmin is increased to 5. However, due to the associated complexity we will refrain from 

employing dmin = 5 BCH component codes in the TBCH schemes studied. 

5 . 5 . 3 . 7 C o m p a r i s o n of H i g h - R a t e T C a n d C o n v o l u t i o n a l C o d e s 

BER against Ey/Ng 

TC(2,1,4), R=0.75 
CC(2,1,7),R=0.75 
TC(2,1,4),R=0.83 
CC(2,1,7), R=0.83 

10 12 
Eb/No(dB) 
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Figure 5.27: Performance comparison between high-rate TCs and convolutional codes con-
catenated with the space-time code Gg employing 64QAM over uncorrelated Rayleigh fading 
channels. The parameters of the TC and CC codes were shown in Tables 5.3, 5.4 and 5.5. 

In Figure 5.27, we compare the performance of the high-rate punctured TC(2,1,4) and 

CC(2,1,7) codes concatenated with the space-time code Gg employing 64QAM over un-

correlated Rayleigh fading channels. The puncturing patterns employed for the CC(2,1,7) 

scheme were proposed in the DVB standard [39]. The parameters of the TC(2,1,4) and 

CC(2,1,7) codes are shown in Tables 5.3, 5.4 and 5.5. From the figure we can see that 

both high-rate TC(2,1,4) codes outperform their equivalent rate CC(2,1,7) counterparts by 

about 2 dB at a BER of 10~®, whilst maintaining a similar estimated decoding complexity, 

as it was evidenced by Table 5.6. This fact indicates that at a given tolerable complexity, 



CHAPTER 5. SPACE-TIME BI,OCK CODES 234 

better BER performance can be attained by an iterative turbo decoder. These findings mo-

tivated the investigations of our next section, where the performance of the various schemes 

was studied in the context of the achievable coding gain versus the estimated decoding 

complexity. 

5 .5 .4 C o d i n g G a i n V e r s u s C o m p l e x i t y 

In Section 5.4.3 we have estimated the various channel decoders' complexity based on a 

few simplifying assumptions. All the complexities estimated in our forthcoming discourse 

were calculated based on Equations 5.43 to 5.51. Again, our performance comparison of 

the channel codes was made on the basis of the coding gain defined as the Eb/No difference, 

expressed in decibels, at BER= 10~® between the various channel coded and uncoded 

systems having the same throughput, while using the space-time code Gg. 

5.5.4.1 Complexity Comparison of Turbo Convolutional Codes 

Figure 5.28 shows the (a) coding gain versus the number of iterations and (b) the coding 

gain versus estimated complexity for the TC(2,1,3), TC(2,1,4) and TC(2,1,5) codes, where 

the coding parameters used are shown in Tables 5.3, 5.5 and 5.6. All simulation results 

were obtained upon employing the space-time code Gg using one receiver and 64QAM over 

uncorrelated Rayleigh fading channels at an effective throughput of 3 BPS. We can see from 

Figure 5.28(a) that there is a huge performance improvement of approximately 3 — 4 dB 

between the first and second turbo decoding iteration. However, the further coding gain 

improvements become smaller, as the number of iterations increases. It can be seen from the 

figure that the performance of turbo codes does not significantly improve after 8 iterations, 

as indicated by the rather flat coding gain curve. Figure 5.28(a) also shows that as we 

increase the constraint length K of the turbo codes from 3 to 5, the associated performance 

improves. 

In Figure 5.28(b) the coding gains of the various turbo codes using different number of 

iterations were compared on the basis of their estimated complexity. This was necessary, 

since we have seen in Section 5.4.3 that the estimated complexity of turbo codes depends 

exponentially on the constraint length K, but only linearly on the number of iterations. 

From Figure 5.28(b), we can see that the estimated complexity of the TC(2,1,5) code ranges 

from approximately 200 to 2000, when using one to ten iterations. On the other hand, the 

estimated complexity of the TC(2,1,3) scheme ranges only from approximately 50 to 500 

upon invoking one to ten iterations. This clearly shows that the estimated complexity of 

the turbo codes is dominated by the constraint length K. Figure 5.28(b) also shows that 
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Figure 5.28: Coding gain versus (a) the number iterations and versus (b) estimated com-
plexity for the TC(2,1,3), TC(2,1,4) and TC(2,1,5) codes, where the coding parameters are 
shown in Tables 5.3, 5.5 and 5.6. All simulation results were obtained upon employing 
the space-time code Gg using one receiver and 6 4 Q A M over uncorrelated Rayleigh fading 
channels at an effective throughput of 3 BPS. 
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the coding gain curve of the TC(2,1,3) code saturates faster, which is demonstrated by the 

steep increase in coding gain, as the estimated complexity increases. For achieving the same 

coding gain of 19 dB, we can see that the TC(2,1,3) scheme requires the lowest estimated 

complexity. We would require 2-3 times higher computational power for the TC(2,1,5) code 

to achieve the above-mentioned coding gain of 19 dB. 

5 .5 .4 .2 C o m p l e x i t y C o m p a r i s o n of C h a n n e l C o d e s 

Coding gain versus complexity 

A CC(2,1,K), 16QAM 
0 TC(2,1,4), 16QAM 
O TBCH(32,26),8PSK 
O TTCM-SPSK 

1500 2000 
Complexity 

3500 

Figure 5.29: Coding gain versus estimated complexity for the CC{2,1,K), TC(2,1,4), 
TBCH(32,26) and TTCM-8PSK where the parameters are shown in Table 5.3, 5.4, 5.5 
and 5.6. All simulation results were obtained upon employing space-time code Gg using 
one receiver over uncorrelated Rayleigh fading channels at an effective throughput of 2 
B P S . 

In the previous section we have compared the coding gain versus estimated complexity 

of the Gg-coded turbo schemes TC(2,1,3), TC(2,1,4) and TC(2,1,5). Here we compare the 

TC(2,1,4) arrangement that faired best amongst them to the CC(2,1,9) code and to the 

TBCH(32,26)/8PSK as well as to the TTCM-8PSK arrangements, representing the other 

codec families studied. Specifically, Figure 5.29 shows the coding gain versus estimated 

complexity for the C C ( 2 , T C ( 2 , 1 , 4 ) , TBCH(32,26) and TTCM-8PSK schemes, where 



the associated parameters are shown in Tables 5.3, 5.4, 5.5 and 5.6. All simulation results 

were obtained upon employing the space-time code G2 using one receiver over uncorre-

lated Rayleigh fading channels at an effective throughput of 2 BPS. For the turbo schemes 

TC(2,1,4), TBCH(32,26) and TTCM-8PSK the increased estimated complexity is achieved 

by increasing the number of iterations from 1 to 10. However, convolutional codes are 

decoded non-iteratively. Therefore in Figure 5.29 we vary the constraint length K of the 

convolutional codes from 3 to 10, which results in increased estimated complexity. The gen-

erator polynomials of the CC(2,l,iir) codec, where K = 3...10, are given in [102] and they 

define the corresponding maximum minimum free distance of the codes. From Figure 5.29 

we can see that there is a steep increase in the coding gain achieved by the TC(2,1,4) code, 

as the estimated complexity is increased. Moreover, the TC(2,1,4) scheme asymptotically 

achieves a maximum coding gain of approximately 20 dB. At a low estimated complexity 

of approximately 200, the TC(2,1,4) code attains a coding gain of approximately 18 dB, 

which exceeds that of the other channel codes studied. The TBCH(32,26) arrangement is 

the least attractive one, since a huge estimated complexity is incurred, when aiming for a 

high coding gain. 

In contrast to the 2 BPS schemes of Figure 5.29, Figure 5.30 shows the corresponding 

coding gain versus estimated complexity curves for the CC(2,l,i^'), TC(2,1,4), TBCH(31,26) 

and TTCM-16QAM 3 BPS arrangements, where the coding parameters are shown in Ta-

bles 5.3, 5.4, 5.5 and 5.6. Again, all simulation results were obtained upon employing the 

space-time code Gg using one receiver over uncorrelated Rayleigh fading channels at an 

effective throughput of 3 BPS. As before, the increased estimated complexity of the turbo 

schemes is incurred by increasing the number of iterations from 1 to 10. For the convolu-

tional codes the constraint length K is varied from 3 to 10. Similarly to Figure 5.29, the 

TC(2,1,4) scheme achieves a considerable coding gain at a relatively low estimated complex-

ity. For example, in order to achieve a coding gain of 18 dB, the TTCM and TBCH(31,26) 

arrangements would require an approximately 3 and 4 times higher computational power 

compared to the TC(2,1,4) code. 

From Figures 5.29 and 5.30 we can clearly see that turbo codes are the most attractive 

one of all the channel codes studied in conjunction with the space-time code G2, offering 

an impressive coding gain at a moderate estimated decoding complexity. 

In Figure 5.31, we show the Eh/No value required for maintaining BER= 10~® versus 

the effective throughput BPS for the space-time block code Gg concatenated with the 

TC(2,1,4) code where the coding parameters are shown in Tables 5.3, 5.5 and 5.6. All 

simulation results were obtained upon employing space-time code G2 using one receiver 

over uncorrelated Rayleigh fading channels. Half-rate TC(2,1,4) code was employed for BPS 
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Figure 5.30: Coding gain versus estimated complexity for the CC{2,1,K), TC(2,1,4), 
TBCH(31,26) and TTCM-16QAM schemes where the coding parameters are shown in Ta-
bles 5.3, 5.4, 5.5 and 5.6. All simulation results were obtained upon employing space-
time code Gg using one receiver over uncorrelated Rayleigh fading channels at an effective 
throughput of 3 BPS. 

up to three. Then TC(2,1,4) code with various rates was employed with 64QAM in order to 

achieve increasing effective throughput BPS. It can be seen from the figure that the Ei^/Nq 

value required for maintaining BER= 10"^ increases linearly as the effective throughput 

BPS increases. 

5.6 S u m m a r y and Conclusions 

The state-of-the-art of transmission schemes based on multiple transmitters and receivers 

was reviewed in Section 5.1 This was followed by a rudimentary introduction to MRC [71] 

technique, using a simple example in Section 5,2.1. Space-time block codes were introduced 

in Section 5.3 employing the unity-rate space-time code Gg. In Sections 5.3.1.1 and 5.3.1.2 

two examples of employing the space-time code G2 were provided using one and two re-

ceivers, respectively. The transmission matrix of a range of different-rate space-time codes, 
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Figure 5.31: The Eh/No value required for maintaining B E R = 10"^ versus the effective 
throughput BPS for the space-time block code Gg concatenated with the TC(2,1,4) code 
where the coding parameters are shown in Tables 5.3, 5.5 and 5.6. All simulation results 
were obtained upon employing space-time code Gg using o n e rece ive r over uncorrelated 
Rayleigh fading channels. 

namely that of the codes Gg, G4, H3 and H4 of Table 5.2 were also given. Additionally, a 

brief description of the MAP decoding algorithm [171] was provided in Section 5.3.3 in the 

context of space-time block codes. 

In Section 5.4 we proposed a system, which consists of the concatenation of the above-

mentioned space-time block codes and a range of different channel codes. The channel cod-

ing schemes investigated were convolutional codes, turbo convolutional codes, turbo BCH 

codes, trellis coded modulation and turbo trellis coded modulation. The estimated com-

plexity and memory requirement of the channel decoders were summarised in Section 5.4.3. 

Finally, we presented our simulation results in Section 5.5, which were divided into four 

categories. In Section 5.5.1, we first compared the performance results of the space-time 

codes G2, G3, G4, H3 and H4 without using channel codecs. It was found that as we 

increased the effective throughput of the system, the performance of the half-rate space-time 

codes G3 and G4 degraded in comparison to that of the unity rate space-time code G2. This 



was because in order to maintain the same effective throughput, higher modulation schemes 

had to be employed in conjunction with the half-rate space-time codes G3 and G4, which 

were more prone to errors and hence degraded the performance of the system. On the other 

hand, for the sake of maintaining the same diversity gain and same effective throughput we 

found that the performance of the space-time codes H3 and H4 was better, than that of the 

space-time codes G3 and G4, respectively. Since the space-time code G2 has a code rate of 

unity, we were able to concatenate it with half-rate TC codes, while maintaining the same 

effective throughput, as the half-rate space-time code using no channel coding. Hence for 

the same effective throughput, the unity-rate Gg space-time coded and half-rate channel 

coded scheme provided substantial performance improvement over the three-quarter rate 

space-time code H4 and half-rate space-time code G4, which were unable to benefit from 

channel coding. We concluded that the reduction in coding rate was best invested in turbo 

channel codes, rather than space-time block codes. Therefore, all channel codes studied 

were concatenated with the unity-rate space-time code Gg only. 

In the second category of our investigations in Section 5.5.1.5 we studied the effect of the 

binary channel codes' data and parity bits mapped into different protection classes of multi-

level modulation schemes. It was found that TC codes having different constraint lengths 

K require different mapping methods, as evidenced by Figure 5.12. By contrast, in the 

turbo BCH codes studied mapping of the parity bits to the higher-integrity protection class 

of a multi-level modulation scheme yielded a better performance. The so-called random 

separation based interleaver was proposed, in order to improve the performance of the 

system. 

The third set of results compared the performance of all proposed channel codes in con-

junction with the space-time code Gg. In order to avoid confusion, we only selected one 

channel code from each group of channel codes in Table 5.3. Specifically, only half-rate 

TC codes were studied, as they gave better coding gain performance compared to other 

TC codes having lower and higher rates. It was then found that the performance of the 

half-rate TC codes was better than that of the CC, TECH, TCM and TTCM codes. Then, 

we compared the performance of high rates TC codes with high-rate turbo BCH codes in 

conjunction with 64QAM. It was found that the turbo BCH codes provided a slight perfor-

mance improvement over high rate TC codes, but at the cost of high complexity. Finally, the 

chapter was concluded by comparing the Gg space-time coded channel codes upon taking 

their estimated complexity into consideration. In Figures 5.29 and 5.30, we can clearly see 

that the half-rate TC codes give the best coding gain at a moderate estimated complexity. 



Chapter 6 

Space-Time Trellis Codes 

6.1 In t roduc t ion 

In the previous chapter, we have detailed the encoding and decoding processes of space-time 

block codes [71-73]. Various proposed space-time block codes [72,73] have been discussed 

and their performance was investigated over perfectly interleaved, non-dispersive Rayleigh 

fading channels. A range of systems consisting of space-time block codes and different 

channel codecs were proposed. The performance versus estimated complexity trade-off of 

the different systems was investigated and compared. 

In an effort to provide as comprehensive a technology road-map as possible and to identify 

the most promising schemes in the light of their performance versus estimated complexity, 

in this chapter we shall explore the family of space-time trellis codes [70,80,166-169], which 

were proposed by Tarokh et al. Space-time trellis codes incorporate jointly designed channel 

coding, modulation, transmit diversity and optional receiver diversity. The performance 

criteria for designing space-time trellis codes were outlined in [70], under the assumption 

that the channel is fading slowly and that the fading is frequency non-selective. It was shown 

in [70] that the system's performance is determined by matrices constructed from pairs of 

distinct code sequences. Both the diversity gain and coding gain of the codes are determined 

by the minimum rank and the minimum determinant [70,179] of the matrices, respectively. 

The results were then also extended to fast fading channels. The space-time trellis codes 

proposed in [70] provide the best tradeoff between data rate, diversity advantage and trellis 

complexity. 

The performance of both space-time trellis and block codes over narrowband Rayleigh 

fading channels was investigated by numerous researchers [70,71,73,79,80]. The investiga-

tion of space-time codes was then also extended to the class of practical wideband fading 

241 



CfLLPGnSR & TRjOLLKfCXIDfB 242 

channels. The effect of multiple paths on the performance of space-time trellis codes was 

studied in [169] for transmission over slowly varying Rayleigh fading channels. It was shown 

in [169] that the presence of multiple paths does not decrease the diversity order guaranteed 

by the design criteria used to construct the space-time trellis codes. The evidence provided 

in [169] was then also extended to rapidly fading dispersive and non-dispersive channels. 

As a further performance improvement, turbo equalisation was employed in [74] in order 

to mitigate the effects dispersive channels. However space-time coded turbo equalisation 

involved an enormous complexity. In addressing the complexity issues, Bauch et al. [75] 

derived finite-length multi-input multi-output (MIMO) channel filters and used them as 

prefilters for turbo equalisers. These prefilters significantly reduce the number of turbo 

equaliser states and hence mitigate the decoding complexity. As an alternative solution, 

the effect of Inter Symbol Interference (ISI) could be eliminated by employing Orthogonal 

Frequency Division Multiplexing (OFDM) [153]. A system using space-time trellis coded 

OFDM is attractive, since the decoding complexity reduced, as demonstrated by the recent 

surge of research interests [76-79]. In [76,78,79], non-binary Reed-Solomon (RS) codes were 

employed in the space-time trellis coded OFDM systems for improving its performance. 

Similarly, the performance of space-time block codes was also investigated over frequency 

selective Rayleigh fading channels. In [180], a multiple input multiple output equaliser was 

utilised for equalising the dispersive multipath channels. Furthermore, the advantages of 

OFDM were also exploited in space-time block coded systems [79,181,182]. 

We commence our discussion with a detailed description of the encoding and decoding 

processes of the space-time trellis codes in Section 6.2. The state diagrams of a range 

of other space-time trellis codes are also given in Section 6.2.2. In Section 6.3, a specific 

system is proposed, which enables the comparison of space-time trellis codes and space-time 

block codes over wideband channels. Our simulation results are then given in Section 6.4. 

We continue our investigations by proposing space-time coded adaptive modulation based 

OFDM in Section 6.5. Finally, we conclude the chapter in Section 6.6. 

6.2 Space-Time Trellis Codes 

In this section, we will detail the encoding and decoding processes of space-time trellis codes. 

Space-time trellis codes are defined by the number of transmitters p, by the associated state 

diagram and the modulation scheme employed. For ease of explanation, as an example we 

shall use the simplest 4-state, 4-level Phase Shift Keying (4PSK) space-time trellis code, 

which has p — 2 two transmit antennas. 
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6.2.1 The 4-State, 4PSK Space-Time Trellis Encoder 

At any time instant k, the 4-state 4PSK space-time trellis encoder transmits symbols %,i 

and Xk,2 over the transmit antennas Tx 1 and Tx 2, respectively. The output symbols at 

time instant k are given by [70]: 

Xk,i — ^-dk,! + ^•dk,2 + + 2.dfc-i,2 

Xk,2 = ^-dk,! +'^•dk,2 + O-dk-1,1 + O-dk-1,2 

(6.1) 

(6.2) 

where dk î represents the current input bits, whereas rffc-i.i the previous input bits and 

i = 1,2. More explicitly, we can represent Equation 6.2 with the aid of a shift register, as 

shown in Figure 6.1, where © represents modulo 4 addition. Let us explain the operation 

t—1.1 

Figure 6.1: The 4-state, 4PSK space-time trellis encoder. 

of the shift register encoder for the random input data bits 01111000. The shift register 

stages ro and r i must be reset to zero before the encoding of a transmission frame starts. 

They represent the state of the encoder. The operational steps are summarised in Table 6.1. 

Again, given the register stages dk-i^i and dt-i,2 as well as the input bits dk î and dk^2, the 

output symbols seen in the table are determined according to Equation 6.2 or Figure 6.1. 

Note that the last two binary data bits in Table 6.1 are intentionally set to zero in order 

to force the 4-state 4PSK trellis encoder back to the zero state which is common practice 

at the end of a transmission frame. Therefore, the transmit antenna Tx 1 will transmit 

symbols 0, 2, 3,1. By contrast, symbols 2, 3,1, 0 are then transmitted by the antenna Tx 2. 

According to the shift register encoder shown in Figure 6.1, we can find all the legit-

imate subsequent states, which result in transmitting the various symbols Xk̂ i and Xk,2, 

depending on a particular state of the shift register. This enables us to construct the state 

diagram for the encoder. The 4PSK constellation points are seen in Figure 6.2, while the 
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Input queue Instant k Input bits Shift register State Transmitted symbols 

idk,l')dk^2) (̂ fc —1,1!1 ,2) % ^k,2) 
00011110 

000111 
0001 

00 

0 
1 
2 

3 
4 
5 

0 1(2) 
1 1 ( 3 ) 
I IXI) 
0(X2) 

0 0 
0 0 
0 1 
1 1 
1 0 
0 0 

0 
0 
2 
3 
1 
0 

0 2 
2 3 
3 1 
1 0 

Table 6.1: Operation of the space-time encoder of Figure 6.1. 

Figure 6.2: The 4PSK constellation 
points. 

State S't 
0 

Transmitted symbols 
00, 0 1 , 0 2 , 0 3 

10, 1 1 , 1 2 , 1 3 

20, 2 1 , 2 2 , 2 3 

30, 3 1 , 3 2 , 3 3 

Figure 6.3: The 4-state, 4PSK space-time trellis 
code. 

corresponding state diagram of the 4-state 4PSK space-time trellis code [70] is shown in 

Figure 6.3. In Figure 6.3, we can see that for each current state there are four possible trelhs 

transitions to the states 0,1,2 and 3, which correspond to the legitimate input symbols of 

^{dk,! — 0, (î 2̂ — 0))l('^fc,i — l)'̂ fc,2 — 0)i'^{dk,i — 0, — 1) cind 3(<i/;i = 1, = 1), 

respectively. Correspondingly, there are four sets of possible transmitted symbols associated 

with the four trellis transitions, shown at right of the state diagram. Each trellis transition 

is associated with two transmitted symbols, namely with xi and X2, which are transmitted 

by the antennas Tx 1 and Tx 2, respectively. In Figure 6.4, we have highlighted the trelhs 

transitions from state zero % = 0 to various states. The associated input symbols and the 

transmitted symbols of each trellis transitions are shown on top of each trellis transition. If 

State 

Figure 6.4: The trellis transitions from state Sk = 0 to various states. 



245 

the input symbol is 0, then the symbol xi = 0 will be sent by the transmit antenna Tx 1, 

and symbol 2:2 = 0 by the transmit antenna Tx 2 as seen in Figure 6.4 or Figure 6.3. The 

next state remains Sk+i = 0. However, if the input symbol is 2 associated with dk,i = 0, 

(ft,2 = 1 in Table 6.1 then, the trellis traverses from state % = 0 to state Sk+i = 2 and the 

symbols % i = 0 and X2 — 2 are transmitted over the antennas Tx 1 and Tx 2, respectively. 

Again, the encoder is required to be in the zero state both at the beginning and at the end 

of the encoding process. 

6 . 2 . 1 . 1 T h e 4 - S t a t e , 4 P S K S p a c e - T i m e Tre l l i s D e c o d e r 

2/1 = + Ai2a;2 + yii 

Channel 
estimator 

h 11 
h 12 

2/2 — + /2'223;2 + ?T'2 

Maximum likelihood /121 Channel 
sequence estimator ^22 estimator 

Figure 6.5: Baseband representation of the 4-state, 4PSK space-time trellis code using two 
receivers. 

In Figure 6.5 we show the baseband representation of the 4-state, 4PSK space-time trelhs 

code using two receivers. At any transmission instant, we have symbols xi and X2 trans-

mitted by the antennas Tx 1 and Tx 2, respectively. At the receivers Rx 1 and Rx 2, we 

would have: 

?/i = 4- /ti2a;2 + 

2/2 = A2ia:i -t- A22a:2 + "2 , 

(6.3) 

(6.4) 

where h n , hi2, A21 and A22 represent the corresponding complex time-domain channel trans-

fer factors. Aided by the channel estimator, the Viterbi Algorithm based maximum likeli-

hood sequence estimator [70] first finds the branch metric associated with every transition 
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in the decoding trellis diagram, which is identical to the state diagram shown in Figure 6.3. 

For each trellis transition, we have two estimated transmit symbols, namely and ^2, for 

which the branch metric BM is given by: 

BM = \yi — hiixi — hi2X2 + y2 — h2iXi — h22X2^ 
2 

:=1 
2 

E 
1=1 

Vi Y^h. 
i=i 

(6.5) 

We can however generalise Equation 6.5 to p transmitters and q receivers, as follows: 

i=l 

Vi E"-. 
j=i 

(6.6) 

When all the transmitted symbols were received and the branch metric of each legitimate 

transition was calculated, the maximum likelihood sequence estimator invokes the Viterbi 

Algorithm (VA) in order to find the maximum hkehhood path associated with the best 

accumulated metric. 

6 . 2 . 2 O t h e r S p a c e - T i m e T r e l l i s C o d e s 

In Section 6.2.1, we have shown the encoding and decoding process of the simple 4-state, 

4PSK space-time trellis code. More sophisticated 4PSK space-time trellis codes were de-

signed by increasing the number of trellis states [70], which are reproduced in Figures 6.6 to 

6.8. With an increasing number of trelhs states the number of tailing symbols required for 

terminating the trellis at the end of a transmitted frame is also increased. Two zero-symbols 

are needed to force the trelhs back to state zero for the space-time trelhs codes shown in 

Figures 6.6 and 6.7. By contrast, three zero-symbols are required for the space-time trelhs 

code shown in Figure 6.8. 

Space-time trellis codes designed for the higher-order modulation scheme of 8PSK were 

also proposed in [70]. In Figure 6.9, we showed the constellation points employed in [70]. 

The proposed 8-state, 16-state and 32-state 8PSK space-time trellis codes were reproduced 

from [70] in Figures 6.10, 6.11 and 6.12, respectively. One zero-symbol is required to 

terminate the 8-state, 8PSK space-time trellis code, whereas two zero-symbols are needed 

for both the 16-state and 32-state 8PSK space-time trellis codes. 
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State Transmitted symbols 
0 0 , 0 1 , 0 2 , 0 3 

1 0 , 1 1 , 1 2 , 1 3 

2 0 , 2 1 , 2 2 , 2 3 

3 0 , 3 1 , 3 2 , 3 3 

22, 2 3 , 2 0 , 2 1 

3 2 , 3 3 , 3 0 , 3 1 

0 2 , 0 3 , 0 0 , 0 1 

1 2 , 1 3 , 1 0 , 1 1 

Figure 6.6: The 8-state, 4PSK space-
time trellis code. 

Transmitted symbols 
00, 0 1 , 0 2 , 0 3 

1 2 , 1 3 , 1 0 , 1 1 

2 0 , 2 1 , 2 2 , 2 3 

32, 3 3 , 3 0 , 3 1 

2 0 , 2 1 , 2 2 , 2 3 

3 2 , 3 3 , 3 0 , 3 1 

0 0 , 0 1 , 0 2 , 0 3 

1 2 , 1 3 , 1 0 , 1 1 

0 2 , 0 3 , 0 0 , 0 1 

1 0 , 1 1 , 1 2 , 1 3 

2 2 , 2 3 , 2 0 , 2 1 

30, 3 1 , 3 2 , 3 3 

. 2 2 , 2 3 , 2 0 , 2 1 

30, 3 1 , 3 2 , 3 3 

02, 0 3 , 0 0 , 0 1 

1 0 , 1 1 , 1 2 , 1 3 

Figure 6.7: The 16-state, 4PSK space-time trel-
lis code. 

6.3 Space-Time Coded Transmission Over W i d e b a n d Chan-

nels 

In Section 6.2, we have detailed the concept of space-time trellis codes. Let us now elaborate 

further by investigating the performance of space-time codes over dispersive wideband fading 

channels. As mentioned in Section 6.1, Bauch's approach [74,75] of using turbo equalisation 

for mitigating the ISI exhibits a considerable complexity. Hence we argued that using space-

time coded OFDM constitutes a more favourable approach to transmission over dispersive 

wireless channels, since the associated decoding complexity is significantly lower. Therefore, 

in this chapter OFDM is employed for mitigating the effects of dispersive channels. 

It is widely recognised that space-time trellis codes [70] perform well at the cost of high 

complexity. However, Alamouti's Gg space-time block code [71] could be invoked instead 

of space-time trellis codes. The space-time block code G2 is appealing in terms of its 

simplicity, although there is a slight loss in performance. Therefore, we concatenate the 

space-time block code G2 with Turbo Convolutional (TC) codes in order to improve the 

performance of the system. The family of TC codes was favoured, because it was shown in 

Section 5.5.3 of Chapter 5 and in [108,183] that TC codes achieve an enormous coding gain 
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Transmitted symbols 
0 0 , 0 1 , 0 2 , 0 3 

1 1 , 1 2 , 1 3 , 1 0 

2 2 , 2 3 , 2 0 , 2 1 

3 3 , 3 0 , 3 1 , 3 2 

2 0 , 2 1 , 2 2 , 2 3 

3 3 , 3 0 , 3 1 , 3 2 

0 2 , 0 3 , 0 0 , 0 1 

1 3 , 1 0 , 1 1 , 1 2 

3 3 , 3 0 , 3 1 , 3 2 

0 0 , 0 1 , 0 2 , 0 3 

1 1 , 1 2 , 1 3 , 1 0 

2 2 , 2 3 , 2 0 , 2 1 

1 3 , 1 0 , 1 1 , 1 2 

2 0 , 2 1 , 2 2 , 2 3 

3 1 , 3 2 , 3 3 , 3 0 

0 2 , 0 3 , 0 0 , 0 1 

2 2 , 2 3 , 2 0 , 2 1 

3 3 , 3 0 , 3 1 , 3 2 

0 0 , 0 1 , 0 2 , 0 3 

1 3 , 1 0 , 1 1 , 1 2 

0 2 , 0 3 , 0 0 , 0 1 

1 3 , 1 0 , 1 1 , 1 2 

2 0 , 2 1 , 2 2 , 2 3 

3 1 , 3 2 , 3 3 , 3 0 

1 1 , 1 2 , 1 3 , 1 0 

2 2 , 2 3 , 2 0 , 2 1 

33, 3 0 , 3 1 , 3 2 

0 0 , 0 1 , 0 2 , 0 3 

3 1 , 3 2 , 3 3 , 3 0 

02, 0 3 , 0 0 , 0 1 

1 3 , 1 0 , 1 1 , 1 2 

2 0 , 2 1 , 2 2 , 2 3 

Figure 6.8: T h e 32-State, 4 P S K space-t ime trellis code. 
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]?igiu-e 6.9: TThe gPSIC 
constel lat ion points . 

Transmitted symbols 
00, 01, 0 2 , 0 3 , 0 4 , 0 5 , 0 6 , 0 7 

5 0 , 5 1 , 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 

2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 

70, 71, 7 2 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 

4 0 , 4 1 , 4 2 , 4 3 , 4 4 , 4 5 , 4 6 , 4 7 

1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 

60, 6 1 , 6 2 , 6 3 , 6 4 , 6 5 , 6 6 , 6 7 

3 0 , 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7 

Figure 6.10: T h e 8-state, 8PSK space-t ime trellis code. 

State Transmitted symbols 
00, 01, 02, 0 3 , 0 4 , 0 5 , 0 6 , 0 7 

5 1 , 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 0 

2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 0 , 2 1 

73, 74, 7 5 , 7 6 , 7 7 , 7 0 , 7 1 , 7 2 

4 4 , 4 5 , 4 6 , 4 7 , 4 0 , 4 1 , 4 2 , 4 3 

1 5 , 1 6 , 1 7 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

6 6 , 6 7 , 6 0 , 6 1 , 6 2 , 6 3 , 6 4 , 6 5 

37, 30, 31, 3 2 , 3 3 , 3 4 , 3 5 , 3 6 

1 5 , 1 6 , 1 7 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

6 6 , 6 7 , 6 0 , 6 1 , 6 2 , 6 3 , 6 4 , 6 5 

37, 30, 31, 3 2 , 3 3 , 3 4 , 3 5 , 3 6 

0 0 , 0 1 , 0 2 , 0 3 , 0 4 , 0 5 , 0 6 , 0 7 

5 1 , 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 0 

22, 23, 2 4 , 2 5 , 2 6 , 2 7 , 2 0 , 2 1 

73, 74, 7 5 , 7 6 , 7 7 , 7 0 , 7 1 , 7 2 

4 4 , 4 5 , 4 6 , 4 7 , 4 0 , 4 1 , 4 2 , 4 3 

Figure 6.11: T h e 16-State, 8PSK space-t ime trellis code. 
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h, h 

Transmitted symbols 
00, 01, 02, 03, 04, 05, 06, 07 

51, 52, 53, 54, 55, 56, 57, 50 

22, 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 0 , 2 1 

73, 74, 75, 7 6 , 7 7 , 7 0 , 7 1 , 7 2 

44, 45, 4 6 , 4 7 , 4 0 , 4 1 , 4 2 , 4 3 

15, 16, 17, 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

66, 67, 6 0 , 6 1 , 6 2 , 6 3 , 6 4 , 6 5 

37, 30, 31, 3 2 , 3 3 , 3 4 , 3 5 , 3 6 

37, 3 0 , 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 

00, 01, 02, 0 3 , 0 4 , 0 5 , 0 6 , 0 7 

51, 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 0 

22, 23, 24, 25, 26, 27, 20, 21 

73, 74, 75, 76, 77, 70, 71, 72 

44, 45, 46, 47, 40, 41, 42, 43 

15, 1 6 , 1 7 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

66, 67, 60, 61, 62, 63, 64, 65 

22, 23, 24, 25, 26, 27, 20, 21 

73, 74, 75, 76, 77, 70, 71, 72 

44, 45, 4 6 , 4 7 , 4 0 , 4 1 , 4 2 , 4 3 

1 5 , 1 6 , 1 7 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

66, 67, 60, 61, 62, 63, 64, 65 

37, 30, 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 

00, 01, 02, 03, 04, 05, 06, 07 

51, 52, 53, 5 4 , 5 5 , 5 6 , 5 7 , 5 0 

5 1 , 5 2 , 5 3 , 5 4 , 5 5 , 5 6 , 5 7 , 5 0 

2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 0 , 2 1 

73, 74, 75, 76, 77, 70, 71, 72 

44, 45, 46, 4 7 , 4 0 , 4 1 , 4 2 , 4 3 

1 5 , 1 6 , 1 7 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 

66, 67, 60, 61, 62, 63, 64, 65 

37, 30, 31, 32, 33, 34, 35, 36 

00, 01, 02, 0 3 , 0 4 , 0 5 , 0 6 , 0 7 

Figure 6.12: The 32-State, 8PSK space-time trelhs code. 
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at a moderate complexity, when compared to convolutional codes, turbo BCH codes, trellis 

coded modulation and turbo trellis coded modulation. The performance of concatenated 

space-time block codes and TC codes will then be compared to that of space-time trellis 

codes. Conventionally, Reed-Solomon (RS) codes have been employed in conjunction with 

the space-time trellis codes [76,78,79] for improving the performance of the system. In our 

forthcoming discussion, we will concentrate on comparing the performance of space-time 

block and trellis codes in conjunction with various channel coders. 

6 .3 ,1 S y s t e m O v e r v i e w 

Source T C / R S 
Encoder 

Channel 
Interleave! 

S T T / S T B 
Encoder 

IFFT T C / R S 
Encoder 

Channel 
Interleave! 

S T T / S T B 
Encoder IFFT 

C 
V V 
lannel 

Sink T C / R S 
Decoder 

Channel 
Deinterleaver 

S T T / S T B 
Decoder 

F F T ^ 

^ f f t K 

Figure 6.13: System overview. 

Figure 6.13 shows the schematic of our system. At the transmitter, the information 

source generates random information data bits. The information bits are then encoded by 

TC codes, RS codes or left uncoded. The coded or uncoded bits are then channel interleaved, 

as shown in Figure 6.13. The output bits of the channel inter leaver are then passed to the 

Space-Time Trellis (STT) or Space-Time Block (STB) encoder. We will investigate all the 

previously mentioned space-time trellis codes proposed in [70], where the associated state 

diagrams are shown in Figures 6.3, 6.6, 6.7, 6.10, 6.11 and 6.12. The modulation schemes 

employed are 4PSK as well as 8PSK and the corresponding trellis diagrams were shown in 

Figures 6.2 and 6.9, respectively. On the other hand, from the family of space-time block 

codes only Alamouti's G2 code is employed in our system, since we have shown in Figure 5.11 

and in [183] that the best performance is achieved by concatenating the space-time block 

code G2 with TC codes. For convenience, the transmission matrix of the space-time block 

code G2 is reproduced here as follows: 

G q = (6.7) 
\ - Z 2 21/ 

The reader is referred to Chapter 5 for an indepth discussion on space-time block codes. 

Different modulation schemes could be employed [49], such as Binary Phase Shift Keying 
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(BPSK), Quadrature Phase Shift Keying (QPSK), 16-level Quadrature Amplitude Modu-

lation (16QAM) and 64-level Quadrature Amplitude Modulation (64QAM). Gray-mapping 

of the bits to symbols was applied and this resulted in different protection classes in higher-

order modulation schemes [153]. The mapping of the data bits and parity bits of the TC 

encoder was chosen such that it yielded the best achievable performance along with the 

application of the random separation channel interleaver [108] seen in Figure 5.14. The 

output of the space-time encoder was then OFDM [153] modulated and transmitted by 

the corresponding antenna. The number of transmit antennas was fixed to two, while the 

number of receive antennas constituted a design parameter. Dispersive wideband channels 

were used and the associated channels' profiles will be discussed later. 

At the receiver the signal of each receive antenna is OFDM demodulated. The demod-

ulated signals of the receiver antennas are then fed to the space-time trellis or space-time 

block decoder. The space-time decoders apply the MAP [11] or Log-MAP [52,171] decoding 

algorithms for providing soft outputs for the channel decoders. If no channel codecs are 

employed in the system, the space-time decoders apply the VA [9,70], which gives similar 

performance to the MAP decoder at a lower complexity. The decoded bits are finally passed 

to the sink for the calculation of the Bit Error Rate (BER) or Frame Error Rate (FER). 

6 .3 .2 S p a c e - T i m e a n d C h a n n e l C o d e c P a r a m e t e r s 

In Figure 6.13, we have given an overview of the proposed system. In this section, we present 

the parameters of the space-time codes and the channel codecs employed in the proposed 

system. We will employ the set of various space-time trellis codes shown in Figures 6.3, 

6.6, 6.7, 6.8, 6.10, 6.11 and 6.12. The associated space-time trellis coding parameters are 

summarised in Table 6.2. On the other hand, from the family of space-time block codes 

No. of 
Modulation Decoding No. ^ No. of termination 

scheme BPS algorithm states transmitters symbols 
4PSK 2 VA 4 2 1 

8 2 2 
16 2 2 
32 2 3 

8PSK 3 VA 8 2 1 
16 2 2 
32 2 2 

Table 6.2: Parameters of the space-time trellis codes shown in Figures 6.3, 6.6, 6.7, 6.8, 
6.10, 6.11 and 6.12 
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only Alamouti's Gg code is employed, since we have shown in Section 5.5.3 of the previous 

chapter and in [183] that the best performance in the set of investigated schemes was yielded 

by concatenating the space-time block code G2 with TC codes. The transmission matrix of 

the code is shown in Equation 6.7, while the number of transmitters used by the space-time 

block code Gg is two, which is identical to the number of transmitters in the space-time 

trellis codes shown in Table 6.2. 

Let us now briefly consider the TC channel codes used. The reader is referred to Chap-

ters 3 and 5 for further information on the Log-MAP decoding algorithm and for a brief 

introduction to various TC codes, respectively. In this chapter, we will concentrate on 

using the simple half-rate TC(2,1,3) code. Its associated parameters are shown in Ta-

ble 6.3. As seen in Table 6.4, different modulation schemes are employed in conjunction 

Octal No. No. 
Code generator of Decoding Puncturing of 

polynomial states algorithm pattern iterations 
TC(2,1,3) 7,5 4 Log-MAP 10,01 8 

Table 6.3: The associated parameters of the TC(2,1,3) code. 

with the concatenated space-time block code Gg and the TC(2,1,3) code. Since the half-rate 

TC(2,1,3) code is employed, higher-order modulation schemes such as 16QAM and 64QAM 

were chosen, so that the throughput of the system remained the same as that of the system 

employing the space-time treUis codes without channel coding. It is widely recognised that 

the performance of TC codes improves upon increasing the turbo interleaver size and near-

optimum performance can be achieved using large interleaver sizes exceeding 10,000 bits. 

However, this performance gain is achieved at the cost of high latency, which is impractical 

for a delay-sensitive real-time system. On the other hand, space-time trellis codes offer 

impressive coding gains [70] at low latency. The decoding of the space-time trellis codes 

is carried out on a transmission burst-by-burst basis. In order to make a fair comparison 

between the systems investigated, the turbo interleaver size was chosen such that all the 

coded bits were hosted by one transmission burst. This enables burst-by-burst turbo de-

coding at the receiver. Since we employ an OFDM modem, latency may also be imposed 

by a high number of subcarriers in an OFDM symbol. Therefore, the turbo interleaver size 

was increased, as the number of sub-carriers increased in our investigations. In Table 6.4, 

we summarised the modulation schemes and interleaver sizes used for different number of 

OFDM subcarriers in the proposed system. The random separation based channel inter-

leaver of Figure 5.14 was used. The mapping of the data bits and parity bits into different 
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Random Random 
Code Modula- turbo separation 

Code Rate tion BPS interleave! interleaver 
R Mbde depth depth 

128 carriers 
TC(2,1,3) 0.50 16QAM 2 256 512 

64QAM 3 384 768 
512 carriers 

QPSK 1 512 1024 
16QAM 2 1024 2048 

Table 6.4: The simulation parameters associated with the TC(2,1,3) code. 

protection classes of the higher-order modulation scheme was carried out such that the best 

possible performance was attained. This issue was addressed in Section 5.5.2. 

Code 
Galois 
Field Rate 

Correctable 
symbol errors 

RS(105,51) 2iu 0.49 27 

RS(153,102) glU 0.67 25 

Table 6.5: The coding parameters of the Reed-Solomon codes employed. 

Reed-Solomon codes were employed in conjunction with the space-time trellis codes. 

Hard decision decoding was utilised and the coding parameters of the Reed-Solomon codes 

employed are summarised in Table 6.5. 

6 . 3 . 3 C o m p l e x i t y I s s u e s 

In this section, we will address the implementational complexity issues of the proposed 

system. We will however focus mainly on the relative complexity of the proposed systems, 

rather than attempting to quantify their exact complexity. In order to simplify our compar-

ative study, several assumptions were stipulated. In our simplified approach, the estimated 

complexity of the system is deemed to depend only on that of the space-time trellis de-

coder and turbo decoder. In other words, the complexity associated with the modulator, 

demodulator, space-time block encoder and decoder as well as that of the space-time trellis 

encoder and turbo encoder are assumed to be insignificant compared to the complexity of 

space-time trellis decoder and turbo decoder. 

In Section 5.4.3, we have detailed our complexity estimates for the TC decoder and the 
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reader is referred to this section for further details. The estimated complexity of the TC 

decoder is assumed to depend purely on the number of trellis transitions per information 

data bit and this simple estimated complexity measure was also used in Section 5.4.3 as the 

basis of our comparisons. Here, we adopt the same approach and evaluate the estimated 

complexity of the space-time trellis decoder on the basis of the number of trellis transitions 

per information data bit. 

In Figures 6.3, 6.6, 6.7, 6.8, 6.10, 6.11 and 6.12, we have shown the state diagrams of the 

4PSK and 8PSK space-time trellis codes. From these state diagrams, we can see that the 

number of trellis transitions leaving each state is equivalent to 2^^^, where BPS denotes 

the number of transmitted bits per modulation symbol. Since the number of information 

bits is equal to BPS, we can approximate the complexity of the space-time trellis decoder 

as: 

2-BPS X No. of States 
comp {STT} 

2BPS-1 ^ of States . 

Applying Equation 6.8 and assuming that the Viterbi decoding algorithm was employed, 

we tabulated the approximated complexities of the space-time trellis decoder in Table 6.6. 

Modulation No. ^ 
scheme BPS states Complexity 

4PSK 2 4 8 
8 16 
16 32 
32 64 

8PSK 3 8 21.33 
16 42.67 
32 85.33 

Table 6.6: Estimated complexity of the space-time trellis decoders shown in Figures 6.3, 
6.6, 6.7, 6.8, 6.10, 6.11 and 6.12 

6.4 Simulat ion Resul t s 

In this section, we will present our simulation results characterising the proposed OFDM-

based system. As mentioned earlier, we will investigate the proposed system over dispersive 

wideband Rayleigh fading channels. We will commence our investigations using a simple 

two-ray channel impulse response (CIR) having equal tap weights, followed by a more 
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realistic Wireless Asynchronous Transfer Mode (WATM) channel [153]. The CIR of the 

two-ray model is shown in Figure 6.14. From the figure we can see that the reflected path 

c 0.5 -

5 10 15 20 25 30 35 40 
time delay [//s] 

Figure 6.14: Two-ray channel impulse response having equal amplitudes. 

has the same amplitude as the Line Of Sight (LOS) path, although arriving 5//s later. 

However, in our simulations we also present results over two-ray channels separated by 

various delay spreads, up to AOjis. Jakes' model [184] was adapted for modelling the fading 

channels. In Figure 6.15, we portray the 128-subcarrier OFDM symbol employed, having 

a guard period of 40yus. The guard period of 40/us or cyclic extension of 32 samples was 

employed to overcome the inter-OFDM symbol interference due to the channel's memory. 

1 6 0 / i s 

Guard OFDM Symbol 

32 128 

Figure 6.15; Stylised plot of 128-subcarrier OFDM time-domain signal using a cyclic ex-
tension of 32 samples. 

In order to obtain our simulation results, several assumptions were stipulated: 

» The average signal power received from each transmitter antenna was the same; 
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» All multipath components undergo independent Rayleigh fading; 

• The receiver has a perfect knowledge of the CIR. 

We note that the above assumptions are unrealistic, yielding the best-case performance, 

nonetheless, facilitating the performance comparison of the various techniques under iden-

tical circumstances. 

6 .4 .1 S p a c e - T i m e C o d i n g C o m p a r i s o n — T h r o u g h p u t of 2 B P S 

PER against Ey/Ng 

A l T x l R x , 4 P S K 
<0 4-state, 4PSK 
O 8-state, 4PSK 
* 16-state, 4PSK 
9 32-state, 4PSK 
* G2,4PSK 
X G2, TC, 16QAM 

10 12 14 16 18 20 22 24 26 28 30 
Eb/No(dB) 

Figure 6.16: F E R performance comparison between various 4PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using one receiver 
and the 128-subcarrier OFDM modem over a channel having a CIR characterised by two 
equal-power rays separated by a delay spread of 5/is. The maximum Doppler frequency 
was 200 Hz. The effective throughput was 2 B P S and the coding parameters are shown in 
Tables 6.2, 6.3 and 6.4. 

In Figure 6.16, we show our frame error rate (FER) performance comparison between 

4PSK space-time trellis codes and the space-time block code G2 concatenated with the 

TC(2,1,3) code using one receiver and the 128-subcarrier OFDM modem. The CIR had two 

equal-power rays separated by a delay spread of 5//s and the maximum Doppler frequency 



was 200 Hz. The TC(2,1,3) code is a half-rate code and hence 16QAM was employed, in 

order to support the same 2 BPS throughput, as the 4PSK space-time trellis codes using no 

channel codes. We can clearly see that at FER=10^^ the performance of the concatenated 

scheme is at least 7 dB better, than that of the space-time trellis codes. 

The performance of the space-time block code Gg without TC(2,1,3) channel coding 

is also shown in Figure 6.16. It can be seen in the figure that the space-time block code 

Gg does not perform well, exhibiting a residual BER. Moreover, at high Eh/No values, 

the performance of the single-transmitter, single-receiver system is better than that of the 

space-time block code Gg. This is because the assumption that the fading is constant over 

the two consecutive transmission instants is no longer valid in this situation. Here, the two 

consecutive transmission instants are associated with two adjacent sub carriers in the OFDM 

symbol and the fading variation is relatively fast in the frequency domain. Therefore, the 

orthogonality of the space-time code has been destroyed by the frequency-domain variation 

of the fading envelope. At the receiver, the combiner can no longer separate the two different 

transmitted signals, namely xi and X2. More explicitly, the signals interfere with each other. 

The increase in SNR does not improve the performance of the space-time block code Gg, 

since this also increases the power of the interfering signal. We will address this issue more 

explicitly in Section 6.4.4. By contrast, the TC(2,1, 3) channel codec succeeds in overcoming 

this problem. However, we will show later in Section 6.4.4 that the concatenated channel 

coded scheme exhibits the same residual BER problem, if the channel's variation becomes 

more rapid. 

In Figure 6.17, we provide the corresponding BER performance comparison between the 

4PSK space-time trellis codes and the space-time block code Gg concatenated with the 

TC(2,1,3) code using one receiver and the 128-subcarrier OFDM modem over a channel 

characterised by two equal-power rays separated by a delay spread of 5/̂ 8 and having a 

maximum Doppler frequency of 200 Hz. Again, we show in the figure that the 2 BPS 

throughput concatenated G2/TC(2,1,3) scheme outperforms the 2 BPS space-time trellis 

codes using no channel coding. At a BER of 10"*, the concatenated channel coded scheme 

is at least 2 dB superior in SNR terms to the space-time trellis codes using no channel codes. 

At high Eh/No values, the space-time block code Gg, again exhibits a residual BER. On 

the other hand, at low Eh/No values the latter outperforms the concatenated G2/TC(2,1,3) 

channel coded scheme as well as the space-time trellis codes using no channel coding. 

Following the above investigations, the number of receivers was increased to two. In 

Figure 6.18, we show our FER performance comparison between the various 4PSK space-

time trellis codes and the space-time block code Gg concatenated with the TC(2,1,3) code 

using two receivers and the 128-subcarrier OFDM modem. As before, the CIR had two 
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BER against Et/Nc 

Zl 1 Txl Rx,(;iI)SIC 
0 4-state, 4PSK 
O 8-state, 4PSK 
* 16-state, 4PSK 
V 32-state,4PSK 
* G2,QPSK 
>< (Iz-TTC, 16(2/IM 

10 12 14 16 18 20 22 24 
Eb/No(dB) 

Figure 6.17: B E R performance comparison between various 4PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using one receiver 
and the 128-subcarrier OFDM modem over a channel having a CIR characterised by two 
equal-power rays separated by a delay spread of Bfis. The maximum Doppler frequency 
was 200 Hz. The effective throughput was 2 B P S and the coding parameters are shown in 
Tables 6.2, 6.3 and 6.4. 

equal-power rays separated by a delay spread of 5fis. Again, we can see that the concate-

nated G2/TC(2,1,3) channel coded scheme outperforms the space-time trellis codes using 

no channel coding. However, the associated difference is lower and at a FER of 10"^ the 

concatenated channel coded scheme is about 4 dB better in Eh/No terms than the space-

time trellis codes using no channel codes. On the other hand, by employing two receivers 

the performance of the space-time block code Gg improved and the performance flattening 

effect happens at a lower FER. 

In Sections 5.4.3 and 6.3.3, we have derived the complexity estimates of the TC decoders 

and space-time trellis decoders, respectively. By employing Equations 5.44 and 6.8, we com-

pare the performance of the proposed schemes by considering their approximate complexity. 

Our performance comparison of the various schemes was carried out on the basis of the cod-

ing gain defined as the E^/Nq difference, expressed in decibels (dB), at F E R = 10"^ between 

the proposed schemes and the uncoded single-transmitter, single-receiver system having the 
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Zl 1 T x l BLx,4]PS]( 
0 4-state, 4PSK 
O 8-state, 4PSK 
* 16-state, 4PSK 
S? 32-state, 4]PS]( 
* G2,4PSK 
X (}2,TrC% 16(2/LM 

Eb/No(dB) 

Figure 6.18: F E R performance comparison between various 4PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using two re-
ceivers and the 128-subcarrier OFDM modem over a channel having a CIR characterised 
by two equal-power rays separated by a delay spread of 5fis. The maximum Doppler fre-
quency was 200 Hz. The effective throughput was 2 B P S and the coding parameters are 
shown in Tables 6.2, 6.3 and 6.4. 

same throughput of 2 BPS. In Figure 6.19, we show our coding gain versus estimated com-

plexity comparison for the various 4PSK space-time trellis codes and the space-time block 

code G2 concatenated with the TC(2,1,3) code using one as well as two receivers. The 128-

subcarrier OFDM modem transmitted over the channel having a CIR of two equal-power 

rays separated by a delay spread of 5/is and a maximum Doppler frequency of 200 Hz. 

The estimated complexity of the space-time trellis codes was increased by increasing the 

number of trellis states. By contrast, the estimated complexity of the TC(2,1,3) code was 

increased by increasing the number of turbo iterations. The coding gain of the concatenated 

G2/TC(2,1,3) scheme using one, two, four and eight iterations is shown in Figure 6.19. It 

can be seen that the concatenated scheme outperforms the space-time trellis codes using no 

channel coding, even though the number of turbo iterations was only one. Moreover, the 

improvement in coding gain was obtained, at a estimated complexity comparable to that 

of the 32-state 4PSK space-time trellis code using no channel coding. From the figure we 
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Coding gain versus complexity 
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Figure 6.19; Coding gain versus estimated complexity for the various 4PSK space-time 
trellis codes and the space-time block code Gg concatenated with the TC(2,1,3) code using 
one as well as two receivers and the 128-subcarrier OFDM modem over a channel 
having a CIR characterised by two equal-power rays separated by a delay spread of 5/is. 
The maximum Doppler frequency was 200 Hz. The effective throughput was 2 BPS and 
the coding parameters are shown in Tables 6.2, 6.3 and 6.4. 

can also see that the performance gain of the concatenated G2/TC(2,1,3) channel coded 

scheme over the space-time trellis codes becomes lower, when the number of receivers is 

increased to two. 

6.4.2 S p a c e - T i m e C o d i n g C o m p a r i s o n — T h r o u g h p u t of 3 B P S 

In Figure 6.20, we show our PER performance comparison between the various 8PSK space-

time trellis codes of Table 6.2 and space-time block code G2 concatenated with the TC(2,1,3) 

code using one receiver and the 128-subcarrier OFDM modem. The CIR exhibited two 

equal-power rays separated by a delay spread of 5/is and a maximum Doppler frequency of 

200 Hz. Since the TC(2,1, 3) scheme is a half-rate code, 64QAM was employed in order to 

ensure the same 3 BPS throughput, as the 8PSK space-time trellis codes using no channel 

coding. We can clearly see that at FER=10~^ the performance of the concatenated chan-

nel coded scheme is at least 7 dB better in terms of the required Eb/No than that of the 
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Figure 6.20: F E R performance comparison between various 8PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using one receiver 
and the 128-subcarrier OFDM modem over a channel having a CIR characterised by two 
equal-power rays separated by a delay spread of 5//s. The maximum Doppler frequency 
was 200 Hz. The effective throughput was 3 B P S and the coding parameters are shown in 
Tables 6.2, 6.3 and 6.4. 

space-time trellis codes. The performance of the space-time block code Gg without the con-

catenated TC(2,1, 3) code is also shown in the figure. In Table 6.4, we can see that although 

there is an increase in the turbo interleaver size, due to employing a higher-order modulation 

scheme, nonetheless, no performance gain is observed for the concatenated TC(2,1,3)-G2 

scheme over the space-time trellis codes using no channel coding. We speculate that this 

is because the potential gain due to the increased interleaver size has been offset by the 

vulnerable 64QAM scheme. 

We also show in Figure 6.20 that the performance of the 3 BPS 8PSK space-time block 

code G2 without the concatenated TC(2,1,3) scheme is worse, than that of the other 

proposed schemes. It exhibits the previously noted flattening effect, which becomes more 

pronounced near FER= 10"*. The same phenomenon was observed near FER= 10"^ for 

the corresponding Gg-coded 4PSK scheme, which has a throughput of 2 BPS. 
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BER against Ey/Ng 
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Figure 6.21; B E R performance comparison between various 8PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using one receiver 
and the 128-subcarrier OFDM modem over a channel having a CIR characterised by two 
equal-power rays separated by a delay spread of 5/xs. The maximum Doppler frequency 
was 200 Hz. The effective throughput was 3 B P S and the coding parameters are shown in 
Tables 6.2, 6.3 and 6.4. 

In Figure 6.21, we portray our BER performance comparison between the various 8PSK 

space-time trellis codes and the space-time block code G2 concatenated with the TC(2,1,3) 

scheme using one receiver and the 128-subcarrier OFDM modem. The CIR exhibited two 

equal-power rays separated by a delay spread of 5/^8 and the maximum Doppler frequency 

was 200 Hz. Again, we observe in the figure that the concatenated G2/TC(2,l,3)-coded 

scheme outperforms the space-time trellis codes using no channel coding. At a BER of 

10"^, the concatenated scheme is at least 2 dB better in terms of its required Eh/No value, 

than the space-time trellis codes. The performance of the space-time block code G2 without 

TC(2,1,3) channel coding is also shown in Figure 6.21. As before, at high Eh/No values, 

the space-time block code G2 exhibits a flattening effect. On the other hand, at low Ei,/No 

values it outperforms the concatenated G2/TC(2,1,3) scheme as well as the space-time 

trellis codes. 

In Figure 6.22, we compare the FER performance of the 8PSK space-time trellis codes 
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Figure 6.22; F E R performance comparison between various 8PSK space-time trellis codes 
and the space-time block code G2 concatenated with the TC(2,1,3) code using two re-
ceivers and the 128-subcarrier OFDM modem over a channel having a CIR characterised 
by two equal-power rays separated by a delay spread of 5/is. The maximum Doppler fre-
quency was 200 Hz. The effective throughput was 3 B P S and the coding parameters are 
shown in Tables 6.2, 6.3 and 6.4. 

and the space-time block code G2 concatenated with the TC(2,1,3) channel codec using 

two receivers and the 128-subcarrier OFDM modem. As before, the CIR has two equal-

power rays separated by a delay spread of 5/iS and exhibits maximum Doppler frequency of 

200 Hz. Again, with the increase in the number of receivers the performance gap between 

the concatenated channel coded scheme and the space-time trellis codes using no channel 

coding becomes smaller. At a FER of 10"^ the concatenated channel coded scheme is only 

about 2 dB better in terms of its required Eb/No, than the space-time trellis codes using 

no channel coding. 

With the increase in the number of receivers, the previously observed flattening effect 

of the space-time block code Gg has been substantially mitigated, dipping to values be-

low F E R = 10"3. However, it can be seen in Figure 6.22 that its performance is about 

10 dB worse, than that of the 8-state 8PSK space-time trellis code. In our previous system 
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characterised in Figure 6.18, which had an effective throughput of 2 BPS, the performance 

of the space-time block code Gg was only about 1 dB worse in Eh/No terms, than that 

of the 4-state 4PSK space-time trellis code, when the number of receivers was increased 

to two. This observation clearly shows that higher-order modulation schemes have a ten-

dency to saturate the channel's capacity and hence result in a poorer performance, than 

the identical-throughput space-time trellis codes using no channel coding. 
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Figure 6.23: Coding gain versus estimated complexity for the various 8PSK space-time 
trellis codes and the space-time block code G2 concatenated with the TC(2,1,3) code using 
one a n d two receivers and the 128-subcarrier OFDM modem over a channel having 
a CIR characterised by two equal-power rays separated by a delay spread of 5/is. The 
maximum Doppler frequency was 200 Hz. The effective throughput was 3 B P S and the 
coding parameters are shown in Tables 6.2, 6.3 and 6.4. 

Similarly to the 2 BPS schemes of Figure 6.19, we compare the performance of the 

proposed 3 BPS throughput schemes by considering their approximate decoding complexity. 

The derivation of the estimated complexity has been detailed in Sections 5.4.3 and 6.3.3. As 

mentioned earlier, the performance comparison of the various schemes was made on the basis 

of the coding gain defined as the Eh/No difference, expressed in decibels, at a FER= 

between the proposed schemes and the uncoded single-transmitter, single-receiver system 

having a throughput of 3 BPS. In Figure 6.23, we show the associated coding gain versus 

estimated complexity curves for the 8PSK space-time trellis codes using no channel coding 

and the space-time block code Gg concatenated with the TC(2,1,3) code using one and two 



receivers and the 128-subcarrier OFDM modem. For the sake of consistency, the CIR, again, 

exhibited two equal-power rays separated by a delay spread of 5/is and a maximum Doppler 

frequency of 200 Hz. Again, the estimated complexity of the space-time trellis codes was 

increased by increasing the number of states. On the other hand, the estimated complexity 

of the TC(2,1, 3) code was increased by increasing the number of iterations. The coding 

gain of the concatenated channel coded scheme invoking one, two, four and eight iterations 

is shown in Figure 6.23. Previously in Figure 6.19 we have shown that the concatenated 

TC(2,l,3)-coded scheme using one iteration outperformed the space-time trellis codes using 

no channel coding. However, in Figure 6.23 the concatenated scheme does not exhibit 

the same performance trend. For the case of one receiver, the concatenated scheme using 

one iteration has a negative coding gain and exhibits a saturation effect. This is again, 

due to the employment of the high-order 64QAM scheme, which has a preponderance to 

exceed the channel's capacity. Again, we can also see that the performance gain of the 

concatenated G2/TC(2,l,3)-coded scheme over the space-time trellis codes using no channel 

coding becomes smaller, when the number of receivers is increased to two. Having studied 

the performance of the proposed schemes over the channel characterised by the two-path, 

5//-dispersion CIR at a fixed Doppler frequency of 200Hz, let us in the next section study 

the effects of varying the Doppler frequency. 

6 .4 .3 T h e E f f e c t of M a x i m u m D o p p l e r F r e q u e n c y 

In our further investigations we have generated the FER versus E^/Nq curves similar to 

those in Figure 6.16, when the Doppler frequency was fixed to 5, 10, 20, 50 and 100 Hz. 

In order to present these results in a compact form, we then extracted the required Ei,/Nq 

values for maintaining a FER of 10"^. In Figure 6.24, we show the Eh/No crossing point at 

FER=10~"^ versus the maximum Doppler frequency for the 32-state 4PSK space-time trellis 

code using no channel coding and for the space-time block code Gg concatenated with the 

TC(2,1,3) code using one receiver and the 128-subcarrier OFDM modem. As before, the 

CIR exhibited two equal-power rays separated by a delay spread of 5(is. We conclude from 

the near-horizontal curves shown in the figure that the maximum Doppler frequency does 

not significantly affect the performance of the space-time trellis codes and the concatenated 

scheme. Furthermore, the performance of the concatenated scheme is always better, than 

that of the space-time trellis codes using no channel coding. Having studied the effects of 

various Doppler frequencies, let us now consider the impact of varying the delay spread. 
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Figure 6.24; The Eb/No value required for maintaining FER=10~^ versus the maximum 
Doppler frequency for the 32-state 4PSK space-time trellis code and for the space-time 
block code Gg concatenated with the TC(2,1,3) code using one receiver and the 128-
subcarrier OFDM modem. The CIR exhibited two equal-power rays separated by a delay 
spread of 5/is. The effective throughput was 3 B P S and the coding parameters are shown 
in Tables 6.2, 6.3 and 6.4. 

6 .4 .4 T h e Ef fec t of D e l a y Spreads 

In this section, we will study how the variation of the delay spread between the two paths 

of the channel affects the system performance. By varying the delay spread, the channel's 

frequency-domain response varies as well. In Figure 6.25, we show the fading amplitude 

variation of the 128 subcarriers in an OFDM symbol for a delay spread of (a) 5fis, (b) 

lOfis, (c) 20/is and (d) 40/iS. It can be seen from the figure that the fading amplitudes vary 

more rapidly, when the delay spread is increased. For the space-time block code Gg we 

have shown in Section 5.3.1 that the fading envelopes of the two consecutive transmission 

instants of antennas Tx 1 and Tx 2 are assumed to be constant. In Figure 6.25 (d), we can 

see that the variation of the frequency-domain fading amplitudes is so dramatic that we can 

no longer assume that the fading envelopes are constant for two consecutive transmission 

instants. The variation of the frequency-domain fading envelope will eventually destroy the 
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Figure 6.25: Frequency-domain fading amplitudes of the 128 subcarriers in an OFDM 
symbol for a delay spread of (a) 5/is, (b) 10//S, (d) 20/iS and (c) 40/is. 
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orthogonality of the space-time block code Gg. 

Tx 1 Tx 2 

Vl — hi^iXi + h2^lX2 + Til 

^2 = —^1,2^2 + ^2,2^1 + ^2 

Combiner Channel 
estimator 

Majdmum likelihood 
detector 

Figure 6.26: Baseband representation of the simple twin-transmitter space-time block code 
Gg of Equation 6.7 using one receiver over varying fading conditions. 

We reproduce Figure 5.2 in Figure 6.26 with the modification that the two transmission 

instants are no longer assumed to be associated with the same complex transfer function 

values. The figure shows the baseband representation of the simple twin-transmitter space-

time block code Gg of Equation 6.7 using one receiver. At the receiver, we have 

m - &l,l2l + h2,lZ2+mi 

&2 == —b^232 + h 2 o Z i + n 2 , 

(6.9) 

( 6 . 1 0 ) 

where yi is the first received signal and yg is the second. Both signals yi and yg are 

passed to the combiner in order to extract the signals xi and zg. Aided by the chan-

nel estimator, which in this example provides perfect estimation of the diversity channels' 

frequency-domain transfer functions, the combiner performs simple signal processing in or-

der to separate the signals xi and X2. Specifically, in order to extract the signal Xi, it 
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combines signals yi and i/g as follows: 

= ^l,l!/l + /l2,2% 

= + Ai,1^2,13:2 + ^1,1^1 - /i2,2^1,22:2 + /i2,2^2,2a:i + 712,2̂ 2 

= {\hl,l\^ + |/i2,2pj Xi + (^1,1/^2,1 — '^2,2^1,2) X2 + hl, ini + /Z2,2»2 • (6.11) 

Similarly, for signal X2 the combiner generates; 

^2 - ^2,im - /ll,2^2 

= ^2,1^1,1371 + ^2,1/̂ 2,13:2 + ^2,1^1 + /Jl,2^1,12^2 — ^1,2^2,2®! — ^1,2^2 

= (^1^2,Ip + |^l,2|^j X2 + (^2,l/ll,l — /ll,2^2,2) Xi + ^2,1^1 — ^1,2^2 • (6.12) 

In contrast to the prefect cancellation scenario of Equations 5.15 and 5.16, we can see from 

Equations 6.11 and 6.12 that the signals xi and X2 now interfere with each other. We 

can no longer cancel the cross-coupling of signals X2 and xi in Equations 6.11 and 6.12, 

respectively, unless the fading envelopes satisfy the condition of hi^i = h i^ and /i2,i = /i2,2-

At high SNRs the noise power is insignificant compared to the transmitted power of the 

signals xi and X2- Therefore, we can ignore the noise terms n in Equations 6.11 and 6.12. 

However, the interference signals' power increases, as we increase the transmission power. 

Assuming that both the signals xi and X2 have an equivalent signal power, we can then 

express the signal to interference ratio (SIR) for signal xi as: 

/^l,1^2,1 — '12,2"1,2 

and similarly for signal X2 as: 

/l2,1^1,1 - /ll,2/!'2,2 

In Figure 6.27, we show the PER performance of the space-time block code G2 concate-

nated with the TC(2,1,3) code using one receiver and the 128-subcarrier 16QAM OFDM 

modem. The CIR has two equal-power rays separated by various delay spreads and a max-

imum Doppler frequency of 200 Hz. As we can see in Equations 6.13 and 6.14, we have 

SIR -4- 00, if hi^i = hi^2 and /i2,i = /i2,2. On the other hand, we encounter SIR -> 1, 

if hi^i = 5/11,2 and /i2,i = 5^2,2, where 5 ^ 00. Since the SIR decreases, when the delay 

spread increases due to the rapidly fluctuating frequency-domain fading envelopes, as shown 

in Figure 6.25, we can see in Figure 6.27 that the performance of the concatenated scheme 

degrades, when increasing the delay spread. When the delay spread is more than 15/is, 

we can see from the figure that the concatenated scheme exhibits the previously observed 
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Figure 6.27: F E R performance of the space-time block code Gg concatenated with the 
TC(2,1,3) code using one receiver, the 128-subcarrier OFDM modem and 16QAM. The 
CIR exhibits two equal-power rays separated by various delay spreads and a maximum 
Doppler frequency of 200 Hz. The coding parameters are shown in Tables 6.2, 6.3 and 6.4. 

flattening effect. Furthermore, the error floor of the concatenated scheme becomes higher, 

as the delay spread is increased. 

Similarly to Figure 6.24, where the Doppler frequency was varied, we show in Figure 6.28 

the Eh/No value required for maintaining FER=10~^ versus the delay spread for the 32-state 

4PSK space-time trellis code and for the space-time block code G2 concatenated with the 

TC(2,1,3) code using one receiver and the 128-subcarrier OFDM modem. The CIR exhibited 

two equal-power rays separated by various delay spreads. The maximum Doppler frequency 

was 200 Hz. We can see in the figure that the performance of the 32-state 4PSK space-time 

trellis code does not vary significantly with the delay spread. However, the concatenated 

TC(2,l,3)-coded scheme suffers severe performance degradation upon increasing the delay 

spread, as evidenced by the associated error floors shown in Figure 6.27. The SIR associated 

with the various delay spreads was obtained using computer simulations and the associated 

SIR values are also shown in Figure 6.28, denoted by the hearts. As we have expected, 

the calculated SIR decreases with the delay spread. We can see in the figure that the 
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Figure 6.28: The Eh/No values required for maintaining FER=10~^ versus delay spreads 
for the 32-state 4PSK space-time trellis code and for the space-time block code Gg concate-
nated with the TC(2,1,3) code using one receiver and the 128-subcarrier OFDM modem. 
The CIR exhibited two equal-power rays separated by various delay spreads and a maxi-
mum Doppler frequency of 200 Hz. The effective throughput was 2 B P S and the coding 
parameters are shown in Tables 6.2, 6.3 and 6.4. The SIR of various delay spreads are 
shown as well. 

performance of the concatenated G2/TC(2,1,3) scheme suGers severe degradation, when 

the delay spread is in excess of Ibfis, as indicated by the near-vertical curve marked by 

triangles. If we relate this curve to the SIR curve marked by the hearts, we can see on the 

right-hand side scale of the figure that the SIR is approximately 10 dB. Hence the SIR 

of the concatenated G2/TC(2,1,3) scheme has to be more than 10 dB, in order for it to 

outperform the space-time trellis codes using no channel coding. 

6.4 .5 D e l a y N o n - s e n s i t i v e S y s t e m 

Previously, we have provided simulation results for a delay-sensitive, OFDM symbol-by-

symbol decoded system. More explicitly, the received OFDM symbol had to be demodulated 

and decoded on a symbol-by-symbol basis, in order to provide decoded bits for example for 
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Figure 6.29: The fading amplitude versus time and frequency for various 128-subcarrier 
OFDM symbols over the two-path channel exhibiting two equal-power rays separated by a 
delay spread of 40/is and maximum Doppler frequency of 100 Hz. 

a low-delay source decoder. Therefore, the two transmission instants of the space-time 

block code Gg had to be in the same OFDM symbol. They were allocated to the adjacent 

subcarriers in our previous studies. Moreover, we have shown in Figure 6.25 that the 

variation of the frequency-domain fading amplitudes along the subcarriers becomes more 

severe, as we increase the delay spread of the two rays. In Figure 6.29 we show both the 

frequency-domain and time-domain fading amplitudes of the channels' fading amplitudes 

for a fraction of the subcarriers in the 128-subcarrier OFDM symbols over the previously 

used two-path channel having two equal-power rays separated by a delay spread of 40//s. 

The maximum Doppler frequency was set here to 100 Hz. It can be clearly seen from 

the figure that the fading amplitude variation versus time is slower, than that versus the 

sub carrier index within the OFDM symbols. This implies that the SIR attained would be 

higher, if we were to allocate the two transmission instants of the space-time block code 
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Gg to the same sub carrier of consecutive OFDM symbols. This increase in SIR is achieved 

by doubling the delay of the system, since in this scenario two consecutive OFDM symbols 

have to be decoded, before all the received data becomes available. 
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Figure 6.30; F E R performance comparison between adjacent subcarriers and adjacent 
OFDM symbols allocation for the space-time block code Gg concatenated with the 
TC(2,1,3) code using one receiver, the 128-subcarrier OFDM modem and 16QAM over 
a channel having a CIR characterised by two equal-power rays separated by a delay spread 
of 40/is. The maximum Doppler frequency was 100 Hz. The coding parameters are shown 
in Tables 6.2, 6.3 and 6.4. 

In Figure 6.30, we show our FER performance comparison for the above two scenarios, 

namely using two adjacent subcarriers and the same sub carrier in two consecutive OFDM 

symbols for the space-time block code Gg concatenated with the TC(2,1,3) code using one 

128-subcarrier 16QAM OFDM receiver. As before, the CIR exhibited two equal-power rays 

separated by a delay spread of 40//s and a maximum Doppler frequency of 100 Hz. It can 

be seen from the figure that there is a severe performance degradation, if the two transmis-

sion instants of the space-time block Gg are allocated to two adjacent subcarriers. This is 

evidenced by the near-horizontal curve marked by diamonds across the figure. On the other 

hand, upon assuming that having a delay of two OFDM-symbol durations does not pose 

any problems in terms of real-time interactive communications, we can allocate the two 
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transmission Instants of the space-time block code G2 to the same subcarrier of two con-

secutive OFDM symbols. From Figure 6.30, we can observe a dramatic improvement over 

the previous allocation method. Furthermore, the figure also indicates that by tolerating a 

two OFDM-symbol delay, the concatenated G2/TC(2,1,3) scheme outperforms the 32-state 

4PSK space-time trellis code by approximately 2 dB in terms of the required Eh/No value 

at a FER of 10"^. 
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0 32-state, 4PSKSTT code 
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Figure 6.31: The Eh/No value required for maintaining FER=10^^ versus the maximum 
Doppler frequency for the 32-state 4PSK space-time trellis code and for the adjacent OFDM 
symbols allocation of the space-time block code Gg concatenated with the TC(2,1,3) code 
using one receiver and the 128-subcarrier OFDM modem. The CIR exhibited two equal-
power rays separated by a delay spread of 40fj,s. The e f f e c t i v e throughput was 2 BPS and 
the coding parameters are shown in Tables 6.2, 6.3 and 6.4. The S I B of various maximum 
Doppler frequencies are shown as well. 

Since the two transmission instants of the space-time block code Gg are allocated to the 

same subcarrier of two consecutive OFDM symbols, it is the maximum Doppler frequency 

that would affect the performance of the concatenated scheme more gravely, rather than 

the delay spread. Hence we extended our studies to consider the effects of the maximum 

Doppler frequency on the performance of the concatenated G2/TC(2,1,3) scheme. Specif-

ically, Figure 6.31 shows the E^/No values required for maintaining FER=10~^ versus the 



Doppler frequency for the 32-state 4PSK space-time trellis code, and for the space-time 

block code Gg concatenated with the TC(2,1,3) code using one 128-subcarrier 16QAM 

OFDM receiver, when mapping the two transmission instants to the same sub carrier of two 

consecutive OFDM symbols. The channel exhibited two equal-power rays separated by a 

delay spread of 40/is and various maximum Doppler frequencies. The SIR achievable at 

various maximum Doppler frequencies is also shown in Figure 6.31. Again, we can see that 

the performance of the concatenated G2/TC(2,1,3) scheme suffers severely, if the maximum 

Doppler frequency is above 160 Hz. More precisely, we can surmise that in order for the 

concatenated scheme to outperform the 32-state 4PSK space-time trellis code, the SIR 

should be at least 15 dB, which is about the same as the required SIR in Figure 6.28. 

From Figure 6.28 and 6.31, we can conclude that the concatenated G2/TC(2,1,3) scheme 

performs better, if the SIR is in excess of about 10-15 dB. 

6.4 .6 T h e W i r e l e s s A s y n c h r o n o u s Transfer M o d e S y s t e m 

We have previously investigated the performance of different schemes over two-path channels 

having two equal-power rays. In this section, we investigate the performance of the proposed 

systems over indoor Wireless Asynchronous Transfer Mode (WATM) channels. The WATM 

system used 512 sub carriers and each OFDM symbol was extended with a cyclic prefix of 

length 64. The sampling rate was 225 Msamples/s and the carrier frequency was 60 GHz. 

In [153] two WATM CIRs were used, namely a five-path and a three-path model, where 

the latter one was referred to as the shortened WATM CIR. This CIR was used also in our 

investigations here. 

The shortened WATM channel's impulse response is depicted in Figure 6.32, where the 

longest-delay path arrived at a delay of 48.9 ns, which corresponds to 11 sample periods at 

the 225 Msamples/s sampling rate. The 512-subcarrier OFDM time-domain transmission 

frame having a cyclic extension of 64 samples is shown in Figure 6.33. 

6.4.6.1 Channel Coded Space-Time Codes — Throughput of 1 B P S 

Previously, we have compared the performance of the space-time trellis codes to that of 

the TC(2,l,3)-coded space-time block code Gg. We now extend our comparisons to Reed-

Solomon (RS) coded space-time trellis codes, which were used in [76,78,79]. In Figure 6.34 

we show our FER performance comparison between the TC(2,1,3) coded space-time block 

code Gg and the RS(102,51) GF(2^°) coded 16-state 4PSK space-time trellis code using 

one 512-subcarrier OFDM receiver over the shortened WATM CIR of Figure 6.32 at an 
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Figure 6.32: Short WATM channel impulse response. 
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Figure 6.33: Short WATM plot of 512-subcarrier OFDM time domain signal with a cyclic 
extension of 64 samples. 

effective throughput of 1 BPS. We can see from the figure that the TC(2,1,3) coded space-

time block code G2 outperforms the RS(102,51) GF(2^°) coded 16-state 4PSK space-time 

trellis code by approximately 5 dB in E^/Nq terms at a FER of 10"^. The performance of 

the RS(102,51) GF(2^°) coded 16-state 4PSK space-time trellis code would be improved by 

about 2 dB, if the additional complexity of maximum likelihood decoding were affordable. 

However, even assuming this improvement, the TC(2,1,3) coded space-time block code G2 

would outperform the RS(102,51) GF(2^°) coded 16-state 4PSK space-time trellis code. 

6.4.6.2 C h a n n e l C o d e d Space -T ime Codes — T h r o u g h p u t of 2 B P S 

In our next experiment, the throughput of the system was increased to 2 BPS by employing a 

higher-order modulation scheme. In Figure 6.35 we show our FER performance comparison 
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Figure 6.34: F E R performance comparison between the TC(2,1,3) coded space-time block 
code G2 and the RS(102,51) GF(2^°) coded 16-state 4PSK space-time trellis code using one 
512-subcarrier OFDM receiver over the shortened WATM channel at an effective throughput 
of 1 B P S . The coding parameters are shown in Tables 6.2, 6.3, 6.4 and 6.5 

between the TC(2,1,3) coded space-time block code Gg and the RS(153,102) GF(2^°) coded 

16-state 8PSK space-time trellis code using one 512-subcarrier OFDM receiver over the 

shortened WATM channel of Figure 6.32 at an effective throughput of 2 BPS. Again, we 

can see that the TC(2,1,3) coded space-time block code Gg outperforms the RS(153,102) 

GF(2^°) coded 16-state 8PSK space-time trellis code by approximately 5 dB in terms of 

Eh/No at a FER of 10~^. The corresponding performance of the 32-state 4PSK space-time 

trellis code is also shown in the figure. It can be seen that its performance is about 13 dB 

worse in Eb/No terms, than that of the TC(2,1,3) coded space-time block code Gg. Let us 

now continue our investigations by considering, whether channel-quality controlled adaptive 

space-time coded OFDM is capable of providing further performance benefits. 
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Figure 6.35: F E R performance comparison between the TC(2,1,3) coded space-time block 
code Gg and the RS(153,102) GF(2^'') coded 16-state 8PSK space-time trellis code using one 
512-subcarrier OFDM receiver over the shortened WATM channel at an effective throughput 
of 2 BPS. The coding parameters are shown in Tables 6.2, 6.3, 6.4 and 6.5. 

6.5 Space-Time Coded Adapt ive Modula t ion for O F D M 

6.5.1 Introduction 

Adaptive modulation was proposed by Steele and Webb [185, 186], in order to combact 

the time-variant fading of mobile channels. The main idea of adaptive modulation is that 

when the channel quality is favourable, higher-order modulation modes are employed, in 

order to increase the throughput of the system. On the other hand, more robust but lower-

throughput modulation modes are employed, if the channel quality is low. This simple but 

elegant idea has motivated a number of researchers to probe further [153,187-194]. 

Recently adaptive modulation was also proposed for OFDM, which was termed adaptive 

OFDM (AOFDM) [153,190,191,195]. AOFDM exploits the variation of the signal quality 

both in the time domain as well as in the frequency domain. In what is known as sub-band 

adaptive OFDM transmission, all sub carriers in an AOFDM symbol are split into blocks of 
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adjacent subcarriers, referred to as sub-bands. The same modulation scheme is employed 

for all subcarriers of the same sub-band. This substantially simplifies the task of signalling 

the modulation modes, since there are typically four modes and for example 32 sub-bands, 

requiring a total of 64 AOFDM mode signalling bits. 

6.5.2 Turbo-Coded and Space-Time-Coded Adaptive OFDM 
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Figure 6.36: System overview of the turbo-coded and space-time-coded adaptive OFDM. 

In this section, the adaptive OFDM philosophy proposed by Keller et al. [153,190,191] is 

extended, in order to exploit the advantages of multiple transmit and receive antennas. Be-

sides, turbo coding is also employed in order to improve the performance of the system. In 

Figure 6.36, we show the system schematic of the turbo-coded and space-time-coded adap-

tive OFDM system. Similarly to Figure 6.13, random data bits are generated and encoded 

by the TC(2,1,3) encoder using an octal generator polynomial of (7,5). Various TC(2,1,3) 

coding rates were used for the different modulation schemes. The encoded bits were channel 

interleaved and passed to the modulator. The choice of the modulation scheme to be used 

by the transmitter for its next OFDM symbol is determined by the channel quality estimate 

of the receiver based on the current OFDM symbol. In this study, we assumed perfect chan-

nel quality estimation and perfect signalling of the required modem mode of each sub-band 

based on the channel quality estimate acquired during the current OFDM symbol. Aided 

by the perfect channel quality estimator, the receiver determines the highest-throughput 

modulation mode to be employed by the transmitter for its next transmission while main-

taining the system's target BER. Five possible transmission modes were employed in our 

investigations, which are no transmission (NoTx), BPSK, QPSK, 16QAM and 64QAM. In 

order to simplify the task of signalling the required modulation modes, we employed the 

sub-band adaptive OFDM transmission scheme proposed by Keller et al. [153,190,191]. The 

modulated signals were then passed to the encoder of the space-time block code Gg. The 



space-time encoded signals were OFDM modulated and transmitted by the corresponding 

antennas. The shortened WATM channel was used, where the CIR profile and the OFDM 

transmission frame are shown in Figures 6.32 and 6.33, respectively. 

The number of receivers invoked constitutes a design parameters. The received signals 

were OFDM demodulated and passed to the space-time decoders. Log-MAP [171] decoding 

of the received space-time signals was performed, in order to provide soft-outputs for the 

TC(2,1,3) decoder. Assuming that the demodulator of the receiver has perfect knowledge 

of the instantaneous channel quality, this information is passed to the transmitter in order 

to determine its next AOFDM modulation mode allocation. The received bits were then 

channel deinterleaved and passed to the TC decoder, which again, employs the Log-MAP 

decoding algorithm [52]. The decoded bits were finally passed to the sink for calculation of 

the BER. 

6.5.3 Simulation Results 

As mentioned earlier, all the AOFDM based simulation results were obtained over the short-

ened WATM channel. The channels' profile and the OFDM transmission frame structure 

are shown in Figures 6.32 and 6.33, respectively. Again, Jakes' model [184] was adopted for 

modelling the fading channels. 

In order to obtain our simulation results, several assumptions were stipulated: 

• The average signal power received from each transmitter antenna was the same; 

• All multipath components undergo independent Rayleigh fading; 

• The receiver has a perfect knowledge of the CIR; 

• Perfect signalling of the AOFDM modulation modes. 

Again, we note that the above assumptions are unrealistic, yielding the best-case perfor-

mance, nonetheless, they facilitate the performance comparison of the various techniques 

under identical circumstances. 

6.5.3.1 Space-Time Coded Adaptive O F D M 

In this section, we employ the fixed threshold based modem mode selection algorithm, 

which was also used in [153], adapting the technique proposed by Torrance [188,196,197] 

for serial modems. Torrance assumed that the channel quality is constant for all the sym-

bols in a transmission burst, i.e. that the channel's fading envelope varied slowly across 
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the transmission burst. Under these conditions, all the transmitted symbols are modulated 

using the same modulation mode, chosen according to the predicted SNR. Torrance opti-

mised the modem mode switching thresholds [188,196,197] for the target BERs of 10~^ 

and 10"*, which will be appropriate for a high-BER speech system and for a low-BER data 

system, respectively. The resulting SNR switching thresholds for activating a given modu-

System NoTx BPSK QPSK 16QAM 64QAM 
Speech —oo 3.31 11.61 17^4 
Data —oo 7^8 10.42 16J6 2&33 

Table 6.7: Optimised switching levels quoted from [188] for adaptive modulation over 
Rayleigh fading channels for the speech and data systems, shown in instantaneous channel 
SNR (dB) 

lation mode in a slowly Rayleigh fading narrowband channel are given in Table 6.7 for both 

systems. Assuming perfect channel quality estimation, the instantaneous channel SNR is 

measured by the receiver and the information is passed to the modulation mode selection 

switch at the transmitter, as shown in Figure 6.36 using the system's control channel. This 

side-information signalling does not constitute a problem, since state-of-the-art wireless 

systems, such as for example IMT-2000 [49] have a high-rate, low-delay signalling channel. 

This modem mode signalling feedback information is utilised by the transmitter for select-

ing the next modulation mode. Specifically, a given modulation mode is selected, if the 

instantaneous channel SNR perceived by the receiver exceeds the corresponding switching 

levels shown in Figure 6.7, depending on the target BER. 

As mentioned earlier, the proposed adaptation algorithm [188,196,197] assumes constant 

instantaneous channel SNR over the whole transmission burst. However, in the case of an 

OFDM system transmitting over frequency selective channels, the channels' quality varies 

across the different sub carriers. Keller et al. proposed employing the lowest-quality sub-

carrier in the sub-band for controlling the adaptation algorithm based on the switching 

thresholds given in Table 6.7. Again, this approach significantly simplifies the signalling 

and therefore it was also adopted in our investigations. 

In Figure 6.37, we show the BER and BPS performance of the 16 sub-band AOFDM 

scheme employing the space-time block code Gg in conjunction with multiple receivers 

and a target BER of 10"^ over the shortened WATM channel shown in Figure 6.32. The 

switching thresholds are shown in Table 6.7. The performance of the conventional AOFDM 

scheme using no diversity [153] is also shown in the figure. From Figure 6.37, we can see 

that the BPS performance of the space-time coded AOFDM scheme using one receiver is 



CCW}ES 283 

A 1 Tx, 1 Rx 
• (jF2, 1 Rx 
0 G>2Rx 
* G2J 6 Rx 

- BER 
BPS B-B-B-e-£] 

G-e-e-e 

10 15 20 25 30 35 40 45 50 
SNR(dB) 

Figure 6.37: BER and BPS performance of 16 sub-band AOFDM employing the space-time 
block code Gg using multiple receivers for a target BER of 10"^ over the shortened WATM 
channel shown in Figure 6.32 and the transmission format of Figure 6.33. The switching 
thresholds are shown in Table 6.7. 

better, than that of the conventional AOFDM scheme. The associated performance gain 

improves, as the throughput increases. At a throughput of 6 BPS, the space-time coded 

scheme outperforms the conventional scheme by at least 10 dB in E^/Nq terms. However, 

we notice in Figure 6.37 that as a secondary effect, the BER performance of the space-time 

coded AOFDM scheme using one receiver degrades, as we increase the average channel 

SNR. Again, this problem is due to the interference of signals xi and X2 caused by the 

rapidly varying frequency-domain fading envelope across the subcarriers. At high SNRs, 

predominantly 64QAM was employed. Since the constellation points in 64QAM are densely 

packed, this modulation mode is more sensitive to the 'cross-talk' of the signals xi and X2-

This limited the BER performance to 10"^ even at high SNRs. However, at SNRs lower 

than 30 dB typically more robust modulation modes were employed and hence the target 

BER of 10"4 was readily met. We will show in the next section that this problem can be 

overcome by employing turbo channel coding in the system. 



In Figure 6.37 we also observe that the BER and BPS performance improves, as we 

increase the number of AOFDM receivers, since the interference between the signals Xi 

and X2 is eliminated. Upon having six AOFDM receivers, the BER of the system drops 

below 10"^, when the average channel SNR exceeds 25 dB and there is no sign of the BER 

flattening effect. At a throughput of 6 BPS, the space-time coded AOFDM scheme using 

six receivers outperforms the conventional system by more than 30 dB. 

Figure 6.38 shows the probability of each AOFDM sub-band modulation mode for (a) 

conventional AOFDM and for space-time coded AOFDM using (b) 1, (c) 2 and (d) 6 

receivers over the shortened WATM channel shown in Figure 6.32. The transmission format 

obeyed Figure 6.33. The switching thresholds were optimised for the data system having a 

target BER of 10"^ and they are shown in Table 6.7. By employing multiple transmitters 

and receivers, we increase the diversity gain and we can see in the figure that this increases 

the probability of the most appropriate modulation mode at a certain average channel 

SNR. This is clearly shown by the increased peaks of each modulation mode at different 

average channel SNRs. As an example, in Figure 6.38 (d) we can see that there is an almost 

100% probability of transmitting in the QPSK and 16QAM modes at average channel SNR 

of approximately 6 dB and 15 dB, respectively. This strongly suggest that it is a better 

solution, if fixed modulation based transmission is employed in space-time coded OFDM, 

provided that we can afford the associated complexity of using six receivers. We shall 

investigate these issues in more depth at a later stage. 

On the other hand, the increased probability of a particular modulation mode at a certain 

average channel SNR also means that there is less frequent switching amongst the various 

modulation modes. For example, we can see in Figure 6.38 (b) that the probability of 

employing 16QAM increased to 0.8 at an average channel SNR of 25 dB compared to 0.5 in 

Figure 6.38 (a). Furthermore, there are almost no BPSK transmissions at SNR=25 dB in 

Figure 6.38 (b). This situation might be an advantage in the context of the AOFDM system, 

since most of the time the system will employ 16QAM and only occasionally switches to 

the QPSK and 64QAM modulation modes. This can be potentially exploited to reduce 

AOFDM modem mode the signalling traffic and to simplify the system. 

The characteristics of the modem mode probability density functions in Figure 6.38 in 

conjunction with multiple transmit antennas can be further explained with the aid of Fig-

ure 6.39. In Figure 6.39 we show the instantaneous channel SNR experienced by the 512-

subcarrier OFDM symbols for a single-transmitter, single-receiver scheme and for the space-

time block code G2 using one, two and six receivers over the shortened WATM channel. 

The average channel SNR is 10 dB. We can see in Figure 6.39 that the variation of the in-

stantaneous channel SNR for a single transmitter and single receiver is fast and severe. The 
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Figure 6.38: Probability of each modulation mode for (a) conventional AOFDM and for 
space-time coded AOFDM using (b) 1, (c) 2 and (d) 6 receivers over the shortened WATM 
channel shown in Figure 6.32 and using the transmission frame of Figure 6.33. The thresh-
olds were optimised are for the data system and they are shown in Table 6.7. All sub-figures 
share the legends seen in Figure 6.38 (a). 
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Figure 6.39: Instantaneous channel SNR of 512-subcarrier OFDM symbols for single-
transmitter single-receiver and for the space-time block code Gg using one, two and six 
receivers over the shortened WATM channel shown in Figure 6.32 and using the transmis-
sion format of Figure 6.33. The average channel SNR is 10 dB. 
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instantaneous channel SNR may become as low as 4 dB due to deep fades of the channel. 

On the other hand, we can see that for the space-time block code Gg using one receiver 

the variation in the instantaneous channel SNR is slower and less severe. Explicitly, by 

employing multiple transmit antennas as shown in Figure 6.39, we have reduced the effect 

of the channels' deep fades significantly. This is advantageous in the context of adaptive 

modulation schemes, since higher-order modulation modes can be employed, in order to 

increase the throughput of the system. However, as we increase the number of receivers, 

i.e. the diversity order, we observe that the variation of the channel becomes slower. Ef-

fectively, by employing higher-order diversity, the fading channels have been converted to 

AWGN-like channels, as evidenced by the space-time block code Gg using six receivers. 

Since adaptive modulation only offers advantages over fading channels, we argue that using 

adaptive modulation might become unnecessary, as the diversity order is increased. 

To elaborate a little further, from Figure 6.38 and 6.39 we surmise that fixed modula-

tion schemes might become more attractive, when the diversity order increases, which is 

achieved in this case by employing more receivers. This is because for a certain average 

channel SNR, the probability of a particular modulation mode increases. In other words, 

the fading channel has become an AWGN-like channel, as the diversity order is increased. In 

Figure 6.40 we show our throughput performance comparison between AOFDM and fixed 

modulation based OFDM in conjunction with the space-time block code Gg employing (a) 

one receiver and (b) two receivers over the shortened WATM channel. The throughput of 

fixed OFDM was 1, 2 , 4 and 6 BPS and the corresponding E^/Nq values were extracted 

from the associated BER versus Ef)/No curves of the individual fixed-mode OFDM schemes. 

It can be seen from Figure 6.40 (a) that the throughput performance of the adaptive and 

fixed OFDM schemes is similar for a lOT^ target BER system. However, for a 10"^ target 

BER system, there is an improvement of 5-10 dB in E^/Nq terms at various throughputs 

for the adaptive OFDM scheme over the fixed OFDM scheme. At high average channel 

SNRs the throughput performance of both schemes converged, since 64QAM became the 

dominant modulation mode for AOFDM. 

On the other hand, if the number of receivers is increased to two, we can see in Fig-

ure 6.40 (b) that the throughput performance of both adaptive and fixed OFDM is similar 

for both the lOT^ and lOT^ target BER systems. We would expect similar trends, as the 

number of receivers is increased, since the fading channels become AWGN-like channels. 

From Figure 6.40, we conclude that AOFDM is only beneficial for the space-time block 

code Gg using one receiver in the context of the 10"^ target BER system. 
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Figure 6.40: BPS throughput performance comparison between adaptive OFDM and fixed 
modulation based OFDM using the space-time block code Gg employing (a) one receiver 
and (b) two receivers over the shortened WATM channel shown in Figure 6.32 and the 
transmission format of Figure 6.33. 
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6.5.3.2 Turbo and Space-Time Coded Adaptive O F D M 

In the previous section we have discussed the performance of space-time coded adaptive 

OFDM. Here we extend our study by concatenating turbo coding with the space-time 

coded AOFDM scheme in order to improve both the BER and BPS performance of the 

system. As earlier, the turbo convolutional code TC(2,1,3) having a constraint length of 

3 and octal generator polynomial of (7, 5) was employed. Since the system was designed 

for high-integrity, low-BER data transmission, it was delay non-sensitive. Hence a random 

turbo interleave: size of approximately 10,000 bits was employed. The random separation 

channel interleaver [108] of Figure 5.14 was utilised in order to disperse the bursty channel 

errors. The Log-MAP [52] decoding algorithm was employed, using eight iterations. 

We proposed two TC coded schemes for the space-time coded AOFDM system. The first 

scheme is a fixed half-rate turbo and space-time coded adaptive OFDM system. It achieves 

a high BER performance, but at the cost of a maximum throughput limited to 3 BPS due 

to half-rate channel coding. The second one is a variable-rate turbo and space-time coded 

adaptive OFDM system. This scheme sacrifices the BER performance in exchange for an 

increased system throughput. Different puncturing patterns are employed for the various 

code rates R. The puncturing patterns were optimised experimentally by simulations. The 

design procedure for punctured turbo codes was proposed by Acikel et al. [64] in the context 

of BPSK and QPSK. The optimum AOFDM mode switching thresholds were obtained by 

computer simulations over the shortened WATM channel of Figure 6.32 and they are shown 

in Table 6.8. 

NoTx BPSK QPSK 16QAM 64QAM 
Half-rate TC(2,1,3) 

Rate — 0.50 0.50 0.50 0.50 
Thresholds (dB) — 0 0 -4^ -1.3 5.4 9.8 

Variable-rate TC(2,1,3) 
Rate — 0.50 0.67 0.75 0.90 

Thresholds (dB) — 0 0 -4^ 2.0 9.70 2L50 

Table 6.8: Coding rates and switching levels (dB) for TC(2,1,3) and space-time coded 
adaptive OFDM over the shortened WATM channel of Figure 6.32 for a target BER of 
10-4. 

In Figure 6.41, we show the BER and BPS performance of 16 sub-band AOFDM em-

ploying the space-time block code G2 concatenated with both half-rate and variable-rate 

TC(2,1,3) coding at a target BER of 10"^ over the shortened WATM channel of Figure 6.32. 
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Figure 6.41: BER and BPS performance of 16 sub-band AOFDM employing the space-time 
block code Gg concatenated with both half-rate and variable-rate TC(2,1,3) at a target BER 
of over the shortened WATM channel shown in Figure 6.32 and using the transmission 
format of Figure 6.33. The switching thresholds and coding rates are shown in Table 6.7. 

We can see in the figure that by concatenating fixed half-rate turbo coding with the space-

time coded adaptive OFDM scheme, the BER performance of the system improves tremen-

dously, indicated by a steep dip of the associated BER curve marked by the solid line and 

diamonds. There is an improvement in the BPS performance as well, exhibiting an Eb/No 

gain of approximately 5 dB and 10 dB at an effective throughput of 1 BPS, compared to 

space-time coded AOFDM and conventional AOFDM, respectively. However, again, the 

maximum throughput of the system is limited to 3 BPS, since half-rate channel coding was 

employed. In Figure 6.41, we can see that at an Eh/No value of about 30 dB the maximum 

throughput of the turbo coded and space-time adaptive OFDM system is increased from 

3.0 BPS to 5.4 BPS by employing the variable-rate TC(2,1,3) code. Furthermore, the BPS 

performance of the variable-rate turbo coded scheme is similar to that of the half-rate turbo 

coded scheme at an average channel SNR below 15 dB. The BER curve marked by the solid 

line and clubs drops, as the average channel SNR is increased from 0 dB to 15 dB. Due to 
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the increased probability of the 64QAM transmission mode, the variable-rate turbo coded 

scheme was overloaded by the plethora of channel errors introduced by the 64QAM mode. 

Therefore, we can see in Figure 6.41 that the BER increases and stabilises at 10"^. Again, 

the interference of the signals Xi and X2 in the context of the space-time block code Gg 

prohibits further improvements in the BER performance, as the average channel SNR is 

increased. However, employing the variable-rate turbo codec has lowered the BER floor, as 

demonstrated by the curve marked by the solid line and squares. 

6.6 S u m m a r y and Conclusion 

Space-time trellis codes [70,80,166-169] and space-time block codes [71-73] constitute state-

of-the-art transmission schemes based on multiple transmitters and receivers. Both codes 

have been introduced in Section 6.1. Since we have detailed the encoding and decoding 

processes of the space-time block codes in Chapter 5, the detailed description of the codes 

was left out of this chapter. Instead, space-time trellis codes were introduced in Section 6.2 

by utilising the simplest possible 4-state, 4PSK space-time trellis code as an example. The 

state diagrams for other 4PSK and 8PSK space-time trellis codes were also given. The 

branch metric of each trellis transition was derived, in order to facilitate their maximum 

likelihood (ML) decoding. 

In Section 6.3, we proposed to employ an OFDM modem for mitigating the efi'ects of 

dispersive multipath channels due to its simplicity compared to other approaches [74,75]. 

Turbo codes and Reed-Solomon codes were invoked in Section 6.3.1 for concatenation with 

the space-time block code G2 and the various space-time trellis codes, respectively. The 

estimated complexity of the various space-time trellis codes was derived in Section 6.3.3. 

We presented our simulation results for the proposed schemes in Section 6.4. The first 

scheme studied was the TC(2,1,3) coded space-time block code G2, whereas the second 

one was based on the family of space-time trellis codes. It was found that the FER and 

BER performance of the TC(2,1,3) coded space-time block G2 was better than that of the 

investigated space-time trellis codes at a throughput of 2 and 3 BPS over the channel ex-

hibiting two equal-power rays separated by a delay spread of 5/is and having a maximum 

Doppler frequency of 200 Hz. Our comparison between the two schemes was performed by 

also considering the estimated complexity of both schemes. It was found that the concate-

nated G2/TC(2,1,3) scheme still outperformed the space-time trellis codes using no channel 

coding, even though both schemes exhibited a similar complexity. 

The effect of the maximum Doppler frequency on both schemes was also investigated 



in Section 6.4.3. It was found that the maximum Doppler frequency had no significant 

impact on the performance of both schemes. By contrast, in Section 6.4.4 we investigated 

the effect of the delay spread on the system. Initially, the delay-spread dependent SIR 

of the space-time block code G2 was quantified. It was found that the performance of 

the concatenated TC(2,1,3)-G2 scheme degrades, as the delay spread increases due to the 

decrease in the associated SIR. However, varying the delay spread had no significant efi'ect 

on the space-time trellis codes. We proposed in Section 6.4.5 an alternative mapping of the 

two transmission instants of the space-time block code G2 to the same subcarrier of two 

consecutive OFDM symbols, a solution which was applicable to a delay non-sensitive system. 

By employing this approach, the performance of the concatenated scheme was no longer 

limited by the delay spread, but by the maximum Doppler frequency. We concluded that a 

certain minimum SIR has to be maintained for attaining the best possible performance of 

the concatenated scheme. 

The shortened WATM channel was introduced in Section 6.4.6. In this section, space-

time trellis codes were concatenated with Reed-Solomon codes, in order to improve the 

performance of the system. Once again, both channel coded space-time block and trellis 

codes were compared at a throughput of 1 and 2 BPS. It was also found that the TC(2,1,3) 

coded space-time block code G2 outperforms the RS coded space-time trellis codes. 

Space-time block coded AOFDM was proposed in the Section 6.5, which is the last section 

of this chapter. It was shown in Section 6.5.3.1 that only the space-time block code G2 us-

ing one AOFDM receiver outperformed the conventional single-transmitter, single-receiver 

AOFDM system designed for a data transmission target BER of 10"^ over the shortened 

WATM channel. We also confirmed that upon increasing the diversity order, the fading 

channels become AWGN-like channels. This explains, why fixed-mode OFDM transmis-

sion constitutes a better trade-off, than AOFDM, when the diversity order is increased. 

In Section 6.5.3.2, we continued our investigations into AOFDM by concatenating turbo 

coding with the system. Two schemes were proposed: half-rate turbo and space-time coded 

AOFDM as well as variable-rate turbo and space-time coded AOFDM. Despite the impres-

sive BER performance of the half-rate turbo and space-time coded scheme, the maximum 

throughput of the system was limited to 3 BPS. However, by employing the variable-rate 

turbo and space-time coded scheme, the BPS performance improved, achieving a maximum 

throughput of 5.4 BPS. However, the improvement in BPS performance was achieved at 

the cost of a poorer BER performance. 



Chapter 7 

Conclusions and Future Work 

This concluding chapter gives a summary of the thesis. This will be followed by a range of 

ideas on future research. 

7.1 S u m m a r y and Conclusions 

This thesis commenced by a brief historical perspective on channel coding following Shan-

non's pioneering work [1]. Thanks to the invention of turbo codes by Berrou [12, 13], 

researchers have been able to approach the Shannon limit within 0.27 dB [63], 

In Chapter 2, we commenced our discussions with a brief introduction to conventional 

BCH codes. This was followed by the description of the Viterbi algorithm [8] using the sim-

ple BCH(7,4,3) code. Several examples on hard decision and soft decision Viterbi decoding 

were given. Then in Section 2.3.5, we presented simulation results for both the Viterbi and 

the Berlekamp-Massey decoding algorithms. It was found that the performance of the soft 

decision Viterbi decoding algorithm is about 2 dB better, than that of the corresponding 

hard decision decoding algorithm. The coding gain of various BCH codes using the same 

codeword length n was plotted in Figure 2.19 and 2.20. We observed from the figures that 

the maximum coding gain of the various BCH codes was achieved typically at coding rates 

of 0.5 — 0.7. Since a high complexity is incurred by employing the Viterbi decoding of BCH 

codes, the reduced complexity Chase algorithm was introduced in Section 2.4.2 which offers 

a significantly lower complexity. It was found that the Chase algorithm gives effectively the 

same performance, as Viterbi decoding. We note however that the complexity of the Chase 

algorithm increases exponentially with the minimum free distance dmin of the code, as well 

as with the number of test patterns. 

293 
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After the introduction to conventional BCH codes, in Chapter 3 we embarked on in-

vestigating the novel turbo BCH codes. The structure of the turbo encoder and decoder 

was outlined and the principle of iterative decoding was highlighted. In Section 3.3.3, the 

derivation of the MAP [11] algorithm was presented. This is was followed by the por-

trayal of the reduced complexity Max-Log-MAP [50,51], Log-MAP [52] algorithms and the 

SOVA [53,54]. A simple example on iterative decoding of the turbo BCH(7,4,3) code was 

given in Section 3.4. We highlighted, how iterative decoding can improve the reliability of 

the decoded bits and eventually correct an increased number of errors. In Section 3.5 the 

MAP algorithm was modified in order to incorporate the parity check bit of extended BCH 

codes for enhancing the decoder's performance. This was vital in the iterative decoding of 

the family of extended turbo BCH codes. 

Various parameters can affect the performance of turbo BCH codes and these effects were 

investigated in Section 3.6. We first studied the effect of iterative decoding on the perfor-

mance of turbo BCH codes. It was found that the performance of turbo BCH codes does not 

improve significantly after four iterations. Various decoding algorithms were compared and 

it was found that the Log-MAP and Max-Log-MAP algorithms give similar performance. 

However, the Log-MAP algorithm performs badly, if the estimate of the channel reliability 

value Lc is imperfect. Puncturing was found to degrade the performance of turbo BCH 

codes. Hence we concluded that no puncturing should be applied to turbo BCH codes. The 

performance of turbo BCH codes employing various interleaver lengths was investigated as 

well. It was found that the best possible performance can be achieved by employing an 

interleaver depth of 5,000 bits over AWGN channels. In Section 3.6.6 a new interleaver 

design was proposed. This interleaver was referred to as the random-in-column block inter-

leaver and it was shown to outperform other conventional block and random interleavers, 

when the interleaver dimension is k x k. Furthermore, turbo BCH codes employing differ-

ent BCH component codes were investigated and it was found that the turbo BCH(63,51,5) 

code performs within about 0.8 dB of the Shannon limit. The proposed modified MAP 

algorithm [106] was then employed, invoking extended BCH codes and it was shown in Sec-

tion 3.6.10 that the extended turbo BCH(32,26,4) code outperforms the turbo BCH(31,26,3) 

code by approximately 0.5 dB at a BER of 10"^. 

In Chapter 4 we extended our research to the novel class of non-binary block codes referred 

to as Redundant Residue Number System (RRNS) codes. An RRNS code is a maximum-

minimum distance block code, exhibiting identical distance properties to Reed-Solomon 

(RS) codes. In order to understand the basic principles of RRNS codes, we commenced 

the chapter with a brief introduction to the ancient theory of the Residue Number System 
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(RNS). This theory provide the basis for a promising way of supporting fast arithmetic op-

erations [40,41] such as addition, subtraction and multiplication. After a brief introduction 

to the RNS, we showed in Section 4.2.6 that a RRNS can be obtained by incorporating 

extra moduli into the existing RNS. Then the coding theory of the RRNS codes was de-

veloped. We showed that the minimum free distance dmin of the RRNS code could be 

determined using Equation 4.37. The procedure for multiple error correction was laid out 

in Section 4.4. In Section 4.5, we introduced different bit-to-residue mapping methods re-

sulting in systematic and non-systematic RRNS codes. Furthermore, we proposed a novel 

systematic mapping method, which results in higher code rates for systematic RRNS codes, 

than the conventional mapping. Then we modified the Chase algorithm so that the RRNS 

decoder became capable of processing soft inputs and providing soft outputs. This facili-

tated the iterative decoding of turbo RRNS codes. Our simulation results for the proposed 

RRNS codes using BPSK over AWGN channels were then given in Section 4.9. It was found 

that systematic RRNS codes outperform their non-systematic counterparts. The proposed 

mapping method which results in higher code rates for systematic RRNS codes gave a 

similar performance to that of the corresponding conventional systematic RRNS codes. Be-

sides hard decision decoding, soft decision decoding of the proposed RRNS codes was also 

employed in order to improve the performance of the codes. It was found that the soft de-

coding performance of RS codes is similar to that of the RRNS codes. Performance results 

were also provided for turbo RRNS codes. We began with the performance comparison 

between the SISO Chase algorithm and other trellis decoding algorithms, using the turbo 

BCH(63,57) code as an example. It was shown in Figure 4.18 that the performance of the 

SISO Chase algorithm suffers only a small performance degradation compared to Log-MAP 

algorithm at a significantly reduced complexity. Then, similarly to Chapter 3, the effects 

of various parameters affecting the performance of turbo RRNS codes were investigated. 

We concluded that the best compromise in terms of the number of decoding iterations was 

four. In Chapter 4, we concluded that the performance of RRNS codes was similar to that 

of Reed-Solomon codes, while offering some advantages over Reed-Solomon codes. Specif-

ically, short non-binary block codes can be readily designed using RRNS codes without 

having to shorten long codes, which is not an option in RS codes. Besides, in ARQ systems 

stronger RRNS codes can be obtained by transmitting more redundant residues without 

having to re-transmit the whole codeword. In [150,151,153], we exploited this principle in 

designing adaptive rate RRNS codes for near-instantaneously adaptive OFDM transmission 

over mobile communication channels. 

In our last two chapters, Chapter 5 and 6, we expanded our research into a new area. 

The design of the channel codes was no longer considered to be independent from the 
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modulation and transmit diversity scheme used. Instead, channel coding, modulation and 

transmit diversity were jointly designed, resulting in space-time codes. We studied two 

distinct types of space-time codes: space-time block codes [71-73] and space-time trellis 

codes [70,80,166-169]. Despite the slight associated performance penalty of space-time 

block codes in comparison to space-time trellis codes, space-time block codes are appealing 

in terms of their simplicity and performance. Allowed by the associated low complexity 

offered by the space-time block code G2, we concatenated it with turbo convolutional codes, 

in order to improve its performance. The performance of the concatenated scheme was 

then compared to that of space-time trellis codes. Specifically, in Chapter 5 we investigated 

space-time block codes, whereas space-time trellis codes were detailed in Chapter 6. 

We commenced in Chapter 5 with a rudimentary introduction to Maximum Ratio Com-

bining [71], which constituted the basis of our further studies into space-time block codes. 

This was followed by an introduction to Alamouti's simple space-time block code Gg. Ex-

amples were given for the space-time block code Gg using one and two receivers, followed 

by various other space-time block codes. In Section 5.4 we proposed a system, which con-

sists of the concatenation of the above-mentioned space-time block codes and a range of 

different channel codes. The channel coding schemes investigated were convolutional codes, 

turbo convolutional codes, turbo BCH codes, trellis coded modulation and turbo trellis 

coded modulation. The estimated complexity and memory requirements of the channel 

decoders were summarised in Section 5.4.3. Simulation results characterising the proposed 

concatenated system were presented in Section 5.5. We first compared the performance of 

the space-time codes Gg, G3, G4, H3 and H4 without using channel codecs. It was found 

that as we increased the effective throughput of the system, the performance of the half-rate 

space-time codes G3 and G4 degraded in comparison to that of the unity rate space-time 

code Gg. This was because in order to maintain the same effective throughput, higher order 

modulation schemes had to be employed in conjunction with the half-rate space-time codes 

Gs and G4, which were more prone to errors and hence degraded the performance of the 

system. On the other hand, for the sake of maintaining the same diversity gain and same 

effective throughput we found that the performance of the space-time codes H3 and H4 was 

better, than that of the space-time codes G3 and G4, respectively. Since the space-time 

code G2 has a code rate of unity, we were able to concatenate it with half-rate TC codes, 

while maintaining the same effective throughput, as that of the half-rate space-time code 

using no channel coding. We found that for the same effective throughput, the unity-rate 

G2 space-time coded and half-rate TC coded scheme provided substantial performance im-

provement over other space-time block codes. We concluded that the reduction in coding 

rate was best invested in turbo channel codes, rather than in space-time block codes. 
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In the second category of our investigations of channel coded space-time systems, we 

studied the effect of the binary channel codes' data and parity bits being mapped into 

different protection classes of multi-level modulation schemes. It was found that TC codes 

having different constraint lengths K require different mapping methods, as evidenced by 

Figure 5.12. By contrast, in the turbo BCH codes studied mapping of the parity bits to 

the higher-integrity protection class of a multi-level modulation scheme yielded a better 

performance. The so-called random separation based interleaver as shown in Figure 5.14 

was proposed, in order to improve the performance of the system. The third set of results 

compared the performance of all proposed channel codes in conjunction with the space-

time code Gg It was then found that the performance of the half-rate TC codes was better 

than that of the CC, TECH, TCM and TTCM codes. The chapter was then concluded 

by comparing the Gg space-time coded channel codes upon taking their complexity into 

consideration. In Figures 5.29 and 5.30, we can clearly see that the half-rate TC codes give 

the best coding gain at a moderate complexity. 

Finally, in Chapter 6, we explored the power of various space-time trellis codes, where 

the performance of the space-time trellis codes was compared to that of the TC coded 

space-time block code of Chapter 5. Space-time trellis codes were introduced in Section 6.2 

by utilising the simplest possible 4-state, 4PSK space-time trellis code as an example. The 

state diagrams for other 4PSK and 8PSK space-time trellis codes were also provided. The 

branch metric of each trellis transition was derived, in order to facilitate maximum likelihood 

decoding. In Section 6.3, we proposed to employ an OFDM modem for mitigating the 

effects of dispersive multipath channels. This technique was invoked due to its simplicity 

compared to other approaches. Turbo convolutional codes and Reed Solomon codes were 

invoked in Section 6.3.1 for concatenation with the space-time block code Gg and the various 

space-time trellis codes, respectively. The estimated complexity of the various space-time 

trellis codes was derived in Section 6.3.3. We then presented our simulation results for 

the proposed schemes in Section 6.4. The first scheme studied was the TC(2,1,3) coded 

space-time block code G2, whereas the second one was based on the family of space-time 

trellis codes. It was found that the FER and BER performance of the TC(2,1,3) coded 

space-time block Gg was better than that of the investigated space-time trellis codes at a 

throughput of 2 and 3 BPS over the channel exhibiting two equal-power rays separated by a 

delay spread of 5/is and having a maximum Doppler frequency of 200 Hz. Our comparison 

between the two schemes was performed by also considering the estimated complexity of 

both schemes. It was found that the concatenated G2/TC(2,1,3) scheme still outperformed 

the space-time trellis codes using no channel coding, even though both schemes exhibited 

a similar complexity. The effect of the maximum Doppler frequency on both schemes was 
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also investigated in Section 6.4.3. It was found that the maximum Doppler frequency had 

no significant impact on the performance of either scheme. By contrast, in Section 6.4.4, 

it was found that the performance of the concatenated TC(2,1,3)-G2 scheme degrades, 

when the Doppler frequency is increased. Then, the Doppler-dependent channel-induced 

interference of the G2 space-time coded system was quantified in terms of the SIR. It was 

found that the SIR decreases, as the delay spread increases and this phenomenon degrades 

the performance of the concatenated scheme. We proposed in Section 6.4.5 an alternative 

mapping of the two transmission instants of the space-time block code Gg to the same 

subcarrier of two consecutive OFDM symbols, a solution which was applicable to a delay 

non-sensitive system. By employing this approach, the performance of the concatenated 

scheme was no longer limited by the delay spread, but rather by the maximum Doppler 

frequency. We concluded that a certain minimum SIR has to be maintained for attaining 

the best possible performance of the concatenated scheme. 

Space-time block coded adaptive OFDM was proposed in Section 6.5. It was shown in 

Figure 6.40 that the space-time block code G2 using only one AOFDM receiver outper-

formed the conventional single-transmitter, single-receiver AOFDM system designed for a 

data transmission target BER of 10"^ over a WATM channel. We also confirmed that 

upon increasing the diversity order, the fading channels become AWGN-like channels. In 

Section 6.5.3.2, we continued our investigations into AOFDM by concatenating turbo cod-

ing with the system. Two schemes were proposed: half-rate turbo and space-time coded 

AOFDM as well as variable-rate turbo and space-time coded AOFDM. Despite the impres-

sive BER performance of the half-rate turbo and space-time coded scheme, the maximum 

throughput of the system was limited to 3 BPS. However, by employing the proposed 

variable-rate turbo and space-time coded scheme, the BPS performance improved, achiev-

ing a maximum throughput of 5.4 BPS. This improvement in BPS performance terms was 

achieved at the cost of a poorer BER performance. 

7.2 Fu tu re Work 

In Chapter 3 we showed that the performance of turbo BCH codes is impressive. However, 

in Section 5.5.3, we demonstrated that similar performance can be obtained using punctured 

TC codes at the cost of a lower complexity. Nonetheless, the SISO Chase algorithm could 

be employed in decoding turbo BCH codes, which significantly reduced the complexity at 

the cost of a small performance degradation, as shown in Figure 4.18. The complexity 

and performance of employing the SISO Chase algorithm in the context of turbo BCH 

codes should be further investigated. Carrying out a comparative study of high rate turbo 
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convolutional codes employing the Log-MAP algorithm and turbo BCH codes employing 

the SISO Chase algorithm would be beneficial. 

It is widely recognised that space-time coded OFDM constitutes an attractive approach 

to transmission over dispersive wireless channels, since the associated decoding complexity 

is significantly lower than that of other approaches [74,75]. Further research is needed for 

finding lower complexity solutions for space-time coded systems over wideband channels. 

It was shown in Section 6.4.4 that the transmitted space-time coded signals will interfere 

with each other, if the fading envelope fluctuates rapidly. A certain minimum SIR has 

to be maintained in order to ensure that the system performs well. By employing turbo 

convolutional codes, the required SIR can be reduced enabling transmissions over rapidly 

fading channels. Alternative techniques have to be investigated, in order to reduce the 

required SIR of the system employing space-time block codes. 

Iterative decoding could be applied for the decoding of space-time trellis codes. Channel 

codes, such as trellis coded modulation could be readily concatenated with space-time trellis 

codes, potentially enabling iterative decoding of the received sequence upon exchanging 

information between the trellis coded modulation and space-time trellis coding schemes. 

Besides, turbo space-time trellis codes could be constructed, allowing iterative decoding 

using two space-time trellis decoders. 



List of Symbols 

Genera l no ta t ion 

• The notation y represents a vector of y values. 

• The notation y represents a range of values yo, yi, yA:-i • 

• The notation y^ represents the t - t h element of the variable y. 

• The notation |y| represents the magnitude of the variable y. 

• The notation \X\- represents the positive integer remainder of the division X by j. 

• The notation h represents the conjugate of h. 

• The notation x represents the estimate of the symbol x. 

• P{i f \ j ) represents the joint probability of i and j. 

• P{i\j) represents the conditional probability of? given j. 
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Special symbols 

a: Fading amplitude. 

BM\ Branch metric. 

C: Constant. 

comp: Estimated complexity. 

dmin- Minimum free distance of a codeword. 

dist{i,j): Euclidean distance between i and j. 

Eb'. Energy per bit. 

EIJ/NQ: Ratio of bit energy to noise power spectral density. 

e: Error pattern. 

fc{S): Correction term in the Log-MAP algorithm. 

g{x): Octal generator polynomial. 

h: Channel impulse response. 

i: Index. 

j: Index. 

K: Constraint length of a convolutional code. 

k: Number of information data bits in a codeword. 

L: Multiplicative inverse in the context of the RRNS. 

Lc- Channel reliability value in Equation 3.8. 

L{uk)\ Intrinsic information. 

Lf.{uk)'- Extrinsic information. 

L{uk\y)'- A-Posteriori information. 

M; Dynamic range of the RNS. 

M n - t : Product of moduli 

M{s): Probability of a trellis path. 
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m: Modulus in the RNS. 

max(x,y); A function which return the maximum value x or y. 

n: Number of coded bits in a codeword. 

P: Probability. 

p: Number of transmitters in space-time codes. 

g: Number of receivers in space-time codes. 

Rx: Receiver. 

r: Residues in the RNS. 

S: A state in the trelhs diagram. 

SIR: Signal to interference ratio. 

t: Error correcting capability. 

T: Time instant. 

TP: Test pat tern in the Chase algorithm. 

Tx: Transmitter. 

u: Decoded data bit. 

W: Analogue weight in Equation 2.7. 

X: An integer in the RNS. 

x: Transmitted symbol. 

y: Received symbol. 

a : Forward recursion probability in Equation 3.25. 

f3: Backward recursion probability in Equation 3.29. 

5: Magnitude of the difference between two variables in Equation 3.45. 

A: Pa th metric difference. 

7(s ,s) : Transition probability in Equation 3.23. 

(7 :̂ Noise variance. 
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©: Modulo addition. 

Multiplication. 



Glossary 

16QAM 16-level Quadrature Amplitude Modulation 

3G Third Generation 

4PSK 4-level Phase Shift Keying 

64QAM 64-level Quadrature Amplitude Modulation 

8PSK 8-level Phase Shift Keying 

ARQ Automatic Repeat Request 

A W G N Additive White Gaussian Noise 

B C H Bose- Chaudhur i- Ho cquenghem 

B E R Bit Error Rate 

B M A Berlekamp-Massey Algorithm 

B P S Bits Per Symbol 

B P S K Binary Phase Shift Keying 

BS Base Station 

c c Convolutional Code 

CD Compact Disc 

CIR Channel Impulse Response 

CRT Chinese Remainder Theorem 

D S P Digital Signal Processing 

D V B Digital Video Broadcasting 
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FEC 

FER 

GSM 

ISI 

LLR 

LOS 

M A P 

M D S - R R N S 

MIMO 

ML 

M R C 

MS 

O F D M 

PGZ 

QPSK 

R N S 

R R N S 

RS 

RSC 

SISO 

SNR 

SOVA 

STB 

STT 

T B C H 

Forward Error Correction 

Frame error rate 

Global System of Mobile Communications Standard 

Intersymbol Interference 

Log Likelihood Ratio 

Line Of Sight 

Maximum A Posteriori 

Maximum Distance Separable Redundant Residue Number System 

Multi-Input Multi-Output 

Maximum Likelihood 

Mixed Radix Conversion 

Mobile Station 

Orthogonal Frequency Division Multiplexing 

Peterson-Gorenstein-Zierler 

Quadrature Phase Shift Keying 

Residue Number System 

Redundant Residue Number System 

Reed-Solomon 

Recursive Systematic Convolutional 

Soft Input Soft Output 

Signal to Noise Ratio 

Soft Output Viterbi Algorithm 

Space-Time Block 

Space-Time Trellis 

Turbo BCH 
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TC 

T C M 

TTCM 

UMTS 

VA 

WATM 

XOR 

Turbo Convolutional 

Trellis Coded Modulation 

Turbo Trellis Coded Modulation 

Universal Mobile Telecommunication System 

Viterbi Algorithm 

Wireless Asynchronous Transfer Mode 

Exclusive-or 
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