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ABSTRACT 
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Doctor of Philosophy 

COMPUTER-BASED MUSICAL COMPOSITION 

USING A 

]p%(:wBvM3iiJ[STi(: /ULC^CDRjrriiiviK: ivariTHiC)!) 

by Gary Chapman 

The idea of using computers for the composition of music based on 

mathematical algorithms is not new, and the techniques which have been 

employed are wide-ranging. However, compositional processes which require 

an understanding of complex mathematical concepts or of computing 

tedmiqiies tend toT ê iiia(x:esEiit)le to tliose la(:kirig tlie riecessanry slddls. Iri()ttiers, 
the relationship between the supplied input data and the resulting musical 

output is not evident, and they therefore lack the flexibility to meet specific 

compositional goals. Systems requiring the specification of large sets of musical 

rules, or which process pre-supplied music, are more regurgitative than 

creative. 

This thesis describes and investigates a probabilistic, Markov chain-based 

algorithm whose aims are to be conceptually lucid, to require a small number of 

input parameters, to be capable of a wide range of musical output and to have 

the flexibility to meet diverse compositional objectives. A computer program 

has been developed which provides a composing environment through which 

the algorithm is analysed in depth, its strengths and weaknesses are examined, 

and its compositional capabilities are explored. 
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CONTENTS OF THE ACCOMPANYING FLOPPY DISK 

The floppy disk which accompanies this thesis may be found in a plastic wallet 

attached to the inside back cover. It can be read only by an Apple Macintosh^M 

computer running System 7. The content structure of the floppy disk is as 
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contents will be described later in the relevant chapters. The contents of the 
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MARKOV PROGRAM INSTALLATION INSTRUCTIONS 

To install the Markov program, simply insert the floppy disk into an Apple 

Macintosh^'^ computer and copy the single file, "Markov", to any Macintosh 

folder, as desired. The Markov program is started by double-clicking its 

application icon : 

: 

u Mlarkou Composition 
1 item 22.6 MB in disk 15.7 MB available 

ro 

Markov 

(in this case the user has placed the icon in a Macintosh folder called "Markov 

Composition"). 

The program sends MIDI data to the modem communications port on 

the Apple Macintosh computer. Therefore, in order to be able to hear music 
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Introduction 



1 1 THF, RESEARCH IN CONTEXT 

This research represents a fusion of three distinct, yet interrelated disciplines: 

Mathematics, Computer Software Engineering and Music. 

The ancient Greeks are known to have studied the mathematical 

principles of sound. Furthermore, the Pythagorean tuning system, developed 

from around the sixth century B.C., devised a musical scale, based on the 

proportional relationships between the frequencies of differing pitches, which 

underlies Western music today. 

It is a natural consequence of the awareness of the intrinsic mathematical 

(]iiaiities ,)f irwusucal s()imd ttiat it slicwild b,e attemjptexi to truilcl music: jFro m 
mathematical systems. The Serial music of the post-war era was based on an 

inherently simple "music by numbers" process involving the permutation of a 

twelve-note "tone row". Much of Steve Reich's music of the Sixties and 

Seventies was similarly "process-oriented", involving phasing techniques and 

cyclic variations of simple phrases, while Conlon Nancarrow composed canons 

in which the voices proceed at different speeds, the works being composed 

directly onto a piano roll for playback on a player piano and achieving complex 

rhythmic and temporal relationships at speeds beyond the possibilities of 

human performance. 
Such approaches are deterministic in nature but, by taking advantage of 

the mathematical theory of probability, a degree of randomness and, therefore, 

unpredictability can be introduced into the resulting music. In the 

"Musickalisches Wiirfelspiel", often attributed to Mozart, collections of 

prescribed phrases are assembled into countless versions of a minuet according 

to the throw of a dice, whilst similar methods were credited to C.P.E. Bach and 

Haydn. Stockhausen and Cage have also produced works involving the 

random ordering of musical sections or of sounds. While such techniques use 

simple probability to control high-level structures, it is also possible to control 

probabilistically the musical attributes of the individual notes of a sequence. 

However, as the mathematical technique being employed becomes more 

complex and the structural level at which it works is lowered, so it becomes 

increasingly impractical to apply it manually due to the amount of 

computational effort required, and a digital computer becomes a vital tool in 

the process, with the computer software-encoded computations being 

performed at very high speed. The computer can be made to introduce 

probabilistic variation, and furthermore, to do this in a controlled way so that, 

over and above being simply a labour saving device, the computer is being 

"creative" on our behalf. Hiller and Isaacson in the late 1950's and later, 

Xenakis, were pioneers of such techniques. 



A branch of probability, Markov theory, enables a degree of relatedness 

between musical events to be introduced so that their order of occurrence can be 

probabilistically controlled rather than just their random distribution. Both 

Hiller and Isaacson's music, and that of Xenakis, employed Markov techniques. 

However, the vast majority of the work done in the area of Markov-produced 

music has concentrated primarily on computer-generated variations of pre-

supplied music, with any original composition being based on Markov 

processes with a limited variation in characteristics. The enormous potential 

for Markov processes to generate explicit and predictable musical event 

sequences which can be subject to probabilistic variation on a controlled 

continuum between completely deterministic to completely random, remains 

largely untapped. This research attempts to correct that omission. 

Finally, it is vitally important that musical judgements are applied to the 

results produced. Ultimately, the question for the composer is "What will be 

heard when my piece is played?" not "What probability distribution do the 

pitches satisfy?". The listener will not be directly aware of the latter but the 

former, through a process of abstraction, is what defines the music's meaning. 

1.2 THE AIMS OF THE RESEARCH 

1.2.1 General Outline 

The main purpose of this research was to develop a mathematical algorithm 

which may be used to compose musical compositions and which attempts to 

satisfy a set of stated objectives. This algorithm has been implemented in a 

computer program facilitating detailed exploration of the algorithm in order to 

examine how well it satisfies the objectives, to elicit its strengths and 

weaknesses and to compose new music. Four principal areas of work were 

involved;-

1. The development of an algorithmic composition process based on 

the mathematical stochastic process theory of Markov chains. 

2. The development of a computer program, Markov, which 

embodies the algorithmic process and provides an appropriate 

compositional environment via a user-friendly interface. 

3. The composition of music using the Markov program, both in free' 

and in stylistically constrained contexts. 



4. The analysis of the results. 

1.2.2 The Objectives 

This section states the objectives against which the algorithm was developed, 

and discusses the musical reasons why these objectives are considered 

important (later in this thesis, in Chapter 2, THE ALGORITHM, I will revisit 

them in order to evaluate how well they are satisfied by the algorithm). 

The objectives are as follows:-

1) The composer should need no knowledge or understanding of the 

mathematical techniques employed by the algorithm in order to be able to make 

effective use of it. 

If knowledge of the underlying mathematics is required then the number of 

composers who can make use of the algorithm is limited to a specialised group: 

mathematicians with an interest in composing music, and composers with a 

knowledge of mathematics. The composer should just need to vary the input 

parameters to the algorithm. What is absolutely vital, however, is that the 

composer has a clear perception of the ways in which varying the parameters 

affects the musical output. This may be achieved in any of the following ways: 

(i) The algorithm is specified in such a way that the effects of 

parameter variation are readily apparent. 

(ii) The results of a thorough perturbation analysis of the parameters are 

available in the form of a set of compositional rules or principles 

relating to parameter values. 

(iii) The composer is able to carry out his or her own 

experimentation with parameter variation and draw reliable 

conclusions. 

In this thesis. Chapter 2, THE ALGORITHM, explains the general principles 

regarding the ways in which the algorithm parameter values control the 

output. Chapter 4, ANALYSIS OF THE ALGORITHM, presents the results of a 

detailed analysis of the effects of varying the parameters. Chapter 5, THE 
COMPOSITIONAL PROCESS, presents an example of a composer 

manipulating the algorithm in order to produce a composition and Chapter 6, 

STYLE EMULATION, reveals further compositional principles with regard to 

achieving specific stylistic objectives. 



All this implies that there is a predictability about the musical results that 

will be obtained from the parameter values input. Some algorithms are more 

experimental in that one is not really sure what the results will be in advance 

and the compositional process is more of a, potentially, exciting voyage of 

discovery. In fact, the algorithm explored in this thesis permits this approach as 

well: rather than deciding in advance what parameter values might be 

appropriate to achieve a particular compositional objective, the composer is 

also free to assign parameter values more or less at random and see what 

happens. 

2) The composer should be required to specify only a small number of input 
parameters to the algorithm but a very wide range of musical results should 
nevertheless be achievable by varying the values of these input parameters. 

If there are a large number of input parameters then the algorithm can become 

unwieldy to use for compositional purposes, not only because it takes time to 

set up initially, but also because it is more difficult to decide how to modify the 

parameters subsequently in response to the initial musical output in order to 

achieve desired changes. By the same token, it is much more difficult to predict 

the output because there are so many variables to consider. It was an aim of this 

research that the composer should be involved in a feedback process whereby, 

having heard the musical results, the parameters can quickly be modified 

repeatedly so as to converge on a desired result. 

On the other hand, limiting the number of input parameters must 

necessarily result in a sacrificing of flexibility, in terms of the variety of output 

that can be achieved. It was one of the aims of this research to see just how few 

parameters one can "get away with" and the results are surprising. Chapter 2, 

THE ALGORITHM, details some strict limitations of the algorithm. Chapter 4, 

ANALYSIS OF THE ALGORITHM, explores the wide range of variation in 

musical structure which can be achieved and Chapter 6, STYLE EMULATION, 
shows some examples of the wide diversity of musical styles which can be 

obtained whilst making clear the limitations imposed and any compositional 

compromises which must be made. 

3) The algorithm should be the absolute starting and finishing point in the 

compositional process. 

The composer is neither required to supply any explicit sequences of notes, nor 

is there any prior mathematical analysis of a supplied piece of music. Some 



systems take presupplied music and subject it to transformations, for example, 

Jacob's "Variations" (Jacob 1996). Other, more mathematically-oriented systems 

are discussed later in this chapter. 

Again, some composers view algorithmic techniques as an aid to 

composition rather than as a complete solution (McAlpine et al 1999: 19). The 

intention here is that the use of the algorithm should be "pure", so that it can 

be assessed solely in terms of its intrinsic ability to produce music, whatever 

compromises or limitations that might imply. 

It should be noted that this is not intended to be interactive composition 

where the composer and computer react to each other in real time. This is a rich 

and widely studied area of computer-assisted composition (Chadabe 1977,1983, 

Chadabe and Myers 1978, Risset 1990, Rowe 1993) which is not under 

investigation here. Instead, the composer using the Markov program reflects 

qualitatively on a section of work before deciding what modifications and 

refinements are required. 

4) The music produced by the algorithm should have a sense of evolution. 

What is meant here is that the musical events that have occurred will have 

some degree of influence on the musical events that are about to occur. This 

allows, in particular, for a sense of linear direction in resultant note sequences, 

typical of Western music. 

5) The composer should be able to control the degree, or strength, of this 

influence. 

This means, very importantly, that repeated playings of a piece based on a fixed 

set of mathematical input parameters may be different. Brian Eno, discussing 

his Koan program, which generates infinitely changing music based on rule sets 

inputted by the user, said "I really think it's possible that our grandchildren will 

look at us in wonder and say 'You mean you used to listen to exactly the same 

thing over and over again?'" (McClellan 1996). The stronger the degree of 

influence, the more deterministic is the control over the way the piece evolves; 

the weaker the degree of influence, the more unpredictable the evolution. To 

put it another way, any of the following situations could apply:-

(i) if the musical event A occurs it is always followed by the musical 

event B. 
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(ii) event A is usually followed by event B but may occasionally be 

followed by events C, D or E. 
(iii) event A could be followed by any of a whole set of possible events 

(iv) the musical events occur in a totally unpredictable way. 

Myhill (1979) discusses the concept of a continuum between random and 

deterministic music. At one end is complete randomness, but, given the 

diversity of musical styles and cultures, it is difficult to define what is at the 

other end. In our case, what lies at the deterministic end is the range of 

deterministic possibilities afforded by the algorithm, and we may visualise the 

continuum as a plane through which we may journey towards or away from 

randomness along an effectively endless multitude of possible paths. Chapter 4, 

ANALYSIS OF THE ALGORITHM, explores the deterministic possibilities in 

detail, and analyses the results of controlling the degrees of randomness. 

6) The composer should not be required to specify musical rules. 

One approach to algorithmic composition is to specify a (possibly very large) set 

of rules, disallowing parallel fifths for example, or requiring each 8 bar phrase to 

end with a perfect cadence, and then programming the computer to produce 

music which obeys these rules. However, with this approach one is tending to 

use the computer as a labour saving device rather than as an instrument of 

creativity, generating music which meets specific structural goals but which 

could have been written manually. Of course, it is possible, perhaps inevitable, 

that the user of the algorithm examined in this thesis will come to it with pre-

conceptions of the kinds of musical results which they would consider 

desirable, but it is then down to the algorithm, or rather the user's control of it, 

to produce these results. 

7) The composer is not required to have any knowledge of computer languages 

or computer-related logic. 

Many computer music languages exist ranging from the various incarnations of 

Max Mathew s MUSIC language (Dodge and Jerse 1985: 12-15) with which the 

composer essentially specifies note lists in a numerical format, through to Lisp 

or C related languages, some of which include facilities for incorporating 

mathematically generated music, such as Richard Orton's Tabula Vigilansl or 

1 The Tabula Vigilans Information Page, contained in the Composers' Desktop Project Website, 
can be viewed at: http://www.bath.ac.uk/~masjpf/CDP/tvinfopg.htm 
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Tonality Systems' Symbolic Composer for example, and object-oriented 

languages (Jaffe and Boynton 1989, Pope 1996). However, these languages 

require a good knowledge of computer programming. Graphical interfaces to 

music programming languages do exist to make life easier for the composer, 

such as the powerful and extensively used Max^ (Rowe 1993; 32-38) among 

others (Assayag et al 1999), but these nevertheless tend to be structured from a 

computer logic viewpoint. 

Such languages do of course offer, in return for the work involved in 

constructing compositions with them, enormous flexibility. However, an aim 

of this research is that, whilst there has been a considerable amount of 

programming involved in the implementation of the algorithm, it should, 

from the composer's perspective, be reduced to a set of numerical input values. 

It is important, at this point, to make clear a non-objective of this 

research. The computer program, Markov, which I have developed to 

implement the algorithm, provides a compositional environment in which 

structured compositions can be created, together with a user-friendly graphical 

interface to facilitate easy entry and manipulation of parameter values. It is not, 

however, intended to compete with commercially available sequencing and 

algorithmic composition packages, and advanced graphic and other features 

which one would expect to find in such packages are not implemented here. To 

have done so would simply have diverted time and effort away from the main 

task: the exploration of the algorithm. 

1.3 ALGORITHMIC COMPOSITION REVIEW 

Simply stated, when composing music with mathematical algorithms, a 

formulaic system is applied which will generate sequences of numbers. These 

numbers are then mapped uniquely to values of musical parameters so that the 

number sequences produced are transformed into note sequences. In its basic 

form, the process of using a mathematical algorithm for the computer-

generated composition of music can be considered to consist of the following 

stages: 

1. The specification of the algorithm in terms of its mathematical 

formulae and any associated rules. 

2. The definition of the process for mapping the numerical output to 

musical parameter values. 

2 An overview of the Max program can be found at the Opcode Systems website, at 
http://www.opcode.com/products/max 
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3. The coding of the algorithm in a computer program, together with an 

appropriate interface to allow the composer to specify any input data 

required by the algorithm. 
4. The running of the program to produce musical output. 

Stages 1 to 3 refer to the design stage of the process while stage 4 refers to the 

functional use of the algorithm and wiU be repeated many times. Chadabe 

(1983: 22) calls this a "design-then-do" procedure for composing. 

To clarify the concepts involved, we begin with a straightforward 

example of such an approach to composition. This approach, simple in concept 

and design, is to use a function which varies with time, of the form 

y = f(t) 

and map the values of y to a musical parameter, pitch for example, so as to 

produce music in a time-sequential manner. 

This is the principle underlying the UPIC program (Lohner 1986, Xenakis 

1996; 150-152), which allows the composer to create a score consisting of a 

collection of "arcs" using a board on which lines are drawn with a special ball-

point pen; each arc describes a pitch-versus-time curve. Thus, for example, a 

horizontal straight line produces a sound of constant pitch whose duration is 

determined by the length of the line, while a curve results in a sound whose 

pitch changes in a continuous manner. Polyphony is achieved by drawing two 

or more lines which overlap in time. A later version of the program (Xenakis 

1992: 329-334) provides a sophisticated mouse-driven interface. 

We now proceed with a review of the field of algorithmic composition. 

This review is not intended to be exhaustive but discusses some of the principal 

areas of work in algorithmic composition over the last forty years, making 

reference to the objectives stated above, in an attempt to place the research 

presented in this thesis in context. 

I have classified the algorithmic methods examined into the following 

categories; fractals and chaos theory, cellular automata, artificial intelligence 

and stochastic techniques. 

1.3.1 Fractals and Chaos Theory 

The key property of a fractal curve is that of self-similarity. A self-similar 

structure is one whose parts recursively repeat the whole structure, no matter 

to which level of detail it is examined, so that the overall characteristics 

observed at a larger scale are reflected in similar characteristics on a smaller 
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scale. Fractal shapes have been found to be characteristic of many natural 

phenomena, for example, the geometry of turbulence in fluids (Mandelbrot 

1977: 97-105) and the shapes of coastlines and the relief of the earth's surface 

(ibid: 256-271). 

Chaotic systems, closely related mathematically to fractal geometry, can 

produce highly structured sequences which have everywhere within them 

elements of near repetition. 

1.3.1.1 Fractional Noises 

By treating a sequence of numbers as a waveform and taking its Fourier 

transform, we obtain the spectrum of the sequence (Moore 1990: 412-413). The 

spectrum is essentially a graph which breaks the waveform down into its 

constituent frequencies, the sum of which produces the original waveform. If 

the spectrum is flat, then the frequencies are evenly distributed and the 

sequence is purely random. This is termed "white noise". If the shape of the 

spectrum is proportional to the inverse of the frequency (termed "1/f noise") 

then the sequence exhibits self-similarity of a fractal nature. Voss and Clarke 

(1978) analysed the pitch and loudness of examples of many different styles of 

music, including Bach, Beethoven and the Beatles, and found the spectral 

shapes of all them to be close to 1/f. 1/f sequences can be generated 

programmatically (Jones 1984: 84-91, Dodge and Jerse 1985: 290-291). Moore 

(1990: 442-453) gives examples of waveforms, spectra, and resulting melodies for 

pitch sequences with spectral curves of 1/f^ for various values of C. The higher 

the value of fi, the more constrained is the resulting melodic sequence. 

Dodge (1988) produced a composition. Profile, using 1/f noise. A melodic 

line was first generated using a 1/f sequence mapped onto a chromatic pitch 

collection. Then, for each note in the first line, a succession of notes in a second 

line was generated, using the same 1/f approach. A third line was generated in 

the same way, in relation to each of the notes in the second line. Bolognesi 

(1983: 28-31) describes a technique for generating 1/f melodies which makes the 

hierarchical self-similar structure appear more clearly. 

A fractional noise music generating system is relatively simple to set up. 

However, the lack of controlled predictability makes this approach unsuitable 

for our purposes. 
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1.3.1,2 Non-Linear Dynamical Systems 

A Non-linear dynamical system is a set of one or more equations that are 

iterated. That is to say that the values obtained from applying the equations are 

fed back repeatedly into the equations to produce a sequence of values. These 

values are then mapped to musical parameter values. A simple one-

dimensional system has the following form: 

^n+l — f(^n) 

The system is given a starting value, xq, which is fed into the equation to 

produce xi, the second value in the sequence. This is then fed into the equation 

to produce X2 and so on. 

The sequence of values produced is called the orbit of the system and, 

depending on the values assigned to the parameters of the equations making 

up the system, can exhibit a variety of different behaviours. For example, it may 

tend to zero or infinity, or it may settle into a repeating pattern. Of particular 

interest musically, however, are chaotic orbits, in which the sequence shows 

unpredictability but also traces of cyclic behaviour, where previously heard 

patterns wiU appear to recur but with degrees of variation. 

Pressing (1988), for example, explores the equation 

Xfi+i = aXn(l ~ Xn) 

examining the differing output for various values of the parameter a, and also 

gives examples of higher dimensional systems (that is, consisting of two or 

more equations) in which each dimension is mapped to a different musical 

parameter. Such systems allow coordination to be achieved between different 

parameters. Bidlack (1992), examines a range of chaotic systems, giving pictorial 

representations of the scores produced by each. Gogins (1991), on the other 

hand, whilst also making use of dynamical systems, does not apply the values 

of the orbit directly, but instead derives the measure of the set of points making 

up the orbit. The measure can be interpreted as the density of the points in it. 

The density of a point depends on the number of times it is visited, or "hit", 

during the generation of the orbit: the more times it is hit, the greater is its 

density. The resulting score is represented graphically as a two dimensional 

image with time running left to right on the horizontal axis, pitch running 

from bottom to top on the vertical axis and the depth of colour of each point 

varying according to its density. The density is mapped to loudness. Once the 

score is complete it may be elaborated by applying various transformations, for 

example, rotation, scaling or translation. 
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Non-linear dynamical systems have the advantage of requiring only a 

small number of input parameters whilst being capable of a wide range of 

output. However, the drawback from our point of view is, again, the lack of 

control of the output. The chaotic behaviour of the output is extremely difficult 

to predict in advance, while very small changes in the values of the parameters 

can result in extremely large variation in output, and the compositional 

situation is therefore one of experimentation, where the results can 

nevertheless be surprising and fascinating. An additional disadvantage of 

Gogins' approach is that it can take an inordinately large number of iterations, 

possibly millions, for the score to be formed. 

1.3.2 Cellular Automata 

Cellular automata have been used to model naturally occurring phenomena in 

a wide range of disciplines including physics, biology and chemistry. A cellular 

automaton consists of a rectangular array of cells each of which contains a 

discrete variable quantity. The state of a cellular automaton is determined by 

the values of all of its cells and the state evolves in step with the ticking of an 

imaginary clock. A set of rules is applied to determine the value of a cell based 

on the values of its neighbouring cells. To start the automata, an initial 

configuration of cells must be specified. 

Miranda (1993, 1994) applies two cellular automata in parallel. In the first, 

called "The Game of Life", each cell can have one of two values, alive (1) or 

dead (0). It has the following rules: 

1. if a cell is dead at time t, it becomes alive at time t+1 if, and only if, 

exactly 3 of its 8 neighbours are alive at time t 

2. if a cell is aUve at time t, it becomes dead at time t+1 if, and only if, 

fewer than 2 or more than 3 neighbours are alive at time t 

In the second, called "Demon Cyclic Space", each cell can be in one of n possible 

states, numbered 0 to n-1. A cell that is in state k at time t dominates any 

neighbouring cells that are in state k-1, in that their state changes to k at time 

t+1. A cell that is in state 0 dominates neighbouring cells that are in state n-1. 

The Game of Life cellular automaton is used to generate a sequence of 

trichords. The first note of each trichord is taken from a predefined pitch 

sequence supplied by the user. The second and third notes are derived by 

mapping the Game of Life array to a two-dimensional Cartesian coordinate 

system called a "Neumann Musical Space". Each live cell produces a trichord, 

the x coordinate of the cell determining the interval of the second note of the 
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trichord above the first, and the y coordinate determining the interval of the 

third note above the second. The notes of the trichord do not necessarily occur 

simultaneously. Instead, the ordering of the three notes is derived 

algorithmically from the states of the neighbours of the corresponding cell 

while the precise triggering points and durations are calculated from a user-

selected distribution formula^. The Demon Cyclic Space cellular automaton, on 

the other hand, is used to determine the MIDI channel associated with the 

output associated with a cell. These techniques are implemented in a computer 

program called CAMUS (Cellular Automata Music). This system was later 

developed into CAMUS 3D (McAlpine et al 1999), which uses three-

dimensional cellular automata, in order to produce four-note chords, and 

Markov chains^ to calculate the note durations. 

Again, cellular automata do not satisfy our objectives due to the lack of 

direct control of the output in terms of input parameter variation. The 

principal "parameter" is the initial setup of the cell configuration pattern and it 

is extremely difficult to predict where a particular pattern will lead. Miranda 

(1993; 14) describes composing with the CAMUS program as being "like the 

nature of an experimental action; an action the outcome of which is not 

foreseen", and that, of course, is the appeal of composing in this way. 

1.3.3 Artificial Intelligence 

An artificially intelligent composition system is one which is able to "learn" the 

structure of existing musical examples and generalise from them to compose 

new pieces. 

Cope has developed a system called EMI, which stands for "Experiments 

in Musical Intelligence" (Cope 1987, 1991). Using techniques taken from 

linguistic models. Cope's Schenkerian derived SPEAC (Statement, Preparation, 

Extension, Antecedent, Consequent) system provides a symbolic mechanism for 

describing hierarchical musical structures and relationships. A signature is 

defined as a set of contiguous interval patterns and Cope's premise is that these 

signatures represent the essential means by which we recognise the style of a 

particular composer. The data for two or more works by the same composer are 

entered and these are then parsed using a pattern matching algorithm to 

discover the signatures, which are added to a signature pool. Durations are 

pattern matched as well as pitch sequences. The process can now be reversed to 

generate new material. Rather than make random selections, ATNs 

(Augmented Transition Networks) are employed to make informed, 

probability-based choices by reviewing previous decisions and selecting an 

3 Distribution formulas are discussed in detail in 1.2.4.2 below 

4 Markov chains are discussed in detail in 1.2.4.4 below 
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option that is appropriate for its predecessors. Cope has used his EMI system to 

generate musical examples in a range of different styles (Cope 1991:141-212) 

including Bach Inventions (ibid: 141-151), a Mozart Sonata (ibid: 154-171) and a 

Joplin Rag (ibid: 171-173). 
Todd (1989) describes a network that can leam aspects of musical 

structure. The network leams to produce the next note in a sequence based on 

some memory of past notes. This memory is provided by feedback connections 

that cycle current network activity back into the network for later use. 

Genetic techniques have also been applied to produce variations of music 

input by the user (RaUey 1995, Burton and Vladimirova 1999). An initial 

population is seeded with pieces similar to the user's, formed as a result of 

analysing the user's music. New output is then obtained through a process of 

mutation and recombination of the members of the population. 

Methods which produce variations of music supplied by the user have 

been criticised for lacking in originality and creativity (Laske 1990). However, as 

well as providing a supply of new material in a particular style, they can give 

important insight into the regularities of a style (Loy 1990) and, of course, the 

supplied music could be in the user's own style. Nonetheless, these techniques 

do not comply with our third objective, that the algorithm should be the 

starting point in the composing process, and are therefore not considered 

further in this thesis. 

1.3.4 Stochastic Techniques 

A stochastic process is a collection of random-variable quantities distributed in 

space or time (Jones 1981: 45). There are degrees of randomness, however, 

ranging from complete randomness, where there is no order, to complete 

determinism. In order to compose music from a stochastic process, a structural 

framework, or stochastic generative scheme (ibid: 45), must be established 

within which the random behaviour, and thereby the musical output, of the 

system can be controlled. 

1.3.4.1 Rule Based Approach 

One way to create a structural framework is to specify a set of rules which the 

musical output must satisfy, sometimes called a "Random Sieve" (Moore 1990: 

413-418). This is the approach adopted by Hiller and Isaacson in the first three 

movements (or "Experiments") of their ground-breaking work Illiac Suite for 

String Quartet (Hiller and Isaacson 1959). They described the composing of 

music as the "extraction of order out of a chaotic multitude of available 
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possibilities" (ibid: 1) and looked to mathematics to aid this task. Their 

composing process consists of two basic operations: 

1. Generate random sequences of integers which are equated to notes of a 

scale, rhythmic patterns, dynamics, or playing instructions. 

2. Screen each integer through a series of arithmetic tests expressing 

rules of composition. If the integer fails the tests it is rejected, if it 

passes it is stored until the composition is ready to print. 

These operations were coded in a computer program and the printed values 

were then manually transcribed into standard music notation for live 

performance. 

The rules consisted of Melodic Rules (for example, no melodic line may 

span more than one octave). Harmonic Rules (for example, the first and last 

chords of a melodic line must be based on the tonic triad) and Combined Rules 
(for example, parallel perfect fifths are forbidden). 

This is a classic example of the rule-based approach discussed in objective 

6. The mathematical mechanisms of the algorithm do not really contribute 

anything to the nature of the musical output. Instead, the composers have 

essentially decided everything in advance and are using the computer as a 

labour-saving device. Also, the system does not lend itself to easy adjustment 

and refinement of the rules. That is not to detract, of course, from the 

immeasurable importance of Hiller and Isaacson's pioneering work, which was 

probably the first serious attempt at using a computer to compose a work of 

music and has inspired much of the computer-based composition work that has 

followed (in any case, as we shall see later, the fourth movement of the Illiac 

Suite does employ mathematical generation techniques ). However, this 

approach does not accord with our stated objectives. 

1.3.4.2 Probability Distributions 

A more basic stochastic structure consists of specifying a simple probability 

distribution over a musical event space (Jones 1981; 46). If the probabilities of all 

events are equal, then they will occur completely at random. Any distribution 

of probabilities is possible, however, so certain events may be made to be more 

likely to occur than others (Moore 1990: 418-429, McAlpine et al 1999: 20-22). 

Lorrain (1980) describes a wide range of probability distributions suitable for 

music composition and gives procedures for coding them in a computer 

program. Similarly, Dodge and Jerse (1985: 278-283) provide musical examples 

produced from a number of different distributions. Xenakis (1992: 131-154) calls 
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this approach "Free Stochastic Music by Computer" and developed a computer 

program called SMP, or Stochastic Music Program (Dodge and Jerse 1985: 295-

297), in which various musical parameters are chosen from probability 

distributions or random lookup tables. Again, Koenig's programs Project 1 and 

Project 2 (Koenig 1970a, 1970b) produce compositions consisting of a number of 

sections within each of which musical events are generated randomly. By 

introducing a "repetition check" (Koenig 1970a: 36), whereby a pitch is not 

allowed to repeat within a particular note sequence, Koenig achieves a 

technique which he considers to be a more general case of serialism (ibid: 33). 

The character of the music produced in the various sections is varied by 

controlling the degree to which repetition checking is applied. 

A number of commercial software packages incorporate probability 

distribution techniques. The Sound Globs program (Scholz 1989, Rothstein 

1990), for example, provides a professional graphical user interface with which 

the composer draws probability distribution curves between fixed ranges of note 

pitch, loudness, vertical density (polyphony), horizontal density (number of 

pulses between successive notes) and note duration, while the M computer 

program (Zicarelli 1987: 19-23), published by Joel Chadabe's Intelligent Music 

Company, takes a note sequence entered by the user and subjects it to a variety 

of manipulations, including probabilistic variation. 

Finally, Greenhough (1984) describes a system whereby the user specifies 

a priori probabilities of occurrence for each of the 12 pitches of the equally 

tempered scale, this level of control being referred to as the p-level. However, 

in addition, probabilities are specified for the size of the interval between 

successive pitches (the Ap-level), providing control of the stepwise melodic 

motion, and for the change of interval (the A^p-level), which effects control of 

the curvature of the melody. In this way, a wide range of melodic shapes can be 

obtained. 

The basic probability distribution approach satisfies many of our 

objectives. Conceptually simple, it requires the specification of a relatively small 

set of parameter values for each musical characteristic. In the case of a 

mathematically defined distribution, this is just the range of values together 

with the parameters that specify the distribution. In the case of a probability 

lookup table, the situation is less straightforward since a number of probability 

values must be specified manually, but the user interface can help. In addition, 

some structural parameters may also be required, depending on the 

compositional framework defined by the computer program in which the 

algorithm is implemented. The drawback, however, is that while short 

sequences may give the illusion of a predetermined quality, there will be no 

evident long-term pattern, and so, in particular, this does not satisfy objective 4, 

that there should be a sense of evolution. Greenhough's system is an exception 
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to this since it affords more sophisticated control of melodic structure. 

However, the amount of data required to specify the p, Ap and A^p levels 

contravenes objective 2, sacrificing predictability and ease of refinement. 

1.3.4.3 Stochastic Grammars 

A stochastic grammar (Jones 1981: 51-60, 1989:185-195) uses structures derived 

from linguistics. A formal grammar consists of a set of symbols, an event space, 

a set of production rules specifying ways in which symbols may be rewritten by 

combinations of symbols and events, and a starting symbol to begin the 

generative process. Formal grammars provide a powerful means for 

representing musical structures (Roads 1979). A stochastic grammar associates 

probabilities with the rules of generation. As an example, a simple one-

dimensional "space grammar" consists of two rules, the first of which causes a 

splitting in half of the one-dimensional space (interpreted as a time line), while 

the other terminates the splitting process, resulting in a musical event. The 

splitting process is applied in a recursive hierarchical fashion to all the 

subdivisions created by the first rule, causing a further subdivision with 

probability pi or a termination of the splitting process with probability p2. 

When all splitting has terminated the generation is complete (note that the 

generation proceeds in a top-down fashion rather than in time-sequential 

order). The character of the resulting music is altered by adjusting the 

probabilities. For example, if the one-dimensional space grammar is applied to 

the rhythmic structure, increasing pi will cause splitting to continue to a greater 

depth, resulting in shorter note durations and a faster rhythm. Increasing p2 

causes the splitting process to terminate earlier so that notes will tend to be 

longer. This procedure can be extended to further dimensions. For example, 

with a two-dimensional space grammar, one axis can be associated with time, as 

above, while the other can be associated with pitch. An additional rule is 

required to produce splitting in the pitch dimension. Increasing the probability 

associated with this rule will favour simultaneous note activity. Further 

dimensions may be added to control intensity and timbre. 

Stochastic grammars satisfy many of our stated objectives. The set of 

input parameters is fairly small and the output is adjusted simply by varying 

the probabilities assigned to the rules, with a wide variation in musical 

characteristics being obtainable. The examples given above are simple ones and 

greater variety and complexity can be achieved from quite modest extensions to 

the rule sets. However, the top-down nature of the generation process means 

that the resulting music does not possess an evolutionary quality, in 

contravention of objective 4. 
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1.3.4,4 Markov Chains 

The Markov chain (Feller 1964: i.338-395, Freedman 1983), formulated in 1906 by 

the mathematician Andrei Andreevich Markov to distil tendencies in spelling 

in written Russian, embodies the concept of conditional probability. That is to 

say, the event which is next to occur depends in a probabilistic way on one or 

more past events. 

A given Markov chain is defined by its transition matrix which specifies 

the probabilities controlling the evolution of events. Consider the following 

example of a transition matrix: 

NEXT PITCH 

D 

PREVIOUS C 0 0.7 0.3 

PITCH D 0.1 0.5 0.4 

E 1.0 0 0 

This is a matrix for producing a simple three note melody consisting of the 

pitches C, D and E. The figures specify the probability of the pitch of the next 

note given the pitch of the previous note. For example, if a C occurs, there is a 

0.7 (or 70%) chance that the next note will be a D and a 0.3 (or 30%) chance that 

the next note will be an E - two consecutive C's never occur because the 

associated transition probability is 0. If an E occurs, the next note is always C 

since this transition probability is 1. To start the sequence off we must provide a 

starting note, which can be either chosen or generated randomly. We can 

separately control various musical parameters (pitch, note length, dynamic and 

so forth) in this way. The transition probabilities may be user-specified or they 

may be derived by analysing the transition frequencies exhibited by an existing 

piece of music (Dodge and Jerse 1985: 285-288, Moore 1990: 430-439). 

The above example is of a first-order Markov chain, because the next 

event depends only on the preceding event. However, higher order chains are 

possible. For example, in a second-order Markov chain the next event depends 

on the two preceding events, in a third-order chain on the three preceding 

events, and so on. In addition, the event space may consist of single musical 

parameter values, as in the above example, or longer, pre-composed, musical 

fragments (Jones 1981: 48). 

Markov chains have been applied by different composers in a variety of 

ways. Xenakis (1960: 86 et seq, 1992: 43-52), for example, views sound as an 
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integration of sonic grains, each having a duration, frequency and intensity. By 

dividing time into a succession of small time slices we obtain an evolutionary 

sequence of "screens". A matrix of transition probabilities can now be formed to 

describe the transition from one screen to the next (Xenakis 1992; 69-109). Here, 

the screens form the states of the Markov chain. 

As mentioned earlier, the transition matrix may be obtained from an 

analysis of existing music. Hiller and Baker's 1963 work Computer Cantata 

(Hiller and Baker 1964), for example, makes extensive use of transition tables 

derived from an analysis of an excerpt from the second movement of Charles 

Ives' Three Places in New England. The Jam Factory computer program 

(Zicarelli 1987: 23-27), on the other hand, builds transition tables from music 

entered by the user. 

The transition matrix does not have to remain fixed throughout the 

course of the work, however. The probability values may, for example, be 

modified continually. In the fourth movement of Hiller and Isaacson's llliac 

Suite (Hiller and Isaacson 1959: 131-147), the four part musical structure is seen 

as a random flight of four trajectories, characterised in terms of Markov chain 

processes, and the transition probabilities are regularly adjusted automatically, 

causing a shift from a fixed tonality to a freer, more random, texture. Similarly, 

Ames (1989; 183-184) describes a work developed in collaboration with John 

Myhill which employs transition probabilities that evolve gradually under 

strict parametric control. Another approach is to choose one from a number of 

alternative transition matrices at each stage in the event generation process. In 

Zicarelli's aforementioned Jam Factory program, for example, transition 

matrices are held for each of orders one to four and an automatic choice is 

made, at each note, as to which of the four tables to use based on a user-

controlled probability distribution. Zicarelli's experience suggests that "70-80% 

order two with the rest divided between orders one and three will blend 

'mistakes' with recognisable phrases from the source material in a satisfying 

manner". 

One difficulty with Markov chains is that the transition matrices can be 

very large and therefore occupy a significant amount of computer memory. 

Lyon (1995) tackles this issue by applying Petri Net techniques to composition in 

order to achieve computation of Markov processes with significant reductions 

in the amount of space needed to store the transition matrix in the computer. 

The Markov chain approach provides an evolutionary structure as 

required by objective 4 and indeed is the technique chosen for use in this 

research, with the event space consisting of single musical parameter values, 

rather than pre-composed fragments, in accordance with objective 3; that the 

composer should not have to supply any preformed musical material. 

However, as mentioned above, one of the major problems in applying Markov 
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chains to the composition of music is the size of the transition matrix since, for 

a first-order Markov chain, the composer is required to supply a two-

dimensional matrix of probability values whose size varies with the square of 

the number of possible parameter values. To produce a melody drawn from 10 

different pitches, for example, requires a matrix of 100 numbers, and the 

problem grows exponentially as the order of the Markov chain increases. This is 

not just a problem from the programming perspective. It is also impractical for 

the composer to be expected to supply the probabilities explicitly. As we have 

seen, one way around this problem is to derive the matrices from pre-supplied 

music but this contravenes objective 3. 

In this research, therefore, a technique has been developed, called the 

Diagonal Line Method, which enables a wide range of possibly very large 

Markov chain transition matrices to be generated, based on a very small set of 

input parameter values supplied by the user. 

* * * * 

In this introductory chapter, I have established the objectives behind the 

development of a mathematical algorithm to be used as the basis for computer-

generated musical composition and identified the mathematical techniques 

which underlie this algorithm together with the reasons why they have been 

chosen in preference to alternative methods. 

In the remainder of this thesis, I will provide a full explanation of the 

mathematical details of the algorithm, explain its implementation in a 

composing environment though a computer program, Markov, and explore, in 

detail, its capabilities and limitations. 

Firstly, in Chapter 2, THE ALGORITHM, the mathematical details of the 

algorithm are presented, together with the compositional reasons why it was 

developed in this way. Then, in Chapter 3, THE MARKOV PROGRAM, the 

structure and functionality of the Markov computer program are described. 

Chapter 4, THE COMPOSITIONAL PROCESS, explores the compositional 

environment afforded by the program, including a step by step example of a 

composition being developed. Next, in Chapter 5, ANALYSIS OF THE 
ALGORITHM, a rigorous study is carried out of the ways in which varying the 

algorithm's input parameters affects the musical output. Now, in the final two 

chapters of the thesis, the lessons learned in Chapters 4 and 5 can be applied to 

the composition of music: Chapter 6, STYLE EMULATION, investigates the 

ability of the algorithm to produce music based on various given styles and 

Chapter 7, COMPOSITIONAL STUDIES, describes some original compositional 
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studies of my own which were produced using the Markov program. There are 

four appendices: Appendix A, MARKOV PROGRAM USER GUIDE (separate 

copies are held on the accompanying compact disc and floppy disk), provides a 

comprehensive user manual for the Markov program. Appendix B, MARKOV 
PROGRAM SCORES, contains the program-generated parametric "scores" for 

the pieces discussed in Chapters 6 and 7, Appendix C, BACH SCORES IN STAFF 

NOTATION, contains scores in traditional staff notation for various program-

generated realisations of a piece of Bach Harpsichord music, one of the styles 

studied in Chapter 6, and Appendix D, MARKOV PROGRAM SOURCE CODE 
LISTINGS (held on the accompanying compact disc), provides the complete 

source code listings for the Markov computer program. 
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2.1 INTRODUCTION 

In the Introduction chapter to this thesis, I explained that, due to the desire for 

the music resulting from the algorithm to have an evolutionary structure, 

Markov chains have been chosen as the underlying mathematical method (see 

Section 1.2.4.4). It was seen there, however, that a major problem with the use 

of the Markov chain in the composition of music is the size of the transition 

matrix. Therefore, what is required is a way of generating the matrices according 

to some pre-specified mathematical rules. The mathematical algorithm 

developed for the Markov program provides such a method, and is described in 

detail in this chapter. 

2.2. GENERATING THE ROWS OF THE TRANSITION MATRIX 

2.2.1 The Bilateral Exponential Function 

In order to avoid the need to specify each of the individual probability values 

which make up the rows of the transition matrix, the complete set of probability 

values for any particular row is generated from a single function which, as we 

shall see, has only two parameters and will generate the values for one 

complete row of the matrix no matter how large it is. Thus, for, say, a 25 x 25 

matrix, only the two parameter values for the single function are required to 

produce the probability values for one row rather than 25. 

The function used is the bilateral exponential function: 

f(x) 

m 

This function has the formula 

f(x)= 

2 
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where m is the midpoint, or mean. The parameter X provides the degree of 

probabilistic control required (Objective 5) by controlling the compactness of the 

function - the larger the value of X the more tightly packed the function is 

around the mean: 

m 

The smaller the value of X the more spread is the function: 

f(x) 

The bilateral exponential function was chosen because its single-peaked nature, 

together with the wide variations in spread which are achievable through the X 

parameter provide, when used in conjunction with the Diagonal Line Method 

(see 2.2.2 below), a powerful mechanism for note sequence generation. 

The following example uses eight notes of a C major scaled from C to c, 

centring around a mean pitch value of G: 

1 While a diatonic major scale is used in the illustrative examples throughout this chapter, any 
pitch collection can be used when composing with the algorithm. 
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Thus, for a high X value the p r o b a b i l i t i e s ^ that, say, G is followed by either C, D, 

E, F, G, A, B or c might be: 

C D E F C A B c 
0.01 0.025 0.05 0.17 0.5 0.17 0.05 0.025 

while for a low X value they might be: 

C D E F G A B c 
0.08 0.09 0.11 0.15 0.22 0.15 0.11 0.09 

Thus, in line with objective 5, if X is very high then G will almost certainly be 

followed by G, if X is quite high then G will most likely be followed by G but 

may sometimes be followed by F or A, and as X becomes lower it becomes 

increasingly likely that any of the pitches could follow G. This behaviour is 

quantified more precisely in Section 5.2 where musical results are explored for 

various specific X, values. It is also shown that for sufficiently high X,the 

behaviour becomes completely deterministic e.g. G is always followed by G^. 

All that the composer needs to supply now, for each of the possible 

values in the range, are the corresponding values of X and the mean, m, thereby 

completely specifying all rows of the transition matrix. However, this still 

requires two parameter values {X and m) for each row of the transition matrix 

and this is far too many too satisfy objective 2 (for example, a 25 x 25 transition 

matrix requires 50 parameter values). This is cut by half by assuming the same X. 

value for all rows of the matrix. To reduce the number of required parameters 

still further, an extension to the algorithm is required which enables the means 

for all rows of the matrix to be generated from a single function. The Diagonal 
Line Method, described in the next section, provides such an extension. 

2 To be precise, since the various note parameter ranges are discrete valued (discrete pitches, 
discrete note lengths and so on), the value of the transition probability for each of the possible 
parameter values in one row of the transition matrix is given by the area under the bilateral 
exponential curve centred around that value. 

^ For the purpose of calculation, pitch values are represented as their corresponding MIDI pitch 
numbers (e.g. middle C - 60) so as to provide a sequential numerical range of values. 
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2,2.2 The Diagonal Line Method 

Consider the following diagram: 

Previous Pitch 

Next Pitch 

C D E F G A B c 

The possible values of the pitch of the previous note are shown on the vertical 

axis and the possible values of the pitch of the next note to be played are shown 

on the horizontal axis. A 45^ downward sloping diagonal line has been 

specified. To determine the mean of the bilateral exponential function for any 

row of the transition matrix, draw a line horizontally from the previous pitch 

until it meets the diagonal line, then draw a line vertically upwards to meet the 

"Next Pitch" axis and read off the value. For example, if the previous pitch is G: 

Previous Pitch 

C 
D 
E 
F 
G 
A 
B 
g 

Next Pitch 

D E F G A B c 

then the pitch of the next note will tend to be G also, and it is not difficult to see, 

for this particular diagonal line, that for any previous pitch, the pitch of the 

next note will tend to stay the same (the higher the value of X, the stronger will 

be this tendency, while the lower the value of X,, the more "drift" there will be). 

Thus, the diagonal line defines the following family of bilateral exponential 

curves, one for each row of the transition matrix: 
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Previous Pitch 

Next Pitch 

(this diagram should be interpreted in three dimensions, with the curves rising 

upward from the matrix in accordance with the value of X). 

Now consider another example: 

Previous Pitch 

Next Pitch 

C D E F G A B c 

Here, the diagonal is a 45^ upward sloping line. Now, pitch values towards the 

extremes of the range will tend to jump to the opposite end of the range while 

pitches in the middle of the range will tend to stay the same; for example, a D 

will tend to jump up to a B, an A will tend to jump down to an E and an F will 

tend to jump only one note up to a G: 
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Previous Pitch 

Next Pitch 

C D E F G A B c 

Finally, consider the following: 

Previous Pitch 

Next Pitch 

C D E F G A B c 
C 
D 
E 
F 
G 
A 
B 
c 

Here, no matter what the value of the previous pitch, the value of the next 

pitch will tend to be E; that is, the melody will be centred around E. 

In general, any diagonal may be used. For the purposes of this discussion, 

we shall consider only diagonals from 45^ downward to 45^ upward sloping, but 

other cases will be considered in Section 2.3 below. 

The above discussion uses pitch as an example but the same Diagonal 

Line Method is used to control note length, dynamic, and other characteristics, 

vibrato for example. 

2.2.3 Generating Note Sequences 

Each note parameter (pitch, length, dynamic and so on) has its own transition 

matrix and is calculated separately so as to fully determine all the parameter 

values for the next note in the sequence. 

For each parameter, supposing that the value of the parameter for the 

previous note is Xp, the 2-step procedure to generate the parameter value, Xn, for 

the next note in the sequence is as follows 
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1. Calculate the mean of the bilateral exponential function for the row 

corresponding to Xp using the Diagonal Line Method 

2. Calculate the parameter value, Xn, for the next note based on the 

transition probabilities given by the bilateral exponential function for 

the row corresponding to Xp. 

Step 1 - Calculating the mean of the bilateral exponential function 

corresponding to Xp 

Let [xmiiv Xmax] be the range of possible parameter values, ymm the start-point 

value of the diagonal line (referred to in this work as the Minimum Mean), g 

the gradient of the diagonal line and m the mean to be calculated: 

x m m 
Ymin 

^max 

Then, using the formula for a straight line, m is given by; 

m — g(Xp - Xmin) + ymin (1) 

where g is given by^; 

distance covered by line on horizontal axis 

distance covered by line on vertical axis 

4 Usually, the gradient of a straight line is given by the inverse of the formula given here. 
However, due to the nature of the transition matrix, the "x-axis" is the vertical axis in the 
diagrams shown here and the "y-axis" is the horizontal axis, contrary to Cartesian geometry. 
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Step 2 - Calculating the parameter value for the next note 

We wish to generate a parameter value, Xn, for the next note, which obeys the 

transition probabilities given by the bilateral exponential function for the row 

corresponding to Xp. That it is to say, although we do not necessarily know in 

advance exactly what the value of Xn will be, we want it to be the case that; 

(i) A value with a higher transition probability is more likely to occur 

than a value with a lower transition probability. 

(ii) The likelihood of occurrence of a value increases in proportion to its 

transition probability . 

For instance, if the probability of a transition from, say, pitch E to pitch F is 0.5 

while to pitch G it is 0.25, it should be twice as likely that E is followed by F than 

that it is followed by G. To achieve this, Monte Carlo techniques are used 

(Naylor et al 1966). Monte Carlo exploits the ability of computers to generate 

very large sequences of uniformly distributed random real numbers from a 

specified range^ (by uniformly distributed we mean that all values in the range 

are equally likely to occur: for example, if a fair dice, as opposed to a loaded one, 

is rolled repeatedly a large number of times, we would expect the occurrences of 

the values 1 to 6 to be uniformly distributed). The random numbers generated 

are then adapted for the problem at hand. 

Here, a random real number N is first generated from the range 0 to 1. 

Then, to apply Monte Carlo, we need a mapping which will produce a 

corresponding value of Xn which satisfies our probability requirements. To 

achieve this we use the cumulative distribution, F(x), for the bilateral 

exponential function, where 

F(x) = Fr(xn< x) 

In other words, F(x) is the probability that Xn is less than or equal to x (note that 

0 ^ F(x) < 1). For example, the values of F(x) for a fair dice would be: 

f c o = 1/6 
F(2) = 2/6 = l / 3 

5 To be precise, the numbers generated by the computer are pseudorandom: they require a starting 
value, or seed, which is fed into a recursive formula to generate the sequence. The same seed used 
on two separate occasions would produce exactly the same sequence, so a common technique, which 
is employed by the Markov program, is to calculate the seed value from the current date and time 
to the nearest second, thus guaranteeing that no two runs of the program produce the same seed. 
Strictly speaking, the sequence is deterministic rather than random because it is generated from a 
precise recursive formula, but the sequence of numbers satisfies statistical tests for randomness and 
is therefore appropriate for use in Monte Carlo applications. 
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F(3) = 3 / 6 = l / 2 

F(4) = 4 / 6 = 2 / 3 

FC^= 5/6 

F(6) = 1 

We then find the value, Xn, of x for which F(x) is equal to the generated random 

number N (Naylor et al 1966: 68-73); that is, 

F(xn) = N 

If we can solve this equation then we are able to calculate the required next 

value, Xp. 

Now, for the bilateral exponential function, F(x) is given by 

F(x) =l/2e)^(x-m) x - m < 0 

F(x) =l_l/2e-)^(x-m) X - m > 0 

However, the bilateral exponential function has infinite tails (that is, left and 

right hand ends) whereas the note parameter values have a finite range. 

Therefore it is necessary to nomlalise the function so that the area under the 

curve over the parameter value range equals unity. 

Let T = the area of the left hand tail and A = Ai + A2 = the area over the 

parameter value range: 

x . mn 
mm max 

Then, after normalisation, Xn is given by: 

(F(xn)-T)/A = N 
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Now, 

and 

T =j' l /2)Le^x-»i)dx 

1/2 [e)̂ (x ni)] 

l / 2 e k x ^ - m ) 

a2 =j'l/2xe-)^(x-n:i)dx 

m 

-1/2 [e X(x m)] 

m 

= l/2-l/2e-)^(xmax-'^) 

- l/2(l-e-)^(xmax-'^)) 

Ai = 1 / 2 - T 

= l /2- l /2emxmm-'") 

= l/2(l-e)^(xmm-'^)) 

a = aj^ + a 2 

1 - 1 / 2 (e-̂ ^o^max-"") + 
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To calculate Xjv we must distinguish between two separate cases; 

1. N < Ai/A that is, Xn < m 

2. N > Ai /A that is, Xn > m 

If N < Ai / A, then 

(F(Xn)-T)/A = N 

<=> l/2e)^(Xn-w . t = n a 

<=> e)^(xn-m)=2(na + t ) 

<=> X.(xn - m) = ln2(NA + T) 

<=> Xn=(Xm + ln2(NA +T))/k (2) 

If N > Ai/A, then 

(F(xn)-T)/A = N 

<=> 1 - 1 / 2 - T = N A 

<=> 1 - 1 / 2 e - ) ^ ( X n - = N A + T 

<=> - 1 / 2 m) = N A + T - 1 

<=> m) = _2(NA + T - 1 ) 

<=> -X(xn - m) = ln-2(NA + T -1) 

<=> X n = i X m - ln-2(NA + T - 1))/X (3) 

Since the musical parameters are discrete valued, the value of Xn thus obtained 

is now rounded to the nearest discrete value. 
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2.3. EXTENSIONS TO THE DIAGONAL LINE METHOD 

2.3.1 Introduction 

All the diagonal lines considered thus far have met the bottom edge of the 

coordinate rectangle before, or at the same time as, meeting the right-hand edge; 

that is, they have all satisfied the condition 

g(̂ max - Xmin) + Ymin ^ Xmax 

and in the early stages of development of the algorithm, the diagonal line was 

restricted to this family. However, although this somewhat limited set of lines 

produces a very wide variety of musical results, it was realised that a large set of 

diagonal lines was being excluded which could potentially produce yet more 

variation in output. 

Lines not yet considered are those which meet the right-hand edge of the 

coordinate rectangle before meeting the bottom edge; that is, those for which 

S(̂ max " Xmin) + Ymin > ^max 

The problem with these lines is that it is impossible to calculate values of the 

next mean for certain previous parameter values (specifically those greater than 

Xmin + (xmax-ymin) /g ) because a horizontal line drawn from them does not 

meet the diagonal line, as in the following;-

min 

^min ^^max" y-min^'^8 

ymin 

^max 

Therefore, we need to find a way to continue the line from where it meets the 

right hand edge so that it encompasses the complete range of Xp values. The 

algorithm offers the composer a choice of two alternatives for dealing with this 

situation, and these are described in detail in the next two sections. 
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2.3.2 Wraparound 

One possibility is to employ wraparound, so that the line re-emerges at the left-

hand edge:-

X, 
ymin ^max 

m m 

^max 

In order to correctly calculate the required next mean value given the previous 

parameter value, we need to remap values for which the straight line formula 

m = g(Xp - Xntin) + ymin 

yields values of m outside the range Xmmto x^ax^-

For a positive gradient, g, redraw the diagonal line as follows:-

"mm 

m̂nax 

^ Since the parameter values are discrete and the methods that follow assume that the result, m, 
of this formula is integer, m should be rounded to the nearest integer. It can therefore be assumed 
that wherever the expression m - g(xp - Xmin) + ymin appears as a term in the formulae that 
follow, its value is integer. 
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where 

mq = xmax 

m l = xmax + (xmax ~ ^min + 1) 

m2 = xjtiax + 2(xniax " xmin +1) 

m3 = xmax + 3(xijiax ~ xmin + 1) 

Now consider any region Mn < m < Mn+i (Mi < m < M2 above, for example); 

m n ivi vi + s 
m m 

^max 

^ n + 1 

Then, letting m=Mn + s, where 0 < s < Xmax - Xmin + 1, and letting the mapped 

value of m equal m', m maps to Xmm + s -1; that is. 

m = Xmax + n(Xmax- Xmin+ 1) + S maps fo m' = Xmin + s - 1, (4) 

For g < 0, redraw the diagonal line as foUows:-

m_4 m_3 m.2 m _ i Mr 

where 

m-i = xjnax " (xmax ~ xnun + 1) 

m-2 = xjtiax ~ 2(xitiax " xmin +1) 

m-3 = xmax ~ 3(xiixax " xmin +1) 
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Now consider any region Mn < m < Mn+i, n < 0 (M-3 < m < M-2 above, for 

example) 

m n + s x m m max 

Again, as in (4), 

m = Xmax+ n(xmax-Xmm+ 1) + S maps fo m' = Xmin + S - 1 

and the complete mapping can be represented in the following listing; 

m m 

xmax ~ 3(xniax " ^min + 1) + (xmax " ^min) 

xmax - 3(xmax " ^min + 1) + (̂ max ~ ^imn +1) 

xmax " 2(xmax ~ ^min + 1) + 1 

xmax " 2(xmax ~ ^min + 1) + 2 

xmax " 1 

xmax 

^min 

^min"'' 1 

xmax " 2(xmax " xmin + 1) + (̂ max " ^min) 

xmax " 2(xinax " ^min + 1) + (̂ max " ^min + 1) 

xmax " (xmax ~ ^min + 1) + 1 

xmax ~ (^max " ^min + 1) + 2 

xmax " 1 

xmax 

xmin 

xmin+ 1 

^min" 1 

xmin 
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1 xrnm+ 1 

xmax" 1 

xmax 

xmax + 1 

^max + 2 

xmax " 1 

xmax 

^min 

xmin+ 1 

Xmax + (^max " ^min) 

xmax + (xmax " ^min +1) 

xtnax + (^max " ^min + 1) + 1 

xmax + (xmax ~ ^̂ min + 1) + 2 

xmax " 1 

xmax 

xmin 

xmin+ 1 

xmax + (xmax " '̂ min + 1) + (xmax " ^min) 

xmax + (xmax " ^̂ min + 1) + (xmax " ^min + 1) 

xmax + 2(xm[ax " xmin + 1) + 1 

Xmax + 2(Xmjax ' Xmin + 1) + 2 

Xmax" 1 

Xmax 

Xmin 

xmin+ 1 

Xmax + (n - l)(Xn-iax " Xmin + 1) + (Xmax ~ Xmin) X^ax " 1 

Xmax + (ri - l)(Xmax ~ Xmin + 1) + (Xmax " Xmin +1) Xmax 

Xmax + ri(Xmax " Xmin + 1) + 1 Xmin 

Xmax + ri(Xmax " Xmin + 1) + 2 Xmin + 1 

The two cases m ^ Xmin^nd m < XminHiust be handled separately. 

For m s Xmin, let 

m 1 = m - Xmin = Xmax + ri(xmax " Xmin + 1) + s - Xmin 

— (n + l)(Xmax " Xmin + 1) + S - 1 
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Let 

m i = mi mod (xmax- Xmin+ 1) = s - 1 

Finally, let 

mg — m2 + X j n i n = + s - 1 

which is the mapping required in (4). Thus, combining the above three 

transformations, we can deduce that the general wraparound formula for 

m ^ Xmin is 

m' = [g(xp- Xinin)+ymin" Xminl mod (Xmax " 1) + *min 

For m < Xmin (and therefore n < 0), let 

m 1 = m - Xjxiax = ̂ max + ri(Xmax " '̂ inin + 1) + S - Xmax 

— n(^max " ^min + 1) + s 

= (n + l)(Xinax - Xmin + 1) + S - (x^ax ~ Xmin + 1)^ 

Let 

m2 = mi mod (x^ax - Xmm+ 1) = S- (Xmax " Xmm+ 1) 

Finally, let 

m 3 == m2 + X jnax — Xuun + s - 1 

which is the mapping required in (4). Thus, combining the above three 

transformations, we can deduce that the general wraparound formula for 

m < Xmin is 

m' = [g(Xp- Xmin) + ymin" Xmaxl mod (Xmax" Xmin+ D + Xjnax 

and, combining the results for g > 0 and m < Xmin we obtain the complete 

wraparound result;-

7 This last adjustment is necessary because, since the value is negative and we are about to use 
modulo arithmetic, we must ensure that the remainder is non-positive 
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— { lg('̂ p" Xmin) +ymin" Xminlmod (Xmax " 1) + ^miiv M ̂  X̂ nin 

{ [g^xp- xinin)+ymin" ̂ max] mod (xmax" '̂ min"'" d "t" ^max/ < x^in 

(5) 

The value of m' thus obtained is now used to calculate the next parameter 

value, Xiv by applying formulae (2) and (3), as described in Section 2.2.3 above. 

2.3.3 Reflection 

An alternative possibility is reflection. Here, diagonal lines which meet the left-

or right-hand edge of the coordinate rectangle reflect from it, as in the 

following:-

t m i n 
x m m 

^max 

'-max 

Again, we need to find the required mapping for values outside the range Xmm 

to xmax. 
For a positive gradient, g, redraw the diagonal line as foUows:-

'̂ min 
mr Mh M, M, 

t̂tian 
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where 

mq = xjnax ^min + (^max ~ ^min) 

m l = xjnirj + 2(xmax " xmiji) 

m2 = xixiin + 3(xniax " xmin) 

m3 = xjnin + 4(xiiiax " xjnin ) 

and in general 

— xmin + (n+l)(xmax " xmin) 

First, consider regions where Mn-i < m < Mn, n odd (Mq < m < Mi above, for 

example) 

max max 
m m 

max ^max 

Then, letting m=Mn-i + s, where 0 < s s x^ax - Xmin, m maps to Xmax - s; that is. 

m = Xmin+ ii(Xmax- Xmin) + s 0̂ m' = x^ax - s (6) 

Next, consider regions where Mn-i < m < Mn, n even (Mi < m < M2 above, for 

example);-

45 



w n + " ^max ^ n - 1 ^ n - 1 + ® 
m m 

^max 

In this case. 

m = xmm+n(xmax-xmm) + smapg tom' = xmm + s (7) 

For g < 0, redraw the diagonal line as follows:-

m.4 m .3 m .2 m.i Mr 

m"! = xmin 

m-2 — xjnin - (xmax " xmin) 

M - 3 = Xmin - 2(Xmax ~ ^inin) 

m-4 = xmin " 3(xinax ' ^min) 

First, consider regions where Mn-i < m < Mn, n odd (M-2 < m < M-i above, for 

example) 
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min max max 

Again, as in (6), 

m — Xmin + ri(Xmax " ^min) + s maps to m = Xmax " s 

Finally, consider regions where Mn-i < m < Mn, n even (Mi < m < M2 above, for 

example) 

mn-1 m n - l + s m n ^min ^min"^ ® %max 

Again, as in (7), 

m = Xmin+ n(xmax-Xmin) + s mops fo m' = Xmin + s 

and the general mapping can be listed as follows 

m m 

xmin - 3(xitiax " xnun) + (xmax " xmin ~ 1) 

Xmin ~ 2(Xmax ~ Xmin) 

Xmin " 2(Xmax " Xmin) + 1 

Xmin + 1 

Xmin 

Xmin+ 1 
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xmin " 2(xinax ~ ^min) + 2 ^min 2 

xmin " 2(xuiax " ^mm) + ('"̂ max " '̂ min ~ 1) 

xmin " (xmax " ^min) 

xmin " (xmax " xmin) + 1 

xmin ~ (xmax " ^mm) + 2 

xmax ~ 1 

xmax 

xmax" 1 

^max " 2 

xmin" 1 

^min 

^min+ 1 

xmin+ 1 

xmin 
xmm+ 1 

xmax - 1 

^min + (Xmax " ^min) 

^min + (xmax " ^min) + 1 

xmin + (^max " ^min) + 2 

xmax ~ 1 

xmax 

xmax " 1 

xmax " 2 

^min + (xmax ~ ^min) + (̂ max " ^min "1) 

xmin + 2(xmax " ^inin) 

^min + 2(xmax " ^min) + 1 

^min + 2(xitiax ~ ^min) + 2 

^mm^" 1 

^min 
1 

^min + 2 

Xmin + 2(Xmax ~ ^min) + (^max ~ ̂ min" 1) 

^min + 3(xjtiax " ^min) 

Xmin + 3(Xniax " ^iriin) + 1 

'̂ min + ^(xjnax " ^min) + 2 

^max " 1 

%max 

xmax- 1 

xmax " 2 
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For m >: Xmiiv ri odd, let 

r r i ] = i n - Xmin — ri(Xmax ~ '^min) + S 

Let 

m2 = mi mod (Xmax- Xmin) = S 

Finally, let 

= xjxiax ~ iti2 = xjxiax " s 

which is the mapping required in (6). Thus, combining the above three 

transformations, we can deduce that the general reflection formula, for 

m ^ Xmiiv n odd, is 

iw' = Xmax " Xmin) + ymin" Xmin] Mod (Xmax " Xmin) 

For m s Xmuv n even, let 

m 1 = m - Xitdri = n(Xmax " Xmin) + S 

Let 

m2 = mi mod (x^ax - Xmin) = s 

Finally, let 

mg = xuiiji + m2 = xuun "t" s 

which is the mapping required in (7). Thus, combining the above three 

transformations, we can deduce that the general reflection formula, for m 

Xmin/ n even, is 

m — Xmin tg(Xp- Xmin) Ymin" Xminl^iod (Xmax" Xmin) 

For m < Xmin/ n odd, let 

m 1 = m - Xmin — ri(Xmax ~ Xmin) + s 

— (n +l)(Xmax " Xmin) + S - (Xmax " Xmin) 
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Let 

m 2 = mi mod (Xmax ~ ^min) — s - (Xniax ~ Xmin) 

Finally, let 

iri 3 ~ ^min ~ ni2 = X^ax " s 

which is the mapping required in (6). Thus, combining the above three 

transformations, we can deduce that the general reflection formula, for 

m < Xmiiv n odd, is 

m — xmin" [g(xp- xmin) +ymin" xminl mod (x^ax " xmin) 

For m < Xmin/ even, let 

m 1 = m - Xmiji = n(Xniiax ' Xmin) + S 

= (n +l)(Xniax " ^min) + S - (x^ax " Xmin) 

Let 

mz = mi mod (x^ax- Xmin) = s - (x^ax - Xmin) 

Finally, let 

m3 = xmax+ m2 = xmin+ s 

which is the mapping required in (7). Thus, combining the above three 

transformations, we can deduce that the general reflection formula, for 

m < Xmin/ n even, is 

HI — Xjnax + [g(xp- Xmin) Ymin" Xminl m o d (Xmax " Xniin) 

We can determine whether n is odd or even as follows 

Let r = [(g(Xp- Xmin) + ymin " ^min) div (Xmax " ^min)] mod 2 

Then:-

r = 0, m S; Xmin => n even 

r = 1, m ^ Xmin => n odd 
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r = 0, m < Xmin => n odd 

r = 1, m < Xmin => n even 

Thus, the general reflection formula is as follows:-

{ Xmin + ls(*p" Xmin) ymin" Xminliwod (Xmax " Xmin)/ k Xmin, 1 = 0 
m' = { 

{ "max " " *imn) + ymin" Xminl mod (Xmax " ^ Xmin/ r = 1 
{ 

{ Xmin " [g(Xp - Xniin) + Ymin" mod (Xmax " Xmin), m < Xmin/ r = 0 
{ 

{ Xjnax + [g(xp - Xmin) + ymin" '̂ minl mod (Xjjiax " '̂ min)/ m < Xmin/ r = 1 

(8) 

The value of m' thus obtained is now used to calculate the next parameter 

value, Xiv by applying formulae (2) and (3), as described in Section 2.3 above. 

2.3.4 Reverse 

Experiments with the algorithm show that, for certain Minimum Mean values 

used in conjunction with Diagonal Line Wraparound, a tendency for a 

parameter to move in a certain direction (for a melody to tend to rise, for 

example) occurs (see Conditions 9 below and Section 5.4). However, in such 

cases, when a parameter reaches one end of the possible range of values it then 

jumps to the opposite end before continuing; for example, when a rising 

melody reaches the upper limit of the pitch range it jumps back down to the 

lower limit before beginning to rise again. While this might be a desired effect, 

it was felt that it would be appropriate to also provide the composer with the 

option for a rising parameter to begin falling again when it reaches the upper 

limit of the range, and for a falling parameter to begin rising again when it 

reaches the lower limit. 

The purpose of Reverse is to effect a change in direction of movement of 

a musical parameter when it reaches its upper or lower limit; for example a 

melody which is tending to rise in pitch begins to fall when it reaches the 

maximum pitch value in its range, a melody which is tending to increase in 

tempo (due to note lengths becoming shorter) begins to decrease in tempo 

when it reaches the shortest note length in its range, and so on. 

The problem is to be able to detect when a tendency to move in a 

particular direction is present and, if it is, when the parameter value has 
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reached the upper or lower limit of its range. The intention here is that the 

tendency to move should be by design, not by random accident, so that the 

composer can introduce reverse as an intentional controlling factor. 

Now, a tendency to move in a particular direction occurs if the following 

conditions are all true:-

1. The gradient, g, of the diagonal line is positive 

2. The minimum mean, ymiiv is greater than x^m (9) 

3. Wraparound is in effect 

For example, in the following situation, the melody will tend to rise (C to E, E to 

C , G t o B ) 

Next Pitch 

C D E F G A B c 

C 
D 
E 
F 
G 
A 
B 
c 

Previous Pitch 

To check whether the upper or lower limit has been reached, it is not sufficient 

to check whether the parameter value equals the maximum possible value (in 

the case of a rising tendency), or the minimum possible value (in the case of a 

falling tendency), because this may not actually happen since the parameter 

may overshoot the maximum or minimum value. For example, in the above 

example, B tends to jump back down to the lower C, rather than moving up to 

the higher C which is the maximum possible value. Instead we apply the 

following test, which detects overshoot:-

If the value is tending to rise, and the next mean is less than the 

previous parameter value (m' < Xp), then change direction 

If the value is tending to fall, and the next mean is greater than the 

previous parameter value (m' > Xp), then change direction 

Now, if the conditions in (9) are satisfied, the value will tend to rise if the 

minimum mean, ymin/ is less than the midpoint of the range, and will tend to 

fall if yminis greater than the midpoint of the range; that is, 
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)^Mn3:(xnmx-XmM0/2 =>tendengWnse 

yhun>(xmax-Xm«0/2 => tendency to &dl 

A change in direction is brought about by leaving the gradient, g, unchanged 

but modifying the value of the minimum mean, ymiiv as follows:- if y'min is the 

new minimum mean, then 

y min = Xmax ~ Ymin + Xjnin + 1 

For example, in the above case, where yminis the pitch E and the pitch is tending 

to rise, applying the above change of direction formula gives a new ymin of B:-

Next Pitch 

A B c 

Previous Pitch 

Now, the upper C tends to move to A, A to F, F to D, which is a falling 

tendency, and an exact reversal of the previous upward movement. 

Thus, summarising the above results, in order to apply the reverse effect we 

calculate a new minimum mean value, y'min/ according to the following rules: 

IF g > 0 AND yniiit> Xmin AND Wraparound is on THEN 

IF [ymin— (Xmax " Xmin)/ 2 AMD m < Xp] OR 

[ymin^ (Xmax " Xmin)/ 2 AND m > Xp] THEN 

y min = Xmax " ymin + Xmin + 1 (10) 
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2.4. SUMMARY 

2.4.1 Satisfying the Objectives 

In the Introduction chapter to this thesis, a set of objectives was stated (Section 

1.1.2) which the algorithm was to attempt to satisfy. How well does this 

algorithm meet those objectives? 

1) The composer needs no understanding of the mathematics behind the 

algorithm in order to use it. What is required is a feel for how different 

diagonal lines, and the parameters associated with them, affect the musical 

output. This is explored in detail in Chapter 5, ANALYSIS OF THE 
ALGORITHM, but also, very importantly, this understanding is gained from 

the experience of experimenting with the algorithm through the Markov 

program, through a process of continually modifying and refining the 

parameter values to obtain a desired musical result. 

2) For each musical parameter (pitch, note length, dynamic and so on), the 

following algorithm input values are required:-

the Minimum value of the parameter range 

the Maximum value of the parameter range 

the Minimum Mean value for the associated Diagonal Line 

the Gradient of the Diagonal Line 

the X, value for the bilateral exponential function 

This is a total of just 5 input values. Additionally, the program offers the 

composer the option of either providing a starting value for the musical 

parameter (the first pitch of the note sequence, for example) or allowing it to be 

generated randomly from the associated range, so that there is a possible 6th 

input value if the composer chooses to provide the starting value explicitly (see 

Appendix A, Sections 3.3.2. to 3.3.9). In addition to this very small set of 

numerical input values, the composer makes three either/or choices. Two of 

these correspond to the Diagonal Line extensions described in Section 3 above: 

should the Diagonal Line Wraparound (the default) or Reflect? 

should the Reverse option be used? 

The third choice concerns the possible successive repetition of a note parameter 

value. During experimentation with the algorithm, it was found that, 

particularly for high values of X, sequences of repeated values of a note 
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parameter will occur. It was felt, certainly in the case of pitch, that the composer 

may not want this to occur, so the program allows the composer the option of 

disallowing two successive occurrences of the same value (see Appendix A, 

Sections 3.3.2. to 3.3.4). What actually happens is that if the algorithm does 

produce a value which is exactly the same as the previous value, then either 

the next higher or next lower value is used instead, this choice being made by 

the program at random. 

Thus, in summary, for each musical parameter, the total amount of data 

which the composer has to provide to the algorithm consists of a maximum of 

just 6 input values plus 3 either/or choices. 

3) The algorithm does not analyse any provided music in order to decide its 

parameter values, nor does the user provide any explicit note sequences (other 

than, possibly, a starting value, as discussed above). Instead, the algorithm, 

together with its input parameter values as provided by the composer, is a pure 

starting point for the production of music. 

4) The use of Markov methods provides a sense of evolution of the music 

produced, with each note occurrence having a direct influence on the note that 

occurs next. 

5) The use of the bilateral exponential function provides the composer with 

control of the degree of influence a note occurrence has on the note to occur 

next, through the parameter X . The higher the value of X the stronger is the 

degree of influence, the lower the value of X the weaker the degree of influence. 

6) The composer is not required to provide any musical rules which the music 

produced by the algorithm must obey. Actually, a very small compromise has 

been made here since the Reverse option and the choice to disallow two 

successive repetitions could be seen as simple rules. 

2.4.2 Limitations 

The intentional simplicity of the algorithm must necessarily impose some 

limitations on the variety of output which can be achieved. 

Firstly, the shape of the bilateral exponential curve, having a single peak 

value, dictates that for any value of a note parameter, there is only one value 

which is the most likely to occur next. Thus, we cannot say, for example, that a 

pitch of C could be followed either a D or a G with equally high probability, with 
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pitches other than those two being less likely. To put it another way, we cannot 

achieve a row of transition probabilities like the following;-

C D E F G A B c 
0.08 0.3 0.08 0.08 0.3 0.08 0.05 0.03 

This could by achieved by generating the probabilities using a function with two 

(or more) peaks, for example:-

However, this more complex function now requires the composer to make 

separate decisions concerning each of the peaks, needs correspondingly more 

input parameter values and generally begins to become more inaccessible to 

non-mathematicians. In addition, once the composer becomes involved in the 

compositional process it becomes much less obvious how to modify parameters 

in order to achieve a desired result. True, by keeping to the single-peaked 

bilateral exponential function it is not possible to produce music which can 

make distinct "branching" decisions as it evolves (for example, if pitch C has 

been played then play either D or G next) but, for sufficiently low X , each of 

various alternatives could, probabilistically, nevertheless occur. Furthermore, 

for certain gradient values, a musical parameter can exhibit distinct, alternative 

modes of behaviour which it "jumps" between so that branching effects are still 

possible (see Sections 5.5 and 5.9 for a much more detailed analysis). 

Secondly, basing the mean generating process solely on a straight line 

rather than on more complex lines, or even curves, prevents many types of 

behaviour from occurring, as in the following example: 

Next Pitch 

C D E F G A B c 
C 
D 
E 
F 
G 
A 
B 
c 
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where E, F and G tend to be followed by another E, or another F, or another G 

respectively, while the lower C tends to rise by 4 steps to G and B tends to rise by 

2 steps to E, or even the following: 

Next Pitch 

C D E F G A B c 

0 / 

F / 
Previous Pitch 

A / 
B / 

where the melody will tend to move between different alternating pairs of 

pitches, C and D, E and F, G and A, B and c. However, allowing this degree of 

generality once again requires considerably more input parameters, it becomes 

much more difficult for the composer to relate changes in musical output to 

parametric changes and, actually, it is possible to produce sufficiently similar 

sequence patterns from an appropriately chosen single straight line, particularly 

when the gradient is greater than 1 or less than -1, so that the difference would 

not be readily discernible. Also, a point is reached where the composer is 

beginning to explicitly control the note sequence, in violation of objective 3. 
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CHapter 3 

Hie Marl^v Program 
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3.1 INTRODUCTION 

The Markov computer program is written in the Pascal programming language 

on an Apple Macintosh computer and was developed using the Symantec 

THINK Pascal (Version 4.0) development environment package (Symantec 

Corporation 1990)1. jh i s package provides an integrated environment within 

which the programmer can create, edit, compile, link and run Pascal programs. 

There are on-line debugging tools to facilitate problem solving, and separate 

program files may be organised into a single project. 

The program generates music by calculating note sequences according to 

the rules of the algorithm (see Chapter 2). These sequences are then sent to an 

external playback device, connected to the computer, using the MIDI standard 

(International MIDI Association 1988, Ley 1985). Specifically, the sequences are 

converted into individual MIDI events (play a middle C, for example) each of 

which consists of a short stream of bytes of data. These events are sent to the 

MIDI interface of the computer, in time-sequential order, from where they are 

passed to the playback device. My system consists of an Apple Macintosh LC 

computer connected to a Roland JV-30 synthesizer. 

The communication between the Markov program and the MIDI 

interface is achieved using a set of MIDI command library routines provided by 

Altech Systems' MIDIPascal (Version 3.0) (Altech Systems 1990). These allow 

the program to send MIDI standard data to either the Apple Macintosh modem 

communications port or printer port. Routines are available which, for 

example, allow the size of the MIDI output buffer to be set (see Appendix A, 

Section 5), and which transmit a MIDI event - each MIDI event is timestamped 

allowing precise control of the sequencing of musical events. 

De Furia and Scacciaferro's book, MIDI Programming for the Macintosh 
(De Furia and Scacdaferro 1988), was an excellent source of advice and guidance 

in the use of MIDI programming techniques. 

3.2 THE PROGRAM STRUCTURE 

3.2.1 Introduction 

The Markov program is divided into four main sections:-

The Initialisation Section sets up the MIDI interface and builds the program's 

pull down menus. 

1 Pascal was chosen simply because this is a language with which I am particularly familiar. 
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The Composition Section allows the composer to input the values of the 

various parameters via a series of input dialog boxes and stores this data in the 

Composition File (see Appendix A, Section 4). 

The Playback Section reads the data from the Composition File, applies the 

Diagonal Line algorithm to calculate the values of the musical parameters and 

sends the corresponding MIDI events to the MIDI interface, resulting in the live 

playback of the composition on the MIDI device(s) connected to the interface. 

The Termination Section closes down the MIDI interface and terminates the 

program. 

These four sections are now described in more detail. 

3.2.2 The Initialisation Section 

The Initialisation Section first calls a MIDIPascal routine to activate the MIDI 

output port and set the sizes, in bytes, of the input and output buffers^. Since 

the Markov program only transmits MIDI data and does not process incoming 

MIDI data, the size of the input buffer is irrelevant and is set here to a nominal 

value of 100 bytes. The output buffer size is set to 5000 bytes. In fact, an 

important feature of the Markov program is that it allows the composer to 

control the size of the output buffer (see Appendix A, Section 5). However, 

MIDIPascal does not allow a programmer to change the output buffer size once 

set, so the Markov program provides the composer with size control by limiting 

the amount of data stored in the output buffer, while the size of the output 

buffer itself remains fixed at 5000 bytes^ which therefore represents the 

maximum amount of data which can be stored in the output buffer. 

Next, a series of Apple Macintosh system routines is invoked which 

create the various Markov program pull down menus:- the File Menu (see 

Appendix A, Section 4), the MIDI Menu (see Appendix A, Section 5) and the 

Compose Menu (see Appendix A, Section 3). Actually, all these routines do is 

place the menu titles ("File", "MIDI" and "Compose") on the Apple Macintosh 

menu bar in the required order and add the corresponding pull down 

commands (for example, the Compose pull down menu has the commands 

2 Timestamped MIDI events are held in the output buffer in time-sequential order and are 
transmitted to the MIDI interface for playback when their event time arrives. 
MIDI events received from the MIDI interface, generated from a keyboard for example, are held 
in the input buffer from where a program can process them. 
The input and output buffers are managed by MIDIPascal. 
3 Although this figure was chosen arbitrarily, the intention is to balance the requirement to 
optimise the use of computer memory against the occasional need for the composer to store large 
amounts of data in the Output Buffer. 5000 should be large enough for most practical purposes. For 
the reasons why the program allows the composer to control the Output Buffer's size see Appendix 
A, Section 5.1 
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"Edit", "Section Sequence", "Tempo" and "Play"); the functionality behind 

these commands is implemented elsewhere in the program. 

Also in this section, the Text window is drawn. This window is used to display 

information to the composer. For example, a summary of the contents of the 

Composition File (see Appendix A, Section 4.5). 

The program now waits for the composer to select a Menu Command, 

and processes it accordingly (for a full description of all the Menu Commands, 

see Appendix A, Sections 3,4 and 5). Generally speaking, a composer will now 

either: 

a) begin to create a new composition by selecting Compose - Edit 
b) open an existing Composition File using File - Open and then modify it by 

selecting Compose - Edit 
c) open an existing Composition File using File - Open and then play it back by 

selecting Compose - Play 

If a or b occurs, the program enters the Composition Section (see 3.2.3 below), 

while if c occurs the program immediately enters the Playback Section (see 3.2.4 

below). 

3.2.3 The Composition Section 

The Composition Section provides the graphical user interface through which 

the composer enters, and may subsequently modify, the input data for all 

musical parameters (pitch, note length and so on), which the diagonal line 

method requires in order to produce the resulting musical output. A 

composition has a Section/ Part structure, whereby a single, linear, note 

sequence is called a Part and one or more Parts may be grouped together to form 

a Section. A complete composition consists of a number of non-overlapping, 

sequentially played. Sections. The Parts within each section may overlap 

however, allowing polyphony to be achieved. Thus, a composition has the 

following structure: 
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Composition 

Section 1 Section 2 Section 3 

Part i Part 2.... Par t i Part 2,... Par t i Part 2 

The period of time over which a Part is to be played is specified by the beat on 

which it starts, counted from the beginning of its Section, and the beat on which 

it ends. Parts may overlap, for example: 

Beat 

Part 1 

Part 2 

Part 3 

Part 4 

Part 5 

Part 6 

Part? 

Pa#8 

Section 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Section 2 

Beat 1 2 3 4 5 6 7 8 

Part 1 ^ 

Part 2 • 

Part 3 ^ 
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The composer enters data for all the Sections which make up the composition, 

and for all the Parts within those Sections, by issuing pull down menu 

commands and then entering the data in the appropriate fields within the 

resulting series of input dialog boxes. The graphical user interface is described in 

full detail in the Markov Program User Guide (see Appendix A). The various 

dialog boxes themselves were designed and built using the Apple Macintosh 

Resource Editor, ResEdit (Version 2.1.1) (Alley and Strange 1994). 

This section has two subsections: 

(i) The Parameter Initialisation subsection, which sets the default 

values of all the various input data parameters, which the 

composer can subsequently change if desired (see Appendix A, 

Section 6, for a full specification of the default values). 

(ii) The Menu Command Processing loop which waits for the 

composer to select a menu command and then responds 

appropriately. The data entered by the composer in the resulting 

input dialog boxes is stored sequentially in the Composition File, 

Part by Part, Section by Section. This loop repeats continuously 

until either the composer selects Compose - Play, at which point 

the loop terminates and the Playback Section begins (see 3.2.4 
below), or chooses to exit the program altogether, by selecting File -
Exit, in which case the program passes directly to the Termination 

Section (see 3.2.5 below). 

3.2.4 The Playback Section 

This section begins by obtaining, from the Composition File, the Section 

Sequence specified by the user (see Appendix A, Section 3.7), then calculates the 

MIDI clock speed using the composer-supplied tempo (in beats per minute) and 

calls a MIDIPascal routine to set the MIDI clock speed, which in turn determines 

the speed at which the composition is played back. 

The core of the Playback Section is a main loop which processes one 

Section at a time, reading in the input data (from the Composition File) for all 

the Parts in that Section, calculating the musical parameters of the note 

sequence which will make up that Section and then sending the corresponding 

MIDI events to the MIDI interface. Each Section is processed as follows:-

1. Calculate the Parameters for the First Notes to be Played in Each Part 

For each Part in the section, all the musical parameters (pitch, length, velocity, 

vibrato depth, vibrato rate, volume, pitch bend and release) for the first note in 

each of the Parts that make up the Section are calculated. If the composer has 
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explicitly set the starting value of a particular parameter (see Appendix A, 

Sections 3.3.2 to 3.3.9) then that value is used and no actual calculation is 

necessary, otherwise the first value is generated at random from the possible 

range of values specified by the composer. 

2. Map the Values of the First Notes to be Played 

The composer is able to select the possible values of a note parameter (see 

Appendix A, Sections 3.3.2 to 3.3.4). For example, the possible pitches could be 

specified as 60, 64, 67, 72^ (a one octave C-major arpeggio). However, it would be 

a very inefficient use of disk space if each of these selected values was stored 

separately in the Composition File. Instead, before being written to the 

Composition File, the selected values are mapped to a sequential range of 

integers starting at 1 (for example, the above selection would be mapped to 1, 2, 

3, 4) so only the maximum value of this range need be stored (since the range 

always starts at 1). The selected values themselves are stored in 8 separate 16 bit 

integers, each representing 16 values of the range 0-127 (since the MIDI values 

of all musical parameters lie in this range) as follows;-

integer 1 0 t o l 5 
integer 2 16to31 
integer 3 32to47 
integer 4 48 to 63 
integer 5 64 to 79 
integer 6 80 to 95 

integer 7 96 to 111 

integer 8 112 to 127 

with each bit of these integers set to either 1 or 0 depending on whether or not 

the corresponding value has, or has not, been selected. Thus, in the above 

example, integer 4 would have bit 13 set to 1, representing the value 60, with all 

other bits set to 0, while integer 5 would have bits 1, 4, and 9 set to 1, 

representing the values 64, 67 and 72, with all other bits set to 0:-

integer 4:-

EKt 1 2 3 4 5 6 7 8 9 10 11 12 13 W l S i W 
Vcdue 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
PanunT/^ 4849 50 51 52 53 54 55 56 57 % 59 ( # 6 1 ( 2 63 

4 According to the MIDI standard, each pitch is given a unique number between 0 and 127.60 
corresponds to middle C. 
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integer 5:-

T3% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
ViUue 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
]%aamVal 64 65 666768 69 7071 72 73 74 ^ 7 6 / 7 78 79 

Thus, when written as a binary number with the bit order reversed, integer 4 

has the value 0001000000000000 = 4096, so integer 4 would be set to 4096, and 

integer 5 has the value 0000000100001001 = 265, so integer 5 would be set to 265, 

while integers 1, 2, 3, 6, 7 and 8 would be zero. This means that all the 

information relating to the selected values, of which there may be up to 128 

different values, is stored in just 9 integers (the maximum value of the 

sequential range plus the 8 selection integers). 

Before playback, the 9 integers stored must be mapped back to the actual 

parameter values they represent. The mapping operation performed here uses 

bit manipulation techniques to map the first value of a particular parameter 

value, which is generated from the sequential range, to its actual selected 
parameter value. For example, in the case described above, a first pitch of 2 

would be mapped to the actual selected value of 64, while a first pitch of 4 

would be mapped to the actual selected value of 72. 

3. Calculate the Note On Event Times for the First Notes to be Flayed in Each 

Part 

The times of occurrence of each of the first notes in each Part of the Section are 

calculated; the first note for each Part will occur either precisely at the beginning 

of the Part or after a random delay, depending on whether the composer has 

checked the Random Entry checkbox (see Appendix A, Section 3.3.10.1). These 

times, together with the parameter values of the associated notes, are held in a 

special MIDI Event Array. At any time, the program only stores the data 

relevant to the next MIDI event. Note On or Note Off (Loy 1985; 13-15), in each 

Part. As soon as a MIDI event for a particular part has been output, all the data 

pertaining to the next MIDI event to occur in that Part are calculated and stored 

in the MIDI Event Array - if the event just output was a Note On, then the 

corresponding Note Off data is calculated, whereas if the event just output was 

a Note Off then the Note On data for the next note in that Part is calculated. 

Thus at any particular time the MIDI Event Array will be storing a mixture of 

Note On and Note Off event data, but only one event for each Part in the 

Section. The fact that the MIDI Event Array just stores the data for next event to 

occur in each Part, only calculating event data as it needs it, is key to the 

sequencing functionality of the Markov program. 
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4. Transfer the Note On Event for the First Note to be Played in the Section to 

the MIDI Output Buffer 

Once the parameters for all of the first notes in each Part of the Section have 

been calculated, the times of occurrence of each of these notes are compared to 

determine which is the earliest; that is, which note is to occur first in the 

Section. The appropriate MIDIPascal routine calls are then made to send a Note 

On event of the required pitch and velocity for that note, plus the required 

settings for vibrato depth, vibrato rate, volume, pitch bend and release (if the 

user has changed these from the default settings), to the MIDI Output Buffer. 

5. Calculate the Note Off Event Time for the First Note to be Played in the 

Section 

As soon as the Note On event for the first note in the Section has been output, 

its length is used to calculate the time at which its Note Off Event is to occur. 

The data relevant to this Note Off event is stored in the MIDI Event Array. 

6. Transfer the Next MIDI Event to the MIDI Output Buffer 

The times of occurrence of each of the events currently held in the MIDI Event 

Array are compared to determine which is the next event to occur. The 

appropriate MIDIPascal routine calls are then made to send that event to the 

MIDI Output Buffer. As discussed above, as soon as that event has been sent, 

the data for the next event in the corresponding Part is calculated and stored in 

the MIDI Event Array. If this is a Note On Event for the second or subsequent 
notes in that Part, then the Diagonal Line Method now comes into play5. The 

way the Markov program handles this is described below. 

7. Calculating the Parameters for the Second and Subsequent Notes to be Played 

in Each Part 

As soon as a Note Off Event has been sent for a particular part, the previous 
values of each of the musical parameters (pitch, for example), relating to the 

most recent Note On Event for that Part, are used to calculate the next values of 

each of those parameters which will then form the data for the next Note On 

Event for that Part, as follows: 

a) The Diagonal Line for the parameter in question is used to determine the 

mean, of the bilateral exponential distribution, for the next value of that 

parameter, corresponding to the previous value (see Section 2.2.3). 

5 As discussed in detail in Section 2.2.3, the Diagonal Line Method uses the previous value of a 
note parameter to calculate the next value. Thus is it not until the first parameter values have 
been calculated that the Diagonal Line method can now be applied to continue generating the 
sequence. 
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b) A random number is generated and the Monte Carlo method is used to 

generate the next value of that parameter (see Section 2.2.3). 

Steps a and b are repeated for all the musical parameters of the note (pitch, 

velocity, length and so on) and the resulting data is stored in the MIDI Event 

Array from where the corresponding MIDI events will subsequently be sent to 

the MIDI Output Buffer, once the time of occurrence of the note dictates that it 

is the next note to be played in this Section. 

8. Continue Generating All the Notes in this Section 

Steps 6 and 7 are continuously repeated until all the notes in this Section have 

been generated - this occurs as soon as a note is generated for which the time of 

occurrence of its Note Off Event is equal to, or later then, the Section end time 

(if the calculated time of occurrence of the Note Off Event is later than the end 

time of the Part then it is changed to be equal to the end time so that the Section 

lengths are exactly as specified by the composer). 

The diagram in Figure 3.1 at the end of this chapter summarises the 

complete process for generating all the notes in a section. This diagram depicts 

the first 9 steps (labelled a to i) in the generation of the notes for a 3 part section, 

"t" refers to time in milliseconds. The arrowed lines in the diagram have the 

following meanings:-

in the MIDI Event Array indicates that the associated event at this step has 

remained in the same position as at the previous step. For example, the Note 1 

On Event for Part 1 remains in the same position in the MIDI Event Array at 

steps a) and b) 

in the MIDI Output Buffer indicates that the associated event at this step has 

remained in the same position in the MIDI Output Buffer as at the previous 

step. For example, the Note 1 Off Event for Part 1 remains in the same position 

in the MIDI Output Buffer at steps d) and e). 

in the MIDI Output Buffer indicates that the associated event at 

this step has moved forward one position in the MIDI Output Buffer from the 

previous step. For example, the Note 1 Off Event for Part 1 moves forward one 

position in the MIDI Output Buffer from step e) to step f). 

The processes occurring in each of the 9 steps in the diagram are as 

follows:-
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a) The parameter values and the Note On Event times for first 

note in each of the 3 Parts are generated and stored in the Midi 

Event Array. The parameter values consist of the pitch and 

velocity of each note. Pitch and Velocity values are passed in a 

single MIDI Event. 

Here, it is assumed that the composer has chosen not to vary 

vibrato, volume, pitch bend or release as this would require the 

transmission of further MIDI Events and make the example 

difficult to follow. 

The start times of the first notes in each of the 3 Parts are 500, 0 and 

1000 milliseconds respectively. The first note in Part 2 is the first 

note to be played in the section, its start time, 0, being the lowest of 

the three, so its data is passed to the MIDI Output Buffer. 

A start time of 0 means that the note is to be played right at the 

beginning of the Section so its MIDI Note On Event is sent to the 

MIDI Interface and the note begins to play (it will continue to play 

until the corresponding MIDI Note Off Event is transmitted). 

b) The Note Off Event time for the first note in Part 2 is calculated 

and the relevant data replaces its Note On Event data in the MIDI 

Event Array. In this case the note is due to stop after 600 

milliseconds. 

The Note On Event for the first note in Part 1 will be the next 

event to occur, its event time being 500 milliseconds, so its data is 

passed to the MIDI Output Buffer. It will remain in the MIDI 

Output Buffer until 500 milliseconds have elapsed. 

c) The Note Off Event time for the first note in Part 1 is calculated 

and the relevant data replaces its Note On Event data in the MIDI 

Event Array. In this case the note is due to stop after 1000 

milliseconds. 

The Note Off Event for the first note in Part 2 will be the next 

event to occur, its event time being 600 milliseconds, so its data is 

passed to the MIDI Output Buffer. There are now 2 events queued 

up in the MIDI Output Buffer, stored in the order in which they 

are to occur. 

d) The Note On Event time for the second note in Part 2 is 

calculated and the relevant data replaces the Note Off Event data 

for first note in Part 2 in the MIDI Event Array. In this case the 

note is due to start after 2000 milliseconds. 
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The Note Off Event for the first note in Part 1 and the Note On 

Event for the first note in Part 3 are the next events to occur, at 

exactly the same time: 1000 milliseconds. In this situation the 

program sends the data for the lowest numbered Part, 1 in this 

case, to the MIDI Output Buffer first. However, when the two are 

events are subsequently transmitted, they will sent immediately 

one after the other, and the speed of the MIDI interface (31,250 bits 

per second) is such that the listener hears the events as being 

simultaneous. There are now 3 events queued up in the MIDI 

Output Buffer, stored in the order in which they are to occur. 

e) The Note On Event time for the second note in Part 1 is 

calculated and the relevant data replaces the Note Off Event data 

for first note in Part 1 in the MIDI Event Array. In this case the 

note is due to start after 1500 milliseconds. 

The data for the Note On Event for the first note in Part 3 is passed 

to the MIDI Output Buffer. 

500 milliseconds have now elapsed so the MIDI Note On Event for 

the first note in Part 1 is sent to the MIDI Interface and the note 

begins to play. 

f) The Note Off Event time for the first note in Part 3 is calculated 

and the relevant data replaces its Note On Event data in the MIDI 

Event Array. In this case the note is due to stop after 1600 

milliseconds. 

The data for the Note On Event for the second note in Part 1 is 

passed to the MIDI Output Buffer. Note that since an event was 

transmitted in step e), aU the other events in the MIDI Output 

Buffer have moved forward one place in the queue. 

600 milliseconds have now elapsed so the MIDI Note Off Event for 

the first note in Part 2 is sent to the MIDI Interface and the note 

ceases to play. 

g) The Note Off Event time for the second note in Part 1 is 

calculated and the relevant data replaces its Note On Event data in 

the MIDI Event Array. In this case the note is due to stop after 1600 

milliseconds. The data for this event is immediately passed to the 

MIDI Output Buffer: this event and the event for Part 3 are both 

due to occur at 1600 milliseconds so, as discussed previously, the 

data for the lower numbered Part is passed first. 
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1000 milliseconds have now elapsed so the MIDI Note Off Event 

for the first note in Part 1 is sent to the MIDI Interface and the note 

ceases to play. 

h) The next event in the MIDI Output Buffer, the Note On Event 

for the first note in Part 3, is also due to occur at 1000 milliseconds 

so it is sent immediately to the MIDI interface and the note begins 

to play. 

The Note On Event time for the third note in Part 1 is calculated 

and the relevant data replaces the Note Off data, for the second 

note, in the MIDI Event Array. In this case the note is due to start 

after 1600 milliseconds so once again the data for this event is 

immediately passed to the MIDI Output Buffer. 

i) The Note Off Event time for the third note in Part 1 is calculated 

and the relevant data replaces its Note On Event data in the MIDI 

Event Array. In this case the note is due to stop after 1800 

milliseconds. 

The data for the Note Off Event for the first note in Part 3 is passed 

to the MIDI Output Buffer. 

9. Continue Generating the Notes for All Sections 

Steps 1 to 8 are repeated in turn for aU the Sections that make up the 

Composition, as determined by the Section Sequence specified by the Composer 

(see Appendix A, Section 3.7). 

10. Wait for the MIDI Output Buffer to Empty 

It is an important feature of the program that it is always calculating ahead; that 

is, generating notes in advance of when they actually occur. The MIDI Events 

associated with each note are stored in the MIDI Output buffer. Each event is 

timestamped and is sent from the buffer to the MIDI interface once its time of 

occurrence arrives - the transfer of events from the buffer to the interface is 

managed by MIDIPascal. Once all the notes for the final Section of the 

composition have been sent to the MIDI Output Buffer, the program repeatedly 

calls a MIDIPascal function which indicates how much data is remaining in the 

buffer. When the amount of data reaches zero, the program knows that the 

final note of the composition has been played, and the Playback Section is 

therefore complete. What happens next depends on the action taken by the 

composer. If the composer chooses to modify the composition then the 

program will re-enter the Composition Section (see 3.2.3 above). If the 
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composer chooses to exit the program completely, then the Termination 

Section begins. 

3.2.5 The Termination Section 

The Termination Section first closes the Composition File that the composer 

has been working with, and then calls a MIDIPascal routine to shutdown 

MIDIPascal. 

3.2.6 The "Score" 

The File - Export command (see Appendix A, Section 4.6) allows the composer 

to export a comprehensive specification of the entire contents of the 

Composition File to an ASCII text file for subsequent examination and printing. 

This forms the "score" for the composition; it describes the overall composition 

structure and gives full details of the algorithm input parameter values. The 

following is an example of the opening segment from a program score: 

COMPOSITION FILE: Hard Disk:Music:Projects:Markov Composition:choir 

Section Parts Min Length Min Total Max Length Max Total 

2 
3 
1 

100 
10 
300 

100 
110 
410 

100 
200 
300 

100 
300 
600 

SECTION SEQUENCE; 
1 1 2 1 3 1 

Tempo = 60 bpm MIDI Buffer Size = 1000 Bytes 

SECTION: 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

0 0 

MIDI Channel 

0 

Starting Beat 

1.000000 0.500000 

Ending Beat 

1 
10 

100 
50 

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 100 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH {/ 2) 1 

72 
2 

60 
1 

1.000000 2.500000 
1.000000 0.500000 
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REPEAT I SELECT | REVERSE | REFLECT | RANDOM ENTRY 

PITCH YES I NO I NO 1 NO 1 
LENGTH YES I NO I NO 1 NO | NO 
VELOCITY YES j NO j NO j NO | 

The initial portion provides summary information: the name and location of 

the Composition File, the overall Section/Part structure of the composition, the 

sequence of Sections that forms the composition (see Appendix A, Section 3.7), 

the tempo (see Appendix A, Section 3.6) and the MIDI buffer size setting (see 

Appendix A, Section 5.2). There then follows a Section by Section breakdown, 

each Section headed with the word "SECTION" followed by the Section 

number. The Section information begins with the Section sequence 

transposition settings (see Appendix A, Section 3.2.1.4) and a summary of the 

Part structure, followed by the complete set of algorithm parameter values, and 

option settings, for each Part that makes up the Section, each Part under its own 

"Sect... Part..." heading. 

Program score extracts will be given throughout the remainder of this 

thesis in support of musical examples under discussion. 
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4.1 INTRODUCTION 

The purpose of this chapter is to show how the compositional process, using 

the Markov computer program, actually works. One of the principal aims of the 

program is that the composer should become involved in a continual feedback 

process, trying out some initial parameter values and then refining them based 

on what he or she hears, so that the composition gradually converges to a 

desired result. This chapter shows the first 11 stages of an evolving 

composition, starting with a one line melody based on a simple set of parameter 

values and then gradually evolving into a three part piece, including a bass 

part, with a three chord harmonic structure and with rhythmic structure and 

control of melodic contour. 

It is very important to realise that this particular composition is in no 

way representative of the style of music the program can produce. As will be 

shown later, the program can produce an extremely wide variety of styles and it 

just happens that the composition examined here evolved in this particular 

way. Nor is it supposed to be in any way a finished piece. The intention is to 

show the first few stages of a composer exploring the compositional capabilities 

of the program. 

The compact disc which accompanies this thesis contains the 

composition at each of its 11 stages of evolution as MIDI files, for playback from 

any software application capable of playing standard MIDI files (Microsoft 

Windows™ Media Player for example). They are contained in the directory 

called "The Compositional Process" and there are 11 files in all, entitled "l.mid" 

through to "11.mid" corresponding to the 11 stages. The floppy disk contains 

them as Markov program Composition Files for playback from the Markov 

program. They are contained in the directory called "The Compositional 

Process" and are called "1" through to "11". 

4.2 AN EVOLVING COMPOSITION 

Stage 1 

As a starting point, a two-octave chromatic scale starting at middle C is chosen. 

The gradient and k values are left as the defaults of 1 and 0.5 respectively, so 

this should result in a fairly gently meandering melody (see Section 5.3.2, 
Example 1). The tempo is set to 60 beats per minute and all note lengths are 1/8 

of a beat. The Patch value is set to 1, which is the MIDI value for the Piano 

instrument. The Part length is 30 beats. 
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The complete score at this stage is as follows (note the Pitch Minimum, 

Maximum, Minimum Mean, Gradient and A.1 values): 

COMPOSITION FILE; Hard Disk:Music:Coinpositional Process;1 

Section Parts Min Length Min Total Max Length Max Total 

1 1 30 30 30 30 

SECTION SEQUENCE: 

1 

Tempo = 60 bpm MIDI Buffer Size = 100 Bytes 

SECTION; 1 

Parameter Min Max MinMean Start 
Grad Lambda 

TRANSPOSE 

Part No 

1 

0 0 

MIDI Channel 

1 

0 1.000000 0.500000 

Starting Beat Ending Beat 

1 30 

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 8) 1 

REPEAT 

84 
1 

SELECT 

60 
1 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0,500000 
0.500000 

REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Stage 2 

The composer decides that the melody should vary up and down less quickly. 

Increasing the k value will achieve this. A X value of 2 is tried. 

s tages 

Increasing the X value has had the desired effect but the composer feels that the 

sequences of repeating notes, sometimes as many as 10, are disconcerting. The 

Disallow Repeats option is therefore selected for the Pitch Parameter (see 

Appendix A, Section 3.3.2). 

1 These are shown under the heading "Lambda" in the score. 
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stage 4 

The use of the chromatic scale means that the melody has an atonal nature and 

the composer now decides to change the feel by using a major scale instead. The 

Select mechanism is therefore used (see Appendix A, Section 3.4) to specify the 

IvUDI pMUbchT/aliies 6,0 6:)()4 (55 617 69 /fl 741:76 717 79(31 amcl(34 wdiidi 

represents a 2-octave C major scale starting at middle C. 

The section of the score showing the relevant parameter values at this 

stage is as follows (note the Pitch X. value, the Pitch REPEAT and SELECT 

settings and the Pitch Selections); 

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 60 1 .000000 2.000000 
LENGTH (/ 8) 1 1 1 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

PITCH SELECTIONS; 
60 62 64 65 67 69 71 72 74 76 77 79 81 83 84 

Stage 5 

The composer is now happier with the melodic aspect but, although repeated 

note patterns in the melody create perceived rhythmic units, there is currently 

no algorithmic control of rhythm because all the note lengths are the same. 

Therefore, the Minimum Note Length is now set to be 1/8 and the maximum 

to be 4/8. This will produce Note Lengths from all the values in that range; that 

is, 1/8, 2/8, 3 /8 and 4/8 (demisemiquaver, semiquaver, dotted semiquaver and 

quaver). 

Stage 6 

The melody now has a sense of rhythm but the composer feels that the 

inclusion of the 3/8 Note Length (a dotted semiquaver) produces too much 

syncopation. The Select mechanism is therefore used to specify just the Note 

Lengths 1 /8 ,2 /8 and 4 /8 (demisemiquaver, semiquaver and quaver). 
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Here is the relevant section of the score (note the Length parameter 

settings^ and the Length Selections); 

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 6 0 8 4 60 1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 

LENGTH (/ 8 ) 1 4 1 1 . 0 0 0 0 0 0 0 . 5 0 0 0 0 0 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT I RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 

LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO i 

PITCH SELECTIONS: 
6 0 6 2 6 4 6 5 6 7 6 9 7 1 7 2 7 4 7 6 7 7 7 9 81 83 84 

LENGTH SELECTIONS: 
1 2 4 

Stage 7 

The piece currently consists of just a solo melody and the composer would now 

like to add more interest by introducing a second melodic line. A second Part is 

therefore added with identical parameter values to the first one - this can be 

done very quickly using the Copy and Paste mechanism (see Appendix A, 

Sections 3.3.13 and 3.3.14). The MIDI channel is then changed for the second 

Part (see Appendix A, Section 3.3.1) and the Pan setting modified (see Appendix 

A, Section 3.3.12) for both the first and second Parts to 24 and 104 respectively so 

as to produce left/right stereo separation. 

Stages 

A third, bass. Part is now added. The intention is for this to be a "walking" bass 

line. The composer selects the Pitch values 24 28 31 36 40 43 48, a two-octave C-

major arpeggio, with repeats disallowed, and all Note Lengths are 1/4 beat 

(semiquaver). The Patch value is set to 33, the MIDI value for Acoustic Bass, 

and the Pan value to 64 so that the sound is centrally positioned. Finally, using 

the Fix Starting Value At option (see Appendix A, Section 3.3.2), the starting 

value is set to be 24, a C natural, so that the bass line begins on the root of the 

scale and therefore feels "grounded". 

^ The "/ 8" which appears after the word "LENGTH" in the score indicates that the length 
values specified have 8 as their fractional demoninator. For example, the minimum length is 1/8. 
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Here is the section of the score showing the parameter values for this 

new Part; 

Sect 1 Part 3, Chan 3, Patch 33, Pan 64, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 24 48 24 24 
LENGTH (/ 4) 1 1 1 

REPEAT I SELECT I REVERSE I REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1.000000 0.500000 

RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
24 28 31 36 40 43 48 

Stage 9 

The composition is now beginning to take shape but there is no sense of 

harmonic movement. The composer decides to repeat the Section 16 times, 

using the Section Sequence option (see Appendix A, Section 3.7) while using 

the Section Transposition mechanism (see Appendix A, Section 3.2.1.4) to 

produce chord changes between the successive playings of the Section. The 

Transposition values 0, 5 and 7 are selected, which correspond to tonic, 

subdominant and dominant respectively, so as to produce a sense of I - IV - V 

chord structure. The starting Transposition value is set to 0 so that the piece 

begins on the root chord. Repeats are disallowed so that there will always be a 

change of chord each time the Section repeats. The length of all three Parts, and 

therefore of the Section, is currently 30 beats, which the composer feels is too 

long to wait for each chord change so the Section Length Parameters (see 

Appendix A, Section 3.2.1.3) are set such that the length of each repetition of the 

Section is 4 beats only. 

The following extract from the score shows the Section Sequence, the 

Transposition Parameters, the Length Parameters and the Transposition 

Selections: 

COMPOSITION FILE; Hard Disk:Music;Compositional Process:9 

Section Parts Min Length Min Total Max Length Max Total 

1 3 4 4 4 4 

SECTION SEQUENCE: 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Tempo = 60 bpm MIDI Buffer Size = 100 Bytes 
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SECTION; 

Parameter 

1 

Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 7 0 0 1 .000000 0.500000 
LENGTH 4 4 4 1 .000000 0.500000 
SECTION TRANSPOSITION SELECTIONS 

stage 10 

The parameter values for the two main melodic Parts are identical so their 

structural characteristics are the same, and the composer feels it would be more 

interesting if they were to move in different ways. In addition, the fact that it is 

possible for the two Parts to be in the same register for a short while produces a 

disconcertingly large number of discords. The Minimum Mean Pitch value of 

the first Part is therefore set to 62, producing a tendency for the melody of this 

Part to move upwards (see Section 5.4.2, Examples 1 and 2), and the Minimum 

Mean Pitch value of the second Part to 84, producing a tendency for downwards 

movement (see Section 5.4.2, Examples 11 and 12). The X. Pitch value for each 

Part is set to 2 so that the movement tendency is quite strong while still 

allowing some variation (see Section 5.2.2, Example 2). 

The following extracts from the score show the Pitch parameter values 

for the two Parts: 

Sect 1 Part 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 62 60 1.000000 2.000000 

Sect 1 Part 2, Chan 2, Patch 1, Pan 104, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 84 84 1.000000 2.000000 

Stage 11 

AH three Parts consist of continuous note sequences, with no rests. The 

composer now decides that rests should be introduced into each of the Parts. 

This is done by allowing notes of zero Velocity to be generated. If the program 

generates a note of a certain length at zero Velocity then a rest will occur of that 

length. The Select mechanism is therefore used to specify that only the 

Velocities 0 and 127 (the maximum) can occur. Rests should not, however, 

occur so frequently that the flow of the melodic lines is broken so a Minimum 
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Mean Velocity of 127 is chosen, with a gradient of zero. This means that the 

Velocity values will tend to be 127 and the frequency with which rests occur can 

be controlled with the X value: the higher the value k the less frequently rests 

will occur. Here, the composer tries a X, value of 2. 

Finally, the complete score for the composition is now as follows:-

COMPOSITION FILE; Hard DiskiMusictCompositional Process:11 

Section Parts Min Length Min Total Max Length Max Total 

SECTION SEQUENCE: 

1 1 1 1 1 1 1 1 1 

Tempo = 200 bpm MIDI Buffer Size = 

SECTION; 1 

Parameter Min Max MinMean 

1 1 1 

100 Bytes 

Start 

0 

Grad Lambda 

TRANSPOSE 
LENGTH 

1.000000 0.500000 
1.000000 0.500000 

SECTION TRANSPOSITION SELECTIONS; 
0 5 7 

Part No MIDI Channel Starting Beat Ending Beat 

30 
30 
30 

Sect 1 Part 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 62 60 1 .000000 20.000000 
LENGTH (/ 8) 1 4 1 1 .000000 0.500000 
VELOCITY 0 127 127 0 .000000 2.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 YES 1 NO 1 NO 1 

PITCH SELECTIONS: 
60 62 64 65 67 69 71 72 ; 74 76 77 79 81 83 84 

LENGTH SELECTIONS; 
1 2 4 

VELOCITY SELECTIONS: 
0 127 

Sect 1 Part 2, Chan 2, Patch 1, Pan 104, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 84 84 1 .000000 20.000000 
LENGTH (/ 8) 1 4 1 1 .000000 0.500000 
VELOCITY 0 127 127 0 .000000 2.000000 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

PITCH NO I 
LENGTH YES | 
VELOCITY YES | 

PITCH SELECTIONS: 
60 62 64 65 67 

LENGTH SELECTIONS: 
1 2 4 

VELOCITY SELECTIONS: 
0 127 

Sect 1 Part 3, Chan 3, Patch 33, Pan 

NO 
NO 
NO 

NO 

69 71 72 74 76 77 79 81 83 84 

Parameter Min Max MinMean 

64, BEATS 1 to 30 

Start Grad Lambda 

PITCH 24 48 24 24 1 .000000 2.000000 
LENGTH (/ 4) 1 1 1 1 .000000 0.500000 
VELOCITY 0 127 127 0 .000000 2.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES YES NO 1 NO 1 

PITCH SELECTIONS: 
24 28 31 36 40 

VELOCITY SELECTIONS: 
0 127 

43 48 
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5.1 INTRODUCTION 

This analysis investigates the effects of the various algorithm parameters on the 

musical results produced. Specifically, each parameter is successively varied 

while the others are kept constant, and the various results are compared so that 

conclusions can be drawn regarding the effect of that parameter. The objective is 

that an understanding of the range of musical possibilities of the algorithm can 

be gained. 

For each parameter value example, a short passage of music has been 

recorded in a MIDI file. These MIDI files may be found on the compact disc 

which accompanies this thesis in the directory called "Analysis of the 

Algorithm". The floppy disk contains the examples as Markov program 

Composition Files for playback from the Markov program, again in the 

directory called "Analysis of the Algorithm". Full details of the filenames and 

locations are given later in this chapter, in the relevant sections. 

Before MIDI recording, each passage was first played back by the Ma rkov 

program five times to ensure that, across each of the five different realisations, 

there was no difference in the overall musical nature of the result. The passage 

was then played back a sixth time and the result recorded. In no case was there 

any significant variation across the six realisations - indeed, the various 

parameter values were chosen to try and ensure that this would be the case, so 

that vaHd conclusions could be drawn about the effect of the parameter under 

analysis. 

Pitch values are referred to using the "Cn" notation:-

C5 middle C = MIDI value 60 

C6 = C one octave above middle C = MIDI value 72 

C4 C one octave below middle C = MIDI value 48 

D5 = D above middle C = MIDI value 62 

B4 B below middle C = MIDI value 59 

and so on. 

5.2 VARYING k 

5.2.1 Introduction 

The purpose of this section is to investigate the effect of varying the parameter 

X, (see Section 2.2.1) while all other parameter values are kept constant. 

Specifically, the fixed parameter values are as follows: -
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Pitch values: a four-octave C major scale centred on middle C (that is, C3 

to (27) 
Starting Pitch: 60 (= middle C, or C5) 

Tempo: 60 beats per minute 

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this 

case) 

Gradient: 0 

Minimum Mean: 60 ( - middle C, or C5) 

Passage Length: 32 beats (32 seconds) 

The range of pitch values was chosen as being wide enough for the full effect of 

the parameter to be appreciated, but narrow enough to discourage a diversity of 

unusual events from occurring more frequently than the event which is 

normal for the given parameter value. Even though the normal event would 

still be the largest single category, the perception of this would be obscured by 

using too large a range: instead the intention is achieve an appropriate balance 

between the ordinary and the unusual so that correct conclusions can be drawn 

from those unusual progressions which do occur. 

A major scale (C major in this case) was chosen so that any tendency for 

the melody to move in a particular way is more readily apparent to a tonally 

oriented listener. 

The note length and tempo was chosen so that the melody is fast enough 

that the relationship between successive notes, together with any higher level 

structure, can easily be heard and not so fast that it just becomes a blur of notes. 

Each passage starts at middle C to provide a consistent beginning in an 

attempt to prevent inappropriate conclusions being drawn from different 

passages starting at widely differing pitches. 

Finally, a Gradient of 0 and a Minimum Mean of 60 wiU produce a 

melody which tends to be centred evenly about middle C - the corresponding 

diagonal line is as follows: 

60 

- and we can therefore deduce the effect of different X values by studying the 

degree by which the melody varies from middle C. What we expect is that the 

higher the value of X the more the melody will tend to consist entirely of 

middle C pitches, while the lower the value of X, the more spread around 
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middle C the pitches will become until eventually all sense of centredness 

disappears. 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "Varying Lambda". The files 

are named numerically corresponding to the numbered examples below. 

5.2.2 Analysis 

Varying X , Example 1 

X = 5. 

The melody consists of successive repetitions of middle C with occasional 

variations of one pitch up or down (in this example there were 13 such 

variations). We can therefore deduce that a X value of 5 produces a very strong 

tendency for the melody to behave according to the associated diagonal line. In 

this example, the result is very uninteresting musically although there may be 

situations where this is the desired effect; for example, for a backing to a melody 

or where the other diagonal line parameters produce a melody with a tendency 

to move in a specific way (see Section 5.4 below). Note that while this X value 

produces a very strong tendency, for a sufficiently high X value the melody will 

be completely deterministic with no variation from the predicted behaviour 

(see 5.2.3 below). 

Varying X , Example 2 

X = 2. 

The melody is still very strongly centred on, with frequent repetitions of, 

middle C but with much more frequent variations up and down and by one or 

two pitches; that is, the melody consists entirely of the pitches A4, B4, C5, D5 

and E5. C5 is the by far the most frequent, B4 and D5 the next most frequent, and 

there were 7 A4's and 5 E5's out of a total of 256 notes. 

Varying X , Example 3 

X. = 1. 
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The melody is still very strongly centred on, with frequent repetitions of, 

middle C but the degree of movement away from middle C to other parts of the 

scale very occasionally implies harmonic movement: this is because more 

arpeggiation of notes occurs, thus occasionally implying particular chords. For 

example, a short sequence of B3 D4 F4 implies a Dominant 7th chord which is 

then followed by a return to the root chord implied by repetitions of middle C. 

Apart from the occurrence of one C below middle C (C4) and one A above 

middle C (A5), the melody lies in the range F below middle C (F4) to F above 

middle C (F5). 

Varying Example 4 

1 = 0.5. 

At this value of X., there are no longer frequent successive repetitions of middle 

C so the feeling of "centredness" is not as strong: instead, the absence of 

repeated middle C's combined with a preponderance of pitches around middle 

C creates a tension in which the listener desires a return to middle C. There is 

also more note arpeggiation, resulting in a greater sense of implied harmonic 

movement. The melody ranges almost entirely over the two octaves centred on 

middle C. The occurrence of short sequences of pitches in different registers is 

beginning to produce rhythmic effects. 

Varying X, Example 5 

X = 0.2. 

The feeling of "centredness" about middle C has all but disappeared and indeed 

pitches occur across the full four-octave range, but the pitches are in fact still 

centred on middle C (middle C still accounts for 10% of the pitch values which 

occur even though there are 29 possible pitch values) and indeed the activity in 

the middle C register can be heard as an independent melodic part, with the 

occurrence of low and high pitches infrequent so that the high and low pitches 

actually stand out as separate melodic parts from the main melody by virtue of 

their intervallic distance from it. This separation of parts, and the irregularity 

with which notes occur in those parts, is now more clearly resulting in rhythms 

which break up what was, in Examples 1 to 3, a consistent pulse. 
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Varying X , Example 6 

X = 0.1. 

The centredness about middle C is no longer apparent, but it is still there as a 

study of the frequencies of occurrence of each of the 29 pitches reveals: 

C3 2 (1%) C4 9 (4%) C5 17(7%) C6 6 (2%) 

D3 5 (2%) D4 4 (2%) D5 12(5%) D6 13(5%) 

E3 2 (1%) E4 11 (4%) E5 17(7%) E6 10(4%) 

F3 3 (1%) F4 11 (4%) F5 16(6%) F6 10(4%) 

G3 5 (2%) G4 7 (3%) G5 3 (1%) G6 6 (2%) 

A3 11 (4%) A4 17(7%) A5 12(5%) A6 2 (1%) 

B3 8 (3%) B4 17(7%) B5 9 (4%) B6 
C7 

4 (2%) 
0 (0%) 

Note the higher frequencies of occurrence of the pitches around middle C (C5), 

in the range A4 to F5 for example. The high and low pitches stand out as 

separate melodic parts just as in the previous example but because there is more 

variation from middle C these parts contain more notes and so sound faster. 

The notes in this example are noticeably more arpeggiated and so there is an 

even greater impression of harmonic movement. 

Varying X , Example 7 

X = 0.05. 

The frequencies of occurrence of the pitches in this example are as follows: 

C3 3 (1%) C4 10(4%) C5 14(2%) C6 8 (3%) 

D3 5 (2%) D4 8 (3%) D5 10(4%) D6 5 (2%) 

E3 5 (2%) E4 8 (3%) E5 9 (4%) E6 5 (2%) 

F3 8 (3%) F4 13(5%) F5 12(5%) F6 9 (4%) 

G3 10(4%) G4 11 (4%) G5 16(6%) G6 14(5%) 

A3 6 (2%) A4 6 (2%) A5 10(4%) A6 7 (3%) 

B3 10(4%) B4 13(5%) B5 14(5%) B6 5 (2%) 

C7 2 (1%) 



Although the pitches around middle C still occur more frequently this is not 

nearly as marked as in the previous example. This passage does not sound that 

much different to the previous one except that there is possibly a slightly clearer 

perception of a middle part, together with high and low part, due to a more 

balanced spread of pitches across the range. 

Varying X , Example 8 

X = 0.005. 

frequencies of occurrence in this example are as follows: 

C3 8 (3%) C4 8 (3%) C5 9 (4%) C6 3 (1%) 

D3 6 (2%) D4 6 (2%) D5 13(5%) D6 10 (4%) 

E3 7 (3%) E4 16(6%) E5 12(5%) E6 7 (3%) 

F3 9 (4%) F4 10(4%) F5 8 (3%) F6 5 (2%) 

G3 11(4%) G4 10(4%) G5 12(5%) G6 6 (2%) 

A3 5 (2%) A4 11 (4%) AS 10 (4%) A6 13 (5%) 

B3 10(4%) B4 11 (4%) B5 8 (3%) B6 8 (3%) 

( 7 4 (2%) 

Now the frequencies of occurrence are fairly evenly spread across the range and 

are occurring more or less at random (the fact that some pitches have quite high 

occurrences - E4 and A6 for example - is due to random variation: it is more 

likely that this will happen than that the frequencies will be perfectly balanced 

across the range). 

However, this does not sound markedly different to the previous two 

examples; one still hears three separate parts, in the low, middle and high part 

of the range, and it must therefore be deduced that this is how pitches occurring 

at random within a four-octave major scale tend to be heard. The most likely 

explanation for this is that within a purely random sequence, apparently 

ordered subsequences will nevertheless occur (Bennett 1998: 167-170). Thus, for 

example, several consecutive pitches may occur in the same register before the 

pitches move to a different register, resulting in the perception of separate parts. 

Varying X , Example 9 

Four consecutive parts, X = 0.005, X = 0.0005, X - 0.00005 and X = 0.000005 

respectively, of 8 beats each. 



This final example is included to show that there is no audible difference when 

k is raised above 0.005 - the four parts join together seamlessly. 

5.2.3 Additional Information 

Although not included on the compact disc, passages were produced with X. = 20 

and X = 10. A five minute passage with X. = 20 produced no variations at all; that 

is, continuously repeated middle C's. A one minute passage with X, = 10 

produced continuously repeated middle C's apart from six notes which varied 

up or down by one pitch. 

5.2.4 Conclusions 

1. The higher the value of X the greater is the tendency for the musical result to 

deterministically obey that predicted by the diagonal line (in this case 

continuously repeated middle C's), the lower the value of k of the more the 

result will tend to vary from that predicted by the diagonal line. 

2. AX value of 20 produces a completely deterministic result, according to the 

diagonal line. 

3. X values greater than 1 produce strongly deterministic results, the degree of 

determinism increasing, of course, the higher the value of X. 

4. X values less than 0.005 produce random results, with no diagonal line 

influence. 

5. A X value of 0.5 tends to produce a "middle ground" result, where the 

diagonal line influence is still evident but there are some noticeable variations 

from the predicted behaviour. 

It should be noted that the effect of X, on the nature of the output is not linear. 

For example, increasing X. by 0.5 from 0.5 to 1 significantly increases the degree 

of determinism in the output whereas increasing X, by 0.5 from 5 to 5.5 has a 

barely discernible effect. In fact, X is a logarithmically scaled parameter; X, must 

be doubled from 5 to 10 to achieve the same impact as doubling X from 0.5 to 

1.0. On the other hand, as noted above, this logarithmic scaling only applies 

within the range 0.005 to 20. 
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5.3 VARYING GRADIENT 

5.3.1 Introduction 

The purpose of this section is to investigate the effect of varying the Gradient 

(see Section 2.2.3) parameter while all other parameter values are kept constant. 

For the first five examples, the fixed parameter values are as follows: 

a four-octave C major scale centred on middle C (that is, C3 

to (27) 

60 (= C5, the mid-point of the pitch range) 

0.5 

60 beats per minute 

1/8 (that is, 8 notes per beat, or 8 notes per second in this 

case) 

36 (= C3, the lowest pitch of the range) 

32 beats (32 seconds) 

Pitch values; 

Starting Pitch: 

X: 

Tempo: 

Note Length: 

Minimum Mean: 

Passage Length: 

Having a Minimum Mean of 36, the lowest pitch of the range, means a 

diagonal line starting at the top left of the rectangle and sloping downwards -

for a gradient of 1, for example, the diagonal line is as follows: 

In the first five examples of this analysis, the gradient will be successively 

lowered. A X value of 0.5 has been chosen because, as we saw in the previous 

chapter, this results in the diagonal line effect being evident while still allowing 

some variation from it. 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "Varying Gradient". The files 

are named numerically corresponding to the numbered examples below. 

5.3.2 Analysis 

Varying Gradient, Example 1 

Gradient - 1. 
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The diagonal line is as follows; 

Here, the tendency is for any pitch to repeat itself, but the X value of 0.5 allows a 

degree of variation and so the result is a melody which meanders fairly gently 

around the four-octave pitch range. 

Varying Gradient, Example 2 

Gradient = 0.75. 

The diagonal line is as follows: 

Here, any pitch, apart from the lowest pitch of the range, tends to be followed by 

a next pitch of a lower value, so the melody is being continuously, but in this 

example fairly gently, "pulled down" towards the bottom of the pitch range as if 

on a piece of elastic, with a tendency for any rise in pitch to be followed by a 

falling melodic part. Note that the amount by which the next pitch tends to be 

lower is proportional to the previous pitch rather than being an absolute 

number of pitch values. In this example, a pitch value of the maximum in the 

range tends to be followed by a pitch value 25% of the range lower, one octave 

in this case. This percentage value falls proportionately as the pitch lowers: a 

pitch at the middle of the range tends to fall by 12% of the range and the lowest 

value in the range tends to be followed by a pitch of the same value. Almost the 

entire melody lies in the first two octaves of the range. 

Varying Gradient, Example 3 

Gradient = 0.5. 

The diagonal line is as follows: 
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The "pulling down" effect has become more marked. Almost the entire melody 

lies in the first octave of the range. 

Varying Gradient, Example 4 

Gradient = 0.25. 

The diagonal line is as follows: 

Now, almost the entire melody lies in the range C3 to G3, with any higher 

pitches being heard as a separate part. 

Varying Gradient, Example 5 

Gradient = 0. 

The diagonal line is as follows: 

that it is to say, a vertical line at the minimum value of the range. This example 

is very similar to the previous example. Now, most of the melody lies in the 

range C3 to F3, and again higher pitches are heard as a separate part. 

For the next five examples, since the gradient is negative the Minimum 

Mean is set to 84 (= C7, the highest pitch in the range). The other parameter 

values remain unchanged. 
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Varying Gradient, Example 6 

Gradient = -1. 

The diagonal line is as follows: 

In this case, pitches towards one extreme of the pitch range tend to be followed 

by pitches at the other extreme, while pitches towards the centre of the range 

tend to be followed by pitches also towards the centre. Thus, the melody consists 

of periods of leaping from high pitches to low pitches and back again 

interspersed with periods of more gently varying pitch sequences towards the 

centre of the range (in fact, any pitch tends to be followed by its complement. 
For example, a pitch one quarter of the way up the range from the lowest pitch 

tends to be followed by a pitch one quarter of the way down from the highest 

pitch) and now there is a part separation effect. Overall, the melody could be 

said to be "balanced" about middle C, the centre of the range. 

Varying Gradient, Example 7 

Gradient = -0.75. 

The diagonal line is as follows: 

There is the same tendency, as in the previous example, for periods of leaping 

from high to low interspersed with more level periods, but now the melody is 

concentrated mainly in the upper 3 octaves. Also, the balance point has moved 

up. In fact, the diagonal line is such that D5 tends to be followed by F5, and F5 

tends to be followed by D5 so it is about this part of the range that the melody is 

balanced and in this part of the range where the more level periods tend to 

occur. 
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Varying Gradient, Example 8 

Gradient = -0.5. 

The diagonal line is as follows; 

The melody is now concentrated mainly in the upper 2 octaves. Since the 

distance between the high and low pitches is therefore smaller, the leaping 

periods, although they still occur, are less pronounced. The melody is now 

balanced about A5 (in fact, the diagonal line is such that A5 tends to be followed 

by A5). 

Varying Gradient, Example 9 

Gradient = -0.25. 

The diagonal line is as follows: 

The melody is now concentrated mainly in the upper octave. The leaping 

periods are therefore even less pronounced, but are there. Since D6 tends to be 

followed by E6, and E6 by D6, it is about these pitches that the melody is 

balanced. 

Varying Gradient, Example 10 

Gradient = 0. 

The diagonal line is as follows: 
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that it is to say, a vertical line at the maximum value of the range. Now there is 

a tendency for the melody to be drawn to C7, the highest pitch in the range. This 

is effectively the inverse of Example 5 but here, although there are a number of 

notes that are lower in pitch than most of the melody, at these high pitches they 

do not tend to be heard as a separate melodic part to the same extent as Example 

5. This is probably because these pitches are too high to constitute what we 

normally think of as a bass line. This is borne out by the following example, 

which is the same as the current example but transposed down by 2 octaves: 

Varying Gradient, Example 11 

Gradient = 0 , Pitch values transposed down by 2 octaves. 

This passage has exactly the same characteristics as the previous example but 

now the lower pitches tend to be heard more clearly as a separate melodic part. 

5.3,3 Conclusions 

With a Minimum Mean equal to the lowest pitch in the range and a X value of 

0.5. 

1. A gradient of 1 produces a melody which meanders about the entire pitch 

range. 

2. A positive gradient of less than one produces a melody which is "pulled 

down" towards the lower end of the range, with higher pitches being followed 

by falling melodic parts. This effect becomes more pronounced as the gradient is 

reduced. 

3. For a gradient of 0.25 or less, the melody is highly concentrated in the lower 

pitches, with higher pitches being heard as a separate melodic part. 

With a Minimum Mean equal to the highest pitch in the range and a X value of 

0.5: 
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1. A gradient of -1 produces a melody containing periods of leaping alternately 

from high to low pitches and back, interspersed with more stable periods where 

the pitches lie towards the centre of the range. 

2. As the gradient increases from -1 towards zero the leaping effect becomes less 

pronounced as the pitches become more and more concentrated in the upper 

pitches of the range. 

3. For a gradient of 0, most pitches lie close to the top of the range with 

occasional lower pitches occurring. 

5.4 VARYING MINIMUM MEAN 

5.4.1 Introduction 

The purpose of this section is to investigate the effect of varying the Minimum 

Mean parameter (see Section 2.2.3) while all other parameter values are kept 

constant. The fixed parameter values are as follows: 

Pitch values: a four-octave C major scale centred on middle C (that is, C3 

toC7) 
Starting Pitch: 36 (= C3, the lowest pitch of the range) 

Tempo: 60 beats per minute 

Gradient: 1 

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this 

case) 

Passage Length: 32 beats (32 seconds) 

Wraparound: ON 

Reverse: OFF 

As far as the X parameter is concerned, for each Minimum Mean there are two 
example passages, one with 1 = 20 and one with = 0.5. This is because varying 

the Minimum Mean produces melodies with a definite tendency to move in a 

certain way and so hearing the passage first with X = 20, which produces 

completely deterministic results (see Section 5.2.3 above), provides a better 

control example against which the X = 0.5 divergence can be appreciated. The X 

= 20 examples are only 16 beats long, rather than 32, because the deterministic 

nature of the passage is quickly discernible. 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 
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called "Analysis of the Algorithm", subdirectory "Varying Minimum Mean" 

The files are named numerically corresponding to the numbered examples 

below. 

5.4.2 Analysis 

Varying Minimum Mean, Example 1 

Minimum Mean = 38, X, = 20. 

The diagonal line is as follows: 

(note that the diagonal line re-emerges towards the bottom left-hand corner -

this is because the Wraparoundi effect is turned on). 

This example shows the precise rising tendency in Example 2 that 

follows. The melody is simply repeating four-octave C major scales. Note that 

the Minimum Mean of 38 is the second pitch of the range (D3); that is, one pitch 
above the first pitch of the range. 

Varying Minimum Mean, Example 2 

Minimum Mean = 38, X = 0.5. 

While there are some descending sequences of pitches the overall trend is for 

the melody to rise. When the melody reaches the top of the range (C7), any 

further attempt to rise results in the melody returning immediately to the 

bottom of the range - this is a result of the line wrapping around together with 

the Reverse effect (see Section 2.3.4) being turned off. The melody therefore 

consists of repeated rising sequences. At this value of X,, the length of each rising 

sequence varies considerably - the shortest is 30 notes in length while the 

longest is 70. 

See Section 2.3.2. 



Varying Minimum Mean, Example 3 

Minimum Mean = 40, X = 20. 

The diagonal line is as follows: 

This example shows the precise rising tendency in Example 4 that follows. The 

melody consists of the alternate pitches of the C major scale; that is, the 1st, 3rd, 

5th and so on. Note that the Minimum Mean of 40 is the 3rd pitch of the range; 

that is, two pitches above the first pitch of the range. In fact, the repeated rising 

sequences alternate between sequences beginning on C3, the first pitch of the 

range, and sequences beginning on D3, the second pitch of the range. This is 

because there are an odd number of pitches in the range, so a rising sequence 

beginning on C3 ends on C7, the top pitch of the range, which is then followed 

by D3. Had there been an even number of pitches in the range, then each rising 

sequence would consist of pitches 1 ,3 ,5 and so on, while the even numbered 

pitches (2, 4, 6 and so on) would not be heard (since the starting note has been 

set to the lowest pitch in the range). 

Varying Minimum Mean, Example 4 

Minimum Mean = 40, X, = 0.5. 

The melody again consists of repeated rising sequences but they are much 

shorter than in Example 2; that is, the melody rises more quickly. The lengths of 

the repeating sequences are still subject to wide variation, the shortest being 

eight notes in length and the longest 28. 

Varying Minimum Mean, Example 5 

Minimum Mean = 48, X, = 20. 

The diagonal line is as follows: 
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This example shows the precise tendency in Example 6 that follows. The 

Minimum Mean of 48 is seven pitches, in the C major scale, above the first 

pitch in the range, and the first rising sequence consists of pitches 1 8 15 22 29 of 

the four-octave C major scale; that is, each successive pitch is seven above the 

previous pitch. The highest pitch in the range, pitch 29, is now followed by 

pitches 7 14 21 28. This is then foUowed by 6 13 20 27, 5 12 19 26, 4 1118 25,3 10 
17 24, 2 9 16 23, before returning again to the beginning of the range, after which 

the sequence repeats. Thus, within the overall sequence are four separate falling 
C major scales and this is how the overall sequence is heard even though it is 

constructed from four or five note rising sequences. 

Varying Minimum Mean, Example 6 

Minimum Mean - 48, X = 0.5. 

The melody consists of very short rising sequences, typically three to five 

pitches in length. Since the sequences are so short, the low pitches of each 

sequence tend to be heard as a slower part within the actual melody, as do the 

high pitches of each sequence and, to a lesser degree, the middle pitches. 

Varying Minimum Mean, Example 7 

Minimum Mean = 60, X = 20. 

The diagonal line is as follows: 

This example shows the precise tendency in Example 8 that follows. The 

Minimum Mean of 60 is 14 pitches, in the C major scale, above the first pitch in 

the range, and the first rising sequence consists of pitches 1 15 29 of the 4 octave 

C major scale; that is, each successive pitch is 14 above the previous pitch. The 

29th pitch, being the highest pitch in the range, is now followed by pitches 14 
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28, 13 27, 12 26,11 25,10 24,9 23,8 22,7 21,6 20,5 19,4 18,3 17,2 16, before 
returning again to the beginning of the range, after which the sequence repeats. 

Thus, within the overall sequence are two separate falling C major scales and 

this is how the overall sequence is heard even though it is constructed from 

two or three note rising sequences. 

Varying Minimum Mean, Example 8 

Minimum Mean = 60, X = 0.5. 

The melody consists of almost entirely of pairs of notes which are wide apart in 

pitch, and is therefore heard as two separate parts, a low one and a high one. 

Very occasionally, two consecutive pitches in the same register occur, but this 

does not affect the overall impression of a two part structure. 

Varying Minimum Mean, Example 9 

Minimum Mean = 72, X = 20. 

The diagonal line is as follows: 

This example shows the precise tendency in Example 10 that follows. The 

Minimum Mean of 72 is 21 pitches, in the C major scale, above the first pitch in 

the range. Now, since the Minimum Mean is well above the mid point of the 

pitch range, the melody quickly reaches the top of the range and therefore falls. 

This makes the behaviour less readily discernible. The actual sequence, grouped 

according to the descending three or four note sequences of which it is 

constructed, consists of the pitches 1, 22 14 6,27 19 11 3, 24 16 8, 29 21 13 5,26 18 
10 2, 23 15 7, 28 20 12 4, 25 17 9 of the four-octave C major scale. An upper part of 

22 27 24 29 26 23 28 25 is readily heard. The distinction between the middle and 

lower parts is somewhat blurred as some notes are ambiguously heard as being 

in either the middle or lower parts, because for some three note sequences for 

which the first pitch is in the middle register and the third is in the lower 

register, the middle of the three pitches could be heard as belonging to the first 
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or the third. Thus, although middle and lower parts are definitely discernible, 

they may be heard differently on repeated playings of the exact same sequence. 

Varying Minimum Mean. Example 10 

Minimum Mean = 72, X = 0.5. 

The melody consists mostly of short falling sequences of three or four notes. As 

the pitches of each sequence are widely spaced, this tends to be heard as three 

separate parts, high, medium and low. 

Varying Minimum Mean. Example 11 

Minimum Mean = 83, X, = 20. 

The diagonal line is as follows: 

This example shows the precise falling tendency in Example 12 that follows. 

The melody consists of the alternate pitches of the descending C major scale. 

Note that the Minimum Mean of 83 is 27 pitches above the lowest pitch of the 

range or 1 pitch below the highest pitch of the range. In fact, the repeated falling 

sequences alternate between sequences beginning on B6, the highest but one 

pitch of the range, and sequences beginning on C7, the highest pitch of the 

range. This is because there are an odd number of pitches in the range, so a 

falling sequence beginning on B6 ends on D3, the second pitch of the range, 

which is then followed by C7 (27 pitches above D3). 

Varying Minimum Mean, Example 12 

Minimum Mean = 83, X = 0.5. 

While there are occasional rising sequences of pitches the overall trend is for 

the melody to fall. When the melody reaches the bottom of the range (C3), any 

further attempt to rise results in the melody returning immediately to the top 
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of the range - this is a result of the line wrapping around, together with the 

Reverse effect being turned off. 

5.4.3 Conclusions 

With a gradient of 1, Wraparound turned on and Reverse turned off; 

1. A Minimum Mean whose value is anything other than the lowest pitch of 

the range produces a melody which tends to move in one specific direction, 

either up or down. The degree of this tendency is of course dependent on the 

value of X. 

2. A Minimum Mean of less than the mid point of the range produces a melody 

which tends to rise; the higher the value of the Minimum Mean the faster the 

melody rises. When melody reaches the highest point in the range it returns to 

the bottom of the range (because the Wraparound effect is on and the Reverse 

effect is off), so the melody consists of consecutive rising sequences. The 

tendency is for the melody to rise in steps equal to the number of pitches that 

the Minimum Mean is above the lowest pitch in the range. As the Minimum 

Mean rises towards the mid point of the range, the rising sequences contain 

fewer notes and these notes are wider apart in pitch, so separate melodic parts 

begin to be heard within the overall sequence. 

3. A Minimum Mean greater than the mid point of the range produces a 

melody which tends to fall: the higher the value of the Minimum Mean the 

slower the melody falls. When the melody reaches the lowest point in the 

range it returns to the top of the range (because the Wraparound effect is on and 

the Reverse effect is off), so the melody consists of consecutive falling 

sequences. As the Minimum Mean rises just above the mid point, the melody 

consists of falling sequences of few notes which are wide apart in pitch, so 

separate melodic parts are heard within the overall sequence. As the Minimum 

Mean rises towards the top of the range, the falling sequences contain more 

notes and the impression of separate melodic parts begins to disappear. The 

tendency is for the melody to fall in steps equal to one greater than the number 

of pitches that the Minimum Mean is below the highest pitch in the range. 
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5.5 GRADIENTS GREATER THAN 1 OR LESS THAN -1 

5.5.1 Introduction 

When the gradient is greater than 1 or less than -1, the results for different 

gradients become very varied and more difficult to predict, with an apparently 

small change in gradient producing a significantly different result. What is 

consistent about the note sequences produced is that they tend, after a short 

transient sequence, to settle to a repeating sequence of pitches, this tendency, of 

course, increasing as X increases: to hear the precise sequence X, must be set to a 

high value (20, for example - see Section 5.2.3 above) so that the result is 

completely deterministic. The number of notes in the sequence can be anything, 

from a single pitch to the entire length of the range - that is, a single attack, or 

such as to bring every pitch in the range into play - and this is one aspect which 

varies enormously for quite similar gradient values. Each pitch value in the 

sequence is unique; that is, no pitch is repeated within each repetition of the 

sequence. Moreover, for the same gradient, a different sequence may be 

produced from a different starting pitch value: in this case, the different 

sequences are mutually exclusive; that is, they contain no pitches in common. 

This mutual exclusivity is not at all surprising: for example, if a starting pitch of 

36 produced the repeating sequence 36 37 38 39, and a starting pitch of 40 

produced a different repeating sequence then this sequence could not possibly 

contain any of the pitches 36 37 38 or 39 because if it contained, say, 36, then this 

would be followed by 37 38 39 and would therefore not be a different sequence. 

A selection of examples is given below, to illustrate the variation which 

can be achieved. Four different gradients are examined: 1.8, 4, 3.5 and -2. For 

Gradient = 1.8, one example is given with X = 20. This is because, as discussed in 

more detail below, for this Gradient value the same sequence is achieved for all 
starting values (apart from 36, which results in a repeating single pitch 

sequence). For Gradient = 4, two examples are given with X = 20, with different 

starting values in order to demonstrate the two possible sequences which occur 

for this Gradient. For the same reason, for Gradient = 3.5, three examples are 

given with X = 20, with different starting values, while for Gradient = -2, one 

example is given with X - 20, because the same sequence is achieved for all 

starting values (apart from 69, which results in a repeating single pitch 

sequence). For the first six examples, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on middle C (that is, C3 

toC7) 
Minimum Mean: 36 (C3) 

Tempo: 60 beats per minute 
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Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this 

case) 

Wraparound: ON 

Reverse: OFF 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "Gradients Greater Than 1 or 

Less Than 1". The files are named numerically corresponding to the numbered 

examples below. 

5.5.2 Analysis 

Gradients Greater Than 1 or Less Than -1, Example 1 

Gradient = 1.8, X = 20, Starting Pitch = 38. 

The diagonal line is as follows:-

With this high value of "k, the precise sequence is achieved. After a short 

transient sequence of, in this case, rising bass notes, the melody settles to a 

repeating sequence of seven notes. Experimentation shows that, after differing 

initial transient sequences, the same seven note sequence pertains no matter 

what the starting pitch, unless the starting pitch is 36 (C3), in which case the 

sequence is just repeated C3's (which is what one would expect given that the 

Minimum Mean of the diagonal line is 36). 

Gradients Greater Than 1 or Less Than -1, Example 2 

Gradient = 1.8, X. = 2, Starting Pitch - 38. 

This is the same gradient as the previous example but the X value of 2 means 

that some variation about the tendency will occur. What are heard are 

fragments of the seven pitch sequence of differing lengths, interspersed with 
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the rising transient bass sequence, sequences varying randomly but shaped 

around the seven note sequence, and occasional repeating C3 sequences. 

Gradients Greater Than 1 or Less Than -1, Example 3 

Gradient = 1.8, X - 0.5, Starting Pitch = 38. 

This is the same gradient as the previous two examples but at this value of X 

the melody is allowed to vary to the extent that, although it has similar 

characteristics to the previous example, the influence of the seven note 

sequence is much weaker. Rising bass sequences are still evident however. 

Gradients Greater Than 1 or Less Than -1, Example 4 

Gradient = 4, X, = 20, Starting Pitch = 38. 

The diagonal line is as follows:-

The melody consists of a repeating 14 note sequence, with no initial transient 
sequence. 

Gradients Greater Than 1 or Less Than -1, Example 5 

Gradient = 4, X- 20, Starting Pitch = 40. 

This is the same as the previous example but with a different starting pitch. The 

melody also consists of a repeating 14 note sequence but this sequence has no 

pitches in common with the previous sequence. Note that these two 14 note 

sequences cover 28 of the 29 pitches in the specified range. The missing pitch is 

C3 (36) - if the starting pitch was C3 then the resulting melody would consist of 

repeating C3's. 
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Gradients Greater Than 1 or Less Than -1, Example 6 

Gradient = 4, X. = 4, Starting Pitch = 38. 

This is the same as example 5 but this value of X allows a degree of variation 

while imposing a fairly strong tendency. The result is interwoven fragments, of 

varying lengths, of each of the 14 note sequences in the previous two examples. 

For the next four examples, the fixed parameter values are as above but 

the Minimum Mean is now 47 (B3). 

Gradients Greater Than 1 or Less Than -1, Example 7 

Gradient = 3.5, X, = 20, Minimum Mean = 47, Starting Pitch = 36. 

The diagonal line is as follows:-

After a short transient sequence, the melody settles to a repeating five note 

sequence. The pitch sequence forms an arpeggiated Dm chord. 

Gradients Greater Than 1 or Less Than -1, Example 8 

Gradient = 3.5, X = 20, Minimum Mean = 47, Starting Pitch = 41. 

Here, the parameter values are as in the previous example but with a different 

starting pitch. The melody consists of a different, mutually exclusive, five note 

sequence. This sequence also forms an arpeggiated Dm chord but with the F3 in 

the bass implying a first inversion. 

Gradients Greater Than 1 or Less Than -1, Example 9 

Gradient = 3.5, X. = 20, Minimum Mean = 47, Starting Pitch = 43. 

The parameter values are the same as in the previous two examples but with 

yet another starting pitch. The melody consists of yet a third different, mutually 
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exclusive five note sequence. This pitch sequence forms an arpeggiated Em 

chord, with the G3 in the bass implying a first inversion. Experimentation 

shows that, no matter what the starting pitch, the melody always settles to one 

of these three five note sequences except for a starting pitch of 52 (E4), which 

produces a repeating sequence of E4's. 

Gradients Greater Than 1 or Less Than -1, Example 10 

Gradient = 3.5, X. = 4, Minimum Mean - 47, Starting Pitch = 36. 

This is the same as the previous three examples, with the same starting pitch as 

in example 7, but this value of X allows a degree of variation while imposing a 

fairly strong tendency. The result is interwoven fragments, of varying lengths, 

of each of the five note sequences in the previous three examples, together with 

one short repeating E4 sequence and occasional short sequences of pitches 

outside of the three five note sequences. Alternating movement between the 

chords of Dm and Em can be heard. 

Gradients Greater Than 1 or Less Than -1, Example 11 

Gradient = -2, X = 20, Minimum Mean = 84, Starting Pitch = 36. 

The diagonal Une is as followst-

Here, the melody consists of a repeating sequence of 28 notes, and this is in fact 

the case for any starting pitch except 69 (A5), which results in a repeating 

sequence of A5's. There is also a slight feeling of a repeating I - IV - V chord 

progression in the key of C major. 

Gradients Greater Than 1 or Less Than -1, Example 12 

Gradient = -2, X. = 4, Minimum Mean = 84, Starting Pitch = 36. 

This is the same as the previous example but this value of X, allows a degree of 

variation while imposing a fairly strong tendency. The result is interwoven 
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fragments, of varying lengths, from anywhere across the 28 note sequence, 

together with one short repeating A5 sequence. 

5.6 VARYING NOTE LENGTH 

5.6.1 Introduction 

Exactly the same processes which have been examined thus far in relation to 

note pitch are equally at work with regard to any other parameter. Therefore, 

the analysis of note length variation which follows is not as exhaustive as the 

preceding analysis of note pitch variation; instead, representative examples are 

presented. However, it is important to observe that whereas melodies can be 

produced across a wide range of pitches (in the above examples, 29 different 

pitches across a four-octave C major scale), the number of different note 

lengths, if the melody is to sound rhythmical, is bound to be comparatively 

small. If a melody consists of 29 different note lengths then no rhythm wiU be 

established because the notes cannot be grouped such that a pulse emerges, 

whereas if a melody consists only of, say, semiquavers, quavers, crotchets and 

dotted crotchets then groupings of notes adding up to implied bars of equal 

lengths will tend to occur so that a pulse will be felt. There is, therefore, much 

less scope for the algorithm to produce a wide variety of rhythmical patterns to 

the same extent that different melodic patterns were produced in the previous 

examples if the number of different note lengths from which it can select is 

small. Having said that, of the 11 examples presented below, the first five 

examples in this section use all possible note lengths obtained from dividing a 

crotchet into 32 parts; that is, 1/32,2/32,3/32,. . . , 31/32,32/32 (=1). While this 
will not produce a recognisable rhythm, it is equally important to understand 

that this is no less musically valid and that interesting rhythmical effects can be 

produced. The last six examples use a much smaller number of note lengths. 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "Varying Note Length". The 

files are named numerically corresponding to the numbered examples below. 

5.6.2 Analysis 

For all the examples in this section, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on 

middle C (that is, C3 to C7) 
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Minimum Mean Pitch: 

Pitch Gradient: 

Pitch X: 
Starting Pitch: 

Tempo: 

Pitch Wraparound: 

Pitch Reverse: 

Length Wraparound: 

Length Reverse: 

36 (= C3, the lowest pitch of the range) 

1 

0.5 
36 (= C3, the lowest pitch of the range) 

120 beats per minute 

ON 
OFF 

ON 

OFF 

Varying Note Length, Example 1 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length X: 

Starting Length: 

Passage Length: 

1/32,2/32,3/32,..., 31/32,32/32 of 1 beat 
1/32 
1 

0.5 
1/32 
64 beats (32 seconds) 

The diagonal line is as follows:-

This produces a sequence of notes whose lengths meander gently up and down 

the 32 length range. The result is alternate periods of accelerando and 

rallentando. 

Varying Note Length, Example 2 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length k: 

Starting Length: 

Passage Length: 

The diagonal line is as follows: 

1/32,2/32,3/32,..., 31/32,32/32 of 1 beat 
32/32 (Ibeat) 
-1 

0.5 
1/32 
64 beats (32 seconds) 

110 



Lengths at one extreme of the range tend to be followed by lengths at the other 

extreme, while lengths towards the centre of the range tend to be followed by 

lengths also towards the centre. The result is sequences consisting of alternating 

short and long notes interspersed with sequences of notes of more even length. 

Varying Note Length, Example 3 

Note Lengths; 

Minimum Mean Length: 

Length Gradient: 

Length X: 

Starting Length: 

Passage Length: 

l/32y 2/32,3/32,..., 31/32,32/32 of 1 beat 
16/32 (1/2 beat) 
0 

0.5 
16/32 (1/2 beat) 

48 beats (24 seconds) 

The diagonal line is as follows:-

The notes centre around one quaver's length, with deviations up and down. 

The general effect is of the player keeping time very badly! 

Varying Note Length, Example 4 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length X; 

Starting Length: 

Passage Length: 

1/32,2/32,3/32,..., 31/32,32/32 of 1 beat 
2/32 (1/16 beat) 
1 
1 

1/32 
64 beats (32 seconds) 

The diagonal line is as follows: 
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As previously observed, the result of a Minimum Mean slightly higher than 

the Minimum value of the range is a sequence of parameter values which tend 

to rise until the Maximum value is reached, at which point, since Wraparound 

is on, the sequence returns again to the Minimum before rising again. In the 

case of note lengths, the result is a melody consisting of consecutive rallentando 

sequences. If the Minimum Mean was slightly lower than the Maximum value 

of the range then the result would be consecutive accelerando sequences. 

Varying Note Length, Example 5 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length X: 

Starting Length: 

Passage Length: 

1/32,2/32,3/32,..., 31/32,32/32 of 1 beat 
1/32 
3.5 
20 

11/32 
48 beats (24 seconds) 

The diagonal line is as follows:-

As previously observed. Gradients bigger than 1 tend to produce repeating 

patterns of parameter values. Here, X has been set to 20 so that the precise 

pattern is obtained. In this case the repeating pattern of note lengths is a nine 

note sequence as follows: 

11,4,12,8,26,25,21, 7,22 

Although each note length in the nine note sequence is unique, the difference 

between some of them is not discernible; for example, 11/32 and 12/32, 25/32 

and 26/32. 
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Varying Note Length, Example 6 

Note Lengths: 1/4 beat, 1/2 beat and 1 beat 

Minimum Mean Length: l /4beat 

Length Gradient: 1 

Length k: 0.5 

Starting Length: 1 beat 

Passage Length: 64 beats (32 seconds) 

In this example, only semiquavers, quavers and crotchets have been selected. 

As discussed in the introduction to this section, this makes it much more likely 

that a rhythmical pulse will be felt. A steady backing crotchet drum beat has 

been added to provide a reference. Most of the time, the melody seems to be "in 

time" but occasionally it seems to slip "out of synch" with the drum beat. This 

happens when the pulse of the melody is, for more than just a few notes, off the 

drum beat by a semiquaver which, unlike being off by a quaver, is disconcerting 

to the listener. This effect is confirmed by the following example, which allows 

only quavers and crotchets. 

Varying Note Length, Example 7 

Note Lengths: 1/2 beat and 1 beat 

Minimum Mean Length: l /2beat 

Length Gradient: 1 

Length X: 0.5 

Starting Length: 1 beat 

Passage Length: 64 beats (32 seconds) 

Here, although a syncopation effect occurs when the pulse of the melody is off 

the drum beat by a quaver, a sense of a constant pulse is nevertheless 

maintained throughout the melody. 

Varying Note Length, Example 8 

Note Lengths: 1/4 beat, 1/2 beat and 1 beat 

Minimum Mean Length: l /4beat 

Length Gradient: 1 

Length X: 3 

Starting Length: 1 beat 
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Passage Length; 64 beats (32 seconds) 

This is the same as example 6 but the higher value X. of 3 means that the lengths 

will vary more slowly. There are, therefore, longer sequences of repeating 

semiquavers, quavers or crotchets. This also means that when the melody falls 

off the pulse by a semiquaver, it disconcertingly stays so for longer. 

Varying Note Length, Example 9 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length X,: 

Starting Length: 
Passage Length: 

1 beat, 2 beats and 4 beats 

1 

1 

3 

4 beats 

64 beats (32 seconds) 

This is, comparatively speaking, the same as example 8 but the effect of 

employing longer note lengths is to remove the disconcerting "out of synch" 

sequences. 

Varying Note Length, Example 10 

Note Lengths: 

Minimum Mean Length: 

Length Gradient: 

Length X: 

Starting Length: 

Passage Length: 

1/4 beat, 1/2 beat, 1 beat and 2 beats 

1/4 beat 

0 

1 

1/4 beat 

64 beats (32 seconds) 

Here, the gradient of 0, together with a Minimum Mean Length of a 

semiquaver, means that more of the lengths will tend to be semiquavers with 

the interjection of some quavers, much fewer crotchets and very occasional 

minims. The resulting melody maintains the sense of a steady pulse because, 

even though it may sometimes fall off the pulse by a semiquaver, another 

semiquaver soon occurs to bring it back in synch. 
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Varying Note Length, Example 11 

Note Lengths; 1/4 beat, 1/2 beat, 1 beat and 2 beats 

Minimum Mean Length: 2 beats 

Length Gradient: 0 

Length X,: 1 

Starting Length: 2 beats 

Passage Length: 64 beats (32 seconds) 

Here, the gradient of 0, together with a Minimum Mean Length of a minim, 

means that more of the lengths will tend to be minims with the interjection of 

some crotchets, much fewer quavers and very occasional semiquavers. Now, 

the pulse becomes lost because once a semiquaver occurs to put the melody out 

of synch, it stays so for a long period. 

5.7 VARYING NOTE VELOCITY 

5.7.1 Introduction 

Exactly the same processes which have been examined thus far in relation to 

note pitch are equally at work with regard to any other parameter. Therefore, 

the analysis of note velocity variation which follows is not as exhaustive as the 

preceding analysis of note pitch variation: instead, representative examples are 

presented. 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "Varying Note Velocity". The 

files are named numerically corresponding to the numbered examples below. 

5.7.2 Analysis 

For all the examples in this section, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on 

middle C (that is, C3 to C7) 

Minimum Mean Pitch: 36 (= C3, the lowest pitch of the range) 

Pitch Gradient: 1 

Pitch X: 0.5 

Starting Pitch: 36 (= C3, the lowest pitch of the range) 
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Tempo: 

Note Length: 

Velocity Range; 

Pitch Wraparound: 

Pitch Reverse: 

Length Wraparound: 

Length Reverse: 

Passage Length: 

60 beats per minute 

1/8 (that is, 8 notes per beat, or 8 notes per 

second in this case) 

50-127 
ON 
OFF 
ON 

OFF 
48 beats (= 48 seconds) 

Varying Note Velocity. Example 1 

Minimum Mean Velocity: 

Velocity Gradient: 

Velocity X: 

Starting Velocity: 

50 (lowest value in range) 

1 
0.05 
127 (highest value in range) 

The diagonal line is as follows :-

The note velocity meanders up and down the range. The result is a melody 

containing alternating periods of rising and falling dynamic, of various lengths. 

Varying Note Velocity, Example 2 

Minimum Mean Velocity: 

Velocity Gradient: 

Velocity k: 

Starting Velocity: 

127 (highest value in range) 

-1 

0.5 
127 (highest value in range) 

The diagonal line is as follows: 
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Velocities at one extreme of the range tend to be followed by velocities at the 

other extreme, while velocities towards the centre of the range tend to be 

followed by lengths also towards the centre. The result is sequences consisting 

of alternating loud and soft notes interspersed with sequences of notes of more 

even dynamic towards the centre of the range. When the leap from loud to soft 

is very wide, the loud notes are heard as a slower melodic line of half the tempo 

of the actual generated sequence, the soft notes being barely discernible. 

Varying Note Velocity, Example 3 

Minimum Mean Velocity: 51 

Velocity Gradient: 1 

Velocity X: 0.5 

Starting Velocity: 51 

The diagonal line is as follows: 

As discussed in previous sections, minimum mean values slightly above the 

lowest value in the range produce sequences of parameter values which tend to 

rise. Here, the result is successive sequences of notes which gradually rise to a 

crescendo. 

Varying Note Velocity, Example 4 

Minimum Mean Velocity: 60 

Velocity Gradient: 1 

Velocity k: 0.5 

Starting Velocity: 50 

The diagonal line is as follows: 
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Here, the minimum mean velocity is ten above the lowest value in the range 

so the consecutive sequences build much more rapidly to a crescendo than in 

the previous example. Each sequence is, on average, eight notes in length. 

Varying Note Velocity, Example 5 

Minimum Mean Velocity: 51 

Velocity Gradient: 2 

Velocity k: 20 

Starting Velocity: 51 

The diagonal line is as follows: 

As previously observed. Gradients bigger than 1 tend to produce repeating 

patterns of parameter values. Here, X has been set to 20 so that the precise 

pattern is obtained. The result is repeating sequences of 12 different velocity 

values: 51,53,57, 65,81,113,99,71, 93,59, 69,89. The values of 113,93 and 89, 
since they are followed by either two or five notes of comparatively smaller 

velocity, produce stresses which imply a definite triple metre. 

5.8 THE REVERSE OPTION 

5.8.1 Introduction 

The purpose of the Reverse Option (see Section 2.3.4) is to effect a reverse in 

direction of a parameter when that parameter is tending to move in a particular 

direction and reaches the upper or lower limit of its range of values. For 

example, a melody which is tending to rise will begin to fall when it reaches the 

top of the pitch range and a melody which is tending to fall will begin to rise 

when it reaches the bottom of the pitch range. 

As previously observed, a tendency to move in a particular direction 

occurs when the Minimum Mean is other than the lowest value in the range 

and the Gradient is 1, the speed of movement being higher the further the 

Minimum Mean is from the lowest value in the range. 
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Three examples are given below, showing the effect of the Reverse 

Option on Pitch, Note Length and Note Velocity. Each is the same as an 

example from a previous section, in which a tendency to move in a particular 

direction was evident, but with Reverse Option turned on for the relevant 

parameter 

The files on the accompanying compact disc and floppy disk which 

support the examples in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "The Reverse Option". The 

files are named numerically corresponding to the numbered examples below. 

5.8.2 Analysis 

The Reverse Option, Example 1 

Pitch values: a four-octave C major scale centred on middle C (that 

is,C3toC7) 
Starting Pitch: 36 {= C3, the lowest pitch of the range) 

Minimum Mean Pitch: 38 

Pitch Gradient: 1 

Pitch X: 0.5 

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in 

this case) 

Tempo: 60 beats per minute 

Passage Length: 32 beats (32 seconds) 

Pitch Wraparound: ON 

Pitch Reverse: ON 

This is the same as Example 2 in Section 5.4.2 above but with the Pitch Reverse 

Option turned on. 

Initially, while there are some descending sequences of pitches the 

overall trend is for the melody to rise. When the melody reaches the top of the 

range (C7), it starts to fall and, while there are some rising sequences the overall 

trend is for the melody to continue to fall until it reaches the lowest pitch in the 

range (C3), at which point it begins to rise again. The melody therefore consists 

of alternate rising and falling sequences spanning the entire pitch range. 
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The Reverse Option. Example 2 

Pitch values: 

Minimum Mean Pitch; 

Pitch Gradient; 

Pitch X: 

Starting Pitch: 

Tempo: 

Note Lengths; 

Minimum Mean Length: 

Length Gradient: 

Length X: 

Starting Length; 

Passage Length; 

Pitch Wraparound; 

Pitch Reverse: 

Length Wraparound; 

Length Reverse: 

a four-octave C major scale centred on 

middle C (that is, C3 to C7) 

36 (= C3, the lowest pitch of the range) 

1 

0.5 

36 (= C3, the lowest pitch of the range) 

120 beats per minute 

1/32,2/32,3/32,..., 31/32,32/32 of 1 beat 
2/32 (1/16 beat) 

1 

1 

1/32 
64 beats (32 seconds) 

ON 
OFF 
ON 
ON 

This is the same as Example 4 in Section 5.6.2 above but with the Note Length 

Reverse Option turned on. 

The melody begins with a rallentando sequence which continues to slow 

until the note length reaches the top of the note length range (1 beat, the longest 

note of the range), at which point it begins to quicken again. It continues to 

quicken untU the note length reaches the bottom of the note length range (1/32 

beat, the shortest note of the range), when it begins to slow again. The melody 

therefore consists of alternate rallentando and accelerando sequences spanning 

the entire note length range. 

The Reverse Option, Example 3 

Pitch values: 

Minimum Mean Pitch; 

Pitch Gradient: 

Pitch X: 

Starting Pitch: 

Tempo; 

a four-octave C major scale centred on 

middle C (that is, C3 to C7) 

36 (= C3, the lowest pitch of the range) 

1 

0.5 
36 (= C3, the lowest pitch of the range) 

60 beats per minute 
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Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per 

second in this case) 

Velocity Range: 50 -127 

Minimum Mean Velocity: 51 

Velocity Gradient: 1 

Velocity X: 0.5 

Starting Velocity: 51 

Pitch Wraparound: ON 

Pitch Reverse: OFF 

Length Wraparound: ON 

Length Reverse: OFF 

Velocity Wraparound: ON 

Velocity Reverse; ON 

Passage Length: 48 beats (= 48 seconds) 

This the same as Example 3 in Section 5.7.2 above but with the Velocity Reverse 
Option turned on. 

Initially, the melody gradually rises to a crescendo until the note velocity 

reaches the top of the note velocity range (127, the loudest note in the range), at 

which point the velocity begins to fall, resulting in a diminuendo sequence, 

until the velocity reaches the bottom of the note velocity range (50, the quietest 

note in the range), when the velocity begins to rise again. The melody therefore 

consists of alternate crescendo and diminuendo sequences spanning the entire 

note velocity range. 

5.9 THE REFLECT OPTION 

5.9.1 Introduction 

The Reflect option (see Section 2.3,3) only has an effect if the Gradient is greater 

than 1 or less than -1, because for these Gradients the diagonal line will hit the 

right or left hand edge (or both) of its enclosing rectangle and therefore be 

reflected from it. As seen in Section 5.5 above, when the Wraparound, rather 

than the Reflect, option is on, such Gradients tend to produce mutually-

exclusive repeating sequences whose values depend on the starting value. It 

turns out that the same behaviour occurs when the Reflect option is on. 

However, the repeating sequences produced by the Reflect option often 

manifest two important behavioural differences to those produced by the 

Wraparound option:-
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1. While Wraparound-produced repeating sequences tend, apart from single 

note sequences, to be of the same length (Examples 4 and 5 in Section 5.5 above 

produce two different 14 note sequences, and examples 7, 8 and 9 produce three 

different five note sequences), Reflect-produced repeating sequences can be of 

widely differing lengths (the example below produces two 1-note sequences, two 

3-note sequences and a 6-note sequence). 

2. While Wraparound-produced repeating sequences tend to cover much of the 

overall parameter range, and to overlap, it is possible for Reflect-produced 

sequences to occur in a narrow sub-range within the overall range and to be 

non-overlapping with any of the other sequences (the example below produces 

a high E-minor triad which is in a different register to the other repeating 

sequences). 

The file on the accompanying compact disc and floppy disk which 

supports the example in the following analysis may be found in the directory 

called "Analysis of the Algorithm", subdirectory "The Reflect Option". The file 

is named numerically corresponding to the numbered example below. 

5.9.2 Analysis 

The Reflect Option, Example 1 

The parameter values are as follows:-

Pitch values: a four-octave C major scale centred on middle C (that 

is, C3 to C7) 
Minimum Mean Pitch: 72 (C6) 

Pitch Gradient: -2 

3 
Starting Pitch: 74 (D6) 

Tempo: 60 beats per minute 

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in 

this case) 

Wraparound: OFF 

Reflect ON 

Reverse: OFF 

Passage Length: 48 beats (= 48 seconds) 

The diagonal line is as follows:-
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Experimentation with a Pitch K value of 20, and with different starting pitch 

values throughout the whole range, shows that the possible repeating 

sequences are: 

C6 (single repeated pitch) 

A5F5B4A3G4D3 

F3D5E4 
C4 (single repeated pitch) 

B6E6 G6 

The example here has a Pitch X value of 3 so the result is interwoven 

fragments, of varying lengths, of each of the possible sequences. For this 

particular realisation, the passage spends the first half of its length around the 

high three note sequence (B6 E6 G6) before moving down to spend most of the 

second half around the lower sequences. 
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Cfiapter 6 

StyCe 'EmuCativn 
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6.1 INTRODUCTION 

In this chapter, we shall investigate how well the Markov program algorithm 

may be used to generate music based on existing, known styles. 

Four different, intentionally diverse, styles have been examined: Steve 

Reich Phase Music, Gagaku, Bach Harpsichord and Dance Music. They have 

been chosen in order to demonstrate:-

(i) the flexibility of the algorithm 

(ii) important compositional techniques used when constructing pieces from 

the algorithm 

(iii) the strengths and limitations of the algorithm when attempting to 

reproduce a given style 

The first style, Steve Reich Phase Music, is itself based on a systematic 

compositional method and it is therefore no surprise that the algorithm is quite 

successful here. The "phasing" technique inherent in this music is reproducible 

exactly and the main limitation is the lack of freedom the composer has when 

constructing the melody. 

The second style, Gagaku, is included as an example of a non-western 

style. This style, being generally harmonically less tightly structured than 

western styles, turns out to be quite well suited to the algorithm although the 

tuning system, being different to the western equal-tempered scale, causes some 

problems due to the limitations of the MIDI standard. 

The third style. Bach Harpsichord music, has been chosen as an example 

of a style of music which has a very tight melodic and harmonic structure. It is 

not surprising that this type of music is difficult to reproduce given the small 

amount of input data supplied to each Part that makes up a composition. To 

produce a new piece reproducing such a style exactly would require a thorough 

analysis of the given style in order to formulate a complete, and possibly large 

and complex, set of rules specifying the stylistic behaviour. The computer can 

then produce a composition which obeys all these rules (see Section 1,2.4.1) and 

the result is another piece in the same style. This process is in itself not, 

however, particularly creative. The Diagonal Line algorithm, on the other 

hand, allows the composer to introduce a degree of determinism such that 

intended stylistic features are apparent but which nevertheless leaves open the 

possibility for unexpected musical events to occur. In this attempt to emulate 

Bach harpsichord music, relatively successful results are obtained by using the 

algorithm to model one bar at a time, but the need to model the piece in such 

small, bar-sized sequences exposes a very important limitation of the algorithm. 
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The final style. Dance Music, is included as an example of a present-day, 

"popular" style. Here, the ability of the algorithm to generate precise rhythmic 

structures is demonstrated and, since much of the music in this style is itself 

often computer generated using a systematic approach, successful results are 

obtained. It will be seen, however, that a disconcertingly large amount of 

algorithmic effort is required to achieve very simple melodic sequence 

structures. 

Thus, what is demonstrated in this chapter is that such a deceptively 

simple algorithm is capable of producing an extremely wide range of stylistic 

output and that in many instances precise, deterministic compositional 

elements are obtainable, whilst, equally importantly, in many other instances 

the algorithm is not so well suited and compositional compromises must be 

made. 

The particular styles investigated here have been chosen not as specific 

compositional goals in themselves but more to demonstrate both the 

enormous flexibility of the algorithm and its limitations. The chosen styles are 

not as important as the compositional process at work: that is, starting from a 

set of stylistic objectives, how does the composer manipulate the parameters of 

the algorithm such that a resulting composition behaves appropriately? This 

process is key to the algorithmic approach employed here. At the same time, 

whilst it is not under consideration here, the "wind it up, let it go and see what 

happens" approach is also possible and represents another, completely different, 

way of composing with this algorithm. 

The approach that has been adopted here is to take original recorded 

examples of the chosen styles (and, where possible, an original score) and, in a 

part informed and part subjective manner, identify key stylistic features. The 

Markov program is then used to construct a short piece, in which the 

mathematical parameters of the various parts are set so as to approximate as 

nearly as possible the previously identified features 1. Extracts from the 

parametric score (see Section 3.2.6 and Appendix A, Section 4.6) produced by the 

Markov program are introduced regularly to show the relevant parameter 

settings. 

In the case of the Steve Reich Phase Music and Dance Music styles, the 

pieces produced from the Markov program are constructed in a very precise 

manner and, consequently, each playing of the composition produces exactly 

the same result. For the Gagaku and Bach harpsichord styles, the probabilistic 

nature of the algorithm comes into play and each playing of the composition 

1 Note that since the algorithm is, as discussed above, not rule based, these features are 
relatively simple ones and do not include, for example, permissible cadence patterns, or precise 
melodic structures. It is therefore surprising how successful the resulting music can be given the 
intrinsic simplicity of the principles from which is it is constructed. 
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generally produces a different result. It will therefore very likely be the case that 

some renditions may, in reference to original examples of the style in question, 

be more convincing than others. This is nothing to fear: on the contrary, it adds 

to the creativity of the process since it allows the mathematical system to 

introduce variations on the original style while nevertheless maintaining the 

overall character. 

It should not be overlooked that, in addition to the choices of parameter 

values, certain fundamentally important musical choices are made, particularly 

scale and timbre. If, for example, a chromatic scale was chosen when the 

original style was based on a melodic minor scale, or a trombone timbre was 

selected when the original work under investigation was a piano piece, then it 

is highly unlikely that the musical result from the algorithm would be in any 

way convincing no matter what the choice of mathematical parameters. 

However, while such choices are necessary they are absolutely not sufficient. 

The investigations in Chapter 5 show in great detail the enormous musical 

variations in output which are obtained from relatively small changes in the 

values of algorithm parameters, and the lessons learned there are put into 

practice here in making informed initial choices of parameter values. What are 

given in the current study are the final choices of the parameters. These were 

arrived at by a continuous process of refinement, Markov program being 

used to facilitate this process in a manner explored in detail in Chapter 4, until a 

result was obtained which, in the opinion of the composer, satisfied the original 

objectives. This, again, is key to the compositional approach which this 

algorithm affords, but it should be emphasised that the assessment of the 

success, or otherwise, of the algorithm in emulating the musical styles in 

question is based on empirical, subjective judgements of the results by ear. 

The compact disc which accompanies this thesis contains audio file 
encapsulations of renderings of each of the pieces produced by the Markov 

program; for the Gagaku style, three separate renderings of each are included 

while for the Bach harpsichord style, six are included. For the Gagaku and Reich 

styles, audio files containing a short extract from original recordings of 

performances in these styles are also included. The floppy disk contains the 

examples as Markov program Composition Files for playback from the Markov 

program. Full details of the filenames and locations are given later in this 

chapter, in the relevant sections. 
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6.2 STEVE REICH PHASE MUSIC 

6.2.1 Introduction 

Steve Reich discovered the process of "Phase" music by accident in 1965 while 

playing with tape loops of the recorded voice of a Pentecostal preacher. He 

allowed the two tape loops to gradually move completely out of phase with one 

another and then slowly move back into unison. The result was the work It's 
Gonna Rain. He then applied this technique to live instrumental music. In 

Piano Phase (1967), two pianists play a short repeating pattern of notes, one 

playing steadily while the other gradually increases his or her tempo so as to 

slowly move ahead of the other. This process is continued until both players are 

back in unison, at which point the pattern is changed and the phasing process 

begins again. 

The example produced by the program is not based on Piano Phase 

specifically but rather on the general features of Reich's phase pieces, although 

piano has been chosen as the instrument. It demonstrates how the program can 

produce completely deterministic results rather than probabilistic ones. In this 

case, as previously stated, exactly the same piece results every time the 

composition is replayed. 

The accompanying compact disc contains a short extract from Piano 

Phase, taken from the compact disc Steve Reich, Early Works, 

Elektra/Asylum/Nonesuch Records, 1987, performed by Nurit TiUes and 

Edmund Niemann (compact disc number 7559-79169-2). It is in a WAV-

formatted audio file called "Reich Original.wav" and may be played by any 

application capable of playing WAV files (Microsoft Windows^'^ Media Player 

for example). The compact disc also contains the piece produced by the program 

in a file called "Reich.wav". The floppy disk contains the program-generated 

piece as a Markov program Composition File called "Reich" for playback from 

the Markov program. All files may be found in the "Style Emulation" directory. 

6.2,2 Identifying the Key Elements 

There are two key stylistic features:-

a) A short single part piano Hne, repeated by two separate piano players 

b) The two separate piano parts gradually move out of phase before eventually 

coming together again. 

128 



6.2.3 Constructing the Piece Using the Algorithm 

As discussed in detail in Section 5.5.2, repeating sequences are produced by 

gradients of greater than 1 or less than -1 with k set high enough to produce a 

deterministic result. The sequence which results from a particular choice of 

parameter values is difficult to predict and the sequence used for the Markov 

program Phase Music piece was arrived at after trial and error experimentation. 

The relevant section of the score relating to the sequence of pitches is as 

follows;-

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 80 62 60 2.000000 20.000000 

PITCH SELECTIONS: 
60 62 63 65 67 68 71 72 74 75 77 79 80 

Note that the pitch selections correspond to 13 notes of a C harmonic minor 

scale starting from middle C. A gradient of 2 with a Minimum Mean of 62 

produces a particular 12 pitch repeating pattern which was felt to be appropriate 

to the task in hand. The X value is 20 which, as we have seen, produces a 

deterministic result where each note in the sequence obeys precisely the 

prediction of the Diagonal Line algorithm. The exact sequence of MIDI pitch 

values produced is 60, 62, 65, 72, 63, 68, 79, 77, 74, 64, 75, 71 corresponding to C5, 

D5, F5, C6, E'̂ 5, G#5, G6, F6, D6, G5, E%, B5. This sequence results from setting 

the starting pitch to 60 (C5). The pitches produced are 12 of the 13 actually 

selected, the pitch value 80 (G#6) not occurring at all. In fact, a pitch of 80 would 

be followed by a continuous repeating sequence of 80's and this partitioning of 

the full set of selected pitches into mutually exclusive subsets (two in this case) 

depending on the starting value is a common feature of the algorithm for 

gradients of greater than 1 or less than -1. The reader is again referred to Section 

5,5,2, for a detailed analysis. 

As noted previously, the algorithm rather limits the composer in the 

choice of melody which can be constructed deterministically. It is not possible to 

produce any chosen melody: indeed, the algorithm is not designed for this 

purpose, and it would be very surprising if a such a mathematical algorithm 

could achieve this. One specific limiting feature of the deterministic melodic 

sequences which can be produced by the algorithm, for example, is that, for each 

repetition of the sequence, each pitch occurs once and once only. 
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The phase shift effect is produced by setting the note length for the first 

part to one whole beat and the second to 190/192 of a beat^. Thus the second 

part gradually moves ahead of the first because its note length is very slightly 

shorter. 

The respective relevant sections of the score for the two parts are as 

follows (the overall tempo being set to 400 beats per minute): 

Parameter Min Max MinMean Start Grad Lambda 

LENGTH (/192) 192 192 192 1.000000 0.500000 

and 

Parameter Min Max MinMean Start Grad Lambda 

LENGTH (/192) 190 190 190 1.000000 0.500000 

The length of the section must be calculated so that it ends at the point when 

the two parts come back into exact alignment. Now, Part 2 advances by 2/192 = 

1/96 of a beat for every note played so after Part 2 has played 96 notes it will 

have advanced by one whole beat. The time it takes Part 2 to play 96 notes is 96 x 

190/192 = 95 whole beats. Thus it wUl take 95 x 12 = 1140 beats for Part 2 to have 

advanced by 12 whole beats and therefore be back into exact alignment with Part 

1. Therefore, the length parameters of each of the two Parts are set to begin on 

beat 1 and end on beat 1140. If desired, a new Section can now begin for which 

different Pitch parameters are specified in order to produce a different sequence. 

The complete Markov program score for the piece can be seen in Appendix B, 

Section B.1,1. 

6.2.4 Discussion of the Results 

This piece, having been constructed in a totally deterministic way so as to 

capture the key elements of Reich's work, is extremely convincing. One small 

point to make is that two live performers, having moved out of phase such that 

^ The chosen value of 192 for the beat length fraction is not arbitrary. The number of ticks per beat 
has been set in the program to 192 which the authors of Altech Systems' MIDIPascal recommend 
as it allows tempos of up to 300 beats per minute before interrupts begin to occur too rapidly for 
slower Apple Macintosh computers to cope. Therefore, choosing 192 as the beat fraction means 
that calculations of the lengths of subdivisions of a whole beat (190/192 in this case) will be 
accurate. Had a note length of, say, 99/100 been chosen then rounding errors would occur because 
the program would have to convert this to a fraction of 192, which be not be exactly the same 
value. 
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one was, for example, exactly one beat ahead of the other, would probably linger 

in this state for a short while before continuing to move out of phase, whereas 

the rate of phase shift between the two program generated parts is uniform 

throughout. 

6.3 GAGAKU - TAPANESE COURT MUSIC 

6.3.1 Introduction 

The term Gagaku, meaning literally "tasteful" or "correct" music, encompasses 

all the traditional court music of Japan. Of this music, a subcategory, Togaku, 
refers to music primarily of Chinese origin which was arranged and 

standardised in Japan and dates from the late 8th century. 

Reference was made to live recordings of Togaku Music on the compact disc 

Gagaku: Court Music of Japan, JVC World Sounds, 1994 (compact disc number 
VICG-5354). 
The instruments used in these performances are: 

Ryuteki, a high pitched bamboo flute 

Hichiriki, a lower pitched double-reed instrument 

Kakko, a double-headed barrel drum 

Tsuridaiko, a large shallow barrel-shaped drum 

The intention is to use the Markov program to create a short piece 
consisting of two sections, inspired by two separate pieces on the compact disc, 
as follows:-

1. An introduction formed by a short Ryuteki solo, backed by 

occasional Kakko and Tsuridaiko. 

2. A main body consisting of a continuous drone of Sho over which 

Hichiriki begin to enter, first a solo and then several together. 

The Togaku note system consists of seven fundamental modes, or 

Choshi. Each mode consists of a seven-note series. The examples here use the 

Hyojo mode, which approximates to the pitches E, F#, G, A, B, C# and D. 

The Togaku repertory is classified both according to the kind of 

movement and by rhythmic type. The three classes of movement are Jo, a 

prelude or introduction. Ha, "breaking away", and Kyu, "rapid" or "hurried". 

131 



The examples here are of the Jo movement, which typically has a very slow 

tempo bordering on free rhythm^. 

Two short extracts from the aforementioned live recordings may be 

found on the accompanying compact disc in WAV-formatted audio files called 

"Gagaku Original l.wav" and "Gagaku Original 2.wav". Three separate 

program-generated realisations are contained in the files "Gagakul.wav", 

"Gagaku2.wav" and "Gagaku3.wav". The floppy disk contains the program-

generated piece as a Markov program Composition File called "Gagaku" for 

playback from the Markov program. All files may be found in the "Style 

Emulation" directory. 

6.3.2 Identifying the Key Elements 

The following key stylistic features are identified in the two sections:-

Section 1 

a) The solo has a slow 4/4 rhythm 

b) The solo consists of quavers, crotchets, minims and semibreves. 

c) Longer note lengths are more frequent than shorter ones 
d) The solo contains occasional rests 

e) The solo is based on the Hyojo mode 

f) The melodic line moves fairly gently, usually moving up or down one pitch 

value at a time but with occasional larger jumps occurring 

g) There are very few successive repetitions of the same pitch 

h) The player frequently "bends" the notes 

i) From about a third the way through the section, single Kakko drum beats 

occasionally enter 

j) From about two thirds the way through the section, single Tsuridaiko drum 

beats occasionally enter, but with lower frequency than the Kakko 

k) Towards the end of the section, a short, accelerating Kakko drum sequence is 

played 

3 The other movements are rhythmically stricter. For example, the rhythm Haya Yahyoshi 
consists of 16 metrical units, each of which consists of eight four-beat units and begins with a 
strong Tsuridaiko stroke. 
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Section 2 

a) Sho notes form a continuous backing 

b) The successive Sho notes are long and of varying length 

c) The different notes come from the Hyojo mode 

d) The volume of each Sho note rises and falls 

e) A solo Hichiriki enters playing notes from the Hyojo mode 

f) After a short while this is joined by a chorus of other Hichiriki all playing 

notes from a similar register so that discords occur 

g) All Hichiriki notes are "bent" frequently 

h) The note lengths vary such that the attack points are often offset 

i) There is no obvious even rhythm 

6.3.3 Constructing the Piece Using the Algorithm 

Before going into the precise details of the algorithm parameter settings used in 

the consfruction of the piece, it is helpful, when considering the separate 

realisations of the piece produced by the program, to have a general awareness 

of how much is fixed and how much is open to variation by the algorithm. For 

this piece, the details are as follows:-

Section 1 

Ryuteki solo: The length of this solo is fixed at 112" but is open to 

considerable variation in pitch and rhythm on 

successive playings. 

Kakko drum: The time period over which these beats may occur is 

fixed at 0'24" to I'O" but the precise attack points are 

subject to considerable variation. The same single pitch 

is used throughout. 

Tsuridaiko drum: The time period over which these beats may occur is 

fixed at 0'48" to 112" but, while occurring less 

frequently than the Kakko, the precise attack points are 

again subject to considerable variation. The same 

single pitch is used throughout. 

Accelerating 

Kakko: Lasts from 1' to 118". Although the precise attack 

points will vary on successive playings, no difference is 

readily discernible so this is essentially fixed. 
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Section 2 

Sho backing: There is a short crescendo of Sho notes from I ' l l " to 

118" which is fixed. Thereafter, the Sho notes 

continue until the end of the piece. The attack points 

and rising and falling volume of the notes are subject 

to considerable variation but the combination of these 

effects across three Sho instruments playing together 

averages out to the extent that there is no readily 

identifiable difference between successive playings. 

Solo Hichiriki: Subject to considerable variation. 

Hichiriki chorus: Subject to considerable variation. Although the overall 

effect sounds similar on successive playings there can 

be a noticeable difference in register. 

The features described in Section 6.3.2 above are incorporated into the 

piece to be produced by the program by manipulating the algorithm parameters 

as foUows:-

Section 1 

To achieve quavers, crotchets, minims and semibreves, the beat fraction is set to 

2, and the selection mechanism is used such that only note lengths of 1, 2, 4 and 

8 are allowed, corresponding to quavers, crotchets, minims and semibreves 

respectively. 

To control the frequency of occurrence of note lengths such that longer 

note lengths are more frequent, the Minimum Mean is set to the maximum of 

the range of note lengths, 8/2 (that is, a semibreve) with a gradient of 0. This 

will make note lengths towards the top of the range (the longer lengths) more 

likely to occur than those towards the lower end of the range (the shorter 

lengths) (see Section 5.3.2, Example 10 for a discussion of this effect, but in 

relation to pitch). However, a K value of 0.5 allows a reasonable degree of 

variation so that shorter note lengths will occur from time to time. 

The relevant extract from the score is as follows :-

Parameter Min Max MinMean Start Grad Lambda 

LENGTH (/ 2) 1 8 8 0.000000 0.500000 

LENGTH SELECTIONS: 
1 2 4 8 
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To achieve rests, the selection values of note velocity are set so that only 127 

(maximum velocity) and 0 (no sound) are allowed. When velocities of 0 are 

generated, a rest will occur, lasting until such time as a velocity of 127 is next 

generated. 

Since only occasional rests are desired, the Minimum Mean Velocity is 

set to 127 with a gradient of 0. A X setting of 2 gives a fairly high tendency for 

velocities of 127 to be generated rather than velocities of 0, thus achieving 

occasional rests. 

The relevant extract from the score is as followst-

Parameter Min Max MinMean Start Grad Lambda 

VELOCITY 0 127 127 127 0.000000 2.000000 

VELOCITY SELECTIONS: 
0 127 

To achieve the Hyojo mode, the following MIDI pitch values are selected: 

76,78, 79,81,83,85,86 and 88. 
To achieve a gently moving melody, the Minimum Mean is set to 76, the 

lowest value of the pitch range, with a gradient of 1 and a X value of 0.5 (see 

Section 5.3.2, Example 1). 

Since successive repetitions of the same pitch value are infrequent, it was 

decided to prevent successive repetitions of the same pitch occurring altogether, 

by selecting the Disallow Repeats option in the Pitch Parameter Values dialog 

box (see Appendix A, Section 3.3.2). 

A MIDI Patch value of 73 has been chosen, corresponding to Piccolo. 

The complete section of the score corresponding to the solo part is as 

follows:-

Sect 1 Part 1, Chan 1, Patch 73, Pan 64, BEATS 1 to 60 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 76 88 76 1.000000 0.500000 
LENGTH (/ 2) 1 8 8 0.000000 0.500000 
VELOCITY 0 127 127 127 0.000000 2.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 YES 1 NO 1 NO 1 

PITCH SELECTIONS; 
76 78 79 81 83 85 86 88 

LENGTH SELECTIONS: 
1 2 4 8 

VELOCITY SELECTIONS: 
0 127 
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The bending of notes is achieved by using the Pitch Bend parameter. However, 

it is no use varying the pitch bend of the notes of the solo line itself, because 

this would just mean that the pitch bend value would vary on a note by note 

basis4, whereas what is required here is that the pitch bend varies while a single 
note is playing. To achieve this effect, pitch bend changes must be sent from a 

different Part but to the same MIDI channel as the solo line. The program 

allows pitch bend values to be set in the range 0 to 127: 0 corresponds to full 

bend downwards and 127 corresponds to full bend upwards. For most MIDI 

devices, this implies, by default, a pitch bend range of one tone below to one 

tone above true pitch^. 

Here, the pitch bend parameter range is set to 32 to 96, giving a range 

from one semitone below to one semitone above true pitch. A Minimum Mean 

of 32 and a gradient of 1 with a X value of 0.7 give a fairly gentle movement up 

and down the pitch bend range, which is necessary so that the pitch bends 

sound fairly smooth rather than jerky. The very first pitch bend value 

generated is 64 so that the first note played starts at true pitch. From then on, 

the pitch bend will move above and below true pitch but the average value 

should be around 64 so that the overall sense of modal identity is not lost. 

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda 

PITCH BEND 32 96 32 64 1.000000 0.700000 

All note lengths are 1/8 so that the pitch bend changes fairly quickly (8 times a 

beat) thus giving the desired pitch bend effect. Only zero velocities are allowed 

so that no Note On or Note Off events will be generated, just Pitch Bend 

Change events. The Pitch settings are therefore irrelevant and have been left at 

the program default values of 60. 

The complete section of the score corresponding to the pitch bend change 

part is as follows 

4 Note that this could be a valid compositional objective (to achieve microtonal intervals for 
example) but is not appropriate here. 
^ If the pitch bend range has been changed on the MIDI device then the actual pitch bend values 
implied by the values in the range 0 to 127, as set in the Markov program, will change 
proportionately. The program could have allowed the user to set the pitch bend range on the 
MIDI device by setting parameter values in the program itself but it was decided not to implement 
this in order to save on disk and memory usage and to limit the amount of data the user has to 
manipulate. The user can still change the Pitch Bend Range setting on the MIDI device itself if 
required, but note that since the program allows only 128 Pitch Bend settings, the wider the Pitch 
Bend Range the worse the resolution becomes. However, 128 settings over a two tone range is 
perfectly adequate. 
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Sect 1 Part 2, Chan 1, Patch 73, Pan 64, BEATS 1 to 60 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 60 60 1 .000000 0.500000 
LENGTH (/ 8) 1 1 1 1 .000000 0.500000 
VELOCITY 0 0 0 1 .000000 0.500000 
PITCH BEND 32 96 32 64 1 .000000 0.700000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 1 NO 1 NO 1 
LENGTH YES 1 NO NO 1 NO 1 NO 
VELOCITY YES NO 1 NO NO 

Notice that this part lasts exactly the same length of time as the solo part (that is, 

60 beats) and is sent to the same MIDI Channel, 1. It is also important that the 

Patch and Pan settings are the same so that this part does not interfere with the 

solo part in any way, other than changing the pitch bend. 

For the occasional Kakko drum, a part is added, starting at beat 20, for 

which only 0 and 127 velocities are allowed. A Minimum Mean value of 0 with 

a Gradient of 0 and a fairly high X. value of 5 means that 0 velocities 

predominate and thus the drum only enters occasionally at such times as 

velocities of 127 do occur. 

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda 

VELOCITY 0 127 0 127 0.000000 5.000000 

The instrument chosen is Timpani (MIDI Patch 48), with a single pitch of A#. 

This part is of course sent to a different MIDI Channel (2). 

The complete section of the score corresponding to this part is as follows: 

sect 1 Part 3, Chan 2, Patch 48, Pan 64, BEATS 20 to 50 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 68 68 68 1 .000000 0.500000 
LENGTH (/ 1) 1 1 1 1 .000000 0.500000 
VELOCITY 0 127 0 127 0 .000000 5.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO NO 1 NO 1 NO 
VELOCITY YES 1 YES NO 1 NO 1 

VELOCITY SELECTIONS: 
0 127 
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The Tsuridaiko drum part is constructed in a very similar way except that the X 

value for the velocity is set to 6 instead of 5. This means that zero velocities are 

more predominant; that is, the drum enters less frequently. The instrument 

chosen is Taiko (MIDI Patch 117) 

The complete section of the score corresponding to this part is as foUows:-

Sect 1 Part 5, Chan 3, Patch 117, Pan 64, BEATS 40 to 60 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 67 
LENGTH (/ 1) 1 
VELOCITY 0 

REPEAT 

67 
1 

127 

SELECT 

67 
1 
0 

REVERSE 

127 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 

0.500000 
0.500000 
6 . 0 0 0 0 0 0 

REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 

YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

VELOCITY SELECTIONS: 
0 127 

The remaining part of this first section is the accelerating Kakko drum sequence 

towards the end. To achieve an accelerando sequence we must produce a 

sequence of notes whose lengths are successively shorter. This is done by setting 

the Minimum Mean to the lowest value in the range (the shortest length) and 

having a gradient of less than one so that the values are "pulled down" towards 

the lower end of the range (see Section 5.3.2, Example 2, for a discussion of this 

effect, but in relation to pitch). The lower the value of X the more gradual will 

be the pull down effect. Here, length values are chosen across the complete 

range from 5/64 of a beat to 64/64 of a beat (that is, a whole beat). The starting 

length is set to 64/64 so that the length starts at one beat and gradually shortens 

thus producing the desired accelerando effect. A gradient of 0.8, being fairly 

close to one, means that the size of the initial jumps down in length from the 

starting length of one beat are fairly small, while a X value of 2 gives a fairly 

strong tendency so that the lengths steadily shorten and, very importantly, once 

they reach the lower end of the range they tend to stay there. 

The relevant extract from the score is as follows 

Parameter Min Max MinMean 

LENGTH (/ 64) 5 64 5 

start Grad Lambda 

64 0.800000 2.000000 

This part can be sent on the same MIDI Channel as the previous Kakko drum 

part since it does not overlap it. It lasts for the final 10 beats of this first section. 
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The velocity of this part is set to 100 rather than the possible maximum of 127 

because rapidly repeating drum beats (in "machine gun" fashion) tend to drown 

out other instruments. 

The complete section of the score corresponding to this part is as follows:-

Sect 1 Part 4, Chan 2, Patch 48, Pan 64, BEATS 51 to 60 

Parameter Min Max MinMean start Grad Lambda 

PITCH 68 68 68 1 .000000 0.500000 
LENGTH (/ 64) 5 64 5 64 0 .800000 2.000000 
VELOCITY 100 100 100 1 .000000 0.500000 

REPEAT 1 SELECT REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO NO 1 NO 1 
LENGTH YES 1 NO NO 1 NO NO 
VELOCITY YES 1 NO NO 1 NO 1 

Section 2 

In order to provide continuity between this section and the first, the rapidly 

repeating Kakko drum continues for the first 5 beats. 

To form the Sho backing, three separate parts have been used, playing the 

notes B, D and E. Each in fact just plays one long note for 125 beats, the entire 

length of the section. The first of these has the following score:-

Sect 2 Part 1, Chan 1, Patch 112, Pan 64, BEATS 1 to 125 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 71 71 71 1.000000 0.500000 
LENGTH (/ 1) 125 125 125 1.000000 0.500000 

The other two Parts are exactly the same except that they play MIDI pitch values 

74 and 76 and are sent to different MIDI Channels. 

To achieve the rising and falUng volume, a separate part sends volume 

change events to the same MIDI channel. In fact, each of the three main Sho 

parts has 2 separate volume change parts associated with it, the first of which 

forms a short crescendo as the instrument first enters, while the second controls 

the rising and falling volume thereafter. For the short crescendo, the fuU 

volume range of 0 to 127 is specified but a Minimum Mean of 5 with a gradient 

of less than 1 (0.961 in this case^) means that, from the specified starting value 

of 0, the volume values will tend to be pulled up towards the maximum value 

6 This value has been calculated specifically so that the line ends exactly at the maximum value 
of the range. This ensures that no Wraparound effect occurs so that once the volume reaches the 
top of the range it tends to stay there and doesn't jump back down to the lower end. 
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giving the required crescendo effect. A X value of 2 makes this tendency fairly 

strong. 

The relevant extract from the score is as follows:-
Parameter Min Max MinMean Start Grad Lambda 

VOLUME 0 127 5 0 0.961000 2.000000 

Note lengths are all 1/8 of a beat so that the volume rises quickly, and the 

velocity is set to zero so that no Note On or Note Off events are sent, just the 

volume change events. 

The complete section of the score corresponding to this part is as follows: 

Sect 2 Part 2, Chan 1, Patch 112, Pan 64, BEATS 1 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 71 71 71 1 .000000 0.500000 
LENGTH (/ 8) 1 1 1 1 -000000 0.500000 
VELOCITY 0 0 0 1 .000000 0.500000 
VOLUME 0 127 5 0 0 .961000 2.000000 

This short crescendo lasts for the first 5 beats of the section. The second volume 

change part then takes over, lasting from beat 6 until the end of the section. It 

allows the volume to meander up and down between the MIDI volume values 

of 32 and 127. 

The relevant extract from the score is as follows 

Parameter Min Max MinMean Start Grad Lambda 

VOLUME 32 127 32 90 1.000000 0.200000 

The quite low X value of 0.2 means that large volume jumps sometimes 

occur and, when this jump is from a low value to a high one, it gives the 

impression of a new attack point, even though only one long continuous note 

is actually being played, while the comparative rarity of such jumps means that 

the notes tend to be long and of varying length. This technique has been used 

here as it gives a much softer attack than playing a fresh note. 

The complete section of the score corresponding to this part is as follows 

Sect 2 Part 5, Chan 1, Patch 112, Pan 64, BEATS 6 to 120 

Parameter Min Max MinMean start Grad Lambda 

PITCH 71 71 71 1.000000 0.500000 
LENGTH (/ 2) 1 1 1 1.000000 0.500000 
VELOCITY 0 0 0 1.000000 0.500000 
VOLUME 32 127 32 90 1.000000 0.200000 
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A similar pair of volume change parts is used to control the volume of the 

other two Sho parts. 

The solo Hichiriki enters at beat 30 and lasts for 30 beats. Pitch selections 

are from the Hyojo mode and are allowed to meander over the range of pitches 

but a X value of 2 means that jumps in pitch tend to be small. Successive 

repetitions of the same pitch have been disallowed. 

To prevent an even rhythm occurring, note length selections are 4, 8, 9, 

10,11,12,13,14, 15, 16 with a beat fraction of 4. Therefore, in addition to 

crotchets (4/4), semibreves (8/4) and breves (16/4), uneven note lengths occur, 

13/4 for example. 

Velocities of 0 and 127 only are allowed but a Minimum Mean Velocity 

of 127 and a zero gradient with a fairly high X value of 3 mean that rests are 

infrequent. 

The complete section of the score corresponding to this part is as follows 

Sect 2 Part 11, Chan 5, Patch 71, Pan 40, BEATS 30 to 59 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 67 81 67 71 1.000000 2.000000 
LENGTH (/ 4) 4 16 4 1.000000 0.500000 
VELOCITY 0 127 127 0.000000 3.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 YES 1 NO 1 NO i 

PITCH SELECTIONS: 
67 69 71 73 74 76 79 81 

LENGTH SELECTIONS: 
4 8 9 10 11 12 13 14 15 16 

VELOCITY SELECTIONS: 
0 127 

At the conclusion of the solo, three Hichiriki then enter, with their starting 

beats offset by one beat (they start at beats 60, 61 and 62 respectively). The 

parameter settings for these are very similar to the solo Hichiriki part but with 

two important differences: 

(i) A smaller set of pitches has been selected so that the three parts tend to stay 

in the same register 

(ii) The Length gradient is set to -1 so that longer note lengths tend to be 

followed by shorter ones (see Section 5.6.2, Example 2) 

The complete section of the score for the first of these three parts is as 

follows: 
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Sect 2 Part 17, Chan 5, Patch 71, Pan 40, BEATS 60 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 69 78 69 71 1 .000000 2.000000 
LENGTH (/ 4) 4 16 4 — 1 .000000 2.000000 
VELOCITY 0 127 127 0 .000000 3.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 YES 1 NO 1 NO 1 

PITCH SELECTIONS: 
69 71 73 74 76 78 

LENGTH SELECTIONS; 
4 8 9 10 11 

VELOCITY SELECTIONS: 
0 127 

12 13 14 15 16 

The other two Parts are the same but they are sent to a different MIDI Channel 

and they have different Pan values in order to achieve separation of the three 

parts. Each of these parts is timed to end five beats before the end of the section 

so that the whole piece concludes with just the Sho notes playing. 

The complete Markov program score for the piece can be seen in 

Appendix B, Section B.1.2. 

6.3.4 Discussion of the Results 

The program-generated realisations of this piece generally work well although 

some realisations are more convincing than others. For the initial Ryuteki solo, 

should three or more successive notes from the mode occur in sequence (up or 

down), E, F#, G for example, then this can sound unconvincing. This event 

wiU tend to be infrequent due to the underlying probabilities and, over the 

three renditions generated by the program, it occurs a total of 4 times across all 

of the three 112" periods that the solo lasts, as follows: 

Rendition 1: 

Rendition 2: 

Rendition 3: 

D C # B 

A B C # 

D C # B 

EF#G 

7"to 15" 

15" to 23" 

2" to 8" 

46" to 55" 
and 

Also unconvincing, but again infrequent due to the probabilistic 

construction, are long sequences of notes in the Ryuteki solo without a rest. The 

following diagram shows the periods of continuous note activity in the three 

renditions - the vertical lines show the start and end points of each of the 

periods, read against the vertical Time axis, while the figures in brackets 
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indicate the lengths of each of the sequences in seconds (for example. Rendition 

1 begins with a 15 second continuous note sequence lasting from 0' to 15'):-

Time Rendition 1 Rendition 2 Rendition 3 

0 " 

5" 

10" 

15" 

20" 

25" 

30" 

35" 

40" 

45" 

50" 
55" 

I'O" 

1'5" 

I'lO" 

1'15" 

(15) 

( 3 ) 

(11) 

|(4) 

P) 

1(1) 

(12) 

m 

(12) 

1(2) 

(12) 

1(2) 

(8) 

1(2) 

m 

1(2) 

1 ( 3 ) 

(21) 

(3) 

Notice that the two longest periods of note activity without a rest are 15 

seconds, in Rendition 1, and 21 seconds, in Rendition 3, all others being 12 

seconds or less. Only the 21 second sequence sounds disconcertingly long when 

listening to the pieces. In general, however, the algorithm is effective in 

producing such improvisational sequences. 

The Kakko and Tsuridaiko drum attacks are only ineffective if they occur 

very frequently but this again is probabilistically extremely unlikely and does 

not happen at all in any of the three renditions produced here. The attack 

counts for the three Renditions are as follows:-

Kakko Drum: 3, 5 and 5 respectively (time period = 24" to I'O") 

Tsuridaiko Drum: 2 ,1 and 2 respectively (time period = 48" to 112") 

The accelerating Kakko drum sequence at the end of the first section, 

being constructed in a fairly deterministic way, is always effective. 

In the second section, the Sho parts work well. The offset attacks of the 

Hichiriki, with their discordant effects, also work well and it is only when their 

registers all drift apart that they become unconvincing. Again, these parts have 

been constructed such that this is unlikely. Rendition 2 is very effective in this 

regard, with the three Hichiriki parts moving together, apart from a brief period 
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from 2'50" to 2'55" when one of the parts is noticeably higher than the other 

two, so that the required discordant effects are successfully obtained. Renditions 

1 and 3 are less successful, with two of the three parts staying together but the 

other tending to move away from the other two: in Rendition 1 one part 

becomes much lower than the other two from 2'57" and remains so for the 

remainder of the piece, while in Rendition 3, from 2'47", one part persistently 

enters in a lower register than the other two. 

The least convincing aspect is the pitch bend effect, used both for the 

Ryuteki solo in the first section and the Hichiriki parts in the second section. 

The main problem is that the bends will occur randomly at any point during 

the playing of a note whereas the live player will always tend to commence the 

bending of a note at its initial point of attack. This effect occurs quite frequently 

during all three renditions. Two more readily apparent examples, occurring in 

the Ryuteki solo, are in Rendition 2, where a note lasting from 7" to 12" 

suddenly bends upwards after 3", and in Rendition 3, where a note lasting from 

57" to I'O" suddenly bends downwards after 2". The program could achieve the 

required degree of synchronisation by using a deterministic note length 

sequence, such that the attack points of the notes forming the solo are 

completely fixed and the pitch bends are made to occur at the start of each note, 

but then the essential freedom of the solo would be lost because the algorithm 

would be allowed no probabilistic variation. Also, occasionally, the pitch bend 

can cause the notes to drift away from the true pitch so that the sense of modal 

identity is lost. Since, probabilistically, the average pitch bend tends to be zero, 

this is fairly rare. The most noticeable occurrence of this effect is in Rendition 2 

at 27" where, after a period of silence, the Ryuteki solo enters with A# followed 

by G# and thereafter tends to stay a semitone above the correct pitch values for 

the remainder of the solo. Minor occurrences are evident in Rendition 1 at 44", 

where a G# is played and in Rendition 3 at 18" where an A# is played, followed 

by a G#, but in both these cases the drift is quickly corrected. For all that, the 

pitch bend effect nevertheless adds an essential character to the piece. 

6.4 BACH HARPSICHORD MUSIC 

6.4.1 Introduction 

In this attempt to emulate a piece of Bach harpsichord music, there are two 

principal objectives: 
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1. To demonstrate the ability of the algorithm to introduce probabilistic and 

deterministic control at a fine level of detail, and the compositional techniques 

which can be employed to achieve this. 

2. To show the strengths and weaknesses of the algorithm in emulating a style 

of music which has a precise harmonic and melodic structure. 

It must be stated straight away that to allow the algorithm to produce 

long note sequences and expect that the necessary structural precision will occur 

is just not feasible. By the probabilistic nature of the algorithm it is possible that 

short, convincing passages may occur from time to time, but not with a 

sufficiently high frequency for the results to be anywhere near satisfactory. The 

likelihood of convincing results diminishes even further if there is to be 

harmony and counterpoint between separate musical lines. 

To reproduce the character of a piece of Bach harpsichord music, the 

piece must be constructed from phrases consisting of the correct number of 

equal length bars and there must be a definite harmonic structure, as the piece 

moves through precise chord sequences. In addition, each chord will last for a 

precise number of bars, or number of beats within a bar. Further, definite 

melodic shapes are an essential part of the character of the music. 

The approach adopted here, therefore, is to algorithmically control the 

piece on a bar by bar basis. 

The intention is to use the program to model the first 16 bars^ of the 

Courante from the Bach Suite BWV 813. Reference was made to an original 

score (Bach 1980) and also to a recording taken from the compact disc Little 

Notebook for Anna-Magdalena Bach (selections), Analekta Fleurs de Lys, 1995, 

performed by Luc Beausejour (compact disc number FL 2 3064), for the purpose 

of providing a means to compare aurally the results produced by the program 

with an actual performance of the original piece. 

In order to maintain the harmonic structure, and to keep the precise 

melodic shaping in a small number of important phrases, a relatively high 

degree of determinism is used in the construction of the version produced from 

the algorithm. This means that there is a high probability that, as long as the 

key stylistic elements of the original style have been reliably identified, 

successive renderings produced by the algorithm will be faithful to the original 

style, and this is indeed the case here. However, if the degree of determinism is 

too high then there will be little variation between successive renderings, and, 

while this would not necessarily be an invalid use of the algorithm, it would 

defeat the object here, which is to be able to produce many different versions 

from the same single set of algorithm parameters, aU in the desired style. 

^ The first section of the original Courante is actually 24 bars in length rather than 16 but, since 16 
bars are more than sufficient to satisfy the objectives of this exploration, only the first 16 bars 
have been studied here. 

145 



Therefore, what has been attempted here is to achieve a balance between 

determinism and probabilistic variation such that the degree of determinism is 

sufficiently high to achieve stylistic consistency, whilst the degree of 

probabilistic variation is high enough that significant variations occur between 

successive renderings. In this way, the aim is to explore the extent to which this 

algorithm can reproduce melodic elaboration within a constrained tonal and 

harmonic framework. 

The accompanying compact disc contains six separate program-generated 

realisations in WAV-formatted audio files called "Bachl.wav" through to 

"Bach6.wav" and the corresponding scores, in staff notation, for the six 

realisations can be found in Appendix C, where the original score is also given. 

The floppy disk contains the program-generated piece as a Markov program 

Composition File called "Bach" for playback from the Markov program. All 

files may be found in the "Style Emulation" directory. 

6.4.2 Identifying the Key Elements 

For this example, a careful study of the original score is essential so that reliable 

deductions can be drawn as to how to control the parameters of the algorithm 

so as to reproduce the style as faithfully as possible. In this section, the key 

findings of the analysis of the original score are discussed. The key elements 

identified are lettered below and will be referred to later in this chapter when 

the method of construction of the piece is discussed. 

a. Time Signature 

The piece is in 3 /4 time. 

b. Harmonic Structure 

It begins in C minor and, at the end of the 16 bars under investigation, 

modulates to E*̂  major (the Courante as a whole returns to C minor). 

The harmonic structure of the 16 bars, as implemented in the Markov program 

emulation^, is as foUows:-

^ This is a deliberate over-simplification of the harmonic structure of the original piece in order 
to create a framework within which the algorithm is able to generate a degree of embellishment. 
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Bar Chord(s) 

1 c 

2 c 

3 f 
4 G 
5 c 

6 f 
7 Bb 

8 Eb 

9 Eb 

10 f 
11 g 

12 Ab 

13 Bb 

14 Eb 

15 Eb (1 crotchets), Bb (2 crotchets) 

16 Eb 

c. Beginning of the Piece 

The first bar is preceded by a three note lead-in: G F. 

d. Texture 

There are two separate musical parts, a melody line and a bass line. 

e. The Bass Line 

The bass line provides a solid harmonic structure. It consists mainly of 

crotchets, which form arpeggiations of the underlying chord, apart from four 

bars where quavers are introduced in order to provide a counterpoint to the 

melody. 

f. The Melody 

The melody consists almost entirely of quavers apart from three crotchets 

which occur at phrase ends. Two or more consecutive occurrences of the same 

pitch never occur. 

In order to investigate the way in which the construction of the melody 

supports the harmonic structure, two simple statistical analyses have been 

carried out: 

Analysis I. For each of the chords making up the chord sequence which forms 

the harmonic structure of the piece, this analysis counts the relative frequencies 
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of the diatonic notes in the melody for the duration of the chord, numbering 

the notes from the root of the chord, the root being note 1. For example, the 

melody in bar 2 of the original score is as follows: 

The underlying chord is C minor, so, since C (note 1) occurs twice^, D (note 2) 

occurs once, (note 3) occurs twice and G (note 5) occurs once, this bar will 

contribute the following amounts to the overall totals for Analysis I: 

1 
2 

3 

4 

5 

6 

7 

2 

1 
2 

0 

1 
0 

0 

Analysis 11. This analysis counts of the total number of times that each of the 

numbered diatonic notes occurs as the first note of the sequence of notes in the 

melody occurring against the chord (usually the first note of the bar, apart from 

bar 15 where two chords occur). In the above example, the first note is so this 

bar will add one to the total for note 3 in Analysis IT. The complete results for 

the 16 bars are as follows; 

Analysis I 
Note No of Occurrences & 

1 18 21.95 
2 5 

3 15 18^9 
4 3 3.66 
5 30 36.59 
6 2 2.44 
7b 8 9.77 
7 1 1.22 

^ No attempt is made in this analysis to distinguish between notes of the same pitch value which 
are an octave apart, but, of course, when the reproduction of the piece is structured using the 
Markov program, both pitches will be included in the selected pitch set where appropriate. 
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Note 

1 
2 

3 

4 

5 

6 

7 

Analysis II 
No of Occurrences 

0 

1 

6 

1 

9 

0 

0 

0.00 
5.88 

35.29 
5.88 

52.94 
0.00 

0.00 

From Analysis 1, we can see that fully 76% of the notes are numbers 1, 3 

or 5 in relation to the underlying chord; that is, they are from the corresponding 

tonic triad. A further 10% are the flattened 7th - this, of course, is not part of the 

diatonic scale but forms part of the 7th chord corresponding to the underlying 

chord. Of the five note 2's which occur, three are within the first three bars 

while a fourth forms part of a five note step by step descending sequence at the 

very end of the 16 bars. 

From Analysis II, we can see that more than half of the first notes of the 

sequences corresponding to the underlying chords are number 5 in relation to 

the chord, while the bulk of the remainder are number 3. 

As we shall see in the next section, these results will be a very important factor 

in the decisions made regarding the algorithm parameter settings. 

g. Melodic Shaping 

The melody in bars 5, 7 and 9 of the original score has the following precise, 

arpeggiated, shape (this example is bar 5, based on a C minor chord): 

HK p 
— i— ft , 

1 * 

that is, a quaver rest followed by degrees 5, 3,1, 5 (an arpeggiated tonic triad) and 

finishing with the flattened 7th, while bars 10, 11, 12 and 13 have the following 

almost identical shape (this example is bar 10, based on an F minor chord): 

* • c a 
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which has the initial rest replaced by the 5th degree an octave below the second 

note in the bar. In the same vein, bars 4, 6 and 8 have the following shape (this 

example is bar 4, based on a G major chord): 

r J 
which is another arpeggiated tonic triad shape, these bars occurring at phrase 

ends. The remainder of each of these three bars is completed by a three quaver 

contrapuntal line in the bass. 

These melodic shapes explain the preponderance notes 1, 3 and 5 in the 

results of Analysis I above, and of notes 3 and 5 in Analysis n. 

h. Ornamentation 

The score has little notated ornamentation other than a small number of trills 

and turns (for the 16 bars studied here there is one trill). However, 

interpretations of this style of music generally introduce embellishments and 

the performer on the recording referred to here adds trills and turns liberally. 

6.4.3 Constructing the Piece Using the Algorithm 

The piece is built in two Sections, one for the first eight bars and another for the 

second eight bars. This division into Sections has been done to avoid exceeding 

the maximum number of PartsiO per Section allowed by the Markov program 

(20 Parts). This has been necessitated by the fine level of control being used: 

usually a separate Part for each bar and occasionally a Part for a subdivision of a 

bar, so that Parts are being used more frequently than in the previous 

examples! 1. j h e following two tables show, for each bar of the piece, which 

Section/Part in the Markov program realisation implements itl^: 

The reader is reminded that "Part", in this context, is a specific construct within the Markov 
program, which allows the composer to specify parameter settings to produce a single, 
monophonic, line. Polyphony is achieved by having two or more Parts play simultaneously. 
11 Nevertheless, it can be convenient to logically divide a piece into Sections even though some 
Sections may consist of significantly less than 20 Parts, particularly as the 
Section Sequence feature can then be used to produce a specific form e.g. Rondo (ABACA). 
! ^ The values in the Right Hand and Left Hand columns refer to the Part numbers within the 
Section. Thus, for example, the right hand part in bar 4 is implemented by Part 6 in Section 1. 
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Section 1 

Bar Right Hand Left Hand 
1 2,3 11 

2 4 12 

3 5 13 

4 6 14 

5 7 15 

6 8 16 

7 9 17 

8 10 18A9 

Section 2 
Bar Right Hand Left Hand 
9 1 8 

10 2 9 
11 3 10 

12 4 11 

13 5 12 

14 6 13A4 
15 7,15 14 

16 16A7 14 

The tempo is set to 384 beats per minute and, for convenience, each beat will be 

one quaver. 

The strategy adopted here is to fix the bass completely, copying the 

original score, in order to provide a solid harmonic structure. The algorithm is 

then used to generate varying treble lines, on successive playings, against this 

fixed bass. While most of the treble line is allowed to vary, a small number of 

bars have been reproduced exactly so as to maintain the original sense of 

phrasing. Specifically, bars 4, 6, 8,15 and 16, together with the three note 

introductory sequence, have been fixed. The remaining 11 bars have been 

allowed to vary, subject to some degree of shaping control via the algorithm 

parameter settings, as explained in detail below. In the musical scores of the 

pieces produced by the program given in Appendix C, those passages which are 

variable are clearly marked with rectangular outlines. It is obviously a 

limitation of the algorithm that, in attempting to generate music within the 

compositional context of such a style, it is only possible to exploit the variation-

generating qualities of the algorithm to a relatively small degree. On the other 

hand, it is a strength of the algorithm that, by building the piece a bar at a time. 
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it is capable, by virtue of the diagonal line mechanism, of reproducing exactly 

the required sequences despite its probabilistic nature. 

The remainder of this section refers to the lettered key elements identified in 

the previous section and discusses their implementation using the parameters 

of the algorithm. 

a. Time Signature 

The division of the melody into equal length arpeggiations of distinct chords, 

and the precisely structured bass line, both discussed in detail below, imply a 

firm 3 /4 time signature. 

b. Harmonic Structure 

The harmonic structure is maintained by making appropriate pitch selections 

so as to imply the appropriate chord, again discussed in detail below. 

c. Beginning of the Piece 

The original work begins with the following introductory three note sequence: 

i- } 

It was decided to reproduce this introductory sequence precisely so as to give the 

piece a sound beginning. The sequence has a single Part all to itself. The 

required pitch selections have been made (MIDI values 65, 67 and 68). The 

Minimum Mean value has been set to 67 (G). Since this is second pitch in the 

range of three values, there will be a step by step rising tendency (see Section 

5.4.2, Example 1); that is, F G A''. A X value of 20 guarantees that this will occur. 

With Wraparound turned on, when A^ is reached the sequence will return to F 

and begin to rise again. Setting the starting pitch to G (67), the note length to 1 (= 

a quaver) and the length of the Part to 3 beats, so that only three quavers will 

occur, produces the required three note pattern. This technique is used 

elsewhere in the piece when similar three note patterns are required. The 

ability to obtain this type of patterning is a direct consequence of the application 

of modulo arithmetic, inherent in the diagonal line algorithm. 

The relevant extract from the score is as follows; 

Sect 1 Part 1, Chan 1, Patch 7, Pan 64, BEATS 1 to 3 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 65 68 67 67 1.000000 20.000000 
LENGTH (/ 1) 1 1 1 1.000000 0.500000 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
65 67 68 

d. Texture 

The melody/bass line separation occurs naturally by virtue of the fact that the 

Parts which produce the melody are built from pitch selections from a higher 

register than those Parts which produce the bass line. In addition however, the 

melody Parts are sent to a separate MIDI channel (1) from the bass Parts (2). 

While this is not strictly necessary, it does have the advantage that the notation 

software used here to produce the scores (Emagic Logic™ 4.1) can be instructed 

to separate the treble and bass clefs according to the different MIDI channels. It 

would also allow stereo panning to be applied to the two MIDI channels to 

reinforce the separation although this has not been done here. 

e. The Bass Line 

In order to provide a solid harmonic foundation to the piece, the bass line has 

been constructed in an entirely deterministic manner, so as to be the same as 

the original score. Thus, for example, bar 1: 

is formed by selecting the three pitches in question, setting the Minimum Mean 

Pitch to be the second pitch, with a X value of 20, so as to produce a definite 

stepwise rising pattern, setting the note lengths to 2 (that is, 2 quavers = 1 

crotchet) and fixing the starting pitch to be C (48), the relevant extract from the 

score being: 

Sect 1 Part 11, Chan 2, Patch 7, Pan 64, BEATS 4 to 9 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH {/ 1) 2 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

NO 
YES 
YES 

PITCH SELECTIONS: 
48 51 55 

55 
2 

SELECT 

YES 
NO 
NO 

51 
2 

REVERSE 

NO 
NO 
NO 
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RANDOM ENTRY REFLECT 

NO 
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NO 

NO 



whilst bar 2: 

% \ ' t J r 

is achieved very simply by selecting the two C pitches, setting the starting pitch 

to be the higher C and disallowing repeats, the relevant extract from the score 

being: 

Sect 1 Part 12, Chan 2, Patch 7, Pan 64, BEATS 10 to 15 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 60 
LENGTH (/ 1) 2 2 2 

REPEAT I SELECT I REVERSE I REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

PITCH SELECTIONS: 
48 60 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

f. The Melody 

Since, in the original, two or more consecutive occurrences of the same pitch 

never occur, all the Parts which form the melody have been set to disallow 

pitch repetitions. 

Throughout the 16 bars, all but three of the notes are quavers, the 

remaining three being crotchets which occur at phrase ends, for example, bar 4 

of the original: 

f J ^ 

However, it is not possible to set algorithm parameters for note lengths in a 

single Part such that precisely two quavers occur followed by one crotchet -

indeed, by its very nature, the algorithm is not designed to be able to produce 

arbitrarily chosen melodic or rhythmic sequences. To achieve the above 

rhythm, it would be necessary to use 2 Parts for this bar, one for the two quavers 

and one for the crotchet, at which point the compositional process becomes 

unacceptably laborious. Therefore, here all note lengths have been set to one (= 
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a quaver) for all the melodic Parts, so the program replaces the crotchet with a 
quaver. 

Analysis I above shows that, in the original, 76% of the notes are 

numbers 1, 3 or 5 counted from the root of the underlying chord while a further 

10% are the flattened 7th. Therefore, the pitch selection mechanism provide by 

the Markov program is used to reflect this. Thus, for example, for bar 5, which 

in the original is as follows: 

just the pitches corresponding to the C minor triad, plus the flattened 7th, are 

selected (MIDI values 70, 72, 75 and 79). It was also noted that of the five notes 

2's which occur, three are within the first three bars and so the set of selected 

pitches for these bars has been expanded to include this pitch as well. 

Analysis II above shows that more than half of the first notes of the 

sequences corresponding to the underlying chords are note 5, while the bulk of 

the remainder are note 3. Since the Markov program allows the composer to 

specify the starting pitch in a Part, this has been used to reflect the starting 

pitches in the bars of the original. Thus, for example, for bar 5 the starting pitch 

is set to G (MIDI value 79). 

g. Melodic Shaping 

As previously discussed, eight of the bars in the original have a precise 

arpeggiated shape, bar 10 for example: 

a 
In this attempt to emulate the style of the original, the intention is to maintain 

something of the character whilst allowing the probabilistic nature of the 

algorithm to introduce a degree of variation so that each piece produced is 

different. What has been done here is to set the diagonal line parameters so that 

this bar tends to have the following shape!3; 

% tm. 

Note that this is a personal compositional decision taken by the author which it was felt was 
appropriate and vindicated by the results. 
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To achieve this, the corresponding five pitches are selected and the Minimum 

Mean pitch is set to the highest pitch value, with a gradient of one, so as to 

achieve a stepwise descending tendency through the selected pitch values (see 

Section 5.4.2, Example 12). The starting pitch value is set to the lower C (60), and 

since Wraparound, rather than Reflect, is in effect, the second pitch played wiU 

tend to be highest pitch in the range, after which it will tend to descend 

stepwise, as required. A X value of 2 provides a quite strong tendency for this 

melodic shape to occur while still allowing a degree of variation. 

The relevant extract from the score for bar 10 is as follows:-

Sect 2 Part 2, Chan 1, Patch 7, Pan 64, BEATS 7 to 12 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 72 60 
LENGTH (/ 1) 1 1 1 

REPEAT I SELECT 1 REVERSE 1 REFLECT 

1 .000000 2 .000000 
1.000000 0.500000 

I RANDOM ENTRY 

PITCH NO I 
LENGTH YES | 
VELOCITY YES | 

PITCH SELECTIONS: 
60 63 65 68 72 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

The same technique has been employed for the other bars which have a similar 

melodic shape in the original but with, of course, different pitch selections to 

reflect the underlying chord. 

For those three bars of the original with the following shape occurring at 
phrase ends, bar 4 for example: 

r } 
it was decided to reproduce these bars exactly, so as to maintain the original 

sense of phrasing. This shaping is achieved simply by selecting the three pitches 

in question, setting the diagonal line parameters to produce a stepwise rising 

sequence, as shown in the discussion of the bass line construction above, 

specifying the starting pitch to be the middle of the three values and setting X to 

20. The Wraparound effect wiU result in the highest of the three pitches being 

immediately followed by the lowest pitch. 

For bar 6, for example, the relevant extract from the score is as follows: 
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Sect 1 Part 8, Chan 1, Patch 7, Pan 64, BEATS 34 to 36 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 65 
LENGTH (/ 1) 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

NO 
YES 
YES 

PITCH SELECTIONS: 
65 68 72 

72 68 68 1,000000 20.000000 
1 1 1.000000 0.500000 

SELECT I REVERSE I REFLECT 1 RANDOM ENTRY 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

For the remaining bars, the melody has been allowed to vary more freely, with 

X values of 0.5, apart from the six note step by step descending sequence at the 

end (formed from the last three quavers of bar 15 and the first three quavers of 

bar 16) for which the parameters have been set so as to reproduce it exactly. 

h. Ornamentation 

Although the algorithm is capable of recreating ornamentation, liberal use of 

these effects does tend to use up Parts quickly, so, although the performer on 

the recording referred to here adds a number of turns, just one turn has been 

added to the piece produced by the program, in bar 16, to demonstrate the 

technique. The turn occurs at a note whose pitch is G, so this is replaced with 

three quick notes, G G, adding to one quaver's length in total (by setting the 

length of the Part to 1 beat and the note length to 1 /3 beat). The relevant extract 

from the score is as follows: 

Sect 2 Part 17, Chan 1, Patch 7, Pan 64, BEATS 43 to 43 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 67 68 67 67 
LENGTH (/ 3) 1 1 1 

REPEAT I SELECT I REVERSE | REFLECT 

1 .000000 20 .000000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

PITCH SELECTIONS; 
67 68 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

The complete rendition is formed by using the Section Sequence feature (see 

Appendix A, Section 3.7) to play Section 1 followed by Section 2. 

The complete Markov program score for the piece can be seen in 

Appendix B, Section B.1.3. 
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6.4.4 Discussion of the Results 

The bass line, having been constructed deterministically so as to be identical to 

the original, provides a sound harmonic structure to the piece. Indeed, as is 

evident from the above explanations of the techniques used to construct it, the 

algorithm lends itself well to this "walking" style bass line. In the melody line, 

the various phrases are built mainly on appropriate triads, possibly with the 

flattened seventh added, so that the required chord is usually implied, and this, 

together with the structured bass line, means that, in general, the correct chord 

progression is achieved. There are, however, occasional exceptions to this. 

These exceptions occur when a pitch sequence happens to occur which implies 

a different chord to that intended. Two examples of this effect are given below:-

(i) In Rendition 3, Bar 1, the occurrence of F followed by C tends to imply an F 

minor chord rather than the intended C minor chord. 

(ii) In Rendition 6, Bar 14, the pitch sequence C G C G tends to imply a C minor 

chord rather than the intended major. 

For obvious reasons, this effect does not occur when the pitch selections are 

taken just from the required chord. It is only when the melody line is allowed 

more freedom, through the introduction of pitches other than those contained 

in the chord, that the possibility of this effect arises. However, its occurrence is 

infrequent and the effect is one of an occasional "gUtch" rather than a serious 

deviation from the correct harmonic progression. 

For the melody, recall that for the eight bars which, in the original, had 
the following shape: 

m a tM. 

the parameter values were set so as to tend to produce: 

£31 

In the renditions which resulted from the program, a variety of different shapes 

occurred. Mathematically, 1024 different shapes could result for each such bar 

but since the parameters have been set to produce a tendency for a particular 

shape rather than allowing the pitches to occur at random, variants of the 
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second shape above are more likely to occur. Thus not only did the 

"controlling" shape itself occur (Rendition 6 Bar 11), but so also did 

# 
(Rendition 1 Bar 13) 

n n i 

(Rendition 4 Bar 10) 

and many more. One limitation of the algorithm, however, is that it is not 

possible for the same shape to be maintained across a chord progression 

through a sequence of bars, unlike the original. 

A further limitation is that is not possible to control what happens at the 

junction between consecutive Parts or, in this case, bars, so that the melody may 

not always flow smoothly through consecutive bars. Thus, for example, even 

though successive repetitions of the same pitch have been disallowed in the 

parameter settings for each bar, it is possible the last pitch in one bar may be the 

same as the first pitch in the following bar. However, due mainly to the 

melodic shaping control introduced in the parameter settings, this occurs just 

twice through all three renditions. Rendition 3 from bars 1 to 2 and Rendition 5 

from bars 2 to 3. It is also possible that a disconcertingly large jump in pitch may 

occur from the last pitch in one bar to the first pitch in the following bar, for 

example the jump from C down to in Rendition 1 bars 1 to 2 and the jump 

from F down to G in Rendition 3 from bars 13 to 14. Again, these occur as very 

occasional "glitches". 

As discussed earlier, the algorithm, by its very nature, is not able to 

produce arbitrary rhythmic structures. Thus, for example, the following, bar 5, 

of the original: 

r i 
is approximated as three quavers. This tends to lessen the effect of the 

counterpoint in the bass Une. For example, the crotchet in the original above is 

followed in the bass line by: 

& 
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but because the piece produced by the algorithm replaces the crotchet in the 

melody line with a quaver this tends to be heard as: 

g—J —g —J J 

rather than: 

J i 

m 

Finally, in addition to the limitations discussed above, the amount of 

labour involved in constructing this short piece from such small sequences is 

prohibitive; one need only compare, by referring to the Markov program scores 

in Appendix B, the amount of parametric data required compared to the Steve 

Reich Phase Music piece to appreciate this. It must be conceded, therefore, that 

the algorithm is not really appropriate for modelling such styles. 

6.5 DANCE MUSIC 

6.5,1 Introduction 

This style of music, around which the present day "Club" dance culture is built, 

is characterised by simple, repetitive rhythms overlaid with short melodic 

fragments. There are a number of genres, for example: "Drum and Bass", which 

is predominantly percussive, "Ibiza", which has a Latin feel and "Trance", 

which has a more "dreamlike" atmosphere through the use of synthesized 

orchestral and electronic sounds. The piece produced here falls into the latter 

category. It is an original composition but inspiration was taken from the 

compact disc Trance Mix '99 - A Spiritual Journey Through Time and Space, 

mixed by Richard Evans at Wise Buddah, Virgin Records Ltd., 1999 (compact 

clLsc ritumtker 7:24:3 8 483-12:!()). 

This style demonstrates, in particular, the ease with which the algorithm 

can be used to built percussive rhythmical structures, emulating a "drum 

machine". 

160 



The accompanying compact disc contains the program-generated piece as 

a WAV-formatted file called "Dance.wav". The floppy disk contains the piece as 

a Markov program Composition File called "Dance" for playback from the 

Markov program. Both files may be found in the "Style Emulation" directory. 

6.5.2 Identifying the Key Elements 

a) Percussive Rhythms 

A small number of percussion instruments are used in this style of music, 

usually a Bass Kick Drum and Closed Hi-Hat, and possibly a Hand Clap sound, a 

Snare Drum and a Cymbal. Each of these sounds repeats at a strict beat interval, 

usually every 1, 2 or 4 beats, with their respective attack points offset so as to 

build a layered percussive rhythmic structure. 

b) Melodic Structure 

Melodic lines typically consist of short, simple fragments, typically no more 

than 32 beats in length, which repeat continuously, possibly with some small 

variation, pitch level for example. 

c) Bass Line 

Bass lines are also very simple, usually a short fragment which repeats 

continuously and often just a single repeating bass note. 

d) Breaks 

"Breaks" are definite changes which take place regularly and usually consists of 

the addition and /or removal of a melodic line, percussion instrument or 

sampled sound (vocal or instrumental), or a change in the melodic or bass 

lines. Breaks occur strictly at a multiple of 8 beats, usually every 16, 32 or 64 

beats. A common feature is for a short, rapid crescendo snare drum sequence to 

occur leading up to a break. 

It is the unrelenting succession of breaks which bring about a progressive 

musical development, possibly over a period of a number of hours. 

6.5.3 Constructing the Piece Using the Algorithm 

a) Percussive Rhythms 

In the piece produced by the algorithm, three percussion sounds are used - Kick 

Drum, Hi Hat and Hand Clap - according to the following pattern:-
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Beat 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 

Kick Drum ^ ^ ^ ^ ^ ^ i -

Hi Hat — i i i i i i i — 

Hand Clap ^ ^ ^ ^ 

This is achieved by having a separate Part for each sound with, as specified by 

the MIDI standard for Drum Set sounds, each being sent to MIDI channel 10 

with the pitch set according to the required sound (36 for Kick Drum, 42 for Hi 

Hat and 39 for Hand Clap). In addition, the initial starting times for each of the 

three sounds are offset so as to build up the percussion progressively, and 

staggered according to the required pattern as shown in the above diagram, the 

Hi Hat beginning at beat 34, the Hand Clap at beat 67 and the Kick Drum at beat 

129. 

For each Part, it is simply a case of setting the pitch to the required value, 

setting the note length to be the number of beats between each occurrence of the 

sound and specifying the appropriate starting beat. Thus, for example, the Hand 

Clap sound occurs at an interval of 4 beats so the note length for this Part is 

fixed at 4 beats 14. 

The relevant extract from the score is as follows:-

Sect 1 Part 3, Chan 10, Patch 0, Pan 64, BEATS 67 to 248 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 39 39 39 1 .000000 0.500000 
IlENGTH (/ 1) 4 4 4 1 .000000 0.500000 

Strictly speaking, this is musically incorrect since it implies that each note will last for a full 
4 beats and only finish just before the next one begins. However, since Drum Set sounds are very 
short with no sustain, this is not an issue - they will last for as long as the sound itself lasts, 
regardless of the note length setting, provided it is at least as long as the duration of the sound of 
rniircA course. 
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b) Melodic Structure 

There are two melodic fragments. The first, which uses the "Saw Wave" sound, 

is as follows:-

h h — 
H 

^ 
• m w • — — 

(/Q r4 f * f m " — 3 — ® — 3 — • 
J — 7 — ^__i_ 

7 J 7 J 7 

As has been discussed before, using the algorithm to construct precise melodies 

is usually impossible, as it is not designed for this purpose. However, in this 

instance the melody above can be generated from two simultaneous Parts. The 

first Part plays one continuous note in each bar:-

4=n: z c 

Since this melody has a simple stepwise movement it is easily generated as we 

have seen previously, the relevant extract from the score being as follows:-
1 Part 10, Chan 3, Patch 82, Pan 64, BEATS Sect 

Parameter Min Max MinMean Start 

69 

REFLECT 

257 to 448 

Grad Lambda 

PITCH 66 
LENGTH (/ 1) 8 
VOLUME 0 

REPEAT 

72 
8 
0 

SELECT 

67 
8 
0 

REVERSE 

1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 
1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS! 
66 67 69 72 

The second Part sends only MIDI volume change events to the same 
MIDI channel as the first Part, such that the volume is zero on quavers 1, 3, 5 

and 7 of each bar and non-zero on quavers 2, 4, 6 and 8, this being achieved by 

causing the volume to alternate between, in this case, 0 and 80:-

163 



Sect 1 Part 11, Chan 3, Patch 0, Pan 64, BEATS 257 to 448 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 60 60 1 .000000 0.500000 
LENGTH (/ 1) 1 1 1 1 .000000 0.500000 
VELOCITY 0 0 0 1 .000000 0.500000 
VOLUME 0 80 80 0 -1 .000000 20,000000 

Thus, the note only actually sounds every other quaver as required. In fact, only 

the first note of each bar is a genuine attack point but because the Saw Wave 

sound has infinite sustain the results are successful. 

This melody is joined subsequently by a similarly constructed one which 

harmonises at intervals of a third. 

The second melodic fragment, played on Synthesized Strings, is as 
follows 

0 p — — / • " 
a 

" ! 

P P a 1 B p — 
^ 

p p — 

This stepwise pitch movement is, again, easily constructed and the rhythm is 

obtained simply by selecting just the two note lengths involved and disallowing 

note length repeats: 

Sect 2 Part 6, Chan 3, Patch 52, Pan 64, BEATS 1 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 57 64 64 
LENGTH (/ 1) 4 12 4 

REPEAT 1 SELECT 1 REVERSE 

64 1.000000 20.000000 
12 1.000000 0.500000 

REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
NO 
YES 

YES 
YES 
NO 

YES 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 
57 59 60 62 64 

LENGTH SELECTIONS: 
4 12 

c) Bass Line 

The bass line is a single repeating note, occurring off the main beat. As with the 

percussion Parts, it is simply constructed by fixing the pitch and note length to 

the required values (MIDI pitch 28 and 2 beats respectively) and choosing an 

appropriate sound. 

The relevant score extract is as follows:-
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Sect 1 Part 8, Chan 1, Patch 25, Pan 64, BEATS 130 to 248 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 28 28 28 1 .000000 0.500000 
LENGTH {/ 1) 2 2 2 1 .000000 0.500000 
RELEASE 16 16 16 1 .000000 0.500000 

Note that the Release has been set to a low value so that each bass note cuts off 
quickly, thereby giving a "snappy" feel, rather than allowing it to sustain for a 
full 2 beats. 

d) Breaks 

Breaks are easily built into the piece just by setting the various Part start and 
end times to precisely the right points. The Break structure of the piece is as 
follows: 

Break Beat No Beat I n t e r v a l ^ 5 Event(s) 

1 Piece commences with a 

continuously repeating Saw 

Wave note 

1 17 16 Hi Hat enters 

2 33 16 Hand Clap enters 

3 65 32 Bass and Kick Drum enter 

4 129 64 1st melodic fragment 

enters 

5 161 32 Harmonising melodic 

fragment enters 

6 193 32 Bass and Percussion drop out 

1st melodic fragment drops 

out 

7 225 32 Bass and Percussion re-enter, 

2nd melodic fragment enters 

8 289 64 Bass and Percussion drop out 

2nd melodic fragment drops 

out 

9 305 16 Crescendo Snare Drum roll 

ends piece 

The number of beats per minute for this piece is set to 274 in order to achieve the resolution 
necessary to build the rhythmic structure and, strictly speaking, the beat intervals, as set in the 
composition, are double the values shown here. However, the values shown in this table feel more 
natural when counting. 

In fact, the Bass and most of the percussion drop out for 4 beats before this break. However, 
this just forms a short lead in to the break rather than constituting a break in itself. 
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Breaks 3 and 7 are preceded by a short crescendo Snare Drum roll. These, and 

the crescendo roll which ends the piece, are achieved by setting the note 

velocity parameters for the associated Part such that the velocity begins at zero 

and quickly increases linearly over the required period (see Section 5.7.2, 

Example 3):-

Sect 2 Part 8, Chan 10, Patch 0, Pan 64, BEATS 145 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 38 38 38 1.000000 0.500000 
LENGTH (/ 2) 1 1 1 1.000000 0.500000 
VELOCITY 0 127 3 0 1.000000 20.000000 

The complete Markov program score for the piece can be seen in 

Appendix B, Section B.1.4. 

6.5.4 Discussion of the Results 

The percussive rhythms are, as has been shown above, easily constructed and 
entirely convincing. 

Melodically, the algorithm is constraining as, in general, it is impossible 

to produce any given melody. However, due to the relative melodic simplicity 

of this style of music, it is nevertheless possible to produce a wide range of 

melodic structures which are in keeping with the style and therefore do not 

betray any compositional compromise. It should be noted, however, that very 

simple sequences still require a full set of parametric data, the size of which may 

be considered to be large in comparison to the simplicity of output obtained. For 

example, the single-note repeating bass line used in. this piece requires 15 

parameter values, and, in general, it is a weakness of the algorithm that 

although the amount of input data required is relatively very small when 

applied to producing complex results, it is disproportionately large when 

applied to producing simple ones. 

An important limiting factor in this piece is the MIDI sound set, which, 

being intentionally very general, does not allow for the inclusion of the sorts of 

synthesized sounds which are often used in this music and which wiU have 

been constructed on a synthesizer. Here, Saw Wave and Synthesised Strings 

have been used but there are few other MIDI sounds which would be 

appropriate. Indeed, the sound used for the bass line is in fact Nylon-strung 

guitar, this being more convincing than the MIDI bass sounds! 
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6.6 SUMMARY 

This chapter has explored the ability of the algorithm, within the compositional 

environment afforded by the Markov program, to generate music which meets 

specific stylistic objectives. This exploration has ranged from completely 

deterministic musical structures, in the case of Reich Phase Music and Dance 

Music, through probabilistic variation within a tightly controlled framework, as 

in Bach Harpsichord, to partially controlled, but relatively free, variation in the 

case of Gagaku. 

The ability of the algorithm to achieve precise melodic sequences, albeit 

somewhat limited in variety, and specific rhythmic patterns makes it well 

suited to process-oriented music such as the Reich Phase Music and to the 

rhythmically structured nature of Dance music, and successful results are 

obtainable from an amount of input data which, in the former example is very 

small in total but which, in the latter, is large considering the simplicity of the 

musical content. The strictly horizontal nature of the sequences produced by the 

algorithm means, however, that any vertical structure must be built in 

"manually". In the case of music with a tight harmonic structure such as Bach 

Harpsichord, this requires fixing certain subsequences, and controlling the 

general shape of others, to try to ensure that this harmonic structure is 

achieved, and here this control was applied mostly on a bar by bar basis. Thus, 

the total amount of data required is increased significantly since, although the 

same small set of parameter value data is required, it cumulates bar on bar. On 

the other hand, judicious use of the diagonal line parameters shows the 

algorithm to be very capable of achieving the short melodic patterns inherent 

in Bach's style, and once the parameters have been set, repeated renditions in 

the style are obtainable without the need for any rules to be supplied 

specifically. Instead, any "rules" are implicit in the parameter settings. The 

amount of algorithmic effort required to produce the Bach piece is, however, 

prohibitive. For music with a rather freer harmonic structure, such as Gagaku, 

much more successful results may be obtained from comparatively long, 

probabilistically varying, sequences. 

Many of the lessons learned in Chapter 5 have been put into practice 

here, not only the control of probabilistic variation in note sequences, but also, 

for example, achieving accelerando and crescendo, as well as making the most 

of the kinds of deterministic sequences which are possible. The techniques have 

also been applied in unexpected ways to obtain results of which one would not, 

at first, have thought the algorithm to be capable, for example: phase shift 

between two separate lines, random bending of the pitch of notes in a sequence, 

rising and falling volume of a continuously played note, rests within a 

deterministic note sequence and turns. 
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Limitations of the algorithm have been revealed and discussed, both 

spedficaUy and with regard to "errors", in relation to the style in question, 

which may be manifested. The Markov program, clearly, does not provide a 

multi-purpose compositional environment, but the unique qualities of the 

algorithm provide a surprisingly large armoury of techniques through which 

compositions which attempt to meet desired stylistic goals may be realised. 
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Cfiapter 7 

CompositionaC Studies 
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7.1 INTRODUCTION 

This chapter describes three compositional studies of my own which were 

produced using the Markov computer program. Each composition exploits 

different aspects of the composing algorithm. The first, Markov-2, is based on 

two specific diagonal lines which are used to control both pitch and rhythm. 

This piece is, in a sense, definitive in that the way in which the diagonal lines 

are affecting the musical output is readily apparent. The second,Vibrato Study, 

focusses on the compositional possibilities afforded by algorithmic control of 

note vibrato. The final piece. Computer Study for Timpani, concentrates 

primarily on the control of dynamics. 

The use of the term "studies" in the chapter title is deliberate. The 

intention behind these pieces is to explore specific aspects of the algorithm in a 

pure manner. Basic, "definitive", diagonal line types have purposely been 

chosen so that the algorithmic process at work may be evident in the realisation 

of the pieces. 

The general structure of each of the pieces is described, relevant extracts 

from the program score are given, and subjective evaluative comments are 

made. The complete program score listings can be found in Appendix B. 

The compact disc which accompanies this thesis contains realisations of 

these pieces in audio file format. The floppy disk contains them in composition 

file format for playback by the Markov program. Full details of the filenames 

and locations are given later in this chapter, in the relevant sections. 

7.2 MARKOV-2 

7.2.1 Description 

Markov-2 is written for two violins playing pizzicato throughout and at 

constant dynamic. The piece is written in three movements, each being one 

minute in length. The pitch and note length ranges stay the same throughout 

(and are wide), the variation in movements being achieved by varying the 

diagonal lines for each of these two parameters. 

Here, there is a wide variety between different realisations generated by 

the program but, nevertheless, a clear stylistic similarity. To illustrate this, the 

compact disc contains three separate realisations. These may be found in the 

files "Markov-2 (l).wav", "Markov-2 (2).wav" and "Markov-2 (3).wav". The 

floppy disk contains the Markov Composition File, called "Markov-2", for 

playback by the Markov program. All files are held in the "Compositional 

Studies" directory. 
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First Movement 

For the first movement, for each of the two violin parts, both pitch and note 

length are controlled by the following diagonal line: 

As discussed in Section 5.3.2, Example 1, this results in a meandering 

movement, up and down. Therefore, the pitch repeatedly rises and falls, while 

the rhythm repeatedly speeds up and slows down. The higher the value of X , 

the more constrained is the degree of movement. Here, the X value is set to 0.5, 

resulting in a fairly gentle up and down motion but with occasional larger 

jumps occurring. The program score for each of the two violin parts is as 

follows: 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

83 
32 

48 
1 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

The two parts are sent to different MIDI channels and the Pan values are set so 

as to achieve stereo separation. 

The meandering of the pitch and rhythm is clearly heard and provides a 

direct aural interpretation of the diagonal line parameter settings. The two parts 

are moving completely independently of one another but frequently give the 

illusion of deliberate contrapuntal design. This is typical of the way that various 

degrees of synchronisation may occur by chance. 

Second Movement 

For the second movement, the pitch is controlled by the same diagonal Une: 

but the note length is controlled by a diagonal line sloping in the opposite 

direction: 
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The relevant extract from the score is as follows: 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

83 
32 

48 
1 

1 . 0 0 0 0 0 0 
-1.000000 

0.500000 
0.500000 

Now, while the pitch moves in the same way as in the first movement, there 

are periods when the note lengths alternate in length between short and long, 

resulting in a jerky rhythm, interspersed with periods of more even note length 

(see Section 5.6.2, Example 2). The controlling effect of the parameter settings is, 

again, aurally readily apparent. 

Third Movement 

For the third, and final, movement, the pitch is now controlled by an upward 

sloping diagonal: 

while the note length is controlled by the same downward sloping diagonal as 

in the first movement: 

The relevant extract from the score is as follows: 
Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

83 
32 

48 
1 

•1.000000 
1.000000 

0,500000 
0.500000 

Now, there are periods when the pitch alternates between high and low, 

interspersed with periods of more gentle pitch movement (see Section 5.3.2, 

Example 6). An additional effect is that, during periods when both parts are 
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alternating between high and low pitch, the two lines combine so that the 

listener hears two much more stable lines, one high and one low. 

7.2.2 Evaluation 

This piece can thought of as "space filling", in that there is little sense of 

temporal motion; each of the movements just "is". The separate movements 

have no beginning or end and, no matter how long they were to last, the 

listener could arrive at any point and leave at any point and the same 

qualitative impression would be made. The use of pizzicato violin gives an 

initial, fleeting illusion that the performance could be human but that sense is 

quickly dashed as soon as the tempo rises well above what could be humanly 

achieved, and from then on the piece is transparently mechanistic. The 

repeatedly falling and rising tempo in the first and third movements provides 

tension and release, with the resolution of tension unpredictable and often 

unexpected. A feeling of the lines continually trying to "catch themselves up" 

provides moments of humour whilst, simultaneously, the atonal nature of the 

work gives it a sense of unease. Overall, this piece could be said to appeal to the 

listener on an intellectual level. 

7.3 VIBRATO STUDY 

7.3.1 Description 

This piece explores the use of varying vibrato rate as a process of compositional 

interest. All sounds are the "Voice Ooh" on the Roland JV30. 

The fact that vibrato is very heavily used, and that the depth of vibrato is 

fixed at its maximum possible value means that, rather than simply adding a 

tremulous quality to a note, it becomes a sonic effect in its own right. This effect 

tends to give the piece an electro-acoustic feel. 

Here, again, variations in successive program generations are definitely 

present but not readily discernible. One rendering only, therefore, is included 

on the compact disc. It may be found in the file "Vibrato Study.wav". The 

floppy disk contains the Markov Composition File, called "Vibrato Study", for 

playback by the Markov program. Both files are held in the "Compositional 

Studies" directory. 

The piece comprises four main sections: 
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First Section 

A continuous low pitched drone forms a backing over which voices enter 

infrequently and then die away. Each separate voice entry has a constant but 

randomly assigned vibrato rate, the rates being selected from a wide range (i.e. 

slow to fast) according to the following diagonal line; 

but with a relatively low k value of 0.05 so that wide variations of vibrato rate 

may occur between successive entries. The program score for one of these 

entries is as follows (notice that the release parameter has been fixed at a 

relatively high value so that the notes gradually die away rather than terminate 

abruptly): 

Sect 1 Part 4, Chan 1, Patch 54, Pan 4, BEATS 13 to 18 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 84 60 1.000000 0.500000 
LENGTH (/ 1) 6 6 6 1.000000 0.500000 
VIBDEPTH 114 114 114 1.000000 0.500000 
VIBRATE 14 114 14 1,000000 0.050000 
RELEASE 104 104 104 1.000000 0.500000 

At first the voices occur singly, later they occur in pairs. 

Second Section 

The same drone is used as a backing but now the voices enter much more 

frequently, still with randomly assigned vibrato rates. 

Third Section 

The drone is replaced by a backing of three voices at different pitches. The first 

voice has a constant vibrato rate of one cycle per crotchet, the second voice a 

rate of one cycle per quaver and the third voice a rate of one cycle per 

semiquaver, so that the vibrato produces a constant rhythmical backing!. Over 

^The precise MIDI vibrato rate values required to produce these rhythms (31, 41 and 61 
respectively) were found by a process of trial and error. 
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this backing, two voices sing individual parts, their note lengths being either 

crotchets or quavers, in the case of the first part, and either quavers or 

semiquavers, in the case of the second part. The dynamic level of each of these 

is two parts is allowed to vary. The program score for one of these two parts is as 

follows: 

Sect 3 Part 5, Chan 9, Patch 54, Pan 94, BEATS 61 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 84 60 1 .000000 0.500000 
LENGTH (/ 4 ) 1 2 1 1 .000000 0.500000 
VELOCITY 40 90 40 1 .000000 0.100000 

Fourth Section 

The last short section has 8 different voices at different fixed pitches and (out of 

phase) vibrato rates, entering one by one so as to build up to a final crescendo. 

7.3.2 Evaluation 

This piece, in direct contrast to the previous one, can be thought of as "time 

filling" in that there is a definite sense of forward temporal motion, of a 

journey taking place. The imagery created of the landscape of this journey, 

could, by virtue of the "atmospheric" nature of the sounds used, be that of an 

inhospitable landscape, perhaps otherworldly. Once again, as in the last piece, 

the initial notion of human performance created, in this case, by the use of a 

vocal instrument is soon replaced by a contradictory, but mysterious rather than 

cold, mechanistic feel through the repeated use of sustained, deep vibrato and 

continuous backing drones. Overall, this piece could be said to invoke an 

emotional response from the listener. 

7.4 COMPUTER STUDY FOR TIMPANI 

7.4.1 Description 

Computer Study for Timpani is built from four separate timpani parts. There is 

very little rhythmic variation and, apart from the final section, very little 

variation in pitch either. Instead, the principal parameter of musical interest is 

dynamic variation. 
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With this piece, although quite wide variations between successive 

program generations can occur, the relatively tight overall parametric control 

means that these variations are not readily perceived by the listener. Only one 

realisation, therefore, is included on the compact disc. It may be found in the 

file "Computer Study for Timpani.wav". The floppy disk contains the Markov 

Composition File, called "Computer Study for Timpani", for playback by the 

Markov program. Both files are held in the "Compositional Studies" directory. 

The piece is formed from four main sections: 

First Section 

The opening section consists of short passages of timpani, played at a fairly slow 

rhythm and with rising and falling dynamic. The first two such passages have 

their own fixed pitch, followed by two passages where some pitch variation is 

allowed. For these first four passages, a solo timpani is playing but for the final 

passage, two timpani play together. All parameters are controlled by the 

following diagonal line: 

The velocity is allowed to vary across the full MIDI range (1 to 127) and a 

relatively low X value of 0.05 means that large jumps frequently occur. The 

pitch and note length (X=0.5), however, vary more gently. The program score 

for the first of these passages is as follows: 

Sect 1 Part 1, Chan 1, Patch 48, Pan 

Parameter Min Max MinMean 

0, BEATS 1 to 30 

Start Grad Lambda 

PITCH 48 48 
LENGTH (/ 16) 1 16 
VELOCITY 1 127 

48 
1 
1 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

This, and the following, section demonstrates how, in contrast to the Markov-2 

piece, a composition may be built up from a number of parts in a tightly 

structured way, rather than allowing long periods of probabilistic freedom. 
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Second Section 

This section again consists of short, but much more rapid, passages. Now, the 

variation in dynamic is tightly controlled. The section is built from four groups 

of passages, beginning with a group of two passages which occur in quick 

succession, followed by a similar group of three passages, then a similar group 

of four, and finally a group of two played simultaneously. For each group, the 

dynamic level is allowed to vary only within a narrow range, starting softly and 

then increasing with each group and reaching a crescendo with the final group. 

These four groups are repeated. The relevant extracts from the program score 

for the first of these groups is as follows: 

Sect 6 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 10 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1 .000000 0.500000 
LENGTH (/ 90) 10 15 10 1 .000000 0.500000 
VELOCITY 10 32 10 1 .000000 0.050000 

Sect 6 Part 2, Chan 2, Patch 48, Pan 127, BEATS 11 to 12 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1 .000000 0.500000 
LENGTH (/ 90) 10 15 10 1 .000000 0.500000 
VELOCITY 10 32 10 1 .000000 0.050000 

Third Section 

In this longer section, four timpani play together, each at its own fixed pitch and 

note length. The dynamics, however, are allowed to vary according to the 

following diagonal line: 

so that loud notes tend to be followed by soft ones, and vice versa. This results 

in pulses of sound, occurring independently in each of the four parts, so that a 

(randomly generated) rhythm is implied. The program score for one of these 

parts is as follows: 
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Sect 14 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 126 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 48 48 1 .000000 0.500000 
LENGTH (/120) 50 50 50 1 .000000 0.500000 
VELOCITY 50 127 127 -1 .000000 0.050000 

As the section progresses, the pitch levels of each of the parts gradually rise, step 

by step. 

Fourth Section 

The final section, which forms the finale to the piece, is very similar to the 

previous section but now the pitches begin to vary across a wide range 

according to the following diagonal line: 

The program score for one of the parts is as follows: 

sect 14 Part 9, Chan 1, Patch 48, Pan 0, BEATS 247 to 366 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 71 48 69 1 .000000 0.500000 
LENGTH (/120) 50 50 50 1 .000000 0.500000 
VELOCITY 50 127 127 -1 .000000 0.050000 

7.4.2 Evaluation 

This piece can be thought of as both "space-filling" and "time-filling"; from 

within the apparently static drumming rhythms a sense of evolution emerges 

through the use of changing timpani pitches. This work, in direct contrast to 

the previous two, has a distinct human quality. A strength of this piece is its 

ability to visually stimulate: the listener can readily visualise a live 

performance, of both drumming and, perhaps, dance, since the piece's rhythmic 

energy and dynamism creates a sense of spatial motion. Overall, this piece 

could be said to appeal to the listener on a physical level. 

178 



CONCLUSION 

This research was bom from a set of ideals regarding the composition of music 

based on a mathematical algorithm. The underlying philosophy was "numbers 

in, music out". That is to say, "if I want to achieve such and such a musical 

result, then these are the numbers I must feed into the algorithm". 

Composition could never be reduced to such a simple situation, of course, but 

from this philosophy began the search for an algorithm which was simple 

enough that its underlying processes were accessible to the composer without 

having to understand the details of the mathematics involved, but which was 

capable of a wide range of musical output which could predictably be controlled 

by the composer. Out of these ideals grew a set of specific objectives. 

From the wide range of algorithmic composition techniques which have 

been developed over the last forty years, I chose the Markov chain as the 

underlying process for this research. Relatively simple in concept, it provides a 

model for the composition of music whose basis is probabilistic evolution, the 

entire character of which is embodied in the distribution of numbers in a square 

grid, the transition matrix. What was required was a way for the composer to 

produce this, potentially very large, matrix quickly and simply and to have 

some understanding of the character of the process thus created. The diagonal 

line method provides such a way. Five numerical parameter values are 

required for each musical attribute, four of which define the diagonal line, and 

consequently the structural character of the note sequences which will result, 

and the fifth specifies the probabilistic degree of freedom in relation to that 

structure. 

In order to be able to explore the musical capabilities of the algorithm, I 

developed a computer program, Markov. This program is essentially a MIDI 

sequencer which provides a user interface for the composer to enter the 

algorithm's parameter values and to define the overall structural framework 

within which sequences are generated. What the program also provides is a 

feedback environment, whereby the composer may move progressively 

towards a desired musical result. Initial experimentation with the program 

suggested to me that, for musical reasons, some compromises to the "pure" 

application of the algorithm were necessary. Specifically, two simple rules were 

added: the option to prevent two successive repeats of the same value of a note 

attribute in a sequence, and the ability to fix any of the attribute values for the 

initial note in a sequence. 

An extensive, documented, analysis of the relationship between the 

musical output and the values of the input parameters, provided what is, in 

effect, a "cookbook" of compositional techniques. This study showed the 
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surprising diversity of output obtainable from the algorithm, ranging from 

constrained, structured sequences to free, aleatoric ones, with many possibilities 

in between. The controlled dependence of the output on the input values was 

clearly demonstrated. 

The algorithm was now applied to the task of emulating given musical 

styles. Four different styles were attempted. These styles were chosen for their 

diversity and as a challenge to the algorithm, not because they were judged in 

advance to be suited to any idiosyncratic qualities of the algorithm. Indeed, 

important limitations became apparent, particularly when attempting to 

achieve rigid harmonic and melodic structures, where it was necessary to 

compromise by applying the algorithm to very short note sequences. On the 

other hand, the results were surprisingly successful in many important aspects 

and the flexibility of the algorithm, within the composing environment offered 

by the program, was readily apparent. 

Finally, I have presented some compositional studies of my own, which 

attempt to explore specific aspects of the algorithm in a creative manner, and in 

keeping with my own compositional style. These enable the mathematical 

processes at work to be manifested in the music and therefore, ultimately, 

demystified. 
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Sippendi^ ® 

Marf^v Program Scores 
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B.l STYLE EMULATION 

B.1.1 Steve Reich Phase Music 

COMPOSITION FILE: Hard Disk;Music;reich 

Section Parts Min Length Min Total Max Length Max Total 

1 2 1140 1140 1140 1140 

SECTION SEQUENCE: 
1 

Tempo = 400 bpm MIDI Buffer Size = 200 Bytes 

SECTION: 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE G O 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1140 
1140 

Sect 1 Part 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 1140 

Parameter Min Max MinMean Start Grad Lambda 

60 PITCH 60 
LENGTH {/192) 192 

REPEAT 

80 
192 

SELECT 

62 
192 

REVERSE REFLECT 

2 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 
1.000000 0.500000 

I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
60 62 63 65 67 68 71 72 74 75 77 79 80 

Sect 1 Part 2, Chan 2, Patch 1, Pan 104, BEATS 1 to 1140 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 80 62 60 2 .000000 20.000000 
LENGTH (/192) 190 190 190 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 YES 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

PITCH SELECTIONS: 
60 62 63 65 67 68 71 72 74 75 77 79 80 

182 



B.1.2 Gagaku - Tapanese Court Music 

COMPOSITION FILE; Hard Disk:Music:gagaku 

Section Parts Min Length Min Total Max Length Max Total 

5 
17 

60 
125 

60 
185 

SECTION SEQUENCE; 
1 2 

Tempo = 50 bpm MIDI Buffer Size = 

60 
125 

700 Bytes 

60 
185 

SECTION; 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

0 0 

MIDI Channel Starting Beat 

1.000000 0,500000 

Ending Beat 

1 
2 
3 
4 
5 

1 
1 

20 
51 
40 

60 
60 
50 
60 
60 

Sect 1 Part 1, Chan 1, Patch 73, Pan 64, BEATS 

Parameter Min Max MinMean Start Grad 

1 to 60 

Lambda 

PITCH 
LENGTH (/ 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

2 ) 
76 

1 
0 

REPEAT 

88 
8 

127 

SELECT 

76 

127 

1 . 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 

127 0.000000 

0.500000 
0.500000 
2 . 0 0 0 0 0 0 

REVERSE REFLECT RANDOM ENTRY 

NO 
YES 
YES 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

88 
PITCH SELECTIONS: 
76 78 79 81 83 84 86 

LENGTH SELECTIONS: 
1 2 4 8 

VELOCITY SELECTIONS: 
0 127 

Sect 1 Part 2, Chan 1, Patch 73, Pan 

Parameter Min Max MinMean 

64, BEATS 1 to 60 

Start Grad Lambda 

PITCH 60 
LENGTH {/ 8) 1 
VELOCITY 0 
PITCH BEND 32 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

60 
1 
0 
96 

SELECT 

NO 
NO 
NO 

60 
1 
0 
32 

REVERSE 

NO 
NO 
NO 

64 

REFLECT 

NO 
NO 
NO 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1.000000 0.700000 

I RANDOM ENTRY 

NO 
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Sect 1 Part 3, Chan 2, Patch 48, Pan 64, BEATS 20 to 50 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 68 68 68 1, 000000 0.500000 
LENGTH (/ 1) 1 1 1 1. 000000 0.500000 
VELOCITY 0 127 0 127 0. 000000 5.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 
LENGTH YES 1 NO 1 NO 1 NO j NO 
VELOCITY YES 1 YES 1 NO 1 NO 1 

VELOCITY 1 SELECTIONS; 
0 127 

Sect 1 Part 4, Chan 2, Patch 48, Pan 64, BEATS 51 to 60 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 68 68 68 1. 000000 0.500000 
LENGTH (/ 64) 5 64 5 64 0. 800000 2.000000 
VELOCITY 100 100 100 1. 000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO NO 
VELOCITY YES 1 NO 1 NO 1 NO j 

Sect 1 Part 5, Chan 3, Patch 117, Pan 64, BEATS 40 to 60 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 67 67 67 1, 000000 0.500000 
LENGTH (/ 1) 1 1 1 1. 000000 0.500000 
VELOCITY 0 127 0 127 0. 000000 6.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 YES 1 NO 1 NO 1 

VELOCITY ; SELECTIONS; 
0 127 

SECTION; 2 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1. 000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 1 125 
2 1 1 5 
3 2 1 125 
4 2 1 5 
5 1 6 120 
6 2 6 120 
7 3 1 5 
8 4 1 125 
9 4 1 5 
10 4 6 120 
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11 5 30 59 
12 5 30 120 
13 6 61 120 
14 6 61 120 
15 7 62 120 
16 7 62 120 
17 5 60 120 

Sect 2 Part 1, Chan 1, Patch 112, Pan 64, BEATS 1 to 125 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 71 71 71 1.000000 0.500000 
LENGTH (/ 1) 125 125 125 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 IK) 1 
LENGTH YES 1 YES 1 NO 1 NO 1 NO 
VELOCITY NO 1 YES 1 NO 1 NO 1 

LENGTH SELECTIONS; 
125 

VELOCITY SELECTIONS; 
127 

Sect 2 Part 2, Chan 1, Patch 112, Pan 64, BEATS 1 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 71 71 71 1.000000 0.500000 
LENGTH {/ 8) 1 1 1 1.000000 0.500000 
VELOCITY 0 0 0 1.000000 0.500000 
VOLUME 0 127 5 0 0.961000 2.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES NO 1 NO 1 NO 1 NO 
VELOCITY YES NO 1 NO 1 NO 1 

Sect 2 Part 3, Chan 2, Patch 112, Pan 64, BEATS 1 to 125 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 74 74 74 1.000000 0.500000 
LENGTH (/ 1) 125 125 125 1.000000 0-500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES YES 1 NO 1 NO 1 NO 
VELOCITY NO YES 1 NO 1 NO 1 

LENGTH SELECTIONS: 
125 

VELOCITY SELECTIONS: 
127 

Sect 2 Part 4, Chan 2, Patch 

Parameter Min Max 

112, Pan 64, BEATS 1 to 5 

MinMean Start Grad Lambda 

PITCH 74 74 
LENGTH (/ 8) 1 1 
VELOCITY 0 0 
VOLUME 0 127 

74 
1 
0 
5 
185 

1.000000 0.500000 
0 .800000 2 .000000 
1.000000 0.500060 
0.961000 2.000000 



REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 5, Chan 1, Patch 112, Pan 64, BEATS 6 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

2 ) 
71 
1 
0 
32 

REPEAT 

YES 
YES 
YES 

71 
1 
0 

127 

SELECT 
NO 
NO 
NO 

71 
1 
0 
32 

REVERSE 

90 

REFLECT 

000000 
000000 
000000 
000000 

0.500000 
0.500000 
0.500000 
0 . 2 0 0 0 0 0 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 6, Chan 2, Patch 112, Pan 64, BEATS 6 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

2 ) 
74 

1 
0 
32 

REPEAT 

YES 
YES 
YES 

74 
1 
0 

127 

SELECT 

NO 
NO 
NO 

74 
1 
0 
32 

REVERSE 

90 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1 . 0 0 0 0 0 0 0 . 2 0 0 0 0 0 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 7, Chan 3, Patch 48, Pan 64, BEATS 1 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 68 68 
LENGTH (/ 64) 2 64 
VELOCITY 100 100 

68 
6 

100 

1.000000 0.500000 
5 0.000000 2.000000 
0 1.000000 0.500000 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

SELECT 

NO 
NO 
NO 

REVERSE REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 8, Chan 4, Patch 112, Pan 64, BEATS 1 to 125 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 

PITCH 
LENGTH 
VELOCITY 

76 

1) 125 

REPEAT 

YES 
YES 
NO 

76 
125 

SELECT 

NO 
YES 
YES 

76 
125 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
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LENGTH SELECTIONS: 
125 

VELOCITY SELECTIONS: 
127 

Sect 2 Part 9, Chan 4, Patch 112, Pan 64, BEATS 1 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

8 ) 
76 
1 
0 
0 

REPEAT 

YES 
YES 
YES 

76 
1 
0 

127 

SELECT 
NO 
NO 
NO 

76 
1 
0 
5 

REVERSE 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

0 0.961000 2.000000 

REFLECT I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 10, Chan 4, Patch 112, Pan 64, BEATS 6 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

2 ) 
76 

1 
0 

32 

REPEAT 

YES 
YES 
YES 

76 
1 
0 

127 

SELECT 
NO 
NO 
NO 

76 
1 
0 
32 

REVERSE 

90 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0 . 2 0 0 0 0 0 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 11, Chan 5, Patch 71, Pan 

Parameter Min Max MinMean 

40, BEATS 30 to 59 

Start Grad Lambda 

PITCH 
LENGTH (/ 4) 

67 

VELOCITY 

PITCH 
LENGTH 
VELOCITY 

0 

REPEAT 

81 
16 
127 

SELECT 

67 
4 

127 

REVERSE 

71 

REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1.000000 0.500000 
0.000000 3.000000 

RANDOM ENTRY 

NO 
YES 
YES 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 
67 69 71 72 74 76 79 81 

LENGTH SELECTIONS: 
4 8 9 10 11 12 13 14 15 16 

VELOCITY SELECTIONS: 
0 127 

Sect 2 Part 12, Chan 5, Patch 71, Pan 

Parameter Min Max MinMean 

40, BEATS 30 to 120 

Start Grad Lambda 

PITCH 60 
LENGTH (/ 8) 1 
VELOCITY 0 
PITCH BEND 48 

REPEAT 

60 
1 
0 

80 

SELECT 

60 
1 
0 
48 

REVERSE 
187 

64 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

I RANDOM ENTRY 



PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 13, Chan 6, Patch 71, Pan 

Parameter Min Max MinMean 

88, BEATS 61 to 120 

Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

4) 
69 
4 
0 

REPEAT 

78 
16 
127 

SELECT 

69 
4 

127 

REVERSE 

71 1.000000 2.000000 
- 1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
0.000000 3.000000 

REFLECT RANDOM ENTRY 

NO 
YES 
YES 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 
69 71 72 74 76 78 

LENGTH SELECTIONS; 
4 8 9 10 11 12 13 14 15 16 

VELOCITY SELECTIONS; 
0 127 

Sect 2 Part 14, Chan 6, Patch 71, Pan 

Parameter Min Max MinMean 

88, BEATS 61 to 120 

Start Grad Lambda 

PITCH 60 
LENGTH {/ 8) 1 
VELOCITY 0 
PITCH BEND 48 

REPEAT 

60 
1 
0 

80 

SELECT 

60 
1 
0 
48 

REVERSE 

64 

REFLECT 

1,000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 15, Chan 7, Patch 71, Pan 64, BEATS 62 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 4) 

69 

VELOCITY 

PITCH 
LENGTH 
VELOCITY 

0 

REPEAT 

78 
16 
127 

SELECT 

69 
4 

127 

REVERSE 

71 

REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
- 1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
0.000000 3.000000 

RANDOM ENTRY 

NO 
YES 
YES 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 
69 71 72 74 76 78 

LENGTH SELECTIONS: 
4 8 9 10 11 12 13 14 15 16 

VELOCITY SELECTIONS; 
0 127 

Sect 2 Part 16, Chan 7, Patch 71, Pan 64, BEATS 

Parameter Min Max MinMean Start 
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PITCH 60 
LENGTH (/ 8) 1 
VELOCITY 0 
PITCH BEND 48 

REPEAT 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

60 
1 
0 

80 

SELECT 

NO 
NO 
NO 

60 
1 
0 
48 

REVERSE 

64 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 17, Chan 5, Patch 71, Pan 

Parameter Min Max MinMean 

40, BEATS 60 to 120 

Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 

4) 
69 
4 
0 

78 
16 
127 

69 
4 

127 

71 1.000000 2.000000 
- 1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
0.000000 3.000000 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

NO 
YES 
YES 

SELECT 

PITCH SELECTIONS: 
69 71 72 74 76 

LENGTH SELECTIONS; 
4 8 9 10 11 

VELOCITY SELECTIONS: 
0 127 

YES 
YES 
YES 

78 

REVERSE REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

12 13 14 15 16 
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B.1.3 Bach Harpsichord Music 

COMPOSITION FILE: Hard Disk;Music;Bach 

Section Parts Min Length Min Total Max Length Max Total 

1 19 
2 17 

SECTION SEQUENCE; 

51 
46 

51 
97 

51 
46 

51 
97 

Tempo = 384 bpm MIDI Buffer Size = 200 Bytes 

SECTION; 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 1 3 
2 1 4 7 
3 1 8 9 
4 1 10 15 
5 1 16 21 
6 1 22 24 
7 1 29 33 
8 1 34 36 
9 1 41 45 
10 1 46 48 
11 2 4 9 
12 2 10 15 
13 2 16 21 
14 2 22 27 
15 2 28 33 
16 2 34 39 
17 2 40 45 
18 2 46 49 
19 2 50 51 

Sect 1 Part 1, Chan 1, Patch 7, Pan 64, BEATS 1 to 3 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 65 68 67 67 1.000000 20.000000 
LENGTH (/ 1) 1 1 1 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES NO 1 NO 1 NO 1 NO 
VELOCITY YES NO 1 NO 1 NO 1 

PITCH SELECTIONS; 
65 67 68 

Sect 1 Part 2, Chan 1, Patch 7, Pan 64, BEATS 4 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 65 72 65 67 1.000000 0.500000 
LENGTH (/ 1) 1 1 1 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
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LENGTH 
VELOCITY 

YES 
YES 

NO 
NO 

NO 
NO 

NO 
NO 

NO 

PITCH SELECTIONS: 

65 67 72 

Sect 1 Part 3, Chan 1, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 8 to 9 

Start Grad Lambda 

PITCH 62 
LENGTH (/ 1) 1 

REPEAT 

63 
1 

SELECT 

62 
1 

REVERSE 

63 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

PITCH SELECTIONS; 
62 63 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 4, Chan 1, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 10 to 15 

Start Grad Lambda 

PITCH 60 
LENGTH (/ 1) 1 

REPEAT 

67 
1 

SELECT 

60 
1 

REVERSE 

63 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

60 62 63 65 67 

Sect 1 Part 5, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 16 to 21 

Start Grad Lambda 

PITCH 65 
LENGTH (/ 1) 1 

REPEAT 

72 
1 

SELECT 

65 
1 

REVERSE 

67 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

65 67 68 70 72 

Sect 1 Part 6, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 22 to 24 

Start Grad Lambda 

PITCH 67 
LENGTH {/ 1) 1 

REPEAT 

74 71 71 1.000000 20.000000 
1 1 1.000000 0.500000 

SELECT I REVERSE I REFLECT | RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

NO 
NO 
NO 
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67 71 74 

Sect 1 Part 7, Chan 1, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 29 to 33 

Start Grad Lambda 

PITCH 70 
LENGTH (/ 1) 1 

REPEAT 

79 79 79 1.000000 2.000000 
1 1 1.000000 0.500000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

70 72 75 79 

Sect 1 Part 8, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 34 to 36 

Start Grad Lambda 

PITCH 65 
LENGTH {/ 1) 1 

REPEAT 

72 68 68 1.000000 20.000000 
1 1 1.000000 0.500000 

SELECT I REVERSE | REFLECT | RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

65 68 72 

Sect 1 Part 9, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 41 to 45 

Start Grad Lambda 

PITCH 68 
LENGTH (/ 1) 1 

REPEAT 

77 77 77 1.000000 2.000000 
1 1 1.000000 0.500000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

68 70 74 77 

Sect 1 Part 10, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 46 to 48 

Start Grad Lambda 

PITCH 
LENGTH (/ 

PITCH 
LENGTH 
VELOCITY 

63 70 67 67 1.000000 20.000000 
1) 1 1 1 1.000000 0.500000 

REPEAT I SELECT I REVERSE I REFLECT I RANDOM ENTRY 

YES 
YES 
YES 

YES 
YES 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
63 67 70 

LENGTH SELECTIONS: 
1 
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Sect 1 Part 11, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 4 to 9 

Start Grad Lambda 

PITCH 48 
LENGTH (/ 1) 2 

REPEAT 

55 51 48 1.000000 20.000000 
2 2 1.000000 0.500000 

SELECT I REVERSE | REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

48 51 55 

Sect 1 Part 12, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 10 to 15 

Start Grad Lambda 

PITCH 48 
LENGTH (/ 1) 2 

REPEAT 

60 48 60 1.000000 0.500000 
2 2 1.000000 0.500000 

SELECT I REVERSE | REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 
48 60 

Sect 1 Part 13, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 16 to 21 

Start Grad Lambda 

PITCH 56 
LENGTH (/ 1) 2 

REPEAT 

58 56 58 1,000000 0.500000 
4 4 2 0.000000 20.000000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
NO 
YES 

YES 
YES 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
56 58 

LENGTH SELECTIONS; 
2 4 

Sect 1 Part 14, Chan 2, Patch 

Parameter Min Max 

7, Pan 

MinMean 

64, BEATS 22 to 27 

Start Grad Lambda 

PITCH 55 65 65 55 
LENGTH (/ 1) 1 3 1 3 

REPEAT I SELECT I REVERSE | REFLECT 

1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 

I RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

PITCH SELECTIONS: 
55 62 63 65 

LENGTH SELECTIONS: 
1 3 

YES 
YES 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
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Sect 1 Part 15, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 28 to 33 

Start Grad Lambda 

PITCH 

PITCH 
LENGTH 
VELOCITY 

60 
LENGTH {/ 1) 2 

REPEAT 

NO 
YES 
YES 

63 
2 

SELECT 

YES 
NO 
NO 

60 
2 

REVERSE 

63 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
60 63 

Sect 1 Part 16, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 34 to 39 

Start Grad Lambda 

PITCH 

PITCH 
LENGTH 
VELOCITY 

53 
LENGTH (/ 1) 1 

REPEAT 

NO 
YES 
YES 

63 63 53 1.000000 20.000000 
3 1 3 0.000000 20.000000 

SELECT I REVERSE I REFLECT | RANDOM ENTRY 

YES 
YES 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
53 60 62 63 

LENGTH SELECTIONS: 
1 3 

Sect 1 Part 17, Chan 2, Patch 

Parameter Min Max 

7, Pan 64, BEATS 40 to 45 

MinMean Start Grad Lambda 

PITCH 58 
LENGTH (/ 1) 2 

REPEAT 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

62 
2 

SELECT 

YES 
NO 
NO 

58 
2 

REVERSE 

62 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 

58 62 

Sect 1 Part 18, Chan 2, Patch 

Parameter Min Max 

7, Pan 64, BEATS 46 to 49 

MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 

PITCH 
LENGTH 
VELOCITY 

51 
1) 1 

REPEAT 

NO 
YES 
YES 

55 
3 

SELECT 

YES 
YES 
NO 

51 
1 

REVERSE REFLECT 

1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 
0 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS; 
51 55 

LENGTH SELECTIONS: 
1 3 
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Sect 1 Part 19, Chan 2, Patch 7, Pan 64, BEATS 50 to 51 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 53 56 53 53 1.000000 20.000000 
LENGTH (/ 1) 1 1 1 0.000000 20.000000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES YES 1 NO 1 NO 1 NO 
VELOCITY YES NO 1 NO 1 NO 1 

PITCH SELECTIONS; 
53 56 

LENGTH SELECTIONS; 
1 

SECTION: 2 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 2 6 
2 1 7 12 
3 1 13 18 
4 1 19 24 
5 1 25 30 
6 1 31 36 
7 1 37 39 
8 2 1 6 
9 2 7 12 
10 2 13 18 
11 2 19 24 
12 2 25 30 
13 2 31 34 
14 2 35 44 
15 1 40 42 
16 1 43 43 
17 1 44 46 

Sect 2 Part 1, Chan 1, Patch 7, Pan 64, BEATS 2 to 6 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 61 70 70 70 1.000000 2.000000 
LENGTH (/ 1) 1 1 1 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

PITCH SELECTIONS: 
61 63 67 70 

Sect 2 Part 2, Chan 1, Patch 7, Pan 64, BEATS 7 to 12 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 72 60 1.000000 2.000000 
LENGTH (/ 1) 1 1 1 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 
195 



PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

60 63 65 68 72 

Sect 2 Part 3, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 13 to 18 

Start Grad Lambda 

PITCH 62 
LENGTH (/ 1) 1 

REPEAT 

74 
1 

SELECT 

74 
1 

REVERSE 

62 

REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

62 65 67 70 74 

Sect 2 Part 4, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 19 to 24 

Start Grad Lambda 

PITCH 63 
LENGTH (/ 1) 1 

REPEAT 

75 
1 

SELECT 

75 
1 

REVERSE 

63 

REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

63 67 68 72 75 

Sect 2 Part 5, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 25 to 30 

Start Grad Lambda 

PITCH 65 
LENGTH {/ 1) 1 

REPEAT 

77 
1 

SELECT 

77 
1 

REVERSE 

65 

REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1,000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

65 68 70 74 77 

Sect 2 Part 6, Chan 1, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 31 to 36 

Start Grad Lambda 

PITCH 67 75 68 67 
LENGTH (/ 1) 1 1 1 

REPEAT I SELECT | REVERSE I REFLECT 

1 . 0 0 0 0 0 0 2 . 0 0 0 0 0 0 
1.000000 0.500000 

RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

YES 
NO 
NO 

NO 
NO 
NO 
1% 

NO 
NO 
NO 
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PITCH SELECTIONS; 

67 68 70 72 75 

Sect 2 Part 7, Chan 1, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 37 to 39 

Start Grad Lambda 

PITCH 65 
LENGTH (/ 1) 1 

REPEAT 

75 
1 

SELECT 

74 
1 

REVERSE 

74 

REFLECT 

1 .000000 20 .000000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

65 74 75 

Sect 2 Part 8, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 1 to 6 

Start Grad Lambda 

PITCH 51 
LENGTH {/ 1) 2 

REPEAT 

55 
2 

SELECT 

51 
2 

REVERSE 

55 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

1 RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

51 55 

Sect 2 Part 9, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 7 to 12 

Start Grad Lambda 

PITCH 53 
LENGTH (/ 1) 2 

REPEAT 

56 
2 

SELECT 

53 
2 

REVERSE 

56 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

53 56 

Sect 2 Part 10, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 13 to 18 

Start Grad Lambda 

PITCH 55 58 55 58 
LENGTH (/ 1) 2 2 2 

REPEAT I SELECT | REVERSE I REFLECT 

1.000000 0.500000 
1.000000 0.500000 

I RANDOM ENTRY 

PITCH NO 
LENGTH YES 
VELOCITY YES 

PITCH SELECTIONS; 
55 58 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
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Sect 2 Part 11, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 19 to 24 

Start Grad Lambda 

PITCH 56 
LENGTH (/ 1) 2 

REPEAT 

60 
2 

SELECT 

56 
2 

REVERSE 

60 

REFLECT 

1.000000 0.500000 
1.000000 0.500000 

RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS; 

56 60 

Sect 2 Part 12, Chan 2, Patch 

Parameter Min Max 

NO 
NO 
NO 

7, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 25 to 30 

Start Grad Lambda 

PITCH 58 
LENGTH (/ 1) 2 

REPEAT 

62 58 62 1.000000 0.500000 
2 2 1.000000 0.500000 

SELECT I REVERSE | REFLECT | RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

NO 
YES 
YES 

YES 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
58 62 

Sect 2 Part 13, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 31 to 34 

Start Grad Lambda 

PITCH 51 
LENGTH (/ 1) 1 

REPEAT 

63 53 63 1.000000 20.000000 
2 1 2 0.000000 20.000000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
YES 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
51 53 63 

LENGTH SELECTIONS; 
1 2 

Sect 2 Part 14, Chan 2, Patch 7, Pan 

Parameter Min Max MinMean 

64, BEATS 35 to 44 

Start Grad Lambda 

PITCH 46 
LENGTH (/ 1) 2 

REPEAT 

58 51 55 1.000000 20.000000 
2 2 1.000000 0.500000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 
46 51 55 56 58 

Sect 2 Part 15, Chan 1, Patch 

NO 
NO 
NO 

7, Pan 
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Parameter Min Max MinMean Start Grad Lambda 

PITCH 68 72 72 72 1 .000000 20.000000 
LENGTH (/ 1) 1 1 1 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES j NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

PITCH SELECTIONS: 
68 70 72 

Sect 2 Part 16, Chan 1, Patch 7, Pan 64, BEATS 43 to 43 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 67 68 67 67 1 .000000 20.000000 
LENGTH (/ 3) 1 1 1 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

PITCH SELECTIONS: 
67 68 

Sect 2 Part 17, Chan 1, Patch 7, Pan 64, BEATS 44 to 46 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 63 65 63 65 1 .000000 0.500000 
LENGTH (/ 1) 1 2 1 1 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH NO 1 YES 1 NO 1 NO 1 
LENGTH NO 1 YES 1 NO 1 NO 1 NO 
VELOCITY YES NO NO NO 

PITCH SELECTIONS; 
63 65 

LENGTH SELECTIONS: 
1 2 
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B.1.4 Dance Music 

COMPOSITION FILE: Hard Disk:Music;dance 

Section Parts Min Length Min Total Max Length Max Total 

1 16 448 448 448 448 
2 9 161 609 161 609 

SECTION SEQUENCE; 
1 2 

Tempo = 274 bpm MIDI Buffer Size = 2000 Bytes 

SECTION: 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 2 1 448 
2 10 34 384 
3 10 67 248 
4 10 259 384 
5 10 113 128 
6 10 129 248 
7 10 257 384 
8 1 130 248 
9 1 258 384 
10 3 257 448 
11 3 257 448 
12 5 321 448 
13 5 321 448 
14 4 417 448 
15 4 417 448 
16 10 433 448 

Sect 1 Part 1, Chan 2, Patch 82, Pan 64, BEATS 1 to 448 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 52 52 52 1.000000 0.500000 
LENGTH {/ 2) 1 2 1 1 1.000000 0.500000 
VOLUME 90 90 90 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH NO NO 1 NO j NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

Sect 1 Part 2, i Chan 10, Patch 0, Pan 64, BEATS 34 to 384 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 42 42 42 1.000000 0.500000 
LENGTH (/ 1) 2 2 2 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES NO 1 NO 1 NO 1 
LENGTH YES NO 1 NO 1 NO 1 NO 
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VELOCITY YES NO NO NO 

Sect 1 Part 3, Chan 10, Patch 0, Pan 64, BEATS 67 to 248 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 

PITCH 
LENGTH 
VELOCITY 

39 

1) 4 

REPEAT 

YES 
YES 
YES 

39 
4 

SELECT 

NO 
NO 
NO 

39 
4 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 4, Chan 10, Patch 0, Pan 64, BEATS 259 to 384 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 

PITCH 
LENGTH 
VELOCITY 

39 

1) 4 

REPEAT 

YES 
YES 
YES 

39 
4 

SELECT 

NO 
NO 
NO 

39 
4 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 5, Chan 10, Patch 0, Pan 64, BEATS 113 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

2) 
38 
1 
0 

16 

REPEAT 

YES 
YES 
YES 

38 
1 

127 
16 

SELECT 

NO 
NO 
NO 

38 
1 
3 

16 

REVERSE REFLECT 

1.000000 0.500000 
1,000000 0.500000 
1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 
1.000000 0.500000 

I RANDOM ENTRY 

NO 
NO 
YES 

NO 
NO 
NO 

NO 

Sect 1 Part 6, Chan 10, Patch 0, Pan 64, BEATS 129 to 248 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 

PITCH 
LENGTH 
VELOCITY 

36 
1) 2 

REPEAT 

YES 
YES 
YES 

36 
2 

SELECT 

NO 
NO 
NO 

36 
2 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 7, Chan 10, Patch 0, Pan 64, BEATS 257 to 384 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 36 
LENGTH (/ 1) 2 

36 
2 

36 
2 

1.000000 0.500000 
1.000000 0.500000 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 8, Chan 1, Patch 25, Pan 64, BEATS 130 to 248 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

1) 
28 

2 
16 

REPEAT 

YES 
YES 
YES 

28 
2 

16 

SELECT 

NO 
NO 
NO 

28 
2 

16 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 9, Chan 1, Patch 25, Pan 64, BEATS 258 to 384 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

1) 
28 

2 
16 

REPEAT 

YES 
YES 
YES 

28 
2 

16 

SELECT 

NO 
NO 
NO 

28 
2 

16 

REVERSE 

000000 
000000 
000000 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 10, Chan 3, Patch 82, Pan 

Parameter Min Max MinMean 

64, BEATS 257 to 448 

Start Grad Lambda 

pitch 66 72 67 69 1.000000 20.000000 
8 8 1.000000 0.500000 

0 0 0 1.000000 0.500000 

REPEAT I SELECT | REVERSE | REFLECT I RANDOM ENTRY 

LENGTH (/ 1) 8 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

66 67 69 72 

Sect 1 Part 11, Chan 3, Patch 

Parameter Min Max 

NO 
NO 
NO 

0, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 257 to 448 

Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

1 ) 
60 
1 
0 
0 

REPEAT 

60 
1 
0 

80 

SELECT 

60 
1 
0 

80 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

- 1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 

I RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 
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Sect 1 Part 12, Chan 5, Patch 82, Pan 

Parameter Min Max MinMean 

64, BEATS 321 to 448 

Start Grad Lambda 

PITCH 69 76 71 72 1.000000 20.000000 
8 8 1.000000 0.500000 

0 0 0 1,000000 0.500000 

REPEAT I SELECT | REVERSE | REFLECT I RANDOM ENTRY 

LENGTH (/ 1) 8 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

YES 
NO 
NO 

PITCH SELECTIONS: 

69 71 72 76 

Sect 1 Part 13, Chan 5, Patch 

Parameter Min Max 

NO 
NO 
NO 

0, Pan 

MinMean 

NO 
NO 
NO 

NO 

64, BEATS 321 to 448 

Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

1) 
60 

1 
0 
0 

REPEAT 

60 
1 
0 

80 

SELECT 

60 
1 
0 

80 

REVERSE 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 

0 - 1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 

REFLECT I RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 14, Chan 4, Patch 52, Pan 64, BEATS 417 to 448 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

1) 
64 
32 
0 

REPEAT 

YES 
YES 
YES 

64 
32 
0 

SELECT 

NO 
NO 
NO 

64 
32 

0 

REVERSE 

1 , 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 15, Chan 4, Patch 0, Pan 64, BEATS 417 to 448 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 
VELOCITY 
VOLUME 

PITCH 
LENGTH 
VELOCITY 

1 ) 
60 
1 
0 
0 

REPEAT 

YES 
YES 
YES 

60 
1 
0 

127 

SELECT 
NO 
NO 
NO 

60 
1 
0 
4 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1 . 0 0 0 0 0 0 2 0 . 0 0 0 0 0 0 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 16, Chan 10, Patch 0, Pan 64, BEATS 433 to 448 
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Parameter Min Max MinMean Start Grad Lambda 

PITCH 38 38 38 1.000000 0.500000 
LENGTH (/ 2) 1 1 1 1.000000 0.500000 
VELOCITY 0 127 3 0 1.000000 20.000000 
RELEASE 16 16 16 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 YES 1 NO 1 

SECTION: 2 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 2 1 160 
2 10 2 128 
3 10 3 128 
4 10 1 128 
5 1 2 128 
6 3 1 128 
7 4 1 128 
8 10 145 160 
9 10 161 161 

Sect 2 Part 1, Chan 2, Patch 82, Pan 64, BEATS 1 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 52 52 52 1.000000 0.500000 
LENGTH (/ 2) 1 2 1 1 1.000000 0.500000 
VOLUME 90 90 90 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH NO 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

Sect 2 Part 2, Chan 10, Patch 0, Pan 64, BEATS 2 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 42 42 42 1.000000 0.500000 
LENGTH (/ 1) 2 2 2 1.000000 0.500000 

REPEAT 1 i SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 IK) 1 

Sect 2 Part 3, Chan 10, Patch 0, Pan 64, BEATS 3 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 39 39 39 1.000000 0.500000 
LENGTH (/ 1) 4 4 4 1.000000 0.500000 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 4, Chan 10, Patch 0, Pan 64, BEATS 1 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 

PITCH 
LENGTH 
VELOCITY 

36 
1) 2 

REPEAT 

YES 
YES 
YES 

36 
2 

SELECT 

NO 
NO 
NO 

36 
2 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 5, Chan 1, Patch 25, Pan 64, BEATS 2 to 128 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

1) 
28 

2 
16 

REPEAT 

YES 
YES 
YES 

28 
2 

16 

SELECT 

NO 
NO 
NO 

28 
2 

16 

REVERSE 

1 . 0 0 0 0 0 0 
1 , 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 6, Chan 3, Patch 52, Pan 

Parameter Min Max MinMean 

64, BEATS 1 to 128 

Start Grad Lambda 

PITCH 57 
LENGTH (/ 1) 4 

REPEAT 

64 64 64 1.000000 20.000000 
12 4 12 1.000000 0.500000 

SELECT I REVERSE | REFLECT | RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
NO 
YES 

YES 
YES 
NO 

YES 
NO 
NO 

NO 
NO 
NO 

NO 

PITCH SELECTIONS: 
57 59 60 62 64 

LENGTH SELECTIONS; 
4 12 

Sect 2 Part 7, Chan 4, Patch 

Parameter Min Max 

52, Pan 

MinMean 

64, BEATS 1 to 128 

Start Grad Lambda 

PITCH 52 
LENGTH (/ 1) 16 

REPEAT 

59 59 59 1.000000 20.000000 
16 16 1.000000 0.500000 

SELECT I REVERSE I REFLECT I RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
NO 
YES 

YES 
YES 
NO 

PITCH SELECTIONS: 

YES 
NO 
NO 
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52 55 59 
LENGTH SELECTIONS: 

16 

Sect 2 Part 8, Chan 10, Patch 0, Pan 64, BEATS 145 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
RELEASE 

2 ) 
38 

1 
0 

16 

REPEAT 

38 
1 

127 
16 

SELECT 

38 
1 
3 

16 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 
1 

0.500000 
0.500000 

000000 2 0 . 0 0 0 0 0 0 
000000 0.500000 

REFLECT RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 YES 1 NO 1 

Sect 2 Part 9, ' Chan 10, Patch 0, Pan 64, BEATS 161 to 161 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 36 36 36 1 .000000 0.500000 
LENGTH (/ 1) 2 2 2 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO NO NO 
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B.2 COMPOSITIONAL STUDIES 

B.2.1 Markov-2 

COMPOSITION FILE: Hard Disk:Music;markov-2 

Section Parts Min Length Min Total Max Length Max Total 

160 
160 
160 

160 
320 
480 

160 
160 
160 

160 
320 
480 

SECTION SEQUENCE: 
1 2 3 

Tempo = 160 bpm MIDI Buffer Size = 1000 Bytes 

SECTION: 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 
17 

160 
160 

Sect 1 Part 1, Chan 1, Patch 46, Pan 24, BEATS 1 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

REPEAT 

83 
32 

SELECT 

48 
1 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

YES 

Sect 1 Part 2, Chan 2, Patch 46, Pan 104, BEATS 

Parameter Min Max MinMean Start 

17 to 160 

Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

83 
32 

SELECT 

NO 
NO 
NO 

48 
1 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

YES 

SECTION: 

Parameter 

TRANSPOSE 

Part No 

Min Max 

0 0 

MIDI Channel 

MinMean 

0 

Start Grad Lambda 

1.000000 0.500000 

Ending Beat Starting Beat 
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1 
2 

1 
2 

9 
25 

160 
160 

Sect 2 Part 1, Chan 1, Patch 46, Pan 24, BEATS 9 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

REPEAT 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

83 
32 

SELECT 

NO 
NO 
NO 

48 
1 

REVERSE REFLECT 

1.000000 0,500000 
-1.000000 0.500000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

YES 

Sect 2 Part 2, Chan 2, Patch 46, Pan 104, BEATS 25 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH {/ 32) 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

83 
32 

SELECT 

NO 
NO 
NO 

48 
1 

REVERSE 

1 . 0 0 0 0 0 0 
-1.000000 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

YES 

SECTION; 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 

Part No MIDI Channel Starting Beat 

1.000000 0.500000 

Ending Beat 

9 
25 

160 
160 

Sect 3 Part 1, Chan 1, Patch 46, Pan 24, BEATS 9 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH {/ 32) 1 

REPEAT 

83 
32 

SELECT 

48 
1 

REVERSE 

-1.000000 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 

REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

YES 

Sect 3 Part 2, Chan 2, Patch 46, Pan 104, BEATS 25 to 160 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 32) 1 

PITCH 
LENGTH 

REPEAT 

YES 
YES 

83 
32 

SELECT 

NO 
NO 

48 
1 

REVERSE 

NO 
NO 
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REFLECT 

NO 
NO 

-1.000000 0.500000 
1.000000 0.500000 

I RANDOM ENTRY 

YES 



VELOCITY YES I NO 1 NO 1 NO 
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B.2.2 Computer Study for Timpani 

COMPOSITION PILE; Hard Disk; Music:computer study for_timpani 

Section Parts Min Length Min Total Max Length Max Total 

1 1 30 30 30 30 
2 1 30 60 30 60 
3 1 30 90 30 90 
4 1 30 120 30 120 
5 2 37 157 37 157 
6 2 12 169 12 169 
7 3 9 178 9 178 
8 4 10 188 10 188 
9 2 7 195 7 195 
10 2 13 208 13 208 
11 3 10 218 10 218 
12 4 9 227 9 227 
13 2 7 234 7 234 
14 12 366 600 366 600 

SECTION SEQUENCE: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Tempo = 150 bpm MIDI Buffer Size = 5000 Bytes 

SECTION: 1 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0,500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 1 30 

Sect 1 Part 1, Chan 1, Patch 48, Pan 0, BEATS 1 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 48 48 1.000000 0.500000 
LENGTH (/ 16) 1 16 1 1.000000 0.500000 
VELOCITY 1 127 1 1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

SECTION; 2 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 2 5 30 

Sect 2 Part 1, Chan 2, Patch 48, Pan 127, BEATS 5 to 30 

Parameter Min Max MinMean Start Grad Lambda 
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PITCH 63 
LENGTH (/ 16) 1 
VELOCITY 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

63 
16 
127 

SELECT 

NO 
NO 
NO 

63 
1 
1 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION; 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 5 30 

Sect 3 Part 1, Chan 1, Patch 48, Pan 0, BEATS 5 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH {/ 16) 1 
VELOCITY 1 

REPEAT 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

60 
16 
127 

SELECT 

NO 
NO 
NO 

48 
1 
1 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION; 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

1 

0 0 

MIDI Channel 

2 

0 

Starting Beat 

5 

1.000000 0.500000 

Ending Beat 

30 

Sect 4 Part 1, Chan 2, Patch 48, Pan 127, BEATS 5 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH {/ 16) 1 
VELOCITY 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

72 
16 
127 

SELECT 

NO 
NO 
NO 

60 
1 
1 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION: 

Parameter 

TRANSPOSE 

Part No 

Min Max 

0 0 

MIDI Channel 

MinMean 

0 

Start Grad Lambda 

1.000000 0.500000 

Ending Beat Starting Beat 
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Sect 5 Part 1, Chan 1, Patch 48, Pan 

Parameter Min Max MinMean 

37 
37 

0, BEATS 5 to 37 

Start Grad Lambda 

PITCH 48 
LENGTH (/ 16) 1 
VELOCITY 1 

REPEAT 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

60 
16 
127 

SELECT 

NO 
NO 
NO 

48 
1 
1 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 5 Part 2, Chan 2, Patch 48, Pan 127, BEATS 5 to 37 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 16) 1 
VELOCITY 1 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

72 
16 
127 

SELECT 

NO 
NO 
NO 

60 
1 
1 

REVERSE 

000000 
000000 
000000 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION: 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

0 0 

MIDI Channel Starting Beat 

1.000000 0.500000 

Ending Beat 

7 
11 

10 
12 

Sect 6 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 10 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

10 

REPEAT 

60 
15 
32 

SELECT 

48 
10 
10 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 6 Part 2, Chan 2, Patch 48, Pan 127, BEATS 11 to 12 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 90) 10 
VELOCITY 10 

72 
15 
32 

60 
10 
10 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION: 7 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1,000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

5 
7 
9 

Sect 7 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

33 

REPEAT 

60 
15 
64 

SELECT 

48 
10 
33 

REVERSE 

000000 
000000 
000000 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 7 Part 2, Chan 2, Patch 48, Pan 127, BEATS 6 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

33 

REPEAT 

YES 
YES 
YES 

72 
15 
64 

SELECT 

NO 
NO 
NO 

60 
10 
33 

REVERSE REFLECT 

1.000000 0,500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 7 Part 3, Chan 1, Patch 48, Pan 0, BEATS 8 to 9 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

33 

REPEAT 

YES 
YES 
YES 

60 
15 
64 

SELECT 

NO 
NO 
NO 

48 
10 
33 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION; 8 

Parameter Min Max MinMean 
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TRANSPOSE 

Part No 

0 0 

MIDI Channel Starting Beat 

1.000000 0.500000 

Ending Beat 

1 
2 
3 
4 

3 
5 
7 
9 

Sect 8 Part 1, Chan 1, Patch 48, Pan 

Parameter Min Max MinMean 

4 
6 
8 

10 

0, BEATS 3 to 4 

Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

65 

REPEAT 

60 
15 
96 

SELECT 

48 
10 
65 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0,050000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 8 Part 2, Chan 2, Patch 48, Pan 127, BEATS 5 to 6 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH {/ 90) 10 
VELOCITY 65 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

YES 
YES 
YES 

72 
15 
96 

SELECT 

NO 
NO 
NO 

60 
10 
65 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 8 Part 3, Chan 1, Patch 48, Pan 

Parameter Min Max MinMean 

0, BEATS 7 to £ 

Start Grad Lambda 

PITCH 48 
LENGTH {/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

65 

REPEAT 

YES 
YES 
YES 

60 
15 
96 

SELECT 

NO 
NO 
NO 

48 
10 
65 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 8 Part 4, Chan 2, Patch 48, Pan 127, BEATS 9 to 10 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

65 

REPEAT 

YES 
YES 
YES 

72 
15 
96 

SELECT 

NO 
NO 
NO 

60 
10 
65 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
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SECTION: 9 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

0 0 

MIDI Channel Starting Beat 

1.000000 0.500000 

Ending Beat 

Sect 9 Part 1, Chan 1, Patch 48, Pan 0, BEATS 3 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

97 

REPEAT 

60 
15 
127 

SELECT 

48 
10 
97 

REVERSE 

1 . 0 0 0 0 0 0 
1,000000 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 9 Part 2, Chan 2, Patch 48, Pan 127, BEATS 3 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

97 

REPEAT 

YES 
YES 
YES 

72 
15 
127 

SELECT 

NO 
NO 
NO 

60 
10 
97 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION; 10 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 

Part No 

0 0 

MIDI Channel Starting Beat 

1.000000 0.500000 

Ending Beat 

7 
12 

11 
13 

Sect 10 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 11 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 90) 10 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

10 

REPEAT 

60 
15 
32 

SELECT 

48 
10 
10 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.050000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
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Sect 10 Part 2, Chan 2, Patch 48, Pan 127, BEATS 12 to 13 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1.000000 0.500000 
LENGTH (/ 90) 10 15 10 1.000000 0.500000 
VELOCITY 10 32 10 1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

SECTION: 11 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 2 6 
2 2 7 8 
3 1 9 10 

Sect 11 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 6 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1.000000 0.500000 
LENGTH (/ 90) 10 15 10 1.000000 0.500000 
VELOCITY 33 64 33 1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES NO 1 NO 1 NO 1 NO 
VELOCITY YES NO 1 NO 1 NO 1 

Sect 11 Part 2, Chan 2, Patch 48, Pan 127, BEATS 7 to 8 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1.000000 0.500000 
LENGTH (/ 90) 10 15 10 1.000000 0.500000 
VELOCITY 33 64 33 1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

Sect 11 Part 3, Chan 1, Patch 48, Pan 0, BEATS 9 to 10 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1.000000 0.500000 
LENGTH (/ 90) 10 15 10 1.000000 0.500000 
VELOCITY 33 64 33 1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT I RANDOM ENTRY 

PITCH YES I NO 1 NO 1 NO 1 
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LENGTH YES NO 1 NO 1 NO 1 NO 
VELOCITY YES j NO 1 NO 1 NO 1 

SECTION; 12 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1.000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 2 3 
2 2 4 5 
3 1 6 7 
4 2 8 9 

Sect 12 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 3 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1 .000000 0.500000 
LENGTH (/ 90) 10 15 10 1 .000000 0.500000 
VELOCITY 65 96 65 1 .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

1 NO 

Sect 12 Part 2, Chan 2, Patch 48, Pan 127, BEATS 4 to 5 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1 .000000 0.500000 
LENGTH (/ 90) 10 15 10 1 .000000 0.500000 
VELOCITY 65 96 65 1 .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES NO 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO j NO VELOCITY YES 1 NO 1 NO 1 NO 
j NO 

Sect 12 Part 3, Chan 1, Patch 48, Pan 0, BEATS 6 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1. 000000 0.500000 
LENGTH (/ 90) 10 15 10 1. 000000 0.500000 
VELOCITY 65 96 65 1. 000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES NO 1 NO 1 NO 1 
LENGTH YES j NO 1 NO 1 NO j NO 
VELOCITY YES 1 NO j NO 1 NO 1 

NO 

Sect 12 Part 4, Chan 2, Patch 48, Pan 127, BEATS 8 to 9 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1. 000000 0.500000 
LENGTH {/ 90) 10 15 10 1. 000000 0.500000 
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VELOCITY 65 96 65 1.000000 0.050000 

REPEAT SELECT 1 REVERSE i REFLECT 1 RANDOM ENTRY 

PITCH YES NO 1 NO 1 NO 1 LENGTH YES NO 1 NO 1 NO 1 NO 
VELOCITY YES NO 1 NO 1 NO 

SECTION: 13 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1 .000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 3 7 
2 2 3 7 

Sect 13 Part 1, Chan 1, Patch 48, Pan 0, BEATS 3 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 60 48 1 .000000 0.500000 
LENGTH (/ 90) 10 15 10 1 .000000 0.500000 
VELOCITY 97 127 97 1 .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO NO 
VELOCITY YES 1 NO 1 NO 1 NO 

NO 

Sect 13 Part 2, Chan 2, Patch 48, Pan 127, BEATS 3 to 7 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 72 60 1, 000000 0.500000 
LENGTH {/ 90) 10 15 10 1. 000000 0.500000 
VELOCITY 97 127 97 1. 000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

NO 

SECTION: 14 

Parameter Min Max MinMean Start Grad Lambda 

TRANSPOSE 0 0 0 1. 000000 0.500000 

Part No MIDI Channel Starting Beat Ending Beat 

1 1 7 126 
2 2 37 156 
3 3 60 179 
4 4 90 209 
5 1 127 246 
6 2 157 276 
7 3 180 299 
8 4 210 329 
9 1 247 366 
10 2 277 366 
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11 
12 

3 
4 

300 
330 

Sect 14 Part 1, Chan 1, Patch 48, Pan 

Parameter Min Max MinMean 

366 

366 

0, BEATS 7 to 126 

Start Grad Lambda 
PITCH 48 
LENGTH (/120) 50 
VELOCITY 50 

48 
50 
127 

48 
50 
127 

1.000000 0.500000 
1.000000 0.500000 
-1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 1 
YES 1 
YES 1 

NO 1 
NO 1 
NO 1 

NO 
NO 
NO 

1 NO 
1 NO 
1 NO 

1 
1 NO 

Sect 14 Part 2, Chan 2, Patch 48, Pan 127, BEATS 37 to 156 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 57 
LENGTH {/120) 50 
VELOCITY 50 

57 
50 
127 

57 
50 
127 

1.000000 0.500000 
1.000000 0.500000 
-1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 1 
YES 1 
YES 1 

NO 1 
NO 1 
NO 1 

NO 
NO 
NO 

1 NO 
1 NO 
1 NO 

1 
1 NO 

Sect 14 Part 3, Chan 3, Patch 48, Pan 42, BEATS 60 to 179 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 54 
LENGTH (/120) 50 
VELOCITY 50 

54 
50 
127 

54 
50 
127 

1.000000 0.500000 
1.000000 0.500000 
-1.000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 1 
YES 1 
YES 1 

NO 1 
NO 1 
NO 1 

NO 
NO 
NO 

1 NO 
1 NO 
1 NO 

1 NO 

Sect 14 Part 4, Chan 4, Patch 48, Pan 84, BEATS 90 to 209 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 51 
LENGTH (/120) 50 
VELOCITY 50 

51 
50 
127 

51 
50 
127 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 

REPEAT 1 SELECT | REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 1 
YES 1 
YES 1 

NO 1 
NO 1 
NO 1 

NO 1 
NO 1 
NO 1 

NO 
NO 
NO 

1 
1 NO 
1 

Sect 14 Part 5, Chan 1, Patch 48, Pan 0, BEATS 127 to 246 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 69 69 69 
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LENGTH (/120) 50 
VELOCITY 50 

PITCH 
LENGTH 
VELOCITY 

REPEAT 

50 
127 

SELECT 

YES 
YES 
YES 

NO 
NO 
NO 

50 
127 

REVERSE 

1 . 0 0 0 0 0 0 
- 1 . 0 0 0 0 0 0 

0.500000 
0.050000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 14 Part 6, Chan 2, Patch 48, Pan 127, BEATS 157 to 276 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 66 
LENGTH (/120) 50 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

50 

REPEAT 

YES 
YES 
YES 

66 
50 
127 

SELECT 

NO 
NO 
NO 

66 
50 
127 

REVERSE 

1.000000 0.500000 
1.000000 0.500000 
-1.000000 0.050000 

REFLECT I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 14 Part 7, Chan 3, Patch 48, Pan 42, BEATS 180 to 299 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 63 63 63 1 .000000 0.500000 
LENGTH (/120) 50 50 50 1 .000000 0.500000 
VELOCITY 50 127 127 1 .000000 0.050000 

REPEAT 1 SELECT 1 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 1 NO 1 NO j 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 

1 VELOCITY YES 1 NO 1 NO NO 
1 NO 
1 

Sect 14 Part 8, Chan 4, Patch 48, Pan 84, BEATS 210 to 329 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 
LENGTH (/120) 50 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

50 

REPEAT 

YES 
YES 
YES 

60 
50 
127 

SELECT 

NO 
NO 
NO 

60 
50 

127 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
-1.000000 0.050000 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 14 Part 9, Chan 1, Patch 48, Pan 0, BEATS 247 to 366 

Parameter Min Max MinMean start Grad Lambda 

PITCH 48 71 48 69 1 .000000 0.500000 
LENGTH (/120) 50 50 50 1 ,000000 0.500000 
VELOCITY 50 127 127 1 .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO 1 NO 
1 

VELOCITY YES 1 NO 1 NO 1 NO 
1 NO 
1 

220 



Sect 14 Part 10, Chan 2, Patch 48, Pan 127, BEATS 277 to 366 277 to 366 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 71 48 66 1 .000000 0.500000 
LENGTH (/120) 50 50 50 1 .000000 0.500000 
VELOCITY 50 127 127 -1 .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO j NO VELOCITY YES 1 NO 1 NO 1 NO 
j NO 

Sect 14 Part 11, Chan 3, Patch 48, Pan 42, BEATS 300 to 366 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 71 48 63 1, .000000 0.500000 
LENGTH (/120) 50 50 50 1. .000000 0.500000 
VELOCITY 50 127 127 -1, .000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO NO 
VELOCITY YES 1 NO 1 NO 1 NO 1 

NO 

Sect 14 Part 12, Chan 4, Patch 48, Pan 84, BEATS 330 to 366 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 71 48 60 1, 000000 0.500000 
LENGTH (7120) 50 50 50 1, 000000 0.500000 
VELOCITY 50 127 127 — 1 . 000000 0.050000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

NO 
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B.2.3 Vibrato Study 

COMPOSITION FILE: Hard DiskrMusic;vibrato_study 

Section Parts Min Length Min Total Max Length Max Total 

11 
7 
9 

82 
90 
150 

82 
172 
322 

82 
172 
322 

SECTION SEQUENCE: 
1 2 3 

Tempo = 60 bpm MIDI Buffer Size = 

SECTION; 1 

Parameter Min Max MinMean 

TRANSPOSE 0 0 0 

Part No MIDI Channel Starting Beat 

82 
90 
150 

100 Bytes 

Start Grad Lambda 

1.000000 0.500000 

Ending Beat 

1 5 1 80 
2 6 1 80 
3 7 1 80 
4 1 13 18 
5 2 25 30 
6 3 37 42 
7 1 49 54 
8 1 67 72 
9 2 67 72 
10 3 79 82 
11 4 79 82 

Sect 1 Part 1, Chan 5, Patch 54, Pan 0, BEATS 1 to 80 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 38 38 38 1.000000 0.500000 
LENGTH (/ 1) 80 80 80 1.000000 0,500000 
RELEASE 104 104 104 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 LENGTH YES 1 NO 1 NO 1 NO 1 NO VELOCITY YES 1 NO j NO 1 NO 
1 NO 

Sect 1 Part 2, Chan 6, Patch 54, Pan 64, BEATS : 1 to 80 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 45 45 45 1.000000 0.500000 
LENGTH (/ 1) 80 80 80 1.000000 0.500000 
RELEASE 104 104 104 1.000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 i NO j 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 

1 
VELOCITY YES 1 NO 1 NO j NO 

1 NO 
1 
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Sect 1 Part 3, Chan 7, Patch 54, Pan 127, BEATS 1 to 80 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

52 
1) 80 

104 

REPEAT 

YES 
YES 
YES 

52 
80 
104 

SELECT 

NO 
NO 
NO 

52 
80 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 4, Chan 1, Patch 54, Pan 4, BEATS 13 to 18 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 5, Chan 2, Patch 54, Pan 44, BEATS 25 to 30 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0,500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 6, Chan 3, Patch 54, Pan 84, BEATS 37 to 42 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1 ) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 7, Chan 1, Patch 54, Pan 124, BEATS 
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Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1 ) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 8, Chan 1, Patch 54, Pan 

Parameter Min Max MinMean 

4, BEATS 67 to 72 

Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 9, Chan 2, Patch 54, Pan 84, BEATS 67 to 72 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 10, Chan 3, Patch 54, Pan 44, BEATS 79 to 82 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1 ) 6 

114 
23 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
23 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
23 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 1 Part 11, Chan 4, Patch 54, Pan 124, BEATS 
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Parameter Min Max MinMean Start Grad Lambda 

PITCH 48 
LENGTH (/ 1) 6 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

114 
23 
104 

REPEAT 

YES 
YES 
YES 

84 
6 

114 
23 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
23 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION; 

Parameter 

TRANSPOSE 

Part NO 

Min Max MinMean 

0 0 0 

MIDI Channel Starting Beat 

Start Grad Lambda 

1.000000 0.500000 

Ending Beat 

1 
2 
3 
4 
5 
6 
7 

5 
6 
7 
1 
2 
3 
4 

Sect 2 Part 1, Chan 5, Patch 54, Pan 

Parameter Min Max 

1 90 
1 90 
1 90 
7 90 
13 90 
19 90 
25 90 

0, BEATS 1 to 90 

MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

38 
1) 90 

104 

REPEAT 

38 
90 
104 

SELECT 

38 
90 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 2, Chan 6, Patch 54, Pan 64, BEATS 

Parameter Min Max MinMean Start 

1 to 90 

Grad Lambda 

PITCH 
LENGTH (/ 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

45 
1) 90 

104 

REPEAT 

YES 
YES 
YES 

45 
90 
104 

SELECT 

NO 
NO 
NO 

45 
90 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 3, Chan 7, Patch 54, Pan 127, BEATS 

Parameter Min Max MinMean Start 

1 to 90 

Grad Lambda 

PITCH 52 52 
LENGTH (/ 1) 90 90 
RELEASE 104 104 

52 
90 
104 
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REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 4, Chan 1, Patch 54, Pan 

Parameter Min Max MinMean 

4, BEATS 

Start 

7 to 90 

Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
8 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 5, Chan 2, Patch 54, Pan 44, BEATS 13 to 

Parameter Min 

90 

Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

48 
1 ) 6 

114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
8 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 6, Chan 3, Patch 54, Pan 84, BEATS 19 to 

Parameter 

90 

Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH {/ 
VIBDEPTH 
VIBRATE 
RELEASE 

PITCH 
LENGTH 
VELOCITY 

1 ) 
48 

6 
114 
14 
104 

REPEAT 

YES 
YES 
YES 

84 
8 

114 
114 
104 

SELECT 

NO 
NO 
NO 

60 
6 

114 
14 
104 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 2 Part 7, Chan 4, Patch 54, Pan 84, BEATS 25 to 

Parameter Min 

90 

Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VIBDEPTH 
VIBRATE 
RELEASE 

1 ) 
48 

6 
114 
14 
104 

84 
8 

114 
114 
104 

60 
6 

114 
14 
104 
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1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 
1.000000 0.050000 
1.000000 0.500000 



REPEAT SELECT REVERSE REFLECT RANDOM ENTRY 

PITCH 
LENGTH 
VELOCITY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

SECTION: 

Parameter 

TRANSPOSE 

Part No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Min Max 

0 0 

MIDI Channel 

5 
6 
7 
8 
9 
1 
2 
3 
4 

MinMean 

Starting Beat 

3 
19 
37 
55 
61 
127 
130 
133 
136 

Start Grad Lambda 

Sect 3 Part 1, Chan 5, Patch 54, Pan 

Parameter Min Max MinMean 

PITCH 36 47 36 
LENGTH (/ 1) 148 148 148 
VIBDEPTH 114 114 114 
VIBRATE 31 31 31 
RELEASE 104 104 104 

REPEAT 1 SELECT 1 REVERSE 

PITCH YES 1 NO 1 1 NO 
LENGTH YES 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 

1.000000 0.500000 

Ending Beat 

150 
150 
150 
120 
120 
150 
150 
150 
150 

0, BEATS 3 to 150 

Start Grad Lambda 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0,500000 
0.050000 
0.500000 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 

Sect 3 Part 2, Chan 6, Patch 54, Pan 64, BEATS 19 to 150 

Parameter Min Max MinMean Start 

PITCH 48 59 48 
LENGTH (/ 1) 132 132 132 
VELOCITY 100 100 100 
VIBDEPTH 114 114 114 
VIBRATE 41 41 41 
RELEASE 104 104 104 

REPEAT 1 SELECT 1 1 REVERSE 1 REFLECT 

Grad Lambda 

PITCH 
LENGTH 
VELOCITY 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.500000 
0.050000 
0.500000 

RANDOM ENTRY 

YES 
YES 
YES 

NO 
NO 
NO 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 3 Part 3, Chan 7, Patch 54, Pan 127, BEATS 

Parameter Min Max MinMean Start 

PITCH 
LENGTH (/ 
VELOCITY 

1) 
60 
114 
90 

71 
114 
90 

60 
114 
90 
227 

37 to 150 

Grad Lambda 

1.000000 0.500000 
1.000000 0.500000 
1.000000 0.500000 



VIBDEPTH 114 114 
VIBRATE 61 61 
RELEASE 104 104 

REPEAT 1 SELECT 

PITCH YES 1 NO 
LENGTH YES 1 NO 
VELOCITY YES NO 

114 
61 
104 

REVERSE 

1,000000 0.500000 
1.000000 0.050000 
1.000000 0.500000 

REFLECT I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 3 Part 4, Chan 8, Patch 54, Pan 34, BEATS 55 to 120 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

2 ) 
60 

1 
40 

REPEAT 

YES 
YES 
YES 

84 
2 
90 

SELECT 

NO 
NO 
NO 

60 
1 

40 

REVERSE REFLECT 

1.000000 0.500000 
1.000000 0.500000 
1 . 0 0 0 0 0 0 0 . 1 0 0 0 0 0 

I RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 3 Part 5, Chan 9, Patch 54, Pan 94, BEATS 

Parameter Min Max MinMean Start 

61 to 120 

Grad Lambda 

PITCH 
LENGTH {/ 
VELOCITY 

PITCH 
LENGTH 
VELOCITY 

4) 
60 

1 
40 

REPEAT 

YES 
YES 
YES 

84 
2 
90 

SELECT 

NO 
NO 
NO 

60 
1 

40 

REVERSE 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0 . 1 0 0 0 0 0 

REFLECT RANDOM ENTRY 

NO 
NO 
NO 

NO 
NO 
NO 

NO 

Sect 3 Part 6, Chan 1, Patch 54, Pan 4, 

Parameter Min Max MinMean Start 

PITCH 36 47 36 
LENGTH (/ 1) 89 89 89 
VIBDEPTH 114 114 114 
VIBRATE 36 36 36 
RELEASE 104 104 104 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 

PITCH YES 1 NO 1 NO 1 NO 
LENGTH YES 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

Sect 3 Part 7, Chan 2, Patch 54, Pan 44, BEATS 

Parameter Min Max MinMean Start 

BEATS 127 to 150 

Grad Lambda 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.500000 
0.500000 

RANDOM ENTRY 

I NO 
I 

130 to 150 

Grad Lambda 

PITCH 
LENGTH (/ 
VELOCITY 
VIBDEPTH 
VIBRATE 
RELEASE 

48 
1) 72 

100 
114 
46 
104 

59 
72 

100 
114 
46 
104 

48 
72 

100 

114 
46 
104 

228 

1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 
1 . 0 0 0 0 0 0 

0.500000 
0.500000 
0.500000 
0.500000 
0.500000 
0.500000 



REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO 1 NO 1 
LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

Sect 3 Part 8, Chan 3, Patch 54, Pan 84, BEATS 133 to 150 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 60 71 60 1 .000000 0.500000 
LENGTH (/ 1) 54 54 54 1 .000000 0.500000 
VELOCITY 90 90 90 1 .000000 0.500000 
VIBDEPTH 114 114 114 1 .000000 0.500000 
VIBRATE 51 51 51 1 .000000 0.500000 
RELEASE 104 104 104 1 .000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO j NO 1 LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO 1 NO 

1 NO 

Sect 3 Part 9, Chan 4, Patch 54, Pan 124, BEATS 136 to 150 

Parameter Min Max MinMean Start Grad Lambda 

PITCH 72 83 72 1. 000000 0.500000 
LENGTH (/ 1) 54 54 54 1. 000000 0.500000 
VELOCITY 90 90 90 1, 000000 0.500000 
VIBDEPTH 114 114 114 1. 000000 0.500000 
VIBRATE 56 56 56 1. 000000 0.500000 
RELEASE 104 104 104 1. 000000 0.500000 

REPEAT 1 SELECT 1 REVERSE 1 REFLECT 1 RANDOM ENTRY 

PITCH YES 1 NO 1 NO i NO 1 LENGTH YES 1 NO 1 NO 1 NO 1 NO 
VELOCITY YES 1 NO 1 NO NO 

NO 
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GLOSSARY 

Algorithm The specification of a sequence of unambiguously defined steps 

itself to the encoding of the algorithm in a computer program. 

Fourier Transform The mathematical technique for converting the time-

domain representation of a waveform or numerical sequence into its 

frequency-domain representation. 

Function A formula, or group of formulas, which expresses how one quantity 

depends on the values of one or more other quantities. 

Input Parameter One of the values fed into a function in order to obtain the 
output quantity. 

Markov Chain A process in which the probability of occurrence of an event is 
conditional on the occurrence of one or more past events. 

MIDI (Musical Instrument Digital Interface) A communication standard, 

developed and adopted by manufacturers of electronic musical instruments, 

vvlhidi allows instruments aind compiuters tolbe conneicted togethier sc) thiat tliê r 
may share control information. 

Object-oriented Programming A method of computer programming in which a 

program is defined in terms of objects. Objects are in turn defined in terms of 

the data they contain and the actions that may be performed on them. Objects 

interact with each other during the operation of the program. 

Part The lowest-level building block of a composition created using the 

Markov program. It most commonly consists of a linear, monophonic sequence 

of notes but may also be used to send MIDI control data, volume or pitch bend 

changes for example, to the same MIDI channel as another Part, so as to affect 

the note sequence being produced by that Part. Parts are combined to form 

Sections. 

Perturbation Analysis The systematic study of the effect on the behaviour of a 

mathematical process of changes to the values of its input parameters. 

Petri Net The representation of a Markov process by means of a graph, and an 

associated table, achieving significant reductions in the amount of data needed 

to define the transition matrix. 

Probability Distribution A formula, or set of values, which expresses the 

likelihood of occurrence of a value of a random variable. In the case of a 

continuous random variable, this is the likelihood that it will lie within a 

particular range of values. 

Probability Lookup Table A table of values which expresses the relative 

frequencies of occurrence of a two or more discrete random events. 
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Random Characteristic of a process which may produce different results from 
an identical set of controlling conditions. 

Random Variable A discrete or continuous variable quantity which assumes a 
value as a result of a random process. 

Section The top-level building block of a composition created using the 

Markov program. A complete composition consists of a sequence of one or 

more non-overlapping Sections. Sections in turn consist of one or more 

simultaneous or overlapping Parts. 

Serialism A system of composition based on the transformation of fixed 

orderings of all twelve notes of the chromatic scale. 

Source Code Listing The line by line list of instructions, structured according to 
the rules of the computer language being used, which form a computer 
program. 

Stochastic Process A system of time-varying random variable quantities. 

Transition Matrix A square array of values which define the conditional 

probabilities of a Markov chain. 

Transition Probability An individual probability value, within a Markov 

transition matrix, specifying the probability of an event occurring conditional 

on a previous event. 
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