UNIVERSITY OF SOUTHAMPTON

Computer-based Musical Composition
using a
Probabilistic Algorithmic Method

Gary Chapman

Submitted for Examination for the Degree of Doctor of Philosophy
Department of Music, Faculty of Arts

September 2000

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ARTS

MUSIC

Doctor of Philosophy

COMPUTER-BASED MUSICAL COMPOSITION
USING A
PROBABILISTIC ALGORITHMIC METHOD

by Gary Chapman

The idea of using computers for the composition of music based on
mathematical algorithms is not new, and the techniques which have been
employed are wide-ranging. However, compositional processes which require
an understanding of complex mathematical concepts or of computing
techniques tend to be inaccessible to those lacking the necessary skills. In others,
the relationship between the supplied input data and the resulting musical
output is not evident, and they therefore lack the flexibility to meet specific
compositional goals. Systems requiring the specification of large sets of musical
rules, or which process pre-supplied music, are more regurgitative than
creative.

This thesis describes and investigates a probabilistic, Markov chain-based
algorithm whose aims are to be conceptually lucid, to require a small number of
input parameters, to be capable of a wide range of musical output and to have
the flexibility to meet diverse compositional objectives. A computer program
has been developed which provides a composing environment through which
the algorithm is analysed in depth, its strengths and weaknesses are examined,
and its compositional capabilities are explored.

TABLE OF CONTENTS

CONTENTS OF THE ACCOMPANYING COMPACT DISC

CONTENTS OF THE ACCOMPANYING FLOPPY DISK

MARKOV PROGRAM INSTALLATION INSTRUCTIONS

ACKNOWLEDGEMENTS

Chapter 1. INTRODUCTION
1.1 THE RESEARCH IN CONTEXT

1.2 THE AIMS OF THE RESEARCH
1.2.1 General Outline
1.2.2 The Objectives

1.3 ALGORITHMIC COMPOSITION REVIEW
1.3.1 Fractals and Chaos Theory
1.3.1.1 Fractional Noises
1.3.1.2 Non-Linear Dynamical Systems
1.3.2 Cellular Automata
1.3.3 Artifical Intelligence
1.3.4 Stochastic Techniques
1.3.4.1 Rule Based Approach
1.3.4.2 Probability Distributions
1.3.4.3 Stochastic Grammars
1.3.4.4 Markov Chains

Chapter 2. THE ALGORITHM

2.1 INTRODUCTION

12
13
14
15
16
17
18
18
19
21
22

26

27

2.2 GENERATING THE ROWS OF THE TRANSITION MATRIX
2.2.1 The Bilateral Exponential Function

2.2.2 The Diagonal Line Method
2.2.3 Generating Note Sequences

2.3 EXTENSIONS TO THE DIAGONAL LINE METHOD

2.3.1 Introduction
2.3.2 Wraparound
2.3.3 Reflection
2.3.4 Reverse

2.4 SUMMARY
2.4.1 Satisfying the Objectives
2.4.2 Limitations
Chapter 3. THE MARKOV PROGRAM
3.1 INTRODUCTION
3.2 THE PROGRAM STRUCTURE
3.2.1 Introduction

3.2.2 The Initialisation Section

3.2.3 The Composition Section
3.2.4 The Playback Section
3.2.5 The Termination Section
3.2.6 The "Score”

Chapter 4. THE COMPOSITIONAL PROCESS

4.1 INTRODUCTION

4.2 AN EVOLVING COMPOSITION

Chapter 5. ANALYSIS OF THE ALGORITHM

5.1 INTRODUCTION

27
30
32

38
38
39
44
51

54
54
55
58
59
59
59
60
61
63
71
71
74

75

75

83

84

5.2 VARYING A
5.2.1 Introduction
5.2.2 Analysis
5.2.3 Additional Information
5.2.4 Conclusions

5.3 VARYING GRADIENT
5.3.1 Introduction
5.3.2 Analysis
5.3.3 Conclusions

5.4 VARYING MINIMUM MEAN
5.4.1 Introduction
5.4.2 Analysis
5.4.3 Conclusions

5.5 GRADIENTS GREATER THAN 1 OR LESS THAN -1
5.5.1 Introduction
5.5.2 Analysis

5.6 VARYING NOTE LENGTH
5.6.1 Introduction
5.6.2 Analysis

5.7 VARYING NOTE VELOCITY
5.7.1 Introduction
5.7.2 Analysis

5.8 THE REVERSE OPTION
5.8.1 Introduction
5.8.2 Analysis

5.9. THE REFLECT OPTION
5.9.1 Introduction
5.9.2 Analysis

Chapter 6. STYLE EMULATION

6.1 INTRODUCTION

84
84
86
90
90

91
91
91
96

97
97
98
103

104
104
105

109
109
109

115
115
115

118

118

119

121

121

122

124

125

6.2 STEVE REICH PHASE MUSIC
6.2.1 Introduction
6.2.2 Identifying the Key Elements
6.2.3 Constructing the Piece Using the Algorithm
6.2.4 Discussion of the Results

6.3 GAGAKU - JAPANESE COURT MUSIC
6.3.1 Introduction
6.3.2 Identifying the Key Elements
6.3.3 Constructing the Piece Using the Algorithm
6.3.4 Discussion of the Results

6.4 BACH HARPSICHORD MUSIC
6.4.1 Introduction
6.4.2 Identifying the Key Elements
6.4.3 Constructing the Piece Using the Algorithm
6.4.4 Discussion of the Results

6.5 DANCE MUSIC
6.5.1 Introduction
6.5.2 Identifying the Key Elements
6.5.3 Constructing the Piece Using the Algorithm
6.5.4 Discussion of the Results

6.6 SUMMARY

Chapter 7. COMPOSITIONAL STUDIES
7.1 INTRODUCTION

7.2 MARKOV-2
7.2.1 Description
7.2.2 Evaluation

7.3 VIBRATO STUDY
7.3.1 Description
7.3.2 Evaluation

128
128
128
129
130

131
131
132
133
142

144
144
146
150
158

160
160
161
161
166

167

169

170

170
170
173

173
173
175

7.4 COMPUTER STUDY FOR TIMPANI
7.4.1 Description
7.4.2 Evaluation

CONCLUSION

Appendix B. MARKOV PROGRAM SCORES

B.1 STYLE EMULATION
B.1.1 Steve Reich Phase Music
B.1.2 Gagaku - Japanese Court Music
B.1.3 Bach Harpsichord Music
B.1.4 Dance Music

B.2 COMPOSITIONAL STUDIES
B.2.1 Markov-2
B.2.2 Computer Study for Timpani
B.2.3 Vibrato Study

Appendix C. BACH SCORES IN STAFF NOTATION

GLOSSARY

BIBLIOGRAPHY

175
175
178

179

181

182
182
183
190
200

207
207
210
222

230

238

240

CONTENTS OF THE ACCOMPANYING COMPACT DISC

The compact disc which accompanies this thesis may be found in a plastic
wallet attached to the inside back cover. It can be read only by an IBM™ PC-
compatible computer running Windows™ 95, 98 or NT4. The content structure

of the compact disc is as follows:

{3 4. The Compositional Process
7 5. Analysis of the Algorithm
(3 5.2 Yarying Lambda
(1 5.2 Yarying Gradient
{3 5.4 Yarying Minimum Mean
) 5.5 Gradients > 1 or <1
[5.6 Yarying Note Length
{3 5.7 Yarying Note Velocity
3 5.8 The Reverse Option
[5.9 The Reflect Option
[6. Style Emulation
[Bach
O Dance
) Gagaku
O Reich
{3 7. Compositional Studies
D) Computer Study for Timpani
0 Markov-2
[vibrato Study
{3 Markov Program
[0 Markov User Guide
[Source Code

The four top level directories entitled "Analysis of the Algorithm”,
"Compositional Studies", "Style Emulation" and "The Compositional Process”
contain files which relate directly to the thesis chapters of the same name. Their
precise contents will be described later in the relevant chapters. The directory
entitled "Markov Program” contains:

Appendix A. MARKOV PROGRAM USER GUIDE (in Microsoft Word™
97 format)

Appendix D. MARKOV PROGRAM SOURCE CODE LISTINGS (in
Microsoft Word™ 97 format)

CONTENTS OF THE ACCOMPANYING FLOPPY DISK

The floppy disk which accompanies this thesis may be found in a plastic wallet
attached to the inside back cover. It can be read only by an Apple Macintosh™
computer running System 7. The content structure of the floppy disk is as
follows:

1 4. The Compositional Process
[5. Analysis of the Algorithm
[5.2 Yarying Lambda
[5.3 ¥arying Gradient
3 5.4 Yarying Minimum Mean
M 55 Gradients > 1 or <1
[5.6 Varuing Note Length
[5.7 Yaruing Note Yelocity
(1 5.8 The Reverse Option
[5.9 The Reflect Option
[6. Style Emulation
O Bach
O Dance
[Gagaku
O Reich
[7. Compositional Studies
O Computer Study for Timpani
O Markov-2
O vibrato Study
[Markoy Program
<& Markov
[Markov User Guide

The four directories entitled "Analysis of the Algorithm”, "Compositional
Studies”, "Style Emulation” and "The Compositional Process” contain files
which relate directly to the thesis chapters of the same name. Their precise
contents will be described later in the relevant chapters. The contents of the
directory entitled "Markov Program" are as follows:

Markov executable program
Appendix A. MARKOV PROGRAM USER GUIDE (in Microsoft Word™
4.00 format)

MARKOQOV PROGRAM INSTALLATION INSTRUCTIONS

To install the Markov program, simply insert the floppy disk into an Apple
Macintosh™ computer and copy the single file, "Markov", to any Macintosh
folder, as desired. The Markov program is started by double-clicking its
application icon :

Markv k

(in this case the user has placed the icon in a Macintosh folder called "Markov
Composition").

The program sends MIDI data to the modem communications port on
the Apple Macintosh computer. Therefore, in order to be able to hear music
generated by the program, a suitable MIDI-compatible sound source (a
synthesizer for example) must be connected to the modem communications

port.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors: Ric Graebner, for
his unerring help and encouragement during the development, testing and
evaluation of the algorithm and computer program, and Nicholas Cook, who
proof-read the entire thesis and provided invaluable and illuminating advice
regarding its musical and technical content.

My thanks are also due to Ray d'Inverno for verifying the mathematical
sections of the thesis.

Chapter 1

Introduction

1.1 THE RESEARCH IN CONTEXT

This research represents a fusion of three distinct, yet interrelated disciplines:
Mathematics, Computer Software Engineering and Music.

The ancient Greeks are known to have studied the mathematical
principles of sound. Furthermore, the Pythagorean tuning system, developed
from around the sixth century B.C., devised a musical scale, based on the
proportional relationships between the frequencies of differing pitches, which
underlies Western music today.

It is a natural consequence of the awareness of the intrinsic mathematical
qualities of musical sound that it should be attempted to build music from
mathematical systems. The Serial music of the post-war era was based on an
inherently simple "music by numbers" process involving the permutation of a
twelve-note "tone row". Much of Steve Reich's music of the Sixties and
Seventies was similarly "process-oriented”, involving phasing techniques and
cyclic variations of simple phrases, while Conlon Nancarrow composed canons
in which the voices proceed at different speeds, the works being composed
directly onto a piano roll for playback on a player piano and achieving complex
rhythmic and temporal relationships at speeds beyond the possibilities of
human performance.

Such approaches are deterministic in nature but, by taking advantage of
the mathematical theory of probability, a degree of randomness and, therefore,
unpredictability can be introduced into the resulting music. In the
"Musickalisches Wiirfelspiel", often attributed to Mozart, collections of
prescribed phrases are assembled into countless versions of a minuet according
to the throw of a dice, whilst similar methods were credited to C.P.E. Bach and
Haydn. Stockhausen and Cage have also produced works involving the
random ordering of musical sections or of sounds. While such techniques use
simple probability to control high-level structures, it is also possible to control
probabilistically the musical attributes of the individual notes of a sequence.

However, as the mathematical technique being employed becomes more
complex and the structural level at which it works is lowered, so it becomes
increasingly impractical to apply it manually due to the amount of
computational effort required, and a digital computer becomes a vital tool in
the process, with the computer software-encoded computations being
performed at very high speed. The computer can be made to introduce
probabilistic variation, and furthermore, to do this in a controlled way so that,
over and above being simply a labour saving device, the computer is being
"creative” on our behalf. Hiller and Isaacson in the late 1950's and later,
Xenakis, were pioneers of such techniques.

A branch of probability, Markov theory, enables a degree of relatedness
between musical events to be introduced so that their order of occurrence can be
probabilistically controlled rather than just their random distribution. Both
Hiller and Isaacson's music, and that of Xenakis, employed Markov techniques.
However, the vast majority of the work done in the area of Markov-produced
music has concentrated primarily on computer-generated variations of pre-
supplied music, with any original composition being based on Markov
processes with a limited variation in characteristics. The enormous potential
for Markov processes to generate explicit and predictable musical event
sequences which can be subject to probabilistic variation on a controlled
continuum between completely deterministic to completely random, remains
largely untapped. This research attempts to correct that omission.

Finally, it is vitally important that musical judgements are applied to the
results produced. Ultimately, the question for the composer is "What will be
heard when my piece is played?” not "What probability distribution do the
pitches satisfy?". The listener will not be directly aware of the latter but the
former, through a process of abstraction, is what defines the music's meaning.

1.2 THE AIMS OF THE RESEARCH

1.2.1 General Outline

The main purpose of this research was to develop a mathematical algorithm
which may be used to compose musical compositions and which attempts to
satisfy a set of stated objectives. This algorithm has been implemented in a
computer program facilitating detailed exploration of the algorithm in order to
examine how well it satisfies the objectives, to elicit its strengths and
weaknesses and to compose new music. Four principal areas of work were
involved:-

1. The development of an algorithmic composition process based on
the mathematical stochastic process theory of Markov chains.

2. The development of a computer program, Markov, which
embodies the algorithmic process and provides an appropriate
compositional environment via a user-friendly interface.

3. The composition of music using the Markov program, both in 'free’
and in stylistically constrained contexts.

4. The analysis of the results.

1.2.2 The Objectives

This section states the objectives against which the algorithm was developed,
and discusses the musical reasons why these objectives are considered
important (later in this thesis, in Chapter 2, THE ALGORITHM, I will revisit
them in order to evaluate how well they are satisfied by the algorithm).

The objectives are as follows:-

1) The composer should need no knowledge or understanding of the
mathematical techniques employed by the algorithm in order to be able to make
effective use of it.

If knowledge of the underlying mathematics is required then the number of
composers who can make use of the algorithm is limited to a specialised group:
mathematicians with an interest in composing music, and composers with a
knowledge of mathematics. The composer should just need to vary the input
parameters to the algorithm. What is absolutely vital, however, is that the
composer has a clear perception of the ways in which varying the parameters
affects the musical output. This may be achieved in any of the following ways:

(i) The algorithm is specified in such a way that the effects of

parameter variation are readily apparent.

(ii) The results of a thorough perturbation analysis of the parameters are
available in the form of a set of compositional rules or principles
relating to parameter values.

(iii) The composer is able to carry out his or her own

experimentation with parameter variation and draw reliable
conclusions.

In this thesis, Chapter 2, THE ALGORITHM, explains the general principles
regarding the ways in which the algorithm parameter values control the
output, Chapter 4, ANALYSIS OF THE ALGORITHM, presents the results of a
detailed analysis of the effects of varying the parameters, Chapter 5, THE
COMPOSITIONAL PROCESS, presents an example of a composer
manipulating the algorithm in order to produce a composition and Chapter 6,
STYLE EMULATION, reveals further compositional principles with regard to
achieving specific stylistic objectives.

All this implies that there is a predictability about the musical results that
will be obtained from the parameter values input. Some algorithms are more
experimental in that one is not really sure what the results will be in advance
and the compositional process is more of a, potentially, exciting voyage of
discovery. In fact, the algorithm explored in this thesis permits this approach as
well: rather than deciding in advance what parameter values might be
appropriate to achieve a particular compositional objective, the composer is
also free to assign parameter values more or less at random and see what
happens.

2) The composer should be required to specify only a small number of input
parameters to the algorithm but a very wide range of musical results should
nevertheless be achievable by varying the values of these input parameters.

If there are a large number of input parameters then the algorithm can become
unwieldy to use for compositional purposes, not only because it takes time to
set up initially, but also because it is more difficult to decide how to modify the
parameters subsequently in response to the initial musical output in order to
achieve desired changes. By the same token, it is much more difficult to predict
the output because there are so many variables to consider. It was an aim of this
research that the composer should be involved in a feedback process whereby,
having heard the musical results, the parameters can quickly be modified
repeatedly so as to converge on a desired result.

On the other hand, limiting the number of input parameters must
necessarily result in a sacrificing of flexibility, in terms of the variety of output
that can be achieved. It was one of the aims of this research to see just how few
parameters one can "get away with" and the results are surprising. Chapter 2,
THE ALGORITHM, details some strict limitations of the algorithm, Chapter 4,
ANALYSIS OF THE ALGORITHM, explores the wide range of variation in
musical structure which can be achieved and Chapter 6, STYLE EMULATION,
shows some examples of the wide diversity of musical styles which can be
obtained whilst making clear the limitations imposed and any compositional
compromises which must be made.

3) The algorithm should be the absolute starting and finishing point in the
compositional process.

The composer is neither required to supply any explicit sequences of notes, nor
is there any prior mathematical analysis of a supplied piece of music. Some

9

systems take presupplied music and subject it to transformations, for example,
Jacob's "Variations" (Jacob 1996). Other, more mathematically-oriented systems
are discussed later in this chapter.

Again, some composers view algorithmic techniques as an aid to
composition rather than as a complete solution (McAlpine et al 1999: 19). The
intention here is that the use of the algorithm should be "pure”, so that it can
be assessed solely in terms of its intrinsic ability to produce music, whatever
compromises or limitations that might imply.

It should be noted that this is not intended to be interactive composition
where the composer and computer react to each other in real time. This is a rich
and widely studied area of computer-assisted composition (Chadabe 1977, 1983,
Chadabe and Myers 1978, Risset 1990, Rowe 1993) which is not under
investigation here. Instead, the composer using the Markov program reflects
qualitatively on a section of work before deciding what modifications and
refinements are required.

4) The music produced by the algorithm should have a sense of evolution.

What is meant here is that the musical events that have occurred will have
some degree of influence on the musical events that are about to occur. This
allows, in particular, for a sense of linear direction in resultant note sequences,
typical of Western music.

5) The composer should be able to control the degree, or strength, of this
influence.

This means, very importantly, that repeated playings of a piece based on a fixed
set of mathematical input parameters may be different. Brian Eno, discussing
his Koan program, which generates infinitely changing music based on rule sets
inputted by the user, said "I really think it's possible that our grandchildren will
look at us in wonder and say "You mean you used to listen to exactly the same
thing over and over again?" (McClellan 1996). The stronger the degree of
influence, the more deterministic is the control over the way the piece evolves;
the weaker the degree of influence, the more unpredictable the evolution. To
put it another way, any of the following situations could apply:-

(i) if the musical event A occurs it is always followed by the musical
event B.

10

(ii) event A is usually followed by event B but may occasionally be
followed by events C, D or E.

(iii) event A could be followed by any of a whole set of possible events
(iv) the musical events occur in a totally unpredictable way.

Myhill (1979) discusses the concept of a continuum between random and
deterministic music. At one end is complete randomness, but, given the
diversity of musical styles and cultures, it is difficult to define what is at the
other end. In our case, what lies at the deterministic end is the range of
deterministic possibilities afforded by the algorithm, and we may visualise the
continuum as a plane through which we may journey towards or away from
randomness along an effectively endless multitude of possible paths. Chapter 4,
ANALYSIS OF THE ALGORITHM, explores the deterministic possibilities in
detail, and analyses the results of controlling the degrees of randomness.

6) The composer should not be required to specify musical rules.

One approach to algorithmic composition is to specify a (possibly very large) set
of rules, disallowing parallel fifths for example, or requiring each 8 bar phrase to
end with a perfect cadence, and then programming the computer to produce
music which obeys these rules. However, with this approach one is tending to
use the computer as a labour saving device rather than as an instrument of
creativity, generating music which meets specific structural goals but which
could have been written manually. Of course, it is possible, perhaps inevitable,
that the user of the algorithm examined in this thesis will come to it with pre-
conceptions of the kinds of musical results which they would consider
desirable, but it is then down to the algorithm, or rather the user's control of it,
to produce these results.

7) The composer is not required to have any knowledge of computer languages
or computer-related logic.

Many computer music languages exist ranging from the various incarnations of
Max Mathew's MUSIC language (Dodge and Jerse 1985: 12-15) with which the
composer essentially specifies note lists in a numerical format, through to Lisp
or C related languages, some of which include facilities for incorporating
mathematically generated music, such as Richard Orton's Tabula Vigilans! or

I The Tabula Vigilans Information Page, contained in the Composers' Desktop Project Website,
can be viewed at: http://www.bath.ac.uk/~masjpf/CDP/tvinfopg.htm
11

http://www.bath.ac.uk/~masjpf/CDP/tvinfopg.htm

Tonality Systems' Symbolic Composer for example, and object-oriented
languages (Jaffe and Boynton 1989, Pope 1996). However, these languages
require a good knowledge of computer programming. Graphical interfaces to
music programming languages do exist to make life easier for the composer,
such as the powerful and extensively used Max? (Rowe 1993: 32-38) among
others (Assayag et al 1999), but these nevertheless tend to be structured from a
computer logic viewpoint.

Such languages do of course offer, in return for the work involved in
constructing compositions with them, enormous flexibility. However, an aim
of this research is that, whilst there has been a considerable amount of
programming involved in the implementation of the algorithm, it should,
from the composer's perspective, be reduced to a set of numerical input values.

It is important, at this point, to make clear a non-objective of this
research. The computer program, Markov, which I have developed to
implement the algorithm, provides a compositional environment in which
structured compositions can be created, together with a user-friendly graphical
interface to facilitate easy entry and manipulation of parameter values. It is not,
however, intended to compete with commercially available sequencing and
algorithmic composition packages, and advanced graphic and other features
which one would expect to find in such packages are not implemented here. To
have done so would simply have diverted time and effort away from the main
task: the exploration of the algorithm.

1.3 ALGORITHMIC COMPOSITION REVIEW

Simply stated, when composing music with mathematical algorithms, a
formulaic system is applied which will generate sequences of numbers. These
numbers are then mapped uniquely to values of musical parameters so that the
number sequences produced are transformed into note sequences. In its basic
form, the process of using a mathematical algorithm for the computer-
generated composition of music can be considered to consist of the following
stages:

1. The specification of the algorithm in terms of its mathematical
formulae and any associated rules.

2. The definition of the process for mapping the numerical output to
musical parameter values.

2 An overview of the Max program can be found at the Opcode Systems website, at
http://www.opcode.com/products/max
12

http://www.opcode.com/products/max

3. The coding of the algorithm in a computer program, together with an
appropriate interface to allow the composer to specify any input data
required by the algorithm.

4. The running of the program to produce musical output.

Stages 1 to 3 refer to the design stage of the process while stage 4 refers to the
functional use of the algorithm and will be repeated many times. Chadabe
(1983: 22) calls this a "design-then-do" procedure for composing.

To clarify the concepts involved, we begin with a straightforward
example of such an approach to composition. This approach, simple in concept
and design, is to use a function which varies with time, of the form

y =£(t)

and map the values of y to a musical parameter, pitch for example, so as to
produce music in a time-sequential manner.

This is the principle underlying the UPIC program (Lohner 1986, Xenakis
1996: 150-152), which allows the composer to create a score consisting of a
collection of "arcs" using a board on which lines are drawn with a special ball-
point pen; each arc describes a pitch-versus-time curve. Thus, for example, a
horizontal straight line produces a sound of constant pitch whose duration is
determined by the length of the line, while a curve results in a sound whose
pitch changes in a continuous manner. Polyphony is achieved by drawing two
or more lines which overlap in time. A later version of the program (Xenakis
1992: 329-334) provides a sophisticated mouse-driven interface.

We now proceed with a review of the field of algorithmic composition.
This review is not intended to be exhaustive but discusses some of the principal
areas of work in algorithmic composition over the last forty years, making
reference to the objectives stated above, in an attempt to place the research
presented in this thesis in context.

I have classified the algorithmic methods examined into the following
categories: fractals and chaos theory, cellular automata, artificial intelligence
and stochastic techniques.

1.3.1 Fractals and Chaos Theory

The key property of a fractal curve is that of self-similarity. A self-similar
structure is one whose parts recursively repeat the whole structure, no matter
to which level of detail it is examined, so that the overall characteristics
observed at a larger scale are reflected in similar characteristics on a smaller

13

scale. Fractal shapes have been found to be characteristic of many natural
phenomena, for example, the geometry of turbulence in fluids (Mandelbrot
1977: 97-105) and the shapes of coastlines and the relief of the earth's surface
(ibid: 256-271).

Chaotic systems, closely related mathematically to fractal geometry, can
produce highly structured sequences which have everywhere within them
elements of near repetition.

1.3.1.1 Fractional Noises

By treating a sequence of numbers as a waveform and taking its Fourier
transform, we obtain the spectrum of the sequence (Moore 1990: 412-413). The
spectrum is essentially a graph which breaks the waveform down into its
constituent frequencies, the sum of which produces the original waveform. If
the spectrum is flat, then the frequencies are evenly distributed and the
sequence is purely random. This is termed "white noise". If the shape of the
spectrum is proportional to the inverse of the frequency (termed "1/f noise")
then the sequence exhibits self-similarity of a fractal nature. Voss and Clarke
(1978) analysed the pitch and loudness of examples of many different styles of
music, including Bach, Beethoven and the Beatles, and found the spectral
shapes of all them to be close to 1/f. 1/f sequences can be generated
programmatically (Jones 1984: 84-91, Dodge and Jerse 1985: 290-291). Moore
(1990: 442-453) gives examples of waveforms, spectra, and resulting melodies for
pitch sequences with spectral curves of 1/f8 for various values of 8. The higher
the value of 3, the more constrained is the resulting melodic sequence.

Dodge (1988) produced a composition, Profile, using 1/f noise. A melodic
line was first generated using a 1/f sequence mapped onto a chromatic pitch
collection. Then, for each note in the first line, a succession of notes in a second
line was generated, using the same 1/f approach. A third line was generated in
the same way, in relation to each of the notes in the second line. Bolognesi
(1983: 28-31) describes a technique for generating 1 /£ melodies which makes the
hierarchical self-similar structure appear more clearly.

A fractional noise music generating system is relatively simple to set up.
However, the lack of controlled predictability makes this approach unsuitable
for our purposes.

14

1.3.1.2 Non-Linear Dynamical Systems

A Non-linear dynamical system is a set of one or more equations that are
iterated. That is to say that the values obtained from applying the equations are
fed back repeatedly into the equations to produce a sequence of values. These
values are then mapped to musical parameter values. A simple one-
dimensional system has the following form:

Xnt+1 = f(xn)

The system is given a starting value, xo, which is fed into the equation to
produce x1, the second value in the sequence. This is then fed into the equation
to produce x» and so on.

The sequence of values produced is called the orbit of the system and,
depending on the values assigned to the parameters of the equations making
up the system, can exhibit a variety of different behaviours. For example, it may
tend to zero or infinity, or it may settle into a repeating pattern. Of particular
interest musically, however, are chaotic orbits, in which the sequence shows
unpredictability but also traces of cyclic behaviour, where previously heard
patterns will appear to recur but with degrees of variation.

Pressing (1988), for example, explores the equation

Xnt+1 = axp(1 = Xp)

examining the differing output for various values of the parameter a, and also
gives examples of higher dimensional systems (that is, consisting of two or
more equations) in which each dimension is mapped to a different musical
parameter. Such systems allow coordination to be achieved between different
parameters. Bidlack (1992), examines a range of chaotic systems, giving pictorial
representations of the scores produced by each. Gogins (1991), on the other
hand, whilst also making use of dynamical systems, does not apply the values
of the orbit directly, but instead derives the measure of the set of points making
up the orbit. The measure can be interpreted as the density of the points in it.
The density of a point depends on the number of times it is visited, or "hit",
during the generation of the orbit: the more times it is hit, the greater is its
density. The resulting score is represented graphically as a two dimensional
image with time running left to right on the horizontal axis, pitch running
from bottom to top on the vertical axis and the depth of colour of each point
varying according to its density. The density is mapped to loudness. Once the
score is complete it may be elaborated by applying various transformations, for
example, rotation, scaling or translation.

15

Non-linear dynamical systems have the advantage of requiring only a
small number of input parameters whilst being capable of a wide range of
output. However, the drawback from our point of view is, again, the lack of
control of the output. The chaotic behaviour of the output is extremely difficult
‘to predict in advance, while very small changes in the values of the parameters
can result in extremely large variation in output, and the compositional
situation is therefore one of experimentation, where the results can
nevertheless be surprising and fascinating. An additional disadvantage of
Gogins' approach is that it can take an inordinately large number of iterations,
possibly millions, for the score to be formed.

1.3.2 Cellular Automata

Cellular automata have been used to model naturally occurring phenomena in
a wide range of disciplines including physics, biology and chemistry. A cellular
automaton consists of a rectangular array of cells each of which contains a
discrete variable quantity. The state of a cellular automaton is determined by
the values of all of its cells and the state evolves in step with the ticking of an
imaginary clock. A set of rules is applied to determine the value of a cell based
on the values of its neighbouring cells. To start the automata, an initial
configuration of cells must be specified.

Miranda (1993, 1994) applies two cellular automata in parallel. In the first,
called "The Game of Life", each cell can have one of two values, alive (1) or
dead (0). It has the following rules:

1. if a cell is dead at time t, it becomes alive at time t+1 if, and only if,
exactly 3 of its 8 neighbours are alive at time t

2. if a cell is alive at time t, it becomes dead at time t+1 if, and only if,
fewer than 2 or more than 3 neighbours are alive at time t

In the second, called "Demon Cyclic Space”, each cell can be in one of n possible
states, numbered 0 to n-1. A cell that is in state k at time t dominates any
neighbouring cells that are in state k-1, in that their state changes to k at time
t+1. A cell that is in state 0 dominates neighbouring cells that are in state n-1.
The Game of Life cellular automaton is used to generate a sequence of
trichords. The first note of each trichord is taken from a predefined pitch
sequence supplied by the user. The second and third notes are derived by
mapping the Game of Life array to a two-dimensional Cartesian coordinate
system called a "Neumann Musical Space”. Each live cell produces a trichord,
the x coordinate of the cell determining the interval of the second note of the

16

trichord above the first, and the y coordinate determining the interval of the
third note above the second. The notes of the trichord do not necessarily occur
simultaneously. Instead, the ordering of the three notes is derived
algorithmically from the states of the neighbours of the corresponding cell
while the precise triggering points and durations are calculated from a user-
selected distribution formula3. The Demon Cyclic Space cellular automaton, on
the other hand, is used to determine the MIDI channel associated with the
output associated with a cell. These techniques are implemented in a computer
program called CAMUS (Cellular Automata Music). This system was later
developed into CAMUS 3D (McAlpine et al 1999), which uses three-
dimensional cellular automata, in order to produce four-note chords, and
Markov chains?# to calculate the note durations.

Again, cellular automata do not satisfy our objectives due to the lack of
direct control of the output in terms of input parameter variation. The
principal "parameter” is the initial setup of the cell configuration pattern and it
is extremely difficult to predict where a particular pattern will lead. Miranda
(1993: 14) describes composing with the CAMUS program as being "like the
nature of an experimental action: an action the outcome of which is not
foreseen”, and that, of course, is the appeal of composing in this way.

1.3.3 Artificial Intelligence

An artificially intelligent composition system is one which is able to "learn” the
structure of existing musical examples and generalise from them to compose
new pieces.

Cope has developed a system called EMI, which stands for "Experiments
in Musical Intelligence" (Cope 1987, 1991). Using techniques taken from
linguistic models, Cope's Schenkerian derived SPEAC (Statement, Preparation,
Extension, Antecedent, Consequent) system provides a symbolic mechanism for
describing hierarchical musical structures and relationships. A signature is
defined as a set of contiguous interval patterns and Cope's premise is that these
signatures represent the essential means by which we recognise the style of a
particular composer. The data for two or more works by the same composer are
entered and these are then parsed using a pattern matching algorithm to
discover the signatures, which are added to a signature pool. Durations are
pattern matched as well as pitch sequences. The process can now be reversed to
generate new material. Rather than make random selections, AT N's
(Augmented Transition Networks) are employed to make informed,
probability-based choices by reviewing previous decisions and selecting an

3 Distribution formulas are discussed in detail in 1.2.4.2 below

4 Markov chains are discussed in detail in 1.2.4.4 below
17

option that is appropriate for its predecessors. Cope has used his EMI system to
generate musical examples in a range of different styles (Cope 1991: 141-212)
including Bach Inventions (ibid: 141-151), a Mozart Sonata (ibid: 154-171) and a
Joplin Rag (ibid: 171-173).

Todd (1989) describes a network that can learn aspects of musical
structure. The network learns to produce the next note in a sequence based on
some memory of past notes. This memory is provided by feedback connections
that cycle current network activity back into the network for later use.

Genetic techniques have also been applied to produce variations of music
input by the user (Ralley 1995, Burton and Vladimirova 1999). An initial
population is seeded with pieces similar to the user's, formed as a result of
analysing the user's music. New output is then obtained through a process of
mutation and recombination of the members of the population.

Methods which produce variations of music supplied by the user have
been criticised for lacking in originality and creativity (Laske 1990). However, as
well as providing a supply of new material in a particular style, they can give
important insight into the regularities of a style (Loy 1990) and, of course, the
supplied music could be in the user's own style. Nonetheless, these techniques
do not comply with our third objective, that the algorithm should be the
starting point in the composing process, and are therefore not considered
further in this thesis.

1.3.4 Stochastic Techniques

A stochastic process is a collection of random-variable quantities distributed in
space or time (Jones 1981: 45). There are degrees of randomness, however,
ranging from complete randomness, where there is no order, to complete
determinism. In order to compose music from a stochastic process, a structural
framework, or stochastic generative scheme (ibid: 45), must be established
within which the random behaviour, and thereby the musical output, of the
system can be controlled.

1.3.4.1 Rule Based Approach

One way to create a structural framework is to specify a set of rules which the
musical output must satisfy, sometimes called a "Random Sieve" (Moore 1990:
413-418). This is the approach adopted by Hiller and Isaacson in the first three
movements (or "Experiments") of their ground-breaking work Illiac Suite for
String Quartet (Hiller and Isaacson 1959). They described the composing of
music as the "extraction of order out of a chaotic multitude of available

18

possibilities” (ibid: 1) and looked to mathematics to aid this task. Their
composing process consists of two basic operations:

1. Generate random sequences of integers which are equated to notes of a
scale, rhythmic patterns, dynamics, or playing instructions.

2. Screen each integer through a series of arithmetic tests expressing
rules of composition. If the integer fails the tests it is rejected, if it

passes it is stored until the composition is ready to print.

These operations were coded in a computer program and the printed values
were then manually transcribed into standard music notation for live
performance.

The rules consisted of Melodic Rules (for example, no melodic line may
span more than one octave), Harmonic Rules (for example, the first and last
chords of a melodic line must be based on the tonic triad) and Combined Rules
(for example, parallel perfect fifths are forbidden).

This is a classic example of the rule-based approach discussed in objective
6. The mathematical mechanisms of the algorithm do not really contribute
anything to the nature of the musical output. Instead, the composers have
essentially decided everything in advance and are using the computer as a
labour-saving device. Also, the system does not lend itself to easy adjustment
and refinement of the rules. That is not to detract, of course, from the
immeasurable importance of Hiller and Isaacson’s pioneering work, which was
probably the first serious attempt at using a computer to compose a work of
music and has inspired much of the computer-based composition work that has
followed (in any case, as we shall see later, the fourth movement of the Illiac
Suite does employ mathematical generation techniques). However, this
approach does not accord with our stated objectives.

1.3.4.2 Probability Distributions

A more basic stochastic structure consists of specifying a simple probability
distribution over a musical event space (Jones 1981: 46). If the probabilities of all
events are equal, then they will occur completely at random. Any distribution
of probabilities is possible, however, so certain events may be made to be more
likely to occur than others (Moore 1990: 418-429, McAlpine et al 1999: 20-22).
Lorrain (1980) describes a wide range of probability distributions suitable for
music composition and gives procedures for coding them in a computer
program. Similarly, Dodge and Jerse (1985: 278-283) provide musical examples
produced from a number of different distributions. Xenakis (1992: 131-154) calls

19

this approach "Free Stochastic Music by Computer” and developed a computer
program called SMP, or Stochastic Music Program (Dodge and Jerse 1985: 295-
297), in which various musical parameters are chosen from probability
distributions or random lookup tables. Again, Koenig's programs Project 1 and
Project 2 (Koenig 1970a, 1970b) produce compositions consisting of a number of
sections within each of which musical events are generated randomly. By
introducing a "repetition check" (Koenig 1970a: 36), whereby a pitch is not
allowed to repeat within a particular note sequence, Koenig achieves a
technique which he considers to be a more general case of serialism (ibid: 33).
The character of the music produced in the various sections is varied by
controlling the degree to which repetition checking is applied.

A number of commercial software packages incorporate probability
distribution techniques. The Sound Globs program (Scholz 1989, Rothstein
1990), for example, provides a professional graphical user interface with which
the composer draws probability distribution curves between fixed ranges of note
pitch, loudness, vertical density (polyphony), horizontal density (number of
pulses between successive notes) and note duration, while the M computer
program (Zicarelli 1987: 19-23), published by Joel Chadabe's Intelligent Music
Company, takes a note sequence entered by the user and subjects it to a variety
of manipulations, including probabilistic variation.

Finally, Greenhough (1984) describes a system whereby the user specifies
a priori probabilities of occurrence for each of the 12 pitches of the equally
tempered scale, this level of control being referred to as the p-level. However,
in addition, probabilities are specified for the size of the interval between
successive pitches (the Ap-level), providing control of the stepwise melodic
motion, and for the change of interval (the AZp-level), which effects control of
the curvature of the melody. In this way, a wide range of melodic shapes can be
obtained.

The basic probability distribution approach satisfies many of our
objectives. Conceptually simple, it requires the specification of a relatively small
set of parameter values for each musical characteristic. In the case of a
mathematically defined distribution, this is just the range of values together
with the parameters that specify the distribution. In the case of a probability
lookup table, the situation is less straightforward since a number of probability
values must be specified manually, but the user interface can help. In addition,
some structural parameters may also be required, depending on the
compositional framework defined by the computer program in which the
algorithm is implemented. The drawback, however, is that while short
sequences may give the illusion of a predetermined quality, there will be no
evident long-term pattern, and so, in particular, this does not satisfy objective 4,
that there should be a sense of evolution. Greenhough's system is an exception

20

to this since it affords more sophisticated control of melodic structure.
However, the amount of data required to specify the p, Ap and AZp levels
contravenes objective 2, sacrificing predictability and ease of refinement.

1.3.4.3 Stochastic Grammars

A stochastic grammar (Jones 1981: 51-60, 1989: 185-195) uses structures derived
from linguistics. A formal grammar consists of a set of symbols, an event space,
a set of production rules specifying ways in which symbols may be rewritten by
combinations of symbols and events, and a starting symbol to begin the
generative process. Formal grammars provide a powerful means for
representing musical structures (Roads 1979). A stochastic grammar associates
probabilities with the rules of generation. As an example, a simple one-
dimensional "space grammar” consists of two rules, the first of which causes a
splitting in half of the one-dimensional space (interpreted as a time line), while
the other terminates the splitting process, resulting in a musical event. The
splitting process is applied in a recursive hierarchical fashion to all the
subdivisions created by the first rule, causing a further subdivision with
probability p1 or a termination of the splitting process with probability p.
When all splitting has terminated the generation is complete (note that the
generation proceeds in a top-down fashion rather than in time-sequential
order). The character of the resulting music is altered by adjusting the
probabilities. For example, if the one-dimensional space grammar is applied to
the rhythmic structure, increasing pj will cause splitting to continue to a greater
depth, resulting in shorter note durations and a faster rhythm. Increasing p2
causes the splitting process to terminate earlier so that notes will tend to be
longer. This procedure can be extended to further dimensions. For example,
with a two-dimensional space grammar, one axis can be associated with time, as
above, while the other can be associated with pitch. An additional rule is
required to produce splitting in the pitch dimension. Increasing the probability
associated with this rule will favour simultaneous note activity. Further
dimensions may be added to control intensity and timbre.

Stochastic grammars satisfy many of our stated objectives. The set of
input parameters is fairly small and the output is adjusted simply by varying
the probabilities assigned to the rules, with a wide variation in musical
characteristics being obtainable. The examples given above are simple ones and
greater variety and complexity can be achieved from quite modest extensions to
the rule sets. However, the top-down nature of the generation process means
that the resulting music does not possess an evolutionary quality, in
contravention of objective 4.

21

1.3.4.4 Markov Chains

The Markov chain (Feller 1964: 1.338-395, Freedman 1983), formulated in 1906 by
the mathematician Andrei Andreevich Markov to distil tendencies in spelling
in written Russian, embodies the concept of conditional probability. That is to
say, the event which is next to occur depends in a probabilistic way on one or
more past events.

A given Markov chain is defined by its transition matrix which specifies
the probabilities controlling the evolution of events. Consider the following
example of a transition matrix:

NEXT PITCH
c D E
PREVIOUS C 0 0.7 0.3
PITCH D 01 0.5 0.4
E 10 0 0

This is a matrix for producing a simple three note melody consisting of the
pitches C, D and E. The figures specify the probability of the pitch of the next
note given the pitch of the previous note. For example, if a C occurs, there is a
0.7 (or 70%) chance that the next note will be a D and a 0.3 (or 30%) chance that
the next note will be an E - two consecutive C's never occur because the
associated transition probability is 0. If an E occurs, the next note is always C
since this transition probability is 1. To start the sequence off we must provide a
starting note, which can be either chosen or generated randomly. We can
separately control various musical parameters (pitch, note length, dynamic and
so forth) in this way. The transition probabilities may be user-specified or they
may be derived by analysing the transition frequencies exhibited by an existing
piece of music (Dodge and Jerse 1985: 285-288, Moore 1990: 430-439).

The above example is of a first-order Markov chain, because the next
event depends only on the preceding event. However, higher order chains are
possible. For example, in a second-order Markov chain the next event depends
on the two preceding events, in a third-order chain on the three preceding
events, and so on. In addition, the event space may consist of single musical
parameter values, as in the above example, or longer, pre-composed, musical
fragments (Jones 1981: 48).

Markov chains have been applied by different composers in a variety of
ways. Xenakis (1960: 86 et seq, 1992: 43-52), for example, views sound as an

22

integration of sonic grains, each having a duration, frequency and intensity. By
dividing time into a succession of small time slices we obtain an evolutionary
sequence of "screens”. A matrix of transition probabilities can now be formed to
describe the transition from one screen to the next (Xenakis 1992: 69-109). Here,
the screens form the states of the Markov chain.

As mentioned earlier, the transition matrix may be obtained from an
analysis of existing music. Hiller and Baker's 1963 work Computer Cantata
(Hiller and Baker 1964), for example, makes extensive use of transition tables
derived from an analysis of an excerpt from the second movement of Charles
Ives' Three Places in New England. The Jam Factory computer program
(Zicarelli 1987: 23-27), on the other hand, builds transition tables from music
entered by the user.

The transition matrix does not have to remain fixed throughout the
course of the work, however. The probability values may, for example, be
modified continually. In the fourth movement of Hiller and Isaacson's Illiac
Suite (Hiller and Isaacson 1959: 131-147), the four part musical structure is seen
as a random flight of four trajectories, characterised in terms of Markov chain
processes, and the transition probabilities are regularly adjusted automatically,
causing a shift from a fixed tonality to a freer, more random, texture. Similarly,
Ames (1989: 183-184) describes a work developed in collaboration with John
Myhill which employs transition probabilities that evolve gradually under
strict parametric control. Another approach is to choose one from a number of
alternative transition matrices at each stage in the event generation process. In
Zicarelli's aforementioned Jam Factory program, for example, transition
matrices are held for each of orders one to four and an automatic choice is
made, at each note, as to which of the four tables to use based on a user-
controlled probability distribution. Zicarelli's experience suggests that "70-80%
order two with the rest divided between orders one and three will blend
'mistakes' with recognisable phrases from the source material in a satisfying
manner".

One difficulty with Markov chains is that the transition matrices can be
very large and therefore occupy a significant amount of computer memory.
Lyon (1995) tackles this issue by applying Petri Net techniques to composition in
order to achieve computation of Markov processes with significant reductions
in the amount of space needed to store the transition matrix in the computer.

The Markov chain approach provides an evolutionary structure as
required by objective 4 and indeed is the technique chosen for use in this
research, with the event space consisting of single musical parameter values,
rather than pre-composed fragments, in accordance with objective 3: that the
composer should not have to supply any preformed musical material.
However, as mentioned above, one of the major problems in applying Markov

23

chains to the composition of music is the size of the transition matrix since, for
a first-order Markov chain, the composer is required to supply a two-
dimensional matrix of probability values whose size varies with the square of
the number of possible parameter values. To produce a melody drawn from 10
different pitches, for example, requires a matrix of 100 numbers, and the
problem grows exponentially as the order of the Markov chain increases. This is
not just a problem from the programming perspective. It is also impractical for
the composer to be expected to supply the probabilities explicitly. As we have
seen, one way around this problem is to derive the matrices from pre-supplied
music but this contravenes objective 3.

In this research, therefore, a technique has been developed, called the
Diagonal Line Method, which enables a wide range of possibly very large
Markov chain transition matrices to be generated, based on a very small set of
input parameter values supplied by the user.

* k% k %

In this introductory chapter, I have established the objectives behind the
development of a mathematical algorithm to be used as the basis for computer-
generated musical composition and identified the mathematical techniques
which underlie this algorithm together with the reasons why they have been
chosen in preference to alternative methods.

In the remainder of this thesis, I will provide a full explanation of the
mathematical details of the algorithm, explain its implementation in a
composing environment though a computer program, Markov, and explore, in
detail, its capabilities and limitations.

Firstly, in Chapter 2, THE ALGORITHM, the mathematical details of the
algorithm are presented, together with the compositional reasons why it was
developed in this way. Then, in Chapter 3, THE MARKOV PROGRAM, the
structure and functionality of the Markov computer program are described.
Chapter 4, THECOMPOSITIONALPROCESS, explores the compositional
environment afforded by the program, including a step by step example of a
composition being developed. Next, in Chapter 5, ANALYSIS OF THE
ALGORITHM, a rigorous study is carried out of the ways in which varying the
algorithm's input parameters affects the musical output. Now, in the final two
chapters of the thesis, the lessons learned in Chapters 4 and 5 can be applied to
the composition of music: Chapter 6, STYLE EMULATION, investigates the
ability of the algorithm to produce music based on various given styles and
Chapter 7, COMPOSITIONALSTUDIES, describes some original compositional

24

studies of my own which were produced using the Markov program. There are
four appendices: Appendix A, MARKOV PROGRAM USER GUIDE (separate
copies are held on the accompanying compact disc and floppy disk), provides a
comprehensive user manual for the Markov program, Appendix B, MARKOV
PROGRAMSCORES, contains the program-generated parametric "scores” for
the pieces discussed in Chapters 6 and 7, Appendix C, BACH SCORES IN STAFF
NOTATION, contains scores in traditional staff notation for various program-
generated realisations of a piece of Bach Harpsichord music, one of the styles
studied in Chapter 6, and Appendix D, MARKOV PROGRAM SOURCE CODE
LISTINGS (held on the accompanying compact disc), provides the complete
source code listings for the Markov computer program.

25

Chapter 2

The ﬂ{qaritﬁm

26

2.1 INTRODUCTION

In the Introduction chapter to this thesis, I explained that, due to the desire for
the music resulting from the algorithm to have an evolutionary structure,
Markov chains have been chosen as the underlying mathematical method (see
Section 1.2.4.4). It was seen there, however, that a major problem with the use
of the Markov chain in the composition of music is the size of the transition
matrix. Therefore, what is required is a way of generating the matrices according
to some pre-specified mathematical rules. The mathematical algorithm
developed for the Markov program provides such a method, and is described in
detail in this chapter.

2.2. GENERATING THE ROWS OF THE TRANSITION MATRIX

2.2.1 The Bilateral Exponential Function

In order to avoid the need to specify each of the individual probability values
which make up the rows of the transition matrix, the complete set of probability
values for any particular row is generated from a single function which, as we
shall see, has only two parameters and will generate the values for one
complete row of the matrix no matter how large it is. Thus, for, say, a 25 x 25
matrix, only the two parameter values for the single function are required to
produce the probability values for one row rather than 25.

The function used is the bilateral exponential function:

f(x)

This function has the formula

f(X) —_ l >\’ e'?\. Ix-ml

N

27

where m is the midpoint, or mean. The parameter A provides the degree of
probabilistic control required (Objective 5) by controlling the compactness of the
function - the larger the value of A the more tightly packed the function is
around the mean:

£(x)
X
m
The smaller the value of A the more spread is the function:
f(x)
X
0

The bilateral exponential function was chosen because its single-peaked nature,
together with the wide variations in spread which are achievable through the A
parameter provide, when used in conjunction with the Diagonal Line Method
(see 2.2.2 below), a powerful mechanism for note sequence generation.

The following example uses eight notes of a C major scale! from C to ¢,
centring around a mean pitch value of G:

f(x)

e

) 4
o 4
e
N

(ry]

> +
o +
oA

1 While a diatonic major scale is used in the illustrative examples throughout this chapter, any
pitch collection can be used when composing with the algorithm.

Thus, for a high A value the probabilities? that, say, G is followed by either C, D,
E, F, G, A, B or c might be:

C D E F G A B c
0.01 0.025 005 0.17 05 017 0.05 0.025

while for a low A value they might be:

C D E F G A B C
008 009 011 015 022 015 011 0.09

Thus, in line with objective 5, if A is very high then G will almost certainly be
followed by G, if A is quite high then G will most likely be followed by G but
may sometimes be followed by F or A, and as A becomes lower it becomes
increasingly likely that any of the pitches could follow G. This behaviour is
quantified more precisely in Section 5.2 where musical results are explored for
various specific A values. It is also shown that for sufficiently high A,the
behaviour becomes completely deterministic e.g. G is always followed by G3.

All that the composer needs to supply now, for each of the possible
values in the range, are the corresponding values of A and the mean, m, thereby
completely specifying all rows of the transition matrix. However, this still
requires two parameter values (A and m) for each row of the transition matrix
and this is far too many too satisfy objective 2 (for example, a 25 x 25 transition
matrix requires 50 parameter values). This is cut by half by assuming the same A
value for all rows of the matrix. To reduce the number of required parameters
still further, an extension to the algorithm is required which enables the means
for all rows of the matrix to be generated from a single function. The Diagonal
Line Method, described in the next section, provides such an extension.

2 To be precise, since the various note parameter ranges are discrete valued (discrete pitches,
discrete note lengths and so on), the value of the transition probability for each of the possible
parameter values in one row of the transition matrix is given by the area under the bilateral
exponential curve centred around that value.

3 For the purpose of calculation, pitch values are represented as their corresponding MIDI pitch
numbers (e.g. middle C = 60) so as to provide a sequential numerical range of values.
29

2.2.2 The Diagonal Line Method

Consider the following diagram:

MNext Pitch
CDEFG ABTC

Previaus Pitch

nEEQTEON

The possible values of the pitch of the previous note are shown on the vertical
axis and the possible values of the pitch of the next note to be played are shown
on the horizontal axis. A 450 downward sloping diagonal line has been
specified. To determine the mean of the bilateral exponential function for any
row of the transition matrix, draw a line horizontally from the previous pitch
until it meets the diagonal line, then draw a line vertically upwards to meet the
"Next Pitch” axis and read off the value. For example, if the previous pitch is G:

Next Pitch
CDEFG AZBTC

Previous Pitch

nE e EgN

then the pitch of the next note will tend to be G also, and it is not difficult to see,
for this particular diagonal line, that for any previous pitch, the pitch of the
next note will tend to stay the same (the higher the value of A, the stronger will
be this tendency, while the lower the value of A, the more "drift" there will be).
Thus, the diagonal line defines the following family of bilateral exponential
curves, one for each row of the transition matrix:

30

Next Pitch
CDEFG ADBTEC

Previous Pitch

(this diagram should be interpreted in three dimensions, with the curves rising
upward from the matrix in accordance with the value of A).
Now consider another example:

Next Pitch
CDEFG ABTC

Previous Pitch

N QT E O

Here, the diagonal is a 459 upward sloping line. Now, pitch values towards the
extremes of the range will tend to jump to the opposite end of the range while
pitches in the middle of the range will tend to stay the same; for example, a D
will tend to jump up to a B, an A will tend to jump down to an E and an F will
tend to jump only one note up to a G:

31

Next Pitch
CDEFG A BC

|

Previous Pitch

nE QT Ego0

N

Finally, consider the following:

Next Pitch
CDEFG ABGC

Previous Pitch

AR QTEY O

Here, no matter what the value of the previous pitch, the value of the next
pitch will tend to be E; that is, the melody will be centred around E.

In general, any diagonal may be used. For the purposes of this discussion,
we shall consider only diagonals from 459 downward to 459 upward sloping, but
other cases will be considered in Section 2.3 below.

The above discussion uses pitch as an example but the same Diagonal
Line Method is used to control note length, dynamic, and other characteristics,

vibrato for example.

2.2.3 Generating Note Sequences

Each note parameter (pitch, length, dynamic and so on) has its own transition
matrix and is calculated separately so as to fully determine all the parameter
values for the next note in the sequence.

For each parameter, supposing that the value of the parameter for the
previous note is xp, the 2-step procedure to generate the parameter value, xy, for

the next note in the sequence is as follows:-
32

1. Calculate the mean of the bilateral exponential function for the row
corresponding to xp using the Diagonal Line Method

2. Calculate the parameter value, xp, for the next note based on the
transition probabilities given by the bilateral exponential function for
the row corresponding to xp.

Step 1 - Calculating the mean of the bilateral exponential function
corresponding to Xp

Let [Xmin, Xmax] be the range of possible parameter values, ymin the start-point
value of the diagonal line (referred to in this work as the Minimum Mean), g
the gradient of the diagonal line and m the mean to be calculated:

Ymin m
imin
X
P \
Xrnax

Then, using the formula for a straight line, m is given by:

m = g(Xp- Xmin) + Ymin)

where g is given by*:

distance covered by line on horizontal axis

distance covered by line on vertical axis

4 Usually, the gradient of a straight line is given by the inverse of the formula given here,

However, due to the nature of the transition matrix, the "x-axis" is the vertical axis in the

diagrams shown here and the "y-axis" is the horizontal axis, contrary to Cartesian geometry.
33

Step 2 - Calculating the parameter value for the next note

We wish to generate a parameter value, x5, for the next note, which obeys the
transition probabilities given by the bilateral exponential function for the row
corresponding to xp. That it is to say, although we do not necessarily know in
advance exactly what the value of x,will be, we want it to be the case that:

(i) A value with a higher transition probability is more likely to occur
than a value with a lower transition probability.

(ii) The likelihood of occurrence of a value increases in proportion to its
transition probability .

For instance, if the probability of a transition from, say, pitch E to pitch F is 0.5
while to pitch G it is 0.25, it should be twice as likely that E is followed by F than
that it is followed by G. To achieve this, Monte Carlo techniques are used
(Naylor et al 1966). Monte Carlo exploits the ability of computers to generate
very large sequences of uniformly distributed random real numbers from a
specified range> (by uniformly distributed we mean that all values in the range
are equally likely to occur: for example, if a fair dice, as opposed to a loaded one,
is rolled repeatedly a large number of times, we would expect the occurrences of
the values 1 to 6 to be uniformly distributed). The random numbers generated
are then adapted for the problem at hand.

Here, a random real number N is first generated from the range 0 to 1.
Then, to apply Monte Carlo, we need a mapping which will produce a
corresponding value of x,which satisfies our probability requirements. To
achieve this we use the cumulative distribution, F(x), for the bilateral
exponential function, where

F(x) = Pr(xn< x)

In other words, F(x) is the probability that xp is less than or equal to x (note that
0 < F(x) < 1). For example, the values of F(x) for a fair dice would be:

FQ1) = 1/6
F(2)=2/6=1/3

5 To be precise, the numbers generated by the computer are pseudorandom: they require a starting
value, or seed, which is fed into a recursive formula to generate the sequence. The same seed used
on two separate occasions would produce exactly the same sequence, so a common technique, which
is employed by the Markov program, is to calculate the seed value from the current date and time
to the nearest second, thus guaranteeing that no two runs of the program produce the same seed.
Strictly speaking, the sequence is deterministic rather than random because it is generated from a
precise recursive formula, but the sequence of numbers satisfies statistical tests for randomness and
is therefore appropriate for use in Monte Carlo applications.

34

F(3)=3/6=1/2
F(4)=4/6=2/3
F() = 5/6
F(6) = 1

We then find the value, x;, of x for which F(x) is equal to the generated random
number N (Naylor et al 1966: 68-73); that is,

F(xp) =N

If we can solve this equation then we are able to calculate the required next
value, xp.
Now, for the bilateral exponential function, F(x) is given by

F(x) =1/2ehx-m) x-m=0
F(x) =1-1/2eMx-m) x-m>0

However, the bilateral exponential function has infinite tails (that is, left and
right hand ends) whereas the note parameter values have a finite range.
Therefore it is necessary to normalise the function so that the area under the
curve over the parameter value range equals unity.

Let T = the area of the left hand tail and A = A1 + Aj = the area over the
parameter value range:

TlA1] A2

™min max
Then, after normalisation, xy is given by:

(F(xp)-T)/A = N

35

Now,

Xmin

T = 1/2hertem) dx

and

-0

I

Xmin

1/2 [e)»(x—m)]

1/QQX(xmm-m)

Xmax

= 1/2ne-h0em) dx

m

il

it

il

Xmax

1/2 [ertem)]

1/2-1/2 e MXpa0 -0
1/2(1- eMxpay ™)
1/2-T

1/2-1/2 eMXppin - ™

1/2 (1 - eMxppin-™)

A1+A2

1 - 1/2 (e‘k(xmaxtm) + ex(xmin_m))

36

To calculate x5, we must distinguish between two separate cases:
1. N<Aq/A that is, xn < m
2. N>Ai/A that is, x, > m
If N < Aq/A, then
(F(xp) -T)/A = N

<=> 1/2eMx-m) T =NA

<=> eMx, -m)=2(NA + T)

<=> AMXp-m) = In2(NA + T)

<=> xp=(m + In2(NA +T))/\ (2)

If N> Aq/A, then
(F(xp) -T)/A =N
<=> 1-1/2eMx,-m) T =NA
<=> 1-1/2eMx,-m) =NA +T
<=> -1/2eMx,;-mM=NA+T-1
<=> e My m=-2(NA+T-1)
<=> -AMXxp-m) =In2(NA + T - 1)
<=> xp=(Am - In-2(NA + T - 1))/A (3)

Since the musical parameters are discrete valued, the value of x, thus obtained
is now rounded to the nearest discrete value.

37

2.3. EXTENSIONS TO THE DIAGONAL LINE METHOD

2.3.1 Introduction

All the diagonal lines considered thus far have met the bottom edge of the
coordinate rectangle before, or at the same time as, meeting the right-hand edge;
that is, they have all satisfied the condition

g(Xmax = Xmin) + Ymin = Xmax

and in the early stages of development of the algorithm, the diagonal line was
restricted to this family. However, although this somewhat limited set of lines
produces a very wide variety of musical results, it was realised that a large set of
diagonal lines was being excluded which could potentially produce yet more
variation in output.

Lines not yet considered are those which meet the right-hand edge of the
coordinate rectangle before meeting the bottom edge; that is, those for which

g(Xmax - Xmin) + Ymin > Xmax

The problem with these lines is that it is impossible to calculate values of the
next mean for certain previous parameter values (specifically those greater than
Xmin + (Xmax - Ymin) /g) because a horizontal line drawn from them does not
meet the diagonal line, as in the following:-

¥rmin

min

Xmin * Emax” Fmin’ /B

Xmax

Therefore, we need to find a way to continue the line from where it meets the
right hand edge so that it encompasses the complete range of xp values. The
algorithm offers the composer a choice of two alternatives for dealing with this
situation, and these are described in detail in the next two sections.

38

2.3.2 Wraparound

One possibility is to employ wraparound, so that the line re-emerges at the left-
hand edge:-

¥min {rmax
xmin \
\M
Armax \H\‘\“‘

In order to correctly calculate the required next mean value given the previous
parameter value, we need to remap values for which the straight line formula

(1):-
m = g(Xp~ Xmin) + Ymin

yields values of m outside the range Xmin to Xmax®-
For a positive gradient, g, redraw the diagonal line as follows:-

min

Raxn

6 Since the parameter values are discrete and the methods that follow assume that the result, m,
of this formula is integer, m should be rounded to the nearest integer. It can therefore be assumed
that wherever the expression m = &(xp - Xmin) + Y min appears as a term in the formulae that

follow, its value is integer.
39

where

Mo = Xmax
M1 =Xmax + (Xmax - Xmin+ 1)
M2 = Xmax + 2(Xmax - Xmin + 1)

M3 = Xmax + 3(Xmax - Xmin + 1)

Now consider any region My < m < Mp11(Mj < m < Mj above, for example):-

- X_I_Eirf 5-1 Xrmax Mn Mp+s Mp+1
\
\\\.
\
\a\ —
\
Xrnax \%\“\ \\\

Then, letting m=M, + s, where 0< s < Xmax - Xmin+ 1, and letting the mapped
value of m equal m', m maps to Xmin + s - 1; that is,

m = Xmax + N(Xmax - Xmin+ 1) + s maps to m' = Xmin+s-1, 4)

For g < 0, redraw the diagonal line as follows:-

M. 4 M.3 M5 M_1

/

\
)

where

M-1 = Xmax - (Xmax - Xmin+ 1)
M-2 = Xmax - 2(Xmax - Xmin+ 1)
M-3 = Xmax - 3(Xmax - Xmin+ 1)

40

Now consider any region M < m = Mpy3, n < 0 M-3 < m < M., above, for

example):-

My Mp+s Mpp Xmin Imint 51 Xmax

A

A

/

Again, as in (4),

M = Xmax + NXmax -~ Xmin+ 1) +8 maps to m' = Xmpin +s- 1

and the complete mapping can be represented in the following listing:-

m m
Xmax - 3(Xmax - Xmin + 1) + (Xmax - Xmin) Xmax - 1
Xmax - 3(Xmax - Xmin+ 1) + Xmax - Xmin+ 1) Xmax
Xmax - 2(Xmax - Xmin+ 1) + 1 Xmin
Xmax’Z(Xmax'ijn+ 1) + 2 ijn+ 1
Xmax - 2(Xmax - Xmin+ 1) + (Xmax - Xmin) Xmax - 1
Xmax - 2(Xmax - Xmin+ 1) + (Xmax - Xmin+ 1) Xmax
Xmax - (Xmax - Xmin+ 1) + 1 Xmin
Xmax'(Xmax‘ijn+ 1)+2 Xm+1
Xmin - 1 Xmax
Xmin Xmin

41

Xmax - 1 Xmax - 1
Xmax Xmax
Xmax + 1 Xmin
Xmax + 2 Xmin+ 1
Xmax + (Xmax - Xmin) Xmax - 1
Xmax + (Xmax - Xmin+ 1) Xmax
Xmax + (Xmax - Xmin+ 1) + 1 Xmin
Xmax + Xmax = Xmin+ 1) + 2 Xmin+ 1
Xmax + (Xmax -~ Xmin + 1) + (Xmax - Xmin) Xmax - 1
Xmax + (Xmax - Xmin+ 1) + (Xmax - Xmin + 1) Xmax
Xmax + 2(Xmax - Xmin+ 1) + 1 Xmin
Xmax + 2(Xmax - Xmin+ 1) + 2 Xmin+ 1
Xmax + (N - 1)(Xmax - Xmin+ 1) + (Xmax - Xmin) Xmax - 1
Xmax + (1 - 1)(Xmax - Xmin+ 1) + (Xmax - Xmin + 1) Xmax
Xmax ¥ N(Xmax - Xmin+ 1) + 1 Xmin
Xmax + NXmax - Xmin+ 1) + 2 Xmin+ 1

The two cases m > Xpinand m < Xminmust be handled separately.
For m = xmjn, let

m1 =M - Xmin=Xmax * N(Xmax = Xmin+ 1) + 8 - Xmin

=(n+ 1)(Xmax-Xmin+ 1) +s-1

42

Let

m» = mj Mod (Xmax -~ Xmint 1) =s-1
Finally, let

m3=my + Xmin=Xmin+S-1
which is the mapping required in (4). Thus, combining the above three
transformations, we can deduce that the general wraparound formula for
m = Xmin 18

m' = [g(xp - Xmin)+ Ymin- Xmin] Mmod (Xmax = Xmin+ 1) + Xmin
For m < Xmin (and therefore n < 0), let

mM1=M - Xmax =Xmax + N(Xmax - Xmin+ 1) + S - Xmax

= N(Xmax - Xmin+ 1) + 8
= (n + 1)(Xmax - Xmin+ 1) + 8 - Xmax - Xmin + 1)7

Let

m> = m] mod (Xmax - Xmin+ 1) =S - (Xmax - Xmin+ 1)
Finally, let

ms3 = m2 + Xmax =Xmin+ S - 1
which is the mapping required in (4). Thus, combining the above three
transformations, we can deduce that the general wraparound formula for
m < Xmin 18

m' = [g(xp~ Xmin) + Ymin- Xmax)mod (Xmax = Xmin+ 1) + Xmax

and, combining the results for g > 0 and m < xmin we obtain the complete
wraparound result:-

7 This last adjustment is necessary because, since the value is negative and we are about to use
modulo arithmetic, we must ensure that the remainder is non-positive
43

m' = { [g(xp- Xmin) + Ymin~ Xminlmod (Xmax = Xmint 1) + Xmin, M = Xmin

{ [g(xp -~ Xmin)+ Ymin- Xmax]mod (Xmax = Xmin+ 1) + Xmax, M < Xmin
(5)

The value of m' thus obtained is now used to calculate the next parameter
value, xp, by applying formulae (2) and (3), as described in Section 2.2.3 above.

2.3.3 Reflection

An alternative possibility is reflection. Here, diagonal lines which meet the left-
or right-hand edge of the coordinate rectangle reflect from it, as in the
following:-

Ymin Xmax

min

Xmax

Again, we need to find the required mapping for values outside the range Xmin
0 Xmax.

For a positive gradient, g, redraw the diagonal line as follows:-

i M, M, M

®nrn

Rynan

where

Mo = Xmax = Xmin + (Xmax = Xmin)
M1 = Xmin+ 2(Xmax - Xmin)
M) = Xmin + 3(Xmax - Xmin)
M3 = Xmin + 4(Xmax - Xmin)
and in general
Mn = Xmin+ (N+1)(Xmax - Xmin)
First, consider regions where Mp.1 < m < My, n odd (Mg < m < M; above, for

example):-

Xmax~ 5 *max Mpq Mpq+s Mn

=

Imax
Then, letting m=Mjy.1 + s, where 0< s < Xmax - Xmin, ™ Maps to Xmax - s; that is,
m = Xmin + N(Xmax - Xmin) + S Maps to m' = Xmax - S (6)

Next, consider regions where Mp.1 < m < My, n even (M < m < M above, for
example):-

45

Imint 8 Yrnax Mp1 Mpq+s Mp

min [T]

Imax
In this case,
M = Xmin + N(Xmax - Xmin) + $ Maps to m' = Xmin + S 7)

For g < 0, redraw the diagonal line as follows:-

M4 M_3 M_o M_q My

/

_ﬂ_ﬂ.’r‘"

M-1=Xmin
M-2 = Xmin - Xmax - Xmin)
M-3 = Xmin - 2(Xmax - Xmin)

M-4 = Xmin - 3(Xmax - Xmin)

First, consider regions where Mj.1 < m < My, n odd (M. < m < M.; above, for
example):-

46

Mpq Mpq+s My *min *max” 8 Xrnax

Again, as in (6),
m = Xmin + N(Xmax - Xmin) + S maps to m' = Xmax - §
Finally, consider regions where Mj.1 < m < Mp, n even (M7 < m < M above, for

example):-

Mp-1 Mp-1+s Mp *min *mint® *max

Again, as in (7),
m = Xmin + N(Xmax - Xmin) + 8 Maps to mM' = Xmin +5

and the general mapping can be listed as follows:-

m m._
Xmin - 3(Xmax - Xmin) + (Xmax - Xmin- 1) Xmin+ 1
Xmin - 2(Xmax -~ Xmin) Xmin
Xmin - 2(Xmax = Xmin) + 1 Xmin+ 1

47

Xmin - 2(Xmax - Xmin) + 2

Xmin - 2(Xmax - Xmin) + (Xmax - Xmin- 1)
Xmmin - (Xmax - Xmin)
Xmin - (Xmax - Xmin) + 1

Xmin - (Xmax - Xmin) + 2

Xmin~ 1
Xmin

Xmax - 1

Xmin+ (Xmax - Xmin)
Xmin + (Xmax - Xmin) + 1
Xmin + (Xmax -~ Xmin) + 2

Xmin+ (Xmax - Xmin) + (Xmax - Xmin- 1)
Xmin + 2(Xmax - Xmin)
Xmin + 2(Xmax - Xmin) + 1

Xmin + 2(Xmax - Xmin) + 2

Xmin + 2(Xmax - Xmin) + (Xmax - Xmin- 1)
Xmin *+ 3(Xmax - Xmin)

Xmin + 3(Xmax - Xmin) + 1

Xmin + 3(Xmax - Xmin) + 2

48

Xmax - 1
Xmax
Xmax - 1

Xmax = 2

Xmin

Xmax i 1
Xmax
Xmax - 1

Xmax - 2

Xmin+ 1
Xmin
ijn""’ 1

Xmax - 1
Xmax
Xmax - 1

Xmax - 2

For m = xmin, 0 odd, let

M1 =M - Xmin = NXmax - Xmin) + 8
Let

mj = m1 mod (Xmax - Xmin) = S
Finally, let

m3 = Xmax -~ M2 = Xmax -~ S
which is the mapping required in (6). Thus, combining the above three
transformations, we can deduce that the general reflection formula, for
m = Xmin, N 0dd, is

m' = Xmax ~ [§(Xp~ Xmin) + Ymin~ Xmin] mod (Xmax - Xmin)
For m = Xmmin, 1 even, let

m1{ =M - Xmin = N(Xmax - Xmin) +
Let

m7 = mi Mmod (Xmax - Xmin) = S
Finally, let

ms3 = Xmin + M2 =Xmin*+ S
which is the mapping required in (7). Thus, combining the above three
transformations, we can deduce that the general reflection formula, for m >
Xmin, N €ven, is

m' = Xmin *+ [§(Xp - Xmin) + ¥Ymin- Xminlmod (xmax - Xmin)

For m < Xmin, n 0dd, let

m1 =m - Xmin = NXmax - Xmin) + S

= (n +1)(Xmax - Xmin) + S - Xmax - Xmin)

49

Let

m3 = m} Mod (Xmax - Xmin) = S - (Xmax - Xmin)
Finally, let

M3 = Xmin -~ M2 = Xmax - 8
which is the mapping required in (6). Thus, combining the above three
transformations, we can deduce that the general reflection formula, for
m < Xmin, N 0dd, is

m' = Xmin - [g(Xp = Xmin) + Ymin- Xminlmod (Xmax - Xmin)

For m < Xmin, N even, let

M1 = M - Xmin = N(Xmax - Xmin) + S

= (n +1)(Xmax - Xmin) + 8 - (Xmax = Xmin)
Let
m7 = m1 mod (Xmax - Xmin) =S - (Xmax - Xmin)
Finally, let
m3 = Xmax + M2 = Xmin+ S

which is the mapping required in (7). Thus, combining the above three
transformations, we can deduce that the general reflection formula, for

m < Xmin, N €ven, is
m' = Xmax + [g(Xp = Xmin) + Ymin- Xmin] mod (Xmax - Xmin)
We can determine whether n is odd or even as follows:-
Let r =[(g(xp- Xmin) + Ymin - Xmin) diV (Xmax - Xmin)] mod 2
Then:-

r =0, m = Xmin => n even
r=1, m = Xmin =>nodd

50

r =0, m < Xpin => n odd
r=1, m< Xmin => N even

Thus, the general reflection formula is as follows:-

{ Xmin + [g(xp- Xmin) + ¥Ymin~ Xminl mod (Xmax = Xmin), M = Xmin, =0
m' = {

{ Xmax - [g(xp- Xmin) + Ymin~ Xminl mod (Xmax = Xmin), M 2 Xmin, r=1

{

{ Xmin - [g(xp- Xmin) + Ymin- Xminlmod (Xmax = Xmin), M < Xmin, r=10

{

{ Xmax + [g(xp- Xmin) + ¥min= Xminl mod (Xmax = Xmin), M < Xpin, r=1
8)

The value of m' thus obtained is now used to calculate the next parameter
value, xp, by applying formulae (2) and (3), as described in Section 2.3 above.

2.3.4 Reverse

Experiments with the algorithm show that, for certain Minimum Mean values
used in conjunction with Diagonal Line Wraparound, a tendency for a
parameter to move in a certain direction (for a melody to tend to rise, for
example) occurs (see Conditions 9 below and Section 5.4). However, in such
cases, when a parameter reaches one end of the possible range of values it then
jumps to the opposite end before continuing; for example, when a rising
melody reaches the upper limit of the pitch range it jumps back down to the
lower limit before beginning to rise again. While this might be a desired effect,
it was felt that it would be appropriate to also provide the composer with the
option for a rising parameter to begin falling again when it reaches the upper
limit of the range, and for a falling parameter to begin rising again when it
reaches the lower limit.

The purpose of Reverse is to effect a change in direction of movement of
a musical parameter when it reaches its upper or lower limit; for example a
melody which is tending to rise in pitch begins to fall when it reaches the
maximum pitch value in its range, a melody which is tending to increase in
tempo (due to note lengths becoming shorter) begins to decrease in tempo
when it reaches the shortest note length in its range, and so on.

The problem is to be able to detect when a tendency to move in a
particular direction is present and, if it is, when the parameter value has

51

reached the upper or lower limit of its range. The intention here is that the
tendency to move should be by design, not by random accident, so that the
composer can introduce reverse as an intentional controlling factor.

Now, a tendency to move in a particular direction occurs if the following

conditions are all true:-
1. The gradient, g, of the diagonal line is positive
2. The minimum mean, ymin, is greater than Xmin 9)
3. Wraparound is in effect
For example, in the following situation, the melody will tend to rise (C to E, E to

G, GtoB)

Next Pitch
CDEFG ABGC

Prewvious Pitch

B 0=Egn

AN

To check whether the upper or lower limit has been reached, it is not sufficient
to check whether the parameter value equals the maximum possible value (in
the case of a rising tendency), or the minimum possible value (in the case of a
falling tendency), because this may not actually happen since the parameter
may overshoot the maximum or minimum value. For example, in the above
example, B tends to jump back down to the lower C, rather than moving up to
the higher C which is the maximum possible value. Instead we apply the
following test, which detects overshoot:-

If the value is tending to rise, and the next mean is less than the
previous parameter value (m' < xp), then change direction

If the value is tending to fall, and the next mean is greater than the
previous parameter value (m' > xp), then change direction

Now, if the conditions in (9) are satisfied, the value will tend to rise if the
minimum mean, Vmin, i less than the midpoint of the range, and will tend to
fall if yminis greater than the midpoint of the range; that is,

52

Ymin< (Xmax - Xmin)/2 => tendency to rise
Vmin> (Xmax - Xmin)/2 => tendency to fall

A change in direction is brought about by leaving the gradient, g, unchanged
but modifying the value of the minimum mean, Ymin, as follows:- if y'mjn is the

new minimum mean, then

V 'min=Xmax - Ymin + Xmin+ 1

For example, in the above case, where yminis the pitch E and the pitch is tending
to rise, applying the above change of direction formula gives a new ymijnof B:-

Mext Pitch
CDEPFG ABGC

AN

/

Previcous Pitch

f R MEgOn

Now, the upper C tends to move to A, A to F, F to D, which is a falling
tendency, and an exact reversal of the previous upward movement.

Thus, summarising the above results, in order to apply the reverse effect we
calculate a new minimum mean value, y'min, according to the following rules:-

IF g >0 AND ymin> Xmin AND Wraparound is on THEN

IF [ymin< (Xmax - Xmin)/2 AND m' < xp] OR
[Ymin> (Xmax - Xmin)/2 AND m' > xp] THEN

(10)

Y 'min = Xmax - Ymin + Xmin + 1

53

24. SUMMARY

2.4.1 Satisfying the Objectives

In the Introduction chapter to this thesis, a set of objectives was stated (Section
1.1.2) which the algorithm was to attempt to satisfy. How well does this
algorithm meet those objectives?

1) The composer needs no understanding of the mathematics behind the
algorithm in order to use it. What is required is a feel for how different
diagonal lines, and the parameters associated with them, affect the musical
output. This is explored in detail in Chapter 5, ANALYSIS OF THE
ALGORITHM, but also, very importantly, this understanding is gained from
the experience of experimenting with the algorithm through the Markov
program, through a process of continually modifying and refining the
parameter values to obtain a desired musical result.

2) For each musical parameter (pitch, note length, dynamic and so on), the
following algorithm input values are required:-

the Minimum value of the parameter range

the Maximum value of the parameter range

the Minimum Mean value for the associated Diagonal Line
the Gradient of the Diagonal Line

the A value for the bilateral exponential function

This is a total of just 5 input values. Additionally, the program offers the
composer the option of either providing a starting value for the musical
parameter (the first pitch of the note sequence, for example) or allowing it to be
generated randomly from the associated range, so that there is a possible 6th
input value if the composer chooses to provide the starting value explicitly (see
Appendix A, Sections 3.3.2. to 3.3.9). In addition to this very small set of
numerical input values, the composer makes three either/or choices. Two of
these correspond to the Diagonal Line extensions described in Section 3 above:

should the Diagonal Line Wraparound (the default) or Reflect?
should the Reverse option be used?

The third choice concerns the possible successive repetition of a note parameter
value. During experimentation with the algorithm, it was found that,
particularly for high values of A, sequences of repeated values of a note

54

parameter will occur. It was felt, certainly in the case of pitch, that the composer
may not want this to occur, so the program allows the composer the option of
disallowing two successive occurrences of the same value (see Appendix A,
Sections 3.3.2. to 3.3.4). What actually happens is that if the algorithm does
produce a value which is exactly the same as the previous value, then either
the next higher or next lower value is used instead, this choice being made by
the program at random.

Thus, in summary, for each musical parameter, the total amount of data
which the composer has to provide to the algorithm consists of a maximum of
just 6 input values plus 3 either/or choices.

3) The algorithm does not analyse any provided music in order to decide its
parameter values, nor does the user provide any explicit note sequences (other
than, possibly, a starting value, as discussed above). Instead, the algorithm,
together with its input parameter values as provided by the composer, is a pure
starting point for the production of music.

4) The use of Markov methods provides a sense of evolution of the music
produced, with each note occurrence having a direct influence on the note that
occurs next.

5) The use of the bilateral exponential function provides the composer with
control of the degree of influence a note occurrence has on the note to occur
next, through the parameter A. The higher the value of A the stronger is the
degree of influence, the lower the value of A the weaker the degree of influence.

6) The composer is not required to provide any musical rules which the music
produced by the algorithm must obey. Actually, a very small compromise has
been made here since the Reverse option and the choice to disallow two
successive repetitions could be seen as simple rules.

2.4.2 Limitations

The intentional simplicity of the algorithm must necessarily impose some
limitations on the variety of output which can be achieved.

Firstly, the shape of the bilateral exponential curve, having a single peak
value, dictates that for any value of a note parameter, there is only one value
which is the most likely to occur next. Thus, we cannot say, for example, that a
pitch of C could be followed either a D or a G with equally high probability, with

55

pitches other than those two being less likely. To put it another way, we cannot
achieve a row of transition probabilities like the following:-

C D E F G A B C
008 03 008 008 03 0.08 005 003

This could by achieved by generating the probabilities using a function with two

(or more) peaks, for example:-

f(x)

AN

However, this more complex function now requires the composer to make
separate decisions concerning each of the peaks, needs correspondingly more
input parameter values and generally begins to become more inaccessible to
non-mathematicians. In addition, once the composer becomes involved in the
compositional process it becomes much less obvious how to modify parameters
in order to achieve a desired result. True, by keeping to the single-peaked
bilateral exponential function it is not possible to produce music which can
make distinct "branching” decisions as it evolves (for example, if pitch C has
been played then play either D or G next) but, for sufficiently low A, each of
various alternatives could, probabilistically, nevertheless occur. Furthermore,

X

for certain gradient values, a musical parameter can exhibit distinct, alternative
modes of behaviour which it "jumps” between so that branching effects are still
possible (see Sections 5.5 and 5.9 for a much more detailed analysis).

Secondly, basing the mean generating process solely on a straight line
rather than on more complex lines, or even curves, prevents many types of
behaviour from occurring, as in the following example:

Next Pitch
CDETFGAEBG

Previous Pitch

fnEEOTEgO

56

where E, F and G tend to be followed by another E, or another F, or another G
respectively, while the lower C tends to rise by 4 steps to G and B tends to rise by
2 steps to E, or even the following;:

MNext Pitch
CDEFPFG A& Bc

/
/

Previous Pitch

/

nErrOmEgn

/

where the melody will tend to move between different alternating pairs of
pitches, Cand D, E and F, G and A, B and c. However, allowing this degree of
generality once again requires considerably more input parameters, it becomes
much more difficult for the composer to relate changes in musical output to
parametric changes and, actually, it is possible to produce sufficiently similar
sequence patterns from an appropriately chosen single straight line, particularly
when the gradient is greater than 1 or less than -1, so that the difference would
not be readily discernible. Also, a point is reached where the composer is
beginning to explicitly control the note sequence, in violation of objective 3.

57

Chapter 3

The MarKov Program

58

3.1 INTRODUCTION

The Markov computer program is written in the Pascal programming language
on an Apple Macintosh computer and was developed using the Symantec
THINK Pascal (Version 4.0) development environment package (Symantec
Corporation 1990)1. This package provides an integrated environment within
which the programmer can create, edit, compile, link and run Pascal programs.
There are on-line debugging tools to facilitate problem solving, and separate
program files may be organised into a single project.

The program generates music by calculating note sequences according to
the rules of the algorithm (see Chapter 2). These sequences are then sent to an
external playback device, connected to the computer, using the MIDI standard
(International MIDI Association 1988, Loy 1985). Specifically, the sequences are
converted into individual MIDI events (play a middle C, for example) each of
which consists of a short stream of bytes of data. These events are sent to the
MIDI interface of the computer, in time-sequential order, from where they are
passed to the playback device. My system consists of an Apple Macintosh LC
computer connected to a Roland JV-30 synthesizer.

The communication between the Markov program and the MIDI
interface is achieved using a set of MIDI command library routines provided by
Altech Systems' MIDIPascal (Version 3.0) (Altech Systems 1990). These allow
the program to send MIDI standard data to either the Apple Macintosh modem
communications port or printer port. Routines are available which, for
example, allow the size of the MIDI output buffer to be set (see Appendix A,
Section 5), and which transmit a MIDI event - each MIDI event is timestamped
allowing precise control of the sequencing of musical events.

De Furia and Scacciaferro's book, MIDI Programming for the Macintosh
(De Furia and Scacciaferro 1988), was an excellent source of advice and guidance
in the use of MIDI programming techniques.

3.2 THE PROGRAM STRUCTURE

3.2.1 Introduction
The Markov program is divided into four main sections:-

The Initialisation Section sets up the MIDI interface and builds the program’s
pull down menus.

1 pascal was chosen simply because this is a language with which I am particularly familiar.
59

The Composition Section allows the composer to input the values of the
various parameters via a series of input dialog boxes and stores this data in the
Composition File (see Appendix A, Section 4).

The Playback Section reads the data from the Composition File, applies the
Diagonal Line algorithm to calculate the values of the musical parameters and
sends the corresponding MIDI events to the MIDI interface, resulting in the live
playback of the composition on the MIDI device(s) connected to the interface.
The Termination Section closes down the MIDI interface and terminates the
program.

These four sections are now described in more detail.

3.2.2 The Initialisation Section

The Initialisation Section first calls a MIDIPascal routine to activate the MIDI
output port and set the sizes, in bytes, of the input and output buffers?. Since
the Markov program only transmits MIDI data and does not process incoming
MIDI data, the size of the input buffer is irrelevant and is set here to a nominal
value of 100 bytes. The output buffer size is set to 5000 bytes. In fact, an
important feature of the Markov program is that it allows the composer to
control the size of the output buffer (see Appendix A, Section 5). However,
MIDIPascal does not allow a programmer to change the output buffer size once
set, so the Markov program provides the composer with size control by limiting
the amount of data stored in the output buffer, while the size of the output
buffer itself remains fixed at 5000 bytes3 which therefore represents the
maximum amount of data which can be stored in the output buffer.

Next, a series of Apple Macintosh system routines is invoked which
create the various Markov program pull down menus:- the File Menu (see
Appendix A, Section 4), the MIDI Menu (see Appendix A, Section 5) and the
Compose Menu (see Appendix A, Section 3). Actually, all these routines do is
place the menu titles ("File", "MIDI" and "Compose") on the Apple Macintosh
menu bar in the required order and add the corresponding pull down
commands (for example, the Compose pull down menu has the commands

2 Timestamped MIDI events are held in the output buffer in time-sequential order and are
transmitted to the MIDI interface for playback when their event time arrives.

MIDI events received from the MIDI interface, generated from a keyboard for example, are held
in the input buffer from where a program can process them.

The input and output buffers are managed by MIDIPascal.

3 Although this figure was chosen arbitrarily, the intention is to balance the requirement to
optimise the use of computer memory against the occasional need for the composer to store large
amounts of data in the Output Buffer. 5000 should be large enough for most practical purposes. For
the reasons why the program allows the composer to control the Output Buffer's size see Appendix
A, Section 5.1

60

"Edit", "Section Sequence”, "Tempo" and "Play"); the functionality behind
these commands is implemented elsewhere in the program.

Also in this section, the Text window is drawn. This window is used to display
information to the composer. For example, a summary of the contents of the
Composition File (see Appendix A, Section 4.5).

The program now waits for the composer to select a Menu Command,
and processes it accordingly (for a full description of all the Menu Commands,
see Appendix A, Sections 3,4 and 5). Generally speaking, a composer will now
either:

a) begin to create a new composition by selecting Compose - Edit

b) open an existing Composition File using File - Open and then modify it by
selecting Compose - Edit

¢) open an existing Composition File using File - Open and then play it back by
selecting Compose - Play

If a or b occurs, the program enters the Composition Section (see 3.2.3 below),

while if ¢ occurs the program immediately enters the Playback Section (see 3.2.4
below).

3.2.3 The Composition Section

The Composition Section provides the graphical user interface through which
the composer enters, and may subsequently modify, the input data for all
musical parameters (pitch, note length and so on), which the diagonal line
method requires in order to produce the resulting musical output. A
composition has a Section/Part structure, whereby a single, linear, note
sequence is called a Part and one or more Parts may be grouped together to form
a Section. A complete composition consists of a number of non-overlapping,
sequentially played, Sections. The Parts within each section may overlap
however, allowing polyphony to be achieved. Thus, a composition has the
following structure:

61

Composition

[I l
Section 1 Section 2 Section 3 ...
Part1 Part2.. Partl PartZ.. Partl Part2 ...

The period of time over which a Part is to be played is specified by the beat on
which it starts, counted from the beginning of its Section, and the beat on which
it ends. Parts may overlap, for example:

Section 1
Beat 1 2345678910 11 12 13 14 15 16

Part 1 3
Part 2 4
Part 3 b
Partd b
Part 5 b
Part b .
Part?7 —F
Part 8 —)
Section 2
Beat 1 2 345 678
Partl —P
Part 2 »
Part 3 i —)

62

The composer enters data for all the Sections which make up the composition,
and for all the Parts within those Sections, by issuing pull down menu
commands and then entering the data in the appropriate fields within the
resulting series of input dialog boxes. The graphical user interface is described in
full detail in the Markov Program User Guide (see Appendix A). The various
dialog boxes themselves were designed and built using the Apple Macintosh
Resource Editor, ResEdit (Version 2.1.1) (Alley and Strange 1994).
This section has two subsections:
(i) The Parameter Initialisation subsection, which sets the default
values of all the various input data parameters, which the
composer can subsequently change if desired (see Appendix A,
Section 6, for a full specification of the default values).
(ii) The Menu Command Processing loop which waits for the
composer to select a menu command and then responds
appropriately. The data entered by the composer in the resulting
input dialog boxes is stored sequentially in the Composition File,
Part by Part, Section by Section. This loop repeats continuously
until either the composer selects Compose - Play, at which point
the loop terminates and the Playback Section begins (see 3.2.4
below), or chooses to exit the program altogether, by selecting File -
Exit, in which case the program passes directly to the Termination
Section (see 3.2.5 below).

3.2.4 The Playback Section

This section begins by obtaining, from the Composition File, the Section
Sequence specified by the user (see Appendix A, Section 3.7), then calculates the
MIDI clock speed using the composer-supplied tempo (in beats per minute) and
calls a MIDIPascal routine to set the MIDI clock speed, which in turn determines
the speed at which the composition is played back.

The core of the Playback Section is a main loop which processes one
Section at a time, reading in the input data (from the Composition File) for all
the Parts in that Section, calculating the musical parameters of the note
sequence which will make up that Section and then sending the corresponding
MIDI events to the MIDI interface. Each Section is processed as follows:-

1. Calculate the Parameters for the First Notes to be Played in Each Part
For each Part in the section, all the musical parameters (pitch, length, velocity,

vibrato depth, vibrato rate, volume, pitch bend and release) for the first note in
each of the Parts that make up the Section are calculated. If the composer has

63

explicitly set the starting value of a particular parameter (see Appendix A,
Sections 3.3.2 to 3.3.9) then that value is used and no actual calculation is
necessary, otherwise the first value is generated at random from the possible
range of values specified by the composer.

2. Map the Values of the First Notes to be Played
The composer is able to select the possible values of a note parameter (see

Appendix A, Sections 3.3.2 to 3.3.4). For example, the possible pitches could be
specified as 60, 64, 67, 724 (a one octave C-major arpeggio). However, it would be
a very inefficient use of disk space if each of these selected values was stored
separately in the Composition File. Instead, before being written to the
Composition File, the selected values are mapped to a sequential range of
integers starting at 1 (for example, the above selection would be mapped to 1, 2,
3, 4) so only the maximum value of this range need be stored (since the range
always starts at 1). The selected values themselves are stored in 8 separate 16 bit
integers, each representing 16 values of the range 0-127 (since the MIDI values
of all musical parameters lie in this range) as follows:-

integer 1 Oto15
integer 2 16 to 31
integer 3 32 to 47
integer 4 48 to 63
integer 5 64 to 79
integer 6 80 to 95
integer 7 96 to 111
integer 8 112 to 127

with each bit of these integers set to either 1 or 0 depending on whether or not
the corresponding value has, or has not, been selected. Thus, in the above
example, integer 4 would have bit 13 set to 1, representing the value 60, with all
other bits set to 0, while integer 5 would have bits 1, 4, and 9 set to 1,
representing the values 64, 67 and 72, with all other bits set to 0:-

integer 4:-
Bit 123456789 101112131415 16
Value 000000000O0OO0OO0T1TO0O0O

Param Val 48495051 525354555657 58 59 60 61 62 63

4 According to the MIDI standard, each pitch is given a unique number between 0 and 127. 60
corresponds to middle C.
64

integer 5:-
Bit 1234567 89 10111213141516
Value 100100001 00O0O0O0GO0CO
Param Val 64656667 686970717273 74 75 76 77 78 79

Thus, when written as a binary number with the bit order reversed, integer 4
has the value 0001000000000000 = 4096, so integer 4 would be set to 4096, and
integer 5 has the value 0000000100001001 = 265, so integer 5 would be set to 265,
while integers 1, 2, 3, 6, 7 and 8 would be zero. This means that all the
information relating to the selected values, of which there may be up to 128
different values, is stored in just 9 integers (the maximum value of the
sequential range plus the 8 selection integers).

Before playback, the 9 integers stored must be mapped back to the actual
parameter values they represent. The mapping operation performed here uses
bit manipulation techniques to map the first value of a particular parameter
value, which is generated from the sequential range, to its actual selected
parameter value. For example, in the case described above, a first pitch of 2
would be mapped to the actual selected value of 64, while a first pitch of 4
would be mapped to the actual selected value of 72.

3. Calculate the Note On Event Times for the First Notes to be Played in Each
Part

The times of occurrence of each of the first notes in each Part of the Section are
calculated: the first note for each Part will occur either precisely at the beginning
of the Part or after a random delay, depending on whether the composer has
checked the Random Entry checkbox (see Appendix A, Section 3.3.10.1). These
times, together with the parameter values of the associated notes, are held in a
special MIDI Event Array. At any time, the program only stores the data
relevant to the next MIDI event, Note On or Note Off (Loy 1985: 13-15), in each
Part. As soon as a MIDI event for a particular part has been output, all the data
pertaining to the next MIDI event to occur in that Part are calculated and stored
in the MIDI Event Array - if the event just output was a Note On, then the
corresponding Note Off data is calculated, whereas if the event just output was
a Note Off then the Note On data for the next note in that Part is calculated.
Thus at any particular time the MIDI Event Array will be storing a mixture of
Note On and Note Off event data, but only one event for each Part in the
Section. The fact that the MIDI Event Array just stores the data for next event to
occur in each Part, only calculating event data as it needs it, is key to the
sequencing functionality of the Markov program.

65

4. Transfer the Note On Event for the First Note to be Played in the Section to
the MIDI QOutput Buffer
Once the parameters for all of the first notes in each Part of the Section have

been calculated, the times of occurrence of each of these notes are compared to
determine which is the earliest; that is, which note is to occur first in the
Section. The appropriate MIDIPascal routine calls are then made to send a Note
On event of the required pitch and velocity for that note, plus the required
settings for vibrato depth, vibrato rate, volume, pitch bend and release (if the
user has changed these from the default settings), to the MIDI Output Buffer.

5. Calculate the Note Off Event Time for the First Note to be Played in the
Section

As soon as the Note On event for the first note in the Section has been output,
its length is used to calculate the time at which its Note Off Event is to occur.
The data relevant to this Note Off event is stored in the MIDI Event Array.

6. Transfer the Next MIDI Event to the MIDI Qutput Buffer
The times of occurrence of each of the events currently held in the MIDI Event
Array are compared to determine which is the next event to occur. The

appropriate MIDIPascal routine calls are then made to send that event to the
MIDI Output Buffer. As discussed above, as soon as that event has been sent,
the data for the next event in the corresponding Part is calculated and stored in
the MIDI Event Array. If this is a Note On Event for the second or subsequent
notes in that Part, then the Diagonal Line Method now comes into play>. The
way the Markov program handles this is described below.

7. Calculating the Parameters for the Second and Subsequent Notes to be Played
in Each Part
As soon as a Note Off Event has been sent for a particular part, the previous

values of each of the musical parameters (pitch, for example), relating to the
most recent Note On Event for that Part, are used to calculate the next values of
each of those parameters which will then form the data for the next Note On
Event for that Part, as follows:

a) The Diagonal Line for the parameter in question is used to determine the
mean, of the bilateral exponential distribution, for the next value of that
parameter, corresponding to the previous value (see Section 2.2.3).

5 As discussed in detail in Section 2.2.3, the Diagonal Line Method uses the previous value of a
note parameter to calculate the next value. Thus is it not until the first parameter values have
been calculated that the Diagonal Line method can now be applied to continue generating the

sequence.
66

b) A random number is generated and the Monte Carlo method is used to
generate the next value of that parameter (see Section 2.2.3).

Steps a and b are repeated for all the musical parameters of the note (pitch,
velocity, length and so on) and the resulting data is stored in the MIDI Event
Array from where the corresponding MIDI events will subsequently be sent to
the MIDI Output Buffer, once the time of occurrence of the note dictates that it
is the next note to be played in this Section.

8. Continue Generating All the Notes in this Section

Steps 6 and 7 are continuously repeated until all the notes in this Section have
been generated - this occurs as soon as a note is generated for which the time of
occurrence of its Note Off Event is equal to, or later then, the Section end time
(if the calculated time of occurrence of the Note Off Event is later than the end
time of the Part then it is changed to be equal to the end time so that the Section
lengths are exactly as specified by the composer).

The diagram in Figure 3.1 at the end of this chapter summarises the
complete process for generating all the notes in a section. This diagram depicts
the first 9 steps (labelled a to i) in the generation of the notes for a 3 part section.
"t" refers to time in milliseconds. The arrowed lines in the diagram have the
following meanings:-

\L in the MIDI Event Array indicates that the associated event at this step has
remained in the same position as at the previous step. For example, the Note 1
On Event for Part 1 remains in the same position in the MIDI Event Array at
steps a) and b)

‘L in the MIDI Output Buffer indicates that the associated event at this step has
remained in the same position in the MIDI Output Buffer as at the previous

step. For example, the Note 1 Off Event for Part 1 remains in the same position
in the MIDI Output Buffer at steps d) and e).

\ in the MIDI Output Buffer indicates that the associated event at
this step has moved forward one position in the MIDI Output Buffer from the
previous step. For example, the Note 1 Off Event for Part 1 moves forward one
position in the MIDI Output Buffer from step e) to step f).

The processes occurring in each of the 9 steps in the diagram are as
follows:-

67

a) The parameter values and the Note On Event times for first
note in each of the 3 Parts are generated and stored in the Midi
Event Array. The parameter values consist of the pitch and
velocity of each note. Pitch and Velocity values are passed in a
single MIDI Event.

Here, it is assumed that the composer has chosen not to vary
vibrato, volume, pitch bend or release as this would require the
transmission of further MIDI Events and make the example
difficult to follow.

The start times of the first notes in each of the 3 Parts are 500, 0 and
1000 milliseconds respectively. The first note in Part 2 is the first
note to be played in the section, its start time, 0, being the lowest of
the three, so its data is passed to the MIDI Output Buffer.

A start time of 0 means that the note is to be played right at the
beginning of the Section so its MIDI Note On Event is sent to the
MIDI Interface and the note begins to play (it will continue to play
until the corresponding MIDI Note Off Event is transmitted).

b) The Note Off Event time for the first note in Part 2 is calculated
and the relevant data replaces its Note On Event data in the MIDI
Event Array. In this case the note is due to stop after 600
milliseconds.

The Note On Event for the first note in Part 1 will be the next
event to occur, its event time being 500 milliseconds, so its data is
passed to the MIDI Output Buffer. It will remain in the MIDI
Output Buffer until 500 milliseconds have elapsed.

o) The Note Off Event time for the first note in Part 1 is calculated
and the relevant data replaces its Note On Event data in the MIDI
Event Array. In this case the note is due to stop after 1000
milliseconds.

The Note Off Event for the first note in Part 2 will be the next
event to occur, its event time being 600 milliseconds, so its data is
passed to the MIDI Output Buffer. There are now 2 events queued
up in the MIDI Output Buffer, stored in the order in which they
are to occur.

d) The Note On Event time for the second note in Part 2 is
calculated and the relevant data replaces the Note Off Event data
for first note in Part 2 in the MIDI Event Array. In this case the
note is due to start after 2000 milliseconds.

68

The Note Off Event for the first note in Part 1 and the Note On
Event for the first note in Part 3 are the next events to occur, at
exactly the same time: 1000 milliseconds. In this situation the
program sends the data for the lowest numbered Part, 1 in this
case, to the MIDI Output Buffer first. However, when the two are
events are subsequently transmitted, they will sent immediately
one after the other, and the speed of the MIDI interface (31,250 bits
per second) is such that the listener hears the events as being
simultaneous. There are now 3 events queued up in the MIDI
Output Buffer, stored in the order in which they are to occur.

e) The Note On Event time for the second note in Part 1 is
calculated and the relevant data replaces the Note Off Event data
for first note in Part 1 in the MIDI Event Array. In this case the
note is due to start after 1500 milliseconds.

The data for the Note On Event for the first note in Part 3 is passed
to the MIDI Output Buffer.

500 milliseconds have now elapsed so the MIDI Note On Event for
the first note in Part 1 is sent to the MIDI Interface and the note
begins to play.

f) The Note Off Event time for the first note in Part 3 is calculated
and the relevant data replaces its Note On Event data in the MIDI
Event Array. In this case the note is due to stop after 1600
milliseconds.

The data for the Note On Event for the second note in Part 1 is
passed to the MIDI Output Buffer. Note that since an event was
transmitted in step e), all the other events in the MIDI Output
Buffer have moved forward one place in the queue.

600 milliseconds have now elapsed so the MIDI Note Off Event for
the first note in Part 2 is sent to the MIDI Interface and the note
ceases to play.

g) The Note Off Event time for the second note in Part 1 is
calculated and the relevant data replaces its Note On Event data in
the MIDI Event Array. In this case the note is due to stop after 1600
milliseconds. The data for this event is immediately passed to the
MIDI Output Buffer: this event and the event for Part 3 are both
due to occur at 1600 milliseconds so, as discussed previously, the
data for the lower numbered Part is passed first.

69

1000 milliseconds have now elapsed so the MIDI Note Off Event
for the first note in Part 1 is sent to the MIDI Interface and the note

ceases to play.

h) The next event in the MIDI Output Buffer, the Note On Event
for the first note in Part 3, is also due to occur at 1000 milliseconds
so it is sent immediately to the MIDI interface and the note begins
to play.

The Note On Event time for the third note in Part 1 is calculated
and the relevant data replaces the Note Off data, for the second
note, in the MIDI Event Array. In this case the note is due to start
after 1600 milliseconds so once again the data for this event is
immediately passed to the MIDI Output Buffer.

i) The Note Off Event time for the third note in Part 1 is calculated
and the relevant data replaces its Note On Event data in the MIDI
Event Array. In this case the note is due to stop after 1800
milliseconds.

The data for the Note Off Event for the first note in Part 3 is passed
to the MIDI Output Buffer.

9. Continue Generating the Notes for All Sections

Steps 1 to 8 are repeated in turn for all the Sections that make up the
Composition, as determined by the Section Sequence specified by the Composer
(see Appendix A, Section 3.7).

10. Wait for the MIDI Qutput Buffer to Empty
It is an important feature of the program that it is always calculating ahead; that

is, generating notes in advance of when they actually occur. The MIDI Events
associated with each note are stored in the MIDI Output buffer. Each event is
timestamped and is sent from the buffer to the MIDI interface once its time of
occurrence arrives - the transfer of events from the buffer to the interface is
managed by MIDIPascal. Once all the notes for the final Section of the
composition have been sent to the MIDI Output Buffer, the program repeatedly
calls a MIDIPascal function which indicates how much data is remaining in the
buffer. When the amount of data reaches zero, the program knows that the
final note of the composition has been played, and the Playback Section is
therefore complete. What happens next depends on the action taken by the
composer. If the composer chooses to modify the composition then the
program will re-enter the Composition Section (see 3.2.3 above). If the

70

composer chooses to exit the program completely, then the Termination
Section begins.

3.2.5 The Termination Section

The Termination Section first closes the Composition File that the composer
has been working with, and then calls a MIDIPascal routine to shutdown
MIDI1Pascal.

3.2.6 The "Score"

The File - Export command (see Appendix A, Section 4.6) allows the composer
to export a comprehensive specification of the entire contents of the
Composition File to an ASCII text file for subsequent examination and printing.
This forms the "score" for the composition; it describes the overall composition
structure and gives full details of the algorithm input parameter values. The
following is an example of the opening segment from a program score:

COMPOSITION FILE: Hard Disk:Music:Projects:Markov Composition:choir

Section Parts Min Length Min Total Max Length Max Total

1 2 100 100 100 100
2 3 10 110 200 300
3 1 300 410 300 600

SECTION SEQUENCE:
1 1 2 1 3 1

Tempo = 60 bpm MIDI Buffer Size = 1000 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
mmansposE o o o 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
2 1 10 50

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 100
Parameter Min Max MinMean Start Grad Lambda
pren s0 72 e 1.000000 2.500000
LENGTH (/ 2) 1 2 1 1.000000 0.500000

71

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

o st i sk S M. S I e S At i o e G s S ok o i e S i . e e e e s o ot i W S S B B (i St S U i I i S e i i b i e e

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO I NO
VELOCITY YES | NO i NO | NO |

The initial portion provides summary information: the name and location of
the Composition File, the overall Section/Part structure of the composition, the
sequence of Sections that forms the composition (see Appendix A, Section 3.7),
the tempo (see Appendix A, Section 3.6) and the MIDI buffer size setting (see
Appendix A, Section 5.2). There then follows a Section by Section breakdown,
each Section headed with the word "SECTION" followed by the Section
number. The Section information begins with the Section sequence
transposition settings (see Appendix A, Section 3.2.1.4) and a summary of the
Part structure, followed by the complete set of algorithm parameter values, and
option settings, for each Part that makes up the Section, each Part under its own
"Sect ... Part ..." heading.

Program score extracts will be given throughout the remainder of this
thesis in support of musical examples under discussion.

72

00al=11, ™ A 008l=
HO L BION S Wed | £ HEd HO £ 20N

fie]d 0} S3SEI7T) 30N e IETES N R 0091=1

0001=1 / HOZON L Wed |* | yaed HO 2 20N
fie| 4 0} SaSEST S}ON < 00si=3 | 0ngl=1
UOZ®ON LM [T qaeg |0 | 210N \ﬁ

yoeg pakeld ION < —t e T TR 0091=1
0001=1 U £ BI0N | Hed PELE U £ 30N
o

€
0og=1 A..:.rf!.r
A

73

: - T 00l A GL=
Aoeg padeld B10N < — . 0051=1
0061 . uO | MONE WS [T o ey uQ Z 210N
000t =Y . 000z=1
JG | 810N | Wed) 1 1484 O 2 310N \ﬁ/
009=1 . a001L=)
HO | 210N 2 Med T 7 j4ed HO | 210y
noc=1 . 00g=1
UQ | 210N | ﬁwm T pard HO | ®10H \«/
Aoeg padeld 10N <—————1~ 0= : 0001=1 =1 00g=

051 | uQ | ;0N g wed

Z pAed MO | BI0N UG | YoM (UG | 210N

Figure 3.1 The Note Generation Process

¢yied ZiEd | jaEd
FoY4930Nl 1AM g344na Lnd1Lno 1M AYHHY INJAT 1AIN

Chapter 4

The Compositiona[Process

74

4.1 INTRODUCTION

The purpose of this chapter is to show how the compositional process, using
the Markov computer program, actually works. One of the principal aims of the
program is that the composer should become involved in a continual feedback
process, trying out some initial parameter values and then refining them based
on what he or she hears, so that the composition gradually converges to a
desired result. This chapter shows the first 11 stages of an evolving
composition, starting with a one line melody based on a simple set of parameter
values and then gradually evolving into a three part piece, including a bass
part, with a three chord harmonic structure and with rhythmic structure and
control of melodic contour.

It is very important to realise that this particular composition is in no
way representative of the style of music the program can produce. As will be
shown later, the program can produce an extremely wide variety of styles and it
just happens that the composition examined here evolved in this particular
way. Nor is it supposed to be in any way a finished piece. The intention is to
show the first few stages of a composer exploring the compositional capabilities
of the program.

The compact disc which accompanies this thesis contains the
composition at each of its 11 stages of evolution as MIDI files, for playback from
any software application capable of playing standard MIDI files (Microsoft
Windows™ Media Player for example). They are contained in the directory
called "The Compositional Process” and there are 11 files in all, entitled "1.mid"
through to "11.mid" corresponding to the 11 stages. The floppy disk contains
them as Markov program Composition Files for playback from the Markov
program. They are contained in the directory called "The Compositional
Process" and are called "1" through to "11".

42 AN EVOLVING COMPOSITION

Stagel

As a starting point, a two-octave chromatic scale starting at middle C is chosen.
The gradient and A values are left as the defaults of 1 and 0.5 respectively, so
this should result in a fairly gently meandering melody (see Section 5.3.2,
Example 1). The tempo is set to 60 beats per minute and all note lengths are 1/8
of a beat. The Patch value is set to 1, which is the MIDI value for the Piano
instrument. The Part length is 30 beats.

75

The complete score at this stage is as follows (note the Pitch Minimum,
Maximum, Minimum Mean, Gradient and Al values):

COMPOSITION FILE: Hard Disk:Music:Compositional Process:1

Section Parts Min Length Min Total Max Length Max Total

1 1 30 30 30 30
SECTION SEQUENCE:

1
Tempo = 60 bpm MIDI Buffer Size = 100 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda

RaNSPOSE 0 o o0 1.000000 0.500000

Part No MIDI Channel Starting Beat Ending Beat

Ty T 30

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30

Parameter Min Max MinMean Start Grad Lambda

prrcs 60 84 60 1.000000 0.500000

LENGTH (/ 8) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

prTCH “ves | w | w | wo |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

Stage 2

The composer decides that the melody should vary up and down less quickly.
Increasing the A value will achieve this. A A value of 2 is tried.

Stage 3

Increasing the A value has had the desired effect but the composer feels that the
sequences of repeating notes, sometimes as many as 10, are disconcerting. The
Disallow Repeats option is therefore selected for the Pitch Parameter (see
Appendix A, Section 3.3.2).

1 These are shown under the heading "Lambda" in the score.
76

Stage 4

The use of the chromatic scale means that the melody has an atonal nature and
the composer now decides to change the feel by using a major scale instead. The
Select mechanism is therefore used (see Appendix A, Section 3.4) to specify the
MIDI pitch values 60 62 64 65 67 6971 72 74 76 77 79 81 83 and 84 which
represents a 2-octave C major scale starting at middle C.

The section of the score showing the relevant parameter values at this
stage is as follows (note the Pitch A value, the Pitch REPEAT and SELECT
settings and the Pitch Selections):

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 84 60 1.000000 2.000000
LENGTH (/ 8) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO [

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | no | NO | NO |

PITCH SELECTIONS:
60 62 64 65 67 69 71 72 74 76 77 79 81 83 84

Stage 5

The composer is now happier with the melodic aspect but, although repeated
note patterns in the melody create perceived rhythmic units, there is currently
no algorithmic control of rhythm because all the note lengths are the same.
Therefore, the Minimum Note Length is now set to be 1/8 and the maximum
to be 4/8. This will produce Note Lengths from all the values in that range; that
is, 1/8,2/8, 3/8 and 4/8 (demisemiquaver, semiquaver, dotted semiquaver and
quaver).

Stage 6

The melody now has a sense of rhythm but the composer feels that the
inclusion of the 3/8 Note Length (a dotted semiquaver) produces too much
syncopation. The Select mechanism is therefore used to specify just the Note
Lengths 1/8, 2/8 and 4/8 (demisemiquaver, semiquaver and quaver).

77

Here is the relevant section of the score (note the Length parameter
settings? and the Length Selections):

Sect 1 Part 1, Chan 1, Patch 1, Pan 64, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 84 60 1.000000 2.000000
LENGTH (/ 8) 1 4 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO
VELOCITY YES | NO | NO l NO l

PITCH SELECTIONS:

60 62 64 65 67 69 71 72 74 76 77 79 81 83 84
LENGTH SELECTIONS:

1 2 4

Stage 7

The piece currently consists of just a solo melody and the composer would now
like to add more interest by introducing a second melodic line. A second Part is
therefore added with identical parameter values to the first one - this can be
done very quickly using the Copy and Paste mechanism (see Appendix A,
Sections 3.3.13 and 3.3.14). The MIDI channel is then changed for the second
Part (see Appendix A, Section 3.3.1) and the Pan setting modified (see Appendix
A, Section 3.3.12) for both the first and second Parts to 24 and 104 respectively so
as to produce left/right stereo separation.

Stage 8

A third, bass, Part is now added. The intention is for this to be a "walking" bass
line. The composer selects the Pitch values 24 28 31 36 40 43 48, a two-octave C-
major arpeggio, with repeats disallowed, and all Note Lengths are 1/4 beat
(semiquaver). The Patch value is set to 33, the MIDI value for Acoustic Bass,
and the Pan value to 64 so that the sound is centrally positioned. Finally, using
the Fix Starting Value At option (see Appendix A, Section 3.3.2), the starting
value is set to be 24, a C natural, so that the bass line begins on the root of the
scale and therefore feels "grounded".

2The "/ 8" which appears after the word "LENGTH" in the score indicates that the length
values specified have 8 as their fractional demoninator. For example, the minimum length is 1/8.
78

Here is the section of the score showing the parameter values for this

new Part:

Sect 1 Part 3, Chan 3, Patch 33, Pan 64, BEATS 1 to 30

Parameter Min Max MinMean Start Grad Lambda

PITCH 24 48 24 24 1.000000 2.000000

LENGTH (/ 4) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO l NO | NO

VELOCITY YES | NO | NO } NO |

PITCH SELECTIONS:
24 28 31 36 40 43 48

Stage 9

The composition is now beginning to take shape but there is no sense of
harmonic movement. The composer decides to repeat the Section 16 times,
using the Section Sequence option (see Appendix A, Section 3.7) while using
the Section Transposition mechanism (see Appendix A, Section 3.2.1.4) to
produce chord changes between the successive playings of the Section. The
Transposition values 0, 5 and 7 are selected, which correspond to tonic,
subdominant and dominant respectively, so as to produce a sense of I - IV - V
chord structure. The starting Transposition value is set to 0 so that the piece
begins on the root chord. Repeats are disallowed so that there will always be a
change of chord each time the Section repeats. The length of all three Parts, and
therefore of the Section, is currently 30 beats, which the composer feels is too
long to wait for each chord change so the Section Length Parameters (see
Appendix A, Section 3.2.1.3) are set such that the length of each repetition of the
Section is 4 beats only.

The following extract from the score shows the Section Sequence, the
Transposition Parameters, the Length Parameters and the Transposition
Selections:

COMPOSITION FILE: Hard Disk:Music:Compositional Process:9

Section Parts Min Length Min Total Max Length Max Total

e s i A o v . G o b i e b b b S o e e o i e e S L i i o . e i O e M e Gl W s i o O S o M ks I i i i S O o S i o

SECTION SEQUENCE:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tempo = 60 bpm MIDI Buffer Size = 100 Bytes

79

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 7 0 0 1.000000 0.500000
LENGTH 4 4 4 1.000000 0.500000
SECTION TRANSPOSITION SELECTIONS:

0 5 7
Stage 10

The parameter values for the two main melodic Parts are identical so their
structural characteristics are the same, and the composer feels it would be more
interesting if they were to move in different ways. In addition, the fact that it is
possible for the two Parts to be in the same register for a short while produces a
disconcertingly large number of discords. The Minimum Mean Pitch value of
the first Part is therefore set to 62, producing a tendency for the melody of this
Part to move upwards (see Section 5.4.2, Examples 1 and 2), and the Minimum
Mean Pitch value of the second Part to 84, producing a tendency for downwards
movement (see Section 5.4.2, Examples 11 and 12). The A Pitch value for each
Part is set to 2 so that the movement tendency is quite strong while still
allowing some variation (see Section 5.2.2, Example 2).

The following extracts from the score show the Pitch parameter values
for the two Parts:

Sect 1 Part 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
pITCE 60 84 62 60 1.000000 2.000000
Sect 1 Part 2, Chan 2, Patch 1, Pan 104, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
pITcHR 60 84 84 84 1.000000 2.000000
Stage11

All three Parts consist of continuous note sequences, with no rests. The
composer now decides that rests should be introduced into each of the Parts.
This is done by allowing notes of zero Velocity to be generated. If the program
generates a note of a certain length at zero Velocity then a rest will occur of that
length. The Select mechanism is therefore used to specify that only the
Velocities 0 and 127 (the maximum) can occur. Rests should not, however,
occur so frequently that the flow of the melodic lines is broken so a Minimum

80

Mean Velocity of 127 is chosen, with a gradient of zero. This means that the
Velocity values will tend to be 127 and the frequency with which rests occur can
be controlled with the A value: the higher the value A the less frequently rests
will occur. Here, the composer tries a A value of 2.

Finally, the complete score for the composition is now as follows:-

COMPOSITION FILE: Hard Disk:Music:Compositional Process:11

Section Parts Min Length Min Total Max Length Max Total

o . i i s S o S L L D e B o s P e A o A el I i S S s Mt S i i o i Mo i i it i o i i i, S S R R M Bl Ml o e A Bk S o e i i e

SECTION SEQUENCE:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tempo = 200 bpm MIDI Buffer Size = 100 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 7 0 0 1.000000 0.500000
LENGTH 4 4 4 1.000000 0.500000

SECTION TRANSPOSITION SELECTIONS:

0o 5 7
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 30

2 2 1 30

3 3 1 30
Sect 1 pPart 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 84 62 60 1.000000 20.000000
LENGTH (/ 8) 1 4 1 1.000000 0.500000
VELOCITY 0 127 127 0.000000 2.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH YES] YES] NO ! NO | NO
VELOCITY YES | YES | NO ! NO |

PITCH SELECTIONS:
60 62 64 65 67 69 71 72 74 76 77 79 81 83 84
LENGTH SELECTIONS:

1 2 4
VELOCITY SELECTIONS:

0 127
Sect 1 pPart 2, Chan 2, Patch 1, Pan 104, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 84 84 84 1.000000 20.000000
LENGTH (/ 8) 1 4 1 1.000000 0.500000
VELOCITY 0 127 127 0.000000 2.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

i s S i e o o o . o S e i S b i Sl B e i i i S o e R e i e A s i e b o i S e e Sl s S i o o . i o

PITCH NO | YES | NO | NO |
LENGTH YES | YES | NO | NO | NO
VELOCITY YES | YES y NO | NO l

PITCH SELECTIONS:
60 62 64 65 67 69 71 72 74 16 77 179 81 83 84
LENGTH SELECTIONS:

1 2 4
VELOCITY SELECTIONS:

0 127
Sect 1 Part 3, Chan 3, Patch 33, Pan 64, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 24 48 24 24 1.000000 2.000000
LENGTH (/ 4) 1 1 1 1.000000 0.500000
VELOCITY 0 127 127 0.000000 2.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO [
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | ¥ES | NO | NO |

PITCH SELECTIONS:

24 28 31 36 40 43 48
VELOCITY SELECTIONS:

0 127

82

Chapter 5

Analysis of the Algorithm

83

5.1 INTRODUCTION

This analysis investigates the effects of the various algorithm parameters on the
musical results produced. Specifically, each parameter is successively varied
while the others are kept constant, and the various results are compared so that
conclusions can be drawn regarding the effect of that parameter. The objective is
that an understanding of the range of musical possibilities of the algorithm can
be gained.

For each parameter value example, a short passage of music has been
recorded in a MIDI file. These MIDI files may be found on the compact disc
which accompanies this thesis in the directory called "Analysis of the
Algorithm". The floppy disk contains the examples as Markov program
Composition Files for playback from the Markov program, again in the
directory called "Analysis of the Algorithm". Full details of the filenames and
locations are given later in this chapter, in the relevant sections.

Before MIDI recording, each passage was first played back by the Markov
program five times to ensure that, across each of the five different realisations,
there was no difference in the overall musical nature of the result. The passage
was then played back a sixth time and the result recorded. In no case was there
any significant variation across the six realisations - indeed, the various
parameter values were chosen to try and ensure that this would be the case, so
that valid conclusions could be drawn about the effect of the parameter under
analysis.

Pitch values are referred to using the "Cn" notation:-

G = middle C = MIDI value 60

c6 = C one octave above middle C = MIDI value 72

4 = C one octave below middle C = MIDI value 48

D5 = D above middle C = MIDI value 62

B4 = B below middle C = MIDI value 59
and so on.

5.2 VARYING A

5.2.1 Introduction

The purpose of this section is to investigate the effect of varying the parameter
A (see Section 2.2.1) while all other parameter values are kept constant.
Specifically, the fixed parameter values are as follows:-

84

Pitch values: a four-octave C major scale centred on middle C (that is, C3

to C7)

Starting Pitch: 60 (= middle C, or C5)

Tempo: 60 beats per minute

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this
case)

Gradient: 0

Minimum Mean: 60 (= middle C, or C5)
Passage Length: 32 beats (32 seconds)

The range of pitch values was chosen as being wide enough for the full effect of
the parameter to be appreciated, but narrow enough to discourage a diversity of
unusual events from occurring more frequently than the event which is
normal for the given parameter value. Even though the normal event would
still be the largest single category, the perception of this would be obscured by
using too large a range: instead the intention is achieve an appropriate balance
between the ordinary and the unusual so that correct conclusions can be drawn
from those unusual progressions which do occur.

A major scale (C major in this case) was chosen so that any tendency for
the melody to move in a particular way is more readily apparent to a tonally
oriented listener.

The note length and tempo was chosen so that the melody is fast enough
that the relationship between successive notes, together with any higher level
structure, can easily be heard and not so fast that it just becomes a blur of notes.

Each passage starts at middle C to provide a consistent beginning in an
attempt to prevent inappropriate conclusions being drawn from different
passages starting at widely differing pitches.

Finally, a Gradient of 0 and a Minimum Mean of 60 will produce a
melody which tends to be centred evenly about middle C - the corresponding
diagonal line is as follows:

60

- and we can therefore deduce the effect of different A values by studying the
- degree by which the melody varies from middle C. What we expect is that the

higher the value of A the more the melody will tend to consist entirely of

middle C pitches, while the lower the value of A the more spread around

85

middle C the pitches will become until eventually all sense of centredness
disappears.

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "Varying Lambda". The files
are named numerically corresponding to the numbered examples below.

5.2.2 Analysis

Varying A, Example 1

A =05

The melody consists of successive repetitions of middle C with occasional
variations of one pitch up or down (in this example there were 13 such
variations). We can therefore deduce that a A value of 5 produces a very strong
tendency for the melody to behave according to the associated diagonal line. In
this example, the result is very uninteresting musically although there may be
situations where this is the desired effect; for example, for a backing to a melody
or where the other diagonal line parameters produce a melody with a tendency
to move in a specific way (see Section 5.4 below). Note that while this A value
produces a very strong tendency, for a sufficiently high A value the melody will
be completely deterministic with no variation from the predicted behaviour
(see 5.2.3 below).

Varying A, Example 2

A=2

The melody is still very strongly centred on, with frequent repetitions of,
middle C but with much more frequent variations up and down and by one or
two pitches; that is, the melody consists entirely of the pitches A4, B4, C5, D5
and E5. C5 is the by far the most frequent, B4 and D5 the next most frequent, and
there were 7 A4's and 5 E5's out of a total of 256 notes.

Varying A, Example 3

A=1

86

The melody is still very strongly centred on, with frequent repetitions of,
middle C but the degree of movement away from middle C to other parts of the
scale very occasionally implies harmonic movement: this is because more
arpeggiation of notes occurs, thus occasionally implying particular chords. For
example, a short sequence of B3 D4 F4 implies a Dominant 7th chord which is
then followed by a return to the root chord implied by repetitions of middle C.
Apart from the occurrence of one C below middle C (C4) and one A above
middle C (A5), the melody lies in the range F below middle C (F4) to F above
middle C (F5).

Varving A, Example 4

A=0.5.

At this value of A, there are no longer frequent successive repetitions of middle
C so the feeling of "centredness” is not as strong: instead, the absence of
repeated middle C's combined with a preponderance of pitches around middle
C creates a tension in which the listener desires a return to middle C. There is
also more note arpeggiation, resulting in a greater sense of implied harmonic
movement. The melody ranges almost entirely over the two octaves centred on
middle C. The occurrence of short sequences of pitches in different registers is
beginning to produce rhythmic effects. '

Varying A, Example 5

A=02.

The feeling of "centredness” about middle C has all but disappeared and indeed
pitches occur across the full four-octave range, but the pitches are in fact still
centred on middle C (middle C still accounts for 10% of the pitch values which
occur even though there are 29 possible pitch values) and indeed the activity in
the middle C register can be heard as an independent melodic part, with the
occurrence of low and high pitches infrequent so that the high and low pitches
actually stand out as separate melodic parts from the main melody by virtue of
their intervallic distance from it. This separation of parts, and the irregularity
with which notes occur in those parts, is now more clearly resulting in rhythms
which break up what was, in Examples 1 to 3, a consistent pulse.

87

Varying A\, Example 6

A=0.1.

The centredness about middle C is no longer apparent, but it is still there as a
study of the frequencies of occurrence of each of the 29 pitches reveals:

C3 2 (1%) 4 9 (4%) C5 17 (7%) C6 6 (2%)
D3 5 (2%) D4 4 (2%) D5 12 (5%) D6 13 (5%)
E3 2 (1%) E4 11 (4%) E5 17 (7%) E6 10 (4%)
F3 3 (1%) F4 11 (4%) F5 16 (6%) F6 10 (4%)
G3 5 (2%) G4 7 (3%) G5 3 (1%) G6 6 (2%)
A3 11 (4%) A4 17 (7%) A5 12 (5%) A6 2 (1%)
B3 8 (3%) B4 17 (7%) B5 9 (4%) B6 4 (2%)

C7 0 (0%)

Note the higher frequencies of occurrence of the pitches around middle C (C5),
in the range A4 to F5 for example. The high and low pitches stand out as
separate melodic parts just as in the previous example but because there is more
variation from middle C these parts contain more notes and so sound faster.
The notes in this example are noticeably more arpeggiated and so there is an
even greater impression of harmonic movement.

Varying A, Example 7

A =0.05.

The frequencies of occurrence of the pitches in this example are as follows:

C3 3 (1%) C4 10 (4%) 5 14 (2%) C6 8 (3%)
D3 5 (2%) D4 8 (3%) D5 10 (4%) D6 5 (2%)
E3 5 (2%) E4 8 (3%) E5 9 (4%) E6 5 (2%)
F3 8 (3%) F4 13 (5%) F5 12 (5%) F6 9 (4%)
G3 10 (4%) G4 11 (4%) G5 16 (6%) G6 14 (5%)
A3 6 (2%) Ad 6 (2%) A5 10 (4%) A6 7 (3%)
B3 10 (4%) B4 13 (5%) B5 14 (5%) B6 5 (2%)

7 2 (1%)

88

Although the pitches around middle C still occur more frequently this is not
nearly as marked as in the previous example. This passage does not sound that
much different to the previous one except that there is possibly a slightly clearer
perception of a middle part, together with high and low part, due to a more
balanced spread of pitches across the range.

Varying A, Example 8

A =0.005.

The frequencies of occurrence in this example are as follows:

C3 8 (3%) 4 8 (3%) G 9 (4%) C6 3 (1%)
D3 6 (2%) D4 6 (2%) D5 13 (5%) D6 10 (4%)
E3 7 (3%) E4 16 (6%) E5 12 (5%) E6 7 (3%)
F3 9 (4%) F4 10 (4%) F5 8 (3%) F6 5 (2%)
G3 11 (4%) G4 10 (4%) G5 12 (5%) G6 6 (2%)
A3 5 (2%) A4 11 (4%) A5 10 (4%) A6 13 (5%)
B3 10 (4%) B4 11 (4%) B5 8 (3%) B6 8 (3%)

C7 4 (2%)

Now the frequencies of occurrence are fairly evenly spread across the range and
are occurring more or less at random (the fact that some pitches have quite high
occurrences - B4 and A6 for example - is due to random variation: it is more
likely that this will happen than that the frequencies will be perfectly balanced
across the range).

However, this does not sound markedly different to the previous two
examples: one still hears three separate parts, in the low, middle and high part
of the range, and it must therefore be deduced that this is how pitches occurring
at random within a four-octave major scale tend to be heard. The most likely
explanation for this is that within a purely random sequence, apparently
ordered subsequences will nevertheless occur (Bennett 1998: 167-170). Thus, for
example, several consecutive pitches may occur in the same register before the
pitches move to a different register, resulting in the perception of separate parts.

Varying A, Example 9

Four consecutive parts, A = 0.005, L = 0.0005, A = 0.00005 and A = 0.000005
respectively, of 8 beats each.

89

This final example is included to show that there is no audible difference when
A is raised above 0.005 - the four parts join together seamlessly.

5.2.3 Additional Information

Although not included on the compact disc, passages were produced with A =20
and A = 10. A five minute passage with A = 20 produced no variations at all; that
is, continuously repeated middle C's. A one minute passage with A =10
produced continuously repeated middle C's apart from six notes which varied
up or down by one pitch.

5.2.4 Conclusions

1. The higher the value of A the greater is the tendency for the musical result to
deterministically obey that predicted by the diagonal line (in this case
continuously repeated middle C's), the lower the value of A of the more the
result will tend to vary from that predicted by the diagonal line.

2. A\ value of 20 produces a completely deterministic result, according to the
diagonal line.

3.\ values greater than 1 produce strongly deterministic results, the degree of
determinism increasing, of course, the higher the value of A.

4.\ values less than 0.005 produce random results, with no diagonal line
influence.

5. A h value of 0.5 tends to produce a "middle ground" result, where the
diagonal line influence is still evident but there are some noticeable variations
from the predicted behaviour.

It should be noted that the effect of A on the nature of the output is not linear.
For example, increasing A by 0.5 from 0.5 to 1 significantly increases the degree
of determinism in the output whereas increasing A by 0.5 from 5 to 5.5 has a
barely discernible effect. In fact, A is a logarithmically scaled parameter: A must
be doubled from 5 to 10 to achieve the same impact as doubling A from 0.5 to
1.0. On the other hand, as noted above, this logarithmic scaling only applies
within the range 0.005 to 20.

90

5.3 VARYING GRADIENT

5.3.1 Introduction

The purpose of this section is to investigate the effect of varying the Gradient

(see Section 2.2.3) parameter while all other parameter values are kept constant.

For the first five examples, the fixed parameter values are as follows:

Pitch values: a four-octave C major scale centred on middle C (that is, C3
to C7)

Starting Pitch: 60 (= C5, the mid-point of the pitch range)

A 0.5

Tempo: 60 beats per minute
Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this
case)

Minimum Mean: 36 (= C3, the lowest pitch of the range)
Passage Length: 32 beats (32 seconds)

Having a Minimum Mean of 36, the lowest pitch of the range, means a
diagonal line starting at the top left of the rectangle and sloping downwards -
for a gradient of 1, for example, the diagonal line is as follows:

In the first five examples of this analysis, the gradient will be successively
lowered. A A value of 0.5 has been chosen because, as we saw in the previous
chapter, this results in the diagonal line effect being evident while still allowing
some variation from it.

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the direc{ory
called "Analysis of the Algorithm", subdirectory "Varying Gradient". The files
are named numerically corresponding to the numbered examples below.

5.3.2 Analysis

Varying Gradient, Example 1

Gradient = 1.

N

The diagonal line is as follows:

Here, the tendency is for any pitch to repeat itself, but the A value of 0.5 allows a
degree of variation and so the result is a melody which meanders fairly gently
around the four-octave pitch range.

Varying Gradient, Example 2

Gradient = 0.75.

The diagonal line is as follows:

Here, any pitch, apart from the lowest pitch of the range, tends to be followed by
a next pitch of a lower value, so the melody is being continuously, but in this
example fairly gently, "pulled down" towards the bottom of the pitch range as if
on a piece of elastic, with a tendency for any rise in pitch to be followed by a
falling melodic part. Note that the amount by which the next pitch tends to be
lower is proportional to the previous pitch rather than being an absolute
number of pitch values. In this example, a pitch value of the maximum in the
range tends to be followed by a pitch value 25% of the range lower, one octave
in this case. This percentage value falls proportionately as the pitch lowers: a
pitch at the middle of the range tends to fall by 12% of the range and the lowest
value in the range tends to be followed by a pitch of the same value. Almost the
entire melody lies in the first two octaves of the range.

Varying Gradient, Example 3

Gradient = 0.5.

The diagonal line is as follows:

92

The "pulling down" effect has become more marked. Almost the entire melody
lies in the first octave of the range.

Varying Gradient, Example 4

Gradient = 0.25.

The diagonal line is as follows:

Now, almost the entire melody lies in the range C3 to G3, with any higher
pitches being heard as a separate part.

Varying Gradient, Example 5

Gradient = 0.

The diagonal line is as follows:

that it is to say, a vertical line at the minimum value of the range. This example
is very similar to the previous example. Now, most of the melody lies in the
range C3 to F3, and again higher pitches are heard as a separate part.

For the next five examples, since the gradient is negative the Minimum
Mean is set to 84 (= C7, the highest pitch in the range). The other parameter
values remain unchanged.

93

Varying Gradient, Example 6

Gradient = -1.

The diagonal line is as follows:

In this case, pitches towards one extreme of the pitch range tend to be followed
by pitches at the other extreme, while pitches towards the centre of the range
tend to be followed by pitches also towards the centre. Thus, the melody consists
of periods of leaping from high pitches to low pitches and back again
interspersed with periods of more gently varying pitch sequences towards the
centre of the range (in fact, any pitch tends to be followed by its complement.
For example, a pitch one quarter of the way up the range from the lowest pitch
tends to be followed by a pitch one quarter of the way down from the highest
pitch) and now there is a part separation effect. Overall, the melody could be
said to be "balanced" about middle C, the centre of the range.

Varying Gradient, Example 7

Gradient = -0.75.

The diagonal line is as follows:

There is the same tendency, as in the previous example, for periods of leaping
from high to low interspersed with more level periods, but now the melody is
concentrated mainly in the upper 3 octaves. Also, the balance point has moved
up. In fact, the diagonal line is such that D5 tends to be followed by F5, and F5
tends to be followed by D5 so it is about this part of the range that the melody is
balanced and in this part of the range where the more level periods tend to
occur.

94

Varving Gradient, Example 8

Gradient = -0.5.

The diagonal line is as follows:

The melody is now concentrated mainly in the upper 2 octaves. Since the
distance between the high and low pitches is therefore smaller, the leaping
periods, although they still occur, are less pronounced. The melody is now
balanced about A5 (in fact, the diagonal line is such that A5 tends to be followed
by A5).

Varying Gradient, Example 9

Gradient = -0.25.

The diagonal line is as follows:

The melody is now concentrated mainly in the upper octave. The leaping
periods are therefore even less pronounced, but are there. Since D6 tends to be
followed by E6, and E6 by D6, it is about these pitches that the melody is
balanced.

Varying Gradient, Example 10

Gradient = 0.

The diagonal line is as follows:

95

that it is to say, a vertical line at the maximum value of the range. Now there is
a tendency for the melody to be drawn to C7, the highest pitch in the range. This
is effectively the inverse of Example 5 but here, although there are a number of
notes that are lower in pitch than most of the melody, at these high pitches they
do not tend to be heard as a separate melodic part to the same extent as Example
5. This is probably because these pitches are too high to constitute what we
normally think of as a bass line. This is borne out by the following example,
which is the same as the current example but transposed down by 2 octaves:

Varying Gradient, Example 11

Gradient = 0, Pitch values transposed down by 2 octaves.

This passage has exactly the same characteristics as the previous example but
now the lower pitches tend to be heard more clearly as a separate melodic part.

5.3.3 Conclusions

With a Minimum Mean equal to the lowest pitch in the range and a A value of
0.5:

1. A gradient of 1 produces a melody which meanders about the entire pitch
range.

2. A positive gradient of less than one produces a melody which is "pulled
down" towards the lower end of the range, with higher pitches being followed
by falling melodic parts. This effect becomes more pronounced as the gradient is
reduced.

3. For a gradient of 0.25 or less, the melody is highly concentrated in the lower
pitches, with higher pitches being heard as a separate melodic part.

With a Minimum Mean equal to the highest pitch in the range and a A value of
0.5:
96

1. A gradient of -1 produces a melody containing periods of leaping alternately
from high to low pitches and back, interspersed with more stable periods where
the pitches lie towards the centre of the range.

2. As the gradient increases from -1 towards zero the leaping effect becomes less
pronounced as the pitches become more and more concentrated in the upper
pitches of the range.

3. For a gradient of 0, most pitches lie close to the top of the range with

occasional lower pitches occurring.

5.4 VARYING MINIMUM MEAN

5.4.1 Introduction

The purpose of this section is to investigate the effect of varying the Minimum
Mean parameter (see Section 2.2.3) while all other parameter values are kept
constant. The fixed parameter values are as follows:

Pitch values: a four-octave C major scale centred on middle C (that is, C3
to C7)

Starting Pitch: 36 (= C3, the lowest pitch of the range)

Tempo: 60 beats per minute

Gradient: 1

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this
case)

Passage Length: 32 beats (32 seconds)
Wraparound: ON
Reverse: OFF

As far as the A parameter is concerned, for each Minimum Mean there are two
example passages, one with A =20 and one with A = 0.5. This is because varying
the Minimum Mean produces melodies with a definite tendency to move in a
certain way and so hearing the passage first with A = 20, which produces
completely deterministic results (see Section 5.2.3 above), provides a better
control example against which the A = 0.5 divergence can be appreciated. The A
= 20 examples are only 16 beats long, rather than 32, because the deterministic
nature of the passage is quickly discernible.

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory

97

called "Analysis of the Algorithm", subdirectory "Varying Minimum Mean".
The files are named numerically corresponding to the numbered examples
below.

5.4.2 Analysis

Varying Minimum Mean, Example 1

Minimum Mean = 38, A =20.

The diagonal line is as follows:

(note that the diagonal line re-emerges towards the bottom left-hand corner -
this is because the Wraparound! effect is turned on).

This example shows the precise rising tendency in Example 2 that
follows. The melody is simply repeating four-octave C major scales. Note that
the Minimum Mean of 38 is the second pitch of the range (D3); that is, one pitch
above the first pitch of the range.

Varying Minimum Mean, Example 2

Minimum Mean = 38, A =0.5.

While there are some descending sequences of pitches the overall trend is for
the melody to rise. When the melody reaches the top of the range (C7), any
further attempt to rise results in the melody returning immediately to the
bottom of the range - this is a result of the line wrapping around together with
the Reverse effect (see Section 2.3.4) being turned off. The melody therefore
consists of repeated rising sequences. At this value of A, the length of each rising
sequence varies considerably - the shortest is 30 notes in length while the
longest is 70.

1 See Section 2.3.2.
98

Varying Minimum Mean, Example 3

Minimum Mean = 40, A = 20.

The diagonal line is as follows:

This example shows the precise rising tendency in Example 4 that follows. The
melody consists of the alternate pitches of the C major scale; that is, the 1st, 3rd,
5th and so on. Note that the Minimum Mean of 40 is the 3rd pitch of the range;
that is, two pitches above the first pitch of the range. In fact, the repeated rising
sequences alternate between sequences beginning on C3, the first pitch of the
range, and sequences beginning on D3, the second pitch of the range. This is
because there are an odd number of pitches in the range, so a rising sequence
beginning on C3 ends on C7, the top pitch of the range, which is then followed
by D3. Had there been an even number of pitches in the range, then each rising
sequence would consist of pitches 1, 3, 5 and so on, while the even numbered
pitches (2, 4, 6 and so on) would not be heard (since the starting note has been
set to the lowest pitch in the range).

Varying Minimum Mean, Example 4

Minimum Mean = 40, A =0.5.

The melody again consists of repeated rising sequences but they are much
shorter than in Example 2; that is, the melody rises more quickly. The lengths of
the repeating sequences are still subject to wide variation, the shortest being
eight notes in length and the longest 28.

Varying Minimum Mean, Example 5

Minimum Mean = 48, A = 20.

The diagonal line is as follows:

99

N

This example shows the precise tendency in Example 6 that follows. The

AN

Minimum Mean of 48 is seven pitches, in the C major scale, above the first
pitch in the range, and the first rising sequence consists of pitches 1 8 15 22 29 of
the four-octave C major scale; that is, each successive pitch is seven above the
previous pitch. The highest pitch in the range, pitch 29, is now followed by
pitches 7 14 21 28. This is then followed by 6 132027, 5121926, 41118 25,310
17 24, 2 9 16 23, before returning again to the beginning of the range. after which
the sequence repeats. Thus, within the overall sequence are four separate falling
C major scales and this is how the overall sequence is heard even though it is
constructed from four or five note rising sequences.

Varying Minimum Mean, Example 6

Minimum Mean = 48, AL =0.5.

The melody consists of very short rising sequences, typically three to five
pitches in length. Since the sequences are so short, the low pitches of each
sequence tend to be heard as a slower part within the actual melody, as do the
high pitches of each sequence and, to a lesser degree, the middle pitches.

Varying Minimum Mean, Example 7

Minimum Mean = 60, A = 20.

The diagonal line is as follows:

N
AN

This example shows the precise tendency in Example 8 that follows. The

Minimum Mean of 60 is 14 pitches, in the C major scale, above the first pitch in
the range, and the first rising sequence consists of pitches 1 15 29 of the 4 octave
C major scale; that is, each successive pitch is 14 above the previous pitch. The

29th pitch, being the highest pitch in the range, is now followed by pitches 14
100

28, 1327, 1226,1125,1024,923,822,721,620,519,4 18,317, 2 16, before
returning again to the beginning of the range, after which the sequence repeats.
Thus, within the overall sequence are two separate falling C major scales and
this is how the overall sequence is heard even though it is constructed from
two or three note rising sequences.

Varyving Minimum Mean, Example 8

Minimum Mean = 60, A =0.5.

The melody consists of almost entirely of pairs of notes which are wide apart in
pitch, and is therefore heard as two separate parts, a low one and a high one.
Very occasionally, two consecutive pitches in the same register occur, but this
does not affect the overall impression of a two part structure.

Varying Minimum Mean, Example 9

Minimum Mean = 72, A = 20.

The diagonal line is as follows:

N

AN

This example shows the precise tendency in Example 10 that follows. The
Minimum Mean of 72 is 21 pitches, in the C major scale, above the first pitch in

the range. Now, since the Minimum Mean is well above the mid point of the
pitch range, the melody quickly reaches the top of the range and therefore falls.
This makes the behaviour less readily discernible. The actual sequence, grouped
according to the descending three or four note sequences of which it is
constructed, consists of the pitches 1,22 146,27 1911 3,24 16 8,2921 135,26 18
102,23 157,28 20 12 4, 25 17 9 of the four-octave C major scale. An upper part of
22 27 24 29 26 23 28 25 is readily heard. The distinction between the middle and
lower parts is somewhat blurred as some notes are ambiguously heard as being
in either the middle or lower parts, because for some three note sequences for
which the first pitch is in the middle register and the third is in the lower
register, the middle of the three pitches could be heard as belonging to the first

101

or the third. Thus, although middle and lower parts are definitely discernible,
they may be heard differently on repeated playings of the exact same sequence.

Varying Minimum Mean, Example 10

Minimum Mean = 72, A =0.5.
The melody consists mostly of short falling sequences of three or four notes. As

the pitches of each sequence are widely spaced, this tends to be heard as three
separate parts, high, medium and low.

Varying Minimum Mean, Example 11

Minimum Mean = 83, A =20.

The diagonal line is as follows:

This example shows the precise falling tendency in Example 12 that follows.
The melody consists of the alternate pitches of the descending C major scale.
Note that the Minimum Mean of 83 is 27 pitches above the lowest pitch of the
range or 1 pitch below the highest pitch of the range. In fact, the repeated falling
sequences alternate between sequences beginning on B6, the highest but one
pitch of the range, and sequences beginning on C7, the highest pitch of the
range. This is because there are an odd number of pitches in the range, so a
falling sequence beginning on B6 ends on D3, the second pitch of the range,
which is then followed by C7 (27 pitches above D3).

Varying Minimum Mean, Example 12

Minimum Mean = 83, A =0.5.

While there are occasional rising sequences of pitches the overall trend is for

the melody to fall. When the melody reaches the bottom of the range (C3), any

further attempt to rise results in the melody returning immediately to the top
102

of the range - this is a result of the line wrapping around, together with the
Reverse effect being turned off.

5.4.3 Conclusions
With a gradient of 1, Wraparound turned on and Reverse turned off:

1. A Minimum Mean whose value is anything other than the lowest pitch of
the range produces a melody which tends to move in one specific direction,
either up or down. The degree of this tendency is of course dependent on the
value of A.

2. A Minimum Mean of less than the mid point of the range produces a melody
which tends to rise: the higher the value of the Minimum Mean the faster the
melody rises. When melody reaches the highest point in the range it returns to
the bottom of the range (because the Wraparound effect is on and the Reverse
effect is off), so the melody consists of consecutive rising sequences. The
tendency is for the melody to rise in steps equal to the number of pitches that
the Minimum Mean is above the lowest pitch in the range. As the Minimum
Mean rises towards the mid point of the range, the rising sequences contain
fewer notes and these notes are wider apart in pitch, so separate melodic parts
begin to be heard within the overall sequence.

3. A Minimum Mean greater than the mid point of the range produces a
melody which tends to fall: the higher the value of the Minimum Mean the
slower the melody falls. When the melody reaches the lowest point in the
range it returns to the top of the range (because the Wraparound effect is on and
the Reverse effect is off), so the melody consists of consecutive falling
sequences. As the Minimum Mean rises just above the mid point, the melody
consists of falling sequences of few notes which are wide apart in pitch, so
separate melodic parts are heard within the overall sequence. As the Minimum
Mean rises towards the top of the range, the falling sequences contain more
notes and the impression of separate melodic parts begins to disappear. The
tendency is for the melody to fall in steps equal to one greater than the number
of pitches that the Minimum Mean is below the highest pitch in the range.

103

5.5 GRADIENTS GREATER THAN 1 OR LESS THAN -1

5.5.1 Introduction

When the gradient is greater than 1 or less than -1, the results for different
gradients become very varied and more difficult to predict, with an apparently
small change in gradient producing a significantly different result. What is
consistent about the note sequences produced is that they tend, after a short
transient sequence, to settle to a repeating sequence of pitches, this tendency, of
course, increasing as A increases: to hear the precise sequence A must be set to a
high value (20, for example - see Section 5.2.3 above) so that the result is
completely deterministic. The number of notes in the sequence can be anything,
from a single pitch to the entire length of the range - that is, a single attack, or
such as to bring every pitch in the range into play - and this is one aspect which
varies enormously for quite similar gradient values. Each pitch value in the
sequence is unique; that is, no pitch is repeated within each repetition of the
sequence. Moreover, for the same gradient, a different sequence may be
produced from a different starting pitch value: in this case, the different
sequences are mutually exclusive; that is, they contain no pitches in common.
This mutual exclusivity is not at all surprising: for example, if a starting pitch of
36 produced the repeating sequence 36 37 38 39, and a starting pitch of 40
produced a different repeating sequence then this sequence could not possibly
contain any of the pitches 36 37 38 or 39 because if it contained, say, 36, then this
would be followed by 37 38 39 and would therefore not be a different sequence.

A selection of examples is given below, to illustrate the variation which
can be achieved. Four different gradients are examined: 1.8, 4, 3.5 and -2. For
Gradient = 1.8, one example is given with A = 20. This is because, as discussed in
more detail below, for this Gradient value the same sequence is achieved for all
starting values (apart from 36, which results in a repeating single pitch
sequence). For Gradient = 4, two examples are given with A = 20, with different
starting values in order to demonstrate the two possible sequences which occur
for this Gradient. For the same reason, for Gradient = 3.5, three examples are
given with A = 20, with different starting values, while for Gradient = -2, one
example is given with A = 20, because the same sequence is achieved for all
starting values (apart from 69, which results in a repeating single pitch
sequence). For the first six examples, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on middle C (that is, C3
to C7)

Minimum Mean: 36 (C3)

Tempo: 60 beats per minute

104

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in this

case)
Wraparound: ON
Reverse: OFF

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "Gradients Greater Than 1 or
Less Than 1". The files are named numerically corresponding to the numbered
examples below.

5.5.2 Analysis

Gradients Greater Than 1 or Less Than -1, Example 1

Gradient = 1.8, A = 20, Starting Pitch = 38.

The diagonal line is as follows:-

™~

With this high value of A, the precise sequence is achieved. After a short

transient sequence of, in this case, rising bass notes, the melody settles to a
repeating sequence of seven notes. Experimentation shows that, after differing
initial transient sequences, the same seven note sequence pertains no matter
what the starting pitch, unless the starting pitch is 36 (C3), in which case the
sequence is just repeated C3's (which is what one would expect given that the
Minimum Mean of the diagonal line is 36).

Gradients Greater Than 1 or Less Than -1, Example 2

Gradient = 1.8, A = 2, Starting Pitch = 38.
This is the same gradient as the previous example but the A value of 2 means

that some variation about the tendency will occur. What are heard are
fragments of the seven pitch sequence of differing lengths, interspersed with

105

the rising transient bass sequence, sequences varying randomly but shaped
around the seven note sequence, and occasional repeating C3 sequences.

Gradients Greater Than 1 or Less Than -1, Example 3

Gradient = 1.8, A = 0.5, Starting Pitch = 38.

This is the same gradient as the previous two examples but at this value of A
the melody is allowed to vary to the extent that, although it has similar
characteristics to the previous example, the influence of the seven note
sequence is much weaker. Rising bass sequences are still evident however.

Gradients Greater Than 1 or Less Than -1, Example 4

Gradient = 4, A = 20, Starting Pitch = 38.

The diagonal line is as follows:-

)If

The melody consists of a repeating 14 note sequence, with no initial transient
sequence.

Gradients Greater Than 1 or Less Than -1, Example 5

Gradient = 4, A = 20, Starting Pitch = 40.

This is the same as the previous example but with a different starting pitch. The
melody also consists of a repeating 14 note sequence but this sequence has no
pitches in common with the previous sequence. Note that these two 14 note
sequences cover 28 of the 29 pitches in the specified range. The missing pitch is
(3 (36) - if the starting pitch was C3 then the resulting melody would consist of
repeating C3's.

106

Gradients Greater Than 1 or Less Than -1, Example 6

Gradient = 4, A = 4, Starting Pitch = 38.

This is the same as example 5 but this value of A allows a degree of variation
while imposing a fairly strong tendency. The result is interwoven fragments, of
varying lengths, of each of the 14 note sequences in the previous two examples.

For the next four examples, the fixed parameter values are as above but
the Minimum Mean is now 47 (B3).

Gradients Greater Than 1 or Less Than -1, Example 7

Gradient = 3.5, A = 20, Minimum Mean = 47, Starting Pitch = 36.

The diagonal line is as follows:-

/]

After a short transient sequence, the melody settles to a repeating five note
sequence. The pitch sequence forms an arpeggiated Dm chord.

Gradients Greater Than 1 or Less Than -1, Example 8

Gradient = 3.5, A = 20, Minimum Mean = 47, Starting Pitch = 41.

Here, the parameter values are as in the previous example but with a different

starting pitch, The melody consists of a different, mutually exclusive, five note

sequence. This sequence also forms an arpeggiated Dm chord but with the F3 in
the bass implying a first inversion.

Gradients Greater Than 1 or Less Than -1, Example 9

Gradient = 3.5, A = 20, Minimum Mean = 47, Starting Pitch = 43.

The parameter values are the same as in the previous two examples but with
yet another starting pitch. The melody consists of yet a third different, mutually

107

exclusive five note sequence. This pitch sequence forms an arpeggiated Em
chord, with the G3 in the bass implying a first inversion. Experimentation
shows that, no matter what the starting pitch, the melody always settles to one
of these three five note sequences except for a starting pitch of 52 (E4), which
produces a repeating sequence of E4's.

Gradients Greater Than 1 or Less Than -1, Example 10

Gradient = 3.5, A = 4, Minimum Mean = 47, Starting Pitch = 36.

This is the same as the previous three examples, with the same starting pitch as
in example 7, but this value of A allows a degree of variation while imposing a
fairly strong tendency. The result is interwoven fragments, of varying lengths,
of each of the five note sequences in the previous three examples, together with
one short repeating E4 sequence and occasional short sequences of pitches
outside of the three five note sequences. Alternating movement between the
chords of Dm and Em can be heard.

Gradients Greater Than 1 or Less Than ~1, Example 11

Gradient = -2, A = 20, Minimum Mean = 84, Starting Pitch = 36.

The diagonal line is as follows:-

/

Here, the melody consists of a repeating sequence of 28 notes, and this is in fact
the case for any starting pitch except 69 (A5), which results in a repeating
sequence of A5's. There is also a slight feeling of a repeating I - IV - V chord

progression in the key of C major.

Gradients Greater Than 1 or Less Than -1, Example 12

Gradient = -2, A = 4, Minimum Mean = 84, Starting Pitch = 36.
This is the same as the previous example but this value of A allows a degree of
variation while imposing a fairly strong tendency. The result is interwoven

108

fragments, of varying lengths, from anywhere across the 28 note sequence,
together with one short repeating A5 sequence.

5.6 VARYING NOTE LENGTH

5.6.1 Introduction

Exactly the same processes which have been examined thus far in relation to
note pitch are equally at work with regard to any other parameter. Therefore,
the analysis of note length variation which follows is not as exhaustive as the
preceding analysis of note pitch variation: instead, representative examples are
presented. However, it is important to observe that whereas melodies can be
produced across a wide range of pitches (in the above examples, 29 different
pitches across a four-octave C major scale), the number of different note
lengths, if the melody is to sound rhythmical, is bound to be comparatively
small. If a melody consists of 29 different note lengths then no rhythm will be
established because the notes cannot be grouped such that a pulse emerges,
whereas if a melody consists only of, say, semiquavers, quavers, crotchets and
dotted crotchets then groupings of notes adding up to implied bars of equal
lengths will tend to occur so that a pulse will be felt. There is, therefore, much
less scope for the algorithm to produce a wide variety of rhythmical patterns to
the same extent that different melodic patterns were produced in the previous
examples if the number of different note lengths from which it can select is
small. Having said that, of the 11 examples presented below, the first five
examples in this section use all possible note lengths obtained from dividing a
crotchet into 32 parts; that is, 1/32,2/32,3/32, ..., 31/32, 32/32 (=1). While this
will not produce a recognisable rhythm, it is equally important to understand
that this is no less musically valid and that interesting rhythmical effects can be
produced. The last six examples use a much smaller number of note lengths.
The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "Varying Note Length". The
files are named numerically corresponding to the numbered examples below.

5.6.2 Analysis

For all the examples in this section, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on
middle C (that is, C3 to C7)

109

Minimum Mean Pitch: 36 (= C3, the lowest pitch of the range)
Pitch Gradient: 1

Pitch A: 0.5

Starting Pitch: 36 (= C3, the lowest pitch of the range)
Tempo: 120 beats per minute

Pitch Wraparound: ON

Pitch Reverse: OFF

Length Wraparound: ON

Length Reverse: OFF

Varying Note Length, Example 1

Note Lengths: 1/32,2/32,3/32,...,31/32,32/32 of 1 beat
Minimum Mean Length: 1/32

Length Gradient: 1

Length A: 0.5

Starting Length: 1/32

Passage Length: 64 beats (32 seconds)

The diagonal line is as follows:-

This produces a sequence of notes whose lengths meander gently up and down
the 32 length range. The result is alternate periods of accelerando and
rallentando.

Varyving Note Length, Example 2

Note Lengths: 1/32,2/32,3/32,...,31/32,32/32 of 1 beat
Minimum Mean Length: 32/32 (1 beat)

Length Gradient: -1

Length A: 0.5

Starting Length: 1/32

Passage Length: 64 beats (32 seconds)

The diagonal line is as follows:

110

Lengths at one extreme of the range tend to be followed by lengths at the other

extreme, while lengths towards the centre of the range tend to be followed by

lengths also towards the centre. The result is sequences consisting of alternating

short and long notes interspersed with sequences of notes of more even length.

Varying Note Length, Example 3

Note Lengths:

Minimum Mean Length:
Length Gradient:

Length A:

Starting Length:

Passage Length:

The diagonal line is as follows:-

1/32,2/32,3/32,...,31/32,32/32 of 1 beat
16/32 (1/2beat)

0

0.5

16/32 (1/2beat)

48 beats (24 seconds)

The notes centre around one quaver's length, with deviations up and down.

The general effect is of the player keeping time very badly!

Varying Note Length, Example 4

Note Lengths:

Minimum Mean Length:
Length Gradient:

Length A:

Starting Length:

Passage Length:

The diagonal line is as follows:

1/32,2/32,3/32,...,31/32,32/32 of 1 beat
2/32 (1/16Dbeat)

1

1

1/32

64 beats (32 seconds)

111

As previously observed, the result of a Minimum Mean slightly higher than
the Minimum value of the range is a sequence of parameter values which tend
to rise until the Maximum value is reached, at which point, since Wraparound
is on, the sequence returns again to the Minimum before rising again. In the
case of note lengths, the result is a melody consisting of consecutive rallentando
sequences. If the Minimum Mean was slightly lower than the Maximum value
of the range then the result would be consecutive accelerando sequences.

Varying Note Length, Example 5

Note Lengths: 1/32,2/32,3/32,...,31/32,32/32 of 1 beat
Minimum Mean Length: 1/32

Length Gradient: 3.5

Length A: 20

Starting Length: 11/32

Passage Length: 48 beats (24 seconds)

The diagonal line is as follows:-

/1

As previously observed, Gradients bigger than 1 tend to produce repeating
patterns of parameter values. Here, A has been set to 20 so that the precise
pattern is obtained. In this case the repeating pattern of note lengths is a nine
note sequence as follows:

11,4, 12,8, 26,25,21,7,22
Although each note length in the nine note sequence is unique, the difference

between some of them is not discernible; for example, 11/32 and 12/32, 25/32
and 26/32.

112

Varying Note Length, Example 6

Note Lengths: 1/4beat, 1/2 beat and 1 beat
Minimum Mean Length: 1/4beat

Length Gradient: 1

Length A: 0.5

Starting Length: 1 beat

Passage Length: 64 beats (32 seconds)

In this example, only semiquavers, quavers and crotchets have been selected.
As discussed in the introduction to this section, this makes it much more likely
that a rhythmical pulse will be felt. A steady backing crotchet drum beat has
been added to provide a reference. Most of the time, the melody seems to be "in
time" but occasionally it seems to slip "out of synch" with the drum beat. This
happens when the pulse of the melody is, for more than just a few notes, off the
drum beat by a semiquaver which, unlike being off by a quaver, is disconcerting
to the listener. This effect is confirmed by the following example, which allows
only quavers and crotchets.

Varying Note Length, Example 7

Note Lengths: 1/2beat and 1 beat
Minimum Mean Length: 1/2beat

Length Gradient: 1

Length A: 0.5

Starting Length: 1 beat

Passage Length: 64 beats (32 seconds)

Here, although a syncopation effect occurs when the pulse of the melody is off
the drum beat by a quaver, a sense of a constant pulse is nevertheless
maintained throughout the melody.

Varying Note Length, Example 8

Note Lengths: 1/4 beat, 1/2beat and 1 beat
Minimum Mean Length: 1/4beat

Length Gradient: 1

Length A: 3

Starting Length: 1 beat

113

Passage Length:

64 beats (32 seconds)

This is the same as example 6 but the higher value A of 3 means that the lengths

will vary more slowly. There are, therefore, longer sequences of repeating

semiquavers, quavers or crotchets. This also means that when the melody falls

off the pulse by a semiquaver, it disconcertingly stays so for longer.

Varving Note Length, Example 9

Note Lengths:

Minimum Mean Length:
Length Gradient:

Length A:

Starting Length:

Passage Length:

1 beat, 2 beats and 4 beats
1

1

3

4 beats

64 beats (32 seconds)

This is, comparatively speaking, the same as example 8 but the effect of

employing longer note lengths is to remove the disconcerting "out of synch"

sequences.

Varying Note Length, Example 10

Note Lengths:

Minimum Mean Length:
Length Gradient:

Length A:

Starting Length:

Passage Length:

1/4 beat, 1/2 beat, 1 beat and 2 beats
1/4beat

0

1

1/4beat

64 beats (32 seconds)

Here, the gradient of 0, together with a Minimum Mean Length of a

semiquaver, means that more of the lengths will tend to be semiquavers with

the interjection of some quavers, much fewer crotchets and very occasional

minims. The resulting melody maintains the sense of a steady pulse because,

even though it may sometimes fall off the pulse by a semiquaver, another

semiquaver soon occurs to bring it back in synch.

114

Varying Note Length, Example 11

Note Lengths: 1/4 beat, 1/2 beat, 1 beat and 2 beats
Minimum Mean Length: 2 beats

Length Gradient: 0

Length A: 1

Starting Length: 2 beats

Passage Length: 64 beats (32 seconds)

Here, the gradient of 0, together with a Minimum Mean Length of a minim,
means that more of the lengths will tend to be minims with the interjection of
some crotchets, much fewer quavers and very occasional semiquavers. Now,
the pulse becomes lost because once a semiquaver occurs to put the melody out
of synch, it stays so for a long period.

5.7 VARYING NOTE VELOCITY

5.7.1 Introduction

Exactly the same processes which have been examined thus far in relation to
note pitch are equally at work with regard to any other parameter. Therefore,
the analysis of note velocity variation which follows is not as exhaustive as the
preceding analysis of note pitch variation: instead, representative examples are
presented.

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "Varying Note Velocity”. The
files are named numerically corresponding to the numbered examples below.

5.7.2 Analysis

For all the examples in this section, the fixed parameter values are:-

Pitch values: a four-octave C major scale centred on
middle C (that is, C3 to C7)

Minimum Mean Pitch: 36 (= C3, the lowest pitch of the range)

Pitch Gradient: 1

Pitch A: 0.5

Starting Pitch: 36 (= C3, the lowest pitch of the range)

115

Tempo: 60 beats per minute

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per
second in this case)

Velocity Range: 50 - 127

Pitch Wraparound: ON

Pitch Reverse: OFF

Length Wraparound: ON

Length Reverse: OFF

Passage Length: 48 beats (= 48 seconds)

Varying Note Velocity, Example 1

Minimum Mean Velocity: 50 (lowest value in range)
Velocity Gradient: 1

Velocity A: 0.05

Starting Velocity: 127 (highest value in range)

The diagonal line is as follows:-

The note velocity meanders up and down the range. The result is a melody
containing alternating periods of rising and falling dynamic, of various lengths.

Varying Note Velocity, Example 2

Minimum Mean Velocity: 127 (highest value in range)
Velocity Gradient: -1

Velocity A: 0.5

Starting Velocity: 127 (highest value in range)

The diagonal line is as follows:

116

Velocities at one extreme of the range tend to be followed by velocities at the
other extreme, while velocities towards the centre of the range tend to be
followed by lengths also towards the centre. The result is sequences consisting
of alternating loud and soft notes interspersed with sequences of notes of more
even dynamic towards the centre of the range. When the leap from loud to soft
is very wide, the loud notes are heard as a slower melodic line of half the tempo
of the actual generated sequence, the soft notes being barely discernible.

Varying Note Velocity, Example 3

Minimum Mean Velocity: 51
Velocity Gradient: 1

Velocity A: 0.5
Starting Velocity: 51

The diagonal line is as follows:

As discussed in previous sections, minimum mean values slightly above the
lowest value in the range produce sequences of parameter values which tend to
rise. Here, the result is successive sequences of notes which gradually rise to a
crescendo.

Varying Note Velocity, Example 4

Minimum Mean Velocity: 60
Velocity Gradient: 1

Velocity A: 0.5
Starting Velocity: 50

The diagonal line is as follows:

117

Here, the minimum mean velocity is ten above the lowest value in the range
so the consecutive sequences build much more rapidly to a crescendo than in
the previous example. Each sequence is, on average, eight notes in length.

Varying Note Velocity, Example 5

Minimum Mean Velocity: 51
Velocity Gradient: 2

Velocity A: 20
Starting Velocity: 51

The diagonal line is as follows:

T
S~

As previously observed, Gradients bigger than 1 tend to produce repeating

patterns of parameter values. Here, A has been set to 20 so that the precise
pattern is obtained. The result is repeating sequences of 12 different velocity
values: 51, 53, 57, 65, 81, 113, 99, 71, 93, 59, 69, 89. The values of 113, 93 and 89,
since they are followed by either two or five notes of comparatively smaller
velocity, produce stresses which imply a definite triple metre.

5.8 THE REVERSE OPTION

5.8.1 Introduction

The purpose of the Reverse Option (see Section 2.3.4) is to effect a reverse in
direction of a parameter when that parameter is tending to move in a particular
direction and reaches the upper or lower limit of its range of values. For
example, a melody which is tending to rise will begin to fall when it reaches the
top of the pitch range and a melody which is tending to fall will begin to rise
when it reaches the bottom of the pitch range.

As previously observed, a tendency to move in a particular direction
occurs when the Minimum Mean is other than the lowest value in the range
and the Gradient is 1, the speed of movement being higher the further the
Minimum Mean is from the lowest value in the range.

118

Three examples are given below, showing the effect of the Reverse
Option on Pitch, Note Length and Note Velocity. Each is the same as an
example from a previous section, in which a tendency to move in a particular
direction was evident, but with Reverse Option turned on for the relevant
parameter

The files on the accompanying compact disc and floppy disk which
support the examples in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "The Reverse Option". The
files are named numerically corresponding to the numbered examples below.

5.8.2 Analysis

The Reverse Option, Example 1

Pitch values: a four-octave C major scale centred on middle C (that
is, C3 to C7)

Starting Pitch: 36 (= C3, the lowest pitch of the range)

Minimum Mean Pitch: 38

Pitch Gradient: 1

Pitch A: 0.5

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in
this case)

Tempo: 60 beats per minute

Passage Length: 32 beats (32 seconds)

Pitch Wraparound: ON

Pitch Reverse: ON

This is the same as Example 2 in Section 5.4.2 above but with the Pitch Reverse
Option turned on.

Initially, while there are some descending sequences of pitches the
overall trend is for the melody to rise. When the melody reaches the top of the
range (C7), it starts to fall and, while there are some rising sequences the overall
trend is for the melody to continue to fall until it reaches the lowest pitch in the
range (C3), at which point it begins to rise again. The melody therefore consists
of alternate rising and falling sequences spanning the entire pitch range.

119

The Reverse Option, Example 2

Pitch values:

Minimum Mean Pitch:
Pitch Gradient:

Pitch A:

Starting Pitch:

Tempo:

Note Lengths:

Minimum Mean Length:

Length Gradient:
Length A:

Starting Length:
Passage Length:

Pitch Wraparound:
Pitch Reverse:
Length Wraparound:
Length Reverse:

a four-octave C major scale centred on
middle C (that is, C3 to C7)

36 (= C3, the lowest pitch of the range)
1

0.5

36 (= C3, the lowest pitch of the range)
120 beats per minute

1/32,2/32,3/32, ...,31/32,32/32 of 1 beat
2/32 (1/16beat)

1

1

1/32

64 beats (32 seconds)

ON

OFF

ON

ON

This is the same as Example 4 in Section 5.6.2 above but with the Note Length

Reverse Option turned on.

The melody begins with a rallentando sequence which continues to slow

until the note length reaches the top of the note length range (1 beat, the longest

note of the range), at which point it begins to quicken again. It continues to

quicken until the note length reaches the bottom of the note length range (1/32

beat, the shortest note of the range), when it begins to slow again. The melody
therefore consists of alternate rallentando and accelerando sequences spanning

the entire note length range.

The Reverse Option, Example 3

Pitch values:

Minimum Mean Pitch:
Pitch Gradient:

Pitch A

Starting Pitch:

Tempo:

a four-octave C major scale centred on
middle C (that is, C3 to C7)

36 (= C3, the lowest pitch of the range)
1

0.5

36 (= C3, the lowest pitch of the range)
60 beats per minute

120

Note Length:

Velocity Range:

1/8 (that is, 8 notes per beat, or 8 notes per

second in this case)
50 -127

Minimum Mean Velocity: 51
Velocity Gradient: 1
Velocity A: 0.5
Starting Velocity: 51
Pitch Wraparound: ON
Pitch Reverse: OFF
Length Wraparound: ON
Length Reverse: OFF
Velocity Wraparound: ON
Velocity Reverse: ON

Passage Length:

48 beats (= 48 seconds)

This the same as Example 3 in Section 5.7.2 above but with the Velocity Reverse
Option turned on.

Initially, the melody gradually rises to a crescendo until the note velocity
reaches the top of the note velocity range (127, the loudest note in the range), at
which point the velocity begins to fall, resulting in a diminuendo sequence,
until the velocity reaches the bottom of the note velocity range (50, the quietest
note in the range), when the velocity begins to rise again. The melody therefore
consists of alternate crescendo and diminuendo sequences spanning the entire
note velocity range.

5.9 THE REFLECT OPTION

5.9.1 Introduction

The Reflect option (see Section 2.3.3) only has an effect if the Gradient is greater
than 1 or less than -1, because for these Gradients the diagonal line will hit the
right or left hand edge (or both) of its enclosing rectangle and therefore be
reflected from it. As seen in Section 5.5 above, when the Wraparound, rather
than the Reflect, option is on, such Gradients tend to produce mutually-
exclusive repeating sequences whose values depend on the starting value. It
turns out that the same behaviour occurs when the Reflect option is on.
However, the repeating sequences produced by the Reflect option often
manifest two important behavioural differences to those produced by the
Wraparound option:-

121

1. While Wraparound-produced repeating sequences tend, apart from single
note sequences, to be of the same length (Examples 4 and 5 in Section 5.5 above
produce two different 14 note séquences, and examples 7, 8 and 9 produce three
different five note sequences), Reflect-produced repeating sequences can be of
widely differing lengths (the example below produces two 1-note sequences, two
3-note sequences and a 6-note sequence).

2. While Wraparound-produced repeating sequences tend to cover much of the
overall parameter range, and to overlap, it is possible for Reflect-produced
sequences to occur in a narrow sub-range within the overall range and to be
non-overlapping with any of the other sequences (the example below produces
a high E-minor triad which is in a different register to the other repeating
sequences).

The file on the accompanying compact disc and floppy disk which
supports the example in the following analysis may be found in the directory
called "Analysis of the Algorithm", subdirectory "The Reflect Option". The file
is named numerically corresponding to the numbered example below.

5.9.2 Analysis

The Reflect Option, Example 1

The parameter values are as follows:-

Pitch values: a four-octave C major scale centred on middle C (that
is, C3 to C7)

Minimum Mean Pitch: 72 (Cé6)

Pitch Gradient: -2

Pitch A: 3

Starting Pitch: 74 (D6)

Tempo: 60 beats per minute

Note Length: 1/8 (that is, 8 notes per beat, or 8 notes per second in
this case)

Wraparound: OFF

Reflect ON

Reverse: OFF

Passage Length: 48 beats (= 48 seconds)

The diagonal line is as follows:-

122

Experimentation with a Pitch A value of 20, and with different starting pitch
values throughout the whole range, shows that the possible repeating
sequences are:

C6 (single repeated pitch)
A5 F5B4 A3 G4 D3

F3 D5 E4

C4 (single repeated pitch)
B6 E6 G6

The example here has a Pitch A value of 3 so the result is interwoven
fragments, of varying lengths, of each of the possible sequences. For this
particular realisation, the passage spends the first half of its length around the
high three note sequence (B6 E6 G6) before moving down to spend most of the
second half around the lower sequences.

123

Chapter 6

Style Emulation

124

6.1 INTRODUCTION

In this chapter, we shall investigate how well the Markov program algorithm
may be used to generate music based on existing, known styles.

Four different, intentionally diverse, styles have been examined: Steve
Reich Phase Music, Gagaku, Bach Harpsichord and Dance Music. They have
been chosen in order to demonstrate:-

(i) the flexibility of the algorithm

(ii) important compositional techniques used when constructing pieces from
the algorithm

(iii) the strengths and limitations of the algorithm when attempting to
reproduce a given style

The first style, Steve Reich Phase Music, is itself based on a systematic
compositional method and it is therefore no surprise that the algorithm is quite
successful here. The "phasing” technique inherent in this music is reproducible
exactly and the main limitation is the lack of freedom the composer has when
constructing the melody.

The second style, Gagakuy, is included as an example of a non-western
style. This style, being generally harmonically less tightly structured than
western styles, turns out to be quite well suited to the algorithm although the
tuning system, being different to the western equal-tempered scale, causes some
problems due to the limitations of the MIDI standard.

The third style, Bach Harpsichord music, has been chosen as an example
of a style of music which has a very tight melodic and harmonic structure. It is
not surprising that this type of music is difficult to reproduce given the small
amount of input data supplied to each Part that makes up a composition. To
produce a new piece reproducing such a style exactly would require a thorough
analysis of the given style in order to formulate a complete, and possibly large
and complex, set of rules specifying the stylistic behaviour. The computer can
then produce a composition which obeys all these rules (see Section 1.2.4.1) and
the result is another piece in the same style. This process is in itself not,
however, particularly creative. The Diagonal Line algorithm, on the other
hand, allows the composer to introduce a degree of determinism such that
intended stylistic features are apparent but which nevertheless leaves open the
possibility for unexpected musical events to occur. In this attempt to emulate
Bach harpsichord music, relatively successful results are obtained by using the
algorithm to model one bar at a time, but the need to model the piece in such
small, bar-sized sequences exposes a very important limitation of the algorithm.

125

The final style, Dance Music, is included as an example of a present-day,
"popular” style. Here, the ability of the algorithm to generate precise rhythmic
structures is demonstrated and, since much of the music in this style is itself
often computer generated using a systematic approach, successful results are
obtained. It will be seen, however, that a disconcertingly large amount of
algorithmic effort is required to achieve very simple melodic sequence
structures.

Thus, what is demonstrated in this chapter is that such a deceptively
simple algorithm is capable of producing an extremely wide range of stylistic
output and that in many instances precise, deterministic compositional
elements are obtainable, whilst, equally importantly, in many other instances
the algorithm is not so well suited and compositional compromises must be
made.

The particular styles investigated here have been chosen not as specific
compositional goals in themselves but more to demonstrate both the
enormous flexibility of the algorithm and its limitations. The chosen styles are
not as important as the compositional process at work: that is, starting from a
set of stylistic objectives, how does the composer manipulate the parameters of
the algorithm such that a resulting composition behaves appropriately? This
process is key to the algorithmic approach employed here. At the same time,
whilst it is not under consideration here, the "wind it up, let it go and see what
happens” approach is also possible and represents another, completely different,
way of composing with this algorithm.

The approach that has been adopted here is to take original recorded
examples of the chosen styles (and, where possible, an original score) and, in a
part informed and part subjective manner, identify key stylistic features. The
Markov program is then used to construct a short piece, in which the
mathematical parameters of the various parts are set so as to approximate as
nearly as possible the previously identified features!. Extracts from the
parametric score (see Section 3.2.6 and Appendix A, Section 4.6) produced by the
Markov program are introduced regularly to show the relevant parameter
settings.

In the case of the Steve Reich Phase Music and Dance Music styles, the
pieces produced from the Markov program are constructed in a very precise
manner and, consequently, each playing of the composition produces exactly
the same result. For the Gagaku and Bach harpsichord styles, the probabilistic
nature of the algorithm comes into play and each playing of the composition

1 Note that since the algorithm is, as discussed above, not rule based, these features are
relatively simple ones and do not include, for example, permissible cadence patterns, or precise
melodic structures. It is therefore surprising how successful the resulting music can be given the
intrinsic simplicity of the principles from which is it is constructed.

126

generally produces a different result. It will therefore very likely be the case that
some renditions may, in reference to original examples of the style in question,
be more convincing than others. This is nothing to fear: on the contrary, it adds
to the creativity of the process since it allows the mathematical system to
introduce variations on the original style while nevertheless maintaining the
overall character.

It should not be overlooked that, in addition to the choices of parameter
values, certain fundamentally important musical choices are made, particularly
scale and timbre. If, for example, a chromatic scale was chosen when the
original style was based on a melodic minor scale, or a trombone timbre was
selected when the original work under investigation was a piano piece, then it
is highly unlikely that the musical result from the algorithm would be in any
way convincing no matter what the choice of mathematical parameters.
However, while such choices are necessary they are absolutely not sufficient.
The investigations in Chapter 5 show in great detail the enormous musical
variations in output which are obtained from relatively small changes in the
values of algorithm parameters, and the lessons learned there are put into
practice here in making informed initial choices of parameter values. What are
given in the current study are the final choices of the parameters. These were
arrived at by a continuous process of refinement, the Markov program being
used to facilitate this process in a manner explored in detail in Chapter 4, until a
result was obtained which, in the opinion of the composer, satisfied the original
objectives. This, again, is key to the compositional approach which this
algorithm affords, but it should be emphasised that the assessment of the
success, or otherwise, of the algorithm in emulating the musical styles in
question is based on empirical, subjective judgements of the results by ear.

The compact disc which accompanies this thesis contains audio file
encapsulations of renderings of each of the pieces produced by the Markov
program; for the Gagaku style, three separate renderings of each are included
while for the Bach harpsichord style, six are included. For the Gagaku and Reich
styles, audio files containing a short extract from original recordings of
performances in these styles are also included. The floppy disk contains the
examples as Markov program Composition Files for playback from the Markov
program. Full details of the filenames and locations are given later in this
chapter, in the relevant sections.

127

6.2 STEVE REICH PHASE MUSIC

6.2.1 Introduction

Steve Reich discovered the process of "Phase” music by accident in 1965 while
playing with tape loops of the recorded voice of a Pentecostal preacher. He
allowed the two tape loops to gradually move completely out of phase with one
another and then slowly move back into unison. The result was the work It's
Gonna Rain. He then applied this technique to live instrumental music. In
Piano Phase (1967), two pianists play a short repeating pattern of notes, one
playing steadily while the other gradually increases his or her tempo so as to
slowly move ahead of the other. This process is continued until both players are
back in unison, at which point the pattern is changed and the phasing process
begins again.

The example produced by the program is not based on Piano Phase
specifically but rather on the general features of Reich's phase pieces, although
piano has been chosen as the instrument. It demonstrates how the program can
produce completely deterministic results rather than probabilistic ones. In this
case, as previously stated, exactly the same piece results every time the
composition is replayed.

The accompanying compact disc contains a short extract from Piano
Phase, taken from the compact disc Steve Reich, Early Works,

Elektra/ Asylum/Nonesuch Records, 1987, performed by Nurit Tilles and
Edmund Niemann (compact disc number 7559-79169-2). It is in a WAV-
formatted audio file called "Reich Original.wav" and may be played by any
application capable of playing WAV files (Microsoft Windows™ Media Player
for example). The compact disc also contains the piece produced by the program
in a file called "Reich.wav". The floppy disk contains the program-generated
piece as a Markov program Composition File called "Reich” for playback from
the Markov program. All files may be found in the "Style Emulation” directory.

6.2.2 Identifying the Key Elements

There are two key stylistic features:-

a) A short single part piano line, repeated by two separate piano players

b) The two separate piano parts gradually move out of phase before eventually
coming together again.

128

6.2.3 Constructing the Piece Using the Algorithm

As discussed in detail in Section 5.5.2, repeating sequences are produced by
gradients of greater than 1 or less than -1 with A set high enough to produce a
deterministic result. The sequence which results from a particular choice of
parameter values is difficult to predict and the sequence used for the Markov
program Phase Music piece was arrived at after trial and error experimentation.
The relevant section of the score relating to the sequence of pitches is as

follows:-
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 80 62 60 2.000000 20.000000

PITCH SELECTIONS:
60 62 63 65 67 68 T71 72 74 75 77 79 80

Note that the pitch selections correspond to 13 notes of a C harmonic minor
scale starting from middle C. A gradient of 2 with a Minimum Mean of 62
produces a particular 12 pitch repeating pattern which was felt to be appropriate
to the task in hand. The A value is 20 which, as we have seen, produces a
deterministic result where each note in the sequence obeys precisely the
prediction of the Diagonal Line algorithm. The exact sequence of MIDI pitch
values produced is 60, 62, 65, 72, 63, 68, 79, 77, 74, 64, 75, 71 corresponding to C5,
D5, F5, C6, Eb5, G#5, G6, F6, D6, G5, Eb6, B5. This sequence results from setting
the starting pitch to 60 (C5). The pitches produced are 12 of the 13 actually
selected, the pitch value 80 (G#6) not occurring at all. In fact, a pitch of 80 would
be followed by a continuous repeating sequence of 80's and this partitioning of
the full set of selected pitches into mutually exclusive subsets (two in this case)
depending on the starting value is a common feature of the algorithm for
gradients of greater than 1 or less than -1. The reader is again referred to Section
5.5.2, for a detailed analysis.

As noted previously, the algorithm rather limits the composer in the
choice of melody which can be constructed deterministically. It is not possible to
produce any chosen melody: indeed, the algorithm is not designed for this
purpose, and it would be very surprising if a such a mathematical algorithm
could achieve this. One specific limiting feature of the deterministic melodic
sequences which can be produced by the algorithm, for example, is that, for each
repetition of the sequence, each pitch occurs once and once only.

129

The phase shift effect is produced by setting the note length for the first
part to one whole beat and the second to 190/192 of a beat?. Thus the second
part gradually moves ahead of the first because its note length is very slightly
shorter.

The respective relevant sections of the score for the two parts are as
follows (the overall tempo being set to 400 beats per minute):

Parameter Min Max MinMean Start Grad Lambda
LENGTH (/192) 192 192 192 1.000000 0.500000
and

Parameter Min Max MinMean Start Grad Lambda
LENGTH (/192) 190 190 190 1.000000 0.500000

The length of the section must be calculated so that it ends at the point when
the two parts come back into exact alignment. Now, Part 2 advances by 2/192 =
1/96 of a beat for every note played so after Part 2 has played 96 notes it will
have advanced by one whole beat. The time it takes Part 2 to play 96 notes is 96 x
190/192 = 95 whole beats. Thus it will take 95 x 12 = 1140 beats for Part 2 to have
advanced by 12 whole beats and therefore be back into exact alignment with Part
1. Therefore, the length parameters of each of the two Parts are set to begin on
beat 1 and end on beat 1140. If desired, a new Section can now begin for which
different Pitch parameters are specified in order to produce a different sequence.
The complete Markov program score for the piece can be seen in Appendix B,
Section B.1.1.

6.2.4 Discussion of the Results

This piece, having been constructed in a totally deterministic way so as to
capture the key elements of Reich's work, is extremely convincing. One small
point to make is that two live performers, having moved out of phase such that

2 The chosen value of 192 for the beat length fraction is not arbitrary. The number of ticks per beat
has been set in the program to 192 which the authors of Altech Systems' MIDIPascal recommend
as it allows tempos of up to 300 beats per minute before interrupts begin to occur too rapidly for
slower Apple Macintosh computers to cope. Therefore, choosing 192 as the beat fraction means
that calculations of the lengths of subdivisions of a whole beat (190/192 in this case) will be
accurate. Had a note length of, say, 99/ 100 been chosen then rounding errors would occur because
the program would have to convert this to a fraction of 192, which be not be exactly the same
value.

130

one was, for example, exactly one beat ahead of the other, would probably linger
in this state for a short while before continuing to move out of phase, whereas
the rate of phase shift between the two program generated parts is uniform
throughout.

6.3 GAGAKU - JAPANESE COURT MUSIC

6.3.1 Introduction

The term Gagaku, meaning literally "tasteful” or "correct” music, encompasses
all the traditional court music of Japan. Of this music, a subcategory, Togaku,
refers to music primarily of Chinese origin which was arranged and
standardised in Japan and dates from the late 8th century.
Reference was made to live recordings of Togaku Music on the compact disc
Gagaku: Court Music of Japan, JVC World Sounds, 1994 (compact disc number
VICG-5354).
The instruments used in these performances are:

Ryuteki, a high pitched bamboo flute

Hichiriki, a lower pitched double-reed instrument

Kakko, a double-headed barrel drum

Tsuridaiko, a large shallow barrel-shaped drum

The intention is to use the Markov program to create a short piece
consisting of two sections, inspired by two separate pieces on the compact disc,
as follows:-

1. An introduction formed by a short Ryuteki solo, backed by

occasional Kakko and Tsuridaiko.

2. A main body consisting of a continuous drone of Sho over which

Hichiriki begin to enter, first a solo and then several together.

The Togaku note system consists of seven fundamental modes, or
Choshi. Each mode consists of a seven-note series. The examples here use the
Hyojo mode, which approximates to the pitches E, F#, G, A, B, C# and D.

The Togaku repertory is classified both according to the kind of
movement and by rhythmic type. The three classes of movement are Jo, a
prelude or introduction, Ha, "breaking away"”, and Kyu, "rapid” or "hurried".

131

The examples here are of the Jo movement, which typically has a very slow
tempo bordering on free rhythm3.

Two short extracts from the aforementioned live recordings may be
found on the accompanying compact disc in WAV-formatted audio files called
"Gagaku Original 1.wav" and "Gagaku Original 2.wav". Three separate
program-generated realisations are contained in the files "Gagakul.wav",
"Gagaku2.wav" and "Gagaku3.wav". The floppy disk contains the program-
generated piece as a Markov program Composition File called "Gagaku" for
playback from the Markov program. All files may be found in the "Style
Emulation” directory.

6.3.2 Identifying the Key Elements

The following key stylistic features are identified in the two sections:-

Section 1

a) The solo has a slow 4/4 rhythm

b) The solo consists of quavers, crotchets, minims and semibreves.

c) Longer note lengths are more frequent than shorter ones

d) The solo contains occasional rests

e) The solo is based on the Hyojo mode

f) The melodic line moves fairly gently, usually moving up or down one pitch
value at a time but with occasional larger jumps occurring

g) There are very few successive repetitions of the same pitch

h) The player frequently "bends" the notes

i) From about a third the way through the section, single Kakko drum beats
occasionally enter

j) From about two thirds the way through the section, single Tsuridaiko drum
beats occasionally enter, but with lower frequency than the Kakko

k) Towards the end of the section, a short, accelerating Kakko drum sequence is
played

3 The other movements are rhythmically stricter. For example, the thythm Haya Yahyoshi
consists of 16 metrical units, each of which consists of eight four-beat units and begins with a
strong Tsuridaiko stroke.

132

Section 2

a) Sho notes form a continuous backing

b) The successive Sho notes are long and of varying length

c) The different notes come from the Hyojo mode

d) The volume of each Sho note rises and falls

e) A solo Hichiriki enters playing notes from the Hyojo mode

f) After a short while this is joined by a chorus of other Hichiriki all playing
notes from a similar register so that discords occur

g) All Hichiriki notes are "bent" frequently

h) The note lengths vary such that the attack points are often offset

i) There is no obvious even rhythm

6.3.3 Constructing the Piece Using the Algorithm

Before going into the precise details of the algorithm parameter settings used in
the construction of the piece, it is helpful, when considering the separate
realisations of the piece produced by the program, to have a general awareness
of how much is fixed and how much is open to variation by the algorithm. For
this piece, the details are as follows:-

Section 1

Ryuteki solo: The length of this solo is fixed at 1'12" but is open to
considerable variation in pitch and rhythm on
successive playings.

Kakko drum: The time period over which these beats may occur is
fixed at 024" to 1'0" but the precise attack points are
subject to considerable variation. The same single pitch
is used throughout.

Tsuridaiko drum: The time period over which these beats may occur is
fixed at 0'48" to 1'12" but, while occurring less
frequently than the Kakko, the precise attack points are
again subject to considerable variation. The same
single pitch is used throughout.

Accelerating

Kakko: Lasts from 1’ to 1'18". Although the precise attack
points will vary on successive playings, no difference is
readily discernible so this is essentially fixed.

133

Section 2

Sho backing: There is a short crescendo of Sho notes from 1'12" to
1'18" which is fixed. Thereafter, the Sho notes
continue until the end of the piece. The attack points
and rising and falling volume of the notes are subject
to considerable variation but the combination of these
effects across three Sho instruments playing together
averages out to the extent that there is no readily
identifiable difference between successive playings.

Solo Hichiriki: Subject to considerable variation.

Hichiriki chorus: Subject to considerable variation. Although the overall
effect sounds similar on successive playings there can
be a noticeable difference in register.

The features described in Section 6.3.2 above are incorporated into the
piece to be produced by the program by manipulating the algorithm parameters
as follows:-

Section 1

To achieve quavers, crotchets, minims and semibreves, the beat fraction is set to
2, and the selection mechanism is used such that only note lengths of 1, 2, 4 and
8 are allowed, corresponding to quavers, crotchets, minims and semibreves
respectively.

To control the frequency of occurrence of note lengths such that longer
note lengths are more frequent, the Minimum Mean is set to the maximum of
the range of note lengths, 8/2 (that is, a semibreve) with a gradient of 0. This
will make note lengths towards the top of the range (the longer lengths) more
likely to occur than those towards the lower end of the range (the shorter
lengths) (see Section 5.3.2, Example 10 for a discussion of this effect, but in
relation to pitch). However, a A value of 0.5 allows a reasonable degree of
variation so that shorter note lengths will occur from time to time.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

—— — i s S, i e Ui Qi b, o S0 S 5 S o I i s S e i i . i B A . e b e e L M e . o T B T O i ol i S M St S Bt e i (i B Bkt S b i T P o

LENGTH (/ 2) 1 8 8 0.000000 0.500000

LENGTH SELECTIONS:
1 2 4 8

134

To achieve rests, the selection values of note velocity are set so that only 127
(maximum velocity) and 0 (no sound) are allowed. When velocities of 0 are
generated, a rest will occur, lasting until such time as a velocity of 127 is next
generated.

Since only occasional rests are desired, the Minimum Mean Velocity is
set to 127 with a gradient of 0. A A setting of 2 gives a fairly high tendency for
velocities of 127 to be generated rather than velocities of 0, thus achieving
occasional rests.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

e S o e . s i A, o . Sl e il Wl i o o S o ot o . i . S S M S e o WO A . i e e i, s . s et o W B i e . Wit o o s i A Kt S o b e e e

VELOCITY 0 127 127 127 0.000000 2.000000

VELOCITY SELECTIONS:
0 127

To achieve the Hyojo mode, the following MIDI pitch values are selected:

76,78,79, 81, 83, 85, 86 and 88.

To achieve a gently moving melody, the Minimum Mean is set to 76, the

lowest value of the pitch range, with a gradient of 1 and a A value of 0.5 (see
Section 5.3.2, Example 1).

Since successive repetitions of the same pitch value are infrequent, it was

decided to prevent successive repetitions of the same pitch occurring altogether,

by selecting the Disallow Repeats option in the Pitch Parameter Values dialog
box (see Appendix A, Section 3.3.2).
A MIDI Patch value of 73 has been chosen, corresponding to Piccolo.
The complete section of the score corresponding to the solo part is as

follows:-

Sect 1 Part 1, Chan 1, Patch 73, Pan 64, BEATS 1 to 60

Parameter Min Max MinMean Start Grad Lambda

PITCH 76 88 76 1.000000 0.500000

LENGTH (/ 2) 1 8 8 0.000000 0.500000

VELOCITY 0 127 127 127 0.000000 2.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO

VELOCITY YES | YES | NO | NO |

PITCH SELECTIONS:
76 78 79 81 83 85 86 88
LENGTH SELECTIONS:
1 2 4 8
VELOCITY SELECTIONS:
0 127

135

The bending of notes is achieved by using the Pitch Bend parameter. However,
it is no use varying the pitch bend of the notes of the solo line itself, because
this would just mean that the pitch bend value would vary on a note by note
basis4, whereas what is required here is that the pitch bend varies while a single
note is playing. To achieve this effect, pitch bend changes must be sent from a
different Part but to the same MIDI channel as the solo line. The program
allows pitch bend values to be set in the range 0 to 127: 0 corresponds to full
bend downwards and 127 corresponds to full bend upwards. For most MIDI
devices, this implies, by default, a pitch bend range of one tone below to one
tone above true pitchS.

Here, the pitch bend parameter range is set to 32 to 96, giving a range
from one semitone below to one semitone above true pitch. A Minimum Mean
of 32 and a gradient of 1 with a A value of 0.7 give a fairly gentle movement up
and down the pitch bend range, which is necessary so that the pitch bends
sound fairly smooth rather than jerky. The very first pitch bend value
generated is 64 so that the first note played starts at true pitch. From then on,
the pitch bend will move above and below true pitch but the average value
should be around 64 so that the overall sense of modal identity is not lost.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

S e o S Ol M A S e . e e Y. o o S e . . O O Ll M S o e . R S b B S i Gk s e i, i S e i s it S, ke i e k. il i L s et v S i o 5 s o o P

PITCH BEND 32 96 32 64 1.000000 0.700000

All note lengths are 1/8 so that the pitch bend changes fairly quickly (8 times a
beat) thus giving the desired pitch bend effect. Only zero velocities are allowed
so that no Note On or Note Off events will be generated, just Pitch Bend
Change events. The Pitch settings are therefore irrelevant and have been left at
the program default values of 60.

The complete section of the score corresponding to the pitch bend change
part is as follows:-

4 Note that this could be a valid compositional objective (to achieve microtonal intervals for
example) but is not appropriate here.
5 If the pitch bend range has been changed on the MIDI device then the actual pitch bend values
implied by the values in the range 0 to 127, as set in the Markov program, will change
proportionately. The program could have allowed the user to set the pitch bend range on the
MIDI device by setting parameter values in the program itself but it was decided not to implement
this in order to save on disk and memory usage and to limit the amount of data the user has to
manipulate. The user can still change the Pitch Bend Range setting on the MIDI device itself if
required, but note that since the program allows only 128 Pitch Bend settings, the wider the Pitch
Bend Range the worse the resolution becomes. However, 128 settings over a two tone range is
perfectly adequate.

136

Sect 1 Part 2, Chan 1, Patch 73, Pan 64, BEATS 1 to 60

Parameter Min Max MinMean Start Grad Lambda
PITCH 60 60 60 1.000000 0.500000
LENGTH (/ 8) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
PITCH BEND 32 96 32 64 1.000000 0.700000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

Notice that this part lasts exactly the same length of time as the solo part (that is,
60 beats) and is sent to the same MIDI Channel, 1. It is also important that the
Patch and Pan settings are the same so that this part does not interfere with the
solo part in any way, other than changing the pitch bend.

For the occasional Kakko drum, a part is added, starting at beat 20, for
which only 0 and 127 velocities are allowed. A Minimum Mean value of 0 with
a Gradient of 0 and a fairly high A value of 5 means that 0 velocities
predominate and thus the drum only enters occasionally at such times as
velocities of 127 do occur.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

" o . o i o o " D> T e A Sk o il st b i, e i o . S i i, i, i o i R A OSSR i . i Sl i il s . S0 o S e . Il e o . W P e

VELOCITY 0 127 0 127 0.000000 5.000000

The instrument chosen is Timpani (MIDI Patch 48), with a single pitch of A#.
This part is of course sent to a different MIDI Channel (2).
The complete section of the score corresponding to this part is as follows:-

Sect 1 pPart 3, Chan 2, Patch 48, Pan 64, BEATS 20 to 50
Parameter Min Max MinMean Start Grad Lambda
PITCH 68 68 68 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 127 0 127 0.000000 5.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO NO |

LENGTH YES | NO | NO NO | NO
VELOCITY YES | YES | NO | NO |

VELOCITY SELECTIONS:
0 127

137

The Tsuridaiko drum part is constructed in a very similar way except that the A
value for the velocity is set to 6 instead of 5. This means that zero velocities are
more predominant; that is, the drum enters less frequently. The instrument
chosen is Taiko (MIDI Patch 117)

The complete section of the score corresponding to this part is as follows:-

Sect 1 Part 5, Chan 3, Patch 117, Pan 64, BEATS 40 to 60
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 67 67 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 127 0 127 0.000000 6.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO] NO | NO] NO
VELOCITY YES | YES | NO] NO |

VELOCITY SELECTIONS:
0 127

The remaining part of this first section is the accelerating Kakko drum sequence
towards the end. To achieve an accelerando sequence we must produce a
sequence of notes whose lengths are successively shorter. This is done by setting
the Minimum Mean to the lowest value in the range (the shortest length) and
having a gradient of less than one so that the values are "pulled down" towards
the lower end of the range (see Section 5.3.2, Example 2, for a discussion of this
effect, but in relation to pitch). The lower the value of A the more gradual will
be the pull down effect. Here, length values are chosen across the complete
range from 5/64 of a beat to 64/64 of a beat (that is, a whole beat). The starting
length is set to 64/64 so that the length starts at one beat and gradually shortens
thus producing the desired accelerando effect. A gradient of 0.8, being fairly
close to one, means that the size of the initial jumps down in length from the
starting length of one beat are fairly small, while a A value of 2 gives a fairly
strong tendency so that the lengths steadily shorten and, very importantly, once
they reach the lower end of the range they tend to stay there.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

LENGTH (/ 64) 5 64 5 64 0.800000 2.000000

This part can be sent on the same MIDI Channel as the previous Kakko drum
part since it does not overlap it. It lasts for the final 10 beats of this first section.

138

The velocity of this part is set to 100 rather than the possible maximum of 127
because rapidly repeating drum beats (in "machine gun" fashion) tend to drown
out other instruments.

The complete section of the score corresponding to this part is as follows:-

Sect 1 Part 4, Chan 2, Patch 48, Pan 64, BEATS 51 to 60

Parameter Min Max MinMean Start Grad Lambda

PITCH 68 68 68 1.000000 0.500000

LENGTH (/ 64) 5 64 5 64 0.800000 2.000000

VELOCITY 100 100 100 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO l NO {

Section 2

In order to provide continuity between this section and the first, the rapidly
repeating Kakko drum continues for the first 5 beats.

To form the Sho backing, three separate parts have been used, playing the
notes B, D and E. Each in fact just plays one long note for 125 beats, the entire
length of the section. The first of these has the following score:-

Sect 2 part 1, Chan 1, Patch 112, Pan 64, BEATS 1 to 125
Parameter Min Max MinMean Start Grad Lambda
PITCH 71 71 71 1.000000 0.500000
LENGTH (/ 1) 125 125 125 1.000000 0.500000

The other two Parts are exactly the same except that they play MIDI pitch values
74 and 76 and are sent to different MIDI Channels.

To achieve the rising and falling volume, a separate part sends volume
change events to the same MIDI channel. In fact, each of the three main Sho
parts has 2 separate volume change parts associated with it, the first of which
forms a short crescendo as the instrument first enters, while the second controls
the rising and falling volume thereafter. For the short crescendo, the full
volume range of 0 to 127 is specified but a Minimum Mean of 5 with a gradient
of less than 1 (0.961 in this case®) means that, from the specified starting value
of 0, the volume values will tend to be pulled up towards the maximum value

6 This value has been calculated specifically so that the line ends exactly at the maximum value
of the range. This ensures that no Wraparound effect occurs so that once the volume reaches the
top of the range it tends to stay there and doesn't jump back down to the lower end.

139

giving the required crescendo effect. A A value of 2 makes this tendency fairly

strong.

The relevant extract from the score is as follows:-
Parameter Min Max MinMean Start Grad Lambda
VOLUME 0 127 5 0 0.961000 2.000000

Note lengths are all 1/8 of a beat so that the volume rises quickly, and the
velocity is set to zero so that no Note On or Note Off events are sent, just the
volume change events.

The complete section of the score corresponding to this part is as follows:-

Sect 2 Part 2, Chan 1, Patch 112, Pan 64, BEATS 1 to 5

Parameter Min Max MinMean Start Grad Lambda

PITCH 71 1 1.000000 0.500000
LENGTH (/ 8) 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 0 5 0 0.961000 2.000000

This short crescendo lasts for the first 5 beats of the section. The second volume
change part then takes over, lasting from beat 6 until the end of the section. It
allows the volume to meander up and down between the MIDI volume values
of 32 and 127.

The relevant extract from the score is as follows:-

Parameter Min Max MinMean Start Grad Lambda

e s v i S S S e e e W O o S o v . s A i il o O s o Vo B . . s S P A b i S e et . dm Wi e e S, e T o S . S A o D . M S ol T M e . i e e P e S

VOLUME 32 127 32 90 1.000000 0.200000

The quite low A value of 0.2 means that large volume jumps sometimes
occur and, when this jump is from a low value to a high one, it gives the
impression of a new attack point, even though only one long continuous note
is actually being played, while the comparative rarity of such jumps means that
the notes tend to be long and of varying length. This technique has been used
here as it gives a much softer attack than playing a fresh note.

The complete section of the score corresponding to this part is as follows:-

Sect 2 Part 5, Chan 1, Patch 112, Pan 64, BEATS 6 to 120
Parameter Min Max MinMean Start Grad Lambda

PITCH 71 71 71 1.000000 0.500000
LENGTH (/ 2) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 32 127 32 90 1.000000 0.200000

140

A similar pair of volume change parts is used to control the volume of the
other two Sho parts.

The solo Hichiriki enters at beat 30 and lasts for 30 beats. Pitch selections
are from the Hyojo mode and are allowed to meander over the range of pitches
but a A value of 2 means that jumps in pitch tend to be small. Successive
repetitions of the same pitch have been disallowed.

To prevent an even rhythm occurring, note length selections are 4, 8, 9,
10, 11, 12, 13, 14, 15, 16 with a beat fraction of 4. Therefore, in addition to
crotchets (4/4), semibreves (8/4) and breves (16/4), uneven note lengths occur,
13/ 4 for example.

Velocities of 0 and 127 only are allowed but a Minimum Mean Velocity
of 127 and a zero gradient with a fairly high A value of 3 mean that rests are
infrequent.

The complete section of the score corresponding to this part is as follows:-

Sect 2 Part 11, Chan 5, Patch 71, Pan 40, BEATS 30 to 59
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 81 67 71 1.000000 2.000000
LENGTH (/ 4) 4 16 4 1.000000 0.500000
VELOCITY 0 127 127 0.000000 3.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO
VELOCITY YES | YES | NO | NO |

PITCH SELECTIONS:

67 69 71 73 74 76 79 81
LENGTH SELECTIONS:

4 8 9 10 11 12 13 14 15 16
VELOCITY SELECTIONS:

0 127

At the conclusion of the solo, three Hichiriki then enter, with their starting
beats offset by one beat (they start at beats 60, 61 and 62 respectively). The
parameter settings for these are very similar to the solo Hichiriki part but with
two important differences:
(i) A smaller set of pitches has been selected so that the three parts tend to stay
in the same register
(ii) The Length gradient is set to -1 so that longer note lengths tend to be
followed by shorter ones (see Section 5.6.2, Example 2)

The complete section of the score for the first of these three parts is as
follows:

141

Sect 2 Part 17, Chan 5, Patch 71, Pan 40, BEATS 60 to 120

Parameter Min Max MinMean Start Grad Lambda
PITCH 69 78 69 71 1.000000 2.000000
LENGTH (/ 4) 4 16 4 -1.000000 2.000000
VELOCITY 0 127 127 0.000000 3.000000
REPEAT | SELECT | REVERSE | REFLECT RANDOM ENTRY

PITCH NO | Y¥YES | NO | NO |

LENGTH YES | YES | NO | NO | NO
VELOCITY YES | YES | NO | NO |

PITCH SELECTIONS:

69 71 73 74 76 78
LENGTH SELECTIONS:

4 8 9 10 11 12 13 14 15 16
VELOCITY SELECTIONS:

0 127

The other two Parts are the same but they are sent to a different MIDI Channel
and they have different Pan values in order to achieve separation of the three
parts. Each of these parts is timed to end five beats before the end of the section
so that the whole piece concludes with just the Sho notes playing.

The complete Markov program score for the piece can be seen in
Appendix B, Section B.1.2.

6.3.4 Discussion of the Results

The program-generated realisations of this piece generally work well although
some realisations are more convincing than others. For the initial Ryuteki solo,
should three or more successive notes from the mode occur in sequence (up or
down), E, F#, G for example, then this can sound unconvincing. This event
will tend to be infrequent due to the underlying probabilities and, over the
three renditions generated by the program, it occurs a total of 4 times across all
of the three 1'12" periods that the solo lasts, as follows:

Rendition 1: DC#B 7" to 15"
Rendition 2: A BCt 15" to 23"
Rendition 3: DC#B 2" to 8" and

EF# G 46" to 55"

Also unconvincing, but again infrequent due to the probabilistic
construction, are long sequences of notes in the Ryuteki solo without a rest. The
following diagram shows the periods of continuous note activity in the three
renditions - the vertical lines show the start and end points of each of the
periods, read against the vertical Time axis, while the figures in brackets

142

indicate the lengths of each of the sequences in seconds (for example, Rendition
1 begins with a 15 second continuous note sequence lasting from 0’ to 15'):-

Time Rendition1 Rendition? Rendition3
D!I -
5" {15) {12)

10"}

15u . 'E:l

nl 'p)
20 |3 |

25"
| lun @)
35"t H2) |3}
40"+
45"t

| IW I2) o
S5"F |e)
1'0"}
1'5"} ,'?3
110%r It1) I2)
1'15"L

@)

(12)

®)

Notice that the two longest periods of note activity without a rest are 15
seconds, in Rendition 1, and 21 seconds, in Rendition 3, all others being 12
seconds or less. Only the 21 second sequence sounds disconcertingly long when
listening to the pieces. In general, however, the algorithm is effective in
producing such improvisational sequences.

The Kakko and Tsuridaiko drum attacks are only ineffective if they occur
very frequently but this again is probabilistically extremely unlikely and does
not happen at all in any of the three renditions produced here. The attack
counts for the three Renditions are as follows:-

Kakko Drum: 3, 5 and 5 respectively (time period = 24" to 1'0")
Tsuridaiko Drum: 2, 1 and 2 respectively (time period = 48" to 1'12")

The accelerating Kakko drum sequence at the end of the first section,
being constructed in a fairly deterministic way, is always effective.

In the second section, the Sho parts work well. The offset attacks of the
Hichiriki, with their discordant effects, also work well and it is only when their
registers all drift apart that they become unconvincing. Again, these parts have
been constructed such that this is unlikely. Rendition 2 is very effective in this
regard, with the three Hichiriki parts moving together, apart from a brief period

143

from 2'50" to 2'55" when one of the parts is noticeably higher than the other
two, so that the required discordant effects are successfully obtained. Renditions
1 and 3 are less successful, with two of the three parts staying together but the
other tending to move away from the other two: in Rendition 1 one part
becomes much lower than the other two from 2'57" and remains so for the
remainder of the piece, while in Rendition 3, from 2'47", one part persistently
enters in a lower register than the other two.

The least convincing aspect is the pitch bend effect, used both for the
Ryuteki solo in the first section and the Hichiriki parts in the second section.
The main problem is that the bends will occur randomly at any point during
the playing of a note whereas the live player will always tend to commence the
bending of a note at its initial point of attack. This effect occurs quite frequently
during all three renditions. Two more readily apparent examples, occurring in
the Ryuteki solo, are in Rendition 2, where a note lasting from 7" to 12"
suddenly bends upwards after 3", and in Rendition 3, where a note lasting from
57" to 1'0" suddenly bends downwards after 2". The program could achieve the
required degree of synchronisation by using a deterministic note length
sequence, such that the attack points of the notes forming the solo are
completely fixed and the pitch bends are made to occur at the start of each note,
but then the essential freedom of the solo would be lost because the algorithm
would be allowed no probabilistic variation. Also, occasionally, the pitch bend
can cause the notes to drift away from the true pitch so that the sense of modal
identity is lost. Since, probabilistically, the average pitch bend tends to be zero,
this is fairly rare. The most noticeable occurrence of this effect is in Rendition 2
at 27" where, after a period of silence, the Ryuteki solo enters with A# followed
by G# and thereafter tends to stay a semitone above the correct pitch values for
the remainder of the solo. Minor occurrences are evident in Rendition 1 at 44",
where a G# is played and in Rendition 3 at 18" where an A is played, followed
by a G#, but in both these cases the drift is quickly corrected. For all that, the
pitch bend effect nevertheless adds an essential character to the piece.

6.4 BACH HARPSICHORD MUSIC

6.4.1 Introduction

In this attempt to emulate a piece of Bach harpsichord music, there are two
principal objectives:

144

1. To demonstrate the ability of the algorithm to introduce probabilistic and
deterministic control at a fine level of detail, and the compositional techniques
which can be employed to achieve this.

2. To show the strengths and weaknesses of the algorithm in emulating a style
of music which has a precise harmonic and melodic structure.

It must be stated straight away that to allow the algorithm to produce
long note sequences and expect that the necessary structural precision will occur
is just not feasible. By the probabilistic nature of the algorithm it is possible that
short, convincing passages may occur from time to time, but not with a
sufficiently high frequency for the results to be anywhere near satisfactory. The
likelihood of convincing results diminishes even further if there is to be
harmony and counterpoint between separate musical lines.

To reproduce the character of a piece of Bach harpsichord music, the
piece must be constructed from phrases consisting of the correct number of
equal length bars and there must be a definite harmonic structure, as the piece
moves through precise chord sequences. In addition, each chord will last for a
precise number of bars, or number of beats within a bar. Further, definite
melodic shapes are an essential part of the character of the music.

The approach adopted here, therefore, is to algorithmically control the
piece on a barby bar basis.

The intention is to use the program to model the first 16 bars’ of the
Courante from the Bach Suite BWV 813. Reference was made to an original
score (Bach 1980) and also to a recording taken from the compact disc Little
Notebook for Anna-Magdalena Bach (selections), Analekta Fleurs de Lys, 1995,
performed by Luc Beauséjour (compact disc number FL 2 3064), for the purpose
of providing a means to compare aurally the results produced by the program
with an actual performance of the original piece.

In order to maintain the harmonic structure, and to keep the precise
melodic shaping in a small number of important phrases, a relatively high
degree of determinism is used in the construction of the version produced from
the algorithm. This means that there is a high probability that, as long as the
key stylistic elements of the original style have been reliably identified,
successive renderings produced by the algorithm will be faithful to the original
style, and this is indeed the case here. However, if the degree of determinism is
too high then there will be little variation between successive renderings, and,
while this would not necessarily be an invalid use of the algorithm, it would
defeat the object here, which is to be able to produce many different versions
from the same single set of algorithm parameters, all in the desired style.

7 The first section of the original Courante is actually 24 bars in length rather than 16 but, since 16
bars are more than sufficient to satisfy the objectives of this exploration, only the first 16 bars
have been studied here.

145

Therefore, what has been attempted here is to achieve a balance between
determinism and probabilistic variation such that the degree of determinism is
sufficiently high to achieve stylistic consistency, whilst the degree of
probabilistic variation is high enough that significant variations occur between
successive renderings. In this way, the aim is to explore the extent to which this
algorithm can reproduce melodic elaboration within a constrained tonal and
harmonic framework.

The accompanying compact disc contains six separate program-generated
realisations in WAV-formatted audio files called "Bachl.wav" through to
"Bach6.wav" and the corresponding scores, in staff notation, for the six
realisations can be found in Appendix C, where the original score is also given.
The floppy disk contains the program-generated piece as a Markov program
Composition File called "Bach” for playback from the Markov program. All
files may be found in the "Style Emulation” directory.

6.4.2 Identifying the Key Elements

For this example, a careful study of the original score is essential so that reliable
deductions can be drawn as to how to control the parameters of the algorithm
so as to reproduce the style as faithfully as possible. In this section, the key
findings of the analysis of the original score are discussed. The key elements
identified are lettered below and will be referred to later in this chapter when
the method of construction of the piece is discussed.

a. Time Signature
The piece is in 3/4 time.

b. Harmonic Structure

It begins in C minor and, at the end of the 16 bars under investigation,
modulates to Eb major (the Courante as a whole returns to C minor).

The harmonic structure of the 16 bars, as implemented in the Markov program
emulation8, is as follows:-

8 This is a deliberate over-simplification of the harmonic structure of the original piece in order
to create a framework within which the algorithm is able to generate a degree of embellishment.
146

Bar Chord(s)
1 C
2 C
3 f
4 G
5 C
6 f
7 Bb
8 Eb
9 Eb
10 f
11 g
12 Ab
13 Bb
14 Eb
15 ED (1 crotchets), BP (2 crotchets)

Eb

—
(@)

c. Beginning of the Piece
The first bar is preceded by a three note lead-in: G AP F.

d. Texture
There are two separate musical parts, a melody line and a bass line.

e. The Bass Line
The bass line provides a solid harmonic structure. It consists mainly of

crotchets, which form arpeggiations of the underlying chord, apart from four
bars where quavers are introduced in order to provide a counterpoint to the
melody.

f. The Melody
The melody consists almost entirely of quavers apart from three crotchets

which occur at phrase ends. Two or more consecutive occurrences of the same
pitch never occur.

In order to investigate the way in which the construction of the melody
supports the harmonic structure, two simple statistical analyses have been
carried out:

Analysis I. For each of the chords making up the chord sequence which forms
the harmonic structure of the piece, this analysis counts the relative frequencies

147

of the diatonic notes in the melody for the duration of the chord, numbering
the notes from the root of the chord, the root being note 1. For example, the
melody in bar 2 of the original score is as follows:

A

The underlying chord is C minor, so, since C (note 1) occurs twice?, D (note 2)

occurs once, EP (note 3) occurs twice and G (note 5) occurs once, this bar will
contribute the following amounts to the overall totals for Analysis I:

N O G WN e
S O = ON

Analysis II. This analysis counts of the total number of times that each of the
numbered diatonic notes occurs as the first note of the sequence of notes in the
melody occurring against the chord (usually the first note of the bar, apart from
bar 15 where two chords occur). In the above example, the first note is EDb so this
bar will add one to the total for note 3 in Analysis II. The complete results for
the 16 bars are as follows:

Analysis |
Note No of Occurrences %
1 18 21.95
2 5 6.10
3 15 18.29
4 3 3.66
5 30 36.59
6 2 2.44
7b 8 9.77
7 1 1.22

9 No attempt is made in this analysis to distinguish between notes of the same pitch value which
are an octave apart, but, of course, when the reproduction of the piece is structured using the
Markov program, both pitches will be included in the selected pitch set where appropriate.

148

Analysis I1

Note No of Occurrences %
1 0 0.00
2 1 5.88
3 6 35.29
4 1 5.88
5 9 52.94
6 0 0.00
7 0 0.00

From Analysis I, we can see that fully 76% of the notes are numbers 1, 3
or 5 in relation to the underlying chord; that is, they are from the corresponding
tonic triad. A further 10% are the flattened 7th - this, of course, is not part of the
diatonic scale but forms part of the 7th chord corresponding to the underlying
chord. Of the five note 2's which occur, three are within the first three bars
while a fourth forms part of a five note step by step descending sequence at the
very end of the 16 bars.

From Analysis II, we can see that more than half of the first notes of the
sequences corresponding to the underlying chords are number 5 in relation to
the chord, while the bulk of the remainder are number 3.

As we shall see in the next section, these results will be a very important factor
in the decisions made regarding the algorithm parameter settings.

g. Melodic Shaping
The melody in bars 5, 7 and 9 of the original score has the following precise,
arpeggiated, shape (this example is bar 5, based on a C minor chord):

that is, a quaver rest followed by degrees 5, 3, 1, 5 (an arpeggiated tonic triad) and
finishing with the flattened 7th, while bars 10, 11, 12 and 13 have the following
almost identical shape (this example is bar 10, based on an F minor chord):

o
%3‘“_'. 1 =
7 -

P

1

149

which has the initial rest replaced by the 5th degree an octave below the second
note in the bar. In the same vein, bars 4, 6 and 8 have the following shape (this
example is bar 4, based on a G major chord):

L |

v L
which is another arpeggiated tonic triad shape, these bars occurring at phrase
ends. The remainder of each of these three bars is completed by a three quaver

contrapuntal line in the bass.
These melodic shapes explain the preponderance notes 1, 3 and 5 in the
results of Analysis I above, and of notes 3 and 5 in Analysis II.

h. Ornamentation

The score has little notated ornamentation other than a small number of trills
and turns (for the 16 bars studied here there is one trill). However,
interpretations of this style of music generally introduce embellishments and
the performer on the recording referred to here adds trills and turns liberally.

6.4.3 Constructing the Piece Using the Algorithm

The piece is built in two Sections, one for the first eight bars and another for the
second eight bars. This division into Sections has been done to avoid exceeding
the maximum number of Parts1O per Section allowed by the Markov program
(20 Parts). This has been necessitated by the fine level of control being used:
usually a separate Part for each bar and occasionally a Part for a subdivision of a
bar, so that Parts are being used more frequently than in the previous
examples!l. The following two tables show, for each bar of the piece, which
Section/Part in the Markov program realisation implements it12:

10 The reader is reminded that "Part”, in this context, is a specific construct within the Markov
program, which allows the composer to specify parameter settings to produce a single,
monophonic, line. Polyphony is achieved by having two or more Parts play simultaneously.

11 Nevertheless, it can be convenient to logically divide a piece into Sections even though some

Sections may consist of significantly less than 20 Parts, particularly as the
Section Sequence feature can then be used to produce a specific form e.g. Rondo (ABACA).

12 The values in the Right Hand and Left Hand columns refer to the Part numbers within the

Section. Thus, for example, the right hand part in bar 4 is implemented by Part 6 in Section 1.
150

Section 1

Bar Right Hand Left Hand
1 2,3 11
2 4 12
3 5 13
4 6 14
5 7 15
6 8 16
7 9 17
8 10 18,19
Section 2
Bar Right Hand Left Hand
9 1 8
10 2 9
11 3 10
12 4 11
13 5 12
14 6 13,14
15 7,15 14
16 16,17 14

The tempo is set to 384 beats per minute and, for convenience, each beat will be
one quaver.

The strategy adopted here is to fix the bass completely, copying the
original score, in order to provide a solid harmonic structure. The algorithm is
then used to generate varying treble lines, on successive playings, against this
fixed bass. While most of the treble line is allowed to vary, a small number of
bars have been reproduced exactly so as to maintain the original sense of
phrasing. Specifically, bars 4, 6, 8, 15 and 16, together with the three note
introductory sequence, have been fixed. The remaining 11 bars have been
allowed to vary, subject to some degree of shaping control via the algorithm
parameter settings, as explained in detail below. In the musical scores of the
pieces produced by the program given in Appendix C, those passages which are
variable are clearly marked with rectangular outlines. It is obviously a
limitation of the algorithm that, in attempting to generate music within the
compositional context of such a style, it is only possible to exploit the variation-
generating qualities of the algorithm to a relatively small degree. On the other
hand, it is a strength of the algorithm that, by building the piece a bar at a time,

151

it is capable, by virtue of the diagonal line mechanism, of reproducing exactly
the required sequences despite its probabilistic nature.

The remainder of this section refers to the lettered key elements identified in
the previous section and discusses their implementation using the parameters
of the algorithm.

a. Time Signature

The division of the melody into equal length arpeggiations of distinct chords,
and the precisely structured bass line, both discussed in detail below, imply a
firm 3/4 time signature.

b. Harmonic Structure

The harmonic structure is maintained by making appropriate pitch selections
so as to imply the appropriate chord, again discussed in detail below.

c. Beginning of the Piece

The original work begins with the following introductory three note sequence:

P
E e == E

o

ey

N

It was decided to reproduce this introductory sequence precisely so as to give the
piece a sound beginning. The sequence has a single Part all to itself. The
required pitch selections have been made (MIDI values 65, 67 and 68). The
Minimum Mean value has been set to 67 (G). Since this is second pitch in the
range of three values, there will be a step by step rising tendency (see Section
5.4.2, Example 1); that is, F G Ab. A \ value of 20 guarantees that this will occur.
With Wraparound turned on, when AP is reached the sequence will return to F
and begin to rise again. Setting the starting pitch to G (67), the note length to 1 (=
a quaver) and the length of the Part to 3 beats, so that only three quavers will
occur, produces the required three note pattern. This technique is used
elsewhere in the piece when similar three note patterns are required. The
ability to obtain this type of patterning is a direct consequence of the application
of modulo arithmetic, inherent in the diagonal line algorithm.

The relevant extract from the score is as follows:

Sect 1 Part 1, Chan 1, Patch 7, Pan 64, BEATS 1 to 3
Parameter Min Max MinMean Start Grad Lambda
PITCH 65 68 67 67 1.000000 20.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

e s R it ol ik O S e O O e e o P i o ey e o e i e e . b s e Al o S k. o I . e e e o o ek o i 0. o e

PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
65 67 68

d. Texture

The melody/bass line separation occurs naturally by virtue of the fact that the
Parts which produce the melody are built from pitch selections from a higher
register than those Parts which produce the bass line. In addition however, the
melody Parts are sent to a separate MIDI channel (1) from the bass Parts (2).
While this is not strictly necessary, it does have the advantage that the notation
software used here to produce the scores (Emagic Logic™ 4.1) can be instructed
to separate the treble and bass clefs according to the different MIDI channels. It
would also allow stereo panning to be applied to the two MIDI channels to
reinforce the separation although this has not been done here.

e. The Bass Line
In order to provide a solid harmonic foundation to the piece, the bass line has
been constructed in an entirely deterministic manner, so as to be the same as

the original score. Thus, for example, bar 1:

I T
[

is formed by selecting the three pitches in question, setting the Minimum Mean
Pitch to be the second pitch, with a A value of 20, so as to produce a definite
stepwise rising pattern, setting the note lengths to 2 (that is, 2 quavers = 1
crotchet) and fixing the starting pitch to be C (48), the relevant extract from the
score being:

Sect 1 Part 11, Chan 2, Patch 7, Pan 64, BEATS 4 to 9
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 55 51 48 1.000000 20.000000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO [NO {

PITCH SELECTIONS:
48 51 55

153

whilst bar 2:

is achieved very simply by selecting the two C pitches, setting the starting pitch
to be the higher C and disallowing repeats, the relevant extract from the score

being:

Sect 1 Part 12, Chan 2, Patch 7, Pan 64, BEATS 10 to 15

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 60 48 60 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | Y¥YES | NO [NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO 1

PITCH SELECTIONS:
48 60

f. The Melody

Since, in the original, two or more consecutive occurrences of the same pitch
never occur, all the Parts which form the melody have been set to disallow
pitch repetitions.

Throughout the 16 bars, all but three of the notes are quavers, the
remaining three being crotchets which occur at phrase ends, for example, bar 4

1 _
APeatrr

¢ L

of the original:

However, it is not possible to set algorithm parameters for note lengths in a
single Part such that precisely two quavers occur followed by one crotchet -
indeed, by its very nature, the algorithm is not designed to be able to produce
arbitrarily chosen melodic or rhythmic sequences. To achieve the above
rhythm, it would be necessary to use 2 Parts for this bar, one for the two quavers
and one for the crotchet, at which point the compositional process becomes
unacceptably laborious. Therefore, here all note lengths have been set to one (=

154

a quaver) for all the melodic Parts, so the program replaces the crotchet with a
quaver.

Analysis I above shows that, in the original, 76% of the notes are
numbers 1, 3 or 5 counted from the root of the underlying chord while a further
10% are the flattened 7th. Therefore, the pitch selection mechanism provide by
the Markov program is used to reflect this. Thus, for example, for bar 5, which
in the original is as follows:

LEII . -

just the pitches corresponding to the C minor triad, plus the flattened 7th, are
selected (MIDI values 70, 72, 75 and 79). It was also noted that of the five notes
2's which occur, three are within the first three bars and so the set of selected

pitches for these bars has been expanded to include this pitch as well.

Analysis II above shows that more than half of the first notes of the
sequences corresponding to the underlying chords are note 5, while the bulk of
the remainder are note 3. Since the Markov program allows the composer to
specify the starting pitch in a Part, this has been used to reflect the starting
pitches in the bars of the original. Thus, for example, for bar 5 the starting pitch
is set to G (MIDI value 79).

g- Melodic Shaping
As previously discussed, eight of the bars in the original have a precise
arpeggiated shape, bar 10 for example:

.|
%ﬁ_‘—_‘ i e
™ e

o

In this attempt to emulate the style of the original, the intention is to maintain
something of the character whilst allowing the probabilistic nature of the
algorithm to introduce a degree of variation so that each piece produced is
different. What has been done here is to set the diagonal line parameters so that
this bar tends to have the following shapel3:

Al :F

N

13 Note that this is a personal compositional decision taken by the author which it was felt was
appropriate and vindicated by the results.
155

To achieve this, the corresponding five pitches are selected and the Minimum
Mean pitch is set to the highest pitch value, with a gradient of one, so as to
achieve a stepwise descending tendency through the selected pitch values (see
Section 5.4.2, Example 12). The starting pitch value is set to the lower C (60), and
since Wraparound, rather than Reflect, is in effect, the second pitch played will
tend to be highest pitch in the range, after which it will tend to descend
stepwise, as required. A A value of 2 provides a quite strong tendency for this
melodic shape to occur while still allowing a degree of variation.

The relevant extract from the score for bar 10 is as follows:-

Sect 2 Part 2, Chan 1, Patch 7, Pan 64, BEATS 7 to 12
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 72 60 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES l NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
60 63 65 68 72

The same technique has been employed for the other bars which have a similar
melodic shape in the original but with, of course, different pitch selections to
reflect the underlying chord.

For those three bars of the original with the following shape occurring at
phrase ends, bar 4 for example:

L .

it was decided to reproduce these bars exactly, so as to maintain the original
sense of phrasing. This shaping is achieved simply by selecting the three pitches
in question, setting the diagonal line parameters to produce a stepwise rising
sequence, as shown in the discussion of the bass line construction above,
specifying the starting pitch to be the middle of the three values and setting A to
20. The Wraparound effect will result in the highest of the three pitches being
immediately followed by the lowest pitch.

For bar 6, for example, the relevant extract from the score is as follows:

156

Sect 1 Part 8, Chan 1, Patch 7, Pan 64, BEATS 34 to 36

Parameter Min Max MinMean Start Grad Lambda

PITCH 65 72 68 68 1.000000 20.000000

LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | ¥YES | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
65 68 72

For the remaining bars, the melody has been allowed to vary more freely, with
A values of 0.5, apart from the six note step by step descending sequence at the
end (formed from the last three quavers of bar 15 and the first three quavers of
bar 16) for which the parameters have been set so as to reproduce it exactly.

h. Ornamentation

Although the algorithm is capable of recreating ornamentation, liberal use of
these effects does tend to use up Parts quickly, so, although the performer on
the recording referred to here adds a number of turns, just one turn has been
added to the piece produced by the program, in bar 16, to demonstrate the
technique. The turn occurs at a note whose pitch is G, so this is replaced with
three quick notes, G AP G, adding to one quaver's length in total (by setting the
length of the Part to 1 beat and the note length to 1/3 beat). The relevant extract
from the score is as follows:

Sect 2 Part 17, Chan 1, Patch 7, Pan 64, BEATS 43 to 43
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 68 67 67 1.000000 20.000000
LENGTH (/ 3) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | ¥YES | NO | NO |

LENGTH YES] NO | NO | NO | NO
VELOCITY YES } NO | NO | NO |

PITCH SELECTIONS:
67 68

The complete rendition is formed by using the Section Sequence feature (see
Appendix A, Section 3.7) to play Section 1 followed by Section 2.

The complete Markov program score for the piece can be seen in
Appendix B, Section B.1.3.

157

6.4.4 Discussion of the Results

The bass line, having been constructed deterministically so as to be identical to
the original, provides a sound harmonic structure to the piece. Indeed, as is
evident from the above explanations of the techniques used to construct it, the
algorithm lends itself well to this "walking" style bass line. In the melody line,
the various phrases are built mainly on appropriate triads, possibly with the
flattened seventh added, so that the required chord is usually implied, and this,
together with the structured bass line, means that, in general, the correct chord
progression is achieved. There are, however, occasional exceptions to this.
These exceptions occur when a pitch sequence happens to occur which implies
a different chord to that intended. Two examples of this effect are given below:-

(i) In Rendition 3, Bar 1, the occurrence of F followed by C tends to imply an F
minor chord rather than the intended C minor chord.

(i) In Rendition 6, Bar 14, the pitch sequence C G C G tends to imply a C minor
chord rather than the intended EP major.

For obvious reasons, this effect does not occur when the pitch selections are
taken just from the required chord. It is only when the melody line is allowed
more freedom, through the introduction of pitches other than those contained
in the chord, that the possibility of this effect arises. However, its occurrence is
infrequent and the effect is one of an occasional "glitch" rather than a serious
deviation from the correct harmonic progression.

For the melody, recall that for the eight bars which, in the original, had
the following shape:

; " , -
¢ & st
the parameter values were set so as to tend to produce:
Al pom—
ﬁt:!_ i
N S -

In the renditions which resulted from the program, a variety of different shapes
occurred. Mathematically, 1024 different shapes could result for each such bar
but since the parameters have been set to produce a tendency for a particular
shape rather than allowing the pitches to occur at random, variants of the

158

second shape above are more likely to occur. Thus not only did the
"controlling” shape itself occur (Rendition 6 Bar 11), but so also did

(Rendition 1 Bar 13)

%!} po— po—

S " (Rendition 4 Bar 10)

and many more. One limitation of the algorithm, however, is that it is not
possible for the same shape to be maintained across a chord progression
through a sequence of bars, unlike the original.

A further limitation is that is not possible to control what happens at the
junction between consecutive Parts or, in this case, bars, so that the melody may
not always flow smoothly through consecutive bars. Thus, for example, even
though successive repetitions of the same pitch have been disallowed in the
parameter settings for each bar, it is possible the last pitch in one bar may be the
same as the first pitch in the following bar. However, due mainly to the
melodic shaping control introduced in the parameter settings, this occurs just
twice through all three renditions, Rendition 3 from bars 1 to 2 and Rendition 5
from bars 2 to 3. It is also possible that a disconcertingly large jump in pitch may
occur from the last pitch in one bar to the first pitch in the following bar, for
example the jump from C down to EP in Rendition 1 bars 1 to 2 and the jump
from F down to G in Rendition 3 from bars 13 to 14. Again, these occur as very
occasional "glitches".

As discussed earlier, the algorithm, by its very nature, is not able to
produce arbitrary rhythmic structures. Thus, for example, the following, bar 5,

of the original:
i - !
%ﬁz —

v |

is approximated as three quavers. This tends to lessen the effect of the
counterpoint in the bass line. For example, the crotchet in the original above is
followed in the bass line by:

S
L
»

heh

159

but because the piece produced by the algorithm replaces the crotchet in the
melody line with a quaver this tends to be heard as:

5 ‘!L) IFE_-
7 . 1
rather than:

N

L1l L

%—b’ £

b

A
= ' =

P

Finally, in addition to the limitations discussed above, the amount of
labour involved in constructing this short piece from such small sequences is
prohibitive; one need only compare, by referring to the Markov program scores
in Appendix B, the amount of parametric data required compared to the Steve
Reich Phase Music piece to appreciate this. It must be conceded, therefore, that
the algorithm is not really appropriate for modelling such styles.

6.5 DANCE MUSIC

6.5.1 Introduction

This style of music, around which the present day "Club" dance culture is built,
is characterised by simple, repetitive rhythms overlaid with short melodic
fragments. There are a number of genres, for example: "Drum and Bass", which
is predominantly percussive, "Ibiza", which has a Latin feel and "Trance",
which has a more "dreamlike” atmosphere through the use of synthesized
orchestral and electronic sounds. The piece produced here falls into the latter
category. It is an original composition but inspiration was taken from the
compact disc Trance Mix '99 - A Spiritual Journey Through Time and Space,
mixed by Richard Evans at Wise Buddah, Virgin Records Ltd., 1999 (compact
disc number 7243 8 48332 2 0).

This style demonstrates, in particular, the ease with which the algorithm
can be used to built percussive rhythmical structures, emulating a "drum
machine".

160

The accompanying compact disc contains the program-generated piece as
a WAV-formatted file called "Dance.wav". The floppy disk contains the piece as
a Markov program Composition File called "Dance" for playback from the
Markov program. Both files may be found in the "Style Emulation" directory.

6.5.2 Identifying the Key Elements

a) Percussive Rhythms

A small number of percussion instruments are used in this style of music,
usually a Bass Kick Drum and Closed Hi-Hat, and possibly a Hand Clap sound, a
Snare Drum and a Cymbal. Each of these sounds repeats at a strict beat interval,
usually every 1, 2 or 4 beats, with their respective attack points offset so as to
build a layered percussive rhythmic structure.

b) Melodic Structure
Melodic lines typically consist of short, simple fragments, typically no more
than 32 beats in length, which repeat continuously, possibly with some small

variation, pitch level for example.

c) Bass Line
Bass lines are also very simple, usually a short fragment which repeats
continuously and often just a single repeating bass note.

d) Breaks
"Breaks” are definite changes which take place regularly and usually consists of
the addition and/or removal of a melodic line, percussion instrument or
sampled sound (vocal or instrumental), or a change in the melodic or bass
lines. Breaks occur strictly at a multiple of 8 beats, usually every 16, 32 or 64
beats. A common feature is for a short, rapid crescendo snare drum sequence to
occur leading up to a break.

It is the unrelenting succession of breaks which bring about a progressive
musical development, possibly over a period of a number of hours.

6.5.3 Constructing the Piece Using the Algorithm

a) Percussive Rhythms
In the piece produced by the algorithm, three percussion sounds are used - Kick
Drum, Hi Hat and Hand Clap - according to the following pattern:-

161

Beat
1 2 3 4 656 6 7 8 910 11 12 13 14 15

KikDram ¥ ¥+ ¥ ¥ 4 4 ¥
IS SN TS TS NN TN S
Hand Clap * *’ *’ "'

This is achieved by having a separate Part for each sound with, as specified by
the MIDI standard for Drum Set sounds, each being sent to MIDI channel 10
with the pitch set according to the required sound (36 for Kick Drum, 42 for Hi
Hat and 39 for Hand Clap). In addition, the initial starting times for each of the
three sounds are offset so as to build up the percussion progressively, and
staggered according to the required pattern as shown in the above diagram, the
Hi Hat beginning at beat 34, the Hand Clap at beat 67 and the Kick Drum at beat
129.

For each Part, it is simply a case of setting the pitch to the required value,
setting the note length to be the number of beats between each occurrence of the
sound and specifying the appropriate starting beat. Thus, for example, the Hand
Clap sound occurs at an interval of 4 beats so the note length for this Part is
fixed at 4 beats14.

The relevant extract from the score is as follows:-

Sect 1 Part 3, Chan 10, Patch 0, Pan 64, BEATS 67 to 248
Parameter Min Max MinMean Start Grad Lambda

PITCH 39 39 39 1.000000 0.500000
LENGTH (/ 1) 4 4 4 1.000000 0.500000

14 Strictly speaking, this is musically incorrect since it implies that each note will last for a full
4 beats and only finish just before the next one begins. However, since Drum Set sounds are very
short with no sustain, this is not an issue - they will last for as long as the sound itself lasts,
regardless of the note length setting, provided it is at least as long as the duration of the sound of
course.

162

b) Melodic Structure
There are two melodic fragments. The first, which uses the "Saw Wave" sound,

is as follows:-

N N N\ N
457 — — —7 - = L= AN
At 7 Tt
o

I
y 4

free
4

7
 —

N
H

!
&

44t
o

l =
41
i

L= L %7
£ £ t

]

As has been discussed before, using the algorithm to construct precise melodies
is usually impossible, as it is not designed for this purpose. However, in this
instance the melody above can be generated from two simultaneous Parts. The
first Part plays one continuous note in each bar:-

4 Y -

o

Since this melody has a simple stepwise movement it is easily generated as we
have seen previously, the relevant extract from the score being as follows:-

Sect 1 Part 10, Chan 3, Patch 82, Pan 64, BEATS 257 to 448
Parameter Min Max MinMean Start Grad Lambda
PITCH 66 72 67 69 1.000000 20.000000
LENGTH (/ 1) 8 8 8 1.000000 0.500000
VOLUME 0 0 0 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | NO | NO |

LENGTH YES | NO | NO | NO] NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
66 67 69 72

The second Part sends only MIDI volume change events to the same
MIDI channel as the first Part, such that the volume is zero on quavers 1, 3, 5
and 7 of each bar and non-zero on quavers 2, 4, 6 and 8, this being achieved by
causing the volume to alternate between, in this case, 0 and 80:-

163

Sect 1 Part 11, Chan 3, Patch 0, Pan 64, BEATS 257 to 448

Parameter Min Max MinMean Start Grad Lambda

PITCH 60 60 60 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 0 80 80 0 ~1.000000 20.000000

Thus, the note only actually sounds every other quaver as required. In fact, only
the first note of each bar is a genuine attack point but because the Saw Wave
sound has infinite sustain the results are successful.

This melody is joined subsequently by a similarly constructed one which
harmonises at intervals of a third.

The second melodic fragment, played on Synthesized Strings, is as

follows:-
T
a Fad N Fal Ty
o

This stepwise pitch movement is, again, easily constructed and the rhythm is
obtained simply by selecting just the two note lengths involved and disallowing
note length repeats:

Sect 2 Part 6, Chan 3, Patch 52, Pan 64, BEATS 1 to 128
Parameter Min Max MinMean Start Grad Lambda
PITCH 57 64 64 64 1.000000 20.000000
LENGTH (/ 1) 4 12 4 12 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | YES | NO |

LENGTH NO | YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

57 59 60 62 64
LENGTH SELECTIONS:

4 12

¢) Bass Line
The bass line is a single repeating note, occurring off the main beat. As with the
percussion Parts, it is simply constructed by fixing the pitch and note length to
the required values (MIDI pitch 28 and 2 beats respectively) and choosing an
appropriate sound.

The relevant score extract is as follows:-

164

Sect 1 part 8, Chan 1, Patch 25, Pan 64, BEATS 130 to 248

Parameter Min Max MinMean Start Grad Lambda

PITCH 28 28 28 1.000000 0.500000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
RELEASE 16 16 16 1.000000 0.500000

Note that the Release has been set to a low value so that each bass note cuts off
quickly, thereby giving a "snappy" feel, rather than allowing it to sustain for a
full 2 beats.

d) Breaks
Breaks are easily built into the piece just by setting the various Part start and
end times to precisely the right points. The Break structure of the piece is as

follows:
Break Beat No Beat Intervalls Event(s)
1 Piece commences with a
continuously repeating Saw
Wave note
1 17 16 Hi Hat enters
2 33 16 Hand Clap enters
3 65 32 Bass and Kick Drum enter
4 129 64 1st melodic fragment
entersl6
5 161 32 Harmonising melodic

fragment enters

6 193 32 Bass and Percussion drop out
1st melodic fragment drops
out

7 225 32 Bass and Percussion re-enter,
2nd melodic fragment enters

8 289 64 Bass and Percussion drop out
2nd melodic fragment drops
out

9 305 16 Crescendo Snare Drum roll
ends piece

15 The number of beats per minute for this piece is set to 274 in order to achieve the resolution
necessary to build the rhythmic structure and, strictly speaking, the beat intervals, as set in the
composition, are double the values shown here. However, the values shown in this table feel more
natural when counting.

16 In fact, the Bass and most of the percussion drop out for 4 beats before this break. However,
this just forms a short lead in to the break rather than constituting a break in itself.
165

Breaks 3 and 7 are preceded by a short crescendo Snare Drum roll. These, and
the crescendo roll which ends the piece, are achieved by setting the note
velocity parameters for the associated Part such that the velocity begins at zero
and quickly increases linearly over the required period (see Section 5.7.2,

Example 3):-

Sect 2 Part 8, Chan 10, Patch 0, Pan 64, BEATS 145 to 160
Parameter Min Max MinMean Start Grad Lambda
PITCH 38 38 38 1.000000 0.500000
LENGTH (/ 2) 1 1 1 1.000000 0.500000
VELOCITY 0 127 3 0 1.000000 20.000000

The complete Markov program score for the piece can be seen in
Appendix B, Section B.1.4.

6.5.4 Discussion of the Results

The percussive rhythms are, as has been shown above, easily constructed and
entirely convincing.

Melodically, the algorithm is constraining as, in general, it is impossible
to produce any given melody. However, due to the relative melodic simplicity
of this style of music, it is nevertheless possible to produce a wide range of
melodic structures which are in keeping with the style and therefore do not
betray any compositional compromise. It should be noted, however, that very
simple sequences still require a full set of parametric data, the size of which may
be considered to be large in comparison to the simplicity of output obtained. For
example, the single-note repeating bass line used in this piece requires 15
parameter values, and, in general, it is a weakness of the algorithm that
although the amount of input data required is relatively very small when
applied to producing complex results, it is disproportionately large when
applied to producing simple ones.

An important limiting factor in this piece is the MIDI sound set, which,
being intentionally very general, does not allow for the inclusion of the sorts of
synthesized sounds which are often used in this music and which will have
been constructed on a synthesizer. Here, Saw Wave and Synthesised Strings
have been used but there are few other MIDI sounds which would be
appropriate. Indeed, the sound used for the bass line is in fact Nylon-strung
guitar, this being more convincing than the MIDI bass sounds!

166

6.6 SUMMARY

This chapter has explored the ability of the algorithm, within the compositional
environment afforded by the Markov program, to generate music which meets
specific stylistic objectives. This exploration has ranged from completely
deterministic musical structures, in the case of Reich Phase Music and Dance
Music, through probabilistic variation within a tightly controlled framework, as
in Bach Harpsichord, to partially controlled, but relatively free, variation in the
case of Gagaku.

The ability of the algorithm to achieve precise melodic sequences, albeit
somewhat limited in variety, and specific rhythmic patterns makes it well
suited to process-oriented music such as the Reich Phase Music and to the
rhythmically structured nature of Dance music, and successful results are
obtainable from an amount of input data which, in the former example is very
small in total but which, in the latter, is large considering the simplicity of the
musical content. The strictly horizontal nature of the sequences produced by the
algorithm means, however, that any vertical structure must be built in
"manually”. In the case of music with a tight harmonic structure such as Bach
Harpsichord, this requires fixing certain subsequences, and controlling the
general shape of others, to try to ensure that this harmonic structure is
achieved, and here this control was applied mostly on a bar by bar basis. Thus,
the total amount of data required is increased significantly since, although the
same small set of parameter value data is required, it cumulates bar on bar. On
the other hand, judicious use of the diagonal line parameters shows the
algorithm to be very capable of achieving the short melodic patterns inherent
in Bach's style, and once the parameters have been set, repeated renditions in
the style are obtainable without the need for any rules to be supplied
specifically. Instead, any "rules" are implicit in the parameter settings. The
amount of algorithmic effort required to produce the Bach piece is, however,
prohibitive. For music with a rather freer harmonic structure, such as Gagakuy,
much more successful results may be obtained from comparatively long,
probabilistically varying, sequences.

Many of the lessons learned in Chapter 5 have been put into practice
here, not only the control of probabilistic variation in note sequences, but also,
for example, achieving accelerando and crescendo, as well as making the most
of the kinds of deterministic sequences which are possible. The techniques have
also been applied in unexpected ways to obtain results of which one would not,
at first, have thought the algorithm to be capable, for example: phase shift
between two separate lines, random bending of the pitch of notes in a sequence,
rising and falling volume of a continuously played note, rests within a
deterministic note sequence and turns.

167

Limitations of the algorithm have been revealed and discussed, both
specifically and with regard to "errors”, in relation to the style in question,
which may be manifested. The Markov program, clearly, does not provide a
multi-purpose compositional environment, but the unique qualities of the
algorithm provide a surprisingly large armoury of techniques through which
compositions which attempt to meet desired stylistic goals may be realised.

168

Chapter 7

Compositional Studies

169

7.1 INTRODUCTION

This chapter describes three compositional studies of my own which were
produced using the Markov computer program. Each composition exploits
different aspects of the composing algorithm. The first, Markov-2, is based on
two specific diagonal lines which are used to control both pitch and rhythm.
This piece is, in a sense, definitive in that the way in which the diagonal lines
are affecting the musical output is readily apparent. The second, Vibrato Study,
focusses on the compositional possibilities afforded by algorithmic control of
note vibrato. The final piece, Computer Study for Timpani, concentrates
primarily on the control of dynamics.

The use of the term "studies” in the chapter title is deliberate. The
intention behind these pieces is to explore specific aspects of the algorithm in a
pure manner. Basic, "definitive", diagonal line types have purposely been
chosen so that the algorithmic process at work may be evident in the realisation
of the pieces.

The general structure of each of the pieces is described, relevant extracts
from the program score are given, and subjective evaluative comments are
made. The complete program score listings can be found in Appendix B.

The compact disc which accompanies this thesis contains realisations of
these pieces in audio file format. The floppy disk contains them in composition
file format for playback by the Markov program. Full details of the filenames
and locations are given later in this chapter, in the relevant sections.

7.2 MARKOV-2

7.2.1 Description

Markov-2 is written for two violins playing pizzicato throughout and at
constant dynamic. The piece is written in three movements, each being one
minute in length. The pitch and note length ranges stay the same throughout
(and are wide), the variation in movements being achieved by varying the
diagonal lines for each of these two parameters.

Here, there is a wide variety between different realisations generated by
the program but, nevertheless, a clear stylistic similarity. To illustrate this, the
compact disc contains three separate realisations. These may be found in the
files "Markov-2 (1).wav", "Markov-2 (2).wav" and "Markov-2 (3).wav". The
floppy disk contains the Markov Composition File, called "Markov-2", for
playback by the Markov program. All files are held in the "Compositional
Studies” directory.

170

First Movement

For the first movement, for each of the two violin parts, both pitch and note
length are controlled by the following diagonal line:

As discussed in Section 5.3.2, Example 1, this results in a meandering
movement, up and down. Therefore, the pitch repeatedly rises and falls, while
the rhythm repeatedly speeds up and slows down. The higher the value of A,
the more constrained is the degree of movement. Here, the A value is set to 0.5,
resulting in a fairly gentle up and down motion but with occasional larger
jumps occurring. The program score for each of the two violin parts is as

follows:

Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000

The two parts are sent to different MIDI channels and the Pan values are set so
as to achieve stereo separation.

The meandering of the pitch and rhythm is clearly heard and provides a
direct aural interpretation of the diagonal line parameter settings. The two parts
are moving completely independently of one another but frequently give the
illusion of deliberate contrapuntal design. This is typical of the way that various
degrees of synchronisation may occur by chance.

Second Movement

For the second movement, the pitch is controlled by the same diagonal line:

but the note length is controlled by a diagonal line sloping in the opposite
direction:

171

The relevant extract from the score is as follows:

Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 1.000000 0.500000
LENGTH (/ 32) 1 32 1 -1.000000 0.500000

Now, while the pitch moves in the same way as in the first movement, there
are periods when the note lengths alternate in length between short and long,
resulting in a jerky rhythm, interspersed with periods of more even note length
(see Section 5.6.2, Example 2). The controlling effect of the parameter settings is,
again, aurally readily apparent.

Third Movement

For the third, and final, movement, the pitch is now controlled by an upward
sloping diagonal:

while the note length is controlled by the same downward sloping diagonal as
in the first movement:

The relevant extract from the score is as follows:

Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 -1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000

Now, there are periods when the pitch alternates between high and low,
interspersed with periods of more gentle pitch movement (see Section 5.3.2,
Example 6). An additional effect is that, during periods when both parts are

172

alternating between high and low pitch, the two lines combine so that the
listener hears two much more stable lines, one high and one low.

7.2.2 Evaluation

This piece can thought of as "space filling", in that there is little sense of
temporal motion; each of the movements just "is". The separate movements
have no beginning or end and, no matter how long they were to last, the
listener could arrive at any point and leave at any point and the same
qualitative impression would be made. The use of pizzicato violin gives an
initial, fleeting illusion that the performance could be human but that sense is
quickly dashed as soon as the tempo rises well above what could be humanly
achieved, and from then on the piece is transparently mechanistic. The
repeatedly falling and rising tempo in the first and third movements provides
tension and release, with the resolution of tension unpredictable and often
unexpected. A feeling of the lines continually trying to "catch themselves up”
provides moments of humour whilst, simultaneously, the atonal nature of the
work gives it a sense of unease. Overall, this piece could be said to appeal to the

listener on an intellectual level.

7.3 VIBRATO STUDY

7.3.1 Description

This piece explores the use of varying vibrato rate as a process of compositional
interest. All sounds are the "Voice Ooh" on the Roland JV30.

The fact that vibrato is very heavily used, and that the depth of vibrato is
fixed at its maximum possible value means that, rather than simply adding a
tremulous quality to a note, it becomes a sonic effect in its own right. This effect
tends to give the piece an electro-acoustic feel.

Here, again, variations in successive program generations are definitely
present but not readily discernible. One rendering only, therefore, is included
on the compact disc. It may be found in the file "Vibrato Study.wav". The
floppy disk contains the Markov Composition File, called "Vibrato Study”, for
playback by the Markov program. Both files are held in the "Compositional
Studies” directory.

The piece comprises four main sections:

173

First Section

A continuous low pitched drone forms a backing over which voices enter
infrequently and then die away. Each separate voice entry has a constant but
randomly assigned vibrato rate, the rates being selected from a wide range (i.e.
slow to fast) according to the following diagonal line:

but with a relatively low A value of 0.05 so that wide variations of vibrato rate
may occur between successive entries. The program score for one of these
entries is as follows (notice that the release parameter has been fixed at a
relatively high value so that the notes gradually die away rather than terminate

abruptly):

Sect 1 Part 4, Chan 1, Patch 54, Pan 4, BEATS 13 to 18
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000

At first the voices occur singly, later they occur in pairs.

Second Section

The same drone is used as a backing but now the voices enter much more
frequently, still with randomly assigned vibrato rates.

Third Section

The drone is replaced by a backing of three voices at different pitches. The first
voice has a constant vibrato rate of one cycle per crotchet, the second voice a
rate of one cycle per quaver and the third voice a rate of one cycle per
semiquaver, so that the vibrato produces a constant rhythmical backing!. Over

1 The precise MIDI vibrato rate values required to produce these rhythms (31, 41 and 61
respectively) were found by a process of trial and error.
174

this backing, two voices sing individual parts, their note lengths being either
crotchets or quavers, in the case of the first part, and either quavers or
semiquavers, in the case of the second part. The dynamic level of each of these
is two parts is allowed to vary. The program score for one of these two parts is as

follows:

Sect 3 Part 5, Chan 9, Patch 54, Pan 94, BEATS 61 to 120
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 84 60 1.000000 0.500000
LENGTH (/ 4) 1 2 1 1.000000 0.500000
VELOCITY 40 90 40 1.000000 0.100000

Fourth Section

The last short section has 8 different voices at different fixed pitches and (out of
phase) vibrato rates, entering one by one so as to build up to a final crescendo.

7.3.2 Evaluation

This piece, in direct contrast to the previous one, can be thought of as "time
filling" in that there is a definite sense of forward temporal motion, of a
journey taking place. The imagery created of the landscape of this journey,
could, by virtue of the "atmospheric” nature of the sounds used, be that of an
inhospitable landscape, perhaps otherworldly. Once again, as in the last piece,
the initial notion of human performance created, in this case, by the use of a
vocal instrument is soon replaced by a contradictory, but mysterious rather than
cold, mechanistic feel through the repeated use of sustained, deep vibrato and
continuous backing drones. Overall, this piece could be said to invoke an
emotional response from the listener.

7.4 COMPUTER STUDY FOR TIMPANI

7.4.1 Description

Computer Study for Timpani is built from four separate timpani parts. There is
very little rhythmic variation and, apart from the final section, very little
variation in pitch either. Instead, the principal parameter of musical interest is
dynamic variation.

175

With this piece, although quite wide variations between successive
program generations can occur, the relatively tight overall parametric control
means that these variations are not readily perceived by the listener. Only one
realisation, therefore, is included on the compact disc. It may be found in the
file "Computer Study for Timpani.wav". The floppy disk contains the Markov
Composition File, called "Computer Study for Timpani", for playback by the
Markov program. Both files are held in the "Compositional Studies” directory.

The piece is formed from four main sections:

First Section

The opening section consists of short passages of timpani, played at a fairly slow
rhythm and with rising and falling dynamic. The first two such passages have
their own fixed pitch, followed by two passages where some pitch variation is
allowed. For these first four passages, a solo timpani is playing but for the final
passage, two timpani play together. All parameters are controlled by the
following diagonal line:

The velocity is allowed to vary across the full MIDI range (1 to 127) and a
relatively low A value of 0.05 means that large jumps frequently occur. The
pitch and note length (A=0.5), however, vary more gently. The program score
for the first of these passages is as follows:

Sect 1 Part 1, Chan 1, Patch 48, Pan 0, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 48 48 1.000000 0.500000
LENGTH (/ 16) 1 16 1 1.000000 0.500000
VELOCITY 1 127 1 1.000000 0.050000

This, and the following, section demonstrates how, in contrast to the Markov-2
piece, a composition may be built up from a number of parts in a tightly
structured way, rather than allowing long periods of probabilistic freedom.

176

Second Section

This section again consists of short, but much more rapid, passages. Now, the
variation in dynamic is tightly controlled. The section is built from four groups
of passages, beginning with a group of two passages which occur in quick
succession, followed by a similar group of three passages, then a similar group
of four, and finally a group of two played simultaneously. For each group, the
dynamic level is allowed to vary only within a narrow range, starting softly and
then increasing with each group and reaching a crescendo with the final group.
These four groups are repeated. The relevant extracts from the program score
for the first of these groups is as follows:

Sect 6 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 10
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000
Sect 6 Part 2, Chan 2, Patch 48, Pan 127, BEATS 11 to 12
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000

Third Section

In this longer section, four timpani play together, each at its own fixed pitch and
note length. The dynamics, however, are allowed to vary according to the
following diagonal line:

so that loud notes tend to be followed by soft ones, and vice versa. This results
in pulses of sound, occurring independently in each of the four parts, so that a
(randomly generated) rhythm is implied. The program score for one of these
parts is as follows:

177

Sect 14 part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 126

Parameter Min Max MinMean Start Grad Lambda
PITCH 48 48 48 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000

As the section progresses, the pitch levels of each of the parts gradually rise, step
by step.

Fourth Section

The final section, which forms the finale to the piece, is very similar to the
previous section but now the pitches begin to vary across a wide range
according to the following diagonal line:

The program score for one of the parts is as follows:

Sect 14 Part 9, Chan 1, Patch 48, Pan 0, BEATS 247 to 366
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 71 48 69 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
7.4.2 Evaluation

This piece can be thought of as both "space-filling” and "time-filling"; from
within the apparently static drumming rhythms a sense of evolution emerges
through the use of changing timpani pitches. This work, in direct contrast to
the previous two, has a distinct human quality. A strength of this piece is its
ability to visually stimulate: the listener can readily visualise a live
performance, of both drumming and, perhaps, dance, since the piece's rhythmic
energy and dynamism creates a sense of spatial motion. Overall, this piece
could be said to appeal to the listener on a physical level.

178

CONCLUSION

This research was born from a set of ideals regarding the composition of music
based on a mathematical algorithm. The underlying philosophy was "numbers
in, music out". That is to say, "if I want to achieve such and such a musical
result, then these are the numbers I must feed into the algorithm".
Composition could never be reduced to such a simple situation, of course, but
from this philosophy began the search for an algorithm which was simple
enough that its underlying processes were accessible to the composer without
having to understand the details of the mathematics involved, but which was
capable of a wide range of musical output which could predictably be controlled
by the composer. Out of these ideals grew a set of specific objectives.

From the wide range of algorithmic composition techniques which have
been developed over the last forty years, I chose the Markov chain as the
underlying process for this research. Relatively simple in concept, it provides a
model for the composition of music whose basis is probabilistic evolution, the
entire character of which is embodied in the distribution of numbers in a square
grid, the transition matrix. What was required was a way for the composer to
produce this, potentially very large, matrix quickly and simply and to have
some understanding of the character of the process thus created. The diagonal
line method provides such a way. Five numerical parameter values are
required for each musical attribute, four of which define the diagonal line, and
consequently the structural character of the note sequences which will result,
and the fifth specifies the probabilistic degree of freedom in relation to that
structure.

In order to be able to explore the musical capabilities of the algorithm, I
developed a computer program, Markov. This program is essentially a MIDI
sequencer which provides a user interface for the composer to enter the
algorithm's parameter values and to define the overall structural framework
within which sequences are generated. What the program also provides is a
feedback environment, whereby the composer may move progressively
towards a desired musical result. Initial experimentation with the program
suggested to me that, for musical reasons, some compromises to the "pure”
application of the algorithm were necessary. Specifically, two simple rules were
added: the option to prevent two successive repeats of the same value of a note
attribute in a sequence, and the ability to fix any of the attribute values for the
initial note in a sequence.

An extensive, documented, analysis of the relationship between the
musical output and the values of the input parameters, provided what is, in
effect, a "cookbook” of compositional techniques. This study showed the

179

surprising diversity of output obtainable from the algorithm, ranging from
constrained, structured sequences to free, aleatoric ones, with many possibilities
in between. The controlled dependence of the output on the input values was
clearly demonstrated.

The algorithm was now applied to the task of emulating given musical
styles. Four different styles were attempted. These styles were chosen for their
diversity and as a challenge to the algorithm, not because they were judged in
advance to be suited to any idiosyncratic qualities of the algorithm. Indeed,
important limitations became apparent, particularly when attempting to
achieve rigid harmonic and melodic structures, where it was necessary to
compromise by applying the algorithm to very short note sequences. On the
other hand, the results were surprisingly successful in many important aspects
and the flexibility of the algorithm, within the composing environment offered
by the program, was readily apparent.

Finally, I have presented some compositional studies of my own, which
attempt to explore specific aspects of the algorithm in a creative manner, and in
keeping with my own compositional style. These enable the mathematical
processes at work to be manifested in the music and therefore, ultimately,
demystified.

180

Appendix B

MarKov Program Scores

181

B.1 STYLE EMULATION

B.1.1 Steve Reich Phase Music

COMPOSITION FILE: Hard Disk:Music:reich

Section Parts Min Length Min Total Max Length Max Total

i S i o O o, i o it S ot . Yo . Mol et s o ot o O e e s s o O e P i . i it i, bl s e S . e G il A Wl S B e N i i B o e

1 2 1140 1140 1140 1140
SECTION SEQUENCE:

1
Tempo = 400 bpm MIDI Buffer Size = 200 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 1140

2 2 1 1140
Sect 1 Part 1, Chan 1, Patch 1, Pan 24, BEATS 1 to 11490
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 80 62 60 2.000000 20.000000
LENGTH (/192) 192 192 192 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY "YES | NO | NO | NO }

PITCH SELECTIONS:
60 62 63 65 67 68 71 72 74 75 77 79 80

Sect 1 Part 2, Chan 2, Patch 1, Pan 104, BEATS 1to 1140
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 80 62 60 2.000000 20.000000
LENGTH (/192) 190 190 190 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | YES | NO | NO
LENGTH YES | NO | NO } NO | NO
VELOCITY YES | NO | NO l NO |

PITCH SELECTIONS:
60 62 63 65 67 68 71 72 74 75 77 19 80

182

B.1.2 Gagaku - Japanese Court Music

COMPOSITION FILE: Hard Disk:Music:gagaku

Section Parts Min Length Min Total Max Length Max Total

e s o o s o Ot o S i o S .t i Lt o i v i Gt e P e e . (it G e o . ki S i e i ot i e I e . Y B el e i o S B e i . it

1 5 60 60 60 60
2 17 125 185 125 185
SECTION SEQUENCE:
12
Tempo = 50 bpm MIDI Buffer Size = 700 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 60

2 1 1 60

3 2 20 50

4 2 51 60

5 3 40 60
Sect 1 Part 1, Chan 1, Patch 73, Pan 64, BEATS 1 to 60
Parameter Min Max MinMean Start Grad Lambda
PITCH 76 88 76 1.000000 0.500000
LENGTH (/ 2) 1 8 8 0.000000 0.500000
VELOCITY 0 127 127 127 0.000000 2.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO l
LENGTH YES | YES | NO | NO | NO
VELOCITY YES | YES | NO | NO } '

PITCH SELECTIONS:

76 78 79 81 83 84 86 88
LENGTH SELECTIONS:

1 2 4 8
VELOCITY SELECTIONS:

0 127
Sect 1 Part 2, Chan 1, Patch 73, Pan 64, BEATS 1 to 60
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 60 60 1.000000 0.500000
LENGTH (/ 8) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
PITCH BEND 32 96 32 64 1.000000 0.700000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO ;
LENGTH YES | NO] NO | NO | NO
VELOCITY YES | NO | NO | NO |

183

Sect 1 Part 3, Chan 2, Patch 48, Pan 64, BEATS 20 to 50

Parameter Min Max MinMean Start Grad Lambda
PITCH 68 68 68 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 127 0 127 0.000000 5.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | ¥ES | NO | NO |

VELOCITY SELECTIONS:

0 127
Sect 1 Part 4, Chan 2, Patch 48, Pan 64, BEATS 51 to 60
Parameter Min Max MinMean Start Grad Lambda
PITCH 68 68 68 1.000000 0.500000
LENGTH (/ 64) 5 64 5 64 0.800000 2.000000
VELOCITY 100 100 100 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NOo | NO | NO 1
Sect 1 Part 5, Chan 3, Patch 117, Pan 64, BEATS 40 to 60
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 67 67 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 127 0 127 0.000000 6.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | YES | NO | NO !

VELOCITY SELECTIONS:
6 127

SECTION: 2

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
1 1 1 125
2 1 1 5
3 2 1 125
4 2 1 5
5 1 6 120
6 2 6 120
7 3 1 5
8 4 1 125
9 4 1 5
10 4 6 120
184

11 5 30 59
12 5 30 120
13 6 61 120
14 6 61 120
15 7 62 120
16 7 62 120
17 5 60 120
Sect 2 Part 1, Chan 1, Patch 112, Pan 64, BEATS 1 to 125
Parameter Min Max MinMean Start Grad Lambda
PITCH 71 71 71 1.000000 0.500000
LENGTH (/ 1) 125 125 125 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | YES | NO | NO | NO
VELOCITY NO | YES 1 NO | NO |
LENGTH SELECTIONS:
125
VELOCITY SELECTIONS:
127
Sect 2 Part 2, Chan 1, Patch 112, Pan 64, BEATS 1 to 5
Parameter Min Max MinMean Start Grad Lambda
PITCH 71 71 71 1.000000 0.500000
LENGTH (/ 8) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 0 127 5 0 0.961000 2.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES 1 NO | NO | NO |
Sect 2 Part 3, Chan 2, Patch 112, Pan 64, BEATS 1 to 125
Parameter Min Max MinMean Start Grad Lambda
PITCH 74 74 74 1.000000 0.500000
LENGTH (/ 1) 125 125 125 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO !
LENGTH YES | YES | NO | NO | NO
VELOCITY NO | YES | NO | NO |
LENGTH SELECTIONS:
125
VELOCITY SELECTIONS:
127
Sect 2 Part 4, Chan 2, Patch 112, Pan 64, BEATS 1 to 5
Parameter Min Max MinMean Start Grad Lambda
PITCH 74 74 74 1.000000 0.500000
LENGTH (/ 8) 1 1 1 0.800000 2.000000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 0 127 5 0 0.961000 2.000000

REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |

Sect 2 Part 5, Chan 1, Patch

1t v o e e o A s . i M o i i, . T T e el M, b e o . o Gt B A o B o A) P (0 St ol B o i o e S OB s e i P A i L WAt Sl ik o i e o o 7

Parameter Min Max
PITCH 71 71
LENGTH (/ 2) 1 1
VELOCITY 0 0
VOLUME 32 127
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |

Sect 2 Part 6, Chan 2, Patch

M v s e i, i, i o i ol A L it o T . e S e, . o o, i o i i . e e S P o S o e MR S e s b i . i i e e v ol B i . B O e S o o .

I s v S e M Wi o e s T o e o B o o S e o it e S . ot e e ot B e St A . A WAl ks s S S e o e o o S R B S M e i o B B e i S B S SRS S W it i S

REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO | NO | NO
NO | NO]
112, Pan 64, BEATS 6 to 120
MinMean Start Grad Lambda
71 1.000000 0.500000
1 1.000000 0.500000
0 1.000000 0.500000
32 90 1.000000 0.200000
REVERSE | REFLECT | RANDOM ENTRY
NO NO |
NO | NO | NO
NO | NO |
112, Pan 64, BEATS 6 to 120
Parameter Min Max MinMean Start Grad Lambda
PITCH 74 74 74 1.000000 0.500000
LENGTH (/ 2) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 32 127 32 90 1.000000 0.200000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO ! NO | NO ! NO
VELOCITY YES | NO | NO | NO |
Sect 2 Part 7, Chan 3, Patch 48, Pan 64, BEATS 1 to 5
Parameter Min Max MinMean Start Grad Lambda
PITCH 68 68 68 1.000000 0.500000
LENGTH (/ 64) 2 64 6 5 0.000000 2.000000
VELOCITY 100 100 100 0 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO 1
Sect 2 Part 8, Chan 4, Patch 112, Pan 64, BEATS 1 to 125
Parameter Min Max MinMean Start Grad Lambda
PITCH 76 76 76 1.000000 0.500000
LENGTH (/ 1) 125 125 125 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | YES | NO | NO | NO
VELOCITY NO | YES | NO | NO |

LENGTH SELECTIONS:
125

VELOCITY SELECTIONS:
127

Sect 2 Part 9, Chan

4, Patch 112, Pan 64, BEATS

Start

| REFLECT

1 to 5

Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
0.961000 2.000000

| RANDOM ENTRY

64, BEATS

Start

S0

| REFLECT

| NO
|
6 to 120
Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.200000

| RANDOM ENTRY

e e e e e i bk) O o OO i e S o S Pt i o 4k W P i sl e B i St o S o B ke il W it Ak . e v T e i i e o o P o

40, BEATS

Start

| REFLECT

40, BEATS

Start

o s 20V T . S e i o b e M O e o e e . W o St O . e S i il ot A o o e S i Sk St Wik W o S S ke B e P A M i e i e i o o e s b

Parameter Min Max MinMean
PITCH 76 76 76
LENGTH (/ 8) 1 1 1
VELOCITY 0 0 0
VOLUME 0 127 5
REPEAT | SELECT | REVERSE
PITCH YES 1 NO | NO
LENGTH YES | NO | NO
VELOCITY YES | NO | NO
Sect 2 Part 10, Chan 4, Patch 112, Pan
Parameter Min Max MinMean
PITCH 76 76 76
LENGTH (/ 2) 1 1 1
VELOCITY 0 0 0
VOLUME 32 127 32
REPEAT | SELECT | REVERSE
PITCH YES | NO ! NO
LENGTH YES | NO | NO
VELOCITY YES | NO | NO
Sect 2 Part 11, Chan 5, Patch 71, Pan
Parameter Min Max MinMean
PITCH 67 81 67
LENGTH (/ 4) 4 16 4
VELOCITY 0 127 127
REPEAT | SELECT | REVERSE
PITCH No | YES | NO
LENGTH YES | YES | NO
VELOCITY YES | YES | NO
PITCH SELECTIONS:
67 69 71 72 74 76 79 81
LENGTH SELECTIONS:
4 8 9 10 11 12 13 14 15 16
VELOCITY SELECTIONS:
0 127
Sect 2 Part 12, Chan 5, Patch 71, Pan
Parameter Min Max MinMean
PITCH 60 60 60
LENGTH (/ 8) 1 1 1
VELOCITY 0 0 0
PITCH BEND 48 80 48
REPEAT | SELECT | REVERSE

187

64

| REFLECT

| NO
|
30 to 59
Grad Lambda
1.000000 2.000000
1.000000 0.500000
0.000000 3.000000
| RANDOM ENTRY
|
| NO
|
30 to 120
Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000

| RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

Sect 2 Part 13, Chan 6, Patch 71, Pan 88, BEATS 61 to 120
Parameter Min Max MinMean Start Grad Lambda
PITCH 69 78 69 71 1.000000 2.000000
LENGTH (/ 4) 4 16 4 ~1.000000 2.000000
VELOCITY 0 127 127 0.000000 3.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO
VELOCITY YES | YES | NO | NO |

PITCH SELECTIONS:

69 71 72 74 176 78
LENGTH SELECTIONS:

4 8 9 10 11 12 13 14 15 16
VELOCITY SELECTIONS:

0 127
Sect 2 Part 14, Chan 6, Patch 71, Pan 88, BEATS 61 to 120
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 60 60 1.000000 0.500000
LENGTH (/ 8) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
PITCH BEND 48 80 48 64 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO] NO | NO
VELOCITY YES | NO | NO | NO |
Sect 2 Part 15, Chan 7, Patch 71, Pan 64, BEATS 62 to 120
Parameter Min Max MinMean Start Grad Lambda
PITCH 69 78 69 71 1.000000 2.000000
LENGTH (/ 4) 4 16 4 -1.000000 2.000000
VELOCITY 0 127 127 0.000000 3.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH NO | YES | NO | NO |
LENGTH YES [YES | NO | NO | NO
VELOCITY YES | YES | NO | NO |

PITCH SELECTIONS:

69 71 72 74 76 178
LENGTH SELECTIONS:

4 8 9 10 11 12 13 14 15 16
VELOCITY SELECTIONS:

0 127
Sect 2 Part 16, Chan 7, Patch 71, Pan 64, BEATS 62 to 120
Parameter Min Max MinMean Start Grad Lambda

e e s Gt i A . e e O G S . e (. O S e Vi A e S e . 8 i P P Sk St M . i, U e ek e W i Ao i o M o b Ao, i Sk A o i P W s dn P e S e

0.500000
0.500000
0.500000
0.500000

| RANDOM ENTRY

PITCH 60
LENGTH (/ 8) 1
VELOCITY 0
PITCH BEND 48
REPEAT
PITCH YES]
LENGTH YES |
VELOCITY YES |

Sect 2 Part 17, Chan

Parameter Min
PITCH 69
LENGTH (/ 4) 4
VELOCITY 0
REPEAT
PITCH NO |
LENGTH YES |
VELOCITY YES [

PITCH SELECTIONS:
69 71 72 74
LENGTH SELECTIONS:

4 8 9 10 11
VELOCITY SELECTIONS:
0 127

76

5, Patch

78

12

13

14

71, Pan

MinMean

127

REVERSE

I s St s S Mt e o il e i e s V. S el . e e S e e B, S A . . Sk e e Al i Wk Sl i e e i e . i L i b o o i i

15

189

16

1.000000
1.000000
1.000000
64 1.000000
| REFLECT
| NO |
| wmo |
| NO |
40, BEATS 60
Start Grad
71 1.000000
-1.000000
0.000000
| REFLECT
| w0 |
| NO |
| NO |

to 120

Lambda
2.000000

2.000000
3.000000

| RANDOM ENTRY

B.1.3 Bach Harpsichord Music

Section Parts Min Length Min Total Max Length Max Total

e sl s i o o o s . o o o o e P o S o A e S S oo Sl Bt e M S . St i O e e o A e e o S A S Sl M M o e A s o Al s o

2 17 46 97 46 97
SECTION SEQUENCE:

Tempo = 384 bpm MIDI Buffer Size = 200 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 3

2 1 4 7

3 1 8 9

4 1 10 15

5 1 16 21

6 1 22 24

7 1 29 33

8 1 34 36

9 1 41 45

10 1 46 48

11 2 4 9

12 2 10 15

13 2 16 21

14 2 22 27

15 2 28 33

16 2 34 39

17 2 40 45

18 2 46 49

19 2 50 51
Sect 1 Part 1, Chan 1, Patch 7, Pan 64, BEATS 1 to 3
Parameter Min Max MinMean Start Grad Lambda
PITCH 65 68 67 67 1.000000 20.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

65 67 68
Sect 1 Part 2, Chan 1, Patch 7, Pan 64, BEATS 4 to 7
;;;;;eter Min Max MinMean Start Grad Lambda
prrcE 6s 72 65 67 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
pITCH “wo | ws | x| w |

LENGTH YES l NO | NO | NO [NO

VELOCITY YES | NO | NO | NO |
PITCH SELECTIONS:

65 67 72
Sect 1 Part 3, Chan 1, Patch 7, Pan 64, BEATS 8 to 9
Parameter Min Max MinMean Start Grad Lambda
PITCH 62 63 62 63 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO]

PITCH SELECTIONS:

62 63
Sect 1 Part 4, Chan 1, Patch 7, Pan 64, BEATS 10 to 15
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 67 60 63 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
60 62 63 65 67

Sect 1 Part 5, Chan 1, Patch 7, Pan 64, BEATS 16 to 21
Parameter Min Max MinMean Start Grad Lambda
PITCH 65 72 65 67 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO } NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
65 67 68 70 72

Sect 1 Part 6, Chan 1, Patch 7, Pan 64, BEATS 22 to 24
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 74 71 71 1.000000 20.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | YES | NO } NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO { NO |

PITCH SELECTIONS:
191

67 71 74
Sect 1 Part 7, Chan 1, Patch
Parameter Min Max
PITCH 70 79
LENGTH (/ 1) 1 1
REPEAT | SELECT |
PITCH NO | ¥ES |
LENGTH YES | NO |
VELOCITY YES | NO |

PITCH SELECTIONS:
70 72 75 79

Sect 1 Part 8, Chan 1, Patch

T i et i s i O o T S G b i i i o i o o . PO S M W o A, Gl G M e o i i i b S i i S AR S e s S i Y Sk S o i o R Sl Sl it . . s e, . . o Lo e 5. o

Parameter Min Max
PITCH 65 72
LENGTH (/ 1) 1 1
REPEAT | SELECT |
PITCH NO | YES |
LENGTH YES | NO |
VELOCITY YES | NO |

PITCH SELECTIONS:

-k S S R G T S i i i o kSl o i, S S A L . S O M Mt U O e, Sl S . . A i Sl S, o S S b, A . e o, B o Akt e o e S sk . e oo i e S i e . P

7, Pan 64, BEATS 29 to 33
MinMean Start Grad Lambda
79 79 1.000000 2.000000
1 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO NO { NO
NO | NO |
7, Pan 64, BEATS 34 to 36
MinMean Start Grad Lambda
68 68 1.000000 20.000000
1 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO | NO | NO
NO | NO |
65 68 72
Sect 1 Part 9, Chan 1, Patch 7, Pan 64, BEATS 41 to 45
Parameter Min Max MinMean Start Grad Lambda
PITCH 68 77 77 77 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH No | YES | NO | NO [
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
PITCH SELECTIONS:
68 70 74 77
Sect 1 Part 10, Chan 1, Patch 7, Pan 64, BEATS 46 to 48
Parameter Min Max MinMean Start Grad Lambda
PITCH 63 70 67 67 1.000000 20.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | YES | NO | NO
LENGTH YES | YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
63 67 70
LENGTH SELECTIONS:
1

192

Sect 1 Part 11, Chan 2, Patch 7, Pan 64, BEATS 4 to 9

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 55 51 48 1.000000 20.000000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

48 51 55

Sect 1 Part 12, Chan 2, Patch 7, Pan 64, BEATS 10 to 15

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 60 48 60 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

48 60
Sect 1 Part 13, Chan 2, Patch 7, Pan 64, BEATS 16 to 21
Parameter Min Max MinMean Start Grad Lambda
PITCH 56 58 56 58 1.000000 0.500000
LENGTH (/ 1) 2 4 4 2 0.000000 20.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH NO J YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |
PITCH SELECTIONS:

56 58
LENGTH SELECTIONS:

2 4
Sect 1 Part 14, Chan 2, Patch 7, Pan 64, BEATS 22 to 27
Parameter Min Max MinMean Start Grad Lambda
PITCH 55 65 65 55 1.000000 20.000000
LENGTH (/ 1) 1 3 1 3 0.000000 20.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |
LENGTH YES | YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
55 62 63 65
LENGTH SELECTIONS:

1 3

193

Sect 1 Part 15, Chan 2, Patch 7, Pan 64, BEATS 28 to 33

Parameter Min Max MinMean Start Grad Lambda

PITCH 60 63 60 63 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

60 63

Sect 1 Part 16, Chan 2, Patch 7, Pan 64, BEATS 34 to 39

Parameter Min Max MinMean Start Grad Lambda

PITCH 53 63 63 53 1.000000 20.000000

LENGTH (/ 1) 1 3 1 3 0.000000 20.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
53 60 62 63
LENGTH SELECTIONS:

1 3
Sect 1 Part 17, Chan 2, Patch 7, Pan 64, BEATS 40 to 45
Parameter Min Max MinMean Start Grad Lambda
PITCH 58 62 58 62 1.000000 0.500000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

58 62
Sect 1 Part 18, Chan 2, Patch 7, Pan 64, BEATS 46 to 49
Parameter Min Max MinMean Start Grad Lambda
PITCH 51 55 51 1.000000 20.000000
LENGTH (/ 1) 1 3 1 3 0.000000 20.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

51 55
LENGTH SELECTIONS:
1 3

194

Sect 1 Part 19, Chan 2, Patch 7, Pan 64, BEATS 50 to 51

Parameter Min Max MinMean Start Grad Lambda

PITCH 53 56 53 53 1.000000 20.000000

LENGTH (/ 1) 1 1 1 0.000000 20.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH No | YES | NO | NO |

LENGTH YES | YES | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

53 56
LENGTH SELECTIONS:
1

SECTION: 2

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 2 6

2 1 7 12

3 1 13 18

4 1 19 24

5 1 25 30

6 1 31 36

7 1 37 39

8 2 1 6

9 2 7 12

10 2 13 18

11 2 19 24

12 2 25 30

13 2 31 34

14 2 35 44

i5 1 40 42

16 1 43 43

17 1 44 46
Sect 2 Part 1, Chan 1, Patch 7, Pan 64, BEATS 2 to 6
Parameter Min Max MinMean Start Grad Lambda
PITCH 61 70 70 70 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES { NO | NO | NO |

PITCH SELECTIONS:
61 63 67 170

Sect 2 Part 2, Chan 1, Patch 7, Pan 64, BEATS 7 to 12
Parameter Min Max MinMean Start Grad Lambda
prrcs 60 72 72 60 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

195

o e e o T A Stk s . (e e A o Vo T e 4 e, I b G400l o O o, . .) i S Al e i v i U W e o i s . i S S i S S S Gl e e b

PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO] NO |

PITCH SELECTIONS:
60 63 65 68 72

Sect 2 Part 3, Chan 1, Patch 7, Pan 64, BEATS 13 to 18
Parameter Min Max MinMean Start Grad Lambda
PITCH 62 74 74 62 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH NO | YES | NO | NO
LENGTH YES | NO | NO] NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
62 65 67 70 74

Sect 2 Part 4, Chan 1, Patch 7, Pan 64, BEATS 19 to 24
Parameter Min Max MinMean Start Grad Lambda
PITCH 63 75 75 63 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO | NO j NO | NO
VELOCITY YES | NO | NO | NO !

PITCH SELECTIONS:
63 67 68 72 75

Sect 2 Part 5, Chan 1, Patch 7, Pan 64, BEATS 25 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 65 77 77 65 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO |

LENGTH YES | NO] NO] NO | NO
VELOCITY YES | NO { NO | NO |

PITCH SELECTIONS:
65 68 70 74 77

Sect 2 Part 6, Chan 1, Patch 7, Pan 64, BEATS 31 to 36
Parameter Min Max MinMean Start Grad Lambda
PITCH 67 75 68 67 1.000000 2.000000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH NO | YES | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO] NO 1 NO

196

PITCH SELECTIONS:
67 68 70 72

Sect 2 Part 7,

75

Chan 1, Patch

7, Pan

MinMean

64, BEATS 37 to 39

Start Grad

i e 1 (i i it 4 o M o . S Sl it M i o . S M (e i i i . M . . S . M it il e A S et e o . S s S o e Sk, e e S i S e o s i P . O . s

PITCH 65
LENGTH (/ 1) 1

74 1.000000 20.000000

I i S i i i O o A Gtk . i . o S o S s i o S ol e o . S St e (i P . Sl o i e e e . e ik S i e i . e bk e o s o o

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
65 74 75

Sect 2 Part

Parameter Min

8, Chan 2, Patch

7, Pan

MinMean

I T e e e o (A S Sl s S Sk e Sl e M i I SORS Lt . W S o k. e Mt . o L B S e et S it e, o b e . B S T P S S S i . . S 1 S . e vl S e .

PITCH 51
LENGTH (/ 1) 2

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
51 55

Sect 2 Part 9, Chan

Parameter Min

2, Patch

7, Pan

MinMean

e ate i v o . i i e . O 0 B M S i i, i i Al S S e I S ok M it e e i D S o i B i S P B A ol s s e St e . S i i S S i i v i S . S i

PITCH 53
LENGTH (/ 1) 2

R 0ok Sk o vt o W ot i e O N N S i, it Y WV A e e i i) i e o S P BRSSP S St ot i T o o A B Sk S k. e S e

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
53 56

Sect 2 Part 10, Chan 2, Patch

Parameter Min

7, Pan

MinMean

e . S, i s i i S e S e e it i Vi M i it i P i el . i i i ol i i M . i . i St . o e i S P . S Mk . s i i St e o i e s e .

PITCH 55
LENGTH (/ 1) 2

o L s S S i o S Sl s i . TV e e M i o0 i i S i o it B iy ot o A S i S S . B e s O o B S0 e . 8 e i i e

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
55 58

197

1.000000 0.500000
| REFLECT | RANDOM ENTRY
| NO |
| NO | NO
| NO |
64, BEATS 1 to 6
Start Grad Lambda
55 1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| wo |
| NO | NO
l NO |
64, BEATS 7 to 12
Start Grad Lambda
56 1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| NO |
| NO | NO
| wo |
64, BEATS 13 to 18
Start Grad Lambda
58 1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| N0 |
| NO NO
| NO |

Sect 2 Part 11, Chan 2, Patch 7, Pan 64, BEATS 19 to 24

Parameter Min Max MinMean Start Grad Lambda

PITCH 56 60 56 60 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO } NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:

56 60

Sect 2 Part 12, Chan 2, Patch 7, Pan 64, BEATS 25 to 30

Parameter Min Max MinMean Start Grad Lambda

PITCH 58 62 58 62 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH NO | YES | NO | NO

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO (

PITCH SELECTIONS:

58 62
Sect 2 Part 13, Chan 2, Patch 7, Pan 64, BEATS 31 to 34
Parameter Min Max MinMean Start Grad Lambda
PITCH 51 63 53 63 1.000000 20.000000
LENGTH (/ 1) 1 2 1 2 0.000000 20.000000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | NO | NO |
LENGTH YES | YES | NO] NO | NO
VELOCITY YES | NO | NO 1 NO |

PITCH SELECTIONS:

51 53 63

LENGTH SELECTIONS:
1 2
Sect 2 Part 14, Chan 2, Patch 7, Pan 64, BEATS 35 to 44
Parameter Min Max MinMean Start Grad Lambda
PITCH 46 58 51 55 1.000000 20.000000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | NO | NO |
LENGTH YES | NO | NO | NO J NO
VELOCITY YES | NO | NO | NO {

PITCH SELECTIONS:
46 51 55 56 58

Sect 2 Part 15, Chan 1, Patch 7, Pan 64, BEATS 40 to 42

198

Parameter Min

o 20 o o e O . e i . 0. . T O, A W s o b e i, v R A S b WO s M e S i i S St L S B o i A Ut e it . I e S B S s i o o O S . s S o o S b

PITCH 68
LENGTH (/ 1) 1

72 1.000000 20.000000

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
68 70 72

Sect 2 Part 16, Chan 1, Patch

Parameter Min

7, Pan

MinMean

1.000000 0.500000
| REFLECT | RANDOM ENTRY
| wo |
| NO NO
| o |
64, BEATS 43 to 43
Start Grad Lambda

PITCH 67
LENGTH (/ 3) 1

67 1.000000 20.000000

REPEAT
PITCH NO
LENGTH YES
VELOCITY YES

PITCH SELECTIONS:
67 68

7, Pan

MinMean

e e i e i o b e i s A o S . O PR Pl S i . S P o S O S, S i . B L i L S e . e O Al S S i it v i, i . S M W ok I e . e PO S S Nl . S B e

1.000000 0.500000
| REFLECT | RANDOM ENTRY
| w |
| NO | NO
I wo |
64, BEATS 44 to 46
Start Grad Lambda
65 1.000000 0.500000
1 1.000000 0.500000

Sect 2 Part 17, Chan 1, Patch
Parameter Min Max
PITCH 63 65
LENGTH (/ 1) 1 2
REPEAT | SELECT
PITCH NO | YES
LENGTH NO | YES
VELOCITY YES | NO

PITCH SELECTIONS:
63 65
LENGTH SELECTIONS:
1 2

199

| REFLECT | RANDOM ENTRY
| wmo |

| NO | NO

| mo |

B.1.4 Dance Music

Section Parts Min Length Min Total Max Length Max Total

S v i s it i e At Sl M e i i i B B i M S Bl M M ot ke i i, S B0 o i ot i e i (i o i i o M B o o B I o Ml S St Bt G e e e S

1 16 448 448 448 448
2 9 161 609 161 609
SECTION SEQUENCE:
12
Tempo = 274 bpm MIDI Buffer Size = 2000 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 2 1 448

2 10 34 384

3 10 67 248

4 10 259 384

5 10 113 128

6 10 129 248

7 10 257 384

8 1 130 248

9 1 258 384

10 3 257 448

11 3 257 448

12 5 321 448

13 5 321 448

14 4 417 448

15 4 417 448

16 10 433 448
Sect 1 Part 1, Chan 2, Patch 82, Pan 64, BEATS 1 to 448
Parameter Min Max MinMean Start Grad Lambda
PITCH 52 52 52 1.000000 0.500000
LENGTH (/ 2) 1 2 1 1 1.000000 0.500000
VOLUME 90 90 90 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH NO | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 1 Part 2, Chan 10, Patch 0, Pan 64, BEATS 34 to 384
Parameter Min Max MinMean Start Grad Lambda
PITCH 42 42 42 1.000000 0.500000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO

200

VELOCITY YES | NO | NO | NO |

Sect 1 Part 3, Chan 10, Patch 0, Pan 64, BEATS 67 to 248
Parameter Min Max MinMean Start Grad Lambda
PITCH 39 39 39 1.000000 0.500000
LENGTH (/ 1) 4 4 4 ‘ 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 1 Part 4, Chan 10, Patch 0, Pan 64, BEATS 259 to 384
Parameter Min Max MinMean Start Grad Lambda
PITCH 39 39 39 1.000000 0.500000
LENGTH (/ 1) 4 4 4 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES } NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 1 Part 5, Chan 10, Patch 0, Pan 64, BEATS 113 to 128
Parameter Min Max MinMean Start Grad Lambda
PITCH 38 38 38 1.000000 0.500000
LENGTH (/ 2) 1 1 1 1.000000 0.500000
VELOCITY 0 127 3 0 1.000000 20.000000
RELEASE 16 16 16 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO } NO ; NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | YES | NO |
Sect 1 Part 6, Chan 10, Patch 0, Pan 64, BEATS 129 to 248
Parameter Min Max MinMean Start Grad Lambda
PITCH 36 36 36 1.000000 0.500000
LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES J NO J NO ! NO ! NO
VELOCITY YES | NO | NO | NO |
Sect 1 Part 7, Chan 10, Patch 0, Pan 64, BEATS 257 to 384
Parameter Min Max MinMean Start Grad Lambda
PITCH 36 36 36 1.000000 0.500000
LENGTH (/ 1) 2 2 2 1.000000 0.500000

REVERSE

e i o o e I i, . S i i e Vo S G M W e i 1 i T s Bk e i i e R S v o e i e M o o o ke Sk e . oA e S Sk B

REPEAT | SELECT
PITCH YES | NO
LENGTH YES | NO
VELOCITY YES | NO

1, Patch

25, Pan

MinMean

S Y Aty 4 1 . i ke St s e O O 10 Yt b S WD VOl Wl o i e . S M o o i Y e Wl b ok e ol S ot i i 9 i i S et . e S S O

1, Patch

25, Pan

MinMean

S ke v s o i e S W S O Lk g S o S A o O T i 4 S o s M W (i W i S s 1 . S s i W i i O e . e o A AR Al i J i e o st e P e . o S S s

i " o G A, B vt i e e P Gt o o b e Ml e o P e (e e ot (e K. . e s S i R Ve o e k. S e e . e S o o e

82, Pan

MinMean

Sl S i A 0 A S I e T S k. o o e S i i W S P Gl M S S 4t s Sl s I G e . o e A i Kt e ek o S i Sk o B o o e Mk S e b S S S . . O O v o A

S Ll s i S i i i s S v e A S . S, e sl Gl . s e e . s e . e . e . e (i i e Sl e P 8. Lt A St S . S . Mt e o . b

Sect 1 Part 8, Chan
Parameter Min Max
PITCH 28 28
LENGTH (/ 1) 2 2
RELEASE 16 16
REPEAT | SELECT
PITCH YES | NO
LENGTH YES | NO
VELOCITY YES | NO
Sect 1 Part 9, Chan
Parameter Min Max
PITCH 28 28
LENGTH (/ 1) 2 2
RELEASE 16 16
REPEAT | SELECT
PITCH YES ! NO
LENGTH YES | NO
VELOCITY YES | NO
Sect 1 Part 10, Chan 3, Patch
Parameter Min Max
PITCH 66 72
LENGTH (/ 1) 8 8
VOLUME 0 0
REPEAT | SELECT
PITCH YES | YES
LENGTH YES | NO
VELOCITY YES ! NO

PITCH SELECTIONS:
66 67 69 72

0, Pan

MinMean

| REFLECT | RANDOM ENTRY
NO |
| NO | NO
| wo |
64, BEATS 130 to 248
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| 1w~ |
| NO NO
| wo |
64, BEATS 258 to 384
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| N |
| NO | NO
| w~No |
64, BEATS 257 to 448
Start Grad Lambda
69 1.000000 20.000000
1.000000 0.500000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| wo |
| NO | NO
[w |
64, BEATS 257 to 448
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000

0 -1.000000 20.000000

Sect 1 Part 11, Chan 3, Patch
Parameter Min Max
PITCH 60 60
LENGTH (/ 1) 1 1
VELOCITY 0 0
VOLUME 0 80
REPEAT | SELECT
PITCH YES | NO
LENGTH YES | NO
VELOCITY YES | NO

202

| REFLECT | RANDOM ENTRY
| no |

| NO | NO

| wo !

Sect 1 Part 12, Chan 5, Patch 82, Pan 64, BEATS 321 to 448

Parameter Min Max MinMean Start Grad Lambda
PITCH 69 76 71 72 1.000000 20.000000
LENGTH (/ 1) 8 8 8 1.000000 0.500000
VOLUME 0 0 0 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | YES | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

PITCH SELECTIONS:
69 71 72 76

Sect 1 Part 13, Chan 5, Patch 0, Pan 64, BEATS 321 to 448
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 60 60 1.000000 0.500000
LENGTH (/ 1) 1 1 1 1.000000 0.500000
VELOCITY 0 0 0 1.000000 0.500000
VOLUME 0 80 80 0 -~1.000000 20.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

Sect 1 pPart 14, Chan 4, Patch 52, Pan 64, BEATS 417 to 448
Parameter Min Max MinMean Start Grad Lambda
PITCH 64 64 64 1.000000 0.500000
LENGTH (/ 1) 32 32 32 1.000000 0.500000
VOLUME 0 0 0 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

Sect 1 Part 15, Chan 4, Patch 0, Pan 64, BEATS 417 to 448
Parameter Min Max MinMean Start Grad Lambda

e i e e O T Yl Mk (e i i P o S G o e S St e S G S S Bt S P W v G S s St s e S M e ot e S S o e Yo . A S e B e e v S o S S

PITCH 60 0 1.000000 0.500000

LENGTH (/ 1) 1 1 1.000000 0.500000

VELOCITY 0 0 0 1.000000 0.500000
0 4

VOLUME 127 0 1.000000 20.000000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

Sect 1 Part 16, Chan 10, Patch 0, Pan 64, BEATS 433 to 448

203

Lambda

0.500000
0.500000

1.000000 20.000000

0.500000

| RANDOM ENTRY

0.500000

160
Lambda
0.500000

0.500000
0.500000

| RANDOM ENTRY

128

0.500000
0.500000

| RANDOM ENTRY

0.500000

Parameter Min Max MinMean Start Grad
PITCH 38 38 38 1.000000
LENGTH (/ 2) 1 1 1 1.000000
VELOCITY 0 127 3 0
RELEASE 16 16 16 1.000000
REPEAT | SELECT | REVERSE | REFLECT
PITCH YES | NO | NO | NO |
LENGTH YES l NO | NO | NO
VELOCITY YES | NO | YES | NO |
SECTION: 2
Parameter Min Max MinMean Start Grad
TRANSPOSE 0 0 0 1.000000
Part No MIDI Channel Starting Beat Ending Beat
1 2 1 160
2 10 2 128
3 10 3 128
4 10 1 128
5 1 2 128
6 3 1 128
7 4 1 128
8 10 145 160
9 10 161 161
Sect 2 Part 1, Chan 2, Patch 82, Pan 64, BEATS 1
Parameter Min Max MinMean Start Grad
PITCH 52 52 52 1.000000
LENGTH (/ 2) 1 2 1 1 1.000000
VOLUME 90 90 90 1.000000
REPEAT | SELECT | REVERSE | REFLECT
PITCH YES | NO ! NO | NO |
LENGTH NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 2 Part 2, Chan 10, Patch 0, Pan 64, BEATS 2
Parameter Min Max MinMean Start Grad
PITCH 42 42 42 1.000000
LENGTH (/ 1) 2 2 2 1.000000
REPEAT | SELECT | REVERSE | REFLECT
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO |
VELOCITY YES ! NO | NO | NO |
Sect 2 Part 3, Chan 10, Patch 0, Pan 64, BEATS 3
Parameter Min Max MinMean Start Grad
PITCH 39 39 39 1.000000
LENGTH (/ 1) 4 4 4 1.000000

0.500000

| RANDOM ENTRY

Il o e i e e i s e o . . Sl i o S B, R Skl S e i . S A Sy o i St O o B ol o i o A 0t o i S o B WS Sl e e S Y e i e Sl

REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |

Sect 2 Part

4, Chan 10, Patch

1 to 128

Grad Lambda

S e i s . o (e e St . o I S A . O O A 40 i St 4 . N e o o A S . s S S Mt S, ok e . o S St e e o . i i e Gl A 4 S B o e SO o i i i o o,

1.000000
1.000000

0.500000
0.500000

| RANDOM ENTRY

Parameter Min Max
PITCH 36 36
LENGTH (/ 1) 2 2
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |

Sect 2 Part 5, Chan 1, Patch

REVERSE | REFLECT
NO | NO
NO | NO
NO | NO
0, Pan 64, BEATS
MinMean Start
36
2
REVERSE | REFLECT
NO | NO
NO | NO
NO | NO

25, Pan 64, BEATS

1.000000
1.000000
1.000000

0.500000
0.500000
0.500000

| RANDOM ENTRY

I i i S i i bt O o S s i il k. o . i, i e e . i St Mot i G S i o W T S S8 S et i . . . o o sty

1 to 128

Grad Lambda

e i i e i o e i o O G i i Yo v S e Mg St e St S . i et . N 00 S . S, b S i S B B i s i i S e B, e s e e o i i Sk o e S i i S

1.000000 20.000000
1.000000

0.500000

| RANDOM ENTRY

T T i it o i s i ot s S A A i Y A Mt b o Y S e S e et S, U S et B o e S e T Y Bkt S et S S i e o i A

1 to 128

Grad Lambda

1.000000 20.000000
1.000000

0.500000

| RANDOM ENTRY

Parameter Min Max
PITCH 28 28
LENGTH (/ 1) 2 2
RELEASE 16 16
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |
Sect 2 Part 6, Chan 3, Patch
Parameter Min Max
PITCH 57 64
LENGTH (/ 1) 4 12
REPEAT | SELECT |
PITCH YES | YES |
LENGTH NO | YES |
VELOCITY YES | NO |
PITCH SELECTIONS:
57 59 60 62 64
LENGTH SELECTIONS:
4 12
Sect 2 Part 7, Chan 4, Patch
Parameter Min Max
PITCH 52 59
LENGTH (/ 1) 16 16
REPEAT | SELECT |
PITCH YES | YES |
LENGTH NO | YES |
VELOCITY YES | NO |

PITCH SELECTIONS:

MinMean Start
28
2
16
REVERSE | REFLECT
NO NO
NO } NO
NO l NO
52, Pan 64, BEATS
MinMean Start
64 64
4 12
REVERSE | REFLECT
YES | NO
NO | NO
NO | NO
52, Pan 64, BEATS
MinMean Start
59 59
16
REVERSE | REFLECT
YES | NO
NO | NO
NO ! NO

52 55 59
LENGTH SELECTIONS:

16

Sect 2 Part 8, Chan 10, Patch 0, Pan 64, BEATS 145 to 160

Parameter Min Max MinMean Start Grad Lambda

PITCH 38 38 38 1.000000 0.500000

LENGTH (/ 2) 1 1 1 1.000000 0.500000

VELOCITY 0 127 3 0 1.000000 20.000000

RELEASE 16 16 16 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | YES | NO |

Sect 2 Part 9, Chan 10, Patch 0, Pan 64, BEATS 161 to 161

Parameter Min Max MinMean Start Grad Lambda

PITCH 36 36 36 1.000000 0.500000

LENGTH (/ 1) 2 2 2 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

206

B.2 COMPOSITIONAL STUDIES

B.2.1 Markov-2

COMPOSITION FILE: Hard Disk:Music:markov-2

Section Parts Min Length Min Total Max Length Max Total

i s i i o v i o (e O G W e W o, o a1 o S s i G i i e i i . o i e e Tl ki o o L4 LAk ot W i S . . o i A o o Y

1 2 160 160 160 160

2 2 160 320 160 320

3 2 160 480 160 480
SECTION SEQUENCE:

1 2 3
Tempo = 160 bpm MIDI Buffer Size = 1000 Bytes
SECTION: 1
Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 160

2 2 17 160
Sect 1 Part 1, Chan 1, Patch 46, Pan 24, BEATS 1 to 160
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | YES
VELOCITY YES | NO | NO | NO |
Sect 1 Part 2, Chan 2, Patch 46, Pan 104, BEATS 17 to 160
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO ! NO | YES
VELOCITY YES | NO l NO | NO |
SECTION: 2
Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

207

2 2 25 160

Sect 2 Part 1, Chan 1, Patch 46, Pan 24, BEATS 9 to 160

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 83 48 1.000000 0.500000

LENGTH (/ 32) 1 32 1 ~-1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | YES

VELOCITY YES | NO | NO | NO |

Sect 2 Part 2, Chan 2, Patch 46, Pan 104, BEATS 25 to 160

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 83 48 1.000000 0.500000

LENGTH (/ 32) 1 32 1 -1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | YES

VELOCITY YES | NO | NO | NO |

SECTION: 3

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 9 160

2 2 25 160
Sect 3 Part 1, Chan 1, Patch 46, Pan 24, BEATS 9 to 160
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 ~1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | YES
VELOCITY YES | NO | NO | NO |
Sect 3 Part 2, Chan 2, Patch 46, Pan 104, BEATS 25 to 160
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 83 48 -1.000000 0.500000
LENGTH (/ 32) 1 32 1 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | YES

VELOCITY

YES

NO

NO

209

NO

B.2.2 Computer Study for Timpani

COMPOSITION FILE: Hard Disk:Music:computer_ study_ for timpani

Section Parts Min Length Min Total Max Length Max Total

ke e s 1l e s it i i i ki M e ek bt i Y A Ol o o ok st . i . o U Wl St i e e ke O Mo e il S e i i e e v oo G Yo S s S

1 1 30 30 30 30
2 1 30 60 30 60
3 1 30 90 30 90
4 1 30 120 30 120
5 2 37 157 37 157
6 2 12 169 12 169
7 3 9 178 9 178
8 4 10 188 10 188
9 2 7 195 7 195
10 2 13 208 13 208
11 3 10 218 10 218
12 4 9 227 9 227
13 2 7 234 7 234
14 12 366 600 366 600

SECTION SEQUENCE:
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tempo = 150 bpm MIDI Buffer Size = 5000 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 1 30
Sect 1 Part 1, Chan 1, Patch 48, Pan 0, BEATS 1 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 48 48 1.000000 0.500000
LENGTH (/ 16) 1 16 1 1.000000 0.500000
VELOCITY 1 127 1 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 2

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE o o o 1000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
T . T s 30
Sect 2 Part 1, Chan 2, Patch 48, Pan 127, BEATS 5 to 30
Parameter Min Max MinMean Start Grad Lambda

PITCH 63 63 63 1.000000 0.500000

LENGTH (/ 16) 1 16 1 1.000000 0.500000

VELOCITY 1 127 1 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO ! NO | NO

VELOCITY YES | NO | NO] NO |

SECTION: 3

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 5 30
Sect 3 pPart 1, Chan 1, Patch 48, Pan 0, BEATS 5 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 16) 1 16 1 1.000000 0.500000
VELOCITY 1 127 1 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 4

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 2 5 30
Sect 4 Part 1, Chan 2, Patch 48, Pan 127, BEATS 5 to 30
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 16) 1 16 1 1.000000 0.500000
VELOCITY 1 127 1 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 5

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

211

S i S M e (i i i i i St I S i S W S, i i 4000 i, Yt o B S, i i Yt W A i St . b i S S i i i A A B S i i o i i e o i

2 2 5 37

Sect 5 Part 1, Chan 1, Patch 48, Pan 0, BEATS 5 to 37

Parameter Min Max MinMean Start Grad Lambda

PITCH 48 60 48 1.000000 0.500000

LENGTH (/ 16) 1 16 1 1.000000 0.500000

VELOCITY 1 127 1 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO] NO

VELOCITY YES | NO | NO { NO |

Sect 5 Part 2, Chan 2, Patch 48, Pan 127, BEATS 5 to 37

Parameter Min Max MinMean Start Grad Lambda

PITCH 60 72 60 1.000000 0.500000

LENGTH (/ 16) 1 16 1 1.000000 0.500000

VELOCITY 1 127 1 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO

VELOCITY YES | NO | NO | NO |

SECTION: 6

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 7 10

2 2 11 12
Sect 6 Part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 10
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 6 Part 2, Chan 2, Patch 48, Pan 127, BEATS 11 to 12
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

A e e i i . Ll e i S il e L (e ot bt e O Ve s e e W o o R Il S i Sty i e ol s e oA e e S e o v e S o o ot i . S P

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
SECTION: 7
Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
1 1 2 5
2 2 6 7
3 1 8 9
Sect 7 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 5
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 7 Part 2, Chan 2, Patch 48, Pan 127, BEATS 6 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 7 Part 3, Chan 1, Patch 48, Pan 0, BEATS 8 to 9
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
SECTION: 8
Parameter Min Max MinMean Start Grad Lambda

TRANSPOSE 0 0 0 1.000000 0.500000

Part No MIDI Channel Starting Beat Ending Beat
1 1 3 4
2 2 5 6
3 1 7 8
4 2 9 10
Sect 8 pPart 1, Chan 1, Patch 48, Pan 0, BEATS 3 to 4
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO [NO |
Sect 8 Part 2, Chan 2, Patch 48, Pan 127, BEATS 5 to 6
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO I NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO i NO |
Sect 8 Part 3, Chan 1, Patch 48, Pan 0, BEATS 7 to 8
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO] NO |
Sect 8 Part 4, Chan 2, Patch 48, Pan 127, BEATS 9 to 10
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 9

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 3 7

2 2 3 7
Sect 9 Part 1, Chan 1, Patch 48, Pan 0, BEATS 3 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 97 127 97 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO i
Sect 9 Part 2, Chan 2, Patch 48, Pan 127, BEATS 3 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 97 127 97 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO J

SECTION: 10

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 7 11

2 2 12 13
Sect 10 part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to il
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO } NO
VELOCITY YES | NO [NO { NO |

215

Sect 10 part 2, Chan 2, Patch 48, Pan 127, BEATS 12 to 13

Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 10 32 10 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 11

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
1 1 2 6
2 2 7 8
3 1 9 10
Sect 11 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 6
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO | :
Sect 11 Part 2, Chan 2, Patch 48, Pan 127, BEATS 7 to 8
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO [NO |
Sect 11 Part 3, Chan 1, Patch 48, Pan 0, BEATS 9 to 10
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 33 64 33 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO ;

SECTION: 12

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat
1 1 2 3
2 2 4 5
3 1 6 7
4 2 8 9
Sect 12 Part 1, Chan 1, Patch 48, Pan 0, BEATS 2 to 3
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO l
Sect 12 Part 2, Chan 2, Ppatch 48, Pan 127, BEATS 4 to 5
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 12 Part 3, Chan 1, Patch 48, Pan 0, BEATS 6 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 65 96 65 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO 1 NO |
Sect 12 Part 4, Chan 2, Patch 48, Pan 127, BEATS 8 to 9
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000

VELOCITY 65 96 65 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO [NO [

SECTION: 13

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 3 7

2 2 3 7
Sect 13 Part 1, Chan 1, Patch 48, Pan 0, BEATS 3 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 60 48 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 97 127 97 1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 13 part 2, Chan 2, Patch 48, Pan 127, BEATS 3 to 7
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 72 60 1.000000 0.500000
LENGTH (/ 90) 10 15 10 1.000000 0.500000
VELOCITY 97 127 97 1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO [NO |

SECTION: 14

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 1 7 126

2 2 37 156

3 3 60 179

4 4 90 209

5 1 127 246

6 2 157 276

7 3 180 299

8 4 210 329

9 1 247 366

10 2 277 366

218

11 3 300 366

12 4 330 366
Sect 14 part 1, Chan 1, Patch 48, Pan 0, BEATS 7 to 126
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 48 48 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO
Sect 14 part 2, Chan 2, Patch 48, Pan 127, BEATS 37 to 156
Parameter Min Max MinMean Start Grad Lambda
PITCH 57 57 57 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO
Sect 14 part 3, Chan 3, Patch 48, Pan 42, BEATS 60 to 179
Parameter Min Max MinMean Start Grad Lambda
PITCH 54 54 54 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO 1 NO
Sect 14 Part 4, Chan 4, Patch 48, Pan 84, BEATS 90 to 209
Parameter Min Max MinMean Start Grad Lambda
PITCH 51 51 51 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO f NO] NO
VELOCITY YES | NO | NO | NO
Sect 14 Part 5, Chan 1, Patch 48, Pan 0, BEATS 127 to 246
Parameter Min Max MinMean Start Grad Lambda
PITCH 69 69 69 1.000000 0.500000

219

LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO NO
LENGTH YES | NO | NO NO I NO
VELOCITY YES | NO | NO NO [
Sect 14 Part 6, Chan 2, Patch 48, Pan 127, BEATS 157 to 276
Parameter Min Max MinMean Start Grad Lambda
PITCH 66 66 66 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 ~1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO NO |
LENGTH YES | NO | NO NO | NO
VELOCITY YES | NO | NO NO |
Sect 14 Part 7, Chan 3, Patch 48, Pan 42, BEATS 180 to 299
Parameter Min Max MinMean Start Grad Lambda
PITCH 63 63 63 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO NO NO |
LENGTH YES | NO | NO NO | NO
VELOCITY YES | NO | NO NO |
Sect 14 part 8, Chan 4, Patch 48, Pan 84, BEATS 210 to 329
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 60 60 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT | REVERSE REFLECT | RANDOM ENTRY
PITCH YES } NO | NO NO |
LENGTH YES | NO | NO NO | NO
VELOCITY YES | NO [NO NO |
Sect 14 part 9, Chan 1, Patch 48, Pan 0, BEATS 247 to 366
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 71 48 69 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 ~1.000000 0.050000
REPEAT | SELECT | REVERSE REFLECT | RANDOM ENTRY
PITCH YES | NO | NO NO |
LENGTH YES | NO | NO NO | NO
VELOCITY YES | NO | NO NO ;

220

Sect 14 Part 10, Chan 2, Patch 48, Pan 127, BEATS 277 to 366
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 71 48 66 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 ~1.000000 0.050000
REPEAT | SELECT REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO NO | NO |
LENGTH YES | NO NO | NO | NO
VELOCITY YES | NO NO | NO |
Sect 14 Part 11, Chan 3, Patch 48, Pan 42, BEATS 300 to 366
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 71 48 63 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 ~1.000000 0.050000
REPEAT | SELECT REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO NO | NO |
LENGTH YES | NO NO ! NO | NO
VELOCITY YES | NO NO | NO |
Sect 14 Part 12, Chan 4, Patch 48, Pan 84, BEATS 330 to 366
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 71 48 60 1.000000 0.500000
LENGTH (/120) 50 50 50 1.000000 0.500000
VELOCITY 50 127 127 -1.000000 0.050000
REPEAT | SELECT REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO NO | NO |
LENGTH YES | NO NO | NO NO
VELOCITY YES | NO NO | NO |

221

B.2.3 Vibrato Study

COMPOSITION FILE: Hard Disk:Music:vibrato_study

Section Parts Min Length Min Total Max Length Max Total

_..-....__.._.-_.—_....—.——.—._—._.-....-_-_.......-_..._.—_.—-._—_—_..___....—.._—_....—.——__—.

1 11 82 82 82 82
2 7 90 172 90 172
3 9 150 322 150 322
SECTION SEQUENCE:
1 2 3
Tempo = 60 bpm MIDI Buffer Size = 100 Bytes

SECTION: 1

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 5 1 80

2 6 1 80

3 7 1 80

4 1 13 18

5 2 25 30

6 3 37 42

7 1 49 54

8 1 67 72

9 2 67 72

10 3 79 82

11 4 79 82
Sect 1 Part 1, Chan 5, Patch 54, Pan 0, BEATS 1 to 80
Parameter Min Max MinMean Start Grad Lambda
PITCH 38 38 38 1.000000 0.500000
LENGTH (/ 1) 80 80 80 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES] NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO 1 NO |
Sect 1 pPart 2, Chan 6, Patch 54, Pan 64, BEATS 1 to 80
Parameter Min Max MinMean Start Grad Lambda
PITCH 45 45 45 1.000000 0.500000
LENGTH (/ 1) 80 80 80 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO ; NO |

222

Sect 1 Part 3, Chan 7, Patch 54, Pan 127, BEATS

LTl i T A S R L i i S i i (8 S bk i i i . e i i i i o o O, S ot . i e M e V. i St . e St b v it S e T P . Yo P . e o

o o i 0 1 i i o e . 1k b o, S Y e e O Gt . i e i o S o o e .S S o i 0 i i . . e e S . S e s

—-———.—._-.—.__.-.__.._._—._..-._—.—__—.—._...-.-...__._.._—_._..._._...._-.-.-._..__.-...-_..-..._-._...—.._....._

—-.———_—-————-n——————.._—-.-_-._..__—.......-.-...._—-._-.-——._.._....--.._..._._.—__..—_..__—.—_._-.—-.

Parameter Min Max
PITCH 52 52
LENGTH (/ 1) 80 80
RELEASE 104 104
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |
Sect 1 Part 4, Chan 1, Patch
Parameter Min Max
PITCH 48 84
LENGTH (/ 1) 6 6
VIBDEPTH 114 114
VIBRATE 14 114
RELEASE 104 104
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO I
VELOCITY YES | NO |
Sect 1 Part 5, Chan 2, Patch
Parameter Min Max
PITCH 48 84
LENGTH (/ 1) 6 6
VIBDEPTH 114 114
VIBRATE 14 114
RELEASE 104 104
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES ! NO |
VELOCITY YES | NO |
Sect 1 Part 6, Chan 3, Patch
Parameter Min Max
PITCH 48 84
LENGTH (/ 1) 6 6
VIBDEPTH 114 114
VIBRATE 14 114
RELEASE 104 104
REPEAT | SELECT |
PITCH YES | NO |
LENGTH YES | NO |
VELOCITY YES | NO |

Patch

1 to 80
MinMean Start Grad Lambda
52 1.000000 0.500000
80 1.000000 0.500000
104 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO NO | NO
NO | NO |
54, Pan 4, BEATS 13 to 18
MinMean Start Grad Lambda
60 1.000000 0.500000
6 1.000000 0.500000
114 1.000000 0.500000
14 1.000000 0.050000
104 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO | NO | NO
NO | NO |
54, Pan 44, BEATS 25 to 30
MinMean Start Grad Lambda
60 1.000000 0.500000
6 1.000000 0.500000
114 1.000000 0.500000
14 1.000000 0.050000
104 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO
NO | NO | NO
NO | NO |
54, Pan 84, BEATS 37 to 42
MinMean Start Grad Lambda
60 1.000000 0.500000
6 1.000000 0.500000
114 1.000000 0.500000
14 1.000000 0.050000
104 1.000000 0.500000
REVERSE | REFLECT | RANDOM ENTRY
NO | NO |
NO | NO | NO
NO | NO l
54, Pan 124, BEATS 49 to 54

Sect 1 Part 7, Chan 1

r

223

Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO |
VELOCITY YES | NO | NO | NO |
Sect 1 Part 8, Chan 1, Patch 54, Pan 4, BEATS 67 to 72
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO |
VELOCITY YES | NO | NO] NO |
Sect 1 Part 9, Chan 2, Patch 54, Pan 84, BEATS 67 to 72
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 1 Part 10, Chan 3, Patch 54, Pan 44, BEATS 79 to 82
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 23 23 23 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO] NO |
Sect 1 Part 11, Chan 4, Patch 54, Pan 124, BEATS 79 to 82

224

Parameter Min Max MinMean Start Grad Lambda

..,-._-__..—.....-———..-.__-_...-.——-—__—-..-......._.—.—.--_-._._—_—-ﬁ_-_—_-—_-—_————-_.__.-.._._

PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 6 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 23 23 23 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |

LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |

SECTION: 2

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 5 1 90

2 6 1 90

3 7 1 90

4 1 7 90

5 2 13 90

6 3 19 90

7 4 25 90
Sect 2 part 1, Chan 5, Patch 54, Pan 0, BEATS 1 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 38 38 38 1.000000 0.500000
LENGTH (/ 1) 90 90 90 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO
Sect 2 part 2, Chan 6, Patch 54, Pan 64, BEATS 1 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 45 45 45 1.000000 0.500000
LENGTH (/ 1) 90 90 90 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO i NO |
Sect 2 Part 3, Chan 7, Patch 54, Pan 127, BEATS 1 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 52 52 52 1.000000 0.500000
LENGTH (/ 1) 90 90 90 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

_____.__._-._.__.._——_——_—_—._-.--..-_.-._—_-__..____-—..—._.-._—-_-_—.—_

PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO l NO |
Sect 2 pPart 4, Chan 1, Patch 54, Pan 4, BEATS 7 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 8 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO
Sect 2 Part 5, Chan 2, Patch 54, Pan 44, BEATS 13 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 8 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 2 part 6, Chan 3, Patch 54, Pan 84, BEATS 19 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 8 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO !
Sect 2 Part 7, Chan 4, Patch 54, Pan 84, BEATS 25 to 90
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 84 60 1.000000 0.500000
LENGTH (/ 1) 6 8 6 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 14 114 14 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

-.—___.———..-—_-_.—_-.——_-..—.—-———...__.-_..-_—_...—__._.—-..-_.—-.._..__._--

PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO [

SECTION: 3

Parameter Min Max MinMean Start Grad Lambda
TRANSPOSE 0 0 0 1.000000 0.500000
Part No MIDI Channel Starting Beat Ending Beat

1 5 3 150

2 6 19 150

3 7 37 150

4 8 55 120

5 9 61 120

6 1 127 150

7 2 130 150

8 3 133 150

9 4 136 150
Sect 3 Part 1, Chan 5, Patch 54, Pan 0, BEATS 3 to 150
Parameter Min Max MinMean Start Grad Lambda
PITCH 36 47 36 1.000000 0.500000
LENGTH (/ 1) 148 148 148 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 31 31 31 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 3 Part 2, Chan 6, Patch 54, Pan 64, BEATS 19 to 150
Parameter Min Max MinMean Start Grad Lambda
PITCH 48 59 48 1.000000 0.500000
LENGTH (/ 1) 132 132 132 1.000000 0.500000
VELOCITY 100 100 100 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 41 41 41 1.000000 0.050000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

PITCH YES | NO | NO | NO |
LENGTH YES I NO | NO | NO | NO
VELOCITY YES | NO | NO | NO |
Sect 3 Part 3, Chan 7, Patch 54, Pan 127, BEATS 37 to 150
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 71 60 1.000000 0.500000
LENGTH (/ 1) 114 114 114 1.000000 0.500000
VELOCITY 90 90 90 1.000000 0.500000

114
61
104

| SELECT |

114
61
104

REVERSE

o 0 0 s o i ek i 1 e) S e i . L o il i e ., L e S o ot Sk St . B . 4 . St o s

8, Patch

54, Pan

MinMean

—-...-..—...-.————————_—...._—._..-—.-.—_—._..-.—.—...__—...-_..._..—__-—..___—_——_-.__—__.__.-.__-_

————-.——————.—_—n—--—.—.—_._-.._...—..--..-.-....._-.._..-_._-.._—_..—._.-.-—-_-

9, Patch

54, Pan

MinMean

——-_-.—---.._..—....—.—.-.-.._-..-..—.-...-..--.-.—_.—...—-...—.-....—..-.—._._....._..—-._._..—.--....—_—.-..—.a....—.—......——.-—

-.___.-.-._—__._._-..—-_.....-—————.———-._————-.—_-._-.—..._....-._._—._._..-._..-._.

54, Pan

MinMean

-._-..-..__....—._-—._—_.--————.—.—.———————.——-————-_.._-..._—-._..-_——__..__—-...—___..——.—_—._

114
36
104

| SELECT |

89
114
36
104

REVERSE

.—._.-_.._...-._—_-..-.—._-.__--—_-.—.._._.._._-._-._.._...-_.._...—-..__.....-_-.__

2, Patch

54, Pan

MinMean

VIBDEPTH 114
VIBRATE 61
RELEASE 104
REPEAT
PITCH YES |
LENGTH YES |
VELOCITY YES |
Sect 3 Part 4, Chan
Parameter Min
PITCH 60
LENGTH (/ 2) 1
VELOCITY 40
REPEAT
PITCH YES |
LENGTH YES !
VELOCITY YES J
Sect 3 Part 5, Chan
Parameter Min
PITCH 60
LENGTH (/ 4) 1
VELOCITY 40
REPEAT
PITCH YES |
LENGTH YES |
VELOCITY YES |
Sect 3 Part 6, Chan
Parameter Min
PITCH 36
LENGTH (/ 1) 89
VIBDEPTH 114
VIBRATE 36
RELEASE 104
REPEAT
PITCH YES |
LENGTH YES |
VELOCITY YES }
Sect 3 Part 7, Chan
Parameter Min
PITCH 48
LENGTH (/ 1) 72
VELOCITY 100
VIBDEPTH 114
VIBRATE 46
RELEASE 104

1.000000 0.500000
1.000000 0.050000
1.000000 0.500000
| REFLECT | RANDOM ENTRY
| NO
| NO | NO
l wo |
34, BEATS 55 to 120
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.100000
| REFLECT | RANDOM ENTRY
| wno |
| NO | NO
I No |
94, BEATS 61 to 120
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.100000
| REFLECT | RANDOM ENTRY
| w0 |
| NO | NO
| mo |
4, BEATS 127 to 150
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.0006000 0.500000
| REFLECT | RANDOM ENTRY
| wo |
| NO | NO
| ~No |
44, BEATS 130 to 150
Start Grad Lambda
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000
1.000000 0.500000

REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY

T L e e S a0 LA G S i v i o W O Ak it W I . . (B S0 b i Ot s W (ke I o P i e e et e S0 e o e b e i S foe

PITCH YES] NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO ! NO | NO
Sect 3 Part 8, Chan 3, Patch 54, Pan 84, BEATS 133 to 150
Parameter Min Max MinMean Start Grad Lambda
PITCH 60 71 60 1.000000 0.500000
LENGTH (/ 1) 54 54 54 1.000000 0.500000
VELOCITY 90 90 90 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 51 51 51 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO |
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO | NO
Sect 3 Part 9, Chan 4, Patch 54, Pan 124, BEATS 136 to 150
Parameter Min Max MinMean Start Grad Lambda
PITCH 72 83 72 1.000000 0.500000
LENGTH (/ 1) 54 54 54 1.000000 0.500000
VELOCITY 90 90 90 1.000000 0.500000
VIBDEPTH 114 114 114 1.000000 0.500000
VIBRATE 56 56 56 1.000000 0.500000
RELEASE 104 104 104 1.000000 0.500000
REPEAT | SELECT | REVERSE | REFLECT | RANDOM ENTRY
PITCH YES | NO | NO | NO
LENGTH YES | NO | NO | NO | NO
VELOCITY YES | NO | NO 1 NO

229

Appendix C

Bach Scores in Staff Notation

230

Bach - Original Score

-

[)

(>}

r

Joi PV o %7

e £

o

—

11

10

8
A
)

7.
AN
(Y]

15

14

¢

13

12
A

)74
[{an

7%
hall W4

16

Z

231

11

15

¢

Bachl

10
14

232

1Az

IN

TS)

"4

il CONIAKD 2024

7Y

13

Ll

104

12
16
A

Bach?2

NY ¥

2

¢

11

10

15

v

(>

IN

7

—y e Vo 7

i

¢

o

el K

7
17

14

13

A

N T
oY

233

Bach3

¢/

TS
[®.]

)

1

il ORI 2074
1A

2]
~

¢

11

15

10

{
Y

17
V4N

4

o

14

13

¢

12

o)

il W2

234

Bach4

u

1]
— b
o
¢
¢
o
b
- oV
D
ARE ap s
—_ " 3
g B 1
<A N
N

\

11

15

10

1Y

{
)

Y

o

hll KR4

o)

14

13

¢

12

8.\
haill K24

235

Bach5

¢

(A
)
IA

il CRIN2KS 2074
A
X

P 3
Y

a

11

10

1Y

)’
£

¢

o

o)
hill O
Z

&L
vy —h
N
¢
=
\O
oy
o~
L RER
44
o
)
v <
L]
I . N —
4 $)
N | —
oy I, N 4 . N
™~ P N}
Ny N < Avnmwv N
N v v

Bach 6

\NY

¢

¢/

(>

(>
il TN 2AKC® 204

I

15

10

| fanY

el T4

7

8
A
)

14

13

¢

12

il D4

7 X

237

g !
) HG
$ L '
< 4
VRN ha Ve

GLOSSARY

Algorithm The specification of a sequence of unambiguously defined steps
which lead to the accomplishment of a task. The specification normally lends
itself to the encoding of the algorithm in a computer program.

Fourier Transform The mathematical technique for converting the time-
domain representation of a waveform or numerical sequence into its
frequency-domain representation.

Function A formula, or group of formulas, which expresses how one quantity
depends on the values of one or more other quantities.

Input Parameter One of the values fed into a function in order to obtain the
output quantity.

Markov Chain A process in which the probability of occurrence of an event is
conditional on the occurrence of one or more past events.

MIDI (Musical Instrument Digital Interface) A communication standard,
developed and adopted by manufacturers of electronic musical instruments,
which allows instruments and computers to be connected together so that they
may share control information.

Object-oriented Programming A method of computer programming in which a
program is defined in terms of objects. Objects are in turn defined in terms of
the data they contain and the actions that may be performed on them. Objects
interact with each other during the operation of the program.

Part The lowest-level building block of a composition created using the
Markov program. It most commonly consists of a linear, monophonic sequence
of notes but may also be used to send MIDI control data, volume or pitch bend
changes for example, to the same MIDI channel as another Part, so as to affect
the note sequence being produced by that Part. Parts are combined to form
Sections.

Perturbation Analysis The systematic study of the effect on the behaviour of a
mathematical process of changes to the values of its input parameters.

Petri Net The representation of a Markov process by means of a graph, and an
associated table, achieving significant reductions in the amount of data needed
to define the transition matrix.

Probability Distribution A formula, or set of values, which expresses the
likelihood of occurrence of a value of a random variable. In the case of a
continuous random variable, this is the likelihood that it will lie within a
particular range of values.

Probability Lookup Table A table of values which expresses the relative
frequencies of occurrence of a two or more discrete random events.

238

Random Characteristic of a process which may produce different results from
an identical set of controlling conditions.

Random Variable A discrete or continuous variable quantity which assumes a
value as a result of a random process.

Section The top-level building block of a composition created using the
Markov program. A complete composition consists of a sequence of one or
more non-overlapping Sections. Sections in turn consist of one or more
simultaneous or overlapping Parts.

Serialism A system of composition based on the transformation of fixed
orderings of all twelve notes of the chromatic scale.

Source Code Listing The line by line list of instructions, structured according to
the rules of the computer language being used, which form a computer
program.

Stochastic Process A system of time-varying random variable quantities.
Transition Matrix A square array of values which define the conditional
probabilities of a Markov chain.

Transition Probability An individual probability value, within a Markov
transition matrix, specifying the probability of an event occurring conditional
on a previous event.

239

BIBLIOGRAPHY

Alley, Peter and Strange, Carolyn 1994 ResEdit Complete, Reading, MA:
Addison Wesley

Altech Systems 1990 MIDI Command Library Programmer’s Guide Version 3,
Shreveport, LA: Altech Systems

Ames, Charles 1989 "The Markov Process as a Compositional Model: A Survey
and Tutorial", Leonardo 22(2): 175-187

Assayag, Gérard et al 1999 "Computer-Assisted Composition at IRCAM: From
PatchWork to OpenMusic", Computer Music Journal 23(3): 59-72

Bach, Johann Sebastian 1980 Die sechs Franzosischen Suiten, Neue Ausgabe
Samtlicher Werke, Serie V: Klavier- und Lautenwerke, Band 8, Kassel:
Béarenreiter

Bennett, Deborah J 1998 Randommness, Cambridge, MA: Harvard University
Press

Bidlack, Rick 1992 "Chaotic Systems as Simple (but Complex) Compositional
Algorithms", Computer Music Journal 16(3): 33-47

Bolognesi, Tommaso 1983 "Automatic Composition: Experiments with Self-
Similar Music", Computer Music Journal 7(1): 25-36

Burton, Anthony R and Vladimirova, Tanya 1999 "Generation of Musical
Sequences with Genetic Techniques", Computer Music Journal 23(4): 59-73

Chadabe, Joel 1977 "Some Reflections on the Nature of the Landscape within
which Computer Music Systems are Defined”, Computer Music Journal 1(3): 5-
11

Chadabe, Joel and Meyers, Roger 1978 "An Introduction to the Play Program”,
Computer Music Journal 2(1): 12-18

Chadabe, Joel 1983 "Interactive Composing: An Overview", Computer Music
Journal 8(1): 22-27

240

Cope, David 1987 "An Expert System for Computer-assisted Composition”,
Computer Music Journal 11(4): 30-39

Cope, David 1991 Computers and Musical Style, Madison, WI: A-R Editions Inc.

De Furia, Steve and Scacciaferro, Joe 1988 MIDI Programming for the
Macintosh, Redwood City, CA: M&T Books

Dodge, Charles and Jerse, Thomas A 1985 Computer Music: Synthesis,
Composition and Performance, New York: Schirmer Books

Dodge, Charles 1988 "Profile: A Musical Fractal", Computer Music Journal 12(3)

Feller, William 1964 An Introduction to Probability Theory and Its Applications
(2 vols.), New York: John Wiley

Freedman, David 1983 Markov Chains, New York: Springer-Verlag

Gogins, Michael 1991 "Tterated Functions Systems Music”, Computer Music
Journal 15(1): 40-48

Greenhough, Michael 1984 "A Real-Time, Stochastic Melody Generating
System", Proceedings of the Institute of Acoustics 6(1): 47-53

Hiller, Lejaren A and Baker, Robert 1964 "Computer Cantata: A Study in
Compositional Method", Perspectives of New Music 3: 62-89

Hiller, Lejaren A and Isaacson, Leonard M 1959 Experimental Music, New York:
McGraw Hill

International MIDI Association 1988 MIDI Musical Instrument Digital Interface
Specification 1.0, Los Angeles, CA: International MIDI Association

Jacob, Bruce L 1996 "Algorithmic Composition as a Model of Creativity",
Organised Sound 1(3): 157-165

Jaffe, David and Boynton, Lee 1989 "An Overview of the Sound and Music Kits
for the NeXT Computer", Computer Music Journal 13(2): 48-55

Jones, Kevin 1981 "Compositional Applications of Stochastic Processes”,
Computer Music Journal 5(2): 45-61

241

Jones, Kevin 1984 Exploring Music with the BBC Micro and Electron, London:
Pitman

Jones, Kevin 1989 "Generative Models in Computer-assisted Musical
Composition”, Contemporary Music Review 3:177-196

Koenig, Gottfried M 1970a "Project 1", Electronic Music Reports 2: 32-44
Koenig, Gottfried M 1970b "Project 2", Electronic Music Reports 3: 1-15

Laske, Otto 1990 "Letters: Connectionist Composition"”, Computer Music
Journal 14(2):11-12

Lohner, Henning 1986 "The UPIC System: A User's Report”, Computer Music
Journal 10(4):42-55

Lorrain, Denis 1980 "A Panoply of Stochastic Cannons", Computer Music
Journal 4(1): 53-81

Loy, D Gareth 1985 "Musicians Make a Standard: The MIDI Phenomenon”,
Computer Music Journal 9(4):13

Loy, D Gareth 1990 "Letters: Connectionist Composition", Computer Music
Journal 14(2):13

Lyon, Douglas 1995 "Using Stochastic Petri Nets for Real-Time Nth-order
Stochastic Composition”, Computer Music Journal 19(4): 13-22

Mandelbrot, Benoit B 1977 The Fractal Geometry of Nature, San Francisco:
W.H. Freeman

McAlpine, Kenneth, Miranda, Eduardo and Hoggar, Stuart 1999 "Making Music
with Algorithms: A Case Study System”, Computer Music Journal 23(2): 19-30

McClellan, Jim 1996 "This is the future”, The Observer "Preview” Magazine, 12
May 1996: 46

Miranda, Eduardo 1993 "Cellular Automata Music: An Interdisciplinary
Project”, Interface 22: 3-21

242

Miranda, Eduardo 1994 "Music Composition using Cellular Automata”,
Languages of Design 2: 105-117

Moore, F Richard 1990 Elements of Computer Music, Englewood Cliffs, NJ:
Prentice-Hall

Myhill, John 1979 "Controlled Indeterminacy: A First Step towards a Semi-
Stochastic Music Language”, Computer Music Journal 3(3): 12-15

Naylor, T H, Balintfy, J L, Burdick, D S and Chu, K 1966 Computer Simulation
Techniques, New York: John Wiley

Pope, Stephen Travis 1996 "Object-oriented Music Representation”, Organised
Sound 1(1): 55-68

Pressing, Jeff 1988 "Nonlinear Maps as Generators of Musical Design”,
Computer Music Journal 12(2): 35-45

Ralley, David 1995 "Genetic Algorithms as a Tool for Melodic Development”,
in Proceedings of the 1995 International Computer Music Conference, San
Francisco: International Computer Music Association: 501-502

Risset, Jean-Claude 1990 "From Piano to Computer to Piano", in Proceedings of
the 1990 International Computer Music Conference, Glasgow: International
Computer Music Association: 15-19

Roads, Curtis 1979 "Grammars as Representations for Music", Computer Music
Journal 3(1): 48-55

Rothstein,] 1990 "Twelve-Tone Systems Sound Globs Algorithmic
Composition Software", Computer Music Journal 14(2): 83-85

Rowe, Robert 1993 Interactive Music Systems: Machine Listening and
Composing, Cambridge, Mass: MIT Press

Scholz, Carter 1989 "Sound Globs Algorithmic Composition for the IBM-PC",
Keyboard June 1989:135-137

Symantec Corporation 1990 THINK Pascal User Manual, Cupertino, CA:
Symantec Corporation

243

Todd, Peter M 1989 "A Connectionist Approach to Algorithmic Composition",
Computer Music Journal 13(4): 27-43

Todd, Peter M 1990 "Letters: Connectionist Composition", Computer Music
Journal 14(2):12-13

Voss, R F and Clarke,] 1978 "1/f Noise in Music: Music from 1/f Noise",
Journal of the Acoustical Society of America 63(1): 258-263

Xenakis, Iannis 1960 "Elements of Stochastic Music", Gravesaner Blatter 18: 84-
105

Xenakis, Iannis 1992 Formalised Music, Revised Editidn, Stuyvesant, NY:
Pendragon Press

Xenakis, Iannis 1996 "Determinacy and Indeterminacy”, Organised Sound 1(3):
143-155

Zicarelli, David 1987 "M and Jam Factory", Computer Music Journal 11(4): 13-29

24

