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Nomenclature

Fa Froude number = T/%

g Gravity acceleration = (0,0, —g)

Ry Vertical separation of the origin and the rigid lid

I Vertical separation of the rigid lid and the j** interface
H(z) Heaviside unit step function

i Layer number in which source point is located, i = 1 is the uppermost layer
J . Layer number in which field point is located

k Horizontal wavenumber vector = (ky, k3, 0)

k Horizontal wavenumber scalar = /% + k3

Iy wavenumber in the z direction

ko wavenumber in the y direction

Characteristic length, for example length of body

Differential operator

N Brunt-Viisala frequency = -;E%gf

N; Brunt-Viisala frequency of #** layer

N Non-dimensional Brunt-Viisali frequency = £
o) Landau order symbol

() Landau order symbol

Oxyz Moving reference coordinate system located at the singularity or the body’s centroid
P Pressure distribution

r = (r1,7r2,73)

ry =x-¢

2 =y-1n

ra =z—

1 Thickness of upper layer

iy Thickness of middle layer

7 Translational velocity of body = —{U, V, W}

u Parametric disturbance velocity vector = (u, v, w)
1% Disturbance velocity vector

@& Position vector of the field point (x,y, z)

oy ngp root of D(ky, ka) = 0



Ship Science Report No, 91 - Issue 1

N(s
= —%L 0
’8 1'3'{'(2:FC):l (z < C < )

N2

v =V wm=g
N2
% =Vi-mmm
é(z) Dirac delta function
i Kronecker delta function
€ A small parameter introduced as an artificial damping mechanism,

& radiation condition is obeyed when ¢ — 0

Imaginary part of the complex wavenumber Ky = ks + ixg

b
[¥]

Kinematic viscosity coefficient

Position vector of source point (£,7,¢)

Density stratification of fluid medium

Function describing the fluid disturbance created by the source singularity
Function describing the fluid disturbance created by the prolate spheroid
Function describing the fluid disturbance created by the source singularity
Function describing the fluid disturbance created by the prolate spheroid

Tofal derivative = % +V.V

(2,22
T \fx’ By 8z

dgo & & & & > Mm%

3

= (:%,%,0)
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Abstract

Analytical solutions are obtained for the disturbance generated by a singularity moving horizon-
tally in a layer of a three layer fluid, each layer possessing a constant Brunt-Viisila frequency. A
radiation condition is enforced using an artificial damping mechanism. The singularity solution is
developed into a continuous source/sink line distribution which is used to model a prolate spheroid.
The disturbance velocity field generated by the body displays the characteristics associated with the
propagation of trapped internal waves. The disturbance calculated on the fluid’s surface is compared
with those obtained using a constant density three layer fluid model and a constant Brunt-Vaisili
frequency model. The patterns produced by the current model described herein display significant
departures from previous patterns.

1 Introduction

The vertical density profile present in most of the worlds oceans provides a mechanism through which
internal waves may propagate. These waves have a very low frequency and do not decay rapidly like surface
waves. These properties may permit the detection of a deeply submerged body moving in the density
profile. Due to the presence of the density profile the fluid has rotational characteristics and therefore may
no longer be described using a single potential flow function. It is necessary to model ( simultaneously
) the rotational characteristics of the fluid using an appropriate density profile. Mathematical models
exist for several different density approximations. The simplest modelled density profiles are those created
using constant density fluid layers, see Price and Westlake( 1993). Although the rotational property of the
fluid is absent the layered models provide an approximation to the disturbance created by the body via
the interactive processes occurring between the body, the free surface and the interface(s). The rotational
aspect of the fluid can be included if the fluid posesses a constant Brunt-Vaisala frequency, see Price and
Westlake(1994a, 1994b). However, although a true internal wave is now being generated the wave is not
trapped in the fluid and can propagate freely behind the body. This report details the theory used to
model true trapped body generated internal waves using a three layer fluid. Each possesses a constant
Brunt-Vaisala frequency. The rotational aspect of the fluid is retained though it remains incompressible.
The continuous density profile may be represented fairly accurately by the three layer constant Brunt-
Vaisala frequency model. It is shown that an internal wave may be trapped in the middle layer, that is,
the middle layer acts as a waveguide.
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2 Formulation of the fundamental solution

2.1 The equations of motion

It is assumed that the fluid structure interaction experienced by a rigid, arbitrary shaped body moving
In a prescribed density stratified fluid can be described with reference to a body fixed coordinate system.
For generality this moves with a translational velocity —U(t) = —{U(t), V(t), W(t)} and the equations
of motion describing the velocity of the fluid disturbance V'{f) in a stratified fluid with viscosity p and
density p are of the form ( see Batchelor(1967), page 147 )

Equation of momentum

Dv v
VBtV =0 Gt (VO] + eV = V4 g+ Vv

2 .
—VVz,u—(VxV)xV,u-i-%V(V-V)+§(V~V)V,u.+pU (1)

Here p denotes the pressure in the fluid, g = (0,0, —g) and the variable s denotes the kinematic viscosity
coefficient. ¢ is an artificial damping coefficient which is used to enforce the radiation condition (e.g.
equivalent to Rayleigh damping). An overdot denotes an acceleration and ¥V = (é%, %, %)
Equation of Conservation of Mass or Continuily
Dp
Di
It is assumed that the fluid is incompressible and no heat transfer occurs, that is

+pV-V:%+(V-V)p+pV-V=O (2)

VvV -Vz=0 (3)
The substitution of equation 3 into equation 1 gives
Dv o 2 .
pﬁ+eV=—Vp+pg+V(pV)—-VV p—(VxVyx Vu+ pU (4)

and its substitution into equation 2 gives

% v.vi=o (5)

Let us assume that the variables describing the fluid structure interaction can be expressed in the
form

p(r,y,z,t) = pﬂ(z!t) + pl(l‘,y,l,t)
A,y 2t = po(z,t) + pi(z,y,2,t)
plEy,2,t) = po(z,t) + pi(e,y 2,t)
Vizg.y,z,t) = Ul) + u(z,y,21)

where p1, pr and p; and |u| are all small quantities compared to py, po and po and |U]| respectively.
Under these assumptions the equation of momentum, equation 4, describing the parametric disturbances
becomes

DU + u)
i

D +eU +u)=-V(po+p1)+ (po+ p1)g + (po + p)U

(o + p1)

+V (o + 1) (U + )] — (U +w) V(1o + 1) — [V x (U + u)] x V(o + 1)

from which the first order terms produce



Ship Science Report No. 91 - Issue 1 7

D i,
po-b—?: +eu = py [Eﬂ +(U - V)u] +eu = —Vpi + p1g + V(pou) — w2y, — (Vxu)xVyu, (6)

It is interesting to note that to the chosen order of approximation this equation is not dependent on
the parametric viscosity variation p;. Similarly equation 5 becomes

W V) 4w VYo =0 ™

and equation 3 becomes
V-u=0 (8)

Furthermore, for a body travelling horizontally with a steady translational velocity U(t) = U =
(U/,0,0) and assuming po(z,t) = po(2), equation 6 in component form becomes

Ju Hu _ O;m 9 Guo Ou  Ow
p°(5t'+Uax)+w__az oV u+ Oz 3z+3:n ©)

dv v dpy 2 Oug (v Hw

== _— = ——= Y =+ — 10
2o (61‘ +U6a;)+w By + Vv + s 8z+8y (10)

Sw fw O 2 dpn Ow
PU(—at—+U5;)+€w——FZ—+#OV W—P19+2aaz (11)

Equation 7 becomes

Opg
d i3 ot} - = 1
o TV T 0 (12)
and equation 8,
du  fv  Bw
3z + a + o 0. ' (13)
The combination ;—y [9] - 2 [10] gives
D 2 Opo 8] fdu Ov
T AL N B I 14
PeDt+€ Ho 8z Jz| \ 3y Oz (14)
that is, there exists a function ¢(z,y, 2) such that
wmit oot (19)

is a solution of equation 14 and from equation 13 we obtain the result

2 = —
Vig= -9 (16)

8 8
55,7%, 0]).

The inclusion of density stratification into the mathematical model destroys the concept of irrotational
fluid motion and this influence is considered to be of far greater importance than viscous effects in this
linearised theory. For this reason, we shall examine a simplified mathematical model adopting linear
equations in the absence of viscosity, ug = 0, but with density stratification po(z) and hence rotational
fluid motion. In this case, the equations describing the fluid disturbance can be expressed as

where V; = (
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[9]and [10] po2t 4 ep+p =0
[11] poRe +ew+ 2B 4 gpy =0 (a7)
[13] Frruw =0
[16] Vie+ 3L =0

Equation 17 can be written in non-dimensional form using the non-dimensionalising variables L, {7 ,
po and g. That is

¢ =UL¢ p1 = pol/%p) w=Uw'
(waysZ)ZL(:ﬂ',‘lf,Z') t:%t’ Dﬂt:%%
2 !

Vi=(1)" V¥ p=popi N(z)= §N2(2)

and equation 17 becomes
25 +ed' +p =0

D F] af i
B e+ Zh - NOp! + £ =0
!

%} —w'N?*z)=0

Vig+3w =0
By eliminating p} and p} and dropping the superscripts in the subsequent analysis but retaining the
understanding that the equations and variables are expressed in non-dimensional form, the following
coupled equations are derived

Vie+ & =0
p (D 9% o p2 NG Y (18)
B (Be+ 9 (w- 52+ N()8) + (32) w=0

2.2 Low speed approximation

If we let N2 to denote the maximum value of the non dimensional parameter N%(z) and restrict the
2
analysis to the range N3 < 1, F, < 1 such that %”,L ~ O(1) then a low speed approximation can be

2
introduced into the analysis by assuming that %;L > NZ. That is, the variables w and ¢ can be written
as

w=wg + NZw + (N2 ws + ...
¢ =0+ Nid1+ (N2)¢pa+ ...
Substituting w and ¢ into equation 18 a zero order theory is described by the equations
Vido+ %‘1 =0
% (£ +e) (wo - %‘i—") + N%(2)wp = 0
Di
Vigo+ 22 =g }

57 (x + ) (wo = 522) + N*(2)wo = 0

For the steady state case we now have £ = f—z, we find that the zeroth order approximation becomes

(19)
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where N(z) = ip(rﬁll
These equations together with the relationship between ¢ and the velocities, equation 15, form the
starting point for any investigation into fluid with stratified characteristics. We may set the Brunt-Vaisila

frequency to a constant value and seek analytic solutions for these equations, ie N (z) = N.

2.3 Unbounded forms of the functions ¢ and

The introduction of a variable 1, related to the vertical velocity component w in the form
_ 9
= 8z

modifies equations 19

o
d 8 Op 08\ | 120¢
— (= _—— = N“— =0. 21
31:(6:: E)(az 0z * dz (21)
The introduction of a body force takes the form of a dirac delta function, this is introduced on the
right hand side of equation 20. This equation is derived from the incompressibility condition, i.e. fluid is
neither created or destroyed. The delta function singularity introduces fluid into the domain and therefore
equation 20 must be modified. That is,

6

Vid+ 5z =5(r) (22)
5 0 B8\ | 2l _
52 52 +)(z E—)+NE_0. (23)
Integrating equation 23 with respect to z we obtain
8 a T2 -
aalag TOW—¢)+ Ny =0 (24)
and the adjoint of this equation is given by
5,0 oy
(S ) ($- )+ NP =0 (25)

Equations 22 and 25 form the basis equations describing the fluid disturbance caused by the moving
slender body.

The velocity components u, v and w are directly related to the functions ¢ and . The derivation of
these functions will then allow the velocity compeonents to be obtained.

Eliminating ¢ using & (& — ¢) [ 22 ] and V2 [ 25] gives a partial differential equation in % only,

8, 8 . g, 38
925y ~ OV + NIVid = (5 — )6(r) (26)

and eliminating ¥ using %,— [25] gives

5%(58; ~ )V + N?Vig= —( = €)8(r) + N?6(r) (27)

Equations 26 and 27 may be written in the matrix form

) (EE0r
£ = 8(» 28
(w) ( 2g-g )0 )
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where the differential operator £ is given by
g9 2, 22
= (e -V
L() {Ba:(am eV 4+ N*Vi ()

By the application of Fourier transforms we can rewrite equation 28 into the form

__ N ir-k
c(¢):(1 m)a(z—g)"r (29)
Inb 1 27

where L is now given by

2 N2
£0)= {68—+ [—h[,fl“_ie] ~1l k2}(),

k = (ky,%3,0) and k = \/k# + k2.

Let us now examine the equation

|2~ ("] b ka9 = - ) (30

1 N2
T EafEi—ied”

This equation has the following unbounded solution

where vy =

(3= Oy _ = (5= Yy

kY + A(kla k2)ezk“f + B(kll kZ)eMZkv 0>z> C

(31)
Alky, k2)e™ + B(ky, ko)e= 707 z2< (<0
where A(k1, k2) and B(ky, k2) are obtained through the application of boundary conditions.
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2.4 The coordinate system

Figure 1 illustrates the location and orientation of the orthogonal, right handed, coordinate axis system
chosen to simplify the mathematics of the three layer system. For example, for a body in the upper layer
the rigid lid is the plane z = 0, the z-axis lies along the direction of motion of the body and the positive
y-axis is chosen to satisfy the orthogonality condition. The origin of the coordinate system lies vertically
above the body’s centroid. For a body in one of the lower layers the undisturbed interface above the
body becomes the plane z = 0.

3

— Uy
r=0 * rigid lid
upper layer Ny _ svurce point £ |t)

2= =1 mean first interface

middle layser Nz ficld point x iy

2R =y — iy mean d interface

lower layer 1\-(3

£ =1 = rigid lid
upper layer Nl - Uy i

=0 mean first interface
middle layer N pource poimt £ ty

£ = -ty mean second interface
lower layer )\—Ia field point x

r=1t; + tg rigid lid
wpper layer Ny ficld pointl x 1

z = tg mean firat interface

middle layer Ng Uy tg
=0 mecan sccond interface
lower layer Ny _ aource point £

Figure 1: The coordinate system for the three layer fluid model

2.5 Application of the unbounded solution to the three layer model

The fluid disturbance in the j*# layer created by the steady motion of the impulse moving in the #* layer
1s given by the two functions ¢; and ;;. The uppermost layer is layer one. Extending the unbounded
solution, equation 31, for the layered model and applying inverse Fourier transforms the function tij has
the form

S H(z Tk _ p=(z=O)ky;
Tf)l’j (335) ¥ (2(71-)2 j / Qk.},j e—s(r1k1+r:kz)dk1dk2

1 o0 (e o) ) X
+ W / / [.A,'j(k], kg)ez’c'r’ + B.’_f(’cl, k2)e—2k"h‘] e_'(r’k""r’kz)dkldkg (32)
—oo J—o0
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V7 . .. ;
where 47 = /1 — %, bi; 1s the Kronecker delta function and H(z) is the Heaviside unit step

function.
Using equation 29 ¢;; is given by

9 _ b H{z = () /W T O - e CmOR i krtraka)
Pij(x, &) = W’" " ]_m Y %; € dkydks

1 * b ; : ifr r
+ @y j j 7 [Asi(k1, k2)e*®7 + Byj(ky, kp)e™*¥W] emitrnkitraka) g g, (33)

2.6 Boundary Conditions

The linearised boundary conditions imposed to describe the fluid disturbance in the j** layer created by
the steady motion of the impulse moving in the i** layer of a three layer fluid system are

1. The rigid lid condition

i -0 onz=h fori=1,2,3 (34)
2. The interface conditions
Wigon) — i ony=h;—h; fori=1,2,3 andj=2,3 (35)
Ftugn . Py onz=h;i—h; fori=1,2,3 and j=2,3 (36)
ax2 — dz2 — 't J — 1,4 } =2,

3. The bottom condition
Véiz =0 asz—-—co fori=1,2,3

Vs =0 asz——oco fori=1,2,3 (37)
4. The radiation condition

b ={ O(ﬁ) forz >0

— fori=1,2,3 i =1,2,3
o(1)  forz <0 as || — oo fori ,2,3 and j .2,

2 0
1/;,-_1':{ O(|“’|) orz> as |z| —+ o0 fori=1,2,3 and j=1,2,3 (38)

eo(l) forz<0

where O(z) and o(z) denote the Landau order symbols as defined by Erdelyi(1956) and 6(z) denotes
the Direc delta function. h; is the vertical separation of the origin and rigid lid and h; is the vertical
separation of the rigid lid and j** interface.

Equation 34 confines the fluid’s upper surface to be plane, ie no waves. Equation 35 ensures the vertical
velocity is continuous across the interfaces. Equation 36 describes a combination of the kinematic and
dynamic conditions applied on the interface. The kinematic condition ensures that the fluid particles
cannot pass through the disturbed interface, the dynamic condition ensures the pressure in the fluid
across the disturbed interfaces is continuous. The application of this boundary condition allows the
presence of wave systems on the interfaces. Equation 37 imposes the condition that the disturbance
decays with increasing depth. Equation 38 requires that the waves only exist behind the body and no
waves propagate upstream.

The method of solution involves the substitution of the unbounded forms of the functions ¥;; and
$ij, equations 32 and 33 into the boundary conditions 34 - 36, thus forming a system of equations from
which the unknown coefficients A;;(k;, k2) and B;;j(ki1,kz) can be determined. Immediately we can set
Bis(k1,k2) = 0 to comply with the condition stated in boundary condition 37. The radiation condition
is fulfilled when € — 0 later in the analysis.
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3 The integration process

The double integral required to transformn the solutions obtained in the wavenumber plane back to a
spacial plane are

IJ kl, k?) _"( 1Er+raks)
i risytraksz k
Pij (2, &) = (% / /‘ Fi; D(kl,kz) dk1dks

.. F’J (kli kQ) —I(T1 ky+raka)
Gij(x,8) = T (2m)? ./ ./ ED( kl,kz) Ak

The presence of D(ki,k2) on the denominator introduces poles into the integrand which precludes
direct integration if a complete solution is sought.

3.1 Poles in the integrand

To complete the inverse Fourier transforms it is now necessary to investigate the location and nature
of the zeros of D(k1, k2) before € is set to zero. Direct substitution of € = 0 at this stage results in a
symmetric solution being obtained which does not satisfy the radiation condition. Some manipulation
of the integrand is required before the effect of € is realised. It is found that the zeros of D(ky, ky) are
located at all values of &y and in the k; intervals between the lowest (Nmm) and the highest (Npaz)
Brunt-Vaisala frequencies chosen for the three layers. If the wavenumber k3 is taken to be complex this
behaviour appears graphically as
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S (k2) S (k2)
X

NO ZEROS %

R (k2) R (k2)
X
x
X
—o0 <k < "«Nmaa: —Nmaa: <k < -ﬁmin
S (k2) T (k2)
NO ZEROS NO ZEROS

R (k2) R (k2)

—~m§n<k1<0 0<k1<1{rm,'n

1S (k) b5 (k2)

x
X x y NO ZEROS
R (k2) — R (k2)
hd
X
X
Nmin < kl < Nma:: ﬁmaz < k]_ < 0

Figure 2: The zeros of D(ky, k2)

Note the antisymmetric behaviour displayed in the zeros locations for both wavenumber axes. As
¢ — 0 the zeros return to the R(ky) axis, this is similar to the behaviour of the zeros detailed by
Lighthill(1979), page 365. As the integrand has poles contour integration is required in the intervals
~Npaz < ky < - Vimin 20d Nopin < k1 < Npmaz, —00 < k3 < 0o. The use of contour integration in the
remaining intervals is not necessary, the integration may be carried out directly. However it is found that
the integrand and hence the integration process is simplified if contour integration is applied here also.

3.2 The contour integral

A conventional large radius contour circumventing any poles present using norinal techniques may not be
used in this case as the integrand possesses a complex square root. The presence of this square root and
its inherent discontinuous nature necessitates additional paths to be added to the contour. The complex
square root v/z = v/a + ib has the cartesian result
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+ i sign(b) (39)

2

2 2
Vatib= [—._V“““;’”

«m_a]

as the square root of a positive real number is defined to be positive. It is the sign function which canses
the discontinuity, if @ < 0 and b — 04 the result is iv/a, if a < 0 and b — O_ the result is —i,/z. Thus
the rule describing the line along which the discontinuity exists is

R(z) <0
S‘(Z) =0

A simple example of this technique is detailed in appendix A.

3.3 Validation against the constant N model

This technigue now established can be extended to a more complex problem, the constant N model. It
is necessary to demonstrate that the result obtained using a standard line integral can also be obtained
in the constant N model using contour integration. In Price and Westlake(1994b) the function % was
obtained through the use of line integration giving a Bessel type solution, then epsilon was set to zero
(page 6). Now we attempt the contour integration before ¢ is set to zero., then as ¢ — 0 the results
should concur. In the constant N model it was not necessary to use contour integration as no poles
existed in the integrand, however for the layered constant N model poles exist and contour integration is
therefore necessary to obtain a complete solution. The contours used in both cases are identical therefore
validation using the constant N model is desirable. For the constant N model ¢ is

00 oo L((—2)ky (+2)ky .

_(271-)2,,/)(3 &) = j / e +e emirkitraka)gp gr. 0>2>¢
—o0 J oo 2k
o poo ()b G+Oky

—(2m)% (= ,€) = f / £ +e pmilrikitraka) gp ap 1< (<0
oo J—co 2k~

The term kv must be considered to be a single square root as the integral may not be convergent if
k and v are considered as separate roots when one of the wavenumbers becomes complex. This is an
implicit assumption in the fundamental solution.

.. Rk
(K + &2) (l_m___))]

Either k; or k, must be transformed into a complex variable, examination of the root indicates that
the transformation of k2 will provide a simpler expression. Let Ky = ky + k> substituting into ky we
have

ky =

3

2

1 - 2o kne N2 . N2¢
by = ———— { (k2 4+ k2 _ 2 24+ N2 +—2_h?__+‘2k B2 e - N — —— (k2 4 k2w k2
ti Wit e {( i +ky —ra)(ki+e ) b i |2kaky (ks ) T (k{ + k3 —~ k%)

Applying the techniques previously established the discontinuity exists on the line S(ky) = 0, ie

~2ka(kf + ¢ — N?) & \[ak3(k2 + &2 — N2)2 4 2281 (k2 4 12y

22
ki

Ka =

When k3 = 0 k9 = +k; and when € — 0 k3 = 0 or co. The interval on this line on which Rikv) <0
requires numerical examination.
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Figure 3 shows graphically the discontinuities indicated by the thick lines.

Y

K2

\—

/T~

0<k‘1<N

kg k2
—c0< ky < —N N <k <0
Ko 4 \ K2 )

ks ~ ko

—\

N <k < oo

Figure 3: The location of the line discontinuites for kv for a non zero €

21

Note: the actual appearance of the curves ks = Junction(ks) are continuous curves here idealised by
sets of straight lines. As ¢ — 0 the curves rotate toward the axes and coincide with the axes when ¢ = 0.
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The contours required are therefore

L=

—co < ky < —N -N <k <0

=

ko ko

0<k <N N <k <o

Figure 4: The path required for the contour integration of an integrand involving kv for a non zero €.

The large radius path closing the contour is here represented by a series of straight lines. The behaviour
of kv on each of these additional paths now has to be determined as € — 0. For ry < 0 we use the upper
half plane., Consider each interval individually.

1. —C)O<f€1<—f\ir

As € — 0 the cut and paths rotate anticlockwise and become parallel with the &5 axis when ¢ = 0.

K2

ko

Figure 5: The path required for the contour integration of an integrand involving kv as ¢ — 0 for the
interval ~oo < k) < —N.

On the right hand path kv becomes
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_ 1
= 1

Wi~

k [(kf + 8%~ w3)(k? — N2) +ibey(k3 — N7

'

therefore as 6 — 0 kv = 1\/(ﬁl 1)(k? — N?)

K

whereas on the left hand path

1

kv =
7= Tl

|62 + 8% = w3) (k2 — §2) — ibma(h] — §)]

therefore ky = —z\/(g- —1)(k} - N?) as e — 0.

2. —N<k <0

As € -~ 0 the cut and paths rotate clockwise and become parallel with the &2 and x, axes when
e=0.

K2

26

. e

ko

Figure 6: The path required for the contour integration of an integrand involving ky as ¢ — 0 for the
interval —N < ky < 0.

Appling the same technique we find that on the upper right and left hand paths above kg = k
as ¢ — 0 kvy becomes ky = \/(%i —1)(N2 —k2). On the lower right hand path kv becomes

ky = —i\ﬂl - %% (N? — k}) and on the lower left hand path ky = i\/(l - -E%)(ﬁz — k).

The horizontal paths require slightly more care. On the upper horizontal path

1

ky = ———
Ve

2ko(ky + 6)eN?

{[kf+k§—(x.2+6)2] [+ - 7] S22
1

ps
2

+i

. N2
2ks(kz + 8)(k] + €2 — N?) - k—e (k2 + k5 — (k2 + W]J }
1

As € — 0 k3 — 0 then as § — 0 ky becomes ky = —i\/(l + 1:—%)(1\7’2 — k}). On the lower horizontal

path ky = i\/(l + %)(ﬁ? — k2).
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3.0<k <N
As € — 0 the cut and paths rotate anticlockwise and become parallel with the ky and xy axes when
e=0.
Kz
26 — f—
kl 4
26
'
k L

Figure 7: The path required for the contour integration of an integrand involving kv as € — 0 for the
interval 0 < ky < N.

Here we find that on the upper right and left hand paths above k; = k; as ¢ — 0 kv becomes
ky= \/(%é — 1)(N? — k%), On the lower right hand path kv becomes ky = —i\/(l - %%)(Jg’:’ —k?)

and on the lower left hand path ky = z'\/(l - %i-)(ﬂ’Q —k?).
1

On the upper horizontal path kv becomes ky = i \/ 1+ 5)(1\7 2 — k) whilst on the lower horizontal

path ky = —i\/(l + g)(ﬁ” — k).
1

4.ﬁ<k1<00

Here the process is identical to the first interval considered, on the right hand path ky = i \/ ( %% —1)(k} - N?)
1

whereas on the left hand path ky = —-i\/('—;% ~ 1)(k? — N2).
Combining all this information allows us now to complete the integral

o poo L(zF()EY
/ / ¢ e_’(r‘k1+r3k°)dk1dkg (z<{<0 , r;<0)
N S 5

if the k2 variable is transformed into the complex variable Ky = ko + ixk. Beginning with the large

contours we have
‘2 -
: — 2 N2
& ™ (z:F()i\/(:? 1)(k3-N7)
/ e—irlk,f €
-00

=i JGE - -

e "2 idkqdky

i ~FOi [ (F-1)2-R7)
OO 1

-N
+-/ e—ir1k1 / e
-0

ol =i (G - ks - A9

e " idkadk
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f

LG (1+§:§)(A‘f=-k3)

a
+/ e—if1k1 / €
-

e z'\/(l + 82—
2

e—irgkg dkgdkl

GFO)i (1—2%)(1\?'«'—»:?)

0 . [Fal o
+/ ; E_wlk'j e"**3idrqdky
N 0 i\/(l -

E3N( A2
k?)(N -

o5
)
—

]

(+%0) (£§~1)(ﬁ*—k§)

. oo e
+~/ﬁe'"‘kl fk = = e idkqadky
i - - k)

(=5¢) (E%—l)(ﬁ”—kf)

N |1l
+/ e_’”k‘f e idkadky
2
0 (=5 \/(%%

- (2~ k)

f

] (a0 (1—5?;)(!?*-&)

N o,
+ / e~k / e idkydky
: - B -k

1

el
[~
—

_ —(zF O (H{%)(ﬁ’—k?)

N -0
+[ e—irlklj ¢
0 o

e~rek2 g o dk,

k2
k3

(V2 — k)

f
<
+
M

(=3 (%—1)@?—&’)

k1

+/_00 e—irlkl /l le
2 ~

u G-y - )

grer2 id&gdkl

(5 Ok [ (F-1)(k2-N?)
* —ir k «© € ' .
+ g ik = e 2 idkqdk,
- e - A

& o (zF)ky .
+ [ [ ek, ak, = 0
—00 7 =00 7
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26

The integrals on the large radius path have been omitted as they tend to zero as B — oo. The smaller

contours provide
K2 -
CFOA(F-DN-k])

¢ . [k e 1
j I f "% idkydky
-N 2 ~
= (3 — DV -k}

. o —EFOINO-Hhoa
+/ e—irlklf €
_K k3] —z'\/(l o2

er;m; idﬁlg dkl

~ By - k)

2 —
. L ~GFOR -k
+ / gminiks [ 2 e~k dkydy

R (F )

_ . G0 (1+§§)(ﬁ2—kf)

N . e .
+ / e~k f e~ 2 dkydky
° oo '\/(1+ :

i /(L + )2 — k)

(30)i (1—%)@2—&3)

N 1k e
+/ e—irlkl /
[t} 0

i\/(l ~ ) (N2 k)

e idkadk,

(70 [ (C3-1)(F2-2)
e 1

e idkedky = 0

N o0
+f e—irl kl /
: G = 00— k)
Adding these two expressions and simplifying gives

o 00 L(2F(ky
f / € k7 e_'(r‘kl+r2k2)dk1dk2
—o00 J—co

2

oo %0 COS(z=FC)\/(%§~ 1)(k2 — N?)
*4./;-6-605'"1!“/&1 \/(%%—I)Ucf—ﬁz)

er""‘"dfcgdkl

6”“2 dﬁzdkl

N k1 COS(Z=FC)\/(1— %%)(N?-k'f)
_4/0 cosrp’tl/; \/(1 _ %%)(]grz — k)
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w cos(z 7 01+ H)F2 — kY

“f)

Similarly for v > 0 we have

[sinryky cos roka — cosry kg sin raksy) dkadk,

Y+ -k

o roo JGFOEY
/ / € ; e—;(r; k;+r:kg)dkldk2
—o0 J—o00 Y

- o 005(2F )y — D& — F9)
:4.[1\? cosryky fkl \/(%?__ 1)(k2 = N?2)

E—rnﬂgdﬂgdkl

0 b 00s(z 7.0/ - B2 - )
_4f0 cos rik /[; \/(1 - %%)(Nz - kf)

e " dkadky

5 o cos(a 7 O 1+ )2 - )
bk Ja+ B -

[sin r1ky cos roka + cosryky sin raka] dkadky

therefore the combined result for —oo < 1y < co is

s} o {23k
f ./ : :'r) emitkitrata) g di,
—00 Y —00

o oocos(z:FC)\/(%%—l)(kf——N’z)

:4/ cosr1k1/ e~Ir2lr2 g, dk,y
¥, K,z ~
v b @ -

Ly cos( 7 O (1 = B)FT— k)

- B -

e~ir2l®2 gy dk,

N
—4/ cos r1k1/
0 0

R peo cos(z F C)\/(l + {%)(N? — k2)
+4]0 /0 ‘/(1 + %)(ﬂrz — k2)

27

(z<(<0,r;<0)

(z<(<0,r>0)

sin(riky + |ro|k2)dkodk, (z<(<0)
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Combining the source and image terms finally gives

© oo J(e=Ok1 o J(s+EY
—(211')21,0(3,5):/ / £ 2::_7& e—l(f‘]kl-{-f‘gkg)dkldkz

mcosz\/(k,, 1)(k2 — szcosc\/( —1)(k? — N?)
NERNTERED

B*lrglnzdﬁlgdkl

:4] cosr1k1/
v k1

v k, COS z\/(l - %%)(1\72 — k%) cosc\/(l - %%)(N’L’ -

N
—4/ cOos rlklf
: : VORI

eIz 2 dic ke

sin(riky+|rolk2)dkadk, (z<(<0)

oo coszy (1 + —%)(N2 — k) cosc\/(l + —%)(N2 k?)
wf [

Ja+ B -k

The ¢ < z < 0 case can be obtained through exchanging z and ¢.
The source or image term can be manipulated to obtain the expression describing ¢ for a constant
N fluid as detailed in Price and Westlake(1994b) (pages 7-8). Examine the first term on the right hand

A

if welet p= \/(%; — 1)(k} — N2) the integral is transformed into

(40)

o con(z 7.0 - (K - 89
W§—Mﬁ—m)

e_l"’l"gdrcg cosrikidk;

—leglky "—“‘_p?+kf—N’

(R

O e T A i

Applying the integral equality, Gradshteyn and Ryzhik(1980) 3.961(2)

00 o—fy/7iHz?
E__._mﬁdzzlfo(y a2+,32) R(B)>0 , R(y)>0, a>0
/72_}_32

pdp cosrikidk;

0

witha=|zF(|, 8= _I\/;—zl_hTT and ¥ = {/k? — N2 we have
3

oo cos(z 5 0)y /(5 — (K - A7)
i

VEREEE

e "’l"’dmg cosrikidk,
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= k1 { 27,2 Y
= [ =K kir +(z:FC)z]—Ng(zq:()z}cosrlkldkl
/N N Vi

The second term and part of the third term can be combined

o e os(e 3 01— A - k)
oy Ja- e -

e~ Fal®2d, cos riky dky

cos(z q:()\/(l + H)IA? - k)

N o0
+4/ f
0 ¢l

sin |re|kadks cosrikydk;

Ja+ - x

giving

™ g ’C[ { -
_Z - 7 N2 2 k202 4 zeta2} srik,dk
2/0 fi2 - k2 o VNAF O — kI + (= F zeta)?]  cos ik,

The remaining term on the right hand side is

N
bk
Applying an integral equality, Gradshteyn and Ryzhik(1980) 3.876(2)

-/‘°° cos (p\/:':2 + a?) bod -—%Yo (a\/}'ﬁ -- 62) (0<b<p)
—————— cosbzdz =
0 Vv 4+ a? Ky (a\/b2—p2) (b<p<0)

with @ = k1, b= ry| and p = Jziq@ we have

oo COS(z ;c)\/u + By - k)
Y+ B -k

COS Irzlkzdkz sin leld’cl

cos |ra|ksdby sin rik dky

o pea cos(s O 1+ B2 - )
! Ja+ B -k

L { _ } |
= —— K 2 [p2 2 A2 2
/,6 {_—_ﬁz—kf 0 \/k1 75+ (z F{)?) = N2z F¢)? psinrikidiy

8
" k1 { = .
- — Y, NZ(z 2 _k2[r2 4 zeta)? }smr k1dk
2/0 ,————-—ﬁz kfo \/ (zF() i3 +(zF )?] 1k1dk;
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where J is the lower/upper limit of the integration arising from the inequality b 2 p, § = —%.
2

Collecting the underlined terms provides the the full expression for . We have

—on? _ ~ k1 { 2 [p2 Y 2}
2 1/,(2,.5)_/1cr ———mm \/kl[z—i-(z:]:()?] N2z F ()2 3 cosrykydky

Nk .
—_— K k2 [pr2 21 _ N2 28 g kidk
'[3 T 0{\/ i3+ GEFON - Nz F¢) }smrl 1dk,

I E — .
“gfo m}’g{\/N%zq:Oz_ki! [Tg‘i'(z:FC)z]}smrlkldkl

i}
—1] —k—lJo{\/ﬁ2(z:|:C)2—kf [r%-t—(z:]:g’)z]} cos rykydky (z< (<)
2 /o 1/1\}2_;‘,%

which agrees with the previous formulation for the constant N model. This provides a means of validation
of the proposed integration procedure though a verifiable process.
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3.4 Extension to the three layer model

Now that the contour integration process has been established we can apply it to the integrals describing
the three layer fluid system. The technique has to be extended as more intervals are present. Firstly
an additional k has to be introduced on the numerator and denominator so that each v; only appears
in the form kv;, The k on the numerator is absorbed into the Fi;(k;, k2) function whilst the k on the
denominator appears explicitly. We can split the required integral into eight parts -

Fu(klr‘h) e—i(r1katraka)
(27!’) ¢l](m :E) “"/ / k2_D(k1,k2) dkadky

F:J(klx kﬂ) —i(riki1+rk2)
- HESE S d
f ] ¥2D(k:, k2) " dadky

Fiilk1, k2) itk praka)
sWnsirrefa ) dk, dk
/ ] k2D(ky, 2) o

~Na poo
: Fij(k1,k2) _irykytraka)
WA 7 —ilrakatraka) gk
+./_ﬁ1 -0 kzD(klik‘e’)e o

l](kl)kz —i(rlkl-!—f'zkz) .
./N3/ k2D(kl:k2) thadhs

N,
3 :J(k11k2) —i(r1k1+f'2k2) bod
_/ oo KZD(k1, k2)" dhadhy

F;J(kl,kz) —i(r1kytraka)
iCrakitraka) g gt
+/ / k2 D(khk?) “

!J (kl ] k?) —l(r| ki+rakg)
/‘ kZD(kl e dkadk,

ik, kD) itk braka)
H{rik14ra dkqdk
~/1V2 [ k2 D kl;k2) o

Contour integration can be applied to all eight integrals, The first, fourth, fifth and eighth integrals
have no poles in the integrand so the right hand side of the equality wil be zero. The remaining integrals
have poles as described in section 3.1 and therefore the right hand side will be 27iS where § is the sum of
the residues within the contour. As there are now three BV frequencies there are now three forms of ky
for each interval so the complexity of the problem increases. To apply the previously described approach
additional paths are required to circumvent the discontinuities created by kv;. For ry < 0 we use the
upper half plane. As € — 0 the form of kv; on each section of these additional paths become
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Figure 8: The path required and forms of kv; as € — 0 for the interval —oo < k; < —Nj.
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Figure 9: The path required and forms of kv; as € — 0 for the interval —Ny < ki < ~N,.
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3. —ﬁrl < k1 < —ﬁ;j
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Figure 10: The path required and forms of kv; as € — 0 for the interval —N; < k; < ~Ns.
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4. ~Na <k, <0
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Figure 11: The path required and forms of ky; as ¢ — 0 for the interval —Na < k; < 0.

35



Ship Science Report No. 91 - Issue 1
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Figure 12: The path required and forms of ky; as € — 0 for the interval 0 < k; < Nj.
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6. N3<k1<N1
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Figure 13: The path required and forms of kv; as € — 0 for the interval N3 < k; < Ny.
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7. ﬁ1<k1<ﬂf2
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Figure 14: The path required and forms of k+v; as € — 0 for the interval M < ky < No.
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Figure 15: The path required and forms of kv; as € — 0 for the interval Ny < k; < co.
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To simplify the mathematics and reduce the length of the expressions each path is allocated a number,

this will be used to denote the form of kv; used in the expressions Fy;(k1, k2) and D(kq, k2) on that path.
The path numbering is

A
5 ":2 1
12
Ry
3 M N

kg - k2

<

—oo<k <0 O0< bk <00

Figure 16: The path numbering for the contour integration.

The application of this numbering system allows the larger contour to provide for any of the pairs of
intervals considered eg for the first and eighth intervals a = N2 and b = N1

F;J(klnkZ —i(rxk1+ 2k2)
252 dkadk
[, f Dk, ko) o

- Q
i Fii[1](ky, k2) i
irikq if iraks
wf e f T DMk By etk

T ik [ E[8)(k, ka)
—irik; 3 1, A2 raka
L T o dee

o [ Eylsl(ky, k)
—iry k; 13 1, A2 rokg; k
+f e / (T kD) DJ(kn,m)° a2

a J&1]
I —ir k) ’J [1 1](k13 K:z) l"gﬁg .
-/b ‘ /;o ("‘72 - ’52) 11](k11 th) ¢ dradby

—ir [ ]( ) r

1 k 1 t] 9 kla ";2 Ko =

e 181 e"2%2g Jk dk
V[b ./|;;,| (kl - K;})D[g](kln ‘;2) ’ !

i T Fyl0kyke)
1 e 11'11:;/ 1] lrgkzdk dk
/a o (B2 + k3)D[T](ks, k2) o

u(klak2) e~ Hrikitraks) =
/ / PO dkodk; = 0

as the poles are contained in the smaller contour. This gives
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T i [ Fy[6](k, ko)
—ir kg, 2] 1, K2 rokg . dk
[f f W7 = k) Dk, )" 2

e

-5 0

_ 53 [4](k1, K2) .
+ e "““f ! €%} dgadk
—-a {Ea| ("“f - ”%)D[4](k1: K2) T

- Fs [2 (kl k2) _'
irrky J ! :f';kgdk dk
f ] (K + £3)D2)(k1, k2) o

a O F[8](ky, ks) ,
—iry k i3 1, ~2 —irgk
¢ 1k *2dkadk
j; ¢ ~/—oo (kzlz t k%)E[S](klﬂkE)e e

o . k| F [10 (*)
+f e-'“kl/ ] e”*"2i diydk
b o (k} — k)D[10](ky, 2) o

@ i = Fg‘[lZ](kl,Kiz) . .
+/ e ‘rlklf y e drqodky = 27iS
A kot (B = #3) D[12](k1, m2) o

where S is the sum of the residues inside the smaller contours. For the intervals —oco < k; < —Ng,
—N3<k1<0 0<k1<NgaudN2<k1<ooS_0

The equations may be added and simplified thus

:_7 kl)kz) —z{r1k1+r‘2k2)
j_ / POl dkadky
F;J (kl! kz —i(r1k1+1'2k2)
] / A dkydk:
:/ f°° 1 [(st[l](kbh) _ Fij[2](k1,k2)> Hriki—raka) | ( FyiT)(k1, k2) F‘f{s](kl’kz)) e‘i(rlkl“r’kz)] dkadk:
, o w24 |\ Dt k) D[2] (%1, k2) D[7)(k1,k9)  D[8](k1, k2)
] /k‘ gr2%2 (F:J (3] (kla ""32) Fij [4](k1= KE)) irgky _ ( i [9](k1, K2) F'.j [10](k1’ KZ)) 6_”1}“] dradk,
k2 — k2 Bl(k1,62)  D[4](ky, k2) |

[ D[9](k1,%2)  D[10](k1, k2)
_i/a e [( 5[5](k1, k2) _ F3i{6](ks, K2)
b

irtr _ (Ei[L (ks R2)  Fy(12](k1, 52) Y _ira,
b K —xf [\ DBJ(ky, k) DI6](k1, ko) ) o ( Dj[ill(klm?) D{12}(k1, £2) ) k ] dradhy

+ 2718 (rz < 0) (41)

For each pair of intervals the appropriate form of ky; must be substituted into the above equation.
The substitution may produce complex functions, let us denote the real part as Fi;r and the imaginary
part as Fiji. In theory to complete the k; integration four forms of each of the expressions on the

right hand side of equation 41 will exist corresponding to the four pairs of intervals giving twelve double
integrals. However if the kv; substituted forms of F;; are examined great simplifications can be made.
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1. —N3<k1<0and0<k1<1\73

Here the relationships between the various forms of Fj; are

Fij[1)(k1, k2) = F55[2)(k1, k2) = F5{T}(k1, ko) = Fi[8](ky, k2) = Fijr + iFyj
Fi; [3](k1, 62) = F5[4](k1, k2) = F5[8(k1, ko) = Fi;[10](ky, 62) = Fijp + il

Fi;[5](k1, w2) = Fi[6](k1, 62) = Fij[11](k1, £2) = Fyj[12)(k1, k2)
2. —]‘\}1 <k < —ﬁg and ﬁg <k < Nﬁ

Fij{1){ky, ko) = Fi5[2](k1, ko) = F35[T)(k1, ko) = Fij [8](ky, k)
Fij [3)(k1, k2) = Fi;[4](k1, k2) = Fij[9])(k1, £2) = Fi3{10](k1, £2)

Fi5[5)(k1, £2) = Fy;[6](k1, ko) = Fi3[11](k1, k2) = F5[12](ky, 62) = Fyjr — iFyj;

The forms of Iy; in the remaining two pairs of intervals are identical to (2) above.

The relationships between the various forms of D are identical to the relationships between Fy; 3 in all
cases. These relationships are possible as the sinh kv, and sinh kv, terms always appear with another kv,
and kv, respectively thus rendering the & sign on the imaginary forms of kv; ineflective, the cosh kv;
and cosh kv, terms have this property alone. Only the kv3 term has the effect of producing a conjugate

function.
Using these properties the formulation reduces to

— 2 ’J (kli k2 —i(riky+raka)
(2m)’ehsj(= , & f f JH)(khkz)e dkadk,

N3 poo
_ 3 1 Fz‘jr(kl, k:!)D,:(kl,kz) — Fiji(kl,kz)Dr(kl,kz) .
) 4/ A b4k DE(kr, k) + D3 (k1, ko) sin(riky = raka)dbsdk,

17 k
a Ve Fue(ky, 82)Di(ky, £2) — Figilky, ko)l (kl’ﬁz)
—4 : :
/0 cosriky y I —xl D2(ky, k2) + D3k, k2) dradls

ghar2 F= r(k1, K2) Di(k1, £2) — Fiji(k1, £2)Dr(k1, 62)
+4/ j cosrik I EAASALL drodk
8 Jo k- D2(k1, k3) + DF(ky, 52) o

+27iS (T‘g <0)

The various forms of F;,, Fiji, D, and D; are listed in appendix B. The integrands no longer contain
poles so the integration can be completed successfully. When Ny = Ny = Ny = N —‘&gﬂ;-_}-ﬁ%"— becomes
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1.0<k1<N

k2. k2. k2
(L4 Z2)N? = k) coszq [ (1 + -2 (N? ~ k) cos(y /(1 + —2)(N2 — k2)
k3 ' kf ky

2.&(’61(00

—-\/(% —1)(k? — N?2)cos z\/(%f; — 1)(k} - N?) cosc\/(k—g —1)(k2 = N?)

Thus
—(27) ¢ij(x ,€) =

N 0o 2 k2
_4f / k—z—»:lii-p\/(l+ % kz)cosz\/(l —% N2 — kD) cosg'\/(1+ —2)(N? — k})sin(riki —roka)dkadk,
o Jo Kp+K; 1 k3
N ki praka K3, - ﬁ:% - 9 5
4/ cosrlkI/ [ TR — k) cos 24/ (1 — S22 - k) cos (1——)(N2 E2)dradky
0 o Ry K3 i i

=] e2ke . 2 -
—4] cos r1k1 ’ \/( J(k? — N?)cos z“— —1)(k%2 — N?) cosC\/(% — 1)(k3 — N)dkadk, (rp <0)
i

_ .2 _ 2
N kl k’ —1‘62

which gives

) is(e € )—4] I e

(N2 k2)cosc\/(1+—%(N2 k)

Si]](rlk] - 1"2’62)dk2dk1
Ja+ B i)

(72~ K3y cony (1= )T - K)

£ cosz\/l— 2)
/ cosr1k1/ i

e % drxadk
Ja- -
o cosz\/(g —1)(k} — N?) cosc\/(gi —1)(kZ — N?)
! ! erzﬂszdel (1‘2 < 0)

4] cosrlklj
N k K2 o
‘ V& -6 - w9

which is identical to equation 40 derived in the previous section.
Extending the formulation for ro > 0 we have

F!J(klskg) et rikitrak
—(2m)244(z , &) = / / e (rakibraka) g gk

Noo g0 1 Fyelky, ka)Di(ky, ka) — Figslky, ko) Dy (ke k2)
-4 ijr ) i 3 i\l A L e R, D) dkod
/ f T DZ(kr, k2) + D2{ky, o) Sin(riky + [ralka)dkadky
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4 /N3 cos riky /k' elralsa By (ky, ko) Dk, k) — Fiji(ky, k2) D (b1, 52)
0 0

diodk
H = D2(k1, #2) + D7 k1, 2) e
oo 2 g=lralra g UC]_ KZz)D'(kl n‘iz) — F(kl K‘.g)D (k K )
k ijr 3 H ) 174 » rifl, A2 d &
+ -/N’a cosmiia 4/;1 k‘f - K‘g Dg(kl:"@) + ‘D?(kln “:2) ‘K:?d '
— 2 sgn(re)miS (42}

The sgn(rz) function above arises due to the anticlockwise convention adopted when considering the
sign of the residues.
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3.5 The pole contribution

Finally it is necessary to include the pole contribution S in the intervals ~Nqy < ki < —N3 and N3 <
ki < Ny. The pole contribution is the summation of the residues at each pole location. The locations of
the poles are detailed in figure 17,

A =
=\ |~

=) —

—ﬁ2<k1<'—ﬁ3 N3<k1<ﬁ2

Figure 17: The locations of the poles for a non zero «.

Let the location of a pole be a, as ¢ — 0, this is the n'® root of D(ky, k3) = 0.For r3 < 0 the contour
integration uses the upper half plane so only the poles that exist there are required. S is given by

— N3 n=co
/ Z 1_1 kl;an) —:(r1k1+fnc¥n)dk
D ey

No N=00
2 1 Fyi(ky —a,.) _ _
+ > 2 Hriki—raen)gp <0
/Na o kol 2 (ky, —an) ' (r2<0)

where %(kl, ko) is

k dD
T ——(k1, k) = (t1+1t2) cosht1ky; [y2 sinhigkvs + 73 cosh tzk"m]-[-(tl —+tz --) sinhty kv [yasinhizky; + 2 coshizkys

S can be simplified using the results
Fij(—k1, ko) = Fij(ki, k2)  Fij(ky, —ks) = Fij(k1, k2)

(k1 ko) = 52k, ky)  92(k1,—ks) = — 42 (k1, k2)

we find that

. Ft (kl an)
S=2 E CANEL k 2 )dk
1[?3 2 k2+a2 k,‘,(kl,an) sin(r1 k) — racn )dky (r2 < 0)

and for 7o > 0 we have

S=-2; NSl 1 Fij(ky, an) .
= =2 . ,,Z: 1o #) (k) sin(riky + rooy, )dky (r2 >0)

The combined result is
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M2 1 Fij(k an)
S =—2¢ sgn(r / OB sin(r kg + |r b Yk
S0 [ 2 el B ey Sk I

Rearranging the denominator to obtain only kv; terms we now have

N
2" 1 Fij(k1, an
S =-2 sgn(rz)/ f”;{( 1)

Slﬂ(’n"‘lk]_ + |r2|an)dk1 (43)
-1 ¥ (k1 ﬂ)

where

dD* )
E-k—(kl, k2) = (t1 + ta) cosh 1 kv [kyz sinht2kvyn + kva coshiakvys)
2

+(t1 + 12 W) sinhtyky; [kyssinhiskys + kv cosh takya]

The forms of &£v; to be used are those found on the horizontal paths.

3.6 The functions ¢;;(x,£) and ¥;;(e, £)
Combining 42 and 43 we have

N Fijr(ky, ko) Dylky, ko) — Fijiky, ko) Dy (ki k2)
ijrifvl, /2 1, ~2 ifal %1, A2 1, M2 E EoVdkodk
(@0 = ] k2+k2 D2(ky, ko) + DX(ky, k) sin(roky + [ralkz)dkadky
Hs B glralea By (ky, k) Dyi(ky, ka) — Fiji(ky, 62) Dy (ky, 52)
2t k ijrif], A2 J LR, A2 i\, Az Jy 3 dicodl
A2 AL RS B D2(k1, 73) + D2 (ky, m3) 22
°0 > g=balra ps (& Dy(ky,k2) ~ Fiji(ky, k) D, (ky, &
¢ lJf'( 1)’52) :( 1, 2) Ui( 1y 2) r( 1 2)
L drydk
7 Jy, O B D2(kr, 2) + D3 (kr,s m2) wadhy
1 M3 1 Fijkr, )
= — ki + n)dk 44
+ 7T~/N’3 ,,Z:':l ndl(h, o) sin(riky + |ralan)dk; (44)
and
1% B 1 Fy(k, k) Dilks, ka) — Figlks, ka)D, (ky ko)
N -1 i} ’ ] ’ 2 k dkodk
Pij(x, £) 2 sz kf+k§ Df(k1,k2)+D,-2(k1,k2) sin(riky+[ra|k2)dkadk,
1 [N g2 e~1al%2 By (ky, ko) Di(ky, £3) — Fiji(ky, k) Dy (K1, 52)
+— cosmk / 4 d ' ELANE L dkadk
™ Jo k- N R S I D2(ky, £2) + Di(k1, k2) 2
1 [k} elmal®2 By (ky, ko) Di(k1, k2) — Fiji(ka, k) Dy (ky k2) |
_ S T k iJr ) 1 IJI ] ? dk
w2 ./n‘ra Bon o 1];1 ki — K3 D2(k1, k2) + Di(ky, 52) dradly
+1/N2 b Z ! F'J(kl’an) se————sin(rik; + |rs|a,)dk (45)
- ﬁa k2 sz et an dk (kl, n) 1h1 2[CEn 1

The distinet forms of the functions for each k; interval are contained in Appendix B.

These are the completed forms of ¢;;(z, ) and ¢;; (=, £) which describe the fluid disturbance created
by a horizontally moving singularity of unit strength in the three layer stratlﬁed Auid system. The velocity
components in the fluid can be determined using u(z, &) = 32, v(z,¢) = ay 22 and w(zx, £) = 62
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4  Application of slender body theory

The singularity solution may be extended to simulate a slender three dimensional body. Slender body
theory assumes that the summation of singularity solutions distributed along the longitudinal axis of the
body is equivalent to a solution when the body is taken as a whole, The source strength associated with
each solution being a function of its location on that axis. The summation can be expressed as

22,0 = [ QO )it
where the source strength is given by
Q) =-U —(5)
A fully submerged prolate sphercid requires the source distribution
4\ 2
e =2 (4) ¢

As £ only appears in ¢;; and t;; in the terms sin[(z — £)&; + |r2|k2] and cos(z — £}k the integration
can be carried cut analytically. Thus, it follows that

vs(m0)= 2 ()

1l kB k ky /°° 1 Fyelky, k2)Di(ky, kg) — Fija(ke, k2) Dy (ky, k2)
*/0 (sm 5 cos A= D2(ky. k2) T D2(ks, ko) cos(zky+|relke)dkadk,

+ﬂ(izjmemﬁ—ﬂmﬂ-m”1 eIr2lme fs (kg k) Dyi(ky, 52) — Fijiky, n) Dy (k1 k2) )
L) Jy 2 2 2] kI Jy B—x2 D2(ky, k2) + D2(ky, £2) Radka

Ak ki ki sinzky [®emIrels2 Bk ko) Dilky, Kg) — Fiji(ky, k2) D, (k1,162)
os — 5 5 5 drydk,
2 2 kl k1 kl _52 Dr(kllmz)""D; (kle‘:?)
d\?
~4U (E)

Mol /b ok g k
j — (sin —2—1 — 2 cos ﬁ) Z ! —M cos(zky + |ra|an)dk, (46)

N k'i! 2 2 ne=1 On d.i: (kl: n)

Uij(w,8) = % (%)2

.k kR 1 /m 1 Fyjelka, ko) Dy(ky, ka) — Fiji(ky, k2) Dy (kq, k2)
(sm 5 cos ) PR e D2(ks . k2) T D2k Fo) cos(zki+|ralks)dkqydk;

and

W d\ (Nl bk kl) sin zk; e~lral®s By (ky, ka) Dilk, k2) = Fyje(ky, 52) Dy (k1 , 52)
il - oL bt _ 1 1) 11t H ¥ d dk
N (L) / ( 27277 kf—Nﬁfo =3 D2(k1, 52) + D7 (k1 rz) e
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/m (S. ki Ky cos kl) sinzky [ emI"sl%2 Fy (ke 82) Di(ki, k2) — Fiji(ka, 62) D, (k1, k2)
mn — — — - =
kf_NJZ ki1 kl_KZ D?(lﬁl,mg)+D?(k1,f€,2)
d 2
4w (z)

'/ﬁz (sin ﬁ - hcos kl)
Ry 2 2

Use has been made of the integrals

dﬁ:gdkl

1 Fij(k1, 0n)
;"D{(h, ’;) cos(aky + [ra|en)dk;  (47)

n=1

/ & cos(x — )k }dky = P (sm -]‘—:21 - % cos %—) sin ok

and

} k
2 §sinf(z — £)k1 + |ro|ko]dks = _k_22 (sin % - ?1 cos %1—) cos(zky + |rz|ka)
-3 i

The velocity components u, v and w can now be determined from these expressions through differen-
tiation.
These are the completed forms of the functions which describe the fluid disturbance created by a

horizontally moving prolate spheroid in the three layer constant Brunt-Viisili frequency stratified fluid
system.
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5

5.1

Interpretation and implementation of the theory

Explanation of the functions terms

The elements of the solution can be individually explained. Using ¢;; as an example we have

1.

I\."a oo ]_ F-'rk,k D;’k,k —F,:“'k,k Drk,k .
/ﬂ /0 = ijr(k1, ko) Di(ky, ko) — Fiji(ky, ko) Dy (s 2)Sln(f‘1k1+|r2|k2)dk2dk1

+k§ D?‘(klzkz)-l_Df(kl:kz)

This term originates from the kv discontinuity. It provides a very small wavelike contribution to
the fluid disturbance when the three BV frequencies are not similar. When the BV frequencies
approach the same value the amplitude of the wave disturbance increases and this term provides
the only wavelike component.

N ki g=lralse pis (ky, k) Dilky, k) — Fiji(ky, £2) Dr(k
-[ cos ryky 32 2 tJr‘( 1, ’92) 2( 1)"72) g;( 1,"'72) r( 1, K:z)dftzdkl
0 o k¥ —xi D2(ky, k2) + DZ{ky, k2)
This term also originates from the ky discontinuity. It does not have any wavelike properties and
only contributes to the fluid disturbance in the near field in the form of a localised peak and trough
system.

jm cos ik /w elrel®z Fo (b, ko) Di(k1, K2) — Fiji(ky, ko) Dy (kq, K2) dradk;
k

ﬁa 1 k% _K’% D?(kl,ﬁ2)+D'-2(k1,I€2)
This is the final term originating from the kv discontinuity. Again it does not have any wavelike
properties and only contributes to the fluid disturbance in the near field in the form of a localised
peak and trough system.

N, nzoo .
] ,}_M sin(riky + [ra|om )dky

N n=1 @n %(kl’a")
This term exists due to the presence of poles in the integrand. It provides the major wavelike
component when the three BV frequencies are distinct. As the BV frequencies approach a similar
value the amplitude of the wavelike disturbance decreases and the term vanishes when N = Np =
N3. The summation represents the addition of the individual contributions provided by the wave
modes present in the fluid. Discrete modes exist due to reflections occurring between the rigid
lid and the interfaces. The largest contribution is from the first mode, successive modes provide
decreasing fractions of the total disturbance.

The nearfield disturbance should be calculated using all four terms, however the disturbance down-
stream may be calculated using the final term only.

5.2

Figures

There are two presentation types contained in this report:-

1.

Three dimensional surface maps.

These are three dimensional plots of the velocity components v and v calculated on the fluid’s
surface. They extend 5000 metres each side of the body’s track, 5000 metres ahead of the body
and 10000 metres behind the body.
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2. One dimensional graphs.

These also present the velocity components u and v calculated on the fluid’s surface. The dis-
turbance is calculated parallel to the body’s track at 375, 875, 1375 and 1875 metres offset. The
calculation extends 5000 metres ahead of the body and 10000 metres behind the body. The graphs
provide a quantitive rather than qualitative presentation.

Figure 18 illustrates the appearance of the density and BV profiles used for the three layer BV model.
The fluid parameters are Ny = 0.01 rads/sec, Ny = 0.03 rads/sec and N3 = 0.005 rads/sec, the thickness
of both Iayers is 30 metres. This profile is used in all the three layer BV model calculations contained in
this report.

The fluid disturbance is generated using a prolate spheroid of length of 100 metres and a diameter of
10 metres.

Figure 19 is the surface velocity disturbance generated using a three layer constant density model. The
body is located in the middle layer at a depth of 45 metres from the free surface (a free surface boundary
condition was applied in this model). The density of the fluid in each layer is selected to approximate
the profile in figure 18. That is p; = 1025.0 Kg/m?, p; = 1026.5 Kg/m® and p3 = 1028.0 Kg/m3. The
thickness of both layers is 30 metres. The near field disturbance for this model is not available as it was
only developed for the far field.

Figure 20 are the surface velocities obtained from the constant BV model. The body is located
at a depth of 45 metres from the rigid lid and the fluid possesses a BV frequency of 0.03 rads/sec.
Figures 19 and 20 are included for comparative purposes.

Figure 21 shows the surface velocities for a body speed of 2 metres/sec when the body is in the lower
layer. Figure 22 are individual lines taken from the maps. Similarly figures 23 and 24 are for the body
in the middle layer. Figures 25 and 26 are for the body in the upper layer.

The effect of body speed may be observed using the final two sets of figures. Figure 27 is the surface
disturbance when the body is in the lower layer for a body speed of 1 metres/sec, naturally the ‘v’ angle
increases. Figure 28 is for the body in the same position moving at 5 metres/sec.

6 Conclusions

The solution obtained for the three layer Brunt-Vaisild frequency model not only provides a viable
mechanism for the prediction of the disturbance created by the moving body, but also gives an insight
into the structure of the fluid disturbance. The differences between the current model results and previous
models demonstrate how predictions of the fluid disturbance are improved through using a constant BV
layer model. Favourable comparisons with selected experimental measurements Justify the additional
complexity involved in producing this model. This is the most complex analytical model that can be
attempted, further research involving a generalised density profile requires a numerical scheme which may
not be as robust or enlightening.
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Figure 19: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the constant density
three layer model. U = 2 m/s.
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Figure 20: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the constant BV
model. U = 2 m/s.
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Figure 21: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the lower layer. U = 2 m/s.
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Figure 22: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the lower layer. I/ = 2 m/s.
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Figure 23: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the middle layer. U = 2 m/s.
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Figure 24: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the middle layer. U = 2 m/s.
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Figure 25: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the upper layer. U = 2 m/s.
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Figure 26: Velocities u(mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV model
when the body is in the upper layer. U = 2 m/s.
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Figure 27: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the lower layer. U = 1 m/s.
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Figure 28: Velocities u (mm/s) and v (mm/s) calculated on the fluid’s surface using the layered BV
model when the body is in the lower layer. U = 5 m/s.
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A : Example of contour integration

Consider the line integral

< cosbz 1 [ PRl

—_—dr = - —dr
o Vai+z? 2 /oo VaZ t 22
Replacing the real variable z by the complex variable z = z + iy we have a contour integral
eibz
———dz
A /(12 + 22
The integrand has the complex square root va? + 22 = \/a2 + 22 — 4% + i 2zy which requires additional

paths to be added to a large radius contour in order to avoid the contour crossing the line discontinuity
defined by

a?+z? -y’ <0 and zy=0

so, it is possible that line discontinuities exist on # = 0 and y = 0. The inequality determines if a line
discontinuity is present and the interval in which it exists.

1. z =0 gives a® — y? < 0, thus the intervals on the line z = 0 are a < y <ooand —oo < ¥ < ~a.
g

2. y =0 gives a® + 2 < 0, as z is real no intervals are present on the line y = 0 so no discontinuity
exists.

The contour for > 0 uses the upper half plane. This ensures the real part of the exponentials in the
integrand are negative. Thus the contour becomes '

@
O

. 6
rela

Reia

Figure 29: Contour path for the complex square root function
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Note : The large radius arc Re'™ | 0 < o < 7 is represented in the figure by a series of straight lines.
For b < 0 the lower half plane is utilised.
The integrals in the direction indicated around the contour are

R b7 z eeme‘“ ] la] gib(r+iy)
/ —dz + ————iRe'“de + —_——idy
-r Va? 4+ z? 0 a? 4 (Rete)2 R Va?+ (r+iy)?
-x 2ib(ilal4re’™) . R b= +iv) ™ gibRe™™ )
+ = wret®de + f ——idy + e ——y > ol [ |
o va®+(ila] + ref)? sl Va2 + (- +iy)? § Va? +(Refo)?

Now the examine behaviour of each integral as r — 0 and R — co. The second and sixth integrals will
tend to zero as B — oo as the real part of the exponential is —b & sin « and is always negative. The fourth
integral also tends to zero as r — 0 because

.
lim =0
r—=0 [\/a2 + (ia] + re"")?]

The third integral requires the application of equation 39 as r — 0, the square root becomes iy/y2 — a2
and the integral becomes

=] e—b¥
By
la Vy* —a?
the fifth integral gives an identical result. Thus

oo eibx o0 e—by
L e =2, s = olleb)

the last step utilises the equality given in Prudnikov et al(1986) 2.3.5(4).

f:o(xz—az)ﬁ—le'?’xdzzVI;F(ﬁ)(L;—“)ﬁ_%Kﬁ_%(ap) @>0 , R@B >0, R(p)>0)

withp="5 z=yand g = % Finally

9 cosbz

0 a2 + x2
This result is confirmed in the same volume at 2.5.6(4)

“  cos bz _ (2= %_”ﬁ
/0 mdm_(b) I’(p)K%_p(bz) (b>0, R(p)>0 , R(z)>0)

dz = Kq(|ald)

with z = |a| and p = &.
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B : Forms of the functions for different %; intervals

From the general forms of the functions derived in section 2.10 distinct variations are required for the
four k; intervals. ¢;; is used as an example to illustrate where these forms are appropriate. A common
function Cy; (%1, k2) is removed from the numerator in all cases. Note when i = 7 the functions are defined
for z < (, for z > ( the functions can be obtained by exchanging z and .

1. 0 < ky < N3. There are two integrals in this interval, both arising from the discontinuity. No
cancellation of positive exponentials on the numerator and denominator is required in either case.
The first is

No 190 Gk, ko) Fijr(ky, ka)Di(ka, ko) — Figi(ky, ka) D, (ky, kg)
iflh1, k2 ijrivl, A2 LR, K2 sfelivl, A2 f e ey, Ry k
fu /0 e ) T Dhh sin(riky + [ralkz)dkadky

For this integral the horizontal forms of &v; are required. Let

k2. -
Xy = \/(1 + ) VE - k)
1

k2 .
Xy = \/(1+,c—§)(N22 —k?)

k2 -
Xs= \/(1 + ‘é)(Nég — k)

then the functions become

int X, .
Dok, ko) = costy Xy costa Xy — Xy il bk sints X,
1
int1 X ints X
Di(k1,k2) = X3 [SIHTI-L cos 13Xy + costy Xy 2]
2

Fu,-(kl, kg) =X, sin(z +t1)X1 costy Xo + Xo COS(Z -f-iI)Xl sints X+

sintp X

Fn;(kl, kz) = X3 [Xl sin(z + tl)Xl — COS(Z + tl)Xl COStQXz]

F]_g,-(k]_, kg) =-X, sin(z + 1t + ig)XQ
Flg,'(kl, kg) = Xzcos(z +1t + tz)Xg

F13r(k1, kg) = —sin ZX3



Ship Science Report No. 91 - Issue 1

Fiai(k1, kg) = coszX3
Fo1r(ky, ko) = —Xasin(¢ + 12) X
| Fo1(keq, kg) = Xgcos{( +2)X;
Fyse(ky, ko) = —Xosin(z + 12) X

Fani(ky, k2) = X3 cos(z + t2) X2
Fage(k1, ky) = —sin(z + t2) X3
Fozi(ky, ko) = cos(z + 12) X5
Fz17(k1,k3) = —sin (X3
Fa15(ky, k2) = cos( X3
Faar(ky, ke) = —sin (X3
Fagi(ky, k2) = cos( X3
Faze(ky, ka) = sinz X3
Fasi(ky, k2) = —cos 2 X3
Ch1(k1, k2) = —cos (X,
Cha(ky, ka) = cos (X,
Chra(k1, k2) = Xacos (X3

Car(ky, k) = cos(z — £1) X,
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) int X, .
Caa(k1, ka) = cost1 X1 cos{ Xz + Xy Sle ! sin X
1
int X, .
Coslky, ka) = X3 [cost1X1 cos{Xo + X sty Ay sm(Xg]
1

031(’@1, k‘g) = X3 (:OS(Z - % — tg)Xl

sint1X1

032(]61, kg) = X3 [costhl (:OS(Z — tg)Xz + X, sin(z — tg)Xg]

SiIlt]_Xl
2
1

033(]61, kg) = Xa {COS CX;; [X Sintz.Xg - COSt]_Xl cOos tQXg]

costaXo + cost1 Xy

. sint; X, : sinfy Xo
- X,
X3sin (X3 [ X, X, ]}

The second integral is

e—]"zlxz ajr(kla-"52)D (kl;ﬁz zgz(kly'cz D, (k1,’92)

Kodk
k% — D (kl,M2)+D2 ’L’l,ﬁig) K2k

Ns ky
/ coO5 ™M kl C,jj(kl, K:g)
0 0

To obtain the functions for this integral the lower vertical forms of k*f_,- are required,

k2.
Xy = \/(1 - k—%)(Nf —k3)

X2 \/(1 - —)(N2 kf)

Xs—-\/(l* 2} (N3 ~ k3)

thus it is necessary to reassign the X’ variables and use the previously defined functions.

2. N3y < ky < Ni. There are two integrals in this interval. The first integral arising from the
discontinuity is

o 00 elralsz p (ky, k2) D (k1, k2) — Fijilky, & VD (k1 &2)
cosri k Cii(ky, & ijrif1, K2 1, K2) — Fijilky, £2) Dy (k1, 62 dradk
jﬁa 1 I/kl 3 (k1 Z)kf— 2 DX(ky, k3) + D?(ky, 52) o

The functions in this interval after substitution of the upper vertical forms of kv,
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k2 .
X = \/(k—§ — 1)(N} —k3)

k2 -
SO

k3

X5 = \/ (5 - D6 - 59),

cancellation of positive exponentials on the numerator and denominator and removal of common
factors become

Dy (ky, ko) = )X% (1—e720 %) (1 — 7 2%2) 4 (1 4 720 %1) (1 4 e 20%2)

X3 (1+ e‘zflxl) (1- e—2f2X2)

D,-(kl,kg) - % (1 _ e—2t1X1) (1 + e—2tgxg) + %

Fyyp(ky, ka) = X3 (1 - 5—2(z+t1)xl) (1 + e~22%2) 4 X, (1 n e,.g(z_l_h)xl) (1 - em20:Xs)
Frailks, ko) = Xs [% (1 - emz(ﬁmxl) (1—e7?2%3) 4 (1 + e‘z(”“)xl) (1+ e—%xg)]
Frop(k1, k2) = Xs (1 _ 6—2(z+n+t3)xg)

Frai(ky, k) = X5 (1 + e~2(z+r1+t2)xz)

Fyae(k1, ko) = —sin 2 X3
Figi(k1,ky) = coszX3

Forp(ky, k2) = Xo (1 - e_z(C‘Hz)Xg)
Foyi(ky, k2) = X3 (1 + 6—2(c+tz)xg)

Fope(k1, ka) = X (1 _ e—2(z+tg)X2)
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Faoi(k1, k2) = X3 (1 + 6_2(‘“’))(’)

Foar(k1, ko) = —~sin(z + 12} X3
Fazi(ki, ko) = cos(z +13) X3
Fair(k1, k2) = —sin (X3
Fa1i(ky, k2) = cos (X3
Faor(ky, ka) = —sin( Xs
F33i(k1, k2) = cos( X3
Far(ky, k2) = —sin 2Xs
Fagi(ky, ky) = coszX3
Cralk, ka) = 5e=O% (2% 4 1)
Cia(ky, k) = e~ ({+11)Xy p(s+11) X (EZC)G + 1)

013(161, k) = 2){3.(-3““*":1)‘)(1 gt Xz (82("(’ + 1)

Cor(ky, k) = e72 X3¢l Xz (32(’-“*—1)-’(1 + 1)
Coolk 1 (z=C(}Xa —2tX, 2 X X, Lo, 2 Xs
pa(fr, o) = el =% | (1 o72000) (200 4 1) - 2 (1 72000 (@30 )
Cza(kl,kz) = -}(36“((‘.‘*4:')1"2 [(1 + e-?hXL) (52CX2 + 1) —_ % (1 _ 6—211X1) (82CX'2 — 1)]
1

Ca1(ky, ko) = 2Xze~(F=1)X1 =12 Xa (62(2—11—32).’(1 + 1)
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X2

= (1 _ e-zrlx,) (ez(z-:z)x, _ 1)]

Caz(ky, kz) = Xze™*%2 [(1 + e~ 201%0) (32("“2))(2 + 1) -
1

Csalk1, k2) = X5 {cos (X3 [% (L—e™20%) (1— 722 X7) 4 (14 72050y (1 4 e‘2‘=x=)]

: 1 o _anx, —2tuXz\ , L —20. X0\ {1 _ ,—2sX
+X38in ¢ Xs [Xl (1=20%0) (1 £780%5) 4 = (1 e70%0) (1= o770 n)]}

The second integral is from the pole contribution

N, n=oo
1 1 Fy Ak .
/ ——-——”r( 1, %) sin(riky + |ro|an)dk;

N’a n=1 Gn %’%}(klsan)

The horizontal forms of k+vy; are applicable here.

k2.
X = \/(1 + k—§)(Nf — k%)

B2 .
Xy = \/(1 + E%)(Nf —k?)

k3 .
X3 = \/(1 + f%)(kf - N3)

Fii,(ky, k3) = cosC X, {cos(z +41)X; [Xacosta Xy — Xy sinteXa] — Xy sin(z +1,) X, )@Si“‘!zX2 + cos thz] }
Frar(ky, k2) = cos (X3 [Xacos(z + 11 +12) X2 — X3 sin(z + 1 -+ 12).X3)
Fiar(ky, ka) = Xae*X2 cosC X,y
Foir(k1, k2) = cos(z — 1) X1 [X3 cos(C + 12) X2 — Xasin(C + 12)X,]
Fage(ky, ky) = [Xscos(z +12)Xa — Xasin(z +t2)Xs] [costhl cosCXa + X» Si“;(llX L sin c;g]

Fage(k1, ky) = XaeleHt2)Xs [cost1X1 cos (X3 + X; S‘H;IX ! sin <X2]
1
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F31r(’€1,k2) = X36CX3 COS(Z —tl - tg)Xl

sint; X,
1

Fagp(ky, ko) = XaetXe [cos t1.X cos(z — 1) X2 + X sin{z — tg)Xg]

inf) X
Faar(ky, k) = Xze?Xs {cosCXg [costhl costa Xg — ngm 1201 sinthz}
1
iné; X int
—X3 Si[lCXg [Sln 11 COSthg + COSt1X1 s QXz}}
X} X2
dD* ) X D.CANN :
W(kl’ ky) = (tr-+t2) costy Xy [X3costa Xy — XpsintsXs]— th— + th— sint; X [Xzsinta Xy 4+ Xo costaXy)
2 2 1

No imaginary functions exist on the horizontal paths in this interval.

3. Ny < ky < No.

The analysis here is identical to the previous interval, only the functions themselves have a slightly
different form due to the change in kv;. For the integral arising from the discontinuity we have

k3 ~
X1 = \/(é — D&} - NY)

k2 -
Xy = \/(k—§ —1)(N2 —k})

k2 -
Xs= \/(;% - )k - )
1

Xz .
Dy(ky, ko) = X—j sint; X1 (1— e7*2%2) 4 costy Xy (1 + e~ 22%z)

Xs .
Dy(ky, ko) = Tosinty Xy (14 ¢~ 2X2) é(:osthl (1 — g %aX2)
X]_ XZ
Friy(ky k) = Xy cos(z +11) X1 (1—e722%2) — Xy sin(z + 1) X (1 + ™ 22%3)

Fizi(ky, k2) = X [COS(Z +11) X (14672 %2) — %sin(z +11)X) (1 — e~2iX2)
2
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Figr(ky, ks) = X> (1 _ e-?(z+n+xg)xg)
Fuai(ks, ko) = X (1 " 6—2(z+t1+rg)xz)
Frap(ky, ko) = —sin 2.X3
Fiai(ks, k2) = cos 2 X3
Farr(ky, k2) = X (1 - 6—2(c+erxz)
Fyrilky, k2) = X3 (1 + 3—2(c+tg)xg)
Fage(ky, ka) = Xa (1 - 3‘2(”"2)1(2)
Fai(kr, ka) = X3 (1 + e‘2(2+f2)Xz)

Fse(k1, k2) = —sin(z + 12) X
Faailk, ka) = cos(z + 13) Xa
Fsir(k1, k2) = —sin (X3
Fai(ky, k2) = cos({ X3
Fagr(k1, k2) = —sin(Xa
Fasi(ky, ka) = cos (X3
Fsar(k1, k3) = —sin 2Xs

F33i(k1, k) = cos 2X3
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C11(k1, kz) = COS CXI
Cia(ky, ko) = elE+100%2 cos 0 X
Cm(kl, kz) = 2)(3(3ﬁ‘?2xl cos { Xy

Czl(kl,kg) = gtXs COS(Z — t1)X1

1 X9 .
sz(kl, kz) = EB(Z_CJ‘)(’ [COSthl (echg + 1) - X_—jSlIl'ﬁl)(;l (e2§X2 - 1)]

X
ng(kl, Kg) = )(3(3_“4_:2))(2 [costhl (82CX2 -+ 1) — -X—2 sin t]Xl (62CX2 - 1)]
1

C31(k1, kg) = 2}(36_tﬂx2 COS(Z - tl — tg)Xl

Caalky, ko) = Xae—?Xz [costhl (ez(z_t”)x2 + 1) - &sin 8 X, (62(”'”‘2)}{2 - 1)]
X1

Caak, k) = X3 {cosCXg [% sint; X1 (1 - 6_2‘2)(2) +cost1 X3 (1 + e‘gt?xz)}
1

1 1
+X5sin{ X3 | =——sint1 X (1 + e’at?x?) + —cost1 Xy (1 - e‘zt?xz)
Xy Xy

whilst the functions corresponding to the pole contribution are

k2 ~
Xy = \/(1+k_§)(kf—N12)

k2
X, = \/(1 + ﬁ)(Ng — k2)

k2 -
X3 = \ﬂl + 12k - )
1

1 ints X
Fur(kl,kg) = EB(Z_C)Xl (62(X1 + 1) {X]_ (1 — 8—2(2+t1)X1) [X:.;s}anz 2 + costpXo

74
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+ (1 + 6—2(z+t1)X1) [X3 cos t3.Xs — Xy sinthzj}
Fror(ky, k2) = e {C+11)3, (32CX1 + 1) [X3cos(z + 83 +12) X2 — Xasin{z + 1y 4 12)X3)
Fize(k, ko) = Xze~((+1)Xa g2 Xs (ezcx, +1)

For,(k1, k2) = e~2 %1 (ez(‘_t‘)xl + 1) [Xs cos(¢ +t2) X2 — Xosin(¢ + t3)X5)

1 — -2, X, .
Fage(ky, ka) = [X3 cos(z +12) X3 — Xosin(z + 12)X2) [(1-{-6“2“’“) cos (X, +X2( 3( ) smCXzJ
1
(1 — e—2t1X1
Fasr(kn, ko) = XgePHt2)Xs [(1 + e 1% cos ¢ Xy + X, 7 sin (X
1

Fir (b1, bz) = Xoe™(mK10Ks (2etomta)X y 1)

o (=)
Fao,(ky, k) = XaelXe (1 4701 1) cos(z — 1) Xg + Xgmmo — 2

X, sin{z — tg)XQ:I

(1 —em2iXy

(L4 e %) costy Xy — X3
X1

Faa (k1. ko) = Xae®*> {COS (X3

sin ingl

] (1 —e~2%1) —2t. X, Sinta X
—X3sin{Xs [ X, cos {p Xo + (1 +e"? ) T
dp* -2, X .
(k1 k) = (t1 + 12) (14 e721%) [ X3 costa Xa — Xy sin 9.Xo]

2
X
+ (t1X—1 - tz%) (1—e 2 %) [X3sint2 Xy + Xq costy X3]
2 1

Again no imaginary functions exist on the horizontal paths in this interval.
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4. Ny < ki < o0. Only the integral arising from the discontinuity exists in this interval

oo o elral®s Bl (ke ko) Di(kn, k2) — Fijilky, k2)Dyp(k, £2)
cosrik Cii(k1, ELAE L AL T2 2 i dk
/1\?2 ! 1/k, ik 2 D2(kr, k2) + D2 k1, w2) 24k

The functions here can be obtained by substituting

k2 -
X = \/(1;% — 1)(k} — N?)
1

k2 =
Xz = \/(7‘;% = 1)(kf — N7)

2
X5 = (’“_2 — 1)(k2 — N2)
k% 1 3

in the functions defined for the first integral in the interval 0 < k; < Nj.



