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Composite honeycomb sandwich structures have been favoured in the aircraft industry 
for many years due to their low-weight, high stiffness, and improved fatigue resistance. 
The response of doubly curved, composite honeycomb sandwich panels to high inten-
sity, random pressure loads has received little attention, and there is a need to update 
current design guides to include this type of structure. 

A set of four doubly curved honeycomb sandwich panels were manufactured at 
the University of Southampton. The panels were tested to determine some of the 
resonance frequencies of vibration, and the results were used to validate the Finite 
Element models of the four panels. These FE models were used to study the effects 
of various design parameters on the free vibration response, and the work resulted in 
various sensitivity parameters which could potentially be used as a guide for designers. 

The major part of the work involved testing the panels in a Progressive Wave Tube 
(PWT) facility with random acoustic excitation at grazing incidence to the concave 
panel surface. The measured strain response of the panels was predominately in the 
fundamental bending mode, with face plate strain levels which differed between the 
inner and outer face plates, highlighting the significant effect that double curvature 
can have on the relative strain levels in the face plates. 

A new method was developed for estimating the shear strain in the core of the 
sandwich panels using a finite difference approximation. The technique was validated 
using a cantilevered sandwich beam, giving excellent agreement between experiment 
and theory for both static and dynamic response. The work resulted in a new viable 
technique which has potential for use in generating S/N data for the core during 
random fatigue testing of sandwich coupon structures. 

Three methods were used to predict the response of the panels to random acous-
tic excitation. A combination of the single-degree-of-freedom approach and the FE 
method with an estimate of the joint acceptance gave excellent agreement with the 
measured RMS strains. Blevin's method resulted in an overestimate, and the classical 
Mile's approach resulted in a gross under-estimation. Finally, a novel travelling wave 
approach was used in the FE analysis, giving good agreement with the measured RMS 
strains and power spectral density, particularly for the fundamental mode. 
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Nomenclature 

a a constant 

length {m) 

A semi-empirical constant 

area 

h a constant 

breadth [m) 

B a constant 

bandwidth {Hz) 

c core thickness (m) 

wavespeed (m/g^) 

Cy viscous damping coefficient 

C arbitrary constant 

d depth, thickness (m) 

dB decibels 

D flexural rigidity of a beam (Nrri^) 

e exponent 

E estimated value 

Young's Modulus of Elasticity (N/m^) 

face plate thickness (m) 

Fn generalised force 

Gxx single-sided spectral density 

shear modulus {N/vn?) 

H frequency response function 

i complex number 

index value 

j index value 

Jn joint acceptance 
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kg acoustic wavemimber (1/m) 

structural wavenumber in x-direction (1/m) 

&2 structural wavenumber in y-direction (1/m) 

jiT strain gauge factor 

K stiffness matrix 

L total length (m) 

m a constant 

mass per unit area 

M bending moment (Nm) 

M mass matrix 

N normal force (N) 

p pressure 

p{x) probability 

f load (AT) 

Q shear force (TV) 

R resistance (Q) 

radius of curvature in x-direction (m) 

Ry radius of curvature in y-direction (m) 

Sxx double-sided spectral density {Units'^/Hz) 

t time (s) 

u response amplitude (m) 

V a constant 

voltage 

w out-of-plane displacement (m) 

X, y, z cartesian coordinates 

e direct strain (m/m) 

00 radian frequency {rad/s) 

/) density 

(j) mode shape 

eigenvector 

TT constant (3.141592654) 

A wavelength (m) 

IJL mean value 

micro (xlO"^) 
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a 

7 

71 

72 

v 

T 

c % 

direct stress {N/rn?) 

standard deviation 

shear strain 

skewness 

kurtosis 

Poisson's ratio 

shear stress 

spatial distribution of pressure 

viscous damping ratio 

real part of complex number 

imaginary part of complex number 

AFD Acoustic Flaw Detection 

CFRP Carbon-Fibre Reinforced Plastic 

ESDU Engineering Sciences Data Unit 

FE Finite Element 

FFT Fast Fourier Transform 

NDT Non-Destructive Testing 

OASPL Overall Sound Pressure Level 

ppr power plant radial 

PWT Progressive Wave Tube 

RMS Root Mean Square 

SNR Signal-to-Noise Ratio 

SPL Sound Pressure Level 

SWG Standard Wire Gauge 
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Chapter 1 

Introduction 

1.1 T h e general problem 

The dynamic response of aircraft structures to random pressure loading from aerody-

namic and engine acoustic sources can lead to acoustic fatigue failures [1, 2, 3, 4, 5, 6, 7] 

and it is the understanding of these acoustic sources, coupled with the development 

of structural response prediction models, which will enable the engineer to design 

against acoustic fatigue. Since the introduction of the gas turbine engine, and its 

development from the early turbojet to the modern high bypass turbofans of today, 

the acoustic fatigue of aircraft structures has remained an important design issue. 

Much work has been carried out over the years in an attempt to predict the stresses 

that could be encountered in service due to the random acoustic loading produced 

by the gas turbine engine [8, 9, 10, 11]. However, with the introduction of advanced 

composite materials, a new set of issues have had to be addressed which concern the 

very different fatigue characteristics of this new type of structure [4]. One particular 

type of composite structure, the honeycomb sandwich panel, has a very high stiffness 

to weight ratio, and has found favour in the aircraft industry over the years. Panels 

employing a mixture of carbon fibre reinforced plastics and resin impregnated paper 

honeycomb can be found in applications such as fairings and floor panels, ailerons, 

helicopter rotor blades, and engine intake barrel panels. The latter type of structure, 

shown in figure 1.1, has a complicated geometry due to the shape of the engine intake, 

and as such can be considered to be doubly curved. The dynamic response of sand-

wich structures to acoustic excitation has previously been investigated [13, 14,15, 16], 

but only for flat and singly curved geometries. In addition, the engine intake barrel 

panel represents a different type of problem to those previously investigated due to 

the particular nature of the acoustic excitation [16]. The fan of a high bypass engine 
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• 

Figure 1.1: A nose cowl showing the intake barrel segments [12]. 

can produce noise levels at fan related frequencies which exceed those produced by 

the efflux of the engine by as much as 30 dB/Hz [16]. In addition, the maximum noise 

levels produced by the efflux occur during take-off and are also directly related to the 

engine power, whereas the noise produced by the fan is a function of the fan rpm and 

can be just as severe during cruise as for take-off. Therefore, fatigue of engine intake 

barrels can occur both during take off and cruise. The engine intake barrel represents 

one typical application of the composite sandwich structure having a doubly curved 

geometry. With the increase in use of composite materials for aircraft manufacture, 

it is inevitable that this type of structure will be used in a wider range of applications 

due to its favourable characteristics in terms of high stiffness, low weight, low cost, 

ease of manufacture, and perhaps, improved fatigue resistance [15]. However, there 

has been very little work on the dynamic response of carbon fibre honeycomb panels 

with double curvature to random acoustic excitation. 

1.2 Historical review of acoustic fa t igue 

1.2.1 Early investigations 

With the introduction of the gas turbine engine in the early nineteen fifties and the 

resulting rapid development of more powerful engines, there followed an increase in the 
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