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Composite honeycomb sandwich structures have been favoured in the aircraft industry 
for many years due to their low-weight, high stiffness, and improved fatigue resistance. 
The response of doubly curved, composite honeycomb sandwich panels to high inten-
sity, random pressure loads has received little attention, and there is a need to update 
current design guides to include this type of structure. 

A set of four doubly curved honeycomb sandwich panels were manufactured at 
the University of Southampton. The panels were tested to determine some of the 
resonance frequencies of vibration, and the results were used to validate the Finite 
Element models of the four panels. These FE models were used to study the effects 
of various design parameters on the free vibration response, and the work resulted in 
various sensitivity parameters which could potentially be used as a guide for designers. 

The major part of the work involved testing the panels in a Progressive Wave Tube 
(PWT) facility with random acoustic excitation at grazing incidence to the concave 
panel surface. The measured strain response of the panels was predominately in the 
fundamental bending mode, with face plate strain levels which differed between the 
inner and outer face plates, highlighting the significant effect that double curvature 
can have on the relative strain levels in the face plates. 

A new method was developed for estimating the shear strain in the core of the 
sandwich panels using a finite difference approximation. The technique was validated 
using a cantilevered sandwich beam, giving excellent agreement between experiment 
and theory for both static and dynamic response. The work resulted in a new viable 
technique which has potential for use in generating S/N data for the core during 
random fatigue testing of sandwich coupon structures. 

Three methods were used to predict the response of the panels to random acous-
tic excitation. A combination of the single-degree-of-freedom approach and the FE 
method with an estimate of the joint acceptance gave excellent agreement with the 
measured RMS strains. Blevin's method resulted in an overestimate, and the classical 
Mile's approach resulted in a gross under-estimation. Finally, a novel travelling wave 
approach was used in the FE analysis, giving good agreement with the measured RMS 
strains and power spectral density, particularly for the fundamental mode. 
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Chapter 1 

Introduction 

1.1 T h e general problem 

The dynamic response of aircraft structures to random pressure loading from aerody-

namic and engine acoustic sources can lead to acoustic fatigue failures [1, 2, 3, 4, 5, 6, 7] 

and it is the understanding of these acoustic sources, coupled with the development 

of structural response prediction models, which will enable the engineer to design 

against acoustic fatigue. Since the introduction of the gas turbine engine, and its 

development from the early turbojet to the modern high bypass turbofans of today, 

the acoustic fatigue of aircraft structures has remained an important design issue. 

Much work has been carried out over the years in an attempt to predict the stresses 

that could be encountered in service due to the random acoustic loading produced 

by the gas turbine engine [8, 9, 10, 11]. However, with the introduction of advanced 

composite materials, a new set of issues have had to be addressed which concern the 

very different fatigue characteristics of this new type of structure [4]. One particular 

type of composite structure, the honeycomb sandwich panel, has a very high stiffness 

to weight ratio, and has found favour in the aircraft industry over the years. Panels 

employing a mixture of carbon fibre reinforced plastics and resin impregnated paper 

honeycomb can be found in applications such as fairings and floor panels, ailerons, 

helicopter rotor blades, and engine intake barrel panels. The latter type of structure, 

shown in figure 1.1, has a complicated geometry due to the shape of the engine intake, 

and as such can be considered to be doubly curved. The dynamic response of sand-

wich structures to acoustic excitation has previously been investigated [13, 14,15, 16], 

but only for flat and singly curved geometries. In addition, the engine intake barrel 

panel represents a different type of problem to those previously investigated due to 

the particular nature of the acoustic excitation [16]. The fan of a high bypass engine 
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• 

Figure 1.1: A nose cowl showing the intake barrel segments [12]. 

can produce noise levels at fan related frequencies which exceed those produced by 

the efflux of the engine by as much as 30 dB/Hz [16]. In addition, the maximum noise 

levels produced by the efflux occur during take-off and are also directly related to the 

engine power, whereas the noise produced by the fan is a function of the fan rpm and 

can be just as severe during cruise as for take-off. Therefore, fatigue of engine intake 

barrels can occur both during take off and cruise. The engine intake barrel represents 

one typical application of the composite sandwich structure having a doubly curved 

geometry. With the increase in use of composite materials for aircraft manufacture, 

it is inevitable that this type of structure will be used in a wider range of applications 

due to its favourable characteristics in terms of high stiffness, low weight, low cost, 

ease of manufacture, and perhaps, improved fatigue resistance [15]. However, there 

has been very little work on the dynamic response of carbon fibre honeycomb panels 

with double curvature to random acoustic excitation. 

1.2 Historical review of acoustic fa t igue 

1.2.1 Early investigations 

With the introduction of the gas turbine engine in the early nineteen fifties and the 

resulting rapid development of more powerful engines, there followed an increase in the 
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number of reported fatigue failures of the skin structures close to the jet exhaust [1]. 

This led to a range of investigations by both the UK and the USA aircraft industries 

and research establishments in an attempt to both understand and alleviate this 

problem. The majority of these early investigations involved experimental studies 

using both simple test panels [5, 17, 18, 19] and actual aircraft structures [20, 21], and 

excitation was provided by sirens, random noise generators and aircraft engines [22, 

23, 6]. This early work led to the development of the first design nomographs for 

acoustically excited aircraft structures [24]. 

A response prediction method for acoustically excited metallic structures was first 

developed by Miles [25]. In that study. Miles considered an elastic structure subjected 

to random loading and simplified the analysis by assuming the structure to have only 

a single degree of freedom. He also used the concept of cumulative damage [26] to 

analyse the fatigue behaviour of such structures. Miles derived an expression for 

the equivalent root mean square stress for a single degree of freedom system under 

random loading. Miner's hypothesis of cumulative damage was then used to estimate 

the fatigue life of the structure [26]. 

Powell [27] took this work one stage further by considering the normal mode ap-

proach. The modes of vibration of the structure were assumed to be uncoupled, hence 

the response of the structure to random pressure loads could be given as a series of 

N independent equations (one for each mode). Powell developed an expression for 

the power spectrum of the total stress fluctuation, and in addition he introduced the 

concept of "joint acceptance", which is a measure of the effectiveness of the complex 

pressure field in exciting a particular mode. The cumulative damage law was again 

used in the estimation of fatigue life. 

Following on from Powell's work, Clarkson [8] simplified the theory for panel-

type structures by assuming that the major part of the response results from the 

contribution of one predominant mode. He also assumed that the excitation pressures 

were exactly in phase over the whole structure and derived an expression for the mean 

square stress in terms of the viscous damping ratio and resonant frequency, 

TT == (11) 

where ctq is the static stress at the point of interest due to a uniform pressure of 

unit magnitude, ( is the viscous damping ratio, and Gp{fn) is the excitation pressure 

spectral density at the resonant frequency /„ [4]. This expression was first derived 

by Miles [25] and is still used today as a design tool for structures subjected to 
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random pressure loading. In order to justify his approach, Clarkson [8] examined the 

application of the theory to a range of structures, which included fiat plates, aircraft 

control surfaces, and integrally stiffened skins, and compared the results with several 

experiments. Clarkson [8] concluded that considering the severe simplifications in this 

theory, the agreement with experimental measurements was satisfactory, and in order 

to obtain greater accuracy a multi-modal analysis of the structural response would be 

necessary. 

The work continued in an attempt to improve the estimation procedure with de-

velopments of Powell's method by Bozich [28], and Barnoski and Maurer [29], and im-

provements to the design nomographs by Ballentine [13], Bayerdorfer [30], Areas [10], 

and Rudder and Plumblee [31]. With the improvements in computing power in the 

late nineteen sixties, developments were also made in the use of the finite element 

method to estimate the response of flat and curved skin stringer panels to random 

acoustic loads [32, 33, 34, 9]. 

In relation to the engine nacelle structure, simplified shell theory was used by 

Soovere [35] to investigate the failure of large fan engine intake ducts. Although this 

early research was concerned with intake ducts constructed from stiffened aluminium 

alloy panels, it still provides some insight into the possible explanations for the failures 

experienced in such structures which are subject to this particular type of acoustic 

loading. Soovere found that the duct shell stress spectrum exhibited a similar spectral 

content to that of the fan noise. This initially led to the conclusion that the duct 

shell response was forced, however, after further examination the buzz-saw^ stress 

components were found to be amplified over a small region of the circumferential 

mode number which occurred in the vicinity of the shell resonances [35]. It was 

pointed out, however, that engine hunting would considerably reduce the dwell time 

on resonance [35]. 

1.2.2 Developments with respect to composite s t ructures 

By the mid to late nineteen seventies there were considerable advances in the de-

sign and manufacture of composite structures. Work began to ascertain the effects 

that random acoustic loading would have on the fatigue life of these new materials 

which included boron and glass fibres, Kevlar, and the most promising for aircraft 

applications; carbon fibre reinforced plastic (CFRP). One of the earliest studies of 

the response of CFRP plates to random acoustic loading was made by White [38]. 

^Otherwise known as multiple-pure tones or combination tones which are multiples of the basic 
fan rotation frequency and are produced when the tip speed of the fan becomes supersonic [36, 37]. 
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In this paper, comparisons were made between CFRP and aluminium plates and the 

author showed the nonlinear characteristics of the CFRP plates at high excitation 

levels (above 130 dB re 2 x 10~®Pa). This nonlinear behaviour was also found dur-

ing the investigations of Wolfe and Jacobson [39] for tests carried out on a series of 

multi-bay boron-epoxy and graphite-epoxy panels. Although developed for metallic 

structures, equation 1.1 was used by White and Mousley [40] to compare experimental 

measurement of overall plate response with theoretical predictions for CFRP plates. 

The single mode predictions using the ESDU data sheets [41], which are based on 

equation 1.1, were found to be in very good agreement with the measured values for 

excitation levels up to 145 dB. Some nonlinear effects were observed during this in-

vestigation, and the authors went on to study the combination of random acoustic 

loading and in-plane compression, where the "snap through" effect was observed. The 

conclusions drawn indicated that at response levels below those that produce marked 

non-linearities, the single mode method can be used to estimate the RMS response of 

simple composite plate structures. 

In terms of fatigue, the methods developed for metallic structures are not strictly 

applicable to composite structures. This is because the methods rely on surface 

strain estimates, whereas for composite materials it is the combination of internal 

stresses/strains at a critical point within the layers of the composite that will cause 

fatigue damage to initiate and propagate [4]. In addition, the flexural fatigue tests 

conducted on standard test coupons were found to be unreliable when trying to de-

termine the fatigue life of a specimen since the specimens were found to delaminate at 

the edges [42]. To combat this problem, the half-sine clamp was developed by Drew 

and White. This is basically a cantilever clamp with a half-sine wave shape along 

the clamping edge which, when tested using CFRP test specimens, produced a more 

representative delamination failure within the test coupon [42]. 

Although not specifically developed for composite structures, an approximate an-

alytical method for predicting the acoustic fatigue life of plates and shells using multi-

modal analysis was developed recently by Blevins [43]. In his paper, Blevins extended 

the Miles approach to higher modes and complex shapes and developed methods 

for estimating the effects of finite acoustic wavelength on their excitation. Blevins 

method was a bridge between deterministic and statistical approaches and his ap-

proximations were most applicable to uniform plate and shell structures excited by 

a stationary (ergodie) sound field. The natural frequencies, mode shapes, and the 

relationship between modal deformation and modal stress are required as inputs in 

this method. Damping and the magnitude of the applied pressures are also required 
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although exact knowledge of the distribution of the applied surface pressures is not 

required, instead an estimate of this distribution was used. For this reason, the con-

cept of joint acceptance was used in Blevins' formulation. Since the evaluation of 

joint acceptance requires an estimate of the surface acoustic pressure distributions, 

he suggested several approximations for the shape of these distributions [43]. Blevins 

used the mass-weighted structural mode shape approximation, from which the joint 

acceptance was calculated to be unity. A method was then given for calculating the 

acoustically induced displacements for any mode. In order to validate the method, 

Blevins compared his results with those produced by the AGARD [11] method, which 

is a design guide formulated primarily from the work of Miles [25] and Clarkson [8]. 

A flat plate and a singly curved plate loaded with broadband sound with an overall 

sound pressure level of 145.7dB were considered. Results from Blevins method agreed 

very closely with those from the AGARD method and he concluded that the former 

could be viewed as a generalization of the Miles / Clarkson /AGARD approach. For 

completeness, Blevins also compared predictions by his method with experimental 

data obtained from integrally stiffened, flat rectangular titanium panels tested in a 

Progressive Wave Tube (PWT). The experimental results agreed fairly well with the 

theoretical results within the bounds of uncertainty. 

Recent developments in acoustic fatigue research have concentrated on combined 

thermal-acoustic environments, which are being driven by studies of new hypersonic 

vehicle designs such as NASP [44, 45], and there is now interest in understanding how 

these environments affect the non-linear response of aircraft structures [46, 47, 48]. 

1.3 Dynamic response predict ion for sandwich 

s t ruc tures subject to r a n d o m acoustic 

excitation 

Early investigations on the acoustic fatigue of sandwich structures were reported by 

Sweers [49] and Wallace [50] at one of the first conferences held on acoustic fatigue of 

aircraft structures [51]. Sweers [49] used simple panel theory to predict the natural 

frequencies of fiat aluminium honeycomb panels, and compared the results with mea-

surements obtained from shaker tests. Predictions for the lower natural frequencies 

were found to be more accurate than those of the higher modes. The apparent loss in 

accuracy for these higher modes was attributed to the reduction in plate stiffness due 

to the shear deformation of the core. Experimental investigations also showed that 
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the ratio of inner-to-outer ^ stress on the surface of the face plates in the centre of the 

panel was of the order of 2 to 2.5, which indicated possible fatigue failures in the inner 

face sheet. Failures were indeed reported in the inner face sheet, as well as along the 

bolt holes and the core-to-face sheet interface [49]. Prediction of the stress response to 

acoustic excitation was limited to the fundamental mode since the response at higher 

frequencies requires knowledge of the spatial correlation of the pressures. Wallace [50] 

presented an analysis of acoustically excited brazed steel honeycomb panels. Both 

jet noise and narrow band siren noise were considered in the analysis and stress and 

fatigue life were computed for variations in basic panel parameters. Damping was 

taken to be that due to radiation of acoustical energy away from the panel. Since the 

bending wavelength of the panel was greater than the corresponding wavelength of 

sound, the damping produced by acoustic radiation would be quite large. The fatigue 

life was calculated from the maximum value of face sheet stress, which was found to 

be at the centre of the panel which had simply supported boundary conditions. 

Another early analytical and experimental programme was carried out by Jacob-

son and van der Heyde in order to obtain acoustic fatigue design information for 

honeycomb panels with fibre-reinforced facings [52]. The study was concerned with 

S-Glass fibre-reinforced, Boron fibre-reinforced, and aluminium alloy face plates, with 

a hexagonal cell honeycomb core. A PWT was used to excite the panels with broad-

band random acoustic waves at a Sound Pressure Level (SPL) of around 167dB (re 

2 X 10~^ Pa, frequency bandwidth 1000 Hz). Fifty eight simply supported panels were 

tested to failure and the effects of various ply lay-ups on the panel life and mode of 

failure were reported. The authors found that facing failures at the centre of the panel 

predominated, although some core failures were reported. 

Finally, Soovere investigated the dynamic response of acoustically excited car-

bon fibre reinforced and Kevlar honeycomb panels [15, 53]. He extended existing 

orthotropic honeycomb panel theory, through coupled normal mode analysis, in order 

to predict the overall strain at both the edges and the centre of the faces of the panels. 

His work was the first to investigate the effect of the bevelled edge closeout pan, an 

example of which is shown in figure 1.2, which was shown to increase the effective 

shear stiffness of the honeycomb core by an order of magnitude. Soovere showed both 

analytically and experimentally that, with laterally rigid edge supports, the rotation 

of the bevelled edge introduced a linear dynamic membrane strain into the inner face 

sheet. He also found that the dominant contribution to honeycomb panel damping 

^It is generally accepted that, for flat sandwich panels with bevelled edges, the inner face incorpo-
rates the pan or bevelled edge. The definition of the inner and outer face is not dependent on which 
side is being driven, instead it is dependent on the geometry and configuration of the structure. 
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was due to acoustic radiation, and for the carbon fibre reinforced panels, the material 

damping was very low compared to the Kevlar reinforced panels. For singly curved 

sandwich panels, it has been suggested that the strains at the centre of the panel are 

higher on the convex face than on the concave face [15]. 

SEE DETAIL OF BEVELLED EDGE 

T| III 11M1111 i 1111MI rm 

BACKING SKIN AND EDGE PAN PLIES (OUTER FACE) 

. HONEYCOMB CORE 

FACING SKIN AND JOUBLER PLIES (INNER FACE) 

DETAIL OF BEVELLED EDGE 

Figure 1.2; Example of a curved sandwich panel with detail of the bevelled edge 

1.3.1 Current design techniques for sandwich structures 

The Engineering Sciences Data Unit (ESDU) produce a large amount of design data 

using the results published in the open literature. The data series cover various 

aerospace related disciplines such as aerodynamics, fatigue, dynamics, structures, 

transonic aerodynamics, performance, and vibration and acoustic fatigue. The lat-

ter sub-series includes work on the prediction of natural frequencies, damping, and 

root mean square (RMS) stresses/strains in various structural elements such as flat 

and singly curved isotropic and laminated plates, shells and box structures under the 

action of random acoustic loading. Sandwich panels are included with both flat and 

singly curved geometries being considered. The data items which are relevant to the 

analysis of sandwich structures subject to random acoustic excitation are given in 

Table 1.1. 
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Item 

66013 Terms used in acoustic fatigue analysis. 
86025 Practical background information relating to the 

nature of the acoustic fatigue problem. Includes 
a review of the acoustic and aerodynamic 
excitation sources. 

74033 A method for estimating buzz-saw noise within the 
inlet duct of a supersonic fan. 

66018 Relationship between Sound Pressure Level (SPL) and 
RMS fluctuating pressure. 

83035 The estimation of the stiffness and apparent elastic 
properties of laminated flat plates. 

72016 Natural frequencies of flat and curved sandwich 
panels with isotropic face plates (clamped and 
simply supported edge conditions). 

85037 Natural frequencies of flat and curved sandwich 
panels with laminated face plates (All edges simply 
supported). 

85012 Estimation of damping in laminated and fibre-
reinforced plates. 

72017 Response to acoustic loading of flat or shallow 
curved sandwich panels having isotropic face plates 
of equal thickness and honeycomb cores. 

86024 Response to acoustic loading of flat or shallow 
curved sandwich panels having fibre-reinforced 
laminated face plates and honeycomb cores. 

Table 1.1: ESDU International Data Items for Acoustic Fatigue Analysis of Sandwich Structures. 

The general procedure adopted for estimating the in-service life of composite struc-

tures subject to acoustic pressure loading is itemised below. 

« Estimate the orthotropic material properties of the structure from individual 

ply properties in the lay-up (Data Sheet 83035). 

« Estimate the natural frequencies of the structure. This can be done using either 

ESDU data sheets (85037), or the finite element method (e.g. ANSYS). It is 

clear from this survey of the literature that further experimental work needs to 

be done in order to validate the theory for singly and doubly curved composite 

sandwich structures. 

« Estimate the damping in the structure. Again, ESDU data sheets can be used 

(85012), but experimental validation is needed. White suggested that a 'bank' 
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of measured data for various types of structure is required [4], 

« Estimate the RMS strain from a knowledge of the fundamental natural fre-

quency, the excitation pressure spectral density at this frequency, the damping, 

and the stress at the point of interest due to a uniform static load, using equa-

tion 1.1. 

In the USA, the Acoustic and Vibration Associates produced the "Sonic Fatigue 

Design Guide for Military Aircraft" [31]. Over 300 technical reports, papers, journal 

publications, and text books were reviewed to produce the guide which is a compila-

tion, evaluation, and presentation of existing acoustic fatigue design methods, charts, 

nomographs, and related computer programs. The acoustic source of primary inter-

est is the noise produced by the engine exhaust, although propeller noise, inlet duct 

noise for high bypass turbofan engines, noise from ducted rotors, ground reflection 

and aerodynamic noise were all considered. Many structural configurations were in-

vestigated in the study, including flat aluminium honeycomb and diffusion bonded 

titanium honeycomb panels. Curvature effects were also investigated but not in any 

great detail. 

1.4 Principal failure mechanisms in sandwich 

structures 

It is important to establish the principal failure mechanisms when developing response 

prediction methods for a structure subject to random acoustic excitation so that 

the model can be tailored to allow design against acoustic fatigue. For the case of 

sandwich structures which are subject to random acoustic excitation, the principal 

failure mechanisms are face plate cracking, core cracking, and face plate disbond. In 

order to establish which of these failure modes is most prevalent in doubly curved 

sandwich structures such as aircraft engine intake barrels, a survey was carried out in 

collaboration with the Nacelle Systems Division of Short Brothers pic [54]. 

1.4.1 Early failures in aircraft engine nacelles 

Early intake barrels were manufactured with aluminium alloy face plates and a Nomex 

honeycomb core. The inner facing skin ^ was perforated in order to provide noise at-

®For intake barrel panels, and for the doubly curved sandwich panels considered in this thesis, 
the inner face or facing skin will be the concave surface, and the outer face, or backing skin will be 
the convex surface which incorporates the bevelled or panned down edge. 
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PREVIOUS CRACKING OCCURENCE 

PERFORATE SKIN 

PREVIOUS 

FAILURES IN 

T H I S PANEL 

< 3 FORWABO 

LATEST OCCURENCE CRACKING AND PIECE 

SEPARATED FROM BACKING TRAY 

Figure 1.3: Early intake barrel failure locations [54]. 

tenuation properties and the majority of the early failures were due to face plate 

cracking, in particular the perforated facing skin [54]. The damage area was confined 

mostly to the upper left quadrant of the intake barrel (power plant radial (ppr) 0° to 

90°) and the cracks appeared to grow through the panel thickness. Figure 1.3 shows 

the damage location on an intake barrel containing four segments. From subsequent 

flight tests on an instrumented nose cowl, peaks of strain response were observed at 

the blade passing frequency at 70-80% N1 engine speed (fan speed), which occurred 

during take-off and thrust reversal on landing. This indicated that the highest strains 

were associated with the fan blade passing frequency during acceleration as the tips 

went supersonic. A very narrow band response was observed which was of a much 

higher frequency (approximately 1200 Hz) than the fundamental frequency of the in-

take barrel [55]. This could explain why initial theoretical calculations based on the 

single mode method [8] did not indicate that there could be a potential problem, since 

this theory is based on the fundamental mode response to broad-band random load-

ing. In addition, a mechanical fatigue approach was initially used to predict the life 

of the structure, whereas failure monitoring indicated slow growth under low stress 

conditions which suggested an acoustic fatigue problem. Following the initial failures, 

fleet inspections revealed that the honeycomb cores were cracking prior to the skin 
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(a) (b) 

(c) 

Figure 1.4: Early examples of core failures in sandwich panels with aluminium alloy face plates 
and a Nomex core [54]. 

failures, which were thought to follow as a result of the breakdown in integrity of 

the structure. To overcome the problem, the core was replaced with a more robust 

variety having a higher density and shear strength [55], which resulted in a modest 

increase in the weight of the intake barrel segment panels. It is important to note 

at this point that only after the number of fan blades had been reduced did failures 

begin to occur [55]. Following the reported failures, a testing programme was carried 

out by the Materials Technology Department of Short Brothers pic in order to ascer-

tain the initial failure mechanism and subsequent propagation through the structure. 

Defective intake barrel segments were subjected to Non-Destructive Testing (NDT) 

by Ultrasonic C-Scanning and Acoustic Flaw Detection (AFD) in order to ascertain 

the extent of the core damage prior to a more detailed examination of the structure. 

It was found that the Ultrasonic C-Scanning technique was able to map the extent 

of the damage by highlighting damage areas. The AFD method did detect the major 

damage area, but it was not possible to detect lesser damaged areas, such as small 

localised areas where the honeycomb had been compromised close to one of the face-

plates. After this initial inspection, the damage areas where further inspected using 

an intrascope. Significant cracking was found in a number of cells in the damage area 
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highlighted by the C-Scan. Most of the cracks ran diagonally along one face of the 

cell and then grew into a horizontal crack along an adjacent face. Also, a number of 

faces contained cracks near, but above, the bond line with the backing skin [54]. This 

can clearly be seen in figure 1.4. Two important conclusions were drawn from these 

studies. First the testing indicated that the Nomex core had initially cracked with 

a substantial loss of core material in the middle of the section which disintegrated 

through subsequent erosion of the cell walls, and there was no evidence of disbond be-

tween the core and face plates. Secondly, examination of a portion of one of the crack 

faces using an electron microscope revealed the probability that the crack initiated 

close to the backing skin and propagated towards the facing skin [54]. 

One possible explanation for the cause of the core failures is connected with the 

use of the honeycomb cells as Helmholtz resonators via the perforated liner. It has 

been suggested that if the cells become distorted during the manufacture of the panels, 

thus changing the volume inside the cell, then this could cause a slight variation in the 

resonant frequency of that cell. During excitation at frequencies close to resonance, 

neighbouring cells could vibrate out of phase, thus causing cyclic pressure loading on 

adjoining cell walls and subsequent fatigue damage. This is a topic worthy of further 

investigation. 

1.4.2 Recent testing of carbon fibre composi te sandwich 

s tructures 

More recently, carbon fibre composites have been introduced for the construction of 

the facing and backing skins of the intake barrel panels. The backing skin is formed 

from several plies of 8 Harness-Satin (8HS) pre-impregnated carbon fibre reinforced 

plastic (CFRP) while the facing skin consists of a wire mesh bonded to an open weave 

carbon fibre reinforced sheet. A special technique is employed to bond the facing skin 

to the honeycomb core to ensure that the perforations in the skin remain clear in order 

to provide the necessary noise attenuation properties. Since the introduction of these 

new materials there have been fewer reported skin failures, however, core failures have 

occurred in these new constructions [54, 55]. 

A recent test was carried out in the ISVR PWT facility at Southampton on a 

carbon composite honeycomb sandwich panel [56]. The panel was flat with overall 

dimensions of 1.42m x 0.83m and with a core thickness of 0.0254m, and was instru-

mented with 12 strain gauges and 2 accelerometers. Initial tests were carried out with 

a power spectral density of the applied loading constant over the 100 Hz to 500 Hz 
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range, giving an Overall Sound Pressure Level (OASPL) of 155 dB. The sound pres-

sure levels and hence the strain response levels were further increased by reducing this 

bandwidth to 100 Hz. The loading was finally 1/3 octave centred on the predominant 

response frequency of the panel, which was 228 Hz, and an OASPL of 160 dB was 

acheived. During the tests the panel suffered major core failure which led to a break-

down of the structure, but there was no damage caused to the face plates since the 

tests were halted shortly after the panel failed. Following these tests, the panel was 

examined, and a large disbond was observed in the centre of the structure. However, 

this disbond did not extend to the panel edge where core cracking was also observed, 

and the opinion was given that the failure had not initiated in the disbond [56]. After 

analysis of the panel response using Blevin's Normal Mode method [43], Millar found 

that it was possible when using very light weight honeycomb cores, to generate core 

shear stresses of a similar order of magnitude to the allowable ultimate strength of 

the core material [56]. 

1.5 The aims of the work 

There is a need for more advanced response prediction models for doubly curved 

composite honeycomb sandwich structures subject to random acoustic excitation. The 

aims of the work were therefore to use a commercially available finite element package 

to model this type of structure. A complementary experimental investigation was also 

carried out to determine the strain response of a set of doubly curved test panels to 

broadband random acoustic excitation using a PWT facility, and a critical appraisal 

of the results was made. In addition, the survey of principal failure mechanisms has 

highlighted the importance of the core in relation to the design of sandwich structures 

to resist acoustic fatigue. The majority of the work carried out so far has concentrated 

on measuring and estimating face plate strains in order to produce a fatigue resistant 

design. However, with the increasing use of lightweight resin impregnated paper 

cores, the issue of core durability and fatigue resistance should be considered in more 

detail. The use of carbon fibre reinforced composites for the manufacture of the face 

plates has lead to a decrease in the number of reported face plate failures. In any 

case, if the integrity of the core is compromised this can lead to a breakdown in the 

whole structure thus resulting in face plate cracking. It is for these reasons that the 

programme of work included a consideration of the core strain response to acoustic 

excitation. In addition, there is a need for a core strain measurement technique which 

will allow the estimation of core strain from surface face plate measurements, since the 
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direct measurement of core strain is difficult considering the the lack of accessibility 

and the usual size of the cells. This technique was developed and validated using a 

series of experiments, all of which are reported in a later chapter. 

Overall, the approach taken in this thesis was one of carrying out complementary 

theoretical and experimental work to validate the former so that it may be used by 

designers. The work begins with details of the design and manufacture of a set of 

doubly curved test panels in chapter 2, after which a new experimental technique 

for estimating the core shear strain in closed sandwich structures is developed and 

validated in chapter 3. Details of the vibration testing of the set of doubly curved 

test panels is presented in chapter 4, and the results from these tests were used to 

validate the finite element models developed in chapter 6. The latter work was taken 

one stage further with the investigation of the effects of various design parameters 

on the vibration response of doubly curved sandwich panels. The dynamic response 

of the test panels to random acoustic excitation is investigated in chapter 5 using a 

Progressive Wave Tube facility. Overall RMS strains were recorded from the inner 

(facing) and outer (backing) skins in order to make comparisons with the theoretical 

prediction of the response, which is covered in chapter 7. Finally, in chapter 8, con-

clusions are drawn from the studies carried out and recommendations are made for 

further work. 
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Chapter 2 

The design and fabrication of the 

experimental test panels 

2.1 Introduction 

The major part of this work involved the experimental investigation of the response 

of acoustically-excited composite honeycomb sandwich panels with double curvature. 

To this end, a range of experimental test panels with different radii of curvature were 

designed and manufactured at the University of Southampton. Three panels were 

designed with various radii of curvature and with identical ply orientation, thickness, 

plan area, and bevelled edge design. The sandwich lay-up in each case was symmetric 

with four carbon fibre reinforced plastic layers on either side of the core. A fourth 

panel was designed with an asymmetric lay-up having two layers in one face plate and 

six in the other. The radii of curvature of this panel were identical to that of one of 

the symmetric panels. 

The face plates were made using an epoxy resin pre-impregnated (pre-preg) plain 

weave carbon fibre cloth. A lightweight, resin impregnated paper honeycomb was 

used for the core. Each panel was manufactured using an aluminium alloy mould tool 

with a convex mould surface to the specified radii of curvature. The panels were cured 

in a conventional temperature controlled oven which meant that a low temperature 

curing pre-preg was required. 

The design and manufacture of the test panels is presented in this chapter. Details 

are given of material specifications, the design of the panels with particular attention 

to the bevelled edge, the design and manufacture of the mould tools and the panel 

fabrication procedure. 
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2.2 Panel design 

The panels were designed with a constant plan area of 0.912 m x 0.525 m to fit the 

test aperture of the PWT facility. Three radii of curvature designs were employed; 

Rx = 3.5mxRy = 1.0m, = 1.2mxRy = 1.0m, and = 3.5mxRy = 0.5m, with x 

being the long side dimension and y being the short side dimension. Three "symmetric 

sandwich" panels and one "asymmetric sandwich" panel (with R^ = 3.5m x Ry = 

0.5m) were manufactured giving a total of four test panels. 

The panel design can be broken into four main sections; the facing skin which 

forms the inner face of the panel, the core, the edge pan plies which enclose the 

edge of the core and form the attachment flange and bevelled edge, and the backing 

skin which forms the outer face of the panel. This design is typical of that used in 

the construction of aircraft type panels such as intake barrel panels and flap fairing 

panels, and a similar design was used by Soovere [15] during his investigation of flat 

honeycomb sandwich panels. The sandwich panel drawings, giving the geometry and 

lay-up details, are shown in figures 2.1, 2.2, and 2.3. 

2.2.1 Bevelled edge details 

Figure 2.4 shows the arrangement of the panned down edge, or bevelled edge, which is 

typical of in-service aircraft honeycomb sandwich panels. The honeycomb is chamfered 

to an angle of 25° relative to the bottom face on one side along all four edges to form 

the pan, and edge pan plies are layed up over the honeycomb to totally enclose the 

core. The use of separate edge pan plies to enclose the core avoids excessive wastage 

of material when forming the backing skin. Doubler plies are incorporated in the 

lay-up in order to provide better load transfer in the bevelled edge region, and spacer 

plies are included in the edge pan to stiffen the attachment flange. In order to provide 

maximum lap shear and bearing strength, in addition to high panel edge and closeout 

pan stiffness, 0° and ±30° fibre orientations (normal to the panel edge) are used for 

the doublers [15]. The backing skin and facing skin plies have fibre orientations of 

±45° and 0/90°. 
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2.2.2 Material specifications 

Each panel was manufactured using SP Systems SE84/RC200P pre-impregnated plain 

weave carbon fabric which is a low temperature cure epoxy pre-preg system process-

able with vacuum-only consolidation. The pre-preg has a fibre/volume fraction of 

42% ± 3% and comes in sheets of thickness 0.25mm. It can be cured at tempera-

tures as low as 80°(7, or for fast moulding of components at a temperature of 120°C. 

A minimum vacuum pressure of 85% (650mm Hg) is recommended during the cure 

cycle. Full details of the cure procedure are given in section 2.4. Although SE84 is 

self-adhesive to Noraex honeycomb, an epoxy adhesive film was used to bond the face 

plates to the core. SP Systems SA80 was used for this purpose, being a toughened 

low energy cure epoxy adhesive film with a glass carrier and fully compatible with 

SE84 pre-pregs. The adhesive film is available in two area densities (250^m"^ and 

400^m^^), and in both cases the glass carrier area density is 2Qgm~'̂ . Both types of 

adhesive film were used in the construction of the panels, which is discussed in section 

2.4. 

Hexcel composites Aeroweb(K)Al-48-5 OX honeycomb was used for the core, as 

shown in figure 2.5. The core is made from aramid paper which is coated in phenolic 

resin to give strength, toughness and chemical resistance. An over-expanded core was 

used for the doubly curved panels since the ordinary hexagonal core did not conform 

to the curvature. The over-expanded core, which is usually used for singly curved 

P.R. Cunningham 24 



Response prediction of acoustically-excited composite honeycomb 
sandwich structures with double curvature 

geometries, was found to conform to the three doubly curved geometries with the 

minimum of cell distortion. Ideally, a special type of core called FlexCore@would 

have been preferred for this application since it conforms to doubly curved geometries 

without any cell distortion. However this type of core is extremely expensive. The 

over-expanded core had a thickness of 19mm and a cell size of 5mm, the latter of 

which was measured across the fiats of the hexagonal cell prior to being expanding to 

a rectangular shape, as shown in figure 2.5. Since the over-expanded core can easily 

conform to a tight curvature in one direction better than the other, the orientation of 

the core was changed for the panel with radii of curvature of = 1.2m xRy — 1.0m. 

For this panel, the ribbon or 'L' direction was parallel to the short side, or y direction, 

whereas for the other three panels the ribbon direction was parallel to the long side, 

or X direction. A full set of material specifications for both the carbon fibre reinforced 

plastic and the Nomex core are given in table 6.1. 

Layer Thickness 
(m) 

Elastic Modulus [Pa] Shear Modulus [Pa] Density 
[ tg/m^] 

Poisson's 
Ratio 

Layer Thickness 
(m) En E33 Gi2 Gxz Gyz 

Density 
[ tg/m^] 

Poisson's 
Ratio 

CFRPt 0.25e-3 57.93e9 57.93e9 - - - 1518.0 
Honeycomb 0 0 120e6 0 35e6 20e6 4&0 -

Table 2.1: Material specifications for the experimental test panels. ^ Properties obtained using 
cured test specimens with [O4] and [454] ply lay-up and with 60% fibre volume fraction (see Appendix 
A for details of CFRP testing procedures). 

Rbbon or L dimena*on 

Dimension thickness T ' 

node bonds ceW sbe 

hexagonal cell size 
= measured across flats 

OX cell size 
= nominal hexagonal cell 

size before expansion to 
rectangular shape 

W 

Figure 2.5: Hexagonal and over-expanded core [57] (W=direction of expansion, L=ribbon direc-
tion). 
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2.3 Mould tool design and m a n u f a c t u r e 

The tooling used to manufacture the panels was comprised of a doubly curved alu-

minium alloy skin which was stiffened using four aluminium alloy sheet frames riveted 

to an aluminium alloy base sheet. The convex surface of the aluminium alloy skin 

formed the mould face. ^ 

Each mould surface was rolled and wheeled to the specified radii of curvature 

using 1.6mm (16SWG) aluminium alloy sheet. The unsupported mould skin was then 

stiffened using four aluminium alloy sheet frames of 1.6mm thickness. The skin was 

attached to the frames and adjusted to the correct radii of curvature using 'L' brackets 

which were fastened using conventional aluminium pop rivets. The whole assembly 

was attached to an aluminium alloy base sheet, again using aluminium pop rivets. 

It is important to note that this method of fabricating the mould tools, although 

simple and inexpensive, cannot offer the best performance in terms of accuracy in 

geometry (radii of curvature) and compatibility of thermal expansion rates of the tool 

and part during cure. However, since the radii of curvature of the panels could be 

easily measured after fabrication, this was not considered a problem and was seen as 

the easiest solution to a rather complicated tooling requirement. 

A complete set of drawings for the mould tool is shown in figure 2.6. 

2.4 Panel fabricat ion procedure 

There are two choices regarding the manufacture of honeycomb sandwich panels; co-

cure or pre-cure. The co-cure process is much more simple and less time consuming 

than the pre-cure process. The facing skin, honeycomb core, and backing skin are 

consecutively consolidated under vacuum and the complete assembly is then cured in 

one stage, again under vacuum. The main drawback with this procedure is that the 

bond quality of the core to the skins, and the consolidation of the facing skin will not 

be as good as that which would be achieved using the pre-cure process. Pre-curing 

is the more involved of the two manufacturing procedures since each stage, facing 

skin, core, and backing skin manufacture, is carried out as an individual cure cycle. 

However, it has been shown to produce better results in terras of panel strength and 

bond quality [52]. It was for this reason that the pre-cure process was chosen as the 

manufacturing procedure for the doubly curved sandwich panels. 
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