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This dissertation explores the application of Genetic Algorithms (GAs) assisted 

multiuser detection in the context of Code Division Multiple Access (CDMA). The 

optimum multiuser detector proposed by Verdu [1] entails searching for a particular 

jiT-bit sequence that optimises the correlation metric, where A' is the number of 

users. Hence, it has a computational complexity that is exponentially proportional 

to the number of users and its implementation becomes impractical, when there is 

a high number of users. GAs have been successfully applied to solve complex op-

timisation problems in many fields. Hence in this dissertation, we will investigate 

the feasibility of employing GAs in solving the optimum multiuser detection prob-

lem. We commence by determining a set of GA conhgurations that are capable of 

offering a near-optimum performance at the cost of a reduced computational com-

plexity, compared to the optimum multiuser detector receiving over a simple AWGN 

channel. Our study showed that certain GA parameters substantially influence the 

overall performance of the detector. More importantly, we will show that the opti-

mum performance can be achieved up to a certain SNR value at a complexity less 

than half of that required by the optimum multiuser detector. The employment 

of the GA-assisted multiuser detector is then extend to an asynchronous CDMA 

system. Antenna diversity based on the Pareto optimality approach can further 

improve the achievable performance. 

The proposed GA-assisted multiuser detector is then extended further, so that 

Channel Impulse Response (CIR) estimation can also be performed jointly by the 

same GA without incurring any additional computational complexity and without 

requiring training symbols. Hence the joint GA-assisted channel estimator and 

symbol detector is capable of oEering a higher throughput and a shorter detection 

delay, than that of explicitly trained CDMA multiuser detectors. Simulation re-

sults showed that the GA-assisted channel estimator is capable of achieving a Mean 

Squared Error (MSE) as low as 0.001. The joint GA-assisted multiuser CIR estima-

tor and symbol detector exhibits an error floor, which is similar to that exhibited 
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by other multiuser detectors in conjunction with imperfect CIR estimation. 
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C H A P T E R 1 

Introduction 

In this introductory chapter, a brief discussion of Code Division Multiple Access 

(CDMA) together with its advantages and disadvantages over other multiple access 

techniques is presented in Section 1.1. An overview of the organisation of this disser-

tation is then given in Section 1.2. Finally, a brief discourse on global optimisation 

is provided in Section 1.3. 

1.1 Code Division Multiple Access 

Spread Spectrum (SS) communications systems have been in existence for decades, 

although up until the last decade or so, most of these systems have been designed for 

military applications. In the late 1980s, spread spectrum communications gained 

increasing interest in the commercial sector for use in cellular wireless communica-

tions. 

CDMA [2-6] implemented in conjunction with Direct-Sequence Spread-Spectrum 

(DS-SS) modulation constitutes an attractive multiuser scheme that allows users 

to transmit at the same carrier frequency in an uncoordinated manner. CDMA 

was already employed in some second generation (2G) systems, such as the Interim 

Standard-95 (IS-95) scheme [6] and it has proved to be a success since making its 

debut in the United States in 1995. CDMA has been known to provide the best 

user capacity in a cellular environment amongst all the known access schemes, such 
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as Frequency Division Multiple Access (FDMA) and Time Division Multiple Ac-

cess (TDMA). Unlike the more traditional FDMA or TDMA, CDMA is capable 

of mitigating the eSects of the hostile mobile propagation channel through RAKE 

multipath diversity combining [7]. Furthermore, it simpli6es frequency planning 

due to its potentially achievable near-unity frequency reuse. In addition, being a 

wideband system, it can coexist with other narrowband microwave systems, which 

corrupt the CDMA signal's spectrum in a fraction of its total frequency band. This 

eases the problem of frequency management, while allowing a smooth evolution 

from narrowband systems to wideband systems. 

Thanks to these axlvantages, it is not surprising to see that a majority of the 

proposals submitted to the International Telecommunication Union (ITU) in June 

1998 as candidates for the third generation (3G) mobile radio systems were baaed 

on the Wideband-CDMA (W-CDMA) concept [5], since its advantageous properties 

satisfy most of the requirements for 3 0 mobile radio systems. 

However, it is well known that the CDMA system capacity is limited by the 

multiuser interference generated by other users in the tra@c cell, who use the same 

carrier frequency, but different user signature sequences or spreading codes, in or-

der to transmit the signals. Because of the practical difficulty in designing a suf-

Hciently large set of orthogonal signature sequences for asynchronous transmission 

conditions, the uncoordinated signal transmission from the multiplicity users cre-

ates Multiple Access Interference (MAI). If not controlled, the MAI arising from 

the asynchronous transmissions of the mobile stations can seriously deteriorate the 

quality of reception at the base station. Note that the MAI is negligible in FDMA 

systems or TDMA systems, since the users' signals are orthogonal in terms of either 

frequency or time, respectively. Numerous methods have been proposed for reduc-

ing the amount of MAI present in the received signal such as power control [8], 

the optimisation of signature sequences [9] and sectorised antennas [10]. Never-

theless, these techniques have their limitations in combating the effects of MAI, in 

conjunction with the conventional single-user detector. The poor performance of 

the conventional single-user detector in a multiple-access environment is not due 

to problems inherent in CDMA, but rather due to problems associated with the 

detector's structure, since in this case the MAI is treated as noise. 

The optimal CDMA multiuser detector [1] based on the Maximum-Likelihood 

(ML) detection rule performs an exhaustive search of all the possible combinations 

of the users' transmitted bit sequences and then selects the most likely combination 

as the detected bit sequence. Since an exhaustive search is conducted, the compu-

tational complexity of the detector grows exponentially with the number of users. 
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Since a CDMA system could potentially have a large number of users, the optimum 

ML multiuser detector is impractical to implement. This complexity constraint led 

to numerous so-called suboptimal multiuser detection [11] proposals. A rudimen-

tary classification of the more popular suboptimal multiuser detectors is illustrated 

in Figure 1.1 [12]. Amongst others, notable members of the adaptive multiuser de-

tectors family are the decorrelating detector [13-16], the Minimum Mean Squared 

Error (MMSE) detector [17] and the Extended Kalman Filter (EKF)-based detec-

tor [18]. Joint detection schemes have been typically used for detecting data trans-

mitted in burst mode. The family of joint detectors is comprised of the Zero-Forcing 

Block Linear Equalizer (ZF-BLE) [19], the MMSE-BLE [20], the ZF-Block Decision 

Feedback Equalizer (ZF-BDFE) [21] and the MMSE-BDFE [21]. A more detailed 

account of these JD schemes can be found for example in [12,22]. In contrast to joint 

detectors, which aim for detecting the information of all users simultaneously, itera-

tive multiuser detectors attempt to detect the users' bits in a number of consecutive 

stages. As the number of stages is increased, the BEP will improved. However, in-

creasing the number of stages will lead to an increased detection complexity. Hence, 

these detectors offer a trade-oE between complexity and performance. Examples of 

these detectors include the Successive Interference Cancellation (SIC) detector [23], 

the Parallel Interference Cancellation (PIC) detector [24] and a hybrid version of 

the SIC and PIC [25]. There is another class of multiuser detectors based on a 

tree-search algorithm of the M- or T-type [26-28]. These detectors are capable of 

achieving the optimum performance attained by Verdu's ML detector up to a cer-

tain Signal-to-Noise Ratio (SNR) value at a complexity lower than that of Verdu's 

optimum multiuser detector. In this dissertation, we will also show that the mul-

tiuser detector based on Genetic Algorithms (GAs), which can be considered as an 

iterative multiuser detector, is also capable of achieving the optimum performance 

at a reduced complexity. Let us now review the organisation of the dissertation. 

1.2 Organisation of the Thesis 

In this thesis, we will focus our attention on multiuser detection techniques based 

on an eSicient optimisation procedure known as GAs. The outline of the thesis is 

as follows : 

® Chapter 2 : In this dissertation, we assume that the reader is familiar 

with the basic CDMA principles. Hence we will not delve into the basic 

concepts of CDMA here. Instead, we will commence our discourse by giving an 

overview of GAs, since the concepts of GAs is not widely known in the mobile 
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Multiuser Detectors 

Adaptive 

Decorrelator 

MMSE 

EKF 

Joint Detection 

ZF-BLE 

ZF-BDFE 

MMSE-BLE 

MMSE-BDFE 

Non-adaptive 

Tree-search 

M-algorithm 

T-algorithm 

Iterative 

SIC 

PIC 

Hybrid IC 

GA 

MMSE : Minimum Mean-square Error 
EKF : Extended Kalman Filter 
ZF-BLE : Zero-forcing Block Linear Equalizer 
MMSE-BLE : Minumum Mean-square Error Block Linear Equalizer 
ZF-BDFE ; Zero-forcing Block Decision Feedback Equalizer 
MMSE-BDFE : Minimum Mean-square Error Block Decision Feedback Equaliser 
SIC : Successive Interference Cancellation 
PIC : Parallel Interference Cancellation 
IC : Interference Cancellation 
GA : Genetic Algorithms 

F i g u r e 1.1: Classification of CDMA multiuser detectors [12]. 

communications community. We will present the basic functions of a GA 

in optimising an objective function, with the aid of a flowchart as well as an 

example. An insight into why a GA constitutes an efficient function optimiser 

is also given in the context of the schemata and the schema theorem [29]. 

Some of the more advanced GA processes are also highlighted here, in order 

to improve the efficiency of our search for the optimum solution. Finally, 

a survey of the GA-based CDMA mutiuser detection schemes found in the 

current literature is conducted. 

e Chapter 3 : In this chapter, we will invoke the GA-assisted multiuser detec-

tor in a symbol-synchronous CDMA system over a simple AWGN channel as 

well as over a single-path Rayleigh fading channel. While this system model 

is not practical, it can provide us with a better insight into how certain GA 

operations and parameters behave in the context of our specific application, 

without considering the eSects of the multipath interference and the asyn-

chronism amongst the users. We will first define the objective function for 

our optimisation by deriving the correlation metric for the optimum multiuser 
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detector. As mentioned above, the complexity of the optimum multiuser de-

tector is exponential to the number of users and hence it is impractical to 

implement. Hence we will apply GAs in optimising the correlation metric, 

while achieving a reduction in the associated complexity. Through a series of 

experiments, we will attempt to find the particular GA configuration that is 

capable of offering a near-optimum bit error probability (BEP) performance 

at a reduced computational complexity, compared to that of the optimum 

multiuser detector. Upon determining the GA configuration that we will be 

adopting for our GA-assisted multiuser detection scheme, we will then inves-

tigate its BEP performance in an AWGN channel as well as in a single-path 

Rayleigh fading channel. 

® Chapter 4 : In Chapter 3, we have assumed that the Channel Impulse Re-

sponse (CIR) coefiBcients are perfectly known by the receiver, which allowed 

us to detect the users' transmitted bits coherently. In practice, these coefii-

cients must be estimated either blindly or with the aid of pilot symbols. By 

exploiting the capabilities of the GAs in dealing with both binary and floating 

point variables, we proposed a joint GA-assisted multiuser channel estimation 

and symbol detection technique in this chapter. Unlike in traditional systems, 

where the CIR estimation and symbol detection are usually performed by sep-

arate but inter-linked algorithms, such as the Kalman filter used for channel 

estimation [18] and the decorrelator for symbol detection [30], our proposed 

technique is capable of performing both the channel estimation and symbol 

detection concurrently using the same GAs. The achievable MSB of the esti-

mated CIR coefficients as well as the BEP performance of our proposed joint 

GA-assisted multiuser CIR estimator and symbol detector are then evaluated 

using computer simulations. 

e Chapter 5 : In order to obtain a BEP performance improvement, in this 

chapter we evaluated the performance of the GA-assisted multiuser detector 

in conjunction with antenna diversity. More specifically, we investigated the 

BEP performance of the GA-assisted multiuser detector using two different 

diversity selection strategies. According to the first strategy, the so-called 

mating pool is created by selecting the ii'-bit GA individuals based on the 

combined figure of merits of the diversity antennas. On the other hand, we 

can exploit the population-based optimisation approach of the GAs and invoke 

the so-called Pareto optimality [31], in order to aid our search. According to 

this strategy, the mating pool is comprised of all non-dominated individuals. 

The BEP performance of the antenna diversity aided GA-assisted multiuser 
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detector based on these two stragtegies is evaluated and compared for various 

fading scenarios. 

• Chapter 6 : The model that we have adopted in Chapters 3-5 is based on 

a symbol-synchronous CDMA system and multiuser detection is performed 

at the centralised base station. Unless strict timing control is employed, it is 

almost impossible to maintain a symbol-synchronous transmission among the 

users. Hence in Chapter 6, we will propose a GA-assisted multiuser detector 

for an asynchronous transmission environment. The correlation metric over 

a Bnite observation window is derived. The eSects of the so-called edge bits, 

which placed a limitation on the BEP performance, must be taken into ac-

count when detection is considered over a finite observation window. In our 

proposed technique, we can reduce the effects of the edge bits by attempting to 

estimate the tentative decisions concerning these edge bits, while at the same 

time detecting the desired bits using the same GA. The BEP performance 

of our proposed scheme is then compared with that of a similar GA-assisted 

multiuser detector, where the edge bits are estimated using the conventional 

single-user matched 61ter. 

T h e nove l c o n t r i b u t i o n s of t h i s d i s s e r t a t i o n a r e l i s t e d b e l o w : 

• A feasibility study of employing GAs in the context of CDMA multiuser de-

tection was given in Chapter 3 for transmissions over a symbol-synchronous 

AWGN system. Based on the results obtained in Section 3.5, we arrived at the 

conclusion that different GA schemes and their associated parameters have a 

significant impact on the BEP performance. If these GA schemes and their 

parameters are carefully chosen, a fast convergence can be accomplished in 

addition to a reliable search. 

® A novel GA-assisted joint multiuser CIR estimation and data detection tech-

nique was proposed for employment in a symbol-synchronous CDMA system 

based on the ML decision rule [32]. Our results showed that as a channel 

estimator, the GA was capable of tracking the amplitude and phase varia-

tions of the complex fading channel envelope, while achieving a channel gain 

estimation MSE as low as 10"^ in a noiseless channel. The proposed symbol 

detector was capable of attaining a near-optimum BER performance at low 

values using perfect channel estimates under the conditions of equal 

received bit energy for all users, while maintaining a computational complex-

ity significantly lower, than that of a ML optimum multiuser detector. Upon 

exploiting its capabilities as a channel estimator and symbol detector, the 

proposed joint channel estimator and symbol detector can achieve a BER as 
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low as 2 X 10"^ at an value of 30 dB in a lO-user CDMA environment 

without the assistance of channel coding or diversity. However, an error Aoor 

was observed beyond = 30 dB due to the imperfect channel estimation 

employed. Furthermore, since the channel estimation and symbol detection 

are performed simultaneously, no pilot symbols or decision feedback are nec-

essary, which results in a higher effective throughput and shorter detection 

time, than that of explicitly trained CDMA multiuser detectors. 

® A GA-assisted CDMA multiuser detector was developed using dual antenna 

diversity techniques [33]. Two diversity selection strategies were highlighted 

for the GAs. In our first solution the mating pool was formed based on the 

combination of the statistics derived from the diversity antennas and we had 

a fixed mating pool size. According to our second strategy, the mating pool 

was formed based on the Pareto optimality approach, whereby the diversity 

antennas' statistics were treated independently, in order to select the non-

dominated individuals to form the mating pool. Hence, the mating pool size 

was not fixed. We have shown that GAs employing the latter strategy always 

exhibit a lower BER compared to those employing the former strategy. We 

have also shown that the BER performance can be improved by increasing 

the population size. 

# We formulated the correlation metric of an asynchronous CDMA system in a 

multipath channel based on a truncated window size. GAs were then invoked 

in order to improve the bit error probability of the edge bits and at the same 

time to detect the desired bits within the truncated observation window. By 

improving the reliability of the edge bits, simulation results showed that the 

GA-based multiuser detector can achieve a near-optimal desired bit detection 

performance at the cost of a lower number of correlation metric evaluations 

compared to Verdu's optimum multiuser detector using a 'brute-force' ap-

proach. Furthermore, both the edge bits and the desired bits are detected by 

the same GAs, resulting in potential complexity savings [34]. 

1.3 Function Optimisation 

Optimisation [35, 36] may be defined as the process of finding a set of decision 

variables that results in attaining the maximum or minimum value of a function. 

This function is typically known as the objective function. In mathematical terms. 
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Methods of Optimisation 

Mathematical 
programming 

techniques 

1) Calculas methods 

Stochastic 
process 

techniques 

1) Queueing theory 

Statistical 

methods 

1) Regression analysis 

2) Nonlinear programming 2) Evolutionary computation 2) Cluster design 

3) Linear programming 3) Reliability theory 3) Pattern recognition 

4) Dynamic programming 

Figure 1.2: Classification of various optimisation techniques [35]. 

the optimisation problem can be formulated as [35] : 

Find X — [xi^... ,Xn] which maximises/minimises A ( X ) , (1.1) 

where ^ is an ^-dimensional vector consisting of M number of decision variables and 

A (X) is the objective function. In the context of global optimisation, the criterion 

is to find a vector AT* such that / (A"*) > / (X) for all legitimate JC [36]. 

In the context of Multiuser Detection (MUD) for example we aim for Ending the 

most likely n-bit vector of the n users supported during the bit-interval considered, 

which minimises the associated BEP. There is no single best method available for 

solving all optimisation problems efficiently. Hence a number of optimisation meth-

ods have been developed for solving different types of optimisation problems and 

these methods can be classified according to three different categories, as shown in 

Figure 1.2. 

Mathematical programming techniques are useful only, if the objective function 

is analytically tractable. On the other hand, statistical methods involve analysing 

the experimental data and then constructing empirical models, in order to obtain 

the statistically most accurate representation of the physical situation. In the con-

text of optimum multiuser detection, we will see in our further discourse that the 

objective function is not analytically tractable. However the function varies versus 

time, and hence it is infeasible to obtain an accurate time-invariant model that is 

applicable at all times. Hence, the most efficient way of solving the optimisation 

problem in multiuser detection is with the aid of stochastic optimisation techniques 
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or guided random search methods, such as the family of GAs. Let us now commence 

our introduction to GAs. 



C H A P T E R 2 

Genetic Algorithms Overview 

"I have called this principle, by which each slight variation, if useful, is 

preserved, by the term of Natural Selection." CAorZeg Dormn, Om (Ae 

Darwin's theory of evolution by natural selection, or survival of the fittest, has 

fascinated many scientists. In particular, the idea that the concept of evolution 

could be used as an optimisation tool for engineering problems was conceived by a 

group of independent scientists [29,38-40] in the 1960s and during the 1970s. Their 

pioneering ideas eventually led to the creation of a new discipline in engineering, 

known as Evolutionary Computation [36]. The concept behind evolutionary compu-

tation was to evolve a population of candidate solutions to a given problem, using 

operators stimulated by natural genetic variations and natural selection. 

The implementations of evolutionary algorithms can be classified into three 

strongly related, but independently developed methodologies : 

* (ESs) [38,39] 

* f (EP) [40] 

* [29]. 

10 
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Although the conceptual framework in mimicking the process of natural evolution 

with the aid of these methods is similar, each of these methods implements the 

associated algorithms in a different manner. 

In this dissertation, we are only concerned with the family of GAs and their 

application as an optimisation tool in the context of multiuser detection in CDMA. 

Hence, only the concepts of GAs [29,31,41,42] will be highlighted in our further 

discourse. We will commence with an introduction to GAs in Section 2.1, following 

the excellent monograph by Goldberg [31]. Following this, we will show how a 

GA operates as an optimisation tool in practice with the aid of an example in 

Section 2.2. We will then proceed to highlight why GAs are efficient optimisation 

tools by identifying the resemblance between human search traits and the GA in 

Section 2.3. The derivation of the fundamental theorem of GAs is also included 

in this section. The various elements that constitute a GA are then highlighted 

in Section 2.4. A survey of GA-assisted CDMA multiuser detection schemes found 

in the current literature is presented in Section 2.5. Finally, Section 2.6 concludes 

this chapter. It should be stressed here that the GAs we will be describing in this 

chapter constitute only a small portion of the entire GA literature. Furthermore, 

the GAs that are employed for solving our optimisation problem are modified, in 

order to suit our applications and hence the GAs are slightly different from those 

commonly found in the GA literature. The interested readers might like to consult 

references [29,31,41] for a more detailed discourse on GAs. 

2.1 An Introduction to Genetic Algorithms 

[29,31,41,43,44] 

The origins of GAs [29,31,41,43,44] can be traced back to the 1960s, when 

Holland [29] and his students undertook the task of studying the phenomenon of 

adaptation, as it occurs in nature and then imported these adaptive mechanisms 

into artificial systems. The results of these studies were published in the seminal 

monograph by Holland [29] in 1975. Since then, the level of interest in GAs has been 

growing rapidly and has attracted the attention of numerous scientists, including 

Goldberg [31], Miihlenbein [45] and Grefenstette [46], just to mention a few. 

Although GAs have been used in countless applications, such as machine learn-

ing and modelling adaptive processes, by far the largest application of GAs is in the 

domain of function optimisation. In contrast to traditional search methods, such 

as the method of steepest descent, GAs can be invoked in robust global search and 
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optimisation procedures that do not require the knowledge of the objective func-

tion's derivatives or any gradient-related information concerning the search space. 

Hence, non-differentiable functions as well as functions with multiple local optima 

represent classes of problems, where GAs can be efBciently applied [43]. 

The basic approach of a GA employed for optimising a specific problem defined 

by an objective function is simple. The flowchart of a GA is shown in Figure 2.1. 

Firstly, an initial population consisting of P number of so-called is cre-

ated in the 'Initialisation' block, where P is known as the population size. Each 

individual represents a legitimate solution to the given optimisation problem. An 

individual can be considered as a vector consisting of the decision variables to be 

optimised, as shown in Figure 2.2. Here, we will regard the leftmost decision vari-

able in an /-length vector as the 1st decision variable, while the rightmost decision 

variable is referred to as the Ith decision variable. Traditionally, the individuals in 

a GA population take the form of binary bit vectors. Hence if the decision variables 

to be optimised are not binary in nature, they have to be discretised and encoded 

to a bit vector, analogously to analogue-to-digital conversion. The representation of 

the decision variables as an individual will be highlighted further in Section 2.4.1. 

This initial population of individuals is usually generated randomly, although it 

does not necessarily have to be random specifically. If explicit a priori knowledge 

concerning the optimum vector is available, then this knowledge can also be used 

to generate the individuals of the initial population, in order to bias and expedite 

the search. 

Associated with each individual in the population there is a figure of merit, 

or more commonly known in GA parlance as the value. The Stness value 

is evaluated by substituting the candidate solution represented by the individual 

under consideration into the objective function, as indicated by the 'Evaluation' 

block of Figure 2.1. Individuals having the T number of highest fitness values are 

then placed in a so-called mating pooP-, where 2 <T < P. Using a kind of natural 

selection scheme together with the genetically-inspired operators of crossover and 

mutation, the individuals in the mating pool are then evolved to a new population, 

as depicted in Figure 2.3. Based solely on the fitness values of these individuals 

in the current mating pool, the process [47] chooses those individuals 

in the mating pool that will be allowed to reproduce. These individuals chosen 

^Note that the definition of mating pool here is different from that found in the GA litera-
ture [31,44]. Here the mating pool consists of T individuals associated with the highest fitness 
values in the current population, whereas in [31,44] the mating pool is, where the selected parents 
of the previous population are placed. We adopted our definition in this dissertation, in order to 
aid our description of GAs, which are modified to suit our specific application. 
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Figure 2.1: A flowchart depicting the structure of a generic genetic algorithm used for 
function optimisation. 
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Figure 2.2: A typical /-length individual. 
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Figure 2.3: An example of a GA operation during a single cycle or generation. 

from the mating pool, referred to as in Figure 2.3, are then used by the 

crossover and mutation operations, in order to generate new individuals, which will 

form the new population for the next iteration. The selection process is invoked for 

improving the average fitness value of the population by giving individuals of higher 

6tness values a higher probability to be reproduced in the new population. Hence 

it focuses the search on the promising regions in the search space, which might 

contain the optimum solution. Numerous selection schemes have been proposed in 

the G A literature. Some of the more common selection methods will be highlighted 

in Section 2.4.2. However, the selection process does not alter the individuals. If 

the optimum solution is to be found, new individuals must be generated. The task 

of generating new individuals, using the individuals chosen by the selection process 

is accomplished by the crossover operation. 

The [41] operation is a process in which arbitrary decision variables 

are exchanged between a pair of selected parents, mimicking the biological recom-

bination process between two single-chromosome organisms. Hence, the crossover 

operation creates two new individuals, known as offspring in GA parlance, as por-

trayed in Figure 2.3, which have a high probability of having better Etness values 

than their parents. In order to generate f number of new offspring by approximately 

'combining' the bitstreams constituting the parents, P/2 number of crossover oper-

ations are required for combining the P parents. A new pair of parents is selected 

from the mating pool for each crossover operation. The newly created offspring will 

form the basis of the new population. 

During the mutation [41] operation, each decision variable in the offspring is 
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perturbed, with a probability oipm, by either a predetermined or a random value. 

This allows new areas in the search space to be explored. The mutation probability 

of a decision variable is usually very small, in the region of 0.1-0.01 [31]. However, 

the mutation operation is necessary in a GA, in order to prevent the phenomenon 

of so-called premoture Premature convergence refers to the loss of 

population diversity before the optimum solution has been found. 

Each cycle of selection, crossover, mutation and evaluation constitutes a so-

called generation in the execution of a GA, as depicted in Figure 2.3. This cycle 

will continue until some termination criterion is met, as shown in Figure 2.1. Gen-

erally, if this cycle is executed for many generations, the population will eventually 

converge on a set of individuals, in which the individual that corresponds to the 

highest fitness value is deemed to be the optimum or near-optimum solution. 

GAs are not guaranteed to find the optimal solution [31] and their efficiency is 

determined predominantly by the population size P, i.e. the number of individuals 

in a population. Hence, the size of the population in a GA is a major factor in deter-

mining the accuracy of convergence [48]. As the population size increases, the GA 

has a better chance of finding the global optimum solution, but the computational 

cost also increases as a function of the population size. Apart from the population 

size, a GA's performance will also depend substantially on other factors, such as 

the choice of the selection method, the type of genetic operations employed, the 

parameter settings, for example the value of T and Pm, as well as the particular 

iteration termination criterion. We will be highlighting the effects of each of these 

factors in our further discourse. Let us now consider an example of how GAs search 

for the optimum solution during a single generation, as exempli6ed by Figure 2.3. 

2.2 Genetic Algorithms at Work 

Consider an optimisation problem, where the objective function is given by^ : 

A(b) - 26%/ - (2.1) 

^Notice that the objective function of Equation (2.1) is identical to the correlation metric Q (6) 
of Equation (3.23) for the optimum multiuser detection in CDMA [1], which will be shown in 
Chapter 3. 
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Individuals Fitness Mapped Gtness Selection probability 

= + Pi = 
1 1 1 -1 1 9.06 

Az 1 1 - 1 -1 -1 -1.056 
Ag -1 1 -1 -1 -1 -6.368 
^4 1 -1 -1 1 1 6.192 

19.06 
8.944 
3.632 
16.192 

0.3985 
0.1870 

0.07594 
0.3385 

= 47.828 

Table 2.1: An example of the initial population consisting of F = 4 individuals, where 
the associated fitness values are evaluated according to the objective function 
given by Equation (2.1). 

Assuming that the following information is available : 

y 

1.328 1 0.1 0.2 0.3 0.4 

-2 .183 0.1 1 0.4 0.2 0.3 

0.044 ; R = 0.2 0.4 1 0.5 0.1 

-2.856 0.3 0.2 0.5 1 0.6 

2.485 0.4 0.3 0.1 0.6 1 

the goal of this optimisation process is to And the decision variable vector b, which 

consists of f — 5 antipodal bits, that maximises the objective function of Equa-

tion (2.1). 

Since the candidate solutions in this cage are in the form of vectors consisting 

of / = 5 antipodal bits, no conversion of the individuals to this format is required. 

GAs commence their search by generating an initial population of individuals at 

random. For this example, we adopted a population of size P = 4. Each bit of 

the I = 5 bits of an individual can be constructed by tossing an unbiased coin. 

These randomly generated individuals and their associated fitness values are shown 

in Table 2.1. For simplicity, we will assume that the mat ing pool size is equal to 

the population size, i.e. T = P. In this case, all the individuals of Table 2.1 will be 

given a chance to reproduce. The next step of the GA is the selection of parents, 

in order to create new offspring. A common selection method used in GAs is the 

so-called [31], in which the probability of selection 

Pi of the 2th individual is equal to its fitness value fi divided by the total fitness 

value of the mating pool. This method requires the fitness values to be positive 

for all combinations of b because a negative fitness value would yield a negative 

probability of selection. According to our objective function of Equation (2.1), this 

requirement is not met, since certain combinations of b exhibit negative fitness 

values, as shown in Table 2.1. Hence a mapping function must be invoked, in order 
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Individual Probability of Selection 

0.3985 

^2 0.1870 

A3 0.07594 

A4 0.3385 

Pointer 

Figure 2.4: An implementation of the fitness-proportionate selection scheme using a 
roulette wheel, whereby each individual of Table 2.1 is allocated a slice of 
the wheel proportional in area to the individual's probability of selection. 

to ensure that the fitness values for all combinations of b become positive. A simple 

mapping function is to add a constant positive value to the Etness values of all 

the individuals, aa indicated in Table 2.1. In this example, we arbitrarily invoked 

a constant shift of 10, which will ensure that all fitness values become positive. 

Summing the mapped fitness values f- over all four individuals, we obtained a total 

mapped Stness value of 47.828 and an average mapped Gtness value of 11.957 for the 

initial population of Table 2.1. The probability of selection Pi for each individual 

is calculated in proportion to their individual Htnesses and the values are as listed 

in Table 2.1. We can see that individuals having higher fitness values are allocated 

a higher probability of selection. Note that the probability of selection pi of an 

individual is de&ned with respect to the average Gtness of the current population. 

Hence, the probability of selection of the same individual would be different in a 

different population. 

A simple method of implementing the fitness-proportionate selection scheme is 

the so-called roulette wheel sampling [29], whereby each individual is allocated a slice 

of a circular roulette wheel proportional in area to the individual's probability of 

selection. An example of a roulette wheel is shown in Figure 2.4 for the population 

of Table 2.1. When the roulette wheel is spun and the pointer comes to standstill 

on one of the wedge-shaped slices, the corresponding individual will be selected as a 

parent. Each spin of the roulette wheel yields a new parent. Hence we can see here 

that by using this implementation, individuals with higher probability of selection 

have a higher chance of being selected as parents. 

Once a pair of parents is selected, the crossover operation is then applied 

to this pair of parents, as depicted in Figure 2.3. A number of variants of the 
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Parents 

1 1 1 , - 1 1 

Ax 1 -1 -1 I 1 1 

Offspring 

/L/ 1 1 1 1 1 

vLy 1 -1 -1 -1 1 

a) Single-point crossover operation between individuals Ai and A4 

.Ai 1 1 1 -1 

A, 1 1 -1 -1 - 1 

A3/ 1 1 1 -1 -1 

/U/ 1 1 -1 -1 1 

b) Single-point crossover operation between individuals Ai and A2 

Figure 2.5: Examples of the single-point crossover operation between the pairs of se-
lected individuals of Table 2.1, where the vertical dashed line represents the 
crossover point. 

crossover operations were proposed and the simplest form is the so-called single-

point crossover [31]. In a single-point crossover operation, a so-called crossover 

point X is arbitrarily selected between the range [1,/ — 1], where I is the length of 

the individual. Two offspring are created by swapping all decision variables beyond 

this crossover point between the parents, i.e. from the (a; -I- l)st decision variable 

to the Ith decision variable. For example, let us assume that the individuals Ai 

and A4 were selected as parents from our initial population of Table 2.1. The re-

sulting crossover between these two parents, as illustrated in Figure 2.5a with the 

crossover point indicated by the vertical dashed line, yields two new offspring, Aif 

and Ag/. The crossover operation is then repeated for another newly selected pair 

of individuals, for example individuals Ai and A2 of Table 2.1, with a newly gen-

erated crossover point, in order to create two more new offspring namely A f̂ and 

A4/, as shown in Figure 2.5b. These two pairs of newly created oEspring with their 

associated fitness values shown in Table 2.2, will form the new population for the 

next generation. /.From Table 2.2, we can clearly see tha t both the maximum and 

the average mapped fitness values have improved during the transition to the new 

population over that of the previous population of Table 2.1. The average mapped 

fitness value of the population has improved from 11.957 to 16.186 during the life-

time of a generation. Similarly, the maximum mapped fitness value has increased 

from 19.06 to 27.616 during the same generation. Note that the fitness values of 

Table 2.2 are calculated before the mutation operation is invoked. The conventional 
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Individuals Fitness fi Mapped fitness / / = + 10 
1 i i i i -2.364 8.364 

^2/ 1 -1 -1 -1 1 17.616 27.616 
Ag/ 1 1 1 -1 -1 -0.88 9.88 
A4/ 1 1 -1 -1 1 8.884 18.884 

= 64.744 

Table 2.2: An example of the new population created by the single-point crossover opera-
tion between pairs of selected individuals of Table 2.1, as shown in Figure 2.5. 
Their associated fitness values are evaluated according to the objective func-
tion given by Equation (2.1). 

procedure [31], however, would be to perform the mutation operation on the off-

spring before their Gtness values are evaluated, as depicted in Figure 2.1. On the 

other hand, as mentioned in the previous section, the probability of mutation is 

fairly small. Hence, on average the mutation operation will not affect the average 

fitness value of the population significantly, even though the maximum fitness value 

may be different due to the probability that oSspring A2/ may be mutated. Despite 

the fact that the mutation of individuals may occasionally cause the loss of impor-

tant information learnt from the previous generation, there are instances when the 

mutation operation is useful. Considering Table 2.2, we note that due to the biaa 

of the selection process, the leftmost bit of all the offspring that is produced is a 

logical 'r . Further crossover operations between any pairs of these oEspring in the 

subsequent generation will be unable to change the state of the leftmost bit. On the 

other hand, it is possible that the leftmost bit of the optimum solution is in fact a 

logical '0' represented by '-1\ Hence in this case, with the aid of crossovers alone, we 

will be unable to find the optimum solution. This effect is more significant during 

the latter stages of the GA, when the individuals in the population begin to resem-

ble each other more closely due to the effects of selection and crossover. Although 

the probability is small, the mutation operation ensures that new information is 

injected and hence provides an opportunity to sample the unexplored regions of the 

search space. In order to prevent the individuals in the population becoming self-

similar too rapidly, potentially resulting in a premature convergence, it is important 

to maintain a high diversity of individuals in the population, especially during the 

initial phase of a search. 

With the aid of this example, we have shown that by granting the individuals 

associated with high fitness values a higher probability of reproduction, a process 

reminiscent of the natural selection theory was realised. Then, by using the simple 
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probabilistic operations of crossover and mutation in the context of these individ-

uals, new individuals are produced, which in general will have higher fitness values 

than their parents. Yet, this example brings forth even more questions than answers. 

How can it be possible that better solutions may be found by simply exchanging 

decision variables between two individuals in a random manner? What will ensure 

that the average fitness value of the population will be improved, even after a single 

generation? We will attempt to provide the answers to these questions in the next 

section. 

2.3 Why do GA work? 

From our brief conceptual introduction of the family of GAs given in Section 2.1, 

it may appear still somewhat farfetched that simple GA operations such as the se-

lection of individuals based purely on their associated fitness values, on the partial 

random exchange of decision variables between individuals and on the random per-

turbation of a few decision variables lends itself to solving even the most complex 

optimisation problems. Even with the aid of our example in Section 2.2, it is still 

non-trivial as to why GAs can be efficiently used to search for the optimum solution. 

In this section, we will attempt to further augment the key concepts of GAs. 

The fundamental concept of GAs can be readily justified by first observing the 

way humans perform a search for the optimum solution based purely on human 

intuition, given a set of candidate solutions. This approach is plausible, since the 

notion of GAs is in effect based on natural adaptation. 

2.3.1 Optimisation from a Human's Perspective 

Let us consider again the optimisation example highlighted in Section 2.2. Upon 

observing the four individuals given in Table 2.1, we will notice certain similarities 

in specific segments of the individuals. Furthermore, certain bit sequences are 

associated with a high fitness value. For example, observe that the three individuals 

Ai, A2 and A4, which have a higher fitness value compared to individual As, have 

a common decision variable, since their leftmost bit is a logical '1'. Hence, it is 

highly probable that the optimum solution contains a logical '1' in its leftmost bit 

position. We also noticed that the individuals ending with a logical '1' seem to be 

associated with high fitness values. This fact is gleaned by comparing individuals 

v4i and A4 against the individuals A2 and .Ag. Hence, it is also highly probable that 

the optimum solution contains a logical T at its rightmost bit position. However, 

at this stage, we are uncertain about the value of the middle three bits, since 
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these three bits of the two Gttest individuals and A4 diEer from each other. In 

order to resolve this dilemma, we may exchange some decision variables between 

these two individuals that are associated with a high fitness value, with the hope 

that the resulting individual will have an even higher fitness value. This course 

of action is analogous to our behaviour of exchanging and combining good ideas 

from different sources. For example techniques from the field of GAs and CDMA 

multiuser detection may be amalgamated, with the hope that a more likely solution 

can be found for the transmitted CDMA signals. Hence, in order to continue our 

search for the optimum solution, we will generate four new individuals (offspring) 

using the information that is available to us at this moment as a guide. We may 

then end up with a new population that resembles that shown in Table 2.2. 

In summary, what we have followed this course of action in order to seek simi-

larities among individuals in the population and then sought a causal relationship 

between these similarities while aiming for high fitness values [31]. The idea is that 

it is these similarities that confer high fitness values on the individuals. In our 

next optimisation step we attempt to amalgamate these similarities in the hope 

of creating a new individual that will exhibit an even higher fitness value. This 

is accomplished in GAs by the selection and crossover mechanisms, which bestow 

them with their ability to converge. 

There will come a time when no more information can be gleaned from the 

individuals in a population, when all the individuals in the population become 

similar. In order acertain that the individual associated with the maxmimum fitness 

value in this population is the optimum solution, we will at tempt to change the state 

of certain bits and then check the associated effects on the fitness through a series 

of trial-and-error steps. In other words, we safeguard our tentative solution against 

premature convergence. This is executed in GAs with the aid of the mutation 

operation. However, in order to refrain from changing the state of the bits of an 

individual aggressively, the mutation operation in GAs is usually carried out with 

a low probability. Again, this is analogous to our behaviour, when combining the 

ideas of GAs and CDMA multiuser detection. After combining these two ideas, we 

tend to modify the resulting solution, in order to gauge, whether the solution can 

be improved further. This will usually involve a series of trial-and-error steps. 

So far, we have compared the approach of GAs with certain human search traits 

and have identified the resemblance between the way humans and GAs perform a 

search in their quest for the optimum solution. Let us now highlight the theoretical 

aspects of the optimisation from a GA's perspective. 
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2.3.2 Optimisation from a GA's Perspective 

We have seen from the previous section that we can search for the optimum solution 

more effectively, if we exploit important similarities amongst highly fit individuals. 

Hence the focus here is no longer on individuals alone, but rather on their similar-

ities. Holland [29] introduced the notion of a so-called schema (plural, schemata), 

in order to explain how GAs search for regions of high fitness. A schema H is a, 

similarity template, defined over the alphabet {0,1, *}, where 0 and 1 are referred 

to as (fe/zMGcf while * denotes a care symbol. The of a schema 

o{H) is determined by the number of defined bits in that schema. By contrast, the 

of a schema (^(^) is the distance between its leftmost and rightmost 

defined bits, including only one end of the interval in the distance calculation. An 

individual is said to be an instance of a particular schema, if at every position in 

that schema, a 1 matches a 1 in the individual, a 0 matches a 0, or a * matches 

either. Using our example in Section 2.2, by replacing the logical '-1' with a logical 

'0', individuals Ai and A4 of the initial population of Table 2.1 are instances of the 

schema while the individuals ylg and ylg are instances of the schema *1000. 

These two schemata have an order of 2 and 4, respectively, and have a defining 

length of 4 and 3, respectively. Hence we see that the definition of schemata pro-

vides us with a better representation of the similarities amongst the individuals in 

a population and simplifies the analysis of the GAs. 

From a different perspective, schemata can be considered to represent hyper-

planes in the search space [44]. Perhaps the best way of visualising schemata as 

hyperplanes is to consider an I = 3-dimensional search space, where each candidate 

solution contains 3 bits, as shown in Figure 2.6 [31]. In this case, the search space 

takes the form of a cube, where the corners of the cube represent the legitimate indi-

viduals, which constitute schemata of order 3. The edges of the cube are schemata 

of order 2, as illustrated in Figure 2.6, while the planes of the cube are schemata of 

order 1. The whole space is represented by the schema of order 0. 

From Figure 2.6, we can readily see that each individual representing a candidate 

solution of length I is the intersection of 2̂  schemata. Hence, a population of size 

P will contain between 2' - when all the individuals in the population are identical 

- and f X 2' schemata, where f x 2' cannot exceed 3^ The explicit fitness value 

of an individual evaluated from the objective function implicitly gives valuable 

information concerning the average fitness value of the 2̂  different schemata of 

which the individual concerned is an instance. Hence the explicit fitness evaluation 

of a population of P individuals, at a given generation, also implies an implicit 

evaluation of the estimated average fitness value of a significantly higher number 
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/ 000 
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Figure 2.6: Visualisation of schemata as hyperplanes in the /=3-dimensional search 
space [31]. 

of schemata. This simultaneous evaluation of a high number of schemata in a 

population of P individuals is referred to as implicit parallelism [29,44]. It should 

be stressed here that the implicit average Atness value of a schema evaluated in this 

case is only an estimation, since the instances evaluated in a finite-size population 

constitute only a small sample of all possible instances. For example, consider the 

schema 1**** of length ( = 5. In order to obtain its actual average Etness value, 

we have to evaluate the fitness of 16 different individuals, i.e. that of all I = 5-bit 

individuals that contain a logical '1' in the leftmost bit. However, in a practical 

GA, the population size invoked will be typically less than 16, when searching for 

a 5-bit optimum solution. 

Having demonstrated that a high number of schemata is present in a given 

population and their estimated average fitness values are implicitly estimated by 

the GAs, we will now consider the growth-rate and decaying-rate of these schemata 

in response to selection, crossover and mutation. 

Effects of Selection on the Schemata 

Let us assume that there are , ?/) number of instances corresponding to the 

schema present in a population of size f at generation ?/. The estimated aver-

age fitness value of the schema considering its ?/) number of instances at 

generation y is denoted as f{H, y). Following our example given in Section 2.2, the 

probability of selection pi as a parent for an individual Ai is equal to its fitness value 



Chapter 2. Genetic Algorithms Overview 24 

/i divided by the total Gtness value of the population^, i.e. Hence 

the expected number of offspring associated with individual Ai in the next genera-

tion 2/ + 1, ignoring the effects of crossover and mutation, is equal to x f x 

or yli X / i /y , where / — / ; ) / f is the average Etness value of the population. 

Similarly, we can express the expected growth rate of the schema H in terms of its 

estimated average fitness value f{H, y) and the population's average fitness value 

/ aa [31] : 

+ = (2.2) 

where m{H, y + 1) is the expected number of instances of the schema H in the next 

generation ?/ + 1. According to Equation (2.2), due to the effects of the selection 

process alone, the number of schemata having average fitness values above the 

population's average Stness value is expected to increase in the next generation. 

At the same time, the number of schemata having average fitness values lower 

than the population's average fitness value are expected to decrease. Furthermore, 

when the population is evolving over many generations, the estimate of a schema's 

average Gtness should, in principle, become more and more accurate, since the GA 

is sampling more and more instances of that schema. 

Effects of Crossover on the Schemata 

In order to observe the eSects of crossover on the schemata, let us Erst consider the 

following two schemata of length I = 5 [43] : 

Hi = 11 * * * 

H2 = 1 * * * 1 . 

Note that the individual Ai of Table 2.1 is an instance of the schemata Hi and 

^2 a:id they have a denning length (5(^) of 1 and 4, respectively. We assume that 

the single-point crossover operation is invoked, as highlighted in Section 2.2. Recall 

that the crossover point is randomly generated in the range [1,/ — 1], inclusively. 

Hence we can readily see that the probability that the defined bits of schema Hi 

will be separated during the crossover operation is only l / ( / — 1). Specifically this 

will happen if the crossover point is located at position 1. On the other hand, the 

probability that the defined bits of schema H2 will be separated during the crossover 

operation is (/ — l ) / ( / — 1) = 1. In other words, schema H2 will be 'destroyed' by 

the crossover operation, regardless of where the crossover point is located. Based 

^ Again, here we assumed that the mating pool size T is equal to the population size P. 
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on this observation, we can see that the probability Pa ( ) that a schema ^ will 

survive during the crossover operation is dependent on its dehning length If 

the generated crossover point is beyond the defining length of a schema, this schema 

will remain intact. However, we should also note that even if the crossover point 

is within the defining length of a schema, there is still a finite probability that the 

schema will survive. This will happen, if both the parents selected for the crossover 

are instances of that schema. Hence, we can express a lower bound ofpa(.H )̂ as [31] : 

P,(H) > 1 - (2.3) 

Now if we combine the effects of both the selection and crossover on the schema iJ, 

we can expect the number of instances of that schema in the next generation y + 1 

to be [31] 
fin oA ~ A r m l 

(2.4) 2/ + 1) > 2/) 1 
I - 1 f 

According to Equation (2.4), schemata having above-average fitness values and 

short defining lengths are expected to increase their number of instances in the 

subsequent generation. Let us next consider the effects of mutation on the schemata. 

Effects of Mutation on the Schemata 

It was mentioned in Section 2.1 that mutation is the random alteration of each bit 

with a probability ofp^- Hence, in order for a schema H to survive, all its associated 

defined bits must themselves survive. Recall that the order of a schema o(^) is 

defined by the number of defined bits it contains. Therefore, the probability that a 

schema H of order o{H) will survive during the mutation operation is (1 

In short, the probability of survival under the effects of mutation is higher for 

lower-order schemata. 

Now we can formulate the expected growth-rate of the schemata by combining 

the effects of selection, crossover and mutation, which is given as [31] : 

, m ) 
( l - P m ) " " " . (2.5) 

Equation (2.5), as formulated by Holland [29], is known as the 5'cAemo iT/ieo-

rem [29,31], which is the fundamental theorem behind the concepts of GAs. The 

schema theorem formulated in the context of Equation (2.5) states that short, low-

order schemata having an above-average fitness will increase in their number of 
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instances in the subsequent generation. These schemata are known in GA par-

lance as and the assumption that this is indeed the nature of the 

process behind GAs is known as the bmZcfmp AZoct [41]. According to 

the above-mentioned building block hypothesis, the GA initially biases its search 

towards higher fitness values in certain low-order schemata and converges on this 

part of the search space. During its further operations it gradually biases its search 

towards higher-order schemata by combining information from low-order schemata 

with the aid of crossovers and eventually converges on a small region of the search 

space that exhibits a high fitness value [44]. 

However, Holland's schema theorem has its critiques. As seen in Equation (2.5), 

the schema theorem only makes predictions concerning the expected number of 

instances of schemata from one generation to the next. Unfortunately it does not 

provide predictions about the quality of the solution that the GA can deliver over 

many generations, or about the speed at which the GA will converge, or indeed 

provide an exact picture of the GAs' behaviour. Hence intensive research has been 

carried out in order to provide a more exact mathematical analysis concerning the 

behaviour of GAs [49-51]. However, the portrayal of this analysis are beyond the 

scope of this dissertation. Nevertheless, the schema theorem of Equation (2.5) 

provides a fundamental stepping stone towards a better understanding of why GAs 

work. In the next section, we will highlight the various elements of GAs in more 

details. 

2.4 Elements of Genetic Algorithms 

2.4.1 Representation 

Representation refers to the way candidate solutions are represented by individuals. 

Traditionally, as defined by Holland [29], the individuals are represented in the form 

of bit vectors, in which each vector is comprised of a combination of zeros and ones. 

The strong preference for using binary representations of solutions in GAs was jus-

tified by Holland [29] according to the schema theory, as highlighted in Section 2.3. 

It is claimed [31] that GAs are well suited to handle pseudo-Boolean and combi-

natorial optimisation problems. For optimisation problems involving nonbinary or 

real-valued decision variables, these decision variables have to be quantised and 

encoded into binary-valued bit vectors, in order to perform the genetic operations. 

Similarly, these bit vectors must be converted back to their original real-valued form, 

in order to evaluate their associated fitness values from the objective function. 
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Binary Encoding 

There are several potential encoding schemes for mapping nonbinary decision vari-

ables to binary-valued bit vectors. The so-called [41] is the sim-

plest and most commonly used encoding scheme. Encoding of nonbinary integers 

is straightforward. For example, 4 and 12 can be represented as 100 and 1100, 

respectively. For real-valued decision variables, the number of bits invoked will de-

termine the resolution of the encoding. Suppose a real-valued decision variable x, 

where a < a; < &, is to be encoded to an n-bit vector. Firstly we can convert x to 

a nonbinary integer y according to [52] ; 

b — a 
— — X a; (2.6) 

We can then encode the integer according to any nonbinary integer encoding. 

Binary encoding haa the drawback that in some caaes all the bits must be changed 

in order to increase a number by 1. For example, the bit pattern Oil translates 

to 3 in decimal, but 4 is represented by 100. This can make it implementationally 

difficult for an individual that is close to an optimum solution to move even closer 

to the optimum with the aid of the crossover and mutation operation [44]. 

Gray Encoding 

In order to overcome this drawback, a different encoding scheme, namely Gray cod-

mp [41] was proposed. Gray codes have the property that incrementing or decre-

menting any integer number by 1 always involves only a one-bit change. The map-

ping function from the binary coded n-bit vector to a Gray coded n-bit vector is 

given by [52] : 

@ if A; > 1 

where and 6* are the Ath Gray code bit and binary code bit, respectively, for 

k = 1,... ,n and © denotes a modulo 2 addition. The conversion from Gray coding 

to binary coding is given by [52] : 

(2.8) 
i=l 

where the summation is based on the modulo-addition. In practice. Gray-coded 

representations are often more successful for real-valued parameter function opti-

misation applications, than binary-coded representations. 
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The issue of the representation of nonbinary or real-valued decision variables 

in terms of bit vectors is still open to debate. If real-valued decision variables are 

represented in their original form, the search space is continuous and will have an 

in6nite number of search points. Coding these decision variables into bit vectors 

discretises the search space and reduces its size. On the other hand, analoguously to 

the analogue-to-digital conversion process in digital systems, this conversion results 

in a error, where the accuracy of the decision variables is determined 

by the number of bits used to represent the real-valued decision variables. Further-

more, an additional complexity and delay is incurred, since the real-valued decision 

variables have to be binary encoded and decoded for each generation, in order to 

perform the required genetic operations and to evaluate their corresponding Gtness 

values, respectively. Moreover, comparisons [52, 53] have shown that GAs repre-

senting the real-valued decision variables in their original form, using 

exhibit a better performance, than those converting the decision variables to 

bit vectors. Hence in this treatise we will be using the real-valued representation 

of the decision variables, as it will be highlighted in Chapter 4. Let us now review 

the range of selection schemes in the next section. 

2.4.2 Selection 

There are numerous ways, in which a new population can be created from the 

previous population. However, regardless of what method is used, it is imperative 

that individuals having higher fitness values in a given mating pool must be given a 

better chance of reproducing offspring in the subsequent generation, than the lower-

fitness individuals in the same mating pool. Otherwise the GA will be unable to 

take advantage of the presence of high-quality individuals in the population and to 

efficiently search for the optimum solution. The task of choosing these individuals 

for reproduction is performed by the selection process [47]. The type of selection 

scheme used predetermines the convergence characteristics of the GA. A strongly 

selective scheme implies that suboptimal, but highly fit individuals will dominate 

the population, reducing the diversity needed for further change and progress and 

hence may lead to premature convergence, without exploring the entire search space. 

On the other hand, a weakly selective scheme will result in a slower convergence 

rate due to the presence of poor quality, low-fitness individuals. Numerous selection 

schemes have been proposed in the GA literature. We will highlight some of the 

more commonly used selection regimes below. Here we will assume that the selection 

process is invoked in the mating pool, which contains T number of individuals 

associated with the highest fitness values in a given population. 
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F i t n e s s - p r o p o r t i o n a t e S e l e c t i o n 

In selection, aa invoked in our example in Section 2.2, the 

probability of selection of the zth individual is deSned as : 

Pi — f ' (2-9) 

where fi is the fitness value associated with the ith individual. However, the fitness-

proportionate selection scheme has several deficiencies. Based on Equation (2.9), 

we can see that if there is only a small percentage of individuals with relatively 

high fitness values in a mating pool, then these individuals will be assigned with 

a high probability of selection compared to the other individuals in the mating 

pool. Hence the off'spring produced in this case are fairly similar in the subsequent 

generation. This may lead to a premature convergence, since the search space has 

not been sufficiently well explored. This phenomenon typically occurs during the 

early stages of a OA's operation, when the initial population is randomly generated 

and the fitness distribution of the mating pool happens to be non-uniform at the 

beginning. Hence a small number of individuals have a tendency of dominating the 

selection process. 

Furthermore, if the fitness value distribution of the mating pool is fairly uniform, 

i.e. the fitness value of each individual is fairly close to one another, then all the 

individuals in the mating pool will have an approximately equal probability of 

selection. Hence all solutions will have a similar chance of being assigned to the 

mating pool and hence producing offspring. 

Sigma Scaling 

The gzpmo selection scheme [41,54] was proposed in order to render the GA 

less susceptible to premature convergence. Under this scheme, the probability of 

selection of the ith individual is a function of several variables, namely that of its 

fitness value, the mating pool mean fitness and the mating pool fitness' standard 

deviation, as given by [41] : 

( l + ^ l (2,10) 
if cr = 0, 

where fi is the fitness value of the %th individual, / is the mean fitness of the 

mating pool and a is the standard deviation of the mating pool's fitness values. 

According to Equation (2.10), it is possible that the value of pi is negative. In 
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the context of maximisation, pi will be set to a small value (eg. O.l/T in [54]) 

since a negative Pi calculated from Equation (2.10) implies that the corresponding 

individual has a Etness value significantly lower than the population's average Gtness 

value. As specified by Equation (2.10), we can see that if the standard deviation of 

the mating pool's fitness values is high, individuals having high fitness values will 

not be assigned a significantly higher probability of selection in comparison to the 

individuals having lower fitness values. Hence the individuals having lower fitness 

values are given a fair chance of reproducing. On the other hand, if the individuals 

in the mating pool are similar, resulting in a low standard deviation, then the 

individuals exhibiting higher fitness values will be assigned a higher probability of 

selection. 

Linear Ranking Selection 

The Zmeor selection scheme [55] is an alternative method of preventing 

premature convergence. According to this method, the individuals in the mating 

pool are ranked according to their associated fitness values, such that the rank T 

is assigned to the individual associated with the highest fitness value in the mating 

pool, while the rank 1 is assigned to the individual exhibiting the lowest fitness 

value in the mating pool. Similarly, the remaining individuals in the mating pool 

are ranked accordingly. The 2th individual will then be assigned its probability of 

selection pi, based on its specific ranking raMA;, in the mating pool, as given by [56]: 

1 
Pi T 

77 + (̂ 77̂  - 77 j 
r - 1 

(2.11) 

where ^ is the probability of selection assigned to the individual associated with 

the lowest fitness value and ^ the probability of selection assigned to the individual 

having the highest fitness value. If the mating pool size T always remains the same 

from generation to generation, the conditions 77+ = 2 — 77̂  and 77" > 0 must be 

fulfiled. 

Hence in this selection scheme, we can see that each individual's probability 

of selection is determined by its rank in the mating pool and it is independent 

of the fitness value distribution of the mating pool. However, this scheme suffers 

from a slow convergence rate since the probability of selection of an individual is 

determined regardless of its relative fitness value in the mating pool. 
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Tournament Selection 

According to the scheme [57], ^ number of individuals are 

chosen randomly from the mating pool, where t < T is referred to as the tournament 

gzze. The individual associated with the highest htness value out of these ( preferred 

individuals will be selected as a parent. This process is repeated for another t set 

of individuals, in order to form a pair of parents for the crossover operation. 

Again, the probability of selection of each individual is independent of the fitness 

distribution of the mating pool according to the tournament selection scheme. 

Incest Prevention 

Before we commence our detailed discussions it should be pointed out here that 

incest prevention is not a selection scheme. However, it is directly related to how 

the mating pool was formed and hence affects the calculation of the individuals' 

selection probability. Therefore we introduce incest prevention in this selection-

related section. According to the previously discussed selection regimes it is possible 

that two identical individuals are selected. The offspring resulting from the crossover 

operation between these two so-called incest individuals will also be identical. While 

this will ensure that some individuals will be transferred from one generation to the 

next generation, this method does not promote diversity and may also lead to 

premature convergence [41]. 

Hence an alternative technique, known as mceg^preueM^zoTihas been proposed [58]. 

which only allows diEerent individuals to be selected for the crossover operation. 

This technique will ensure that sufficient diversity is maintained from generation 

to generation and the likelihood of a premature convergence is reduced. As al-

luded earlier, an alternative way of mitigating the premature convergence problem 

is invoking scaling. In our application, we will invoke the above-mentioned incest 

prevention scheme by ensuring that all individuals in the mating pool are dissimi-

lar. Unfortunately, by favouring dissimilarity, the high-merit individuals, which are 

fairly similar to the best individual may be discarded during this process. Hence 

there is a clear trade-ofF between the advantageous nature of diversity and favouring 

high-merit individuals. 

We will compare the performance of each of the above-mentioned selection 

schemes in the context of GAs in Chapter 3. More importantly, we will study the 

effects of the mating pool size T and that of incest prevention on the performance 

of GAs. Let us now consider the family of crossover operations. 
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1 

1 

Parents 

1 1 

- 1 - 1 

-1 1 

1 1 

Offspring 

1 - 1 -1 -1 1 

Ao/ 1 1 1 1 1 

Figure 2.7: Example of the double-point crossover operation between the individuals Ai 
and A4 of Table 2.1, where the vertical dashed lines represent the crossover 
points, in order to produce the offspring Ai/ and 

2.4.3 Crossover 

Single-point Crossover 

The simplest form of a crossover operation is the which we 

have highlighted in our example in Section 2.2. The single-point crossover was also 

used by Holland [29] in deriving the schema theorem of Equation (2.5). However, 

the single-point crossover has several shortcomings. Firstly, aa we have observed 

in Equation (2.3), single-point crossover may destroy schemata, and the higher 

the defining lengths of schemata, the higher the probability of destroying them. 

However, the probability of destroying schemata is lower for a single-point crossover 

mask, than for multi-point crossover masks. In other words, schemata that can be 

created or destroyed by the single-point crossover depend strongly on the location 

of the bits in the individual. Secondly, a single-point crossover cannot combine 

all possible schemata [41]. For example, instances of schemata 1***1 and **ll* 

cannot be combined for forming an instance of 1*111. In order to mitigate these 

shortcomings, two other crossover operations were introduced in GAs, namely the 

double-point crossover [41] and the uniform crossover [59]. These two operations 

will be highlighted below. 

Double-point Crossover 

A double-point crossover [41] operation uses two randomly chosen crossover points. 

Decision variables that fall between these crossover points are then exchanged be-

tween the parents. Figure 2.7 illustrates an example of the double-point crossover 

between individuals 4̂% and of Table 2.1. Double-point crossover is less likely to 

destroy schemata having a high defining length and can combine more schemata, 

than the single-point crossover [41]. However, there are still certain schemata that 

the double-point crossover cannot combine. 
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Parents 

/ k 1 1 1 -1 1 

1 -1 -1 1 1 

Offspring 

/ L ' 1 1 ^ -1 1 

1 -1 1 1 1 

Crossover mask 

Figure 2.8: Example of the uniform crossover operation between the individuals Ai and 
^4 of Table 2.1 with the aid of a crossover mask, in order to produce the 
offspring Aif and Ag/. 

Uniform Crossover 

In a croaaoi/er operation [59], a so-called mog/zis invoked instead 

of the crossover point. The crossover mask is a vector consisting of randomly 

generated Is and Os of equal probability, having a length equal to that of the 

individuals. Bits are exchanged between the selected pair of parents at locations 

corresponding to a 1 in the crossover mask. An illustration of the uniform crossover 

operation is shown in Figure 2.8. While it was shown in [60] that the uniform 

crossover operation has a higher probability of destroying a schema, it is also capable 

of creating new schemata. 

Intensive research eSbrts have been invested in quantifying and comparing the 

usefulness of these crossover operations. However, the results did not give a de&ni-

tive guidance on when to use a speciGc type of crossover operation, since their 

effectiveness is very much dependent on the problem in which they are used. Hence 

the general consensus is that various crossovers have to be tested and possibly mod-

iSed, in order to determine what type of crossover operation is most suitable for 

solving the problem at hand. Let us next consider the potential mutation operations 

proposed in the literature [41]. 

2.4.4 Mutation 

The various selection methods and crossover operations we have highlighted so far 

are applicable to binary or real-valued, individuals. In other words, the procedures 

in carrying out these selection and crossover operations are the same, regardless of 

how the legitimate solutions are mapped to individuals. However, the mutation op-

eration will be different for a binary-coded individual and a real-valued individual. 

Recall from Section 2.4.1 that a binary-coded individual consists of bit decision vari-

ables, while a real-valued individual consists of real-valued decision variables. After 
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the production of the offspring with the aid of the crossover operation, each decision 

variable of the offspring will be mutated with a probability of Pm- The mutation 

operation is invoked, in order to ensure that sufficient diversity is maintained in the 

population so as to protect it against premature convergence. Numerous studies 

have been carried out, in order to determine the optimum value of Pm- A high 

probability of mutation may prevent the survival of schemata of high fitness values 

and hence may lead to suboptimal solutions. On the other hand, a low probability 

of mutation may result in premature convergence to suboptimum solutions due to 

the lack of diversity in the population. Schaffer et al. [61] suggested that the value 

of Pm should lie in the range of [0.005,0.01], Grefenstette [62] recommended the 

choice of Pm ^ 0.01, while Back [63] claimed that Pm = 1/^, where Z is the length of 

the individual, is the most useful choice for unimodal functions. Adaptive mutation 

rates that change during the search process have also been proposed by Back [64]. 

We will be evaluating the effects of the value of Pm in the context of our specific 

optimisation problem in Chapter 3. Let us now highlight the effects of the mutation 

operation on a binary decision variable, which will be followed by a discourse on 

the mutation of a real-valued decision variable. 

Mutation of binary decision variables 

There are only two possible values for each binary decision variable hosted by an 

individual. Hence, when mutation is invoked for a particular bit, the value of the 

bit is toggled to the other possible value. For example, a bit of logical '1' is changed 

to a logical '0' and vice versa. 

Mutation of real-valued decision variables 

The mutation of real-valued decision variables [52] is slightly more complicated, 

since each decision variable can assume an infinite number of possible values. Due 

to the associated granularity of representing the individuals, it is impossible to 

obtain the exact value that conforms to the optimum solution. Hence we can only 

strive for achieving a value that is as close to the optimum value as possible. 

When a decision variable x is picked for mutation, the direction of mutation 

is chosen randomly with equal probability. Then a real-valued A 

is randomly generated, whose value ranges between [0, Amoz], where Amm is the 

maximum mutation range. This value is usually pre-determined, in order to ensure 

that the value of x after mutation does not exceed the maximum and minimum 

limits specified by the problem. The value of x is then increased or decreased 

accordingly by a magnitude prescribed by the mutation size as a; = a; ± A. The 
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mutation operation on real-valued decision variables will be further elaborated on 

in Section 4.3.3. 

2.4.5 Elitism 

We have mentioned in Section 2.3 that the crossover and mutation operations are 

capable of destroying a schema. This also implies that an individual associated with 

a high fitness value may be lost from one generation to the next. A good example of 

this scenario can be found by considering Table 2.1 and Table 2.2, which characterise 

the population before and after the crossover operation was invoked, respectively. 

Notice that the individual Ai of Table 2.1, which has a corresponding fitness value 

of 9.06 did not appear in the new population of Table 2.2. While the individual 

will never qualify as the optimum solution, since the individual Ag was found 

to have an even higher fitness value, it should be given a chance to be exploited 

further, since it has the second highest fitness value so far. 

Hence, in order to ensure that high-merit individuals are not lost from one 

generation to the next, the best or a few of the best individuals are included into 

the forthcoming generation, replacing the worst ofi"spring of the new population. 

This technique is known as elitism [41]. Alternatively, the population can be simply 

extended by the additionally included best individual [31]. 

2.4.6 Termination Criterion 

The exact structure of the search space is often unknown in optimisation problems. 

Hence in search algorithms, with the exception of an exhaustive search, it is typically 

infeasible to ensure that the optimum solution can be found. There are numerous 

ways of determining the termination criterion for GAs. The GA-assisted search can 

be terminated, if there are no further improvements in the maximum fitness value 

after several consecutive generations. In this case, the time required for the GA to 

reach a decision is uncertain. On the other hand, if the structure of the search space 

is time-invariant, then it is possible to set a threshold, such that the GA-assisted 

search is terminated, once the fitness value of an individual is found to exceed this 

threshold. Unfortunately neither of these termination criteria can be applied to 

GA-assisted CDMA multiuser detection, since typically a fixed implementational 

complexity is required and also the search space is time-variant due to the noise 

and fading imposed by the transmission channel. Hence in our application, we 

will terminate the GA-assisted search at the F t h generation and the individual 

associated with the highest fitness value at this point will be the detected solution. 
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Hence the value of Y must be carefully determined, in order to ensure that a 

high-probability solution is obtained. Furthermore, by specifying the exact number 

of generations, the computational complexity of the GA can be determined. In 

this case, the upper bound limit on the number of objective function evaluations is 

equivalent to P x F . This figure is derived by assuming that we calculate the fitness 

values of all the individuals in the population at every generation. If we can store 

the fitness values associated to each different individual in memory, then if identical 

individuals are created in the subsequent generations, their associated fitness values 

can be directly accessed from memory and do not need to be calculated again. This 

will lead to a significant reduction in the computational complexity. 

2.5 Survey of Genetic Algorithm-Assisted 

CDMA Multiuser Detection 

Despite establishing itself as a useful optimisation tool in numerous scientific ag 

well aa non-scientific applications, the employment of GAs in the area of mobile 

communications, especially at the physical layer, has been extremely scarce. There 

were only a handful of proposals in the current literature that invoked GAs in 

CDMA multiuser detection. Below we shall give a brief review of these proposals 

by outlining the GA configurations invoked. 

The earliest notion of a GA-based CDMA multiuser detection scheme was sug-

gested by Juntti, et al. [65] in 1997. In their contribution, the performance of the 

GA-based multiuser detector was studied by computer simulations based on a syn-

chronous 20-user CDMA system. Random signature sequences with a spreading 

factor of 31 were used. The interfering users were assumed to have a power 3 dB 

higher than the desired user. It was not explicitly stated in the contribution as 

to which selection scheme was invoked nor the probability of mutation and the 

population size. The single-point crossover operation was used. Three different ap-

proaches of generating the initial population of individuals were simulated, which 

are as follows : 

1. All the individuals of the initial population were randomly generated. 

2. Some individuals of the initial population were randomly generated, while the 

remaining individuals were based on the hard decisions made at the output 

of the conventional matched filter detector. 

3. Some individuals of the initial population were randomly generated, some 

were based on the hard decisions made by the conventional matched filter 
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detector, while the remaining individuals were based on the hard decisions 

made by the decorrelating detector. 

A performance comparison waa made between these three different approaches. 

While no results were explicitly shown, it was concluded that at high signal-to-noise 

ratios (SNRs), the bit error probability (BEP) associated with the first approach 

exhibited a residual value. On the other hand, if the initial population contains 

some good guesses of the likely solution, as provided by the hard decisions at the 

output of the matched filter or the decorrelating detector, then the performance of 

the GA-based multiuser detector is close to that of the single-user system. Hence, 

it was concluded that using GAs alone cannot provide a robust multiuser detection 

performance or a high near-far resistance. 

In the following year, a GA-based multiuser detection scheme was proposed 

by Wang, of. [66] for an asynchronous CDMA system communicating over an 

AWGN channel. The users' bits were detected sequentially in conjunction with a 

modified Viterbi algorithm. A so-called window mapping technique was invoked, 

in order to ensure that all legitimate solutions have positive Btness values. The 

fitness-proportionate selection scheme and the uniform crossover operation were 

used. Furthermore, the elitism strategy was employed for ensuring that some of the 

best individuals from the previous population are copied into the new population. 

As we have mentioned in Section 2.1, the population size and the rate of conver-

gence, and therefore the computational complexity, is proportional to the size of the 

search space. Hence, in order to reduce the size of the search space, Wang, oZ. 

used a threshold value for estimating the BEP based on its corresponding matched 

filter output. If the matched filter output is above the threshold value, then the 

corresponding bit can be directly determined based on the hard decision provided 

by its matched filter output. Consequently, this bit will not be involved in the 

GA optimisation. The performance of the GA-based multiuser detector was also 

compared against that of the decorrelating detector and the MMSE detector when 

supporting 20 users. The signature sequences were based on 31-chip Gold codes. A 

population size of 20 was used in the simulations and the GA was terminated after 

6 generations. The probability of mutation was not explicitly stated. It was shown 

that the performance of the GA-based multiuser detector is very close to that of the 

MMSE detector and compares favourably with that of the decorrelating detector. 

More recently, Ergiin, oZ. [67,68] proposed a hybrid approach that employs a 

GA and a Multi Stage Detector (MSD) for the multiuser detection, in order to mit-

igate the irreducible error floor imposed by conventional MSD detectors due to the 

high bit error rate typically associated with the first detection stage of suboptimal 
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methods, where these Erst-stage errors typically propagate through the subsequent 

stages. Three specific implementations were evaluated : 

1. The GA was used for detection. The computational complexity per bit is 

0{PY), where P and Y denote the population size and the number of gener-

ations, respectively. 

2. The GA was used as the first stage of the MSD in order to provide a good 

initial point for the successive stages of the MSD. The computational com-

plexity per bit is where TiT is the number of users. This approach will 

be referred to using the acronym C-GA/MSD. 

3. The MSD wag embedded into the GA aa a genetic operator in order to improve 

further the fitness of the population at each generation. The computational 

complexity per bit is 0{K'^) + PY • 0{K). This approach will be referred to 

using the acronym E-GA/MSD. 

Again, the window mapping function was invoked, in order to ensure that the fitness 

values for all legitimate solutions are positive. The fitness-proportionate selection 

scheme was employed with a mating pool size of T = f , where f is the population 

size. A single-point crossover and the elitism strategy were also used. The probabil-

ity of mutation was set to a value of 0.05. Simulations were performed for a 10-user 

CDMA system over an AWGN channel and Gold codes with a spreading factor 

of 15 were used as the signature sequences. Performance results were shown for 

both synchronous and asynchronous scenarios. In the synchronous case, the results 

showed that the E-GA/MSD converges to the optimum performance at an SNR of 

about 6dB after 7 generations for a population size of P = 30. On the other hand, 

the GA and C-GA/MSD techniques attained the optimum performance only after 

50 generations. This leads to an excessive computational complexity. Furthermore, 

the E-GA/MSD approach is capable of achieving a near-optimal performance for 

all near-far ratios. In an asynchronous transmission scenario using a very short 

packet size of 4, it was shown that neither the GA nor the C-GA/MSD approaches 

attained the optimum performance, even after 50 generations for a population size 

of P = 50 at the SNR of 6 dB. On the other hand, the E-GA/MSD approach was 

capable of attaining the optimal performance after about 10 generations. 

A summary of the GA configuration utilised in these proposals is listed in Ta-

ble 2.3. Based on the limited number of proposals found in the literature, the 

general conclusion [65,67,68] was that multiuser detection based on GAs alone was 

not attractive due to its slow convergence, even when a high population size was 

invoked, and hence a high computational complexity was invested. In order to in-

crease its convergence rate, it was proposed that other forms of detection ought 
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Juntti, et al. [65] Wang, et al. [66] Ergiin, ef of. [67,68j 

Selection method Not specified Fitness-proportionate Fitness-proportionate 
Crossover operation Single-point Uniform Single-point 
Mutation operation Standard binary mutation 
Elitism No Yes Yes 
Incest prevention No No No 
Population size P Not specified 20 for JiT = 20 30 for K = 10 
Mating pool size T Not specified P P 
Probability of 
mutation pm 

Not specified Small 0.05 

Table 2.3: A summary of the configuration of the GA used in References [65-68] for the 
application in CDMA multiuser detection. 

to be used in conjunction with the GA [67,68]. The size of the search space was 

reduced by the proposition in [66]. Nevertheless, more research must be carried 

out, in order to establish the feasibility of GA-assisted multiuser detection schemes, 

which is the objective of this treatise. There was a different GA-assisted multiuser 

detection scheme that has been proposed recently by Abedi [69,70], in which the 

optimum Elter coeScients at the detector waa acquired by the GA, in order to de-

tect the users' transmitted bits. Due to its contrasting approach, this method will 

not be compared against our proposed GA-assisted scheme. 

2.6 Chapter Summary and Conclusions 

In this chapter we have presented a terse overview of GAs. Specifically, we intro-

duced the terminologies and procedures of GAs in Section 2.1. We then proceeded 

with an example in Section 2.2, which demonstrated how a GA operates in practice. 

Section 2.3 augmented the rationale of using GAs by first identifying the resem-

blance between the way humans and GAs performed a search for the optimum 

solution. These discussions were followed by the derivation of the schema theorem, 

which is the fundamental theorem of GAs. Following that , we reviewed some of the 

more commonly used GA-based operations, such as selection schemes, crossover 

and mutation operations as well as implementation strategies in Section 2.4. Last 

but not least, a survey of the GA-based multiuser detection schemes found in the 

literature was conducted in Section 2.5. 

GAs have been successfully applied in many function optimisation problems, as 

justified by the countless references found in the GA literature. It is this potential 

of the GAs in solving complex optimisation problems that provided the motivation 

for this dissertation. 
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Lastly, it should be stressed here that no GA configuration exists that is uni-

versally applicable to the solution of every optimisation problem. As seen in Sec-

tion 2.4, there are many ways of implementing a GA, using different combinations 

of selection schemes, crossovers and mutation operations. There is no definite theo-

retical justification as to which combination gives the optimum performance, since 

different combinations work best for different problems. The best way of identifying 

the specific combination of operations that is most suitable for the problem at hand 

is to critically appraise and adapt these combinations on the problem. On this 

note, let us proceed with the applcation of GAs in the context of CDMA multiuser 

detection. 



C H A P T E R 3 

Genetic Algorithm-Assisted 

Multiuser Detect ion for 

Synchronous C D M A Systems 

3.1 Introduction 

In this chapter, we will apply a GA-assisted scheme as a suboptimal multiuser 

detection technique in bit-synchronous CDMA systems over single-path Rayleigh 

fading channels. This provides a simple model for investigating the feasibility of 

applying GAs in CDMA multiuser detection as well as for determining the GA's 

configuration, in order to obtain a satisfactory performance. Based on the results 

obtained in this chapter, the GA-assisted CDMA multiuser detector will then be 

subsequently extended to an asynchronous system model incorporating multipath 

Rayleigh fading channels in Chapter 6. 

This chapter is organised as follows. We will first highlight our system model 

used in this chapter in Section 3.2. The notations defined here will also be used 

in the subsequent chapters. An equivalent discrete-time system model is also high-

lighted in Section 3.3. We will then derive the optimum multiuser detector based 

on the Maximum Likelihood (ML) criterion for the system model adopted in this 

41 
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Figure 3.1: Block diagram of the K-usev synchronous CDMA system model in a flat 
Rayleigh fading channel. 

chapter in Section 3.4, which can be seen to have a computational complexity ex-

ponentially proportional to the number of users. GA-assisted multiuser detectors 

are then developed through a series of experiments, in order to End the GA con-

figuration that is best suited for our application and the results will be shown in 

Section 3.5. Finally, using this GA configuration, the BEP performance of the 

GA-assisted multiuser detector based on our system model is assessed by simula-

tions in Section 3.6. The summary of this chapter is given in Section 3.7. Before we 

commence our in-depth discourse, a few observations are made regarding our math-

ematical notations used in this dissertation. Vectors and matrices are represented in 

boldface, while ( a n d ()* denote the transpose matrix and the conjugate matrix 

of (•), respectively. Hermitian matrices, defined as the complex conjugate transpose 

of the matrices, are denoted as (•)^. Furthermore, diag(-) represents a diagonal ma-

trix, where the diagonal elements correspond to the vector ( ) . A summary of the 

mathematical notations used in this dissertation can be found in Appendix B. 

3.2 Synchronous CDMA System Model 

We consider a bit-synchronous CDMA system as illustrated in Figure 3.1, where K 

users simultaneously transmit data packets of equal length to a single receiver. In 

this dissertation we will adopt the Binary Phase Shift Keying (BPSK) modulation 

technique for all the transmissions. The transmitted signal of the t th user can be 

expressed in an equivalent lowpass representation as : 

.M-l 
.K (3.1) 

m = 0 
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where is the Ath user's signal energy per bit, E {+1, —1} denotes the mth 

data bit of the A;th user, is the Ath user's signature sequence, T], is the data bit 

duration and M is the number of data bits transmitted in a packet. When consid-

ering a synchronous system experiencing no multipath interference, it is sufficient 

to observe the signal over a single bit duration since there is no interference 

inflicted by symbols outside this duration. Hence without loss of generality, we can 

omit the superscript (m) from all our equations in this chapter. 

The Ath user's signature sequence may be written as : 

Wc-l 
0 < ( < 7 6 , V A : - l , . . . , 7 r (3.2) 

/ i=0 

where 7^ is the chip duration, 6 {+1, —1} denotes the /ith chip, Wc is the 

spreading factor, which refers to the number of chips per data bit duration such 

that Nc = Tb/Tc and ) is the chip pulse shape. In practical applications, rT-(t) 

has a bandlimited waveform, such as a raised cosine Nyquist pulse. However, for 

the sake of simplicity in our analysis and simulation, we will assume that rT(^) is a 

rectangular pulse throughout this dissertation, which is defined as : 

= I ° ^ ^ (3.3) 
0, otherwise. 

Without loss of generality, we assume that the signature sequence ak{t) of all K 

users has unit energy, as given by : 

/ a^(^)(ft = l, VA; = 1 , . . . ,A' . (3.4) 
Jo 

Each user's signal gt(() is aasumed to propagate over a single-path frequency-

nonselective slowly Rayleigh fading channel, as shown in Figure 3.1 and the fading 

of each path is statistically independent for all users. The complex lowpass channel 

impulse response (CIR) for the link between the t th user's transmitter and the 

receiver, as shown in Figure 3.1, can be written as : 

At(t) = ak(̂ )e '̂̂ *(*)(̂ (4, VA; = 1 , . . . , TT (3.5) 

where the amplitude cxkit) is a Rayleigh distributed random variable and the phase 

(pkit) is uniformly distributed between [0, 27r). 

Hence, when the A;th user's spread spectrum signal aA;(̂ ) given by Equation (3.1) 

propagates through a slowly Rayleigh fading channel having an impulse response 
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given by Equation (3.5), the resulting output signal over a single bit duration 

can be written as : 

atW = VA; = 1 , . . . , (3.6) 

Upon combining Equation (3.6) for all users, the received signal at the re-

ceiver, which is denoted by r(t) in Figure 3.1, can be written as : 

)'(^) = Z ^ t ( ^ ) + ^ ( ^ ) , (3.7) 
fc=i 

where n(t) is the zero-mean complex Additive White Gaussian Noise (AWGN) with 

independent real and imaginary components, each having a double-sided power 

spectral density of cr̂  = jVo/2 W/Hz. 

At the receiver, the output of a bank of filters matched to the corresponding 

set of the users' signature sequences is sampled at the end of the bit interval. The 

output of the t̂h user's matched 61ter, denoted as z; in Figure 3.1, can be written 

as : 

/-ii, 
= / r(^)o((^)G;^ 

Vo 

t=i 

4- , (3 8) 

Desired signal k̂ jti Noise 
' V ' 

Multiple Access Interference 

where is the cross-correlation of the (th user's and the A:th user's signature 

sequence, as given by ; 
yVj, 

Pzt = ^ o;(()at(()(Z(, (3.9) 
rTh 

/o 

and 

n; = y M(t)af(()dt. (3.10) 
rn 

'0 

As seen in Equation (3.8), apart from the Gaussian noise M/, the desired signal 

is interfered by signals transmitted by the other users. This interference due to the 

other users' signals is also known as Multiple Access Interference (MAI). 

Assuming that the receiver has perfect knowledge of the Ith user's CIR coef-

Scients the detected bit of the Zth user based on the conventional 

coherent single-user detector will be given by the sign of the matched Glter output 
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in Equation (3.8) as : 

= sgn % . (3.11) 

Multiplication by is necessary for coherent detection, because the phase 

rotation introduced by the channel has to be removed. By approximating the MAI 

as a Gaussian distributed random variable by virtue of the central limit theorem [71-

73], the Bit Error Probability (BEP) of the desired user can be shown to be given 

by [22] : 

Hence from Equation (3.12), we can see that unless the signature sequences of the 

interfering users are orthogonal to that of the desired user, yielding = 0 kr 

k = 1 , . . . , A: ^ I, the BEP performance of the desired user will be inferior to 

that achieved in a single-user environment in conjunction with a single-user matched 

filter. Furthermore, since the BEP performance will deteriorate in conjunction 

with an increasing number of users, the conventional single-user detector is highly 

vulnerable to near-far effects [74]. 

3.3 Discrete-Time Synchronous C D M A Model 

For our application, it is more convenient to express the associated signals in matrix 

and vectorial format. Invoking Equation (3.6) describing the transmitted signal of 

each user, the sum of the transmitted signals of all users can be expressed in vector 

notation as : 

k=l 
= (3.13) 

where 

a = [ai(^),...,aAr(()] 

C = diag , . . . , 

( = diag . . . , 

b = [6i , . . . , . (3.14) 
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Hence the received signal of Equation (3.7) can be written as : 

r(() = 8(^) + (3.15) 

Based on Equations (3.13) and (3.15), the output vector Z of the bank of matched 

filters portrayed in Figure 3.1 can be formulated as : 

= RC^h + n, (3.16) 

where 

A 

1 

Ail 1 

PK2 
. 1 

(3,17) 

is the A!" X A" dimensional user signature sequence cross-correlation matrix having 

elements given by Equation (3.9) and 

is a zero-mean Gaussian noise vector with a covariance matrix = Q.^NqR. Based 

on this discrete-time model, we will next derive the optimum multiuser detector 

based on the maximum likelihood criterion for the synchronous CDMA system 

considered [1]. 

3.4 Optimum Multiuser Detector for Synchronous 

CDMA Systems 

In this section we will derive the joint optimum decision rule for a iT-user CDMA 

system based on the synchronous system model highlighted in Section 3.2. Specif-

ically, we want to maximise the probability of jointly correct decisions of the K 

users supported by the system based on the received signal r(^) of Equation (3.15). 

^From Equation (3.14) we note that there are m = 2^ possible combinations of 

b. We shall denote the zth combination as 6, and the combined transmit signal of 

all users in Equation (3.13) corresponding to the 2th combination as 6% -H- Si{t). 
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Based on the above notations, we can express the joint maximum o poa^enorz 

probability (MAP) criterion as [75] : 

b = a r g j n i ^ [ f ( g i ( ( ) | r ( t ) ) ] j , (3.18) 

where b denotes the detected bit combination. According to Equation (3.18), the 

MAP criterion refers to finding the specific transmitted bit sequence 6, that exhibits 

the highest probability of being transmitted given the received signal r(t). 

Using Bayes' rule, the a probability expression of Equation (3.18) can 

be written as [75] : 

= (3.19) 

where p {r{t)\si{t)) is the conditional joint probability density function (pdf) of the 

received signal r(^) in Equation (3.15), f (a^(^)) is the o p n o n probability of the 

signal containing the 2th bit combination and p{r{t)) is the pdf of the received sig-

nal. Since the transmitted data bits of the TiT users are independent, the o prion 

probability P{si{t)) = 1 /2^ is equal for all m = 2^ bit combinations. Further-

more, the received signal pdf p(r(t)) is independent of which of the m = 2^ bit 

combinations is transmitted. Consequently, the decision rule based on finding the 

signal that maximises f (si(()|r(()) is equivalent to finding the signal that max-

imises p{r(t)\si(t)). This decision criterion, which is based on the maximum of 

p(r(t)|8i(t)) is termed as the Maximum Likelihood (ML) criterion and p(r(()|5i(t)) 

is referred to as a likelihood function [75]. Hence, in contrast to the MAP criterion 

of Equation (3.18), the ML criterion evaluates the probability of the received signal 

r(() given the transmitted signal Si((). 

According to Equation (3.7), the received signal r{t) is a Gaussian distributed 

random variable having a mean equal to that of g(() given by Equation (3.13). 

Hence, it can be shown that the likelihood function p{r{t)\si{t)) is given by [22] : 

p ( z | 8 ) = e x p ( - ; ^ ^ | r ( f ) - s ( ^ ) | ^ a ^ 

1 
exp 

2(7̂  

K 

2(72 0 
r(^) - ^ \/6AA:6tOt(<)e-'^* 

k=l 
(3.20) 
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Taking the natural logarithm of the likelihood function of Equation (3.20), the 

resulting so-called (LLP) can be written as : 

lnp(Z|a) 
2(̂ 2 

- 2% 

dt -f-
n ^ /— . r 

k=l 

rTb 

A;=l 
(3.21) 

The term \r{t)f is common to all decision metrics, and hence it can be ignored 

during the optimisation. Similarly, the constant term l/2cr^ will not influence the 

maximisation. Thus we can express the log-likelihood function of Equation (3.21) 

in the form of a correlation metric as [75] : 

0 ( 6 ) 2% 

2% 

K 

c 
&=1 

K 

y 
.k=l ^=1 A:—1 

(3.22) 

where Zk and pik are given by Equation (3.8) and Equation (3.9), respectively. 

Employing our discrete-time model highlighted in Section 3.3, the correlation metric 

of Equation (3.22) can be expressed in vector notation aa [22] : 

(6) = 2% - b" (3.23) 

Hence the decision rule for the Verdu's optimum CDMA multiuser detection scheme [1] 

based on the maximum likelihood criterion is to choose the specific bit combination 

b, which maximises the correlation metric of Equation (3.23). Hence, 

b — arg jnmx [Q (6)] (3.24) 

In recent years Minimum Bit Error Rate (MBER) multiuser detection [76] has 

emerged as a new research direction and the research of MBER GA-based MUDs 

may constitute a promising future research area. The maximisation of Equa-

tion (3.23) is a combinatorial optimisation problem, which requires an exhaustive 

search for each of the m = 2^ combination of b, in order to find the one that max-

imises the correlation metric of Equation (3.23). Explicitly, since there are m = 2^ 

possible combinations of 6, the optimum multiuser detection has a complexity that 

grows exponentially with the number of users TiT. 
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We have mentioned in Chapter 2 that GAs have been known to solve combinato-

rial optimisation problems efficiently in many other applications [31]. Hence, in this 

dissertation, we will investigate the feasibility of invoking GAs in dealing with the 

CDMA multiuser detection optimisation problem as governed by Equation (3.23). 

3.5 Experimental Results 

As we have mentioned in Section 2.1 of Chapter 2, a GA's performance is dependent 

on numerous factors, such as the population size f , the choice of the selection 

method, the genetic operation employed, the specific parameter settings as well as 

the particular termination criterion used. In this section, we will attempt to And 

an appropriate GA setup and parameter configurations that are best suited for our 

optimisation problem. 

Our objective function is defined by the correlation metric of Equation (3.23). 

Here, the legitimate solutions are the m = 2^ possible combinations of the TiT-bit 

vector b. Hence, each individual will take the form of a K-hii vector corresponding 

to the K users' bits during a single bit interval. We will denote the pth individual 

here as bp(%/) = , where ?/ denotes the ?/th generation. Our 

goal is to find the specific individual that corresponds to the highest fitness value. 

However, we note that the fitness values corresponding to certain combinations of b 

evaluated from the correlation metric of Equation (3.23) will be negative. However, 

we have mentioned in Section 2.4.2 that some selection schemes can only operate 

with the aid of positive fitness values. Hence, in order to ensure that the fitness 

values are positive for all combinations of b, we modify the correlation metric of 

Equation (3.23) according to [65] : 

exp {n (b)} = exp {2% . (3.25) 

The reason for invoking an exponential mapping function is to put more emphasis on 

the high-merit individuals such that they will be assigned a much higher selection 

probability as compared to the low-merit individuals. This will ensure a faster 

convergence rate, but runs the risk of a premature convergence. Increasing the 

mutation rate can alleviate this problem, aa we shall see in Section 3.5.3. 

Our performance metric is the average Bit Error Probability (BEP) evaluated 

over the course of several generations. In the context of CDMA multiuser detection 

the three most important criteria to be satisfied by an eflBcient detection scheme are 

its BEP performance, its detection time as well as its computational complexity. 
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Parameter Value 

Spreading factor Nc 31 
Modulation mode BPSK 
Number of CDMA users, K 10 (20 for Figure 3.4) 
SNR per bit 9 dB fov k = 1,..., K 

Table 3.1: Simulation parameters for the experiments of Figures 3.2-3.9. 

The detection time of the GA is governed by the number of generations Y required, 

in order to obtain a reliable decision. We also mentioned in Section 2.4.6 that the 

computational complexity of the GA, in the context of the total number of objective 

function evaluations, is related to P xY. On the other hand, it is well-known that 

the convergence accuracy of the GA is mainly determined by the population size 

P, as alluded to in Section 2.1. Hence, in this section the purpose of our study 

is to find GA configurations that achieve a satisfactory BEP performance at the 

expense of an acceptable computational complexity within a reasonable time. Since 

our GA-assisted multiuser detector is based on optimising the modified correlation 

metric of Equation (3.25), the computational complexity is deemed to be accept-

able, if there is a significant amount of reduction in comparison to the optimum 

multiuser detector, which requires m = 2^ objective function evaluations, in order 

to reach a decision, as highlighted in Section 3.4. In order to evaluate the average 

BEP performance of the GA-assisted multiuser detectors, randomly generated sig-

nature sequences will be used in our simulations. The simulation parameters used 

for our investigations in this section are presented in Table 3.1 and the following 

assumptions are stipulated : 

• We will assume that perfect power control is invoked by all users such that, 

on average, their signals arrive at the receiver with the same power. 

• Initially only the AWGN channel is invoked, such that ak = 1.0 and = 0 

for A; = 1 , . . . , ^ , i.e. there is no fading. 

3.5.1 Simulation Algorithm 

Due to the random nature of the GAs, several random seeds have to be utilised in 

our simulation program, in order to obtain a reliable average BEP result. Specifi-

cally, for a particular SNR value, our simulation program will repeatedly transmit 

a random set of bits at a given channel condition and then detect the received 

bits using the proposed GA-assisted detection scheme. The detected bits are then 

checked against the transmitted bits, until a certain criterion is satisfied. Specifi-

cally, simulations were conducted until 100-1000 detection errors were found. Hence 
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Setup/Parameter M e t h o d / V a l u e 

Individual initialisation Random 
method 
Selection method Fitness-Proportionate 
Crossover operation Single-point 
Mutation operation Standard binary mutation 
Elitism No 
Incest Prevention No 
Population size P Given in Figure 3.2 
Mating pool size T Population size P 
Probability of mutation 0.01 

Table 3.2: Configuration of the GA used to obtain the results of Figure 3.2. Explicit 
description of the fitness-proportionate selection scheme and the single-point 
crossover operation can be found in Section 2.4.2 and Section 2.4.3, respec-
tively. 

assuming for example that the BEP is about 10"^ and the stop-criterion is set to 

finding 100 detection errors, 100/10^^ = 100,000 bits would have to be transmitted 

and hence the simulation program would have to be run = 100,000 number 

of times for detecting all the bits of the k users. Each t ime the simulation program 

is activated, a new set of user bits and signature sequences are generated and the 

bits are transmitted over an independently generated dispersive or non-dispersive 

Rayleigh-fading channel, adding independent AWGN components. At the detec-

tor, the seeds required for generating the random processes of the GAs during the 

initialisation, crossover and mutation processes would be different from those used 

during the transmission of the previous bits, again, with each process having an 

independent seed. As a result, the various random processes are independent from 

each other and if the simulation program is activated a sufficiently high number of 

times, a reliable average BEP performance is obtained. 

3.5.2 Effects of the Population Size 

Let us commence our experiments by investigating the effects of the population size 

P on the convergence rate of the GA. Since at this moment we have no knowledge of 

which configuration of the GA is best suited for our optimisation problem, we shall 

adopt the most commonly used GA configuration found in the literature for our 

initial simulations. This configuration is tabulated in Table 3.2, which follows the 

fiowchart of Figure 2.1. Basically, the individuals, which represent the candidate 

solutions of b, are randomly created during the initialisation phase of the GA. Upon 

evaluating their associated fitness values based on the modified objective function 

of Equation (3.25), pairs of individuals found in the mating pool are selected for 
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Figure 3.2: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector for various population sizes 
and K = 10 users. The configuration of the GA used to obtain these re-
sults is tabulated in Table 3.2, while the simulation parameters are listed in 
Table 3.1. 

crossover and mutation operations, in order to produce offspring. The associated 

6tness values of these oHspring are then evaluated and these offspring will form 

the new population of the next generation. The processes of selection, crossover, 

mutation and evaluation are repeated for a total of y — 1 generations^. Based on 

this configuration, the BEP performance of the GA-assisted multiuser detector was 

evaluated and the results, which showed the achievable BEP at the end of each 

generation are displayed in Figure 3.2. Note that the BEP at each generation, with 

the exception of the 0th generation, is derived by identifying the offspring associated 

with the highest fitness value amongst all the offspring created at that generation. 

The BEP at the 0th generation is derived by identifying the specific individual 

that exhibits the highest fitness value after the random initialisation. It is seen 

from the figure that the BEP performance of the GA-assisted multiuser detector 

improved with increasing the population size. However, the computational cost 

also increases as a function of the population size, as highlighted in Section 2.4.6. 

In order to maintain a moderate computational complexity, we shall adopt a fixed 

population size of P = 30 for all our simulations in this section. Upon closer 

inspection of Figure 3.2, we will notice that the BEP performance of the GA-assisted 

^The 0th generation only consists of initialisation and evaluation. 
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Figure 3.3: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector for various probability of 
mutation values pm and for K = 10 users. The configuration of the GA is 
specified in Table 3.3, while the simulation parameters are listed in Table 3.1. 

multiuser detector based on the configuration of Table 3.2 is far from promising. 

Furthermore, the convergence rate of the GA is very slow. Let us now study whether 

the performance can be improved by varying some of the GA parameters and the 

GA conGguration, commencing with the probability of mutation. 

3.5.3 Effects of the Probability of Mutat ion 

As we have mentioned in Section 2.4.4, the rate of mutation plays an important 

role in determining the quality of convergence of a GA. A high probability of mu-

tation Pm may disrupt schemata of potentially high fitness values and hence may 

lead to suboptimal solutions, while a low probability of mutation may result in 

premature convergence due to the lack of diversity in the population. This asser-

tion is supported by Figure 3.3, which shows the achievable BEP performance of 

the GA-assisted multiuser detector over Y = 20 generations for various values of 

Pm- The configuration of the GA implemented for this simulation study is listed in 

Table 3.3, which is similar to the one given in Table 3.2 of Section 3.5.2. Con-

sidering the results shown in Figure 3.3, we will immediately notice that the BEP 

performance has improved significantly over the rather poor results obtained in the 

previous section for > 0.01. Furthermore, according to Figure 3.3, Pm = 0.1 
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Setup/Par amet er Method /Value 

Individual initialisation Random 
method 
Selection method Fitness-Proportionate 
Crossover operation Single-point 
Mutation operation Standard binary mutation 
Elitism No 
Incest Prevention No 
Population size P 30 
Mating pool size T Population size P 
Probability of mutation Given in Figure 3.3 and Figure 3.4. 

Table 3.3: Configuration of the GA used to obtain the results of Figures 3.3 and 3.4. Ex-
plicit description of the fitness-proportionate selection scheme and the single-
point crossover operation can be found in Section 2.4.2 and Section 2.4.3, 
respectively. 

appears to give the best performance. All the other values of Pm have a slower 

convergence rate, leading to solutions far from the optimal one. Although this con-

tradicts the conventional recommendation that the value of Pm should be in the 

region of 0.01-0.001, a high value was found advantageous in our case because, 

since we have mentioned previously that our exponential mapping scheme favours 

the high-merit individuals, which can lead to premature convergence due to a lack 

of diversity. Hence a high value can provide this diversity. On the other hand, 

excessive mutation can also lead to a slow convergence because of the birth of too 

many low-merit individuals. Hence according to Figure 3.3, the scheme associated 

with Pm = 0.15 does not converge as fast as that using = 0.1. Furthermore, 

the value of pm is very much dependent on the length of the individual, as ex-

emplified in Figure 3.4 for K = 20 users. Here, each individual will consist of a 

K = 20-bit multi-user vector to be optimised. In this case, Pm = 0.07 gives the 

best performance^. Since our simulations performed in this dissertation are based 

on a CDMA system supporting 7^ = 10 - 20 users, we will adopt a probability of 

mutation Pot = 0.1 for all our subsequent simulations, since this value was shown in 

Figures 3.3 and 3.4 to give a good BEP performance for this user population range. 

However, further investigations concerning the suitable value of Pm must be per-

formed for a higher number of users. Let us now consider, whether we can further 

improve the achievable BEP performance by using different crossover operations. 

^The poor BEP shown in Figure 3.4 is due to the inadequate population size in handling a 
sizeable search space for K = 20. 
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Figure 3.4: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector for various probability of 
mutation values pm and for i f = 20 users. The configuration of the GA is 
specified in Table 3.3, while the simulation parameters are listed in Table 3.1. 

3.5.4 Effects of the Choice of Crossover Operation 

In this section, we will investigate, whether the choice of the crossover operation 

will have an effect on the convergence rate of the GA. Three types of crossover 

operations are investigated, namely the single-point crossover, the double-point 

crossover and the uniform crossover, which were highlighted in Section 2.4.3. The 

configuration of the GA is characterised by Table 3.4 and the associated results 

are shown in Figure 3.5. Judging from the results displayed in Figure 3.5, there 

is no significant performance disparity amongst the different crossover operations. 

Nonetheless, the GA employing the uniform crossover can be seen to exhibit a 

slightly faster convergence rate, than that using the single-point and double-point 

crossover. This may be due to the fact that for the uniform crossover operation, 

every bit of the individual has an equal probability of being exchanged, unlike in 

the single-point crossover or the double-point crossover, where the leftmost and the 

rightmost bits have a lower probability of being exchanged. Hence, we shall be 

adopting the uniform crossover operation for all our subsequent simulations. 
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Setup/Parameter M e t h o d / V a l u e 

Individual initialisation Random 
method 
Selection method Fitness-Proportionate 
Crossover operation Given in Figure 3.5 
Mutation operation Standard binary mutation 
Elitism No 
Incest Prevention No 
Population size P 30 
Mating pool size T Population size P 
Probability of mutation pm 0.1 

Table 3.4: Configuration of the GA used to obtain the results of Figure 3.5. Ex-
plicit description of the fitness-proportionate selection scheme and the various 
crossover operations can be found in Section 2.4.2 and Section 2.4.3, respec-
tively. 

Single-point crossover 
Double-point crossover 
Uniform crossover 
Optimum (K=10) 

10 12 
Generation y 

Figure 3.5: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector employing the single-point 
crossover, double-point crossover and the uniform crossover for if = 10 
users. The configuration of the GA is specified in Table 3.4, while the sim-
ulation parameters are listed in Table 3.1. 
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3.5.5 Effects of Incest Prevention and Elitism 

Let us now investigate the effects of invoking the incest prevention and the elitism 

strategy, aa featured in Section 2.4. In the case of the incest prevention strategy, 

we will ensure that the individuals in the mating pool are not identical. Hence, 

the mating pool size T < f will not be Sxed, because it depends on the number 

of non-identical individuals in the population. As for the elitism strategy, we will 

only replace the offspring having the lowest fitness value in the new population 

with the individual corresponding to the highest fitness value in the old population. 

The configuration of the GA for this investigation is specified by Table 3.5 and 

the associated results are shown in Figure 3.6. A welcome improvement that can 

be gleaned from Figure 3.6 is that the GA-assisted multiuser detector has finally 

managed to achieve the optimum performance for = 10, baaed on the configura-

tion of Table 3.5 in conjunction with the incest prevention and elitism strategies. 

Furthermore, we can see that the optimum performance is attained only, if both 

strategies are invoked. This can be explained aa follows. Firstly, the incest preven-

tion strategy will always ensure that a high diversity of individuals is maintained 

in the population, since only non-identical individuals are allowed to mate. Hence, 

the offspring that are produced by the crossover and mutation operations will have 

a high probability that they are not identical to their parents. This will ensure that 

new areas in the search space will be explored, which is always a good trait from an 

optimisation point of view. On the other hand, this will also obliterate the parents 

associated with high fitness values, since the offspring will constitute the new popu-

lation. This is undesirable especially, if the parent is actually the optimum solution. 

Hence the elitism strategy can be invoked in order to counteract this effect. Since 

in our optimisation problem we are interested in finding only one specific individual 

that gives the highest fitness value and not a set of likely individuals, the elitism 

strategy is required to keep track of the individual having the highest fitness value 

found during the course of evolution. Hence by combining these two strategies, a 

fast convergence rate and a good performance can be achieved. Now that we know 

that the GA-assisted multiuser detector is capable of attaining the optimum perfor-

mance within 20 generations, as shown in Figure 3.6, let us now consider, whether 

the detector is capable of achieving this level of performance at a faster convergence 

rate by invoking various selection schemes. 
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S e t u p / P a r a m e t e r M e t h o d / V a l u e 

Individual initialisation Random 

method 

Selection method Fi tness-Proport ionate 

Crossover operation Uniform 
Muta t ion operation Standard binary muta t ion 

Elit ism Given in Figure 3.6 

Incest Prevention Given in Figure 3.6 

Populat ion size P 30 
Mating pool size T - Populat ion size P if incest prevention is not invoked 

- < P if incest prevention is invoked 

Probability of 0.1 

mutation 

Table 3.5: Configuration of the GA used to obtain the results of Figure 3.6. Explicit 
description of the fitness-proportionate selection scheme and the incest pre-
vention strategy can be found in Section 2.4.2 while the uniform crossover 
operation and the elitism strategy can be found in Section 2.4.3 and Sec-
tion 2.4.5, respectively. 

Incest prevention : No, Elitism : No 
- Incest prevention : Yes, Elitism : No 

Incest prevention : No, Elitism : Yes 
Incest prevention : Yes, Elitism : Yes 
Optimum (K=10) 

= 10 

_ - a— a— -Q- _o 

M 12 
Generation y 

Figure 3.6: The bit error probability performance with respect to the number of genera-
tions of the GA-assisted multiuser detector employing the incest prevention 
strategy and/or elitism strategy, as featured in Section 2.4. The configura-
tion of the GA is specified in Table 3.5, while the simulation parameters are 
listed in Table 3.1 for ii' = 10 users. 
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Setup/Parameter Method /Value 

Individual initialisation Random 
method 
Selection method Given in Figure 3.7 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P 30 
Mating pool size T r < f depending on the total number 

of non-identical individuals 
Probability of mutation Pm 0.1 

Table 3.6: Configuration of the GA used to obtain the results of Figure 3.7. Explicit de-
scription of the various selection schemes and the uniform crossover operation 
can be found in Section 2.4.2 and Section 2.4.3, respectively. 

3.5.6 Effects of the Choice of Selection Schemes 

In this section, we will attempt to identify the speci6c selection scheme for our 

GA-assisted multiuser detector that is capable of offering a fast convergence rate, 

while maintaining the same level of BEP performance tha t was attained in Fig-

ure 3.6. The selection schemes that were reviewed in Section 2.4.2, namely the 

fitness-proportionate selection, the sigma scaling selection, the linear ranking selec-

tion and the tournament selection, will be investigated. The configuration of the 

GA is listed in Table 3.6. For the linear ranking selection scheme, we set 77+ and 

7;' in Equation (2.11) to 1.9 and 0.1, respectively so aa to place a higher emphasis 

on the individuals exhibiting higher fitness values. As for the tournament selection 

scheme, t = 5 individuals are selected from the population randomly with equal 

probability and the individual that corresponds to the highest fitness value within 

this group of t individuals will be chosen as a parent. Finally, for sigma scaling 

selection, if the probabability of selection pi corresponding to the ith. individual is a 

negative value when calculated according to Equation (2.10), then we will set this 

Pi value to 0.0 and discard the associated individual from the selection process. The 

BEP results are shown in Figure 3.7. 

As we can see, GAs utilising the fitness-proportionate selection scheme gave the 

best performance. On the other hand, GAs using either the sigma scaling selection 

scheme or the linear ranking selection scheme exhibited a slow convergence rate. A 

plausible explanation is due to the fact that the mating pool size T spanned over 

all non-identical individuals. Hence the fitness value variance of the mating pool 

was high. As a result, individuals having high fitness values are not given sufficient 
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Figure 3.7: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector employing various selection 
schemes. The configuration of the GA is specified in Table 3.6, while the 
simulation parameters are listed in Table 3.1 for K = IQ users. 

priority to be selected as a parent in the case of the sigma scaling selection. Sim-

ilarly, because of the linearity of Equation (2.11), the higher-rank individuals are 

not assigned with a high probability of selection. Another interesting point to note 

from Figure 3.7 is that the linear ranking selection scheme, which is independent of 

the type of mapping function used to ensure that all fitness values are positive, has 

a slower convergence rate than that of the fitness-proportionate selection scheme. 

This is due to the fact that insufficient emphasis is placed on the high-merit in-

dividuals, if the individuals in the population are ranked. Hence our decision of 

invoking an exponential mapping function is a plausible one, if fast convergence is 

of prime importance. 

A feasible way of overcoming the slow convergence of the sigma scaling and lin-

ear ranking based selection schemes is to reduce the size T of the mating pool, such 

that we have T P. This implies that only the T P number of non-identical 

individuals that are associated with the highest fitness values in the current popu-

lation will be placed in the mating pool. If the number of non-identical individuals 

in the population happens to be less than T, then the value of T is set to be equiva-

lent to the number of available non-identical individuals, in order to prevent incest 

mating. We set T = 10 and when using the GA conSguration given by Table 3.7, 

the corresponding simulation results are shown in Figure 3.8. Now we can see that 
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Setup/Parameter M e t h o d / V a l u e 

Individual initialisation Random 
method 
Selection method Given in Figure 3.8 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size f 30 
Mating pool size T T < 10 depending on the number 

of non-identical individuals 
Probability of mutation 0.1 

Table 3.7: Configuration of the GA used to obtain the results of Figure 3.8. Explicit de-
scription of the various selection schemes and the uniform crossover operation 
can be found in Section 2.4.2 and Section 2.4.3, respectively. 

the achievable BEP performance of the GAs employing either the sigma scaling se-

lection scheme or the linear ranking selection scheme has improved significantly. In 

particular, the GA-aasited MUD employing the sigma scaling selection scheme has 

an almost identical performance to that using the fitness-proportionate selection 

scheme. From these results we conclude that the mating pool size T plays a signif-

icant part in determining the convergence rate of the GA using a particular type 

of selection scheme. More specifically, for the sigma scaling selection and the linear 

ranking selection the value of T must be set appropriately. We also have to deter-

mine the best value of t for the tournament selection scheme. On the other hand, 

the results obtained in Figure 3.8 for the fitness-proportionate selection scheme are 

similar to those shown in Figure 3.7, where no specific mating pool size T constraint 

was imposed, using T equal to the number of non-identical individuals in the pop-

ulation during the particular generation. Furthermore, the fitness-proportionate 

selection scheme does not involve any external parameters for it to work and judg-

ing from Figure 3.7 and Figure 3.8, GAs utilising the fitness-proportionate selection 

scheme gave the best performance from the range of selection schemes considered. 

Hence, in order to reduce the number of parameters to be optimised for the GAs 

to perform reliably, we will only consider the fitness-proportionate selection scheme 

hereafter. In most cases, the mating pool size T will also be set according to the 

number of non-identical individuals in the population. However, as we will see in 

our further discourse, there are certain situations, where a specific value of T must 

be set, in particular, when the population contains many non-identical individuals. 
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Figure 3.8: The bit error probability performance with respect to the number of gen-
erations of the GA-assisted multiuser detector employing various selection 
schemes. The configuration of the GA is specified in Table 3.7, while the 
simulation parameters are listed in Table 3.1. 

3.5.7 Effects of a Biased Generated Population 

In Section 2.1, we mentioned that instead of randomly creating the initial population 

of individuals at the commencement of a GA-assisted search, we can invoke any 

useful information that is available to aid us in creating the initial population of 

individuals, in order to aid our search at the beginning. In our case, we can use the 

hard decisions offered by the matched filter outputs Z of Equation (3.16), in order 

to aid our search. We shall denote these hard decisions here aa : 

^mf — 
(3.26) 

where bk,MF for k = 1,..., K is given by Equation (3.11). Two methods of biasing 

are proposed for our investigations. Firstly, we will assign the hard decisions of 

Equation (3.26) to only one individual. The remaining P — 1 individuals will be 

randomly generated. This will ensure that a high diversity of individuals are present 

in the population at the beginning. We shall refer to this method as Ml. For our 

second method, we will assign a different randomly 'mutated' version of the hard 

decision vector b ^ p of Equation (3.26) to each of the individuals in the initial 

population. We shall adopt the same probability of mutation as Pm- In this way, 

the individuals in the initial population will be almost identical. Note that we 
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Setup/Parameter Method /Va lue 

Individual initialisation Given in Figure 3.9 
method 
Selection method Fitness-proportionate 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P 30 
Mating pool size T T < P depending on the number 

of non-identical individuals 
Probability of mutation Pm 0.1 

Table 3.8: Configuration of the GA used to obtain the results of Figure 3.9. Explicit 
description of the fitness-proportionate selection scheme and the uniform 
crossover operation can be found in Section 2.4.2 and Section 2.4.3, respec-
tively. 

cannot assign the same hard decision vector 6^^ to all the individuals, since incest 

prevention is invoked, which will not allow identical individuals to mate. We shall 

refer to this method as M2. Using the GA conEguration listed in Table 3.8, the 

simulation results are shown in Figure 3.9. As the figure suggests, method M2 gives 

a better performance in terms of a faster convergence rate due to a good initial 

population of individuals. This fact conforms to the results obtained in [65]. Hence 

we shall adopt method M2 of initialising the initial population. 

Based on the results gathered from our simulations, the final GA configuration 

that we will be utilising for most of our simulations in this dissertation, unless 

specified otherwise in the associated plots, is given in Table 3.9. The associated 

flowchart is depicted in Figure 3.10. Further useful information can be gleaned 

by comparing our GA configuration to the previously proposed GA-assisted mul-

tiuser detectors [65-68] in the literature, as given by Table 2.3. Notice that a low 

probability of mutation pm aa well as no incest prevention strategy were invoked in 

these proposals [65-68]. On the other hand, according to our results summarised 

in Section 3.5.3 and Section 3.5.5, the e&cts of the value of Pm and those of the 

incest prevention strategy can have a significant impact on the convergence rate 

and hence also on the BEP performance of the GA-assisted multiuser detector. 

As shown in Figure 3.9, our proposed GA-assisted multiuser detector is capable 

of reaching a near-optimal BEP performance within Y = IQ generations with the 

aid of a population size of P = 30 for K = IQ users over an AWGN channel at 

an SNR of 9 dB. This constitutes a total of P x F = 300 number of correlation 

metric evaluations according to Equation (3.25). In fact, as we have mentioned in 
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Figure 3.9: The bit error probability performance with respect to the number of gener-
ations of the GA-assisted multiuser detector employing different methods of 
initialising the individuals at the beginning. The configuration of the GA is 
specified in Table 3.8, while the simulation parameters are listed in Table 3.1 
for = 10 users. 

Section 2.4.6, this number was derived based on the fact that the fitness value is 

calculated for every individual in the population at every generation. However in 

reality, certain individuals will reappear over the course of the evolution. Hence, 

the fitness values of these individuals need not be recalculated, if they are stored 

in memory. Based on our simulations for P = 30, F = 10 and K = 10, we found 

that the average number of unique K-h\i combinations that were evaluated by the 

GA for a single bit interval was % 89. Comparing this number to that of the opti-

mum multiuser detector, which requires 2^° = 1024 correlation metric evaluations 

for every b combination, our proposed GA-assisted multiuser detector is capable 

of attaining a significantly reduced computational complexity and yet delivering a 

near-optimum BEP performance up to a specific SNR value. Hence the implemen-

tation of our proposed GA-assisted multiuser detector is feasible in practical terms 

and offers an alternative to the implementation of the optimum multiuser detector. 

Finally, it should be stressed that we have only explored a fraction of the nu-

merous possible configurations of GAs, a fact noted at the beginning of Chapter 2. 

Furthermore, the settings of certain parameters were not investigated extensively, 

such as the probability of mutation Pm-, the ideal mutation pool size T and the 
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Figure 3.10: A flowchart depicting the structure of the genetic algorithm adopted for 
our GA-assisted multiuser detection technique, which is a specific version 
of Figure 2.1. 
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Setup/Par amet er Method /Value 

Individual initialisation Mutation of of Equation (3.26) 
method 
Selection method Fitness-proportionate 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P 30 
Mating pool size T T < P depending on the number 

of non-identical individuals 
Probability of mutation 0.1 
Termination generation Y 10 

Table 3.9: Configuration of the GA that will be used in this disseration hereafter, unless 
otherwise specified. 

population size P. These values will depend very much on the number of users 

AT and the desired quality of detection. There are also many variants of GAs that 

have not been studied or indeed even highlighted in this dissertation. Hence we 

made no claims about the optimality of the GAs used in this dissertation for the 

application in CDMA multiuser detection. Hence it is possible that different GA 

variants, which were not covered in this dissertation, or a different set of parameters 

may give an even better performance. However, we will show with the aid of the 

following simulation results of this chapter as well as in subsequent chapters that 

the GA configuration of Table 3.9 together with the set of GA parameters that 

we have adopted is capable of offering a satisfactory trade-off between computa-

tional complexity, detection delay and an acceptable BEP performance. Using the 

GA configuration of Table 3.9, let us now consider the BEP performance of the 

GA-assisted CDMA multiuser detector in both an AWGN channel as well as in a 

non-dispersive Rayleigh fading channel. 

3.6 Simulation Results 

3.6.1 A W G N Channel 

All the results in this section were based on evaluating the BBP performance of 

a bit-synchronous K-user CDMA system over an AWGN channel. The signature 

sequences were randomly generated 31-chip per bit sequences and the transmit bit 

energy was assumed to be equal for all users. 
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P=20. Y=15 (300) 
P=30.Y=10 (300) 
P=40. Y=8 (320) 
Optimum for K=10 (1024) 

K=10 
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Figure 3.11: The bit error probability performance of the GA-assisted multiuser detec-
tor as a function of the SNR per bit with population sizes of P = 20,30,40 
using binary random signature sequences of length Nc = 31 for K = 10 
users. The GA configuration used is listed in Table 3.9. The values in 
round brackets in the legend denote the maximum number of times the 
objective function of Equation (3.25) was evaluated upon detecting the bit 
vector b during a bit interval. 

Figure 3.11 shows the average BEP as a function of the SNR per bit for the 

GA-assisted multiuser detector for various population sizes P and different number 

of generations V for K = 10. The values of F and V are assigned such that the 

maximum number of times the objective function of Equation (3.25) was evaluated 

upon detecting the bit vector b during a bit interval is approximately 300. The 

optimum performance of the multiuser detector utilising an exhaustive search for 

= 10 is also shown. In this case, the optimum multiuser detector has to com-

pute the objective function of Equation (3.25) 2^° = 1024 times, which corresponds 

to every possible combination of b. Upon observing Figure 3.11, we notice that 

the GA-assisted multiuser detector is capable of achieving a near-optimum perfor-

mance up to an SNR of 8 dB at a lower computational complexity than that of the 

optimum multiuser detector. Specifically, the minimum reduction in the computa-

tional complexity offered by the GA-assisted multiuser detector over its optimum 

counterpart is [(1024-320)/1024] x 100 = 68.75%. As mentioned previously in Sec-

tion 3.5, this reduction in the computational complexity is expected to be higher if 

the repeated fitness value evaluation of the same individual is circumvented. From 

Figure 3.11, we can see that the BEP performance curves began to flatten at an 
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SNR of 10 dB. This is due to the inadequate population size and/or number of 

generations required for the GA to converge to the optimum performance. Recall 

that in Section 2.1 we stated that the GAs are not guaranteed to Snd the optimal 

solution, unless a sufficiently large population size and an appropriate number of 

generations are guaranteed. On the other hand, it is not a prerequisite that the 

optimum performance must be achieved for every SNR value. The integrity of de-

tection required is usually dependent on the type of service the detection scheme 

is intended for. For example, a speech signal may tolerate a relatively high BEP 

of 10"^ but no latency, while a data signal may require a BEP performance be-

low 10"®, but it can tolerate a higher detection delay. Hence we can immediately 

see that the GA-assisted multiuser detector is capable of offering this trade-off by 

simply adjusting the values of P and Y. 

Let us now consider the scenario when the number of users K is increased to 

20. In the context of the optimum multiuser detector, an exhaustive search would 

required a staggering 2^° = 1,048, 576 number of objective function evaluations, in 

order to obtain the optimum solution. The BEP performance of the GA-assisted 

multiuser detector for various values of P and Y is shown in Figure 3.12. Again, we 

see that by simply expanding the population size P and by extending the number 

of generations Y, the near-optimal BEP performance of the GA-assisted multiuser 

detector found for K = IQ can be maintained, when the number of users is increased 

to K — 20. While this will increase the associated computational complexity of 

the GA-assisted multiuser detector, the maximum number of objective function 

evaluations given by P x F is still significantly lower, than that required by the 

optimum detector. 

Figure 3.13 shows the average BEP performance of the GA-assisted multiuser 

detector as a function of the number of users 7^ for an SNR value of 7 dB. As we can 

see, for a given number of generations F , the population size P must be increased, in 

order to maintain the same level of BEP performance aa A' is increased. However, 

the required increaae in the population size f is not exponentially proportional 

to the number of users. Furthermore, there is a gradual degradation in the BEP 

performance for a given population size f and termination generation F, as the 

number of users jiT increased. 

3.6.2 Single-path Rayleigh Fading Channel 

In this section, the BEP performance of the GA-assisted multiuser detector is eval-

uated for a bit-synchronous K-usex CDMA system over a non-dispersive Rayleigh 

fading channel. The signature sequences were randomly generated Nc = 31-chip 



Chapter 3. GA-Assis ted Multiuser Detect ion for Synchronous Systems 69 

10" r 
K=20 

Equal energy for all users 

& 
SlO-: 

1 0 " 

10" 

icr 

P=40,Y=20 (800) 
P=80, Y=10 (800) 
P=160,Y=10 (1600) 
P=250.Y=10 (2500) 
P=240,Y=20 (4800) 

Optimum, K=20 (1,048,576) 

4 5 6 
SNA per bit 

—< I 

10 

Figure 3.12: The bit error probability performance of the GA-assisted multiuser de-
tector as a function of the SNR per bit with various population sizes P 
and number of generations y for = 20 using binary random signature 
sequences of length Nc = 31. The GA configuration used is listed in Ta-
ble 3.9. The values in round brackets in the legend denote the number of 
times the objective function of Equation (3.25) was evaluated upon detect-
ing the bit vector b during a bit interval. 

per bit sequences and the users' CIR coefficients were assumed to be known 

at the receiver. With the exception of Figure 3.17, the transmit bit energy was 

assumed to be equal for all users. 

Figure 3.14 shows the BEP performance of the GA-assisted multiuser detector 

for different number of generations Y and for different population sizes P. The 

optimum performance for K = 10 users was also plotted for comparison. As it can 

be seen from the figure, the combination of P = 40 and Y = 10 - which constitutes 

a maximum of 40 x 10 = 400 number of objective function evaluations according 

to Equation (3.23) - was capable of achieving a near-optimal BEP performance. 

For SNR values beyond 40 dB, the system exhibited an error floor due to the 

performance limitations of the GA in conjunction with the given P and Y values 

studied. At lower values of Y and P, the error floor occured at a lower SNR 

value. For instance, at y = 10 and f = 20, which requires a maximum of 200 

number of objective function evaluations according to Equation (3.23), the error 

floor occured at an SNR value of about 32 dB, while for SNR values up to 24 dB, 

the detector exhibited near-optimum BEP performance. Hence, again it was shown 
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Figure 3.13: The bit error probability performance of the GA-assisted multiuser de-
tector as a function of the number of K users with population sizes of 
P = 40,80,120,160,200 and y = 10 using binary random signature se-
quences of length Nc = 31. The GA configuration used is listed in Ta-
ble 3.9. The values in round brackets in the legend denotes the number 
of times the objective function of Equation (3.25) was evaluated upon de-
tecting the K-hit vector b during a bit interval. 

here that the GA-assisted multiuser detector was capable of offering a trade-off 

between computational complexity and the optimum BEP performance. 

In order to show that the computational complexity of the GA is not exponen-

tially dependent on the number of users K, the BEP performance was evaluated 

in Figure 3.15 for various number of users, employing P = 40, 80,120,160, 200 in 

conjunction with Y — 10. The results are shown in Figure 3.15. At P = 40 and 

y = 10, we can see that the BEP performance gradually degrades upon increasing 

the number of users, due to the limited population size P, which was too small for 

adequately exploring a significantly larger search space. As the population size P is 

increased, the BEP improves. For a population size of P = 160, we can see that the 

GA-assisted detector is capable of attaining a near-optimal performance, while sup-

porting A!" = 20 users. More importantly, we noted that the number of correlation 

metric evaluations, seen within the brackets in the legend of Figure 3.15 increases 

slower than exponentially as a function of the number of users. For example, when 

K is increased from 10 to 16, the population size P has to be increased from 40 to 

120, in order to maintain the same level of performance. This constituted a factor of 

1200/400 = 3 increased computational complexity, when K was increased from 10 
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Figure 3.14: The bit error probability performance of the GA-assisted multiuser de-
tector as a function of the SNR per bit for i f — 10 users with various 
combinations of P and Y in conjunction with perfect channel estimation 
using binary random signature sequences of length Nc = 31. The GA 
configuration used is listed in Table 3.9. The values in round brackets in 
the legend denote the maximum number of times the objective function of 
Equation (3.25) was evaluated upon detecting the bit vector b during a bit 
interval. 

to 16, while maintaining a near-optimum BEP performance. By contrast, the com-

putational complexity of the optimum multiuser detection using exhaustive search 

would be increased by a factor of = 64. Similarly, when K is increased to 

20, a population size of P = 160 is sufficient for attaining the same level of BEP 

performance. This constituted only a factor of 1600/400 = 4 increased computa-

tional complexity. Furthermore, in contrast to the reduced-complexity tree-search 

type algorithms [26,27] - which can also achieve a near-optimum BEP performance 

at a complexity lower than that of the optimum detector ^ the detection time re-

quired by our GA-based multiuser detector to reach a decision is independent of 

the number of users. Additionally, for the tree-search algorithms a noise whitening 

filter is required. Figure 3.16 portrays the achievable complexity reduction fac-

tor of the GA-assisted multiuser detector, which was defined as Specifically f x y 
the numerator quantifies the number of correlation metric evaluations required by 

the optimum multiuser detector, while the denominator indicates the number of 

correlation metric evaluations required by the GA-assisted multiuser detector, in 

order to attain the optimum performance at an SNR value of 24 dB. This figure 
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Figure 3.15: The bit error probability performance of the GA-assisted multiuser de-
tector as a function of the number of K users with populations size of 
P = 40,80,120,160,200 and Y = 10 in conjunction with perfect channel 
estimation using binary random signature sequences of length A?c — 31. 
The GA configuration used is listed in Table 3.9. The values in round 
brackets in the legend denote the number of times the objective function 
of Equation (3.25) was evaluated upon detecting the K-h\i vector h during 
a bit interval. 

was extracted from the results obtained in Figure 3.15. As seen from the Egure, 

the complexity reduction offered by the GA-assisted multiuser detector over the 

optimum detector becomes more significant, as the number of users is increased. 

Figure 3.17 shows the near-far resistence of the proposed GA-assisted multiuser 

detector in conjunction with perfect CIR estimation. The average received bit 

energy of the desired user remained unchanged, while the energies of all other 

users for /c = 2 , . . . , iiT were either 6 dB or 10 dB higher, than that of the desired 

user. We can see that the GA-assisted multiuser detector was near-far resistent. 

3.7 Chapter Summary and Conclusions 

In this chapter, our model of a bit-synchronous CDMA system communicating over 

a single-tap Rayleigh fading channel was presented in Section 3.2 and its equivalent 

discrete representation was considered in Section 3.3. Based on this model, the op-

timum multiuser detector based on the maximum likelihood criterion was derived 

in Section 3.4. It was shown that the correlation metric of Equation (3.23) for the 
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Figure 3.16: The complexity reduction factor between the optimum multiuser detec-
2^ 

f x y ' 
where the tor and the GA-assisted multiuser detector according to 

numerator denotes the number of correlation metric evaluations required 
by the optimum multiuser detector, while the denominator denotes that 
required by the GA-assisted multiuser detector, in order to attain the op-
timum performance at an SNR value of 24 dB, based on the results of 
Figure 3.15. 

optimum multiuser detection scheme is cast in the form of a combinatorial optimisa-

tion function and its computational complexity is exponentially proportional to the 

number of users. Thus its implementation becomes impractical, when there is a high 

number of users. A GA-assisted multiuser detector was proposed in this chapter, in 

order to circumvent the above-mentioned complexity problem. According to the re-

sults obtained from other similar GA-assisted multiuser detector proposals [65-68] 

found in the literature, which were summarised in Section 3.5.2, traditional GAs 

generally have a slow convergence rate, rendering them unsuitable for real-time data 

detection. In order to mitigate this impediment, we conducted a series of experi-

ments presented in Section 3,5, for finding a particular OA configuration, from the 

family of techniques highlighted in Chapter 2, which can offer the best trade-off be-

tween the detection delay, computational complexity and BEP performance. Based 

on the results obtained from our experiments, the GA configuration that we have 

adopted in our GA-assisted multiuser detector was given in Table 3.9. The notable 

differences between our favoured GA configuration and those utilised in [65-68], as 

shown in Table 2.3, are the probability of mutation pm and the employment of the 

incest prevention strategy. As suggested by in Figure 3.3 and in Figure 3.6, these 
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Figure 3.17: The bit error probability performance of the GA-assisted multiuser detec-
tor for K = 10 users with Ck/Ci 0 dB, 6 dB and 10 dB for A; = 2 , . . . , if in 
conjunction with perfect channel estimation using binary random signature 
sequences of length 31. The GA configuration used is listed in Table 3.9. 
The values in round brackets in the legend denote the number of times the 
objective function of Equation (3.25) was evaluated upon detecting the 
K-bit vector b during a bit interval. 

two features can have a significant impact on the convergence rate and hence on the 

achievable BEP performance of the GA-assisted multiuser detector. For our advo-

cated GA configuration, the incest prevention strategy and a relatively high value of 

Pm were invoked, since a faster convergence and an improved BEP performance can 

be achieved, as illustrated in Figure 3.3 and in Figure 3.6. Last but not least, the 

BEP performance of the GA-aasisted multiuser detector was assessed in Section 3.6 

for a bit-synchronous CDMA system for transmission over an AWGN channel as 

well as a single-path Rayleigh fading channel. We have shown that with the aid of 

a sufficiently high population size P and for a reasonable number of generations F, 

the BEP performance of the GA-assisted multiuser detector approaches that of the 

optimum multiuser detector at the cost of a significantly lower computational com-

plexity. Our results for a single-tap Rayleigh fading channel were obtained based 

on the perfect knowledge of each user's CIR coefficients at the receiver. In reality, 

these CIR coefficients have to be estimated by some means. In our next chapter, we 

will show that it is possible to extend the GA-assisted multiuser detector introduced 

in this chapter, such that the users' CIR coefficients can be estimated concurrently 

with the data detection without the assistance of any pilot signals. 



C H A P T E R 4 

Joint Genetic Algorithm-Assisted 

Channel Estimation and 

Multiuser Detection 

4.1 Introduction 

Our work in the previous chapter was based on the assumption that perfect chan-

nel estimation is available at the receiver, in order to perform coherent detection of 

the received signals. Conventionally, the fading CIR coefEcients of Equation (3.5) 

are usually estimated using a pilot signal, as for example on the downlink of the 

IS-95 system [6], or employing a sequence of pilot symbols [77], in order to facilitate 

coherent detection. However this technique becomes inefficient on the uplink, since 

an independent pilot signal is required for each user in order to estimate the inde-

pendent fading CIR coefficients experienced by each user's signal. Nonetheless, in 

order to support multiuser detection, this approach was used in the third-generation 

UTRA system [5]. According to our proposal, the associated inefficiency can be 

eliminated by invoking joint channel and data estimation, which is the topic of this 

chapter. 

The notion of joint multiuser symbol detection and channel estimation was ad-

dressed for example in [30,78-80]. In [78], symbol detection was accomplished using 

75 
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a tree-search algorithm, while the users' complex signal amplitudes were estimated 

using recursive least-squares techniques. In [79], Gauss-Seidel iterations were ap-

plied, in order to solve the joint symbol detection and channel estimation problem. 

The channel estimation was performed using the Expectation Maximization (EM) 

algorithm, while a multistage detection algorithm was used for detecting the data 

packets. In [80], joint multiuser detection and channel estimation was performed 

using two diGerent types of decorrelators in conjunction with a channel estimator. 

A path-by-path decorrelator was used to provide noisy channel information for the 

channel estimator, while a channel-matched decorrelator decides on the symbols 

transmitted and these decisions were fed back to the channel estimator as reference 

signals. In [30], a decorrelator and a Kalman filter were used for symbol detection 

and channel estimation, respectively. A so-called per-survivor approach was also 

proposed in [30], which used a bank of Kalman filters for channel estimation. We 

note that in all the proposed methods mentioned above [30,78-80], the symbol de-

tection and channel estimation were performed using two separate but interlinked 

techniques, which potentially incurs additional complexity. 

In this chapter, we present a novel approach to the problem of joint symbol 

detection and channel estimation in DS/CDMA for transmissions over flat-fading 

channels based on a GA-assisted innovation. In Chapter 3, GAs were invoked, 

in order to detect a particular combination of the users' transmitted bits b that 

maximises the objective function of Equation (3.23). Hence the search space was 

discrete, having a finite number of search points that is exponentially dependent on 

the number of users. However, in the context of joint CIR estimation and symbol 

detection solely by the GAs - as considered in this treatise - the search space is 

continuous having an infinite number of possible points, simply because the fading 

attenuation and phase trajectories are continuous. A GA-based channel estimation 

technique has been proposed previously in [81], which employed the Viterbi algo-

rithm for data detection in a single-user receiver. We will show in Section 4.3 that 

the CIR estimation can be performed jointly with the symbol detection using the 

same GAs simultaneously, without incurring any additional computational com-

plexity. Hence, unlike the research presented in the previous chapter, the CDMA 

multiuser detector proposed here takes into account the channel estimation error. 

Furthermore, in contrast to Kalman filter-based CIR estimation [18], which is CIR-

dependent, no knowledge of the CIR is required for our proposed estimator. Since 

the CIR estimation can be conducted without explicit training sequences or decision 

feedback, our proposed detector is capable of offering a potentially higher through-

put and a shorter detection delay, than that of explicitly trained CDMA multiuser 
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detectors. 

This chapter is organised as follows. Section 4.2 describes the system model 

used in this chapter, which is only slightly different from the model we detailed 

in Section 3.2 of the previous chapter. This modification is introduced, in order 

to take into account the correlation of the CIR coefficients between consecutive 

bit intervals. Section 4.3 describes the GAs used to implement our proposed joint 

multiuser channel estimator and symbol detector. The GA condguration used in 

this chapter will be slightly different from the one listed in Table 3.9, since floating 

point or real-valued variables are involved here. Our simulation results are presented 

in Section 4.4, while Section 4.5 concludes the chapter. 

4.2 System Model 

We will again adopt the symbol-synchronous CDMA system model highlighted in 

Section 3.2, where K users transmit data packets over a single-path frequency-

nonselective Rayleigh fading channel, as depicted in Figure 4.1. The channel im-

pulse response (CIR) of each user is as given by Equation (3.5). However, in this 

chapter we will assume that the CIR coefficients Ck = for k = 1 , K are 

varied over the duration 2} of the M-bit transmission frame according to the max-

imum Doppler frequency fd- For mobile terrestrial communications, the maximum 

Doppler frequency is related to the user's velocity v and the transmission wave-

length A by /d = u/A [30]. Hence, the superscript (m) in Equation (3.1), which 

denotes the mth bit interval, has to be included in our analysis. There are numerous 

models that can be used to describe the fading channel characteristics, for example 

Jakes' model [22] or a first-order Gauss-Markov model, as given by [82]: 

(m+l) _ 
Cj. — ac + f , (4.1) 

where is the CIR coefficient associated with the Ath user during the mth symbol 

interval, a = exp{—2TTfdTb), is the bit duration and is a zero-mean white 

Gaussian variable. Kalman filter-based CIR estimation requires exact knowledge 

of a and that of the variance of the kth user, which must be acquired with 

the aid of training symbols and has to be updated frequently over a time-variant 

channel [83,84]. Alternatively, we can express the relation between and 

as 

= (4.2) 
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Figure 4.1. Block diagram of the if-user synchronous CDMA system communicating over a flat Rayleigh fading channel using differential encoding. 
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where is a random variable whose value is dependent on o and Note 

that Equation (4.2) is analogous to the Leaat Mean Square (LMS)-ba8ed CIR es-

timator [85]), in which (see Equation (8) 

of [85]), where // is the step size. 

In the context of joint channel estimation and symbol detection using Phase 

Shift Keying (PSK), there is always the inherent problem of a phase ambiguity of tt 

in the estimated CIR coefBcients. In order to overcome this problem, the incoming 

antipodal data bit stream m = 0 , . . . , M — 1, is differentially encoded [15,86], 

as shown in Figure 4.1. Then according to [22] we have : 

(4.3) 

where for m = 0 , . . . , M — 1 constitutes the differentially encoded bit stream. 

From Equation (4.3), we can see that the differentially encoded bit stays at the 

same logical value as the previous differentially encoded bit, when 6^^ = 1 and 

vice versa. The differential encoder is initialised with = 1, which is known 

to the receiver. Hence we will transmit the pilot symbol together with the 

encoded bits m = 0 , . . . , M — 1. However, in Section 4.3 we will show that 

it is not necessary to transmit the pilot symbol, for reasons to be highlighted at a 

later stage. Hence in conjunction with differential encoding, the transmitted signal 

Sk{t) of the Ath user, as illustrated in Figure 4.1, becomes : 

/ — I \ 
gt(^) = V a E - mTl,), VA; = 1 , . . . , JiT (4.4) 

m = — 1 

where (M + 1) is the number of data bits in a frame transmitted by each user, is 

the bit energy of the A;th user and 0A;(() is the signature sequence of the /cth user, 

aa given by Equation (3.2). 

At the receiver, upon detecting the differentially encoded bits of Figure 4.1, 

the actual data bits are obtained according to : 

for m = 0 , . . . , M — 1. (4.5) 

Hence, if the CIR coefficients are estimated with a phase offset of vr for at least 

two consecutive bits, such that ^ and ^ are detected instead of the 

actual values of ' and ,̂ respectively, then the sign of the differentially 

encoded detected bits and will be the opposite of the actual transmitted 

differentially encoded bit, since again their phase is shifted by tt. In this case it is 

assumed that the bits are detected 'correctly'. Differential decoding can cancel out 
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this CIR-estimation-induced phase shift according to Equation (4.5). Therefore we 

can see that differential encoding is important, if the channel estimation is not aided 

by pilot signals/symbols. On the other hand, systems utilising differential encoding 

suffer from a 3 dB SNR loss compared to coherently detected BPSK modulation, 

since a detection error in a differentially encoded bit results in two errors of 

the decoded bits, as it can be deduced from Equation (4.5). 

In this chapter, we are interested in determining the unknown differentially 

encoded data bits as well as the CIR coeGcients for m = 0 , . . . , M — 1 

and k — 1,... ,K at the receiver, in order to perform coherent detection of the 

received signals. Following the analysis conducted in Sections 3.2-3.4, it can be 

shown that the correlation metric conditioned on the matrix containing the 

CIR coefficients in its diagonal and on the vector incorporating the data bits 

is given by [27,79] : 

0 = 2% (4.6) 

where . . . , and ^ are as given by Equation (3.14), with the 

inclusion of the superscript (m) for denoting the mth signalling interval. Further-

more, , . . . , denotes the matched filter outputs at the mth sig-

nalling interval, as shown in Figure 4.1, whose elements are given by Equation (3.8) 

with replaced by for A; = 1 , . . . , AT. The A" x -dimensional signature se-

quence cross-correlation matrix R is identical to that given by Equation (3.17). 

The decision rule for the optimum joint multiuser channel estimation and symbol 

detection scheme is to choose the channel coefficient matrix and the differ-

entially encoded symbol vector which maximises the correlation metric given 

in Equation (4.6), under a constraint on the channel coefficient matrix as 

imposed by Equation (4.2). Hence, 

subject to -k (4.7) 

According to Equation (4.7), when both the CIR cofficients and the transmitted 

data sequence are unknown, their optimal estimates can, in fact, be jointly ob-

tained by optimising the correlation metric. Equation (4.7) constitutes a global 

optimisation problem, which is non-linear, since it entails taking the maximum of 

0 . Furthermore, Equation (4.7) cannot be solved using a conventional 

linear optimisation approach or employing an exhaustive tree search, because the 
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actual values of the channel coefBcient matrix in Equation (4.6) are unknown, 

unless a separate CIR estimator is incorporated, as in [78]. 

4.3 Joint GA-assisted Multiuser Channel Esti-

mation and Symbol Detect ion 

In this section, GAs are developed, in order to solve the joint CIR estimation and 

symbol detection optimisation problem, where the required objective function is de-

hned by the correlation metric in Equation (4.6). Again, we will take the exponential 

of Equation (4.6), in order to ensure that all the Btness values calculated from this 

equation become positive. Hence the modiSed objective function becomes : 

exp {O = exp {2% . 

(4.8) 

In this case, we are interested in determining the CIR matrix for m = 

—1,. . . , M — 1 and the data vector for m = 0 , . . . , M — 1 that maximise the 

modified objective function of Equation (4.8). Hence, each individual of the GA 

will consist of two if-variable vectors, namely the CIR coefficient vector {y) — 

Cp̂ (̂z/), Cp̂ (̂2/), . -, Cp^(2/) , which is composed of continuous-valued real and imag-

which is inary parts, and the data vector ej,"'̂ (2/) = (2/) ,% (z/), - - , % ( 2 / ) 

composed of the binary-valued antipodal bits of the K users at instant m. The 

parameters m,!/ and p denote the mth signalling interval, the i/th generation and 

the pth individual, respectively. Each individual is associated with a certain fitness 

IS value. The fitness value of the pth individual, denoted by fp , e ^ \ y ) 

computed by substituting its corresponding CIR coefficient vector estimate (?/) 

and data vector estimate €("")(?/) into the objective function of Equation (4.8). The 

individual that corresponds to the highest-fitness value at the end of the evolution 

is finally chosen as the descriptor 0 

the transmitted encoded bits 

is finally chosen as the descriptor of the estimated users' CIR coefficients and 

4.3.1 Initialisation 

In the previous chapter, we were only interested in detecting the users' transmitted 

bits per signalling interval. Since the transmitted bits are independent of each other 

in consecutive bit intervals, the initialisation of the GA, as invoked in Chapter 3 

is also independent for consecutive signalling intervals. On the other hand, in 

this chapter, the CIR coefficients to be estimated are correlated for consecutive 
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bit intervals according to Equation (4.2). Hence we can use the CIR coefEcients 

estimated during the previous bit interval for initialising the CIR coefficient vector 

associated with each individual of the population in the current bit interval. More 

explicitly, aasuming that the current signalling interval is the mth interval, we have : 

c'"''(0) = MUTATION for p = 2 , . . . f , (4.9) 

where ^ consists of the K users' estimated CIR coefficients accruing from the 

previous signalling interval. The mutation operation applied to the pth individual 

for p = 2,... ,P is necessary, in order to diversify the initial population as well 

as to provide dissimilar individuals for preventing incest mating, as highlighted in 

Section 2.4.2. The mutation process of the CIR coeKcients will be detailed further 

in Section 4.3.3. 

Recall from our discourse in the previous section tha t at m = — 1 the users' 

data has to be a known bit, since the transmitted bit sequences are diEerentially 

encoded. We also mentioned that we will transmit this known symbol, even though 

it is demonstrated in Section 4.2 that it is not absolutely necessary. The reason for 

transmitting it is that we can use this pilot symbol, in order to aasist in estimating 
" (—1) 

the CIR coefficients C . Hence based on this known da ta bit, the CIR coefficient 

vectors (0) associated with the P individuals of the initial population can be 

assigned by estimating the CIR coefficients with the aid of the output of the matched 

filters according to ; 

C ; ^\0) = Z(-^)'^diag 
1 

^ ( - 1 ) Ti^TTI-n ArrtT/^AT Cp %0) = MUTATiOiV 10) for p = 2 , . . . , f (4.10) 

where is given by Equation (3.16) with replaced by = 1 for A = 

1,... ,K. The estimated CIR coefficients will be contaminated by the MAI, as it 

is evidently seen from Equation (3.8), and hence will be inaccurate. Nevertheless, 

these CIR coefficient estimates will provide a good foundation for the GA to evolve 

from. Again, for the individuals (0), where p - 2, . . . , f , the associated 

CIR coefficient vectors are randomly mutated versions of c [ ^\o) for the reasons 

highlighted above. 

Similarly to the previous chapter, the A'-bit data vector associated with each 

individual is generated at the beginning by randomly mutating the hard decisions 
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generated from the matched Biter outputs, as it was highlighted in Section 3.5.7 

for the method M2. However, in this case, the CIR coefRcients for the current 

signalling interval are unknown. Since the CIR coefBcients are highly correlated 

between consecutive signalling intervals, as indicated by Equation (4.2), we can 

use the estimated CIR coefRcients C generated during the previous signalling 

interval for coherently detecting the hard decisions derived from the matched Alter 

outputs during the current signalling interval, in order to obtain an adequately 

biased initial population. Hence we have : 

(m) (0) = MC/TAT/OTV |sgn (m-l)' 
for p = 1 , . . . , f (4.11) 

After the initialisation of the individuals in the population, the GA is then 

invoked, in order to Rnd the individual that yields the highest Rtness value according 

to Equation (4.8). A flowchart depicting the structure of the proposed GA used 

to jointly estimate the users' CIR coefBcients and to detect the transmitted 

diGerentially encoded bits at the mth signalling interval is shown in Figure 4.2. 

As we can see, the GA that is adopted here is similar to that employed in the 

previous chapter, as shown in Figure 3.10. However, due to the continuous-valued 

nature of the CIR coefficients, there will be an infinite number of possible solutions 

for the CIR coefficient vector that the GAs will handle. Hence, the GA configuration 

specified in Table 3.9 that is used to search for the optimum CIR coefficient vector in 

this chapter is slightly different from that used for finding the optimum data vector. 

Specifically, the mutation operation designed for real-valued decision variables, as 

highlighted in Section 2.4.4, will be adopted for determining the CIR coefficient 

vector associated with each individual, which requires the determination of the 

maximum mutation size Xmax- Furthermore, the mating pool size T will have a 

significant impact on the CIR estimation performance, since we are unlikely to 

come across identical individuals in a given population due to the infinite number 

of possible solutions of the continuous-valued CIR coefficient vectors. Because of 

this, all the individuals in the population are likely to be considered as potential 

parents. However, due to the high number of potential parents in the mating 

pool, insufficient selection emphasis might be placed on any individual, since each 

continuous-valued CIR tap estimate is likely to be encountered only once, despite 

having a range of similar continuous-valued CIR taps. 
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Figure 4.2: A flowchart depicting the structure of the proposed genetic algorithm used 
to jointly estimate the users' CIR coefficients and to detect the transmitted 
differentially encoded bits at the mth signalling interval. 
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Parameter Value 

Spreading factor Nc 31 
Modulation mode Differential Encoded BPSK 
Number of CDMA users K 10 
SNR per bit Infinity for A; = 1 , . . . , AT 
Doppler frequency 200 Hz 
Data rate 64 kbps 
Packet size M 100 

Table 4.1: Simulation parameters for the experiments of Figures 4.3-4.4. 

Setup/Parameter Method /Value 

Individual initialisation 
method 

According to Equation (4.9) for m = 0 , . . . , M — 1 
and Equation (4.10) for m= —1 

Selection method Fitness-proportionate 
Crossover operation Uniform crossover 
Mutation operation Standard floating point mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P Given in the associated plots 
Number of generations Y Given in the associated plots 
Mating pool size T Given in the aasociated plots 
Probability of mutation pm 0.1 
Mutation size 0.1 

Table 4.2: Configuration of the GA used to obtain the results of Figure 4.3 and Fig-
ure 4.4. Explicit description of the fitness-proportionate selection scheme, 
the uniform crossover operation and the floating point mutation operation 
can be found in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 
The definition of the mutation size will be given in Section 4.3.3. 

4.3.2 Effects of the Mating Pool Size 

In this section, we will investigate the effects of the mating pool size T on the 

performance of the CIR estimator section of our proposed GA-assisted multiuser 

detector. Hence we shall assume that the received data bits are known. In other 

words, the data vectors associated with all the individuals p = 1 , . . . , f and 

2/ = 0 , . . . , y — 1 in the population are equal to the transmitted data vector 

In order to quantify the channel estimator's performance, the Mean Squared Error 

(MSB) between the true value and the estimated value of the channel's attenuation 

was obtained. A summary of the various parameters and the GA configuration that 

are used in our simulations in this section are shown in Table 4.1 and Table 4.2, 

respectively. 

Figure 4.3 shows the achievable CIR estimation MSE over 20 generations at 

the end of the M = 100-bit data packet for various mating pool sizes T with a 
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Figure 4.3: The mean squared error performance of the GA-assisted CIR estimator as 
a function of the number of generations y for a population size of P = 40 in 
conjunction with various mating pool sizes T using binary random signature 
sequences of length = 31. The GA configuration and the simulation 
parameters used are listed in Table 4.2 and Table 4.1, respectively. 

population size of 40 individuals. As it can be seen, when T = P = 40, the lowest 

achievable MSE of the GA-assisted CIR estimator is relatively high, in the region 

of 0.02. Furthermore, the convergence rate is relatively low. As the mating pool 

size is reduced, an MSE improvement can be observed, reaching values as low as 

0.0001 for T = 10 and 5. 

Figure 4.4 shows the achievable MSE for various population sizes P in conjunc-

tion with different mating pool sizes T. As it can be seen, the value of T has a 

significant impact on the achievable MSE. Specifically, the MSE becomes higher as 

T increases. The MSE is less sensitive to small values of T. This is justified with 

the aid of the following simple example. Let us assume that T = 4, in which case 

the lowest possible probability of selection associated with the individual having the 

highest fitness value is 0.25. On the other hand, in case of T = 10, the lowest pos-

sible probability of selection of the same individual becomes 0.1. Hence we can see 

that the emphasis placed on the best individual is lower for the latter case, which 

resulted in a slower convergence. This phenomenon will be investigated in more 

depth in the context of Figure 6.6 in conjunction with asynchronous GA-assisted 

multiuser detector. Hence in our case, we will adopt a mating pool size of T = 5 

for our simulations in this chapter. 



Chapter 4. Joint GA-Assis ted Channel Est imation a n d Symbol Detection 87 

1 0 ' 

LU 
CO 

LU 

3 
5" 
c 
§ 

o • 
A 

P=50,Y=10 
P=40.Y=10 
P=30,Y=10 

. - D - -

—O 

10 W 15 Ml 
Mating Pool Size T 

25 

Figure 4.4: The mean squared error performance of the GA-assisted CIR estimator as 
a function of the mating pool size T in conjunction with various population 
sizes P using binary random signature sequences of length Nc = 31. The 
GA configuration and the simulation parameters used are listed in Table 4.2 
and Table 4.1, respectively. 

4.3.3 Effects of the Mutation Size 

The mutation operation that is adopted to alter the value of the estimated CIR 

coefficients is conducted as follows. When a complex-valued variable associated 

with the CIR coefficient vector is picked for mutation, the direction of mutation 

is chosen randomly with equal probability for both the real and imaginary-part of 

the CIR coefRcient. Then a real-valued random mutation size is generated 

in the range of [0,Xmax], having a uniform PDF. The value of both the real and 

imaginary part of the CIR coefficient is then increased or decreased accordingly by 

a magnitude prescribed by the mutation size : 

% 

9? 

;("i) 

(3/) 

% 1)1 ± A M 

c W ( y - l ) l ± A r ( j / - l ) (4.12) 

Notice that a limit is imposed on the value of (i/) by the parameter 

order to ensure that the associated phase ambiguity becomes significantly less than 

TT. This is to ensure that the phase ambiguity will not change from the (m — l)th 

symbol to the mth symbol, unless the phase is near zero, as we shall see in the 

context of one of our simulation results in Section 4.4. On the other hand, the 

in 
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Parameter Value 

Spreading factor 31 
Modulation mode Differential Encoded BPSK 
Number of CDMA users K 10 
SNR per bit (&/Wo Given in the associated plots 
Doppler frequency fa 200 Hz 
Data rate ^ 64 kbps 
Packet size M 200 

Table 4.3: Simulation parameters for the experiments of Figures 4.5-4.6. 

Setup /Par amet er Method /Value 

Individual initialisation According to Equation (4.9) for m = 0 , . . . , M - 1 
method and Equation (4.10) for m = — 1 
Selection method Fitness-proportionate 
Crossover operation Uniform crossover 
Mutation operation Standard Soating point mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P 40 
Number of generations F 10 
Mating pool size T 5 
Probability of mutation pm 0.1 
Mutation size Amai Given in the associated plots 

Table 4.4: Configuration of the GA used for obtaining the results of Figure 4.5 and 
Figure 4.6. Explicit description of the fitness-proportionate selection scheme, 
the uniform crossover operation and the floating point mutation operation 
can be found in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 

value of Xmax should be sufficiently high - especially for high Doppler shifts - in 

order to track the evolving CIR coefficients from one symbol to the next. In other 

words, the ideal value of Amai is directly related to the Doppler frequency / j . Hence 

in this section, we will attempt to determine the appropriate value of Amoi that is 

acceptable for our application. Again, we will consider the MSE performance of 

the CIR estimator section of our proposed detector in conjunction with known 

transmitted bits. The simulation parameters and the GA configuration used for 

our study in this section are given in Table 4.3 and Table 4.4, respectively. 

In Figure 4.5 we examined the effects of diSerent Amoz values on the lowest 

achievable CIR estimation MSB for various Doppler Arequencies and SNR values. 

In order to characterise the worst case scenarios in terms of the vehicular speeds 

in Figure 4.5, we opted for using extremely high Doppler frequencies. Explicitly, 

we found that the GA-assisted multiuser detector MSE reached its best possible 

value even for a Doppler frequency of = 600 Hz at the SNR value investigated. 
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Figure 4.5: Average mean squared channel estimation error after convergence in a if = 
10-user synchronous CDMA system transmitting known bits and having 
equal averaged received bit energy for all users over a narrowband Rayleigh-
fading channel at various Doppler frequencies fa- The GA configuration 
and the simulation parameters used are listed in Table 4.4 and Table 4.3, 
respectively. 

From the figure we can see that the value of X^ax can have a significant impact 

on the lowest achievable CIR estimation MSE for different fd values. In an effort 

to quantify the worst-case performance of the algorithm, we tested it in high-speed 

scenarios, such as for example a vehicular speed of 114 k m / h - 342 km/h at 1.9 GHz 

carrier frequency. This resulted in a Doppler frequency of 200-600 Hz. For example, 

when fd = 200 Hz, Xmax ~ 0.04 gives the optimal MSE for all SNR values. However, 

for the same value of Xmax = 0.04, the MSE for fd = 600 Hz becomes excessive due 

to the fact that a low X^ax value is incapable of tracking the rapidly changing CIR 

coefficients between symbols. Moreover, we can see tha t the achievable MSE is 

more sensitive to lower values of X^ax for the various Doppler frequencies assumed. 

On the other hand, only a slight degradation in the achievable MSE is observed, as 

Amai increases to a higher value. 

Figure 4.6 compares the average MSE performance versus symbol index of the 

GA-assisted CIR estimator in conjunction with known bits for different SNR values 

and for Xmax = 0.05 as well as for X^ax = 0.1 measured over a frame of 200 known 

bits. Averaging over 200 transmitted frames was carried out with equal average 
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Figure 4.6: Average mean squared CIR estimation error versus transmitted symbol in-
dex in a K = lO-user synchronous CDMA system for a frame of 200 known 
bits. Averaging over 200 transmitted frames was carried out with equal av-
eraged received bit energy for all users over a narrowband Rayleigh-fading 
channel at fd = 200 Hz. The GA configuration and the simulation parame-
ters used are listed in Table 4.4 and Table 4.3, respectively. 

received bit energy for all users. It is seen in the figure that GAs using Xmax = 0.05 

can achieve a lower MSE, than in conjunction with Amm = 0.1. However, the former 

suffered from a longer convergence period. 

Based on the results obtained in Figure 4.5 and in Figure 4.6, we decided to 

adopt Xmax = 0.1 for our simulations hereafter, since this value resulted in a fairly 

consistent MSE over an range of 200 Hz to 600 Hz as well aa ensuring a fast 

convergence rate. Finally, due to its moderate value it avoided the phase-ambiguity 

problem. 

4.4 Simulation Results 

In this section our simulation results are presented in order to characterise the 

performance of the proposed joint multiuser CIR estimator and symbol detector. 

A summary of the various parameters and the GA configuration that are used in 

our simulations are shown in Table 4.5 and Table 4.6, respectively. 
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Parameter Value 

Spreading factor 31 
Modulation mode Differential Encoded BPSK 
Number of CDMA users K 10 
Doppler frequency 200 Hz 
Data rate 64 kbps 
Packet size M 640 

Table 4.5: Simulation parameters for the experiments of Figures 4.7-4.12. 

Setup/Parameter Method/Value 

Individual initialisation According to the flowchart 
method of Figure 4.2 
Selection method Fitness-proportionate 
Crossover operation Uniform crossover 

Mutation operation - Floating point mutation for (?/) 
- Binary mutation for (?/) 

Elitism Yes 
Incest Prevention Yes 
Population size P 40, unless specified otherwise 
Number of generations Y 10 
Mating pool size T 5 
Probability of mutation Pm 0.1 
Mutation size Amai 0.1 

Table 4.6: Configuration of the GA used to obtain the results of Figures 4.7-4.12. Ex-
phcit description of the fitness-proportionate selection scheme, the uniform 
crossover operation and the floating point mutation operation can be found 
in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 

Before we examine the BEP performance of the proposed detector, let us first 

consider the tracking capability of the GA-assisted CIR estimator both in conjunc-

tion with known and unknown bits, as characterised in Figure 4.7 and Figure 4.8, 

respectively. Specifically, a snap-shot of the estimated real and imaginary compo-

nents of the CIR coefficient of a user is compared with its corresponding true value. 

Notice the mirror image of the estimated components after about 400 symbols with 

respect to the zero level of the y-axis in Figure 4.8, when the transmitted bits and 

the CIR are jointly estimated by the proposed GA-assisted multiuser detector. This 

will result in the phase ambiguity we have mentioned previously due to the 180° 

change in the CIR's phase potentially changing the sign of the estimated bit in the 

case of BPSK. More explicitly, this change in the phase is caused by the mutation 

process in an attempt to estimate the desired CIR coefficients. The bits in this am-

biguity region will be detected in error, unless differential encoding and decoding 

are invoked. However, on the whole the GA-assisted CIR estimator was capable of 
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Figure 4.7: A snap-shot of the estimated real and imaginary components of the CIR 
coefficients in conjunction with known transmitted bits corresponding to one 
user compared to its true value for a narrowband Rayleigh-fading channel 
at fii = 200 Hz, where the GA configuration and the simulation parameters 
used are listed in Table 4.6 and Table 4.5, respectively. 

tracking the chemnel variations closely, regardless of whether the bits were known 

or unknown. 

Figure 4.9 compares the MSE of the proposed CIR estimator to that of the 

conventional correlation-type estimator [18]. The single-user bound using the Lin-

ear Minimum Mean Squared Error (LMMSE) CIR estimator given in [87] was also 

plotted for comparison. It can be seen that our proposed GA-zissisted CIR estima-

tor exhibited a significantly lower MSE value, than t h a t of the conventional CIR 

estimator. 

Figure 4.10 shows the BEP performance of the proposed GA-assisted joint CIR 

estimator and symbol detector for spreading factors of Â c = 31 and Nc = 127. 

The BEP performance of the GA-assisted symbol detector using imperfect CIR 

estimation having a MSE of 0.01 and 0.001 is also shown. Furthermore, we plotted 

in the figure the differentially-coded single user bound in conjunction with perfect 

CIR estimation, which is given by [75] : 

1 
1 7c 

l + 7 c , 
(4.13) 
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Figure 4.8: A snap-shot of the estimated real and imaginary components of the CIR 
coefficients in conjunction with unknown transmitted bits corresponding 
to one user compared to its true value for a narrowband Rayleigh-fading 
channel at fd — 200 Hz, where the GA configuration and the simulation 
parameters used are listed in Table 4.6 and Table 4.5, respectively. 

as well as the differentially decoded BEP performance of the proposed GA-assisted 

symbol detector using perfect CIR estimation. As it can be observed, the joint 

CIR and data detector exhibited an error Hoor due to the imperfect CIR estimar 

tion and the MSE of the CIR estimation was somewhere between 0.01 and 0.001, 

which conforms to our results obtained previously in Figure 4.6. The error floor 

phenomenon can also be observed in the context of other multiuser detectors suEer-

ing from CIR estimation errors [82]. For the sake of comparison, the joint symbol 

detection and CIR estimation using a decorrelator and an ideal Kalman filter shown 

in [82] achieved a BEP of 10"^ for K = IQ users and for a processing gain of 127. 

As shown in Figure 4.10, our proposed joint data and CIR detector is attaining a 

BEP performance close to 10"^. Furthermore, it should be noted that our BEP is 

calculated over the entire length of the transmitted bit sequence, i.e. from the 0th 

symbol to the (M — l) th symbol, rather than after the initial convergence. Hence 

the bit errors observed during the acquisition of the CIR estimates were also taken 

into account. The CIR estimation error induced BEP floor can also be observed for 

a single-user transmission scenario, i.e. for iiT = 1 using the matched filter based 
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Figure 4.9: Average mean squared CIR estimation error in a — 10-user synchronous 
CDMA system with known transmitted bits compared to that of a conven-
tional correlator-type CIR estimator in a ii" = 10 user system and to that of 
a single user LMMSE estimator over a narrowband Rayleigh-fading channels 
at fd = 200 Hz. The GA configuration and the simulation parameters used 
are listed in Table 4.6 and Table 4.5, respectively. 

coherent receiver, as shown in Figure 4.11. It can be seen that the BEP perfor-

mance of both the matched filter detector supporting K = 1 user and that of the 

GA-assisted multiuser detector for = 10 is almost identical for CIR estimation 

MSE values of 0.01 and 0.001. This shows that the GA-assisted multiuser detector 

is operating near its optimum performance. 

Figure 4.12 characterises the BEP performance of the proposed GA-assisted 

joint multiuser CIR estimator and symbol detector for different population sizes P. 

As it can be seen from the figure, no significant BEP performance improvement 

can be achieved by increasing the population size. This is an expected observation, 

since in Figure 4.4 the achievable MSE was observed to be almost the same for the 

different population sizes studied. 

4.5 Chapter Summary and Conclusion 

In this chapter, GAs were developed in order to jointly estimate the CIR coeScients 

as well as the transmitted bits simultaneously for all users in a symbol-synchronous 

CDMA system based on the ML decision rule. The system model used in this 
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Figure 4.10: BEP performance of the proposed GA-assisted joint CIR estimator and 
symbol detector for JC = 10 users over narrowband Rayleigh-fading chan-
nels at fd = 200 Hz after the differential decoder. Results were shown for 
spreading factors of Nc = 31 and Nc = 127. Also shown are the BEP per-
formances of the GA-assisted data detector with imperfect CIR estimation 
for MSE values of 0.01 and 0.001. The GA configuration and the simulation 
parameters used are listed in Table 4.6 and Table 4.5, respectively. 

chapter waa highlighted in Section 4.2. DiEerential encoding was invoked, in order to 

circumvent the phase ambiguity problem, when the CIR coefficients were estimated 

without the aid of pilot symbols. The GA-assisted joint multiuser CIR estimator 

and symbol detector was introduced in Section 4.3. Because of the continuous 

nature of the CIR coefficients as well as due to their correlation between consecutive 

bit intervals, the configuration of the GA used in this chapter is slightly different 

from that employed in Chapter 3. In particular, investigations were carried out in 

Section 4.3.2 and Section 4.3.3, in order to determine the ideal mating pool size 

T and the best possible mutation size Xmax for our application, respectively. The 

BEP performance of the GA-assisted joint multiuser CIR estimation and symbol 

detection scheme was then examined using computer simulations in Section 4.4. 

Our results showed that as a channel estimator, the GA was capable of tracking 

the variations of the fading channel, while achieving a channel gain estimation 

MSE as low as 10"^ in a noiseless channel with a Doppler frequency = 200 

Hz. Upon exploiting its capabilities as a channel estimator as well as a symbol 

detector, as seen from the previous chapter, the proposed joint channel estimator 
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Figure 4.11: BEP performance comparison between the proposed GA-assisted CIR and 
symbol detector for K = IQ users and the matched filter for K = 1 over 
narrowband Rayleigh-fading channels at fa = 200 Hz after the differential 
decoder using imperfect CIR estimation with MSB values of 0.01 and 0.001. 
Results were shown for a spreading factor of = 31. 

and symbol detector can achieve a BEP as low as 2 x 10"^ at a SNR value of 30 

dB in a 10-user CDMA environment without channel coding or diversity. An error 

floor was observed beyond SNR = 30 dB due to the imperfect channel estimation. 

Furthermore, since the channel estimation and symbol detection are performed 

simultaneously, no pilot symbols or decision feedback are necessary, which results 

in a higher throughput and shorter detection time, than that of explicitly trained 

CDMA multiuser detectors. 
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Figure 4.12; BEP performance of the proposed GA-assisted joint CIR estimator and 
symbol detector for K = IQ users with various population sizes P over 
narrowband Rayleigh-fading channels at fd = 200 Hz after the differential 
decoder. The GA configuration and the simulation parameters used are 
listed in Table 4.6 and Table 4.5, respectively. 



C H A P T E R 5 

Genetic Algorithm-Assisted, 

Antenna Diversity Aided 

Multiuser Detection 

5.1 Introduction 

It is well known that the hostile effects of fading constitute a major limitation 

of the system performance, which can be mitigated by diversity techniques [88, 

89]. A commonly used diversity technique is receiver antenna diversity [75]. The 

distance between the receiving antennas is expected to be higher than half the 

wavelength, such that the signals received by the antennas become uncorrelated, 

experiencing suKciently different path loss, fading and shadowing conditions [88]. 

Antenna diversity in conjunction with CDMA has been investigated for example 

in [21,90,91]. 

In this chapter, we present a novel approach to the problem of multiuser detec-

tion in DS/CDMA over Bat Rayleigh-fading channels assisted by antenna diversity 

based on the GA-assisted multiuser detector developed in Chapter 3. The antennas 

are assumed to be sufficiently far apart, such that the received signals at the anten-

nas are faded independently, resulting in an independent correlation metric obeying 

Equation (3.23) for each antenna. This poses a problem to the optimisation process 

98 
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due to the fact that while a speciBc bit sequence 6 may optimise the correlation 

metric of one antenna, the same bit sequence may not necessarily optimise the cor-

relation metric of the other antennas. In order to resolve this dilemma two different 

strategies of creating the mating pool are considered. In our first approach, all the 

non-identical individuals in a given population of the G A are picked for the mating 

pool. This approach is identical to that adopted so far in Chapter 3 and Chapter 4. 

According to our second strategy, the individuals in a given population associated 

with the GA are picked for the mating pool based on the concept of the so-called 

Pareto optimality [31], which uses the information from the antennas independently. 

This chapter is organised as follows. Section 5.2 describes our system model, 

which again is assumed to be a K-user symbol-synchronous CDMA system com-

municating over uncorrelated non-frequency-selective Rayleigh fading channels and 

receiving using number of antennas. We note, however that the proposed GA-

assisted multiuser detector can also be applied to asynchronous systems transmit-

ting over frequency-selective Rayleigh fading channels using multiple receiving an-

tennas. This can be achieved by simply modi^ng the correlation metric of Equa-

tion (3.23), as it will be presented in Chapter 6. The GA-assisted joint multiuser 

CIR estimator and symbol detector proposed in the previous chapter can also be 

applied in the context of multiple receiver antennas. Section 5.3 describes the GAs 

used for implementing our proposed detector in conjunction with diversity recep-

tion invoking two different strategies of creating the mating pool, as mentioned 

previously. Our simulation results are presented in Section 5.4, where the BEP 

performance of the GA-assisted multiuser detector using two diversity antennas 

will be investigated under the assumption of perfect CIR estimation. The BEP 

performance of the GA-assisted joint multiuser CIR estimator and symbol detector 

proposed in Chapter 4 using two diversity antennas will also be evaluated. Finally, 

Section 5.5 concludes this chapter. 

5.2 System Model 

The system model used in this chapter is depicted in Figure 5.1, where the transmit-

ted signals of the jiT users are received at the base station over Z, j receiver antennas. 

The transmitted signal Sk{t), k = 1,..., K, of each user is given by Equation (3.1) 

of Chapter 3. We assumed that the La antennas are sufficiently separated spa-

tially, such that the received signals of the K users at each antenna are statistically 
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Figure 5.1: Block diagram of the if-user system model incorporating id-antenna diver-
sity. 

independent. Hence we can express the received signal a t the zth antenna as : 

K 

with 

k=l 

VA; = 1 , . . . , A" 

(5.1) 

(5.2) 

where 6̂  and <!&(() correspond to the bit energy, the transmitted bit and the 

signature sequence associated with the A;th user, respectively. Furthermore, at,* 

and describe the channel attenuation and phase for the link between the kth 

user and the zth antenna, which was given by Equation (3.5) for a single antenna. 

The path amplitudes are normalised, such that J2i=i E =1 for k = 1,... ,K. 

Following the analysis carried out in Section 3.2, the output Zi of the matched 

filter bank at the ith diversity antenna, as portrayed in Figure 5.1, is given by the 

vector : 

.2:2,i, - - -, + rti, (5.3) 

where 

Ci 

i 

h 

rii 

= diag 

diag / T /T"' 
yq i , - " , yqAT 

[61,.. . , 

(5.4) 
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and A is a A' X jiT-dimensional user signature sequence cross-correlation matrix, 

as given by Equation (3.17). Hence based on the observation vector given in 

Equation (5.3), we can express the correlation metric corresponding to the %th 

antenna as [75] : 

(6) = 2K [b" = 1 , . . . , (5.5) 

The decision rule for the optimum multiuser detector associated with the 2th an-

tenna is to choose the specific bit vector b, which maximises the correlation metric 

given in Equation (5.5). Hence, the estimated transmitted bit vector of the K users 

is given by : 

b = arg j m a x l l j ( 6 ) | . (5.6) 

Since the channel characteristics for each antenna are statistically independent, 

we have typically (6) ^ Qj^i (6) for the correlation metrics of the La diversity 

antennas. In certain scenarios such aa during deep fades, the above inequality 

implies that : 

a r g j n ^ [ O i ( b ) ] j = b ^ a r g j n ^ [ O j ^ j ( b ) ] j Vi = l , . . . ,Z,d (5.7) 

In other words, there may not exist a single solution b, which is the best with respect 

to all the Ld correlation metrics. This creates a so-called optimisation conflict [92], 

since the optimisation of the correlation metrics may sometimes lead to two or 

more possible solutions and any one of them is an acceptable solution. Nevertheless, 

for optimum detection, the correlation metrics corresponding to the La number of 

diversity antennas are combined according to [79] : 

n ( b ) = E ^ X b ) 
i=l 

= 2 S \ b ' c ' ' l z \ - b-'c"iR4Cb, (5,8) 

where Z = [ z y , . . . , zk,u •••, ( = diag [ V ^ I , . . . , V ^ l ] with I 

being a unity vector of length Furthermore, ( ) ^ denotes a Hermitian matrix and 

C = diag . . . , . . . , - - -, . The de-

cision rule is then to find the estimated transmitted bit vector b that maximizes 

O (6) in Equation (5.8). 

In the next section we will highlight the philosophy of our GA-assisted diversity-

aided multiuser detector with emphasis on the strategies invoked in creating the 
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mating pool, in order to detect the users' transmitted bits. 

5.3 GA-Assisted Diversity-Aided Multiuser De-

tection 

The flowchart of the GA invoked in this chapter is depicted in Figure 5.2. Apart 

from the specific approach used in creating the mating pool, the structure of the GA 

invoked here is identical to the one highlighted in Chapter 3. Similarly to Chapter 3, 

there are P number of individuals in a population, where the pth individual is 

represented by a jiT-bit vector as bp (2/) = , 6p,A'(2/) 3,nd 1/ denotes the 

generation index. The individuals during the initialisation phase of Figure 5.2 are 

generated based on the maximal ratio combining [75] of the matched filter outputs 

corresponding to all the antennas. Hence we have [75] ; 

/I'd 
61(0) = sgn 

6p(0) = MC/TAT/OW bi(0) for p = 2 , . . . , f (5.9) 

In a system consisting of receiving antennas, each individual is associated 

with Ld number of antenna-specific figures of merit denoted as (bpiv)) for i = 

which are derived by evaluating Equation (5.7) for the corresponding 

antenna, where b is defined by the individual. We shall refer to these figures of 

merit as antenna-specific fitness values. We also introduced an additional fitness 

value referred to as the diversity-specific fitness value O (hp{y)^, which is derived 

according to Equation (5.8). The diversity-based fitness value associated with each 

individual will determine its probability of selection. Hence in summary, each in-

dividual will be associated with Ld number of antenna-specific fitness values and 

a diversity-based fitness value. We will now consider, how we can make use of 

these information in order to create the mating pool and to aid our search for the 

optimum K-hii vector b. 

5.3.1 Direct Approach 

The direct approach of creating the mating pool is similar to that implemented in 

Chapter 3. Basically, only the diversity-based fitness value associated with each 

individual will be considered here. All dissimilar individuals will be placed 

in the mating pool and their probability of selection is computed following the 
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Figure 5.2: A flowchart depicting the structure of a generic genetic algorithm used for 
function optimisation. 
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philosophy of Equation (2.9) according to : 

Pi 
exp 

exp 0 (5X2/)) 
(5.10) 

where T < P is the number of dissimilar individuals in a given population. Again, 

we have considered the exponent of the diversity-based Btness value associated with 

each individual, in order to ensure that the probability of selection becomes positive. 

We shall refer to this direct approach strategy as SI. 

5.3.2 Pareto Optimality Approach 

Our second individual-selection strategy of the GA-assisted multiuser detector is 

based on the concept of the so-called foreto [31]. This strategy favours 

the so-called non-dominated individuals by retaining them for the mating pool and 

discards the so-called dominated individuals. Then the pth JT-bit individual is 

considered to be dominated by the gth individual iff [93] : 

e {1, 2} : A E {1, 2} : . (5.11) g f _ ' —J ^ ' ""J i y ^ ''"J I 

where A and H denote 'or' and 'exists', respectively. In more explicit verbal terms 

Equation (5.11) implies that the pth individual is considered to be dominated by 

the qth individual if all the zth antenna-specific fitness values associated with the 

gth individual, where i = 1,2 for dual antenna diversity, are higher than that of 

the pth individual, or there exists at least one jth antenna-specific fitness value 

associated with the gth individual that is higher than the fitness of the pth individ-

ual, provided that all their zth antenna-specific fitness values, where i = l,2,i ^ j, 

are equal. If an individual is not dominated in the sense of Equation. (5.11) by 

any other K-hii individuals in the population, then by definition it is considered 

to be non-dominated. The non-dominated individuals are also known as Pareto-

optimal individuals [92]. Since GAs work with a population of candidate solutions, 

a number of Pareto-optimal individuals may be captured using GAs. According 

to our second individual-selection strategy, all the non-dominated K-bit individuals 

ore aeZecW pZocej m (Ae pooZ. The probability of selection of these 

individuals in the mating pool is then computed according to Equation (5.10) using 

their corresponding diversity-based figure of merit, where T in this case denotes the 

number of Pareto-optimal individuals in a given population. If there is only one 

non-dominated individual in a given population, then the next set of non-dominated 
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individuals in the population will be found and placed in the mating pool, together 

with the ultimate non-dominated individual. 

Observe that this strategy uses the information provided by the antennas 

independently, in order to decide which individuals are placed in the mating pool. 

By contract, the direct approach of Section 5.3.1 based its decisions on only the 

diversity-based fitness values. We shall refer to the pareto-optimality approach 

as S2. Note that the Pareto optimality concept can only be applied to GAs or 

population-based algorithms, since non-dominated individuals can only be identified 

if more than one candidate solutions are evaluated at a time. 

2,From a detection point of view, the concept of Pareto optimality does not give 

the most likely transmitted bit sequence. Upon termination of the GA, if there is 

only one Pareto-optimal individual in the final population, then this solution will 

be deemed as the detected bit sequence 6. On the other hand, there may exist a 

number of Pareto-optimal individuals in the final population. In this case, we will 

adopt the optimum criteria according to Equation. (5.8) and then the individual 

that corresponds to the highest diversity-specific fitness value will be the detected 

bit sequence b. 

5.4 Simulation Results 

In this section our computer simulation results are presented, in order to characterise 

the BEP performance of the GA-assisted multiuser detector in conjunction with 

number of received antennas employing both strategies of creating the mating pool, 

which were highlighted in Section 5.3. All the results in this chapter were based on 

evaluating the BEP performance of a bit-synchronous i^-user CDMA system using 

Z/jth-order antenna diversity reception over Rayleigh fading channels, where the 

signals of the diversity channels were uncorrelated with each other. The spreading 

factor was Wc = 31 and the signature sequences were randomly generated. The 

results shown in Figures 5.3-5.4 were based on the asumption that perfect CIR 

estimation is invoked at each antenna, while in Figures 5.5-5.6, imperfect CIR 

estimation was assumed. A summary of the simulation parameters and the GA 

configuration invoked is listed in Table 5.1 and Table 5.2, respectively. 

Specifically, Figure 5.3 shows the BEP performance over a narrow-band Rayleigh 

channel against the average SNR per bit for the GA-assisted K = 10-user detector 

employing both strategy Si and S2 assuming equal average received energy at the 

La = 2 antennas, i.e. for E ah = E = 0.5. Perfect power control and CIR 

estimation was assumed. The number in parentheses denotes the maximum number 
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Parameter Value 
Spreading factor Nc 31 
Modulation mode BPSK 
Number of CDMA users K 10 
Number of diversity antennas Ld 2 

Table 5.1: Simulation parameters for the experiments of Figures 5.3-5.6. 

Setup/Parameter Method /Value 

Individual initialisation 
method 

According to Equation (5.10) 

Selection method Proportionate-Fitness 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P Given in the associated plots 
Number of generations F 10 
Mating pool size T ^ Strategy Si : All dissimilar individuals 

in the population 
- Strategy S2 : All non-dominated individuals 
in the population 

Probability of mutation 0.1 

Table 5.2: Configuration of the GA used to obtain the results of Figure 5.3 and Fig-
ure 5.6. Explicit description of the fitness-proportionate selection scheme, 
the uniform crossover operation and the floating point mutation operation 
can be found in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 

of times the correlation metric of Equation (5.8) is evaluated by the GA-assisted 

multiuser detector. Again, this complexity figure is compared to the complexity of 

the optimum multiuser detector, which requires 2^ correlation metric evaluations. 

The single-user bound, which assumed an equal average received energy at both 

antennas, wag computed using [75] : 

Po 2 (1 -
LdLd-l / T 1 _ J * 

- (1 -1- //) (5.12) 

where = \ / l + ^ average SNR per bit of the A;th user. An error 

floor is observed in Figure 5.3. Again, this is due to the limitations of the GAs for 

a given population size P and for a number of generations Y. However, the BEP 

performance improved, when the population size P was increased from P = 10 

to P = 16. However, this also increased the computational complexity. Hence 

the value of P can be selected, in order to find a trade-off between computational 

complexity and performance. More importantly, we can see from Figure 5.3 that 
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- S1,P=10,Y=10 (100) 
- S1,P=16,Y=10(160) 
- S2,P=10,Y=10(100) 

S2,P=16,Y=10(160) 
- Single-user bound (2 antennas) 
- Single-user bound (1 antenna) 

^ 0 
K=10 

Equal average energy for all users 

15 20 25 
SNA per bit In dB 

Figure 5.3: SEP performance of the proposed GA-assisted multiuser detector over 
narrow-band Rayleigh channels employing strategies SI and S2 in creating 
the mating pool with population sizes of P = 10,16 using binary random 
signature sequences of length Nc = 31 and supporting K = 10 users. The 
average received energy at the antennas was assumed to be equal, i.e. for 

= 0.5. The GA configuration and the simulation pa-E a k,l E or t,2 
rameters used are listed in Table 5.2 and Table 5.1, respectively. 

the GA employing strategy 82 performs better, exhibiting a lower error Boor, as 

compared to employing strategy SI. Nevertheless, both strategies were capable of 

matching the single-user bound performance up to SNRs of % = 16 dB and % = 20 

dB for f = 10 and P = 16, respectively. 

We then investigated the BEP performance of the G A-based multiuser detector 

employing both selection strategy SI and S2 in conjunction with unequal average 

a 
k,l 

0.8 and 0.2. received energy at the two antennas, setting E 

Perfect power control and CIR estimation were assumed again. The associated 

results are shown in Figure 5.4 in comparison to the single-user bound given by 

Equation (5.12). Again, we can see that GAs invoking strategy S2 exhibit a lower 

BEP compared to strategy SI. 

Figure 5.5 and Figure 5.6 portray the BEP performance of the GA-assisted mul-

tiuser detector in the context of imperfect CIR estimation having a CIR estimation 

MSB of 0.01 and 0.001, respectively. Perfect power control is assumed with equal 

average received energy at both antennas. In Figure 5.5 we can see that there is 

no significant difference in the achievable BEP performance between SI and S2 at 
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- S1,P=10,Y=10(100) 
• S1,P=16,Y=10 (160) 

S2,P=10,Y=10(100) 
S2,P=16,Y=10 (160) 

- Single-user bound (2 antennas) 
• Single-user bound (1 antenna) 

K=10 

Equal average energy for all users 

15 20 23 
SNA per bit in dB 

Figure 5.4: BEP performance of the proposed GA-assisted multiuser detector over 
narrow-band Rayleigh channels employing strategies SI and S2 in creating 
the mating pool with population sizes of P = 10,16 using binary random 
signature sequences of length = 31 and supporting K = IQ users. The 
average received energy at the antennas was assumed to be unequal with 
^ ^ = 0.8 and E g = ^.2. The GA conEguration and the simulation 
parameters used are listed in Table 5.2 and Table 5.1, respectively. 

P = 16. This is due to the high MSE of the CIR estimation, which limits the perfor-

mance, as also highlighted in [94] in the context of conventional CDMA detectors. 

The BEP for a single-user transmission scenario using a matched filter and maximal 

ratio combining in conjunction with a CIR estimation MSE of 0.01 constitutes the 

lower bound, as shown in Figure 5.5. At the lower CIR estimation MSE of 0.001, 

we can see from Figure 5.6 that the BEP was lower and the detector was capable 

of matching the single-user bound up to an SNR of about 20 dB. We can also see 

from Figure 5.3, which assumed perfect CIR estimation, and from Figure 5.6, which 

assumed a CIR estimation MSE of 0.001 for both P = 10 and P = 16 that the error 

floors in both figures occur at the same BEP. Hence the BEP floor was deemed to 

be due to the limitations of the OAs and not the CIR estimation error, since the 

single-user bound is much lower. 

Finally, the BEP performance of the joint GA-assisted multiuser CIR estimation 

and symbol detection scheme introduced in Chapter 4 was evaluated in conjunction 

with two diversity antennas. Apart from the creation of the mating pool, which 

follows the strategies highlighted in Section 5.3, the entire detection process is the 
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Figure 5.5: BEP performance of the proposed GA-assisted multiuser detector over 
narrow-band Rayleigh channels employing strategies SI and S2 in creating 
the mating pool with population sizes of P = 10,16 using binary random 
signature sequences of length Nc = 31 and supporting = 10 users. Both 
antennas were assumed to exhibit a CIR estimation error of 0.01. The GA 
configuration and the simulation parameters used are listed in Table 5.2 and 
Table 5.1, respectively. 

same as that implemented in Chapter 4. In this case, t he antenna-specific fitness 

values corresponding to each individual are evaluated according to Equation (4.6) 

associated with each antenna and the diversity-based fitness value of each individual 

is obtained by combining its corresponding antenna-specific fitness values. The GA 

configuration used for this simulation is characterised in Table 5.3. Note that for 

strategy SI, only T = 5 non-identical individuals associated with the highest fitness 

values in the population were placed in the mating pool. The reason for this course 

of action was highlighted in Section 4.3.2. The BEP achievable performance is 

shown in Figure 5.7. 

Firstly, we compared the performance gain achieved by utilising two antennas 

instead of one without increasing the computational complexity. This is represented 

in Figure 5.7 by the curves corresponding to P = 40, F = 10,1/^ = 1 for a single 

antenna and to P = 20, F = 10, — 2 for two antennas. We can see that there is 

a significant BEP performance improvement for the twin-antenna assisted system. 

However, there is no performance difference between Si and 82, since the BEP is 

limited by the CIR estimation error. We can reduce the CIR estimation error by 
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S1,P=10.Y=10(100) 
51,P=16,Y=10 (160) 
52,P=10,Y=10 (100) 
S2,P=16,Y=10 (160) 
Single-user bound with MSE=0.001 
Single-user bound with perfect CIR est. (1 antenna) 

= 10 
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Figure 5.6: BEP performance of the proposed GA-assisted multiuser detector over 
narrow-band Rayleigh channels employing strategies SI and S2 in creating 
the mating pool with population sizes of P = 10,16 using binary random 
signature sequences of length = 31 and supporting if = 10 users. Both 
antennas were assumed to exhibit a CIR estimation error of 0.001. The GA 
configuration and the simulation parameters used are listed in Table 5.2 and 
Table 5.1, respectively. 

increasing the population size P , as seen previously in Figure 4.4, which in turn 

will reduce the BEP. This is explicitly shown in Figure 5.7, where there is a BEP 

improvement, when the population size is increased from P = 20 to P = 40. 

5.5 Chapter Summary and Conclusions 

In this chapter, we developed a GA-assisted multiuser detector for a symbol syn-

chronous CDMA system incorporating La number of diversity antennas. These 

antennas are expected to be separated by a distance higher than half the wave-

length, so that the received signal at each antenna transmitted from any of the 

users becomes uncorrelated. However, the GA's figure of merit that is obtained 

from the correlation metrics associated with each antenna is typically different. As 

a result, there may not exist a particular bit sequence, which is the best with respect 

to all the antennas' correlation metric. 

We have resolved this optimisation conflict to our advantage by selecting only 

the so-called non-dominated individuals of a given population for the mating pool. 
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Se tup /Parameter M e t h o d / V a l u e 

Individual initialisation According to the flowchart 
method of Figure 4.2 and Equation (5.9) 
Selection method Proportionate-Fitness 
Crossover operation Uniform crossover 

Mutation operation - Floating point mutat ion for (y) 
- Binary mutation for (y) 

Elitism Yes 
Incest Prevention Yes 
Population size P Given in Figure 5.7 
Number of generations Y 10 
Mating pool size T - Strategy SI ; T = 5 dissimilar individuals 

associated with the highest diversity-speciS-C 
fitness values in the population 
^ Strategy S2 : All non-dominated individuals 
in the population 

Probability of mutation 0.1 
Mutation size Amoi 0.1 

Table 5.3: Configuration of the GA used to obtain the results of Figure 5.7. Exphcit de-
scription of the fitness-proportionate selection scheme, the uniform crossover 
operation and the floating point mutation operation can be found in Sec-
tion 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 

P=40,Y=10,Ld=l (400) 
P=20.Y=10J^=2,S1 (2 X 
P=20,Y=10,Ld=2.S2 (2 x 
p=40,Y=10,Ld=2,Sl (2x 
P=40,Y=10,Ld=2,S2 (2 x 
Single-user bound for 
Single-user bound for 

Q- 10 

Kb = 64 kbps 

200 Hz 

K=10 

Equal average energy for all users 

15 20 25 
SNA per bit in dB 

Figure 5.7: BEP performance of the proposed GA-assisted joint channel estimator and 
symbol detector for if = 10 users over narrowband Rayleigh-fading chan-
nels at /(f = 200 Hz after the differential decoder. Results were shown for 
spreading factors of jVc = 31. The GA configuration and the simulation 
parameters used are listed in Table 5.3 and Table 4.5, respectively. 
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This process waa based on exploiting the Pareto optimality. The creation of the 

mating pool based on Pareto optimality was referred to here as Strategy S2. This 

strategy was then compared with the direct approach, which was used previously in 

Chapter 3 and Chapter 4, whereby all non-identical individuals in a given population 

were selected for the mating pool. This direct approach was referred to here as 

Strategy SI. 

We have shown that GAs employing Strategy S2 in creating the mating pool 

always exhibit a lower B E ? compared to those employing Strategy SI. We have 

also shown that the BEP performance can be improved by increasing the population 

size. Finally, we showed, in Figure 5.7 that a significant BEP performance gain can 

be achieved by the joint GA-assisted CIR estimator and symbol detector, when 

utilising two receiving antennas instead of a single antenna without increasing the 

computational complexity. 



C H A P T E R 6 

Genetic Algorithm-Assisted 

Multiuser Detection for 

Asynchronous C D M A Systems 

6.1 Introduction 

So far, we have assumed that all the users transmit their signals synchronously. In 

order to accomplish this symbol-synchronism, a form of closed-loop timing control 

would be required between the base station's receiver and all the mobile users' 

transmitters [22]. In practice symbol-synchronous CDMA reception is not easy to 

implement. However, one of the advantages of CDMA over the more traditional 

Frequency Division Multiple Access (FDMA) and Time Division Multiple Access 

(TDMA) is its capability of supporting uncoordinated uplink signal transmission. 

Hence it is possible to allow the users to transmit their signals in an asynchronous 

manner. 

In an asynchronous DS-CDMA system, every bit of each user is interfered by 

two bits of every other user in the system, which are overlapping with the bit of 

interest, assuming an identical channel bit rate for all users. Hence the multiuser 

detector must have knowledge of these two overlapping bits, in order to efficiently 

113 
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detect the desired bit. Conventional multiuser detectors, such as the decorrela-

tor [14], operate on the entire length M of the users' bit sequence at once. This 

results in a long detection delay as well as in a signiBcant receiver complexity, when 

M is high. Several methods [95-99] have been proposed in order to reduce the 

detection delay and the receiver complexity in asynchronous DS-CDMA systems. 

The simplest way is to periodically cease transmission for a fixed time interval 

for all users [27,95]. This will effectively break the continuous transmissions into 

frames and hence reduce the complexity of the multiuser detector. However, this 

method still requires synchronisation amongst the users, although not as strictly, as 

in symbol-synchronous transmissions. Furthermore, this method will degrade the 

bandwidth efficiency of the system. In the proposal by Xie et al. [96], the detection 

observation window is truncated, such that only a portion of the bit sequence length 

M is considered by the detector at a time. In [96] the bits that coincide with the 

window's edge, referred to as the ecfg'e in this chapter, are tentatively estimated 

employing the conventional single-user correlator. The desired bits within the trun-

cated observation window are then detected using conventional multiuser detection 

techniques. The overall performance of this technique is largely dependent on the 

estimation reliability of the edge bits by the single-user correlator, which degrades 

as K increases. In order to reduce the effects of the edge bits the adjacent subse-

quences input to the detector can be arranged to overlap. Wijayasuriya et al. [97] 

proposed a technique, where the edge bits are predicted using previously detected 

bits with the aid of convolutional decoding, although other channel codecs can also 

be used. Juntti oZ. [98] proposed a hnite-memory-length detector, referred to aa a 

Finite Impulse Response (FIR) detector, in order to reduce the high memory length 

associated with traditional multiuser detectors employed in asynchronous CDMA 

systems. In the contribution by Shen et al. [99], the edge bits are estimated using a 

modified decorrelator. These proposals [96,97,99] demonstrated that maintaining a 

low edge bit error probability is essential, in order to a t t a in a high overall bit error 

rate performance. 

Using a similar approach to that in [96,97,99] we proposed a multiuser detector 

for an asynchronous DS-CDMA system transmitting over L-path Rayleigh fading 

channels based on a GA. In order to reduce the complexity of the detector, as well 

as to decrease the detection time, the observed window is truncated such that it 

encompasses at most one complete symbol interval of all users in any detection 

window. Let us assume that we are interested in detecting the ith bit of all users. 

Then the edge bits will be the {i — l)st bits and the (z + l )s t bits of all interfering 

users, referred to in this chapter as the start edge bits (SEB) and the end edge 
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bits (EEB), respectively. The SEBs have been detected in the previous observed 

window and hence they are known to the receiver. Two different strategies are 

adopted, in order to estimate the EEBs of all users. In our first strategy, the EEBs 

are estimated employing the conventional single-user correlator, a technique similar 

to that in [96]. GAs are then developed, in order to est imate the desired ith bits of 

all users. In our second strategy, we extend the same GAs in order to simultaneously 

improve the EEB error probability (EBEP). In contrast to the previously proposed 

techniques [97,99], the EEB and the desired bits in the lat ter strategy are estimated 

simultaneously using the same process. This results in minimal detection delay and 

no additional computation is required for predicting t he EEB. 

The performance of the proposed multiuser detector is examined by computer 

simulations, whereby the measure of interest is the desired bit error probability 

(DEEP). We will investigate the effects of the ambiguity of the edge bits on the 

DEEP. The improvement in the EBEP using our second strategy, i.e. the GA-based 

estimation, over that of our first strategy employing the single-user correlator based 

edge-bit predictor is also shown. Furthermore, we will evaluate the effects of varying 

the GA parameters on the DEEP performance, in order to strike a balance between 

detection complexity and performance. Our simulation results showed that the 

DEEP performance corresponding to the first detection strategy is limited by the 

high EBEP. On the other hand, upon using GAs for improving the accuracy of 

the edge bits, our proposed multiuser detector can achieve a near-optimum DEEP 

performance, while imposing a lower complexity compared to that of the optimum 

multiuser detector [1]. 

The remainder of this chapter is organised as follows. Section 6.2 describes our 

asynchronous CDMA system communicating over mult ipath Rayleigh fading chan-

nels. The correlation metric required for the optimisation process in conjunction 

with an asynchronous CDMA system is also developed. Section 6.3 describes the 

GAs used for implementing our proposed multiuser detector. The structure of the 

GAs will be slightly different from that invoked in Chapter 3, since the SEBs and 

the EEBs have to be taken into acount. Our simulation results are presented in 

Section 6.4, while Section 6.5 concludes the chapter. 

6.2 Asynchronous CDMA System Model 

We consider Binary Phase Shift Keying (BPSK) transmissions over a common 

AWGN channel shared by AT asynchronous users employing DS-CDMA, as illus-

trated in Figure 6.1. The signal of each user is assumed to be propagating over L 
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independent slowly Flayleigh fading paths to the baae station's receiver. The com-

plex lowpass impulse response of the channel for the A;th user over the mth symbol 

interval of the M-bit transmission burst can be expressed as : 

W = Z - -r̂  J , (6.1) 
1=1 

where ; and are the Zth path gain, propagation delay and phaae, re-

spectively. 

Assuming ideal lowpass receiver filtering for removing the high-frequency noise 

components, the baseband received signal as shown in Figure 6.1 can be written 

as : 
M-l K Z, , 

r ( t ) = Y . T , Y . V&f - n.,) + n{t), (6.2) 

m = 0 k=l 1=1 

where M is the number of transmitted data symbols in a frame, is the energy per 

bit of the A:th user and is the mth data symbol of the Mh user. Furthermore, 

exp(j^j.^^) is the complex channel gain agsociated with the (th path of 

the /cth user at the mth symbol interval, ak{t) is the normalised signature sequence of 

the Ath user, as given by Equation (3.2) and 7t,z is the random delay^ corresponding 

to user k. Over Rayleigh fading channels the channel gain is a zero mean complex 

Gaussian random variable, where the amplitude is Rayleigh distributed and 

the phase is uniformly distributed between [0,27r). For simplicity and without 

loss of generality, we assumed an ordering of the random delays Tk,i such that 

0 = Ti,! < Ti_2 < . . . < < T2,i < . . . < We also aasumed that the 

energies, channel gains and random delays of all users are known to the receiver 

and that the channel gain is normalised so that the average signal energy levels at 

the output and input of the channel are the same, which is formulated as : 

E 1, for A: = 1, 2 , . . . , ii'. (6.3) Z_/ \^k,l 
.Z=l 

The channel noise n{t) is modelled by a zero mean, complex white Gaussian process 

exhibiting independent real and imaginary components, each having a double-sided 

power spectral density of Wo/2. 

^The random delay Tk̂ i takes into account the asynchronous nature of the transmission as well 
as the propagation delay rj. i given in Equation (6.1). 
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Again, we can represent the received signal due to the M-bit transmission burst 

by using the vector notation as : 

''M — ^ — + n ( ^ ) , (6.4) 
M-l 
E 

m = 0 

where o(() = , ai(( — . . . , is the AT users' signa-

ture sequence vector, ^ = diag is a A'Z/ x A'Z^dimensional 

diagonal matrix containing the energy of the K users, while I is an LxL-dimensional 

identity matrix, = diag , . . . , , . . . , c^ j , is the KL x KL diagonal CIR 

matrix of the K users for the L-path Rayleigh channels, , . . . , 

is the KL x 1 data vector of the K users transmitting over their respective L-path 

channels, where 6^^ is the A;th 1 x Z, user bit vector. 

We can deEne the ATZ, x jiTi^dimensional cross-correlation matrix of the 

signature sequences, such that the (p, g)th element is given by : 

/

4"00 

a t p - T t p , ! p ) o & , ( 6 . 5 ) 
-OO 

where A, = l"^], Zp = p - - Z, and = g — - Z,. Since the 

modulating signals are time-limited, R{m) = 0 V|m| > 1 and it(—1) = 

Note that jZ(l) is an upper triangular matrix having a zero diagonal. 

The front end of the receiver illustrated in Figure 6.1 consists of a bank of KL 

filters, matched to the signature sequences of the K users transmitting over their 

L-path channels. Assuming perfect synchronisation for each individual user, which 

transmit asynchronously with respect to each other, the output of the ki\i user's 

matched filter corresponding to the /th path sampled a t the end of the ith symbol 

interval is given as [24] : 

/
4"00 

-OO 

- O O 

KL 

j—{k~l)L+l+l 

j=l 
KL 

(6.6) 
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Figure 6.2: Received sequences of an asynchronous DS-CDMA system assuming a non-
dispersive channel associated with L — 1. 

Using vector notation, the output zW of the matched filter bank at the ith symbol 

interval can be written as : 

zM = _(') 
"̂ 1,1) • • • ) ) ^K,L 

(6.7) 

^From Equation (6.7) given by the first and third terms we can see the presence of 

the interference contributed by the edge bits. Hence any joint decision made on the 

%th bits of the K users has to take into account the decisions on either the (z — l)st 

bit or the (t + l)st bit of each user, as shown in Figure 6.2. 

Let us first assume that the receiver has explicit knowledge of the SEB and EEB 

of all the users. Let us also introduce ; 

A'(0) 

Pi,I p'l,l 

- - - PKZ,,!, Pkl,kl 

(6.8) 

and 

B"(0) = 

P'li 

/)2,1 

where the (p, g)th element is given by : 

z, 

n" 

P,9 n,i+T(,--Tivi 
"kJt - n l )at (t - Tt^,i,)dt 

(6.9) 
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'^kp ,lp 

which will be used at a later stage in Equation (6.11) and Equation (6.12). The 

truncated observation window duration is governed by rpfi and T//2, where 0 < 

TNI, TAr2 < T"!,! " TK,]) + As illustrated by Figure 6.2, the truncated observation 

window interval can span from the most recently received (i — l)st bit of the J^th 

user to the end of the first received (i + l)st bit of the Ist user, i.e. [(% — 1)7], + 

TftT.L, (i + 2)7], + Ti,i]. In this way, the decisions made on the desired ith bits of the 

JiT users will only depend on either the (% — l)st or (i 4- l)8t bits of all users. 

Let us from now on consider the simplified scenario of non-dispersive channels 

associated with L = 1. Based on the observation vector zW given in Equation (6.7) 

and then following the analysis carried out in Section 3.4 in the context of a syn-

chronous CDMA system, it can be shown that the correlation metric required for 

detecting the ith bit of all users within the truncated observation window, given 

that the i^-dimensional vectors and are known to the receiver, can be 

written as : 

( b ^ ) = 2% (6.10) 

where 

B = 

C = 

vy = 

z = 

A = 

diag 

diag K, ( , 

R'(0) B ^ ( l ) 0 

A ( l ) A(0) A ^ ( l ) 

0 A ( l ) A"(0) 

The vectors and represent the correlations of the partial matched Elter 

outputs at instances zTb+Tt,;] and (%+l)7(,+'rK-,z,+T'N2], 

respectively, for k = 1 , 2 , K , which are given by : 

(6.11) 

(i+i)" (6.12) 

The optimum decision concerning the isT-dimensional user bit-related vector 

b( ' \ provided that and are known to the receiver, is formulated as 
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i'" = VW f(') fW 
Oi ,02 , . . . , 

T 

which maximises the correlation metric given in Equa-

tion (6.10). However, in practice the receiver is oblivions of the EEB-related K-

dimensional vectors during the detection of unless they are pilot bits. On 

the other hand, the SEBs can be derived from the previous detection process 

and if the DBEP of the receiver is sufficiently low, the SEB-detection errors will 

not signiAcantly degrade the system's performance. We note at this stage, however 

that the effects of SEB-detection errors has been taken into account in all of our 

simulations. Hence, in order to optimise the decision concerning it is imper-

ative that the EEBs are estimated as reliably as possible. One way of estimating 

the EEBs is by taking a hard decision based on their maximum ratio combined 

correlator outputs [96]. This can be written as : 

= sgn {diag - - -, /j:] } , (6.13) 

where Jjr, is a 1 x L unity vector and the if-dimensional vector b^MF denotes the 

tentative decisions concerning the EEBs based on the hard decision of the correlator. 

In this treatise, this approach of detecting the EEBs is denoted as Strategy 1 or 

SI. GAs are then invoked in order to estimate the current bits by optimising the 

correlation metric of Equation (6.10) with respect to the Jf-dimensional vector 

yielding : 

— arg ^ j ' (6 14) 

However, due to the presence of MAI, as shown in Equation (6.12) and Equa-

tion (6.13), the EBEP is high, especially in a worst-case single-path scenario, where 

no diversity gain is achieved. This high EBEP will have a significant detrimental 

impact on the overall performance of the detector, as we shall see in Section 6.4. 

Hence, in order to reduce the EBEP, we invoke the proposed GA for improving the 

tentative decision accuracy of the EEBs , and at the same time we optimise 

the correlation metric in order to detect b('\ In this case, the correlation metric is 

expressed as : 

n (bW, = 2% (6.15) 

since the desired i^-dimensional bit vector b̂ '̂  and the i^-dimensional EEB vector 

now jointly constitute the decision variables. Again, this approach of detecting 

the EEBs based on GAs is denoted here as Strategy 2 or 82. Hence, the estimated 

transmitted bit vector b '̂̂  of the K users can be found by optimising Equation (6.10) 
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with respect to the desired bits and the EEBs , yielding : 

5^+^) = arg j , (6.16) 

~(j+i) 

where denotes the tentative decisions concerning the EEBs based on GA-

assisted optimisation. In the next section we will further augment the philosophy 

of our GA-assisted multiuser detector used for simultaneously estimating both the 

desired users' bits and the EEBs. 

6.3 GA-Assisted Multiuser Detect ion in 

Asynchronous CDMA Systems 

The flowchart of the GAs invoked for detecting the users transmitted bits in an 

asynchronous CDMA system is depicted in Figure 6.3. 

Apart from the initialisation phase, the main structure of the GA is identical 

to that employed in Figure 3.10 for detecting the users' transmitted bits in the 

symbol-synchronous CDMA system of Chapter 3. Hence we will be using the fitness-

proportionate selection scheme in conjunction with a uniform crossover operation 

and a standard binary mutation operation as well as invoking the incest prevention 

strategy and elitism strategy, as shown in Figure 6.3. However, the structure of 

the individual adopted here is slightly different, since we have to take into account 

the SEBs and the EEBs. Each individual will consist of 3 x antipodal bits. 

Assuming that the current desired signalling interval is the ith interval, we shall 

express the pth individual here aa 6p(2/) = bp'ggg, , where b̂  ^gg, 

bp (?/) and b̂  are jiT-bit vectors which denote the SEBs, the desired bits and 

the EEBs at the yth. generation, respectively. The fitness value associated with each 

individual, denoted as / bp{y) for p = 1 , . . . , P is then computed by substituting 

the corresponding vectors b^ bp (y) and into the correlation metric 

of Equation (6.10) and then using it as exponent, in order to obtain positive fitness 

values. Based on the evaluated fitness value, a new population of P individuals 

is created for the (i/ + l)st generation with the aid of the various processes, aa 

illustrated in Figure 6.3. The explicit description of each of the process can be found 

in Chapter 2 and Chapter 3. Upon the GA's termination at the Yth generation, as 

shown in Figure 6.3, the desired bit vector (Y) of the individual corresponding 

to the highest fitness value in the population constitutes the detected K users' ith 
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Figure 6.3: A flowchart depicting the structure of the proposed genetic algorithm used 
for detecting the transmitted users' bit as well as providing the tentative 
solutions of during the ith truncated observation window. 
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bit associated with the tnincated observation window interval considered. In other 

words, we have 6̂ '̂  - where 5j(y) = max 5 i ( y ) bp (^) }-

As seen in Figure 6.3, the GA must be initialised for every new truncated ob-

servation window before commencing the optimisation process. Similarly to the 

GA initialisation invoked in the symbol-synchronous CDMA system of Chapter 3, 

we can exploit the information already available at the beginning of each detection 

step, in order to aid and accelerate the optimisation. Again, let us assume that the 

current bit of interest is the ith bit of all users. Hence, t he SEB vector will be con-

stituted by the (i — l)st bits, while the EEBs by the (*-t- l ) s t bits. At this point, the 

SEBs will have been detected in the previous truncated observation window, when 
- ( i - l ) 

the {i — l)st bits were the desired bits, i.e. h will be known. Therefore, we can 

assign 6 = h for all p. It is well-known that the computational complexity 

- in the context of the population size P and the number of generations Y - of the 

GA required to attain a specified level of performance increases with the number of 

variables to be optimised [31]. Hence, in order to reduce the computational com-

plexity of the GA, the SEBs will not be involved in the optimisation process, since 

these SEBs have been detected previously and modification of the SEBs will not 

affect the performance of the detector significantly. Thus the generation index y is 

omitted for the SEB vector. 

6.3.1 Matched Filter-Assisted EEB Estimation 

It is now clear that the unknown variables involved in the optimisation process 

consist of the current desired bits as well as the EEBs. As mentioned before, 

here two methods are investigated in order to provide tentative solutions for the 

EEBs. In our first m e t h o d denoted here as SI, we invoke the hard decisions 

obtained from the users' correlator outputs as the tentative EEBs, according to 

Equation (6.13). Hence : 

^ 5 ^ ( 2 / ) = forp = l , . . . , f a n d i / = 0, ...,y. (6.17) 

The error probability of these EEBs estimated on the basis of the correlator outputs 

is generally excessive and therefore it will degrade the performance of the optimisa-

tion process, as we will see later in Section 6.4. Given these EEBs in this case, only 

the current desired bits are involved in the GA-assisted optimisation process. Dur-

ing the initialisation phase of Figure 6.3, the desired bit vector of each individual is 

a 'mutated' version of the tentative hard decisions. In other words, we will change 

the state of each bit of hj^p with a probability of Pmi • Typically, the value of Pmi is 
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governed by the BEP that can be achieved by the correlator and a practical choice 

is to set Pmi = BEP. In this treatise, we shall set a nominal value of pmi = 0 . 1 . 

Hence : 

bp\o) = J for p = 1 , . . . , f . (6.18) 
- Pmi—0-1 

The mutation process [41] of Equation (6.18) is used for ensuring that the GA has a 

highly diversified search range at the beginning of its operation as well as for provid-

ing dissimilar individuals. Without this mutation process all the individuals at the 

initialisation stage would be identical, which is not allowed by the incest prevention 

strategy. After initialisation, the GA will commence searching for the optimum 

solution. The main advantage of the strategy SI is tha t since only K variables are 

considered, the population size P required to attain a specified optimisation quality 

associated with a given DEEP can be lower. 

6.3.2 GA-Assisted EEB Estimation 

In our second method denoted here as S2, the GA is invoked in order to 
— fz-f" 1) 

lower the EBEP. At the 0th generation, the unknown E E B (0), p = 1 , . . . , F , 

can be initially estimated based on the hard decisions of the correlator outputs of 

Figure 6.1. This is equivalent to using SI at the 0th generation. Again, these bits 

are mutated with a probability of = 0.1 in order to ensure a diversified search. 

Hence the mutation process is identical to that of Equation (6.18) used in SI, but 

it is applied to the edge bits at index (z + 1) yielding : 
r(i+l) 

"MF for p = 1,... ,P. (6.19) 
Pmi =0.1 

Let us now assume that upon termination of the GA-assisted search at the end 

of every truncated observation window, the error probability of the EEBs will be 

sufficiently low and hence these bits can be considered as the tentative solutions for 

the GA during initialisation, when these EEBs become the desired bits in the next 

truncated observation window. Hence according to Equation (6.16) we have : 

6®(0) = 6g!4 (6.20) 

--(i) 

where 6^^ is specified by Equation (6.16). After initialisation, the GAs are then 

invoked in order to search for the K users' desired bit vector as well as for the EEB 

vector that optimises the correlation metric according to Equation (6.16). The 

advantage of the S2 strategy is that the optimisation performance is not limited 

by the high EBEP exhibited by the correlator outputs. On the other hand, since 
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there are now 2A" variables to be optimised, a higher population size f is required 

in order to attain a specified level of performance. 

6.3.3 Complexity Issues 

Since our proposed GA-assisted multiuser detector optimises the correlation metric 

of Equation (6.10), we will only consider its complexity in terms of the number of 

correlation metric computations required for the optimisation. The optimum mul-

tiuser detector using exhaustive search requires 2^ evaluations of the correlation. 

By contrast, our proposed detector requires a maximum of F x P correlation met-

ric evaluations. In fact, the number of such correlation metric evaluations can be 

reduced by avoiding repeated evaluations of identical individuals, either within the 

same generation or across the entire iteration process, if the receiver has the nec-

essary memory. We note that since the EEBs of strategy SI are Exed throughout 

the iteration process, the number of additions and multiplications per correlation 

metric evaluation will be a factor lower, than that of strategy S2, since they do 

not have to be re-computed. 

Before we present our simulation results, we should note here that the em-

ployment of our proposed GA-based multiuser detector is not restricted to joint 

bit-by-bit detection. The truncated observation window can actually span over sev-

eral users' bits. In such cases, the individuals of the GA must contain an increased 

number of bits. However, since there are more unknown bits to be detected, a 

higher P and more generations must be invoked. 

6.4 Simulation Results 

In this section, our computer simulation results are presented, in order to charac-

terise the DBEP performance of the GA-assisted multiuser detector employing the 

two EBB estimation strategies highlighted in the previous section. All the results in 

this section were based on evaluating the DBEP performance of a chip-asynchronous 

10-user CDMA system over both single-path and two-path Rayleigh fading chan-

nels. For ease of simulation, the relative delays between the different received 

signals were arranged in the single-path scenario such that "Ty+i,! — 7̂ ,1 = 

Hence for a system supporting K = 10 users, the maximum delay between the 1st 

user and the highest-delay Kth user is 10 chips. Since the chip duration is about 

X ̂  % 0.5//8ec, assuming a bit rate of 64 kbps and a spreading factor of 31, the 

10-chip maximum propagation delay difference corresponds to about 5/isec. This 

scenario would be encountered by two mobiles, where the 1st user is directly at the 
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Parameter Value 

Spreading factor ]Vc 31 
Modulation mode BPSK 
Number of CDMA users K 10, unless stated otherwise 
Number of multipaths L 1 and 2 

Table 6.1: Simulation parameters for the experiments of Figures 6.4-6.11. 

base station and the jiCth user is for example directly at the edge of a ISOOm-radius 

propagation cell, where the radio waves' propagation delay becomes 5//sec. Given 

this maximum propagation delay, the truncated observation window of Figure 6.2 

can encompasses between 0 to 20 chips of the EEBs and SEBs. Hence in our simu-

lations, we considered an average scenario associated with tpfi = = 10 chips in 

Figures 6.4-6.10. The BEP performance difference between the two extreme cases 

of 0 and 20 chips, respectively, will be shown in Figure 6.11. For the two-path 
Tc ,7^) and scenario, the relative delays were arranged according to — T ,̂i = 

— 7;,2 = - The two paths were assumed to have equal average received 

energy, i.e. E [at,2] = 0.5. The processing gain was TVc = 31 and the 

signature sequences were randomly generated. Perfect power control and CIR esti-

mation was assumed for all the simulations. We also assumed that the first bit 6̂ °̂  

of all the users was known to the receiver. A summary of the simulation parameters 

and the GA configuration is given in Table 6.1 and Table 6.2, respectively. Upon 

observing the GA configuration of Table 6.2, we can see that there are a couple 

of parameters, which are different from those presented in the previous chapters, 

namely the mating pool size T and the probability of mutation pm kr S2. The 

probability of mutation adopted here can be readily justified. As mentioned in 

Section 6.3.2, there aie 2 x K decision variables, comprising the desired bits and 

the EEBs, to be optimised for S2. In Section 3.5.3, it was shown that the BEP 

performance of the GA-assisted multiuser detector critically depends on the value 

of pm for a specific number of decision variables. From Figure 3.4, we can see that 

for K = 20 users, it is desirable to have pm < 0.1, in order to obtain a lower BEP. 

Since employing S2 for K = 10 users is analogous to a 20-user synchronous CDMA 

system scenario, we decided to adopt = 0.05 for the mutation process. For Si, 

the value of Pm remains at 0.1, since it involves the same number of decision vari-

ables as in the previous chapters. This hypothesis can be extended to the case of 

iT = 15 users. The choice of the mating pool size T for S2 will be explained next. 
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Se tup /Parameter M e t h o d / V a l u e 

Individual initialisation 
method 

According to Figure 6.3 

Selection method Proportionate-Fitness 
Crossover operation Uniform crossover 
Mutation operation Standard binary mutation 
Elitism Yes 
Incest Prevention Yes 
Population size P Given in the associated plots 
Number of generations Y 10 
Mating pool size T - SI : All dissimilar individuals 

in the population 
- S2 : Given in the associated plots 

Probability of mutation Pm 
for K = IQ 

- Si : 0.1 and 0.1, respectively 
- S2 : 0.1 and 0.05, respectively 

Probability of mutation and 
for TiT = 15 of Figure 6.10 

- SI ; 0.1 and 0.07, respectively 
- S2 : 0.1 and 0.03, respectively 

Table 6.2: Configuration of the GA used to obtain the results of Figures 6.4-6.11. Ex-
plicit description of the fitness-proportionate selection scheme, the uniform 
crossover operation and the floating point mutation operation can be found 
in Section 2.4.2, Section 2.4.3 and Section 2.4.4, respectively. 

6.4.1 Effects of t h e Ma t ing Pool Size 

Let us first consider the achievable BEP over the course of 10 generations for both 

SI and S2 in conjunction with a mating pool size equivalent to the number of non-

identical individuals, i.e. T < P as well as using T = 4. The results are shown 

in Figure 6.4 for an SNR value of 36 dB over single-path fading Rayleigh fading 

channels. It can be seen that for GAs employing 81, there is no significant difference 

in the BEP attained over the course of the evolution for mating pool sizes oiT < P 

and T = A. This also proves that our results obtained in the previous chapters are 

relatively consistent, since the approach we adopted in those chapters is identical 

to GAs employing SI. On the other hand, for GAs employing S2, a substantial 

difference in the achievable BEP can be observed between the mating pool sizes of 

T < f and T = 4. 

This phenomenon can be explained by considering the distribution of the prob-

ability of selection pi corresponding to the individuals having the highest 6tness 

value after the initialisation phase of Figure 6.3. The corresponding selection dis-

tribution curves for the GAs employing SI and S2 are shown in Figure 6.5 and 

Figure 6.6, respectively. ^From Figure 6.5, the probability of selection correspond-

ing to the individual having the highest fitness value for the GA employing SI has 

a similar distribution for both T < P and T — A. From this observation, we can 
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- T < P , S 1 
- T<P, S2 

T=4, SI 
- T=4, S2 
- Optimum (K=10) 

P=30.Y=10 

3 4 5 6 
Generation y 

Figure 6.4: The desired bits' error probability with respect to the number of generations 
for the GA-assisted multiuser detector over narrow-band Rayleigh fading 
channels employing the EBB detection strategies SI and S2 with a popula-
tion size of P = 30 using random signature sequences of length JVc = 31 and 
supporting if = 10 users at an SNR value of 36 dB. The GA configuration 
and the simulation parameters used are listed in Table 6.2 and Table 6.1, 
respectively. 

conclude that for GAs employing SI, there is only a handful of individuals having 

relatively high fitness values that dominate the population. Furthermore, since the 

initial individuals are generated based on the matched filter output according to 

Equation (6.18), their fitness values are far from optimum and hence the random 

process of mutation may substantially increase some of these fitness values. 

On the other hand, the distribution of the probability of individual selection 

for GAs employing S2 is different for T < P and T = 4, as seen from Figure 6.6. 

In particular, for T C f we see that the selection pdf peak is around the region 

of 0.2. This implies that most of the time the selection probability of the fittest 

individual is only about 0.2. This implies a weakly selective process, as highlighted 

in Section 2.4.2, which reduces the convergence rate. The reason for this weakly 

selective process is because the EEBs now have a significantly lower BEP due to 

their GA-assisted estimation, which are used for the initialisation of the desired bits 

in the subsequent truncated observation window. Hence the fitness values of all the 

individuals are relatively high, exhibiting near-optimum values. As a result, a high 

number of individuals will have similar fitness values, which ultimately reduces 
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Figure 6.5: Distribution of the probability of selection corresponding to the individual 
having the highest fitness value at the 0th generation for the GA-assisted 
multiuser detector over narrow-band Rayleigh fading channels employing the 
EBB detection strategy SI with a population size of P = 30 using random 
signature sequences of length Nc = 31 and supporting K — 10 users at an 
SNR value of 36 dB. The GA configuration and the simulation parameters 
used are listed in Table 6.2 and Table 6.1, respectively. 

the probability of selection for each individual. By contrast, a majority of the 

probability of selections for T = 4 centres around the region of 0.3. This provides 

further evidence of the argument that the majority of the individuals have almost 

equal fitness values, since the lowest probability of selection for T = 4 is 0.25, when 

these 4 individuals have the same probability of selection. Hence, by using a small 

mating pool, we can place more emphasis on the individuals exhibiting high fitness 

values. 

Figure 6.7 and Figure 6.8 shows the DEEP performance and the EBEP perfor-

mance, respectively, against the average SNR per bit for the GA-assisted multiuser 

detector supporting ii ' = 10 users, when employing the two EEB estimation strate-

gies. The single-user bound was computed using Equation (5.12), with replaced 

by Z,. As Figure 6.7 shows, the DEEP of the GA-assisted multiuser detector em-

ploying Si was inferior compared to that of S2. The error floor observed for SI 

in the single-path scenario was caused by the high EBEP, as seen in Figure 6.8. 

In this case, the GA-assisted multiuser detector was termed as EEB interference-

limited. The same can be said for the two-path scenario. On the other hand, we 
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T<P, S2 

T=4, S2 
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Probability of selection 

Figure 6.6: Distribution of the probability of selection corresponding to the individual 
having the highest fitness value at the 0th generation for the GA-assisted 
multiuser detector over narrow-band Rayleigh fading channels employing the 
EBB detection strategy S2 with a population size of P = 30 using random 
signature sequences of length = 31 and supporting if = 10 users at an 
SNR value of 36 dB. The GA configuration and the simulation parameters 
used are listed in Table 6.2 and Table 6.1, respectively. 

can see from Figure 6.8 that the EBEP upon employing S2 is fairly low. As a 

result, the performance of the GA-assisted multiuser detector utilising this strategy 

was not limited by the EEB errors and hence it was capable of achieving a near-

optimum single-user-like DEEP performance. Furthermore, in comparison to the 

'brute-force' ML detector requiring 2^° = 1024 correlation metric evaluations, our 

proposed multiuser detector is substantially less complex, requiring only a maxi-

mum of 10 X 30 = 300 correlation metric evaluations, yet performing close to the 

optimum performance. 

The notion of an EBB interference-limited DEEP performance employing strat-

egy SI is further substantiated in Figure 6.9, which characterises the DEEP per-

formance of the proposed detector for a population size of P = 20. Naturally, we 

would expect the performance to degrade as compared to Figure 6.7, when the pop-

ulation size P decreases. As seen in the figure for both the one-path and two-path 

scenarios, the DEEP performance of the proposed detector employing strategy SI 

did not show significant degradation in comparison to tha t associated with P = 30, 

as illustrated in Figure 6.7. This is due to the fact that the EBEP is the same for 
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Figure 6.7: The desired bits' error probability for the GA-assisted multiuser detec-
tor over Rayleigh fading channels employing the EEB detection strategies 
SI and S2 with a population size of P = 30 using random signature se-
quences of length 31 and supporting K = IQ users. The GA configuration 
and the simulation parameters used are listed in Table 6.2 and Table 6.1, 
respectively. 

both P = 30 and P = 20 and hence the corresponding DEEP performances are 

limited by the poor reliability of the EEBs. This becomes explicit in comparison 

to the curve characterising the scenario using perfect knowledge of the SEBs and 

EEBs, which exhibited a near-single-user DBEP performance even for P = 20. On 

the other hand, for detectors employing strategy S2, a degradation can be observed 

for P = 20 compared to that for P = 30, as shown in Figure 6.7. This is because in 

this case there are 2K variables to be optimised and therefore a higher population 

size is required in order to achieve optimum performance. Hence, when P = 20, 

the performance of the detector is degraded. In this case, we referred to the DBEP 

performance as 'GA-limited'. 

Figure 6.10 shows the DBEP performance of our proposed multiuser detector 

for K = 15 users. Because of the higher number of variables to be optimised, we 

increased the population size P to 40 and 50. We note from the figure that for 

P = 40, the GA employing strategy Si now exhibits a more significant degradation 

in terms of its DBEP performance with respect to the single-user bound, than that 

employing strategy S2. This is due to the fact that as the number of users increases, 

the EBEP becomes higher. Increasing the population size to 50 does not show any 



Chapter 6. GA-Assisted Multiuser Detection for Asynchronous Systems 133 

10° E -

T = 4 

tNi=tN2=10 chips 

10 

GA-assisted detector using strategy SI 
GA-assisted detector using strategy S2 
Single-user bound 

10 15 20 
SNR in dB 

25 30 35 

Figure 6.8: The EEBs' error probability performance for the GA-assisted multiuser 
detector over Rayleigh fading channels employing the EEB detection strate-
gies SI and S2 with a population size of f — 30 using random signature 
sequences of length 31 and supporting K — IQ users. The GA configuration 
and the simulation parameters used are listed in Table 6.2 and Table 6.1, 
respectively. 

significant improvement using the same strategy, since the performance is limited by 

the EEB interference. We also note that for P = 40 the D E E P performance of GAs 

employing strategy S2 did not match the single-user bound, even though it outper-

formed strategy SI. This is due to the limited population size, which was too small 

for optimising 2 x 15 variables. However, by increasing P to 50, the DEEP perfor-

mance becomes near-optimum. Hence, while achieving a superior performance, the 

associated additional computational complexity has to be tolerated. An important 

observation is that when K is increased from 10 to 15 users, a near-optimum DEEP 

performance can be maintained by increasing the population size P from 30 to 50, 

while keeping F = 10 and employing strategy 82. This constitutes a factor of 5/3 

increase in the number of correlation metric computations. On the other hand, the 

computational complexity of the conventional optimum detector using brute-force 

optimisation is increased by a factor of 2̂  = 32. 

All the simulation results we have seen so far were based on a truncated window 

size of = 10 chips^. This corresponds to a minimum spreading factor 

^We have set tiqi = ijv2 in order t o arr ive a t a s y m m e t r i c t r u n c a t e d window for ease of 

s imula t ion 
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Figure 6.9: The desired bits' error probability performance for the GA-assisted mul-
tiuser detector over Rayleigh fading channels employing the EEB detection 
strategies SI and S2 with a population size of P = 20 using random signature 
sequences of length 31 and supporting K — IQ users. The GA configuration 
and the simulation parameters used are listed in Table 6.2 and Table 6.1, 
respectively. 

of 10 for both the SEBs and EEBs. The effects of the window size on the SEB 

error probability can be ignored, since these bits have been detected previously. 

On the other hand, the EEBs have to be tentatively detected based on only the 

reduced spreading factor. In practice, it is not always possible to set t m = — 10 

chips. The worst case would be tm = tN2 = 0 chips, while the ideal case would be 

(jvi = tjva = Ti,i - + 7b chips. We studied the effects of varying the window size 

on the DEEP performance based on these two settings and the associated results 

are shown in Figure 6.11. 

We can see that for a narrow window size of = tN2 = 0 chips, the performance 

of the detectors employing strategy SI deteriorates more significantly compared to 

the scenario using a wider window size of = t7V2 = 20 chips, when employing 

strategy S2. This implies that the DEEP performance of detectors using the EBBs 

based on the hard decisions of the correlator outputs in Figure 6.1 are more sensitive 

to the varying window size, than those invoking GA-assisted EEB detection. 
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Figure 6.10: The desired bits' error probability performance for the GA-assisted mul-
tiuser detector over Rayleigh fading channels employing the EEB detection 
strategies SI and S2 with population sizes of P = 40 and P = 50 using 
random signature sequences of length 31 and supporting K = Ih users. 
The GA configuration and the simulation parameters used are listed in 
Table 6.2 and Table 6.1, respectively. 

6.5 Chapter Summary and Conclusions 

In this chapter, we considered an asynchronous CDMA system communicating over 

a dispersive Rayleigh fading channel, as presented in Section 6.2. The correlation 

metric based on a truncated window size was also formulated. We then developed 

a GA-assisted multiuser detector for this model in Section 6.3, in order to search 

for the particular bit sequence that optimises the correlation metric. Two strate-

gies were evaluated for providing tentative decisions concerning the EEBs. In the 

first approach, as highlighted in Section 6.3.1, the EEBs were tentatively detected 

based on the hard decisions at the correlator outputs. The desired bits within the 

truncated observation window were detected using GAs. In our second approach 

presented in Section 6.3.2, GAs were invoked in order t o improve the EBEP and at 

the same time to detect the desired bits within the window. Our simulation results 

presented in Section 6.4 showed that the DBEP performance of the detectors using 

the first approach were limited by the high error rate of the EEBs. On the other 

hand, using the same number of correlation metric evaluations, detectors employing 

the second approach can achieve a near-optimal DBEP performance at the cost of a 
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Figure 6.11: The desired bits' error probability performance for the GA-assisted mul-
tiuser detector over Rayleigh fading channels employing the EEB detection 
strategies SI and S2 with a population size of P = 30 using random sig-
nature sequences of length 31 and supporting if = 10 users with various 
truncated window sizes. The GA configuration and the simulation param-
eters used are listed in Table 6.2 and Table 6.1, respectively. 

lower number of correlation metric evaluation compared to the optimum multiuser 

detector using a brute-force approach. Furthermore, both the EEBs and the desired 

bits are detected by the same GAs, resulting in potential complexity savings. 



C H A P T E R 7 

Conclusions and Discussion 

This concluding chapter summarises the results that were presented in this disser-

tation, and our suggestions for further work are outlined. 

7.1 Summary and Conclusions 

This dissertation is concerned with the application of GAs in CDMA multiuser de-

tection, in order to circumvent the complexity problem that arises when employing 

an optimum multiuser detector. 

A basic overview of GAs employed as optimisation tools was presented in Chap-

ter 2. The terms and definitions that are associated with GAs were introduced. In 

order to justify the employment of GAs, an example was provided, which showed 

how a GA performed a search for the optimum solution. From the example, we 

observed that the GA identifies high-fitness individuals and exploits similarities 

amongst the individuals. Based on this concept, the notion of schema was intro-

duced by Holland [29], which can be used in predicting the behaviour of GAs over 

the course of the evolution. This led to the derivation of the schema theorem, as 

formulated by Holland [29]. Since its introduction in the 1970s, numerous vari-

ants of GAs have been developed, each of which was found to be suited for solving 

specific problems. Hence the general concensus is that GAs should not be treated 

as off-the-shelf optimisation algorithms that are expected to solve every problem 

efficiently. Some of the more popular operations and strategies that constituted a 
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GA were highlighted, which were subsequently investigated, in order to determine 

their usefulness in the context of our multiuser detection problem. 

We commenced our study of GA-assisted CDMA multiuser detectors by first 

considering a symbol-synchronous CDMA system supporting K users over an AWGN 

channel as well as a non-dispersive Rayleigh fading channel. Having established the 

mathematical notations that were adopted in the dissertation, we proceeded to de-

rive the correlation metric of Equation (3.23) as formulated by Verdu [1] for the 

optimum multiuser detector. It can be seen that for attaining the optimum BEP 

performance, every possible K-h\i combination must be tested, in order to find the 

combination that maximises the correlation metric. Hence the optimum multiuser 

detector has a computationeil complexity that is exponentially proportional to the 

number of users to be detected. Thus its implementation becomes impractical, 

when there is a high number of users. Hence the GA-assisted multiuser detector 

was proposed, in order to circumvent this complexity problem. According to our re-

sults obtained in Section 3.5, we demonstrated that the type of GA operations and 

strategies invoked can have a signiEcant impact on the convergence rate and hence 

also on the resulting BEP and on the complexity of the detector. Upon comparing 

our proposed schemes to other similar GA-assisted multiuser detectors proposed for 

example by Juntti et al. [65], Wang et al. [66] and Ergiin et al. [67,68], we can see 

the reasons why they have concluded that GAs are not particularly promising for 

implementation in CDMA multiuser detectors. However, we have made no claims 

concerning the optimality of our adopted GA configuration, which was invoked in 

our GA-assisted multiuser detector, since we have only investigated a fraction of 

the potentially suitable GA implementations. Based on our adopted GA configura-

tion characterised in Table 3.9, we can see that the GA-assisted multiuser detector 

is capable of achieving a near-optimum BEP performance over both AWGN chan-

nels as well as over non-dispersive Rayleigh fading channels with the assistance of 

perfect CIR coefficient estimation. This can be achieved at a significantly lower 

computational complexity than that required by the optimum multiuser detector. 

We have demonstrated that the GA-assisted multiuser detector is capable of 

achieving the near-optimum BEP performance up to a certain channel SNR value 

with the aid of the perfect knowledge of the users' CIR coefficients. In reality, these 

CIR coefficients must be estimated at the receiver. Conventional CIR estimation 

schemes requires the transmission of known pilot symbols from each user, in order 

to assist the CIR estimator at the receiver in acquiring the users' CIR coefficients. 

However, pilot-symbol based estimation will reduce the throughput and bandwidth 

efficiency of the system. Furthermore, a training period is required for adaptive 
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Elter-based CIR estimation, such ag the Kalman Glter [18], in order to acquire and 

update the filter tap weights. We noticed that the correlation metric of Equa-

tion (3.23) requires that the users' CIR coeGicients be known. However, by treating 

these CIR coefficients as unknown variables, we can employ GAs also for jointly 

estimating the CIR coefficients as well as the transmitted bits simultaneously for 

all users by optimising the correlation metric given by Equation (4.6). In the con-

text of joint CIR estimation and symbol detection solely by the GAs, the search 

space became continuous, having an infinite number of possible points, simply be-

cause the fading attenuation and phase trajectories are continuous. Hence, the GA 

configuration that was adopted previously had to be modified. Specifically, the mu-

tation operation and the mating pool size had to be adapted since the number of 

quantities to be determined was doubled. Through simulation, we have determined 

the value of the maximum mutation size Xmax as well as the mating pool size T 

that were capable of o%ring an acceptable CIR estimation performance, having 

an MSE as low as 0.001 in conjunction with known data bits. Having determined 

the GA parameters, the BEP performance of the joint GA-assisted multiuser CIR 

estimator and symbol detector was evaluated by simulations. It was shown that 

the BEP performance was limited due to the imperfect CIR estimation. However, 

the same phenomenon is also expereinced in a single-user scenario employing a 

matched filter having the same channel estimation MSE. Since the CIR estimation 

can be conducted without explicit training sequences or decision feedback, our pro-

posed detector is capable of offering a potentially higher throughput and a shorter 

detection delay, than that of explicitly trained CDMA multiuser detectors. 

It is well-known that diversity techniques can be used for mitigating the hostile 

effects of the transmission channel, in order to attain a BEP performance improve-

ment. A symbol-synchronous CDMA system in conjunction with multiple receiving 

antennas was investigated in Chapter 5. By assuming that the antennas are placed 

at a distance higher than half the signals' wavelength, every user's signal received at 

each antenna is uncorrelated, which gives rise to an independent correlation metric 

at each antenna. From an optimisation point of view, the associated multiple cor-

relation metrics resulted in a decision conflict, since a particular bit sequence may 

optimise one correlation metric but not the others. GAs can resolve this confiict 

by invoking the Pareto optimality approach, in order to assist the search for the 

optimum solution. The Pareto optimality approach is accomplished by identifying 

the non-dominated individuals in a population by considering the figure of merit 

from each antenna independently. The corresponding individuals are then placed 

in the mating pool. This approach is compared to the traditional way of selecting 
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individuals for the mating pool, which contains all non-identical individuals. Sim-

ulation results have shown that the Pareto optimality approach performed consis-

tently better in terms of a lower BEP, than the traditional approach. Furthermore, 

a substantial performance gain was achieved, when antenna diversity was invoked 

compared to no diversity, without incurring additional computational complexity 

at the multiuser detector. 

Finally, we applied the GA-assisted multiuser detector in an asynchronous CDMA 

system in Chapter 6. In order to reduce the computational complexity involved in 

detecting the entire bit sequence of all the users, a truncated observation window 

was invoked, such that the window encompasses at most one complete bit duration 

of each user. The EEBs were then tentatively detected according to two differ-

ent strategies. Firstly, the EEBS can be tentatively estimated based on the hard 

decisions of the matched filter outputs. The GA-assisted multiuser detector then 

proceeded to search for the desired bits sequence that optimised the correlation 

metric. Since the estimated EEBs were corrupted by the interference inflicted by 

other users, the EBEP was high and this limited the overall performance of the GA-

assisted multiuser detector. In our second approach, the EEBs and the desired bits 

were estimated by the GA-assisted multiuser detector simultaneously. As a result, 

the EEBs beneBted from a lower bit error probability and the overall performance 

of the detector approached the optimum performance. 

7.2 Suggestions for Future Work 

We have demonstrated in this dissertation that GAs can be applied to CDMA mul-

tiuser detection schemes, which are capable of offering near-optimum performance 

at a reduced computational complexity compared to the conventional optimum 

multiuser detector. However, as we have mentioned in Chapter 2, the GAs that we 

have studied in this dissertation constitute a fraction of the entire GA-based op-

timisation literature. Hence other GA conSgurations may exist that can solve the 

optimisation problem associated with multiuser detection more efficiently. As we 

have seen, the specific values of certain GA parameters, such as the population size 

f , mating pool size T and the probability of mutation Pm may signiGcantly aEect 

the convergence rate and hence the achievable BEP under different conditions. An 

important aspect, which was not investigated in this dissertation, is the adaptation 

of these parameters according to the conditions. For example, the probability of 

mutation can be changed adaptively according to the number of users. Further-

more, by exploiting the different BEP criteria for different users and services, the 
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population size f and the number of generations F can be adaptively adjusted, 

such that once the BEP criteria of certain users are met, they can be removed from 

the optimisation process. This will subsequently reduce the number of decision 

variables so that the population size can be reduced further, thereby reducing the 

computational complexity imposed. 

In this dissertation, we have only considered a BPSK modulation based trans-

mission schemes. While this type of modulation method is easy to implement and 

requires less complex receivers, it suffers from a low spectral efficiency. On the 

other hand, a CDMA system employing M-ary modulation, where M > 2 exhibits 

better spectral efficiency and hence it is capable of achieving a higher transmission 

rate within the same transmission bandwidth, while using the same spreading fac-

tor as BPSK modulation [100]. However, due to the intricate signal constellation 

associated with M-ary modulation, the complexity of the detector will increase. In 

the context of the optimum multiuser detector, the computational complexity of an 

M-ary modulation scheme is on the order of . Hence, if for example we consider 

Quadrature Phase Shift Keying (QPSK) modulation, the computational complex-

ity of the optimum multiuser detector supporting K users will be on the order of 

4^. This figure is 'astronomical' even for a system supporting K = IQ users. We 

have seen that the GA-assisted multiuser detector is capable of significantly reduc-

ing the computational complexity and yet deliver a near-optimum performance in 

conjunction with BPSK modulation. Hence, if the GA-assisted multiuser detector 

is used in an M-ary modulation scheme, the complexity reduction is likely to be 

more significant. 

The properties of the GAs render them capable of solving optimisation problems 

having continuous decision variables. We have seen that the GA-assisted CIR coef-

ficient estimator can achieve an estimation MSE of as low as 0.001 in a time-variant 

fading channel. Following this concept, the GA can also be invoked in order to ob-

tain the soft decisions associated with the transmitted bits. These soft decisions can 

then be transferred to a channel codec, such as a Turbo Trellis Coded Modulation 

(TTCM) scheme or a Bit-Interleaved Coded Modulation (BICM) scheme [101], in 

order to achieve a further performance gain. 



A P P E N D I X A 

Glossary 

2G Second Generation 

3G Third Generation 

AWGN Additive White Gaussian Noise 

B E P Bit Error Probability 

BPSK Binary Phase Shift Keying 

C - G A / M S D Cascaded-Genetic Algorithm/Multi-Stage Detector 

C D M A Code Division Multiple Access 

CIR Channel Impulse Response 

D E E P Desired Bit Error Probability 

DS Direct Sequence 

E - G A / M S D Embedded-Genetic Algorithm/Multi-Stage Detector 
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E B E P 

EEB 

EM 

EP 

ES 

FIR 

GA 

IS-95 

ITU 

LLP 

LMMSE 

L M S 

M A I 

M A P 

ML 

M M S E 

EEB Error Probability 

End Edge Bit 

Expectation Maximisation 

Evolutionary Programming 

Evolutionary Strategy 

Finite Impulse Response 

Genetic Algorithm 

Interim Standards 95 

International Telecommunication Union 

Log-Likelihood Function 

Linear Minimum Mean Squared Error 

Least Mean Square 

Multiple Access Interference 

Maximum a posteriori Probability 

Maximum Likelihood 

Minimum Mean Squared Error 

MMSE-BLE Minimum Mean Squared Error Block Linear Equalizer 

MMSE-BDFE Minimum Mean Squared Error Block Decision Feedback Equalizer 
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M S B 

MSB 

P D F 

PIC 

QPSK 

SEB 

SIC 

SNR 

ss 

UMTS 

U T R A 

W - C D M A 

ZF-BLE 

ZF-BDFE 

Multi-Stage Detector 

Mean Squared Error 

Probability Density Function 

Parallel Interference Cancellation 

Quadrature Phase Shift Keying 

Start Edge Bit 

Successive Interference Cancellation 

Signal-to-Noise Ratio 

Spread Spectrum 

Universal Mobile Telecommunications System 

UMTS Terrestrial Radio Access 

Wideband CDMA 

Zero-Forcing Block Linear Equalizer 

Zero-Forcing Block Decision Feedback Equalizer 
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List of Symbols 

ah{t) kth user's signature sequence. 

a Signature sequence vector. 

Rayleigh distributed amplitude. 

Detected mth data bit of the Ath user at the receiver. 

mth data bit of the kth user. 

b Data bit vector. 

C CIR coeffcients diagonal matrix. 

(jif) DeSning length of schema . 

A Mutation size for real-valued variables. 

Rectangular pulse of unity amplitude from 0 < < < T 

and zero otherwise. 
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Complex lowpags channel impulse response associated with 

the Mh user's signal. 

H Schema notation. 

K Number of users in the system. 

A ( ^ ) Objective function where % is a vector containing the decision 

variables to be optimised. 

Amai Maximum mutation size for real-valued variables. 

L Number of multipaths 

Number of diversity antennas 

m {H, y) Number of instances corresponding to the schema H at the yth 

generation. 

M Number of data bits transmitted in a packet. 

n{t) Zero-mean complex additive white Gaussian noise with 

independent real and imaginary components, each having a 

double-sided power spectral density of A/o/2 W/Hz. 

M Gaussian noise vector. 

Nc Spreading factor, or the number of chips in one data bit duration Tb. 

o (77) Order to schema .ff. 

Q. (6) Correlation metric. 

Pi Probability of selection corresponding to the zth individual. 

Pm Probability of mutation. 
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Ps {H) Probability of survival of schema H. 

Channel phase uniformly distributed between [0,27r). 

P Population size. 

r(() Received signal. 

pik Cross-correlation of the /th user's and the A;th user's signature 

sequence. 

R User signature sequence cross-correlation matrix. 

Sk{t) Equivalent lowpass representation of the Mh user transmitted 

CDMA signal. 

Channel impaired signal of the A;th user. 

Tk̂ i Random delay corresponding to user k over the Ith path. 

TATi, Tr/z Observation window boundary 

T Mating pool size. 

Tfe Data bit duration. 

Tc Chip duration. 

^th user's signal energy per bit. 

^ Signal energy per bit diagonal matrix. 

Zf Matched filter output associated with the Zth user. 

Z Matched filter output vector. 
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