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The present thesis is concerned with the theoretical and experimental description of 
vibroacoustic power How in inhnite 8uid-hlled pipes excited by hydroacoustic noise 
sources, such as Sow control valves. The walls of the pipes are assumed to be compliant, 
so that vibrations of the shell wall induce pressure Suctuations in the Huid, and vice 
versa. The coupling between the pipe wall and the contained fluid is provided by the 
Suid loading of the pipe; the methods presented are valid for both light and heavy Buid 
loading. 

Two distinct and complementary approaches are investigated for quantifying the vi-
broacoustic power How: numerical simulations and controlled experiments. 

The core of the numerical simulation approach is a vibroacoustic analogy that trans-
forms the excitation of the Auid-611ed pipe by internal turbulent 8ow into an equivalent 
vibroacoustical problem where the excitation is provided by a distribution of vibroa-
coustic sources applied to a pipe containing stationary Huid. When the excitation 
is formulated aa an equivalent distribution of vibroacoustic sources (structural and 
acoustical), the resulting vibroacoustic power How can be calculated via an extension 
of existing theory. 

The necessary analytical and numerical tools for the prediction of the vibroacoustic 
power Bow are assembled for point force excitation of the pipe wall, and for point 
monopole, point dipole, and point quadrupole excitation of the Suid. 

The relative Mach number scaling of far-held Auid pressure radiated inside the pipe, 
for point monopole, point dipole, and point quadrupole, is investigated and the in-pipe 
results are compared to the corresponding free held results. 

The proposed experimental approach involves mounting the noise source in an instru-
mented pipe system under controlled conditions. If one-directional wave propagation 
can be established (e.g. through anechoic terminations of the pipe), then the power 
input by the source can be inferred from modal measurements of the pipe wall response. 

The modal measurements of the pipe wall response are obtained by modal decomposi-
tion of accelerometer measurements, and by direct measurements with shaped PVDF 
modal sensors. 

Actual measurements of the vibroacoustic power How using the proposed method are 
compared with numerical predictions for pipes with light and heavy fluid loading, 
excited both by a radial force at the pipe wall and by a transmitting hydrophone in 
the contained fluid. 



Sta tement of original contr ibut ion 

Both the theoretical and experimental strategies outlined in part I for quantifying valve 
noise are original: they were developed by the author in the course of the PhD, following 
suggestions from his supervisor. In particular, the theoretical approach of chapter 4 is 
based on an application of the acoustic analogy to the interior of a Hexible-walled pipe: 
this has required an original exploration of the solution properties for point-dipole and 
point-quadrupole excitation of the contained Suid. 

Part 11 of the thesis consists of a theoretical discussion of pipe response to structural 
and Buid excitation. It is assembled from various published sources including the 
research literature. Its originality lies in the fact that for the first time, a methodology 
is presented in detail for predicting the vibroacoustic power Row in pipes under such 
excitation. 

Part III presents experiments on both light and heavy Suid loaded pipes. Some of 
the experimental techniques used are taken from published sources. However, the 
experiments include a number of original contributions; most notably the practical 
implementation of existing modal sensor concepts, and response measurements on a 
heavy Suid loaded pipe when excited by an internal transmitting hydrophone. 
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Chap te r 1 

In t roduc t ion 

1.1 Concept of Danish Industrial P h D Fellowship 
Programme 

The objectives of the Danish Industrial PhD Fellowship Programme are to promote 
technological and Gnancial development for Danish trade and industry, and to support 
young employees at Danish enterprises to obtain a PhD. The Danish Academy of 
Technical Sciences (in Danish 'Akademiet for de Tekniske Videnskaber' or ATV) funds 
each student's training programme in cooperation with an industrial partner. Suitable 
industrial partners are private Danish enterprises with a research and development 
environment. 

The main part of the fellowship programme is a three-year research project at a univer-
sity leading to the achievement of the PhD degree. The core of the educational scheme 
is a close and formalised partnership between an enterprise and a university for the 
conduct of the research project. In carrying out the research project the PhD student 
applies the knowledge and technology of the university to the beneht of the enterprise, 
which thereby acquires advanced knowledge and valuable technical skills. The research 
project is dehned in cooperation between the industrial partner, the university and the 
PhD student. 

The general conditions for the Danish Industrial PhD Fellowship Programme are 

# The enterprise employs the PhD student for 3 years to work exclusively on the 
approved project and follow the educational programme deSned in the project 

# Even distribution of educational period between the enterprise and the university 
in order to secure the required interaction between research work and practical 
application of results 

# Participation by the PhD student in a business-targeted course, arranged by ATV 
(corresponds to one month's work) 
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# Submission of a Enal study plan to the ATV Committee on Industrial PhD Fel-
lowship Programme six months after the start of the educational programme 

# Compliance with the regulations of the university in question 

# Approval of the group of external examiners by the ATV Committee on Industrial 
PhD Fellowship Programme 

# Participation of a representative of the ATV Committee on Industrial PhD Fel-
lowship Programme in the dissemination/publication of the results. 

1.2 Structure of the thesis 

The thesis is divided into four main parts, not including this introduction. The 5rst 
presents concepts of How noise quantification, the second a framework for the predic-
tion of the vibroacoustic power Sow, and the third experimental quantihcation of the 
vibroacoustic power Bow. The fourth part discusses the implications of this work and 
presents some conclusions. A graphical overview of the different parts of this thesis 
can be seen in Ggure 1.1. 

The first part presents the overall strategy for quantihcation of How noise sources, e.g. 
control valves, connected to water-Ailed pipes. Two conceptually different quantiSca-
tion methods are discussed: one based on experiments and another based on numerical 
methods. Both methods are based on the concept of vibroacoustic power How; if the 
total vibroacoustic power How can be quantiHed in the far Held ^ and the absorbtion 
in the water-Hlled pipe can be assumed to be small, then the noise produced by e.g. 
a control valve can be inferred. The main elements of the experimental method are 
presented in part I, with the detailed measurements deferred to part III. Likewise the 
main elements of the numerical prediction approach are presented in part I, including 
the vibroacoustic analogy formulation; the necessary analytical and numerical tools are 
then developed in detail in part II. The Hrst step in the numerical prediction approach 
is the calculation of the unsteady How in the pipe; literature studies and feasibility 
tests during this work have revealed that the How calculation is very complicated and 
worth a PhD study on its own. Discussion is therefore limited to basic concepts, with 
some remarks on recently published investigations. The second step, the vibroacoustic 
analogy, is discussed in detail in part I, except for the calculation of the vibroacoustic 
power How which is discussed in part II. 

Part II brings together published results from several sources, and shows how to calcu-
late the vibroacoustic power How in an inHnite Huid-Hlled pipe from two simple types 
of excitation: a point force on the shell wall and a point monopole in the Huid. An 
all important part of the calculation of the power How from these sources is the ability 
to predict the vibroacoustic response at any point (i.e. both the vibration of the pipe 
wall and the pressure in the contained Huid). Using the prediction model, a parameter 

^i.e. some distance away from the source along the pipe 



Part I ; Overall strategy for quantification of hydroacoustic sources in pipes 

Experimental approach: 
test rig arid measurement techniques 
for modal power flow in an infinite pipe 

Numerical simulation approach: 
coupling of CFD to analytical models 
via a vibroacoustic analogy 

A 

Part III: Pipe response and power 
flow measurements 

* Light fluid loading (air-filled PVC pipe) 
* Heavy fluid loading (water-filled PVC pipe) 

Excitation: 
* External shaker on wall of pipe 
* Internal transmitting hydrophone 

V 

Part I I : Vibroacoustic power flow in 
fluid-filled cylindrical pipes 

* Response to structural inputs 
* Response to fluid inputs 
* Power flow formulation 
* Parameter study 
* Choice of shell theory 

V 

Part IV : Conclusions, practical implications, and further work 

* Experimental approach 
* Numerical simulation approach 

Figure 1.1: Thesis outline in diagrammatic form 



study is presented; the study concentrates on the parameter range important for the 
industrial problem. Included in this parameter study is an assessment of the choice 
of shell theory in the prediction model. The prediction model is validated against the 
experiments in part III. 

In part III, experiments quantifying the far held vibroacoustic power Row are pre-
sented. The experimental principle is Grst validated on a light 6uid loaded pipe: a 
PVC pipe with air both inside and outside. During these experiments, the vibrational 
response of the pipe is very close to that of the in vacuo pipe, i.e. the pipe with vacuum 
both inside and outside. The modal vibrational response of the pipe is measured using 
modal decomposition of point measurements with an accelerometer. The vibrational 
response is compared with the prediction model from part II; excellent agreement is 
demonstrated in the near 6eld and good agreement is demonstrated in the far Eeld. 
A simple method is presented to infer the far held vibroacoustic power Bow from the 
measured modal response, using the predicted vibrational response and the predicted 
power How. The method relies on quite restrictive assumptions that are justihed only 
under special conditions, but the experiments meet these conditions. The same exper-
imental principle is used on a heavy 8uid loaded pipe: a PVC pipe with air outside, 
but water inside. The modal response is measured using both the accelerometer de-
composition technique and shaped modal sensors. These sensors are only sensitive to 
certain modes of vibration and they allow direct measurement of the modal response 
of a pipe. The modal measurements are compared with each other and with the pre-
diction model, and it is concluded that the agreement is excellent in the near Eeld and 
good in the far 6eld. Due to the relative softness of the PVC pipe, the vibroacoustic 
power Sow can be inferred from the measurements using the same method as for the 
light huid loaded experiments. 

Part IV states the main conclusions and discusses the relation between the individual 
findings. The Endings obtained during the PhD project are discussed in the light of 
the industrial application of the present thesis. Finally are some suggestions for further 
work stated. 

A bibliography is located in the end of the thesis, after the appendices. 

1.3 Motivation of the present Industrial P h D project 

The industrial sponsor of this project, Danfoss A/S, is one of the world's largest manu-
facturers of control devices for domestic heating applications. Since the sound quality 
of domestic appliances is becoming an important factor in consumer choice, one of 
the prime concerns of Danfoss is the noise output from heating applications including 
thermostatic radiator valves. Examples of thermostatic radiator valves are shown in 
hgure 1.2. 

The main industrial objective of this project is to gain knowledge that can eventually 
lead to a better design of Sow control valves with respect to noise. While the actual 
design of Sow control valves is outside the scope of this project, the methods to quantify 



Figure 1.2; Cross section of Danfoss RA-FN 15 valve and application examples. 

vibroacoustic power flow presented in this thesis are significant contributions to the 
general knowledge needed by manufacturers of devices intended for connection to water-
filled pipes, if those devices can act as vibroacoustic sources. 

Danfoss has for many years worked towards optimisation of control valves using indi-
rect experimental techniques (one of the methods is explained in more detail in the 
next section). Using indirect measurement methods, valuable insight has been gained 
over the years, e.g. through a previous Industrial PhD project (Kiil 1982). However, 
the indirect methods have some drawbacks when used in optimisation cycles of new 
products. A more direct measurement technique that is able to quantify the noise 
output from the valve on its own would be a valuable asset in the toolbox of Danfoss. 

Virtual product development using advanced Computer Aided Design (CAD) systems 
and numerical prediction software, allows predictions of many important parameters 
even before a prototype of the new design exists. Structural finite element programs can 
reliably predict deformations and stress concentrations of individual components, and 
other programs are commonly used to simulate the entire mould filling process when 
producing plastic components. At present Computational Fluid Dynamics (CFD) is a 
valuable tool in the development of new valves at Danfoss, as it provides insight into the 
detail of the fluid flow that would be very difficult to establish through experimental 
techniques. 

At Danfoss, the general purpose CFD code Star-CD from Computational Dynamics has 
been used with great success for several purposes, including some 'virtual prototype' 
numerical experiments on new designs of valves. So far, the numerical experiments 
have been concentrated around the control properties of the valve (mainly flow rate as 
function of pressure drop across the valve, or flow rate as function of valve lift). Expe-
rience has shown that this kind of optimisation in some cases can introduce unwanted 
and unexpected noise problems, that need to be identified and removed using experi-
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Figure 1.3: Sketch of experimental setup used in the Nordtest method. 

mental methods. To be able to use the 'virtual prototype' techniques more eSciently, 
it would be very useful to be able to predict the acoustical properties of new designs 
at an early stage without experimental input. 

1.3.1 Present experimental method used for noise source quan-
t if ication 

Different approaches exist to quantify the noise output of control valves. Many meth-
ods in the public domain are aimed at quantifying the very high noise intensities (with 
sound pressures up to 120 dB(A)) related to gas pressure reducing valves, e.g. Amini 
and Owen (1995) or Nakano et al. (1988). Of the measurement methods more rele-
vant to products of Danfoss, all those in current use attempt to replicate the actual 
application where the control valve is used. While this approach seems sound from an 
end user point of view, it is problematic when comparing different applications or even 
individual valves, since the measurement methods rate the entire application and not 
the valve alone. This is one reason why the otherwise relevant work of Puchs (1993) 
regarding generation and control of noise in water supply installations is difficult to 
apply directly to thermostatic radiator valves. 

The method presently used at Danfoss for the noise rating of thermostatic radiator 
valves is an adapted form of the proposed Nordtest method, (Simmons 1997), 'Radiator 
valves: Determination of the sound power level in the laboratory'. Figure 1.3 shows 
the principal parts of the experimental setup. The thermostatic radiator valve to 



be tested is mounted rigidly between two test pipes attached to a reference radiator. 
The reference radiator is suspended elastically inside a reverberation room. A water 
circulation is enforced by a small and quiet pump outside of the reverberation room. 
The Row noise generated by the valve is transmitted to the reference radiator through 
a specified test pipe. The airborne sound radiated from the reference radiator into the 
test room is measured. By comparison with a reference sound source, or by correction 
based on the reverberation time and the volume of the test room, the airborne sound 
power level of the radiator-and-valve assembly is determined. 

Even under the best of circumstances (ignoring all problems related to repeatability 
and reproducibility), the measured sound power is only partly related to the valve itself. 
The How noise generated by the valve is transmitted to the pipe, then transmitted from 
the pipe to the radiator, from the radiator to the air inside the test room and from the 
test room to the microphones. Experience at Danfoss has shown that this method fails 
to give results that reliably characterise thermostatic radiator valves, mainly because 
of problems of repeatability and reproduction. Nonetheless Danfoss is presently using 
the Nordtest method, as it is - with all its shortcomings - the best method available. 

1.3.2 Ident if icat ion of i m p o r t a n t p a r a m e t e r s for the industr ial 
p rob lem 

As noted above, the design of actual thermostatic radiator valves is outside the scope 
of this project. However, it is appropriate to use the characteristic properties of such 
a valve as reference properties for the investigations in this present thesis. 

Thermostatic radiator valves are mounted on relatively small steel pipes, with diam-
eters up to one inch and with differential pressures across the valve up to one bar. 
Taking a typical situation, the valve is mounted on a 1" pipe and conveys 1,000 kg/h 
of hot water. The pipe Reynolds number is in this case Ref) = = 13,900, where 
D is the diameter of the pipe; is the mean flow velocity in the pipe; is 
the kinematic viscosity of water; is the cross sectional area of the pipe; Q = M / 
is the volumetric How of water; M is the mass How; and is the density of water. 
Fully-developed pipe How is expected to be laminar up to a Reynolds number of ap-
proximately 2,300, see e.g. Fox and McDonald (1985), corresponding to a mass How of 
164 kg/h; transition is expected to occur in a Reynolds number range of approximately 
2,300-100,000, corresponding to 164-7,100 kg/h; and above this Reynolds number the 
How would be fully turbulent. Thus, the How in the pipe can be everything from lami-
nar at low How rates, transitional at intermediate How rates and perhaps fully turbulent 
at high How rates. The pipe Mach number in a typical situation is approximately 10"^. 

In domestic heating apphcations that use water as the heat transfer medium and thin-
gauge panel radiators as heat exchangers, most of the noise generated by the control 
valve is transmitted by the pipe to the radiator and emitted from there. The dominant 
part of the spectrum lies in the approximate range 250 Hz to 10 kHz. Focusing on 
the noise transmitted by the pipe, the highest frequency range of interest can be nor-
malised with the ring frequency of the pipe, which is seen later to be important for the 
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transmission of vibroaconstic energy in pipes. This yields a maximum nondimensional 
frequency of industrial interest: 

n = = (1.1) 
/ r i n g 

where D is the nondimensional frequency; /ring = c^/27rG is the ring frequency of the 
pipe; o is the radius of the pipe; and Cf, = \ / E / p ( l — is the thin-plate extensional 
wave speed of the pipe material. 

1.4 List of contributions in the thesis 

The present thesis is submitted in order to obtain a PhD in accordance with the 
regulations of the Faculty of Engineering at the University of Southampton. In order 
to comply with the regulations the present thesis is required to present significant 
contributions to the existing knowledge. 

The major contributions are: 

P a r t I 

e Principle of power Sow measurements. 

# The vibroacoustic analogy formulation. 

Part IH 

# Implementation of the principle of power flow measurements, both for heavy and 
light Suid loaded pipes. 

# Validation of the nondimensional prediction model, both regarding pipe-wall re-
sponse and vibroacoustic power Sow. 

Secondary contributions are: 

Part II 

# Nondimensional prediction model for vibroacoustic response of an inSnite Euid-
hlled circular pipe. 

Part III 

# Implementation and validation of modal sensors. 

# Method of excitation inside the Auid of a Suid-hlled pipe. 

The objectives of the thesis are presented in part I, which follows next. 



P a r t I 

Overall s t ra tegy for quantif icat ion 
of hydroacoust ic sources in pipes 



Chap te r 2 

Conceptual approach 

For noise or vibrational sources connected to water-Slled pipes in air, it is quite common 
to assume that all the noise energy in the system propagates through the acoustic 
pressure held in the contained water, and that it can be quantised by the internal sound 
power alone. The underlying assumption is that the walls of the pipe are effectively 
rigid. This is not necessarily the case for all pipes encountered in industrial applications, 
as thin or soft walled pipes are used for many diEerent purposes where the density of 
the contained Auid is not so diEerent from that of the pipe wall material. In these 
cases, the Suid loading of the contained Buid cannot be neglected and the pipe walls 
will therefore appear compliant. 

When the pipe walls are compliant, any vibration of the shell wall will induce a pressure 
held in the contained Euid and vice versa. The relative compliance of the pipe walls 
is dependent on the pipe material, the geometric properties and the contained fluid. 
The coupled propagation of vibrational and acoustic power (from here onwards called 
the vibroacoustic power) can be separated into power propagating in the Euid and in 
the pipe walls, but still they are closely linked; there are some complicated interactions 
that cannot be interpreted by looking separately at the properties of the huid or the 
pipe, respectively. 

2.1 Quantification principle 

The vibroacoustic power produced by a source (e.g. a thermostatic radiator valve) 
connected to a complicated system (e.g. a heating system) is transported from the 
source to the surroundings through different paths, as sketched in figure 2.1. In the 
simplest possible analysis, vibroacoustic power from the source can either be radiated 
to the surrounding fluid or it can be transmitted by the connected pipe. 

With a control volume placed around the source as sketched in hgure 2.1, the vibroa-
coustic noise generation inside the volume can be quantihed by summing the contribu-
tions at the boundaries. At each boundary, the vibroacoustic power leaving the volume 
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Figure 2.1: Noise transmission paths from a thermostatic radiator valve in a heating 
system. 
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gives a positive contribution while power entering the volume gives a negative contri-
bution. Assuming there is little absorption inside the control volume, the vibroacoustic 
power generated by the source equals the net power leaving the control volume. In the 
ideal, lossless case the placement of the control volume is arbitrary, as the total power 
is constant. The amount of power in each of the transmission paths may diH'er, as e.g. 
power in the pipe may 'break out' and become airborne. 

To simplify the quantihcation process in the present thesis, it is assumed that the 
only signihcant power source is the one under investigation. This means, that the 
only way power can enter the control volume from outside is through rejection by 
discontinuities outside the control volume. The reflection of power could effectively 
be removed if the quantification was performed on an infinite pipe. While this is 
possible for a numerical method it is not feasible for an experimental method. In this 
case, a more practical possibility is to devise an anechoic termination of a Suite pipe. 
This anechoic termination is supposed to absorb all incident vibroacoustic power so 
no reflection is possible. While this is an idealisation, a practical solution would be to 
have an anechoic termination that makes the rejected power a small proportion of the 
incident power. 

This leaves three paths of power from the source to be quantified: the power emitted 
into the external Suid from the source surface and the connected pipe, and the coupled 
transmission of power in the pipe walls and in the internal Huid. 

As presented in chapter 1, the industrial application is restricted to air as the external 
Buid. Intuitively, it seems reasonable to assume that the externally radiated airborne 
power is signiEcantly smaller that the power transmitted along the Euid-filled pipe. To 
verify this, an estimate of the radiated power can be found from the equation 

(2 .1) 

where cr is the radiation eSiciency; is the spaced-averaged mean square vibration 
velocity of the pipe wall; 5" is the vibrating surface area; and /pycy is the characteristic 
acoustic impedance of the external fluid. For exterior radiation from pipes, engineering 
estimates of the radiation efhciency can be found e.g. from Beranek and Ver (1993). 
Estimates based on the results from the parameter study in part II show that the 
externally radiated power for realistic scenarios is several decades smaller than the 
power transmitted along the pipe. 

This leaves only the power transported by the Euid-hlled pipe to be quantised. A 
convenient term for power transmitted in a one-dimensional system is 'power flow', 
where the word /Zow hints at the transportational property. Vibroacoustic energy 
leaves the source at a given rate and in a given direction, and this is dubbed the 
vibroacoustic power Sow. 
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2.2 Objectives of this thesis 

For dealing with the industrial problem drawn up in the previous chapter, there are 
several options. The overall objective of this research programme is to End ways of 
quantifying hydroacoustic noise sources, such as Bow control valves, when they are 
coupled to Buid-hlled pipe systems. Two distinct and complementary approaches are 
explored in the present thesis: controlled experiments and numerical simulation. 

The main steps in the two approaches are: 

The experimental approach involves mounting the source in an instrumented pipe sys-
tem under controlled conditions. Ideally the pipe system is uniform, straight and 
extends to infinity either side of the source. In practice, anechoic terminations are 
used to minimise the rejection of structural and Auid-bome sound back towards the 
source. Special transducers are used to measure the power Sow in different circum-
ferential pipe modes. The experimental concept is presented in chapter 3, while the 
actual investigations under laboratory conditions are presented in part III. 

The numerical simulation approach involves 2 stages: 

* First, a CFD Sow simulation is run to provide a time-accurate solution of the 
unsteady Bow in the source region. It is proposed that this be done with the Gow 
treated as incompressible and the solid boundaries as rigid. Nevertheless, even 
with these simplihcations the task of computing the time-dependent unstable Sow 
through a valve is too difhcult for currently available commercial CFD packages: 
unsteady FIANS codes are the subject of active research, but are not yet in 
widespread use in industry. Actual CFD Sow simulations are left out of the 
present thesis, as the results available from the commercial CFD package used 
by Danfoss were not of a quality suitable for quantification purposes. 

# The second stage requires the unsteady Sow solution to be inserted in a vibroa-
coustic analogy calculation, in order to predict the power Sow away from the 
source along a uniform Suid-Slled pipe that extends to inSnity on either side of 
the source. The necessary analytical and numerical tools for this stage of the sim-
ulation are assembled in chapter 4, and in part II which deals with the response 
of Suid-Slled pipes to both structural and Suid excitation. 

This second stage of the numerical simulation approach represents a major contribution 
of the present research, along with the development of complementary experimental 
techniques for the empirical measurement approach. 
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Chap te r 3 

A me thod based on exper iments 

Measuring the vibroacoustic power flow from a source connected to a Suid-hlled pipe 
is not trivial, as the power Row is not a quantity that can be measured directly. In this 
thesis, the total vibroacoustic power How is inferred from measurements of the modal 
response of the pipe wall. 

While this measurement principle is intriguing in its non-intrusive simplicity, its im-
plementation in the form used in the present thesis relies on some quite restrictive 
assumptions. The most restrictive assumption is that only one branch (wave type) 
carries the dominant part of the vibroacoustic power Bow for each circumferential 
mode. This is the case for light and heavy Suid loading, but is not necessarily true for 
any intermediate 6uid loading. However, this restriction is not a fundamental Aaw of 
the method, as it can be relaxed to allow for more propagating branches. With only 
one propagating branch, the measurement task is simplihed as that branch accounts 
for the entire modal response and power flow at a given position. With more sensors 
it would be possible to decompose multiple branches for a given mode. 

3.1 Principle of power flow measurements 

As noted in the opening remarks of this chapter, vibroacoustic power Eow cannot be 
measured directly, but several authors have worked with indirect measurements. 

For all fluid loadings, the total vibroacoustic power Sow can be decomposed into struc-
tural and Suid power Bows. In the limit of light fluid loading, the coupling between 
these components can be neglected, and the formulation of the separate terms is rel-
atively simple in terms of in vacuo structural modes and rigid-walled acoustic modes. 
The structural power Sow in the in vacuo case (i.e. no internal or external fluid load-
ing) can be retrieved from the structural intensity, see e.g. Pavic (1976), and the fluid 
power Sow can be retrieved from the acoustic intensity, see e.g. Fahy (1985). The 
modal power Aow in the axisymmetric mode of a light fluid loaded pipe with both fluid 
and structural excitation was measured by Pinnington and Briscoe (1994). Durant 
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et al. (1999) presented modal measurements of power How for a light Suid loaded pipe 
using a microphone array, excited by boundary layer noise of internal turbulent How. 

When the Huid loading is not light, the coupling between the 8uid and the pipe wall 
becomes significant. In his PhD thesis, Briscoe (1994) presented a method to measure 
the axisymmetric power Bow in a heavy Suid loaded pipe. He also showed results 
using a special arrangement to excite only the axisymmetric mode of a heavy fluid 
loaded pipe. No references have been located for general vibroacoustic power Sow 
measurements in heavy Suid loaded pipes. 

The power Bow measurement method presented here relies on a theoretical prediction of 
the relation between the total power Sow and the vibrational response of the pipe wall. 
Under special circumstances, the vibrational response for given circumferential mode 
M is dominated by one branch (or wave) in the vibroacoustic far Geld, and virtually all 
the vibroacoustic power flow is carried by this branch. The transmitted vibroacoustic 
power Sow for mode M can then be calculated ag 

Pn,iz.r — |'̂ 'n,meas|~-fn6 (3.1) 

where f^,far is the far Seld modal power Sow; Wn,meaB is the measured modal pipe dis-
placement for mode M; and is a modal power Sow factor for the pipe in question. 
While this equation seems appealingly simple, there are some quite restrictive assump-
tions that have to be fulSlled for the equation to be valid. These assumptions and the 
deSnition of are discussed in more detail in section 8.3.1 for the light Suid loaded 
case, and in section 9.3.1 for the heavy Suid loaded case. 

Standing waves encountered during the measurements of the modal wall response may 
invalidate equation (3.1). The prediction of the modal response, and the power 
Sow, are made for a doubly inSnite pipe and to make the ratio of measured and 
predicted response meaningful, the measurements need to be obtained under essen-
tially the same conditions. In the measurements described below, this is obtained 
through anechoic terminations at the ends of the pipe. Perfect anechoic terminations 
are diSicult to achieve, but as noted in the previous chapter a signiScant attenuation 
of the reSected waves is suScient. The anechoic termination used consists of several 
components, each dissipating vibroacoustic energy in a special way for a special type 
of vibration. The design considerations for the anechoic termination are discussed in 
section 8.4.1 and section 9.6.2 for the structural and Suid parts, respectively. There 
is also some advantage in choosing a pipe wall material that has signiScant damping, 
and in using long pipes for the experiment: in this way the structural vibrations are 
attenuated along the length of the pipe before the anechoic termination is reached. 
At the same time, if the pipe has a signiScant damping, all measurements should be 
conducted as close to the source as possible (while still in the far Seld), as the damping 
of the structural vibrations reduces the measured response and hence the power Sow, 
thus underestimating the power output of the source. 

Equation (3.1) requires three inputs: the measured modal response, Wn,meas; the pre-
dicted modal response, and the predicted vibroacoustic power Sow, The 
necessary tools for making the predictions are covered in detail in part II, while the 
principle of modal response measurements is discussed in the next section. 
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3.2 Pipe-wall modal response measurements 

Several authors have published measurements of the pipe-wall modal response of Buid-
filled pipes. Essentially two diEerent principles have been used: modal decomposition of 
accelerometer measurements through post-processing, and direct modal measurements 
using shaped sensors. 

Point acceleration data. Feng (1995) presented measurements of the modal re-
sponse of a heavy Suid loaded pipe. The measurements in this case were done by an 
accelerometer array and the modal response was obtained through post-processing of 
the individual accelerometer outputs. Variyart and Brennan (1999) made modal re-
sponse measurements on a light Suid loaded pipe using wall acceleration data, but in 
this case a single accelerometer was moved around the circumference; again the modal 
response was obtained through post-processing. In this thesis, the principle from Vari-
yart and Brennan (1999) is used, mainly because the number of transducers is kept 
low. 

Shaped sensors. As a part of his PhD, Briscoe (1994) developed a modal sensor 
sensitive to the axisymmetric response of the pipe wall. He then presented measure-
ments of the M = 0 pipe-wall response when excited by either (1) an acoustic source 
radiating into the internal light Euid or (2) an axial n, = 0 ring force at the pipe end. 
The sensor is a piezoelectric wire wound around the pipe. Variyart and Brennan (1999) 
validated a shaped sensor to measure the pipe response of the M = 2 mode of a light 
Euid loaded pipe excited by a radial point force. The shaped sensor is made of patches 
of thin piezoelectric film cut in sinusoidal shapes. In this thesis, both these principles 
are used: the piezoelectric wire is used as a modal sensor for M = 0, and the shaped 
sensor principle is taken further as shaped sensors are used for M = 1, M = 2 and M = 3. 

3.3 Key results of experiments in this thesis 

The principles presented so far in this chapter have been applied to both light and 
heavy Suid loaded pipes. The experiments are presented in part III. They show that 
the measurement strategy is valid and workable at least for the cases investigated in 
this thesis. In part IV, some potential complications are discussed for the case where 
the Euid loading is neither light nor heavy, but something in between, e.g. water inside 
an industrial grade steel pipe. 

Conceptually, the process of validating the measurement principles can be seen as 
a number of steps, each including some complicating effects that were not present 
in the previous step; for example the first experiments for a light Euid loaded pipe 
were repeated for a heavy Suid loaded pipe. A key part of the entire validation is 
the comparison of the experiments with the predictions made using the methodology 
presented in part II of this thesis. As the predictions are made for conditions not 

16 



Figure 3.1: Experimental setup used in the light fluid loaded experiments. 

obtainable in a laboratory (e.g. infinite pipe and perfect geometry), it is arguable 
whether the experiments validate the predictions or vice versa. Leaving this discussion 
aside, the pragmatic approach used in this thesis is that both the experiments and the 
prediction model are of such a complicated nature, that if they compare well it cannot 
be a coincidence. 

The experiments conducted during this research programme can be divided into three 
main groups: radial point force excitation of the pipe wall for a light fluid loaded pipe, 
the same excitation for a heavy fluid loaded pipe, and point monopole excitation of 
the interior fluid for a heavy fluid loaded pipe. 

3.3.1 Structural excitation of a light fluid loaded pipe 

The light fluid loaded pipe is not encountered in the industrial applications discussed 
in chapter 1. However, from a validation point of view, it is the simplest case of interest 
in this study, as it allows the comparison of experiments with both in vacuo and light 
fluid loaded predictions, where the fluid-structure coupling is either absent or weak. 

The experimental setup is discussed in detail in chapter 8, but figure 3.1 shows a 
picture. The light fluid loaded pipe measurements were conducted on a 5 m PVC pipe 
with air both inside and outside. The modal response of the pipe-wall was measured 
using the accelerometer decomposition method, the input force was measured using a 
force transducer and the acceleration of the point of excitation was measured using 
an accelerometer. By post-processing these measurements, the modal accelerance was 
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obtained for the 6 lowest-order circumferential modes, and also the power supplied by 
the excitation force. The axial position along the pipe z can be made nondimensional 
with the pipe radius o to obtain a nondimensional position g = z/o. 

Po in t accelerance of t h e p ipe wall. The point accelerance shown in the figures 
in this chapter is not a directly measured point accelerance, but a synthetic point 
accelerance formed from the sum of all the decomposed modal accelerances. The 
main advantage of this procedure is that the point response can be interpreted in 
terms of individual modal contributions. Comparing the measured (synthetic) point 
accelerance with the predicted point accelerance, both in the near and far fields, shows 
excellent overall agreement in the near Geld at low to intermediate frequencies and 
good agreement in the far held, as shown in figure 3.2. The only major discrepancies 
are that the measured accelerance is dominated by distinct but unpredicted peaks at 
low frequencies and that it rolls off at high frequencies. 

The peaks at low frequencies are thought to be caused by axial standing waves, re-
sulting from insuScient attenuation of (especially) the bending mode by the anechoic 
termination. An investigation of the ratio of incident to reflected waves at the anechoic 
termination showed a general problem with the low frequency performance of the ane-
choic termination. This can probably be explained by the relatively small size of the 
anechoic termination in comparison with the long wavelengths at low frequencies. The 
roll off at the high frequencies can probably be related to the internal damping of the 
pipe-wall material, which has a larger effect the more wavelengths are present between 
the points of excitation and measurement. 

Power Sow. Figure 3.3 shows the far field total power Sow obtained from accelerom-
eter measurements via equation (3.1), compared with the predicted total power flow 
and the measured input power how. The predicted power Sow is determined by the 
structural component (compare hgure 8.10 on page 113). The agreement is fair, apart 
from some erratic behaviour at low frequencies. When examining the modal power 
hows, the erratic behaviour can be related to the M = 0 mode, where a large error 
factor in the accelerance measurement results in a very large error factor in the in-
ferred power how for that mode, as the error is related to the square of the response 
measurement. 

The large relative error of the acceleration measurement for the n = 0 mode has 
two causes: a radial point force at the pipe wall does not excite the M = 0 mode very 
efhciently (giving a small predicted accelerance for M = 0) and the modal discrimination 
of the accelerometer decomposition method is limited, so that a large response in one 
mode apparently 'leaks' to other modes. As the radial point force excites the M = 1 
(beam bending) mode very efhciently, the modal leakage from the bending mode to 
the M = 0 mode is causing the large relative error. 
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Figure 3.2: Synthetic point accelerance for a pipe with light Auid loading excited by a 
radial point force. The predicted response is green and the measured red. The solid 
line is g = 0.3 and the dashed line is s = 14.7. 
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Figure 3.3: Total power How for a pipe with light Euid loading excited by a radial point 
force, g = 14.7. The predicted power flow is green, the summed modal power Row is 
red and the input power Sow is blue. 
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3.3.2 S t ruc tu ra l exci tat ion of a heavy fluid loaded pipe 

The experimental setup in the heavy Suid loaded experiments was identical to the 
light Suid loaded experiments, apart from the additions necessary to accommodate 
water inside the pipe and terminate the pipe anechoically. The experimental setup is 
discussed in chapter 9. 

Po in t accelerance of t h e p ipe wall. The measured and predicted point acceler-
ances for the heavy Auid loaded pipe, excited by a radial point force at the pipe wall, 
are shown in hgure 3.4. The synthesised accelerances shown in the figure were obtained 
by the accelerometer decomposition method, but modal sensors were also used with 
good results as shown in chapter 9. The general features are quite similar to the light 
Suid loaded case. The main difference is that all the cuton frequencies of the higher 
order modes are shifted to lower frequencies, as predicted by the numerical parameter 
study in chapter 7. The accelerance magnitude is reduced by approximately a factor of 
6, which seems intuitively reasonable as the mass of the Suid-Elled pipe is signiRcantly 
larger when filled with water. 

Power Sow. Figure 3.5 shows the far held total power Sow. Again the general 
features are quite similar to the light Suid loaded case, but the high frequency roll oE 
is smaller. The reason for this is probably, that the damping in the water (accounting 
for most of the power Sow in the heavy Suid loaded case) is signiGcantly smaller than 
the damping in the pipe wall material (accounting for most of the power flow in the 
light Auid loaded case). By using shaped sensors, reasonable agreement with prediction 
(generally better than 4 dB) is obtained over the frequency range 100 Hz to 3 kHz. 
This is a much better result than for light Suid loading in figure 3.3. 

3.3.3 Fluid excitation of a heavy fluid loaded pipe 

To provide acoustic excitation in the Euid, a hydrophone was added to the experimental 
setup used for the point force excited experiments. When the hydrophone was subjected 
to a relatively high voltage from a special power ampliher, it transmitted power to the 
water inside the pipe. The transmission characteristics of the transmitting hydrophone 
were assumed to be close to those of a point monopole placed in the Suid. 

Moda l accelerance of t h e p ipe wall. As the experiment was difficult to repeat 
exactly, it was not possible to use the accelerometer decomposition method and the 
results presented are obtained using modal sensors. Due to the relatively large size of 
the sensors (one ring of piezoelectric patches to obtain the cosine part of the response 
and another to obtain the sine part), it waa not possible to fit them all at one axial 
measurement position. The synthetic point accelerance presented in the last sections is 
the sum of the modal contributions, and as the modal contributions are not measured 
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Figure 3.4: Synthetic point accelerance for a pipe with heavy Auid loading excited by 
a radial point force. The predicted response is green and the measured red. The solid 
line is g = 0.3 and the dashed line is g = 14.7. 
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Figure 3.5: Total power Sow for a pipe with heavy Auid loading excited by a radial point 
force, 5 = 14.7. The power Sow curves are: predicted power Sow (green), measurement 
using accelerometers (red), and measurement using modal sensors (blue). 
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Figure 3.6: Total power Sow for a pipe with heavy Auid loading excited by a transmit-
ting hydrophone. The predicted power Sow is shown in green and the modal sensor 
measurement shown in blue. 

at the same axial position, it is not reasonable to sum them up. For the individual 
measurements of modal accelerance (Sgures shown in section 9.4) the general agreement 
is worse than for the point force excited experiments, but this was probably to be 
expected considering the complications involved in getting a transmitting hydrophone 
inside a pressurised water-filled pipe, where the support of the hydrophone mount 
signihcantly changed the properties of the pipe locally. 

Power Bow. Figure 3.6 shows the far Geld total power How. The measured total 
power Sow to the far held is surprisingly close to the predicted power Sow, considering 
the relatively large errors of some of the modal response measurements. However, only 
two modes contribute significantly to the power Sow in the actual case, namely M — 0 
and M = 2, and the measured modal responses of these modes compare relatively well 
with the predictions. 

3.4 Conclusion 

The measurement principle suggested at the beginning of this chapter for vibroacoustic 
power Sow has been validated through a number of experiments, which are presented in 
detail in part HI. The power flow measurements are only ag good aa the measurements 
of the pipe response, and in using the method the greatest possible care should be taken 
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to ensure that the conditions for the response measurements are as close as possible to 
the ideal situation used in the predictions of the power Eow. The largest single source of 
error, in the power How measurements as presently set up, is probably rejections from 
inefhcient anechoic terminations. Other sources which may be important are geometric 
imperfections in the pipe (pipe bends, thickness variations, etc.), material imperfections 
in the pipe (e.g. weld lines and cast defects), and bubbles in the contained Auid. 

When using the power Sow measurement principle in industrial applications, the in-
ternal load impedance of the source should also be considered. It is diScult to predict 
the pipe impedance characteristics in an industrial application, and the exact condi-
tions of any power Sow measurements should thus be stated along with detail of the 
experimental setup. 

It was the original intention also to present in this thesis measurements of the vibroa-
coustic power flow in a heavy fluid loaded pipe excited by the turbulent fluid Sow 
past a Sow obstacle. Unfortunately, problems with the experimental setup made it 
impossible to obtain a full set of modal response measurements, and time did not allow 
for another set of measurements once the problems with the experimental setup were 
taken care off. However, the preliminary results were very encouraging, and no new 
problems or shortcomings regarding the experimental method were identiAed during 
the Suid Sow excited experiments. 
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Chap te r 4 

A me thod based on numerical 
calculations 

This chapter presents a novel numerical method to calculate the vibroacoustic power 
Sow in a Auid-hlled pipe excited by Huid flow past an obstacle inside the pipe. The 
method leaves out the airborne transmission path discussed in chapter 2. If this trans-
mission path for some reason cannot be excluded for a given application, the knowledge 
of the structural vibrations of the pipe wall obtained from the methods in this chap-
ter can be used to include external radiation in the power Sow calculations; see e.g. 
Skelton and James (1997) or Fuller (1986). 

The held of numerical calculation of Sow generated noise has received a lot of attention 
in recent years, partly for the same reasons stated in chapter 1 when the industrial 
motivation of this project was discussed. The entire held of aeroacoustics, as it has 
been dubbed, began with the original work of Lighthill (1952). In his paper, which 
described generation and radiation of sound from turbulent huid motion in a unbounded 
flow, the acoustic analogy was introduced for the hrst time. The acoustic analogy is 
an exact rearrangement of the Navier-Stokes equations producing the linear acoustic 
wave equation along with some source terms; the latter ensure that the acoustic far-
held radiation remains the same. Curie (1955) provided a theoretical expansion of 
Lighthill's acoustic analogy to allow for the noise generated by interaction between 
the how and solid structures. The approach by Lighthill (1952) and Curie (1955) 
was generalised by Ffowcs Ffowcs Williams and Hawkings (1969) to allow for moving 
permeable surfaces; they also gave a more general and powerful derivation with the 
aid of generalised functions. The Ffowcs Williams and Hawkings approach has been 
used by many later authors, e.g. in the investigation of helicopter rotor noise (Brentner 
1996) and in the assessment of noise prediction from wind turbines (Lowson 1982). 

In this chapter, the Ffowcs Williams and Hawkings formulation of the acoustic anal-
ogy is used to represent the noise generated by a how obstruction inside a huid-hlled 
cylindrical pipe by a distribution of equivalent acoustic sources inside the pipe, with 
the fluid at rest. It is assumed that the vibration of the pipe has no influence on the 
structure of the flow, which means the how problem can be solved independently of 

24 



Flow obstruction with wall supportss 

w 

Fluid flow 
Vibroacoustic power flow 

Fluid flow 

Fluid excitation 
by excluded surfaces 
and volume sources 

Structural excitation 
by applied loads 

Vibroacoustic 
analogy for 
fluid-filled pipe 

Calculation of 
response of 
fluid-filled pipe 
and vibroacoustic 
power flow 

- Fluid flow 
- Reaction forces and 

moments 

Incompressible CFD 
calculation of flow 
past obstacle 

Figure 4.1: Flow diagram showing the steps in numerical quantification of power flow 
from a flow noise source in a pipe. 

the pipe vibrations. It is also assumed that there is no reaction of the internal acoustic 
pressure field on the fiow. Furthermore, it is assumed that the flow Mach number is 
small enough for wave convection effects to be neglected in the wave propagation. This 
way, there is no feedback mechanism and the mean flow inside the pipe does not affect 
the vibroacoustic power flow in the pipe. Under these assumptions, the problem of 
calculating the vibroacoustic power flow generated by the turbulent flow past a flow 
obstruction in a fluid-filled pipe is reduced to the problem of calculating the unsteady 
loading distribution on the obstruction. 

4.1 General overview of the method 

Sound waves in a fiuid are generated in three ways: by the vibration of any solid 
body in contact with the fluid, by vibratory forces acting directly on the fluid, or by 
the turbulent motion of the fluid itself. The vibroacoustic analogy presented later in 
this chapter allows a transformation of the real problem, namely the vibroacoustic 
excitation of the fluid-filled pipe by the turbulent fiow past the fiow obstruction, into 
an equivalent problem of a fiuid-filled pipe without fiuid fiow or flow obstruction, but 
with a distribution of vibroacoustic point sources providing the excitation in the source 
region. When the excitation is formulated as vibroacoustic point sources in a fluid-
filled pipe, the response of the fluid-filled pipe can be calculated using the prediction 
model from part II and so can the power fiow. 

A flow diagram of the method can be seen in figure 4.1. The unsteady fiuid flow past 
the flow obstruction and the reaction forces of the pipe wall are to be calculated using 
CFD. Using the vibroacoustic analogy, the flow excited fluid-filled pipe is replaced by 
an identical vibroacoustical situation with a distribution of acoustic point sources of 
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different types. Knowing the vibroaconstic excitation by the point sources, the response 
of the Huid-611ed pipe can be calculated along with the total vibroacoustic power Sow. 

In the following, each of these three steps is discussed in more detail. 

4.2 CFD calculation of the fluid How 

The compressible Navier-Stokes equations describe both the noise generation and prop-
agation at all Sow conditions in hard-walled environments. Unfortunately, these equa-
tions are not generally solvable using analytical methods and alternative approaches 
have been chosen. One approach has been direct numerical simulation (DNS) of the 
Navier-Stokes equations, but this has only been feasible for very simple problems, as 
the numerical task of resolving both the smallest eddies and the large scale structures in 
the Bow is enormous, especially as most of the Sows of industrial interest in this thesis 
are turbulent. It is therefore common to decouple the Sow problem from the acoustic 
problem as described in the introduction to this chapter. For low Mach number Aows 
this means calculating the turbulent Sow as if it were incompressible. 

The calculation of the incompressible Sow is also possible using DNS, but the problem 
remains the same as for the coupled case, so it is only possible for simple cases. To 
avoid the pitfall of the large differences in spatial and temporal resolution of the 8ow 
solution, turbulence modelling is introduced. The idea behind all turbulence modelling 
is to represent the e%cts of the smallest scales on the larger scales by some sort of 
mathematical model. Normally the interest in the smallest scales is only indirect (the 
high frequency range in aeroacoustic calculations is an exception), and it is the larger 
scale eEects that are important for the Sow calculation. If the small scale effects can be 
represented by a turbulence model and not directly calculated, the Sow calculation can 
disregard the smallest scales and only model the larger, while the Sow solution is still 
valid. It is a generally recognised fact that all existing turbulence models are inexact 
representations of the physical phenomena involved, as pointed out e.g. by Wilcox 
(1998). It is also known that the degree of inexactness of a given model depends on 
the nature of the Sow to which it is being applied, and that the characterisation of the 
circumstances which give rise to 'good' and 'bad' performance must unfortunately be 
based mainly on experience. 

As a feasibility study for this thesis, the general purpose Computational Fluid Dy-
namics code Star-CD was used to calculate the Sow past a square spoiler inside a pipe 
using the A —e turbulence model. The square spoiler has been used for benchmarking of 
Computational Fluid Dynamics (CFD) codes, as the simple geometry yields complex, 
unsteady Sow patterns. The Sow shows considerable secondary Sow phenomena, like 
Sow separation and recirculation and periodic vortex shedding making up the charac-
teristic von Karman vortex street from bluff bodies. Some experimental results on the 
Sow past a square spoiler are available: Lyn (1992) did LDV-meaaurements in a water 
channel and published results of time and phase-averaged velocities, Suctuations and 
correlations at Re^ = 22,000 (Re^) is the Reynolds number based on the side length 
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Figure 4.2: Example of CFD calculation: velocity magnitude of the turbulent flow past 
a square spoiler. 

of the square spoiler) and Vickery (1966) measured the fluctuating lift and drag, along 
with correlation lengths at Re^ = 100, 000. The CFD benchmarks use to a large extent 
these experimental results; Lyn's measurements were used in the second ERCOFTAC-
workshop (covering LES turbulence modelling) reported by Rodi et al. (1997), where 
all CFD-simulations done were on the same set-up. Several other papers were presented 
in the workshop, all stating results for Lyn's case. Lee (1997) also worked with this 
set-up, but using k — e turbulence modelling - unfortunately, his paper is questionable, 
as the conclusions are beyond the results. Murakami and Mochida (1995) calculated 
the set-up of Vickery and quoted results for both 2D and 3D LES calculations of the 
fluctuating lift and drag. 

When the results from Star-CD for the square spoiler were compared with the results 
from literature, they were in reasonable agreement. Unfortunately, the computational 
resources were inadequate for full 3 dimensional calculations, so all conclusions were 
based on 2 dimensional calculations. An example of the flow calculation is shown in 
figure 4.2. The main output parameters were the fluctuating forces (through lift and 
drag coefficients) and the Strouhal number. During the feasibility study, mesh and time 
step independence was obtained to within a few percent. When compared with the 
full 3 dimensional experiment of Vickery (1966), the results were within 15 %. While 
this was a promising result, the spectral content of the fluctuating forces calculated 
by Star-CD was qualitatively different from the experimental results, with an almost 
sinusoidal variation of both lift and drag. This was probably due to the large damping 
used in the numerical solution to ensure numerical stability of the equations. 
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The conclusion of the CFD feasibility study was that the overall calculation of the 
Buid Eow past a square cylinder was possible using Star-CD. However, while the time 
averaged results were in good agreement with experimental results, the spectral content 
of the Suctuating forces was not of a quality usable for aeroacoustic calculations. 

No further CFD-results are presented in this thesis. However, it cannot be concluded 
that general purpose CFD calculations are unusable for aeroacoustic calculations. Dur-
ing the feasibility study the decision was made to use the code 'as is'. A different choice 
of turbulence model or even some tweaking with the A; — e model may provide satisfac-
tory results both regarding the time averaged parameters and the spectral content. It 
was decided that any additional time spent on CFD would not contribute further to 
this thesis. Unfortunately, the lack of quality CFD results leaves the entire vibroacous-
tic analogy presented in this chapter in a conceptual form and the originally intended 
comparison with experimental results is therefore not possible. 

4.3 A vibroacoustic analogy for turbulent flow in 
pipes 

4.3.1 Solution of the forced Helmholtz equation using Green 
functions 

Forced acoustic equations can be solved using a number of different techniques. The one 
presented in the following uses Green functions to solve the forced Helmholtz equation 
(i.e. single frequency excitation). The procedure is adapted from Morse and Ingard 
(1968), and relies on the reciprocal property of Green functions in non-moving media. 

In an ideal, stationary Auid the frequency domain acoustic pressure satisGes the inho-
mogeneous Helmholtz equation 

(V^ 4- /c/)Pw(x) = - /w(x) (4.1) 

where is the Laplacian; = w/cy is the acoustic wavenumber of the Auid; w is 
the cyclic frequency; cy is the Suid speed of sound; and —/^(x) is a frequency domain, 
distributed source term. 

The Green function G(^(x|y) is defined as the solution to the equation 

(V^ + A;y)G^(x|y) = - ( ^ ( x - y ) (4.2) 

with a unit point source at x = y. In general, equation (4.2) is solved subject to 
specihed boundary conditions: Thus the equation is assumed to be valid in a region 

bounded by a closed surface 5'tot (see hgure 4.3), and the boundary conditions 
are applied on 5'tot. Depending on the boundary conditions, different Green functions 
are obtained. However, for all linear time-invariant boundaries consisting of stationary 
fluid or solid regions, the Green function is reciprocal: (?w(y|x)Gw(x|y) 
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Figure 4.3: Fluid volumes and boundaries of interest for the vibroacoustic analogy. 

Given a Green function G(^(x|y), can be found by combining equations (4.1) and 
(4.2) in the following way: (i) replace x by y in equation (4.1) and multiply by Gw(y|x), 
(ii) interchange x and y in equation (4.2) and multiply by Pw(y), (iii) subtract the two 
equations, and (iv) integrate with respect to y over the whole volume of the Suid 

The sifting and symmetry properties of the ^-function, along with the reciprocal 
property and the divergence theorem, give the solution as 

Pw(x) = / /^(y)G'w(x|y)dy 

G w ( x | y ) ^ p ^ ( y ) - P w ( y ) ^ G ' w ( x | y ) 
gtot L 

(4.3) 

where 5'tot is the boundary of V|;ot; % is a unit normal vector from 5'tot pointing outward 
from aiid % is a source position coordinate. 

Since G(j(x|y) is directly proportional to the pressure at x due to a source at y, this 
equation states that the total pressure at x is the summation of the direct pressure 
contributions from all the sources in the source distribution at y plus the pressures 
rejected by 5'tot- With an appropriate choice of (i.e. a that includes the 
reflection as part of itself, a so called tailored Green function), the surface integration 
turns out to be exactly equal to 0, leaving only the volume integral. 

4.3.2 The Ffowcs Williams - Hawkings acoustic analogy 

With the Ffowcs Williams - Hawkings acoustic analogy (Ffowcs Williams and Hawkings 
1969), selected boundaries in the solution domain can be replaced by source and dipole 
layers. 

This has the advantage that so-called 'excluded regions' where the equations of Euid 
motion do not apply (e.g. a solid body) can nonetheless be included in the solution 
domain, by treating the excluded region as a continuation of the undisturbed non-
moving medium; thus the sound Aeld is identically zero inside the excluded region. 
The boundaries of any such excluded region are replaced by a distribution of monopoles 
and dipoles placed at the position of the boundary. Figure 4.3 shows a surface 5'tot 
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that corresponds to the wetted surface inside the pipe, a surface 5" that correspond 
to the excluded region boundary (the surface of the Sow obstruction), a volume y 
that corresponds to the excluded region and a volume y that corresponds to the Guid 
region where the equations of Huid motion apply. The solution domain Vtot is the total 
volume inside the pipe, that is the sum of y and y . 

Let / ( x , t) be an indicator function such that / (x , > 0 in the Auid volume y where 
the equations of Euid motion apply, / ( x , vanishes on 5" and 5", and / (x , () < 0 in the 
excluded region. The indicator function can then be introduced in the Heaviside unit 
function H(/ ) , such that H( / ) = 1 for / > 0 and H( / ) = 0 for / < 0. 

Using these functions, Howe (1997) states the differential form of the Ffowcs Williams 
- Hawkings equation as 

^ 4 ] ^ ) + s + m] 1 ^ ) (4-4 

where subscript y refers to quaiitities in the undisturbed Suid at rest. Thus cy is the 
speed of sound in the undisturbed Suid, and p —py is the acoustic density perturbation. 
The hrst term on the right hand side is a Suid quadrupole term, the second is a surface 
dipole term and the last is a surface monopole term. The quadrupole term can be 
decomposed as — 7:; + ([p —P/] — — w h e r e the hrst part of 7̂ ^ are 
the Reynolds stesses, the second part the viscous stresses and the last part is related 
to entropy and Buid inhomogeneity. The Erst part of the dipole term is the Eux of 
momentum across 5" (^^ being the velocity of the surface 5"), while the last part is the 
force per unit area applied at 9̂ (with = (p — — ^ij)- The hrst part of the 
surface monopole term is the mass Sow through the surface and the other part is the 
equivalent mass Sux due to surface motion. Due to the properties of the generahsed 
function H(/) , equation (4.4) is valid throughout the whole of space. 

In the following, the surfaces are assumed to be impenetrable, so the hrst part disap-
pears in each of the surface terms. The term Cy(/)—p/) tends to the acoustic pressure far 
away from the source region, and the frequency-domain version of the Ffowcs Williams 
- Hawkings equation can be solved for Pw(x) using the method from the previous sec-
tion. Assuming a tailored Green function, the solution to equation (4.4) can be found 
directly from equation (4.3): 

Hpw(x) = 
a'(H7i,) 5 , a H \ a / a n 

G^(x |y)dy (4.5) 

To simplify this solution, the first two terms are integrated by parts. The dipole term 
is rewritten aa 
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and the qnadrupole term is rewritten as 

_ 
(^w(x|y)- ^ (C„(x|y)r„H) + 2 A 

(4.7) 

Using the rewritten forms of the qnadrupole and dipole terms, the volume integral of 
equation (4.5) can be rewritten as 

Hpw(x) = 
Vtot 

- ( G „ ( x l y ) r , H ) + 2 | - ( G „ ( x | y ) ^ 

(H7-

^ ( G w ( x | y % . 

a^Gw(x|y) 

, gG^(x|y) 

% 
8H 

% % 

(4.8) 

Applying the divergence theorem, see e.g. Kreyzig (1998), to equation (4.8) transforms 
some of the volume integral terms into surface integral terms and the solution to the 
Ffowcs Williams - Hawkings equation is then 

Hpw(x) = 
l4ot 

a^G^(x|y) 
(H]l 

aG'w(xly) / , a n 

d 
+ GU^\y)-^ [lP,v„ 

% 
a n 

(4.9) 

iS'tot 
^ (Cw(x|y)H2;j) + 2 G w ( x | y ) ^ ^ ^ ^ - Gw(x|y)p^^. 

where n, are the components of the unit normal pointing out of the domain from 5'tot-

The properties of the Heaviside unit function allow equation 4.9 to be simplified, noting 
that H = 1 in y and H = 0 in y . The last two terms of the volume integral in equation 
(4.9) can be evaluated ag a surface integral over 5', since = 0 except at 5" where 

is equivalent to nj(^(^). 

Here are the components of the unit normal to 5" pointing out of y into y ; in 
terms of the indicator function / (x , ^), n = (V// |Vy|)o , and ^ — / / | V / | o (subscript 
0 denotes evaluation on 5'). The delta function variable (^) is the local coordinate 
normal to 5", with ^ = 0 on 5". 

Further simplification results from the fact that 5'tot H^s entirely outside 5" (Rgure 4.3); 
thus in the surface integral over 5'tot, H can be replaced by 1 and ^H/9% by 0. The 
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Anal form of the solution in region y is then 

a^Gw(x|y) 
pw(x)= / Z L 

% % J 

(4.10) 

In this equation, all source terms are evaluated at y and the volume and surface 
integrals are with respect to position y. 

4.3.3 In t e rp re t a t ion of t he vibroacoust ic analogy 

While equation (4.10) is perfectly valid, it needs some interpretation to become usable 
in this context as part of the vibroacoustic analogy. 

The integrand of the volume integral takes the form of an acoustic quadrupole. This 
is thus the noise generated by free turbulence in the Auid. The Erst of the 5" surface 
terms takes the form of an acoustic dipole and thus is the noise generated by the 
Euctuating forces on the Sow obstruction. The second term of the 5' integral is an 
acoustic monopole and is related to the surface vibration of the Bow obstruction. The 
entire 5'tot integral is fairly difficult to interpret in the form presented, but it is a layer 
of monopoles and dipoles at the pipe wall, related to the noise generation in the wall 
boundary layer. 

So far, the acoustic analogy has been presented aa a classic acoustic analogy, formulated 
with tailored Green functions. However, it is possible to add in an extra complicating 
eEect to make it a true vibroacoustic analogy. In the case of a Sow obstruction in a 
Euid-hlled pipe, there will be a structural connection between the obstruction and the 
pipe wall. The How forces on the obstruction generates reaction forces at the connection 
with the shell wall. The inclusion of these forces in the modelling framework makes it 
a true vibroacoustic analogy, as laid out in principle in Rgure 4.1. In a mathematical 
formulation, the structural excitation could be included in the modelling by cutting the 
surface 5" just outside the pipe wall so the Sow obstruction is completely surrounded 
by fluid. The stresses could then be integrated at the cut and an equivalent distributed 
reaction force could be applied to the shell. However for purposes of this thesis, no ad-
ditional mathematical modelling will be attempted concerning the structural reaction, 
as the purpose is mainly to introduce the concept. 

This leaves the important question of whether all the terms of equation (4.10) are 
equally important in the industrial application. Scaling laws in aeroacoustics are com-
monly based on the free-field acoustic analogy, where the relative scaling of far-held 
pressures from monopole/dipole/quadrupole sources is l:He:He^ (He = wZ,/c is the 
Helmholtz number, where Z, is a typical length scale) in the compact limit (He 1). 
The purpose of the scaling laws is to reduce the number of sources to include in the 
calculation: if one source type is dominating the others, the calculations can be sig-
nihcaatly simplihed by leaving out the other source types without any major impact 
on the precision of the prediction. Another important aeroacoustic scaling parameter 
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Figure 4.4: Equivalent source distribution for the vibroacoustic analogy applied on a 
rigid flow obstruction connected to the pipe wall. Compare with figure 4.1 

is the Mach number of the flow (Ma= u/c, where u is the mean flow velocity) and 
normally a dipole scales with a higher power than a monopole and a quadrupole with a 
higher power than a dipole. In the industrial application, the Mach number is very low 
(approximately 0.001) and according to the 'free-field logic', it would only be necessary 
to include the lowest order source type (e.g. monopole), as the scaling laws suggest 
that the higher order sources should be comparatively ineffective in generating noise 
at such low Mach numbers. However, there are cases (e.g. near a sharp edge of a 
plate (Ffowcs Williams and Hall (1970) and Crighton and Leppington (1971)) where 
the normal scaling laws do not apply. To investigate the scaling effect inside a fluid-
filled pipe, monopole, dipole and quadrupole excitation are compared over a range of 
frequencies in section 4.3.6. The conclusion of this section is tha t the expected scaling 
applies: the monopole is more efficient than a dipole, and a dipole is more efficient 
than a quadrupole at the very low Mach numbers of the industrial application. 

Knowing this, it is possible to formulate a true vibroacoustic analogy. In the industrial 
application, the flow obstructions are metallic and they can therefore be assumed to be 
very rigid. There is thus no monopole excitation at S. As the flow past blunt objects is 
unsteady (at anything but the very lowest Reynolds numbers), there will be fluctuating 
forces on the flow obstruction and thus dipole excitation at S. When there is dipole 
excitation at S, this will dominate in the far field and there is therefore no reason to 
include quadrupole excitation, so the volume integration can be left out. The boundary 
layer noise generated by the 5'tot integral in equation (4.10) is difficult to estimate. The 
two terms involving contain a product of two velocities in the Reynolds stress term; 
however, as the surface S is placed just in the fluid next to the wall, there are no slip 
velocities, so they are equal to the wall vibration velocities in the respective directions. 
If this is to be used in the calculation of the boundary layer noise, it should be noted 
that the shell theory used for the calculation of the wall vibration in this thesis is linear 
and does not contain any quadratic terms. Intuitively, it seems reasonable that the 
boundary layer noise due to surface sources on the pipe wall will be small compared to 
the radiation from structurally-excited wall vibration. The source terms representing 
the boundary layer noise are therefore disregarded. 

The pressure at a far field observation point inside the pipe can under these circum-
stances be calculated from the vibroacoustic analogy as (see also figure 4.4), 

|y ^ ^ ( 4 . 1 1 ) 
Js Vz 
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where is the number of reaction points; 5", is the strength of the j ' t h structural 
reaction force in direction 2 and (3, is the structural Green function in direction giving 
the point pressure response at a fluid receiver point for unit excitation in direction 2 
at the pipe wall. The digerent types of Green functions and source and receiver points 
are discussed in more detail in the next section. 

4.3.4 Tailored Green funct ions for fluid-filled compliant pipes 

The tailored Green functions that appear in equation (4.11) are designed to incorporate 
the effect of the wall vibrations. Part II of this thesis deals with a prediction model 
of point to point response functions for a Suid-hlled cylindrical shell. The excitation 
in the prediction model is either in the form of a structural point force acting on the 
shell or a point monopole in the contained Huid. The receiver point can either be in 
the Huid or in the shell wall. 

The tailored Green functions can be derived from the results of part II. The fluid Green 
function used in the vibroacoustic analogy is closely linked to the pressure response 
when the Suid-Slled shell is excited by a monopole, as deSned in equation (6.43). This 
pressure response is the sum of (a) the pressure from a free-Seld monopole, (b) the 
pressure arising from the scattering from hard boundaries inside the pipe and (c) the 
pressure in the fluid originating from the wall motion induced by the monopole. To 
formulate the same pressure using Green functions, the pressure response in a receiver 
point in the Huid x-̂  from a Huid monopole at a point in the Auid y-̂  is written as 

p(x^) = ;gyG/(x-''|y^) (4.12) 

where 6"/ is the source strength of the monopole and Gy(x-^|y'^) is the Buid Green 
function. The Suid Green function G/(x-^|y-^) is thus proportional to the complex 
pressure produced at x-̂  due to a harmonic point monopole source of unit strength 
at y-̂ . is then identical to (?/. Equating the two different approaches gives an 
expression for the fluid Green function, 

(^/((r,^, 5)1(7-0,̂ 0, go)) 
OO C>0 g (̂ 2 

= —^^-7 r—Re8%^cos(M(g - ^o))J;i(a»6r)e"'"''("-"'') (g > â ,) (4.13) 

where the different symbols are to be defined in Part II. 

As the structural response is also a part of the vibroacoustic problem, the formulation 
of the Green function for a Suid-hlled pipe is more complicated than for Green functions 
in hard-walled environments. 

The fluid Green function can also be extended to include the associated structural 
response, 

« ' ( x 3 = 6 ' / G X ^ ' | y O (4.14) 

where is the complex displacement of the shell wall in any of the three coordinate 
directions and x^ is a receiver point in the structure. 
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The structural Green function (?g(x|y') is a reversal of this concept, giving the pressure 
at a Suid receiver point due to a structural point input: 

p { x ' ) = S l G - , { ^ ' \ y ) (4.15) 

Here S'j is the strength of the input force in any of the coordinate directions and 
is the structural Green function giving the pressure in the Euid at a Suid 

receiver point x-̂  from a structural point force of unit strength in direction i The 
structural response from a structural point force can be deSned in a corresponding 
manner. 

4.3.5 Definit ion of mult ipole sources using Green funct ions 

Having dehned the Huid Green function (3/ in terms of the pressure response to a Buid 
monopole, the point dipole and point quadrupole Green functions are introduced. 

Fluid dipole If two simple point sources of opposite phases but equal magnitudes 
are put close together, the Suid ejected from one of the sources is sucked in by the 
other and vice versa, as though it were simply being moved from the one source point 
to the other. Such a source is called a dipole source. A number of textbooks present 
the construction of a point dipole from two closely spaced point monopoles of opposite 
phases, e.g. Fahy and Walker (1998). 

The net complex response (e.g. pressure or displacement) from a point dipole, at any 
receiver point x = (r, g), is the sum of the individual responses of two closely spaced 
monopoles with strengths —5" and + ^ , respectively. In the limit where the vector 
separation |d| — 0 , the product of strength and separation is held constant 5'd = D 
and the pressure field from the point dipole emerges as 

/ ( x ) = D • V ,Gj (x | y ) = (416) 

where (?/(x|y) is the same monopole Green function derived in the last section; the 
index y denotes differentiation with respect to the source coordinates y = (rg, gg); 
and the gradient operator in nondimensional cylindrical coordinates is 

V f / 1 ^ = 
^ \ G ' r 9^0' y \ o ' r ' a / 

The dipole can have three different orientations, aligned radially, tangentially or axially. 
Any dipole not aligned with the axes can be constructed using the three fundamental 
forms. The axial and tangential dipole pressure response have essentially the same form 
as the Green function, apart from multiplying factors aiid M, while the radial dipole 
is more complicated as it involves di%rentiation of the Bessel function. Nonetheless, 
the construction of the dipole from equations (4.13) and (4.16) is straightforward and 
will not be stated here. 
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Using essentially the same concept, the structural response to a point dipole in the 
Buid can be derived as 

= D . VyGX^Iy) (4.18) 

where index z indicates the displacement can be either of the displacement directions 
It, f and to. 

Fluid quadrupoles In the caae of two point dipoles of strength —D and 4-D with a 
vector separation d', the result of taking the limit |d'| —> 0 with the product of strength 
and separation held constant, D : d ' = Q, a point quadrupole emerges, 

p'ix) = Q : V,VyG;(x |y) = (4.19) 

where is the strength tensor. 

Each of the two dipoles can have three diEerent orientations, making a total of nine 
different combinations. Because of symmetry, only six of these are unique. Each of 
these can be derived from equations (4.13) and (4.19). 

The structural response to the Huid quadrupole can be deGned using the same concept 
as for the Suid dipole. 

4.3.6 Relative scaling of pressure response of multipole sources 

As noted in section 4.3.3 above, the relative scaling of multipole sources may allow 
a simpliScation of the vibroacoustic analogy. In free fields there is a well established 
expectation regarding the relative scaling of monopole, dipole, and quadrupole type 
aeroacoustic sources (Howe 1997). If the Mach number is sufEciently low the radiated 
power in the free held for each type scales as: l:Ma^:Ma'^. However, the environment 
of the source may affect the radiation; this is for example the case near a sharp edge of 
a large plate ((Ffowcs Williams and Hall 1970) and (Crighton and Leppington 1971)) 
where the relative importance of the quadrupole sources is increased. The purpose of 
this section is to investigate whether the relative scaling laws from the free-field also 
apply inside a Auid-hlled pipe. 

Since each of the source types drives the fluid-filled pipe in a fundamentally different 
way, they are not directly comparable. To circumvent this problem a dimensionless 
pressure ratio is introduced, such that the in-pipe pressure amplitude of a given source 
type is related to the free far-held pressure amplitude of the same source type. In the 
case of the directional source types, the directional peak pressure amplitude is used, 
as the pressure perpendicular to the dipole axis is, for example, identical to zero. The 
dimensionless pressure ratio is dehned as: 

^pres(^; ^ Ôi "S So) 
%ipe 

a • Pfree,peak 
(4.20) 
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where Ppipe is the in-pipe pressure amplitude; Pfree.peak is the free-field directional peak 
pressure amplitude at distance D; (r, a) is the receiver point; and (ro, ^o, is the 
source point. 

The numerical prediction model from chapter 6 is used along with the dehnition of 
the multipole sources from section 4.3.5 to predict the in-pipe pressure. The free-field 
pressure is calculated standard theory (Morse and Ingard 1968). As a special case, the 
dimensionless pressure ratio in a hard-walled circular duct can be predicted analytically 
for each type; a simple result is obtained in the limit of low Helmholtz numbers (He = 

= 27r/G/cy), where the far-held in-pipe pressure response is restricted to plane 
waves. 

Figure 4.5 shows the dimensionless pressure ratios for a pipe with light Suid loading 
(PVC pipe with air inside and outside, corresponding to the experimental setup of 
chapter 8) excited by monopole, axial dipole, and axial-axial quadrupole sources. Below 
cuton of the higher order duct modes at He = 1.84, the curves in the Egure are virtually 
identical to those predicted by the low-frequency theory mentioned above: in a hard-
walled circular duct below He = 1.84 each of the source types is represented by a 2/He 
curve. Above He = 1.84 there is multimode excitation, and the curves become more 
complex. 

Figure 4.6 shows similar curves for a light Euid loaded pipe excited by monopole, radial 
dipole, and radial-radial quadrupole sources. The theoretical hard-walled prediction in 
this case is that the monopole should follow 2/He (no change from hgure 4.5), while 
neither the radial dipole nor the radial-radial quadrupole should drive the plane-wave 
mode and therefore their contributions should disappear once the lowest transverse 
mode is cut oE, below He = 1.84. However, as seen in the Agure, there is a small 
response for both the radial dipole and the radial-radial quadrupole. This reason for 
this is simply that the pipe walls are slightly compliant even for light Euid loading, but 
the response is relatively insignificant. 

The conclusion to draw from hgures 4.5 and 4.6 is that in the light Euid loaded case the 
relative ranking of monopole, axial-dipole, and axial-axial quadrupole radiation remains 
unaltered inside the pipe for low He, compared to the free-held situation. The radiation 
from radial dipoles and quadrupoles are small by comparison. As no augmentation 
takes place, the free-held Mach number scaling still applies for low Mach numbers. 
Davies and Ffowcs Williams (1968) present the same conclusion for quadrupoles inside 
an infinite hard-walled duct. 

Figure 4.7 shows the dimensionless pressure ratios for the axial source types, for a pipe 
with heavy fluid loading (PVC pipe with air outside and water inside, corresponding 
to the experiments in chapter 9). At low He the curves are all approximately parallel 
with a 1/He slope, but not coincident. Apparently each of the source types differs 
from the next by a constant factor: the dimensionless pressure ratio from the axial 
dipole is approximately a factor of 5 larger than from the monopole, and likewise 
there is a factor of 5 between the axial-axial quadrupole and the axial dipole. From 
the fact that the curves in hgure 4.7 are approximately parallel at low He, it can be 
concluded that the free-held Mach number scaling also applies for heavy huid loading. 
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Figure 4.5: Dimensionless ratio of in-pipe to free-Held pressure response. Pipe with light 
Suid loading: monopole(red), axial dipole(green) and axial-axial quadrupole(blue). 
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Figure 4.7: Dimensionless ratio of in-pipe to free-field pressure response. Pipe 
with heavy Euid loading: monopole(red), axial dipole(green) and eixial-axial 
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Figure 4.8: Dimensionless ratio of in-pipe to free-Geld pressure response. Pipe 
with heavy Euid loading: monopole(red), radial dipole(green) and radial-radial 
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However, the implied dominance of monopoles at low Mach numbers (or of dipoles, if 
no monopoles are present) is only the case below a certain problem-dependent Mach 
number. If the Mach number is higher than the so-called cross-over Mach number, then 
the multipoles will dominate the monopole. The cross-over Mach number is aSFected 
by the constant factor between the curves in hgure 4.7; for example, the cross-over 
Mach number between the axial dipoles and axial quadrupole is reduced by a factor of 
approximately 5 relative to free-field radiation. 

The dimensionless pressure ratios for the radial source types in a pipe with heavy Euid 
loading are plotted in hgure 4.8. If one compares this Sgure with the light Auid loading 
case (figure 4.6) the overall appearance is different, as the curves for both the radial 
dipole and radial-radial quadrupole (particularly the latter) are now of comparable 
magnitude with the monopole. The reason for this is the signihcantly larger excita-
tion of the pipe with heavy fluid loading below He = 1.84, due to the relatively larger 
Hexibility of the pipe wall. The in-pipe pressure response to the radial dipole is dom-
inated by the structural n = 1 mode (beam bending), while both the monopole and 
the radial-radial quadrupole are dominated by the M = 0 mode. The curves remain 
approximately parallel at low He and the free-field Mach number scaling rules there-
fore apply. However there is a factor of approximately 100 between the dipole and the 
quadrupole ratios, and the cross-over Mach number between these sources is therefore 
significantly affected as discussed below. 

No significant changes in the trends discussed above occur when either the point of 
excitation or the receiver point are moved along the radius. The reason for this is that 
the pressure response at low He in each of the cases is dominated by low M (the modal 
pressure held for M = 0 and M = 1 does not depend strongly on radial location), and 
therefore (by reciprocity) the monopole response of these modes are largely unaffected 
by the radial position of the source. There are some minor changes at higher He 
where the higher order modes have significant contributions, but the overall trends are 
unchanged. 

In the interpretation of the vibroacoustic analogy in section 4.3.3 it was argued that 
there was no monopole contribution in the industrial application. This leaves dipole 
and quadrupole contributions. In the free-held scaling laws, a rule of thumb for tur-
bulent How noise with solid boundaries says that the cross-over Mach number where 
quadrupoles tend to dominate over dipoles is approximately 1. As the dimensionless 
pressure ratio for dipoles and quadrupole differs approximately by a factor of 5 in the 
axial case and a factor of 100 in the radial case, the radial case is most critical. How-
ever, the cross-over Mach number is approximately 0.01 in this case and as the Mach 
number in the industrial application is of the order 0.001, the dipole excitation will 
dominate the pressure response in the vibroacoustic analogy calculation. 

4.3.7 Power flow calculation f rom the v ibroacous t ic analogy 

Once the input excitation is calculated from the vibroacoustic analogy, the response of 
the fluid-hlled cylindrical shell can be predicted. In Part II of this thesis a prediction 
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model is presented; this model enables prediction of the shell vibration, the internal 
Suid pressure, and the total vibroacoustic power Bow in the axial direction. The 
excitation presented in Part II is limited to a point force at the shell wall or a point 
monopole in the fluid, but as shown in the previous sections it is quite simple to expand 
the excitation to include source distributions of multipole order, for which the response 
is determined by taking derivatives of the point monopole Green function. 

Eventually, it is expected that the necessary inputs will come from a CFD simulation 
of the unsteady How. Any input to the vibroacoustic analogy provided by a numerical 
Eow calculation is not continuous, as the equations of 8uid motion are discretised in 
both space and time. The temporal discretisation is not a problem, if the analysis is 
conducted carefully, ag the time steps can be chosen to be signiGcantly smaller than the 
smallest time scale of interest in the Auid. The spatial discretisation is not a problem 
either, if the calculation is conducted carefully. The spatial scales of the vibroacoustic 
problem (e.g. the wavelength of the bending modes) are significantly larger than the 
spatial scales of the flow calculations, as small eddies need to be resolved, even when 
using a turbulence model. A key part of the spatial discretisation in the flow calculation 
is the meshing of the ftuid volumes. Any surfaces in contact with the Euid are also 
meshed in patches. When solving the unsteady fluid ftow, the Euctuating forces on 
each patch becomes known. If the time series are long enough, the Suctuating force 
on each patch can be Fourier transformed. Knowing the surface normal of the patch, 
the dipoles of the 5" integral in equation (4.11) can be constructed. The reaction forces 
from the flow obstruction on the pipe wall can also be extracted from the flow solution. 

Due to the coupled nature of the Suid-Elled shell, the structural excitation by the 
reaction forces leads both to vibration of the shell wall and pressure Buctuations in the 
Suid. Since the diEerent excitation processes have a common generation mechanism 
in the fluid Sow, it cannot be generally assumed that the excitations are incoherent. 
Their power Sow contributions then need to be added modally. While modal addition 
may be troublesome, there are standard methods for dealing with the problem; see e.g. 
Norton (1989). 

4.4 Conclusion 

The concept of numerical calculation of vibroacoustic power flow from a Sow obstruc-
tion in a Suid-Slled pipe has been presented in this chapter. The method is general and 
does not put any constraints on the geometry of the Sow obstruction. The calculation 
involves three steps: 

i) Solution of the incompressible unsteady Sow around a Sow obstruction inside the 
pipe using Computational Fluid Dynamics. 

ii) Construction of a vibroacoustic analogy that transforms the vibroacoustic excitation 
of the Sow past the Sow obstruction into an equivalent problem with vibroacoustic 
excitation by point sources in a Suid-Slled pipe without Sow and Sow obstruction. 

41 



iii) Calculation of the vibroacoustic power Eow from the equivalent point sources. 

The second part involving the vibroacoustic analogy is one of the main contributions 
in this thesis and it is therefore discussed in some detail. The CFD solution of the Suid 
Aow hag been left out, as it is very complicated to obtain a unsteady time-resolved 
solution of the Suid Bow. Only a few remarks have been posed regarding the numerical 
calculation of the vibroacoustic power Eow, as it is presented in detail in part II of this 
thesis. 
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P a r t II 

Predic t ion of vibroacoust ic power 
flow in mechanically and 
acoustically excited pipes 
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Chap te r 5 

Review of analytical models for 
fluid-filled infinite cylindrical shells 

This chapter is a review of analytical models for small-amplitude vibrations of infinite 
cylindrical shells, excited by point forces at the shell wall and monopoles in the con-
tained Suid. The dimensional formulation of the equations presented in this chapter 
is not used explicitly in later chapters. Instead, in chapter 6 they are reformulated in 
nondimensional form and the nondimensional form is used throughout the rest of the 
thesis. The equations in this chapter are therefore not discussed in depth, as many of 
the comments and interpretations are put more appropriately in the later chapters. 

The modelling of inEnite cylindrical shells has received quite a bit of research in the last 
century. The main focus at hrst was predicting the in vacuo shell vibrations excited 
by structural forces, e.g. Donnell (1933) and Fliigge (1962), but later work included 
the e&cts of internal and external Suids. Most of the relevant background theory on 
cylindrical shells can be found in the reference work by Leissa (1973). A key omission 
in Leissa (1973) is the lack of any excitation of the shell by the Euid. While some 
confidential research was done on this topic by J. M. James (parts quoted by Fuller 
(1984) and Skelton &nd James (1997)), the hrst publicly available paper to examine in 
depth the behaviour of cylindrical shells excited by internal and external monopoles was 
by Puller (1984). This reference was part of a sequence of papers by Fuller investigating 
different properties of the cylindrical shell. 

The review in this chapter follows the framework set out in 'Theoretical acoustics of 
underwater structures' by Skelton and James (1997). The framework includes the 
general modelling of inhnite cylindrical shell with internal and external Suid loading. 
The excitation in this review is restricted to point forces at the shell wall and point 
monopoles placed in the interior fluid. Skelton and James (1997) use the Goldenveizer-
Novozilov shell theory, but as the main shell theory used in the present thesis is the 
Fliigge shell theory (Fliigge 1962), the Fliigge equations are presented in the following. 
A closer examination of the inSuence of the shell theory on relevant vibroacoustic 
aspects can be found in chapter 7, where the Fliigge, Goldenveizer-Novozhilov and 
Donnell-Mushtari shell theories are compared. The solution of the equations of motion 
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Figure 5.1: Coordinate system for inSnite cylindrical shell 

is not presented in this chapter. Instead this is presented in chapter 6 along with the 
nondimensional prediction model. 

5.1 Equations of motion 

Consider a uniform thin cylindrical shell of thickness A and mean radius a. The mid-
surface of the shell is described in a (r, z) cylindrical coordinate system, as shown is 
figure 5.1. If z), z) and z) represent the components of displacement from 
the equilibrium state in the axial, circumferential, and radial directions, respectively, 
the equations of motion for the shell can be written as 

z) + Q23w(^, z) — z) 

z) + Q32^(^, z) + 033'u;(^, z) = z) 

) . l ) 

where the Q-elements are differential operators acting on the displacements; z), 
z), and z) are the orthogonal components of mechanical excitation of the 

shell wall per unit area (the tractions) in the positive coordinate directions. The 
differential operators are, according to the Fliigge shell theory (Fliigge 1962), 
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Here D = EA/(1 — is the extensional rigidity also called the membrane 
stiffness; Cf, = - \ /E/p( l — :/ is the Poisson's ratio of the shell; E is the Young's 
modulus of the shell; p, is the material density of the shell; is a thickness 
ratio. 

Representing held quantities in the cylindrical coordinate system by a Fourier integral 
transform in the z direction and a Fourier series in the ^ direction, yields 

/ ( r , z) 

and the inverse transform 

A;) = 

1 

27r E -in9 / ( r , M, A;)e'̂ ^dA; (5.3) 

1 

27r 

27r noo 
e-'"^dg / / ( r ,g ,z)e- '^^dz 

0 J — oo 
(5.4) 

where / ( r , z) is the 6eld quantity; / ( r , n, A;) is the spectral Geld quantity; n is the 
circumferential mode order and A; is the wavenumber in the axial direction. 

From the shell equations it follows that the tangential displacement component gener-
ally is 7r/2 radians out of phase with the axial and radial displacement components. The 
displacement components could be formulated using complex exponential functions as 
in equation (5.3), but it is more convenient to use displacements of the form 

w(^, g, z) = PFcos(ng)e'(':^-'^*) 

(5.5) 

with unknown displacement amplitudes [/, y and ly. The 7r/2 in the w-displacement 
is by convention added to avoid imaginary components of the following ^'-matrix. It 
is convenient to consider single-frequency solutions with time factor 6*^^ Accordingly 
in the reminder of this thesis, all displacements, pressures, and input forcing terms are 
represented by their complex amplitudes, with the factor suppressed. 

The diSerential equations of motion can then be expanded as transforms. Using a 
matrix representation, the spectral equations of motion are 

(5.6) 

where /c), E^(n, A;) and ^ ( M , A;) are the spectral excitation tractions (force per 
unit area); ajid the elements of the 5" matrix are found by using the assumed form of 
the displacements in equation (5.5) in the definition of the Q-matrix from equation 

-5ii (M, A;) 5'i2(M, A;) 5'i3 (n, A;)' k)- ' ^^ (n . A;)' 
'S'21 (M, A;) '5'22(M, A;) X A) A;) = ^''(M,A;) 
'S'si (M,A;) %2()l, ^) "̂33 [M, A;)_ w(n, k)_ ^''(M,A;) 
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(5.1). This yields 

S"!! = D I 4- M 
20^ 

— 5'i2 —Z)(l + %/)^ 

5" 13 -D{.^ + aBV 
k 
a 2o 

'S'si = 'S'lz 

5'22 = D ^(1 - Z/)y + ^ + 

<5^23 — D i — 
M ^ (3 — 

2 j 'S'si — — "S" 13 

S32 — ~S-23 %3 = D ( 1 + f a"A;" + ^ + 2^"^" 
a 

— LO^ Pgh 

5.2 Structural point excitation and fluid loading 

If the shell is not in vacuo, but hlled with an internal Suid and submerged in an external 
Suid, the effect of the Auids can be accounted for through a Auid loading term. The 
combined effect of (1) a mechanical point force vector (F^, located on the pipe 
wall at the coordinates (o, Zg), and (2) fluid loading pressures p,, Pe on the internal 
and external walls, is represented by the tractions 

-E^(g,z)- — Zo)(̂ (0 — ^o)/a 
E^(g,z) = — Zo)(̂ (̂  — ^o)/a (5.7) 
EX^,z) F"(^(z - z«)(^(^ - 6 o) /G-Pe(o,g ,z) +P;(G,l9,z)_ 

where and f are the axial, tangential and radial components of local force 
acting on the shell mid-surface, being positive in the directions of the coordinate axes. 
Both the internal and external Suid are assumed to be inviscid. 

The related pressure helds sat is^ the acoustic wave equation. Solutions are conve-
niently expressed in spectral (M, A;) form rather than in physical (^, z) space. The 
interior spectral pressure driven by vibration of the shell wall has the following 
form, as it is a solution to the Helmholtz equation in cylindrical coordinates which is 
hnite at the origin, 

p r = (5.8) 

where is an amplitude coeScient to be determined; is the interior 
radial wavenumber; A;, = w/cy is the interior acoustic wavenumber; Cy is the sound 
speed of the interior Huid ; and is the Bessel function of the hrst kind of order n. 
A boundary condition requiring the fluid to stay in contact with the shell wall can be 
applied, coupling the radial shell displacement and the internal pressure held. Applying 
the boundary condition at r = a to solve for gives 

= PiW w (5.9) 
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where p, is the interior Huid density; the interior spectral pressure is then found to be 

(5.10) 

where is the derivative of the Bessel function with respect to the argument. Equation 
(5.10) is a key equation that links the modal pressure response in the interior Suid to 
the modal radial-displacement response of the pipe wall. It is (in the form of a fluid 
loading term) used in the structural response solution in equation (5.14) below, and 
also in the response calculations in chapter 6. 

The vibrations of the shell wall also gives rise to an external pressure held when the shell 
is surrounded by an external fluid. The exterior spectral pressure must be a solution to 
the Helmholtz equation in cylindrical coordinates which satishes the radiation condition 
at infinity. Thus, 

p:" = B^H^(A;:r) (5.11) 

where is an amplitude coe&cient to be determined; is the Hankel 
function of order M (commonly written H^^); /Cg = is the exterior radial 
wavenumber; /cg = w/cy is the exterior acoustic wavenumber; and Cy is the sound speed 
of the exterior Suid. Using the same boundary condition argument as before to solve 
for Bn gives 

- •= (5.12) 

where Pe is the exterior Suid density; the exterior spectral pressure is then found to be 

^:K(A;:r) 
(5.13) 

The Euid loading can therefore be included in the equations of motion for a shell driven 
by a point force, as 

5'ii(M, A:) 5'i2(M, A;) 5'i3(M, A) 
5'2i (n, A:) S'gz (M, A:) '̂23 (M, A;) 
S'si (n. A:) (M, A;) S'ss (M, A:) + 

where the (3,3) matrix element includes a term 

2 H;,(A;;G) 

«(M, A;) go)/a' 
f (n,. A;) = — Zo)(̂ (̂  — go)/a (5.14) 
w(M, A;) - z«)^(g - go)/G_ 

y) — 
KKikia) K}'Jk]a) 

that accounts for the fluid loading by the internal and external fluids at the shell wall. 

Jn(A:'a) 
(5.15) 

5.3 Fluid monopole excitation 

When the excitation of the shell is by an interior monopole, located at y = (fo, z^), it 
is convenient to express the interior spectral pressure as a sum of separately identihable 
contributions as follows: 

(5-16) 
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Here is the free-held spectral pressure of a monopole; is the interior spectral 
pressure scattered as though the boundary was hard; and is the interior spectral 
pressure due to the shell wall vibrations. 

The free-held pressure at a position x — (r, z) of the interior monopole is written as 

p r ( x , y ) = ^ -
| D | 

(5.17) 

where |D| = — 2rro cos(0 — ^o) + (z — z^)^ is the distance from the monopole 
to the observation point and S is the strength of the monopole, having units of force 
per length. The spectral free-field pressure from the monopole is then 

p r ( r ) -27r5'cos(n(^ — ^o))e 
J J;,(A:'ro)Hn(A;rr) for r > > 0 

Jn(A;[r)Hn(A;[ro) for ro > r > 0 
(5.18) 

The interior spectral pressure scattered as though the boundary were hard is found 
by solving for the total spectral pressure inside a shell with a hard boundary. The 
general solution for is obtained by adding a solution of the homogeneous wave 
equation to the monopole free-held expression above; thus 

P.k(r) = pT(<-) +P:ir) = pT{r) + C^UK^) (5.19) 

The constant is found using the boundary condition = 0 at r = o, giving 

p ^ r ) = —27r5'cos(n(0 — 00) )e" -Jn(&Ir) (5.20) 

At the surface of the shell at r = a, the blocked interior spectral pressure is written in 
the following simplihed form, using the Wronskian relation Jn(z)H^(z) — Hn(z) J^(z) = 
2z/7rz: 

pr(G) +fl((^) = 2,9cos(M(^ - ^o))e" (5.21) 
(A:Ia)JL(A;lG) 

The interior spectral pressure on the inner wall r = o can now be expanded using 
equations (5.16) and (5.21): 

Jn(A:Iro) 
p^(o) = 2^cos(M(g - (5.22) 

The pressure contributed at the inner wall from the huid impedance presented to the 
shell motion is included in the Suid loading term in equation (5.15), and the equations 
of motion for a inhnite cylindrical shell excited by a fluid monopole can then be written 
as 

'^11 ^13 u 0 

,921 V = 0 

[2Scos(n(9 J 

(5.23) 

'S'ss + w 

0 

[2Scos(n(9 J 

Solutions of this equation, and of the corresponding equation (5.14) for mechanical 
excitation by a point force, are discussed in chapter 6. 
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5.4 Conclusion 

Using the Fliigge shell theory, the equations of motion for the forced vibroacoustic 
problem of an infinite cylindrical shell, hlled with an internal Buid and submerged in 
an external Suid, have been formulated for two different types of excitation: mechanical 
(via the structure) and acoustical (via the Huid). The structural excitation is assumed 
to be in the form of a point force applied to the shell, while the Huid excitation is in 
the form of a point monopole in the interior fluid. 

The equations presented in this chapter are included to provide a foundation for the 
nondimensional prediction model in the next chapter. This way, the presentation of the 
prediction model can be smoother, as the equations in this chapter can be referenced 
instead of references to the literature. 
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Chap te r 6 

Predic t ion of response funct ions 
and power flow 

In this chapter, a complete numerical model of the vibroacoustic problem is presented 
along with expressions for calculations of the power Sow in the system. The starting 
point for the numerical model is the equations presented in the previous chapter. 

In a series of papers, C. R. Fuller has worked his way through the characteristics of wave 
propagation in inRnite circular shells, from the transmission of Eexural waves through 
discontinuities in in vacuo shells to monopole excitation of fluid-Slled shells. Fuller 
(1981) investigated the transmission of Eexural waves through some discontinuities 
with the use of Fliigge's theory of thin cylindrical shells, but for in vacuo shells alone. 
Along with Fahy (Fuller and Fahy 1982), the complicating eSects of Huid loading on 
the inside of the shell were analysed in depth, using the theoretical framework of 
Donnell-Mushtari, which is a less complicated subset of the Fliigge theory. This work 
investigated the dispersion behaviour of free waves in thin-walled cylindrical shells, and 
some aspects of the variation with frequency and material parameters were highlighted. 
On top of this work Fuller (1983) investigated the forced response of the shell from 
mechanical excitation in the form of line and point forces, via the input mobility of the 
Suid-Slled shell. The same methodology was used to examine the forced response to 
Euid excitation by a point monopole (Fuller 1984). 

Several other researchers have also worked with Suid-hlled cylindrical shells, using dif-
ferent methods for different purposes, mainly Pavic (1990), Feng (1994) and Finnveden 
(1997a), (Finnveden 1997b) and (Finnveden 1997c). The Arst two used a similar an-
alytical formulation to that of Fuller (Pavic used a series expansion of key elements 
for faster calculation, while Feng used the Fliigge equations for added precision), but 
Finnveden used FE}-methodology for his work. While Finnveden's method is very ef-
ficient from a numerical point of view and also almost as precise as the analytical 
formulation, its physical meaning is obscured by the use of FE. In the present the-
sis, physical understanding is rated higher than numerical efficiency and therefore the 
analytical formulation is used. 
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The starting point of this chapter is the Fliigge equations of motion from chapter 5, 
but in this chapter they are nondimensionahsed to reduce the number of variables 
needed to address the vibroacoustic problem. No further reductions of the equations 
are done even though the frequency range of interest in the present thesis is relatively 
low compared with the ring frequency of the shell. Some authors dealing with low 
frequency vibrations tend to make a low frequency approximation of the shell theory, 
e.g. Cremer et al. (1988) and Variyart and Brennan (1999). While this is feasible 
for in vacuo investigations, it is more difBcult for Buid loaded problems, as the fluid 
loading terms in the equations tend to be strongly frequency dependent without any 
direct connection to the ring frequency of the shell. A low frequency approximation 
of a Huid loaded problem would therefore imply low frequency both in relation to the 
ring frequency and the Auid loading. The relation to the ring frequency can easily be 
established, and this is certainly the case for the problems investigated in this thesis, 
whereas the relation to the Huid loading is dependent both on the shell geometry and 
the material parameters involved. Both for the industrial problem and the experimental 
investigations in part III a low frequency approximation is not easy to make, and the 
full equations are therefore used. 

6.1 Nondimensional matrix formulation 

A total of 11 input parameters completely identify the problem drawn up in chapter 5, 
namely /i, a, w, M, z/, c^, Cy, , Cy, Pe- the industrial application of this PhD project 
there will always be air on the outside of the pipe. It is shown in section 7.2.2 that 
from a vibroacoustic point of view, the influence of air as the external Buid is almost 
indistinguishable from vacuum in the frequency range of interest. The external fluid 
loading is therefore left out of the entire prediction model. 

The output variables take the form of various frequency response functions which will 
be specified later. 

It is convenient to introduce a nondimensional form of the equations in chapter 5 using 
the Buckingham 11 theorem, see e.g. Fox and McDonald (1985). The 11 theorem states 
that 9 — 3 = 6 nondimensional groups are necessary in this case to completely specif 
the problem. Following the II theorem, 3 parameters are chosen as repeating param-
eters, covering the 3 primary dimensions length, time and mass. For this problem, 
o, Cf, and are chosen, with the dimensions [iv], and This results 
in the following six nondimensional input groups: = wo/cf,,?2, t/, A/a,/)y/pa,cy/c2,. 
The entire formulation in this chapter makes use of these input groups. In addition, 
nondimensional axial and radial coordinates are introduced: g = z /o and r = rjim/o 
where is the dimensional radius. 
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6.1.1 Point excitat ion of fluid-filled cylindrical shell 

For single frequency forced vibration, it is convenient to express the shell displace-
ments of equation (5.5) as Fourier transforms. If w(0, then the complex 
displacement amplitudes and w can be expressed as (compare equation (5.5)) 

1 roo ^ 
{2(̂ , g) = — / y^e;iCos(M(0 —0o))Gi/;i(K)e^('̂ ^^"^°)"^^)dK 

1 poo OO 

{'(^,5) = — / y^6nSin(M(^-^o))a%i(/i:)e"^(^"''°)d/( (6.1) 

-1 pOG 00 
'u;(^, g) = — / y^eMCOs(M(^ - ^o))GM^(K)e''^(^"'''°)dK 

ivr . 1 ^ 

where i7n(/{), i^(K) and I^( / ( ) are the respective modal displacement transforms; 
5 = z/(z is the nondimensional axial position; K = A;G is the nondimensional axial 
wavenumber; and is used to transform the doubled sided spectrum into a single 
sided, as 

00 00 
^ / W = ^ W ( ? i ) (6.2) 

n=—00 7%=0 

where /(yi) is an arbitrary even function of n; = 1 foi" M = 0 and = 2 for all other 
cases. It is assumed that the excitation is symmetric about the diameter containing 
^ = 00. 

The pressure inside the pipe can likewise be formulated as 

1 ^ 0̂0 ^ 
p(r, g) = — y ] / 6nC0s(M6))Jn(0!r)&(K)e"'^dK (6.3) 

where r — rjim/o is the nondimensional radius (raim is the dimensional radius), and a 
is the nondimensional radial acoustic wavenumber, related to the axial wavenumber by 

a = (6.4) 

where cy (formerly written as Cy) is the free wave speed in the fluid. As discussed 
in section 5.2, the pressure transform for a source-free 8uid is linked to the radial 
displacement transform as 

(6.5) 
aJ^(a) 

The equations of motion in equation (5.6) of chapter 5 can be nondimensionalised, 
as follows: on the left of equation (5.6), the elements of the 5" matrix are divided by 

the displacements (w, f ,w) are divided by a; and the right hand 
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side is divided through by D / a = This gives the nondimensional spectral 
equations of forced motion as 

Ln -̂ 12 ^13 
^21 ^22 ^23 
^31 -̂ 32 ,̂33 

'E' 

E' 
(6.6) 

where and E'' are the excitations in the directions indicated by the superscript 
and the elements in the Z,-matrix are 

^11 = — + - ( 1 — (/)(! — ^ -̂ 12 ^ ^ 

1/22 

^31 = —-̂ 13 

Z/13 — VK — — (1 — u') H? K + 0^ L 21 L 12 

L 23 4-M + ^(3 — 

L?,9 — — L 1,33 = + 1 + + 1 - -

The nondimensional Huid loading term JF is given by 

' J n W 

J" 

jF = I ^ I I z 
Ps 

h 
(6.7) 

where is the density of the shell material. As noted by Puller (1983), .F is an even 
function of a; and thus the Auid loading is independent of the sign of the square root 
in equation (6.4). This feature will later be seen to simpli^ the solution of the forced 
response of the system, as it ensures a particular integrand is single valued. 

The two following sections present the response of the coupled system to two fun-
damentally diEerent forms of excitation, namely a point force at the shell wall and a 
monopole in the interior Buid. While there is a fundamental di&rence between the two 
types of excitation, the solution method is the same for both cases: a nondimensional 
forcing is implemented in the forced equations of motion. When solving the equations 
of motion, the response in each of the coordinate directions includes a wavenumber 
integral. In the present thesis, the wavenumber integral is solved using the method of 
residues, but other integration methods could alternatively be used. With the method 
of residues, the modal response of both the shell and the Suid is formulated as a sum 
involving the wavenumbers of free propagation in the coupled system. 

6.1.2 Point force excitation of the shell 

The presentation in this section is split into two subsections. The Rrst subsection 
presents in some detail how to predict the vibroacoustic response when the shell is 
excited by a radial point force. The second subsection states the results for tangential 
and axial excitation of the shell, since the steps involved in the derivation are exactly 
the same as for the radial point force. 
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6.1.2.1 Rad ia l point force exci ta t ion 

According to equation (5.7), a radial point force F' ' (with dimension of force) applied 
at the surface of the shell, can be specihed as a nondimensional force distribution on 
the shell (using the same normalisation procedure as in section 6.1.1): 

F' ' f 
E''(g, 6") = ô)< (̂5 - go) = 71̂  _ ^ ^o)^(a - (6.8) 

The r superscript will be used in what follows to denote the response to a radial point 
force. 

As the circumferential wavenumbers are discrete and the axial wavenumbers are con-
tinuous, the delta functions of equation (6.8) may be expressed as 

1 
^(i9-^o) = — y^6;iC0s(M(l9 - gp)) 

(^(s — go) 

n=0 

27r 

(6.9) 

Using this, the radial point force can then be described in the wavenumber domain as 

ÔO 
E / 
n—O 

cos(M(g - go))e'''("-'°)dK (6 .10) 

revealing the point force as an infinite sum of ring forces with increasing circumferential 
mode order. Combining this result with the modal representation of the displacements 
from equation (6.1), the spectral equations of motion for a fluid-filled pipe excited by 
an externally applied radial point force can be formulated and the solution is 

(6.11) 
K' 7x1 /l2 hi 
v: = hi 2̂2 -^3 

hi h2 3̂3 

- 0 " 

0 

where matrix 7 is the inverse of the Z,-matrix in equation (6.6). The spectral displace-
ment amplitude of each of the directions of motion can be extracted using standard 
matrix algebra operations, 

u: . 

" 27rw /̂)a/z,â  

(6.12) 

(6.13) 

where the element 7^, of the inverted matrix are found using matrix algebra; e.g. the 
term /gg is given by 

^11-̂ 22 — ^12-^21 

:L 

L 33 
det(Z,) 
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Equation (6.14) can be re-substituted into equation (6.1) and application of the inverse 
transform gives the nondimensional radial displacement in response to a radial point 
force for a particular mode as 

/ OO 
(6.16) 

OO 

This integral in the wavenumber domain can be evaluated numerically using a number 
of different techniques. In an early paper Puller (1981) suggested integration using the 
method of residues, which is a complex integration method. In a later paper, Fuller 
(1984) showed that the integration could be done straightforwardly, integrating along 
the real axis. Xu and Zhang (1998) used the same approach, except that the integration 
was performed along the imaginary axis. Xu and Zhang (1998) have shown that the 
diEerent integration techniques converge numerically, and they therefore all are usable 
for this purpose. 

For the numerical evaluation of a single integral, the method of residues is relatively 
time consuming, as it requires the wavenumbers of free propagation of the coupled 
system to be identified before the integration, while either of the two other integration 
techniques performs the integration straight away. The method of residues is nonethe-
less chosen for the present thesis, as it uses a very e&cient algorithm once a table of 
free wavenumbers is established, while the other methods rely on direct evaluation of 
every single integral. The table of free wavenumbers is calculated for each different 
coupled shell-Suid configuration (geometry and material properties for the shell and 
fluid) and then stored for later use, as explained in section 6.2.1. 

The denominator of equation (6.15) suggests the complex integral of equation (6.16) 
can be evaluated by using the method of residues for simple poles (Kreyzig 1998). The 
residue theorem (Kreyzig 1998) states that the integral of a given form of complex 
functions is the sum of the singular points inside a simple closed path, i.e. 

/(z)(fz = 27r% Res / ( z = z^) (6.17) 

where the function / (z) = p(z)/g(z), has A; simple poles at z = The residue is then 
Res y(z^) =p(zj ) /g ' (z j ) . 

Assuming g — gg, is positive, equation (6.16) can be expressed using the method of 
residues as 

Z (a > g«) (6.18) 

where Knt is the wavenumber giving rise to the 6'th singular point of the Z/-matrix in 
equation (6.6) with given n and fl. In what follows, a related sequences of wavenum-
bers as a function of frequency is referred to as a branch, because when plotted in a 
dispersion plot the wavenumbers have a characteristic appearance, see e.g. figure 7.2 
on page 75. 

56 



The residue in equation (6.18) is deSned as 

L11L22 — L12L21 
9det(i/)/9K 

(6.19) 

To ensure that only the poles related to the positive direction of propagation are 
included in the integration of equation (6.16), the integration path is chosen as a 
semicircle of inhnite radius in the upper complex wavenumber half plane (Im(K) > 0). 
Conceptually, adding an infinitesimal amount of damping will shift any real poles of 
equation (6.16) into the complex domain by introduction of a inhnitesimal positive 
imaginary part. The damping will not affect the result if it is chosen to be small 
enough, but it will move the poles connected to propagation in the positive z-direction 
into the upper wavenumber half plane, and vice versa for the negative axial direction. 
The poles contained in the integration path will be the zeros of the determinant of the 
matrix i.e. the free wavenumbers from the dispersion equation, 

det(Z,) = 0 (6.20) 

By summing equation (6.18) over all circumferential modes, the nondimensional radial 
displacement due to a radial point force can be expressed in the compact form 

a 
71=0 6=1 

(g > So) (6.21) 

where the modal displacement amplitude follows from equation (6.18) as 

Similarly, the displacements in the axial and tangential directions, respectively, can be 
formulated as 

Z*" y / ^ \ 00 00 
" = Y ] E % cos(M(g - (g > (6.23) 

n=0 6=1 

—y / ^ \ 00 00 
^ ^ ^ KIb 8m(M(g - (g > g«) (6.24) 

^ n=0 6=1 

The axial and tangential displacement amplitudes are found using their respective 
ratios to the radial displacement, according to equations (6.12)-(6.14). Thus, [7̂ ^ = 

a-nd where the axial amplitude ratio is defined as 

-"'0,0,6 — — — 

-(33 -̂ 11-̂ 22 — -̂ 12-̂ 21 

and the tangential amplitude ratio is dehned as 

B,,ni = ^ = ^ = ~ (6.26) 
-̂ 33 ^11^22 — -^12^21 
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Finally, using the same methodology, the pressure inside the shell is expressed as 

oo oo 
f (r, a) = ^ ^ f;; , cos(7^(g - (g > g,) (6.27) 

n=0 b=:l 

and equations (6.5) and (6.22) give the pressure amplitude as 

P:,i, = " Y f ' . IV.t = (6.28) 
^nb'^riA^Tib) ^ntlCl pg j 

6.1.2.2 Axial and t angen t ia l point force exc i ta t ion 

The modal response produced by a tangential point force or a axial point force 
located at (^o, So) (the superscripts refer to the direction of excitation) can be derived 
using the same methodology as for the radial point force excitation. 

After summation over modes, the total radial displacement in response to a tangential 
or axial point force can be written as, respectively 

^ ̂  ^ \ OO OO 
^ ^ cos(M(g - (g > g«) (6.29) 

n ~ 0 6=1 

- ^ ^ 6 cos(M(^ - (g > g«) (6.30) 
n = 0 6=1 

The modal displacement amplitudes will have the same form as the displacement am-
plitude for radial excitation in equation (6.22), apart from the residue term. The 
tangential and axial residues are defined as, respectively 

Resfi — — 

= 

^11^33 — ^31^31 
9det(Z,)/^K 

^22-̂ 33 — ^23^32 

(6.31) 
nb 

(6.32) 
nb 9det(I,)/9K 

The displacements in the other directions can be derived from the radial displacements 
using the amplitude ratios of equations (6.25) and (6.26). 

The pressure response for these two directions of point excitation can be derived using 
the same methodology as in equations (6.27) and (6.28). 

6.1.3 Monopole excitation of the interior fluid 

The response of the coupled system when excited by a fluid monopole can be solved 
using the same methodology as for the point force. The steps in the solution process 
correspond closely to the point force: Erst the excitation is deGned in nondimensional 
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form and the equations of motion are solved for each of the coordinate directions. Then 
the response expressed is in summation form using the method of residues. 

In accordance with equation (5.17), a monopole source of strength S'o (with dimension 
of force per length) located in located in the Auid at ^o, /%:) has a nondimensional 
free pressure held of the form 

f " ( r , g , 5 ) 
& 

D (6.33) 

where superscript m refers to monopole excitation; D is the distance from the monopole 
to the receiver point; and Ky = wo/cy is the nondimensionaJ Suid acoustic wavenumber. 
See section 6.1.1) for the normalisation procedure. 

Following the same arguments presented in section 5.3, the solution to the spectral 
equations of motion can be written as 

' I n I n /l3 

c == ^21 2̂2 2̂3 
h i I32 3̂3 

0 
0 

where fo = is the nondimensional radial source position. 

Matrix algebra gives the radial displacement amplitude as 

Jn(aro) 

(6.34) 

I: 33 (6.35) 

where 3̂3 is defined in equation (6.15). Application of the inverse transform gives the 
radial displacement for a particular mode M as 

COS(M(0 - K (6.36) 

The discussion regarding the method of residues from the last section also applies here. 
However, it should be noted that although the denominator of equation (6.36) is more 
complicated than the corresponding equation (6.18) in the case of the point force, it 
still has simple poles. The method of residues can therefore be applied. By integration 
of equation (6.36) using the method of residues, the radial modal displacement in 
response to a Suid monopole can therefore be written as 

g) 
cos(n,(0 - 60)) (s > So) 

6 = 1 

where the residue connected to the Huid monopole is 

n m _ Jn(o^^o) (-^11^22 — -^12-^2l) 
a ( a 4 ( a ) d e t ( i , ) ) / a / ( 

(6.37) 

(6.38) 
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After summation over modes, the nondimensional radial displacement in response to a 
Huid monopole can be written as 

~ 777, ( £) \ 00 

^ ^ cos(7^(g - (g > (6.39) 
n=0 6=1 

with all other terms collected in the radial modal displacement amplitude 

As in equations (6.23) and (6.24), the radial and tangential displacements can be 
formulated as, respectively 

~ jYi / /Q \ 00 00 
= E E cos(M(g - (g > g,) (6.41) 

n=0 6=1 

^ ^ ^ sin(M(g - g,))e'''"''('-''') (5 > g«) (6.42) 

n=0 6=1 

where the axial and tangential displacement amplitudes are found as before using the 
displacement ratios in equations (6.25) and (6.26): (7^ = a:id 

Finally, the pressure inside the shell due to a point monopole in the interior Suid is 
expressed as 

00 00 
f " ( r , g) = ^ cC08(7^(g - ^o)) (a > g«) (6.43) 

n=0 6=1 

and equations (6.5) and (6.40) give the modal pressure amplitude as 

PS = , W-;.t = : . (6.44) 
0^n6"n( nb) hcXfibJnx^ribJ Ps 

6.1.4 Power flow formulat ion 

Each branch couples the 3 directions of motion (w, f and w) and the pressure 6eld 
inside the shell in a diEerent way, but in essence excitation in the Auid will always 
excite vibrations in the wall and vice versa. This leads to a distribution of vibrational 
energy between the shell and the contained Huid. 

The total power How of the coupled system for a given free-wave branch number 6 can 
be found as the sum of the power carried by each of the three fundamental types of 
vibration in the structure (Sexure, extension and torsion) and the power carried by the 
fluid, 

= + + + (6.45) 
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It should be noted that it is not possible to quantify the power flow in the structure 
and the Huid individually, ag the actual distribution of power between the shell and 
the Euid is spatially dependent. 

In this section, it is shown how the total power Sow can be quantified. To avoid too 
much confusion by the complications introduced from cross-terms, the power How from 
a single branch (i.e. given m and 6) is presented hrst. This result is then expanded to 
include all branches for a given M, and hnally the total power flow is presented. Before 
this, power How is defined in the next subsection. 

6.1.4.1 Defini t ion of power flow 

Power is deSned as the rate at which work is done. For example, the instantaneous 
structural power input to a system from a point force is given by the relationship 

= F/Vr (6.46) 

where and V} are the physical instantaneous values of force and velocity at the 
input point. For steady-state excitation, the average power transmission or power flow 
is more useful. 

For complex harmonic excitation, = Fe"^^ and the time average 
structural power flow can be written as 

(P) = / Re(Fe- '^)Re(ye- '^)cgt = ^Re( f 'y*) (6.47) 
^ Vo 2 

where the asterisk * denotes complex conjugate; Re denotes the real part of a complex 
quantity; the period T = 27r/w and ( ) indicates average with respect to time. As all 
the following equations are time averaged, the brackets for time averaging are left out. 

The same methodology can be applied to calculate the time averaged power flow due to 
structural rotation (involving rotational velocity and moment) and the time averaged 
power flow in the Suid (involving Auid pressure and velocity). 

6.1.4.2 Force and m o m e n t r e su l t an t s in t h e shell 

If the input force and response velocity of any structural point can be retrieved, then the 
time averaged power input of that point can be calculated using the above expressions. 
This fact will be used later as a check on the overall power balance for a Suid-611ed 
pipe. However, the structural power density (power Sow per unit circumference across 
any pipe cross-section) can be expressed in a similar manner by combining the shear 
force (per unit circumference) with the displacement in the corresponding direction, 
and the bending moment with the shell rotation. The resulting power Bow expressions 
for any cross-section of the pipe, expressed in modal form, will be used extensively in 
what follows. Details of the derivation are given below. 

61 



According to Fliigge's shell theory, the force resultants in the coordinate directions at 
any point on the shell can be formulated by integration through the thickness of the 
shell (Fliigge 1962). All the following resultants are per unit length of circumference, 
i.e. they have to be integrated around the circumference of the shell. 

The bending moment in the z-direction is in Fliigge's formulation (Fliigge 1962) given 
by 

^ ''i%) 
where TiT = ^/i^/12(l — z/̂ ) is the bending stiffness. The transverse shear force is given 
by 

(6.49) 

_ / z/ 1 \ 

. . / 1 1 1 \ 

The torsional shear force is given by 

where D = E'/i/(1 — z/̂ ) is the membrane stiffness. Finally the axial force is given by 

6.1.4.3 Power flow for a given b ranch 

For a branch with given M and 6, there are no cross branch contributions to the power 
Sow and the power Eow can therefore be separated in the individual parts of equation 
(6.45) without introducing any cross terms. 

Assuming the excitation to be symmetric about ^ = 0 and Sg = 0, the displacements 
of the shell can be formulated as 

'i'n6 = G%i6sin(M0)e"^"''̂  (6.52) 

= aTfnb COs(M )̂e"̂ "''̂  

where the displacement amplitudes [7^6, and Wnt are determined for point excitation 
in sections 6.1.2 and 6.1.3. The complex conjugates of the displacements are 

Kt = oK,co3in0]e-^':-.'+"^> 

v'„, = aV:,sm{ne)e- '~: ' (6,53) 

< s = cos(n9)e^"«»' 
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The Aexural (or bending) part of the power How is found as the circumferential integral 
of the power density (structural intensity). It has a contribution from rotation of the 
shell element as well aa from radial Sexure, thus 

1 r 1 
Pk =% / Re(M,w'*) + Re(Q,w*) adg (6.54) 

2 Jo 

where the dot implies differentiation with respect to time and the prime implies dif-
ferentiation with respect to the axial coordinate; thus lu' = is the angular 
rotation of the shell element in the z-direction. Inserting the displacements in the force 
and moment resultants, multiplying by the complex conjugates of the displacements 
and integrating around the circumference produces the power flow in a single branch 
due to flexure of the shell: 

(6.55) 

where 7/̂  = 2 for M = 0 and 7/̂  = 1 otherwise. 

Likewise the extensional and torsional contributions to the power Sow can be found 
as, respectively 

"2 

^ Vo '0 

=^Re (g.sG) 

12^2 

"ZTT 

^ Vo 

= — - R e ^ (6.57) 

The expressions for the power flow are conveniently simplified by introducing the ratios 
of the displacement amplitudes defined in equations equations (6.25) and (6.26): = 
-Ro mbM/nb and Using these substitutions, the total structural power flow 
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from a single branch is 

" 2/{TL6K^b^a,nb + 2l/M/(*̂ 7Zt_Ti6 

'^^'nb '^Kj^ijlia^nb ^f^^nbRt.nb Kjih Ra,nb '^^'nbRf.nb ~t~ Z/fl Ra,nb) 

— ^ — 12—n^a^nb + 12 —Knb-Rt,n6 + /î nb-R(,nb) 

/lE 
-| —(I2a^/{n6^a,m6 — 12G 1̂/M_%,̂ (, — 12a^Z/ — 3z(Kn6 

(6.58) 

Finally, to obtain the total power Sow for a single branch, the power How carried by 
the interior Hnid needs to be added. The fluid power Eow is found by integration of 
the acoustic intensity over the pipe cross-section, as 

Pf 
1 27r f l 

0 VO 
Re(pti*)rdrd^ (6.59) 

where p is the pressure and M is the acoustic particle velocity in the axial direction. 
For symmetric excitation, the pressure at an observation point (r, g) is expressible as 

P»b(r, <9, s) = fLb cos(Ml9) J;,(o:;i(,r)e"' (6.60) 

where the pressure amplitude is determined for point excitation in sections 6.1.2 
and 6.1.3. The complex conjugate of the particle velocity can be found from the 
momentum relation as 

M*(r,6',s) = 
1 1 

--P^bCOs(Mg)J^(o:;tr)(-'i<6)e 

Using this, it is possible to calculate the Suid-borne power Sow as 

1 / TT 

(6.61) 

= ^Re 
2 " \ awp/ ^0 

/ J , ( a ,6 r ) J^ (a ; , r ) rd r (6.62) 

The integral involving the Bessel functions is called Lommel's integral (Kreyzig 1998) 
and the solution is 

zJp(cKz)Jp(/)z)dz 

1 

2 _ /?2 a 
/)zJp(o!z)Jp_i(^z) — azJp_i(Q!z)Jp(/)z) (« f ^) 

(6.63) 

and 

zJp(az)dz = Jp(az) - Jp_i(o!z)Jp+i(a!z) (6.64) 

The total power Sow carried by a single branch can be found by summing the structural 
contribution from equation (6.58) and the Huid contribution from equation (6.55). 
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6.1.4.4 Moda l power flow 

For a circumferential mode a, the vibroacoustic response consists of the combined 
response of all branches for that mode. In the case of a fluid-filled shell, there is 
an inhnite number of branches, as discussed in section 6.2. When more than one 
branch participates in the transport of energy, there will be cross couplings between 
the different branches that will also contribute to the energy transport. Therefore 
a simple summation of the power Sow due to each of the branches will produce an 
incorrect total power flow, as it leaves out the power Eow due to the cross couplings. 

To account for this, all the branches need to be included in the power Sow formulation. 
For given n, the total modal displacement can be formulated as 

00 

6=1 
OO 

= y^a%i6sin(Mg)e'''"''^ (6.65) 
6 — 1 

OO 

Wn — ^ aWnb cos(M^)e"^"''̂  
6=1 

Substituting the displacements and their corresponding complex conjugates in the total 
structural power flow equation from the previous section produces the power flow for 
a given n,, including ail cross-term contributions. Using the relation 

= (6-66) 
i J i J 

the total structural power Sow for a given circumferential mode can be written as 

(/?- 12(X '̂ Râ nb "4" 12ci ^bcR't,nb 4" ^ ^nbRt,nb} 
24 

VTlKjifiRi jib 2fi Kjib ^ Ra,nb '^^nhRt,nb 4" Ranb) 

-| — 120^1/ — 

and the corresponding Suid-borne power Sow is 

, , „ _ _ _ _ _ / I 
P. 

o'^i.^nb ^TLc)^ 

1 / OO OO \ 
7 , . = ;;Re — ( 6 . 6 8 ) 

2 \a.up, io / 

It should be noted that the above power Sow expressions do not imply any restrictions 
on the branches. Therefore these expressions are valid in the vibroacoustic near Seld, 
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as well as in the far Aeld (as long as the waves are progressive, i.e. away from the 
source only). This can e.g. prove useful when analysing the near-held behaviour of a 
given point source, where vibrational energy is redistributed from evanescent branches 
in the near held to the propagating branches in the far held. Unfortunately, time has 
not allowed any detailed examination of this phenomenon, but it may be important for 
the industrial application where radiators are placed in the vibroacoustic near held of 
the source. If this is the case, then some surprising effects may occur, as the evanescent 
branches may play a signihcant role in the energy transfer to the radiator. This could 
be part of the explanation why the traditional noise control techniques to reduce noise 
transmission from the valve to the radiator fail in some situations. 

6.1.4.5 Tota l power flow 

The total power how in one direction of propagation can be found as the sum over all 
circumferential modes of the combined structural and huid power hows, 

^ (6.69) 
M = 0 

Is should be noted that in a lossless system, the power how is the same across all cross 
sections. The input power how is therefore the same as the transmitted power how. 
This can be useful if the input power how for some reason is impossible or di@cult 
to quantify, as any quantihcation of e.g. the far held power how then implies the 
quantihcation of the input power how. This is also the case for the individual modal 
power hows, but not for the distributions of power how between branches and between 
media. Fuller (1986) notes that while the total modal power flow remains constant at 
different axial positions, the distribution of power how between the structure and the 
internal huid varies with the axial position. The extent of this redistribution is both 
parameter and frequency dependent, but it has not been signihcant for any of the cases 
investigated in the present thesis. 

6.2 Solution of the dispersion equation 

The vibroacoustic response of the huid-hlled inhnite pipe to various types of point 
input was given by solving the wavenumber integrals in sections 6.1.2 and 6.1.3 by the 
method of residues. This process introduced a summation over the free propagation 
wavenumbers of the coupled system. The solution of the dispersion equation, leading 
to the free wavenumbers needed for the forced response calculation, is discussed in 
detail below. 

The dispersion equation was stated in section 6.1.2 as equation (6.20), 

det(Z,) = 0 
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It is not possible to find the free wavenumbers of a Snid-hlled cylindrical shell analyti-
cally, and instead a mainly numerical solution technique will be employed, as discussed 
in the next subsection. The solutions of the dispersion equation can be divided into 
three different categories: 

# Pure real roots 

# Pure imaginary roots 

# Complex roots. 

The Arst two correspond to the usual type of wave in a lossless medium, where the 
phase and amplitude respectively change with distance; while the last one is a near 
held phenomenon, related to the local defections of the shell in the close vicinity of a 
discontinuity, e.g. a forcing point. It is not caused by the coupling between the Suid 
and the shell, since the in vacuo shell equations exhibit the same behaviour. 

Whereaa the purely imaginary roots represent evanescent wave motion, which propa-
gates no energy along the pipe, the other waves do carry energy along the pipe. In other 
areas of acoustics, complex wavenumbers usually imply a propagating wave which at-
tenuates with distance from the source, i.e. it carries energy, some of which is dissipated 
through damping as it travels. However as the shells in the present thesis are consid-
ered lossless, there can be no energy lost through damping, so another explanation is 
needed for this phenomenon. When the equations for the coupled system are solved, 
the complex roots for the axial wavenumber occur in combinations of 2/3)̂ 6- Ac-
cording to Puller (1980), this corresponds to two pairs of complex roots, where a pair 
of complex roots (±0! -H can be interpreted as one wave propagating and decaying 
in the positive z-direction and another one that appears to propagate in the negative 
z-direction while still decaying in the positive z-direction. When combined with equal 
amplitudes for each wave, the pair represents an attenuated standing wave in the axial 
direction, not propagating any energy. Such pairs of waves are only excited near points 
of discontinuity, where they account for local shell deflections, without any net energy 
propagation along the axial direction. 

It has already been mentioned that an inhnite number of branches exist for each cir-
cumferential mode, corresponding to an infinite number of radial nodal points in the 
Suid along a radius of the shell. At low frequencies, most of these branches have a 
negligible eEect on the vibroacoustic behaviour of the coupled system. During the pa-
rameter study in chapter 7, the effect of excluding these branches from the calculations 
was investigated. When calculating the input power Sow at a point of excitation, all 
branches participate as discussed in the previous section. Leaving out branches there-
fore corresponds to leaving out input power flow, but this effect is purely theoretical. 
It was found in all cases that leaving out branches far from cuton had no effect on the 
vibroacoustic power input to the system, within the numerical resolution of Matlab. 
Therefore all branches having a nondimensional imaginary wavenumber of more than 
102 were kept out of the calculations. In most cases, this corresponds to around three 
imaginary branches being included in the calculations. 
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A word of caution should perhaps be introduced at this point. As the combination of 
a solid shell and a contained huid is a coupled system from a vibroacoustic point of 
view, it is not possible to separate the vibroacoustic response into a structural part 
and a fluid part. Any pressure Auctuations in the Auid will have some corresponding 
vibration in the shell wall and vice versa. Nonetheless, aa will become evident later 
in this thesis, it is very difficult to explain the effect of some parameter appealing to 
a few simplifying concepts. Therefore expressions such as ' the Buid branch' may be 
used, but it should be kept in mind that no clear-cut distinction is really possible. 

6.2.1 Numerical solution technique 

A complete numerical solution of all the equations arising from the nondimensional 
matrix formulation in section 6.1 has been coded in Matlab. Owing to the use of the 
method of residues to evaluate the Euid loaded system response, all calculations are 
based on the free wavenumbers of the coupled system. 

The free wavenumbers are found as roots to the dispersion equation (6.20), but as 
they are quite time-consuming to locate, they are stored and kept in a table for later 
use. This approach is quite slow for the hrst pass compared to e.g. finite element or 
boundary element methods (time measured in hours, using a 600 MHz Athlon equipped 
PC); but for subsequent calculations it is quite fast, using only a few seconds for a modal 
mobility calculation up to the ring frequency with a frequency resolution of 0.001 2̂. 
The numerical results in the present thesis were generated by first calculating the free 
wavenumbers for all the cases to be presented, using a few days of CPU time. Then 
all later calculations reused the free wavenumbers when needed, providing results fast. 

The purely real and imaginary roots are found by a simple stepping technique, where 
pairs of (f^, Kn,;,) are found by setting to the highest nondimensional frequency wanted 
and then making relatively small steps along the relevant axis (real or imaginary 
wavenumber) in order to End the roots of equation (6.20) with a numerical zero-finding 
solution algorithm. With this stepping technique, the Matlab based Newton-solver 
written by Kelley (1994) Ends all real roots of the desired type without too much ef-
fort. Once the free wavenumbers are found at the maximum nondimensional frequency 
of interest, the wavenumbers are traced down through the nondimensional frequencies, 
using extrapolations of the roots already found. This ensures that the roots are found 
using only a few iterations and thus limiting the computational effort. 

In the case of complex solutions, the same solution procedure is used, but here the main 
problem is to provide a reasonable starting guess to End the desired root. The solver 
used is globally convergent and will - if the function is just a little bit well behaved -
always converge to a solution. If the starting guess is too far away from the wanted 
root, however, the chances are that the solution found is different from that wanted. 
A simple method to deal with this is to take advantage of the frequency-dependent 
properties of the Suid loading term. For the lowest desired a starting guess is found 
from the in vacuo solution, i.e. without any Euid loading. Using this guess as input to 
the Newton-solver, the root is found with relative eaae, as the system is not too much 



affected by the presence of a even a heavy internal Huid at low frequencies. Then when 
stepping up in extrapolation of the already established complex roots is used as a 
starting guess. If the steps are kept small enough, then the complex solution is traced 
like the purely real or imaginary ones. 

Numerical problems always occur when one type of solution (e.g. imaginary) changes 
to another (e.g. real, in case of a wave cutting on, as frequency is increased). Using the 
extrapolation technique can lead to spurious solutions, as the Newton-solver converges 
to another branch than the one originally traced. This means that it is difficult to 
trace branches successfully and some jumping around between different branches may 
be the result, calling for a subsequent sorting. 

In special cases, the discontinuities of the fluid loading term in equation (6.7) may trick 
the Newton-solver into a loop, where a Euid loading discontinuity is interpreted as a 
root. Therefore a sorting and conditioning algorithm has been used, testing whether 
the solution from the Newton-solver is truly a root of the dispersion equation, simply 
by putting the solution into the dispersion relation and checking that the result is small 
(e.g. smaller than 10"^°). Because the internal representation of numbers in Matlab 
is only double precision, corresponding to approximately 16 signihcant digits, some of 
the true roots of the dispersion equations may be rejected by the algorithm, as some 
of the equations solved are badly conditioned. While this normally happens only for 
large imaginary wavenumbers, which are far from cuton and thus of limited interest 
in the vibroacoustic far field, these types of error are easily spotted in the dispersion 
plots, as they appear as 'holes' in the branches. 

6.3 Conclusion 

In this chapter, a prediction model of the vibroacoustic response and power Sow has 
been presented. The prediction model is nondimensionalised to reduce the number of 
input groups to a minimum. The influence of some of the input parameters is examined 
in the parameter study presented in the next chapter. The prediction model is validated 
against experimental results in chapter 8 for a light Huid loading case and in chapter 9 
for a heavy Huid loading case. 

The prediction model presented in this chapter includes two different types of excita-
tion: structural point force excitation of the shell wall and acoustic point monopole 
excitation of the contained Buid. As shown in section 4.3.4, the response of the infinite 
Suid-filled pipe to a point monopole cam be interpreted as a Green function. Know-
ing the Green function, it is relatively easy to construct the response functions of the 
Guid-611ed pipe to point dipoles and point quadrupoles as dipole and quadrupole Green 
functions. This is demonstrated in section 4.3.5 for the internal pressure response, but 
it could easily be expanded to the pipe wall response as well. Finally, the formulation 
of the multipole responses as modal displacement amplitudes (as in equation (6.40) for 
the point monopole), would allow predictions of the vibroacoustic power flow from the 
point multipoles. 
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Chap te r 7 

P a r a m e t e r s tudy and investigation 
of shell theories 

The vibroacoustic behaviour of cylindrical shells is quite complicated and the purpose 
of this chapter is to examine the inHuence of some of the parameters that are important 
for the industrial problem. 

As an aid to understanding the dispersion behaviour of Suid-filled cylindrical shells, the 
hrst section of this chapter introduces the limiting cases of the Euid-hlled cylindrical 
shell: namely the in vacuo shell, the hard-walled duct and the pressure-release duct. 
These correspond to no fluid loading, infinitely stiff walls and inhnitely soft walls. 
The next section discusses the eSect of changing some of the modelling parameters: 
the properties of the shell wall material and the interior Auid, and the wall thickness 
ratio A/o. The last section investigates the differences of three different shell theories: 
Donnell-Mushtari, Goldenveizer-Novizhilov and Fliigge. 

7.1 Basic tools for interpretation of results 

In the case of light Huid loading, the cylindrical shell is largely unaffected by the 
presence of any internal or external fluid. The limiting case of the in vacuo cylindrical 
shell can then shed some light on the structural part of the coupled system. Likewise an 
understanding of the acoustic modes of a hard-walled circular duct can be helpful for 
light fluid loading or low frequencies, where the duct appears rigid due to the relatively 
high wall impedance compared with w/)G. The acoustic modes of the pressure-release 
duct can also add to the understanding of the coupled system at certain frequencies, 
where the contribution from the Suid loading term is relatively large, e.g. at the cuton 
frequencies of higher order modes in the coupled system. 
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7.1.1 Solution of t he in vacuo dispersion equa t ion 

In the caae of a shell with neither external nor internal Auid loading (an in vacuo shell), 
the dispersion equation can be solved with relative ease by expansion of the dispersion 
equation (6.20) with the Suid loading term set equal to zero. The explicit solution can 
then expressed in the form 

C'8(/(m6)̂  + C'6(/Cn6)̂  + C'4(Kn(,)̂  + C'2(Kn6)̂  + Go = 0 (^-1) 

where the terms can be found from expanding the determinant of the matrix of 
equation (6.6). In contrast to the dispersion equation (6.20) for a Buid loaded shell, 
equation 7.1 can be solved analytically, as it is an eighth order polynomial with no 
odd orders. Thus, it has eight diSFerent roots for each circumferential mode; for each 
direction of propagation there are four roots, corresponding to four different branches 
in the dispersion plot. 

Re-substitution of the roots of the dispersion equation, back into the equation of 
motion and elimination of one variable by dividing the equations by gives axial 
and tangential amplitude ratios and (defined in equations (6.25) and (6.26)) 
for each particular circumferential mode and eigensolution of the shell characteristic 
equation. The amplitude ratio reveals the propagation characteristics of a particular 
branch, for example whether it is Sexural, extensional, torsional or combinations of 
these. The propagation characteristics for a given branch can vary with frequency, 
such that a branch that is extensional at low frequencies may become Rexural at higher 
frequencies. 

7.1.2 Solution of the duct dispersion equations 

The dispersion relations for both the hard-walled circular duct and the pressure-release 
duct are given by equation (7.2) below: 

= (7.2) 

Here M refers to the circumferential mode in the duct, and the mode transverse wavenum-
bers Knm are the ?72'th successive solution of Jn(K) = 0 in the case of the hard-walled 
duct, and of ]»(/() = 0 in the case of the pressure-release duct. 

7.1.3 Dispersion of in vacuo shell and duc t solutions 

The dispersion curves for an in vacuo steel shell are plotted in 6gure 7.1. Pure real roots 
are plotted using dots ( -); pure imaginary roots are plotted using plus-signs (-t-); and 
complex roots are plotted using crosses ( x ).These symbols will be used throughout 
this chapter, and no special reference will be made to them in the individual hgures. 
It should be noted that the figure is really a folded-out plot of the projections of the 
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Figure 7.1: Dispersion of in vacuo shell and duct solutions, hja = 0.059, n = 0. 
The real part of the wavenumbers are plotted in the upper half of the figure and the 
imaginary wavenumbers are plotted in the lower half. The in vacuo dispersion curves 
are plotted using the following symbols: ( • ) pure real roots ; ( + ) pure imaginary 
roots; and ( x ) complex roots . The hard-walled duct solutions are plotted using 
down-triangles ( V ), and the pressure-release solutions are plotted using up-triangles 
{ A ). 
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dispersion curves on the real and imaginary planes, as sketched at the top of the hgure. 
When plotted this way, a branch crossing the line connecting the real and imaginary 
planes corresponds to cuton of a given wave. 

The in vacuo dispersion curves in hgure 7.1 will be used to compare and interpret the 
Huid-loaded dispersion curves below. It is also useful to show the fluid-mode limiting 
cases: here wave speeds for air and steel are used in equation (7.2). The hard-walled 
duct solutions are plotted using down-triangles ( V ), and the pressure-release solutions 
are plotted using up-triangles ( A ). 

In the dispersion plot there are a number of branches, each related to a different root of 
the dispersion relation for a given In some cases where it is of importance to discuss 
the branches, they have been assigned a number. The numbering of the dispersion 
curves is purely arbitrary. In the present thesis, they are numbered from 6 = 1 starting 
in the upper right corner. 

All dispersion curves in the present thesis are plotted with the symbols and methodol-
ogy of hgure 7.1. 

7.2 Parameter study 

It was shown in section 6.1 that 6 dimensionless input parameters were necessary to 
address the coupled problem of a cylindrical shell with an internal Auid. This leaves 
quite a number of different parameter combinations to be investigated to cover the 
entire parameter space in detail. Instead of trying to cover all parameters evenly, the 
present investigation is concentrated on parameter values important for the industrial 
application. 

Specihcally, the inSuence of fluid loading is investigated by comparing in vacuo shells 
with air and water-hlled shells. The inSuence of the shell material is investigated by 
comparing dispersion curves and point mobility for steel, PVC and rubber shells. The 
geometric properties are investigated by variation of the thickness ratio of the shell. 

All the cases investigated in this section can be found in table 7.1; the material prop-
erties are shown in table 7.2 and the geometric properties are shown in table 7.3. The 
mean radius a is defined to be the distance from the pipe axis to the geometric mid-
point of the shell, o = (Do -I- Di)/4, where Do is the outer diameter of the pipe; is 
the inner diameter of the pipe; and = (Do — Di)/2 is the thickness of the shell. 

7.2.1 Variat ion of shell mater ia l 

As steel pipes are used in the industrial application and the experiments presented 
in part III use PVC pipes and rubber hoses, these materials are compared in this 
section, keeping other parameters constant. The contained fluid is water, and the shell 
geometry (A in table 7.3) corresponds to the experimental setup used in part III. 
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Shell Shell geometry Internal Resulting Ring frequency 
Case no. material from table 7.3 fluid fluid load [kHz] 

1 PVC A Water Heavy 9.25 
2 PVC A None None 9.25 
3 PVC A Air Light 9.25 
4 Steel A Water Intermediate 28.3 
5 Rubber A Water Heavy 5.55 
6 PVC B Water Heavy 9.25 
7 PVC C Water Heavy 9.25 

Table 7.1: Cases investigated in the parameter study. 

Young's modulus Poisson's ratio Density Wave speed (c^ or cy) 
Material [N/m^] [kg/m^] [m/s] 
Steel 2.1 X 10̂ 1 0.30 7800 5439 

PVC 3.8 X 10^ 0.40 1360 1786 

Rubber 1.0 X 10^ 0.45 1100 1068 

Water — — 997 1480 

Air — — 1.2 340 

Table 7.2: Material properties for pipe materials and internal Huids. 

Outer dia. Inner dia. Mean radius Thickness A/a 
Name Do [mm] Di [mm] G [mm] A [mm] 
A. PVC pipe 63.0 59.4 30.60 1.80 0.059 
B. PVC pipe, medium 64.2 58.2 30.60 3.00 0.098 
C. PVC pipe, heavy 68.2 54.2 30.60 7.00 0.228 
D. Rubber hose 79.2 76.0 38.80 1.60 0.041 
E. 1" standard pipe 33.7 27.2 15.23 3.25 0.214 
F. 1" light pipe 33.7 28.5 15.55 2.60 0.167 
G. 1" PVC pipe 31.8 28.6 15.10 1.60 0.106 

Table 7.3: Geometrical properties for relevant pipes of industrial interest. 
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Figure 7.2; Dispersion curves for case 4, water-filled steel shell (same geometry as figure 
7.1). n = 0. Case 4 is plotted with red symbols, and the cyan symbols correspond to 
figure 7.1. 

The steel shell has been investigated by several authors in literature, e.g Fuller and 
Fahy (1982), Pavic (1990) and Feng (1994). To assist any comparison of the present 
thesis with these authors the steel shell is presented in some detail first. Then the three 
materials steel, PVC and rubber are compared. 

7.2.1.1 Water-f i l led steel shell 

The prime material in the industrial application is steel, so the features of the dis-
persion curves will be discussed in detail for this material. The dispersion curves are 
shown using the same format and symbols as for figure 7.1, with the real wavenumber 
component in the upper half of the plot and the imaginary wavenumber component in 
the lower half. 

Dispersion curves are presented below for n = 0, n = 1 and n = 2. 

T h e b r e a t h i n g mode , n = 0. Figure 7.2 shows the dispersion curves of axial 
wavenumber versus nondimensional frequency for the breathing mode, i.e. waves of 
circumferential order n=0. 

• T h e real branches . Only three real branches exist a t low frequencies. The 
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Erst branch is close to a plane Hnid wave in a rigid walled cylindrical duct at low 
frequencies, while the wavenumbers at higher frequencies are larger than the rigid 
duct solution. The second branch is the torsional shell wave, which is completely 
uncoupled from the 6uid and thus identical to the in vacuo torsional wave. The 
third branch is very close to the in vacuo shell extensional wave at low frequencies. 

Some of the effects of Auid loading from the contained Suid can be seen directly 
from a plot of the Auid loading term JF in equation (6.7). The Euid loading 
equation is restated here for convenience: 

r = j„(„) 

Pa/ 

At very low frequencies (f] ^ 0) the Suid loading term is relatively small com-
pared to the very high stiffness of the shell for waves with long axial wavelength, 
and therefore the e%ct on shell waves is quite small; one would expect the Huid-
hlled shell response to be close to that of an in vacuo shell (see branches 6 = 2, 
9 and 10 in hgure 7.2). Similarly at the poles of JF, when Jn(a) —> 0, the fluid 
loading is extremely large and the coupled system response will approach that 
of an acoustic wave in a pressure releaae duct. This effect is not clearly visible 
in figure 7.2 where the stiffness of the steel shell is relatively high also at higher 
frequencies, but some effect can be seen on the cuton of the 6 = 3 branch. 

From 6gure 7.2, it can be seen that a third branch (6 = 3) cuts on at Q % 0.82. 
In a hard-walled duct, this would be the first duct wave (note that the red plus-
signs and the cyan down triangles overlaps at low frequencies near 42), but with 
heavy Suid loading the cuton frequency of the branch is shifted towards the 
Srst pressure release duct wave. Furthermore the 6 = 3 branch changes shortly 
after cuton from a mainly Suid wave to a mainly structural wave, resembling the 
extensional shell wave. The branch that had the characteristics of the extensional 
shell wave at low frequencies (6 = 2), changes near the cuton frequency of the 
6 = 3 branch to have the characteristics of a mainly Huid wave. Near the cuton 
frequency of the 6 = 3 branch, the two branches 6 = 2 and 3 interchanges their 
main characteristics. 

All higher branches cut on as 8uid waves and then quickly change their behaviour 
to that of shell waves, while the previous shell type branch converts to a fluid 
wave. At the higher frequencies, cuton of the modes occurs near rigid walled duct 
cuton frequencies. The behaviour can be explained by considering the coincidence 
of an extensional shell wave and a 8uid wave in a duct with only slightly compliant 
walls. At the point where one branch enters a plateau and the other branch leaves 
it, free motion can exist independently both in the Huid and the shell wall. The 
shell vibrates largely as in vacuo due to the extensional nature of the motion, and 
correspondingly the shell appears rigid to the fluid. However due to the Poisson's 
ratio eEect, there will be some coupling between the shell and Suid motion. As 
the frequency is increased along a plateau to the point of coincidence of free shell 
and Auid waves, the pressure Held 'forced' in the Suid by the shell subsequently 
encounters a region of free fluid propagation, and the system behaviour changes 
to a Suid type wave. Similarly a 'forced' shell wave, driven by the Huid pressure 
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Beld for the next branch, encounters a free propagation region for shell waves at 
the same coincidence point, and its behaviour changes therefore to a shell wave. 

The Auid loading has no effect at all on the torsional branch (6 = 5), as there is 
no radial component of displacement; since the fluid is modelled as inviscid, it 
cannot affect the pure torsional motion of the pipe. 

# T h e imag ina ry branches . At low frequencies the wavenumber solutions are 
almost identical to hard-walled duct modes below cut-off, owing to the rigidity 
of the shell wall. Therefore there are an inhnite number of branches, correspond-
ing to modes with an increasing number of radial nodes. As the frequency is 
increased, the stiSness of the shell in the radial direction becomes smaller and 
the branches fall between the hard-walled and pressure-release solutions for a 
cylindrical duct, as discussed above. 

# The complex branches. The complex wavenumber solutions (6 = 9 and 10) are 
very close at low frequencies to those obtained from an in vacuo shell, owing to the 
low coupling to the Suid, as discussed for the real branches. At zero frequency, the 
two branches have non-zero complex values of the same absolute magnitude, with 
real parts of opposite sign. The real parts of these solutions reduce with increasing 
frequency, and the two complex branches become imaginary at 2̂ % 1.20. 

Typically a Auid-type branch is imaginary at low frequencies, becomes complex 
over a small frequency range near the occurrence of a 'meander', becomes purely 
imaginary near the next 'meander', and eventually cuts on. Likewise a branch 
which is close to the in vacuo shell branch is complex at low frequencies, and pro-
gresses with increasing frequency as a series of complex and imaginary sections. 

The real part of the dispersion plot has a distinct appearance, as three different groups 
of curve slopes are represented in the curves: i) the mainly fluid wave (e.g. 6 = 1, 2 
and 3), ii) the torsional shell wave, where the red and the blue dots overlap exactly 
(6 = 5), and iii) the Sat curve for the mainly extensional shell wave where the blue 
curve is continuous, while the red curves are discontinuous (e.g. 6 = 2, 3, 4 and 6 just 
after cuton). 

The slope of the dispersion curves is related to the group speed of the branch. The slope 
of group i) asymptotically approaches the sound speed of the internal Suid cy. The 
slope of group ii) is the torsional wave speed. The slope of group iii) is the extensional 
wave speed of a circular shell. Curiously, there is a difference of approximately 0.5 % 
between the extensional group speed for a circular shell (deduced from the slope of the 
numerical dispersion curve) and Cf, (the thin-plate extensional group speed) with the 
actual parameters used in the calculation. Apparently, this discrepancy is not reduced 
as [2 is increased, but no plausible explanation has been found. 

The beam mode, M = 1. Figure 7.3 presents the dispersion curves of the Euid-
hlled shell vibrating in the circumferential mode of order M = 1, the beam mode. The 
dispersion curves are similar to those discussed for the breathing mode, apart from a 
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Figure 7.3: Dispersion curves for case 4, water-filled steel shell, n = 1. Case 4 is 
plotted with red symbols, and the cyan symbols correspond to figure 7.1. 

few differences. At low frequencies, there exists only one branch {b = 1), corresponding 
to the beam type shell motion. This wave is acoustically slow, with a purely imaginary 
radial wavenumber. Thus the 'forced' acoustic motion in the contained fluid consists 
of a pressure field decaying away from the shell wall. At % 0.6 the second branch 
cuts on, and this branch corresponds to the lowest n — 1 rigid walled duct wave. At 
a slightly higher frequency a third branch cuts on. This branch is predominantly a 
torsional shell wave and behaves as such until it encounters the next branch (6 = 4), 
where its characteristics change to a fluid-type wave, as for the n = 0 branches. 

As well as the complex branches already demonstrated in the case of the breathing 
mode (6=4 and 5), there appears for the n = 1 mode an additional pair of complex 
branches in the imaginary region near Q = 0.5, linking together the branches 6 = 2 
and 6 = 3 in the evanescent region by some sort of complex transition just below the 
cuton frequency of the second branch. 

Higher o rder modes , n > 1. In figure 7.4, the dispersion curve is shown for the 
same water-filled steel shell with a mode order of n = 2. 

For these waves of higher circumferential modal number (n > 1) the dispersion charac-
teristics are similar to those of the beam mode, except that the fundamental shell type 
wave has a non-zero cuton frequency and the points of coincidence are shifted to higher 
frequencies. For these modes there are two series of plateaux arising from coincidence 
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Figure 7.4; Dispersion curves for case 4, water-filled steel shell, n = 2. Case 4 is 
plotted with red symbols, and the cyan symbols correspond to figure 7.1. 

of torsional and extensional shell waves with duct type waves. 

The cuton of the first n = 2 wave happens at O py 0.03, which is a little more than half 
the frequency of the cuton of the similar in vacuo wave. This is a common feature for 
the cuton frequencies for the fluid loaded shell in comparison with the in vacuo shell. 
As discussed in section 7.2.2, the reason for this is probably that the added mass of the 
water reduces the effective stiffness of the shell wall, leading to a lower cuton frequency. 
It should be noted that the fluid loading does not affect the ring frequency of the shell, 
so the explanation for the lower cuton frequency is not a change in the ring frequency. 

Poin t mobi l i ty The combined effect of the different modal dispersion relations can 
be seen through the point mobility, as calculated for a radial point input force and a 
receiving point on the shell wall in the far field. The shell is excited by a point force 
20 radii (corresponding to 0.61 m) from the receiver point, with no angular separation 
between the two points. In figure 7.5, the magnitude of the radial point mobility is 
shown for a water-filled steel shell excited by a radial point force. 

The radial point mobility relates the radial velocity of the shell wall to a point unit 
input force. A peak in the mobility plot can thus be interpreted as resonant behaviour 
of the shell. All the peaks in the mobility plot are the points of cuton of higher order 
modes. The first peak, at [2 % 0.03, corresponds to the cuton of the n = 2 mode; the 
one at fi ~ 0.1 corresponds to the n = 3 mode. This sequence continues up to fi ~ 0.7 
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Figure 7.5: Point mobility of case 4, water-Elled steel shell, g = 20, = 0. 

where the second propagating M = 2 branch cuts on. The M = 7 mode is the last to 
cut on below the ring frequency, at % 0.8. 

The high mobility, at cuton, of higher order modes, is viewed in some industrial ap-
plications (not the ones relevant to this thesis, though) as an important problem in 
relation to fatigue fractures in pipes. Pipes designed to survive an inhnite number of 
vibrational cycles are seen to fail, due to fatigue fractures that can probably be related 
to cuton of higher order modes. From hgure 7.5 it is evident that if the frequency-
average mobility is used as design limit for fatigue, then a pipe designed to survive an 
inhnite number of cycles with a safety factor of 5 (or a would-be safety factor of 5 if 
the underlying assumptions were correct) would be in danger of failing due to fatigue, 
as the peaks are more than one order of magnitude higher than the average level. 

7.2.1.2 Compar i son of P V C , steel and r u b b e r shells 

The materials investigated in this section are PVC, steel and rubber, and the shell 
geometry corresponds to the experiments in part III with water as the internal Buid. 
This corresponds to case 1, 4 and 5 in table 7.1. 

The steel shell presented in the previous section has a of approximately 3.6 times the 
speed of sound in water, and a density ratio of approximately 0.129. For the PVC 
shell Riled with water the corresponding ratios are approximately 1.20 and 0.74, and for 
the rubber shell the ratios are 0.71 and 0.91 (see table 7.2 on page 74). For the given 
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Figure 7.6: Dispersion curves for case l(red), 4(green) and 5(blue). » = 0. 

geometry the ring frequency for the PVC shell is 9,251 Hz, for the steel shell it is 28,290 
Hz and for the rubber shell it is 5,553 Hz. Another important difference between the 
three materials relates to Poisson's ratio. The low z/ — 0.3 for steel makes the coupling 
between the Suid and the mainly extensional branches in the shell relatively small, 
while the large i/ = 0.45 for rubber makes the coupling in the case of rubber relatively 
large. 

Dispersion plots for M = 0 are shown in hgure 7.6 for the three diSFerent shells. The 
colours are red for the PVC shell, green for the steel shell and blue for the rubber shell. 
The dispersion curves are very similar, considering the large differences in the material 
properties. However, this is not surprising as the nondimensional formulation tends to 
collapse the situations, making comparisons more straightforward. The main difference 
between the curves is the appearance of a Suid wave cut on in the case of the steel shell, 
but not in the other two cases. This is due to one of the shortcomings of the chosen 
form of collapsing the diEerent shells, as the cuton of Auid waves is not related purely to 
the material properties and the thickness ratio of the shells: the cuton of mainly Huid 
waves is dependent on the Helmholtz number, rather than the ring frequency of the 
shell. The dispersion plots highlight what was hinted at by the material parameters: 
the rubber and PVC shells are more similar to each other than to the steel shell. 

The dispersion curves for n, = 1 are plotted the same way in 6gure 7.7. The three shells 
are quite close, but again the steel shell is a bit off the other two. An interesting feature 
is the cuton of two branches of the steel shell at H between 0.5 and 0.7, but only one 
for the each of the other two. Closer examination of hgures 7.3 and 7.7, reveals the 
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Figure 7.9: Point mobility for case l(red), 4(green) and 5(blue). g = 20, = 0. 

cuton of a mainly Anid wave in the steel shell, at approximately the same frequency as 
the cuton of a mainly shell wave. 

Figure 7.8 shows dispersion curves for n = 2. The main difference from the dispersion 
curves for n, = 0 and M = 1 is the non-zero cuton frequency of the first propagating 
branch. Again the difference between the steel shell and the other two is highlighted, as 
the hrst nondimensional cuton frequency of the steel shell (at H = 0.03) is signihcantly 
higher than the other two. The branch cutting on is a mainly shell wave, so the cuton 
frequency is expected to be largely unaffected by the Helmholtz number. Instead the 
difference seems to be caused by the Buid loading, as a light Suid loading results in 
a relatively high cuton frequency (very close to that of an in vacuo shell, as seen in 
section 7.2.2), while a heavy Euid loading results in a relatively low cuton frequency. 
The water-filled steel shell in question can thus be seen as some sort of intermediate 
Suid loading case, neither heavy nor light. This is discussed in more detail in chapter 
11 of part IV. 

The point mobility for the 3 different wall materials is plotted in figure 7.9 the same 
way as in Agure 7.5. Again there are close similarities between the PVC and rubber 
shells, while the steel shell has a signihcantly lower mobility. The peaks from the cuton 
of higher order modes are a prominent feature for all three shells at low frequencies, but 
at higher frequencies the rubber shell looks different without any distinct peaks. This is 
certainly not due to any damping, as the modelling is lossless, but no good explanation 
for this phenomenon has been found. Somehow the result seems intuitively correct -
perhaps because of the 'feel' when tapping rubber (but this is probably due to the high 
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Figure 7.10: Point mobility for case l(red), 4(green) and 5(blue). g = 20, = 0. 

damping of the material). 

Just to illustrate how differently the shells really behave in 'real' life, another plot of 
the mobility is shown in hgure 7.10. The only difference between this plot and the 
previous one is the use of a dimensional frequency scale. 

The main conclusion, from this investigation of the influence of the shell material, is 
that the choice of shell material - at least within the parameters investigated - makes 
little difference to the dispersion curves and the point radial mobility in the far held, 
when the results are presented in the dimensionless form used here. The two exceptions 
are: the cuton frequency of predominantly fluid branches is mainly determined by the 
Helmholtz number, not the ring frequency of the shell; and the cuton frequencies of 
the higher order modes are strongly dependent on the Huid loading. 

7.2.2 Variation of internal and external fluids 

The analytical model review in chapter 5 included the effect of the external Suid load-
ing, but this was later discarded in the formulation of the nondimensional prediction 
model in chapter 6. The justification given waa that the external fluid in the industrial 
application was only air, and with a heavy fluid loading inside the shell the inSuence of 
the light external Suid loading was negligible. The validity of this argument is assessed 
in this section. 



The previous section used a number of examples to show that the heavy fluid loading 
has an important inHuence on the response of the coupled system, but it did not provide 
the limits of when a fluid loading becomes signihcant in terms of choice of shell material 
- apparently a density factor of nearly 8 for the wall material along with a longitudinal 
wave speed factor of more than 5 did not have any major influence, although some 
differences related to the fluid loading could be seen. To examine the other extreme, 
namely light Huid loading, air is included in the investigation. So as not to complicate 
matters too much, the PVC shell from the experiments of part III is used, although as 
shown in the previous section the choice of shell material is not a major factor anyway. 
With this shell, the density ratio py/pa for the heavy fluid loaded case is 0.74, compared 
with 8.8 -10"'^ for the lightly Suid loaded case. 

7.2.2.1 Effect of ex te rna l fluid loading 

Evidently even air outside a fluid-filled cylindrical shell can be important in some cases, 
for example where where the shell mass per unit area is so small, that the added 
mass eEect due to the movement of air becomes an important factor. These cases 
are however assumed to be extreme in the light of the industrial application and the 
frequency range of interest. Air outside the shell is therefore assumed to represent a 
light external fluid loading of the shell. 

This light external Enid loading can be combined with three different internal loading 
cases: vacuum, light and heavy Euid loading. 

From the full Suid loading equation (5.15), 

VZ — 7rTTf <"7̂  \ 
KKiK") 

it can be seen that both the internal and the external Suid loading are proportional 
(amongst other factors) to the fluid densities. If the internal and external Suid is 
assumed to be the same, then the relative sizes of the Suid loadings is determined by the 
ratios of the differentiated Bessel and Hankel functions in equation (5.15). In the case 
of light internal fluid loading, the total Suid loading (being the sum of the light external 
and internal fluid loading) is relatively small when included in the equations of motion 
and thus the influence on the calculated wavenumbers is also small. Singularities of the 
Suid loading equation (5.15) could give a significant Suid loading contribution, even 
when the densities involved are small, but this has not been observed in the parameter 
study, probably because it happens only in an extremely narrow frequency band. 

When the internal Euid loading is heavy and the external Suid loading is light, then 
the error made by leaving out the external inSuence is relatively small, as the Euid 
loading calculated using equation (5.15) in most cases is completely dominated by the 
internal Suid loading. The sole exception is when the term related to the internal Huid 
loading is small, then the relative effect of the external Euid loading term might be of 
the same magnitude, but the total Buid loading will be the sum of two small terms, 
and thus insignihcant. 
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The conclusion is, if the external 8uid loading is light, the coupled system will be largely 
unaffected, no matter what the internal Huid loading. The error made by leaving out 
light external huid loading, and assuming an external vacuum, is therefore very small. 

7.2.2.2 Var ia t ion of in te rna l fluid 

To compare the effect of the internal Auid loading, the PVC shell with vacuum on the 
outside is examined using three different internal load cases: vacuum (no Buid loading), 
air (light Euid loading) and water (heavy Buid loading). This corresponds to cases 3, 
2 and 1 in table 7.1. 

Figure 7.11 shows the dispersion curves for n = 0. The red curve corresponds to the 
PVC shell used in the experiments in part III Ailed with water (i.e. heavy Suid loaded), 
the green curve corresponds to the same shell hlled with air (i.e. light Buid loaded) 
while the blue curve is the same shell in vacuo (i.e. no Suid loading). 

It is obvious that some of the dispersion curves of the light fluid loaded shell are very 
close to those of the in vacuo shell, as they collapse almost perfectly. These curves 
represent the mainly shell modes that are almost una&cted by the presence of the 
light Guid loading. There is a small discrepancy at D % 0.9 where coincidence occurs 
between a mainly shell branch and a mainly Huid branch. The 'lonely' green curves 
correspond closely to the hard-walled duct modes. 

At low frequencies, the dispersion curves for the light and heavy fluid loading collapse 
exactly. Apparently, the inSuence of the Euid loading is small up to fZ % 0.05 where the 
curves start to become separated. The larger wavenumbers of the heavy fluid loaded 
case correspond to lower phase velocity, so the eEect of the contained Suid is to slow 
down wave propagation in the shell. This is probably also the case in the light fluid 
loaded case, but the effect is too small to be noticed on the scale of the plots. 

The vibrational near field related to the complex branches in the dispersion plot is 
apparently very much affected by the heavy fluid load. In section 6.2, it was noted the 
complex wavenumbers were related to local shell deformations near points of disconti-
nuity. In the case of heavy Huid loading the added mass eSect of the fluid is relatively 
larger, thus making the local shell deformations happen over a wider frequency range. 

The 6gures for M = 1 and n = 2, figure 7.12 and hgure 7.13, show the same phenomena. 
The nondimensional cuton frequency of the lowest fluid wave in hgure 7.12 is different 
for the light and heavy Euid loaded case. As discussed in section 7.2.2, this is because 
the cuton of mainly fluid waves is more related to the Helmholtz number than to the 
ring frequency of the shell. 

The point mobility of the shell wall is plotted in hgure 7.14. On comparing the three 
curves, the conclusion from the dispersion curves is confirmed: there are virtually no 
differences between the mobility of the in vacuo shell and the light Euid loaded shell 
at low to intermediate frequencies. Small discrepancies are noticeable above O ;% 0̂̂ 9. 
There are some differences between the light and the heavy fluid loaded cases: the peaks 
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Figure 7.11: Dispersion curves for case l(red), 2(green) and 3(blue). n = O. 
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related to cutoa of higher order modes appears at lower frequencies for the heavy fluid 
loaded shell; and the general level of mobility is lower for the heavy Euid loaded shell. 
The lower level of mobility was expected, as the added mass effect from the heavy Suid 
loaded case reduces the dynamic response of the shell wall. 

7.2.3 Variat ion of shell geomet ry 

This part of the parameter study investigates the effect of variations of the shell ge-
ometry. In the nondimensional formulation, the geometry of the shell is dependent on 
one parameter, namely the thickness ratio A/a. The thickness ratio can be changed 
two diSFerent ways - by altering A and by altering a. For the in vacuo case, this has the 
same eSFect, but in the case of Huid loading the effect is different, as the cuton frequency 
of the predominantly fluid waves is mainly related to the Helmholtz number. To avoid 
confusion from the cuton of Suid waves, a is kept constant in this investigation, and 
the thickness ratio is changed through the thickness of the shell A. 

In the present investigation, the shell material is chosen to be PVC, the contained fluid 
is water, and the mean radius o is the same as for the experiments in part III. Three 
diH'erent cases are investigated: namely, A/a = 0.059; A/o = 0.1; and /i/a=0.25. This 
correspond to cases 1, 6 and 7 in table 7.1. 

The main shell theory used in the present thesis (the Fliigge shell theory) is a thin shell 
theory, i.e. the influence of thickness variations of the shell wall, due to vibrations, is not 
modelled directly. The Fliigge theory and two other thin shell theories are investigated 
in section 7.3, but as they are all thin shell theories they assume that the thickness 
ratio is small. The thin shell theories include the effect of hnite thickness shells through 
correction terms related to A/a, in the form of = -\/A^/12a^. All thin shell theories 
perform better the smaller the The upper limit on A/o for the shell theory to remain 
valid is parameter dependent. From the discussions in Leissa (1973), it is assumed that 
the thickest case in this investigation is close to the maximum allowable thickness, with 
A/a = 0.25. 

The dispersion curves for M = 0 are shown in Sgure 7.15. At Grst glance the three cases 
seem relatively different, but there are signiScant similarities. The differences between 
the cases are related to the complex branches and to the propagating predominantly 
Euid waves. 

For the real wavenumbers the dispersion curves for the predominantly extensional and 
torsional shell branches collapse completely. The wave speeds of these branches are 
unaffected by changes of the wall thickness. 

For the imaginary wavenumbers, the curves tend to collapse owing to the large relative 
stiEness of the shell at low frequencies already discussed in section 7.2.2. The apparent 
stiffness of the shell as seen from the fluid is very high at low frequencies even for the 
thinnest shell, and the added stiShess from the thicker has no significant inHuence. As 
the frequency is increased, the relative stiffness decreases most rapidly for the thinnest 
shell, slower for the thicker shell, and slowest of all for the thickest shell. The large 
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Figure 7.15: Dispersion curves for case l(red), 6(green) and 7(blue). n = 0. 

jiMimimiMiiM' 

^ >X< 
' I I I I I I I H - -

0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 

Nondimensioneil frequency 

Figure 7.16: Dispersion curves for case l(red), 6(green) and 7(blue). M = 1. 
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Figure 7.17: Dispersion curves for case l(red), 6(green) and 7(blue). M = 2. 

relative stiGhess is also the reason for the propagating predominantly Euid wave (6 = 1). 
At very low frequencies, the curves for the three cases overlap, but aa the frequency is 
increased the same e%ct happens as for the imaginary wavenumbers. From the slope 
of the dispersion curves, it can be concluded that the group speed of the predominantly 
Auid wave is increased when the thickness of the pipe wall is increased. 

At low frequencies, the complex branches behave largely as in vacuo. The small black 
crosses on hgure 7.15 represent the in vacuo dispersion relation for low frequencies. At 
higher frequencies the trends are very similar for the three cases, and no differences 
can be seen. 

Figures 7.16 and 7.17 show the dispersion curves for the M — 1 and M = 2 modes. The 
dispersion curves for the bending mode show the same picture as the curves for the 
axisymmetric mode. Figure 7.17 shows something interesting, as the cuton of the a = 2 
mode is happening at a significantly higher nondimensional frequency for case 7 than 
for case 1 and 6. The small black symbols represent a part of the in vacuo dispersion 
curves for case 7. Comparing these with the blue curves show that the cuton frequency 
for the fluid loaded case is signi6cantly lower. In section 7.2.1.1 it was hinted that the 
cuton frequency of the M = 2 could be used to classify the Suid loading of the shell. If 
this is correct, the fluid loading is still heavy even with the large A/a for case 7. 

The point mobilities are plotted in figure 7.18. The larger the A/a ratio, the lower the 
mobility. This is probably a mass effect, as discussed for the heavy fluid loading. It 
can be seen that the number of modes cutting on below the ring frequency is reduced 
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Figure 7.18: Point mobility for case l(red), 6(green) and 7(bliie). g = 20, = 0. 

when A/o is increased. This behaviour is predicted for the in vacuo shell by Cremer 
et al. (1988), but more modes are cutting on for the heavy fluid loaded shell than 
are predicted for the in vacuo case. This is not surprising, as the cuton frequency for 
higher order modes is reduced signihcantly with a heavy fluid load, and more modes 
will cut on below a specified frequency. 

The main conclusion, from this part of the parameter study, is that the thickness ratio 
of the shell has some effect; but for the parameters investigated, the fluid loading 
remains heavy even for very large thickness ratios (up to /i/a = 0.25). However, this 
conclusion may be wrong, as it is based on results from a shell theory that is taken to 
the limit. 

7.2.4 Conclusion 

The main conclusion to be drawn from this parameter study is that in the parameter 
space of industrial interest, the internal Auid loading is the most important factor 
causing departures from a collapse on the parameters chosen. 

The cuton frequencies of the higher order coupled branches are largely affected by the 
Suid loading. In the case of light fluid loading case the cuton of the mainly shell waves 
is close to the cuton frequency of the in vacuo shell, while the cuton of the mainly 
Euid waves is close to the hard-walled duct. In the case of a heavy fluid loading, the 
cuton frequencies are signihcantly reduced for all waves. While the real reason for 
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this is hidden in the equations, it seems intuitively correct that a heavy Euid loading 
reduces the elective stiffness of the shell wall. A lower stiffness of the shell would 
reduce the effective ring frequency /ring.efr, resulting in lower absolute frequencies for 
the same dimensionless frequency [2. In a plot with a nondimensional frequency axis 
based on the ring frequency dehned by the wall material alone (the 'normal' /ring), the 
nondimensional cuton frequency of a Buid loaded wave would thus appear at a lower 
nondimensional frequency. 

7.3 Comparison of different shell theories 

An important part of the numerical modelling of shell vibrations is the choice of shell 
theory. A large number of shell theories exist, see e.g. Leissa (1973), each claiming 
to have some unique features. Different theories are used for different papers, often 
without any discussion of the choice of shell theory. No source so far has shown any of 
the theories to be clearly superior to the others. While it is not possible to promote one 
theory aa superior to the others, it is possible to show the shortcomings of some of the 
theories. In this section the theories of Donnell-Mushtari, Fliigge and Goldenveizer-
Novozhilov are compared through their dispersion curves and predicted mobility for an 
in vacuo shell, corresponding to case 3 in table 7.1. 

The three shell theories investigated in this chapter are all eighth-order thin shell the-
ories. Leissa (1973) discusses the differences between the three shell theories in great 
detail, but in essence the differences are related to the different simpli^ing assump-
tions made to achieve the 6nal equations of motion. For all the thin shell theories, 
a common assumption is the neglect of through-thickness displacement variations. A 
main difference between the thin shell theories is how they implement correction terms 
to compensate for the hnite thickness of the shell wall. 

7.3.1 Donnell-Mushtari theory 

The Donnell-Mushtari shell theory is probably the simplest of the thin shell theories 
presented by Leissa (1973). The shortcomings of the Donnell-Mushtari shell theory 
are well known, see e.g. Hoff (1955), but nonetheless it is still widely used, probably 
mainly due to its relative simplicity. Some key papers dealing with the forced response 
of cylindrical shells use the Donnell-Mushtari shell theory, e.g. Fuller and Fahy (1982), 
Fuller (1984) and Pavic (1992). 

The Donnell-Mushtari theory is used as the basic building block in the reference work 
by Leissa (1973). Any of the more complicated shell theories in Leissa's work can be 
described as the sum of two matrices, i.e. 

Z/ = -Lo-M + (^-3) 

where Z,D-M is the Z,-matrix according to the Donnell-Mushtari theory; Ẑ Mod is the 
'modi^ing' matrix; and is the nondimensional thickness parameter defined by in 
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the comments to equation (5.1). Thus each of the more complicated shell theories 
diSers from the Donnell-Mushtari theory by a matrix-operator which is multiplied by 
a constant that tends to zero in the lower limit of the /i/a ratio. 

The Donnell-Mushtari theory presented here is limited to constant thickness, thin-
walled shells and it excludes the effects of initial stress, anisotropy, nonhomogeneity, 
shear deformation, rotary inertia, large deflections and surrounding media. Under these 
assumptions the Donnell-Mushtari operator is 

L D-M 

-̂ 11 -Z;l2 -̂ 13 
1,21 ^22 ^23 
^31 ^32 ^33 

(7.4) 

where the elements are 

1 2 
Li\ = —0^ 4- — (1 — Li2 — — (1 + Û TIK Zyi3 = UK 

^21 — -̂ 12 

Lai = —-̂ 13 

Z,22 — — - | - —(1 — Z/)/(̂  1,23 = M 

Z,32 — —Z, 2 3 -Zv33 = -I- 1 -k (/{^ -I- n^)^ - ^ 

7.3.2 Goldenveizer-Novozhilov theory 

The main diEerences on going from the Donnell-Mushtari theory to the Goldenveizer-
Novozhilov theory can be summarised according to Leissa (1973) as 

# The stress-displacement relation of the Goldenveizer-Novozhilov theory includes 
the influence of shell curvature in a fully consistent manner, whereas the Donnell-
Mushtari theory neglects terms involving the tangential displacements. 

# Terms in the force and moment resultants are examined in the Goldenveizer-
Novozhilov theory and a careful analysis is made not to reject any signihcant 
terms, no matter their order (see e.g. Niordson (1985)), while the Donnell-
Mushtari theory rejects all terms related to curvature of the shell, except for the 
i,33 term where a second order term in ,0 is retained. This way the Goldenveizer-
Novozhilov theory avoids inconsistencies in the force and moment resultants that 
are present in the other two shell theories presented here. 

The _L-matrix of the Goldenveizer-Novozhilov shell theory can be written as 

Lqn — 
^11 + 
-L21 

11 

Z,31 + 

2/12 
Z,22 
^̂ 32 

rGN 
-̂ 11 
rGN 
-̂ 11 

Z/13 
Z/23 
Z,33 

rGN 
-^11 

11 

(7.5) 
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where the elements without superscripts are the ones from the Donnell-Mushtari for-
mulation, while the superscripted elements are 

= = Lfr=0 Lfr^-Lrs Lg" = 0 

7.3.3 Fliigge theory 

The differences between the Fliigge theory and the other two theories relate to both 
the stress-displacement relation and the force and moment resultants. The stress-
displacement relation used in the Fliigge theory is similar to that in the Goldenveizer-
Novozhilov theory, but the force and moment resultants are different from both the 
previous theories. Leissa (1973) remarks that integration of the unsimplihed force and 
moment resultants over the thickness of the shell is extremely cumbersome, and this 
integration is simplihed in the Fliigge theory, but in a slightly inconsistent manner 
cleverly avoided in the Goldenveizer-Novozhilov shell theory. 

The full Zz-matrix for the Fliigge theory is shown in equation (6.6), but using the same 
form as for equation (7.5), the correction terms are 

-̂ 12 = 0 

-̂ 13 = — ̂ (1 — = 0 

Z,ri = -Z,13 ^32 = -^23 

7.3.4 Comparison of computed dispersion relations and mo-
bility 

Figure 7.19 shows the M = 0 dispersion curves for an in vacuo PVC shell (corresponding 
to case 3 in table 7.1) calculated using the three different shell theories. The differences 
are clearly very small indeed, aa the curves are indistinguishable from each other. 

Figure 7.20 shows the dispersion curves for M = 1. In this figure there is an interesting 
difference at very low frequencies, as a few red crosses can be seen at very low frequency 
where there only are green and blue dots (diSicult to see in figure 7.20 at the scale 
plotted, but a zoom is shown in figure 7.21). This means tha t the Donnell-Mushtari 
shell theory predicts a complex wave where the other two theories predict a propagating 
wave. At very low frequency there is no red propagating wave, as the first propagating 
wave cuts on at % 0.01. This is clearly an unphysical behaviour, as beam bending 
can happen at all frequencies. The cuton of the bending mode persists when fluid 
loading is included (not shown here). 
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Figure 7.19: Dispersion curves for case 3, M = 0. The shell theories of the curves are 
Donnell(red), Fliigge (green) and Goldenveizer(blue). 
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Figure 7.20: Dispersion curves for case 3, M = 1. The shell theories of the curves are 
Donnell(red), Fliigge (green) and Goldenveizer(blue). 
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Figure 7.21: Detail of figure 7.20. 

The reason for the cuton of the M = 1 mode is the exclusion of correction terms in the 
Donnell-Mushtari theory for all but the (3,3)-term in equation (7.4). The correction 
terms involving are very small, but in beam bending for long shells at low frequencies, 
the main terms largely cancel, leaving the correction terms to dominate. The problem 
with the Donnell-Mushtari theory arises because the correction terms are inconsistently 
implemented, since they are included only in the 1,3,3 term, and left out from the rest of 
the matrix. The two shell theories that include more correction terms have dispersion 
curves that are very close indeed. Even for small A/a-ratios, the effects of the correction 
terms are signihcant at low frequencies where the free wavenumbers are inherently 
small, or near cuton of higher order modes where the cutting on wavenumber is close 
to zero. Where the wavenumbers are large, the terms of I/o-M tend to dominate. 

The dispersion curves for M = 2 are seen in hgure 7.22. The predicted cuton frequency 
of the n = 2 mode is signihcantly higher for the Donnell-Mushtari shell theory than 
for the other two. Apart from this, the dispersion curves are very close indeed. 

In hgure 7.23 the point mobility is plotted. In this figure, the Donnell-Mushtari results 
are again different from the other two shell theories. The cuton of the bending mode 
is represented in the red curve as a peak at very low frequency. The other two theories 
produce virtually identical mobility up to % 0.6 and signiAcant diEerences occur only 
near the ring frequency. Noting that the peaks at high frequencies are due to cuton 
of higher order modes, this observation agrees with the paper of Hoff (1955), that 
discusses the precision of the Donnell-Mushtari equations; he predicts errors up to 11 
percent in comparison with the Donnell and Fliigge equations. HoSF (1955) states that 
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Figure 7.22: Dispersion curves for case 3, M = 2. The shell theories of the curves are 
Donnell(red), Fliigge(green) and Goldenveizer(blue). 
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Figure 7.23: Point mobility for case 3. g = 20, ^ = 0. The shell theories of the curves 
are Donnell(red), Fliigge (green) and Goldenveizer(blue). 



the errors in the Donnell-Mnshtari shell theory tend to become smaller as the frequency 
and circumferential mode order becomes larger. This statement cannot be confirmed 
by the present investigation because of its limited frequency range (0 < < 1). 

7.3.5 Conclusion 

Three different thin shell theories are compared: Donnell-Mushtari, Goldenveizer-
Novozhilov and Fliigge. The Donnell-Mushtari theory is the simplest; it leaves out 
some correction terms to allow for finite thickness of the shell. In the limit of vanishing 
shell thickness these correction terms are of no importance, except for the bending 
mode (n, = 1) at low frequencies, where the correction terms related to hnite shell 
thickness dominate, leaving the Donnell-Mushtari teory with an unphysical cuton of 
the bending mode. 

The other two shell theories produce very similar results, except for a few differences 
near the ring frequency of the shell. As the frequency range of interest for the present 
thesis is rather low, extending only up to [] = 0.15, either of the two theories may be 
used. It cannot be concluded that the Fliigge theory is the best of the three, but it 
can be concluded that the Donnell-Mushtari theory is not well suited for the industrial 
application, with its low frequencies and low circumferential mode orders. Either of 
the two other theories could have been used and the Fliigge theory was chosen. 

7.4 Summary 

A parameter study of shell materials, internal and external Suids and shell geometry 
has been conducted in this chapter. To limit the complexity of the study the parame-
ters of main industrial interest were investigated through dispersion curves and point 
mobilities. It was concluded that the internal fluid loading is the most important factor 
causing departures from a collapse on the shell parameters chosen. SigniScant changes 
in both the dispersion curves and mobilities are also related to the Suid loading of 
the shell. The principal e%cts of Euid loading observed in the parameter study can 
by and large be related to the properties of the fluid loading term dehned in equation 
(6.7). This equation predicts that increased shell thickness, decreased shell radius or 
decreased density ratio, py/pa, will all decrease the e%ct of the contained Suid and thus 
decrease the coupling of the shell and Suid behaviour. All the conclusions presented 
in this chapter largely conhrm this simple interpretation, although the e%ct may be 
small. 

As the shell theory is a key part of the prediction model in chapter 6, a study was 
made to compare three di%rent shell theories. The conclusion of this study was that 
the simplest of them is not well suited for the frequency range of interest to the present 
thesis, while the other two (including the one used in the parameter study) produce 
very similar results, that also seem plausible from a physical point of view. 
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Chapte r 8 

Power flow measurements : pipe 
wi th light fluid loading 

The experiments presented in this chapter are all obtained from measurements on a 
PVC pipe with air inside and outside. As the external diameter of the pipe is 63 mm 
and the wall thickness 1.8 mm, the resulting Suid loading is light. The excitation in the 
measurements is provided by a radial force, and the pipe response is measured using an 
accelerometer that is moved around the circumference to provide modal measurements 
of accelerance. 

As discussed in the parameter study in chapter 7, light Suid loading has only a marginal 
inSuence on the vibration of a pipe. The power flow predictions presented later in this 
chapter show that the structure-borne power Eow in the pipe wall is approximately 2 
orders of magnitude times greater than the Suid-borne power Sow, when the pipe is 
excited by a radial point force. All the results regarding the shell vibrational response 
of the pipe wall in this chapter therefore also apply to the in vacuo shell. 

The hrst section introduces the experimental setup used, while the second presents com-
parisons between the predicted and measured accelerance. The third section presents 
two power Sow measurement principles to quantify the power How, and shows a com-
parison between predicted and measured power Sow for a light fluid loaded pipe. The 
fourth section assesses the measurement principle, and the hnal section summarises the 
main conclusions. 

8.1 Experimental setup 

The light Suid loaded experiments are conducted on a suspended 5 m PVC pipe with 
air both inside and outside, running through anechoic terminations at either end, as 
seen in hgure 8.1. The excitation of the pipe is provided by an externally applied radial 
point force at the axial midpoint of the pipe. The test pipe has an outer diameter of 
63 mm and a wall thickness of 1.8 mm (corresponding to case 3 in table 7.1), so the 
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Figure 8.1: Picture of experimental setup. 

length of pipe on either side of the excitation point corresponds to approximately 82 
radii. All axial distances and circumferential angles were measured from the point of 
excitation. 

A key feature of the test rig is the anechoic terminations at either end of the pipe. The 
choice of instrumentation and the subsequent postprocessing of the measurements in 
the experiments relies on the assumption that all vibroacoustic power flow is away from 
the point of excitation. To accomplish this on a finite pipe, anechoic terminations are 
used. These anechoic terminations attenuate any reflected waves from the end of the 
pipe, resulting in a heavily attenuated standing wave pattern between the two anechoic 
terminations. The anechoic termination is discussed in more detail in section 8.4.1. 

The pipe is suspended horizontally by rubber strings having a very low natural fre-
quency (approximately 1 Hz pendulum mode and approximately 10 Hz in stretching). 
The actual excitation of the pipe is at significantly higher frequencies (reliable mea-
surements are expected above approximately 100 Hz). The vibration of the pipe is 
thus largely unafi'ected by the presence of the strings, as the forced excitation is in 
the mass controlled region of resonance in the rubber strings. Removing some of the 
strings confirmed that all the results obtained were independent of the suspension. 

The excitation is provided by a random signal from the analyser through a power 
amplifier to a miniature shaker connected to the pipe through a thin (0.8 mm) sting. 
At the relatively low frequencies of interest, the corresponding structural and fluid 
wavelengths are relatively long compared to the size of the sting connection, and the 
excitation therefore behaves to a large extent like a radial point force. The excitation 
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Figure 8.2: Sketch of the experimental setup used for the experiments on a pipe with 
light fluid loading. 

1. B&K Type 3560, PULSE Multi-analyzer and signal generator 

2. B&K Type 2706, Power amplifier 

3. B&K Type 4810, Mini-shaker 

4. B&K Type 8203, Force transducer (3.6 pC/N, 1.1 g) 

5. B&K Type 4374, Miniature accelerometer (0.141 pC/m 0.65 g) 

6. B&K Type 4507, Deltatron accelerometer (10 mV/m s~^, 4.8 g) 

7. B&K Type 2646, Deltatron charge amplifier (ImV/pC) 

8. PVC pipe (L=5 m, Do=63 mm, h—1.8 mm) 

9. Anechoic termination 

Table 8.1: Instrumentation used in the experiments with light fluid loading. 
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is discussed in more detail in section 8.4.3. The radial input force from the shaker is 
measured using a lightweight force transducer (mass approx. 1.1 g). The acceleration 
of the point of excitation is measured by a lightweight accelerometer (mass 0.65 g). 
The power input from the radial force can be deduced from these two measurements, 
as discussed in section 8.3.1.1. The point response of the pipe wall at different axial 
and circumferential positions is measured by a lightweight accelerometer (mass 0.65 g). 
The modal response of the pipe is deduced from accelerometer measurements, using 
the decomposition technique discussed in section 8.4.4. 

The experimental setup is sketched in hgure 8.2 and the instrumentation used is listed 
in table 8.1. 

8.2 Accelerance for pipe excited by radial point 
force 

Figures 8.3-8.6 show the measured and predicted modal accelerances for the light Huid 
loaded case for M = 0 to 3. All the hgures are made the same way: Measurements are 
in red colour and predictions are in green. The measurements are at positions 9, 450 
and 750 mm from the point of excitation, corresponding to nondimensional positions 
a = 0.29, 14.7 and 25.1. The position closest to the point of excitation is in the 
vibroacoustic near held, while the other two are in the far held. The near held position 
is presented with a solid line, the mid position with a dashed line and the farthest with 
a dash-dot line. 

To make the comparison between measured and predicted values as meaningful as 
possible, some htting of the material properties has been done. A textbook value of the 
Young's modulus for PVC is 3,000-4,000 MPa (Vink 1995) with a general Poisson's ratio 
for hard plastic around 0.4. While the Poisson's ratio is retained, the Young's modulus 
used in the prediction model has been htted to the experiments, so the predicted and 
experimental cuton frequency of the M = 2 circumferential mode is the same. The 
Young's modulus used in the predictions is 7̂ = 3,800 MPa. 

The figures in this section all show the radial accelerance, which is the radial accelera-
tion response of the pipe when excited by unit radial input force. When measuring the 
accelerance on the B&K analyser, the f f i estimator is used, with the radial excitation 
force as the input signal and the acceleration from the accelerometer as the output 
signal. While the choice of operator is arguable, see e.g. Fahy and Walker (1998) 
chapter 6, there is very little difference when using or ^3- The measured modal ac-
celerance is decomposed from 12 measurement points around the circumference. There 
is no visual di&rence when using 24 points for the decomposition. 

General comments. A common feature of all measurements is that the agreement 
between the measurement and prediction improves as the measurement position is 
moved towards the point of excitation. There are probably three reasons for this: a 
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Figure 8.3: Modal accelerance for a pipe with light Huid loading excited by a radial 
point force, ?% = 0. The predicted response is green and the measured red; the solid line 
corresponds to ^ = 0.29, the dashed line to g = 14.7 and the dash-dot line to 5 = 25.1. 
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Figure 8.4: Modal accelerance for a pipe with light Suid loading excited by a radial 
point force, M = 1. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the dashed line to g = 14.7 and the dash-dot line to 5 = 25.1. 
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Figure 8.5: Modal accelerance for a pipe with light Suid loading excited by a radial 
point force, n = 2. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the dashed line to s = 14.7 and the dash-dot line to g = 25.1. 
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Figure 8.6: Modal accelerance for a pipe with light fluid loading excited by a radial 
point force, M = 3. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the dashed line to a = 14.7 and the dash-dot line to g = 25.1. 
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near 6eld e&ct; a distance effect related to the scattering of the structural vibration 
by imperfections in the pipe; and a distance effect related to the internal damping of 
the pipe material. 

The near held response of the pipe includes effects from the evanescent and complex 
branches. These branches tends to broaden the peaks related to cuton of higher order 
modes, providing a relatively large accelerance response over a wide frequency range. 

The PVC pipe used in the experiments is industrial grade and imperfections are visible 
to the naked eye, as some weld lines are faintly visible on the surface of the pipe, prob-
ably due to the production process. This suggests the pipe wall is not homogeneous. 
Measurements of the pipe wall thickness A and mean radius a show variations up to 10 
% around the circumference of the pipe. Neither of these imperfections are modelled in 
the prediction model and their eSects are therefore not incorporated in the predicted 
response. The longer a wave travels in the pipe, the larger is the accumulated effect 
of the scattering of vibrational energy by the imperfections, and the larger is the dif-
ference between the predicted and the measured response. The effect of the scattering 
is expected to be larger at higher frequencies, as the relative sizes of the imperfections 
become larger compared to the wavelength of the vibrational waves in the pipe. 

The loss factor of PVC was measured to be approximately 3 %, using the half power 
bandwidth method, see e.g. Norton (1989). A given distance away from the point of 
excitation represents fewer wavelengths in the material for low frequency vibrations 
than for high frequency vibrations. As the loss factor is related to the proportion of 
vibrational energy lost per cycle, the high frequency response at a given measurement 
position is attenuated more than the low frequency response. This is consistent with 
figures 8.3-8.6 where the measured high frequency accelerance at g = 25.1 is smaller 
than at s = 14.9. 

All the modes with small accelerance at low frequencies (i.e. all modes but the n = 1 
mode) seem to have a noise Boor of approximately 1 - 10"^ m/s^/N. This noise floor 
is not related to the dynamic capabilities of the accelerometer or the force transducer, 
but to the measurement method technique itself, as the modal decomposition with 
accelerometers cannot discriminate modes perfectly. When placing the accelerometer 
around the circumference during the measurement, small errors of placement result in 
large relative errors in the modal response of the weakly-excited modes, although the 
absolute magnitude of the errors is very small indeed. This phenomena is dubbed modal 
leakage, as accelerance apparently 'leaks' from one mode to another. Modal leakage 
may also be caused by departures from axisymmetric geometry (e.g. the geometry 
variations mentioned above). 

C o m m e n t s regard ing t h e ax i symmet r i c mode . While the agreement between 
the measured and predicted accelerance for n = 0 is better at high frequencies, it seems 
quite bad at low frequencies. The predicted response is very small at low frequencies 
(less than 10"^ m/s^/N at 100 Hz) and the aforementioned noise floor dominates. The 
reason for this is simply that a radial point force is very inefhcient in exciting the 
axisymmetric mode below the ring frequency. 
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In the near Aeld of the point of excitation, there are some local shell deformations 
related to the complex roots of the dispersion relation, as discussed in section 6.2, 
but they are not propagated to the far held. In hgure 8.3 this can be seen as a 
significantly larger response at s = 0.29 than for the two far 6eld points. Close to 
the ring frequency of the pipe, this diS'erence between the predictions of near and far 
held tends to disappear when the pipe resonates as a ring. The radial point force is 
apparently able to excite the ring frequency resonance e@ciently, although this is not 
important for the industrial application. 

The peaks at low frequencies are probably a result of modal leakage from the standing 
bending waves, and from the cuton of the higher order modes (e.g. the M = 2 mode at 
420 Hz). 

C o m m e n t s r ega rd ing t h e bend ing mode . The comments for n = 0 regarding 
modal leakage also apply here, where the cuton of the M = 2 mode results in a peak at 
approximately 400 Hz, and likewise for the cuton of the n = 3 mode at approximately 
1 kHz. The modal leakage to the bending mode mode seems smaller than to the = 0 
mode, but this is mainly due to the signihcant response of the bending mode itself, 
thus making the relative impact smaller. 

A radial point force is very eGcient in exciting the bending mode (n = 1) of the 
pipe, and this mode therefore dominates the response of the pipe at low frequencies. 
Prom hgure 8.4 it can be seen that the predicted accelerance for the bending mode at 
100 Hz is approximately 3 m/s^/N for g = 0.29, while the predicted accelerance for 
the breathing mode is approximately 7 - 10"^ m/s^/N. The predicted response of the 
bending mode is thus a factor of approximately 430 larger than the breathing mode 
at 100 Hz. When comparing the measured response of the bending and breathing, the 
factor is only 30. This is probably an artifact from the accelerometer decomposition 
method, but this has only has a marginal inSuence on the total power how prediction, 
as shown later. 

The peaks below the cuton frequency of the M = 2 mode are not related to cuton of 
other modes, as M = 2 is the mode with the lowest cuton frequency. Instead, these 
peaks probably indicate standing waves in the axial direction, with the characteristic 
peak-and-trough appearance of a resonance. The anechoic termination is supposed 
to remove any reflections from the end of the pipe, but apparently it is not very 
efhcient at low frequencies. This is hardly surprising as the anechoic termination is 
only 0.8 m long while the bending wavelength at 100 Hz is close to 10 m. If better 
low frequency performance of the measurement of the bending mode were required, it 
would be necessary to use a longer pipe combined with a larger anechoic termination. 

C o m m e n t s r ega rd ing t h e h igher o rder modes . The n = 2 mode is the first mode 
not cut on from zero frequency. At low frequencies, the modal accelerance is quite small 
and the measurement noise hoor dominates the response, but near the cuton frequency 
the accelerance rises sharply. There is very good agreement between the theoretical 
prediction and the measurement, especially in the near held. Peaks are evident at 
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the cuton frequencies of the higher order modes, probably due to modal leakage. It 
should be noted that the measured curves at high frequencies show a progressive decay 
with the distance from the source, while the predicted curves almost overlap. This 
is interpreted as a damping effect where the damping of the shell material dissipates 
energy from the propagating branches, thus reducing the response the farther away 
from the source. The reason for this being more pronounced at high frequencies is 
probably that the number of vibration cycles needed to propagate to a given distance 
is larger at high frequencies, while the proportion of energy dissipated per cycle is 
constant (related to the loss factor of the material). This effect could be investigated 
in more detail by introducing a complex Young's modulus in the prediction model, but 
the small discrepancy at high frequencies has been accepted for this study. 

The appearance of Egure 8.6 is similar to 8.5 apart from the cuton frequency. The 
modal leakage into M = 3 from the cuton of the n = 2 mode is not very pronounced 
in the near held, but for the far held points the accelerance level raises approximately 
one order of magnitude, probably due to the aforementioned measurement noise hoor. 

8.2.1 Synthe t ic point accelerance 

A point response can be interpreted as a sum over all circumferential modes, as shown 
in equations (6.8) and (6.9). In hgures 8.7, 8.8 and 8.9 the contributions from the 
diSerent circumferential modes are summed up for a near Geld point (g = 0.29) and 
for two far held points (a = 14.9 and g = 25.1). This summed response, normalised by 
the point input force, can be interpreted as a synthetic point acceleraiice, not directly 
measured but synthesised from all 12 measurement points around the circumference. 

Even with the small errors shown in the modal decomposition shown in the last sec-
tion, the smoothness of the curve in hgure 8.7 is striking. The standing waves at low 
frequencies disturb the otherwise excellent agreement at low to mid frequencies. The 
measured peaks are slightly lower than the predicted peaks, but this is probably due to 
the damping of the shell material, tending to reduce the amplitude of the cuton reso-
nance. At high frequencies, the predicted response is slightly higher than the measured. 
As this is very close to the point of excitation (a = 0.29), it is probably not related 
to damping, but more likely due to the mass loading effects from either the point of 
excitation or the accelerometer. The local loading effects are discussed in more detail 
in section 8.4.3. 

The measured accelerance curves in hgures 8.8 and 8.9 are not as smooth as in hgure 
8.7, but the overall agreement is good except at high frequencies where the measured 
response tends to roll off. The detail of the troughs and peaks are smeared out, probably 
due to the scattering discussed in the last section. The comments from figure 8.7 
regarding standing waves and mass loading also apply in the far field. However the roll 
off at high frequencies is much more evident in the far field than in the near held. This 
suggests that a signihcant part of the high frequency energy is dissipated by damping 
through the almost 15 and 25 radii from the point of excitation. 
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Figure 8.7: Synthetic point accelerance for a pipe with light 6uid loading excited by 
a radial point force, g = 0.29. The line for the predicted response is dotted and the 
measured is solid. 
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Figure 8.8: Synthetic point accelerance for a pipe with light fluid loading excited by 
a radial point force, g = 14.9. The line for the predicted response is dotted and the 
measured is solid. 
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Figure 8.9: Synthetic point accelerance for a pipe with light Suid loading excited by 
a radial point force, g = 25.1. The line for the predicted response is dotted and the 
measured is solid. 

8.3 Comparison of measured and predicted power 
How 

8.3.1 Measurement of power How 

Two different power Sows are relevant for these experiments, namely the input power 
Sow and the transmitted power Sow. Unfortunately, only the input power Sow can 
be quantised directly through measurements, while the transmitted power cannot be 
measured directly. In this section an indirect method of power Sow estimation is 
presented. For a lossless system the two power Sows should be identical: this gives 
a way of validating the indirect power Sow method, as the two measurements can be 
compared. 

The input power Sow to the pipe can be quantiSed using the measurement of force input 
and acceleration of the pipe, as presented in the following section. The transmitted 
power Sow is quantiSed from modal measurements of the displacement as presented in 
section 8.3.1.2. 
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8.3.1.1 Input power to a structure 

The time averaged input power Sow to the pipe can be calculated using simultaneous 
measurements of input force from the shaker and the pipe's velocity response. The 
input force is measured directly using a force transducer, while the velocity is inferred 
by integration of the measured acceleration response of the point of excitation at the 
pipe wall. 

The time averaged power Eow for complex, single frequency harmonic excitation is 

(Pin) = (81) 

where = Re(Fe"''^^) and is the instantaneous force; % = R,e(ye"'^^) the instanta-
neous velocity; and T = 27r/w is the period of vibration. The velocity and force can 
be related via mobility or impedance by 

M ^ = P (8.2) 

where M and Z are the point mobility and impedance, respectively. Using this relation, 
equation (8.1) can be rewritten in the forms 

= ^ | F | % e ( M ) (8.3) 

(f^n) = ^ | ; ^ rRe(Z) (8.4) 

The mobility and force magnitude (or the impedance and velocity magnitude) can be 
extracted from the measurement using the PULSE Multi-analyser. 

8.3.1.2 Modal power flow 

As shown in section 6.1.4, it is possible to predict the power flow both in the near held 
and in the far held. In the near held, the power flow computation is complicated, as 
all branches of a given circumferential mode participate in the redistribution of power 
flow between the branches. The cross-terms where the force induced by one branch 
interacts with the displacement produced by another branch play a signiflcant role in 
this redistribution. However, it is well known that all power flow in the far fleld is 
carried by the propagating branches. 

In the light fluid loaded case, it is assumed that the power flow in the fluid is negligible 
in comparison with the power flow in the structure. This assumption is partly justifled 
by the conclusions of chapter 7 where it was shown that the vibrational response was 
unafl^ected by the presence of the fluid. Figure 8.10 shows the M = 0 predicted far fleld 
power flows (structural-borne and fluid-borne) for a pipe with light fluid loading exited 
by a radial point force. From the flgure it is evident that the structural-borne power 
flow contributes less than 1 % of the total power. Two branches contribute to the 
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Figure 8.10: Predicted power Sow for a pipe with light Suid loading excited by a radial 
point force, g = 15, M = 0. The line for the 8uid-borne power Bow is solid and the 
structural-borne power How is dotted. 

power Bow in figure 8.10: one mainly Suid wave, and one mainly structural axial wave. 
A closer investigation of the branch contributions shows that the mainly structural 
wave mainly drives a structure-borne power flow, and the mainly Buid branch mainly 
drives a Suid-borne power Sow. 

The predicted power Sow in the shell from equation (6.67) is quantified completely 
for any given branch by the radial displacement complex amplitude, as the axial and 
tangential displacement is accounted for through the displacement ratios. Likewise the 
power Bow in the Huid for that branch is also quantihed by the radial displacement. 
Given the following assumptions, the transmitted axial power 6ow at any far point can 
be inferred from the measured modal displacement: 

# It is assumed that orthogonality allows the axial power Sow in the diEerent 
circumferential modes to be treated independently. 

# It is assumed that there is only one branch that propagates significant vibroa-
coustic power for each n, and that any modal radial vibration measured is related 
to this branch. 

# It is assumed that the anechoic termination of the pipe is perfect, and as a result 
there is one-directional propagation in the pipe. 

The transmitted far field modal power Sow can - if the assumptions are correct - be 
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calculated as 

l^ntineasl 

where jF ,̂faj. is the far field modal power 5ow; Wn,meas is the measured modal pipe 
displacement for mode M; and is the modal power How factor. 

The modal power flow factor relates uniquely the modal wall response of the pipe to 
the modal power Bow for given circumferential branch M and br&nch number 6. The 
power Sow factor is determined by the properties of the pipe and the contained Suid 
and it is not related to the actual excitation of the pipe. The power Sow factor can be 
calculated from any given source that excites the huid-hlled pipe in accordance with 
the assumptions noted above. In this case, it is convenient to express the modal power 
Aow factor from the excitation of a radial point force, but the same result could be 
obtained from e.g. an internal monopole, as the dominating branches are the same in 
both cases. The modal power How factor can thus be calculated from 

Pr 

k", i i 

where is the predicted modal pipe displacement for unit radial force input of a 
doubly inhnite pipe; and is the predicted modal far held power how for unit radial 
force input. 

For radial point force excitation, the modal power flow can therefore be calculated from 

fk,far - f:,,! (8.7) 

If the input force is doubled, so is the displacement response, but the resulting power 
How is quadrupled. 

The Hrst of the above assumptions is true, if the circumferential Fourier decomposition 
holds. As shown in the previous section, this is only approximately true due to modal 
leakage, but in principle it can be assumed that power How injected into one mode stays 
in that mode. Departures from axial symmetry in the pipe wall (either geometrical or 
material properties) will cause scattering from one mode to another, but the pipe is 
here assumed perfectly axisymmetric. 

At low frequencies, there is at most one branch propagating for M > 1, as shown 
in the parameter study in chapter 7. Below cuton of the higher order modes, there 
is no propagating branch, but there is no power How either, so this violation of the 
assumption is of no importance. For n = 0, there are two propagating branches at 
low frequencies; one axial and one torsional (plus the disregarded mainly-Huid branch 
that does not participate signiHcantly in the total power How). However, the torsional 
branch is not excited by the radial point force and thus carries no power How in this case. 
Therefore the second assumption holds for frequencies of industrial interest provided 
the excitation is radial, as here. 

The third assumption is probably the most questionable, as it will be shown in section 
8.4.2 that the anechoic termination is not perfect. 
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Figure 8.11: Modal power Bow for a pipe with light Suid loading excited by a radial 
point force, s — 14.7, M = 0. The line for the predicted power flow is dotted and the 
measured power flow is solid. 

8.3.2 Measured and predicted power How 

The modal power Row calculated using equation (8.5) can be seen in figures 8.11 to 
8.14 for a single far deld position (g = 14.9). 

The general trends are the same as for the accelerance, but the relative importance of 
discrepancies between the predicted and measured accelerance is squared according to 
equation (8.5). For the axisymmetric mode, the measured power Sow is way off the 
predicted power Sow, due to the low excitation of this mode at low frequencies by a 
radial point force. For n, > 1, the measured power 8ow is smaller than the predicted 
power Sow. This can probably be explained by the damping of the pipe material, as 
it dissipates energy between the source and the measurement position, as discussed in 
section 8.2. 

Pure standing waves do not propagate any energy. However, when equation (8.5) is 
used standing waves will contribute to the power Sow estimate. This is evident in 
Sgures 8.12 and 8.12 where the distinct peaks probably are related to reSected bending 
waves not removed by the anechoic termination. While the same peaks were seen 
on the accelerance for the higher order modes, they are missing for the power Sow 
because there is by deSnition no power Sow below the cuton of these modes (under the 
assumption of one-way propagation on which the power Sow calculation is based). 
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Figure 8.12: Modal power Aow for a pipe with light Suid loading excited by a radial 
point force, M = 1. The line for the predicted power Bow is dotted and the measured 
power 8ow is solid. 
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Figure 8.13: Modal power Sow for a pipe with light Auid loading excited by a radial 
point force, n, = 2. The line for the predicted power Sow is dotted and the measured 
power flow is solid. 
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Figure 8.14: Modal power Bow for a pipe with light Suid loading excited by a radial 
point force, M = 3. The line for the predicted power How is dotted and the measured 
power Sow is solid. 

8.3.3 Total power How 

The total vibroacoustic power flow carried by the pipe can according to equation (6.69) 
be found by adding all the modal contributions. 

In hgure 8.15, the total power flow is plotted for a far held measurement position 
(g = 14.9). The full red line is the sum of all modal contributions M < 6. It is evident 
that the measured power Sow is a lot larger than the predicted power Sow at low 
frequencies. The broken red line represents the sum of the power Sow contributions 
for modes 1 < M < 6, where the agreement between measurements and the prediction 
is better at low frequencies. 

In the same Sgure, the input power Sow measured according to equation (8.3) is plotted 
with a green curve. Comparison of the input power with the measured power Sow shows 
fair agreement above approximately 100 Hz. Below this frequency the power Sow 
measurement is dominated by unwanted standing waves that violate the assumptions 
of the power Sow measurement method. 
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Figure 8.15: Total power Sow for a pipe with light Euid loading excited by a radial 
point force, s = 14.7. The predicted power flow is green, the measured power Bow is 
red and the input power Bow is blue. The solid red line includes M = 0, the dashed red 
line excludes M = 0. 
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8.4 Detailed comments on the experimental setup 

8.4.1 S t ruc tu ra l anechoic t e rmina t ion of f in i te pipe 

As discussed in part I, several possible approaches exist when considering power Sow 
measurements in pipes. To justify the assumption from the last section stating that all 
power flow is directed away from the source in a finite pipe, a significant suppression 
of the rejections from the ends of the pipe is required. The device to accomplish this 
is called the anechoic termination. 

In the case of the light Suid loaded pipe, the rejections of the internal pressure waves 
from the open ends of the pipe are simply ignored, as their contribution to both power 
Sow and wall vibration is negligible. The only type of anechoic termination needed in 
this case is a structural one, to prevent wall vibrations being reflected from the ends of 
the pipe (for heavy Huid loading, Auid-wave reflections cannot be neglected as noted in 
section 9.6.2.) To design the structural anechoic termination an understanding of the 
modes of vibration is crucial. There are essentially three different types of structural 
vibration: radial, torsional and axial. 

Traditionally, many authors eg. Variyart and Brennan (1999) and Feng (1995) have 
used sandboxes for structural einechoic termination of pipes. The idea of the sandbox 
is to dissipate the vibrational energy through the relatively high loss factor of sand (5% 
to 10% according to Norton (1989)). To avoid rejection of vibrational energy when 
the vibrations enter the sandbox, the sand loading is applied gradually thorough the 
box. However, there will only be a signihcant energy transfer to the sand from a given 
branch if there is signiScant wall movement, aa shear waves in the sand account for 
most of the energy transfer from the pipe to the sand. More insight than presented here 
might be obtained using predictions from a model with both internal and external Suid 
loading, but as the modelling of sand as a fluid with only density and complex speed 
of sound is probably a signiScant source of error anyway, no effort in this direction has 
been made in the present thesis. Instead a common sense design has been used, with 
a wedge shaped sandbox loading more and more sand along the length. 

The mainly axial branches only have a minor radial vibration component due to Poisson 
coupling. Damping of these modes by sand would therefore require an impractically 
long sandbox. Brennan et al. (1997) used with some success a beam with a large 
damped plate connected transversely as an anechoic termination, and the same idea 
can be applied for a pipe. If the plate impedance is matched properly to the axial 
impedance of the pipe, the axial components of vibration in the pipe will be converted 
to bending waves in the plate. The plate bending waves can then be damped using 
standard vibration control for plates. In the experimental setup used in the present 
investigation a few 0.8 mm perspex plates were glued to the pipe and damped with 
patches of absorbing material. 

The coupling of the torsional modes is also quite low using only the sandbox, but by 
applying some Ens to the pipe, the coupling to the sand will be signiEcantly better. 
A few hns were added in the sandbox, but no attempt has been made to model their 
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eEect. Besides, the types of point excitations used in the present thesis would hardly 
excite any torsional vibration, and the attempt to control the torsional vibration may 
thus be unnecessary. 

The performance of the structural anechoic termination is assessed in the next section. 
The result of the initial assessment was that the sand loaded the pipe too much and 
the intended dissipation of energy was not ideal. A better solution, used in the actual 
experiments reported, waa to use a buffer layer of 10 mm foam around the pipe to 
reduce the resulting external loading of the pipe. 

8.4.2 Assessment of t h e efficiency of the anechoic te rmina t ion 

Using 4 accelerometers (B&K 4507), some optimisation of the sandbox was carried 
out. Three of the accelerometers were placed equidistantly inside the sandbox (1/4, 
2/4 and 3/4 of the length of the sandbox) and one just before the sandbox. Each of the 
accelerometers measured a radial point accelerance at the position in question. With 
only sand in the sandbox, the measurements revealed that the main reduction of the 
radial point accelerance happened in the hrst quarter of the sandbox. Applying some 
diEerent materials in addition to the sand revealed that using a foam layer of approx-
imately 10 mm around the pipe in the sandbox yielded the best possible performance 
of the structural anechoic termination in the light Suid loaded case. 

Assuming that only one propagating and one rejected wave exists for each circumfer-
ential mode, the radial modal displacement at any point of the pipe can be written as 
the sum of these two waves: 

^n(5) = (8.8) 

where index p refers to the propagating branch; is the amplitude of the propagating 
wave; and is the amplitude of the rejected wave. 

If the modal vibrations are measured at two di&rent axial positions, the amplitude of 
the incident and reflected waves can be quantified. Let gg denote the centre position 
between the two measurement positions 1 and 2. According to equation (8.8), the 
displacements at these positions are then 

where superscript 1 refers to the measurement position closest to the point of excitation; 
superscript 2 refers to the other; and 2iv is the distance between the two meagurement 
positions. Knowing the complex response at each measurement position, equation 
(8.9) can be solved for the amplitudes using standard methods for two equations with 
two unknowns (Kreyzig 1998), but it should be noted that the equation tends to be 
ill-conditioned at frequencies where an integer number of half wavelengths equals 2Z,. 

The resulting amplitude ratios are plotted in figures 8.16 to 8.19 for gg = 19 6 and 
L = 9.8. 
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Figure 8.16: Ratio of incident to rejected waves in far Seld for a pipe excited by a 
radial point force, n = 0. 
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Figure 8.17: Ratio of incident to rejected waves in far Aeld for a pipe excited by a 
radial point force, n = 1. 
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Figure 8.18: Ratio of incident to rejected waves in far field for a pipe excited by a 
radial point force, M = 2. 
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Figure 8.19: Ratio of incident to rejected waves in far field for a pipe excited by a 
radial point force, M = 3. 
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The general trend is that the efhciency of the anechoic termination is fairly low at 
low frequencies, reasonable in the mid-frequencies, and fairly low at high frequencies. 
At low frequencies the wavelengths involved are long compared with the relatively 
short length of the sandbox, and the effect of the sandbox is expected to be small. 
At the mid-frequencies, the match of the wavelengths and the length of the sandbox 
becomes better, while the low eSciency at high frequencies may be related to bad 
coherence between the two measurement positions, probably related to the relatively 
high damping of the pipe material. 

It should be noted that the distance between the two measurement positions in the 
hgures corresponds to approximately 10 pipe radii. The coherence between the two 
measurement transducers was fairly low during the experiments, and this probably 
reduces the conhdence in the measured amplitude ratios, as the matrices inverted 
were badly conditioned. Unfortunately, this problem waa identified too late to repeat 
the measurements with a smaller distance between the two measurement positions. 
However, it is assumed that the trends in the ratios are correct. 

8.4.3 Radial excitation of the shell wall 

Two major concerns were addressed during the design of the radial force excitation: 
the excitation should be as close to a point as possible, to allow direct comparison with 
the numerical point to point transfer functions from chapter 6; and the pipe should not 
be penetrated more than necessary to avoid potential leaks in the heavy Suid loaded 
(water-hlled) experiments. 

The excitation in the light Suid loaded experiments is provided by a radial force from 
a mini-shaker connected to the pipe through a short sting. As the sting is Sexible 
(0.8 mm piano wire), most of the moments from misalignment of the axes between 
the shaker and the pipe are cancelled. The connection from the sting to the pipe is 
through a small force transducer that is connected rigidly to the geometric midpoint 
of the pipe. 

While direct connection between the force transducer and the pipe with a screw was 
an easy solution, it was not ideal as it would involve a thread in the pipe wall, thus 
introducing a potential leak when the pipe is hlled with water for the heavy Suid loaded 
experiments. Instead, a transducer mounting was made by a small cylindrical boss of 
PVC glued to the pipe wall, as seen on the left hand picture of hgure 8.20. To make 
sure that the M3 thread necessary to connect the force transducer to the pipe was 
perpendicular to the pipe surface, a cylinder with the same curvature as the outside 
of the pipe was chosen. The PVC-cylinder alters the dynamic properties of the pipe 
in two ways, as it adds mass to the vibrational system, and it adds some distributed 
stiffness, that would affect the point nature of the excitation. 

The effect on the point to point response of a 8uid-hlled pipe from a lumped mass 
can be estimated as shown by Variyart and Brennan (1999). They present a mobility 
method that can account for the change in the dynamic behaviour of a high mobility 
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Figure 8.20: Pictures of different connection points of structural excitation. 

pipe due to a lumped mass. Dubbing the point of excitation 1 and the lumped mass 
point 2, the mobility at point 2 can be calculated from 

7^ M: 12 

1 I M22 
Mm. 

(8.10) 

where M12 is the transfer mobility from the point of excitation to the point of the mass; 
M22 is the point mobility of the pipe; and Mm = —1/iujm is the mobility of the mass. 

In this case, the problem is slightly simpler, as the point of excitation and the point of 
attachment of the point mass are the same. The approximate mass of the PVC-cylinder 
was 2.3 g and the mass of the force transducer above the piezoelectric element was 1.1 
g, making the total added mass at the point of excitation 3.4 g. For the light fluid 
loaded pipe, the correction at H = 0.3 corresponds to less than 1%. The influence of 
the mass loading of the input arrangement is therefore assumed to be very small. 

It is assumed that the distributed stiffness would have a negligible influence on the 
vibration, as long as the size of the mounting is much smaller than the vibrational 
wavelength. To verify this, the cylindrical boss was milled smaller as shown on the right 
hand picture of figure 8.20, thus giving both smaller mass and smaller stiffness. Over 
the frequency range of interest, no influence could be seen on any of the measurements, 
and therefore no corrections have been made when comparing the experiments and the 
predictions. 

The shaker setup can amongst other things be seen in figure 9.27. 

8.4.4 Moda l sensing of p ipe v ibra t ions w i t h an accelerometer 

Simple point to point transfer functions can simply be measured directly using a point 
sensor, like an accelerometer. This enables some sort of comparison with a predicted 
transfer function, but it is difficult to assess the cause of any discrepancies. A modal 
comparison as in the figures 8.3-8.6 is more enlightening, as e.g. cuton of different 
modes can be seen directly. In the present thesis, two different techniques of modal 
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Figure 8.21: Picture of circumferential placement of accelerometer. 

measurements are used. The first one uses decomposition of accelerometer measure-
ments and the other one uses modal sensors that are only sensitive to given vibrational 
modes. In the case of the light fluid loaded experiments, only the accelerometer de-
composition method was used. 

To avoid any potential problems regarding phase matching of different accelerometers, 
all measurements are done using the same accelerometer. An obvious consequence is, 
that the sampling of the different points around the circumference cannot be in real 
time. The accelerometer measurements are made by placing the accelerometer at a 
given position and measuring the transfer function to this point. Then the accelerom-
eter is moved to a new position where the new transfer function is measured. The 
positioning system of the accelerometer is shown in figure 8.21. The modal decompo-
sition technique is presented in the next section. 

When measurements are made using an accelerometer, some mass loading of the pipe 
occurs, as the accelerometer acts like a point mass. This point mass will affect the 
vibrations locally at the point where the vibrations are sampled, and the acceleration 
measured by the accelerometer is thus biased by its own mass loading. While the 
added mass from the accelerometer used is small (the mass of the accelerometer used 
for the modal decomposition measurements is 0.65 g), it may affect the vibrations 
at high frequencies, especially for high mobility structures like a thin walled plastic 
pipe. Using the same mobility method as described in the previous section, the effect 
of a point mass can be predicted and the measurements can be corrected. In the 
present thesis, the measurements are not corrected, but instead the mass effect of the 
accelerometer can be included in the numerical predictions. However, the effect from 
the small mass loading of the accelerometer is negligible at the scales presented in the 
figures in this thesis, and the correction is therefore left out. A numerical experiment 
was conducted with an accelerometer with a mass of 5 g, and here the effect was small, 
but noticeable. 
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8.4.4.1 Modal decomposi t ion of accelerometer measurements 

A number of different techniques exist for the modal decomposition of accelerometer 
measurements. Feng (1995) shows a method that utilises the symmetric properties of 
the vibrations around the circumference to allow the measurements to be conducted 
only on 180 degrees of the circumference, thus effectively reducing the number of mea-
surement positions by a factor of two. Bourget and Fahy (1993) shows a method that 
involves moving the measurement positions to align the measurements with the ex-
citation, so that in the displacement equation equals zero. For the present thesis, 
a method presented by Variyart and Brennan (1999) is used, as it recovers both the 
modal amplitude and the angle between the excitation and the measurement reference 
position (0o). 

The total radial accelerance, vl'', can be written as the sum of the modal accelerances: 

OO OO 00 OO 
A' = = E - B ; = E I ] -I (8.11) 

72=0 71=0 71=0 6=1 

Here is the modal radial accelerance; is the modal radial receptance, found as 
the displacement per unit force input; and is the modal displacement amplitude. 
It is convenient to substitute the cos part of the above expression with 

cos(M(^ — ^o)) = cos(M^) -t- sin(72^) (8.12) 

this leads to 
OO 

^ [^c cos(n^) 4 - s i n ( M 0 ) ] (8.13) 
n=0 

where = 1 for ^ = 0 and 6^ = 2 otherwise; = cos(M^o); = sin(n^o); and the 
constant collects all other terms. 

If sampling is made with a point sensor like an accelerometer at TV points around the 
circumference of the pipe, then the sample angle at the _;''th measuring position can be 
written as 

9 = ^ (8.14) 

and the measured radial accelerance of this point is dubbed . 

When extracting the circumferential mode m from the measurements around the 
circumference, the cosine part of equation (8.13) is evaluated by multiplying both right 
and left hand side of equation (8.13) with a common factor 

Then replacing with the measured accelerance and combining the sum of all 
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measurement points, a new equation forms as 

j=o ^ 
^ jV—1 oo 

j=0 n=0 

, .27rj . , . .27rj . 
C08(—M) + (pg 8m(—M) 

(8.16) 
/27r; 

cos m 

The sine terms will cancel out due to the properties of discrete orthogonality, while the 
cosine terms will sum up to It should be noted, that aliasing of higher order 
modes will occur when the number of circumferential modes is more than one half 
the number of measurement points around the circumference according to the Nyquist 
sampling theorem. This way, equation (8.16) reduces to 

j=o ^ / 

The same procedure can be applied for the sine terms and here the result is 

— ^ sin (8.18) 

The total measured accelerance magnitude for mode m is found as 

(8-19) 

and the corresponding angle between excitation and vibration is found to be 

= tan ^ ^ 7 ^ 1 (8.20) 

8.5 Conclusion 

In this chapter, the response of a Suid-Elled pipe with light fluid loading has been 
assessed through measurements of the modal accelerance. The excitation of the pipe is 
provided by a radial point force. The measured modal acceleran.ce is compared with the 
accelerajice predicted by the prediction model in chapter 4. A common feature of all the 
comparisons between the measurement and prediction is that the agreement improves 
as the measurement position is moved towards the point of excitation; in the near field 
of the point of excitation the agreement is excellent. The modal measurement shows 
some modal leakage where accelerance from a strongly excited mode apparently leaks 
to a weakly excited mode. However, when all the modal contributions are summed to 
form a so-called synthetic point accelerance, the strongly excited modes dominate the 
weakly excited modes, effectively removing the effect of the modal leakage. 

A measurement method for the vibroacoustic power flow has been presented. Under a 
quite restrictive set of assumption, the modal power flow is inferred from measurement 
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of the pipe-wall response (e.g. the accelerance) through a predicted relation between the 
modal response of the pipe wall and the modal power How in the far held. Comparison 
of the measured and predicted modal power Rows shows that the agreement at low 
frequencies is generally good, but at higher frequencies there is a signihcant roll off. 
This high frequency roll off can probably be related to the relatively high loss factor of 
the pipe-wall material. The modal power Hows can be summed to form a total power 
How. The power input to the Suid-hlled pipe from the force excitation can be measured 
through simultaneous measurements of the input force and acceleration of the point 
of excitation. Comparison of the predicted input power and the measured power flow 
shows fair agreement above approximately 100 Hz. 

The overall conclusion of this chapter is that the method of power flow measurements 
presented in chapter 3 has been validated against numerical predictions from the model 
presented in chapter 6 and vice versa, for a pipe with light Auid loading excited by a 
radial point force. 
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C h a p t e r 9 

Power flow measurements : pipe 
wi th heavy fluid loading 

The experiments presented in this chapter are all obtained on a PVC pipe with air 
outside and water inside, so that the resulting internal fluid loading is heavy. The ex-
citation in the measurements is provided either by an external radial force at the shell 
wall or by a transmitting hydrophone in the contained Suid. The pipe modal acceler-
ance is measured either by an accelerometer that is moved around the circumference or 
by modal sensors that measure the modal response directly without post-processing. 

The Erst section introduces the experimental setup used. The second and third sections 
present measurements of accelerance and power Sow when the pipe is excited by a 
radial force. The fourth and hfth sections present similar measurements, but for the 
pipe excited by a transmitting hydrophone inside the pipe. The sixth section assesses 
the measurement principle, and the final section summarises the main conclusions. 

9.1 Experimental setup 

The experimental setup used in the heavy Euid loaded experiments is identical to the 
one used in the light Suid loaded experiments, except for a few additions. 

The 5 m PVC pipe is filled with water inside, while air is retained on the outside, 
corresponding to case 1 in table 7.1 on page 74. Due to the relatively low of the 
pipe, the resulting internal Euid loading is heavy, as discussed in the parameter study 
in chapter 7. 

The structural anechoic termination is kept unchanged from the light Suid loaded 
experiments, but a Auid anechoic termination is added to suppress rejections in the 
Guid from the pipe ends. The main feature of the fluid anechoic termination is 30 
m of rubber hose. The purpose of the rubber hose is to dissipate the energy in the 
pressure fluctuations in the water. A special 0.5 m connection pipe matches the Huid 
impedance gradually from the measurement pipe to the rubber hose. The Suid anechoic 

129 



Figure 9.1: Picture of experimental setup. 

termination is discussed in more detail in section 9.6.2. 

Two types of excitation are used during the experiments, a radial force at the shell wall 
and a transmitting hydrophone inside the pipe. The setup of the force excitation is 
exactly the same as for the light fluid loaded experiments in chapter 8. The transmit-
ting hydrophone excites the fluid directly, ideally without any direct excitation of the 
structure. It is assumed that the hydrophone acts like a point monopole source over 
the relevant frequency range. The hydrophone excitation is discussed in more detail in 
section 9.6.1. 

The experiments with the radial force excitation are conducted like the light fluid 
loaded experiments, but in addition to the accelerometer modal decomposition the 
modal response of the pipe is also measured directly using modal sensors. The modal 
sensors are made from shaped polyvinylidene fluoride (PVDF) film or from PVDF wire, 
and due to their shape they are only sensitive to certain circumferential modes. The 
modal sensors are discussed in more detail in section 9.6.3. 

When the transmitting hydrophone is used as a source, the voltage input to the hy-
drophone is measured. By using the calibration of the hydrophone (the range nor-
malised pressure of the hydrophone was measured in air), the pressure output from 
the hydrophone can be deduced. There is no simple way of quantifying the acoustic 
power input from the hydrophone, as the velocity response of the fluid is not mea-
sured. The wall response of the fluid-fllled pipe is measured using both point and 
modal measurements. 

The experimental setup is sketched in flgure 9.2 and the instrumentation used is listed 
in table 9.1. 
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12 

Figure 9.2: Sketch of the experimental setup used for the experiments on a pipe with 
heavy fluid loading. 

1. B&K Type 3560, PULSE Multi-analyzer and signal generator 

2. B&K Type 2706, Power amplifier 

3. B&K Type 2713, Power amplifier 

4. B&K Type 4810, Mini-shaker 

5. B&K Type 8203, Force transducer (3.6 pC/N, 1.1 g) 

6. B&K Type 4374, Miniature accelerometer (0.141 pC/ms^^, 0.65 g) 

7. B&K Type 8103, Hydrophone (0.099 pC/Pa, diameter 9.5 mm) 

8. B&K Type 2646, Deltatron charge amplifier ( ImV/pC) 

9. Modal sensor (PVDF wire or patches of PVDF film) 

10. PVC pipe (L=5 m, Do=63 mm, h=l.8 mm) 

11. Anechoic termination 

12. Connection pipe and rubber hose (L=30 m, Do=79.2 mm, h=1.6 mm) 

Table 9.1: Instrumentation used for the experiments with heavy fluid loading. 
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9.2 Accelerance for pipe excited at the pipe wall 

Figures 9.3-9.6 show the measured and predicted modal accelerances (rt = 0 to 3) of 
a heavy Huid loaded Suid-Alled pipe exited by a radial point force. Measurements are 
plotted in red and predictions in green; the solid line represents a measurement position 
g = 0.29 from the point of excitation; the dashed line corresponds to s = 14.7; and the 
dash-dot line represents g = 25.1. 

The Young's modulus used for the pipe wall in the prediction model has been htted, as 
in the light Huid loaded experiments so the predicted and experimental cuton frequency 
of the n = 2 circumferential mode are the same. The required value of Young's modulus 
is 5.5 MPa, which is approximately 45 % more than the modulus used in the light Suid 
loaded case. This may seem contradictory, but the elective increase in the Young's 
modulus can probably be related to stress stiffening of the shell material. When the 
pipe is hlled with water, the entire system is pressurised. An experiment was made 
to conArm that the cuton frequency of the M = 2 mode varies according to the static 
pressure of the system: it was found that the higher the static pressure, the higher 
the cuton frequency, and an approximate relation could be found. While this is an 
interesting observation, it is not pursued further. All the measurements presented in 
this chapter are made with % = 100 kPa, and the predictions are mode with the 
Young's modulus noted above. 

As the experimental setup was prepared for Sow through the pipe, the measurements 
were repeated with a How of approximately 1,800 kg/h. Apart from a lower coherence 
during the measurements (probably related to the background noise added from the 
How rig), no impact could be seen on the results. 

Comparison between light and heavy fluid loading. The two most notable 
differences between the light and the heavy Suid loading are the generally lower accel-
erance, and the lower cuton frequencies for the higher order modes for the heavy fluid 
loaded case. 

Knowing that force equals mass times acceleration and the accelerance is acceleration 
per unit input force, it seems intuitively reasonable that the acceleration response per 
unit force is reduced when the mass per length of the Euid-hlled pipe is increased. For 
the pipe used in the experiments, the mass is 0.50 kg/m in the air-Slled case and 3.44 
kg/m in the water-hlled case. The ratio of the mass per unit length is close to the 
approximate factor of 6 observed between the measured accelerances for a pipe with 
light and heavy Buid loading, respectively. 

The observed cuton frequency of the n = 2 mode (structural branch) is reduced from 
approximately 420 Hz when the pipe is air-filled to approximately 180 Hz when the 
pipe is water-Blled. Similarly, the cuton frequency of the M = 3 mode is reduced from 
1050 Hz to 600 Hz. The reason for this is probably the increased effective mass of the 
shell wall in the heavy Huid loaded case. 

As in the light Euid loaded case, the agreement between measurements and predictions 
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Figure 9.3: Modal accelerance for a pipe with heavy Suid loading excited by a radial 
point force, M = 0. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the daahed line to 5 = 14.7 and the dash-dot line to g = 25.1. 
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Figure 9.4: Modal accelerance for a pipe with heavy Huid loading excited by a radial 
point force, M = 1. The predicted response is green and the measured red; the solid line 
corresponds to a = 0.29, the dashed line to a = 14.7 and the dash-dot line to 5 = 25.1. 

133 



10 

= 1 0 ' 

gio" 

1 0 ' 

Hi; 
:» I. 

/ m 

/ . , t)i" 

I / / V/ 1/ 'f .'i I 

1 0 ' 

10̂  
10® F r e q u e n c y [ H z ] i o = 10 

O m e g a 1 0 " ' 10" 

Figure 9.5: Modal accelerance for a pipe with heavy Suid loading excited by a radial 
point force, M = 2. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the dashed line to g =: 14.7 and the dash-dot line to a = 25.1. 
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Figure 9.6: Modal accelerance for a pipe with heavy Auid loading excited by a radial 
point force, a = 3. The predicted response is green and the measured red; the solid line 
corresponds to g = 0.29, the dashed line to g = 14.7 and the dash-dot line to g = 25.1. 
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improves the smaller the distance between the measurement position and the point of 
excitation. The discrepancies at the two far Aeld positions at high frequencies seem 
smaller in the heavy Suid loaded case. A possible explanation for this is that the 
damping in water is significantly smaller than in PVC, and as the proportion of power 
How in the Euid is much larger for the heavy Suid loaded case, the fraction of energy 
dissipated between the points of excitation and response is smaller. 

9.2.1 Compar ison of accelerometer and m o d a l sensor mea-
surements 

Modal sensors for the modes = 0 to 3 were used to measure the pipe-wall response. 
The n = 0 sensor is a PVDF wire wound an integral number of turns around the pipe. 
The modal sensors for the rest of the modes are made from thin PVDF him cut into 
shapes only sensitive to certain modes. Both types of modal sensors are discussed in 
section 9.6.3. The measurements for each mode are discussed below in turn. 

n = 0. Figure 9.7 shows the accelerance in the M = 0 mode at g = 19.7. The solid line 
shows measurements obtained by decomposition of accelerometer measurements; the 
modal sensor measurements are shown with a dashed line; and the predicted accelerance 
with a dotted line. The agreement between the two measurement techniques is good 
at intermediate frequencies, but they tend to deviate both at low and high frequencies. 

At low frequencies, the modal sensor measurements are much closer to the predicted 
response than the accelerometer decomposed measurements, as they do not show the 
noise Soor limitations of the accelerometer measurement, discussed in section 8.2. The 
general sensitivity of the modal sensor (5 turns of PVDF wire) is probably higher 
than the lightweight accelerometer, but as the noise floor is not thought to be related 
to limitations in sensitivity, this is probably not the explanation. The noise floor of 
the decomposed measurements is probably related to errors introduced by the repo-
sitioning of the accelerometer around the circumference. The modal sensor measures 
the response directly, without moving the sensor during the measurement. However, 
modal leakage may occur due to the overlap of the wire at the ends, as the electrical 
connection of the wire makes it diSScult to know exactly what the sensitive length is. 
Modal leakage can be seen around 200 Hz in hgure 9.7 for both curves, but the level 
for the modal sensor seems slightly smaller. 

The modal sensor measurement tends to roll more off at high frequencies than the 
decomposed measurements. This may partly be a damping effect and partly a mass 
effect. The modal sensor is hxed on the pipe by double sided adhesive tape under the 
sensor, with an additional layer of aluminum coated adhesive tape (to provide electrical 
shielding) above the sensor. It is well known that adhesive tape introduces substantial 
damping. The accelerometers used in the decomposed measurements are positioned 
using beeswax, introducing no damping. 

The mass of the sensor will also reduce the response of the Suid-Slled pipe as discussed 
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Figure 9.7: Modal accelerance for a pipe with heavy Buid loading excited by a radial 
point force, n = 0, g = 19.7. The line for the predicted response is dotted, accelerometer 
measurements solid, and the modal sensor measurements dashed. 

in section 8.4.3, and the eSect will be larger the higher the frequency. The PVDF 
wire (including the adhesive tape) has a total mass of approximately 3.5 g and the 
accelerometer 0.65 g. Whereas the accelerometer is acting like a point mass, the mass 
of the modal sensor is distributed around the circumference and the eSect is therefore 
diGicult to predict. As shown in 8.4.3, the mass eHect of the accelerometer in the 
frequency range of interest is negligible for the air-Ailed case; in view of the lower 
mobility of the pipe in the water-Ailed caae, it can therefore be assumed that the maas 
eSect of the accelerometer is also negligible in this case. The mass loading eEect of 
the modal sensor cannot easily be predicted, but there is no doubt that the lighter the 
modal sensor, the smaller the impact on the response of the fluid-Ailed pipe. 

The PVDF-Alm used for the other modal sensors in this thesis could have been shaped 
to allow measurement of the axisymmetric mode. Due to time constraints, this was not 
tested during the present investigation, but the reduced mass loading of PVDF-hlm 
compared with wire would be an advantage when measuring high mobility pipes. 

n = 1. Figure 9.8 shows the measured and predicted accelerance for the bending 
mode with the same legend as for hgure 9.7. The general trends for both measurement 
methods are the same, but the modal sensor measurement drops more oE at high 
frequencies, probably for the same reasons as discussed for the M = 0 modal sensor. 

Modal leakage is also evident in Agure 9.8. The risk of introducing modal leakage 
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Figure 9.8: Modal accelerance for a pipe with heavy fluid loading excited by a radial 
point force, M = 1, 8=9.8. The line for the predicted response is dotted, accelerometer 
measurements solid, and the modal sensor measurements dashed. 

through the measurement method is higher for the modal sensors based on PVDF-
hlm, as the individual patches need to be aligned perfectly to completely cancel other 
modes, and when shaping and mounting the (prototype) modal sensor it is difhcult to 
get it right for all patches, resulting in small misalignments. Another possible source of 
modal leakage is bad electrical contact between the patches. During the experiments, 
the electrical connection between different patches sometimes suddenly disappeared. 
In most caaes this was easy to spot, as the output from the sensor changed completely, 
but in some cases it might have been left unnoticed. 

n > 2. Figures 9.9 and 9.10 show the accelerance for the M = 2 and n = 3 modes, 
respectively. The trends are the same as for the M = 0 and M = 1 modes, but as 
the number of patches is twice the mode number, the relative precision of the modal 
sensors tends to fall as M rises. 

The problems regarding the alignment of the individual patches become significant for 
the M = 3 sensor. As a result the performance of the n, = 3 modal sensor is poorer 
than the accelerometer decomposed measurements. The conclusion is that for low n, 
hand-made modal sensors are a sensible choice; but for higher n,, precision is crucial 
with modal sensors of the design used in this thesis. 
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Figure 9.9: Modal accelerance for a pipe with heavy Enid loading excited by a radial 
point force, n = 2, 8=24.5. The line for the predicted response is dotted, accelerometer 
measurements solid, and the modal sensor measurements dashed. 
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Figure 9.10: Modal accelerance for a pipe with heavy Euid loading excited by a radial 
point force, M = 3, 8=14.7. The line for the predicted response is dotted, accelerometer 
measurements solid, and the modal sensor measurements dashed. 
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Figure 9.11: Synthetic point accelerance for a pipe with heavy Huid loading excited by 
a radial point force, g = 0.29. The line for the predicted response is dotted and the 
measured solid. 

9.2.2 Synthetic point accelerance 

As discussed in section 8.2.1, the synthetic point accelerance is the sum of all measured 
modal contributions at a given axial position. For this reason, the synthetic point 
accelerance only makes sense for the accelerometer decomposed measurements, as they 
are taken at the same axial position, while the modal sensors are at different axial 
positions. A sum of modal responses aa measured by modal sensors would therefore 
not be related to the point response of the pipe wall, and would hardly have any 
physical relevance at all. 

Figures 9.11-9.13 show the synthetic point accelerances for the axial positions g 
s = 14.9, and s = 25.1. 

0.29, 

The curve in hgure 9.11 is not as smooth as the corresponding curve for the light 
Suid loaded case (figure 8.7), but the overall agreement is still impressive. The low 
frequency accelerance is still dominated by peaks, which can be related to standing 
waves of primarily the bending mode. The measured curve does not possess the seime 
dynamic range as the predicted curve: the cuton peaks are lower than predicted and 
the troughs between the peaks are not as deep as the predicted ones. 

The agreement between the measured and predicted accelerance in hgures 9.12 and 
9.13 is fair, but the measured curves tend to roll off at high frequencies. While the 
general level of accelerance is lower for the heavy Auid loaded pipe than for the light 
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Figure 9.12: Synthetic point accelerance for a pipe with heavy fluid loading excited by 
a radial point force, g = 14.9. The line for the predicted response is dotted and the 
measured solid. 
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Figure 9.13: Synthetic point accelerance for a pipe with heavy fluid loading excited by 
a radial point force, s = 25.1. The line for the predicted response is dotted and the 
measured solid. 
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Suid loaded pipe, the features of the curves are very similar. 

The roll off and the smearing of the details of the measured curves are both discussed 
in section 8.2.1. 

9.3 Power flow for pipe excited at the pipe wall 

9.3.1 Pr inciple of modal power flow m e a s u r e m e n t 

In section 8.3.1 two different principles for power Sow measurement are proposed: one 
for the input power to a structure, and another for the modal power How. 

The input power measurement method is valid no matter the level of the Suid loading. 
The input power will of course be dependent on the fluid loading, since both input force 
and the resulting acceleration of the point of excitation are a&cted by the properties 
of the internal Suid. For the heavy fluid loaded case, the input power per unit input 
force is expected to be smaller than for the light Buid loaded case, as the acceleration 
response of the pipe wall is smaller due to the added mass of the water-hlled pipe. 

The three assumptions presented in section 8.3.1 to justify the modal power Sow mea-
surement method, were: 

# It is assumed that orthogonality allows the axial power How in the different 
circumferential modes to be treated independently. 

# It is assumed that there is only one branch that propagates significant vibroa-
coustic power for each n, and that any modal radial vibration measured is related 
to this branch. 

# It is assumed that the anechoic termination of the pipe is perfect, and ag a result 
there is one-directional propagation in the pipe. 

For the 6rst and the last of these assumptions, the comments presented in section 8.3.1 
also apply here. It is argued below that the second assumption also remains valid for 
the heavy Suid loaded case. 

For light fluid loading, the argument regarding the second assumption was that for 
n > 1 at most one mode was propagating and that for n = 0, the axial structural 
branch dominated the other two. In the case of heavy fluid loading, the Erst statement 
still applies for n > 1. However, for n = 0 the response of the pipe wall is no longer 
dominated by the axial structural branch, but by the axial fluid branch. When the 
Suid loading is heavy, the pipe walls appear relatively soft. For the water-filled PVC 
pipe used for the experiments presented in this chapter, more than 99 % of the power 
flow in the n, = 0 mode is carried by the fluid for D < 0.3, as seen in hgure 9.14. The 
torsional branch is not excited by radial excitation, and therefore carries no power flow 
in this case. 
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Figure 9.14: Predicted power Bow for a pipe with heavy Euid loading excited by a 
radial point force, a = 15, M — 0. The line for the Auid-borne power Eow is solid and 
the structural-borne power Sow is dotted. 

The modal far held power Sow can therefore still be calculated from the measured pipe 
response, using equation (8.5) that is restated here for convenience: 

PnSax — 
% 

ra,l| 

n , l 

It should be noted that the above comments regarding the power Aow only apply 
strictly for sufficiently heavy fluid loading. For intermediate Huid loadings (e.g. a steel 
pipe hlled with water), the picture is not so clear although the error made by applying 
the above method turns out to be small. This is discussed in more detail in chapter 
11. 

9.3.2 Modal power How results for point force excitation 

The modal power Sow measured using the method presented in the previous section is 
plotted for M = 0 to 3 in figures 9.15-9.18. The power Sow is measured using both the 
accelerometer decomposition method and the modal sensor method. 

For each n, the modal power Sow is measured at various axial positions (the positions of 
the different modal sensors). Some of the measurement positions are relatively far away 
from the point of excitation (up to 25 radii), but the modal power Sow is theoretically 
the same at all axial positions, as the modes are supposed to be orthogonal (the Srst 
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assumption in the previous section) so that power injected into one mode M stays in 
that mode. The constant-power prediction is, however, only true for lossless media, and 
as there is a substantial loss in the pipe material (the loss factor of PVC was measured 
at approximately 3 %), the power injected by the source tends to be underestimated at 
a far held measurement point. The underestimation becomes larger, the further away 
from the source. 

Figures 9.15-9.18 show that it is generally true for all modes (disregarding individual 
peaks) that the measured power How is smaller than the predicted. The sole exception 
is for M = 2 (hgure 9.17). Here the power Aow measured by the modal sensor is 
larger than the predicted response from approximately 700 Hz upwards. A possible 
explanation for this behaviour is modal leakage from the n = 3 mode, which cuts on 
at approximately this frequency. 

The modal power flow of the n = 0 mode measured with the modal sensor is clearly 
closer to the predicted response than the accelerometer method at low frequencies. On 
the other hand the roll oE at high frequencies is more pronounced for the modal sensor 
measurements. This is a general trend (except for n = 2 discussed above), and as 
discussed in the previous section, it can probably be related to the local damping eSect 
from the adhesive tape used to position the modal sensor and the aluminum tape used 
to shield the modal sensor from external electrical disturbances. 

As discussed in the previous section, the bad performance of the M = 3 modal sensor is 
probably caused by small misalignments of the individual patches of the modal sensor. 

9.3.3 Total power How 

Figure 9.19 shows the total power Bow. In view of the problems discussed with the indi-
vidual modal power Hows, the agreement between the measurements and the predicted 
response is surprisingly good for the modal sensor measurements. The accelerometer 
method overestimates the power flow at low frequencies by several decades; this can be 
related to error in the n, = 0 mode, as discussed in section 8.3.3 for the light fluid load-
ing case. Neither of the measurement methods is capable of capturing the predicted 
cuton peaks of the higher order modes, but still the overall agreement is quite good. 

9.4 Fluid excited pipe: accelerance measurements 

All the previous measurements presented in this thesis have been excited by a radial 
force applied externally on the pipe wall. The measurements presented in the rest 
of this chapter, are all excited by a hydrophone transmitting in the contained fluid. 
The wall response measurements are all done using the modal sensors. It might have 
been be possible to assume stationarity and then use the accelerometer decomposition 
method, but measurements with modal sensors are much more practical as they require 
no repeat testing and no (n ^ 1) or little (n = 1) postprocessing. 
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Figure 9.15: Modal power Sow for a pipe with heavy Enid loading excited by a radial 
point force, n = 0, s = 20. The line for the predicted power Sow is dotted, the 
accelerometer measured solid, and the modal sensor measured dashed. 
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Figure 9.16: Modal power Sow for a pipe with heavy Suid loading excited by a radial 
point force, M = 1, g = 4.9. The line for the predicted power Sow is dotted, the 
accelerometer measured solid, and the modal sensor measured dashed. 
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Figure 9.17: Modal power Sow for a pipe with heavy fluid loading excited by a radial 
point force, M = 2, g = 24.5. The line for the predicted power Sow is dotted, the 
accelerometer measured solid, and the modal sensor measured dashed. 
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Figure 9.18: Modal power How for a pipe with heavy Buid loading excited by a radial 
point force, M = 3, s = 14.7. The line for the predicted power How is dotted, the 
accelerometer measured solid, and the modal sensor measured dashed. 
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Figure 9.19: Total power Sow for a pipe with heavy Suid loading excited by a radial 
point force. The line for the predicted power Eow is dotted, the accelerometer measured 
solid, and the modal sensor measured dashed. 

The measurement setup of the transmitting hydrophone is discussed in section 9.6.1. 
For reasons discussed in section 9.6.1, no excitation was provided below 100 Hz. When 
comparing the hydrophone excited measurements with the point force excited mea-
surements, it should be kept in mind that the frequency range between 10 and 100 Hz 
(where most of the peaks due to standing waves are) is not included in the hydrophone 
excited measurements. 

During the early experiments with the transmitting hydrophone, the hydrophone was 
placed on the axis of the pipe. If the hydrophone behaved like a point monopole, 
only the M = 0 mode (both Suid and structural) should be excited at low frequencies. 
However, this was not the case and other modes were excited. Measurements of the 
far held pressure radiated by a hydrophone, made by B&K (Bruel&Kjaer 1992) in a 
free held, have shown that a hydrophone to a large extent behaves like a monopole 
(omnidirectional radiation). Inside the pipe, the hydrophone is not in a free held and 
it is questionable whether the active element of the hydrophone is sufficiently small, 
compared with the shortest wavelengths involved, to be regarded as a point source. 
There is the further issue of the blockage due to the hydrophone body, and another 
complication is the support of the hydrophone which acts as a rigid connection between 
the hydrophone and the pipe wall. The point monopole on the axis of the pipe excites 
only the M = 0 mode because the excitation of modes with M > 1 cancels due to the 
symmetry of the excitation. All the complications mentioned above disturb the ideal 
situation of symmetry, and therefore other modes are excited by the hydrophone even 
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Figure 9.20: Modal accelerance for a pipe with heavy Suid loading excited by a trans-
mitting hydrophone, n = 0, g = 20. The line for the predicted accelerance is dotted 
and the modal sensor measured dashed. 

when it is placed on the centerline. 

To provide an excitation of the Guid that is not relying so much on the symmetric 
properties, the hydrophone is placed halfway between the centerline and the pipe wall. 
In the predictions, the excitation is a point monopole placed at (rg, Sg) = (0.5,0,0). 

Figures 9.20-9.22 show the modal accelerance for modes n = 0 to 2. 

For M = 0, there is generally good agreement between measurement and prediction of 
the accelerance. There are some troughs in the measured accelerance, but strangely 
hardly any peaks. The modal leakage from the cuton of the higher modes is hardly 
noticeable. There is a slight roll oS of the measured accelerance, but the roll oGF is 
significantly smaller than for the point force excited measurement. The reason for this 
is probably that the damping in the pipe wall material has less signiBcance for Euid 
excitation, as most of the power Aow is contained in the Huid. 

Comparison of the measured accelerance with the predicted accelerance for the = 1 
mode (hgure 9.21) shows there are rather large discrepancies at both high and low 
frequencies. The high frequency roll oE is probably related to the damping in the shell 
wall discussed above. As noted in section 9.6.1, the local reinforcement inserted in 
the pipe wall to accommodate the hydrophone support aSected the local properties 
of the pipe wall. The discontinuity of the pipe wall affects the cuton of the M = 2 
mode, which could result in significant modal leakage. The level of accelerance at 
approximately 200 Hz is approximately the same for the M = 1 and n = 2 modes, but 
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Figure 9.21: Modal accelerance for a pipe with heavy Suid loading excited by a trans-
mitting hydrophone, M = 1, g = 4.9. The line for the predicted accelerance is dotted 
and the modal sensor measured dashed. 

this may be a coincidence. 

The measured accelerance for the M = 2 mode (figure 9.22) has a signiBcant accelerance 
response below cuton of the first structural branch. This was also the case for the 
experiments excited by a radial point force, so it may be related to modal leakage 
from other modes. The cuton of the Srst structural branch is clearly visible, but 
the peak is not resolved during the measurements. At the cuton frequency of the 
M = 3 mode there is a clear trough in the measured accelerance for M = 2. This 
is probably related to some sort of modal interference through misalignment of the 
patches that make up the modal sensor, as a closer examination of the complex response 
obtained from the PULSE Multi-analyzer shows a change of sign at this frequency. If 
there are misalignments then the response from the different patches might be slightly 
out of phase, producing a complicated interference that cannot easily be interpreted. 
Above the cuton frequency the general agreement between the measured and predicted 
accelerance is good, although the measurements show a slight overestimation of the 
accelerances. 

The modal accelerance for the M = 3 mode is not plotted as all the comments made for 
figure 9.22 also apply for M = 3, except that the accelerance is smaller than predicted. 
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Figure 9.22: Modal accelerance for a pipe with heavy Guid loading excited by a trans-
mitting hydrophone, M = 2, g = 24.5. The line for the predicted accelerance is dotted 
and the modal sensor measured dashed. 

9.5 Fluid excited pipe: power How measurements 

The power Sow measurement method for heavy Suid loading presented in section 9.3.1 
also applies when the Suid filled pipe is excited by a monopole in the internal Suid, as 
the modal power How is dominated by the same branches. However, this is not generally 
the case and other types of excitation may lead to diSFerent dominating branches. 
While other types of excitation are not addressed in the present thesis, the power Aow 
measurement method can be adapted, provided the conditions discussed in section 
9.3.1 are met and a suitable modal power 8ow factor is dehned. 

As noted in section 8.3.1.2 it would be possible to express the modal power Sow factor 
using predicted results from an internal monopole, but as the resulting power Sow is 
the same when the assumptions in question are met there is no point in doing so. 

9.5.1 Modal power flow 

The modal power Sows presented in this section are calculated using equation (8.5) 
along with the wall accelerance measurements from the previous section. The modal 
power Sows inferred from this was are plotted in Sgures 9.23-9.25 (modes n, = 0 to 
M = 2), with the predicted power Sows also plotted for for comparison. 

Figure 9.23 shows broad agreement for the M = 0 mode in respect of overall trends, but 
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Figure 9.23: Modal power How for a pipe with heavy Auid loading excited by a trans-
mitting hydrophone, n = 0, a = 20. The predicted power Sow is dotted, and the modal 
sensor measured dashed. 

the measured power How is impaired by the large number of troughs dipping several 
orders of magnitude below the predicted power Aow. The dips are apparently not 
related to the cuton frequencies of higher order modes. 

At low frequencies the measured power Sow for the M = 1 mode (Sgure 9.24) is 2 decades 
larger than the predicted power Sow. At mid-frequencies there is a good agreement 
between the measured and predicted power Sows, but at high frequencies the measured 
power How is several decades smaller than the predicted power How. Taking a broad 
view on Rgure 9.24 the overall trend in the measured power flow is different from the 
trend in the predicted power Sow. A slight dip can be seen in the measured accelerance 
approximately at the cuton frequency of the n = 3 mode. 

The same dip at the n, = 3 cuton frequency can be seen in figure 9.25 (n = 2). The dip 
is not predicted theoretically, and a possible reason is the modal interference discussed 
in the previous section. Away from these frequencies, the power flow inferred from the 
measurement of the 7%, = 2 mode tends to be higher than the theoretical prediction 
based on modelling the hydrophone as a monopole source. 

9.5.2 Total power flow 

The modal contributions of the power Sow from n. = 0 to M = 3 have been summed in 
Sgure 9.26. 
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Figure 9.24: Modal power Sow for a pipe with heavy Suid loading excited by a trans-
mitting hydrophone, M = 1, a = 4.9. The predicted power flow is dotted, and the 
modal sensor measured dashed. 
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Figure 9.25: Modal power Sow for a pipe with heavy Enid loading excited by a trans-
mitting hydrophone, M = 2, a =: 24.5. The predicted power flow is dotted, and the 
modal sensor measured dashed. 
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Figure 9.26: Total power Sow (modes n=0,l,2,3) for a pipe with heavy Auid loading 
excited by a transmitting hydrophone. The predicted power Sow is dotted and the and 
the modal sensor measurements dashed. 

As for the force excited measurements, the agreement between the measured and the 
predicted power Sow using the modal sensors is striking. To obtain such good agree-
ment from the somewhat erratic behaviour of some of the modal power Sows, requires 
that none of the large dips seen in each of the modal power Sows happens at the same 
frequencies for different modes. It may be that some of the dips are caused by in-
sufScient anechoic termination; but as the different modal measurements are made at 
different axial positions, the frequencies of the standing wave troughs will be different. 

The relatively poor measurements of the modal power Sow for n, = 1 and n, = 3 make 
hardly any contribution to the total power Sow, as the total power Sow is largely 
dominated by M = 0 at low frequencies and n, = 2 at high frequencies. 

9.6 Detailed comments on the experimental setup 

9.6.1 Hydrophone excitation of the fluid 

While a transmitting hydrophone in theory could be used as a source of excitation 
for both light and heavy Suid loaded experiments, the hydrophone proved a relatively 
inefficient sound source in air, and the signal to noise ratio was too small to make 
reliable measurements. 
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Figure 9.27: Hydrophone mount. 

In the water-filled pipe, the hydrophone provided a reasonable signal to noise ratio 
in the single frequency and sweeping modes, but not in the broadband mode. All 
experiments were therefore made in sweeping mode with peak hold on the PULSE 
Multi-analyser. If any sudden extraneous noise disturbed the measurement, it was 
simply repeated. During the experiments this happened quite often for frequencies 
below 100 Hz, so the excitation was sweeping only from 100 Hz upwards and results 
below this frequency was discarded. 

To position the hydrophone inside the pipe a hydrophone mount was used, as seen in 
figure 9.27. The hydrophone mount allowed the hydrophone to be traversed along a 
diameter of the pipe, but the position of the hydrophone was fixed in the axial and 
circumferential direction. As the water-filled pipe was pressure tested to at least 400 
kPa the hydrophone mount had to be rather large to provide enough adhesion area to 
be glued to the pipe. The mount covered almost tt radians of the circumference and 
undoubtedly added significant added mass and stifi"ness to the pipe, but it is difiicult 
to quantify the resulting error on the measurements. 

The smallest available hydrophone was a B&K 8103 hydrophone with a diameter of 
9.5 mm and a length of approximately 25 mm. This is by no means a point source in a 
pipe with a diameter of approximately 60 mm, but again it is difficult to quantify the 
resulting error on the measurements. 

The mount of the hydrophone was less than ideal during the measurements, partly due 
to the mass and stiffness effects already discussed, but also due to the radial orientation 
of the hydrophone. Given the rather large hydrophone, the preferred orientation would 
have been axial not radial. With a coaxial placement of the pipe and the hydrophone, 
axisymmetric excitation would have been possible, thus not exciting any modes other 
than n = 0. Unfortunately the practical problems with a coaxial placement were too 
many, and the radial placement was chosen as it was reasonably easy to install. 

The hydrophone was calibrated in air to find a source calibration factor, expressed 
as the distance normalised pressure in a free field. By assuming a very high source 

153 



impedance of the hydrophone in comparison with the heavy Bnid loaded pipe, the 
calibration factor for the hydrophone could be used along with the density of the 
internal Euid to hnd the corresponding monopole source strength: 

^ (9.1) 

where is the monopole source strength (distance-normalised pressure) as it appears 
in equation (5.17); = 9.92-10"^^ m^/V is the hydrophone calibration factor for the 
hydrophone used during the experiments; and y is the voltage supplied by the B&K 
2713 power amplifier. 

9.6.2 Fluid anechoic t e rmina t ion of finite p ipe 

The basic concept of the Suid anechoic termination used in the present thesis is to 
continue the measurement pipe into a long Sexible rubber hose, that will dissipate the 
energy of any acoustic pressure Suctuations. The main difficulty with this approach is 
to avoid reflection of Auid-borne sound at the impedance jump between the measure-
ment pipe and the connected rubber hose; and to ensure that all 8uid-borne sound is 
dissipated in the rubber hose. 

The minimise the impedance jump problem, an impedance matching segment was 
added between the measurement pipe and the rubber hose. The idea of this segment is 
to gradually match the pipe-wall impedance from the measurement pipe to the rubber 
hose. To make the impedance match, the end of the measurement pipe (approximately 
the last 0.5 m) is perforated with an increasing density of holes in the axial direction 
and the long rubber hose is then clamped to the measurement pipe just before the 
Srst perforation. The distribution of the holes at the ends of the measurement pipe 
was designed so the impedance was gradually lowered from the wall impedance of the 
measurement pipe to the impedance of the rubber hose. 

Even though the impedance matching segment reduced the rejection of Huid-borne 
sound, a greater length of rubber hose could possibly have reduced the rejections 
further, but 30 m was the practical limit and no further attempts were made. 

9.6.3 Moda l sensing of p ipe wall v ibra t ion us ing moda l sensors 

Two di%rent types of modal sensors were used during the experiments: a PVDF-wire 
wound around the pipe for the axisymmetric M = 0 mode, and patches of PVDF 61m 
for M = 1 to n = 3. 

9.6.3.1 P V D F wire m e t h o d for measuring the a x i s y m m e t r i c m o d e 

The PhD-thesis by Briscoe (1994), and the subsequent papers by Pinnington and 
Briscoe (1994) and Briscoe and Pinnington (1996), describe a method of measuring 
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the radial component of axisymmetric vibrations of a pipe, using a piezoelectric PVDF 
wire wound around the circumference of the pipe. Briscoe (1994) showed that a PVDF 
wire (Vibetek 20, Ormai Ltd.) haa a constant charge sensitivity over a wide frequency 
range and is well suited as an axisymmetric modal sensor. 

If a wire is wound N times around a pipe, then the extension of the wire AZ, can be 
related to the radial component symmetric displacement w by AZ, = 27r#w, provided 
no offset error is introduced by the finite thickness of the pipe wall and the wire. The 
charge produced by an extension of the wire is C = 5'AZ,, where 5" is the charge 
sensitivity of the wire (approx. 2.4 -10^ pC/m for Vibetek 20). The radial component 
of vibration can thus be deduced from 

This relation assumes that the charge generated in the PVDF wire from axial and 
torsional stresses in the pipe is negligible. This assumption was assessed in Briscoe 
(1994) and he concluded that it was completely justihed. Also the measurement error 
related to overlap in the winding of the wire around the pipe was assessed and his 
conclusion was, that if good care was taken in cutting the wire to match an integral 
number of turns around the pipe, the contributions from higher order modes to the 
measured result would be negligible too. 

9.6.3.2 Shaped P V D F film sensors for higher order m o d e s 

The shaped sensors used in the present thesis are based on the work by Variyart and 
Brennan (1999). They applied the shaped sensor principle for a modal sensor for n = 2, 
but not for M = 1 and n = 3. Theoretically, the shaped sensor principle can also be 
applied for the axisymmetric mode, but this has not been done for the present thesis. 

The shaped sensor consists of patches of piezoelectric (PVDF) film bonded to the 
outside of the pipe. The patches are then connected electrically in a special way to 
amplify certain circumferential modes and cancel the rest. A picture of a prototype 
modal sensor can be seen in hgure 9.28. 

It is assumed that the bonding is complete, so the strain on the outside of the pipe is 
replicated in the piezoelectric material. Furthermore the added mass, added stifFness, 
and added damping are assumed to be negligible, so the vibration of the pipe is unaf-
fected by the presence of the piezoelectric material. As shown during the experiments 
in the present thesis with the modal sensors, this might not always be the case. 

Some of the background detail for the shaped modal sensors is presented in appendix 
A, but for a more complete reference see Variyart and Brennan (1999). 

The PVDF-hlm modal sensors are displacement sensors, so the charge generated is 
proportional to the radial displacement of the pipe wall. The total displacement can 
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Figure 9.28: Prototype n = 3 modal sensor mounted on pipe wall, 

be written as the sum of the modal displacements; 

OO 00 oo 
w = (9.3) 

n = 0 n = 0 b = l 

Here Wnb is the modal displacement amplitude to be recovered through the measure-
ments. In the application of the equation it is convenient to substitute the cos part of 
the above expression, as the angle between excitation and vibration, Og, is not known, 
with 

cos{n{6 — 9o)) = cos(n^) + sin{n9) (9.4) 

where (pc = cos(n9o) and (f)s = sin(n6'o). 

A modal sensor for n = 1. For the n = 1 mode, the cross section of the pipe is 
unaltered and thus the main strain at low frequencies is related to the axial stretching 
of the pipe that accompanies bending (the pipe acts like a beam). When the dominant 
strain is in the axial direction, the charge is generated by the n = 1 modal sensor in 
accordance with equations (A.11) and (A.12) in appendix A. 

At low frequencies, there will be only one propagating branch (b = 1) for the bend-
ing mode and it is therefore not necessary to sum up the contributions for different 
branches. 

The simplified charge equations for the cosine and sine n — 1 modal sensors are then: 

(9.5) 
9c,n=i = 47r(;6ce322/oOKiiWiie"'"^':Ji(/(n6a) 

where 632 is a piezoelectric stress constant; i/o is the offset of the sensor from the 
midplane of the pipe wall; Sc is the center position of the sensor; and bs = b/a, where 
b is half the width of the sensor. 
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Prom equation (9.5) a cosine and a sine part of the modal displacement amplitude 
can be recovered. By combining the sine and cosine parts, the modal displacement 
amplitude for for M = 1 can be obtained as 

(9.6) 

1 1 I Qs,n=l 

If needed can be found as 

^ tan-^ ( ) (9.7) 

Unfortunately, the axial wavenumber appears in the equation (9.5) and this is a bit 
disturbing, as post-processing is needed to calculate the response. Equation (9.5) is 
only valid below the cuton frequency of the second propagating branch for 7% = 1, 
because the summation over the branches is left out. 

A modal sensor for M = 2. The = 2 mode is also dubbed the ovalling mode, for 
the simple reason it bounces back and forth in the distinct shape of two ovals. This 
generates large circumferential strains that can be detected using equations (A. 15) and 
(A.16) in appendix A. It is possible to reduce these equations further by using the 
small argument series expansion of the Bessel function, Morse and Ingard (1968), 

Using this, the charge equations can be reduced to 

3 
9c,n=2 = 27r<^ce3l6a^oGyi/^ 

t ' / (9.9) 

6=1 ^ a / 

where egi is a piezoelectric stress constant. For frequencies below the cuton of the sec-
ond propagating branch for M = 2, the summation can be left out and the displacement 
amplitude can be recovered as for the M = 1 modal sensor. The axial wavenumber is not 
appearing in equation (9.9) and therefore no subsequent postprocessing is necessary, 
as the relation between the charge and the displacement amplitude can be formulated 
as a charge sensitivity that can be stored in the PULSE Multi-analyzer. 

A modal sensor for M = 3 The main characteristic of the M = 3 or teddy bear 
mode is the same as for the M = 2 mode with large circumferential strains. The 
reduced charge equations for the n = 3 mode are 

8 
9c,n=3 = 27r^ce3i6^2/oa ̂  n , (9.10) 

6=1 ^ a 

157 



9a.»=3 = 27r(̂ ê3i6g2/oO ^ n , (9.11) 

For frequencies below the cuton of the second propagating branch for M = 3, the 
summation can be left out and the displacement amplitude can be recovered as for the 
M = 2 modal sensor. 

Modal sensors for n, > 4 By using equations (A. 15) and (A. 16) in appendix A 
modal sensors can be created for arbitrary high n. However, as shown in section 9.2.1 
the precision regarding the shaping and the mounting of the sensors become even more 
crucial the higher the mode M. 

9.7 Conclusion 

The measurement principles presented in part I of the present thesis have been applied 
to a pipe with heavy Huid loading with good results. The excitation of the pipe is 
provided both by a radial point force at the shell wall and a transmitting hydrophone 
in the interior Suid, and the conclusions for each type of excitation are presented 
separately in what follows. 

9.7.1 Experiments with structural excitation 

The response of the pipe wall has been measured by modal decomposition of accelerom-
eter measurements and by modal sensors. Both types of measurements are compared 
with predictions from the prediction model in chapter 6. 

If one compares the pipe with light Suid loading and the pipe with heavy Auid loading, 
the two most notable differences are the generally lower levels of accelerance and the 
lower cuton frequencies for the heavy Auid loaded pipe. The reduced level of accelerance 
is related to the increased mass of the Auid-Elled pipe in the case of heavy Euid loading, 
while the lower cuton frequencies of the higher order modes can be explained by the 
lower relative stiffness of the shell wall for the pipe with heavy Auid loading. Apart 
from these differences, the conclusions from chapter 8 drawn from the experiments on 
a light Huid loaded pipe also apply for a heavy Guid loaded pipe. 

The measured accelerance obtained by using the PVDF wire as a modal sensor for 
the M = 0 mode compares signiScantly better with the predicted accelerance at low 
frequencies than the accelerance obtained through decomposition of accelerometer mea-
surements. The modal sensor for M = 1 and the decomposed measurements produce 
similar accelerances that compare well with the predicted accelerances. However, at low 
frequencies both the modal sensors for n — 2 and M = 3 and the modal decomposition 
method measure accelerances higher than predicted. 

For the higher order modes, the sharp increase in accelerance at the cuton of the hrst 
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structural branch of the higher order modes is resolved nicely in all measurements, 
but the M = 2 modal sensor measures a larger accelerance than predicted at higher 
frequencies, while for yt = 3 both the modal sensor and the accelerometer decomposition 
measure smaller accelerances than predicted. 

The modal sensors are easy to use and they produce generally smaller modal leakage 
than the modal decomposition of accelerometer meaaurements, but especially for the 
higher order modes the patches of the modal sensor need to be shaped and mounted 
with high precision to obtain quality meaaurements. 

The conclusion regarding the modal measurement technique is that both measurement 
principles are workable, but the meaaurements with the modal sensors are a lot faster. If 
the modal sensor principles used in the present investigation could be taken beyond the 
early prototype state to allow for higher precision and reliability, then their performance 
would undoubtly be even better than shown during these experiments. 

9.7.2 Expe r imen t s with fluid cxci tat ion 

The response of the pipe wall is measured solely by modal sensors during the ex-
periments with fluid excitation. The Buid excitation is provided by a transmitting 
hydrophone inside the pipe. Otherwise the experimental setup is similar to the exper-
iments excited by a structural force. 

Generally the tendencies regarding the measured modal accelerances are the same as for 
the structural force measurements: in particular the accelerance measured by the m = 0 
modal sensor compares well with the predicted accelerance. For M = 1 the measured 
accelerance is larger than predicted at low frequencies, but lower than predicted at 
higher frequencies. Below cuton of the structural branch of both the M = 2 and M = 3 
modes the measured accelerance is higher than the predicted accelerance, while the 
measured accelerances at higher frequencies are higher than predicted for n = 2 and 
lower than predicted for n = 3. 

The total power Sow measured by the modal sensors compares surprisingly well with 
the predicted total power Aow. The relatively poor measurements of the modal power 
Hows for n = 2 and M = 3 at low frequencies make hardly any contribution to the 
total power Aow, while the n, = 2 mode dominates at higher frequencies where the 
measurements of the modal power flow for M = 0, n = 1 and 72 = 3 are relatively poor. 

The main conclusion from the experiments with Huid excitation is that the measure-
ments and the predictions for each mode generally agree quite closely, where the mode 
makes a signihcant contribution to the power Bow. 
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Chap te r 10 

Conclusion and discussion 

As stated in chapter 2 the main objective of the research programme is to And ways of 
quantifying hydroacoustic noise sources coupled to a Euid-filled pipe system. There is 
an industrial interest in both experimental and numerical approaches to this problem. 
In the present thesis an experimental and a numerical simulation method have both 
been investigated. 

The main conclusions are listed below. In the following two sections the conclusions 
from the two methods are presented separately. The chapter ends with an appraisal of 
the entire research programme. 

10.1 List of conclusions 

# The concept of numerical calculation of the vibroacoustic power Sow excited 
by the turbulent How past a Sow obstruction inside Huid-hlled pipes have been 
devised. The concept involves three steps: numerical calculation of the Suid 
How, construction of a vibroacoustic analogy, and calculation of the vibroacoustic 
power Aow from the equivalent mechanical and acoustical sources. Numerical 
calculation of the Suid Sow is not part of the present thesis, the vibroacoustic 
analogy is presented in chapter 4, and chapter 6 presents the calculation of the 
vibroacoustic power Sow. 

# The relative Mach number scaling for monopole, dipole and quadrupole type 
sources that applies in a free held also applies inside pipes with light and heavy 
Suid loading. The relative scaling of multipole source is investigated in chapter 
4. 

# For Suid-Slled pipes the vibroacoustic response and the vibroacoustic power Sow 
can be predicted for two fundamentally different types of excitation: mechanical 
(via the structure) and acoustical (via the Suid). The structural excitation is in 
the form of a point force, while the acoustical excitation is in the forms of a point 
monopole, a point dipole, and a point quadrupole in the interior Suid. Chapter 
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6 contains the prediction model for point force and point monopole excitation, 
while the derivation of point dipoles and the point quadrnpoles from the point 
monopole Green function is presented in chapter 4. 

The vibroacoustic power Row in anechoically terminated Suid-hlled pipes with 
light and heavy Suid loading can be measured for frequencies below 0.2 times the 
ring frequency of the pipe using either an accelerometer array or shaped PVDF 
modal sensors. Chapter 3 presents the power Bow measurement concept, while 
the experiments are presented in chapters 8 and 9. 

10.2 Experimental quantification of vibroacoustic 
power How 

The concept of the experimental method has been presented in chapter 3. The valida-
tion tests of chapter 8 and 9 were carefully designed to create a common scenario that 
allows both numerical prediction and experimental realisation. This is accomplished 
through doubly infinite pipes in the numerical prediction, and anechoic termination of 
the hnite pipe used in the experiments. When the scenario is established, comparison 
of the measured and predicted response of the pipe wall allows the vibroacoustic power 
Sow in the experimental realisation to be inferred from the predicted vibroacoustic 
power How subject to certain conclusions being met. These are: the power How in 
diSerent circumferential modes can be treated independently; only one propagating 
branch for each circumferential mode; and there are only outgoing waves from the 
noise source. These assumptions are quite restrictive, but they allow the experimental 
quantihcation of the vibroacoustic power How using only one set of measurements of 
the modal response of the pipe wall. If more sets of measurements were available, some 
of the assumptions could be relaxed; this is discussed in more detail in chapter 11. 

The experimental quantihcation principle has been validated by comparison between 
controlled experiments and numerical predictions in two cases where the above assump-
tions are met: pipe with light internal Huid loading, and pipe with heavy internal Huid 
loading. In both cases external Huid loading is present as there is air on the outside 
of the pipe. However, a part of the parameter study in chapter 7 assesses the e&ct 
of light external Huid loading of the pipe. The conclusion was that regardless of the 
internal Huid loading, the light external Huid loading has a negligible effect on both 
the dispersion curves and the calculated mobility of the experimental setup used in 
the verihcation experiments. As a result, the external Huid loading is disregarded in 
the present thesis (i.e. replaced by vacuum in the prediction model, from chapter 6, 
used to validate the experiments). Therefore any reference to e.g. 'light Huid loading' 
implies that no external Huid load is present and the internal fluid loading is light. 

In chapter 8, the measurement principles suggested in chapter 3 have been applied to 
a pipe with light Huid loading. The excitation of the pipe is provided by a radial point 
force. The measured modal accelerance is compared with the accelerance predicted by 
the prediction model in chapter 6. A common feature of all the comparisons between 
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the measurement and prediction is that the agreement improves as the measurement 
position is moved towards the point of excitation; in the near held of the point of 
excitation, the agreement is excellent. The modal measurement shows some modal 
leakage where accelerance from a strongly excited mode apparently leaks to a weakly 
excited mode. However, when all the modal contributions are summed to form a so-
called synthetic point accelerance, the strongly excited mode dominates the weakly 
excited modes, thus eSFectively removing the effect of the modal leakage. 

The agreement at low frequencies between the measured and predicted modal power 
Eows is generally good, but at higher frequencies there is a signihcant roll off. This 
high frequency roll off can probably be related to the relatively high damping of the 
pipe-wall material. 

The modal power Sows can be summed to form a total power Sow. The power input 
to the Suid-hlled pipe from the force excitation can be measured through simultaneous 
measurements of the input force and acceleration of the point of excitation. Com-
parison of the input power with the measured power flow shows fair agreement above 
approximately 100 Hz. 

Chapter 9 presents experiments on a pipe with heavy fluid loading. The excitation of 
the heavy huid loaded pipe is provided both by a radial point force at the shell wall 
and a transmitting hydrophone in the interior fluid. 

The structural excitation of the pipe with heavy huid loading is the same radial point 
force used as excitation during the experiments on a pipe with light Suid loading. A 
comparison between the results obtained from a pipe with light fluid loading and a 
pipe with heavy fluid loading, shows that the two most notable differences are the 
generally lower levels of accelerance and the lower cuton frequencies for the heavy huid 
loaded pipe. The reduced level of accelerance is related to the increased mass of the 
fluid-hlled pipe in the case of heavy Suid loading, while the lower cuton frequencies of 
the higher order modes can be explained by the lower relative stiffness of the shell wall 
for the pipe with heavy Auid loading. Apart from these differences, the conclusions 
from chapter 8 drawn from the experiments on a light Suid loaded pipe also apply for 
a heavy huid loaded pipe. 

During the experiments excited by a radial point force, the accelerance was measured 
using two diSerent measurement principles: modal decomposition of accelerometer 
measurements and directly with modal sensors. The measured accelerance obtained 
by using the modal sensor for M = 0 (a PVDF wire wound around the circumference 
of the pipe) compares signihcaatly better with the predicted accelerance at low fre-
quencies than the accelerance obtained through modal decomposition of accelerometer 
measurements. The modal sensor for = 1 (a number of shaped PVDP patches con-
nected electrically to amplify the wanted mode and cancel the rest) and the modal 
decomposition measurements produce similar accelerances that compare well with the 
predicted accelerances. The sharp increase in accelerance at the cuton of the hrst 
structural branch of the higher order modes are resolved nicely in all measurements, 
but the modal sensor for M = 2 measures larger accelerance than predicted at higher 
frequencies, while both the M = 3 modal sensor and the accelerometer decomposition 
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method measure smaller accelerances than predicted. 

The conclusion regarding the modal measurement technique is that both measurement 
principles are workable, but the measurements with the modal sensors are a lot faster. If 
the modal sensor principles used in the present investigation could be taken beyond the 
early prototype state to allow for higher precision and reliability, then their performance 
would undoubtly be even better than shown during these experiments. 

The modal response of the pipe wall was solely measured by modal sensors during the 
experiments with the transmitting hydrophone. Generally the tendencies regarding the 
measured modal accelerances are the same as for the structural force measurements: 
in particular the accelerance measured by the M = 0 modal sensor compares well with 
the predicted accelerances. 

The total power Sow measured by the modal sensors compares surprisingly well with 
the predicted total power Sow. The relatively poor measurements of the modal power 
Sows for n = 2 and n, = 3 at low frequencies make hardly any contribution to the total 
power How, while these modes dominates at higher frequencies where the measurements 
of the modal power How for n = 0 and n = 1 are relatively poor. 

For all measurements on pipes with light and heavy Auid loading and structural and 
fluid excitation, the conclusions have been that the agreement between measured and 
predicted total power How generally is good. However are power Sow measurements 
obtained with the measurement principle proposed in the present thesis only as good as 
the measurements of the pipe response, and the greatest possible care should be taken 
to ensure that the conditions for the response measurements are as close as possible to 
the ideal situation used in the predictions of the power Eow. The largest single source 
of error in the power Bow measurements as presently set up is probably rejections from 
inefhcient anechoic terminations. Other sources which may be important are geometric 
imperfections in the pipe (pipe bends, thickness variations, etc.), material imperfections 
in the pipe (e.g. weld lines and cast defects), and bubbles in the contained Suid. 

When experiments are conducted in industrial applications using the vibroacoustic 
measurement principle presented in the present thesis, it is difficult to predict the 
load impedance of the pipe. For this reason the exact conditions of any power Bow 
measurements should be stated along with detail of the experimental setup. 

It was the original intention also to present in this thesis measurements of the vibroa-
coustic power flow in a heavy Suid loaded pipe excited by the turbulent Auid Sow past a 
Sow obstacle. Unfortunately, problems with the experimental setup made it impossible 
to obtain a full set of modal response measurements, and time did not allow for another 
set of measurements once the problems with the experimental setup were taken care 
oE. However the preliminary results were very encouraging, and no new problems or 
shortcomings regarding the experimental method were identiGed during the Suid Sow 
excited experiments. 
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10.3 Numerical prediction of vibroacoustic power 
flow 

In chapter 4, the concept of numerical calculation of vibroacoustic power Bow from a 
Sow obstruction in a Suid-hlled pipe has been presented. 

The calculation involves three steps: 

i) Solution of the incompressible unsteady Sow around a flow obstruction inside the 
pipe using Computational Fluid Dynamics. 

ii) Construction of a vibroacoustic analogy that transforms the vibroacoustic excitation 
of the Sow past the Sow obstruction into an equivalent problem, where vibroacoustic 
excitation by structural and Suid point sources is applied to an unobstructed Buid-Elled 
pipe without flow. 

iii) Calculation of the vibroacoustic power 6ow from the equivalent point sources. 

The present thesis concentrates on steps ii) and iii) since a feasibility study showed that 
it is very complicated to obtain an unsteady time-resolved solution of the Euid flow. 
Step ii) involves the vibroacoustic analogy discussed in chapter 4, and the prediction 
model in chapter 6. Step iii) also involves chapter 6, and is the main focus of part II. 

A key part of chapter 4 is the investigation of the relative scaling of monopole, dipole 
and quadrupole type sources inside a fluid-fllled pipe. In free flelds there is a well 
established expectation regarding the relative scaling: if the Mach number is suflBciently 
low the radiated power in the free held for each source type scales as: l:Ma^:Ma^. The 
conclusion of the investigation is that the relative scaling remains the same inside a 
fluid-fllled pipe, but the so-called cross-over Mach number is reduced signiflcantly in 
the case of a pipe with heavy fluid loading. However, it is shown that the cross-over 
Mach number is still approximately one order of magnitude higher than typical Mach 
numbers of industrial interest in the present thesis. 

The result from the relative scaling investigation for sources inside a fluid-fllled pipe 
simplifles step ii) above. The transformation from the vibroacoustic excitation of the 
flow past a flow obstruction into the equivalent problem is simplifled considerably, 
as both the fluid monopole and fluid quadrupole excitation can be left out of the 
calculation. 

Another simpliflcation of the vibroacoustic analogy comes Arom the inclusion of tailored 
Green functions in the formulation. The tailored Green functions of a fluid-fllled pipe 
are closely linked to the complex point-to-point response functions of the pipe. The 
prediction model in chapter 6 provides relevant transfer functions for fluid-fllled pipes, 
excited either by point forces at the pipe wall or by point monopoles in the contained 
fluid. As noted above, the monopole itself is left out of the actual calculation, but from 
the tailored monopole Green function it is relatively easy to construct the corresponding 
dipole Green functions (and quadrupole Green functions, but they are left out as well). 

As implied above, the prediction model in chapter 6 is capable of calculating the 
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vibroacoustic response and the vibroacoustic power Aow in an doubly infinite Suid-
filled pipe for two different types of excitation: mechanical (via the structure) and 
acoustical (via the fluid). The structural excitation is assumed to be in the form of 
a point force applied to the shell, while the Suid excitation is in the form of a point 
monopole in the interior Euid. The prediction model is nondimensionalised to reduce 
the number of input groups to a minimum. The prediction model is used heavily in 
part n i where experimental results from controlled experiments are compared with the 
predicted results. 

Through a limited parameter study in chapter 7, the inHuence of some of the input pa-
rameters to the numerical model has been investigated through dispersion curves and 
point mobilities. Here it is concluded that the internal Suid loading is the most impor-
tant factor causing departures from a collapse on the parameters chosen. SigniScant 
changes in both the dispersion curves and mobilities are related to the fluid loading 
of the shell. An important part of the prediction model is the shell theory used. At 
the end of chapter 7 three diSerent shell theories are compared. The conclusion of this 
study is that the Donnell-Mushtari shell theory is not well suited for the relatively low 
frequency range and low circumferential mode orders of interest to the present thesis. 
The Goldenveizer-Novozhilov and the Fliigge shell theories produce very similar results 
that seem plausible from a physical point of view. Either of these theories could have 
been used for the prediction model, and the Fliigge theory was chosen for the present 
thesis. 

As noted in section 10.2, the experiments of part HI and the predictions using the 
model from chapter 6 produce similar results. The pragmatic approach to validation 
used in this thesis is that both the experiments and the prediction model are of such a 
complicated nature, that if they compare well it cannot be a coincidence. The overall 
conclusion is thus that the experiments validate the numerical model and vice versa. 

10.4 Appraisal 

The overall objective of this research programme is to find ways of quantifying hydroa-
coustic noise sources coupled to Suid-filled pipe systems. Two approaches have been 
investigated in the present thesis: experimental and numerical simulation. 

Both approaches have been successful in their own rights: controlled experiments have 
shown that the vibroacoustic power Bow from vibroacoustic sources in a fluid-filled pipe 
can indeed be measured using the proposed principles of measurement. The investiga-
tion of the vibroacoustic analogy have shown that the calculation of the vibroacoustic 
power Sow in a Suid-hlled pipe excited by the fluid Sow past a Sow obstruction is 
feasible, if an unsteady time-resolved solution of the Suid Sow is provided. ConSdence 
in each of the approaches has been gained by comparing them as much as possible. 

However, the original intention regarding the calculation of the vibroacoustic power Sow 
from a Sow obstruction in a Suid-Slled pipe was to conduct controlled experiments of a 
common scenario, and then compare the calculated power Sow with an experimentally 
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obtained power 8ow. As the research programme progressed it became more and more 
evident that the 3 years time span of a Danish Industrial PhD did not allow for such an 
ambitious goal. In the view of the author this would be the final test for the concepts 
presented in the present thesis. 
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Chap te r 11 

Implicat ions regarding t h e 
industr ia l applicat ion 

As noted in chapter 10, the objectives of the formal research programme have been 
met. However the present thesis is the product of an industrial PhD under the terms of 
the Danish Academy of Technical Sciences. In the Danish Industrial PhD Fellowship 
programme one of the main tasks of the PhD student is to apply the present knowledge 
(including sources from literature and the existing knowledge of the university) to the 
beneht of the industrial sponsor. The purpose of this chapter is to put the results from 
the present thesis into the industrial context presented in chapter 1. 

It was discussed in chapter 4 that it is not possible to obtain an unsteady time-resolved 
solution of the fluid Sow using the industrial CFD-code Star-CD. This reduces the prac-
tical industrial use of the proposed concept of applying numerical calculation methods 
to vibroacoustic power Aow excited by fluid Sow in a pipe. Nonetheless the concept 
will become workable when future industrial CPD-codes are capable of solving the 
unsteady Suid Sow. 

The prediction model from chapter 6 can be used directly to answer simple questions 
of the type: does a force in the fluid drive the Suid-Elled shell more efhciently than 
the same force applied to the shell wall; or how far away from a point of excitation 
does the power Sow redistribute between evanescent and propagating waves in a given 
application? However, the answers obtained by the prediction model may be of limited 
industrial interest, as strictly speaking they only apply for inSnite pipes. The prediction 
model would be more useful &om an industrial point of view if it included some of the 
common complications present in heating systems, for example pipe bends, radiators 
or reservoir tanks. This is presented as a suggestion for further work in chapter 12. 

On the basis of the experiments presented in part III, it was concluded that the ex-
perimental method proposed in chapter 3 for power Sow measurements is workable for 
Suid-Slled pipes with both light and heavy internal Suid loading. A key part of the 
arguments leading to the positive conclusion concerns the modal power Sows: if the 
power Sow in each of the circumferential modes can be measured independently, then 
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the total power Bow is the sum of the modal power Sows. The proposed method in 
its present form only allows one branch for each mode to contribute signihcantly to 
the modal power How. For the parameter range of industrial interest this is always the 
case for M > 1, as there is at most one structural wave propagating in the frequency 
range of industrial interest. For M = 0 there are three branches that potentially can 
contribute to the power Sow at low frequencies: one mainly fluid wave, one mainly 
torsional structural wave, and one mainly axial structural wave. In part III it was 
argued that the torsional wave only contributes to the power Eow if it is excited, and 
by assuming it is not excited, it can be disregarded. This leaves the mainly Suid wave 
and the mainly axial structural wave. For light fluid loading, it was argued that the 
power Sow contribution from the fluid wave was negligible, leaving only the structural 
branch to contribute significantly to the modal power flow for n = 0. Exactly the op-
posite argument was used for the heavy fluid loading: only the fluid wave contributes 
significantly to the modal power flow for M = 0. 

The obvious question of industrial interest is then: in the industrial applications pre-
sented in chapter 1, can the Buid loading of the water-hlled pipes be labelled as either 
light or heavy? Table 7.3 on page 74 shows the geometric properties of some pipes of 
industrial interest. Most of the pipes will be undoubtly be heavy Huid loaded if they 
are water filled, but the standard 1" steel pipe steel pipe has a relatively large ratio 
combined with the relatively high density of steel. In the following it is investigated 
whether the Suid loading for this shell is heavy. 

Throughout the thesis two diEerent methods have been used to characterise the Suid 
loading of the shell: the cuton frequencies of the higher order modes, and the proportion 
of the power How in the shell and in the fluid, respectively. For a light fluid loaded 
shell the cuton frequencies of the higher order modes are very close to the in vacuo 
cuton frequencies, and when the pipe wall is excited by a radial point force the power 
How for the M = 0 mode is mainly carried by the pipe wall. 

Figure 11.1 shows a detail of the M = 2 dispersion curves for the water-hlled 1" steel 
pipe, along with the corresponding in vacuo dispersion curves. The conclusion drawn 
from the hgure is that the Auid loading is not light, aa there is a some difference between 
the cuton frequencies of the 6rst M = 2 structural wave in the in vacuo and water-filled 
case. Figure 11.2 shows the predicted power flows for the water-hlled 1" steel pipe 
when the pipe wall is excited by a radial point force. The power Bow is plotted for 
three diEerent axial positions: the solid lines correspond to a = 15, the dashed lines 
to g = 25, and the dotted lines to 5 = 20. As can be seen, the green curves for the 
diSerent axial positions do not coincide. This behaviour is predicted by Fuller (1984), 
and is related to the axial dependance of the power flow equations. The result is that 
the total axial vibroacoustic power flow is independent of the axial position, but the 
distribution between Suid and structure varies with the axial position. It should be 
noted that this effect is not related to the redistribution of power near the point of 
excitation, and it is not a near field effect at all. 

The red curves in Agure 11.2 almost coincide on the scale plotted, indicating that the 
Suid-borne power flow is responsible for the main part of the total power flow. In figure 
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Figure 11.1: Cuton of the first M = 2 structural wave for a 1" steel pipe. The green 
curves represent the pipe in vacuo and the blue curves the water-hlled pipe. 

Frequency [Hz] 

Omega 

Figure 11.2: Predicted power Sow for a water-filled 1" steel pipe excited by a radial 
point force, M = 0, g = 15, 20,25. The water-borne power Sow is red and the structural-
borne power Sow is green. 
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9.14 showing the predicted power Sow distribution for a pipe with heavy Suid loading, 
the diH'erence between the Euid-borne and the structure-borne power How for M = 0 is 
approximately a factor of 100. The corresponding hgure 8.10 for the pipe with light 
Euid shows a factor of approximately 0.01 (in this case the structure-borne power Bow 
is larger than the Suid-borne power How). In Sgure 11.2 the difference is reduced to 
approximately a factor of 5. The conclusion drawn from this is that the Suid loading 
of the water-hlled 1" steel pipe is definitely not light but not truly heavy either. 

This kind of Suid loading is dubbed intermediate. For the method of power Sow 
measurements proposed in the present thesis, the intermediate fluid loading may pose a 
problem. As noted above, the power Aow measurement method relies on the assumption 
that one branch dominates the power Sow for n = 0 at the frequencies of industrial 
interest. If both the mainly Suid wave and the mainly axial structural wave contribute 
signihcantly to the power Sow, it may not be possible to relate the modal power How 
in the n = 0 mode to the pipe wall modal response as in equation (3.1). Equation 
(3.1) predicts the power How through a relation between the power How and the pipe 
wall response. If two different branches contribute to the power How, the same two 
branches also contribute to the pipe wall response. 

By measuring the pipe wall response at one axial position only, it is not possible to 
deduce which proportion of the pipe wall response is related to the Huid wave, and 
which proportion of the pipe wall response is related to the structural wave. It is 
highly plausible that the relation between the pipe wall response for the mainly Huid 
wave and the Huid-borne power How is signiHcantly different from the relation between 
the pipe wall response for the mainly structural axial wave and the structure-borne 
power How. To remove this possible source of error, another suggestion for further 
work is an expansion of the proposed method of power How measurements to allow for 
two or more contributing branches for each circumferential mode. 

As shown in Hgure 11.2 the structure-borne power How for a water-Hlled 1" steel pipe 
with structural excitation in the form of a point radial force is approximately a factor of 
5 smaller than the Huid-borne power How. The error made by assuming that the entire 
pipe wall response is related to the mainly Huid wave is therefore relatively small. In 
the industrial application of the present thesis the error caused by this simpliHcation 
is probably acceptable. A more important source of error in the industrial application 
is the lack of anechoic termination of Hnite pipes. One of the suggestions for further 
work presented in chapter 12 is an investigation of di&rent anechoic terminations. 
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Chap te r 12 

Suggestions for fu r the r work 

During the course of the present research project, a number of suggestions for further 
work have emerged. 

The experimental method proposed to quantify the vibroacoustic power Aow in a Suid-
hlled pipe relies on some restrictive assumptions. Some of these assumptions can be 
relaxed if the underlying prediction model is improved as discussed below, so that the 
predictions involved are made for the special measurement situation in question. An-
other way of improving the proposed experimental method is through multiple sensors. 
With more sensors it would be possible to decompose multiple waves for a given cir-
cumferential mode. By measuring the pipe wall response at two axial positions, it is 
possible to deduce which proportion of the radial pipe wall response is related to the 
Euid wave, and which proportion of the pipe wall response is related to the structural 
wave. Another possibility is to include sensors measuring the torsion of the pipe. From 
measurements of the pipe torsion, the power ftow carried by torsion of the pipe can be 
quantified by a relation similar to equation (3.1). However, the power Sow carried by 
the cross terms of the different branches would have to be considered for the multiple 
wave method. 

In the case of a single branch for each mode, multiple sensors would allow the de-
composition of forward and backward propagating waves along the pipe. This would 
eGFectively remove the need for anechoic terminations of the finite pipe, as the part of 
pipe wall response related to the outgoing wave could be retrieved and put into equa-
tion (3.1). The power Sow inferred from the equation would then be for the outgoing 
wave alone. 

Using the proposed power Sow measurement method as is, the results can be improved 
through improvements to the anechoic termination. The measured estimate of the real 
power flow in a Suid-Slled pipe is as good as the measurement of the modal response. If 
the measurement of the modal response is improved through better anechoic termina-
tions, so is the power Sow measurement. Under controlled conditions in the laboratory, 
diSerent designs of anechoic terminations can be investigated and improved. 

The prediction model from part II can be improved signiScantly by including different 
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complicating effects. It would be simple to include the effect of damping in the model 
through a complex Young's modulus. Inclusion of damping in the prediction model 
would allow a closer investigation of the high frequency roll off of the accelerance 
measurements presented in part II. 

In the present form no form of discontinuities are allowed in the prediction model. In 
the industrial application of the present thesis very complicated discontinuities of the 
pipes are encountered, e.g. heat radiators. It is probably not realistic to expand the 
present model to such complications, but more simple discontinuities could be used as 
building blocks for more complicated ones. The ability to predict the vibroacoustic 
response of a pipe with a bend would be very useful. At the pipe bend there will 
be branch conversion and rejection, as e.g. axial waves incident on the bend from 
one side may be partly rejected as axial waves and partly leave the bend on the 
other side as bending waves. Fuller (1981) shows a method to predict the effects of 
wall discontinuities on the propagation of flexural waves in in vacuo pipes. It would 
probably not be very di&cult to combine the present prediction model with the method 
of Fuller (1981) to allow for prediction of the vibroacoustic response in Suid-hlled pipes 
with wall discontinuities. Other useful expansions of the prediction model include local 
reinforcements of the pipe (e.g. flanges or tread connections of different parts) or local 
impedance changes (e.g. where two pipes of different dimensions are connected). 

Although industrial CFD-codes are not capable of producing an unsteady time-resolved 
solution of the Suid Sow, further investigation of the proposed method of numerical 
calculation of vibroacoustic power Sow from a flow obstruction in a Euid-hlled pipe is 
possible using a purpose built CFD-code, e.g. an unsteady RANS code as presently 
used in university research. The experimental setup used in chapter 9 can easily be 
expanded to provide modal measurements of the pipe wall response when the fluid-filled 
pipe is excited by the fluid Aow past a Aow obstruction. In fact a feasibility study of 
such an experimental setup was made during the course of the present research project, 
and the results were promising. 
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Appendix A 

Charge equat ions for shaped P V D F 
film sensors 

The shaped modal polyvinylidene fluoride (PVDF) sensors used in the present thesis, 
are using the piezoelectric him material in 'stretching-mode', converting mechanical 
strain to an electric charge, through the direct piezoelectric effect. The relation between 
strain and charge can be found from 

-Dg — SggE'g + 6316'$ + 6326"̂  (A.l) 

where D3 is the electric displacement; 633 is the permittivity at constant stress; jB'3 is 
the electric held ; is the circumferential strain; S'z is the axial strain; and 631 and 
632 are the piezoelectric stress constants, determined from 

631 
632 

/ (1 — (1 — 
-E/f/ (1 — / (1 — ) 

(̂ 31 (A.2) 

where is the PVDF Young's modulus; t/f is the PVDF Poisson's ratio; and ^31 and 
(̂ 32 are the piezoelectric strain constants. 

Using the shell theory of Fliigge (1962), the axial and circumferential strains at a 
distance ?/o from the mid-surface can be expressed as 

& = 'S'ez + 'S'iz 

1 + ^ 
(;S'e@ -|- 5'ig) 

A.3) 

where 6'ez = is the axial stretching strain in the axial direction; 5'iz = — 

is the bending strain in the axial direction; 5'e@ = 1/a w) is the stretching 
strain in the circumferential direction; and 5'ig = —1/0/0 (^^w/9^^ — 9w/^^) is the 
bending strain in the circumferential direction. 

Fliigge (1962) states, that for the M = 0 mode, the extensional deformation in stretching 
dominates at frequencies well below the ring frequency, while the higher order modes 
M > 1 are dominated by the in-extensional deformation of bending well below the ring 

175 



frequency. Variyart and Brennan (1999) quotes a book by Timoshenko and Woinowsky-
Krieger for stating, that one of the conditions condition for in-extensional deformation 
is = —lu. 

Considering only M > 1 at frequencies well below the ring frequency, the axial and 
circumferential strains reduce to 

2/0 

^ (A.4) 
2/0 / o ^ 

(1 + ^ 

If the two surface electrodes of the PVDF sensor is connected through a charge ampli-
her, the resulting electrical connection cancels the electric held between the two surface 
electrodes so that E'3 is zero. Using this along with the reduced stresses the electric 
displacement of equation (A.l) becomes 

(1 +%)a' {w + 

Using the arrangement with the charge amplifier, the generated charge is approximately 
the average of the electric displacement integrated over the elective area of both sides 
of the surface electrodes. With a sinusoidal shape of the modal sensor, this equation 
can be expanded to 

g = / / (e3i5'g + e32&)a^d6'ds (A.6) 
J Sc—bsF(pd) Jo 

where g is the generated charge; gg is the center position of the sensor; 6̂  := 6/o, where 
b is half the width of the sensor; is the shape function of the sensor; and p is the 
main circumferential mode of sensitivity of the sensor. It is assumed, that the width of 
the sensor is small compared to the wavelengths involved, so that the variation of the 
strain across the sensor is negligible. As the alignment of the sensor to the vibrations 
involved is not known a priori, the shape function can be both sine and cosine. In the 
following derivations, the cosine shape is chosen, but the equations could also be cast 
in a form using the sine shape. 

The radial displacement is assumed to have the general form 

0 0 CXD 

If = ^ 2 cos(M^) + (A.7) 
n=0 6=1 

Integrating the cosine part of the axial contribution of equation (A.6), yields 

rac+k C0s(p8) rZTT / 
9 c , z = / / | - - § ^ ^ ( 2 K a 6 ) ^ a M ^ 6 

"/O \ ^ 7̂ =0 6=1 (A.8) 

((̂ c cos(n^) + sin(M^))e^^'^"''^"'^^)^ d^ds 
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where the integral in the axial direction can be separated and evaluated, thus 
/ .ac+6^ cos(p@) _ - -

V3c-baCos(p6) Q') 

2giK»6ac 
= sin(Kn66a cos(pg)) 

^nb 
with the use of the Euler sine formula. The sine can be expressed using Bessel functions 
as 

OO 
sin(/{n&63 COs(pg)) = 2 ^(-l)'""'U2m_l(/'Cn66a) COS ((2771 - l)pg) (A.IO) 

m=l 

If equation (A.9) and (A.IO) are substituted into equation (A.8), the integral in 0 can 
with the use of orthogonality be evaluated as 

OO 0 0 OO 

9c,z = 47r,̂ ce32l/oG (A.H) 
n=0 6 = 1 m=l 

where = 1 if n = (2m — l)p and = 0 otherwise. 

In case of the sine shape function, the result is almost the same: 
OO OO OO 

= 47r̂ ae32l/oO ^ ^ ^ J2m-l(Ka66a)^nm (A.12) 
71=0 6=1 m=l 

By combining the sine and cosine parts, the total charge generated by axial strains for 
arbitrary orientation can be obtained from: 

= + (A. 13) 

and the orientation angle can be found as 

go = - tan-^ (A.14) 
71 \9c,zy 

The circumferential part of equation (A.6) can likewise be evaluated and the corre-
sponding results are: 

OO OO / 2 1 \ 00 
= 47r(^ce3lZ/oG]^]^ ^ (A.15) 

71=0 6=1 ^ 0. n%=l 
OO OO , o ^ \ OO 

= 47r<;6ae3i?/oa ^ ^ J 2 m - i ( A . 1 6 ) 
n=0 6=1 ^ o 771=1 

From the Bessel function sum, it can be seen that the a sensor intended for m = 1 also 
will pick up vibrations for n = 3, M — 5 etc. due to the cross sensitivity. This cross 
sensitivity has been investigated for the M = 2 modal sensor by Variyart and Brennaa 
(1999), and the conclusion of this investigation was that the influence of other modes 
is small provided the width of the sensor is kept reasonably small. At low frequencies 
the inSuence from other modes is not really a problem in the far held, where the higher 
order modes are well below their cuton frequency. 
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