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Vibroacoustic power flow in infinite compliant pipes
excited by mechanical forces and internal acoustic sources

by Brian Ottar Olsen

The present thesis is concerned with the theoretical and experimental description of
vibroacoustic power flow in infinite fluid-filled pipes excited by hydroacoustic noise
sources, such as flow control valves. The walls of the pipes are assumed to be compliant,
so that vibrations of the shell wall induce pressure fluctuations in the fluid, and vice
versa. The coupling between the pipe wall and the contained fluid is provided by the
fluid loading of the pipe; the methods presented are valid for both light and heavy fluid
loading.

Two distinct and complementary approaches are investigated for quantifying the vi-
broacoustic power flow: numerical simulations and controlled experiments.

The core of the numerical simulation approach is a vibroacoustic analogy that trans-
forms the excitation of the fluid-filled pipe by internal turbulent flow into an equivalent
vibroacoustical problem where the excitation is provided by a distribution of vibroa-
coustic sources applied to a pipe containing stationary fluid. When the excitation
is formulated as an equivalent distribution of vibroacoustic sources (structural and
acoustical), the resulting vibroacoustic power flow can be calculated via an extension
of existing theory.

The necessary analytical and numerical tools for the prediction of the vibroacoustic
power flow are assembled for point force excitation of the pipe wall, and for point
monopole, point dipole, and point quadrupole excitation of the fluid.

The relative Mach number scaling of far-field fluid pressure radiated inside the pipe,
for point monopole, point dipole, and point quadrupole, is investigated and the in-pipe
results are compared to the corresponding free field results.

The proposed experimental approach involves mounting the noise source in an instru-
mented pipe system under controlled conditions. If one-directional wave propagation
can be established (e.g. through anechoic terminations of the pipe), then the power
input by the source can be inferred from modal measurements of the pipe wall response.

The modal measurements of the pipe wall response are obtained by modal decomposi-
tion of accelerometer measurements, and by direct measurements with shaped PVDF

modal sensors.

Actual measurements of the vibroacoustic power flow using the proposed method are
compared with numerical predictions for pipes with light and heavy fluid loading,
excited both by a radial force at the pipe wall and by a transmitting hydrophone in
the contained fluid.



Statement of original contribution

Both the theoretical and experimental strategies outlined in part I for quantifying valve
noise are original: they were developed by the author in the course of the PhD, following
suggestions from his supervisor. In particular, the theoretical approach of chapter 4 is
based on an application of the acoustic analogy to the interior of a flexible-walled pipe:
this has required an original exploration of the solution properties for point-dipole and
point-quadrupole excitation of the contained fluid.

Part II of the thesis consists of a theoretical discussion of pipe response to structural
and fluid excitation. It is assembled from various published sources including the
research literature. Its originality lies in the fact that for the first time, a methodology
is presented in detail for predicting the vibroacoustic power flow in pipes under such

excitation.

Part III presents experiments on both light and heavy fluid loaded pipes. Some of
the experimental techniques used are taken from published sources. However, the
experiments include a number of original contributions; most notably the practical
implementation of existing modal sensor concepts, and response measurements on a
heavy fluid loaded pipe when excited by an internal transmitting hydrophone.
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Chapter 1

Introduction

1.1 Concept of Danish Industrial PhD Fellowship
Programme

The objectives of the Danish Industrial PhD Fellowship Programme are to promote
technological and financial development for Danish trade and industry, and to support
young employees at Danish enterprises to obtain a PhD. The Danish Academy of
Technical Sciences (in Danish ’Akademiet for de Tekniske Videnskaber’ or ATV) funds
each student’s training programme in cooperation with an industrial partner. Suitable
industrial partners are private Danish enterprises with a research and development

environment.

The main part of the fellowship programme is a three-year research project at a univer-
sity leading to the achievement of the PhD degree. The core of the educational scheme
is a close and formalised partnership between an enterprise and a university for the
conduct of the research project. In carrying out the research project the PhD student
applies the knowledge and technology of the university to the benefit of the enterprise,
which thereby acquires advanced knowledge and valuable technical skills. The research
project is defined in cooperation between the industrial partner, the university and the
PhD student.

The general conditions for the Danish Industrial PhD Fellowship Programme are

e The enterprise employs the PhD student for 3 years to work exclusively on the
approved project and follow the educational programme defined in the project

e Dven distribution of educational period between the enterprise and the university
in order to secure the required interaction between research work and practical

application of results

e Participation by the PhD student in a business-targeted course, arranged by ATV
(corresponds to one month’s work)



e Submission of a final study plan to the ATV Committee on Industrial PhD Fel-
lowship Programme six months after the start of the educational programme

e Compliance with the regulations of the university in question

e Approval of the group of external examiners by the ATV Committee on Industrial
PhD Fellowship Programme

e Participation of a representative of the ATV Committee on Industrial PhD Fel-
lowship Programme in the dissemination/publication of the results.

1.2 Structure of the thesis

The thesis is divided into four main parts, not including this introduction. The first
presents concepts of flow noise quantification, the second a framework for the predic-
tion of the vibroacoustic power flow, and the third experimental quantification of the
vibroacoustic power flow. The fourth part discusses the implications of this work and
presents some conclusions. A graphical overview of the different parts of this thesis
can be seen in figure 1.1.

The first part presents the overall strategy for quantification of flow noise sources, e.g.
control valves, connected to water-filled pipes. Two conceptually different quantifica-
tion methods are discussed: one based on experiments and another based on numerical
methods. Both methods are based on the concept of vibroacoustic power flow; if the
total vibroacoustic power flow can be quantified in the far field ' and the absorbtion
in the water-filled pipe can be assumed to be small, then the noise produced by e.g.
a control valve can be inferred. The main elements of the experimental method are
presented in part I, with the detailed measurements deferred to part III. Likewise the
main elements of the numerical prediction approach are presented in part I, including
the vibroacoustic analogy formulation; the necessary analytical and numerical tools are
then developed in detail in part II. The first step in the numerical prediction approach
is the calculation of the unsteady flow in the pipe; literature studies and feasibility
tests during this work have revealed that the flow calculation is very complicated and
worth a PhD study on its own. Discussion is therefore limited to basic concepts, with
some remarks on recently published investigations. The second step, the vibroacoustic
analogy, is discussed in detail in part I, except for the calculation of the vibroacoustic
power flow which is discussed in part II.

Part II brings together published results from several sources, and shows how to calcu-
late the vibroacoustic power flow in an infinite fluid-filled pipe from two simple types
of excitation: a point force on the shell wall and a point monopole in the fluid. An
all important part of the calculation of the power flow from these sources is the ability
to predict the vibroacoustic response at any point (i.e. both the vibration of the pipe
wall and the pressure in the contained fluid). Using the prediction model, a parameter

!i.e. some distance away from the source along the pipe



Part | : Overali strategy for quantification of hydroacoustic sources in pipes

Experimental approach: Numerical simulation approach:
test rig and measurement techniques coupling of CFD to analytical models
for modal power flow in an infinite pipe : via a vibroacoustic analogy

I !

Part Il : Vibroacoustic power flow in
fluid-filled cylindrical pipes

* Response to structural inputs
* Response to fluid inputs

* Power flow formulation

* Parameter study

* Choice of shell theory

\ 4 A\ 4

Part lll : Pipe response and power
flow measurements

* Light fluid loading (air-filled PVC pipe)
* Heavy fluid loading (water-filled PVC pipe)

Excitation:
* External shaker on wall of pipe
* Internal transmitting hydrophone

| !

Part IV : Conclusions, practical implications, and further work

* Experimental approach
* Numerical simulation approach

Figure 1.1: Thesis outline in diagrammatic form



study is presented; the study concentrates on the parameter range important for the
industrial problem. Included in this parameter study is an assessment of the choice
of shell theory in the prediction model. The prediction model is validated against the

experiments in part III.

In part III, experiments quantifying the far field vibroacoustic power flow are pre-
sented. The experimental principle is first validated on a light fluid loaded pipe: a
PVC pipe with air both inside and outside. During these experiments, the vibrational
response of the pipe is very close to that of the in vacuo pipe, i.e. the pipe with vacuum
both inside and outside. The modal vibrational response of the pipe is measured using
modal decomposition of point measurements with an accelerometer. The vibrational
response is compared with the prediction model from part II; excellent agreement is
demonstrated in the near field and good agreement is demonstrated in the far field.
A simple method is presented to infer the far field vibroacoustic power flow from the
measured modal response, using the predicted vibrational response and the predicted
power flow. The method relies on quite restrictive assumptions that are justified only
under special conditions, but the experiments meet these conditions. The same exper-
imental principle is used on a heavy fluid loaded pipe: a PVC pipe with air outside,
but water inside. The modal response is measured using both the accelerometer de-
composition technique and shaped modal sensors. These sensors are only sensitive to
certain modes of vibration and they allow direct measurement of the modal response
of a pipe. The modal measurements are compared with each other and with the pre-
diction model, and it is concluded that the agreement is excellent in the near field and
good in the far field. Due to the relative softness of the PVC pipe, the vibroacoustic
power flow can be inferred from the measurements using the same method as for the
light fluid loaded experiments.

Part IV states the main conclusions and discusses the relation between the individual
findings. The findings obtained during the PhD project are discussed in the light of
the industrial application of the present thesis. Finally are some suggestions for further
work stated.

A bibliography is located in the end of the thesis, after the appendices.

1.3 Motivation of the present Industrial PhD project

The industrial sponsor of this project, Danfoss A/S, is one of the world’s largest manu-
facturers of control devices for domestic heating applications. Since the sound quality
of domestic appliances is becoming an important factor in consumer choice, one of
the prime concerns of Danfoss is the noise output from heating applications including
thermostatic radiator valves. Examples of thermostatic radiator valves are shown in

figure 1.2.
The main industrial objective of this project is to gain knowledge that can eventually

lead to a better design of flow control valves with respect to noise. While the actual
design of flow control valves is outside the scope of this project, the methods to quantify



Figure 1.2: Cross section of Danfoss RA-FN 15 valve and application examples.

vibroacoustic power flow presented in this thesis are significant contributions to the
general knowledge needed by manufacturers of devices intended for connection to water-
filled pipes, if those devices can act as vibroacoustic sources.

Danfoss has for many years worked towards optimisation of control valves using indi-
rect experimental techniques (one of the methods is explained in more detail in the
next section). Using indirect measurement methods, valuable insight has been gained
over the years, e.g. through a previous Industrial PhD project (Kiil 1982). However,
the indirect methods have some drawbacks when used in optimisation cycles of new
products. A more direct measurement technique that is able to quantify the noise
output from the valve on its own would be a valuable asset in the toolbox of Danfoss.

Virtual product development using advanced Computer Aided Design (CAD) systems
and numerical prediction software, allows predictions of many important parameters
even before a prototype of the new design exists. Structural finite element programs can
reliably predict deformations and stress concentrations of individual components, and
other programs are commonly used to simulate the entire mould filling process when
producing plastic components. At present Computational Fluid Dynamics (CFD) is a
valuable tool in the development of new valves at Danfoss, as it provides insight into the
detail of the fluid flow that would be very difficult to establish through experimental

techniques.

At Danfoss, the general purpose CED code Star-CD from Computational Dynamics has
been used with great success for several purposes, including some ’virtual prototype’
numerical experiments on new designs of valves. So far, the numerical experiments
have been concentrated around the control properties of the valve (mainly flow rate as
function of pressure drop across the valve, or flow rate as function of valve lift). Expe-
rience has shown that this kind of optimisation in some cases can introduce unwanted
and unexpected noise problems, that need to be identified and removed using experi-
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Figure 1.3: Sketch of experimental setup used in the Nordtest method.

mental methods. To be able to use the 'virtual prototype’ techniques more efficiently,
it would be very useful to be able to predict the acoustical properties of new designs
at an early stage without experimental input.

1.3.1 Present experimental method used for noise source quan-
tification

Different approaches exist to quantify the noise output of control valves. Many meth-
ods in the public domain are aimed at quantifying the very high noise intensities (with
sound pressures up to 120 dB(A)) related to gas pressure reducing valves, e.g. Amini
and Owen (1995) or Nakano et al. (1988). Of the measurement methods more rele-
vant to products of Danfoss, all those in current use attempt to replicate the actual
application where the control valve is used. While this approach seems sound from an
end user point of view, it is problematic when comparing different applications or even
individual valves, since the measurement methods rate the entire application and not
the valve alone. This is one reason why the otherwise relevant work of Fuchs (1993)
regarding generation and control of noise in water supply installations is difficult to
apply directly to thermostatic radiator valves.

The method presently used at Danfoss for the noise rating of thermostatic radiator
valves is an adapted form of the proposed Nordtest method, (Simmons 1997), 'Radiator
valves: Determination of the sound power level in the laboratory’. Figure 1.3 shows
the principal parts of the experimental setup. The thermostatic radiator valve to



be tested is mounted rigidly between two test pipes attached to a reference radiator.
The reference radiator is suspended elastically inside a reverberation room. A water
circulation is enforced by a small and quiet pump outside of the reverberation room.
The flow noise generated by the valve is transmitted to the reference radiator through
a specified test pipe. The airborne sound radiated from the reference radiator into the
test room is measured. By comparison with a reference sound source, or by correction
based on the reverberation time and the volume of the test room, the airborne sound
power level of the radiator-and-valve assembly is determined.

Even under the best of circumstances (ignoring all problems related to repeatability
and reproducibility), the measured sound power is only partly related to the valve itself.
The flow noise generated by the valve is transmitted to the pipe, then transmitted from
the pipe to the radiator, from the radiator to the air inside the test room and from the
test room to the microphones. Experience at Danfoss has shown that this method fails
to give results that reliably characterise thermostatic radiator valves, mainly because
of problems of repeatability and reproduction. Nonetheless Danfoss is presently using
the Nordtest method, as it is — with all its shortcomings — the best method available.

1.3.2 Identification of important parameters for the industrial
problem

As noted above, the design of actual thermostatic radiator valves is outside the scope
of this project. However, it is appropriate to use the characteristic properties of such
a valve as reference properties for the investigations in this present thesis.

Thermostatic radiator valves are mounted on relatively small steel pipes, with diam-
eters up to one inch and with differential pressures across the valve up to one bar.
Taking a typical situation, the valve is mounted on a 1” pipe and conveys 1,000 kg/h
of hot water. The pipe Reynolds number is in this case Rep = lz—’U- = 13,900, where
D is the diameter of the pipe; U = Q/A is the mean flow velocit§ in the pipe; v, 1S
the kinematic viscosity of water; A is the cross sectional area of the pipe; Q = M/py
is the volumetric flow of water; M is the mass flow; and p,, is the density of water.
Fully-developed pipe flow is expected to be laminar up to a Reynolds number of ap-
proximately 2,300, see e.g. Fox and McDonald (1985), corresponding to a mass flow of
164 kg/h; transition is expected to occur in a Reynolds number range of approximately
2,300-100,000, corresponding to 164-7,100 kg/h; and above this Reynolds number the
flow would be fully turbulent. Thus, the flow in the pipe can be everything from lami-
nar at low flow rates, transitional at intermediate flow rates and perhaps fully turbulent
at high flow rates. The pipe Mach number in a typical situation is approximately 1073.

In domestic heating applications that use water as the heat transfer medium and thin-
gauge panel radiators as heat exchangers, most of the noise generated by the control
valve is transmitted by the pipe to the radiator and emitted from there. The dominant
part of the spectrum lies in the approximate range 250 Hz to 10 kHz. Focusing on
the noise transmitted by the pipe, the highest frequency range of interest can be nor-
malised with the ring frequency of the pipe, which is seen later to be important for the



transmission of vibroacoustic energy in pipes. This yields a maximum nondimensional
frequency of industrial interest:

10 kHz
Q= """ =015 (1.1)
fring
where (1 is the nondimensional frequency; fing = cr/27a is the ring frequency of the
pipe; a is the radius of the pipe; and ¢, = /E/p(1 — v?) is the thin-plate extensional
wave speed of the pipe material.

1.4 List of contributions in the thesis

The present thesis is submitted in order to obtain a PhD in accordance with the
regulations of the Faculty of Engineering at the University of Southampton. In order
to comply with the regulations the present thesis is required to present significant
contributions to the existing knowledge.

The major contributions are:

Part 1

e Principle of power flow measurements.

e The vibroacoustic analogy formulation.

Part 11T

e Implementation of the principle of power flow measurements, both for heavy and
light fluid loaded pipes.

e Validation of the nondimensional prediction model, both regarding pipe-wall re-
sponse and vibroacoustic power flow.

Secondary contributions are:

Part I1

e Nondimensional prediction model for vibroacoustic response of an infinite fluid-
filled circular pipe.

Part I11

e Implementation and validation of modal sensors.

e Method of excitation inside the fluid of a fluid-filled pipe.

The objectives of the thesis are presented in part I, which follows next.



Part I

Overall strategy for quantification
of hydroacoustic sources in pipes



Chapter 2

Conceptual approach

For noise or vibrational sources connected to water-filled pipes in air, it is quite common
to assume that all the noise energy in the system propagates through the acoustic
pressure field in the contained water, and that it can be quantified by the internal sound
power alone. The underlying assumption is that the walls of the pipe are effectively
rigid. This is not necessarily the case for all pipes encountered in industrial applications,
as thin or soft walled pipes are used for many different purposes where the density of
the contained fluid is not so different from that of the pipe wall material. In these
cases, the fluid loading of the contained fluid cannot be neglected and the pipe walls

will therefore appear compliant.

When the pipe walls are compliant, any vibration of the shell wall will induce a pressure
field in the contained fluid and vice versa. The relative compliance of the pipe walls
is dependent on the pipe material, the geometric properties and the contained fluid.
The coupled propagation of vibrational and acoustic power (from here onwards called
the vibroacoustic power) can be separated into power propagating in the fluid and in
the pipe walls, but still they are closely linked; there are some complicated interactions
that cannot be interpreted by looking separately at the properties of the fluid or the
pipe, respectively.

2.1 Quantification principle

The vibroacoustic power produced by a source (e.g. a thermostatic radiator valve)
connected to a complicated system (e.g. a heating system) is transported from the
source to the surroundings through different paths, as sketched in figure 2.1. In the
simplest possible analysis, vibroacoustic power from the source can either be radiated
to the surrounding fluid or it can be transmitted by the connected pipe.

With a control volume placed around the source as sketched in figure 2.1, the vibroa-
coustic noise generation inside the volume can be quantified by summing the contribu-
tions at the boundaries. At each boundary, the vibroacoustic power leaving the volume
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gives a positive contribution while power entering the volume gives a negative contri-
bution. Assuming there is little absorption inside the control volume, the vibroacoustic
power generated by the source equals the net power leaving the control volume. In the
ideal, lossless case the placement of the control volume is arbitrary, as the total power
is constant. The amount of power in each of the transmission paths may differ, as e.g.
power in the pipe may 'break out’ and become airborne.

To simplify the quantification process in the present thesis, it is assumed that the
only significant power source is the one under investigation. This means, that the
only way power can enter the control volume from outside is through reflection by
discontinuities outside the control volume. The reflection of power could effectively
be removed if the quantification was performed on an infinite pipe. While this is
possible for a numerical method it is not feasible for an experimental method. In this
case, a more practical possibility is to devise an anechoic termination of a finite pipe.
This anechoic termination is supposed to absorb all incident vibroacoustic power so
no reflection is possible. While this is an idealisation, a practical solution would be to
have an anechoic termination that makes the reflected power a small proportion of the

incident power.

This leaves three paths of power from the source to be quantified: the power emitted
into the external fluid from the source surface and the connected pipe, and the coupled
transmission of power in the pipe walls and in the internal fluid.

As presented in chapter 1, the industrial application is restricted to air as the external
fluid. Intuitively, it seems reasonable to assume that the externally radiated airborne
power is significantly smaller that the power transmitted along the fluid-filled pipe. To
verify this, an estimate of the radiated power can be found from the equation

Wiaa = U<E§>Spfcf (21)

where o is the radiation efficiency; (i2) is the spaced-averaged mean square vibration
velocity of the pipe wall; S is the vibrating surface area; and pycy is the characteristic
acoustic impedance of the external fluid. For exterior radiation from pipes, engineering
estimates of the radiation efficiency can be found e.g. from Beranek and Vér (1993).
Estimates based on the results from the parameter study in part Il show that the
externally radiated power for realistic scenarios is several decades smaller than the
power transmitted along the pipe.

This leaves only the power transported by the fluid-filled pipe to be quantified. A
convenient term for power transmitted in a one-dimensional system is 'power flow’,
where the word flow hints at the transportational property. Vibroacoustic energy
leaves the source at a given rate and in a given direction, and this is dubbed the
vibroacoustic power flow.

12



2.2 Objectives of this thesis

For dealing with the industrial problem drawn up in the previous chapter, there are
several options. The overall objective of this research programme is to find ways of
quantifying hydroacoustic noise sources, such as flow control valves, when they are
coupled to fluid-filled pipe systems. Two distinct and complementary approaches are
explored in the present thesis: controlled experiments and numerical simulation.

The main steps in the two approaches are:

The experimental approach involves mounting the source in an instrumented pipe sys-
tem under controlled conditions. Ideally the pipe system is uniform, straight and
extends to infinity either side of the source. In practice, anechoic terminations are
used to minimise the reflection of structural and fluid-borne sound back towards the
source. Special transducers are used to measure the power flow in different circum-
ferential pipe modes. The experimental concept is presented in chapter 3, while the
actual investigations under laboratory conditions are presented in part IIL.

The numerical simulation approach involves 2 stages:

e First, a CFD flow simulation is run to provide a time-accurate solution of the
unsteady flow in the source region. It is proposed that this be done with the flow
treated as incompressible and the solid boundaries as rigid. Nevertheless, even
with these simplifications the task of computing the time-dependent unstable flow
through a valve is too difficult for currently available commercial CEFD packages:
unsteady RANS codes are the subject of active research, but are not yet in
widespread use in industry. Actual CFD flow simulations are left out of the
present thesis, as the results available from the commercial CFD package used
by Danfoss were not of a quality suitable for quantification purposes.

e The second stage requires the unsteady flow solution to be inserted in a vibroa-
coustic analogy calculation, in order to predict the power flow away from the
source along a uniform fluid-filled pipe that extends to infinity on either side of
the source. The necessary analytical and numerical tools for this stage of the sim-
ulation are assembled in chapter 4, and in part II which deals with the response
of fluid-filled pipes to both structural and fluid excitation.

This second stage of the numerical simulation approach represents a major contribution
of the present research, along with the development of complementary experimental
techniques for the empirical measurement approach.

13



Chapter 3

A method based on experiments

Measuring the vibroacoustic power flow from a source connected to a fluid-filled pipe
is not trivial, as the power flow is not a quantity that can be measured directly. In this
thesis, the total vibroacoustic power flow is inferred from measurements of the modal

response of the pipe wall.

While this measurement principle is intriguing in its non-intrusive simplicity, its im-
plementation in the form used in the present thesis relies on some quite restrictive
assumptions. The most restrictive assumption is that only one branch (wave type)
carries the dominant part of the vibroacoustic power flow for each circumferential
mode. This is the case for light and heavy fluid loading, but is not necessarily true for
any intermediate fluid loading. However, this restriction is not a fundamental flaw of
the method, as it can be relaxed to allow for more propagating branches. With only
one propagating branch, the measurement task is simplified as that branch accounts
for the entire modal response and power flow at a given position. With more sensors
it would be possible to decompose multiple branches for a given mode.

3.1 Principle of power flow measurements

As noted in the opening remarks of this chapter, vibroacoustic power flow cannot be
measured directly, but several authors have worked with indirect measurements.

For all fluid loadings, the total vibroacoustic power flow can be decomposed into struc-
tural and fluid power flows. In the limit of light fluid loading, the coupling between
these components can be neglected, and the formulation of the separate terms is rel-
atively simple in terms of in vacuo structural modes and rigid-walled acoustic modes.
The structural power flow in the in vacuo case (i.e. no internal or external fluid load-
ing) can be retrieved from the structural intensity, see e.g. Pavic (1976), and the fluid
power flow can be retrieved from the acoustic intensity, see e.g. Fahy (1985). The
modal power flow in the axisymmetric mode of a light fluid loaded pipe with both fluid
and structural excitation was measured by Pinnington and Briscoe (1994). Durant
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et al. (1999) presented modal measurements of power flow for a light fluid loaded pipe
using a microphone array, excited by boundary layer noise of internal turbulent flow.

When the fluid loading is not light, the coupling between the fluid and the pipe wall
becomes significant. In his PhD thesis, Briscoe (1994) presented a method to measure
the axisymmetric power flow in a heavy fluid loaded pipe. He also showed results
using a special arrangement to excite only the axisymmetric mode of a heavy fluid
loaded pipe. No references have been located for general vibroacoustic power flow
measurements in heavy fluid loaded pipes.

The power flow measurement method presented here relies on a theoretical prediction of
the relation between the total power flow and the vibrational response of the pipe wall.
Under special circumstances, the vibrational response for given circumferential mode
n is dominated by one branch (or wave) in the vibroacoustic far field, and virtually all
the vibroacoustic power flow is carried by this branch. The transmitted vibroacoustic
power flow for mode n can then be calculated as

Pn,far - !wn,meaSIQFnb (31)

where P, ¢ is the far field modal power flow; wy, meas 15 the measured modal pipe dis-
placement for mode n; and F,; is a modal power flow factor for the pipe in question.
While this equation seems appealingly simple, there are some quite restrictive assump-
tions that have to be fulfilled for the equation to be valid. These assumptions and the
definition of F,; are discussed in more detail in section 8.3.1 for the light fluid loaded
case, and in section 9.3.1 for the heavy fluid loaded case.

Standing waves encountered during the measurements of the modal wall response may
invalidate equation (3.1). The prediction of the modal response, w1, and the power
flow, P, are made for a doubly infinite pipe and to make the ratio of measured and
predicted response meaningful, the measurements need to be obtained under essen-
tially the same conditions. In the measurements described below, this is obtained
through anechoic terminations at the ends of the pipe. Perfect anechoic terminations
are difficult to achieve, but as noted in the previous chapter a significant attenuation
of the reflected waves is sufficient. The anechoic termination used consists of several
components, each dissipating vibroacoustic energy in a special way for a special type
of vibration. The design considerations for the anechoic termination are discussed in
section 8.4.1 and section 9.6.2 for the structural and fluid parts, respectively. There
is also some advantage in choosing a pipe wall material that has significant damping,
and in using long pipes for the experiment: in this way the structural vibrations are
attenuated along the length of the pipe before the anechoic termination is reached.
At the same time, if the pipe has a significant damping, all measurements should be
conducted as close to the source as possible (while still in the far field), as the damping
of the structural vibrations reduces the measured response and hence the power flow,
thus underestimating the power output of the source.

Equation (3.1) requires three inputs: the measured modal response, Wy, meas; the pre-
dicted modal response, wy1; and the predicted vibroacoustic power flow, F,;. The
necessary tools for making the predictions are covered in detail in part II, while the
principle of modal response measurements is discussed in the next section.
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3.2 Pipe-wall modal response measurements

Several authors have published measurements of the pipe-wall modal response of fluid-
filled pipes. Essentially two different principles have been used: modal decomposition of
accelerometer measurements through post-processing, and direct modal measurements
using shaped sensors.

Point acceleration data. Feng (1995) presented measurements of the modal re-
sponse of a heavy fluid loaded pipe. The measurements in this case were done by an
accelerometer array and the modal response was obtained through post-processing of
the individual accelerometer outputs. Variyart and Brennan (1999) made modal re-
sponse measurements on a light fluid loaded pipe using wall acceleration data, but in
this case a single accelerometer was moved around the circumference; again the modal
response was obtained through post-processing. In this thesis, the principle from Vari-

yart and Brennan (1999) is used, mainly because the number of transducers is kept

low.

Shaped sensors. As a part of his PhD, Briscoe (1994) developed a modal sensor
sensitive to the axisymmetric response of the pipe wall. He then presented measure-
ments of the n = 0 pipe-wall response when excited by either (1) an acoustic source
radiating into the internal light fluid or (2) an axial n = 0 ring force at the pipe end.
The sensor is a piezoelectric wire wound around the pipe. Variyart and Brennan (1999)
validated a shaped sensor to measure the pipe response of the n = 2 mode of a light
fluid loaded pipe excited by a radial point force. The shaped sensor is made of patches
of thin piezoelectric film cut in sinusoidal shapes. In this thesis, both these principles
are used: the piezoelectric wire is used as a modal sensor for n = 0, and the shaped
sensor principle is taken further as shaped sensors are used forn =1, n =2 and n = 3.

3.3 Key results of experiments in this thesis

The principles presented so far in this chapter have been applied to both light and
heavy fluid loaded pipes. The experiments are presented in part III. They show that
the measurement strategy is valid and workable at least for the cases investigated in
this thesis. In part IV, some potential complications are discussed for the case where
the fluid loading is neither light nor heavy, but something in between, e.g. water inside
an industrial grade steel pipe.

Conceptually, the process of validating the measurement principles can be seen as
a number of steps, each including some complicating effects that were not present
in the previous step; for example the first experiments for a light fluid loaded pipe
were repeated for a heavy fluid loaded pipe. A key part of the entire validation is
the comparison of the experiments with the predictions made using the methodology
presented in part II of this thesis. As the predictions are made for conditions not
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Figure 3.1: Experimental setup used in the light fluid loaded experiments.

obtainable in a laboratory (e.g. infinite pipe and perfect geometry), it is arguable
whether the experiments validate the predictions or vice versa. Leaving this discussion
aside, the pragmatic approach used in this thesis is that both the experiments and the
prediction model are of such a complicated nature, that if they compare well it cannot

be a coincidence.

The experiments conducted during this research programme can be divided into three
main groups: radial point force excitation of the pipe wall for a light fluid loaded pipe,
the same excitation for a heavy fluid loaded pipe, and point monopole excitation of
the interior fluid for a heavy fluid loaded pipe.

3.3.1 Structural excitation of a light fluid loaded pipe

The light fluid loaded pipe is not encountered in the industrial applications discussed
in chapter 1. However, from a validation point of view, it is the simplest case of interest
in this study, as it allows the comparison of experiments with both in vacuo and light
fluid loaded predictions, where the fluid-structure coupling is either absent or weak.

The experimental setup is discussed in detail in chapter 8, but figure 3.1 shows a
picture. The light fluid loaded pipe measurements were conducted on a 5 m PVC pipe
with air both inside and outside. The modal response of the pipe-wall was measured
using the accelerometer decomposition method, the input force was measured using a
force transducer and the acceleration of the point of excitation was measured using
an accelerometer. By post-processing these measurements, the modal accelerance was
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obtained for the 6 lowest-order circumferential modes, and also the power supplied by
the excitation force. The axial position along the pipe z can be made nondimensional
with the pipe radius a to obtain a nondimensional position s = z/a.

Point accelerance of the pipe wall. The point accelerance shown in the figures
in this chapter is not a directly measured point accelerance, but a synthetic point
accelerance formed from the sum of all the decomposed modal accelerances. The
main advantage of this procedure is that the point response can be interpreted in
terms of individual modal contributions. Comparing the measured (synthetic) point
accelerance with the predicted point accelerance, both in the near and far fields, shows
excellent overall agreement in the near field at low to intermediate frequencies and
good agreement in the far field, as shown in figure 3.2. The only major discrepancies
are that the measured accelerance is dominated by distinct but unpredicted peaks at
low frequencies and that it rolls off at high frequencies.

The peaks at low frequencies are thought to be caused by axial standing waves, re-
sulting from insufficient attenuation of (especially) the bending mode by the anechoic
termination. An investigation of the ratio of incident to reflected waves at the anechoic
termination showed a general problem with the low frequency performance of the ane-
choic termination. This can probably be explained by the relatively small size of the
anechoic termination in comparison with the long wavelengths at low frequencies. The
roll off at the high frequencies can probably be related to the internal damping of the
pipe-wall material, which has a larger effect the more wavelengths are present between
the points of excitation and measurement.

Power flow. Figure 3.3 shows the far field total power flow obtained from accelerom-
eter measurements via equation (3.1), compared with the predicted total power flow
and the measured input power flow. The predicted power flow is determined by the
structural component (compare figure 8.10 on page 113). The agreement is fair, apart
from some erratic behaviour at low frequencies. When examining the modal power
flows, the erratic behaviour can be related to the n = 0 mode, where a large error
factor in the accelerance measurement results in a very large error factor in the in-
ferred power flow for that mode, as the error is related to the square of the response

measurement.

The large relative error of the acceleration measurement for the n = 0 mode has
two causes: a radial point force at the pipe wall does not excite the n = 0 mode very
efficiently (giving a small predicted accelerance for n = 0) and the modal discrimination
of the accelerometer decomposition method is limited, so that a large response in one
mode apparently ‘leaks’ to other modes. As the radial point force excites the n =1
(beam bending) mode very efficiently, the modal leakage from the bending mode to
the n = 0 mode is causing the large relative error.
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Figure 3.2: Synthetic point accelerance for a pipe with light fluid loading excited by a
radial point force. The predicted response is green and the measured red. The solid
line is s = 0.3 and the dashed line is s = 14.7.
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Figure 3.3: Total power flow for a pipe with light fluid loading excited by a radial point
force, s = 14.7. The predicted power flow is green, the summed modal power flow is
red and the input power flow is blue.
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3.3.2 Structural excitation of a heavy fluid loaded pipe

The experimental setup in the heavy fluid loaded experiments was identical to the
light fluid loaded experiments, apart from the additions necessary to accommodate
water inside the pipe and terminate the pipe anechoically. The experimental setup is
discussed in chapter 9.

Point accelerance of the pipe wall. The measured and predicted point acceler-
ances for the heavy fluid loaded pipe, excited by a radial point force at the pipe wall,
are shown in figure 3.4. The synthesised accelerances shown in the figure were obtained
by the accelerometer decomposition method, but modal sensors were also used with
good results as shown in chapter 9. The general features are quite similar to the light
fluid loaded case. The main difference is that all the cuton frequencies of the higher
order modes are shifted to lower frequencies, as predicted by the numerical parameter
study in chapter 7. The accelerance magnitude is reduced by approximately a factor of
6, which seems intuitively reasonable as the mass of the fluid-filled pipe is significantly
larger when filled with water.

Power flow. Figure 3.5 shows the far field total power flow. Again the general
features are quite similar to the light fluid loaded case, but the high frequency roll off
is smaller. The reason for this is probably, that the damping in the water (accounting
for most of the power flow in the heavy fluid loaded case) is significantly smaller than
the damping in the pipe wall material (accounting for most of the power flow in the
light fluid loaded case). By using shaped sensors, reasonable agreement with prediction
(generally better than 4 dB) is obtained over the frequency range 100 Hz to 3 kHz.
This is a much better result than for light fluid loading in figure 3.3.

3.3.3 Fluid excitation of a heavy fluid loaded pipe

To provide acoustic excitation in the fluid, a hydrophone was added to the experimental
setup used for the point force excited experiments. When the hydrophone was subjected
to a relatively high voltage from a special power amplifier, it transmitted power to the
water inside the pipe. The transmission characteristics of the transmitting hydrophone
were assumed to be close to those of a point monopole placed in the fluid.

Modal accelerance of the pipe wall. As the experiment was difficult to repeat
exactly, it was not possible to use the accelerometer decomposition method and the
results presented are obtained using modal sensors. Due to the relatively large size of
the sensors (one ring of piezoelectric patches to obtain the cosine part of the response
and another to obtain the sine part), it was not possible to fit them all at one axial
measurement position. The synthetic point accelerance presented in the last sections is
the sum of the modal contributions, and as the modal contributions are not measured
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Figure 3.4: Synthetic point accelerance for a pipe with heavy fluid loading excited by
a radial point force. The predicted response is green and the measured red. The solid
line is s = 0.3 and the dashed line is s = 14.7.
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Figure 3.6: Total power flow for a pipe with heavy fluid loading excited by a transmit-
ting hydrophone. The predicted power flow is shown in green and the modal sensor
measurement shown in blue.

at the same axial position, it is not reasonable to sum them up. For the individual
measurements of modal accelerance (figures shown in section 9.4) the general agreement
is worse than for the point force excited experiments, but this was probably to be
expected considering the complications involved in getting a transmitting hydrophone
inside a pressurised water-filled pipe, where the support of the hydrophone mount
significantly changed the properties of the pipe locally.

Power flow. Figure 3.6 shows the far field total power flow. The measured total
power flow to the far field is surprisingly close to the predicted power flow, considering
the relatively large errors of some of the modal response measurements. However, only
two modes contribute significantly to the power flow in the actual case, namely n = 0
and n = 2, and the measured modal responses of these modes compare relatively well
with the predictions.

3.4 Conclusion

The measurement principle suggested at the beginning of this chapter for vibroacoustic
power flow has been validated through a number of experiments, which are presented in
detail in part I1I. The power flow measurements are only as good as the measurements
of the pipe response, and in using the method the greatest possible care should be taken
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to ensure that the conditions for the response measurements are as close as possible to
the ideal situation used in the predictions of the power flow. The largest single source of
error, in the power flow measurements as presently set up, is probably reflections from
ineflicient anechoic terminations. Other sources which may be important are geometric
imperfections in the pipe (pipe bends, thickness variations, etc.), material imperfections
in the pipe (e.g. weld lines and cast defects), and bubbles in the contained fluid.

When using the power flow measurement principle in industrial applications, the in-
ternal load impedance of the source should also be considered. It is difficult to predict
the pipe impedance characteristics in an industrial application, and the exact condi-
tions of any power flow measurements should thus be stated along with detail of the

experimental setup.

It was the original intention also to present in this thesis measurements of the vibroa-
coustic power flow in a heavy fluid loaded pipe excited by the turbulent fluid flow
past a flow obstacle. Unfortunately, problems with the experimental setup made it
impossible to obtain a full set of modal response measurements, and time did not allow
for another set of measurements once the problems with the experimental setup were
taken care off. However, the preliminary results were very encouraging, and no new
problems or shortcomings regarding the experimental method were identified during
the fluid flow excited experiments.

23



Chapter 4

A method based on numerical
calculations

This chapter presents a novel numerical method to calculate the vibroacoustic power
flow in a fluid-filled pipe excited by fluid flow past an obstacle inside the pipe. The
method leaves out the airborne transmission path discussed in chapter 2. If this trans-
mission path for some reason cannot be excluded for a given application, the knowledge
of the structural vibrations of the pipe wall obtained from the methods in this chap-
ter can be used to include external radiation in the power flow calculations; see e.g.
Skelton and James (1997) or Fuller (1986).

The field of numerical calculation of flow generated noise has received a lot of attention
in recent years, partly for the same reasons stated in chapter 1 when the industrial
motivation of this project was discussed. The entire field of aeroacoustics, as it has
been dubbed, began with the original work of Lighthill (1952). In his paper, which
described generation and radiation of sound from turbulent fluid motion in a unbounded
flow, the acoustic analogy was introduced for the first time. The acoustic analogy is
an exact rearrangement of the Navier-Stokes equations producing the linear acoustic
wave equation along with some source terms; the latter ensure that the acoustic far-
field radiation remains the same. Curle (1955) provided a theoretical expansion of
Lighthill’s acoustic analogy to allow for the noise generated by interaction between
the flow and solid structures. The approach by Lighthill (1952) and Curle (1955)
was generalised by Ffowcs Ffowes Williams and Hawkings (1969) to allow for moving
permeable surfaces; they also gave a more general and powerful derivation with the
ald of generalised functions. The Ffowcs Williams and Hawkings approach has been
used by many later authors, e.g. in the investigation of helicopter rotor noise (Brentner
1996) and in the assessment of noise prediction from wind turbines (Lowson 1982).

In this chapter, the Ffowcs Williams and Hawkings formulation of the acoustic anal-
ogy is used to represent the noise generated by a flow obstruction inside a fluid-filled
cylindrical pipe by a distribution of equivalent acoustic sources inside the pipe, with
the fluid at rest. It is assumed that the vibration of the pipe has no influence on the
structure of the flow, which means the flow problem can be solved independently of
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Figure 4.1: Flow diagram showing the steps in numerical quantification of power flow
from a flow noise source in a pipe.

the pipe vibrations. It is also assumed that there is no reaction of the internal acoustic
pressure field on the flow. Furthermore, it is assumed that the flow Mach number is
small enough for wave convection effects to be neglected in the wave propagation. This
way, there is no feedback mechanism and the mean flow inside the pipe does not affect
the vibroacoustic power flow in the pipe. Under these assumptions, the problem of
calculating the vibroacoustic power flow generated by the turbulent flow past a flow
obstruction in a fluid-filled pipe is reduced to the problem of calculating the unsteady
loading distribution on the obstruction.

4.1 General overview of the method

Sound waves in a fluid are generated in three ways: by the vibration of any solid
body in contact with the fluid, by vibratory forces acting directly on the fluid, or by
the turbulent motion of the fluid itself. The vibroacoustic analogy presented later in
this chapter allows a transformation of the real problem, namely the vibroacoustic
excitation of the fluid-filled pipe by the turbulent flow past the flow obstruction, into
an equivalent problem of a fluid-filled pipe without fluid flow or flow obstruction, but
with a distribution of vibroacoustic point sources providing the excitation in the source
region. When the excitation is formulated as vibroacoustic point sources in a fluid-
filled pipe, the response of the fluid-filled pipe can be calculated using the prediction
model from part II and so can the power flow.

A flow diagram of the method can be seen in figure 4.1. The unsteady fluid flow past
the flow obstruction and the reaction forces of the pipe wall are to be calculated using
CFD. Using the vibroacoustic analogy, the flow excited fluid-filled pipe is replaced by
an identical vibroacoustical situation with a distribution of acoustic point sources of
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different types. Knowing the vibroacoustic excitation by the point sources, the response
of the fluid-filled pipe can be calculated along with the total vibroacoustic power flow.

In the following, each of these three steps is discussed in more detail.

4.2 CFD calculation of the fluid flow

The compressible Navier-Stokes equations describe both the noise generation and prop-
agation at all flow conditions in hard-walled environments. Unfortunately, these equa-
tions are not generally solvable using analytical methods and alternative approaches
have been chosen. One approach has been direct numerical simulation (DNS) of the
Navier-Stokes equations, but this has only been feasible for very simple problems, as
the numerical task of resolving both the smallest eddies and the large scale structures in
the flow is enormous, especially as most of the flows of industrial interest in this thesis
are turbulent. It is therefore common to decouple the flow problem from the acoustic
problem as described in the introduction to this chapter. For low Mach number flows
this means calculating the turbulent flow as if it were incompressible.

The calculation of the incompressible flow is also possible using DNS, but the problem
remains the same as for the coupled case, so it is only possible for simple cases. To
avoid the pitfall of the large differences in spatial and temporal resolution of the flow
solution, turbulence modelling is introduced. The idea behind all turbulence modelling
is to represent the effects of the smallest scales on the larger scales by some sort of
mathematical model. Normally the interest in the smallest scales is only indirect (the
high frequency range in aeroacoustic calculations is an exception), and it is the larger
scale effects that are important for the flow calculation. If the small scale effects can be
represented by a turbulence model and not directly calculated, the flow calculation can
disregard the smallest scales and only model the larger, while the flow solution is still
valid. It is a generally recognised fact that all existing turbulence models are inexact
representations of the physical phenomena involved, as pointed out e.g. by Wilcox
(1998). It is also known that the degree of inexactness of a given model depends on
the nature of the flow to which it is being applied, and that the characterisation of the
circumstances which give rise to 'good’ and ’bad’ performance must unfortunately be
based mainly on experience.

As a feasibility study for this thesis, the general purpose Computational Fluid Dy-
namics code Star-CD was used to calculate the flow past a square spoiler inside a pipe
using the k£ —e turbulence model. The square spoiler has been used for benchmarking of
Computational Fluid Dynamics (CFD) codes, as the simple geometry yields complex,
unsteady flow patterns. The flow shows considerable secondary flow phenomena, like
flow separation and recirculation and periodic vortex shedding making up the charac-
teristic von Karman vortex street from bluff bodies. Some experimental results on the
flow past a square spoiler are available: Lyn (1992) did LDV-measurements in a water
channel and published results of time and phase-averaged velocities, fluctuations and
correlations at Rep = 22,000 (Rep is the Reynolds number based on the side length
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Figure 4.2: Example of CFD calculation: velocity magnitude of the turbulent flow past
a square spoiler.

of the square spoiler) and Vickery (1966) measured the fluctuating lift and drag, along
with correlation lengths at Rep = 100, 000. The CFD benchmarks use to a large extent
these experimental results; Lyn’s measurements were used in the second ERCOFTAC-
workshop (covering LES turbulence modelling) reported by Rodi et al. (1997), where
all CFD-simulations done were on the same set-up. Several other papers were presented
in the workshop, all stating results for Lyn’s case. Lee (1997) also worked with this
set-up, but using k£ — e turbulence modelling — unfortunately, his paper is questionable,
as the conclusions are beyond the results. Murakami and Mochida (1995) calculated
the set-up of Vickery and quoted results for both 2D and 3D LES calculations of the
fluctuating lift and drag.

When the results from Star-CD for the square spoiler were compared with the results
from literature, they were in reasonable agreement. Unfortunately, the computational
resources were inadequate for full 3 dimensional calculations, so all conclusions were
based on 2 dimensional calculations. An example of the flow calculation is shown in
figure 4.2. The main output parameters were the fluctuating forces (through lift and
drag coefficients) and the Strouhal number. During the feasibility study, mesh and time
step independence was obtained to within a few percent. When compared with the
full 3 dimensional experiment of Vickery (1966), the results were within 15 %. While
this was a promising result, the spectral content of the fluctuating forces calculated
by Star-CD was qualitatively different from the experimental results, with an almost
sinusoidal variation of both lift and drag. This was probably due to the large damping
used in the numerical solution to ensure numerical stability of the equations.
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The conclusion of the CFD feasibility study was that the overall calculation of the
fluid flow past a square cylinder was possible using Star-CD. However, while the time
averaged results were in good agreement with experimental results, the spectral content
of the fluctuating forces was not of a quality usable for acroacoustic calculations.

No further CFD-results are presented in this thesis. However, it cannot be concluded
that general purpose CFD calculations are unusable for aeroacoustic calculations. Dur-
ing the feasibility study the decision was made to use the code ’as is’. A different choice
of turbulence model or even some tweaking with the k£ — e model may provide satisfac-
tory results both regarding the time averaged parameters and the spectral content. It
was decided that any additional time spent on CFD would not contribute further to
this thesis. Unfortunately, the lack of quality CFD results leaves the entire vibroacous-
tic analogy presented in this chapter in a conceptual form and the originally intended
comparison with experimental results is therefore not possible.

4.3 A vibroacoustic analogy for turbulent flow in
pipes

4.3.1 Solution of the forced Helmholtz equation using Green
functions

Forced acoustic equations can be solved using a number of different techniques. The one
presented in the following uses Green functions to solve the forced Helmholtz equation
(i.e. single frequency excitation). The procedure is adapted from Morse and Ingard
(1968), and relies on the reciprocal property of Green functions in non-moving media.

In an ideal, stationary fluid the frequency domain acoustic pressure satisfies the inho-
mogeneous Helmholtz equation

(V* + kf)pu(x) = — fu(x) (4.1)

where V? is the Laplacian; k; = w/cy is the acoustic wavenumber of the fluid; w is
the cyclic frequency; ¢y is the fluid speed of sound; and — f,,(x) is a frequency domain,
distributed source term.

The Green function G, (x|y) is defined as the solution to the equation
(V2 + kp)Go(x]y) = —d(x ~ ¥) (4.2)

with a unit point source at x = y. In general, equation (4.2) is solved subject to
specified boundary conditions: Thus the equation is assumed to be valid in a region
Viot; bounded by a closed surface Sy (see figure 4.3), and the boundary conditions
are applied on Si,. Depending on the boundary conditions, different Green functions
are obtained. However, for all linear time-invariant boundaries consisting of stationary
fluid or solid regions, the Green function is reciprocal: G, (y|x)Gw(x]y)
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Figure 4.3: Fluid volumes and boundaries of interest for the vibroacoustic analogy.

Given a Green function G, (x|y), p.(x) can be found by combining equations (4.1) and
(4.2) in the following way: (i) replace x by y in equation (4.1) and multiply by G,,(y|x),
(ii) interchange x and y in equation (4.2) and multiply by p,(y), (iii) subtract the two
equations, and (iv) integrate with respect to y over the whole volume of the fluid
Viet- The sifting and symmetry properties of the é-function, along with the reciprocal
property and the divergence theorem, give the solution as

o) = [ fuy)Culxly)dV
Viot (43)

+ /Smt !:Gw(xfy)é%pw(Y) ‘pw(Y)‘a—z']__Gw(le) nde

where Sy is the boundary of Vie; n; is a unit normal vector from Sy, pointing outward
from Vi.; and y; is a source position coordinate.

Since G, (x|y) is directly proportional to the pressure at x due to a source at y, this
equation states that the total pressure at x is the summation of the direct pressure
contributions from all the sources in the source distribution at y plus the pressures
reflected by Sio;. With an appropriate choice of G, (i.e. a G, that includes the
reflection as part of itself, a so called tailored Green function), the surface integration
turns out to be exactly equal to 0, leaving only the volume integral.

4.3.2 The Ffowcs Williams — Hawkings acoustic analogy

With the Ffowes Williams — Hawkings acoustic analogy (Ffowes Williams and Hawkings
1969), selected boundaries in the solution domain can be replaced by source and dipole
layers.

This has the advantage that so-called ’excluded regions’ where the equations of fluid
motion do not apply (e.g. a solid body) can nonetheless be included in the solution
domain, by treating the excluded region as a continuation of the undisturbed non-
moving medium; thus the sound field is identically zero inside the excluded region.
The boundaries of any such excluded region are replaced by a distribution of monopoles
and dipoles placed at the position of the boundary. Figure 4.3 shows a surface Siot
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that corresponds to the wetted surface inside the pipe, a surface S that corresponds
to the excluded region boundary (the surface of the flow obstruction), a volume %
that corresponds to the excluded region and a volume V' that corresponds to the fluid
region where the equations of fluid motion apply. The solution domain V; is the total
volume inside the pipe, that is the sum of V and V.

Let f(x,t) be an indicator function such that f(x,t) > 0 in the fluid volume V" where
the equations of fluid motion apply, f(x,t) vanishes on S and S, and f(x,t) < 0 in the
excluded region. The indicator function can then be introduced in the Heaviside unit
function H(f), such that H(f) =1 for f > 0 and H(f) =0 for f <0.

Using these functions, Howe (1997) states the differential form of the Ffowes Williams
— Hawkings equation as

1 62 2 2 = 82(HTU)
(75t—2 v/ ) [Hct (p— py)] = Oz;01;

oH

’ ([Pvz‘(vj — 7) + ply] 5“3;;) + % (W%’ — T;) + psUj] gg) (4.4)

8.%2‘

J

where subscript ; refers to quantities in the undisturbed fluid at rest. Thus ¢y is the
speed of sound in the undisturbed fluid, and p— py is the acoustic density perturbation.
The first term on the right hand side is a fluid quadrupole term, the second is a surface
dipole term and the last is a surface monopole term. The quadrupole term can be
decomposed as T;; = pviv; — 755+ ([p — ps] — ¢3p— ps])di; where the first part of T;; are
the Reynolds stesses, the second part the viscous stresses and the last part is related
to entropy and fluid inhomogeneity. The first part of the dipole term is the flux of
momentum across S (T; being the velocity of the surface S), while the last part is the
force per unit area applied at S (with pj; = (p — py)di; — 7i;). The first part of the
surface monopole term is the mass flow through the surface and the other part is the
equivalent mass flux due to surface motion. Due to the properties of the generalised
function H(f), equation (4.4) is valid throughout the whole of space.

In the following, the surfaces are assumed to be impenetrable, so the first part disap-
pears in each of the surface terms. The term c}(p—pf) tends to the acoustic pressure far
away from the source region, and the frequency-domain version of the Ffowcs Williams
~ Hawkings equation can be solved for p,(x) using the method from the previous sec-
tion. Assuming a tailored Green function, the solution to equation (4.4) can be found
directly from equation (4.3):

O?(HT:;) 0 OH 0 oH
Hp,, = B . LA P ) 4+ = U] — w 1% 4.5
P.() /vmt [ Oy 0y, Oy (p” a?/j) ot Opfvﬂ 8yj>} Culxly)d (45)

To simplify this solution, the first two terms are integrated by parts. The dipole term
is rewritten as

o , OH O , oH aGw(Xb’) / oH
ey  oHy y o A il P 4.6
Go(x|y) o <p” 5%) a0, (G (x[y)p3; 8%) + Em Pij dy; (4.6)
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and the quadrupole term is rewritten as

82(HT}) o 8 ( 6(T~H))
w(x = — G (x|y)T,;H) + 2 G i

Gy, (xly)
+ m@yz o0 (HT3))

Using the rewritten forms of the quadrupole and dipole terms, the volume integral of
equation (4.5) can be rewritten as

= | (- ay?;yﬁ oty +2.2 (e )5(§;J]H)>

0?G,(x]y)
T oy ayzayg HT)

o (g )+ 5 ()
gt <[,0fbg] gi) Gw(Xiy)} av

Applying the divergence theorem, see e.g. Kreyzig (1998), to equation (4.8) transforms
some of the volume integral terms into surface integral terms and the solution to the
Ffowces Williams — Hawkings equation is then

0?G,(xly) 0G,, (x|y) ( SH)
Hp,, :/ {W HTy) + 2 (o 2=
p (X) Vios 8yzay7 ( ]) ayz pjay]

+ Gulxly) 5, 0 ([vaa] S;) ]dv (4.9)
0 O(HT;;) , OH
[ |- g T+ 26 i 28— Gttt s

where n; are the components of the unit normal pointing out of the domain from Sis.

The properties of the Heaviside unit function allow equation 4.9 to be simplified, noting
that H=11in V and H = 0in V. The last two terms of the volume integral in equation
(4.9) can be evaluated as a surface integral over S, since 9H/dy; = 0 except at S where
O0H/0y, is equivalent to 7;0(€).

Here 7; are the components of the unit normal to S pointing out of V into V; in
terms of the indicator function f(x,t), i = (Vf/|Vf])o, and & = f/|V flo (subscript
0 denotes evaluation on S). The delta function variable (£) is the local coordinate
normal to S, with € =0 on S.

Further simplification results from the fact that Si lies entirely outside S (figure 4.3);
thus in the surface integral over Sy, H can be replaced by 1 and 0H/0dy; by 0. The
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final form of the solution in region V is then

0%G,,(x oG, (x , 0 I
Pu(x) = _MTJ dvV + /_ [M% +Gu(xly) 57 (lrvs)) | 745
Vv Byzay] s 8% ot (4 10)
9G.,,(x]y) IT,, } ‘
+ e G (x I\ n,dS
/Stot [ ay] ( [y) ay]

In this equation, all source terms are evaluated at y and the volume and surface
integrals are with respect to position y.

4.3.3 Interpretation of the vibroacoustic analogy

While equation (4.10) is perfectly valid, it needs some interpretation to become usable
in this context as part of the vibroacoustic analogy.

The integrand of the volume integral takes the form of an acoustic quadrupole. This
is thus the noise generated by free turbulence in the fluid. The first of the S surface
terms takes the form of an acoustic dipole and thus is the noise generated by the
fluctuating forces on the flow obstruction. The second term of the S integral is an
acoustic monopole and is related to the surface vibration of the flow obstruction. The
entire Sy, integral is fairly difficult to interpret in the form presented, but it is a layer
of monopoles and dipoles at the pipe wall, related to the noise generation in the wall
boundary layer.

So far, the acoustic analogy has been presented as a classic acoustic analogy, formulated
with tailored Green functions. However, it is possible to add in an extra complicating
effect to make it a true vibroacoustic analogy. In the case of a flow obstruction in a
fluid-filled pipe, there will be a structural connection between the obstruction and the
pipe wall. The flow forces on the obstruction generates reaction forces at the connection
with the shell wall. The inclusion of these forces in the modelling framework makes it
a true vibroacoustic analogy, as laid out in principle in figure 4.1. In a mathematical
formulation, the structural excitation could be included in the modelling by cutting the
surface S just outside the pipe wall so the flow obstruction is completely surrounded
by fluid. The stresses could then be integrated at the cut and an equivalent distributed
reaction force could be applied to the shell. However for purposes of this thesis, no ad-
ditional mathematical modelling will be attempted concerning the structural reaction,
as the purpose is mainly to introduce the concept.

This leaves the important question of whether all the terms of equation (4.10) are
equally important in the industrial application. Scaling laws in aeroacoustics are com-
monly based on the free-field acoustic analogy, where the relative scaling of far-field
pressures from monopole/dipole/quadrupole sources is 1:He:He? (He = wL/c is the
Helmholtz number, where L is a typical length scale) in the compact limit (He < 1).
The purpose of the scaling laws is to reduce the number of sources to include in the
calculation: if one source type is dominating the others, the calculations can be sig-
nificantly simplified by leaving out the other source types without any major impact
on the precision of the prediction. Another important aeroacoustic scaling parameter
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Figure 4.4: Equivalent source distribution for the vibroacoustic analogy applied on a
rigid flow obstruction connected to the pipe wall. Compare with figure 4.1

is the Mach number of the flow (Ma= @/c, where @ is the mean flow velocity) and
normally a dipole scales with a higher power than a monopole and a quadrupole with a
higher power than a dipole. In the industrial application, the Mach number is very low
(approximately 0.001) and according to the 'free-field logic’, it would only be necessary
to include the lowest order source type (e.g. monopole), as the scaling laws suggest
that the higher order sources should be comparatively ineffective in generating noise
at such low Mach numbers. However, there are cases (e.g. near a sharp edge of a
plate (Ffowcs Williams and Hall (1970) and Crighton and Leppington (1971)) where
the normal scaling laws do not apply. To investigate the scaling effect inside a fluid-
filled pipe, monopole, dipole and quadrupole excitation are compared over a range of
frequencies in section 4.3.6. The conclusion of this section is that the expected scaling
applies: the monopole is more efficient than a dipole, and a dipole is more efficient
than a quadrupole at the very low Mach numbers of the industrial application.

Knowing this, it is possible to formulate a true vibroacoustic analogy. In the industrial
application, the flow obstructions are metallic and they can therefore be assumed to be
very rigid. There is thus no monopole excitation at S. As the flow past blunt objects is
unsteady (at anything but the very lowest Reynolds numbers), there will be fluctuating
forces on the flow obstruction and thus dipole excitation at S. When there is dipole
excitation at S, this will dominate in the far field and there is therefore no reason to
include quadrupole excitation, so the volume integration can be left out. The boundary
layer noise generated by the Sy integral in equation (4.10) is difficult to estimate. The
two terms involving 7;; contain a product of two velocities in the Reynolds stress term;
however, as the surface S is placed just in the fluid next to the wall, there are no slip
velocities, so they are equal to the wall vibration velocities in the respective directions.
If this is to be used in the calculation of the boundary layer noise, it should be noted
that the shell theory used for the calculation of the wall vibration in this thesis is linear
and does not contain any quadratic terms. Intuitively, it seems reasonable that the
boundary layer noise due to surface sources on the pipe wall will be small compared to
the radiation from structurally-excited wall vibration. The source terms representing
the boundary layer noise are therefore disregarded.

The pressure at a far field observation point inside the pipe can under these circum-
stances be calculated from the vibroacoustic analogy as (see also figure 4.4),

oG,
pw(Xf)N/_ éy ¥7) j dS+ZSz G (x![y3) (4.11)
S, 7
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where /N is the number of reaction points; S;j is the strength of the j7’th structural
reaction force in direction ¢ and G, is the structural Green function in direction 4, giving
the point pressure response at a fluid receiver point for unit excitation in direction ¢
at the pipe wall. The different types of Green functions and source and receiver points
are discussed in more detail in the next section.

4.3.4 Tailored Green functions for fluid-filled compliant pipes

The tailored Green functions that appear in equation (4.11) are designed to incorporate
the effect of the wall vibrations. Part II of this thesis deals with a prediction model
of point to point response functions for a fluid-filled cylindrical shell. The excitation
in the prediction model is either in the form of a structural point force acting on the
shell or a point monopole in the contained fluid. The receiver point can either be in
the fluid or in the shell wall.

The tailored Green functions can be derived from the results of part II. The fluid Green
function GG, used in the vibroacoustic analogy is closely linked to the pressure response
when the fluid-filled shell is excited by a monopole, as defined in equation (6.43). This
pressure response is the sum of (a) the pressure from a free-field monopole, (b) the
pressure arising from the scattering from hard boundaries inside the pipe and (c) the
pressure in the fluid originating from the wall motion induced by the monopole. To
formulate the same pressure using Green functions, the pressure response in a receiver
point in the fluid x/ from a fluid monopole at a point in the fluid y/ is written as

p(x') = SpGr(xly/) (4.12)

where Sy is the source strength of the monopole and G(x/|y’) is the fluid Green
function. The fluid Green function G;(x/|y/) is thus proportional to the complex
pressure produced at x/ due to a harmonic point monopole source of unit strength
at y/. G, is then identical to G;. Equating the two different approaches gives an
expression for the fluid Green function,

Gf((r 6, S)J(ro 0,, so))

= Z Z f———————— 22 ps HLRes™ cos(n (0 — 0,)) Jn(ampr)eme9) (s> 5,) (4.13)
=0 b—1 h(l/an anb) Ps "

where the different symbols are to be defined in Part II.

As the structural response is also a part of the vibroacoustic problem, the formulation
of the Green function for a fluid-filled pipe is more complicated than for Green functions
in hard-walled environments.

The fluid Green function can also be extended to include the associated structural
response,

wi(x’) = ;G (x°ly") (4.14)
where u’ is the complex displacement of the shell wall in any of the three coordinate
directions and x* is a receiver point in the structure.
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The structural Green function G%(x|y*) is a reversal of this concept, giving the pressure
at a fluid receiver point due to a structural point input:

p(x') = S,G(xTly?) (4.15)

Here S° is the strength of the input force in any of the coordinate directions and
Gi(x'|y*) is the structural Green function giving the pressure in the fluid at a fluid
receiver point x/ from a structural point force of unit strength in direction i. The
structural response from a structural point force can be defined in a corresponding
manner.

4.3.5 Definition of multipole sources using Green functions

Having defined the fluid Green function G in terms of the pressure response to a fluid
monopole, the point dipole and point quadrupole Green functions are introduced.

Fluid dipole If two simple point sources of opposite phases but equal magnitudes
are put close together, the fluid ejected from one of the sources is sucked in by the
other and vice versa, as though it were simply being moved from the one source point
to the other. Such a source is called a dipole source. A number of textbooks present
the construction of a point dipole from two closely spaced point monopoles of opposite
phases, e.g. Fahy and Walker (1998).

The net complex response (e.g. pressure or displacement) from a point dipole, at any
receiver point x = (r,0,s), is the sum of the individual responses of two closely spaced
monopoles with strengths —S and 45, respectively. In the limit where the vector
separation |d| — 0, the product of strength and separation is held constant Sd = D
and the pressure field from the point dipole emerges as

pi(x) = D VG (xly) = D?%’f@ (4.16)

where Gy(x|y) is the same monopole Green function derived in the last section; the
index y denotes differentiation with respect to the source coordinates y = (r,, 8,, o);
and the gradient operator in nondimensional cylindrical coordinates is

of or 10f OFf 0s 18f 19f 10f
_ 1 9s\ _(1of 107 19f 417
Vy/ (6‘7’-@87’0’ r 00, 85052> (a@ro’ r 00’ ads (4.17)

The dipole can have three different orientations, aligned radially, tangentially or axially.
Any dipole not aligned with the axes can be constructed using the three fundamental
forms. The axial and tangential dipole pressure response have essentially the same form
as the Green function, apart from multiplying factors x,; and n, while the radial dipole
is more complicated as it involves differentiation of the Bessel function. Nonetheless,
the construction of the dipole from equations (4.13) and (4.16) is straightforward and
will not be stated here.
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Using essentially the same concept, the structural response to a point dipole in the
fluid can be derived as

vl =D - V,G(x]y) (4.18)
where index ¢ indicates the displacement can be either of the displacement directions
u, v and w.

Fluid quadrupoles In the case of two point dipoles of strength —D and +D with a
vector separation d’, the result of taking the limit |d’| — 0 with the product of strength
and separation held constant, D : d' = Q, a point quadrupole emerges,

0*Gy(xly)

4.19
ayiayj ( )

Pi(x) = Q: VyVyGslxly) = Qi

where ();; is the strength tensor.

Each of the two dipoles can have three different orientations, making a total of nine
different combinations. Because of symmetry, only six of these are unique. Each of
these can be derived from equations (4.13) and (4.19).

The structural response to the fluid quadrupole can be defined using the same concept
as for the fluid dipole.

4.3.6 Relative scaling of pressure response of multipole sources

As noted in section 4.3.3 above, the relative scaling of multipole sources may allow
a simplification of the vibroacoustic analogy. In free fields there is a well established
expectation regarding the relative scaling of monopole, dipole, and quadrupole type
aeroacoustic sources (Howe 1997). If the Mach number is sufficiently low the radiated
power in the free field for each type scales as: 1:Ma*:Ma*. However, the environment
of the source may affect the radiation; this is for example the case near a sharp edge of
a large plate ((Ffowes Williams and Hall 1970) and (Crighton and Leppington 1971))
where the relative importance of the quadrupole sources is increased. The purpose of
this section is to investigate whether the relative scaling laws from the free-field also
apply inside a fluid-filled pipe.

Since each of the source types drives the fluid-filled pipe in a fundamentally different
way, they are not directly comparable. To circumvent this problem a dimensionless
pressure ratio is introduced, such that the in-pipe pressure amplitude of a given source
type is related to the free far-field pressure amplitude of the same source type. In the
case of the directional source types, the directional peak pressure amplitude is used,
as the pressure perpendicular to the dipole axis is, for example, identical to zero. The
dimensionless pressure ratio is defined as:

Apres(T: To; 0 — 055 — So) = Ppipe (420)

o | Pfree,peak
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where ppipe is the in-pipe pressure amplitude; pgee peak 1S the free-field directional peak
pressure amplitude at distance Dj; (r,6,s) is the receiver point; and (r,,0,, s,) is the
source point.

The numerical prediction model from chapter 6 is used along with the definition of
the multipole sources from section 4.3.5 to predict the in-pipe pressure. The free-field
pressure is calculated standard theory (Morse and Ingard 1968). As a special case, the
dimensionless pressure ratio in a hard-walled circular duct can be predicted analytically
for each type; a simple result is obtained in the limit of low Helmholtz numbers (He =
kra = 2w fa/cy), where the far-field in-pipe pressure response is restricted to plane
waves. ‘

Figure 4.5 shows the dimensionless pressure ratios for a pipe with light fluid loading
(PVC pipe with air inside and outside, corresponding to the experimental setup of
chapter 8) excited by monopole, axial dipole, and axial-axial quadrupole sources. Below
cuton of the higher order duct modes at He = 1.84, the curves in the figure are virtually
identical to those predicted by the low-frequency theory mentioned above: in a hard-
walled circular duct below He = 1.84 each of the source types is represented by a 2/He
curve. Above He = 1.84 there is multimode excitation, and the curves become more

complex.

Figure 4.6 shows similar curves for a light fluid loaded pipe excited by monopole, radial
dipole, and radial-radial quadrupole sources. The theoretical hard-walled prediction in
this case is that the monopole should follow 2/He (no change from figure 4.5), while
neither the radial dipole nor the radial-radial quadrupole should drive the plane-wave
mode and therefore their contributions should disappear once the lowest transverse
mode is cut off, below He = 1.84. However, as seen in the figure, there is a small
response for both the radial dipole and the radial-radial quadrupole. This reason for
this is simply that the pipe walls are slightly compliant even for light fluid loading, but
the response is relatively insignificant.

The conclusion to draw from figures 4.5 and 4.6 is that in the light fluid loaded case the
relative ranking of monopole, axial-dipole, and axial-axial quadrupole radiation remains
unaltered inside the pipe for low He, compared to the free-field situation. The radiation
from radial dipoles and quadrupoles are small by comparison. As no augmentation
takes place, the free-field Mach number scaling still applies for low Mach numbers.
Davies and Ffowes Williams (1968) present the same conclusion for quadrupoles inside
an infinite hard-walled duct.

Figure 4.7 shows the dimensionless pressure ratios for the axial source types, for a pipe
with heavy fluid loading (PVC pipe with air outside and water inside, corresponding
to the experiments in chapter 9). At low He the curves are all approximately parallel
with a 1/He slope, but not coincident. Apparently each of the source types differs
from the next by a constant factor: the dimensionless pressure ratio from the axial
dipole is approximately a factor of 5 larger than from the monopole, and likewise
there is a factor of 5 between the axial-axial quadrupole and the axial dipole. From
the fact that the curves in figure 4.7 are approximately parallel at low He, it can be
concluded that the free-field Mach number scaling also applies for heavy fluid loading.

37



Figure 4.5: Dimensionless ratio of in-pipe to free-field pressure response. Pipe with light
fluid loading: monopole(red), axial dipole(green) and axial-axial quadrupole(blue).
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Figure 4.6: Dimensionless ratio of in-pipe to free-field pressure response. Pipe with light
fluid loading: monopole(red), radial dipole(green) and radial-radial quadrupole(blue).
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However, the implied dominance of monopoles at low Mach numbers (or of dipoles, if
no monopoles are present) is only the case below a certain problem-dependent Mach
number. If the Mach number is higher than the so-called cross-over Mach number, then
the multipoles will dominate the monopole. The cross-over Mach number is affected
by the constant factor between the curves in figure 4.7; for example, the cross-over
Mach number between the axial dipoles and axial quadrupole is reduced by a factor of
approximately 5 relative to free-field radiation.

The dimensionless pressure ratios for the radial source types in a pipe with heavy fluid
loading are plotted in figure 4.8. If one compares this figure with the light fluid loading
case (figure 4.6) the overall appearance is different, as the curves for both the radial
dipole and radial-radial quadrupole (particularly the latter) are now of comparable
magnitude with the monopole. The reason for this is the significantly larger excita-
tion of the pipe with heavy fluid loading below He = 1.84, due to the relatively larger
flexibility of the pipe wall. The in-pipe pressure response to the radial dipole is dom-
inated by the structural n = 1 mode (beam bending), while both the monopole and
the radial-radial quadrupole are dominated by the n = 0 mode. The curves remain
approximately parallel at low He and the free-field Mach number scaling rules there-
fore apply. However there is a factor of approximately 100 between the dipole and the
quadrupole ratios, and the cross-over Mach number between these sources is therefore
significantly affected as discussed below.

No significant changes in the trends discussed above occur when either the point of
excitation or the receiver point are moved along the radius. The reason for this is that
the pressure response at low He in each of the cases is dominated by low n (the modal
pressure field for n = 0 and n = 1 does not depend strongly on radial location), and
therefore (by reciprocity) the monopole response of these modes are largely unaffected
by the radial position of the source. There are some minor changes at higher He
where the higher order modes have significant contributions, but the overall trends are

unchanged.

In the interpretation of the vibroacoustic analogy in section 4.3.3 it was argued that
there was no monopole contribution in the industrial application. This leaves dipole
and quadrupole contributions. In the free-field scaling laws, a rule of thumb for tur-
bulent flow noise with solid boundaries says that the cross-over Mach number where
quadrupoles tend to dominate over dipoles is approximately 1. As the dimensionless
pressure ratio for dipoles and quadrupole differs approximately by a factor of 5 in the
axial case and a factor of 100 in the radial case, the radial case is most critical. How-
ever, the cross-over Mach number is approximately 0.01 in this case and as the Mach
number in the industrial application is of the order 0.001, the dipole excitation will
dominate the pressure response in the vibroacoustic analogy calculation.

4.3.7 Power flow calculation from the vibroacoustic analogy

Once the input excitation is calculated from the vibroacoustic analogy, the response of
the fluid-filled cylindrical shell can be predicted. In Part II of this thesis a prediction
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model is presented; this model enables prediction of the shell vibration, the internal
fluid pressure, and the total vibroacoustic power flow in the axial direction. The
excitation presented in Part II is limited to a point force at the shell wall or a point
monopole in the fluid, but as shown in the previous sections it is quite simple to expand
the excitation to include source distributions of multipole order, for which the response
is determined by taking derivatives of the point monopole Green function.

Eventually, it is expected that the necessary inputs will come from a CFD simulation
of the unsteady flow. Any input to the vibroacoustic analogy provided by a numerical
flow calculation is not continuous, as the equations of fluid motion are discretised in
both space and time. The temporal discretisation is not a problem, if the analysis is
conducted carefully, as the time steps can be chosen to be significantly smaller than the
smallest time scale of interest in the fluid. The spatial discretisation is not a problem
either, if the calculation is conducted carefully. The spatial scales of the vibroacoustic
problem (e.g. the wavelength of the bending modes) are significantly larger than the
spatial scales of the flow calculations, as small eddies need to be resolved, even when
using a turbulence model. A key part of the spatial discretisation in the flow calculation
is the meshing of the fluid volumes. Any surfaces in contact with the fluid are also
meshed in patches. When solving the unsteady fluid flow, the fluctuating forces on
each patch becomes known. If the time series are long enough, the fluctuating force
on each patch can be Fourier transformed. Knowing the surface normal of the patch,
the dipoles of the S integral in equation (4.11) can be constructed. The reaction forces
from the flow obstruction on the pipe wall can also be extracted from the flow solution.

Due to the coupled nature of the fluid-filled shell, the structural excitation by the
reaction forces leads both to vibration of the shell wall and pressure fluctuations in the
fluid. Since the different excitation processes have a common generation mechanism
in the fluid flow, it cannot be generally assumed that the excitations are incoherent.
Their power flow contributions then need to be added modally. While modal addition
may be troublesome, there are standard methods for dealing with the problem; see e.g.

Norton (1989).

4.4 Conclusion

The concept of numerical calculation of vibroacoustic power flow from a flow obstruc-
tion in a fluid-filled pipe has been presented in this chapter. The method is general and
does not put any constraints on the geometry of the flow obstruction. The calculation
involves three steps:

i) Solution of the incompressible unsteady flow around a flow obstruction inside the
pipe using Computational Fluid Dynamics.

ii) Construction of a vibroacoustic analogy that transforms the vibroacoustic excitation
of the flow past the flow obstruction into an equivalent problem with vibroacoustic
excitation by point sources in a fluid-filled pipe without flow and flow obstruction.
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iii) Calculation of the vibroacoustic power flow from the equivalent point sources.

The second part involving the vibroacoustic analogy is one of the main contributions
in this thesis and it is therefore discussed in some detail. The CFD solution of the fluid
flow has been left out, as it is very complicated to obtain a unsteady time-resolved
solution of the fluid flow. Only a few remarks have been posed regarding the numerical
calculation of the vibroacoustic power flow, as it is presented in detail in part 11 of this

thesis.
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Part 11

Prediction of vibroacoustic power
flow in mechanically and
acoustically excited pipes
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Chapter 5

Review of analytical models for
fluid-filled infinite cylindrical shells

This chapter is a review of analytical models for small-amplitude vibrations of infinite
cylindrical shells, excited by point forces at the shell wall and monopoles in the con-
tained fluid. The dimensional formulation of the equations presented in this chapter
is not used explicitly in later chapters. Instead, in chapter 6 they are reformulated in
nondimensional form and the nondimensional form is used throughout the rest of the
thesis. The equations in this chapter are therefore not discussed in depth, as many of
the comments and interpretations are put more appropriately in the later chapters.

The modelling of infinite cylindrical shells has received quite a bit of research in the last
century. The main focus at first was predicting the in vacuo shell vibrations excited
by structural forces, e.g. Donnell (1933) and Fliigge (1962), but later work included
the effects of internal and external fluids. Most of the relevant background theory on
cylindrical shells can be found in the reference work by Leissa (1973). A key omission
in Leissa (1973) is the lack of any excitation of the shell by the fluid. While some
confidential research was done on this topic by J. M. James (parts quoted by Fuller
(1984) and Skelton and James (1997)), the first publicly available paper to examine in
depth the behaviour of cylindrical shells excited by internal and external monopoles was
by Fuller (1984). This reference was part of a sequence of papers by Fuller investigating
different properties of the cylindrical shell.

The review in this chapter follows the framework set out in 'Theoretical acoustics of
underwater structures’ by Skelton and James (1997). The framework includes the
general modelling of infinite cylindrical shell with internal and external fluid loading.
The excitation in this review is restricted to point forces at the shell wall and point
monopoles placed in the interior fluid. Skelton and James (1997) use the Goldenveizer-
Novozilov shell theory, but as the main shell theory used in the present thesis is the
Fliigge shell theory (Fliigge 1962), the Fliigge equations are presented in the following.
A closer examination of the influence of the shell theory on relevant vibroacoustic
aspects can be found in chapter 7, where the Fliigge, Goldenveizer-Novozhilov and
Donnell-Mushtari shell theories are compared. The solution of the equations of motion
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Figure 5.1: Coordinate system for infinite cylindrical shell

is not presented in this chapter. Instead this is presented in chapter 6 along with the
nondimensional prediction model.

5.1 Equations of motion

Consider a uniform thin cylindrical shell of thickness A and mean radius a. The mid-
surface of the shell is described in a (r, 8, z) cylindrical coordinate system, as shown is
figure 5.1. If u(8, 2), v(0, z) and w(#, z) represent the components of displacement from
the equilibrium state in the axial, circumferential, and radial directions, respectively,
the equations of motion for the shell can be written as

Quiu(l, z) + Qrav(8, 2) + Qrsw(8, 2) = E*(6, 2)
Qa1u(8, 2) + Qouv(0, 2) + Qasw (8, 2) = E(0, 2) (5.1)
Qz1u(f, 2) + Q32v0(0, 2) + Qasw(0,z) = E7(0, z)
where the Q-elements are differential operators acting on the displacements; E#(6, z),
E%(0,z), and E"(0,z) are the orthogonal components of mechanical excitation of the

shell wall per unit area (the tractions) in the positive coordinate directions. The
differential operators are, according to the Fliigge shell theory (Fligge 1962),

Qi =-D ('Z“giz B “ﬂQai) = _2;)52 agm Qo =z
Q=D ("5 g g gm) g
Qs = —D (a%g% - %%) Qa1 = -0z (a2 = Qs

1 L, 1 o o
~-p(L O 1O Ly 9 (5.
oz = D (a2 P (a ot wzag T 2aap) ) TrheE Y
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Here D = Eh/(1 — v?) = p,cih is the extensional rigidity also called the membrane
stiffness; ¢;, = /E/p(1 — v?); v is the Poisson’s ratio of the shell; E is the Young’s
modulus of the shell; p, is the material density of the shell; 5% = h2/12a? is a thickness

ratio.

Representing field quantities in the cylindrical coordinate system by a Fourier integral
transform in the 2z direction and a Fourier series in the  direction, yields

_ 1 = inf b L\ ikz =
f(r,&,z)—zﬂ_n;ooe /_oof(r,n,k)e dk (5.3)
and the inverse transform
1 2m . 0 .
frin k) = ——/ e_madQ/ f(r,0,2)e"**dz (5.4)
T Jg —00

where f(r, 6, z) is the field quantity; f(r,n, k) is the spectral field quantity; n is the
circumferential mode order and % is the wavenumber in the axial direction.

From the shell equations it follows that the tangential displacement component gener-
ally is 7 /2 radians out of phase with the axial and radial displacement components. The
displacement components could be formulated using complex exponential functions as
in equation (5.3), but it is more convenient to use displacements of the form

’LL(L‘, 6, z) =U COS(nQ)ei(kz“wH%)
’U(LL, 9, Z) =V Sin(ne)ei(kz—wt) (55)
w(t, 0, z) = W cos(nf)e'=

with unknown displacement amplitudes U, V and W. The 7 /2 in the u-displacement
is by convention added to avoid imaginary components of the following S-matrix. It
is convenient to consider single-frequency solutions with time factor €**. Accordingly
in the reminder of this thesis, all displacements, pressures, and input forcing terms are
represented by their complex amplitudes, with the e** factor suppressed.

The differential equations of motion can then be expanded as transforms. Using a
matrix representation, the spectral equations of motion are

Siu(n, k) Sia(n, k) Siz(n, k)| [u(n, k) E*(n, k)
Sor(n, k) Sos(n, k) Sas(n, k)| |v(n, k)| = | E(n, k) (5.6)
Ssi(n, k) Ssa(n,k) Sss(n, k)| |w(n, k) E"(n, k)

where E*(n, k), E®(n, k) and E"(n, k) are the spectral excitation tractions (force per
unit area); and the elements of the S matrix are found by using the assumed form of
the displacements in equation (5.5) in the definition of the @-matrix from equation
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(5.1). This yields

1- 1 2 .
511:D</€2+n2( v)( +’5)>—w2psh SlZZD(l—FV);LA

2a? a
k 1 - v)8%n%
513 = - (1/— + Cl,ﬁ?kg — (—*-"—1-/2—);;6)L> 521 = 512
2 2 1—
522 =D ((1 — Z/)%“ -+ ﬁ‘ —+ iQ““Z)"ﬁQKQ) - (UQpSh
B2nk?
523 =D (k %’““) S31 = _513

4
532 = —523 533 =D (a‘i 4 ﬂQ <a2k4 + ‘Z—Q + 2/62712)) - L«)sth

5.2 Structural point excitation and fluid loading

If the shell is not in vacuo, but filled with an internal fluid and submerged in an external
fluid, the effect of the fluids can be accounted for through a fluid loading term. The
combined effect of (1) a mechanical point force vector (F*, F?, F'"), located on the pipe
wall at the coordinates (a, 8,, z,), and (2) fluid loading pressures p;, p. on the internal
and external walls, is represented by the tractions

E*(0, z) F#5(z — 2,)6(0 — 0,)/a
E%0,2)| = FO5(z — 2,)6(0 — 0,)/a (5.7)
E"(0,z) Fré(z —2,)0(0 —0,)/a — pela,0,z) + pi(a, b, 2)

where F?, F% and F" are the axial, tangential and radial components of local force
acting on the shell mid-surface, being positive in the directions of the coordinate axes.
Both the internal and external fluid are assumed to be inviscid.

The related pressure fields satisfy the acoustic wave equation. Solutions are conve-
niently expressed in spectral (n, %) form rather than in physical (6,z) space. The
interior spectral pressure p{” driven by vibration of the shell wall has the following
form, as it is a solution to the Helmholtz equation in cylindrical coordinates which is
finite at the origin,

P = Andu(Kr) (5.8)
where A, is an amplitude coefficient to be determined; k7 = ++/k2 — k? is the interior
radial wavenumber; k; = w/ Cjc is the interior acoustic wavenumber; cjz is the sound
speed of the interior fluid ; and J, is the Bessel function of the first kind of order n.
A boundary condition requiring the fluid to stay in contact with the shell wall can be
applied, coupling the radial shell displacement and the internal pressure field. Applying
the boundary condition at r = a to solve for A, gives

opi = piww (5.9)
or

r=a
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where p; is the interior fluid density; the interior spectral pressure is then found to be

Jn(kiT)

e A
BT, (ko) (5.10)

pY = pww
where J; is the derivative of the Bessel function with respect to the argument. Equation
(5.10) is a key equation that links the modal pressure response in the interior fluid to
the modal radial-displacement response of the pipe wall. It is (in the form of a fluid
loading term) used in the structural response solution in equation (5.14) below, and
also in the response calculations in chapter 6.

The vibrations of the shell wall also gives rise to an external pressure field when the shell
is surrounded by an external fluid. The exterior spectral pressure must be a solution to
the Helmholtz equation in cylindrical coordinates which satisfies the radiation condition
at infinity. Thus,

Py = B,Hp (k1) (5.11)
where B, is an amplitude coefficient to be determined; H,, = J,, + 1Y, is the Hankel
function of order n (commonly written H\V); &7 = +./E2 — k2 is the exterior radial
wavenumber; k, = w/ ¢ is the exterior acoustic wavenumber; and ¢§ is the sound speed
of the exterior fluid. Using the same boundary condition argument as before to solve
for B, gives

a w
Pe |\ = pw (5.12)
or |,_,
where p, is the exterior fluid density; the exterior spectral pressure is then found to be

Pe P U, (k)

The fluid loading can therefore be included in the equations of motion for a shell driven
by a point force, as

Si(n, k) Swln k) Siz(n, k) u(n, k) F?5(z — 2,)6(0 — 6,)/a

Sor(n, k) Soa(n, k)  Saz(n, k) v(n, k)| = |F%(z — 2,)6(0 — 0,)/a| (5.14)

Ssi(n, k) Ssa(n, k) Ssz(n,k)+ fi| |w(n, k) Fré(z — 2,)6(0 — 6,)/a
(

?

where the (3,3) matrix element includes a term

o Ha(kia) 5 Ju(kia)

P R ) ™ LK)

that accounts for the fluid loading by the internal and external fluids at the shell wall.

(5.15)

5.3 Fluid monopole excitation

When the excitation of the shell is by an interior monopole, located at y = (r,, 05, 25), it
is convenient to express the interior spectral pressure as a sum of separately identifiable

contributions as follows:
pi =pi" +p; +pf (5.16)
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Here p* is the free-field spectral pressure of a monopole; p] is the interior spectral
pressure scattered as though the boundary was hard; and p{ is the interior spectral
pressure due to the shell wall vibrations.

The free-field pressure at a position x = (r, 0, z) of the interior monopole is written as

zA |D|
Pl (x,y) = ]D| (5.17)

where [D| = /12 + 12 — 2rr,cos(f — 0,) + (2 — 2,)? is the distance from the monopole
to the observation point and S is the strength of the monopole, having units of force
per length. The spectral free-field pressure from the monopole is then

Jn(klro)Hy(kfr) for r>r, >0

p(r) = —inS cos(n(f — 6,))e” *E= {J (k)L (o) (5.18)

for r,>r>

The interior spectral pressure pl scattered as though the boundary were hard is found
by solving for the total spectral pressure p;, inside a shell with a hard boundary. The
general solution for p;, is obtained by adding a solution of the homogeneous wave
equation to the monopole free-field expression above; thus

pin(r) = pi"(r) + pi(r) = pi"(r) + CoJn(kT) (5.19)
The constant C,, is found using the boundary condition dp;, /Or = 0 at r = a, giving

ki) (KT a)

T (ko) Jn(klT) (5.20)

pi(r) = —inScos(n(d —0,))e —ik{z—z )J (

At the surface of the shell at » = a, the blocked interior spectral pressure is written in
the following simplified form, using the Wronskian relation J,, (2)H.,(z) — H,(2)J,,(2) =

2i/mz:
Jn(kiTo)

(kfa)J;, (ka)
The interior spectral pressure on the inner wall r = a can now be expanded using
equations (5.16) and (5.21):

pi(a) + pi(a) = 25 cos(n(f — 0,))e —ik(2=20) (5.21)

BT pp(a) (5.22)

) -9 —ik{z—z0) d
) = 28 contnll = 0 Gy k)

The pressure contributed at the inner wall from the fluid impedance presented to the
shell motion is included in the fluid loading term in equation (5.15), and the equations
of motion for a infinite cylindrical shell excited by a fluid monopole can then be written

as

St S12 St13 U 0
So1 Sz Sa3 v| = 0 ) (5.23)
S31 Sz S+ fi] |w 25 cos(n (0 — 0,))e” "¢ ZO)(_/T%%@

Solutions of this equation, and of the corresponding equation (5.14) for mechanical
excitation by a point force, are discussed in chapter 6.
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5.4 Conclusion

Using the Fliigge shell theory, the equations of motion for the forced vibroacoustic
problem of an infinite cylindrical shell, filled with an internal fluid and submerged in
an external fluid, have been formulated for two different types of excitation: mechanical
(via the structure) and acoustical (via the fluid). The structural excitation is assumed
to be in the form of a point force applied to the shell, while the fluid excitation is in
the form of a point monopole in the interior fluid.

The equations presented in this chapter are included to provide a foundation for the
nondimensional prediction model in the next chapter. This way, the presentation of the
prediction model can be smoother, as the equations in this chapter can be referenced
instead of references to the literature.
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Chapter 6

Prediction of response functions
and power flow

In this chapter, a complete numerical model of the vibroacoustic problem is presented
along with expressions for calculations of the power flow in the system. The starting
point for the numerical model is the equations presented in the previous chapter.

In a series of papers, C. R. Fuller has worked his way through the characteristics of wave
propagation in infinite circular shells, from the transmission of flexural waves through
discontinuities in in vacuo shells to monopole excitation of fluid-filled shells. Fuller
(1981) investigated the transmission of flexural waves through some discontinuities
with the use of Fliigge’s theory of thin cylindrical shells, but for in vacuo shells alone.
Along with Fahy (Fuller and Fahy 1982), the complicating effects of fluid loading on
the inside of the shell were analysed in depth, using the theoretical framework of
Donnell-Mushtari, which is a less complicated subset of the Fliigge theory. This work
investigated the dispersion behaviour of free waves in thin-walled cylindrical shells, and
some aspects of the variation with frequency and material parameters were highlighted.
On top of this work Fuller (1983) investigated the forced response of the shell from
mechanical excitation in the form of line and point forces, via the input mobility of the
fluid-filled shell. The same methodology was used to examine the forced response to
fluid excitation by a point monopole (Fuller 1984).

Several other researchers have also worked with fluid-filled cylindrical shells, using dif-
ferent methods for different purposes, mainly Pavic (1990), Feng (1994) and Finnveden
(1997a), (Finnveden 1997b) and (Finnveden 1997c¢). The first two used a similar an-
alytical formulation to that of Fuller (Pavic used a series expansion of key elements
for faster calculation, while Feng used the Fliigge equations for added precision), but
Finnveden used FE-methodology for his work. While Finnveden’s method is very ef-
ficient from a numerical point of view and also almost as precise as the analytical
formulation, its physical meaning is obscured by the use of FE. In the present the-
sis, physical understanding is rated higher than numerical efficiency and therefore the
analytical formulation is used.
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The starting point of this chapter is the Fliigge equations of motion from chapter 5,
but in this chapter they are nondimensionalised to reduce the number of variables
needed to address the vibroacoustic problem. No further reductions of the equations
are done even though the frequency range of interest in the present thesis is relatively
low compared with the ring frequency of the shell. Some authors dealing with low
frequency vibrations tend to make a low frequency approximation of the shell theory,
e.g. Cremer et al. (1988) and Variyart and Brennan (1999). While this is feasible
for in vacuo investigations, it is more difficult for fluid loaded problems, as the fluid
loading terms in the equations tend to be strongly frequency dependent without any
direct connection to the ring frequency of the shell. A low frequency approximation
of a fluid loaded problem would therefore imply low frequency both in relation to the
ring frequency and the fluid loading. The relation to the ring frequency can easily be
established, and this is certainly the case for the problems investigated in this thesis,
whereas the relation to the fluid loading is dependent both on the shell geometry and
the material parameters involved. Both for the industrial problem and the experimental
investigations in part III a low frequency approximation is not easy to make, and the
full equations are therefore used.

6.1 Nondimensional matrix formulation

A total of 11 input parameters completely identify the problem drawn up in chapter 5,
namely h, a,w,n, v, cr, ps, C’J}, Pis €%, Pe- In the industrial application of this PhD project
there will always be air on the outside of the pipe. It is shown in section 7.2.2 that
from a vibroacoustic point of view, the influence of air as the external fluid is almost
indistinguishable from vacuum in the frequency range of interest. The external fluid
loading is therefore left out of the entire prediction model.

The output variables take the form of various frequency response functions which will
be specified later.

It is convenient to introduce a nondimensional form of the equations in chapter 5 using
the Buckingham IT theorem, see e.g. Fox and McDonald (1985). The II theorem states
that 9 — 3 = 6 nondimensional groups are necessary in this case to completely specify
the problem. Following the IT theorem, 3 parameters are chosen as repeating param-
eters, covering the 3 primary dimensions length, time and mass. For this problem,
a, ¢z, and ps are chosen, with the dimensions [L], [LT~'] and [ML~?]. This results
in the following six nondimensional input groups: Q = wa/cr,n,v,hja,ps/ps,cs/cr.
The entire formulation in this chapter makes use of these input groups. In addition,
nondimensional axial and radial coordinates are introduced: s = z/a and r = rgm/a

where rg.m, 18 the dimensional radius.

(@)1
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6.1.1 Point excitation of fluid-filled cylindrical shell

For single frequency forced vibration, it is convenient to express the shell displace-
ments of equation (5.5) as Fourier transforms. If u(0,s,1) = Ge~*? then the complex
displacement amplitudes 4, ¥ and @ can be expressed as (compare equation (5.5))

1 [ N
u(f,s) = 2_7('/ Zan cos(n(0 — 6’0))aUn(/ﬁ)ez("(s—s"H?)dﬁ

0 n=0

0(0,5) = % /jo Zen sin(n(0 — 6,))aV, (k)e™=5)dx (6.1)

X n=0

w(f,s) = %/ Zen cos(n(f — 6,))aW, (k)e* %) dx

X =0

where Uy, (k), Vy(k) and W, (k) are the respective modal displacement transforms;
s = z/a is the nondimensional axial position; & = ka is the nondimensional axial
wavenumber; and &, is used to transform the doubled sided spectrum into a single

sided, as
o

ST ) =3 et () (6.2)

=G

where f(n) is an arbitrary even function of n; ¢, = 1 for n = 0 and ¢, = 2 for all other
cases. It is assumed that the excitation is symmetric about the diameter containing

0 =0,.

The pressure inside the pipe can likewise be formulated as
1 oG " O 5 -
0,5y =23 / ., cos(nf)Tn(ar) By ()i de (6.3)
2m n=0 Y~

where 7 = rgim/a is the nondimensional radius (rqim is the dimensional radius), and «
is the nondimensional radial acoustic wavenumber, related to the axial wavenumber by

a:i\/QQ (%)2—/{2 (6.4)

where ¢; (formerly written as c}) is the free wave speed in the fluid. As discussed
in section 5.2, the pressure transform for a source-free fluid is linked to the radial
displacement transform as

2,2
© Y Py, (6.5)

B =
all (a)

The equations of motion in equation (5.6) of chapter 5 can be nondimensionalised,
as follows: on the left of equation (5.6), the elements of the S matrix are divided by

s

D/a? = pscih/a?; the displacements (u,v,w) are divided by a; and the right hand
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side is divided through by D/a = psc2h/a. This gives the nondimensional spectral
equations of forced motion as

Ly L Liz| |3 E?
Loy Ly Los| [2| = |E? (6.6)
L3i L3s Lsz| [¥ BT

where E*, E? and E" are the excitations in the directions indicated by the superscript
and the elements in the L-matrix are

1 1 1
Ly =—-Q0% 4 %+ -2—(1 )1~ )n? + 5(1 — V)% Ly = 5(1 + v)nk

1
L3 =vk — 5(1 —v)B*n’k + fK° Loy = Ly

1 3 1
Loy = =02 + ~2—(1 — VK +n? + 5(1 —v) K Loz = +n + 5(3 — v)nf’

L3 = —Laz L3y = —Loa3 Lyz = —Q* + 1+ ((/i2 + n2)2 +1-— 2n2> ~F

The nondimensional fluid loading term F is given by

AN
Fog(P0) (1) ) (6.7)
ps) \a) aly(a)
where p; is the density of the shell material. As noted by Fuller (1983), F is an even
function of a and thus the fluid loading is independent of the sign of the square root

in equation (6.4). This feature will later be seen to simplify the solution of the forced
response of the system, as it ensures a particular integrand is single valued.

The two following sections present the response of the coupled system to two fun-
damentally different forms of excitation, namely a point force at the shell wall and a
monopole in the interior fluid. While there is a fundamental difference between the two
types of excitation, the solution method is the same for both cases: a nondimensional
forcing is implemented in the forced equations of motion. When solving the equations
of motion, the response in each of the coordinate directions includes a wavenumber
integral. In the present thesis, the wavenumber integral is solved using the method of
residues, but other integration methods could alternatively be used. With the method
of residues, the modal response of both the shell and the fluid is formulated as a sum
involving the wavenumbers of free propagation in the coupled system.

6.1.2 Point force excitation of the shell

The presentation in this section is split into two subsections. The first subsection
presents in some detail how to predict the vibroacoustic response when the shell is
excited by a radial point force. The second subsection states the results for tangential
and axial excitation of the shell, since the steps involved in the derivation are exactly
the same as for the radial point force.



6.1.2.1 Radial point force excitation

According to equation (5.7), a radial point force F" (with dimension of force) applied
at the surface of the shell, can be specified as a nondimensional force distribution on
the shell (using the same normalisation procedure as in section 6.1.1):

FT QF T
0(0 —0,)0(s — s0) = —

w? psha®

E"(s,0) = 5(0 — 6,)8(s — so) (6.8)

2 psha

The r superscript will be used in what follows to denote the response to a radial point
force.

As the circumferential wavenumbers are discrete and the axial wavenumbers are con-
tinuous, the delta functions of equation (6.8) may be expressed as

>0

50 —0,) = % ZETL cos(n(6 —6,))
n=0 (69)

L [ .
8(s — s,) = 27/ e s=s0)d

Using this, the radial point force can then be described in the wavenumber domain as

27
Z/ F cos(n(f — 8,))e=%)dx (6.10)

" Ar2w2p had

revealing the point force as an infinite sum of ring forces with increasing circumferential
mode order. Combining this result with the modal representation of the displacements
from equation (6.1), the spectral equations of motion for a fluid-filled pipe excited by
an externally applied radial point force can be formulated and the solution is

Qﬂ [In Lo I3 0
VZ‘ — ]21 ]22 [23 90 (611)
VV;J [131 I3o I3 %

where matrix [ is the inverse of the L-matrix in equation (6.6). The spectral displace-
ment amplitude of each of the directions of motion can be extracted using standard

matrix algebra operations,

_ QZFT
U= e 6.12
2rw?psha® 1 ( )
- Q2Fr
T T 6.13
" orwlp.had (6.13)
~ Q2FT

" 2ww?pha
where the element I, of the inverted matrix are found using matrix algebra; e.g. the

term I35 is given by
Ly Loy — Lz Loy

D (6.15)
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Equation (6.14) can be re-substituted into equation (6.1) and application of the inverse
transform gives the nondimensional radial displacement in response to a radial point
force for a particular mode as

oo

wr (s, 0) e, QAFT -
s — n . g — b /zn(s~30) . 6.1
a 12 ha? cos(n(0 — 0,)) [w I53e dx (6.16)

This integral in the wavenumber domain can be evaluated numerically using a number
of different techniques. In an early paper Fuller (1981) suggested integration using the
method of residues, which is a complex integration method. In a later paper, Fuller
(1984) showed that the integration could be done straightforwardly, integrating along
the real axis. Xu and Zhang (1998) used the same approach, except that the integration
was performed along the imaginary axis. Xu and Zhang (1998) have shown that the
different integration techniques converge numerically, and they therefore all are usable
for this purpose.

For the numerical evaluation of a single integral, the method of residues is relatively
time consuming, as it requires the wavenumbers of free propagation of the coupled
system to be identified before the integration, while either of the two other integration
techniques performs the integration straight away. The method of residues is nonethe-
less chosen for the present thesis, as it uses a very efficient algorithm once a table of
free wavenumbers is established, while the other methods rely on direct evaluation of
every single integral. The table of free wavenumbers is calculated for each different
coupled shell-fluid configuration (geometry and material properties for the shell and
fluid) and then stored for later use, as explained in section 6.2.1.

The denominator of equation (6.15) suggests the complex integral of equation (6.16)
can be evaluated by using the method of residues for simple poles (Kreyzig 1998). The
residue theorem (Kreyzig 1998) states that the integral of a given form of complex
functions is the sum of the singular points inside a simple closed path, i.e.

j{)f(z)dz = 27.‘@2 Res f(z = z;) (6.17)

where the function f(z) = p(2)/q(z), has k simple poles at z = z;. The residue is then
Res f(z;) = p(2)/d'(z)).
Assuming s — s, is positive, equation (6.16) can be expressed using the method of
residues as

wl (s, 0) e, QPFT

= gyt 0 0N D Re 0T (s> 50 (618

where K, 1s the wavenumber giving rise to the b’'th singular point of the L-matrix in
equation (6.6) with given n and . In what follows, a related sequences of wavenum-
bers as a function of frequency is referred to as a branch, because when plotted in a
dispersion plot the wavenumbers have a characteristic appearance, see e.g. figure 7.2
on page 75.



The residue in equation (6.18) is defined as

L11L22 - LIQLQI} (6 19)
b

Resyy = { ddet(L)/dxk

To ensure that only the poles related to the positive direction of propagation are
included in the integration of equation (6.16), the integration path is chosen as a
semicircle of infinite radius in the upper complex wavenumber half plane (Im(x) > 0).
Conceptually, adding an infinitesimal amount of damping will shift any real poles of
equation (6.16) into the complex domain by introduction of a infinitesimal positive
imaginary part. The damping will not affect the result if it is chosen to be small
enough, but it will move the poles connected to propagation in the positive z-direction
into the upper wavenumber half plane, and vice versa for the negative axial direction.
The poles contained in the integration path will be the zeros of the determinant of the
matrix L; i.e. the free wavenumbers from the dispersion equation,

det(L) = 0 (6.20)

By summing equation (6.18) over all circumferential modes, the nondimensional radial
displacement due to a radial point force can be expressed in the compact form

ZZ bCOS 9 f )) iy (5—50) (S > So) (621)

n=0 bh=1

where the modal displacement amplitude W, follows from equation (6.18) as

. enQFFT

nb b

"7 _Res” 6.22
2rw?psha’ ot (6.22)

Similarly, the displacements in the axial and tangential directions, respectively, can be
formulated as

6,
(a s) “ZZUTbCOS 60 o))e i(Knp(5—80)+7/2) (s > 5,) (6.23)
n=0 b=1
" (CL f,s 1k (5—50)
T8 S e (oan) (620
n=0 b=1

The axial and tangential displacement amplitudes are found using their respective
ir —

ratios to the radial displacement, according to equations (6.12)-(6.14). Thus, U;, =
RoyWr, and VI, = R, ,, W, where the axial amplitude ratio is defined as

Ra b = U'ry;b _]1_3 — L12L23 - L13L22 (625)
T/V ]33 L11L22 - L12L21

and the tangential amplitude ratio is defined as

Bupy = Vn}, I _ LisLoy — LogLyy (6.26)
w 133 LMLQQ - L12L21

nb
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Finally, using the same methodology, the pressure inside the shell is expressed as

(r,0,5) ZZ Prcos(n(f — 0,)) Ty (ampr)eE=se) (5> ) (6.27)

n=0 b=1

and equations (6.5) and (6.22) give the pressure amplitude as

. a’w? 5n§22FT Res!,
nb — ! Pf W, nb = /)f 7 b (628)
Anpdy, () 2rha  ps ) ()

6.1.2.2 Axial and tangential point force excitation

The modal response produced by a tangential point force F¢ or a axial point force £
located at (6,,s,) (the superscripts refer to the direction of excitation) can be derived
using the same methodology as for the radial point force excitation.

After summation over modes, the total radial displacement in response to a tangential
or axial point force can be written as, respectively

wab:5) SO ST WY cos(n(8 — 6,))e ) (s> s,) (6.29)
n=0 b=1

w*(a, B, s)

a

D WEcos(n(6 — 6,))e ) (5> 5,) (6.30)

=0 b

I
R

oo

1

3

The modal displacement amplitudes will have the same form as the displacement am-
plitude for radial excitation in equation (6.22), apart from the residue term. The
tangential and axial residues are defined as, respectively

L Las — Lat L
P 11433 314431
= — 6.31
Resn, [ 5det(L)/0r an (6.31)
Lo L3z — Loz L3y
S 6.32
Resny [ ddet(L)/0k Lb (6.32)

The displacements in the other directions can be derived from the radial displacements
using the amplitude ratios of equations (6.25) and (6.26).

The pressure response for these two directions of point excitation can be derived using
the same methodology as in equations (6.27) and (6.28).

6.1.3 Monopole excitation of the interior fluid

The response of the coupled system when excited by a fluid monopole can be solved
using the same methodology as for the point force. The steps in the solution process
correspond closely to the point force: first the excitation is defined in nondimensional
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form and the equations of motion are solved for each of the coordinate directions. Then
the response expressed is in summation form using the method of residues.

In accordance with equation (5.17), a monopole source of strength S, (with dimension
of force per length) located in located in the fluid at (7, gim. 06, 2) has a nondimensional
free pressure field of the form

So ei(ﬁf%—wt) B 0?2 So ei(faf—gwwt)

2 D -2 2 D
cipsh = w? psha >

p(r,0,s) = (6.33)

where superscript m refers to monopole excitation; D is the distance from the monopole
to the receiver point; and x;y = wa/c; is the nondimensional fluid acoustic wavenumber.
See section 6.1.1) for the normalisation procedure.

Following the same arguments presented in section 5.3, the solution to the spectral
equations of motion can be written as

ur Ly Ly I 0

‘/’nm = ]21 ]22 ]23 O (634)
I m I ]’ ] 2 EnQQSD Jn(aro)

wr 31 432 133 pehaa? ol (a)

where 7, = 7 4im/a is the nondimensional radial source position.
Matrix algebra gives the radial displacement amplitude as

- 2 2
I/vm - 5nQ SO Jn(aro)

" pehw?a? ol (a) Laa (6.35)

where I35 is defined in equation (6.15). Application of the inverse transform gives the
radial displacement for a particular mode n as

~m 2 gee .
= (9’ S) - i / COS(H(9 - 90))M133€m(3u5°)d/€ (6-36)

a  7wpshw?a® |_ all (o)

The discussion regarding the method of residues from the last section also applies here.
However, it should be noted that although the denominator of equation (6.36) is more
complicated than the corresponding equation (6.18) in the case of the point force, it
still has simple poles. The method of residues can therefore be applied. By integration
of equation (6.36) using the method of residues, the radial modal displacement in
response to a fluid monopole can therefore be written as

?D;n(g, S) i25n9250 = m L iknp(S—S0)
= —— cos(n(f — 0,)) E Resp etfinblsse (s > s,) (6.37)
a pshw?a —

where the residue connected to the fluid monopole is

Ju(ary)(L11Log — LisLoy)
d(al; (o) det(L))/0k Lbb (6.38)

Res!, = !:
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After summation over modes, the nondimensional radial displacement in response to a
fluid monopole can be written as

Mj‘ - ZZW heos(n(0 — 0,))e™ ) (o> ) (6.39)

n=0 b=1

with all other terms collected in the radial modal displacement amplitude W

m 21,8025,

= ResT, (6.40)

pshw?a? nb

As in equations (6.23) and (6.24), the radial and tangential displacements can be
formulated as, respectively

i™(a,0,5) o= — (K (5
s U — [ym f— 90 i(K5np(5—80)+7/2) o 6.41
— E E T cos(n( )e (5 > 50) (6.41)

7"(a,9,5) ZZ sin(n(f — 6,))e ) (5> ,) (6.42)

n=0 b=1

where the axial and tangential displacement amplitudes are found as before using the
displacement ratios in equations (6.25) and (6.26): U} = Rane Wiy and V) = By W,

Finally, the pressure inside the shell due to a point monopole in the interior fluid is
expressed as

"(r,0,5) ZZ m cos(n(0 — 0,))Jn(cnr) @65 (5> 5,)  (6.43)

n=0 b=1

and equations (6.5) and (6.40) give the modal pressure amplitude as

a*w?p; 2,028, py
pr—= PO gy g St 20 Pip 6.44
aan;(anb) a hOéan (&nb) Ps es ( )

6.1.4 Power flow formulation

Each branch couples the 3 directions of motion (u, v and w) and the pressure field
inside the shell in a different way, but in essence excitation in the fluid will always
excite vibrations in the wall and vice versa. This leads to a distribution of vibrational
energy between the shell and the contained fluid.

The total power flow of the coupled system for a given free-wave branch number b can
be found as the sum of the power carried by each of the three fundamental types of
vibration in the structure (flexure, extension and torsion) and the power carried by the
fluid,

Pn:Pbe+Pem+Pto+Pf (645)
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It should be noted that it is not possible to quantify the power flow in the structure
and the fluid individually, as the actual distribution of power between the shell and
the fluid is spatially dependent.

In this section, it is shown how the total power flow can be quantified. To avoid too
much confusion by the complications introduced from cross-terms, the power flow from
a single branch (i.e. given n and b) is presented first. This result is then expanded to
include all branches for a given n, and finally the total power flow is presented. Before
this, power flow is defined in the next subsection.

6.1.4.1 Definition of power flow

Power is defined as the rate at which work is done. For example, the instantaneous
structural power input to a system from a point force is given by the relationship

P = F,V; (6.46)

where F; and V; are the physical instantaneous values of force and velocity at the
input point. For steady-state excitation, the average power transmission or power flow
is more useful.

For complex harmonic excitation, F; = Fe ™! and V; = Ve ™! the time average
structural power flow can be written as

1 /" : : 1 ‘
(P) =7 / Re(Fe “)Re(Ve “)di = JRe(FV") (6.47)

0
where the asterisk * denotes complex conjugate; Re denotes the real part of a complex
quantity; the period 7' = 27 /w and ( ) indicates average with respect to time. As all
the following equations are time averaged, the brackets for time averaging are left out.

The same methodology can be applied to calculate the time averaged power flow due to
structural rotation (involving rotational velocity and moment) and the time averaged
power flow in the fluid (involving fluid pressure and velocity).

6.1.4.2 Force and moment resultants in the shell

If the input force and response velocity of any structural point can be retrieved, then the
time averaged power input of that point can be calculated using the above expressions.
This fact will be used later as a check on the overall power balance for a fluid-filled
pipe. However, the structural power density (power flow per unit circumference across
any pipe cross-section) can be expressed in a similar manner by combining the shear
force (per unit circumference) with the displacement in the corresponding direction,
and the bending moment with the shell rotation. The resulting power flow expressions
for any cross-section of the pipe, expressed in modal form, will be used extensively 1n
what follows. Details of the derivation are given below.
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According to Fligge’s shell theory, the force resultants in the coordinate directions at
any point on the shell can be formulated by integration through the thickness of the
shell (Fliigge 1962). All the following resultants are per unit length of circumference,
i.e. they have to be integrated around the circumference of the shell.

The bending moment in the z-direction is in Fliigge’s formulation (Fliigge 1962) given
by

2, 2
O’w v o*w  10u V&’U) (6.48)

M=K (LY Yo 29w Vov
<5z2+a2692 adz adl

where K = Eh?/12(1 - 1?) is the bending stiffness. The transverse shear force is given
by

0. - K 63w+1 Pw _lﬁzu“i 0?v
2 023 a?20200°2 a02?2 a?000z

6.49
1 Pw 1 0%°u 1 0% (6.49)
B 0 2 R e

a’? 0200 2a® 00?  2a? 0200
The torsional shear force is given by
D(1—-v) (10u v KQ1-v) (ov 0w -
= U ) (= — 50
Nao 2 (a 0z N 82) i 2a? 0z  0z00 (6.50)

where D = Eh/(1 — v?) is the membrane stiffness. Finally the axial force is given by

D ([ ou v K 0%w
N, == ~ S ——— 6.51
(“az T J“”“’) 0 072 (6:51)

6.1.4.3 Power flow for a given branch

For a branch with given n and b, there are no cross branch contributions to the power
flow and the power flow can therefore be separated in the individual parts of equation
(6.45) without introducing any cross terms.

Assuming the excitation to be symmetric about ¢ = 0 and s, = 0, the displacements
of the shell can be formulated as

Upp = alpp COS(nH)ei(Knb&HT/Q)

Ty = aVpyp sin(nfd)enes (6.52)
Wy = Wy cos(nf)enb®
where the displacement amplitudes Uy, V;,;, and W,,;, are determined for point excitation
in sections 6.1.2 and 6.1.3. The complex conjugates of the displacements are
ity = al?, cos(nf)e Fnst7/2)
o, = aV7, sin(nd)e” " (6.53)

Wy, = aW, cos(nf)e " m®
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The flexural (or bending) part of the power flow is found as the circumferential integral
of the power density (structural intensity). It has a contribution from rotation of the
shell element as well as from radial flexure, thus

27
P =3 / [Re(M.i'") + Re(Q.1i)] adg (6.54)
Z2.Jo

where the dot implies differentiation with respect to time and the prime implies dif-
ferentiation with respect to the axial coordinate; thus W' = 0%w/dt0z is the angular
rotation of the shell element in the z-direction. Inserting the displacements in the force
and moment resultants, multiplying by the complex conjugates of the displacements
and integrating around the circumference produces the power flow in a single branch
due to flexure of the shell:

( TwERW?,
7

nm [2/{2/42,71/{/’”1) + QVnQ/g:lbW/nb — 26Ky Unp + 2vner, Vg — 262, W

1
Pbe,nb = - §R€

4 262, Uppy — Nk Vi — 202 K Wiy — 02 Upp — by Vg + z/nQUM,} ei(”"b_“;b)s>
(6.55)
where 1, = 2 for n = 0 and 7, = 1 otherwise.

Likewise the extensional and torsional contributions to the power flow can be found
as, respectively

1 2
P, = / Re(N.i*)add
2 Jo
1 rwEha?U*
=3 (nnﬁ [npUnp — vnVpy — vWos (6.56)
hQ

2 oy — K

1 2w
Pto e '5/ Re(]\fzgi)*)a;dg
0

F4

1 TwlhV, -
= — §Re (ﬁnw [hQﬂlian/I/nb - 12a2nUnb (607)

+ 120% Ky Vo + 1% K Vins ei(”"b“”;b)s)

The expressions for the power flow are conveniently simplified by introducing the ratios
of the displacement amplitudes defined in equations equations (6.25) and (6.26): Uy, =
Ry npWhp and Vi = Ry Wiy Using these substitutions, the total structural power flow
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from a single branch is

1 TwEW, W [ h? . . ‘ .
—iRe (nn—(in;%)—"b [—Z-Z(Zfiibﬁnb + 2un’ Ky — 26npkhy Ro .y + 20mK 5 Ry b

3 2 2 2 2
- ZK/nb + 2ffn/bRa,nb - Vn/fant,nb —2n Bpp — T Ra,nb - anant,nb +vn Ra,nb)
* . 2 2
3 Rt,nb (l/ 1) a a

— h 7 (s Wy — 127§nRa,nb + 125—2-/%1;31&,711; + Knp Ry )

hR: ; -
+ ——lg’nb (120°Knp Ronp — 126°vn Ry y — 120%y — ]12&7210} el(’“”b"’inb)‘g)

]Ds.,/\: =

(6.58)

Finally, to obtain the total power flow for a single branch, the power flow carried by
the interior fluid needs to be added. The fluid power flow is found by integration of
the acoustic intensity over the pipe cross-section, as

1 27 1
P = ~/ / Re(pu*)rdrdé (6.59)
2Jo Jo

where p is the pressure and w is the acoustic particle velocity in the axial direction.
For symmetric excitation, the pressure at an observation point (r, 6, s) is expressible as

Pun(7, 0, 8) = Py cos(nf) I, (anpr)e™ (6.60)

where the pressure amplitude F,; is determined for point excitation in sections 6.1.2
and 6.1.3. The complex conjugate of the particle velocity can be found from the
momentum relation as

1o 1

iappw Os _WP:I) cos(nf) I (comyr) (—ikg,)e™ (6.61)

w*(r,0,s) = —

Using this, it is possible to calculate the fluid-borne power flow as

1 R
Py = —Re W nnPan;b/f;bez(”nb"“nb)s/ Jn (0t )dn (g )rdr (6.62)
2 awpy 0

The integral involving the Bessel functions is called Lommel’s integral (Kreyzig 1998)
and the solution is

/ 2dp(az)d,(B2z)dz
1 (6.63)
= m [5’2‘117(0‘2)‘]?4(53) - Q’ZJP-l(O‘Z)JP(,BZ)J (a # )
and ‘ ,
/ zJ2(az)dz = 522 [Ji(az) — Jp_l(az)JpH(ozz)} (6.64)

The total power flow carried by a single branch can be found by summing the structural
contribution from equation (6.58) and the fluid contribution from equation (6.55).
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6.1.4.4 Modal power flow

For a circumferential mode n, the vibroacoustic response consists of the combined
response of all branches for that mode. In the case of a fluid-filled shell, there is
an infinite number of branches, as discussed in section 6.2. When more than one
branch participates in the transport of energy, there will be cross couplings between
the different branches that will also contribute to the energy transport. Therefore
a simple summation of the power flow due to each of the branches will produce an
incorrect total power flow, as it leaves out the power flow due to the cross couplings.

To account for this, all the branches need to be included in the power flow formulation.
For given n, the total modal displacement can be formulated as

Uy = Z aUpy cos(n@)eines+7/2)
b=1

bn = »_ Vi sin(nf)e’* (6.65)
b=1

Wy, = Z aWpp cos(nf) e ne
b=1

Substituting the displacements and their corresponding complex conjugates in the total
structural power flow equation from the previous section produces the power flow for
a given n, including all cross-term contributions. Using the relation

S @) 3o = 30> (i) (6.66)

the total structural power flow for a given circumferential mode can be written as
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and the corresponding fluid-borne power flow is

e 1 -
Pin =3 (annZZPm e [ Tl o) rdr) (6.68)

b=1 c=1

It should be noted that the above power flow expressions do not imply any restrictions
on the branches. Therefore these expressions are valid in the vibroacoustic near field,
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as well as in the far field (as long as the waves are progressive, i.e. away from the
source only). This can e.g. prove useful when analysing the near-field behaviour of a
given point source, where vibrational energy is redistributed from evanescent branches
in the near field to the propagating branches in the far field. Unfortunately, time has
not allowed any detailed examination of this phenomenon, but it may be important for
the industrial application where radiators are placed in the vibroacoustic near field of
the source. If this is the case, then some surprising effects may occur, as the evanescent
branches may play a significant role in the energy transfer to the radiator. This could
be part of the explanation why the traditional noise control techniques to reduce noise
transmission from the valve to the radiator fail in some situations.

6.1.4.5 Total power flow

The total power flow in one direction of propagation can be found as the sum over all
circumferential modes of the combined structural and fluid power flows,

o

Po =Y (Pin+ Prn) (6.69)

n=0

Is should be noted that in a lossless system, the power flow is the same across all cross
sections. The input power flow is therefore the same as the transmitted power flow.
This can be useful if the input power flow for some reason is impossible or difficult
to quantify, as any quantification of e.g. the far field power flow then implies the
quantification of the input power flow. This is also the case for the individual modal
power flows, but not for the distributions of power flow between branches and between
media. Fuller (1986) notes that while the total modal power flow remains constant at
different axial positions, the distribution of power flow between the structure and the
internal fluid varies with the axial position. The extent of this redistribution is both
parameter and frequency dependent, but it has not been significant for any of the cases
investigated in the present thesis.

6.2 Solution of the dispersion equation

The vibroacoustic response of the fluid-filled infinite pipe to various types of point
input was given by solving the wavenumber integrals in sections 6.1.2 and 6.1.3 by the
method of residues. This process introduced a summation over the free propagation
wavenumbers of the coupled system. The solution of the dispersion equation, leading
to the free wavenumbers needed for the forced response calculation, is discussed in
detail below.

The dispersion equation was stated in section 6.1.2 as equation (6.20),

det(L) =0
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It is not possible to find the free wavenumbers of a fluid-filled cylindrical shell analyti-
cally, and instead a mainly numerical solution technique will be employed, as discussed
in the next subsection. The solutions of the dispersion equation can be divided into
three different categories:

e Pure real roots
e Pure imaginary roots

e Complex roots.

The first two correspond to the usual type of wave in a lossless medium, where the
phase and amplitude respectively change with distance; while the last one is a near
field phenomenon, related to the local deflections of the shell in the close vicinity of a
discontinuity, e.g. a forcing point. It is not caused by the coupling between the fluid
and the shell, since the in vacuo shell equations exhibit the same behaviour.

Whereas the purely imaginary roots represent evanescent wave motion, which propa-
gates no energy along the pipe, the other waves do carry energy along the pipe. In other
areas of acoustics, complex wavenumbers usually imply a propagating wave which at-
tenuates with distance from the source, i.e. it carries energy, some of which is dissipated
through damping as it travels. However as the shells in the present thesis are consid-
ered lossless, there can be no energy lost through damping, so another explanation is
needed for this phenomenon. When the equations for the coupled system are solved,
the complex roots for the axial wavenumber occur in combinations of +(a+i3). Ac-
cording to Fuller (1980), this corresponds to two pairs of complex roots, where a pair
of complex roots (o +if3),, can be interpreted as one wave propagating and decaying
in the positive z-direction and another one that appears to propagate in the negative
z-direction while still decaying in the positive z-direction. When combined with equal
amplitudes for each wave, the pair represents an attenuated standing wave in the axial
direction, not propagating any energy. Such pairs of waves are only excited near points
of discontinuity, where they account for local shell deflections, without any net energy
propagation along the axial direction.

It has already been mentioned that an infinite number of branches exist for each cir-
cumferential mode, corresponding to an infinite number of radial nodal points in the
fluid along a radius of the shell. At low frequencies, most of these branches have a
negligible effect on the vibroacoustic behaviour of the coupled system. During the pa-
rameter study in chapter 7, the effect of excluding these branches from the calculations
was investigated. When calculating the input power flow at a point of excitation, all
branches participate as discussed in the previous section. Leaving out branches there-
fore corresponds to leaving out input power flow, but this effect is purely theoretical.
It was found in all cases that leaving out branches far from cuton had no effect on the
vibroacoustic power input to the system, within the numerical resolution of Matlab.
Therefore all branches having a nondimensional imaginary wavenumber of more than
10¢ were kept out of the calculations. In most cases, this corresponds to around three
imaginary branches being included in the calculations.
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A word of caution should perhaps be introduced at this point. As the combination of
a solid shell and a contained fluid is a coupled system from a vibroacoustic point of
view, it is not possible to separate the vibroacoustic response into a structural part
and a fluid part. Any pressure fluctuations in the fluid will have some corresponding
vibration in the shell wall and vice versa. Nonetheless, as will become evident later
in this thesis, it is very difficult to explain the effect of some parameter appealing to
a few simplifying concepts. Therefore expressions such as ‘the fluid branch’ may be
used, but it should be kept in mind that no clear-cut distinction is really possible.

6.2.1 Numerical solution technique

A complete numerical solution of all the equations arising from the nondimensional
matrix formulation in section 6.1 has been coded in Matlab. Owing to the use of the
method of residues to evaluate the fluid loaded system response, all calculations are
based on the free wavenumbers of the coupled system.

The free wavenumbers are found as roots to the dispersion equation (6.20), but as
they are quite time-consuming to locate, they are stored and kept in a table for later
use. This approach is quite slow for the first pass compared to e.g. finite element or
boundary element methods (time measured in hours, using a 600 MHz Athlon equipped
PC); but for subsequent calculations it is quite fast, using only a few seconds for a modal
mobility calculation up to the ring frequency with a frequency resolution of 0.001 2.
The numerical results in the present thesis were generated by first calculating the free
wavenumbers for all the cases to be presented, using a few days of CPU time. Then
all later calculations reused the free wavenumbers when needed, providing results fast.

The purely real and imaginary roots are found by a simple stepping technique, where
pairs of (£, ) are found by setting Q2 to the highest nondimensional frequency wanted
and then making relatively small steps along the relevant axis (real or imaginary
wavenumber) in order to find the roots of equation (6.20) with a numerical zero-finding
solution algorithm. With this stepping technique, the Matlab based Newton-solver
written by Kelley (1994) finds all real roots of the desired type without too much ef-
fort. Once the free wavenumbers are found at the maximum nondimensional frequency
of interest, the wavenumbers are traced down through the nondimensional frequencies,
using extrapolations of the roots already found. This ensures that the roots are found
using only a few iterations and thus limiting the computational effort.

In the case of complex solutions, the same solution procedure is used, but here the main
problem is to provide a reasonable starting guess to find the desired root. The solver
used is globally convergent and will — if the function is just a little bit well behaved —
always converge to a solution. If the starting guess is too far away from the wanted
root, however, the chances are that the solution found is different from that wanted.
A simple method to deal with this is to take advantage of the frequency-dependent
properties of the fluid loading term. For the lowest desired (2, a starting guess is found
from the in vacuo solution, i.e. without any fluid loading. Using this guess as input to
the Newton-solver, the root is found with relative ease, as the system is not too much
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affected by the presence of a even a heavy internal fluid at low frequencies. Then when
stepping up in €2, extrapolation of the already established complex roots is used as a
starting guess. If the steps are kept small enough, then the complex solution is traced
like the purely real or imaginary ones.

Numerical problems always occur when one type of solution (e.g. imaginary) changes
to another (e.g. real, in case of a wave cutting on, as frequency is increased). Using the
extrapolation technique can lead to spurious solutions, as the Newton-solver converges
to another branch than the one originally traced. This means that it is difficult to
trace branches successfully and some jumping around between different branches may
be the result, calling for a subsequent sorting.

In special cases, the discontinuities of the fluid loading term in equation (6.7) may trick
the Newton-solver into a loop, where a fluid loading discontinuity is interpreted as a
root. Therefore a sorting and conditioning algorithm has been used, testing whether
the solution from the Newton-solver is truly a root of the dispersion equation, simply
by putting the solution into the dispersion relation and checking that the result is small
(e.g. smaller than 1071%). Because the internal representation of numbers in Matlab
is only double precision, corresponding to approximately 16 significant digits, some of
the true roots of the dispersion equations may be rejected by the algorithm, as some
of the equations solved are badly conditioned. While this normally happens only for
large imaginary wavenumbers, which are far from cuton and thus of limited interest
in the vibroacoustic far field, these types of error are easily spotted in the dispersion
plots, as they appear as 'holes’ in the branches.

6.3 Conclusion

In this chapter, a prediction model of the vibroacoustic response and power flow has
been presented. The prediction model is nondimensionalised to reduce the number of
input groups to a minimum. The influence of some of the input parameters is examined
in the parameter study presented in the next chapter. The prediction model is validated
against experimental results in chapter 8 for a light fluid loading case and in chapter 9
for a heavy fluid loading case.

The prediction model presented in this chapter includes two different types of excita-
tion: structural point force excitation of the shell wall and acoustic point monopole
excitation of the contained fluid. As shown in section 4.3.4, the response of the infinite
fluid-filled pipe to a point monopole can be interpreted as a Green function. Know-
ing the Green function, it is relatively easy to construct the response functions of the
fluid-filled pipe to point dipoles and point quadrupoles as dipole and quadrupole Green
functions. This is demonstrated in section 4.3.5 for the internal pressure response, but
it could easily be expanded to the pipe wall response as well. Finally, the formulation
of the multipole responses as modal displacement amplitudes (as in equation (6.40) for
the point monopole), would allow predictions of the vibroacoustic power flow from the
point multipoles.
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Chapter 7

Parameter study and investigation
of shell theories

The vibroacoustic behaviour of cylindrical shells is quite complicated and the purpose
of this chapter is to examine the influence of some of the parameters that are important

for the industrial problem.

As an aid to understanding the dispersion behaviour of fluid-filled cylindrical shells, the
first section of this chapter introduces the limiting cases of the fluid-filled cylindrical
shell: namely the in vacuo shell, the hard-walled duct and the pressure-release duct.
These correspond to no fluid loading, infinitely stiff walls and infinitely soft walls.
The next section discusses the effect of changing some of the modelling parameters:
the properties of the shell wall material and the interior fluid, and the wall thickness
ratio h/a. The last section investigates the differences of three different shell theories:
Donnell-Mushtari, Goldenveizer-Novizhilov and Fliigge.

7.1 Basic tools for interpretation of results

In the case of light fluid loading, the cylindrical shell is largely unaffected by the
presence of any internal or external fluid. The limiting case of the in vacuo cylindrical
shell can then shed some light on the structural part of the coupled system. Likewise an
understanding of the acoustic modes of a hard-walled circular duct can be helpful for
light fluid loading or low frequencies, where the duct appears rigid due to the relatively
high wall impedance compared with wpa. The acoustic modes of the pressure-release
duct can also add to the understanding of the coupled system at certain frequencies,
where the contribution from the fluid loading term is relatively large, e.g. at the cuton
frequencies of higher order modes in the coupled system.
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7.1.1 Solution of the in vacuo dispersion equation

In the case of a shell with neither external nor internal fluid loading (an in vacuo shell),
the dispersion equation can be solved with relative ease by expansion of the dispersion
equation (6.20) with the fluid loading term set equal to zero. The explicit solution can
then expressed in the form

Ca(/fnb)s + CG(Knb)ﬁ + 04(lfnb)4 + CQ(K'nb)Q +Cyp=0 (7.1)

where the C), terms can be found from expanding the determinant of the matrix of
equation (6.6). In contrast to the dispersion equation (6.20) for a fluid loaded shell,
equation 7.1 can be solved analytically, as it is an eighth order polynomial with no
odd orders. Thus, it has eight different roots for each circumferential mode; for each
direction of propagation there are four roots, corresponding to four different branches
in the dispersion plot.

Re-substitution of the roots of the dispersion equation, «,;, back into the equation of
motion and elimination of one variable by dividing the equations by W, gives axial
and tangential amplitude ratios Rq, and Ry, (defined in equations (6.25) and (6.26))
for each particular circumferential mode and eigensolution of the shell characteristic
equation. The amplitude ratio reveals the propagation characteristics of a particular
branch, for example whether it is flexural, extensional, torsional or combinations of
these. The propagation characteristics for a given branch can vary with frequency,
such that a branch that is extensional at low frequencies may become flexural at higher

frequencies.

7.1.2 Solution of the duct dispersion equations

The dispersion relations for both the hard-walled circular duct and the pressure-release
duct are given by equation (7.2) below:

2
Kpm = :!:\/Q2 (C—L> — K? (7.2)
¢f

Here n refers to the circumferential mode in the duct, and the mode transverse wavenum-
bers k,,, are the m’th successive solution of J (k) = 0 in the case of the hard-walled
duct, and of J, (k) = 0 in the case of the pressure-release duct.

7.1.3 Dispersion of in vacuo shell and duct solutions

The dispersion curves for an in vacuo steel shell are plotted in figure 7.1. Pure real roots
are plotted using dots ( - ); pure imaginary roots are plotted using plus-signs ( + ); and
complex roots are plotted using crosses ( x ).These symbols will be used throughout
this chapter, and no special reference will be made to them in the individual figures.
It should be noted that the figure is really a folded-out plot of the projections of the
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Figure 7.1: Dispersion of in vacuo shell and duct solutions. h/a = 0.059, n = 0.
The real part of the wavenumbers are plotted in the upper half of the figure and the
imaginary wavenumbers are plotted in the lower half. The in vacuo dispersion curves
are plotted using the following symbols: ( - ) pure real roots ; ( + ) pure imaginary
roots; and ( x ) complex roots . The hard-walled duct solutions are plotted using
down-triangles ( V ), and the pressure-release solutions are plotted using up-triangles
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dispersion curves on the real and imaginary planes, as sketched at the top of the figure.
When plotted this way, a branch crossing the line connecting the real and imaginary
planes corresponds to cuton of a given wave.

The in vacuo dispersion curves in figure 7.1 will be used to compare and interpret the
fluid-loaded dispersion curves below. It is also useful to show the fluid-mode limiting
cases: here wave speeds for air and steel are used in equation (7.2). The hard-walled
duct solutions are plotted using down-triangles ( V ), and the pressure-release solutions
are plotted using up-triangles ( A ).

In the dispersion plot there are a number of branches, each related to a different root of
the dispersion relation for a given 2. In some cases where it is of importance to discuss
the branches, they have been assigned a number. The numbering of the dispersion
curves is purely arbitrary. In the present thesis, they are numbered from b = 1 starting
in the upper right corner.

All dispersion curves in the present thesis are plotted with the symbols and methodol-
ogy of figure 7.1.

7.2 Parameter study

It was shown in section 6.1 that 6 dimensionless input parameters were necessary to
address the coupled problem of a cylindrical shell with an internal fluid. This leaves
quite a number of different parameter combinations to be investigated to cover the
entire parameter space in detail. Instead of trying to cover all parameters evenly, the
present investigation is concentrated on parameter values important for the industrial

application.

Specifically, the influence of fluid loading is investigated by comparing in vacuo shells
with air and water-filled shells. The influence of the shell material is investigated by
comparing dispersion curves and point mobility for steel, PVC and rubber shells. The
geometric properties are investigated by variation of the thickness ratio of the shell.

All the cases investigated in this section can be found in table 7.1; the material prop-
erties are shown in table 7.2 and the geometric properties are shown in table 7.3. The
mean radius a is defined to be the distance from the pipe axis to the geometric mid-
point of the shell, a = (D, + D;)/4, where D, is the outer diameter of the pipe; D is
the inner diameter of the pipe; and h = (D, — D;)/2 is the thickness of the shell.

7.2.1 Variation of shell material

As steel pipes are used in the industrial application and the experiments presented
in part III use PVC pipes and rubber hoses, these materials are compared in this
section, keeping other parameters constant. The contained fluid is water, and the shell
geometry (A in table 7.3) corresponds to the experimental setup used in part II1.
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Shell | Shell geometry | Internal | Resulting | Ring frequency
Case no. | material | from table 7.3 | fluid fluid load [kHez]
1 PVC A Water Heavy 9.25
2 PVC A None None 9.25
3 PVC A Air Light 9.25
4 Steel A Water | Intermediate 28.3
5 Rubber A Water Heavy 5.55
6 PVC B Water Heavy 9.25
7 PVC C Water Heavy 9.25
Table 7.1: Cases investigated in the parameter study.
Young’s modulus | Poisson’s ratio | Density | Wave speed (cz, or ¢y)
Material [N/m?| [kg/m?] [m/s]
Steel 2.1 x 101 0.30 7800 5439
PVC 3.8 x 107 0.40 1360 1786
Rubber 1.0 x 10° 0.45 1100 1068
Water — — 997 1480
Air — — 1.2 340

Table 7.2: Material properties for pipe materials and internal fluids.

Outer dia. | Inner dia. | Mean radius | Thickness h/a
Name D, [mm] | D; [mm] a [mm] h [mm]
A. PVC pipe 63.0 59.4 30.60 1.80 0.059
B. PVC pipe, medium 64.2 58.2 30.60 3.00 0.098
C. PVC pipe, heavy 68.2 54.2 30.60 7.00 0.228
D. Rubber hose 79.2 76.0 38.80 1.60 0.041
E. 17 standard pipe 33.7 27.2 15.23 3.25 0.214
F. 17 light pipe 33.7 28.5 15.55 2.60 0.167
G. 17 PVC pipe 31.8 28.6 15.10 1.60 0.106

Table 7.3: Geometrical properties for relevant pipes of industrial interest.
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Figure 7.2: Dispersion curves for case 4, water-filled steel shell (same geometry as figure
7.1). n = 0. Case 4 is plotted with red symbols, and the cyan symbols correspond to
figure 7.1.

The steel shell has been investigated by several authors in literature, e.g Fuller and
Fahy (1982), Pavic (1990) and Feng (1994). To assist any comparison of the present
thesis with these authors the steel shell is presented in some detail first. Then the three
materials steel, PVC and rubber are compared.

7.2.1.1 Water-filled steel shell

The prime material in the industrial application is steel, so the features of the dis-
persion curves will be discussed in detail for this material. The dispersion curves are
shown using the same format and symbols as for figure 7.1, with the real wavenumber
component in the upper half of the plot and the imaginary wavenumber component in
the lower half.

Dispersion curves are presented below for n =0, n =1 and n = 2.

The breathing mode, n = 0. Figure 7.2 shows the dispersion curves of axial
wavenumber versus nondimensional frequency for the breathing mode, i.e. waves of
circumferential order n=0.

e The real branches. Only three real branches exist at low frequencies. The
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first branch is close to a plane fluid wave in a rigid walled cylindrical duct at low
frequencies, while the wavenumbers at higher frequencies are larger than the rigid
duct solution. The second branch is the torsional shell wave, which is completely
uncoupled from the fluid and thus identical to the in vacuo torsional wave. The
third branch is very close to the in vacuo shell extensional wave at low frequencies.

Some of the effects of fluid loading from the contained fluid can be seen directly
from a plot of the fluid loading term F in equation (6.7). The fluid loading
equation is restated here for convenience:

o () () 4

At very low frequencies (2 — 0) the fluid loading term is relatively small com-
pared to the very high stiffness of the shell for waves with long axial wavelength,
and therefore the effect on shell waves is quite small; one would expect the fluid-
filled shell response to be close to that of an in vacuo shell (see branches b = 2,
9 and 10 in figure 7.2). Similarly at the poles of F, when J! (o) — 0, the fluid
loading is extremely large and the coupled system response will approach that
of an acoustic wave in a pressure release duct. This effect is not clearly visible
in figure 7.2 where the stiffness of the steel shell is relatively high also at higher
frequencies, but some effect can be seen on the cuton of the b = 3 branch.

From flgure 7.2, it can be seen that a third branch (b = 3) cuts on at Q ~ 0.82.
In a hard-walled duct, this would be the first duct wave (note that the red plus-
signs and the cyan down triangles overlaps at low frequencies near 4), but with
heavy fluid loading the cuton frequency of the branch is shifted towards the
first pressure release duct wave. Furthermore the b = 3 branch changes shortly
after cuton from a mainly fluid wave to a mainly structural wave, resembling the
extensional shell wave. The branch that had the characteristics of the extensional
shell wave at low frequencies (b = 2), changes near the cuton frequency of the
b = 3 branch to have the characteristics of a mainly fluid wave. Near the cuton
frequency of the b = 3 branch, the two branches b = 2 and 3 interchanges their
main characteristics.

All higher branches cut on as fluid waves and then quickly change their behaviour
to that of shell waves, while the previous shell type branch converts to a fluid
wave. At the higher frequencies, cuton of the modes occurs near rigid walled duct
cuton frequencies. The behaviour can be explained by considering the coincidence
of an extensional shell wave and a fluid wave in a duct with only slightly compliant
walls. At the point where one branch enters a plateau and the other branch leaves
it, free motion can exist independently both in the fluid and the shell wall. The
shell vibrates largely as in vacuo due to the extensional nature of the motion, and
correspondingly the shell appears rigid to the fluid. However due to the Poisson’s
ratio effect, there will be some coupling between the shell and fluid motion. As
the frequency is increased along a plateau to the point of coincidence of free shell
and fluid waves, the pressure field forced’ in the fluid by the shell subsequently
encounters a region of free fluid propagation, and the system behaviour changes
to a fluid type wave. Similarly a "forced’ shell wave, driven by the fluid pressure
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field for the next branch, encounters a free propagation region for shell waves at
the same coincidence point, and its behaviour changes therefore to a shell wave.

The fluid loading has no effect at all on the torsional branch (b = 5), as there is
no radial component of displacement; since the fluid is modelled as inviscid, it
cannot affect the pure torsional motion of the pipe.

e The imaginary branches. At low frequencies the wavenumber solutions are
almost identical to hard-walled duct modes below cut-off, owing to the rigidity
of the shell wall. Therefore there are an infinite number of branches, correspond-
ing to modes with an increasing number of radial nodes. As the frequency is
increased, the stiffness of the shell in the radial direction becomes smaller and
the branches fall between the hard-walled and pressure-release solutions for a
cylindrical duct, as discussed above.

e The complex branches. The complex wavenumber solutions (b = 9 and 10) are
very close at low frequencies to those obtained from an in vacuo shell, owing to the
low coupling to the fluid, as discussed for the real branches. At zero frequency, the
two branches have non-zero complex values of the same absolute magnitude, with
real parts of opposite sign. The real parts of these solutions reduce with increasing
frequency, and the two complex branches become imaginary at € ~ 1.20.

Typically a fluid-type branch is imaginary at low frequencies, becomes complex
over a small frequency range near the occurrence of a 'meander’, becomes purely
imaginary near the next ‘meander’, and eventually cuts on. Likewise a branch
which is close to the in vacuo shell branch is complex at low frequencies, and pro-
gresses with increasing frequency as a series of complex and imaginary sections.

The real part of the dispersion plot has a distinct appearance, as three different groups
of curve slopes are represented in the curves: i) the mainly fluid wave (e.g. b =1, 2
and 3), ii) the torsional shell wave, where the red and the blue dots overlap exactly
(b = 5), and iii) the flat curve for the mainly extensional shell wave where the blue
curve is continuous, while the red curves are discontinuous (e.g. b = 2, 3, 4 and 6 just
after cuton).

The slope of the dispersion curves is related to the group speed of the branch. The slope
of group 1) asymptotically approaches the sound speed of the internal fluid c¢;. The
slope of group ii) is the torsional wave speed. The slope of group iii) is the extensional
wave speed of a circular shell. Curiously, there is a difference of approximately 0.5 %
between the extensional group speed for a circular shell (deduced from the slope of the
numerical dispersion curve) and ¢z, (the thin-plate extensional group speed) with the
actual parameters used in the calculation. Apparently, this discrepancy is not reduced
as () is increased, but no plausible explanation has been found.

The beam mode, n = 1. Figure 7.3 presents the dispersion curves of the fluid-
filled shell vibrating in the circumferential mode of order n = 1, the beam mode. The
dispersion curves are similar to those discussed for the breathing mode, apart from a
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Figure 7.3: Dispersion curves for case 4, water-filled steel shell. n = 1. Case 4 is
plotted with red symbols, and the cyan symbols correspond to figure 7.1.

few differences. At low frequencies, there exists only one branch (b = 1), corresponding
to the beam type shell motion. This wave is acoustically slow, with a purely imaginary
radial wavenumber. Thus the ’forced’ acoustic motion in the contained fluid consists
of a pressure field decaying away from the shell wall. At Q =~ 0.6 the second branch
cuts on, and this branch corresponds to the lowest n = 1 rigid walled duct wave. At
a slightly higher frequency a third branch cuts on. This branch is predominantly a
torsional shell wave and behaves as such until it encounters the next branch (b = 4),
where its characteristics change to a fluid-type wave, as for the n = 0 branches.

As well as the complex branches already demonstrated in the case of the breathing
mode (b=4 and 5), there appears for the n = 1 mode an additional pair of complex
branches in the imaginary region near 2 = 0.5, linking together the branches b = 2
and b = 3 in the evanescent region by some sort of complex transition just below the
cuton frequency of the second branch.

Higher order modes, n > 1. In figure 7.4, the dispersion curve is shown for the
same water-filled steel shell with a mode order of n = 2.

For these waves of higher circumferential modal number (n > 1) the dispersion charac-
teristics are similar to those of the beam mode, except that the fundamental shell type
wave has a non-zero cuton frequency and the points of coincidence are shifted to higher
frequencies. For these modes there are two series of plateaux arising from coincidence
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Figure 7.4: Dispersion curves for case 4, water-filled steel shell. n = 2. Case 4 is
plotted with red symbols, and the cyan symbols correspond to figure 7.1.

of torsional and extensional shell waves with duct type waves.

The cuton of the first n = 2 wave happens at €2 ~ 0.03, which is a little more than half
the frequency of the cuton of the similar in vacuo wave. This is a common feature for
the cuton frequencies for the fluid loaded shell in comparison with the in vacuo shell.
As discussed in section 7.2.2, the reason for this is probably that the added mass of the
water reduces the effective stiffness of the shell wall, leading to a lower cuton frequency.
It should be noted that the fluid loading does not affect the ring frequency of the shell,
so the explanation for the lower cuton frequency is not a change in the ring frequency.

Point mobility The combined effect of the different modal dispersion relations can
be seen through the point mobility, as calculated for a radial point input force and a
receiving point on the shell wall in the far field. The shell is excited by a point force
20 radii (corresponding to 0.61 m) from the receiver point, with no angular separation
between the two points. In figure 7.5, the magnitude of the radial point mobility is
shown for a water-filled steel shell excited by a radial point force.

The radial point mobility relates the radial velocity of the shell wall to a point unit
input force. A peak in the mobility plot can thus be interpreted as resonant behaviour
of the shell. All the peaks in the mobility plot are the points of cuton of higher order
modes. The first peak, at {2 & 0.03, corresponds to the cuton of the n = 2 mode; the
one at €2 & 0.1 corresponds to the n = 3 mode. This sequence continues up to §2 ~ 0.7
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Figure 7.5: Point mobility of case 4, water-filled steel shell. s = 20, §, = 0.

where the second propagating n = 2 branch cuts on. The n = 7 mode is the last to
cut on below the ring frequency, at {2 ~ 0.8.

The high mobility, at cuton, of higher order modes, is viewed in some industrial ap-
plications (not the ones relevant to this thesis, though) as an important problem in
relation to fatigue fractures in pipes. Pipes designed to survive an infinite number of
vibrational cycles are seen to fail, due to fatigue fractures that can probably be related
to cuton of higher order modes. From figure 7.5 it is evident that if the frequency-
average mobility is used as design limit for fatigue, then a pipe designed to survive an
infinite number of cycles with a safety factor of 5 (or a would-be safety factor of 5 if
the underlying assumptions were correct) would be in danger of failing due to fatigue,
as the peaks are more than one order of magnitude higher than the average level.

7.2.1.2 Comparison of PVC, steel and rubber shells

The materials investigated in this section are PVC, steel and rubber, and the shell

geometry corresponds to the experiments in part 11T with water as the internal fluid.
This corresponds to case 1, 4 and 5 in table 7.1.

The steel shell presented in the previous section has a ¢y, of approximately 3.6 times the
speed of sound in water, and a density ratio ps/ps of approximately 0.129. For the PVC
shell filled with water the corresponding ratios are approximately 1.20 and 0.74, and for
the rubber shell the ratios are 0.71 and 0.91 (see table 7.2 on page 74). For the given
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Figure 7.6: Dispersion curves for case 1(red), 4(green) and 5(blue). n = 0.

geometry the ring frequency for the PVC shell is 9,251 Hz, for the steel shell it is 28,290
Hz and for the rubber shell it is 5,553 Hz. Another important difference between the
three materials relates to Poisson’s ratio. The low v = 0.3 for steel makes the coupling
between the fluid and the mainly extensional branches in the shell relatively small,
while the large v = 0.45 for rubber makes the coupling in the case of rubber relatively

large.

Dispersion plots for n = 0 are shown in figure 7.6 for the three different shells. The
colours are red for the PVC shell, green for the steel shell and blue for the rubber shell.
The dispersion curves are very similar, considering the large differences in the material
properties. However, this is not surprising as the nondimensional formulation tends to
collapse the situations, making comparisons more straightforward. The main difference
between the curves is the appearance of a fluid wave cut on in the case of the steel shell,
but not in the other two cases. This is due to one of the shortcomings of the chosen
form of collapsing the different shells, as the cuton of fluid waves is not related purely to
the material properties and the thickness ratio of the shells: the cuton of mainly fluid
waves is dependent on the Helmholtz number, rather than the ring frequency of the
shell. The dispersion plots highlight what was hinted at by the material parameters:
the rubber and PVC shells are more similar to each other than to the steel shell.

The dispersion curves for n = 1 are plotted the same way in figure 7.7. The three shells
are quite close, but again the steel shell is a bit off the other two. An interesting feature
is the cuton of two branches of the steel shell at Q) between 0.5 and 0.7, but only one
for the each of the other two. Closer examination of figures 7.3 and 7.7, reveals the
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Figure 7.9: Point mobility for case 1(red), 4(green) and 5(blue). s = 20, 4, = 0.

cuton of a mainly fluid wave in the steel shell, at approximately the same frequency as
the cuton of a mainly shell wave.

Figure 7.8 shows dispersion curves for n = 2. The main difference from the dispersion
curves for n = 0 and n = 1 is the non-zero cuton frequency of the first propagating
branch. Again the difference between the steel shell and the other two is highlighted, as
the first nondimensional cuton frequency of the steel shell (at @ = 0.03) is significantly
higher than the other two. The branch cutting on is a mainly shell wave, so the cuton
frequency is expected to be largely unaffected by the Helmholtz number. Instead the
difference seems to be caused by the fluid loading, as a light fluid loading results in
a relatively high cuton frequency (very close to that of an in vacuo shell, as seen in
section 7.2.2), while a heavy fluid loading results in a relatively low cuton frequency.
The water-filled steel shell in question can thus be seen as some sort of intermediate
fluid loading case, neither heavy nor light. This is discussed in more detail in chapter

11 of part IV.

The point mobility for the 3 different wall materials is plotted in figure 7.9 the same
way as in figure 7.5. Again there are close similarities between the PVC and rubber
shells, while the steel shell has a significantly lower mobility. The peaks from the cuton
of higher order modes are a prominent feature for all three shells at low frequencies, but
at higher frequencies the rubber shell looks different without any distinct peaks. This is
certainly not due to any damping, as the modelling is lossless, but no good explanation
for this phenomenon has been found. Somehow the result seems intuitively correct —
perhaps because of the 'feel” when tapping rubber (but this is probably due to the high
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Figure 7.10: Point mobility for case 1(red), 4(green) and 5(blue). s = 20, §, = 0.

damping of the material).

Just to illustrate how differently the shells really behave in 'real’ life, another plot of
the mobility is shown in figure 7.10. The only difference between this plot and the
previous one is the use of a dimensional frequency scale.

The main conclusion, from this investigation of the influence of the shell material, is
that the choice of shell material ~ at least within the parameters investigated — makes
little difference to the dispersion curves and the point radial mobility in the far field,
when the results are presented in the dimensionless form used here. The two exceptions
are: the cuton frequency of predominantly fluid branches is mainly determined by the
Helmholtz number, not the ring frequency of the shell; and the cuton frequencies of
the higher order modes are strongly dependent on the fluid loading.

7.2.2 Variation of internal and external fluids

The analytical model review in chapter 5 included the effect of the external fluid load-
ing, but this was later discarded in the formulation of the nondimensional prediction
model in chapter 6. The justification given was that the external fluid in the industrial
application was only air, and with a heavy fluid loading inside the shell the influence of
the light external fluid loading was negligible. The validity of this argument is assessed
in this section.
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The previous section used a number of examples to show that the heavy fluid loading
has an important influence on the response of the coupled system, but it did not provide
the limits of when a fluid loading becomes significant in terms of choice of shell material
— apparently a density factor of nearly 8 for the wall material along with a longitudinal
wave speed factor of more than 5 did not have any major influence, although some
differences related to the fluid loading could be seen. To examine the other extreme,
namely light fluid loading, air is included in the investigation. So as not to complicate
matters too much, the PVC shell from the experiments of part III is used, although as
shown in the previous section the choice of shell material is not a major factor anyway.
With this shell, the density ratio ps/ps for the heavy fluid loaded case is 0.74, compared
with 8.8 - 1074 for the lightly fluid loaded case.

7.2.2.1 Effect of external fluid loading

Evidently even air outside a fluid-filled cylindrical shell can be important in some cases,
for example where where the shell mass per unit area (p;h) is so small, that the added
mass effect due to the movement of air becomes an important factor. These cases
are however assumed to be extreme in the light of the industrial application and the
frequency range of interest. Air outside the shell is therefore assumed to represent a
light external fluid loading of the shell.

This light external fluid loading can be combined with three different internal loading
cases: vacuum, light and heavy fluid loading.

From the full fluid loading equation (5.15),

1, (kra) 5. (k)
— a2 TN 2 TN
o= P ()~ P T (W)

it can be seen that both the internal and the external fluid loading are proportional
(amongst other factors) to the fluid densities. If the internal and external fluid is
assumed to be the same, then the relative sizes of the fluid loadings is determined by the
ratios of the differentiated Bessel and Hankel functions in equation (5.15). In the case
of light internal fluid loading, the total fluid loading (being the sum of the light external
and internal fluid loading) is relatively small when included in the equations of motion
and thus the influence on the calculated wavenumbers is also small. Singularities of the
fluid loading equation (5.15) could give a significant fluid loading contribution, even
when the densities involved are small, but this has not been observed in the parameter
study, probably because it happens only in an extremely narrow frequency band.

When the internal fluid loading is heavy and the external fluid loading is light, then
the error made by leaving out the external influence is relatively small, as the fluid
loading calculated using equation (5.15) in most cases is completely dominated by the
internal fluid loading. The sole exception is when the term related to the internal fluid
loading is small, then the relative effect of the external fluid loading term might be of
the same magnitude, but the total fluid loading will be the sum of two small terms,
and thus insignificant.
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The conclusion is, if the external fluid loading is light, the coupled system will be largely
unaffected, no matter what the internal fluid loading. The error made by leaving out
light external fluid loading, and assuming an external vacuum, is therefore very small.

7.2.2.2 Variation of internal fluid

To compare the effect of the internal fluid loading, the PVC shell with vacuum on the
outside is examined using three different internal load cases: vacuum (no fluid loading),
air (light fluid loading) and water (heavy fluid loading). This corresponds to cases 3,
2 and 1 in table 7.1.

Figure 7.11 shows the dispersion curves for n = 0. The red curve corresponds to the
PVC shell used in the experiments in part III filled with water (i.e. heavy fluid loaded),
the green curve corresponds to the same shell filled with air (i.e. light fluid loaded)
while the blue curve is the same shell in vacuo (i.e. no fluid loading).

It is obvious that some of the dispersion curves of the light fluid loaded shell are very
close to those of the in vacuo shell, as they collapse almost perfectly. These curves
represent the mainly shell modes that are almost unaffected by the presence of the
light fluid loading. There is a small discrepancy at Q = 0.9 where coincidence occurs
between a mainly shell branch and a mainly fluid branch. The ’lonely’ green curves
correspond closely to the hard-walled duct modes.

At low frequencies, the dispersion curves for the light and heavy fluid loading collapse
exactly. Apparently, the influence of the fluid loading is small up to Q = 0.05 where the
curves start to become separated. The larger wavenumbers of the heavy fluid loaded
case correspond to lower phase velocity, so the effect of the contained fluid is to slow
down wave propagation in the shell. This is probably also the case in the light fluid
loaded case, but the effect is too small to be noticed on the scale of the plots.

The vibrational near field related to the complex branches in the dispersion plot is
apparently very much affected by the heavy fluid load. In section 6.2, it was noted the
complex wavenumbers were related to local shell deformations near points of disconti-
nuity. In the case of heavy fluid loading the added mass effect of the fluid is relatively
larger, thus making the local shell deformations happen over a wider frequency range.

The figures for n = 1 and n = 2, figure 7.12 and figure 7.13, show the same phenomena.
The nondimensional cuton frequency of the lowest fluid wave in figure 7.12 is different
for the light and heavy fluid loaded case. As discussed in section 7.2.2, this is because
the cuton of mainly fluid waves is more related to the Helmholtz number than to the
ring frequency of the shell.

The point mobility of the shell wall is plotted in figure 7.14. On comparing the three
curves, the conclusion from the dispersion curves is confirmed: there are virtually no
differences between the mobility of the in vacuo shell and the light fluid loaded shell
at low to intermediate frequencies. Small discrepancies are noticeable above Q = 0.9.
There are some differences between the light and the heavy fluid loaded cases: the peaks
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related to cuton of higher order modes appears at lower frequencies for the heavy fluid
loaded shell; and the general level of mobility is lower for the heavy fluid loaded shell.
The lower level of mobility was expected, as the added mass effect from the heavy fluid
loaded case reduces the dynamic response of the shell wall.

7.2.3 Variation of shell geometry

This part of the parameter study investigates the effect of variations of the shell ge-
ometry. In the nondimensional formulation, the geometry of the shell is dependent on
one parameter, namely the thickness ratio A/a. The thickness ratio can be changed
two different ways — by altering h and by altering a. For the in vacuo case, this has the
same effect, but in the case of fluid loading the effect is different, as the cuton frequency
of the predominantly fluid waves is mainly related to the Helmholtz number. To avoid
confusion from the cuton of fluid waves, a is kept constant in this investigation, and
the thickness ratio is changed through the thickness of the shell A.

In the present investigation, the shell material is chosen to be PVC, the contained fluid
is water, and the mean radius a is the same as for the experiments in part III. Three
different cases are investigated: namely, h/a = 0.059; h/a = 0.1; and h/a=0.25. This
correspond to cases 1, 6 and 7 in table 7.1.

The main shell theory used in the present thesis (the Fliigge shell theory) is a thin shell
theory, i.e. the influence of thickness variations of the shell wall, due to vibrations, is not
modelled directly. The Fliigge theory and two other thin shell theories are investigated
in section 7.3, but as they are all thin shell theories they assume that the thickness
ratio is small. The thin shell theories include the effect of finite thickness shells through
correction terms related to h/a, in the form of § = /h?/12a?. All thin shell theories
perform better the smaller the 8. The upper limit on h/a for the shell theory to remain
valid is parameter dependent. From the discussions in Leissa (1973), it is assumed that
the thickest case in this investigation is close to the maximum allowable thickness, with

h/a = 0.25.

The dispersion curves for n = 0 are shown in figure 7.15. At first glance the three cases
seem relatively different, but there are significant similarities. The differences between
the cases are related to the complex branches and to the propagating predominantly
fluid waves.

For the real wavenumbers the dispersion curves for the predominantly extensional and
torsional shell branches collapse completely. The wave speeds of these branches are
unaffected by changes of the wall thickness.

For the imaginary wavenumbers, the curves tend to collapse owing to the large relative
stiffness of the shell at low frequencies already discussed in section 7.2.2. The apparent
stiffness of the shell as seen from the fluid is very high at low frequencies even for the
thinnest shell, and the added stiffness from the thicker has no significant influence. As
the frequency is increased, the relative stiffness decreases most rapidly for the thinnest
shell, slower for the thicker shell, and slowest of all for the thickest shell. The large
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s

relative stiffness is also the reason for the propagating predominantly fluid wave (b = 1).
At very low frequencies, the curves for the three cases overlap, but as the frequency is
increased the same effect happens as for the imaginary wavenumbers. From the slope
of the dispersion curves, it can be concluded that the group speed of the predominantly
fluid wave is increased when the thickness of the pipe wall is increased.

At low frequencies, the complex branches behave largely as in vacuo. The small black
crosses on figure 7.15 represent the in vacuo dispersion relation for low frequencies. At
higher frequencies the trends are very similar for the three cases, and no differences
can be seen.

Figures 7.16 and 7.17 show the dispersion curves for the n = 1 and n = 2 modes. The
dispersion curves for the bending mode show the same picture as the curves for the
axisymmetric mode. Figure 7.17 shows something interesting, as the cuton of the n = 2
mode is happening at a significantly higher nondimensional frequency for case 7 than
for case 1 and 6. The small black symbols represent a part of the in vacuo dispersion
curves for case 7. Comparing these with the blue curves show that the cuton frequency
for the fluid loaded case is significantly lower. In section 7.2.1.1 it was hinted that the
cuton frequency of the n = 2 could be used to classify the fluid loading of the shell. If
this is correct, the fluid loading is still heavy even with the large h/a for case 7.

The point mobilities are plotted in figure 7.18. The larger the A/a ratio, the lower the
mobility. This is probably a mass effect, as discussed for the heavy fluid loading. It
can be seen that the number of modes cutting on below the ring frequency is reduced
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Figure 7.18: Point mobility for case 1(red), 6(green) and 7(blue). s = 20, 6, = 0.

when h/a is increased. This behaviour is predicted for the in vacuo shell by Cremer
et al. (1988), but more modes are cutting on for the heavy fluid loaded shell than
are predicted for the in vacuo case. This is not surprising, as the cuton frequency for
higher order modes is reduced significantly with a heavy fluid load, and more modes
will cut on below a specified frequency.

The main conclusion, from this part of the parameter study, is that the thickness ratio
of the shell has some effect; but for the parameters investigated, the fluid loading
remains heavy even for very large thickness ratios (up to h/a = 0.25). However, this
conclusion may be wrong, as it is based on results from a shell theory that is taken to
the limit.

7.2.4 Conclusion

The main conclusion to be drawn from this parameter study is that in the parameter
space of industrial interest, the internal fluid loading is the most important factor
causing departures from a collapse on the parameters chosen.

The cuton frequencies of the higher order coupled branches are largely affected by the
fluid loading. In the case of light fluid loading case the cuton of the mainly shell waves
is close to the cuton frequency of the in vacuo shell, while the cuton of the mainly
fluid waves is close to the hard-walled duct. In the case of a heavy fluid loading, the
cuton frequencies are significantly reduced for all waves. While the real reason for
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this is hidden in the equations, it seems intuitively correct that a heavy fluid loading
reduces the effective stiffness of the shell wall. A lower stiffness of the shell would
reduce the effective ring frequency frng,.err, Tesulting in lower absolute frequencies for
the same dimensionless frequency 2. In a plot with a nondimensional frequency axis
based on the ring frequency defined by the wall material alone (the 'normal’ fring), the
nondimensional cuton frequency of a fluid loaded wave would thus appear at a lower
nondimensional frequency.

7.3 Comparison of different shell theories

An important part of the numerical modelling of shell vibrations is the choice of shell
theory. A large number of shell theories exist, see e.g. Leissa (1973), each claiming
to have some unique features. Different theories are used for different papers, often
without any discussion of the choice of shell theory. No source so far has shown any of
the theories to be clearly superior to the others. While it is not possible to promote one
theory as superior to the others, it is possible to show the shortcomings of some of the
theories. In this section the theories of Donnell-Mushtari, Fliigge and Goldenveizer-
Novozhilov are compared through their dispersion curves and predicted mobility for an
in vacuo shell, corresponding to case 3 in table 7.1.

The three shell theories investigated in this chapter are all eighth-order thin shell the-
ories. Leissa (1973) discusses the differences between the three shell theories in great
detail, but in essence the differences are related to the different simplifying assump-
tions made to achieve the final equations of motion. For all the thin shell theories,
a common assumption is the neglect of through-thickness displacement variations. A
main difference between the thin shell theories is how they implement correction terms
to compensate for the finite thickness of the shell wall.

7.3.1 Donnell-Mushtari theory

The Donnell-Mushtari shell theory is probably the simplest of the thin shell theories
presented by Leissa (1973). The shortcomings of the Donnell-Mushtari shell theory
are well known, see e.g. Hoff (1955), but nonetheless it is still widely used, probably
mainly due to its relative simplicity. Some key papers dealing with the forced response
of cylindrical shells use the Donnell-Mushtari shell theory, e.g. Fuller and Fahy (1982),
Fuller (1984) and Pavic (1992).

The Donnell-Mushtari theory is used as the basic building block in the reference work
by Leissa (1973). Any of the more complicated shell theories in Leissa’s work can be
described as the sum of two matrices, i.e.

L = Loy + 8°Latoa (7.3)

where Lp.y is the L-matrix according to the Donnell-Mushtari theory; Lypeq is the
'modifying’ matrix; and § is the nondimensional thickness parameter defined by in
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the comments to equation (5.1). Thus each of the more complicated shell theories
differs from the Donnell-Mushtari theory by a matrix-operator which is multiplied by
a constant that tends to zero in the lower limit of the h/a ratio.

The Donnell-Mushtari theory presented here is limited to constant thickness, thin-
walled shells and it excludes the effects of initial stress, anisotropy, nonhomogeneity,
shear deformation, rotary inertia, large deflections and surrounding media. Under these
assumptions the Donnell-Mushtari operator is

Ly Ly Lys
Lpsw = |Lai Loy Lo (7.4)
L3 L3y Lss

where the elements are
2 o 1 2 1
L1] = -0 + K"+ ‘2“(1 — V)’n L12 = 5(1 ~+ V)n/{ ng = VK

1
L21 = le L22 = —QQ -+ 5(1 - I/):‘i2 + n2 L23 =71

L3y = —1Lq3 L3g = — Lo L3y = —0? + 1 4+ ,82 (f{2 + n2)2 — F

7.3.2 Goldenveizer-Novozhilov theory

The main differences on going from the Donnell-Mushtari theory to the Goldenveizer-
Novozhilov theory can be summarised according to Leissa (1973) as

e The stress-displacement relation of the Goldenveizer-Novozhilov theory includes
the influence of shell curvature in a fully consistent manner, whereas the Donnell-
Mushtari theory neglects terms involving the tangential displacements.

e Terms in the force and moment resultants are examined in the Goldenveizer-
Novozhilov theory and a careful analysis is made not to reject any significant
terms, no matter their order (see e.g. Niordson (1985)), while the Donnell-
Mushtari theory rejects all terms related to curvature of the shell, except for the
L33 term where a second order term in 5 is retained. This way the Goldenveizer-
Novozhilov theory avoids inconsistencies in the force and moment resultants that
are present in the other two shell theories presented here.

The L-matrix of the Goldenveizer-Novozhilov shell theory can be written as

L+ LGN Lo + Lf’f\i Lz + L3
Loy = | Loy + L%N Loy + Lﬁl\ Los + L?f\ (7.5)
Lg1 + L%N Las+ LY Laz + L%N
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where the elements without superscripts are the ones from the Donnell-Mushtari for-
mulation, while the superscripted elements are

L =0 LH =0 L =0 L =0

3 3—v?

Ly = —5(1=v)f" L3 = - 3 KLY =0 L =—Ly Lg =0

7.3.3 Fliigge theory

The differences between the Fliigge theory and the other two theories relate to both
the stress-displacement relation and the force and moment resultants. The stress-
displacement relation used in the Fliigge theory is similar to that in the Goldenveizer-
Novozhilov theory, but the force and moment resultants are different from both the
previous theories. Leissa (1973) remarks that integration of the unsimplified force and
moment resultants over the thickness of the shell is extremely cumbersome, and this
integration is simplified in the Fliigge theory, but in a slightly inconsistent manner
cleverly avoided in the Goldenveizer-Novozhilov shell theory.

The full L-matrix for the Fliigge theory is shown in equation (6.6), but using the same
form as for equation (7.5), the correction terms are

(1-v)g* L, =0

Fo_
Lll_

[N

1
Li; = “5(1 — )0’k + 2K Ly =0

2
Ly = —Lis L, = —Las LY, = p* (1 - 2n?)

3 1
Ly, = —5(1 — V) 3*K? LY = —=(3 — v)nB?x?

7.3.4 Comparison of computed dispersion relations and mo-
bility

Figure 7.19 shows the n = 0 dispersion curves for an in vacuo PVC shell (corresponding
to case 3 in table 7.1) calculated using the three different shell theories. The differences
are clearly very small indeed, as the curves are indistinguishable from each other.

Figure 7.20 shows the dispersion curves for n = 1. In this figure there is an interesting
difference at very low frequencies, as a few red crosses can be seen at very low frequency
where there only are green and blue dots (difficult to see in figure 7.20 at the scale
plotted, but a zoom is shown in figure 7.21). This means that the Donnell-Mushtari
shell theory predicts a complex wave where the other two theories predict a propagating
wave. At very low frequency there is no red propagating wave, as the first propagating
wave cuts on at 2 &~ 0.01. This is clearly an unphysical behaviour, as beam bending
can happen at all frequencies. The cuton of the bending mode persists when fluid
loading is included (not shown here).
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Figure 7.19: Dispersion curves for case 3, n = 0. The shell theories of the curves are
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Figure 7.21: Detail of figure 7.20.

The reason for the cuton of the n = 1 mode is the exclusion of correction terms in the
Donnell-Mushtari theory for all but the (3,3)-term in equation (7.4). The correction
terms involving 8 are very small, but in beam bending for long shells at low frequencies,
the main terms largely cancel, leaving the correction terms to dominate. The problem
with the Donnell-Mushtari theory arises because the correction terms are inconsistently
implemented, since they are included only in the Lj 3 term, and left out from the rest of
the matrix. The two shell theories that include more correction terms have dispersion
curves that are very close indeed. Even for small h/a-ratios, the effects of the correction
terms are significant at low frequencies where the free wavenumbers are inherently
small, or near cuton of higher order modes where the cutting on wavenumber is close
to zero. Where the wavenumbers are large, the terms of Lp. tend to dominate.

The dispersion curves for n = 2 are seen in figure 7.22. The predicted cuton frequency
of the n = 2 mode is significantly higher for the Donnell-Mushtari shell theory than
for the other two. Apart from this, the dispersion curves are very close indeed.

In figure 7.23 the point mobility is plotted. In this figure, the Donnell-Mushtari results
are again different from the other two shell theories. The cuton of the bending mode
is represented in the red curve as a peak at very low frequency. The other two theories
produce virtually identical mobility up to @ & 0.6 and significant differences occur only
near the ring frequency. Noting that the peaks at high frequencies are due to cuton
of higher order modes, this observation agrees with the paper of Hoff (1955), that
discusses the precision of the Donnell-Mushtari equations; he predicts errors up to 11
percent in comparison with the Donnell and Fliigge equations. Hoff (1955) states that
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the errors in the Donnell-Mushtari shell theory tend to become smaller as the frequency
and circumferential mode order becomes larger. This statement cannot be confirmed
by the present investigation because of its limited frequency range (0 < 2 < 1).

7.3.5 Conclusion

Three different thin shell theories are compared: Donnell-Mushtari, Goldenveizer-
Novozhilov and Fligge. The Donnell-Mushtari theory is the simplest; it leaves out
some correction terms to allow for finite thickness of the shell. In the limit of vanishing
shell thickness these correction terms are of no importance, except for the bending
mode (n = 1) at low frequencies, where the correction terms related to finite shell
thickness dominate, leaving the Donnell-Mushtari teory with an unphysical cuton of
the bending mode.

The other two shell theories produce very similar results, except for a few differences
near the ring frequency of the shell. As the frequency range of interest for the present
thesis is rather low, extending only up to 2 = 0.15, either of the two theories may be
used. It cannot be concluded that the Fliigge theory is the best of the three, but it
can be concluded that the Donnell-Mushtari theory is not well suited for the industrial
application, with its low frequencies and low circumferential mode orders. Either of
the two other theories could have been used and the Fliigge theory was chosen.

7.4 Summary

A parameter study of shell materials, internal and external fluids and shell geometry
has been conducted in this chapter. To limit the complexity of the study the parame-
ters of main industrial interest were investigated through dispersion curves and point
mobilities. It was concluded that the internal fluid loading is the most important factor
causing departures from a collapse on the shell parameters chosen. Significant changes
in both the dispersion curves and mobilities are also related to the fluid loading of
the shell. The principal effects of fluid loading observed in the parameter study can
by and large be related to the properties of the fluid loading term defined in equation
(6.7). This equation predicts that increased shell thickness, decreased shell radius or
decreased density ratio, ps/ps, will all decrease the effect of the contained fluid and thus
decrease the coupling of the shell and fluid behaviour. All the conclusions presented
in this chapter largely confirm this simple interpretation, although the effect may be

small.

As the shell theory is a key part of the prediction model in chapter 6, a study was
made to compare three different shell theories. The conclusion of this study was that
the simplest of them is not well suited for the frequency range of interest to the present
thesis, while the other two (including the one used in the parameter study) produce
very similar results, that also seem plausible from a physical point of view.
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Chapter 8

Power flow measurements: pipe
with light fluid loading

The experiments presented in this chapter are all obtained from measurements on a
PVC pipe with air inside and outside. As the external diameter of the pipe is 63 mm
and the wall thickness 1.8 mm, the resulting fluid loading is light. The excitation in the
measurements is provided by a radial force, and the pipe response is measured using an
accelerometer that is moved around the circumference to provide modal measurements
of accelerance.

As discussed in the parameter study in chapter 7, light fluid loading has only a marginal
influence on the vibration of a pipe. The power flow predictions presented later in this
chapter show that the structure-borne power flow in the pipe wall is approximately 2
orders of magnitude times greater than the fluid-borne power flow, when the pipe is
excited by a radial point force. All the results regarding the shell vibrational response
of the pipe wall in this chapter therefore also apply to the in vacuo shell.

The first section introduces the experimental setup used, while the second presents com-
parisons between the predicted and measured accelerance. The third section presents
two power flow measurement principles to quantify the power flow, and shows a com-
parison between predicted and measured power flow for a light fluid loaded pipe. The
fourth section assesses the measurement principle, and the final section summarises the
main conclusions.

8.1 Experimental setup

The light fluid loaded experiments are conducted on a suspended 5 m PVC pipe with
air both inside and outside, running through anechoic terminations at either end, as
seen in figure 8.1. The excitation of the pipe is provided by an externally applied radial
point force at the axial midpoint of the pipe. The test pipe has an outer diameter of
63 mm and a wall thickness of 1.8 mm (corresponding to case 3 in table 7.1), so the
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Figure 8.1: Picture of experimental setup.

length of pipe on either side of the excitation point corresponds to approximately 82
radii. All axial distances and circumferential angles were measured from the point of

excitation.

A key feature of the test rig is the anechoic terminations at either end of the pipe. The
choice of instrumentation and the subsequent postprocessing of the measurements in
the experiments relies on the assumption that all vibroacoustic power flow is away from
the point of excitation. To accomplish this on a finite pipe, anechoic terminations are
used. These anechoic terminations attenuate any reflected waves from the end of the
pipe, resulting in a heavily attenuated standing wave pattern between the two anechoic
terminations. The anechoic termination is discussed in more detail in section 8.4.1.

The pipe is suspended horizontally by rubber strings having a very low natural fre-
quency (approximately 1 Hz pendulum mode and approximately 10 Hz in stretching).
The actual excitation of the pipe is at significantly higher frequencies (reliable mea-
surements are expected above approximately 100 Hz). The vibration of the pipe is
thus largely unaffected by the presence of the strings, as the forced excitation is in
the mass controlled region of resonance in the rubber strings. Removing some of the
strings confirmed that all the results obtained were independent of the suspension.

The excitation is provided by a random signal from the analyser through a power
amplifier to a miniature shaker connected to the pipe through a thin (0.8 mm) sting.
At the relatively low frequencies of interest, the corresponding structural and fluid
wavelengths are relatively long compared to the size of the sting connection, and the
excitation therefore behaves to a large extent like a radial point force. The excitation
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Figure 8.2: Sketch of the experimental setup used for the experiments on a pipe with
light fluid loading.

1. B&K Type 3560, PULSE Multi-analyzer and signal generator

2. B&K Type 2706, Power amplifier

3. B&K Type 4810, Mini-shaker

4. B&K Type 8203, Force transducer (3.6 pC/N, 1.1 g)

5. B&K Type 4374, Miniature accelerometer (0.141 pC/m s™2, 0.65 g)
6. B&K Type 4507, Deltatron accelerometer (10 mV/m s™2, 4.8 g)

7. B&K Type 2646, Deltatron charge amplifier (1mV /pC)

8. PVC pipe (L=5 m, D,=63 mm, h=1.8 mm)

9. Anechoic termination

Table 8.1: Instrumentation used in the experiments with light fluid loading.
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is discussed in more detail in section 8.4.3. The radial input force from the shaker is
measured using a lightweight force transducer (mass approx. 1.1 g). The acceleration
of the point of excitation is measured by a lightweight accelerometer (mass 0.65 g).
The power input from the radial force can be deduced from these two measurements,
as discussed in section 8.3.1.1. The point response of the pipe wall at different axial
and circumferential positions is measured by a lightweight accelerometer (mass 0.65 g).
The modal response of the pipe is deduced from accelerometer measurements, using
the decomposition technique discussed in section 8.4.4.

The experimental setup is sketched in figure 8.2 and the instrumentation used is listed
in table 8.1.

8.2 Accelerance for pipe excited by radial point
force

Figures 8.3-8.6 show the measured and predicted modal accelerances for the light fluid
loaded case for n = 0 to 3. All the figures are made the same way: Measurements are
in red colour and predictions are in green. The measurements are at positions 9, 450
and 750 mm from the point of excitation, corresponding to nondimensional positions
s = 0.29, 14.7 and 25.1. The position closest to the point of excitation is in the
vibroacoustic near field, while the other two are in the far field. The near field position
is presented with a solid line, the mid position with a dashed line and the farthest with

a dash-dot line.

To make the comparison between measured and predicted values as meaningful as
possible, some fitting of the material properties has been done. A textbook value of the
Young’s modulus for PVC is 3,000-4,000 MPa (Vink 1995) with a general Poisson’s ratio
for hard plastic around 0.4. While the Poisson’s ratio is retained, the Young’s modulus
used in the prediction model has been fitted to the experiments, so the predicted and
experimental cuton frequency of the n = 2 circumferential mode is the same. The
Young’s modulus used in the predictions is £ = 3, 800 MPa.

The figures in this section all show the radial accelerance, which is the radial accelera-
tion response of the pipe when excited by unit radial input force. When measuring the
accelerance on the B&K analyser, the H, estimator is used, with the radial excitation
force as the input signal and the acceleration from the accelerometer as the output
signal. While the choice of H operator is arguable, see e.g. Fahy and Walker (1998)
chapter 6, there is very little difference when using H, or H3. The measured modal ac-
celerance is decomposed from 12 measurement points around the circumference. There
is no visual difference when using 24 points for the decomposition.

General comments. A common feature of all measurements is that the agreement
between the measurement and prediction improves as the measurement position 1s
moved towards the point of excitation. There are probably three reasons for this: a
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near field effect; a distance effect related to the scattering of the structural vibration
by imperfections in the pipe; and a distance effect related to the internal damping of

the pipe material.

The near field response of the pipe includes effects from the evanescent and complex
branches. These branches tends to broaden the peaks related to cuton of higher order
modes, providing a relatively large accelerance response over a wide frequency range.

The PVC pipe used in the experiments is industrial grade and imperfections are visible
to the naked eye, as some weld lines are faintly visible on the surface of the pipe, prob-
ably due to the production process. This suggests the pipe wall is not homogeneous.
Measurements of the pipe wall thickness h and mean radius a show variations up to 10
% around the circumference of the pipe. Neither of these imperfections are modelled in
the prediction model and their effects are therefore not incorporated in the predicted
response. The longer a wave travels in the pipe, the larger is the accumulated effect
of the scattering of vibrational energy by the imperfections, and the larger is the dif-
ference between the predicted and the measured response. The effect of the scattering
is expected to be larger at higher frequencies, as the relative sizes of the imperfections
become larger compared to the wavelength of the vibrational waves in the pipe.

The loss factor of PVC was measured to be approximately 3 %, using the half power
bandwidth method, see e.g. Norton (1989). A given distance away from the point of
excitation represents fewer wavelengths in the material for low frequency vibrations
than for high frequency vibrations. As the loss factor is related to the proportion of
vibrational energy lost per cycle, the high frequency response at a given measurement
position is attenuated more than the low frequency response. This is consistent with
figures 8.3-8.6 where the measured high frequency accelerance at s = 25.1 is smaller
than at s = 14.9.

All the modes with small accelerance at low frequencies (i.e. all modes but the n =1
mode) seem to have a noise floor of approximately 1- 107! m/s*/N. This noise floor
is not related to the dynamic capabilities of the accelerometer or the force transducer,
but to the measurement method technique itself, as the modal decomposition with
accelerometers cannot discriminate modes perfectly. When placing the accelerometer
around the circumference during the measurement, small errors of placement result in
large relative errors in the modal response of the weakly-excited modes, although the
absolute magnitude of the errors is very small indeed. This phenomena is dubbed modal
leakage, as accelerance apparently ’leaks’ from one mode to another. Modal leakage
may also be caused by departures from axisymmetric geometry (e.g. the geometry
variations mentioned above).

Comments regarding the axisymmetric mode. While the agreement between
the measured and predicted accelerance for n = 0 is better at high frequencies, it seems
quite bad at low frequencies. The predicted response is very small at low frequencies
(less than 107° m/s?/N at 100 Hz) and the aforementioned noise floor dominates. The
reason for this is simply that a radial point force is very inefficient in exciting the
axisymmetric mode below the ring frequency.
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In the near field of the point of excitation, there are some local shell deformations
related to the complex roots of the dispersion relation, as discussed in section 6.2,
but they are not propagated to the far field. In figure 8.3 this can be seen as a
significantly larger response at s = 0.29 than for the two far field points. Close to
the ring frequency of the pipe, this difference between the predictions of near and far
field tends to disappear when the pipe resonates as a ring. The radial point force is
apparently able to excite the ring frequency resonance efficiently, although this is not
important for the industrial application.

The peaks at low frequencies are probably a result of modal leakage from the standing
bending waves, and from the cuton of the higher order modes (e.g. the n = 2 mode at

420 Hz).

Comments regarding the bending mode. The comments for n = 0 regarding
modal leakage also apply here, where the cuton of the n = 2 mode results in a peak at
approximately 400 Hz, and likewise for the cuton of the n = 3 mode at approximately
1 kHz. The modal leakage to the bending mode mode seems smaller than to the n =0
mode, but this is mainly due to the significant response of the bending mode itself,
thus making the relative impact smaller.

A radial point force is very efficient in exciting the bending mode (n = 1) of the
pipe, and this mode therefore dominates the response of the pipe at low frequencies.
From figure 8.4 it can be seen that the predicted accelerance for the bending mode at
100 Hz is approximately 3 m/s?/N for s = 0.29, while the predicted accelerance for
the breathing mode is approximately 7- 107 m/s?*/N. The predicted response of the
bending mode is thus a factor of approximately 430 larger than the breathing mode
at 100 Hz. When comparing the measured response of the bending and breathing, the
factor is only 30. This is probably an artifact from the accelerometer decomposition
method, but this has only has a marginal influence on the total power flow prediction,

as shown later.

The peaks below the cuton frequency of the n = 2 mode are not related to cuton of
other modes, as n = 2 is the mode with the lowest cuton frequency. Instead, these
peaks probably indicate standing waves in the axial direction, with the characteristic
peak-and-trough appearance of a resonance. The anechoic termination is supposed
to remove any reflections from the end of the pipe, but apparently it is not very
efficient at low frequencies. This is hardly surprising as the anechoic termination is
only 0.8 m long while the bending wavelength at 100 Hz is close to 10 m. If better
low frequency performance of the measurement of the bending mode were required, it
would be necessary to use a longer pipe combined with a larger anechoic termination.

Comments regarding the higher order modes. The n = 2 mode is the first mode
not cut on from zero frequency. At low frequencies, the modal accelerance is quite small
and the measurement noise floor dominates the response, but near the cuton frequency
the accelerance rises sharply. There is very good agreement between the theoretical
prediction and the measurement, especially in the near field. Peaks are evident at
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the cuton frequencies of the higher order modes, probably due to modal leakage. It
should be noted that the measured curves at high frequencies show a progressive decay
with the distance from the source, while the predicted curves almost overlap. This
is interpreted as a damping effect where the damping of the shell material dissipates
energy from the propagating branches, thus reducing the response the farther away
from the source. The reason for this being more pronounced at high frequencies is
probably that the number of vibration cycles needed to propagate to a given distance
is larger at high frequencies, while the proportion of energy dissipated per cycle is
constant (related to the loss factor of the material). This effect could be investigated
in more detail by introducing a complex Young’s modulus in the prediction model, but
the small discrepancy at high frequencies has been accepted for this study.

The appearance of figure 8.6 is similar to 8.5 apart from the cuton frequency. The
modal leakage into n = 3 from the cuton of the n = 2 mode is not very pronounced
in the near field, but for the far field points the accelerance level raises approximately
one order of magnitude, probably due to the aforementioned measurement noise floor.

8.2.1 Synthetic point accelerance

A point response can be interpreted as a sum over all circumferential modes, as shown
in equations (6.8) and (6.9). In figures 8.7, 8.8 and 8.9 the contributions from the
different circumferential modes are summed up for a near field point (s = 0.29) and
for two far field points (s = 14.9 and s = 25.1). This summed response, normalised by
the point input force, can be interpreted as a synthetic point accelerance, not directly
measured but synthesised from all 12 measurement points around the circumference.

Even with the small errors shown in the modal decomposition shown in the last sec-
tion, the smoothness of the curve in figure 8.7 is striking. The standing waves at low
frequencies disturb the otherwise excellent agreement at low to mid frequencies. The
measured peaks are slightly lower than the predicted peaks, but this is probably due to
the damping of the shell material, tending to reduce the amplitude of the cuton reso-
nance. At high frequencies, the predicted response is slightly higher than the measured.
As this is very close to the point of excitation (s = 0.29), it is probably not related
to damping, but more likely due to the mass loading effects from either the point of
excitation or the accelerometer. The local loading effects are discussed in more detail
in section 8.4.3.

The measured accelerance curves in figures 8.8 and 8.9 are not as smooth as in figure
8.7, but the overall agreement is good except at high frequencies where the measured
response tends to roll off. The detail of the troughs and peaks are smeared out, probably
due to the scattering discussed in the last section. The comments from figure 8.7
regarding standing waves and mass loading also apply in the far field. However the roll
off at high frequencies is much more evident in the far field than in the near field. This
suggests that a significant part of the high frequency energy is dissipated by damping
through the almost 15 and 25 radii from the point of excitation.
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Figure 8.7: Synthetic point accelerance for a pipe with light fluid loading excited by
a radial point force, s = 0.29. The line for the predicted response is dotted and the
measured is solid.
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Figure 8.8: Synthetic point accelerance for a pipe with light fluid loading excited by
a radial point force, s = 14.9. The line for the predicted response is dotted and the
measured is solid.
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Figure 8.9: Synthetic point accelerance for a pipe with light fluid loading excited by
a radial point force, s = 25.1. The line for the predicted response is dotted and the
measured is solid.

8.3 Comparison of measured and predicted power
flow

8.3.1 Measurement of power flow

Two different power flows are relevant for these experiments, namely the input power
flow and the transmitted power flow. Unfortunately, only the input power flow can
be quantified directly through measurements, while the transmitted power cannot be
measured directly. In this section an indirect method of power flow estimation is
presented. For a lossless system the two power flows should be identical: this gives
a way of validating the indirect power flow method, as the two measurements can be
compared.

The input power flow to the pipe can be quantified using the measurement of force input
and acceleration of the pipe, as presented in the following section. The transmitted
power flow is quantified from modal measurements of the displacement as presented in
section 8.3.1.2.
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8.3.1.1 Input power to a structure

The time averaged input power flow to the pipe can be calculated using simultaneous
measurements of input force from the shaker and the pipe’s velocity response. The
input force is measured directly using a force transducer, while the velocity is inferred
by integration of the measured acceleration response of the point of excitation at the

pipe wall.

The time averaged power flow for complex, single frequency harmonic excitation is

Y 1" . . 1
(Pn) = —/ EVidt = —-/ Re(Fe ™" Re(Ve ™" )dt = ~Re(FV™) (8.1)
T J, T/, 2
where F; = Re(Fe™™*) and is the instantaneous force; V; = Re(Ve ™) the instanta-
neous velocity; and T = 27 /w is the period of vibration. The velocity and force can
be related via mobility or impedance by
1V
M=—=== 2
Z F (82)
where M and Z are the point mobility and impedance, respectively. Using this relation,
equation (8.1) can be rewritten in the forms

1

(Pa) = 5| FPRe(AM) (5.3
(Pa) = 5|V PRe(2) (54

The mobility and force magnitude (or the impedance and velocity magnitude) can be
extracted from the measurement using the PULSE Multi-analyser.

8.3.1.2 Modal power flow

As shown in section 6.1.4, it is possible to predict the power flow both in the near field
and in the far field. In the near field, the power flow computation is complicated, as
all branches of a given circumferential mode participate in the redistribution of power
flow between the branches. The cross-terms where the force induced by one branch
interacts with the displacement produced by another branch play a significant role in
this redistribution. However, it is well known that all power flow in the far field is
carried by the propagating branches.

In the light fluid loaded case, it is assumed that the power flow in the fluid is negligible
in comparison with the power flow in the structure. This assumption is partly justified
by the conclusions of chapter 7 where it was shown that the vibrational response was
unaffected by the presence of the fluid. Figure 8.10 shows the n = 0 predicted far field
power flows (structural-borne and fluid-borne) for a pipe with light fluid loading exited
by a radial point force. From the figure it is evident that the structural-borne power
flow contributes less than 1 % of the total power. Two branches contribute to the
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Figure 8.10: Predicted power flow for a pipe with light fluid loading excited by a radial
point force, s = 15, n = 0. The line for the fluid-borne power flow is solid and the
structural-borne power flow is dotted.

power flow in figure 8.10: one mainly fluid wave, and one mainly structural axial wave.
A closer investigation of the branch contributions shows that the mainly structural
wave mainly drives a structure-borne power flow, and the mainly fluid branch mainly
drives a fluid-borne power flow.

The predicted power flow in the shell from equation (6.67) is quantified completely
for any given branch by the radial displacement complex amplitude, as the axial and
tangential displacement is accounted for through the displacement ratios. Likewise the
power flow in the fluid for that branch is also quantified by the radial displacement.
Given the following assumptions, the transmitted axial power flow at any far point can
be inferred from the measured modal displacement:

e It is assumed that orthogonality allows the axial power flow in the different
circumferential modes to be treated independently.

e It is assumed that there is only one branch that propagates significant vibroa-
coustic power for each n, and that any modal radial vibration measured is related
to this branch.

e It is assumed that the anechoic termination of the pipe is perfect, and as a result
there is one-directional propagation in the pipe.

The transmitted far field modal power flow can — if the assumptions are correct — be
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calculated as
Pn.,far - }wn,meaSIQFnb (85>

where P, ¢, is the far field modal power flow; wy, mess is the measured modal pipe
displacement for mode n; and F,,;, is the modal power flow factor.

The modal power flow factor relates uniquely the modal wall response of the pipe to
the modal power flow for given circumferential branch n and branch number . The
power flow factor is determined by the properties of the pipe and the contained fluid
and it is not related to the actual excitation of the pipe. The power flow factor can be
calculated from any given source that excites the fluid-filled pipe in accordance with
the assumptions noted above. In this case, it is convenient to express the modal power
flow factor from the excitation of a radial point force, but the same result could be
obtained from e.g. an internal monopole, as the dominating branches are the same in
both cases. The modal power flow factor can thus be calculated from

Pn,l

N lwn,IP

where wy,; is the predicted modal pipe displacement for unit radial force input of a
doubly infinite pipe; and P, ; is the predicted modal far field power flow for unit radial
force input.

For radial point force excitation, the modal power flow can therefore be calculated from

2
Bz,far - (M) Pn,l (87)

|Wn,]

If the input force is doubled, so is the displacement response, but the resulting power
flow is quadrupled.

The first of the above assumptions is true, if the circumferential Fourier decomposition
holds. As shown in the previous section, this is only approximately true due to modal
leakage, but in principle it can be assumed that power flow injected into one mode stays
in that mode. Departures from axial symmetry in the pipe wall (either geometrical or
material properties) will cause scattering from one mode to another, but the pipe is
here assumed perfectly axisymmetric.

At low frequencies, there is at most one branch propagating for n > 1, as shown
in the parameter study in chapter 7. Below cuton of the higher order modes, there
is no propagating branch, but there is no power flow either, so this violation of the
assumption is of no importance. For n = 0, there are two propagating branches at
low frequencies; one axial and one torsional (plus the disregarded mainly-fluid branch
that does not participate significantly in the total power flow). However, the torsional
branch is not excited by the radial point force and thus carries no power flow in this case.
Therefore the second assumption holds for frequencies of industrial interest provided
the excitation is radial, as here.

The third assumption is probably the most questionable, as it will be shown in section
8.4.2 that the anechoic termination is not perfect.
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Figure 8.11: Modal power flow for a pipe with light fluid loading excited by a radial
point force, s = 14.7, n = 0. The line for the predicted power flow is dotted and the

measured power flow is solid.

8.3.2 Measured and predicted power flow

The modal power flow calculated using equation (8.5) can be seen in figures 8.11 to
8.14 for a single far field position (s = 14.9).

The general trends are the same as for the accelerance, but the relative importance of
discrepancies between the predicted and measured accelerance is squared according to
equation (8.5). For the axisymmetric mode, the measured power flow is way off the
predicted power flow, due to the low excitation of this mode at low frequencies by a
radial point force. For n > 1, the measured power flow is smaller than the predicted
power flow. This can probably be explained by the damping of the pipe material, as
it dissipates energy between the source and the measurement position, as discussed in
section 8.2.

Pure standing waves do not propagate any energy. However, when equation (8.5) is
used standing waves will contribute to the power flow estimate. This is evident in
figures 8.12 and 8.12 where the distinct peaks probably are related to reflected bending
waves not removed by the anechoic termination. While the same peaks were seen
on the accelerance for the higher order modes, they are missing for the power flow
because there is by definition no power flow below the cuton of these modes (under the
assumption of one-way propagation on which the power flow calculation is based).
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Figure 8.13: Modal power flow for a pipe with light fluid loading excited by a radial
point force, n = 2. The line for the predicted power flow is dotted and the measured
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point force, n = 3. The line for the predicted power flow is dotted and the measured
power flow is solid.

8.3.3 Total power flow

The total vibroacoustic power flow carried by the pipe can according to equation (6.69)
be found by adding all the modal contributions.

In figure 8.15, the total power flow is plotted for a far field measurement position
(s = 14.9). The full red line is the sum of all modal contributions n < 6. It is evident
that the measured power flow is a lot larger than the predicted power flow at low
frequencies. The broken red line represents the sum of the power flow contributions
for modes 1 < n < 6, where the agreement between measurements and the prediction
is better at low frequencies.

In the same figure, the input power flow measured according to equation (8.3) is plotted
with a green curve. Comparison of the input power with the measured power flow shows
fair agreement above approximately 100 Hz. Below this frequency the power flow
measurement is dominated by unwanted standing waves that violate the assumptions
of the power flow measurement method.
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8.4 Detailed comments on the experimental setup

8.4.1 Structural anechoic termination of finite pipe

As discussed in part I, several possible approaches exist when considering power flow
measurements in pipes. To justify the assumption from the last section stating that all
power flow is directed away from the source in a finite pipe, a significant suppression
of the reflections from the ends of the pipe is required. The device to accomplish this
is called the anechoic termination.

In the case of the light fluid loaded pipe, the reflections of the internal pressure waves
from the open ends of the pipe are simply ignored, as their contribution to both power
flow and wall vibration is negligible. The only type of anechoic termination needed in
this case is a structural one, to prevent wall vibrations being reflected from the ends of
the pipe (for heavy fluid loading, fluid-wave reflections cannot be neglected as noted in
section 9.6.2.) To design the structural anechoic termination an understanding of the
modes of vibration is crucial. There are essentially three different types of structural
vibration: radial, torsional and axial.

Traditionally, many authors eg. Variyart and Brennan (1999) and Feng (1995) have
used sandboxes for structural anechoic termination of pipes. The idea of the sandbox
is to dissipate the vibrational energy through the relatively high loss factor of sand (5%
to 10% according to Norton (1989)). To avoid reflection of vibrational energy when
the vibrations enter the sandbox, the sand loading is applied gradually thorough the
box. However, there will only be a significant energy transfer to the sand from a given
branch if there is significant wall movement, as shear waves in the sand account for
most of the energy transfer from the pipe to the sand. More insight than presented here
might be obtained using predictions from a model with both internal and external fluid
loading, but as the modelling of sand as a fluid with only density and complex speed
of sound is probably a significant source of error anyway, no effort in this direction has
been made in the present thesis. Instead a common sense design has been used, with
a wedge shaped sandbox loading more and more sand along the length.

The mainly axial branches only have a minor radial vibration component due to Poisson
coupling. Damping of these modes by sand would therefore require an impractically
long sandbox. Brennan et al. (1997) used with some success a beam with a large
damped plate connected transversely as an anechoic termination, and the same idea
can be applied for a pipe. If the plate impedance is matched properly to the axial
impedance of the pipe, the axial components of vibration in the pipe will be converted
to bending waves in the plate. The plate bending waves can then be damped using
standard vibration control for plates. In the experimental setup used in the present
investigation a few 0.8 mm perspex plates were glued to the pipe and damped with
patches of absorbing material.

The coupling of the torsional modes is also quite low using only the sandbox, but by
applying some fins to the pipe, the coupling to the sand will be significantly better.
A few fins were added in the sandbox, but no attempt has been made to model their
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effect. Besides, the types of point excitations used in the present thesis would hardly
excite any torsional vibration, and the attempt to control the torsional vibration may
thus be unnecessary.

The performance of the structural anechoic termination is assessed in the next section.
The result of the initial assessment was that the sand loaded the pipe too much and
the intended dissipation of energy was not ideal. A better solution, used in the actual
experiments reported, was to use a buffer layer of 10 mm foam around the pipe to
reduce the resulting external loading of the pipe.

8.4.2 Assessment of the efficiency of the anechoic termination

Using 4 accelerometers (B&K 4507), some optimisation of the sandbox was carried
out. Three of the accelerometers were placed equidistantly inside the sandbox (1/4,
2/4 and 3/4 of the length of the sandbox) and one just before the sandbox. Each of the
accelerometers measured a radial point accelerance at the position in question. With
only sand in the sandbox, the measurements revealed that the main reduction of the
radial point accelerance happened in the first quarter of the sandbox. Applying some
different materials in addition to the sand revealed that using a foam layer of approx-
imately 10 mm around the pipe in the sandbox yielded the best possible performance
of the structural anechoic termination in the light fluid loaded case.

Assuming that only one propagating and one reflected wave exists for each circumfer-
ential mode, the radial modal displacement at any point of the pipe can be written as
the sum of these two waves:

Wy (s) = A,,e"™ ¢ + B ,e” s (8.8)

where index p refers to the propagating branch; A,,, is the amplitude of the propagating
wave; and By, is the amplitude of the reflected wave.

If the modal vibrations are measured at two different axial positions, the amplitude of
the incident and reflected waves can be quantified. Let s. denote the centre position
between the two measurement positions 1 and 2. According to equation (8.8), the
displacements at these positions are then

'lU:l (SC — L) e Anpeih:np(Sc—L) + Bnpe—ih‘,np(sc-‘[,)

' ; 8.9
wTQL(Sc + L) = Anpemnp(sc—FL) 4 Bnpe—znnp(sc+L) ( )

where superscript 1 refers to the measurement position closest to the point of excitation;
superscript 2 refers to the other; and 2L is the distance between the two measurement
positions. Knowing the complex response at each measurement position, equation
(8.9) can be solved for the amplitudes using standard methods for two equations with
two unknowns (Kreyzig 1998), but it should be noted that the equation tends to be
ill-conditioned at frequencies where an integer number of half wavelengths equals 2L.

The resulting amplitude ratios are plotted in figures 8.16 to 8.19 for s, = 19.6 and
L =9.8.
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Figure 8.17: Ratio of incident to reflected waves in far field for a pipe excited by a
radial point force, n = 1.
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Figure 8.19: Ratio of incident to reflected waves in far field for a pipe excited by a
radial point force, n = 3.
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The general trend is that the efficiency of the anechoic termination is fairly low at
low frequencies, reasonable in the mid-frequencies, and fairly low at high frequencies.
At low frequencies the wavelengths involved are long compared with the relatively
short length of the sandbox, and the effect of the sandbox is expected to be small.
At the mid-frequencies, the match of the wavelengths and the length of the sandbox
becomes better, while the low efficiency at high frequencies may be related to bad
coherence between the two measurement positions, probably related to the relatively
high damping of the pipe material.

It should be noted that the distance between the two measurement positions in the
figures corresponds to approximately 10 pipe radii. The coherence between the two
measurement transducers was fairly low during the experiments, and this probably
reduces the confidence in the measured amplitude ratios, as the matrices inverted
were badly conditioned. Unfortunately, this problem was identified too late to repeat
the measurements with a smaller distance between the two measurement positions.
However, it is assumed that the trends in the ratios are correct.

8.4.3 Radial excitation of the shell wall

Two major concerns were addressed during the design of the radial force excitation:
the excitation should be as close to a point as possible, to allow direct comparison with
the numerical point to point transfer functions from chapter 6; and the pipe should not
be penetrated more than necessary to avoid potential leaks in the heavy fluid loaded
(water-filled) experiments.

The excitation in the light fluid loaded experiments is provided by a radial force from
a mini-shaker connected to the pipe through a short sting. As the sting is flexible
(0.8 mm piano wire), most of the moments from misalignment of the axes between
the shaker and the pipe are cancelled. The connection from the sting to the pipe is
through a small force transducer that is connected rigidly to the geometric midpoint

of the pipe.

While direct connection between the force transducer and the pipe with a screw was
an easy solution, it was not ideal as it would involve a thread in the pipe wall, thus
introducing a potential leak when the pipe is filled with water for the heavy fluid loaded
experiments. Instead, a transducer mounting was made by a small cylindrical boss of
PVC glued to the pipe wall, as seen on the left hand picture of figure 8.20. To make
sure that the M3 thread necessary to connect the force transducer to the pipe was
perpendicular to the pipe surface, a cylinder with the same curvature as the outside
of the pipe was chosen. The PVC-cylinder alters the dynamic properties of the pipe
in two ways, as it adds mass to the vibrational system, and it adds some distributed
stiffness, that would affect the point nature of the excitation.

The effect on the point to point response of a fluid-filled pipe from a lumped mass
can be estimated as shown by Variyart and Brennan (1999). They present a mobility
method that can account for the change in the dynamic behaviour of a high mobility
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Figure 8.20: Pictures of different connection points of structural excitation.

pipe due to a lumped mass. Dubbing the point of excitation 1 and the lumped mass
point 2, the mobility at point 2 can be calculated from

v M
== 1—1;;— (8.10)
1 + m
where M, is the transfer mobility from the point of excitation to the point of the mass;
My, is the point mobility of the pipe; and M,, = —1/iwm is the mobility of the mass.

In this case, the problem is slightly simpler, as the point of excitation and the point of
attachment of the point mass are the same. The approximate mass of the PVC-cylinder
was 2.3 g and the mass of the force transducer above the piezoelectric element was 1.1
g, making the total added mass at the point of excitation 3.4 g. For the light fluid
loaded pipe, the correction at €2 = 0.3 corresponds to less than 1%. The influence of
the mass loading of the input arrangement is therefore assumed to be very small.

It is assumed that the distributed stiffness would have a negligible influence on the
vibration, as long as the size of the mounting is much smaller than the vibrational
wavelength. To verify this, the cylindrical boss was milled smaller as shown on the right
hand picture of figure 8.20, thus giving both smaller mass and smaller stiffness. Over
the frequency range of interest, no influence could be seen on any of the measurements,
and therefore no corrections have been made when comparing the experiments and the
predictions.

The shaker setup can amongst other things be seen in figure 9.27.

8.4.4 Modal sensing of pipe vibrations with an accelerometer

Simple point to point transfer functions can simply be measured directly using a point
sensor, like an accelerometer. This enables some sort of comparison with a predicted
transfer function, but it is difficult to assess the cause of any discrepancies. A modal
comparison as in the figures 8.3-8.6 is more enlightening, as e.g. cuton of different
modes can be seen directly. In the present thesis, two different techniques of modal
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Figure 8.21: Picture of circumferential placement of accelerometer.

measurements are used. The first one uses decomposition of accelerometer measure-
ments and the other one uses modal sensors that are only sensitive to given vibrational
modes. In the case of the light fluid loaded experiments, only the accelerometer de-
composition method was used.

To avoid any potential problems regarding phase matching of different accelerometers,
all measurements are done using the same accelerometer. An obvious consequence is,
that the sampling of the different points around the circumference cannot be in real
time. The accelerometer measurements are made by placing the accelerometer at a
given position and measuring the transfer function to this point. Then the accelerom-
eter is moved to a new position where the new transfer function is measured. The
positioning system of the accelerometer is shown in figure 8.21. The modal decompo-
sition technique is presented in the next section.

When measurements are made using an accelerometer, some mass loading of the pipe
occurs, as the accelerometer acts like a point mass. This point mass will affect the
vibrations locally at the point where the vibrations are sampled, and the acceleration
measured by the accelerometer is thus biased by its own mass loading. While the
added mass from the accelerometer used is small (the mass of the accelerometer used
for the modal decomposition measurements is 0.65 g), it may affect the vibrations
at high frequencies, especially for high mobility structures like a thin walled plastic
pipe. Using the same mobility method as described in the previous section, the effect
of a point mass can be predicted and the measurements can be corrected. In the
present thesis, the measurements are not corrected, but instead the mass effect of the
accelerometer can be included in the numerical predictions. However, the effect from
the small mass loading of the accelerometer is negligible at the scales presented in the
figures in this thesis, and the correction is therefore left out. A numerical experiment
was conducted with an accelerometer with a mass of 5 g, and here the effect was small,

but noticeable.
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8.4.4.1 Modal decomposition of accelerometer measurements

A number of different techniques exist for the modal decomposition of accelerometer
measurements. Feng (1995) shows a method that utilises the symmetric properties of
the vibrations around the circumference to allow the measurements to be conducted
only on 180 degrees of the circumference, thus effectively reducing the number of mea-
surement positions by a factor of two. Bourget and Fahy (1993) shows a method that
involves moving the measurement positions to align the measurements with the ex-
citation, so that 6, in the displacement equation equals zero. For the present thesis,
a method presented by Variyart and Brennan (1999) is used, as it recovers both the
modal amplitude and the angle between the excitation and the measurement reference

position (6,).

The total radial accelerance, A", can be written as the sum of the modal accelerances:

AT = iﬂA; = ioég; = }oo:f: —aw® W, cos(n(f — 6,))et(s=s2) (8.11)

n=0 b=1

Here A7 is the modal radial accelerance; B} is the modal radial receptance, found as
the dlsplacement per unit force input; and W, is the modal displacement amplitude.
It is convenient to substitute the cos part of the above expression with

cos(n(f — 0,)) = ¢.cos(nb) + ¢, sin(nd) (8.12)

this leads to
an [ cos(nb) + ¢, sin(nd)] (8.13)

where e, = 1 for n = 0 and &, = 2 otherwise; ¢. = cos(nb,); ¢s = sin(nb,); and the
constant A, collects all other terms.

If sampling is made with a point sensor like an accelerometer at N points around the
circumference of the pipe, then the sample angle at the j’th measuring position can be

written as o
]
0 =— 8.14
N ( )

and the measured radial accelerance of this point is dubbed H7.

When extracting the circumferential mode m from the N measurements around the
circumference, the cosine part of equation (8.13) is evaluated by multiplying both right
and left hand side of equation (8.13) with a common factor

o
jlw~cos <—-]7\%Zm> (8.15)

Then replacing H" with the measured accelerance H] and combining the sum of all
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measurement points, a new equation forms as

=0 . - . ) (8.16)
=~ jgo HZ:;EHAH [qﬁc cos(%jn) + ¢ sin(—j%zn)} cos ( 1:]] m)

The sine terms will cancel out due to the properties of discrete orthogonality, while the
cosine terms will sum up to ¢.A,,/N. It should be noted, that aliasing of higher order
modes will occur when the number of circumferential modes is more than one half
the number of measurement points around the circumference according to the Nyquist
sampling theorem. This way, equation (8.16) reduces to

1 =~ o)
~ > " HJ cos (Wm> = ¢peAm = H' (8.17)
5=0
The same procedure can be applied for the sine terms and here the result is
1 27
N ; H;} sin (W—m) = ¢sAm = H, (8.18)

The total measured accelerance magnitude for mode m is found as

A = /) + (H)? (5.19)
and the corresponding angle between excitation and vibration is found to be
1 H!
0, = —tan" ' | =2 8.20
me (H> (820

8.5 Conclusion

In this chapter, the response of a fluid-filled pipe with light fluid loading has been
assessed through measurements of the modal accelerance. The excitation of the pipe is
provided by a radial point force. The measured modal accelerance is compared with the
accelerance predicted by the prediction model in chapter 4. A common feature of all the
comparisons between the measurement and prediction is that the agreement improves
as the measurement position is moved towards the point of excitation; in the near field
of the point of excitation the agreement is excellent. The modal measurement shows
some modal leakage where accelerance from a strongly excited mode apparently leaks
to a weakly excited mode. However, when all the modal contributions are summed to
form a so-called synthetic point accelerance, the strongly excited modes dominate the
weakly excited modes, effectively removing the effect of the modal leakage.

A measurement method for the vibroacoustic power flow has been presented. Under a
quite restrictive set of assumption, the modal power flow is inferred from measurement
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of the pipe-wall response (e.g. the accelerance) through a predicted relation between the
modal response of the pipe wall and the modal power flow in the far field. Comparison
of the measured and predicted modal power flows shows that the agreement at low
frequencies is generally good, but at higher frequencies there is a significant roll off.
This high frequency roll off can probably be related to the relatively high loss factor of
the pipe-wall material. The modal power flows can be summed to form a total power
flow. The power input to the fluid-filled pipe from the force excitation can be measured
through simultaneous measurements of the input force and acceleration of the point
of excitation. Comparison of the predicted input power and the measured power flow
shows fair agreement above approximately 100 Hz.

The overall conclusion of this chapter is that the method of power flow measurements
presented in chapter 3 has been validated against numerical predictions from the model
presented in chapter 6 and vice versa, for a pipe with light fluid loading excited by a
radial point force.
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Chapter 9

Power flow measurements: pipe
with heavy fluid loading

The experiments presented in this chapter are all obtained on a PVC pipe with air
outside and water inside, so that the resulting internal fluid loading is heavy. The ex-
citation in the measurements is provided either by an external radial force at the shell
wall or by a transmitting hydrophone in the contained fluid. The pipe modal acceler-
ance is measured either by an accelerometer that is moved around the circumference or
by modal sensors that measure the modal response directly without post-processing.

The first section introduces the experimental setup used. The second and third sections
present measurements of accelerance and power flow when the pipe is excited by a
radial force. The fourth and fifth sections present similar measurements, but for the
pipe excited by a transmitting hydrophone inside the pipe. The sixth section assesses
the measurement principle, and the final section summarises the main conclusions.

9.1 Experimental setup

The experimental setup used in the heavy fluid loaded experiments is identical to the
one used in the light fluid loaded experiments, except for a few additions.

The 5 m PVC pipe is filled with water inside, while air is retained on the outside,
corresponding to case 1 in table 7.1 on page 74. Due to the relatively low p,h of the
pipe, the resulting internal fluid loading is heavy, as discussed in the parameter study
in chapter 7.

The structural anechoic termination is kept unchanged from the light fluid loaded
experiments, but a fluid anechoic termination is added to suppress reflections in the
fluid from the pipe ends. The main feature of the fluid anechoic termination is 30
m of rubber hose. The purpose of the rubber hose is to dissipate the energy in the
pressure fluctuations in the water. A special 0.5 m connection pipe matches the fluid
impedance gradually from the measurement pipe to the rubber hose. The fluid anechoic
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Figure 9.1: Picture of experimental setup.

termination is discussed in more detail in section 9.6.2.

Two types of excitation are used during the experiments, a radial force at the shell wall
and a transmitting hydrophone inside the pipe. The setup of the force excitation is
exactly the same as for the light fluid loaded experiments in chapter 8. The transmit-
ting hydrophone excites the fluid directly, ideally without any direct excitation of the
structure. It is assumed that the hydrophone acts like a point monopole source over
the relevant frequency range. The hydrophone excitation is discussed in more detail in
section 9.6.1.

The experiments with the radial force excitation are conducted like the light fluid
loaded experiments, but in addition to the accelerometer modal decomposition the
modal response of the pipe is also measured directly using modal sensors. The modal
sensors are made from shaped polyvinylidene fluoride (PVDF) film or from PVDF wire,
and due to their shape they are only sensitive to certain circumferential modes. The
modal sensors are discussed in more detail in section 9.6.3.

When the transmitting hydrophone is used as a source, the voltage input to the hy-
drophone is measured. By using the calibration of the hydrophone (the range nor-
malised pressure of the hydrophone was measured in air), the pressure output from
the hydrophone can be deduced. There is no simple way of quantifying the acoustic
power input from the hydrophone, as the velocity response of the fluid is not mea-
sured. The wall response of the fluid-filled pipe is measured using both point and
modal measurements.

The experimental setup is sketched in figure 9.2 and the instrumentation used is listed
in table 9.1.
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10 12

Figure 9.2: Sketch of the experimental setup used for the experiments on a pipe with
heavy fluid loading.

1. B&K Type 3560, PULSE Multi-analyzer and signal generator
2. B&K Type 2706, Power amplifier
3. B&K Type 2713, Power amplifier
4. B&K Type 4810, Mini-shaker
5. B&K Type 8203, Force transducer (3.6 pC/N, 1.1 g)
6. B&K Type 4374, Miniature accelerometer (0.141 pC/ms™2, 0.65 g)
7. B&K Type 8103, Hydrophone (0.099 pC/Pa, diameter 9.5 mm)
8. B&K Type 2646, Deltatron charge amplifier (1mV/pC)
9. Modal sensor (PVDF wire or patches of PVDF film)

10. PVC pipe (L=5 m, D,=63 mm, h=1.8 mm)

11. Anechoic termination

12. Connection pipe and rubber hose (L=30 m, D,=79.2 mm, h=1.6 mm)

Table 9.1: Instrumentation used for the experiments with heavy fluid loading.
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9.2 Accelerance for pipe excited at the pipe wall

Figures 9.3-9.6 show the measured and predicted modal accelerances (n = 0 to 3) of
a heavy fluid loaded fluid-filled pipe exited by a radial point force. Measurements are
plotted in red and predictions in green; the solid line represents a measurement position
s = 0.29 from the point of excitation; the dashed line corresponds to s = 14.7; and the
dash-dot line represents s = 25.1.

The Young’s modulus used for the pipe wall in the prediction model has been fitted, as
in the light fluid loaded experiments so the predicted and experimental cuton frequency
of the n = 2 circumferential mode are the same. The required value of Young’s modulus
is 5.5 MPa, which is approximately 45 % more than the modulus used in the light fluid
loaded case. This may seem contradictory, but the effective increase in the Young’s
modulus can probably be related to stress stiffening of the shell material. When the
pipe is filled with water, the entire system is pressurised. An experiment was made
to confirm that the cuton frequency of the n = 2 mode varies according to the static
pressure of the system: it was found that the higher the static pressure, the higher
the cuton frequency, and an approximate relation could be found. While this is an
interesting observation, it is not pursued further. All the measurements presented in
this chapter are made with p, = 100 kPa, and the predictions are mode with the
Young’s modulus noted above.

As the experimental setup was prepared for flow through the pipe, the measurements
were repeated with a flow of approximately 1,800 kg/h. Apart from a lower coherence
during the measurements (probably related to the background noise added from the
flow rig), no impact could be seen on the results.

Comparison between light and heavy fluid loading. The two most notable
differences between the light and the heavy fluid loading are the generally lower accel-
erance, and the lower cuton frequencies for the higher order modes for the heavy fluid
loaded case.

Knowing that force equals mass times acceleration and the accelerance is acceleration
per unit input force, it seems intuitively reasonable that the acceleration response per
unit force is reduced when the mass per length of the fluid-filled pipe is increased. For
the pipe used in the experiments, the mass is 0.50 kg/m in the air-filled case and 3.44
kg/m in the water-filled case. The ratio of the mass per unit length is close to the
approximate factor of 6 observed between the measured accelerances for a pipe with
light and heavy fluid loading, respectively.

The observed cuton frequency of the n = 2 mode (structural branch) is reduced from
approximately 420 Hz when the pipe is air-filled to approximately 180 Hz when the
pipe is water-filled. Similarly, the cuton frequency of the n = 3 mode is reduced from
1050 Hz to 600 Hz. The reason for this is probably the increased effective mass of the
shell wall in the heavy fluid loaded case.

As in the light fluid loaded case, the agreement between measurements and predictions
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Figure 9.3: Modal accelerance for a pipe with heavy fluid loading excited by a radial
point force, n = 0. The predicted response is green and the measured red; the solid line
corresponds to s = 0.29, the dashed line to s = 14.7 and the dash-dot line to s = 25.1.
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Figure 9.4: Modal accelerance for a pipe with heavy fluid loading excited by a radial
point force, n = 1. The predicted response is green and the measured red; the solid line
corresponds to s = 0.29, the dashed line to s = 14.7 and the dash-dot line to s = 25.1.
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Figure 9.5: Modal accelerance for a pipe with heavy fluid loading excited by a radial
point force, n = 2. The predicted response is green and the measured red; the solid line
corresponds to s = 0.29, the dashed line to s = 14.7 and the dash-dot line to s = 25.1.
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Figure 9.6: Modal accelerance for a pipe with heavy fluid loading excited by a radial
point force, n = 3. The predicted response is green and the measured red; the solid line
corresponds to s = 0.29, the dashed line to s = 14.7 and the dash-dot line to s = 25.1.
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improves the smaller the distance between the measurement position and the point of
excitation. The discrepancies at the two far field positions at high frequencies seem
smaller in the heavy fluid loaded case. A possible explanation for this is that the
damping in water is significantly smaller than in PVC, and as the proportion of power
flow in the fluid is much larger for the heavy fluid loaded case, the fraction of energy
dissipated between the points of excitation and response is smaller.

9.2.1 Comparison of accelerometer and modal sensor mea-
surements

Modal sensors for the modes n = 0 to 3 were used to measure the pipe-wall response.
The n = 0 sensor is a PVDF wire wound an integral number of turns around the pipe.
The modal sensors for the rest of the modes are made from thin PVDF film cut into
shapes only sensitive to certain modes. Both types of modal sensors are discussed in
section 9.6.3. The measurements for each mode are discussed below in turn.

n = 0. Figure 9.7 shows the accelerance in the n = 0 mode at s = 19.7. The solid line
shows measurements obtained by decomposition of accelerometer measurements; the
modal sensor measurements are shown with a dashed line; and the predicted accelerance
with a dotted line. The agreement between the two measurement techniques is good
at intermediate frequencies, but they tend to deviate both at low and high frequencies.

At low frequencies, the modal sensor measurements are much closer to the predicted
response than the accelerometer decomposed measurements, as they do not show the
noise floor limitations of the accelerometer measurement, discussed in section 8.2. The
general sensitivity of the modal sensor (5 turns of PVDF wire) is probably higher
than the lightweight accelerometer, but as the noise floor is not thought to be related
to limitations in sensitivity, this is probably not the explanation. The noise floor of
the decomposed measurements is probably related to errors introduced by the repo-
sitioning of the accelerometer around the circumference. The modal sensor measures
the response directly, without moving the sensor during the measurement. However,
modal leakage may occur due to the overlap of the wire at the ends, as the electrical
connection of the wire makes it difficult to know exactly what the sensitive length is.
Modal leakage can be seen around 200 Hz in figure 9.7 for both curves, but the level
for the modal sensor seems slightly smaller.

The modal sensor measurement tends to roll more off at high frequencies than the
decomposed measurements. This may partly be a damping effect and partly a mass
effect. The modal sensor is fixed on the pipe by double sided adhesive tape under the
sensor, with an additional layer of aluminum coated adhesive tape (to provide electrical
shielding) above the sensor. It is well known that adhesive tape introduces substantial
damping. The accelerometers used in the decomposed measurements are positioned
using beeswax, introducing no damping.

The mass of the sensor will also reduce the response of the fluid-filled pipe as discussed
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Figur