
UNIVERSITY OF SOUTHAMPTON 

Class-dependent features and 
multicategory classification 

by 

Alex Bailey 

A thesis submitted for the degree of 

Doctor of Philosophy 

in the 

Faculty of Engineering and Applied Science 

Department of Electronics and Computer Science 

7th February 2001 



UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
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Class-dependent features and multicategory classification 

by Alex Bailey 

The problem of pattern classification is considered for the case of multicategory 
classification where the number of classes, k, is greater than two. Many classification 
algorithms are in fact 2-class classifiers and are generalised to solve ^-class problems. 
Which classifiers are naturally multicategory and the nature of the generalisation of a 
2-class classifier to k classes is not often investigated. A thorough analysis of multicat-
egory classification is given in this thesis which provides a new taxonomy of popular 
classification algorithms, and goes on to derive these from a probabilistic viewpoint. 
A clear distinction is made between classifiers that partition the input space and those 
that partition the set of k classes. Of the classifiers which partition the set of classes, the 
one-of-M, pairwise, and hierarchical methods of decomposition are shown to be equiv-
alent in the knowledge of the true data distributions. The scaling properties of these 
algorithms are analysed for increasing k. The effects of learning models on finite data 
are then investigated to show the practical differences between each decomposition. 

In classification problems with many classes it is commonly the case that different 
classes exhibit wildly different properties. In this case it is unreasonable to expect to 
be able to summarise these properties by using features designed to represent all the 
classes. In contrast, features should be designed to represent subsets of classes that 
exhibit common properties without regard to any class outside the subset. The value for 
classes outside the subset may be meaningless, or simply undefined. The multicategory 
classification schemes proposed explicitly deal with such class-dependent features, and 
attractive properties of these classifiers are demonstrated for a real-world handwritten 
digit recognition application. 
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Chapter 1 

Introduction 

1.1 Problem overview 

In a recent review paper Jain et al. define pattern recognition as the following (Jain, 

Duin and Mao, 2000): 

Pattern recognition is the study of how machines can observe the environ-

ment, learn to distinguish patterns of interest from their background, and 

make sound and reasonable decisions about the categories of the patterns. 

This is a complex task that is an innate ability for humans; the recognition of people 

by their face, their voice, or their gait, or the recognition of writing on a page, are 

skills which people often take for granted, but to design a machine to solve such 

problems poses formidable research challenges. Other pattern recognition applications 

such as the diagnosis of diseases, the recognition of aircraft, and the categorisation of 

consumers in market research are examples of more difficult tasks for humans where 

we may look to machines to aid our decisions. This interesting and challenging topic 

has received a wealth of research interest since the use of electronic computers in the 

1950's and still today remains a very active research area. 

There are many aspects of pattern classification that are still open research fields 

from learning theory and model combination, to feature extraction and feature selec-

tion. Interestingly, multicategory classification is often overlooked as a research topic 

in its own right, shown by its absence in Jain, Duin and Mao (2000). This thesis covers 

the field of multicategory classification which involves the classification of patterns 

into a finite set of classes where the number of classes is greater than two, and studies 

the effects for a subset of multicategory classifiers as the number of classes increases 

significantly. The problems being addressed are firstly the fact that current methods 

1 



in multicategory classification are unrelated and seldom compared. This is addressed 

via a probabilistic formulation by which equivalences between important algorithms 

can be shown, and algorithms can be clearly placed in a novel taxonomy. This then 

highlights similarities and differences between algorithms to allow an analytical com-

parison. Secondly the generalisation of a binary problem to a multicategory problem 

is often considered to be a simple extension where one class is discriminated from 

the set of all other classes. This is but one method of generalising a binary problem 

and alternative methods are brought together and compared in this thesis. Within this 

framework, the novel concept of class-dependent features is investigated and shown 

to reduce the number of features used in multicategory classification without a loss in 

accuracy. 

Several existing popular classification algorithms are investigated in terms of their 

ability to discriminate many classes. The lack of scalability of multi-layer perceptrons 

for problems of many classes is argued and the lack of cohesion between the different 

algorithms is highhghted. The heuristic nature of decision tree classifiers and the 

combination of submodels in pairwise classifiers is also questioned. 

In response to these problems a novel formulation of Bayes' rule for statistical 

pattern classification is given that makes the conditioning on the input space and the 

set of classes explicit. This then allows the clear distinction to be made between 

multicategory classifiers that solve the problem of many classes by partitioning the 

input space, and multicategory classifiers that partition the set of classes. A novel 

taxonomy of these classification algorithms is given that makes this clear distinction 

between inherent multicategory classifiers such as the k-nearest neighbour classifier 

and the decision tree classifier that partition the input space, inherent multicategory 

classifiers that partition the set of classes, and inherent 2-class classifiers such as 

linear discriminants and generalised linear discriminants (see Chapters 2 and 3 for 

further details on these classifiers). Known classification algorithms that partition the 

set of classes to solve classification problems by a combination of binary classifiers 

are then clearly placed in this taxonomy. These are known as the one-of-n classifier, 

the hierarchical classifier, and the pairwise classifier and are grouped under the term 

class-decomposition classifiers. They differ in the number of binary subproblems and 

the method used to combine the outputs of each binary subproblem to give the final 

multicategory classification output (details are given in Chapter 4). These are then 

analysed in their scalability for problems with many classes in terms of the number 

of submodels to train, the training complexity of each submodel, and the number of 

models evaluated during classification. 
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One of the most important results of this new taxonomy is the clear distinction 

between a decision tree classifier, and a hierarchical classifier that combines 2-class 

subproblems. These two classification algorithms are very similar in nature; they 

both rely on a hierarchy of decision problems and take advantage of the fact that a 

complex problem can be broken down into a set of simpler subproblems. But they are 

distinct and the fundamental differences are shown in Chapter 4. Much research has 

concentrated on such tree-based classifiers, but this novel distinction is not addressed. 

The probabilistic framework is then used to analyse the class-decomposition clas-

sifiers. Statistical pattern classification is a branch of pattern classification that uses the 

well-founded rules of probability, and in this context a step in deciding the final class 

output is the estimation of a vector of posterior probabilities. The three most popular 

class decomposition classifiers, namely the one-of-M, hierarchical, and pairwise clas-

sifiers are derived such that they generate the correct posterior probabilities, and are 

shown to be equivalent when the required probability densities are known perfectly. 

Such perfect knowledge arises in the hypothetical situation where the data used to 

estimate the probability densities is infinite. 

However, for finite datasets, issues of generalisation and model complexity arise 

when learning each submodel in a class decomposition. It is shown in Chapter 4 that 

there are two fundamental components to the complexity of the submodels in class 

decomposition classifiers. These are: 

• the complexity that arises from the boundary that divides any two classes from 

each other, and 

• the complexity that arises from discrimination between many classes. 

Although the first component is fixed for a given application dataset, the second is 

affected by the choice of the class decomposition and can increase with the number of 

classes. The one-of-n classifier introduces complexity that increases with the number 

of classes. The pairwise classifier has the mimimum complexity that is constant for an 

increasing number of classes. The complexity introduced by the hierarchical classifier 

is controlled by the choice of the class hierarchy and can be minimised by the suitable 

identification of this class hierarchy. 

It is interesting to consider the simple and important linear discriminant, and the 

effect of using such linear models as the submodels in the class decomposition algo-

rithms. Kressel (1999) concludes that pairwise linear classifiers deserve further atten-

tion due to 'good recognition results with extremely low classification requirements'. 

The pairwise, hierarchical and one-of-n decompositions using linear classifiers are 



thoroughly investigated in this thesis in Chapters 4 and 7. The pairwise and hierarchical 

decompositions are shown to work well using linear discriminants for each submodel, 

while the one-of-w decomposition degrades seriously for problems with more than two 

classes. This is due to the complexity introduced between many classes by the one-of-n 

decomposition. 

Each decomposition has other advantages and disadvantages, such as the number 

of submodels to train and then evaluate during classification. The pairwise classifier 

suffers from having to train a number of models in the order of where k is the number 

of classes, whereas the one-of-n and hierarchical need only train k, and k—l models 

respectively. But the design of the class hierarchy for the hierarchical classifier is not 

trivial. Techniques that attempt to solve this problem are presented in Chapter 5. 

One significant advantage to the hierarchical model is that, of the A:— 1 submodels, 

in some cases only logg k models need to be evaluated to find the maximum posterior 

probability. A principled method for selecting the models to evaluate is given in Chap-

ter 4. Also the class hierarchy offers a more transparent model via interpretation of the 

class subgroupings. An example of this is given in Chapter 7 on remote sensing data. 

A direct result of the class decomposition algorithms is that feature selection may 

be done locally for each submodel. Work in parallel with the work in this thesis is 

presented in (Oh, Lee and Suen, 1999), where the effect of such feature selection is 

investigated for the one-of-n decomposition, which was shown to give an improvement 

in classification accuracy when compared to using the same global set of features for 

each submodel. The motivation behind such local feature selection is given by inves-

tigating the class-dependent nature of features. Class-dependent features are defined 

and shown to occur naturally in typical classification problems in Chapter 6. In a 

recent review paper on automatic handwriting recognition (Plamondon and Srihari, 

2000), the author suggests that for structural approaches to handwriting recognition 

to be effective, a classifier will have the property that 'the number of features used to 

describe a class of patterns may vary from one class to another'. This is exactly the 

property that is being investigated in this thesis, although unfortunately it is beyond the 

scope of this thesis to study structural handwriting recognition. A statistical approach 

to handwriting recognition is presented in Chapter 7 which shows that the use of class-

dependent features is advantageous for all three class decomposition algorithms. 

To show evidence for the theory presented in the thesis a number of experiments 

on simulated and real-world datasets are described in Chapter 7. The real-world 

data is taken from the field of handprinted digit recognition. These show favourable 

results, and demonstrate that for hnear models the pairwise classifier is by far the 
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most accurate classifier, followed by the hierarchical classifier and then the one-of-

n classifier. The accuracy of the class decomposition classifiers is compared using 

local and global feature selection showing that local feature selection results in better 

classification performance for fewer features selected. For non-linear models, multi-

layer perceptron classifiers are used and in this case the classification accuracy for 

each class decomposition becomes approximately equivalent, but with the hierarchical 

classifier performing marginally better. The advantages of local feature selection still 

remain. 

The concluding remarks state that when solving a multicategory classification 

problem of many classes, although they are asymptotically equivalent, hierarchical 

and pairwise classifiers have a considerable advantage in terms of classification per-

formance over traditional one-of-n classifiers when using either linear or non-linear 

submodels. Features should be selected independently for each submodel leading 

in simpler models without loss of accuracy. The hierarchical model is particularly 

advantageous since it has the fewest submodels, and the complexity of the submodels 

can be controlled by identifying a suitable class hierarchy. 

1.2 Thesis outline 

A chapter-by-chapter summary of the thesis is given in this section. The thesis is 

divided into eight chapters including this introduction. 

Chapter 2 defines concepts central to statistical pattern classification, namely the 

definition of features and classes, and describes discrimination, generalisation, and 

regularisation in pattern classification. Standard statistical techniques such as Bayes' 

rule and linear discriminants are detailed on which later chapters are built. 

Chapter 3 goes on to investigate the previous research on multicategory classifi-

cation including one-of-n, pairwise, the various types of decision tree classifiers and 

hierarchical classifiers. The lack of a common framework for multicategory classi-

fication is highlighted. Although there is little research directly on class-dependent 

features, related research is described that has similar motivations. Hierarchical and 

pairwise classifiers are noted for their compatibility with the class-dependent feature 

paradigm. 

Chapter 4 then lays down a probabilisitic framework under which popular multi-

category classification algorithms can be derived according to whether they partition 

the input space or the set of classes. This leads to a novel taxonomy of multicategory 

classification. In this chapter an equivalence between the one-of-n, pairwise and hier-



archical class decomposition classifiers is shown and the difference between decision 

tree classifiers and hierarchical classifiers is made explicit. The scalability of the three 

algorithms is shown for increasing problem sizes, and two forms of complexity in a 

multicateogry problem are distinguished. The pairwise classifier is shown to reduce the 

complexity due to many classes, the hierarchical classifier can control this complexity 

through design of the hierarchy, and the one-of-n classifier maximises this complexity. 

In Chapter 5 the necessary structure identification techniques are described for 

the hierarchical classifier. Performance metrics such as classification accuracy, and 

approximations such as the Euclidean distance between class means are shown, and 

top-down, or bottom-up clustering methods are described. The structure identification 

is also formulated as a discrete search which is enabled due to the finite number of 

nodes in the class hierarchy. Efficient operators for combinatorial otimization are de-

scribed that reduce the cost of retraining when using classification rates as an objective 

function. 

Chapter 6 defines and explores the novel concept of class-dependent features as 

related to the statistical independence of the feature and the class variable, given a 

subset of classes, and relates it to existing work. Illustrative examples from real-

world applications are shown and the novel distinction between strong and weak class 

dependence is defined. Local and global feature selection methods are described for the 

class-decomposition classifiers using motivation for class-dependent features. Classi-

fiers using local feature selection are expected to use fewer features. 

Chapter 7 describes experiments on real and simulated data to confirm predic-

tions made in previous chapters, with the experimental results. Firstly the object-

oriented design of the software used to carry out the simulations is described. Then 

the classification accuracy of the class-decomposition models is shown as the number 

of classes increase using both logistic linear discriminants and multi-layer perceptron 

classifiers for each submodel. The one-of-n classifier is shown to scale badly, while the 

hierarchical and pairwise models are shown to scale well. Then the classification rate 

for all three submodels is shown to be consistently better for fewer features selected 

using local feature selection which makes use of class-dependent feature metrics. 

Chapter 8 concludes with a discussion of the work presented and avenues for 

future research in this area, particularly in the reduction of the number of models in 

the pairwise classifier and the analysis of strong class-dependent features. 
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1.3 Contributions 

The main contributions of this work are detailed below. 

» Novel taxonomy of multicategory classification algorithms (Section 4.2). 

• Probabilistic formulation of multicategory classifiers and equivalence analysis 

between models (Sections 4.1 to 4.5). 

• Analysis of scalability of one-of-n, pairwise and hierarchical multicategory clas-

sification models (Sections 4.6 to 4.8) with experimental evidence on simulated 

data (Section 7.3). 

• Principled approach to computationally beneficial approximations to hierarchi-

cal classifier (Section 4.10.2). 

• Definition and analysis of strong and weak class-dependent features (Section 

6.1) with experimental evidence on real-world data for weak class-dependent 

features extending the work of Oh, Lee and Suen (1999) (Section 7.6). 

1.4 List of publications 

T.J. Dodd, A. Bailey and C.J. Harris (1998). A data driven approach to sensor mod-

elling, estimation, tracking and data fusion. In M. Bedworth and J. O'Brien, editors, 

EuroFusion98, pages 103-111. 

C.J. Harris, A. Bailey and T.J. Dodd (1998). Multi-sensor data fusion in defence 

aerospace. The AewnauticalJoumal, 102(1015):229-244. 

A. Bailey and C.J. Harris (1999). Using a hierarchical classifier to exploit context 

in pattern classification for information fusion. In Proceedings of the 2nd Conference 

on Information Fusion (FUSION99), Sunnyvale, CA, pp. 1196-1203. ISIF. 



Chapter 2 

Features and classes for pattern 
classification 

This thesis is concerned with pattern classification. A pattern is a pair of variables 

(Schurmann, 1996): 

Pattern = [x,co], 

where x G is a vector of observations, and CO E O is a label that represents a mean-

ingful concept in the problem domain. For example x may be the digital image of a 

face, or of a handwritten character, or the digital recording of a spoken word, and O) 

may represent a person, a letter of the alphabet, or a word, respectively. 

Pattern classification is a mapping from x to CO. It is most often assumed that the 

observation vector is of fixed length, d, and that Q is a set of class labels co/ for finite 

/ = 1 , T h i s constrains the problem in such a way that allows machine learning 

algorithms to attempt to solve the problem. Normally a model is specified by using a 

set of known observation and label pairs to define the model structure and parameters. 

This set of patterns is known as the training set, or training sample. A similar but 

different set of patterns is used to evaluate the classification accuracy of the model. 

This is known as the test set, or sample. 

To rehably distinguish between classes there must be a certain amount of discrim-

inatory information present in the observations. A simple example being, if the task 

was to distinguish between images of the handwritten letters 'a' and 'b', then a possible 

model would be to simply measure their height and designate anything above a certain 

height as a 'b'. However, there is much variation in the height of handwritten letters 

so this system will be rather inaccurate. To aid the decision, a vertical stroke could 
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be detected on the left of the letter and then the two measurements combined before 

deciding what type of letter it is. The extra discriminatory information in the second 

measurement will most likely increase the accuracy of the classification system. There 

will still be some confusion over certain images, so more measurements will have to be 

taken, and perhaps with a more sophisticated measuring technique. Problems will arise 

if too many measurements are taken on a small population sample, and this, known as 

'the curse of dimensionality', is an extremely important issue which affects the size 

and complexity of models and consequently their learning ability. This states that with 

finite training samples, arbitrarily increasing the number of measurements can lead to 

an eventual decline in the overall classification performance. 

The concept of features is also described in this chapter. A feature may be simply 

a measurement on a object, or a combination of measurements on an object. The 

processes of feature selection and feature extraction are defined and distinguished. It 

is the relationship between features and classes that is primarily of interest here, the 

restriction that a feature should be applicable to all classes is being relaxed to allow 

features to expressly represent subsets of classes without requiring the value of that 

feature to be meaningful for classes outside such subsets. 

This thesis presents a novel taxonomy of multicategory classification which states 

that a many-class problem should be approached by either partitioning the input space 

R, or the set of classes Q.. It is shown that when decomposing Q the distinction between 

certain classes is best described by an individual feature set for each individual subset 

of O. Central themes in pattern classification are laid down in this chapter to define the 

issues that are important to the discussion in later chapters. 

2.1 Class concepts and observations 

It should be noted here that class labels represent arbitrary concepts and there is no 

reason beyond common sense that the class labels should represent any meaningful 

categorization of the problem. It would of course be illogical to try and solve a mean-

ingless problem, and most class labels will in fact represent meaningful and distinct 

concepts, though class concepts should not be thought of as formally distinguishable. 

This thesis considers disjoint class concepts such that any observation can only 

truly belong to one class. There is a set of valid problems by which an observation can 

belong to more than one class concept at a time. Fuzzy classification and probabilistic 

class mixture estimation can address such problems of overlap between class concepts 

but this is a different problem and is not considered in this thesis. A discussion of 
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Figure 2.1: Classification is an inverse of the complex process of observation 

fuzzy classification and its relationships to statistical pattern classification is given in 

(Manslow, 2000). 

An illustrative example, if each observation x represented an image of a face then 

might be a set of employees, or the set {male, female}, or even the set of the twelve 

signs of the zodiac. Each of these in theory are valid classification problems except 

that in practice it would be difficult to tell someone's star sign by looking at their face, 

due to the fact that there will be little correlation between the class labels and the 

observations. This is due to the poor design of the classification system through a poor 

choice of inputs. It may also be the case that two of the employees are identical twins 

where, although to a lesser extent, there will be ambiguity in the problem definition. 

This is the result of the more fundamental problem that pattern classification is an 

inverse process. This is illustrated in Figure 2.1. The process of observation is a many 

to many mapping and its inverse may be ambiguous. It follows that for some problems 

the observations will not be sufficient for perfect classification. 

Even if the class concepts are defined wisely there may be ambiguity imposed by 

the observational process. If a system is to classify objects, it must be able to observe 

them. Observation can be an incredibly complicated and uncertain process which in 

itself accounts for most of the problems in pattern classification. Observations are a 

result of a complex non-linear combination of three types of information: 

• the observable properties of the object itself, 

® the observational conditions, and 

® any noise effects resulting from the measurement device. 

The observable properties are what one hopes to measure, and this would be a 

person's face. The observation conditions will affect how the face is observed, it may 
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Figure 2.2: Model for statistical pattern recognition, from (Jain, Duin and Mao 2000) 

be dark, or the person may be covering his face with a hand, sunglasses, or an item 

of clothing. The camera may introduce measurement noise by electromagnetic inter-

ference, or simply by poor focusing or insufficent resolution. All these will have an 

effect on the final image supplied to the classifier and it is the task of the classification 

system to cope with these effects. A broad outline of how a classification system infers 

the class label from such an observation is given in the next section. 

2.2 A typical classification system 

The classifier is one of several processes in the classification system, albeit the most 

important process, but there are other processes that are typically undergone before 

information is fed to the classifier. 

To minimise the noise introduced in the observations one might design an ap-

propriate physical system, for example ensure adequate lighting, use a camera with a 

suitable level of image detail etc. And once the observations have been recorded, then 

these are presented to the classification system which can take further steps to minimise 

the effects of the inevitable measurement noise that has been recorded. A typical 

statistical pattern classification system is shown in Figure 2.2 (Jain, Duin and Mao, 

2000). The first step is usually known as pre-processing and involves such processes 

as filtering to reduce the measurement noise, and normalisation to reduce the variance 

due to the observational conditions. More sophisticated dimension reduction methods 

such as principle component analysis (PCA) may be used to reduce the number of 

dimensions in the input vector via an eigenspace transformation. This will result in a 

pre-processed input vector. 

When training a classifier the features can then be extracted from the preprocessed 
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input vector to give a feature vector. Then the most appropriate features are selected 

and the reduced feature vector is input to the classification system for learning, which 

will calculate the output error and adapt the model parameters. When classifying, the 

set of features are measured, or calculated, according to the optimum set chosen by the 

feature extraction and selection processes. The classifier can then evaluate its output 

according to the measured feature set. These and related concepts are described in the 

following sections although specific details will depend on the application problem. 

2.3 Features 

In a pattern classification problem, features are generated by functions of the raw or 

pre-processed measurement data. These functions are c&Wed feature extractors. The 

feature extraction process may be complex transformations of the measurement data 

such as the Fourier transform, or a simple copying of the measurement values. 

When designing a machine learning system, there is always a trade-off between 

the complexity of the feature extractors and the complexity of the classification algo-

rithm. If simple feature extractors are used for a complex problem then the classifier 

will need enough complexity to learn the class concepts from these simple features. 

However, if complex feature extraction processes are used that allow for most of the 

complexity of the problem, then a simpler classification algorithm may be sufficient. 

Usually prior knowledge would be needed to design complex feature extractors that 

adequately represent the problem. 

An illustrative example which will be returned to thoughout the thesis is the 

handwritten digit recognition problem. Two pre-processed digits are shown in Figure 

2.3. In this case the raw pixel values may be presented to a classifier, but a complex 

classifier would be needed to be able to accurately classify the digits as no application 

knowledge has been fed into the problem. 

Alternatively, application-specific feature extractors, in this case sophisticated 

techniques to detect loops and lines, or estimate the slant and curvature of the strokes 

in the image could be designed. Then the classifier design would be matter of defining 

a simple rulebase that classifies digits according to these high-level features, which 

may even be possible to do by hand. 

The trade-off is between the human design effort and the amount of learning 

expected of the machine. In the first case the machine is expected to learn all the 

invariances of the raw data and completely parameter!se the problem in such a way 

that it can be solved. In this case the machine is effectively learning feature extractors 
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Figure 2.3: An example of a digitised handwritten digit with and without a loop 

internally. In the second case, much prior knowledge is being used to design features 

such that they incorporate known invariances and extract the informational content of 

the raw data. 

This trade off is important in this thesis since transparency and prior knowledge 

are of interest. If we expect the machine to learn everything about the problem - if such 

a task is tractable; then it is often the case that the solution of the problem gets lost in 

the parameters of the system and little insight can be gained as to how the problem is 

being solved. Also in most real-world problems there will be a base of prior knowledge 

that can be incorporated into the system, which should be used whenever possible. 

Another important property of features is the associated cost of evaluating a 

feature. The cost may be in the time taken to calculate the numerical value of the 

feature from raw data, the risk involved in measuring the feature, or even the monetary 

cost of measuring the feature. This will depend on the application and in some cases 

it is important to minimise this cost and to evaluate the smallest number of features 

possible when making a classification decision. It is shown in Chapters 4 and 7 that 

the hierarchical model is particularly efficient in reducing the number of features to 

evaluate during classification, which can also result in a more interpretable model. 

Some example applications are; 

• Time-critical systems where the time taken to evaluate complex features needs 

to be reduced to a minimum. 
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® Medical systems where measuring a feature may involve costly tests, or even 

surgery. 

• Pharmaceutical research involving the identification of molecular compounds. 

• Strategic defence systems where measuring a feature using an active sensor such 

as radar involves a risk of being detected. 

• Marketing analysis where measuring a feature involves large-scale surveys. 

In these situations the need to reduce the number of features is more critical than 

the possible effects of the curse of dimensionality and feature reduction techniques are 

important. 

2.3.1 Feature extraction and feature selection 

Feature extraction and feature selection provide an important role in classification 

problems in reducing the complexity of a classifier and reducing the overall cost of 

feature measurements. 

Feature extraction is the transformation, or combination, of inputs based directly 

on the raw data to provide more meaningful, abstract and concise features for use by 

the pattern classifier. This may involve a simple transformation of the whole data for 

data compression, such as principle component analysis, or a complex domain specific 

process, such as locating geometric features such as the eyes in a face recognition 

task. Several distinct feature extraction processes may be applied to the raw data in 

parallel to generate a vector of features. The importance of feature extraction is to 

condense maximally useful information from the raw data available, while retaining 

the discriminatory features/attributes. 

Alternatively, feature selection is the process of choosing the minimum set of 

the available features that provide the maximum discrimination between classes when 

presented to the pattern classifier. These features may be those generated from a feature 

extraction process, the raw data itself, or a mixture of the two. The importance of 

feature selection is to select only those features that are relevant to the decision being 

made. For example, in the handwritten digit recognition problem, if the pixel values 

were to be used as features, then feature selection would concentrate on the pixels in 

the main body of the image and ignore the uninformative pixels around the extremities 

of the image. 

Pattern classification is known to perform best using the minimal set of features 

that contain the maximum information relevant to the problem. 



2.3.2 Invariance 

Invariance is a very important concept regarding feature extraction. When dealing with 

a set of objects from a single class, it is reasonable to expect some variation between 

the properties of the individuals, although there will be properties which are invariant 

for all the individuals in that single class. For example if the classification task was 

to classify a selection of shapes into the three classes {circle, triangle, square}, then 

all the individuals might vary in their size and orientation. However the number of 

vertices is invariant for all members of the same class. Since the number of vertices 

varies between members of different classes it would make a good discriminant for the 

three class problem. 

Assuming that we do have meaningful and distinct class concepts, it is the notion 

of invariance that should be captured in a particular feature extraction technique. A 

feature should be invariant, that is insensitive, to properties of the measurements that 

are irrelevant to the problem. For example, in object recognition we are not interested 

in the size or orientation of the object in the image. The feature extractors should 

therefore be scale and rotation invariant. Certain image processing techniques such 

as the Fourier transform are known to be translation invariant, and this would make 

a good feature extractor if the degree of translation of an image is a property of the 

measuring device or observational conditions, and not a property of the problem we 

are trying to solve. An earlier example suggested the height of a handwritten character 

should be used to distinguish the letters 'a' and 'b'. But this will not be scale invariant. 

A better feature would be the ratio of width to height, called the aspect ratio, since this 

is now scale invariant. It is easily seen that the aspect ratio would not be a good feature 

when discriminating the letters 'a' and 'e' since they will typically have similar values. 

A feature should also have within-class invariance, such that the value of the fea-

ture is invariant for all points taken from a single class. If there is a small within-class 

invariance and a large inter-class variance then that feature is a good discriminant for 

the problem. For the purposes of this thesis, which deals with class subsets, it is also 

important to consider properties which are invariant for sets of classes. For example, 

the set of digits {'0', '6', '8', '9 '} has a small within-set variance for the loop feature 

since all the digits within it contain a loop. However, the loop feature would be good at 

discriminating this whole set of classes from another set of classes such as the 'straight 

line' numbers such as '7'}. 



2.4 Discrimination 

The task of a classifier is to discriminate between the classes. Discrimination is ulti-

mately achieved by placing a decision boundary between points in feature space. This 

decision boundary may be explicitly represented by a parametric form, such as in a 

linear discriminant, or indirectly through the parameterisation of the class distributions 

used to estimate posterior probabilities. Other non-parametric classifiers such as k-

Nearest Neighbour techniques do not explicitly describe a decision boundary but it can 

be seen that the effective boundary is a fine-grained tessalation of regions around the 

set of stored representative points when k = I. See Figures 4.5 and 4.6 for examples 

of decision boundaries in multicategory classification. 

This thesis is concerned primarily with statistical pattern classification and the 

estimation of class-conditional distributions which lead to parametric decision bound-

aries, or so called semi-parametric cases such as multi-layer perceptrons. As with all 

learning systems, classifiers are governed by the laws of learning theory and the most 

important terms are explained in the section below. 

2.4.1 Bias, variance, generalisation and regularisation 

Generalisation is the most important concept in machine learning and data modelling 

(Bishop, 1995). A model must be able to learn relationships between the inputs and 

outputs in the training data and then be able to make predictions on unseen data. Gen-

eralisation is the ability to extract the 'essence' of the problem without learning the 

specifics of the training sample. Rote learning is an example of a very bad generaliser, 

since new problems can only be solved if they have been seen before in exactly the 

same manner, that is if they are to be found in the training set. The other extreme is 

an over-general model that treats all input samples as the same, and outputs a constant 

value. In the presence of finite data, good generalisation is achieved by a balance 

between model bias and model variance. Regularisation is a technique to improve the 

generalisation ability of a model. These terms are explained below. 

In data modelling, bias and variance are conflicting properties of a model con-

cerning its flexibility. A model is said to exhibit high model bias if it has a rigid 

inflexible structure, such as a linear model (see Figure 2.4). A flexible model such as 

one based on nth-degree polynomials is said to have less bias, as it is flexible enough to 

fit to many more problems. However, a flexible model will inevitably have high model 

variance since it can vary its structure to fit itself too closely to the data - resulting in 

poor generalisation (see Figure 2.5). Also the number of features in the feature vector 
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Figure 2.4: A linear model exhibiting high bias and low variance 

has an effect on the generalisation performance since for most parametric classifiers 

the number of parameters increases with the number of features. A large number of 

parameters means a more flexible model and the chance of overfitting is higher. 

Regularisation is a technique to overcome high variance by constraining the model 

in some way. A simple and elegant solution is to constrain the model to have low 

curvature (see Figure 2.6). This is in effect stating the requirement that small changes 

in the model inputs should lead to small changes in the model output. This is a sensible 

requirement for good generalisation. 

Regularisation is also a form of applying prior knowledge. From a Bayesian view-

point, specifying constraints on the system before exposing it to any data is equivalent 

to imposing prior knowledge upon the system. 

When comparing the performance of different classification algorithms, the clas-

sification rate is the most representative measure of accuracy. In other words the 

percentage of correct classifications on a sample dataset. However this must be a 

comparison of generalisation ability. This simply requires that the classification rates 

quoted must be performed on unseen data samples that have not been used in the train-

ing or design of the classifier. But for some applications it is not always the accuracy 

which is the dominating factor in choosing a classifier. Issues such as training time, 

classification time, storage requirements, and interpetability can be important enough 

to use a classifier with an accuracy less than the state of the art. 
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Figure 2.5: A non-linear model with low bias and high variance over-fitting the data 

2.4.2 Effects of large sets of classes 

There is a significant difference between a 2-class classification problem and a ^-class 

classification problem where k > 2. A 2-class or binary problem is special because 

it can be represented by a single inequality. This can lead to a simpler problem 

analytically and is the preferred problem for classifier design. Many classification 

algorithms are described in terms of a binary decision problem, since the general 

case of m classes is assumed to be a trivial extension of a two class problem. This 

assumption is challenged in this thesis and the effects of discrimination between large 

sets of classes are addressed. 

There are several ways of converting a t-class problem into a set of 2-class prob-

lems. They have their advantages and disadvantages and the most common methods 

are detailed below: 

• One-of-n output encoding: Each class is in turn discriminated against a set of all 

the other classes. A total of k models are learnt. Model outputs are compared 

directly and the class for the model with the highest output is chosen. 

• Pairwise classification: Each class is discriminated against each other class sep-

arately. A total of k{k— l ) / 2 models are learnt. Model outputs are combined 

additively and the class with the highest output is chosen. (Jia and Richards 

1998; Kressel 1999) 

• Hierarchical classification; The set of classes is split into left and right subets 
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Figure 2.6: A flexible model with constrained curvature reduces the variance 

which are discriminated against, the subsets are then split recursively into left 

and right subsets until all classes have been discriminated. A total of 1 

models are learnt. Model outputs are multipled and the class with the highest 

output is chosen (Schuermann and Doster 1984). 

The number of features that can be effectively used at each stage may vary de-

pending on the algorithm. Issues arise when the number of classes increase, such as the 

number of models to be learnt and the complexity of the tree structure for hierarchical 

models. These issues are addressed fully in Chapter 4. 

2.4.3 The number of features 

With a small number of features there will be increased ambiguity at the decision 

boundaries in feature space. It is expected that the data points for separate classes will 

overlap severely in feature space unless the few features represent all the discrimina-

tory information for the problem. With many features the dimensionality of the feature-

space will increase, leading to a general increase in distances between points (a natural 

property of high-dimensional spaces), leading to low data density. However problems 

will arise from learning models in high dimensional spaces if there are insufficient 

training samples to learn from. This effect is described in the next section. 

The curse of dimensionality is known by several names; Hughes' phenomenon, or 

the peaking phenomenon. A discussion of the peaking phenomenon is given in (Trunk, 

1979). Hughes' phenomenon is described here, but the idea is essentially the same. 



2.4.4 Hughes' phenomenon 

In his 1968 paper, Hughes analysed the mean accuracy of two-class pattern classifiers 

with discrete-valued feature vectors (Hughes, 1968). The mean accuracy is formu-

lated in terms of the dimensionality of the measurement vector d, the number of data 

points and the prior probability of one of the classes. The mean accuracy is written as 

Per {d, n, f (mi)) where n is the number of data points, and F((Di ) is the prior probability 

of class coi. Hughes showed that in the case of infinite data, increasing the number of 

measurements increases the mean accuracy asymtotically to its maximum value, which 

depends on the prior probabilities. 

However, in the usual case of a finite number of data points, it was shown that 

there is an optimal measurement dimension d after which the mean accuracy begins to 

drop. The optimum dimension of the measurement vector is a function of the number 

of data points, increasing with greater volumes of data. 

This is now a well known effect in machine learning and is known as either 

Hughes' phenomenon, or the curse of dimensionality. It is the motivation for feature 

selection described below. 

There are several intuitive explanations for Hughes' phenomenon, namely that 

as the number of dimensions of a measurement space increases, more data points 

are needed to accurately specify the probability distributions in the high-dimensional 

space. If the number of data points is fixed (as is often the case when training a pat-

tern classifier) then arbitrarily increasing the number of measurements will eventually 

degrade performance. 

This can be explained in terms of non-parametric probability density estimation, 

where the measurement space is spanned by a set of bins, and the density estimate is 

calculated as the number of points falling in the bin, divided by the volume of the bin. 

If each measurement axis is divided into h bins then as the number of dimensions d 

increases the number of bins increases as . There will obviously soon come a limit 

when there are not enough points to distribute amongst all the bins that represent areas 

of non-zero probability density. In this case there will be bins that register zero prob-

ability density erroneously. The number of erroneous bins will increase dramatically 

with d, rendering the overall probability estimates inaccurate. 

2.4.5 Cover's theorem 

Cover's theorem (Cover, 1965) simply stated says that a complex pattern-classification 

problem recast non-linearly in a high-dimensional space is more likely to be linearly 
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separable than in a low-dimensional space. Linear separability is desirable in a pattern 

classification problem, as there is an easy and analytical solution in the linear separable 

case. 

Cover's theorem might appear counter-intuitive to Hughes' phenomenon since it 

states that transforming a low-dimensional problem into a higher-dimensional provides 

an easier problem, and consequently a more accurate classifier. It should be noted that 

Hughes' phenomenon still applies, however if the separating hyperplane is determined 

properly in the high demensional space, then this may be overcome to such an extent 

that Cover's theorem provides a good basis for designing a pattern classifier. 

The problem with mapping a problem into a higher dimensional space and then 

fitting a linear separating hyperplane is that in many dimensions there are many more 

possible hyperplanes than in the lower space, increasing the likelihood of choosing 

a non-optimal one. By use of regularisation theory one can constrain the problem to 

give a unique solution which is optimal given the constraints. This is how kernel-based 

methods such as the SVM operate (Burges, 1998). 

2.5 Classification and interpretability 

There now exist two possible avenues for designing a pattern classification system. 

One is to use a particularly flexible model with good generalisation capabilities such 

as a Support Vector Machine (SVM) and train it with the raw fixed-length observation 

vectors. This is a relatively new technique that has been proven to give very good 

classification performance. Another viewpoint is to select and design good feature 

extractors that represent the structural invariances in the problem and learn a structured 

classifier based on the features generated by these feature extraction algorithms. 

The former will shed little light on the process of classification, the internal 

mappings of a SVM will, for a problem of any complexity, be far too abstract to be 

meaningful. However the latter approach is termed 'interpretable' since the feature 

extractors can be designed to have meaning in terms of the problem and the final 

classification process can then be understood in such a way that sheds light on the 

solution of the problem. (There is current research within the ISIS Research Group 

on an interpretable SVM algorithm termed 'SUPANOVA' by Steve Gunn (Gunn and 

Brown, 1999), and a Neurofuzzy SVM (Chan and Harris, 2001)). 

However, when designing feature extractors that are meaningful for a classifica-

tion problem with many classes it soon becomes apparent that not all feature extraction 

processes are 'meaningful' for all the classes. This can be illustrated via the handwrit-



(CH/lPTjEJ? 2. j;CXF!j°/LIirf%RU\r(:2./LSJSif9BCv4]riC)ff 2:2 

ten digit recognition problem which is addressed throughout this thesis. 

A meaningful feature in an image of a handwritten digit is the presence of a loop 

(see Figure 2.3 for an example of a preprocessed digit with and without a loop). In 

turn, if a loop is found further analysis may be performed on the detected loop. Further 

features such as the relative position of the centre of the loop from the centre of the 

whole digit can provide discriminatory information. Though, naturally, if there was no 

loop detected in the first place then the 'relative position' of the loop is meaningless. 

Whether a value may be assigned at all to these features, or if a value can be gener-

ated by some algorithms even for images without loops then those values cannot be 

expected to be at all meaningful. 

The treatment of such features, which are termed here as class-dependent features, 

requires much further anyalsis. For a classifier of many classes to be interpretable then 

these questions need to be addressed. Chapter 6 deals with this issue in greater detail. 

For now the concept of conditional independence is introduced which can be used 

to measure the class-dependent nature of features. Conditional independence (Pearl, 

1988) is defined for events. A, B, and C such that: 

f ( A | B , C ) = f ( A | C ) , 

if A and B are conditionally independent given C. 

This is an important concept regarding class-dependent features since it can be 

formulated as: 

P(0) |xi ,g2)=f(0) |Q). 

This means that the class variable, O), and a particular feature, x, can be independent 

conditioned on the set of classes, O. In other words, the dependence between features 

and classes may vary given a set of classes as a context. 

To illustrate this, if the feature % was the number of legs, and the class variable 

was to be one of the following Q = {ants, spiders, flies}; then given O = {ants, flies} 

then X and co are independent. That is, knowing % tells you no information about co, 

since x = 6 for either class. Whereas conditioned on Q = {spiders, flies}, x and o) are 

dependent as x will now be either 6 or 8, depending on the value of m. It is this property 

which will be shown to be exploited in the analysis of class-dependent features. 
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2.6 Statistical pattern classification 

The following section follows standard techniques used in statistical pattern recogni-

tion, and forms the basis for the remainder of this thesis. For a more lengthy discourse 

the reader is recommended to read the excellent texts by Bishop (1995), Schurmann 

(1996) and Webb (1999). 

The goal of statistical pattern recognition is to estimate the posterior probabilities 

for each class in a set of classes, = {w,; z = 1 , . . T h i s is usually written for 

each CO/ as P(co, |x). In this thesis the condition on the set of classes is made explicit, 

since techniques are considered where this conditioning is important. So the final goal 

for each classification algorithm in this thesis is to estimate P(co/|x, 

To decide the class label using the information given by the posterior probabilities, 

a decision rule is applied. The Bayes decision rule for minimising the risk is stated as 

follows (Jain, Duin and Mao, 2000): Assign input pattern x to class O), for which the 

conditional risk 

k 

^ M | x ) = ^L(a): ,m;)f(coy|x) (2.1) 
;=1 

is mimimum, where L(a)f, Wy) is the loss incurred in deciding co, when the true class is 

(i)j and P(coy|x) is the posterior probability. 

The maximum a posteriori (MAP) decision rule is then derived by using the 

straightforward 0/1 loss function which is described by: 

.L((D(,C0y) = <( . . ^ (2.2) 
1 

In this case the Bayes decision rule simplifies to the following: Assign input pattern x 

to class CO; if 

f (coflx) > f (my|x) V; f z. (2.3) 

It is useful at this point to define precisely the probabilities involved in statistical 

pattern recognition and declare their meaning. This will help to clarify the analysis 

below. 

Classification can be thought of as the observation of an object and the subsequent 

labelling of that object according to the observations made. The observation and the 



class labels can be thought of as random variables to be modelled via probability 

density functions. The observation is a vector, x, of measurements on an object and 

the class label, Q, is a category to which that object can be meaningfully assigned. 

It is important to stress that the class labels form a finite set, and the object 

is assumed to be represented by one of the class labels. 

The following probabilities have the following meanings: 

® p{x) - the probability that a certain observation is made (regardless of the type 

of object). 

® p(x|cD/) - the probability that a certain observation is made given that the object 

being observed belongs to class Q. This is called the class-conditional proba-

bility for class O), . 

• P(cO;) - the probability that the object being observed belongs to the class co, 

before any observation is made. 

# f - the probability that the object being observed belongs to the set of 

classes before any observation is made. 

• - the probability that the object being observed belongs to the global set 

of classes, ^2^' (this is always 1 due to the closed world assumption). 

» P(OL)(|X) - the probability that the object being observed belongs to the class M , 

given the observations x. This is called the posterior probability for class (O, . 

# f (Qy"^|x) - the probability that the object being observed belongs to the set of 

classes given the observations x. 

Traditionally it is the case that is fixed and a classifier is used to discriminate 

all the classes in the global set at once, resulting in a vector of posterior probabil-

ities [P(a)i|x),P(co2|x),.. .,P(o)t|x)]. The elements of this vector are computed using 

Bayes' theorem, for / = 1 , . . . , 

= £ » ! » . (2.4) 
pW 

The above equation is in its most common form, where the closed world assump-

tion is implicit. For the purposes of this analysis it is necessary to make this assumption 

explicit and restate Bayes' theorem as; 
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vm, e a ^ ' . (2,5) 
p(x|i2^^j 

Using Bayes' theorem the classifier designer now has the choice to estimate the 

prior distributions P(co,|^2^') and class-conditional densities p(x|co,-,t2^') from the 

data. The normalisation factor can be calculated as 

^ (2.6) 
C O , G £ 2 ° " 

One advantage of Bayes' rule is that the prior probability can be defined to 

represent any a priori knowledge about the classification problem if the proportions 

of the classes in the training set is not thought to be representative of the true prior 

distribution. 

Two principle approaches can be followed, that of estimating the class-conditional 

densities and priors, or the direct estimation of the posterior probability distribution. 

Note that Vapnik (1998) promotes bypassing the estimation of any such densities or 

distributions and concentrating all the learning on the parameterisation of the decision 

boundary between classes in two-class problems. This has been termed 'transduction' 

and leads to the increasingly effective and popular Support Vector Machine (SVM) 

classifier which is derived from the principles of learning theory. While this technique 

has parallels and influences on the work in this thesis, these issues are dealt with 

specifically and a thorough treatment is not made nor is necessary here of SVMs. 

2.6.1 Estimating class-conditional densities 

If we are taking advantage of the decomposition offered by Bayes' theorem, then we 

require techniques for estimating the class-conditional densities p(x|co,,^2^") (again 

the conditioning on the complete set of classes is made explicit). Several standard tech-

niques are available, and these may be categorised into parametric and non-parametric 

density estimation methods. 

By far the most popular parametric form is the Gaussian normal form which is 

defined as, for a multivariate observation vector (DeGroot, 1989): 


