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Many real word images are often contaminated by noise. Noise reduction techniques 

aim to improve image quality and can be used to facilitate further image processing. 

This work proposes an alternative method for spatial, additive, Gaussian noise reduction 

based on a discrete wavelet transform. 

A new undecimated and shift invariant filter bank has been used to decompose the 

image into components. The basic filters are extrapolated from a biorthogonal wavelet 

basis. Reconstruction is obtained by simply summing the image components. 

The noise reduction on the components is obtained by applying thresholding functions 

on the pixel values of each component. Each thresholding function is a member of a 

scheme and is characterised by a number of parameters. The scheme describes the shape 

of a parameterised family of thresholding functions. The parameters select the member 

of the family to be applied to each component. A new thresholding scheme, obtained 

from Bayesian optimal estimator theory, is designed. The parameters for each 

component are dependent on the level of the contaminating noise and are selected using 

a preliminary training procedure based on a set of video images. The cost function 

utilised for the training is a weighted version of mean square error designed to reflect 

the human visual system. 

An estimation of the standard deviation level of the noise is required by the technique. 

Three techniques using the highest frequency band to estimate the level on all the bands 

are presented and a combined estimator is used. 

The method has been tested on large sets of images and levels of additive, Gaussian, 

white and coloured noises. The method compares favourably with other wavelet based 

noise reduction techniques and demonstrates significantly increased noise reduction and 

visual quality. 
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Accompanying Material 
CD-ROM including 

• Sequences of static images contaminated by Additive White Gaussian Noise and 
sequences de-noised using the method proposed in this thesis. 

• Set of images contaminated by additive, Gaussian, white and coloured noises. 

• Set of images contaminated by additive, Gaussian, white and coloured noises de-noised 
using the methods proposed in this thesis. 

Xlll 



Acknowledgements 

I would like to thank my supervisor, Dr. Paul White, for his guidance in the last years. I 

would like also to thank the following; Dr. William Collis for the encouragement and for 

sorting all manner of problems, Martin Weston for his constructive advice in countless 

discussions, and Maureen Strickland for her help in reading this thesis. 

I would like to thank my parents and my brother for their support. 

Finally it is my pleasure to acknowledge the financial support provided by Snell & Wilcox 

Ltd. 



Chapter 1 

Introduction 



Chapter 1. Introduction 

1.1 Introduction 

In the last decades an impressive effort has been made by the scientific world to investigate 

and to move forward the research concerning techniques operating on images in digital 

format. Broadcasting of terrestrial and satellite digital television, live streaming of videos 

over the internet and restoration of old movies are examples of tasks requiring high speed 

image processing techniques for coding and enhancement. Research in this field has also 

taken advantage of the increased speed and power of computers and instrumentation as 

accommodating large data sets with reasonable speed [1]. 

One aim of image processing techniques is to operate on signals to reduce disturbances 

caused by acquisition devices to create an output that represents reality as close by as 

possible. These disturbances are commonly classified into noise and distortion. Noise 

reduction algorithms, which are the central theme of this thesis, are often included in the 

wider class of image enhancement algorithms. The area of application of noise reduction 

algorithms is not limited to the enhancement of visual quality since their preliminary use 

may also increase the efficiency of other image processing techniques. Reducing the noise 

facilitates efficient coding, reconstruction, enhancement, and feature extraction. 

The specific area of interest in this thesis is video images. As indicated above, the noise 

reduction techniques may have one of two aims: to improve the visual quality or to 

facilitate other processing techniques by discarding useless information. This study 

explores techniques based on wavelet transforms and proposes an innovative approach that 

significantly reduces noise and improves visual quality. 
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1.2 Elements of a digital image system 

A system to obtain an image from the real world in digital format in general consists of 

three stages (figure 1-1): acquisition, processing, and displaying. 

Figure 1-1. Elements of a digital image system. 

The acquisition stage has the objective of "measuring" and representing the image in 

digital format. An image is said to be in digital format, if one (grey level) or more (colour) 

finite numbers represent a small area of the image (called a pixel). Two dimensional and 

multidimensional matrices may be used to represent the image in digital format. A 

conversion into digital format (digitisation) is required when the acquisition element of the 

equipment represents the image in analogue format. Most modem devices, such as 

scanners and digital cameras, are able to directly acquire the image in digital format. 

When the image has been acquired in digital format one or more operations can be 

performed in order to transmit it, to improve its quality (defined as required by the 

application), and in general, to extract information from it. This stage is commonly called 

processing. Many techniques have been developed for the specific tasks in this stage, for 

example: 

1) Coding and compression algorithms are used to represent the image in compact form for 

efficient transmission/storage. The Motion Picture Expert Group (MPEG) format is an 

example of format particularly suitable for video broadcasting and is currently used in 

digital satellite television [2-4]. 
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2) The aim of enhancement algorithms is to improve the quality of the image as required 

by the specific application. These can be destined, for example, to increase the visual 

quality of the image, or to modify the image in order to make specific parts more visible. 

Restoration of old movies and video quality improvement in the presence of imperfect 

light conditions are some of the applications of these algorithms [5-7]. 

3) Reconstruction algorithms are used to obtain images based on several sources of 

information e.g. a series of images. Some of these techniques are used to build three-

dimensional models from a set of images. The algorithms for reconstruction are 

particularly effective in medical and astronomical applications [8-10]. 

4) Feature extraction and segmentation algorithms aim to extract areas or sets of 

parameters characteristic of the image. These algorithms have been demonstrated to be 

very useful as friendly support for the non-expert user interested only in a limited number 

of characteristics of the images. The Federal Bureau Investigation uses some of the feature 

extraction and segmentation algorithms for fingerprint identification [11-13], 

The final stage of a digital image system is the displaying. The aim of the displaying stage 

is to present the processed image to the human eye. There are several display-related 

pitfalls that should be avoided in order to have correct judgement and thus not degrade 

image quality. 
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1.3 Image noise reduction 

Image processing algorithms operate on the digital representation of the image and 

inaccuracies in that representation can make the algorithms less effective. Noise reduction 

algorithms reduce the disturbance contaminating the imaged Reducing the noise avoids 

coding and compressing useless data, increases the general quality of the image, aids the 

extraction of specific areas or information from the image, and makes the reconstruction 

procedure easier. 

It is important to underline the difference between noise reduction and enhancement 

procedures. "Noise reduction algorithms increase the image quality but aim to keep the 

original image unchanged" whilst "in enhancement the goal is to accentuate certain image 

features for subsequent analysis" [10]. 

Noise reduction is sometimes accomplished simultaneously with the processing stage and 

consequently uses techniques influenced by the type of processing task required. The 

application of such algorithms may be limited to the specific processing operation. Video 

noise reduction algorithms can be classified into temporal and spatial techniques. 

a) Temporal techniques utilise a set of noisy images temporally consecutive in order to 

discern the noise from the original image. Clearly these techniques can only be applied 

when the processing task is related to the use of sequence of images, e.g. video. 

b) Spatial techniques utilise only a single noisy image where the original image is 

unknown. These techniques must discern the noise from the image based on their different 

characteristics. 

' The assumed model for the disturbance (additive noise) contaminating the image is described in section 
4.4. 
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This work presents a new technique for spatial noise reduction on video images which uses 

wavelet based decomposition. The technique uses new solutions for frequency 

decomposition and for noise reduction on the components. The technique is shown to 

produce remarkable reductions in additive white and coloured noise. The next chapter will 

introduce the reader to the technique, comparing it with other approaches described in the 

literature and underlining its novelties, whilst chapters 3 , 4 , 5 and 6, will describe it in 

more detail. Chapter 7 will present the results and chapter 8 draws conclusions and 

discusses extensions to the work. 
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2.1 Introduction 

The task of image noise reduction techniques is to minimise degradation that has occurred 

while the image was obtained. Spatial noise reduction algorithms are not trivial because 

they are required to work in absence of a priori information regarding the image. In this 

work the noise is assumed additive. The general problem of additive noise reduction can be 

schematised as in figure 2-1. 

Original 

Noise 

M + 
Noisy Image 

Reduction 
De-noised 

Figure 2-1. Noise reduction problem. 

The procedure of noise reduction must identify the characteristics of the noise 

contaminating the original image in order to obtain an estimate of the original image. The 

separation of the noise from the image is particularly complicated when the noise and 

image histograms overlap significantly. 

Wavelet analysis is a multiscale signal decomposition method particularly efficient for 

processing data dominated by transient behaviour or discontinuities [14-19]. This 

efficiency is a key point in applications where it is a fundamental task to identify and 

preserve singularities, such as edges in images [20]. Therefore, wavelet decomposition has 

been proposed as a framework in image noise reduction [21-34] and restoration [35-44] for 

different classes of images. An image is decomposed into a set of sub-bands, and the 

information within each sub-band is processed independently of that in the other sub-bands 

[45-52]. 
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This chapter aims to introduce the reader to the technique of spatial noise reduction using 

wavelet analysis for signal decomposition. The next sections outline the concepts on which 

the method is based and the innovative solutions used. Elements characterising wavelet 

based approaches for noise reduction are; 

1. banks of filters used in the decomposition and reconstruction 

2. shape of the family of functions utilised for thresholding components 

3. criteria employed for selecting one member of the family for each component 

The decomposition-reconstruction algorithm and the thresholding scheme are interrelated. 

Nevertheless in subsequent sections of this chapter these are examined separately leaving 

the discussion regarding the connections to the following chapters. 

Noise 

components 

Reconstruction Decomposition Noisy 
Image 

De-noised 
Image 

Figure 2-2. The main steps of a wavelet based noise reduction procedure 
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2.2 Decomposition-reconstruction 

Wavelet analysis allows transformation of the image from the spatial domain to a domain 

related to horizontal and vertical frequency bands. The noise reducer acts so that bands in 

which the noise is dominant are more heavily attenuated than those which are primarily 

signal related [53-55]. The transform and the inverse transform are implemented in stages 

commonly referred to as decomposition and reconstruction (figure 2-3). Decomposition 

divides the image into the frequency bands, and reconstruction recombines the frequency 

components [56]. If no intermediate operations are performed, the application of 

decomposition and reconstruction algorithms should leave the image unchanged. 

Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) are 

the mathematical instruments used respectively for decomposition and reconstruction. The 

transforms are implemented by applying shifted and dilated versions of a set of basic 

filters. The implementation of the filter bank from the set of basic filters may, or may not 

include a decimation operation and should allow the complete reconstruction of the image 

without distortion and, in presence of decimation, abasing. The filters and their 

implementation as a filter bank will be examined. 

10 
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Image 
Noisy 

Noisy 
Components 

I Scale 
decomposition 

De-noised 
Components 

II Scale 
decomposition 

De-noised 
Image 

I Scale 
reconstruction 

Other Scales 
reconstruction 

Figure 2-3. Decomposition and reconstruction. 

2.2.1 Basic filters 

There exists orthogonal [57-59] and biorthogonal [60-62] sets of basic filters able to 

produce filter banks which achieve perfect reconstruction [63-64], The differences between 

these filters are in number of elements of the set and their frequency responses. The 

selection of the set of basic filters has influence on the frequency decomposition and on the 

overall complexity of the system. The next chapter details the properties of these sets; here 

it is sufficient to note that the basic filters used herein constitute a set of biorthogonal 

filters. From these a non-orthogonal filter bank is implemented which achieves perfect 

reconstruction. The choice of this set is influenced by the simplification that can be 

obtained in the implementation of the filter bank. 

2.2.2 Filter bank implementation 

The filter bank is derived from shifted and dilated versions of the basic filters. The 

operation of data decimation reduces the data size at each scale in order to remove 

redundancy and keeps the total data size constant. On the other hand, this operation, 

11 
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introducing aliasing, produces shift-variance' which is the cause of some visual artefacts. 

The problem of the shift-variance can be solved using redundant transforms. One solution 

is to use circular shifting of the decimated transform [65-68]. Pyramidal decomposition 

representing the Fourier domain in terms of polar coordinates instead of Cartesian 

coordinates can be used to obtain shift-invariant transform of video images [69] and 

sequences of images [70]. Dual tree filters generating complex coefficients can also be 

utilised to obtain approximately shift-invariant transforms [71]. These redundant 

transforms are able to avoid artefacts introduced by shift-variance but the price paid is an 

increase in the size of the data to be stored. 

In this work a shift-invariant undecimated redundant transform is employed. The 

redundancy cost can in part be offset against the complexity saved by the simplification of 

the filter bank implementation. The absence of decimation also serves to simplify the 

condition for perfect reconstruction, which is in general composed of two conditions, one 

for non-distortion and one for absence of aliasing. The implementation of an undecimated 

filter bank must only take into account the non-distortion condition. Further, in absence of 

decimation, the linearity of the system allows the decomposition and reconstruction 

filtering to be combined before thresholding. The convolution of decomposition and 

reconstruction filters results in new decomposition filters and the reconstruction is 

achieved by simply summing the components. The filter frequency response at each scale is 

implemented using the 'a trous' [71-75] by inserting zeros between the filter coefficients. 

These filters are applied to each component, each component being the size of the original 

image. The decomposition-reconstruction method applied here is depicted in figure 2-4. 

' The demonstration of this is in [63]. 

12 
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Figure 2-4. Simplified decomposition and reconstruction scheme. 

13 
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2.3 Noise reduction of the components 

The components obtained from the decomposition represent the image in different 

frequency bands, or equivalently on different detail scales. The original image is in general 

not uniformly distributed in frequency. Normally there are some bands where the noise is 

dominant and some where the signal dominates. 

Different approaches have been proposed to discern the noise from the original image. The 

noise identification can be based on the correlation between components at different scales 

[76-77] making the hypothesis that the noise has a much weaker correlation than the 

original image. Another method to identify the noise is based on the examination of the 

local Lipschitz regularity of the components [78-79]. The assumption is that the regularity 

of the local extrema of the original image is large compared with that of the noise. A 

method for spatially adaptive restoration of noisy and blurred images is to apply a 

multiscale Kalman smoothing filter to the components [43-44]. The regularisation 

parameters of the least squares filters change depending on scale, local SNR, and 

orientation allowing the spatially adaptive restoration. 

Noise identification can also be performed on the basis of an estimation of the probability 

that the components are affected or unaffected by noise [80]. A priori information and 

components are combined in a Bayesian probabilistic formulation and are implemented as 

a Markov random field image model. 

Finally the most commonly used approach is based on the analysis of the pixel values [65, 

81-87]. Thresholding functions are applied to the components and normally attenuate small 

values, assumed to be related to the noise, whilst retaining large values. In this case, the 

procedure of noise reduction of the components is dependent on two elements: the generic 

14 
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shape of the thresholding functions applied, and the parameters specifying the exact values 

of the thresholding function. 

In this work a new thresholding scheme and a new criterion for parameter selection are 

utihsed. These are summarised in next two subsections. 

2.3.1 Shape of the thresholding functions 

Two of the most common thresholding schemes are termed soft-thresholding and haid-

thresholding. Figure 2-5 shows a plot of the output pixel values against input pixel values 

for these schemes. In the presence of white noise, hard-thresholding yields a smaller mean 

squared error than soft thresholding but produces visual artefacts. Soft-thresholding 

provides almost minimax mean square error subject to the condition of similar smoothness 

between the original image and its estimate [68, 88]. These schemes have also been applied 

in the presence of speckle [85] and correlated noises [77, 88-89], 

The method presented in this thesis uses a new thresholding scheme that is derived using a 

Least Mean Square Eixor (LMSE) approach based on a Bayesian procedure. The noise is 

assumed to have Gaussian distribution and the components are modelled as having either a 

Laplacian or a generalised Gaussian distribution. The two families of optimal thresholding 

functions have respectively been obtained analytically and numerically. These families are 

approximated by the thresholding function scheme shown in figure 2-6. This will be 

demonstrated in more detail in chapter 4. In the new scheme each function is characterised 

by three parameters instead of one, like in the hard and soft thresholding. Nevertheless, this 

scheme includes both hard and soft thresholding schemes. 

15 
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Input pixel values 

Output pixel values 

Figure 2-5. Hard and soft thresholding schemes. 

Oulpul pixel values 

+Kly 

-Kly Input pixel values 

Figure 2-6. New thresholding scheme. 

2.3.2 Parameters of the thresholding functions 

The hard and soft-thresholding schemes are families where each function is characterised 

by a single parameter; the thresholding level. Different techniques have been utilised to 

select this parameter for each image component [90-91]. In general these parameters 

depend on the level of the noise contaminating the component; therefore the first step is the 

estimation of the noise level on each components. In the presence of spatially white noise, 

the level is constant on all the components and the majority of the techniques use the 

highest frequency component to estimate it. This assumes that the highest frequency is the 

16 
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one with the lowest signal to noise ratio. The mean absolute deviation (MAD) of the pixel 

values [75, 83, 85, 88, 92] is the parameter commonly evaluated. In the presence of 

coloured noise this method is not satisfactory and noise level estimation is required on each 

component. 

The techniques to estimate the thresholding level^, assuming the noise level on each 

component to be known, can be classified into two categories. The first category includes 

techniques where the parameter only depends on the noise level and is constant on all the 

decomposition scales. In this case only one parameter is selected and the same 'universal 

thresholding function' has to be applied on all the components. The selection criterion can 

be based on image size [65-66], or on Minimax optimisation for the visual perception [82-

83]. The second category includes techniques where distinct parameters are selected and 

the thresholding functions are applied to each component. These techniques are adaptive 

with respect to the noise level and image spectral content. Examples of techniques that fall 

into this second category are the criteria based on the Stein's unbiased risk estimate 

(SURE) [82], on the calculation of the median absolute deviation (MAD) of the pixel 

values for each level [75, 88], and on the interpretation of the thresholding level selection 

as a multiple hypothesis testing problem [86]. Another method to select the thresholding 

functions parameters is based on a generalised cross validation (GCV) algorithm [77]. 

This method is asymptotically optimal and does not require estimation of the noise level. 

The criterion used in our approach is based on training the parameters to minimise a 

weighted version of the mean square error (WMSE) between the de-noised and original 

images. This index represents a measure of mean square error (MSE) in the frequency 

bands where the noise is more important. The use of the WMSE as a cost function 

^ Detail concerning these techniques are in section 7.4.2. 

17 
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produces visual superior image quality compared with the MSE. A modified version of the 

Nelder algorithm [93-94] has been utilised to minimise the WMSE. This algorithm is based 

on the use of a Simplex and does not need gradient computation. The dependence between 

parameters and noise level turns out to be almost linear. The noise level estimation is 

performed using an estimator combined from three algorithms. In the presence of coloured 

noise the method is generalised using an estimation of the spectral noise density. 

The training has been performed initially on one image and successively on a set of images. 

The dependence of the parameters on the training image has been studied. 

18 
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3.1 Introduction 

This chapter aims to introduce the reader to the use of wavelet analysis and filter banks on 

digital images and to describe their use in this application. The properties of wavelet 

analysis are initially described for mono-dimensional signals, e.g. time series. Subsequently 

it is explained how the implementation of filter banks relates to wavelet analysis theory. 

Particular attention is then given to the case of filter banks for image processing. Finally, 

the filter bank central to this thesis is presented and its properties are outlined. 

20 
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3.2 Fourier and wavelet transforms 

In signal and image processing, transforms are useful tools to explore signal characteristics. 

In both cases the use of an alternative domain to the time and space domains allows 

features to be readily discerned that otherwise might be difficult to identify. Fourier 

transforms use sinusoidal waves as orthonormal basis functions. For a mono-dimensional 

time dependent signal, these bases are inappropriate to represent signals having non-zero 

values only over a short time interval. Transient signals are problematic for Fourier 

representations because they are based on infinite duration sine waves, and require 

cancellation over most of the interval in order to create a function non-zero only over a 

small section. Extending the discussion to the two-dimensional case, natural images can be 

considered as containing many transient elements since many of their features are highly 

localised in space. For this reason, the Fourier transform is inappropriate for representing 

images having a large number of discontinuities. Mathematicians and engineers have 

explored various transforms having basis functions of limited duration; one of these is 

known as the wavelet transform. 

21 
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3.3 Wavelet transform 

There are three different but related wavelet transformations: 

a) continuous wavelet transform (CWT), 

b) wavelet series expansion, 

c) discrete wavelet transform (DWT). 

It is the DWT that is used for digital image processing. Nevertheless, to describe the 

DWT's characteristics the basic theory regarding CWT and wavelet series expansion is 

required. In this section the continuous series expansion and discrete cases are examined, 

then the filter bank implementation deriving from the wavelet analysis is described. 

3.3.1 Continuous Wavelet Transform (CWT) 

For a one-dimensional continuous case, wavelet analysis deals with the class of functions 

f(x) that are square integrable on the real line (also indicated hy f(x)E L^(i?)). This can be 

expressed as 

^\f{x)\^dx<o° (3.1) 

This class can be represented by using a set of basis functions obtained by shifting and 

translating a single prototype function if/(x), called the basic wavelet, also integrable on the 

real line G L^(7?)). A basic wavelet must be a real valued function, whose spectrum 

W(f) satisfies the properties 

22 



Chapter 3. Wavelet analysis 

+ 0 0 

T(0) = 0 =» jvrWok = 0 (3.2) 

V(oo) = 0 

Translating and scaling the basic wavelet generates a set of basis functions {i/Aa>(xj} 

1 
Wa,b (*)- l—¥ 

yja a y 
(3.3) 

The coefficients a (>0) and b respectively indicate scaling and the shifting of the basic 

function. These two operations are the core of the technique. The basic wavelet y/(x) is 

shifted as li/(x-b). This operation partitions the time axis into bands permitting to be 

analysed separately. The basic wavelet \j/(x) is scaled as \j/(x/a). This operation partitions 

the frequency axis non-uniformly allowing a multiresolution analysis. Section 3.4 shows 

how these two operations are implemented in a filter bank. 

The continuous wavelet transform (CWT) of the function f(x) with respect to the basic 

wavelet ij/(x) is defined as 

+ 0 0 

(a,6) = ( / (%),6(%)) - j/(;:)ya.6 (3.4) 

<•,•> represents the inner product. The inverse transform is 

^ +00+00 , 

f{x)=-—jjWj(a ,b) \ i /^ j^{x)db— (3.5) 
^ H' 0 ^ 
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The CWT is said to be overcomplete, it represents an increase in the dimension of the 

signal and consequently in complexity of elaboration. 

3.3.2 Wavelet series expansion 

Now consider the case when: 

1. the scaling are factors of 2 {2^, a integer, binary scaling), and 

2. the shifts are defined 6/2" {h integer, dyadic translation). 

A basic wavelet \j/(x) is said to be orthogonal if using 

= (3.6) 

generates a set which is an orthonormal basis of L^(/?), this means 

{^a,b'Vk,j) ^ ^a,k^b,j (3-7) 

and 

V f(x)eV(R)^ f(x)= X (3.8) 
3 b=— 

The coefficients a, k and b, j are integers and determine respectively scaling and 

translation; Sa,b is the Kroneker delta function. The coefficients Ca,b in the expansion (3.8) 

are given by 

w ) = 2"'" j'/(%)y(2''%-6)dk (3.9) 
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Equations (3.8) and (3.9) describe a redundant' wavelet series expansion of /(x) with 

respect to the basic wavelet y/(x). 

To understand the multiscale nature of the wavelet transform, one must introduce the 

concept of scaling function ^x). The recursive use of this function permits one to 

represent a continuous function f(x) at finer and finer scales, where at each scale the 

coefficients of its representation consist of a weighted sum of shifted and dilated versions 

of (j)(x) [63, 89]. 

/ ( x ) = ^ g c , . 2 ' " V ( 2 - x - f t ) 

with 
+ ' 

2,"'^ ^ f{x)\f/{2''x-b)dx wavelet coefficients (3-10) 

= 2" ̂  ̂  J / (%)̂  (2° z - 6)dk 

The first equation in (3.10) is the sum of two terms: the approximation of the function at 

scale A and the refinements at scales a < A. Wavelet and scaling coefficients can be 

recovered recursively 

^ ci+\,b '^j^lb-n^a.n 
f%=-00 

+ 00 

â+1.6 ~ "^hb-n^a.n 

(3.11) 

' The continuous function f{x) is represented by a doubly infinite sequence, and the transform is 
overcomplete. Since the basis function extends to infinity in both directions, a complete reconstruction must 
include all the terms. 
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As will be seen in subsequent sections, the functions and hn represent discrete time low-

pass and high-pass filters respectively, and a tree filter bank including low-pass, high-pass 

filters and decimators derives from (3.11). 

Now one restricts f(x) and \j/(x) to have compact support. Without loss of generality they 

may be assumed to be zero outside the interval [0 1] in which case a single index n defines 

the set. 

= (3.12) 

where 

V n <3 is the maximum integer such that 2" <n 

and b = n-l" 

In this case the wavelet series expansion is described by the equations 

/(%) = ^ c , y , ( x ) 
n = 0 

+ 00 

= (/(;(),y«(;*:)> = 2"'" j/(jc)vA(2"%-6)6)k (3.14) 

+ 00 

W ) = 2°'^ j ' / ( z )^(2 ' ' z -6 )^ 

Equation (3.14) describes a non-redundant wavelet series expansion. The transform is no 

longer overcomplete and the redundancy has been eliminated^. The single index n is used 

to indicate the case of a non-redundant transform. When a finite number of elements of this 

series is able to approximate the function, the series can be truncated without introducing 

an appreciable approximation error. 
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A problem using orthonormal basis with compact support is the lack of symmetry of the 

basic wavelet function. This can be solved using two biorthogonal sets of basic wavelets 

and{lpr^ j(x)}, to decompose and reconstruct the signal, derived from two dual 

wavelet basic functions y/(x) and \j/{x). 

This can be used to produce two symmetric sets of wavelet basic functions with compact 

support. In this case equations (3.14) becomes 

W) = 2°̂ ^ j'/(x)y(2''%-6)dk 

+ 00 

< = W) - 2"'" j'/(%)^(2''z-6)dk 

(3.16) 

for decomposition, and 

/(:() = 2c,)^«(;c) = %^#«(:() (3.17) 
n~0 «=0 

for reconstruction. 

3.3.3 Discrete Wavelet Transform (DWT) 

The DWT is used to represent a uniformly sampled discrete function with N points f(i) (i = 

0...(N - 1)). When the set of basic wavelets is orthonormal the expression for DWT can be 

directly derived from equation (3.10) 

^ The function/fjcj is approximated by a single sum between 0 and 0°. 
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/ ( ' • )= Z 
CO ^ = —00 

or 

/ « = t Sc . ,»2"'V(2"i-A) 
(3.18) 

with 

=2"^^ Yi /(0'//'(2" z - 6) wavelet coefficients 
i=0 

z - 6) scaling coefficients 
i=0 

I f f ( i ) and are zero outside the interval [0 1], then the single index n can define the set 

as in (3.12), and the coefficients a and b are constrained by (3.13). In this case the 

transform will be non-redundant. 

When the set of basis functions is biorthogonal the expression for the DWT is derived from 

(3.16) and (3.17) 

c, = 2 ' " ' E / ( # ( 2 ' ' ; - 6 ) 

1=0 

f=0 

(3.19) 

for decomposition, and 

/(>•) = E c.v/,(i) = Erf, V„0') (3.20) 
n=0 n=0 

for reconstruction. This section has shown how wavelet analysis theory allows the 

definition of a discrete, non-redundant, invertible transforms based on orthonormal and 

biorthogonal sets of basis functions. These, under specific hypothesis, can exactly recover 

the original signal. 
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3.3.4 Undecimated wavelet transform 

The most relevant problem when applying the DWT is the absence of shift invariance. 

Equations (3.11) show that the coefficients are calculated for each scale of decomposition 

using a low-passed and scaled version of the coefficients at the previous level of 

decomposition^. The scaling operation is implemented in the filter bank by means of a sub-

sampling (decimation) operator, which introduces shift-variance. A solution is to define an 

undecimated version of the discrete wavelet transform. It has been demonstrated [74] that 

one can define the undecimated version of the wavelet transform from the decimated 

version. An alternative form for (3.11) to express the decimated wavelet transform is 

(3.21) 
c„, =A(h"dJ 

where A is the decimation operator, * is the discrete convolution, da is the input of the filter 

at the level a, Ca is the wavelet coefficient at the level a, h is the high-pass filter, and I is the 

low-pass filter used in (3.11). It is convenient to use the notation 

(322) 

to indicate the wavelet coefficients of the signal f(i), with time dilatation 2" and time 

translation b2". Let T,n be the operation of translation by m, so that 

M , = (3-23) 

It is possible to demonstrate [74] that the translation of the input signal (cf) by 2'm affects 

the wavelet coefficients according to 

Observe the presence of the factor 2 in the index of low and high pass digital filters 
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\ ' : ' I .T,d' ) \=[e{d°)V (3.24) 

In this equality (f is considered as the argument of c in order to include the dependency of 

the wavelet coefficient at level i on the input of the filter at level 0 (that is the original 

signal). The undecimated discrete wavelet transform is defined as 

(3.25) 

Using (3.24) and (3.25) results in 

(3.26) 

Sampling the undecimated discrete wavelet transform every 2' samples produces the 

decimated discrete wavelet transform. The shift-in variance of the transform is 

demonstrated by 

= V'(T,-id° ) \ (3.27) 

= [?Yrf°iLj=7'JcYrf°i]j 

Defining the operator D such that, for every discrete filter h, D% is h with 2'-l zeros 

inserted between every pair of filter coefficients, one can rewrite (3.21) in terms of the 

undecimated form as 

=(#'&)* d. 
C3.28) 
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In this case the transform will be redundant and every da has the same size as do (f(i)). This 

equation will be used in implementing the undecimated tree filter bank. 
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3.4 Filter banks 

To understand the relation between wavelet theory and filter banks, one must consider how 

the three main concepts related to wavelet analysis (shifting, scaling and multiresolution) 

are accomplished using filter banks [10]. Consider a signal,/(xj, having the same properties 

as the signal considered in the case of non-redundant DWT. This signal is further 

constrained so that it is: 

a) band-limited, 

f ( / ) = 0 i f | / | > / „ „ (3.29) 

b) sampled in a uniform way to form the discrete signal 

/ ( O f = o , . . . , (N- i ) 

/max < A (Nyquist frequency) 
(3.30) 

3.4.1 Shifting 

The frequency axis can be partitioned into disjoint M intervals using a set of M discrete 

band-pass filters {H/z)} (j = If the signal/(/j is presented to each of the filters in 

parallel (figure 3-1), this effectively decomposes it and allows better identification of its 

spectral components. 

The set of band-pass filters {///zj}should be constructed so that its elements sum to 1 so 

that the signal components gj(k) will sum to form the original signal. 

(3.31) 
j=i ;=i 
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The filter outputs can be written as: 

= (3.32) 
f=0 

Where h/i) are the filter impulse response functions. Assuming the H/z) are real and even, 

this convolution can be regarded as the inner product between the / a n d a shifted version of 

hj. 

The filter bank decomposition of a discrete signal/f/j can be considered as the DWT of this 

signal using, as basis functions, the set made up of shifted versions of the impulse response 

function. Therefore, the sets of functions {gj(k)} and {hj(i)] can be respectively regarded as 

coefficients q ^ and functions \p'a,b(i) of a wavelet transformation. 
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Figure 3-1. Filter bank decomposition. 

3.4.2 Scaling 

> gi(k) 

Consider now the case when M = 2. It is possible to decompose a signal into two band 

limited components and represent them without redundancy, in such a way that it is 

possible to reconstruct the original signal without error. Filtering the signal with half band 

high-pass and low-pass filters having discrete impulse responses ho(i) and hi(i), yields the 

discrete signals go(k) and gi(k). Then 

yro=go (^)+gi (^)=/zo (0 * y r o + ( o * yro C133) 

assummg 

(3.34) 
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The signals go(k) and gi(k) can be sampled with sample spacing as large as 2Ax without 

introducing aliasing in the go(k) case, and introducing a non-destructive (the original 

information can be fully recovered in reconstruction) aliasing in the gi(k) case [63]. This 

operation is called decimation or sub-sampling. Therefore, it is possible to recover the 

signal/(/j from the sub-sampled version go(k) and gi(k). There is an analogy between this 

filter bank and the wavelet transform expression in (3.11). Low-pass filters, having discrete 

frequency response H](z), are used to obtain averages and their coefficients are related with 

the coefficients of High-pass filters, having discrete frequency response Ho(z), are used 

to obtain detail and their coefficients are related with the coefficients hn. 

3.4.3 Perfect reconstruction 

There are limitations on the choice of the low and high-pass filters. The condition of 

reconstruction without error has a fundamental importance in wavelet based filter bank 

design. There are four conditions describing the different levels of reconstruction 

reliability, only the most restrictive of which produces the complete recovery of the original 

signal (perfect reconstruction) and is considered here. In discrete frequency, the effect of 

sub-sampling and up-sampling is described in figure 3-2 and by the expression (3.35) [63]. 

X,(z) = A(z)Z(z) 

= (3.35) 

Y(z) = Y^ (z^) = — [A(Z)X(Z) + A(—z)X(—z)] 
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Figure 3-2. Effect of sub-sampling and up sampling. 

For this the conditions for perfect reconstruction in the presence and absence of sub/up-

sampling and for orthonormal and biorthogonal filter banks can be deduced. 

a) In the discrete frequency domain in the absence of sub-sampling and up-sampling for an 

orthonormal filter bank (figure 3-3-a) the condition for perfect reconstruction is given by 

F(z) = Go 0 (z) + G, (Z)^, (Z) = ^{F(z);fo (Z) + F(z)f / : (z)/f, (z)} = 

[F(z) = F(z)z-'' 

Perfect reconstruction with a delay of p 

(3J6) 

=> Hi (z) + (z) = 21" (no distortion) 

b) In the presence of sub-sampling and up-sampling for an orthonormal filter bank (figure 

3-3-b) the condition for perfect reconstruction is given by 

F(z) = G/(z)f /o (z) + G/(z) ; / , (z) = 

= ^ (z)[;/o (z)F(z) + 0 ( - z ) f ( - Z ) ] + ^ I (z)[;/i (z)F(z) + ^ ( - z ) f (-z)] = 

1 
(z)[/f 'o (z) + ^ ' i (z)] + F ( - z ) [ ^ o (z )^o ( - Z ) + (z)^ , ( - Z ) ] } 

jF(z) = F ( z ) z ' ' j ^ o ( z ) + /fi^(z) = 2 z ' ' (No distortion) 

[Perfect reconstruction with a delay of p [//(, {z)Hq ( -z) + {z)H^ ( -z) = 0 (No aliasing) 

(3.37) 

In the case of biorthogonal filter bank, the corresponding filters in the analysis and 

synthesis banks are not anymore equal. 
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c) In the absence of sub-sampling and up-sampling for biorthogonal filter bank (figure 3-4-

a) the condition for perfect reconstruction is given by 

F(z) = Go (z)#o (z) + G, (z) - j (z)#o W + (z)}= 

= 1 (z)Ho (z) + (z)n, (z)]} 

I F(z) = F(z)z " ^ ^ ^ (no distortion) 
[Perfect reconstruction with a delay of p 

(338) 

If we choose 

#oW = #.(-z) 
# i (z ) = - # o ( - z ) 

(339) 

and defining the product filter 

7^(z) = //o(z)J^oW (3.40) 

the condition described in (3.38) becomes 

IF(z) = F(z)z (z) _ (_z) = Zz'" (no distortion) (3.41) 
[Perfect reconstruction with a delay of p 

d) In the presence of sub-sampling and up-sampling for biorthogonal filter bank (figure 3-

4-b) the condition for perfect reconstruction is given by 
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f^(z) = Go' (z) + G,' (z) = 

= j 7̂ 0 ( z ) K (z)F(z) + ^0 (-z)F(-z)]+ ^ (z)[^. (z)F(z) + ( - z ) f ( -z)] = 

= ^ {F(z)[^ 'o (z) + v:/ "i (z)] + F ( - z ) [ ^ o (z)^o (-Z) + ( z )^ i ( - Z ) ] } 

fF(z) = F(z)z-^ | ; /^(z) + /f"(z) = 2z-'' (Nodistortion) 

[Perfect reconstruction with a delay of p [//g (2)^0 (^z) + (z)H^ ( -z) = 0 (No aliasing) 

(3.42) 

Because conditions (3.39) are removing the aliasing the perfect reconstruction condition 

can be expressed also in this case as (3.41). 

Ho(z) 
^ A 

(a) 

XD—(D 
/\ 

(b) 

Figure 3-3. Two-band coding and reconstruction with orthonormal filter bank. 
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^ A 

(a) 

XD— 

<D—<t> 

w 

G',A; 

(b) 

Figure 3-4. Two-band coding and reconstruction with biorthogonal filter bank. 

3.4.4 Multiresolution 

Figures 3.3 and 3.4 show single level filter banks in the presence and absence of sub-

sampling. Consider the problem of implementing a recursive tree filter bank decomposing 

the signal f(i} in different levels of resolution. This type of filter bank represents the 

implementation of the recursive expressions seen for wavelet analysis. When the signal is 

sub-sampled, its size is halved at each level to keep unchanged the total amount of data 

allowing the absence of redundancy. The filters applied on the different levels are always 

the same. Figure 3-5 represents the tree filter biorthogonal bank in the presence of sub-

sampUng. 
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To implement a tree filter bank in the absence of sub-sampling the definition of 

undecimated wavelet transform (equation (3.28)) is used. This is implemented by inserting 

2*-l zeros between the filter coefficients at every decomposition level a. This tree filter 

bank is redundant because at each level of decomposition the size of the signal is 

unchanged. On the other hand, the absence of decimation makes easier the design of the 

basic filters. Figure 3-6 represents a tree filter biorthogonal bank in the absence of sub-

sampling. In this case the filters change on each level of decomposition and the discrete 

frequency responses are related by 

Vdecomposition level a 

^al(^^ ~ [̂ 1,1' Q'''Q' ̂ 2,1' P yQ; ^Nj-1,1' P'"Q' ̂ N̂ ,l ] 
2 " - l 2 ' - l 2 " - l 

^ao(^) ~ [̂ 1,0' 2̂,0' 2:^) ; -1,0' ,o ] 
2 " - l 2 ' - l 2 ' - l 

^al(^) ~ [̂ ,1 'Ql^'^2,1 'P yQ; ;P - P' ] 
2 ' - l 2 ' - l y - j 

^ao(^) ~ [̂ 1,0 ' P'-'P' ̂ 2,0 ' P ' P' ' ̂ A'f-1,0 ' P- "P' f ,0 ] 
T-l 2"-! 2 ' - l (3.43) 

with 

1,1 ' ,1 ] 

= [/Zjg,/Z2_Q,.. -l,0'̂ /Vy,o] 

[/Z[ J , /Z2 1 

= [^.0,^2.0," -l.O'̂ A'y.o] 
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3 : 
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Figure 3-5. Tree filter bank with sub-sampling. 

41 



t 

' f— 

b; 

t /j\ 

2b; 

'+v-

Chapter 3. Wavelet analysis 
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Figure 3-6. Tree filter bank without sub-sampling. 
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3.5 Wavelet analysis for image noise reduction 

There has been a significant trend in recent research towards the use of multiscale 

approaches, such as wavelet analysis, for image processing. In particular, the use of the 

Discrete Wavelet Transform (DWT) has been shown to be useful for noise reduction. Most 

of the image energy is concentrated in a limited number of spectral components, whereas 

the noise energy is generally spread over the entire spectrum. Applying noise reduction 

techniques only on particular components can significantly reduce the noise energy whilst 

the signal energy remains relatively unaffected. Here only the case when the noise 

reduction is performed on the individual pixel values of the decomposed signal will be 

considered. The general procedure to reduce the noise using DWT approach consists of 

three steps: 

a) the image is transformed into the wavelet domain by filtering and subsampling at each 

level (analysis), 

b) a non-linear function is applied to the transformed coefficients in order to reduce the 

noise on each component, and 

c) the inverse transform is applied to recover the image by filtering and upsampling at each 

level (synthesis). 

The filter banks described for a one-dimensional signal in the previous section can be 

generalised for two-dimensional signals. Two-dimensional filter banks derived from 

separable two-dimensional wavelet bases are implemented by alternating the application of 

the Ho(z) and Hj(z) filters on rows (using Hoh(z) and H]k(z)) and columns (using Hov(z) and 

H]v(z)) of the image. The analysis and synthesis filter banks must satisfy the perfect 

reconstruction condition. Figure 3-7 describes the undecimated biorthogonal filter bank for 
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three levels of decomposition. The filter bank is characterised by 24 filters, but the design 

is based only on one filter. 

(z), (z), ̂ 02y (z), ̂ 12v (z), ̂ 03y (z), ̂ 13v (z), 

^Olv (Z), Iv (Z), ̂ 02v (Z), (z), 03v (z), ̂ 13r (z), 

are the transposed versions'^ of 

^Olh (z), (z), HQ2f, (z), Ĥ 2h (z), ̂ 03A (z): ̂ I3h (z), 

^Olh (z), (z), (z), Ĥ 2h (z), -̂ 03/1 (z), -̂ 13/1 (z), 

b) ^02v (z), ̂ 12v (z), ̂ 03v (z), ̂ 13v (z), (z), ̂ I2y (z), ̂ 03v (z), ̂ 13v (z) 

are obtained by inserting zeros in 

^Olv (z), ̂ llv (z), #01, (z), (z) 

c) ^oiv(z) = ^iiv ( -z) and (z) = -i^oiv ( -z) anti-aliasing condition 

d) //g, (z)//,!(-z) - //oi(-z)^n(z) = Zz"'' a/zn' 

Finally the only filter to design is Hoi(z) (or Hn(z), or even better the half-band product 

filter 

Figure 3-8 describes the frequency decomposition obtained from this filter bank. At every 

level of decomposition, frequency bands are halved in the horizontal and in the vertical 

direction but the total size of the image components is unchanged. To understand the 

numbering system used for components in this figure, one should realise that the 

component 4 (LL) is decomposed in the components 5 (LLHH), 6 (LLEDL), 7 (LLLH), and 

8 (LLLL). The component 8 (LLLL) is decomposed again in the components 9 (LLLLHH), 

10 (LLLLHL), 11 (LLLLLH), and 12 (LLLLLL). 

This means that they are the same filters applied on the image rotated by 90 degrees. 
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Vertical frequency 

2 1 

6 5 

3 

10 9 
7 

12 11 
7 

1 = HH 
2 = HL 
3 = LH 
4 = LL 
5 = LLHH 
6 = LLHL 
7 = LLLH 
8 = LLLL 
9 = LLLLHH 
10 = LLLLHL 
11=LLLLLH 
12 = LLLLLL 

Horizontal frequency 

Figure 3-8. Ideal frequency decomposition. 
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3.6 The specifics of the wavelet transform 

The filter bank used here is derived from the undecimated biorthogonal tree filter bank 

seen in figure 3.8. For a single level tree filter bank, the decomposition is defined by the 

biorthogonal set of filters^ 

. [-1, 2, 6. 2, -l] _ [l. -2. l] 

* * (144) 
2,1] 2,-6, 2,1] 

HO = H, 

The absence of decimation allows the combination of the filter Ho and Hi respectively with 

and before the noise reduction procedure. The combined filters are: 

HFL =H, * H, 

32 
(3.45) 

[l, 0, -9, 16, -9, 0, l] 

32 

The image reconstruction procedure simply consists of a summation of the components. 

The filter in (3.45) can be approximated by 

L F = " ' 2' 11 

HF = 

4 

(3.46) 

[-1, 2, -1] 

Figures 3-9 compare the frequency responses of the filters in (3.45) and (3.46). 

' This set is demonstrated in [63] to satisfy the perfect reconstruction condition. 
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The pair of filters, (3.46), allow perfect reconstruction, since they satisfy (3.36), and are an 

attractive solution in practice because of their simplicity. The use of the filters in (3.46) for 

the decomposition described in this thesis follows. The first level of decomposition is 

performed by applying HF and LF in the horizontal and vertical directions. The 

decomposition filters for the successive levels of decomposition are obtained, from the 

definition of undecimated wavelet transform, inserting 2" - 1 (where a is the decomposition 

level) zeros between each filter coefficient. Reconstruction only requires the addition of 

individual components. The absence of decimation in this filter bank ensures the shift-

invariance and that each component is overcomplete and has same size as that of the 

original image. Figure 3-10 describes the filter bank used. The applied filters are described 

by 

^ _ [1, 2, 1] _ [-1, 2, -1] - h ^ 
"ll/i ~ . "oi/i - . "llv "oiv ~ ''•0\h 

_ [1, 0, 2, 0,1] _ [4, 0,2, 0. -ri A r r 
"l2/i — . "02A - . "l2v ^ "12/! '̂ '02v ~ "02A 

[ 1 , 0 , 0 , 0 , 2, 0 , 0 , 0 , 1 ] _ [ - 1 , 0 , 0 , 0 , 2 , 0 , 0 , 0 , -1] r r 
"l3/i — , "03/i — . ~ "l3/i "03v ~ "03/! 

(3.47) 

The filters used are non-orthogonal, therefore the components are correlated and this will 

influence the training procedure. The filters applied in the lowest decomposition level 

(LLLLHH, LLLLHL, and LLLLLH) have some non-zero areas outside the lowest 

frequency band. This means that the components produced by filtering the original image 

with these filters have a small influence on the higher frequency components of the image. 

A method to visualise this is to decompose an image where the spatial position is related to 

the frequency (a zone plate). A circular zone plate is shown in figure 3-11, and figure 3-12 
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shows the two-dimensional frequency decomposition produced by the filter bank. Figure 3-

12 emphasises the presence of non-zero areas on each component outside the related 

frequency band. 

1s/2 
Frequency 

Figure 3-9. Filter approximation. Continuous lines are the frequency responses of the 
filters described by (3.45) and dotted lines are the frequency responses of the filters 

described by (3.46). 
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W W W 

Figure 3-11. Image Plate. 

1 (HH) 2(HL) 3(LH) 

5 (LLHH) 7 (LLLH) 

9 (LLLLHH) 10(LLLLHL) 11(LLLLLH) 

Figure 3-12. Two-dimensional frequency decomposition of the zone plate. 
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3.7 Conclusions 

Wavelet analysis provides a method to define a transform in a suitable domain for image noise 

reduction. Wavelet analysis theory naturally leads to the implementation of filter banks. This 

chapter has described an implementation of a tree filter bank derived from a biorthogonal set of 

basis functions. This filter bank has the appearance of a scheme for sub-band coding and it does 

produce perfect reconstruction. The components obtained from the decomposition are 

undecimated and consequently have the same size as the original image. From the point of view 

of the transmission, the disadvantage of the increase of data is partially compensated by the 

constant size of the components because this permits the use of uniform transmission bandwidth. 

Another drawback of this solution is the increase of required computations due to the redundant 

scheme. This is partially compensated by the absence of filtering in reconstruction and by 

simplicity of the filters used in decomposition. Because of the absence of aliasing, these filters 

are constrained only by the non-distortion condition. 
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Chapter 4. Thresholding function shape 

4.1 Introduction 

The previous chapter described the tree filter bank used in order to decompose an image 

into components. This and subsequent chapters examine the procedure of noise reduction 

on the components derived from the decomposition. The noise reduction approach adopted 

is based on the analysis of the pixel values of the components and on the application of 

thresholding functions to them. Two elements characterise the thresholding functions: 

shape and parameters. This chapter explores the origin of the family of functions used, 

describing the shape of the family of thresholding functions to be applied. The next chapter 

will estimate the parameters defining a member of the family for every component. In this 

chapter initially optimal schemes are derived using Bayesian estimation in the Maximum a 

Posteriori (MAP), Maximum Likelihood (ML), and Least Mean Square Error (LMSE) 

senses. The components of the original (noise free) image are assumed to have either a 

Laplacian or a generalised Gaussian homogeneous probability distribution. The noise is 

assumed to be additive and its components are assumed to have Gaussian probability 

distribution. Finally a parameterised family of piecewise linear functions is defined that 

approximates the optimal famihes. 
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4.2 Families of thresholding functions 

The components derived from the noisy image decomposition represent the energetic 

partition on frequency bands of the image contaminated by noise. These components, in 

every band, are dependent on both the components of the original image and on the noise. 

In general the energy of the original images is very unevenly distributed over the entire 

frequency range. Conversely the noise energy normally covers the entire range (although 

not necessarily uniformly). There generally exist frequency bands which predominantly 

contain noise. Eliminating or reducing the components related to these bands produces 

reduction of the noise energy with only a small reduction of the energy of the original 

image energy. The noise reduction procedure consists of applying non-linearities, called 

thresholding functions, to the components. It is convenient to define a parameterised 

family of functions (sometime called a thresholding scheme) including all the possible 

functions that can be applied to the components. The identification of the precise 

thresholding function to be applied on each component consists of the selection of one or 

more parameters. 
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4.3 Thresholding functions on the components 

To understand the advantage of applying different thresholding functions on different 

components, consider initially the case when a thresholding function is directly applied on 

the complete image without decomposition. In this case, a given image grey level u e [-L 

L] is mapped into another grey level v e [-L L] according to a function 

v = /(M) (4.1) 

Applying the thresholding directly to the image results in little noise reduction and 

introduces significant image distortion. The cause of this can be seen from observing figure 

4.1. Applying a thresholding function to an image results in the reduction of the small 

values of its histogram. In figure 4-1 the normalised histograms (probability density 

functions (PDFs)) of original and noisy images are compared for 13 images\ To discern 

noise from original image using the complete non decomposed images is complicated. 

Reducing the small values in the PDFs will remove a small amount of noise and will also 

reduce the energy of the original image. 

Conversely, when the image is decomposed, these methods have been productively applied 

on components. Using the same set of 13 images, figures 4-2 compares the PDFs of the 

original and noisy components related to the high frequency band. For this component the 

noise contamination is clearly discernible for most of the images and thresholding can be 

an effective method to reduce noise without unduly distorting the original image. 

' The set of 13 images has been provided by BBC and describes the class of video images. The images 
belonging to this set are shown in appendix C. 
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Figure 4-1. PDFs of original (black continuous lines) and noisy (red dotted lines) images. 
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Figure 4-2. PDFs of high frequency components of original (black continuous lines) and 
noisy (red dotted lines) images. 
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4.4 Thresholding schemes 

The shape of the thresholding function critically affects the efficiency of the noise 

reduction algorithm. Initially consider the case of a signal contaminated by additive 

Gaussian noise. Given an original signal u(x), and an observation of this v(x), after it has 

been contaminated by the noise n(x), one seeks to find the optimal estimate u(x) of the 

original signal. This can be formulated as follows 

v(x) -u(x) + n(x) (4.2) 

The thresholding scheme will have the form 

(43) 

Figure 4-3. Signal estimation in presence of additive noise. 

The objective is to force the estimate u{x) to approximate u(x) in some optimal fashion. 

4.4.1 Soft and hard thresholding 

The two predominant thresholding schemes used in the literature [65, 81-87] are the soft-

thresholding and the hard-thresholding. They are described by 

59 



Chapter 4. Thresholding function shape 

U 
V if I V |> AT 

0 if | v | < ^ : 
Hard - thresholding 

(4.4) 

v-K if V > 

0 i f - K < v < i r Soft - thresholding 

V + ^ if V < -K 

These thresholding functions are depicted in figure 4-4 

Output pixel values 

Input pixel values 

Output pixel values 

Figure 4-4. Hard and soft thresholding schemes. 

The parameter K is called threshold level, and it strongly influences the performance of the 

thresholding scheme. To select an appropriate value for K one requires knowledge of the 

noise level (noise standard deviation). The selection of threshold levels, or more generally 

set of parameters defining the thresholding functions, is the subject of the next chapter. 

This chapter concentrates on defining the shape of the thresholding functions. 

4.4.2 Optimal Bayesian thresholding schemes 

Assuming the original signal has a specific distribution and using Bayesian theory it is 

possible to develop expressions for the optimal scheme (4.3) to apply in order to reduce 

noise having Gaussian distribution. 

If p(u), p(v), and p(n) are respectively the probability distributions of original signal u, 

observed signal v, and noise n, the Bayes rule states that 
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p ( W ^ (4.5) 
p ( v ) 

• p(u / v) is. ih& posterior probability density function of u given v 

• pfv / is the likelihood function 

• p{u) is the prior, and 

• pfvj is the evidence. 

Bayesian [107] estimation aims to obtain an estimate u of u from the observation v by 

minimising a risk function with respect to u . 

R(u) = E[C(u,u)] = jjc(u,u)p(u/v)p(v)dvdu (4.6) 

Given that the evidence, p(v), is constant for a given observation, then the general 

expression of the Bayesian estimate is 

^BAYEs = ArgMinij C(u,u)p{u/v)du^ (4.7) 

C(u,u) is the cost function characterising the estimator. Examples are; 

1. Maximum a Posteriori Estimation (MAP). In this case 

C{u,u) = \-5{u,u) 

which is equivalent to finding the maximum of p{ulv), i.e. solving 
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du 
or 

9lOg{p(M/v)j 

du 

2. Maximum Likelihood (ML). In this case 

Chapter 4. Thresholding function shape 

(4.9) 

C{u, u) = 1 — 5{u, u) and p{u) = const. 

= ArgMin(Xv/w)) (4 10) 

which is equivalent to maximising p{vIu), i.e. solving 

9p(v/M) 

du 
0 

or 

8log{p(v/w)} 
0 

OLll) 

3. Least Mean Squares Error (LMSE). In this case 

C{u, u) - [(M - u){u -uY] 
0L12) 

This is the conditional mean of the posterior probability. The quality index used in noise 

reduction is the mean square eiTor or its weighted version. Consequently this estimator has 

a particular relevance in this analysis. 

4.4.3 Bayesian estimator for particular distributions 

Assume that n(x) is Additive White Gaussian Noise (AWON), with zero mean, having a 

distribution 
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jD(n): 0L13) 

where (T̂  is the standard deviation of the noise or the noise level. The following details the 

solution to these optimisations for various assumed distributions for the image. 

4.4.3.a Laplacian distribution 

The image distribution is given by 

<Y„ 
(4 14) 

where cr„ is the spectral content of the original signal . Since the noise is Gaussian, p(v/u) 

can be expressed as 

(V-uf 

p{ylu)= \=e 04 15) 

The optimal MAP estimator can be obtained by solving (4.9). In Appendix B it is shown 

that the optimal scheme is given by 

Laplacian 

;V5 

V + -

if v > 0 

if V = 0 

if V < 0 

0L16) 

cr„ 

When the original signal has a Laplacian distribution the MAP optimal scheme has the 

shape of the soft thresholding scheme with threshold level 

' In compression wavelet coefficients are often assumed Laplacian 
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< V 2 
^ = (4.17) 

This demonstrates that when the original signal has Laplacian distribution the soft-

thresholding scheme is the optimal scheme in the MAP sense. Figure 4-5 describes this 

scheme and the effect on the PDFs of the scheme on a synthetic Laplacian image with 

cr„=25 and (7,,=15. 
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100 

50 

I ° 

-50 

-100 

-100 

-K 

-50 

K 

0 

Input 
50 100 

« 0.1 

Grey levels 

Figures 4-5. MAP optimal scheme with original signal having Laplacian distribution, and 
effect on the PDFs of using this thresholding (black is the original, red is the noisy, and 

blue is the thresholded). 
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The optimal ML estimator can be obtained by solving (4.11). In appendix B it is 

demonstrated that the optimal scheme is given by 

04 18) 

Since such a scheme leaves the image unaltered it is of no use for a noise reduction. 

The optimal LMSE estimator can be found by solving (4.12). The posterior distribution is 

computed using (4.5). The evidence is computed as 

p(v)= j p(u- v)p(u)du 04 19) 

p(u) is given by (4.13). Appendix B shows that the resulting scheme is 

^LMSE 
(T, o- o",, o',,V2 

e erfc + e erfc 

VJ 
01.20) 

The LMSE optimal scheme depends on two parameters: 

a) signal level cr„, and 

b) noise level <7̂ . 

Figure 4-6 describes the LMSE optimal scheme under these conditions. Figure 4-7 

describes the effect on the PDFs of applying the LMSE optimal scheme on synthetic 

Laplacian image with %=25 and arf=l5. 

66 



Chapter 4. Thresholding function shape 

2 5 

100 

50 

a. 
5 
O 

-50 

-100 

1 1 ' ' 

(a) 
-100 -50 0 

Input 
50 100 

100 

50 

a _ 

"5 
O 

-50 

-100 

(b) 
-100 -50 0 

Input 

Cf 25 

cr,,= 10 

50 100 

Figure 4-6. LMSE optimal thresholding scheme for a Laplacian signal in Gaussian noise; 
a)f3^ fixed (25), Ou varies; b) Q^fixed (25), 0,1 varies. 
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4.4.3.b Generalised Gaussian distribution 

Consider now the case when the signal u(x) is assumed to have generalised Gaussian 

distribution, with a PDF of the form [107]: 

- oo < W <00 

r 
0 % ) 

j d + A.) 

(i+A.) r 

c ( A ) = 
r ^ a + A , ) 

r 1 
(i + A,) 

1 

1 + ̂ , (4.21) 

l<)0u <1 

In this expression /3̂  controls the form of the statistical distribution, in which )S„=0 

corresponds to a Gaussian distribution. The noise is assumed to be described by (4.12). 

The optimal MAP estimator can be obtained by solving (4.9). Appendix B shows that the 

optimal scheme is given by the solution of the equation 

v-u 

(T„ 

, / '-A, 
- sign{u)\u\[ i+A, 0 (4.22) 

A + A K i+f. 

Figure 4-8 describes the MAP optimal scheme when the original signal has generalised 

Gaussian distribution for various choices of . 

The equation (4.22) when Pu=0 (Gaussian distribution) becomes 

(7„ 
MAP _ 2 2 
Gaussian U ^ i] 1 + 

where 04.23) 
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Figure 4-9 describes the MAP optimal scheme with the original image having a Gaussian 

distribution for various SNR?,. Figure 4-10 describes the effect on the PDFs of applying the 

MAP optimal scheme for a synthetic Gaussian image with SNR=2.1. 

The optimal estimator in ML sense is the same than in the Laplacian case because the prior 

distribution has no influence. 

Appendix B shows that the LMSE optimal scheme when the original signal has a 

generalised Gaussian distribution is given by the solution of (4.12) and can be expressed in 

integral form as; 

J Me e du 

^(Pu)lmse " , . 2 (4.24) 
Gfwr.CfZMjjiw: -(w-w)" -c(A) 

du 

This scheme does not have a closed form solution but it can be solved numerically to 

estimate the LMSE optimal scheme. This scheme depends on three parameters, , (T„ and 

(Tri- Figure 4-11 describes this scheme when the two parameters % and <7̂  are fixed and the 

model index varies. 

It can be seen that equation (4.24) when /Jj,=0 (Gaussian distribution) produces (4.23) 

again, so that, when the input signal has a Gaussian distribution, the optimal LMSE and 

MAP estimators are coincident. 
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0.02 -

0.015 -

0.01 

0.005 -

0 

Grey levels 

Figure 4-7. Effect on the PDFs ofLMSE optimal thresholding scheme for a Laplacian 
signal in Gaussian noise (black is the original, red is the noisy, and blue is the 

thresholded). 
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Figure 4-8. MAP optimal thresholding scheme when the image has a generalised Gaussian 
distribution (noise level fixed a,j=20 and signal level (t„=25 are fixed). 
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100 

50 

S N R = 3 -

SNR = 0.5 

-50 

-100 

-1G0 -50 0 

Input 
50 100 

Figure 4-9. MAP (and LMSE) optimal thresholding scheme when the original components 
have a Gaussian distribution. 

0.008 

0.004 

Grey levels 

Figure 4-10. Effect on PDFs of MAP (and LMSE) optimal thresholding when the original 
image has a Gaussian distribution (black is the original, red is the noisy, and blue is the 

thresholded). 
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100 

50 

t 0 

-50 

-100 

= 0 

P„ = -0.75 

-100 -50 0 
Input 

50 100 

Figure 4-11. LMSE optimal thresholding scheme when the original image has generalised 
Gaussian distribution (noise level Ori=15 and signal level cr„=i5 are fixed). 
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4.5 Scheme in our approach 

The previous section has presented several schemes that could be applied to the 

components obtained from the decomposition of the noisy image in order to reduce noise. 

These were 

a) Soft-thresholding and hard thresholding schemes (equations (4.4) and figures 4-4), 

b) MAP optimal scheme assuming a Laplacian original signal distribution (equation (4.16) 

and figure 4-5), 

c) LMSE optimal scheme assuming a Laplacian original image distribution (equation 

(4.20) and figure 4-6), 

d) MAP or LMSE scheme assuming a Gaussian original image distribution (equation 

(4.23) and figure 4-9), 

e) MAP optimal scheme assuming a generalised Gaussian original image distribution, 

(equation (4.22) and figure 4-8), 

f) LMSE optimal scheme assuming a generalised Gaussian original image distribution, 

(equation (4.24) and figure 4-11). 

To analyse the efficiency on the noisy components of these schemes is useful to identify 

which statistical distribution is suitable to model the image components. Considering the 

set of 13 training images, for every image the statistical distribution of one of the 

components obtained from the decomposition depends on: 

1) Image frequency distribution, 

2) Range of frequency corresponding to that component. 
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Figure 4-12-a shows the distributions of three components for three images. Figure 4-12-b 

shows the distribution of the same components for three images. 

Image 9 

-ID 0 10 
Grey levels 

Image 12 

Q 0.15 

-10 0 10 
Grey levels 

Image 4 

20 30 40 

-10 0 10 20 30 40 
Grey leveb 

Figure 4-12-a. PDFs variability in the frequency range for 3 images (red is HH, green is 
HL, and blue is LH). 
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Component HH 

5 0.4 

^ 0 10 a a 4) 
Grey bvels 

Componeni HL 

S 0̂  

-40 -30 -20 -10 0 10 20 30 40 
Grey levels 

Component LH 

-10 0 10 20 
Grey levels 

Figure 4-12-h. PDFs variability in the images for 3 frequency ranges (magenta is image I, 
blue is image 6, and black is image 13). 

From this one can deduce that the components obtained from the decomposition could not 

be modelled using only a single distribution. A compromise solution seems to be to define 
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a scheme including (or approximating) the described schemes. One such scheme is shown 

in figure 4-13. 

1 1 V 

Output pixel values 

Input pixel values 

/ 1 1 

+K2 

+K1y 

0 

-K1y 

-K2 

-K2 -K1x +K1x +K2 

Figure 4-13. A general thresholding scheme. 

The analytical expression of this scheme is 

V if | v | > ^ 2 

Klx<\v\<K2 
Klx ' ' 

(v - sign{v)Klx) + sign(y)Kly if | v | < Klx 

(4.25) 

By suitable choice of the three parameters it is possible to approximate the optimal 

schemes previously derived. 

• Scheme a) is approximated when Urn Kly 0, Kly —> Klx. 
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Scheme b) is approximated when Klx # Kly, Kly = 0, K2 ^ oo. 

Scheme d) is approximated when Klx oo Kly ^ 0. 

Selecting appropriate Klx, Kly, and K2, it is possible to have a piece-wise linear 

approximation of schemes in c), e), and f). 
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4.6 Conclusions 

This chapter has analysed the problem of the identification of the shape of the thresholding 

functions to apply on the components obtained from the decomposition. Each component 

is treated as a stationary (homogeneous) process and the thresholds are applied globally 

and not locally in the spatial domain. To identify the shape of these functions in a general 

form it is useful to define a scheme or a parameterised family of functions. Two classical 

schemes used in the literature were considered and other optimal schemes were derived 

from Bayesian estimation theory. Two main criteria for optimal estimation have been 

considered: MAP and LMSE. The noise has been assumed to be AWGN. The optimal 

schemes have been described when the original component is assumed to have either a 

Laplacian or a generalised Gaussian distribution. In particular the case of Gaussian 

distribution has been considered. Nevertheless it is difficult to model the totality of the 

component using a single statistical distribution. For this reason a new scheme which 

approximates (or even includes) both classical and optimal schemes was derived. The 

selection of suitable parameters for the scheme is the subject of the next chapter. 
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Chapter 5: Thresholding function parameters 

5.1 Introduction 

The shape of a set of near optimal thresholding functions has been described in the 

previous chapter. This shape defines a parameterised family of thresholding functions. This 

chapter considers the problem of selecting the parameters of the thresholding functions to 

achieve the best results. This selection can be seen as an optimisation of some cost function 

related to the image quality and depending on a finite number of variables (the thresholding 

function's parameters). A training procedure to perform this optimisation is used. MSE and 

WMSE are assumed as cost functions. The training is performed initially on a test image 

and then extended to a set of images. The parameters resulting from the training define the 

set of thresholding functions for the components and depend on the level of noise 

contaminating the image. Consequently a noise estimation procedure is required. The 

techniques to estimate the noise level will be examined in next chapter. 

The performances of the algorithms tested for the cost function minimisation are compared 

in the next section. The detailed description of the algorithms is given in Appendix A. The 

parameters utilised in the cost function are presented in section 5.3. The cost function 

values used in the training are described in section 5.4. The results of the training are listed 

and commented on in section 5.5. 
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5.2 Comparison of the training algorithms performances 

Two significant categories of optimisation methods are: gradient based and direct search 

methods. Three algorithms belonging to these categories have been considered in this 

thesis. 

The cost function to be minimised is non-linear and the hypothesis of differentiability 

cannot always be justified. Direct search methods are characterised by a strategy that 

generates variation of the parameter vector and decision criteria to determine whether or 

not the newly derived parameters should be accepted. Consequently the hypothesis of 

differentiability is not required and this makes the methods in this category seem more 

suitable than gradient based approaches for this application. In the presence of multimodal 

cost functions, the main problem with direct search methods is ensuring the algorithm 

converges to the global, rather than to a local, minimum. In this section a quasi-Newton 

gradient based algorithm [94] and two direct search algorithms. Simplex [93] and 

differential evolution [95], are compared. 

In order to compare the performance of the minimisation algorithms a noise free test image 

has been contaminated by additive white Gaussian noise and, after the decomposition, the 

parameters of the thresholding functions applied on the components have been optimised to 

minimise the noise. In table 5.1 the sets of parameters derived using the three algorithms 

are listed. The MSE has been used as a cost function (unweighted optimisation) and the 

image is contaminated by white noise having a standard deviation level of 15. The size of 

the parameter sets depends on the number of decomposition levels used. Considering 3, 2 

and 1 levels, sets composed respectively of 11, 8 and 5 parameters are utilised. The 

assumption related to these sizes and the notation of the parameters will be explained in 
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detail in section 5.3. Table 5.2 shows the number of iterations and time required by the 

three algorithms to converge. The training has been performed using a PC Pentium 133 

MHz. 

The differences between the MSE reductions using the three algorithms are not significant 

(of the order of 0.1 %). Table 5.1 shows a strong similarity between the sets of parameters 

obtained for the different minimisation techniques. Nevertheless table 5.2 shows that the 

convergence speed of the Simplex algorithm is superior compared with the other two 

algorithms. The Simplex algorithm needs a smaller number of iterations compared with the 

differential evolution algorithm and a smaller time for single iteration compared with the 

quasi-Newton algorithm. For this reason the Simplex algorithm has been preferred to the 

other algorithms and the results in the remainder of the chapter are obtained using this 

technique. 

K l y K2 K l x K l x K l x K l x K l x K l x K l x K l x K l x 
HH HL LH LL LL LL LL LL LL 

HH HL LH LL LL LL 
HH HL LH 

5 parameters 
Simplex &05 2&51 9.90 7 ^ 3 

Quasi-Newton 0.05 6.89 2&61 9.90 7 J 3 
Differ-Evolution 0.04 6.89 20.67 9.97 7.23 

8 parameters 
Simplex 0 3.89 37.60 1CL21 7.51 L96 2U5 2 ^ 8 

Quasi-Newton 0 3 ^ 9 20.67 1CL21 7^1 L96 2.15 2 3 8 
Differ-Evolution 0 ^ 1 3 J 6 2 5 ^ 6 10.19 7 ^ 4 1.97 2 J 5 2 3 7 

11 parameters 
Simplex omi 3.67 5L87 10.39 7.83 L99 2.04 2 3 9 0.92 0 4 8 0 4 7 

Quasi-Newton 0.01 3jW 2&70 10.19 7^1 L94 L99 2.17 0^7 0 4 0 1.04 
Differ-Evolution o a i 3.81 3 2 4 5 10.24 7 J 9 1.95 2.01 2 ^ 3 0.9 0 ^ 9 1.10 

Table 5.1. Unweighted optimisation of an image contaminated by white noise with std=15. 

5 parameters 8 parameters 11 parameters 
No. Iterat. Cnv. Time No. Iterat. Cnv. Time No. Iterat. Cnv. Time 

Simplex 540 2hrs 15 mm 800 3hrs 20min 1100 4hrs 35min 

Quasi-Newton 475 2hrs 15min 795 3hrs 45min 1130 5hrs 20min 

Differ-Evolution 775 2hrs 35min 1050 3hrs 30min 1575 5hrs 15min 

Table 5.2. Number of iterations and convergence time required by unweighted optimisation 
of an image contaminated by white noise with std=15 
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5.3 Cost function parameters 

The filters used in the decomposition are non-orthogonal resulting in an overcomplete 

representation. As a consequence the minimisation of the noise on each component is not 

equivalent to minimising the noise on the full image. To minimise the noise on one 

component requires minimisation of a function of I parameters. Consequently to minimise 

the overall noise by minimising the noise on the K components individually requires the 

minimisation of K separate functions each of I variables. On the other hand, to minimise 

the noise on the K components concurrently requires the minimisation of one function of 

{K X I) variables. The non-orthogonal nature of the decomposition forces one to optimise 

over all the parameters simultaneously leading to an optimisation task over a relatively 

large number of parameters. Table 5.3 details the 27 parameters resulting from 

minimisation of the noise in a concurrent scheme. There are 27 parameters since 3 levels of 

decomposition result in 9 components to be processed and each component is thresholded 

using a function described by 3 parameters (see (4.25)). Results are presented for two cost 

functions and three levels of noise. 

This procedure is expensive in terms of computational time and the optimisation results are 

sensitive to the initial conditions. From table 5.3 it can be seen that some of the parameters 

are negative which leads to counter-intuitive thresholding functions. This may be an 

indication that the minimisation routine has not converged to the global minimum. To 

avoid this, it is prudent to consider simplifying the threshold functions in order to reduce 

the number of parameters involved in the optimisation. 

Each thresholding function is characterised by I parameters and is applied to one of the K 

image components. The number of thresholding function parameters depends on the 
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thresholding scheme and the number of components depends on the number of 

decomposition levels used. The total number of parameters of the cost function is due to 

these two factors. In the next sub-sections these are analysed separately. 

Unweighted optimisation Weighted optimisation 
Noise Noise Noise Noise Noise Noise 
level 4 level 5 level 6 level 4 level 5 level 6 

K l x (HH) 2.82 3.75 4.69 5.56 4.15 5.20 
K l y (HH) 0.15 0.11 -0.26 0.02 -0.08 -0.18 
K2 (HH) 24.72 28.44 33.75 14.95 16.21 19.99 

K l x (HL) 2.01 2.64 3.00 3.71 2.85 3.34 
K l y (HL) 0 0 0 0 0.03 -0.01 

K2 (HL) 7.37 8.98 11.25 11.09 9.57 11.80 
K l x (LH) 1.38 1.66 2.29 03.19 2.37 3.99 
K l y (LH) 0.17 0.04 0.23 0.71 0.56 1.51 

K 2 ( L H ) 8.05 10.15 11.13 12.76 9.28 10.00 
K l x (LLHH) 0.63 0.92 1.05 0.98 0.86 1.07 

K l y (LLHH) 0 0.01 0 0 -0.07 0 

K2 (LLHH) 1.62 1.85 2.27 2.32 1.97 2.29 
K l x (LLHL) 0.43 0.69 0.95 0.95 0.59 0.86 
K l y (LLHL) 0.01 0 0 0 -0.04 0 

K2 (LLHL) 2.84 2.68 2.90 2.88 3.64 2.93 
K l x (LLLH) 0.71 0.87 1.10 1.06 1.15 1.12 
K l y (LLLH) 0.03 0.02 0 0 0.31 0 

K2 (LLLH) 2.50 3.01 3.41 2.99 2.85 3.24 
K l x (LLLLHH) 0.26 0.33 0.33 0.65 0.16 0.39 
K l y (LLLLHH) 0.02 0.038 0 -0.05 -0.18 0 

K2 (LLLLHH) 0.66 1.20 1.70 0 1.36 1.60 
K l y (LLLLHL) 0.19 0.37 0.36 0.30 0.24 0.35 
K l x (LLLLHL) 0.01 0.01 0.05 -0.01 0.07 -0.01 
K2 (LLLLHL) 1.21 1.24 1.60 1.96 2.18 1.57 

K l x (LLLLLH) 0.16 0.26 0.03 0.07 0.45 0.01 

K l y (LLLLLH) 0.01 0.02 -0.15 0.03 0 -0.18 
K2 (LLLLLH) 0.91 1.61 6.01 1.49 0.85 2.43 

Table 5.3. Parameters of the thresholding functions for complete scheme. 

The notation used to name the parameters is composed of two parts: the first part {Klx, 

Kly or K2) indicates the parameter of the thresholding function, the second (HH, HL, LH, 

etc.) refers to the component where the thresholding function has been applied (see figure 

3-8). 

5.3.1 Use of the Hessian matrix to reduce the number of parameters 

Simplifying the thresholding schemes it is important to identify which parameters of the 

thresholding scheme are the most important. This section considers the use of the local 
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characteristics of the cost function surface to assess the importance of each parameter. The 

method employed here examines the Hessian matrix of the cost function evaluated at the 

optimum [109]. 

Consider the Taylor series expansion of f{h^,h2,...,h^) about its minimum point 

+ 

^ i J 

aV(Ai, 
(5.1) 

dh^dhj 
+ . 

If this is truncated to only include terms up to second order terms and it is noted that since 

h* is the minimum then 

where h = {h^,h2,...,h^) and the matrix His the Hessian matrix defined as 

H 

- A ) 
dh^d \ 

dhdhn dhr. 

dh^d A, 

(5.3) 

Defining Ah = h-h , then the change in the cost function resulting from a change in 

parameters of Ah is approximated by 
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(5.4) 

To see the significance of the parameter, one can consider the following optimisation. 

Minimise 

y(Ai,A2,. .,W (5.5) 

subject to 

i/h = 0 (5.6) 

where 

j 0 A; 9̂  f 

11 k — i 
(5.7) 

The change in value o f / ( ) for this constrained optimisation is a measure of the importance 

of the i"' parameter. Using the quadratic approximation for /( ) then the solution to the 

constrained approximation is given by using method of Lagrange multipliers, as follows. 

Consider 

'y = ^(A-A')^7^(A-A') + A(w'̂ A) 

— = +Aw=0 (5.8) 
- - -

= u h = 0 
dX 

this implies 

A = (5.9) 
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Pre-multiplying by i J gives 

u' h = 0 = u'h -XiJH 'm (5.10) 

and then 

r, u h 
r (5.11) 

u H u 

Equation (5.9) can be rewritten 

h = (5.12) 
u H u 

Substituting into the cost function (5.8) 

^ * *r 2 
h uu h {h u) 

Ci l3 ) 

Using the definition of u one obtains 

(A J 2 

y = (5.14) 

This is the change in the cost function,/( ), if the parameter is set to zero based on a 

local quadratic approximation. Thus the parameter for which (5.14) is smallest is the 

parameter which is of least significance. The influence of each parameter on the results, i.e. 
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the influence of each variable in minimising a multidimensional function, is investigated by 

examination of the Hessian matrix. The Hessian matrix has been computed using finite 

differences: 

d^f(h: .Xfi) 
dxdx. 

' 2 , f ( x ^ J i ^ x ^ , , , f X j J 

(5.15) 

where zlx, = 1% of x. 

Table 5.4 shows the results of the procedure to identify the significance of the parameters. 

The results show that assuming quadratic behaviour of the cost function the parameters 

related to the first level of decomposition are the least significant and the parameters 

constant for all the components (Kly and K2) cannot be neglected. This justifies the choice 

of thresholding scheme done in section 5.3.2. 

Noise level Noise level Noise level 
5 10 15 

Least significant K l x L H K l x L H KlxHL 
2"" KlxHL KlxHL K l x L H 

3"' K l x H H K l x H H K l x H H 

4'" KlxLLLLLH KlxLLLLHL KlxLLLLHL 
5'" KlxLLLLHL KlxLLLLLH KlxLLLLHH 

6'" KlxLLLLHH KlxLLLLHH KlxLLHH 
^tll Kly KlxLLHH K l y 
8"' KlxLLHH K l y KlxLLLH 
^th KlxLLLH KlxLLLH KlxLLLLLH 

10"" KlxLLHL KlxLLHL KlxLLHL 

Most significant K2 K2 K2 

Table 5.4. Analysis of the significance of the parameters in the training procedure using 
the Hessian matrix. 

5.3.2 Reduction of the number of parameters of the thresholding functions 

The task of this sub-section is to discuss several options for reducing the number of 

parameters involved in defining each thresholding function. According to the scheme 
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described in the previous chapter each function depends on 3 parameters Klx, Kly, and K2. 

The initial function to be minimised is of the form 

) 
(5.16) 

/ = 1 K is the components index 

The first simplification is to assume Kly and K2 are linearly dependent on Klx with 

coefficients of proportionality that are constant for all the components of the same image 

i.e. assuming 

^1),. = Tiri), * ATLc, 

^2. (5.17) 

i = l K is the component index 

The function to be minimised has the form 

) 
. J. o J 

i = l K is the component index 

The analytical form of this thresholding scheme is, 

if Iwl >;ir2*Ari% 

i f & < |M| <f2*7iri% (5.19) 

{u-sign{u)Klx)^^—+sign{u)K\y * Klx if \u\ < Klx 
K2, — 1 

The family of thresholding functions is showed in figure 5-1. 
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K2 

K1y 

O 
-K1y 

-K2 

<<7. ' 

/y 

/ 
/ / 

-K2 -Klx 0 

Input 
K1x K2 

Figure 5-1. Thresholding scheme after first simplification. 

The assumption related to the first simplification seems reasonable when this scheme is 

compared with the optimal thresholding schemes derived in the previous chapter (figure 4-

13). If I is the number of components resulting from the decomposition, the first 

simplification reduces the number of parameters from 31 to 1+2. 

Further simplifications could be made assuming 

• Kly = 0 

• Kly = QmdK2='i\ 

These simplifications reduce the number of variables from 31 respectively to l+l and I. 

These assumptions have not been considered in this chapter because they reduce slightly 

the number of parameters but also produce a grosser approximation of the family described 
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in figure 4-13 and consequently of the families derived theoretically in the previous 

chapter. In the remainder of the chapter the scheme related to the first simplification (1+2 

variables of the cost function) has been used because it represents an acceptable 

compromise between number of cost function variables and similarity with the optimal 

schemes. 

5.3.3 Number of decomposition levels 

In the previous sub-section several options for reducing the number of variables defining 

the thresholding functions have been proposed. In all cases the complexity of the training 

procedure is roughly proportional to the number of levels of decomposition. Hence one 

way of reducing the number of parameters is to reduce the number of decomposition levels 

but this reduces the ability of the method to analyse limited frequency bands. The best 

choice is based on a compromise between the amount of frequency decomposition needed 

to reduce the noise on the image, and computational load. In this work 3, 2, and 1 levels of 

decomposition are considered, corresponding to 10, 7, and 4 components. Furthermore, no 

manipulations are performed on the component in the lowest frequency band because it is 

hard to distinguish noise and image in this component. Hence the number of components to 

be thresholded is 9, 6, and 3 and the number of variables of the cost function is 11, 8, and 

5. Table 5.5-a lists the parameters for 3, 2, and 1 decomposition levels for weighted^ and 

unweighted MSE and for 3 levels of noise. Table 5.5-b presents the MSE and WMSE 

(weighted MSE) levels applying these sets of parameters. 

' The choice of this value facilitates the hardware implementation of the technique. 
^ Details of the weighting are given in section 5.4.2. 
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Unweighted K l y K2 Klx K l x K l x K l x K l x K l x K l x K l x Klx 
optimisation HH HL LH LL 

HH 
LL 
HL 

LL 
LH 

LL 
LL 
HH 

LL 
LL 
HL 

LL 
LL 
LH 

5 parameters 
Noise level 5 0.05 3.67 4.17 2.89 2.33 

Noise level 10 0.02 3.99 10.94 5.96 4.79 
Noise level 15 0.05 6.89 20.51 9.90 7.23 
8 parameters 
Noise level 5 0.08 3.74 4.27 2.72 2.14 0.68 0.78 0.90 

Noise level 10 0 3.73 11.91 5.62 4.49 1.29 1.55 1.72 

Noise level 15 0 3.89 37.60 10.21 7.51 1.96 2.15 2.38 
11 parameters 
Noise level 5 0.09 3.62 4.31 2.68 2.22 0.73 0.73 0.87 0.32 0.35 0.28 

Noise level 10 0.01 3.60 10.99 5.74 4.59 1.39 1.43 1.59 0.61 0.59 0.78 
Noise level 15 0.01 3.67 51.87 10.39 7.83 1.99 2.04 2.39 0.92 0.98 0.97 

Weighted Kly K2 K l x K l x Klx K l x K l x K l x K l x K l x K l x 
optimisation HH HL LH LL 

HH 
LL 
HL 

LL 
LH 

LL 
LL 
HH 

LL 
LL 
HL 

LL 
LL 
LH 

5 parameters 
Noise level 5 0.36 2.57 8.82 2.95 2.97 

Noise level 10 0.09 6.30 13.02 4.01 4.08 
Noise level 15 0.05 14.98 21.00 7.96 6.79 
8 parameters 
Noise level 5 0.24 2.82 12.76 1.81 2.06 0.94 1.15 1.18 

Noise level 10 0.54 2.19 164.7 0.14 4.88 1.81 2.08 2.13 
Noise level 15 0.68 2.52 547.2 209.6 54.82 2.79 2.89 2.79 
11 parameters 
Noise level 5 0.08 4.30 4.60 1.08 1.11 1.13 1.24 1.26 0.40 0.44 0.46 

Noise level 10 0.34 3.32 10.25 3.85 4.21 1.82 1.96 1.89 0.65 0.63 0.72 
Noise level 15 0.47 2.67 72.66 7.29 8.09 2.81 2.71 2.72 0.88 0.89 1.00 

Table 5.5-a. Unweighted and weighted optimisations for 3 decomposition levels and 3 
noise levels. 
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MSB 
Unweighted 
optimisation 

0 parameters 5 parameters. 8 parameters 11 parameters 

Noise level 5 25 14.1 13 j 13.4 
Noise level 10 99.2. 4 1 2 4&1 3 9 J 
Noise level 15 22&7 8&1 7 3 ^ 7Z2 

Weighted 
optimisation 
Noise level 5 25 15.1 1 4 7 1 4 7 

Noise level 10 9&2 5 5 ^ 5L2 51.4 

Noise level 15 22&7 123 1021 10L2 
WMSE 

Weighted 
optimisation 
Noise level 5 2.5 2.3 2.1 2 

Noise level 10 10.1 8.8 7.2 7.1 

Noise level 15 2 3 J 19^ 15^ 14.7 
Unweighted 
optimisation 
Noise level 5 2.5 2.3 2.2 2.1 

Noise level 10 10.1 9 8 7.8 
Noise level 15 2 3 J 1&3 17.1 1&4 

Table 5.5-b. Noise reduction using weighted and unweighted optimisations for 3 
decomposition levels and 3 noise levels. 

In this case the notation used to name the parameters is composed of two parts only for Klx 

while Kly and K2 are constant for all the components (see equations (5.17) and (5.18)). 

Table 5.5-a shows that the parameters related to a level of decomposition depend on the 

number of decomposition levels applied. This confirms the need of the concurrent 

optimisation of all the components across the different decomposition levels. The table also 

emphasises that the larger differences between the parameters are obtained using the two 

cost functions especially at the first level of decomposition (columns 4, 5 and 6). The 

reason for this will be explained in section 5.4 where the cost functions are described in 

detail. Table 5.5-b demonstrated a significant part of the noise reduction is performed on 

the second and third level of decomposition. The selection of the number of decomposition 

levels applied depends on the spectral characteristics of the image considered. In the rest of 

this chapter, 3 levels of decomposition are utilised. 
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5.4 Cost function values 

The primary goal of this work is to reduce the noise contaminating an image, but meantime 

it is important that the visual quality of the image should not be significantly degraded. 

Thus the cost function used in the training procedure should be a measure of noise 

reduction and of the visual quality of the image. Two indices have been considered as cost 

functions in this work. 

The first index is the mean square error (MSE), defined as: 

y {u{m,n)-u{m,n)Y 
MSE = (5.20) 

N 

where N is the number of pixels in the original image u(m, n), and u(m,n) is the estimated 

image after the noise reduction technique has been applied to a version of u{m, n) 

contaminated by additive noise. 

v(m, n) = u{m, n) + n{m, n) 

u{m,n) = f[v{m,n)] 
(5.21) 

where / [ ] is the thresholding operation. This is the simplest of all measures of image 

quality but is not always sufficient to judge the performance of a technique. Assuming 

independence between image and noise and N large the MSE can be rewritten as 

y {v{m,n)-v{m,n))^ V {n{m,n) - n{m,n))^ 
M S E = ^ ^ + (5.22) 

N N 

Distortion Noise 
reduction 
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The percentage of reduction of this index measures the difference between the percentage 

of noise reduced and the percentage of distortion introduced by processing. Consequently 

the percentage of noise reduced by minimising the MSB may be large but may introduce 

unacceptable distortions. 

The second measure of image quality is a modified form of MSB, adjusted to partially 

reflect the human sensitivity to high frequency distortions. To evaluate the significance of 

any distortion, a model of the human visual system is necessary. The determination of a 

model of the human visual system is made difficult by its inaccessible and distributed 

nature. Experiments demonstrate that the human eye is particularly sensitive to distortion in 

high frequency bands. So that if a small amount of high frequency distortion is introduced 

then the perceived image quality may be reduced, even in the presence of noise reduction. 

The relationship between the WMSB used herein and visual models presented in literature 

is explored later. 

5.4.1 Visual model 

To describe the human visual system is a very complex problem. Experiments have been 

performed to investigate some of the eye properties. This sub-section describes two 

concepts emphasised by these experiments in order to justify the procedure utilised in the 

approach used herein. 

The first concept is that the first perceptible distortion produced by filtering occurs at the 

major edges of the image. From this, one can assume that the threshold perception of 

distortion could be studied by analysing edge perception in the filtered images. A model 

describing this perception has been used to design filters for noise reduction [96, 97, 98]. 

The visibility of hnes as a function of the distance to an edge can be expressed by: 
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v(x) = 1 - fl' (5.23) 

In this expression x is the distance to an edge, and a is a parameter related to the ratio of 

luminance on high and low levels sides (figure 5.2). 

Figure 5-2. Visibility function dependence on the distance of a line to an edge. 

The second concept is that there is an upper limit to the spatial frequency that the eye can 

perceive at a given viewing distance. Therefore the eye behaves as a low-pass filter. 

Moreover the visual system weights the middle range frequencies more heavily than either 

the low or the high frequencies. An approximation of the response of the visual system [99] 

as a spatial frequency filter can be described by the function 

for 0 < / < 1 [ 
cycles 

Unit distance' 
(5.24) 
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which is shown in figure 5-3 where the frequency axis is normalised so that 1 cycle per unit 

distance corresponds to the frequency cutoff of the visual system. 

1/2 

f [Cycle/Unit distance] 

Figure 5-3. Model for the frequency response of the visual system. 

5.4.2 Weighted Mean Square Error (WMSE) 

A method to evaluate the image visual quality based on MSE is to weight differently the 

error components in different frequency bands. The human eye is particularly sensitive to 

edges and discontinuities. To preserve the discontinuities less noise reduction should be 

performed in the high frequency bands. In order to better determine the visual quality of an 

image, the error is weighted using a low-pass filter retaining the low frequency content and 

attenuating the high frequency elements. The limit of this procedure is the assumption of 

the eye perception as linear whereas in fact it is non-linear. Figure 5-4 describes the block 
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diagram of the method to measure the WMSE, and figure 5-5 shows the frequency 

response of the low-pass weighting filter used . 

Noisy Image 

Original Image 
4) 

Error 
\ LPF ) LPF MSE miSE 

Figure 5-4. Block diagram describing the WMSE evaluation. 

1/2 
f(Cycles) 

Figure 5-5. The frequency response of the weighting filter. 

The weighting filter serves to limit the highest frequency influencing the measured image 

quality. The de-noising scheme used here imposes a low frequency limit by the fact that the 

very lowest frequency component is never subjected to the thresholding function. The 

visibility function extracted from these two filters has the characteristics of a band pass 

This FIR filter with impulse response W=[ 0.0347 0.2406 0.4495 0.2406 0.0347 ], has been suggested in a 
private communication with M. Weston. 
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filter. The frequency response of this filter is shown in figure 5-6. One can observe the 

similarity with the frequency response obtained from the visual model, see figure 5-3. It is 

left until later chapters to illustrate that minimising WMSE does indeed result in improving 

visual quality of the final image. 

1/2 
f(Cycles) 

Figure 5-6. Frequency response describing the visual model assumed in the method 
presented in this thesis. 
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5.5 Training results 

Section 5.2 compares the performances of the algorithms used to minimise the cost 

function, section 5.3 describes the parameters of the cost function and section 5.4 describes 

the form of the cost function. In this section the results of the training procedure in these 

conditions are compared. Additive White Gaussian Noise (AWGN) is assumed and further 

that the standard deviation of the noise is known (procedures for noise estimation are 

described in next chapter). 

The influence of the noise level (standard deviation) on the threshold parameters is 

explored via a series of simulations. Six different levels of noise standard deviation in the 

range [5, 15] were added to an image. The range of noise levels was chosen to cover the 

range expected in real applications. Table 5.6 shows the parameters obtained for six of the 

noise levels utilising MSB and WMSE as the cost functions. Figure 5-7 plots the 

dependence of these parameters'^ on the noise level emphasising the approximately linear 

dependence between the threshold parameters and the noise level. 

^ The 9 parameters respectively related to the 9 frequency bands are considered. The other 2 parameters 
related to all the band have an almost constant shape. 
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Unweighted 
optimisation 

K l y K2 K l x 
HH 

K l x 
HL 

K l x 
LH 

K l x 
LL 
HH 

Klx 
LL 
HL 

K l x 
LL 
LH 

K l x 
LL 
LL 
HH 

K l x 
LL 
LL 
HL 

K l x 
LL 
LL 
LH 

Noise level 5 0.09 3.62 4.31 2.68 2.22 0.73 0.73 0.87 0.32 0.35 0.28 
Noise level 7 0.07 3.47 5.99 3.40 3.25 0.94 0.99 1.11 0.43 0.49 0.51 
Noise level 9 0 3.65 7.09 4.46 4.25 1.17 1.31 1.23 0.57 0.58 0.76 

Noise level 11 0.01 3.61 15.42 6.98 5.06 1.29 1.52 1.54 0.65 0.69 0.81 
Noise level 13 0.02 3.54 25.64 8.70 6.47 1.57 1.79 1.97 0.78 0.79 0.92 
Noise level 15 0.01 3.67 51.87 10.39 7.83 1.99 2.04 2.39 0.92 0.98 0.97 

Weighted 
optimisation 
Noise level 5 0.08 4.30 4.60 1.08 1.11 1.13 1.24 1.26 0.40 0.44 0.46 
Noise level 7 0.24 2.30 12.18 2.01 2.59 1.19 1.45 1.48 0.48 0.49 0.54 
Noise level 9 0.33 2.33 14.05 3.13 3.74 1.29 1.80 1.82 0.62 0.60 0.67 

Noise level 11 0.41 2.51 33.67 4.91 4.87 1.46 2.07 2.11 0.69 0.68 0.78 
Noise level 13 0.46 2.54 52.01 5.23 6.62 1.79 2.40 2.44 0.79 0.79 0.99 
Noise level 15 0.47 2.67 72.66 7.29 8.09 2.81 2.71 2.72 0.88 0.89 1.00 

Table 5.6. Parameter dependence on the noise levels for unweighted and weighted 
optimisations. 
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Figure 5-7-a. Relation between parameters and noise levels (unweighted optimisation, 11 
parameters, and Nelder algorithm). 
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Figure 5-7-b. Relation between parameters and noise levels (weighted optimisation, 11 
parameters, and Nelder algorithm). 
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To assess the robustness of these results with regard to the realisation of the noise, 

threshold parameters were computed for five different noise realisations (for each of the six 

noise levels) minimising the WMSE. The means and standard deviations of the parameters 

are computed. Table 5.7 lists these for each parameter and uses the ratio (normalised 

standard deviation) 

var% 
standard deviation 

mean 
(5.25) 

as an index of significance of the noise realisation on each parameter. This table 

demonstrates that the parameters related to the first level of decomposition are least robust. 

Kly K2 K l x 
HH 

K l x 
HL 

K l x 
LH 

K l x 
LL 
HH 

K l x 
LL 
HL 

Klx 
LL 
LH 

K l x 
LL 
LL 
HH 

K l x 
LL 
LL 
HL 

K l x 
LL 
LL 
LH 

Noise 
level 

5 

Mean 0.01 1.87 1294 0.10 0.09 1.16 L28 L29 0.41 &47 &43 Noise 
level 

5 
Std 0.03 OJ^ 4jU 0.06 0.06 0.05 0.08 0.04 0.02 0.02 0.02 

Noise 
level 

5 Var % 27.63 6.67 3 7 J 8 59.58 7 0 3 0 4.88 &52 3.64 5.94 5.60 6 7 7 
Noise 
level 

7 

Mean 0.24 2 J 1 13.84 0.11 0.10 1 J 9 1^6 1.50 &49 0.51 &55 Noise 
level 

7 
Std 0.03 OJJ 5^7 0.08 0.11 &07 0.09 0.04 0.03 0.05 0.05 

Noise 
level 

7 Var % 13.27 6.44 40.28 7 2 2 4 118.5 5 J 2 5.96 2 9 2 7.09 11.70 10.16 
Noise 
level 

9 

Mean OJ^ 2 4 1 17.78 0U2 OJ^ 1.76 L78 1.75 0 ^ 5 0.63 0.60 Noise 
level 

9 
Std &02 0.07 7.15 0.07 0.031 &03 0.04 0.07 0.01 &02 &03 

Noise 
level 

9 Var % &54 2.92 40.26 55^4 27 J 3 1.85 2 J 1 4 j 2 2.66 4.12 5.65 
Noise 
level 

11 

Mean &43 2.59 46.88 0 J 3 0.11 2.04 2.06 2 0 5 0.66 0.69 &72 Noise 
level 

11 
Std 0.02 0.08 &40 0.04 &05 0.04 0.03 &05 0.04 0 &03 

Noise 
level 

11 Var % 5.06 3 ^ 0 2&05 34.49 4&49 2 3 2 1.77 2 8 5 6jW 1.28 5 ^ 2 
Noise 
level 

13 

Mean &49 2.60 5 2 ^ 3 OJJ 0.12 2 4 2 2.44 2 3 5 &75 &83 0^# Noise 
level 

13 
Std 0.03 O J j 11.91 0.07 0.08 0.08 0.12 0.08 0.03 &05 &03 

Noise 
level 

13 Var % 7.85 5.94 22.67 54.93 6 7 ^ 6 3^1 5 J ^ 1 7 9 5jW 6.09 3 7 ^ 
Noise 
level 

15 

Mean &53 2.68 80.67 OJU 0 J 3 2.82 2 6 5 2 j 7 0.86 0.90 1.00 Noise 
level 

15 
Std 0.02 &13 13.97 &09 0.11 &02 0.06 &05 0.06 &06 0.07 

Noise 
level 

15 Var % 3.84 4.88 17JW 6&48 84.07 1.01 2 2 6 2.28 7.94 7.34 7.02 

Table 5.7. Analysis of the noise realisation on the parameters. 

This work concerns video images and this is a category that can include images having 

disparate spectral distributions. Therefore the generalisation of the parameters for such a 

large class is not a trivial task. A set of seven images having various spectral distributions 

was chosen as example images. The optimal thresholding parameters for those images were 

104 



Chapter 5: Thresholding function parameters 

computed for six noise levels. This subset was used because it represents a diverse image 

set. The relation between the size of each parameter and the energetic content of the related 

frequency component was investigated. The relation between confidence intervals for the 

parameters and the corresponding variance of the performance was explored. The 

customised Nelder method was used to minimise the WMSE, six noise levels were 

considered, and three levels of decomposition were used. Tables 5.8 show the parameters 

obtained by training on seven different images, demonstrating, unsurprisingly, that the 

parameters differ depending on the training image used, i.e. the spectral content of the 

image influences the results. However in chapter 7 it will be shown that the performance of 

the algorithm is not critically dependent upon using the parameters obtained by training on 

that image. 
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Noise level 5 K ly K2 Klx Klx Klx K lx K lx Klx K lx K lx Klx 
H H HL L H LL LL LL LL LL LL 

H H HL L H LL LL LL 
H H HL L H 

Test &08 4.60 1.08 1.11 1.13 L24 1.26 0.40 0.44 0.46 
Graph &58 276 1L4 3 j ^ 1.17 0.69 &42 0.83 &21 &26 &24 
Girl 0.20 2J3 9.53 0.02 0.04 0.85 0.81 0.69 0.25 &28 0.24 

Interview 0.04 2.14 23^2 0.01 0 1.24 1.09 &43 O j l 037 
Tree &01 11.39 0 &40 1.12 1.25 I J ^ 0/41 0.44 &45 
Text O.OI 1.88 11.39 0 OJW L26 1.26 0.40 &43 &45 
Synthetic &05 11.39 0 039 1.15 L25 1.27 &40 &43 0.47 

Table 5.8-a. Parameter comparison for noise level 5. 

Noise level 7 K ly K2 Klx Klx Klx K lx Klx Klx K lx K lx K lx 
H H HL L H LL LL LL LL LL LL 

H H HL L H LL LL LL 
H H HL L H 

Test 0.24 230 1218 2.01 2^9 L45 L48 &48 &49 0^4 
Graph a49 3.05 1L84 6.65 2.61 1.59 0.86 2.25 &41 a53 037 
Girl &28 2J^ 10.82 444 &03 138 1J4 1.61 0.52 0.63 0.52 
Interview 0.09 240 2 4 m 157 0 L49 L46 1.70 0.60 &75 0^5 
Tree 0.25 2.29 1219 0 &59 1.31 1.44 1.47 0/47 OjO &53 
Text &25 229 12.18 0.01 0^9 132 L45 L48 &50 &49 &53 
Synthetic &25 231 12.18 0 0^8 132 1.44 L48 &49 &49 0^4 

Table 5.8-b. Parameter comparison for noise level 7. 

Noise level 9 Kly K2 Klx Klx Klx K lx Klx Klx K lx Klx K lx 
H H HL L H LL LL LL LL LL LL 

H H HL L H LL LL LL 
H H HL L H 

Test 033 233 14.05 3J3 3J4 L29 L80 1.82 0.62 0.60 0.67 

Graph &53 334 13.62 7.96 &71 1.98 L91 1.83 0.57 0.66 0.86 

Girl 035 l^W 13.39 7.62 7.67 1.71 2.02 L67 &78 0 0.86 

Interview CL21 2.04 2&14 6.21 &06 1.88 239 208 0.85 0.98 0.85 
Tree 034 233 14.06 0.01 0.74 1.64 1.79 L83 0.63 0.60 0.68 
Text 0.30 233 14.06 0.01 &75 1.66 L81 1.84 0.62 0.62 0.67 

Synthetic 033 235 14.07 0 0.74 L66 1.81 L82 0.62 0.60 &67 

Table 5.8-c. Parameter comparison for noise level 9. 
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Noise level 11 K l y K2 K l x K l x K l x K l x K l x K l x K l x K l x K l x 
H H HL LH LL LL LL LL LL LL 

H H HL L H LL LL LL 
H H H L LH 

Test &41 2 j l 1167 4.91 4.87 L46 207 2.11 0.69 0.68 &78 
Graph 0.45 251 17j# 9.87 8^U 251 245 281 0.82 0J4 0.95 
Girl &30 1.81 11.56 9.69 1037 2 J ^ 233 2J5 090 1.14 &94 
Interview 0.19 1.96 34^6 &59 7.93 238 2.74 253 099 134 1.05 
Tree 0.41 2J2 33.66 0.01 0.88 2.01 2.06 2J^ 0.69 0.70 0.77 
Text 0.41 2 j 2 3168 0.01 &88 1.98 2.06 2.12 0.69 0.67 0J9 
Synthetic &42 2.50 33.67 0.01 OjG 1.99 2.05 2J^ &70 0.70 &78 

Table 5.8-d. Parameter comparison for noise level 11. 

Noise level 13 K l y K2 K l x K l x K l x K l x K l x K l x K l x K l x K l x 
H H HL LH LL LL LL LL LL LL 

H H HL LH LL LL LL 
H H HL LH 

Test &46 2^4 5201 5^3 6.62 L79 240 2.44 &79 0J9 0.99 
Graph &39 2.65 21.67 11.23 10.84 3.11 3.08 290 &87 0.86 L46 
Girl 0.23 1.92 19.87 11.54 12.07 2.41 263 238 1.00 L23 1.10 

Interview OJ^ 1.91 53.93 10.45 9.5 280 3J^ 3.08 IJ^ 1.58 L24 
Tree 0.44 254 5209 &02 &91 241 240 245 &78 OjW 0.90 
Text &45 2^4 52.11 &01 0.89 240 241 246 &81 0.78 0.91 
Synthetic &47 253 521 0.01 &92 241 240 2.44 &78 0J8 &89 

Table 5.8-e. Parameter comparison for noise level 13. 

Noise level 15 K l y K2 K l x K l x K l x K l x K l x K l x K l x K l x K l x 
H H HL L H LL LL LL LL LL LL 

H H HL LH LL LL LL 
H H HL LH 

Test 0.47 2.67 72.66 7 ^ 9 8.09 281 2.71 2J2 &88 0.89 LOO 
Graph 035 2.08 25^6 1333 13.07 3.80 4 j ^ 3.47 1.09 0.97 L77 
Girl 0U9 L95 2%27 13J^ 14 jJ 2.97 3^^ 2J4 1.10 1.44 IJ^ 
Interview CU3 1.77 5&37 13.23 11.62 332 3.65 3.60 135 1.89 1.52 
Tree 0^1 2.61 7L85 0 L09 2^2 2.69 2.7 0^8 0^9 1.00 

Text 0^0 2 j 9 71.85 0 1^0 2^0 2J1 2J2 0^8 0^8 0^9 
Synthetic CMS 2^9 71.84 0^1 1.11 2^2 2.71 2J1 0^7 0^8 1.00 

Table 5.8-f. Parameter comparison for noise level 15. 
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6.1 Introduction 

Noise level estimation, i.e. estimation of the noise standard deviation level, is needed on 

each component to select the appropriate set of thresholding function parameters. Images 

are non-stationary, two-dimensional processes, and may in general be corrupted by 

additive, impulse, or signal dependent noise. This work assumes that the noise is additive, 

Gaussian and either white or coloured. 

This chapter initially describes noise contaminated image models and specifies the 

assumptions made herein. Subsequently in section 6.3, three methods for noise level 

estimation are presented, and the results of these estimation procedures are listed and 

commented on in the last section. 
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6.2 Noise contaminated image models 

The general model of a noise contaminated image system can be described by [7, 13, 100, 

101,102]: 

v{m,n) = [u{m,n) + r]^(m,n)]ri2{m,n) (6.1) 

r\/m,n) T]/m,n) 

u(m,n) X+) ^ v(m,n) 

Figure 6-1. General model of the image system. 

where v(m,n) is the observed image, u(m,n) is the original image, rii(m,n) is an additive 

noise, and rj2(m,n) is a multiplicative noise. This study initially considers zero mean 

Additive White Gaussian Noise (AWON). The less restrictive hypothesis of coloured 

Gaussian noise is considered later. 

In the AWGN case the image model is: 

v(m,n) = u(jn,n) + r\^^{m,n) (6 2) 

Figure 6-2. Model of the image system for additive noise. 
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Where riJm,n) is AWGN and it is characterised by a single parameter: its standard 

deviation (the mean is zero by assumption). In the following section three methods for 

estimating the standard deviation of the noise contaminating the high frequency band are 

described. The high frequency band' is used because the image is in general smallest in this 

band and therefore one can better discern the noise. Under the AWGN assumption 

knowledge of the noise standard deviation in one frequency band allows the computation 

of the overall noise variance. 

When the less restrictive hypothesis of coloured Gaussian noise is assumed then the image 

model is: 

v(m, n) = u(m, n) + 7]^ (m, n) (6 3) 

u(m,n)_ 

r\(m,n) 

v(m,n) 

Figure 6-3. Model of the image system for coloured noise. 

Where riJm,n) is AWGN and r\c(m,n) is the filtered (coloured) noise and it is characterised 

by its spectral distribution. In tests, three spectral distributions for the noise have been 

used; the frequency responses of the three filters used to generate the coloration are shown 

in figures 6-4. These filters have been designed in order to generate a range of spectral 

distributions for the noise. 

This corresponds to the coarsest scale in the wavelet decomposition 
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Figures 6-4. Filters used to simulate coloured noise: a) band-pass, b) low and c) high-
pass. 

The methods described in the following section are not specifically designed for coloured 

noise scenarios where the noise standard deviation should at least be estimated in each 

band individually. The spectral distribution of the noise may be known a priori or may be 

deduced using two consecutive video frames (see figure 6-5). In this figure Nwl and Nw2 

are two white noise realisations; Imnl and Imn2 are the two frames contaminated with 

coloured noises derived by filtering Nwl and Nw2; ImAv is the image obtained averaging 

Imnl and Imn2. This latter procedure allows one to compute the ratios of the standard 

deviation of the noise in any frequency band. 

Frame 1 

Frame 2 

Nwl_ 

N w ^ 

Imnl 

Imn2 

A 
V 
e 
r 
a 
g 

e 

sqrt(2) 

ImAv Noise 
Reduced 

FFT 
Noise 
Spectral 
distribution 

Figure 6-5. Noise spectral distribution estimation. 
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6.3 Noise level estimation in the high frequency band 

In this section, three methods for noise level estimation are considered. These methods can 

be applied directly assuming A WON or as part of the procedure for coloured noise 

estimation. Where convenient it shall be assumed that the component under consideration 

represents the highest frequency band as this is the one which is used when the noise is 

assumed to be white. 

6.3.2 Noise level estimation using cumulative distribution functions (cdfs) 

One method to estimate the noise levels is based on the Cumulative Distribution Functions 

(cdfs) [110, 111]. The cdf is computed for the squared, low passed pixel values (see figure 

6-6). This operation computes local estimates of the local energy. The cdf value for a value 

h is defined as the proportion of pixels for which the local energy is less than h. 

Image HH Htf HH, cdf[HHL,h,] 
Noise 
level 

HH 
Filter 

( y 
Low 
Pass 
Filter 

Compute 
cdf value 

Estimate 
noise level 

HH 
Filter 

( y 
Low 
Pass 
Filter 

Compute 
cdf value 

Estimate 
noise level 

Grey level b« 

Figure 6-6. Noise estimation using the cdfs evaluation. 

For a given point h the cdf value depends on the noise level. The cdfs of one image for six 

different noise levels are shown in figure 6-7. However the form of this relationship 

depends on the image and on the value of h. The cdfs of 13 different images for the same 

noise level are shown in figure 6-8. 
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X} 0.5 

60 
Grey level 

Fzgwrg (^-7. qfoM zwiagg ZeveZ .̂ 

T3 0.5 

60 
Grey level 

Figwrg 6-8. q/"75 images coMZaminafetf noige ZeveZ 75. 
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Consider the problem of determining the grey level Hq for which the image cdf permits the 

best estimate of the noise level over all the training set. 

Initially the optimal grey level for discrimination between pairs of noise levels, h^Qi, I2), is 

determined using the function 

(A) - (A) 

AJ (Z,, Zz) = arg max(_/;_ (A)) 
A 

where h and h are the two noise levels, m, (/i) and cr, Qi), are the mean and the standard 

deviation of the cdf at a grey level h computed across the set of images. 

The optimal grey level, /ZQ, over the set of noise levels is determined using the function: 

= i<j 

K = arg m a x ( / , „ (A)) 
h 

where the summation is taken across all the noise levels considered. To determine ho, 13 

images at 6 noise levels were used. The noise level is estimated by evaluating the cdf at ho 

and comparing this with the range of cdf values obtained by training over the sets of 

images and noise levels. 

This method assumes that the set of 13 images is representative and that the noise level is 

in the range considered. The main advantage of this method is that it uses information from 

grey levels where the image has least influence, i.e. planar areas in the image. Moreover, 

the image components are not assumed to have any particular statistical distribution. 
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6.3.2 Noise level estimation using moment matching 

A second method for estimating the noise level is to assume a statistical distribution for the 

noise free image component [110, 111]. For example one may assume that the component 

has a zero mean Laplacian distribution^ with standard deviation : 

V 2 - 4 " ! 
; ; («) = — g (6.6) 

C7„ 

The noise component is assumed to have a zero mean Gaussian distribution with standard 

deviations,,: 

p(M) 
2cr„ 

(v-u)-
1 (6 7) 

Assuming independence between the original image and noise, it is possible to obtain an 

expression for the distribution of the noisy image component as: 

p(v) = J p(v - u)p(u)du 06.8) 

Substituting (6.6) and (6.7) in (6.8) and considering the symmetry of both the distributions, 

it is possible to solve the integral^, with the result: 

p(v) 
(7. 

Ay Or] V ^ + -
42 

O u (T rj '\f2 
05.9) 

• This assumption is realistic in particular for the HH component 
' The solution is detailed in appendix B. 
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One can use the method of matching moments [10, 12] to fit the model to the data. One can 

estimate the variance and the absolute moment £'{|v|} from a component of the 

noisy image. It is possible to compare these with the corresponding theoretical expressions 

evaluated from the distribution p{v). Thus the noise levels can be estimated by solving the 

resulting system of two equations, for cr„ and cr̂  : 

£'{v^}= °°^v^p{v)dv 

£' |v | }= J|v|p(v)<iv 

(6.10) 

The approach can be generalised when the component of the original image has a statistical 

distribution which is a member of the standardised normal distribution family. In this case 

the equivalent of (6.6) has the form: 

A ) = 
O".. 

r 1 

r 

1 

<u <°° 

o.. > 0 (&11) 

1<)6» < 1 

see (4.21) for detail. In this case the evaluation of the integral (6.8) in closed form is not 

trivial. Nevertheless it is possible to use numerical techniques to evaluate the noise level 
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for each value of , and then for each model assumed. This system defines the link 

between the statistical model assumed and the estimated noise level. Nevertheless this is a 

system of two equations and three unknowns and cannot be used to estimate the noise level 

when the statistical distribution of the original component is unknown, i.e. when yS îs 

unknown. In subsection 6.3.3 the use of other moments is considered to overcome this 

problem. 

6.3.3 Noise level estimation using linear regression 

The final method of noise level estimation is once again based on estimating the image 

moments [110, 111]. In this case one avoids making explicit assumptions about statistical 

distribution of the noise free image. In this scheme it is assumed that there exists a linear 

relationship between normalised moments and the noise level. Linear regression is then 

used to compute the coefficients of the unknown linear relationship based on a set of 

images at various noise levels. Three normalised moments are used in this regression 

M l = E/' ivi; 

= (6.12) 
A f l 

M 3 -

Note that the three regressors Ml, M2 and M3 have the same dimensions as the standard 

deviation of v. The assumed model is 

a iMl + a2M2 + a^M3 - a (6.13) 
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where a. are the regression coefficients and a is the true noise level (standard deviation). 

Given a set of training examples from the K images at H noise levels, one solves the 

system of equations 

Ax = G (6.14) 

where 

M l u M 2 , , MS,, , 

M L » . M 2 2,H '2,H 

M 2 _ M 3 _ 

^^K,H J 

cr. 

G 

cr. 

(To 

cr, 

(To 

0115) 

in which Ml,j, M2y and M3y are the normalised moments computed from the image at 

t h e n o i s e level. Assuming K H>3 then the least squares regression is given by 

x = (A'A)-'A'G (&15) 

Clearly one could extend this method to use other regressions and/or non linear regression 

schemes. 
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6.4 Results of the noise level estimation 

Three methods for the estimation of the noise level have been compared along with a 

combined algorithm. In order to judge the performances of these methods, a set of 13 

images has been considered; the images have been contaminated with 6 different levels of 

AWGN creating a training set of 78 images. 

6.4.1 Results of noise level estimation using the cdfs 

The first method for noise level estimation is based on the evaluation of the cumulative 

density function at a particular grey level. A method for computing the optimal level for 

discriminating between two noise levels is described in section 6.3.1. This level is where 

the cdf can best discern noise levels. The grey level is selected to optimise the results. The 

first column of table 6.1 lists the grey levels which are the best discriminators for pairs of 

noise levels. The remaining columns list the means and the standard deviations of the 13 

cdfs for the two noise levels. 

Noise levels 
k - k + 1 

Noise 
discriminating 

grey level 

Value of the 
cdfs mean for 
noise level k 

Value of the 
cdfs mean for 

noise level k +1 

Value of the 
cdfs std for 
noise level k 

Value of the 
cdfs std for 

noise level k+1 
Noise levels 

5-7 
5 0.5720 0.3105 O^MM 0J^07 

Noise levels 
7-9 

6 &3974 &1995 &1349 0.0683 

Noise levels 
9-11 

10 0.4345 0.2585 0.1240 oxn5o 

Noise levels 
11-13 

14 0.4242 0^715 0.1051 0.0677 

Noise levels 
13-15 

21 0/4801 03418 0IW35 0IK90 

Table 6.1. Best grey level discriminators for different noise level ranges. 

A single overall grey level has been selected to discriminate over the whole range of noise 

levels using equation (6.5). The best grey level computed for the whole image set is 8. 

Table 6.2 shows the means and the standard deviations for the 13 images at grey level 8. 
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Noise levels Mean of the cdfs value in the best 
discriminating grey level 

Std of the cdfs value in the best 
discriminating grey level 

Noise level 5 0.7443 0.2167 
Noise level 7 &5394 0J:650 
Noise level 9 &3230 OJ^l l 

Noise level 11 &1699 0 I#32 
Noise level 13 0.0830 0IG56 
Noise level 15 0.0392 0.0121 

Table 6.2. Confidence interval using overall best grey level discriminator. 

Table 6.4 shows the results of this complete noise level estimation over all the 78 images. 

In figure 6-9 the results of the estimation are depicted for the 13 images. Figure 6-10 shows 

the confidence intervals for the method, based on the means and the standard deviations 

listed in table 6.3. 

Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Image 1 2.2440 6.0440 8.5229 10.6444 127071 14.7620 
Image 2 5.4190 7.3563 9.3522 11.3144 13.2737 14.4396 
Image 3 3.3043 6.3517 8.6347 10.7784 127698 14J509 
Image 4 1.9722 5.8165 8.2757 1&4455 12.5387 14.6345 
Image 5 3.0292 6.2144 8.5470 10.6408 12.7632 14.6935 
Image 6 1.9293 5.7728 8.2833 10^469 125308 14.5648 
Image 7 5^828 6 4 & # 8.9700 10^n^5 12.9917 14.9677 
Image 8 2.4850 6IG54 8.4108 10.5867 12.6308 14.6765 
Image 9 9.8879 1L0017 12.6051 13^1580 14.4048 15.9362 

Image 10 2.2378 54&% 8J^11 10.5457 12.5848 14.5871 

Image 11 4J093 6.9263 8.9547 10.9380 12.9750 14.9468 
Image 12 8.7155 10IM22 1L7562 13.4849 13.2620 15JW65 
Image 13 3.9211 &#M8 &5904 10.6658 12.7506 14.7737 
Average 4J213 6.9958 9J^49 1L2211 12.9028 14.8492 

Std 2.5519 1.6538 1.3795 1.24M 0.4018 03931 

Table 6.3. Results of noise estimation using the cdfs. 
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Figure 6-9. Noise estimation on 13 images for 6 noise levels with the cdfs. The continuous 
line is the standard deviation of the noise introduced and the dotted line is the estimate of 

the noise level. 
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Confidence interval; method 2 

9 10 11 
Noise added 

Figure 6-10. Mean (dotted line) ± one standard deviation (+ marks) of the overall 
estimation, theoretical noise level (continuous line). Cdfs method. 

6.4.2 Results of noise level estimation using moment matching 

The second method to estimate the noise level, based on the method of matching moments, 

does not need a priori information but is based on the hypothesis that the highest frequency 

component in the image has a prescribed distribution; here a Laplacian distribution is 

assumed. The moments chosen for matching are the first absolute moment and the 

variance. The method was then applied to the 78 images to estimate the noise level. Table 

6.4 shows the results of these trials. The last two hnes of the table indicate the average and 

standard deviation of the estimates computed over each image. The precision of the 

estimate for each image is depicted in figure 6-11, the confidence intervals of the estimates 

are illustrated in figure 6-12. 
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Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Image 1 5.2013 7.2694 9.1013 10.9674 12.9027 14.7023 
Image 2 2.8428 5.5582 7.9521 10.1012 123460 14.4396 
Image 3 3.4872 5.9613 &%W9 10/853 125388 143896 
Image 4 4.1473 6.5895 8.5812 10.5792 12.8318 15.0879 
Image 5 1.6135 ^&W5 7.6744 9.8699 12.0782 14.2641 
Image 6 4.2636 6.4677 8.5440 10.4837 12.9867 14.9589 
Image 7 4^873 1.3955 5.8718 8.6760 11.0853 133639 
Image 8 1.8106 53398 7J521 10^^38 121033 14.4289 
Image 9 73575 8.8441 10.4749 12.2460 13.9580 15.9362 

Image 10 13116 5^W21 &1085 1&4486 12.4147 14.4152 
Image 11 2IG30 5^571 7.7222 94718 122276 14.2323 
Image 12 5^926 7j,604 93333 113060 13.2620 153065 
Image 13 1&0Q84 12.7865 14.4631 16.0786 183421 2&0096 
Average 43421 6.4512 &7541 10.8636 13.0059 15IW12 

Std 23800 2.5677 2.0200 1.7719 1.7431 1.6152 

Table 6.4. Results of noise estimation using moment matching. 
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Figure 6-11. Noise estimation on 13 images for 6 noise levels with the moment matching. 
The continuous line is the standard deviation of the noise introduced and the dotted line is 

the estimate of the noise level. 
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Confidence interval; method 1 

.<2 8 

9 10 11 
Noise added 

Figure 6-12. Mean (dotted line) ±one standard deviation (+ marks) of the overall 
estimation, theoretical noise level (continuous line). Moment matching method. 
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6.4.3 Results of noise level estimation using linear regression 

This method is based on a linear regression applied onto a set of normalised moments. The 

full training set is used to generate an overdetermined system of 78 equations. Table 6.5 

shows the results applying this method to the complete training data. The last two rows of 

the table show the mean and standard deviation of the estimates describing the overall 

performance of the method. Figure 6-13 shows the results of the estimates for the 13 

images. Figure 6-14 shows the corresponding confidence interval. 

Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Image 1 4.9610 6.5661 8.2703 9.9522 11.7014 13.3561 
Image 2 5.8633 7.3789 8.9898 10^231 12.2932 13.9885 
Image 3 5.m#7 6.7194 8.4147 10.1510 11.8612 13.4815 
Image 4 4.6870 &43m 8.1266 9.8500 11.6165 133596 
Image 5 4.93M 6.6318 8.3761 10.0574 1L8348 13^300 
Image 6 4.7159 &4M2 8.1332 9.8557 11.5837 13JG95 
Image 7 5.7453 7.4559 9.1359 10.8505 125704 14J921 
Image 8 4.7760 6.5315 8.2532 10.0185 11.7470 13.4619 
Image 9 9.7065 10.7464 11.9210 13J750 14.6526 1&1291 

Image 10 4.7857 6^021 8.1950 9.9839 11.6797 133952 
Image 11 5 J # # 7X%15 &7151 10.3712 12.0687 13.7574 

Image 12 8.8637 10IM21 1L4235 128251 14.2949 15^255 
Image 13 4.5612 &5403 8/4841 10.4101 12JW88 14.3321 
Average 5.6970 7.3105 8.9568 10.6326 123348 14.0114 

Std 1.6508 14239 1.2494 1.1178 1.0036 0.9344 

Table 6.5. Results of noise estimation using linear regression. 
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Figure 6-13. Noise estimation on 13 images for 6 noise levels with the linear regression. 
The continuous line is the standard deviation of the noise introduced and the dotted line is 

the estimate of the noise level. 
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Confidence interval; method 3 

9 10 11 
Noise added 

Figure 6-14. Mean (dotted line) ± one standard deviation (+ marks) of the overall 
estimation, theoretical noise level (continuous line). Linear regression method. 

6.4.4 Performance comparison and noise level estimation using a combined estimator 

To compare the performances of the three methods with respect to the noise level the 

following function has been used 

Ql,- - IA',- ~h\^^ 

Qi» , 
(6.16) 

where jAi and crl, are the averages and the standard deviation of the estimates over the 13 

images and for each noise level U, and H is the number of noise levels. Table 6.6 compares 

the performances over the complete set and with respect to each noise level. 
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Qi, Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Qlm, 

Method 1 3J# 1.66 L55 L47 &50 0.55 9.07 

Method 2 3.04 3J^ 227 1.97 L74 1.66 13jW 

Method 3 1.73 130 1.49 1.67 1.92 10.44 

Table 6.6. Performances of the three methods with respect to the noise levels and over the 

This table shows that in general the first method produces the best estimation. For low 

levels of noise the third method performs better than the other methods while at high noise 

levels the first method has a superior performance. 

To compare the performances of the three methods with respect to the individual images 

the following function has been used 

Q 2 ; - X h ' J + 
i=\ 

Q2,,, = S [ 2 2 j ] 

0116) 

where is the noise level estimated over the image j with noise level o2j is the standard 

deviation of the estimates over the H noise levels, and K is the number of images included 

in the set. Table 6.7 compares the performances over the complete set and with respect to 

each individual image. 
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Q2, Method 1 Method 2 Method 3 
Image 1 6.05 1.11 578 
Image 2 238 735 372 
Image 3 3.99 536 4.98 
Image 4 2.63 &43 
Image 5 4.77 10.44 5J^ 
Image 6 7^4 2.59 &48 
Image 7 16.70 3^1 
Image 8 6.03 9.44 570 
Image 9 19.33 937 17.77 

Image 10 6.63 5 jG 5.97 
Image 11 0^5 9^4 3.98 
Image 12 14.06 239 14.44 
Image 13 3 j ^ 3207 331 

Q2r« 8205 11471 8673 

Table 6.7. Performances of the three methods with respect to the individual images and 
over the complete set of images. 

This table shows again that, in general, the first method produces the best estimates, 

producing the best performances on six images (2, 3, 5,7, 11 and 13). The second method 

is superior on the remaining images (1, 4, 6, 9, 10 and 12), and the third method achieves 

the best performance on only one image (8). 

The results in tables 6.6 and 6.7 demonstrate that the best single algorithm is method 1 but 

both methods 2 and 3 should not be discarded because there are conditions when their 

performances are superior. 

A final approach to noise level estimation is to use a weighted average of all three methods 

discussed. The estimation is based on the average between results from the first and third 

methods, but the first method is substituted by the second when the image contains low 

levels of noise and consequently the cdf evaluation is not efficient to discern the noise. 

Table 6.8 and figures 6-15 and 6-16 describe the result formed by averaging the results of 

the previous methods. Tables 6.9 and 6.10 show that the combined estimator produces 

performances superior in terms of Ql^; and Q2(o,. 
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Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Image 1 3.6025 &3050 8.3966 10.2983 12.2042 14IG90 
Image 2 5.6412 73676 9.1710 10.9688 12.7834 14.2140 

Image 3 4.1850 6.5355 8.5247 10.4647 123155 14J^62 
Image 4 3.3296 6.1263 8.2012 10J:478 12Xn76 13.9970 
Image 5 3.9800 &4231 8.4616 1&3491 12.2990 14.1117 
Image 6 3.3226 6.0885 8.2083 10.1513 121572 13.9521 
Image 7 5J840 7.2250 9X%30 10.9145 127810 14.5799 
Image 8 3.63# 6.2784 8.3320 1&3026 12J^89 14.0692 
Image 9 9.7972 10.8740 12.2630 13.8399 14.3053 16.0326 

Image 10 3.5117 6.2322 8.2831 10.2648 121322 13.9912 
Image 11 5.0544 6.9889 8.8349 10.6546 12.5219 14.3521 
Image 12 8.7896 10.0722 11.5899 13Jj50 13.7785 15.5660 
Image 13 4.2411 &4740 8.5372 10.5380 125997 14.5529 
Average 4.9592 7.1531 9.W#9 10.9269 12.6188 14.4303 

Std 2.0785 1.5368 1.3127 1J782 0.6861 O^dJl 

Table 6.8. Results of noise estimation using the combined estimator. 
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liraos 1 om mrtiixl 

Figure 6-15. Noise estimation on 13 images for 6 noise levels with the combined estimator. 
The continuous line is the standard deviation of the noise introduced and the dotted line is 

the estimate of the noise level. 
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Confidence interval; our method 

10 11 
Noise added 

Figure 6-16. Mean (dotted line) ± one standard deviation (+ marks) of the overall 
estimation, theoretical noise level (continuous line). Combined estimator method. 

Qli Noise level 
5 

Noise level 
7 

Noise level 
9 

Noise level 
11 

Noise level 
13 

Noise level 
15 

Qltot 

Combined 
estimator 

2.12 1.69 IJW 1.25 1.07 1.22 &72 

Table 6.9. Performances using the combined estimator with respect to the noise levels and 
over the complete set of images. 
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Q2i Combined estimator 

Image 1 5 ^ 2 
Image 2 2.50 
Image 3 4.04 
Image 4 &45 

Image 5 4 j 6 

Image 6 &55 
Image 7 L54 

Image 8 5 ^ 4 
Image 9 1&57 

Image 10 5.88 

Image 11 1.95 
Image 12 14.23 
Image 13 2U9 

Q2tot 80J4 

Table 6.10. Performances using the combined estimator with respect to the individual 
images and over the complete set of images. 

The results described relate to the same set of images as used in the training procedures. 

For a more rigorous evaluation of the performance, it is convenient to test the algorithms 

on images outside this set. The noise level has been estimated on the other three images 

(see appendix C): 'Lenna', 'plate', and 'spine'"^. Table 6.11 compares the performances of 

the four methods. It is possible to see that for 'Lenna', the first method produces the best 

estimates and for low levels of noise the third method has the best performance. 

Nevertheless the combined estimator continues to produce the best overall performance in 

terms of Qlfo, and Q2,o,. 

' This is a videofluoroscopic image already contaminated by noise whose distribution is unknown. 
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Noise 
level 5 

Noise 
level 7 

Noise 
level 9 

Noise 
level 11 

Noise 
level 13 

Noise 
level 15 

Qifo/ Q2, 

Method 1 'Plate' 3.06 6 3 3 8.67 lO^W 1 2 j 3 14.97 4.04 Method 1 

'Lenna' 5 ^ 4 7 j ^ 9.23 10.91 13.12 14.84 1 3 2 

Method 1 

'Spine' 7.90 9.00 10.60 12J^ i 4 i m 1259 11^3 

Method 1 

Qi , 2.87 1.87 1.50 1.06 0.93 2J^ 10.44 

Method 1 

Q2m, 17J^ 

Method 2 'Plate' 2 J 3 5 3 4 7.90 9 J 6 1232 14^4 8^^ Method 2 
'Lenna' 5.62 7.50 &41 11.35 1335 15^4 2 J 7 

Method 2 

'Spine' 10.11 12J^ 13.02 15^1 17J^ 18J^ 2&46 

Method 2 

Ql , 4.96 4 J ^ 3 J 4 3.91 3 J 9 2.90 24^8 

Method 2 

38^0 

Method 3 Plate' 4.98 &75 8.44 10.12 11.82 13.63 4 J 9 Method 3 

'Lenna' 5 J 1 7 3 8 9U7 10.85 12.60 1431 2 7 4 

Method 3 

'Spine' 7.63 8.89 10.31 1L66 1121 14.81 %a5 

Method 3 

Ql , 2 4 7 1.77 1J5 &89 1.16 1 3 4 8.88 

Method 3 

Q2,., 1538 
Combined 
estimator 

•Plate' 4 ^ 2 &54 8^6 10.46 1233 14.30 3.99 Combined 
estimator 'Lenna' 5 j 5 7 J g &20 10.88 12.86 14^7 1.90 

Combined 
estimator 

'Spine' 7.46 8.95 10.45 11.92 13^1 1170 &46 

Combined 
estimator 

Ql , 2 3 6 1.37 0.84 &71 L26 8 3 6 

Combined 
estimator 

Q2/., 1536 

Table 6.11. Comparison of the noise estimation methods on images not included in the 
training set. 
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Chapter 7. Results 

7.1 Introduction 

This chapter presents the results of the reduction algorithm described in this thesis and 

compares these results with similar noise reduction techniques based on the wavelet 

decompositions and applying thresholding functions to the components. 

The degree of decomposition, the procedure for noise reduction on the components, the 

choice of the image and the contaminating noise have an influence on the efficiency of 

each technique. The procedure for noise reduction on the components depends on the 

characteristics of the applied thresholding functions. These are characterised by their shape 

and by the values of the controlling parameters. The shape is described by the selected 

thresholding scheme; the parameters are optimised using a training procedure characterised 

by a minimisation algorithm, number of variables of the cost function, value of the cost 

function to be minimised and images used in the training. To evaluate and generalise the 

results, the procedure has been tested for different images contaminated by different noise 

spectra, noise levels and noise realisations. The factors that should be considered 

examining the results can be summarised as: 

1) Number of decomposition levels used (3, 2 and 1 levels). 

2) Shape of the applied thresholding functions (complete and with Ky=0). 

3) Minimisation algorithm used for training the thresholding parameters values: (Simplex 

and Quasi Newton) 

4) Form of the cost function (MSE and WMSE) 

5) Images used in the training (test image and set of 6 images) 
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6) Original image to which the technique is applied (set of 13 images and 3 external 

images). 

7) Level of contaminating noise (6 standard deviation levels between 5 and 15). 

8) Noise realisation (5 different generations). 

9) Spectrum of the noise (white, LP, BF, and HF). 

The next section considers the dependence of the results on the parameters of the training 

procedure. In section 7.3 the results are then extended to consider the dependence on the 

original image and noise characteristics. 

Other noise reduction methods based on wavelet decompositions can use decimated [64, 

65, 69, 71, 82, 83] or undecimated [66, 67, 68, 75] components, and the thresholding 

functions can be selected using fixed or decomposition level adaptive criteria [77]. In 

section 7.4 the results using conventional wavelet methods and those described herein are 

compared. 

Finally, in section 7.5, images are presented to allow one to compare the visual quality of 

results. A limited number of the significant images are shown in this section. A more 

complete set of images is included in the CD-ROM provided with this thesis. 
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7.2 Influence of the training parameters on the algorithm performance 

This section examines how the performance of the algorithm depends on the training 

procedure. The standard deviation level of the noise is assumed known. The indices of 

quality considered are the MSE and WMSE. Training and performance evaluation is 

initially conducted only on the test image (figure 7-1) with A WON contaminating noise. 

Later in this section training is performed on a set of 6 images (figures 7-2) and the 

performance evaluated over these images. The generalisation of these results is the object 

of the next section where a set of 13 images and different noise types are considered. 

% 

Figure 7-1. Test image. 
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^ G 
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S o u r c e - P i c t u r e 

Figure 7-2-a. First image of the set composed of six images ('graph'). 

i 

Figure 7-2-b. Second image of the set composed of six images ('girl'). 
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Figure 7-2-c. Third image of the set composed of six images ('interview'). 

Figure 7-2-d. Fourth image of the set composed of six images ('tree'). 

142 



Chapter 7. Results 

nd (#cili« M l « w p i M diWincL Nam l i b * tmmpof cum «l 
N to t * c w turn poon l«gum odioque c i v i j d t Et l«m#n in buidim 
lecun modur ess nequo nonor e! imper nod libidrnj gsn epuiar et 
o l w opli* congu# mhil w t impedil doming id quod mwim 
^ cupidiut. quM nulla p<»id om umdanl »mp«)b pi iy m nuiL IM 
i lhmmtd ui toercmd m«gin *nd »i dodacendeniM vidMniur. El 
yw v*f# laiio ban* «»no: M iu iwum. laquilatad lidam. Niqu# 
isum dolor sit amei. consectotur adipiseino alit, sad diam nonumy 
I mmpof inctdum ut labota at dolora magna aliquam arat volupal 
I ad mmim vemam. quis nosltud nxaicitaiion ullamcotpor suscipK 
(S) u( afiquip ox ea commodo consaquM. Duis autem eat vel eum 
Of m rapmhandehi in voluoUW valii awa molaMaia conwqual val 
om au <ug'" null: pxwwf. At varo aoi al accmam al iuito odogio 
m qui blandil est eiaeseni luptatum dslenic aigua dyos dolor «t 
J mceptmt sint occaecal cuBidatat non providant, simil tampof 
ulpa qui oKicia doswunt mollii anim id sst (aborurn et dolor (uga 
id deroud facilis ast at expadii distinct. Nam libor temper cum 

eliyent optio est congue nihil impedit doming id quod maxim 
sum dolot sit amet, consectetur attipiscmg alit, wd Oiam monumv 
tempo/ incidunt ut labora at dolors magna aliquant arat volupat 
ad minim veniam. qui: iiostrud oxercilanort ullamcorpor susciois 
fj i ui aliquip «x ea commodo consequat. Duis auism vel sum sst 
)f in reprehendertt in voluptate volil ess9 molsstais consoquat. vel 
jieau tugiat nulla panatur. Atveio eos et accusam et iusto odogio 
n qui Biandit piaosent luptatum delonil aigus duos dolor et qui 
1 axoapWwf SJnt occancat cupidaiat non provident, simil tempot 
alpa qui oHicia deserunt mollit anim id est laborum et dolor (uga 
d dfiteud (a<ilis est et expedit distinct. Nam liber temper Cum et 
I to (acWf turn poen togum odioqus civiuda. £t la men in busdam 
Kxm modut est neque nonor at imper nod libiding gen epuiar et 

" V yui o'licia oawrum mom* anIm Id a * iWnwwm # 
El harumd darawd lacllli aal *r anpadll dWmet. Nam l i b * wm 
eoniciani to lacu* turn poan lagum odioqu* cMwda ( i 
rtaqua p t i r n modul am naqwa nonor at Impar mad ItbWIng oa 
aolula nobii aligani optk congua mWl aai tmpwlll doimlixi Id «* 
raltguard cupldhai, quai nulla p/ald om umdamL Irnpm* p * Y 
poilua imHammad wl coarcand magW and at dodec*nd*n*a# y* 
W i » t I g W vwa tado ban* laniM ai luaiWam, aaqwliaiad 11* 
Lofam Ipiwm dolot :h amal, cowacialur adlp l i t l i ^ #l|i, i#d dW 
aiuamod tempor incidunt ut labor* et dolors magna allquam # 
U( alnlm ad minim vaniam, quia noauud anartliailon wl lwcofp 
laboili ni i i ut aliqulp a» aa commodo cons«qu»l. Quia mutam « 
Itut* doKN In raptahamdatll In volupial* valll aaa# m o l i w l a 
lllLim doloia au kg la i nulla paWaiur. Ai vaw *oa ai accuaam #i ht 
dlgnlaaum qui blamdlt aat ptaasattt luptaium dslanit algua d i * 
molaaUai axcapiaur aim occaacat cupldaiat iwn ptovldeni #li 
sunt in culpa qui ofticia dMerunl mollit anIm id aai labofum w 
Et harumd dereud facilii aai et enpodlt distinct. Nam liber # 
soluta nobis eliBent optlo eit congua nihil impedit doming Id qt 
Lotem ipsum dolor ait amat. consectetur adipiiclng elit, a*d diai 
eiusmod tempor Incidunt ut labor* et dolors magna sliquam m 
UI enim ad minim veniim. qui* naitrud aKstcltation uUatncotp-
laborls nist ut aliqulp ex *a commodo conaaquat Ouis flutem v 
Irure dolor in repretenrfarit in voluptate velil aia# moleitaiB com 
ill um dolor* eu fuglat nulla pariatur. At varo eos at accusant at lui 
digni&sum qui blandtt prsassm luptatum dolanit aigua duos di 
motsstiss BKcapteur sint occsecat cupidaiai non provident, sir 
sunt In culpa qui officia deserunt mollit anim Id est laborum al i 
Et harumd dereud facilia sat er axpedit distinct. Nam llber temf 
consdem to factor turn poen lagum odioque civiuda. Et taman I 
naqua pecun modut est naqua nonor et Imper nad Wbtding gar 

I 

i m 
Figure 7-2-6. Fifth image of the set composed of six images ('text'). 

Figure 7-2-f Sixth image of the set composed of six images ('synthetic). 
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Tables 7.1 compare the MSB (7.1-a) and WMSE (7.1-b) reductions on the test image 

contaminated by 3 levels of AWGN using the parameters obtained by training the test 

image using different settings. Results are compared using: 

a) Nelder and Quasi-Newton minimisation algorithms; 

b) Unweighted and weighted training; 

c) 3 degrees of frequency decomposition: 1 level (4 or 5 cost function parameters), 2 

levels (7 or 8 parameters), and 3 levels (10 or 11 parameters); 

d) 2 shapes for the thresholding function: complete (11, 8, or 5 parameters) and assuming 

Ky=0 (10, 7 and 4 parameters). 

In tables 7.1 and in figures 7-3 the case when no thresholding functions are applied is 

indicated with 0 cost function parameters. 
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MSE 
Unweighted 0 4 5 7 8 10 11 

optimisation, 
Nelder Method 

param. param. param. param. param. param. param. 

Noise level 5 25 14.1 14.1 13.6 13.5 13.5 13.4 
Noise level 10 99.2. 43.2 43.2 40.1 40.1 39.7 39.7 
Noise level 15 226.7 80.5 8CL1 73.0 73.0 72.2 72.2 
Unweighted 0 4 5 7 8 10 11 

optimisation, 
Q-Newton. method 

param. param. param. param. param. param. param. 

Noise level 5 25 14.1 14.1 13.6 13.5 13.5 13.4 
Noise level 10 99.2 43.2 43.2 40.1 40.0 39.7 39.6 
Noise level 15 226.7 80.5 80.1 73 73.0 71.8 71.8 

Weighted 0 4 5 7 8 10 11 
optimisation, 

Nelder Method 
param. param. param. param. param. param. param. 

Noise level 5 25 14.8 15.1 14.6 14.7 14.6 14.7 
Noise level 10 99.2 44.5 45.8 56 51.2 56.3 51.4 
Noise level 15 226.7 130.5 123 119.7 102.1 119.2 101.2 

Weighted 0 4 5 7 8 10 11 
optimisation, 

Q-Newton. Method 
param. param. param. param. param. param. param. 

Noise level 5 25 14.3 15.1 14.1 14.5 14.1 14.6 
Noise level 10 99.2 44.2 45.9 55.9 51 55.1 50.5 
Noise level 15 226.7 13CL7 123.2 115^8 102.2 117.9 100.8 

Table 7.1-a. MSE dependence on the training settings. 

WMSE 
Weighted 0 4 5 7 8 10 11 

optimisation, 
Nelder method 

param. param. param. param. param. param. param. 

Noise level 5 2.5 2.3 2.3 2.1 2.1 2.1 2 
Noise level 10 10.1 8.8 8.8 7.6 7.2 7.2 7.1 
Noise level 15 23.1 19.1 19.1 16.7 15.3 15.3 14.7 

Weighted 0 4 5 7 8 10 11 
optimisation, 

Q-Newton. Method 
param. param. param. param. param. param. param. 

Noise level 5 2.5 2.3 2.3 2.1 2.1 2.1 2 
Noise level 10 10.1 8.8 8.8 7.6 7.3 7.3 7 
Noise level 15 23.1 19.1 19.1 16.7 15.3 15.3 14.7 
Unweighted 0 4 5 7 8 10 11 

optimisation, 
Nelder method 

param. param. param. param. param. param. param. 

Noise level 5 2.5 2.3 2.3 2.2 2.2 2.2 2.1 
Noise level 10 10.1 9.9 9 8 8 7.8 7.8 
Noise level 15 23.1 19.2 19.3 17.1 17.1 l(x5 16.4 
Unweighted 0 4 5 7 8 10 11 
optimisation, 

Q-Newton. Method 
param. param. param. param. param. param. param. 

Noise level 5 2.5 2.3 2.3 2.2 2.2 2.2 2.1 
Noise level 10 10.1 9.9 9.0 8.0 8.0 7.7 7.7 
Noise level 15 23.1 19.2 19.3 17.1 17.1 16.2 l(x2 

Table 7.1-b. WMSE dependence on the training settings. 
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The results in tables 7.1 are obtained using the same image for testing and training. As 

expected, one obtains the best MSB reduction in the presence of unweighted minimisation 

and the best WMSB reduction in the presence of weighted minimisation. The two 

minimisation algorithms produce similar performances but in the following the Nelder 

algorithm has been preferred for reasons of computational efficiency (see section 5.2). 

Figures 7-3 show the MSB (7-3-a) and WMSE (7-3-b) reductions dependence on number 

of cost function parameters respectively for unweighted and weighted training. 

250 

200 -

—•—NOISE STD = 5 

—m—NOISE STD = 10 

NOISE STD = 15 

150 -

MSE 

100 

4 5 7 8 

number of parameters 

10 11 

Figure 7-3-a. Relationship between MSE and number of threshold parameters. 

WMSE 
10 

—•—NOISE STD = 5 

- • - N O I S E STD = 10 

NOISE STD = 15 

4 5 10 11 

number of parameters 

Figure 7-3-b. Relationship between WMSE and number of threshold parameters 
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These figures demonstrate that the number of degrees of decomposition required by the 

method depends on the amount of contaminating noise. When the standard deviation of the 

noise is 15 the largest part of the reduction is achieved with the first 4-5 parameters, 

whereas when the noise level is 5, more degrees of decomposition (and more parameters) 

are required in order to have similar MSE and WMSE reductions. 

The results showed in tables 7.1 and in figures 7-3 refer to the case when the training and 

testing are performed on the same single image (figure 7-1). Table 7.2 and figure 7-4 report 

the results achieved performing training and testing on a set of 6 images (figures 7-2). Each 

of the six images was processed 7 times. The thresholding parameters obtained by training 

on each image individually were applied to every image. A final set of parameters was 

obtained by averaging the six parameter sets. The noise standard deviation is 15 and the 

reduction in WMSE is measured. This provides information about the dependence of the 

performance on the spectral content of the image. Comparing these results one can see that 

using the parameters related to that image produce an WMSE reduction only slightly 

superior to that obtained when the parameters related to other images are used. The average 

set of parameters yields results which are reasonably consistent across the image set. 

The results also show that the method seems less effective on particular images. 

Nevertheless even on these images the method dramatically increases the visual quality. 

WMSE % TRAINED Average 
REDUCTION Im 1 Im 6 I m 7 Im 9 Im 12 Im 13 Parameters 

T Im 1 46.6 4 5 ^ 4 2 7 4L4 40.5 25J 40 
E Im 6 5&2 5L3 4&9 44.1 44 3 2 3 4&5 
S Im 7 5 7 3 5&2 6L2 5&2 5&6 5 5 J 5 4 j 
T Im 9 2 3 3 193 1&4 2 9 3 2%4 13^ 2 6 3 
E Im 12 2L2 1&9 17.8 2A2 2&6 2&1 2 7 ^ 
D I m l 3 6 3 ^ &A6 7 3 j 5 7 ^ 5&7 8L2 65J 

Table 7.2. WMSE dependence on image used in the training. 
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• Imb 
• Im7 

Dlin9 
a im 12 
• Iml3 
O Average 

Im 1 Im 6 Im? I m 9 Im 12 Im 13 

Figure 7-4. WMSE dependence on image used in the training. 
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7.3 Performance evaluation for more general noise conditions 

This section explores the performance of the method for a wider range of conditions. The 

algorithm uses parameters obtained by training on the test image (figure 7-1), 3 levels of 

decomposition and the complete scheme for the thresholding function (11 parameters). The 

performance on the full set of 13 images is considered, with a variety of noise spectra at a 

range of noise levels. 

In table 7.3, WMSE and MSE reduction are shown as percentages for 13 images 

contaminated by AWGN with a standard deviation of 15. The last column shows the 

average percentage of noise reduction on the 13 images. The parameters obtained by 

training on the test image are utilised. 

WMSE and MSE Red % 

Im 10 M i l Im 12 Im 13 

• WMSE optim 

• MSE ontim. 

Table 7.3. WMSE and MSE reductions (in percentage) for 13 images with A WGN having 
standard deviation of 15. 

It is important to note that the set of images includes two images (9 and 12) which have 

very different characteristics from the other images. The noise reducing technique is less 
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effective on these images because of their large high frequency content. If these images are 

omitted the average reductions rise to 66.3 % and 42.3 % for the MSB and WMSE 

respectively. 

In table 7.4, the average MSB and WMSE reductions computed over 13 images are shown 

for six levels of AWGN. The percentage reduction increases with the standard deviation of 

the contaminating AWGN. This is to be expected because these are percentages of 

reduction. The percentage of MSB and WMSB reduction needed to obtain the same visual 

quality increases with the standard deviation of the AWGN. 

100 

90 -

8 0 -

70 -

6 0 -

50 -

40 -

30 -

20 -

10 -

0 

Average WMSE and MSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 15 Noise level 13 Noise level 11 

• WMSE optim. 16.3 27.1 

• MSE optim. 30.4 46.8 

Table 7.4. Average WMSE and MSE reduction for 6 AWGN levels. 

The results presented so far have used computer generated AWGN. The following 

simulation explores the robustness of the results to the realisation of the noise sequence. 

Table 5.7* describes the dependence of the parameters on the noise realisation in terms of 

confidence intervals for the parameters. Using these intervals, the dependence of MSB and 
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WMSE reductions on the noise realisation are shown in tables 7.5. MSB and WMSE are 

evaluated using the sets of parameters obtained by training for each noise realisation. The 

results demonstrate that the numerical realisation of the noise has a very small influence on 

the performance. 

Original 
MSE 

MSE confidence 
interval 

Original 
WMSE 

WMSE confidence 
interval 

Noise level 5 25^ [14.5, 14.7] 2.5 [2.06, 2,08] 
Noise level 7 49 [28.1,28.3] 5 [3.82, 3.83] 
Noise level 9 81 [42.4 42.5] 8.4 [5.99, 6.01] 

Noise level 11 12L8 [59.6, 59.9] 1 2 4 [8.59, 8.60] 
Noise level 13 16&7 [78.2, 79.1] 17.1 [11.36, 11.40] 
Noise level 15 2218 [99.3, 99.9] 2 3 3 [14.85, 14.91] 

Table 7.5. Confidence intervals for MSE and WMSE. 

So far only results considering A WON have been presented. The performance of the 

algorithm will now be assessed when coloured noise is added. Three types of coloured 

additive Gaussian noise are considered. These are obtained filtering white noise with three 

filters having low-pass, band-pass and high-pass frequency characteristics. In this case the 

procedure for spectral estimation (see section 6.2) allows the estimation of the standard 

deviation of the noise in each band. The four types of noise have been normalised so as to 

produce the same total noise power. Tables 7.6 compare the MSE and WMSE reductions 

for white and coloured noises contaminating the 13 images. The standard deviation of the 

AWGNis 15. 
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100 

8 0 -

6 0 -

40 -

2 0 -

0 

MSE Red % 

Im 1 Im 2 Im 3 Im 4 ImS Im 6 Im 7 I m S I m 9 Im 10 I m l l Im 12 Im 13 Aver. 

• White 73.8 58.2 68.1 72.1 66.6 77.2 65.5 73.7 29.9 82.3 63.4 38.9 29.2 61.4 

• LPF 67.1 59.1 68.5 68 71.5 70.7 67.6 75.4 27.8 78.8 62.6 25.8 35.8 59.9 

• BPF 64.8 55.8 65.9 64.7 69.1 68.3 65.6 73.3 23.4 77.2 59.3 20.2 47.6 58 

• HPF 64.8 55.8 65.9 64.7 69.1 68.3 65.6 73.3 23.4 77.2 59.3 20.2 47.6 58 

Table 7.6-a. MSE reductions (in percentage) for 13 images for different types of noise, 
with standard deviation 15. 

100 

8 0 -

60 -

40 -

20 -

0 

WMSE Red % 

J!l. jni 
Im 1 Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 I m 9 Im 10 I m l l I m l 2 Im 13 Aver. 

• White 28.3 24.5 45.9 38.2 41.7 32.4 48.5 50.6 3.8 53.6 39.5 2.2 62.1 36.3 

OLPF 44.4 39.2 51.1 46.6 53.8 47.8 58.9 62.2 15.6 66.8 44.4 8.6 69.6 46.8 

• BPF 46 39.5 50.9 46 53.5 48.6 58.8 61.3 16.7 66.3 43.8 8.2 68.9 46.8 

• HPF 46 39.5 50.9 46 53.5 48.6 58.8 61.3 16.7 66.3 43.8 8.2 68.9 46.8 

Table 7.6-b. WMSE (in percentage) reductions for 13 images for different types of noise, 
with standard deviation 15. 

The percentage of MSE reduction is broadly comparable for all types of noise. Examining 

the images individually, in the majority of the cases the reduction for coloured noises is 
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superior to that in the white noise case. Nevertheless the average MSE reduction for the 

white noise case is superior to that in the case of coloured noise. 

In the case of coloured noise the average and individual reductions of WMSE are always 

superior to the white noise case. 

Tables 7.7 compare the average MSE and WMSE reduction for a range of noise levels and 

follow the trends seen in tables 7.6. 

Average MSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

• White 30.4 37.9 46.8 53.1 59.1 61.4 

• IPF 25.8 39.1 45.8 50.3 55.5 59.9 

• BPF 26.5 38.8 44.2 49 54.4 58 

• HOPF 26.6 38.7 44.5 49.2 54.6 58 

Table 7.7-a. Average over 13 images of MSE reduction for various noise types. 
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Average WMSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

• White 16.3 22.9 27.1 30.5 33.6 36.3 

O L P F 26.6 33.5 38 41.5 44.4 46.8 

• BPF 28 34.3 38.5 41.7 44.4 46.8 

• HPF 28 34.3 38.5 41.7 44.4 46.8 

iSi 

Table 7.7-b. Average over 13 images of WMSE reduction for various noise types. 
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7.4 Comparison with other wavelet based approaches 

This section compares the performance of the method presented in this thesis with the 

performance of other wavelet based approaches. The MATLAB toolbox WAVELAB has 

been used to measure the performance using various decompositions and thresholding 

criteria. Initially in this section the characteristics of the decompositions and the 

thresholding functions of existing algorithms are summarised. The performance is 

compared using the same set of images and identical noises. 

7.4.1 Decimated and undecimated components 

The frequency decomposition is characterised by the digital filters used in the filter banks 

and by the presence (or absence) of down and up sampling operations (also called 

decimation and interpolation). The decomposition employed thus far produces 

undecimated components, so no sub and up sampling operations are used, allowing one to 

select very simple digital filters. The algorithm used for comparative purposes employs the 

same decomposition in which the components are decimated. This decomposition is based 

on a periodized and orthogonal wavelet 2-D transform utilising QMF filters (Coiflet 2) 

[63]. 

7.4.2 Thresholding techniques 

The thresholding functions are characterised by the scheme applied and by the parameters 

used in the thresholding functions. The algorithms used in the comparison assume that the 

image is preliminarily normalised with respect to the standard deviation of the noise. 

Thresholding algorithms are: 
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a) VISUAL. Soft-thresholding is applied and the parameters are the same for all the 

components and depend on the image size [65, 66], 

b) SURE. Hard-thresholding is applied and the parameters are level dependent and selected 

using principle of Stein's Unbiased Risk Estimate [82]. 

c) HYBRID. Soft threshold is applied and the parameters are level dependent and selected 

according to the methods used in a) or in b). 

d) MINIM AX. Hard thresholding is applied, the parameters are the same for all the 

components and are selected from a fixed vector on the basis of the image size [82, 83]. 

e) MAD. Soft-thresholding is applied, the parameters are level dependent and selected 

using the median absolute deviation (MAD) of the pixel values for each level [75, 88]. 

7.4.3 Performance comparison 

The performances of these algorithms are summarised for the 13 images in terms of MSE 

and WMSE reductions; 6 levels of AWGN are considered. 

Tables 7.8 and 7.9 compare the methods discussed in this thesis (undecimated 

decomposition and thresholding criterion based on MSE and WMSE optimisations on a 

single image) with wavelet based methods using the decimated decomposition described in 

section 7.4.1 and the 5 thresholding criteria described in section 7.4.2. 

Tables 7.8 compare MSE (7.8-a) and WMSE (7.8-b) reductions for 13 images and for noise 

level 15. 
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100 
90 ^ 
80 
70 H 

60 
50 -

40 -

30 -

20 
10 
0 

MSE Red % 

Im 1 Im 2 Im 3 Im 4 I m 5 Im 6 I m ? I m 8 Im 9 Im 10 I m l l Im 12 Im 13 Aver. 

• Visual 50.5 42.4 52.4 49.8 52.3 53.9 53.9 54.4 28.7 56.8 48.9 24.6 54.2 47.9 

• SURE 56 11.3 49.4 43.5 51.9 66.7 42.5 58.7 24.6 67.3 29 12.3 45.1 42.9 

• Hybrid 57.8 18.6 48.8 38.7 51.8 62.7 40.7 55.5 22.1 61.6 31.9 11.4 44.3 41.9 

• Minimax 34.3 22.2 40.2 35.6 40.1 41.7 42 44.1 21.7 47.9 34.9 2.6 48.6 35 

I MAD 58.7 19.3 49.6 39.9 52.8 64.1 41.6 56.4 20.2 62.5 32.9 19.7 42.9 43.1 

• WMSE optim. 52.4 46.1 57.7 55.9 56.4 54.8 56.6 59,5 26.4 60.8 54.4 26.9 58.7 52.2 

• MSE optim. 73.8 58.2 68.1 72.1 66.6 77.2 65.5 73.7 29.9 82.3 63.4 38.9 29.2 61.4 

Table 7.8-a. MSE reduction (inpercentage) for 13 images (decimateddecomposition). 
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WMSE Red % 

I y 
Im 2 Im 3 Im 4 Im 5 Im 6 Im 7 

liiiliiih 
Im 8 Im 9 Im 10 dl I m l l Im 12 Im 13 Aver. 

• Visual 23.7 14.5 31.5 25.8 29.1 27.8 35.1 33.9 1.1 40.7 25.4 1.1 42.1 25.5 

• SURE 3.9 9.2 9.2 2.2 9.8 11.8 15.9 15.2 1.9 28.8 5.1 0.3 1.3 8.8 

• Hybrid 20.3 1.2 22.5 7.4 22.9 26.5 27.4 26 2.6 39.6 7.5 0.8 12.3 16.7 

• Minimax 5.6 4.3 18 10.6 13.7 8.8 21.2 23.4 0.7 29.4 13 1.2 35.4 14.3 

I MAD 20.6 1.1 22.6 7.4 23 26.7 27.4 25.9 0.9 38.2 7.7 10.5 16.3 

• WMSE optim. 28.3 24.5 45.9 38.2 41.7 32.4 48.5 50.6 3.8 53.6 39.5 2.2 62.1 36.3 

I MSE optim. 34.7 16.6 29.8 24.2 26.7 34.7 35.7 39.6 0.1 52.2 21.9 0.5 55.1 28.6 

Table 7.8-b. WMSE reduction (inpercentage) for 13 ifHcfges (decimateddecomposition). 
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These tables demonstrate that both unweighted and weighted optimisation produce superior 

averaged MSE and WMSE reductions (see last columns) compared with the decimated 

frequency decomposition with all 5 thresholding criteria. Note that MSE optimisation 

produces the largest MSE reduction for 12 out of the 13 images^, while the WMSE 

optimisation produces the best WMSE reduction 11 out of the 13 images^. 

Tables 7.9 show the average MSE and WMSE reductions for six noise levels. 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Average MSE Red % 

Ull 
Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

nd 

• Visual 27.1 34.3 38.9 42.9 45.9 47.9 

• SURE 2.1 5.3 10.3 19.6 29 42.9 

• Hybrid 2.1 3,8 12.2 20.6 29.3 41.9 

• Minimax 10.2 18.7 24.4 28.2 31 35 

I MAD 1.5 3.7 12.3 21 30 43.1 

O WMSE optim. 29.4 37 42 46.5 49.6 52.2 

n MSE optim. 30.4 37.9 46.8 53.1 59.1 61.4 

Table 7.9-a. MSE reduction (in percentage) for 6 noise levels (decimated decomposition). 

From table 7.9-a one can see that the best alternative algorithm for reducing MSE at all 

noise levels is the visual scheme. The performance advantage offered by the algorithm 

discussed in this thesis reduces at lower noise levels. 

^ The remaining image is the synthetic image (figure 7-2-f) which is a very atypical image. It can be 
observed that for this image the weighted (WMSE) optimisation produces MSE reduction clearly superior 
than the unweighted (MSE) optimisation. 

^ For the remaining two images (figures 7-2-a and 7-2-b) the unweighted (MSE) optimisation performs 
best. 
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Average WMSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

njl 
• Visual 9.9 13.7 17.2 20.5 23.1 25.5 

• SURE 0.9 1.8 2.1 3.4 4.2 8.8 

• Hybrid 0.5 1.1 1.9 6.9 11.1 16.7 

• Minimax 2.4 5.1 7.8 9.9 11.7 14.3 

• MAD 0.6 1.2 1.8 6.9 11.1 16.3 

• WMSE optim. 16.3 22.9 27.1 30.5 33.6 36.3 

• MSE optim. 16 21.7 25.6 26.9 27.3 28.6 

Table 7.9-b. WMSE reduction (inpercentage) for 6 noise levels (decimated 
decomposition). 

From table 7.9-b one can see that in terms of WMSE the visual algorithm once again 

exhibits the best performance of all the alternative schemes at all noise levels. The difference 

in performance between visual and WMSE optimisation algorithm remains around 10% for 

all noise levels considered. 

Tables 7.10 and 7.11 detail the performance of all the wavelet based methods using the 

undecimated decomposition described in this thesis and the 5 diiferent thresholding criteria 

described in section 7.4.2. Tables 7.10 compare MSE and WMSE reduction for 13 images 

at a noise level of 15. 
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100 T 

MSE Red % 

Im 3 Im 4 Im 5 Im 6 Im 7 Im 8 Im 9 Im 10 I m l l I m l 2 Im 13 Aver. 

• Visual 50.3 47.4 49.8 51.1 51.3 52.1 27.5 53.2 46.1 23.8 38.6 44.5 

• SURE 67.9 67 65.6 75.8 70.1 73.4 14.7 78.2 55.8 49.9 55.5 

• Hybrid 65.6 62.1 65.4 67.3 66.5 68.6 34.3 71.2 60.3 32.4 53.9 58.5 

• Minimax 49.3 46.8 48.4 51.3 51.6 53 9.5 54.6 42.2 10.7 40.6 40.7 

I MAD 67.4 64.6 67.2 70.1 68.6 70.8 33 73.9 61.4 32.6 52.9 59.8 

• WMSE optim. 57.7 55.9 56.4 54.8 56.6 59.5 26.4 60.8 54.4 26.9 58.7 52.2 

• MSE optim. 68.1 72.1 66.6 77.2 65.5 73.7 29.9 82.3 63.4 38.9 29.2 61.4 

Table 7.10-a. MSE reduction (in percentage) for 13 images (undecimated decomposition). 

100 

WMSE Red % 

1 
ImlO I m l l I m l z l m l 3 Aver. 

• Visual 

• SURE 

• Hybrid 

• JVuniinax 

• WMSE optim. 

D MSE optmi. 

Table 7.10-b. WMSE reduction (in percentage) for 13 images (undecimated 
decomposition). 
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Tables 7.10 show that, for noise standard deviation 15, using the undecimated 

decomposition the MSE and WMSE reductions are much closer for all the thresholding 

criteria. Nevertheless the thresholding criteria based on the MSE optimisation produces the 

largest average MSE reduction and is the best performing algorithm for 11 out of the 13 

images. As far as the WMSE is concerned, the WMSE optimisation produces the best 

average performance and is the best algorithm for 9 out of the 13 images. The average 

results are extended for 6 standard deviation levels of the noise in tables 7.11. The results 

in table 7.11-a illustrate that the MSE optimisation algorithm produces the best 

performance at all the noise levels with the MAD or Hybrid algorithms achieving the 

second best performances. The results in table 7.11-b illustrate that the WMSE 

optimisation algorithm achieves the best performance at all the noise levels. The 

performance gain being more significant than in the MSE case. 
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Average MSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

• Visual 12.7 25.8 33.1 38.6 42.1 44.5 

• SURE 0.9 17.4 31.6 42.5 49.6 55.5 

• Hybrid 12.4 34.1 44.8 51.3 55.4 58.5 

• Minimax 2.3 16.7 25.4 31.9 36.8 40.7 

• MAD 15.1 34.6 44.7 51.6 56.4 59.8 

• WMSE optim. 29.5 37 42 46.5 49.6 52.2 

• MSE optim. 30.4 37.9 46.8 53.1 59.1 61.4 

Table 7.11-a. MSE reduction (in percentage) for 6 noise levels (undecimated 
decomposition). 
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Average WMSE Red % 

Noise level 5 Noise level 7 Noise level 9 Noise level 11 Noise level 13 Noise level 15 

• Visual 2.6 11.9 17.8 21.8 24.6 27 

• SURE 1.4 2.6 11 17.7 23.2 27.4 

• Hybrid 1.8 14.5 20.4 24.6 28.1 31.2 

• Minimax 2.1 4.7 11.1 15.8 19.5 22.7 

• MAD 2.6 14.3 20.1 24.3 27.7 30.9 

• WMSE optim. 16.3 22.9 27.1 30.5 33.6 36.3 

• MSE optim. 16 21.7 25.6 26.9 27.3 28.6 

Table 7.11-b. WMSE reduction (in percentage) for 6 noise levels (undecimated 
decomposition). 
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7.5 Visual quality analysis 

The evaluation of the visual quality of an image is not a trivial task. This problem is 

compounded when the results are represented on the printed page via a printer. In this 

section some example images are presented and in Appendix C there is list of images 

included in the CD-ROM accompanying the thesis. 

The image selected for the presentation is number 3 of the set. Figure 7-5-a shows the 

image contaminated by AWGN having standard deviation of 15, whilst figure 7-5-b shows 

the de-noised image using the algorithm based on WMSE optimisation. Figures 7-6, 7-7 

and 7-8 show corresponding results for images contaminated by LF, BF and FEF noises. 

To illustrate the abihty of the method to generalise, the method was tested on two other 

images not included in the training set. Image 'Lenna' is contaminated by AWGN with 

standard deviation of 15, and image 'vertebra' is contaminated by a combination of AWGN 

and non-additive noise due to the videofluoroscopic instrumentation employed to acquire 

the image'*. Figures 7-9 and 7-10 show these results. In this case the noise standard 

deviation level is unknown and it is estimated using the combined estimator described in 

chapter 6. 

Two other images are presented to allow one to appreciate the visual differences between 

results obtained for MSB and WMSE optimisations. The images 'girl' and 'plane' are shown 

in figures 7-11 and 7-12. The image 'girl' has been artificially contaminated by AWGN 

while the image 'plane' was already contaminated by typical television noise. A comparison 

between the two optimisations shows that the visual quality of the images obtained using 

the WMSE procedure is superior. It is not trivial to discern the differences between the two 
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de-noised images, nevertheless the images de-noised using the WMSE optimisation can be 

seen to preserve more detail than the images de-noised using the MSE optimisation. In this 

case the noise standard deviation level is unknown and it is estimated using the combined 

estimator described in chapter 6. 

A method to visualise ability to preserve detail and the amount of artefacts introduced by 

the de-noising procedure is to analyse the difference between the noise free image and the 

de-noised image. Figures 7-13 show the images differences when the test image is 

contaminated by A WON with standard deviation level 12 and then de-noised using WMSE 

and MSE optimisations. The amount of features of the noise free image discernible from 

the difference images is a measure of the ability of the method to preserve the detail and 

the presence of 'blocks' is a measure of the distortion introduced. The WMSE optimisation 

clearly preserves more detail than the MSE optimisation and the 'blocks' are hardly 

discernible. 

Another approach to test the visual performance of a method is to use a static sequence of 

images contaminated by a different realisation of AWGN. When the sequence is viewed as 

a video sequence the presence of noise is accentuated by the fact that it changes from frame 

to frame whereas the image remains stationary. Examples of such sequences are given in 

the CD-ROM. 

In order to illustrate the visual quality of the method with respect to alternative wavelet 

based approaches figure 7-14 shows an image processed with the WMSE optimisation 5 

methods based on decimated decomposition and classical thresholding techniques. The 

noise free image is contaminated by AWGN with standard deviation 15. The blocking 

This signal dependent type of noise has statistical characteristics not completely understood and its study 
is beyond the scope of this work 
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artefacts are less evident in the image processed with the WMSE optimisation than in the 

images processed with the classical wavelet based methods. 

( m i 

m 

Figure 7-5-a. Image contaminated by white noise. 
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Figure 7-5-b. Image contaminated by white noise after de-noising. 
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Figure 7-6-a. Image contaminated by LF noise. 

168 



Chapter 7. Results 

•'••'' ^ 'Vj l 
f*y 

, I 

':-'l W I % 
1 

I 3 

Ji'fy 
' " / c L 91 i 

..bJL,--

Figure 7-6-b. Image contaminated by LF noise after de-noising. 
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Figure 7-7-a. Image contaminated by BF noise. 
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Figure 7-7-b. Image contaminated by BF noise after de-noising. 
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Figure 7-8-a. Image contaminated by HF noise. 
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Figure 7-8-b. Image contaminated by HF noise after de-noising. 
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Figure 7-9 Image 'Lenna' contaminated by AWGN and after de-noising. 

% 

Figure 7-10. Image 'Vertebra' contaminated by AWGN and non-additive noise and after 
de-noising. 
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Figure 7-11-a. Image 'girl' original. 

Figure 7-11-b. Image 'girl' contaminated by AWGN. 
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•• 

Figure 7-11-c. Image 'girl' after de-noising using MSE optimisation. 

Figure 7-11-d. Image 'girl' after de-noising using WMSE optimisation. 
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Figure 7-12-a. Image 'plane' original (noisy). 

Figure 7-12-b. Image 'plane' after de-noising using MSB optimisation. 

Figure 7-12-c. Image 'plane' after de-noising using WMSE optimisation. 
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Figure 7-13-a. Dijference between noise free image and image contaminated by AWGN 
with std level 12 and de-noised using WMSE optimisation. 

Figure 7-13-b. Difference between noise free image and image contaminated by AWGN 
with std level 12 and de-noised using MSB optimisation. 
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Figure 7-14-a. Image de-noised using WMSE optimisation. 
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; 
Figure 7-14-b. Image de-noised using decimated wavelet decomposition and Visual based 

thresholding. 
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Figure 7-14-c. Image de-noised using decimated wavelet decomposition and SURE based 
thresholding. 
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Figure 7-14-d. Image de-noised using decimated wavelet decomposition and Hybrid based 
thresholding. 
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* 

Figure 7-14-e. Image de-noised using decimated wavelet decomposition and Minimax 
based thresholding. 
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Figure 7-14-f. Image de-noised using decimated wavelet decomposition and MAD based 
thresholding. 
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Chapter 8. Conclusions and Further work 

8.1 Introduction 

The subject examined in this thesis is the reduction of spatial noise on video images. The 

approach used is based on the wavelet decomposition. The basic elements of a wavelet 

based noise reduction method are the filter bank used to decompose the image and the 

method used to reduce the noise on the components. The decomposition applied in this 

work has been described in chapter 3 and the related conclusions are presented in the next 

section. The method utilised to reduce the noise on the components employs non-linear 

functions to threshold the pixel values. These functions are characterised by a shape 

common for all the components and by a number of parameters characterising the function 

for each component. The new shape utilised in this work has been detailed in chapter 4 and 

the relevant conclusions are presented in section 8.3. The parameters have been selected 

using a training procedure that is presented in chapter 5 and the conclusions deduced from 

this procedure are presented in section 8.4. The parameters of the thresholding functions 

are dependent on the standard deviation of the noise contaminating the image; 

consequently a procedure is required to estimate this quantity. The estimator utilised in this 

work is illustrated in chapter 6 and conclusions about its performance are given in section 

8.5. In chapter 7 the performance of the noise reduction approach presented in this work 

has been evaluated on a set of images and for white and coloured additive Gaussian noises. 

In chapter 7 the approach has also been compared with other wavelet based noise reduction 

approaches. The conclusions concerning chapter 7 are presented in section 8.6. Finally, 

section 8.7 illustrates the potential extensions of the methods and discusses the areas where 

further investigation is required. 
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8.2 Wavelet decomposition 

In chapter 3, the wavelet analysis theory leading to the design of filter banks for 

decomposing images was presented and an innovative bank was presented. In this bank the 

decomposition is performed utilising a tree bank derived from a biorthogonal set of basis 

functions and produces undecimated components. The absence of decimation simplifies the 

selection of the filters and allows shift invariance. The price paid is an increase in 

computation and memory due to components having constant size. 

In the absence of the aliasing introduced by the decimation, the filter design procedure to 

obtain perfect reconstruction is constrained only by a non-distortion condition. This 

reduces dramatically the complexity of the filters and allows the synthesis step to be a 

simple summation of components. The absence of decimation also reduces the very 

unpleasant visual artefacts due to shift-variance. The size of the components to be 

thresholded is constant and equal to the size of the original image. This computational 

burden is partly compensated for by the decrease in the number of filtering operations 

required. 

In this work a very simple non-orthogonal set of filters^ has been utilised and the 

characteristics of these impose the concurrent training of all the thresholding functions to 

obtain the noise reduction over the entire image. This choice causes an increase in 

complexity in the training procedure precluding parallel, independent training of the 

components. 

The number of levels of decomposition used has a strong influence on the complexity of 

the algorithm. The results of tests performed, and presented in chapter 7, show that the 

' This set has been derived from a biorthogonal set 
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number of decomposition levels needed to obtain an efficient noise reduction depends in 

general on the level of contaminating noise. Moreover it has been demonstrated that there 

are certain images having spectral distributions that require either a different 

decomposition scheme or a larger number of decomposition levels in order to be de-noised 

efficiently. 
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8.3 Shape of the thresholding functions 

Chapter 4 considered the shape of the thresholding functions to apply to the components. 

Two shapes (soft and hard thresholding) have been widely used in the literature. The 

chapter analysed the relation between the shape of the thresholding functions and the 

statistical distribution of the components derived from the wavelet decomposition. 

For practical reasons it is convenient to use a common shape for all the components, but 

the totality of the statistical distributions of the components is difficult to model using a 

single PDF. The distribution of each component is sensitive to the distributions of both a) 

the complete image to which it belongs, and b) the band related to that component. Optimal 

thresholding shapes have been deduced from theoretical statistical distributions using 

Bayesian estimation. A new shape has been defined using a parameterised family of 

piece wise linear functions approximating these optimal shapes. 

The new shape is optimal with respect to a large number of statistical distributions for the 

components. This number is larger than in the case of the thresholding schemes used in the 

literature. Nevertheless the shape requires a superior number of parameters to be 

characterised compared with soft and hard thresholding schemes. This drawback has been 

almost completely eliminated using simplifications of the scheme able to reduce the 

number of parameters required and concurrently maintaining the advantages of the scheme. 
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8.4 Parameters of the thresholding function 

Chapter 5 examines the problem of selecting the parameters characterising the thresholding 

function for each component. This selection is performed using a training procedure in 

order to minimise the noise on images contaminated by white noise. The influence of 

several factors on the training has been examined: the minimisation algorithm used, the 

number of parameters and the form of the cost function, the level and the realisation of the 

noise contaminating the image, and the spectral distribution of the training image. 

Three minimisation algorithms have been tested and they are shown to produce similar 

parameters. The results in chapter 7 show that the parameters derived from two different 

algorithms produced comparable noise reductions. The Nelder (Simplex based) algorithm 

is preferred because it has been demonstrated to have superior convergence properties 

compared with the other two algorithms considered. 

Simplifications to the shape of the thresholding functions have been presented and they 

prove to be able to dramatically reduce the number of parameters and consequently to 

simplify training. The training can also be simplified by reducing the number of parameters 

through a reduction of the number of levels of decomposition. Nevertheless, as stated in 

section 8.2, the results in chapter 7 demonstrate that the number of decomposition levels 

needed to obtain satisfactory performance depends on noise level and spectral distribution 

of the image. Consequently a general optimal number of levels cannot be selected in 

general. 

Two cost functions have been considered that aim to reflect the visual quality of an image. 

The mean square error (MSB) is the simplest index but fails to reflect the visual noise 

reduction. The noise has a more unpleasant visual impact over some frequency bands than 
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over others because the human eye is frequency sensitive. A weighted version of the mean 

square error (WMSE) has been considered and it has been shown that this index was 

reflecting theoretical models related to the human visual system. The thresholding 

parameters obtained by minimising MSE and WMSE are different and in chapter 7 the 

quantitative performance using the two cost function values are compared. This qualitative 

analysis of the images shows that the WMSE produces superior visual performance when 

compared with the MSE. 

The effect of noise level and realisation on the results of training has been examined. It has 

been shown that, using training from a single image, the majority of the parameters have a 

near linear dependence on the noise level. Employing this approximation produces a 

dramatic reduction in the complexity of the noise reduction procedure but serves to 

emphasise the need for a noise level estimation procedure. The training has been tested on 

one image contaminated by different noise realisations. The parameters derived show that 

the influence of the noise realisation is very small and mainly only affects the parameters 

related to the first level of decomposition (high frequencies). 

To understand the relation between the image spectral characteristics and the thresholding 

parameters is not a trivial task. The training has been applied to six images in order to 

examine the differences in the parameters derived. The parameters from the training were 

significantly influenced by the image used, nevertheless in chapter 7 it has been shown that 

the performance of the method in terms of WMSE is only slightly degraded by using an 

average set of parameters. This demonstrates that this average produces reasonable 

performances for all the images included in the set. 
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8.5 Noise estimation 

The parameters derived from training depend on the noise level on each component. The 

problem of estimating the noise level on each component is treated in chapter 6. The noise 

contaminating the image is assumed to be white or coloured, additive and Gaussian. In the 

presence of white noise estimating the noise level on one component is sufficient to infer 

the level of the noise contaminating all the components. Three noise level estimators and a 

combined version of these have been proposed. Two performance indices are considered to 

analyse the estimator performance over sets of 13 images and 6 noise levels. When the 

noise is coloured information regarding the noise spectral distribution is required. A 

procedure for the estimation of the noise spectral distribution has been presented. 

The performance indices demonstrate that the estimator based on the analysis of the 

cumulative distribution function obtains, in general, the best performance. Nevertheless the 

two indices demonstrate that the other two estimators (based on moment matching and 

linear regression) produced performances superior for several images over a range of noise 

levels. This indicates that the performance of the noise level estimators depends on image 

and noise level. The three methods considered seem to cover a large class of images and 

noise levels, and one solution is to average their estimates. Using the average of the three 

estimates has been shown to produce a performance superior to any individual method over 

the set of images and at various noise levels. Further, these results have been shown to 

extend to images not included in the training phase of these methods. 
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8.6 Noise reduction results 

Chapter 7 analysed the performance of the noise reduction method in terms of MSB, 

WMSE and a subjective judgement of visual quality. The influence of the decomposition 

and thresholding function characteristics on the results has been evaluated using a single 

image and a set of 13 images contaminated by white and coloured noises. Finally the 

performance of the method has been compared with the performance of other wavelet 

based schemes. 

Analysing the dependence of the performance on the decomposition, thresholding function 

shape and training, the optimal choices resulted in: 3 levels of undecimated decomposition, 

shape of the thresholding function with the first simplification (11 parameters), training 

based on the Nelder algorithm to minimise MSB or WMSB. The performance has been 

tested for on the set of 13 images contaminated by 6 levels of noise. 

The amount of MSB and WMSE reduction increased with the level of contaminating white 

noise. The performance averaged over 13 images in the range of noise levels between 5 and 

15, went from 30.4 % to 61.4 % and from 16.6 % to 36.2 % respectively for MSB and 

WMSE. The performance of the method depends on the image being analysed. In particular 

two images had a noise reduction significantly lower than that seen for other images. This 

has been interpreted as being a result of the high spectral content of these images in the 

high frequency bands and it is a limitation of the method. Fortunately this type of frequency 

distribution is uncommon in most video images. Omitting these two images from the set, 

the average reduction percentage rises to 66.3 % and 42.3 % for MSB and WMSE 

respectively for noise level 15. 
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The subjective judgement of the quality of the images obtained by optimising the MSE and 

the WMSE showed a preference for the WMSE method over the MSE. The analysis of the 

visual quality of images de-noised using WMSE and MSE optimisation is hard, 

nevertheless using images derived from the differences between the noise free and the de-

noised images it was shown that the WMSE optimisation preserves more detail than the 

MSE and introduces a small amount of artefacts. This confirmed that the MSE fails to 

incorporate any perceptual model. 

The performance has been evaluated when the images are contaminated by three types of 

coloured, additive and Gaussian noises. The performance is compared with the 

performance in the presence of white, additive and Gaussian noise. Different levels of 

noise contamination in the components results in the use of coloured noise and a procedure 

of spectral noise estimation has been applied. In order to compare the performance the four 

types of noise (three coloured and one white) have been normalised so as to produce the 

same total noise power. The results showed that MSE and WMSE behave differently. The 

MSE reduction in the presence of all the types of noise is roughly comparable with that 

obtained for white noise, whilst the WMSE reduction in the presence of coloured noise is 

superior to the reduction obtained in presence of white noise. The justification of this 

characteristic of the WMSE case is as follows. The coloured noises considered here (see 

figure 6-4) have more power in the frequency band that the WMSE concentrates on (see 

figures 5-5 and 5-6). Consequently a superior level of reduction is achieved. It is noticeable 

that this effect depends on the filter design. 

Wavelet based approaches characterised by decimated or undecimated decomposition and 

by five thresholding techniques have been tested and compared qualitatively and 

quantitatively with the weighted and unweighted methods presented in this work. The 
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weighted and unweighted methods are shown to perform, in general, better than previously 

proposed methods. To ensure an appropriate comparison, the previously proposed methods 

were implemented using the undecimated decomposition described in this thesis. A 

decimated decomposition was also tested using a filter bank based on a 2-D orthogonal 

basis (see section 7.4.1). Soft and hard thresholding schemes were considered and level 

dependent or fixed criteria for selecting the thresholding parameters implemented. The 

performance was analysed in terms of MSE and WMSE reduction using a set of 13 images 

and 6 levels of noise. As far as the decimated decomposition was concerned the results 

showed that, on average, weighted and unweighted methods produced the greatest MSE 

and WMSE reductions. These results demonstrate that the proposed combination of the 

undecimated decomposition and the thresholding technique contributed to the efficiency of 

the methods. As far as the undecimated decomposition was concerned the results show 

that, on average, the methods presented here performed best. However in this case the 

differences in performance were significantly smaller, indicating that the use of 

undecimated decomposition is the single most important factor generating the performance 

enhancement observed. 
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8.7 Further work 

A large number of areas could be investigated in order to develop this research. 

Other types of filters could be tested in order to assess the influence of the decomposition 

on the noise reduction. Using orthogonal filters increases the computational complexity of 

the filtering and consequently cost of implementation, but facilitates the training permitting 

the use of parallel optimisation of all the components. This could be very useful for 

extending the method to other classes of images. 

The tests showed also that for two of the images considered the decomposition is not 

efficient in separating the noise as was the case for the other 11 images. This could be due 

to the number of decomposition levels applied or to the geometry of the filter bank used. It 

could be interesting to evaluate the efficiency of existing criteria based on the analysis of 

the entropy or the energy of the image [103, 104, 105, 106]. These criteria may be able to 

define when to increase or to decrease the number of decomposition levels applied and 

how to modify the geometry of the filter bank utilised in the decomposition. 

The optimal shapes for the thresholding function can be deduced by assuming specific 

statistical distributions for the components of noise and image. In this work a limited 

number of distributions has been considered. The estimation of other optimal shapes from 

other statistical distributions could provide precious information. It could be also attractive 

to deduce an expression for the statistical distribution of the image components from the 

functional form of the thresholding functions proposed in this thesis. 

Three algorithms have been tested for minimising two cost functions. Alternative 

algorithms and cost functions could be examined. Other algorithms could speed up this 

procedure. The cost function used in the training aims to represent the visual quality of the 
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image and other cost functions could be used that better reflect this index. The analysis of 

the influence on the visual quality of the weighting filter utilised in the applied cost 

function could also be interesting but unfortunately the judgement of the visual quality is 

not a trivial task. 

The presented noise level estimator when the image is contaminated by white noise 

analyses the high frequency band in order to evaluate the noise level on all the components. 

In coloured noise environments the noise level on each band has to be estimated 

independently. It would be useful to have a noise level estimator able to operate directly on 

all the components or at least on the majority of them. A solution could be to extend to all 

the image components the estimators that use training on sets of images and noise levels by 

introducing parameters able to characterise the spectral distribution of the noiseless image 

on each component. 

Finally, the results described are very promising and demonstrate the efficiency of the 

procedure in many circumstances. Other images and noise distributions could be 

considered to understand the limitations of the method. In particular it would be interesting 

to consider images contaminated by Gaussian multiplicative noise and to see if using the 

logarithmic transform the method produces performance comparable with the case of 

additive noise. 
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A.l BFGS Quasi Newton algorithm 

The goal of the quasi Newton or variable metric methods is to accumulate 

information from successive line minimisations so that N of these lead to the 

minimum of a quadratic expression. There exist many algorithms included in the 

category; in this section the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method 

is described. 

The information is stored and updated in a matrix of size N x N . The method starts 

with the hypothesis that the function to be minimised, f(x), can be locally 

approximated around an initial point P using the Taylor series by the quadratic 

form: 

n , „ xgs df 1 d f , 1 . 
yrx) = / ( P ) + 2 3 — + - 2 % — + . . . = c - b . x + - x . A . x 

c = / ( P ) 

b = - y / ' | 
J IP 

TAl 
[AL = z X,.x ' J 

P is the point that has been taken as the origin of the system with coordinates x. 

The parameters A (Hessian matrix of the cost function) and b (gradient of the cost 

function) are unknown. The method iteratively builds an approximation of the 

matrix A"' by constructing a sequence of matrices H, so that 

H,. ) A ' (A.2) 

From (A.l) it results 
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V/ = A - x - b (A.3) 

The minimum point x,„ then satisfies (if the gradient vanishes) 

A = b (A.4) 

At the same time, for each point x, we have 

A x , = y / r x j + b (A.5) 

Subtracting these two equations and multiplying by A"'', one obtains 

= A ' ( - y / r x j ) (A.6) 

In this expression, the left side is the finite step to be taken to arrive to the 

minimum, the right side is known once a sequence of H has been determined. One 

step of the procedure can be described as follows. Subtracting (A.6) from x, gives 

a new search point Xi+j and leads to 

(A.7) 

This is the step from x,- to x;+;. Assuming that the new approximation H;+; is such 

that H/+; = A' \ then one has 

"m-", =H„,(vyfx,. ,;-V/Cx,j) (A.8) 

In the BFGS algorithm the updating formula for H has the form 
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' K , - x , . X y # x , . + j - y / r x j ) 

[H, (y/rx,+.; - w , j)]® [H, (y/rx,+.; - y/r^,;)], (/L9) 

(y/rx,+, j - y/Tx j )H , (y/rx,+,; - y/rx,;) 

+ [(y/Tx,,, j - y/rx, ))H, (y/rx,+, j - y/rx, j)]u ® u 

In this expression ® indicates the outer product, and 

X „ , - X , H , (V / (x„ , ) -V / (x , ) ) 

( ' ' „ , -Xi ) (y / ' (x„ , ) -V/ (x , ) ) (V/ (x„ , ) -V/ (x , ) )H, (V/ (x , . , ) -V/ (x , ) ) 

(A.IO) 

In the work presented in the thesis, the line minimisation criterion used is a mixed 

quadratic and cubic procedure. This algorithm requires the computation of the 

first derivative at each step. A limitation of the algorithm is the heavy 

computational burden. Another limitation is the assumption of quadratic shapes 

for the error surfaces related to each parameter. In the image noise reduction 

application tests demonstrated that, for the error surfaces related to some of the 

parameters, the quadratic approximation is not suitable. Moreover the 

convergence speed of this algorithm is in general inferior compared with the other 

algorithms. 
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A.2 Downhill simplex (Nelder) algorithm 

This method for multidimensional minimisation requires, like the BFGS 

algorithm, only function evaluations and not derivatives. # + l points are selected 

to identify a geometrical figure in N dimensions, called a simplex. The procedure 

tends to the optimum using three operations; reflection, contraction and 

expansion. The method requires three parameters: an acceleration factor a { a > 

1), a contraction factor /S (0 < jS < 1), and a reflection factor y. If Po is the starting 

point, the other N points P,- which define the initial simplex are given by: 

P;. = Pg + Ae. / = 1,...7V (A. 11) 

where e, are the N unit vectors and A (potentially different in every direction) is a 

constant depending on the scale of the problem. The logic of the procedure is 

determined by the evaluation of the function in each comer of the simplex. Call P/j 

the point where the function has the maximum value yn, and P/ the point where the 

function has the minimum value yi. At each step the point P/, is moved through the 

opposite face of the simplex (reflection). Three circumstances can occur. 

1) The function value in the reflected point lies between yn and yi, then this point 

replaces the old to create a new simplex. 

2) The function value in the reflected point is smaller than yi, then a new 

minimum has been produced and an expansion of this point is performed. 

2-a) If the expansion produces a new minimum, the reflected and expanded 

point replaces the old point. 
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2-b) If the expansion does not produce a new minimum, the reflected and not 

the expanded point replaces the old point. 

3) The function value in the reflected point is bigger than the function values in 

the points for all the h, then the procedure defines a new maximum to be 

either the old P/, or the reflected point, whichever has the lower function value, 

and a contraction is performed. If the reflected and contracted points have a 

function value bigger than the smaller of the reflected point and the old 

maximum, all the P .̂ are replaced by (P^+Pi)/2 and a new simplex is generated. 

Otherwise the reflected and contracted point replaces the old point. 

The termination criteria can be when: 

a) the vector distance moved in a step is a quantity smaller than a specified 

tolerance, or when 

b) the decrease in the function value in a step is smaller than a second tolerance, 

or when 

c) the number of steps reaches a prefixed limit. 

The definition of the initial simplex has significant influence on the convergence 

speed. Therefore the criteria used for the selection of the N points around the 

initial point is fundamental in the implementation here. The value 0.1 (10 %) was 

used as a percentage increment if the starting point was close to the origin, and the 

value 0.2 (20 %) was used if the algorithm started away from the origin. The 

factors of acceleration, contraction, and reflection are set to 1, 0.5, and 2 

respectively. Tests demonstrated that the MSE and WMSE error surfaces, after a 

certain number of steps, are more efficiently explored by the simplex generation 

than proceeding with further steps of the algorithm. It is then advisable to apply 
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this algorithm for a limited number of steps, using c) as termination criteria, and 

restart it from that solution point. 500 iterations and 4 restarts of the algorithm 

were employed. 
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A.3 Differential evolution algorithm 

The previous method is a member of the category of direct search minimisation 

algorithms. Another member of this category is the differential evolution 

algorithm. This algorithm has, like the Nelder algorithm, a self-organising scheme 

and uses the vector population to alter the search space. The difference between 

two vectors randomly selected in the population is utilised to perturb an existing 

parameter. The perturbation for every population vector can be performed 

independently or in parallel. 

The methods utilises N vectors as an initial population for each generation G. A 

preliminary population (and not a single initial point) is required to cover the 

entire parameter space. The basic strategy of this algorithm can be described by 

several operations. 

• Mutation. For each target vector (/=!...AQ in a generation G a mutant 

vector is generated 

'̂ /.G+l ~ r̂l.G ^(^r2,G ^ r̂3,G ) (A. 12) 

The indices rl, r2 and r3 are random integers G{1. . .A^} mutually independent 

and different from the running index i. The parameter F is real, constant, e [0 2], 

and controls the amplification. 

• Crossover. To increase the diversity of the perturbed vector. The trial vector is 

formed 
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î,G+l ("l/,G+l' ̂ 2/,G+l ' ̂ 3i,G+l • "̂ Mf.G+l ) 

with 

Vji,G+i if (randb(j) < CR) or j = rnbr(i) (A. 13) 

ji,G U.. g if (randb(7) > CR) and j = rnbr(0 

In this expression randbO) is the evaluation of a uniform number generator 

with outcome G [0 1], C7? is a constant E [0 1], and rnbr(Z) is a randomly 

chosen index 6 {1.. .N}. 

• Selection. The criteria to decide whether or not to include the newly generated 

vector in the population is based on a comparison between the cost function 

values in Uig+j and X,;G-

This algorithm is an attractive solution when the training procedure can be carried 

out using parallel processors. This was not the case of the training procedure 

described in this thesis where this algorithm exhibits slower convergence than the 

Nelder algorithm. 
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B.l Laplacian image model 

In this case 

and 
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(B.l) 

p(v/u)= \=e 
(7 ,V^ 

08 2) 

The MAP optimal estimator is evaluated by solving 

9lOg{p(M/v)} 

du 
— 0 

A i o g | x w « ) x » ) L o 

I ;;(v) j 083) 

— l o g { p ( v / » ) ; ? ( » ) } = 0 
dw 

Substituting the condition becomes 

8 j (v-w)^ V2 

aw I ZeJ a . 
M = 0 

v-u 

Oq or. 
sign(u) = 0 

II = y sign{u) 
a., 

(B.4-a) 

^ „ - > 0 

V u = 0 

V + • M < 0 
A 
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v > 0 
a.. 

0 V = 0 (B.4-b) 
2 

!' 

V + - v < 0 
cr„ 

The LMSE optimal estimator is evaluated by solving 

\upiu/v)du- fw ^ ^ u p u (B.5) 
:L :L jpfv) ;)(v) 

Solve for p(v) 

;)(v) = 

-(v—w)" y— — 

2̂ .' V2 — 
V2|u| 

e du 
V2 

cr„ 

, -(v-M)" -^F2\U\ 
g 2c, g 

0 +42ii 
je e "" du+ ^ 

-{v-u)~ ~^ii 

g 2*, g a, 

08 6) 

Using 

c = 

1 

V 

= A _ 
V 

< 
2 

V 

OB 7) 
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the result is 

P(v) CB8) 

and because 

2V^ ' 

R U \ 

y 2'\/^ J 
OB 9) 

one can write 

p(v) = 
2V^ 

M 
4a + • 

2-\fa 1 2Va 
gTyk 

y 24A J 
(B.IO) 

But 

2 v" 2vV2 
.2' + —T + ' 

, vV2 + -v ' < v ' vV2 v" 

4a J L SkT; cr 
(Tf 

2 i / 2vV2 

H 

4a 

. 2 + _ 4 

2 _ o ^ a ; i / _ a ; yZ v j 2 i / (Tj vV2 

2 2&f ^ 2& 
7? W q cr. 

A: 

2V^- - - o r . +oyV2 

V2 V 

c* e , _ o . 

2V^ V2 cr„ (J^ ^2 

(7. 
(B.ll) 
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Then finally 

P(v) e " 

V2, o . . 

vV2 / 
• + 

(T,V2 

-vV2 / 
+ e "" erfc 

(T.V2 
(B.12) 

Solving now for the numerator 

up(yl u)p{u)du 
0 -jv-u)' +V2m 

Jwe e "" du+ ^ 
-jv-u)" ~-j2u 

ue e "" du (B.13) 

Using again (B.7) results in 

+00 

^ up{vIu) p{u)du 

1 1 

1 1 

(T,o-^V^ 2a 

0 0 

0 
3 

(B.14) 

Solving the integral as before 

up{vl u)p{u)du 

V i 
g gr/c 

V 2 V 

cr„ A 

\ 

vVz 
g g(^ 

V 

(T,V2 
yj 

• + 

(T. (T^VZ ^ 
+ 

(B.15) 

The resulting expression is 
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V 2 V 

(T„ AL 

a, 

cr. 

V i 
g' ' ' ' g(^ 

(7„ 

<^U CF M 

&y/acw%/% vV2 
e '^" erfc\ 

o.. 
• + 

cr. (T,V2 

-vV2 
1+ e "" e//c| 

V 

(B.16) 
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B.2 Generalised Gaussian image model 

In this case 
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I+& 

O , . 

r 

a + ) 8 J r 
1 

(1 + )8J 

•°° <U < OO 

CW.) 

1 

| a - A ) 
<1 

and 

(B.17) 

p(v / w) : 

( v - g ) -

o-^V^ 
(B.18) 

The MAP optimal estimator is evaluated by solving 

8log{p(w/v)} n 

aw 

j , , fp(v/»i)p("')1 0 

du I p{v) [ 
(B.19) 

-log{p(v/M)p(w)}=0 

Substituting the condition becomes 
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2 
du 

v-u 

(T. 

2(7 
V 

u 1+A 

I-A, 

W 1 + & 

= 0 

j'ZgM(w) = 0 

(L + PJAJ""-

In the particular case when Pu=0 

(B.20) 

C(0) = -
2 

v - w w 
0 (B.21) 

(7., 

MAP 2 2 
CoMjjfan U ̂  T 

The LMSE optimal estimator is evaluated by solving 

••LMSE [;%,(«/v)dk( = (23 2,2) 
:L jP(v) 

In this case the solution has no closed analytical form and it is 

i(A) 
J 

-{v-uY 

2(r# 
we * g 

l+f. 
du 

LMSE 

-(v-w)-
je 

c(A) 

(B.23) 

In the particular case when Pu-0 
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ue 

- ( v - » ) - u-

du (B.24) 

"LMSE -{v-uY 

2^ _2^ e du 

If 

1 1 

2(7̂  

1 
(B.25) 

It results in 

V 

2OL 

-(fzw+Aw+c) 

jg-W'+6«+c) jg-(m,:+6«+c) + j ( ,-(of<"+6u+c) du 

j w g ( Z w + j -(aw'+̂ w+c) du 
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J _ 
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Then finally 

cr̂  
^LMSE ~ 2 " 2 ~ ^MAP (B.27) 

Gaussian (7^ + (J ̂  Gaussian 
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C.l Documents 

This Appendix presents the documents including the results of noise reduction 

tests performed on images in order to assess the performance of the method. 

These documents are: 

1. Images.ppt. This is a PowerPoint presentation including 108 images. The de-

noising is performed on images contaminated by white and coloured noises. 

2. Seql.avi and Seq2.avi. These are two videos in AVI (video for windows) 

non-compressed format, describing the static sequence of images 

contaminated by white noise where the de-noising technique has been applied. 
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