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Many real word images are often contaminated by noise. Noise reduction techniques
aim to improve image quality and can be used to facilitate further image processing.
This work proposes an alternative method for spatial, additive, Gaussian noise reduction

based on a discrete wavelet transform.

A new undecimated and shift invariant filter bank has been used to decompose the
image into components. The basic filters are extrapolated from a biorthogonal wavelet

basis. Reconstruction is obtained by simply summing the image components.

The noise reduction on the components is obtained by applying thresholding functions
on the pixel values of each component. Each thresholding function is a member of a
scheme and is characterised by a number of parameters. The scheme describes the shape
of a parameterised family of thresholding functions. The parameters select the member
of the family to be applied to each component. A new thresholding scheme, obtained
from Bayesian optimal estimator theory, is designed. The parameters for each
component are dependent on the level of the contaminating noise and are selected using
a preliminary training procedure based on a set of video images. The cost function

utilised for the training is a weighted version of mean square error designed to reflect
the human visual system.

An estimation of the standard deviation level of the noise is required by the technique.
Three techniques using the highest frequency band to estimate the level on all the bands
are presented and a combined estimator 1s used.

The method has been tested on large sets of images and levels of additive, Gaussian,

white and coloured noises. The method compares favourably with other wavelet based

noise reduction techniques and demonstrates significantly increased noise reduction and

visual quality.
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1.1 Introduction

In the last decades an impressive effort has been made by the scientific world to investigate
and to move forward the research concerning techniques operating on images in digital
format. Broadcasting of terrestrial and satellite digital television, live streaming of videos
over the internet and restoration of old movies are examples of tasks requiring high speed
image processing techniques for coding and enhancement. Research in this field has also
taken advantage of the increased speed and power of computers and instrumentation as

accommodating large data sets with reasonable speed [1].

One aim of image processing techniques is to operate on signals to reduce disturbances
caused by acquisition devices to create an output that represents reality as close by as
possible. These disturbances are commonly classified into noise and distortion. Noise
reduction algorithms, which are the central theme of this thesis, are often included in the
wider class of image enhancement algorithms. The area of application of noise reduction
algorithms is not limited to the enhancement of visual quality since their preliminary use
may also increase the efficiency of other image processing techniques. Reducing the noise

facilitates efficient coding, reconstruction, enhancement, and feature extraction.

The specific area of interest in this thesis is video images. As indicated above, the noise
‘reduction techniques may have one of two aims: to improve the visual quality or to
facilitate other processing techniques by discarding useless information. This study
explores techniques based on wavelet transforms and proposes an innovative approach that

significantly reduces noise and improves visual quality.
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1.2 Elements of a digital image system

A system to obtain an image from the real world in digital format in general consists of

three stages (figure 1-1): acquisition, processing, and displaying.

Real

Image Acquisition —» Processing —» Displaying

Figure 1-1. Elements of a digital image system.

The acquisition stage has the objective of "measuring" and representing the image in
digital format. An image is said to be in digital format, if one (grey level) or more (colour)
finite numbers represent a small area of the image (called a pixel). Two dimensional and
multidimensional matrices may be used to represent the image in digital format. A
conversion into digital format (digitisation) is required when the acquisition element of the
equipment represents the image in analogue format. Most modern devices, such as

scanners and digital cameras, are able to directly acquire the image in digital format.

When the image has been acquired in digital format one or more operations can be
performed in order to transmit it, to improve its quality (defined as required by the
application), and in general, to extract information from it. This stage is commonly called

processing. Many techniques have been developed for the specific tasks in this stage, for
example:
1) Coding and compression algorithms are used to represent the image in compact form for

efficient transmission/storage. The Motion Picture Expert Group (MPEG) format is an

example of format particularly suitable for video broadcasting and is currently used in

digital satellite television [2-4].
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2) The aim of enhancement algorithms is to improve the quality of the image as required
by the specific application. These can be destined, for example, to increase the visual
quality of the image, or to modify the image in order to make specific parts more visible.
Restoration of old movies and video quality improvement in the presence of imperfect

light conditions are some of the applications of these algorithms [5-7].

3) Reconstruction algorithms are used to obtain images based on several sources of
information e.g. a series of images. Some of these techniques are used to build three-
dimensional models from a set of images. The algorithms for reconstruction are

particularly effective in medical and astronomical applications [8-10].

4) Feature extraction and segmentation algorithms aim to extract areas or sets of
parameters characteristic of the image. These algorithms have been demonstrated to be
very useful as friendly support for the non-expert user interested only in a limited number
of characteristics of the images. The Federal Bureau Investigation uses some of the feature

extraction and segmentation algorithms for fingerprint identification [11-13].

The final stage of a digital image system is the displaying. The aim of the displaying stage
is to present the processed image to the human eye. There are several display-related

pitfalls that should be avoided in order to have correct judgement and thus not degrade

image quality.
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1.3 Image noise reduction

Image processing algorithms operate on the digital representation of the image and
inaccuracies in that representation can make the algorithms less effective. Noise reduction
algorithms reduce the disturbance contaminating the imagel. Reducing the noise avoids
coding and compressing useless data, increases the general quality of the image, aids the

extraction of specific areas or information from the image, and makes the reconstruction

procedure easier.

It is important to underline the difference between noise reduction and enhancement
procedures. "Noise reduction algorithms increase the image quality but aim to keep the
original image unchanged" whilst "in enhancement the goal is to accentuate certain image

features for subsequent analysis" [10].

Noise reduction is sometimes accomplished simultaneously with the processing stage and
consequently uses techniques influenced by the type of processing task required. The
application of such algorithms may be limited to the specific processing operation. Video

noise reduction algorithms can be classified into temporal and spatial techniques.

a) Temporal techniques utilise a set of noisy images temporally consecutive in order to
discern the noise from the original image. Clearly these techniques can only be applied

when the processing task is related to the use of sequence of images, e.g. video.

b) Spatial techniques utilise only a single noisy image where the original image is

unknown. These techniques must discern the noise from the image based on their different

characteristics.

! The assumed model for the disturbance (additive noise) contaminating the image is described in section
4.4,
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This work presents a new technique for spatial noise reduction on video images which uses
wavelet based decomposition. The technique uses new solutions for frequency
decomposition and for noise reduction on the components. The technique is shown to
produce remarkable reductions in additive white and coloured noise. The next chapter will
introduce the reader to the technique, comparing it with other approaches described in the
literature and underlining its novelties, whilst chapters 3, 4, 5 and 6, will describe it in
more detail. Chapter 7 will present the results and chapter 8 draws conclusions and

discusses extensions to the work.
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Chapter 2. Image noise reduction using wavelet analysis

2.1 Introduction

The task of image noise reduction techniques is to minimise degradation that has occurred
while the image was obtained. Spatial noise reduction algorithms are not trivial because
they are required to work in absence of a priori information regarding the image. In this

work the noise is assumed additive. The general problem of additive noise reduction can be

schematised as in figure 2-1.

Noise

Noisy Image | Nyjse De-noised

Original
& + Reduction Image

Image

Figure 2-1. Noise reduction problem.

The procedure of noise reduction must identify the characteristics of the noise
contaminating the original image in order to obtain an estimate of the original image. The
separation of the noise from the image is particularly complicated when the noise and

image histograms overlap significantly.

Wavelet analysis is a multiscale signal decomposition method particularly efficient for
processing data dominated by transient behaviour or discontinuities [14-19]. This
efficiency is a key point in applications where it is a fundamental task to identify and
preserve singularities, such as edges in images [20]. Therefore, wavelet decomposition has
been proposed as a framework in image noise reduction [21-34] and restoration [35-44] for
different classes of images. An image is decomposed into a set of sub-bands, and the

information within each sub-band is processed independently of that in the other sub-bands

[45-52].
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This chapter aims to introduce the reader to the technique of spatial noise reduction using
wavelet analysis for signal decomposition. The next sections outline the concepts on which
the method is based and the innovative solutions used. Elements characterising wavelet

based approaches for noise reduction are:

1. banks of filters used in the decomposition and reconstruction

2. shape of the family of functions utilised for thresholding components

3. criteria employed for selecting one member of the family for each component

The decomposition-reconstruction algorithm and the thresholding scheme are interrelated.
Nevertheless in subsequent sections of this chapter these are examined separately leaving

the discussion regarding the connections to the following chapters.

—
Noi Noise b y
oLy Decomposition Reduction - . . e-Roise
Image POSIION 3 of » Reconstruction —» Image
components

Figure 2-2. The main steps of a wavelet based noise reduction procedure



Chapter 2. Image noise reduction using wavelet analysis

2.2 Decomposition-reconstruction

Wavelet analysis allows transformation of the image from the spatial domain to a domain
related to horizontal and vertical frequency bands. The noise reducer acts so that bands in
which the noise is dominant are more heavily attenuated than those which are primarily
signal related [53-55]. The transform and the inverse transform are implemented in stages
commonly referred to as decomposition and reconstruction (figure 2-3). Decomposition
divides the image into the frequency bands, and reconstruction recombines the frequency
components [56]. If no intermediate operations are performed, the application of

decomposition and reconstruction algorithms should leave the image unchanged.

Discrete Wavelet Transform (DWT) and Inverse Discrete Wavelet Transform (IDWT) are
the mathematical instruments used respectively for decomposition and reconstruction. The
transforms are implemented by applying shifted and dilated versions of a set of basic
filters. The implementation of the filter bank from the set of basic filters may, or may not
include a decimation operation and should allow the complete reconstruction of the image
without distortion and, in presence of decimation, aliasing. The filters and their

implementation as a filter bank will be examined.

10
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Figure 2-3. Decomposition and reconstruction.

2.2.1 Basic filters

There exists orthogonal [57-59] and biorthogonal [60-62] sets of basic filters able to
produce filter banks which achieve perfect reconstruction [63-64]. The differences between
these filters are in number of elements of the set and their frequency responses. The
selection of the set of basic filters has influence on the frequency decomposition and on the
overall complexity of the system. The next chapter details the properties of these sets; here
it is sufficient to note that the basic filters used herein constitute a set of biorthogonal
filters. From these a non-orthogonal filter bank is implemented which achieves perfect
reconstruction. The choice of this set is influenced by the simplification that can be

obtained in the implementation of the filter bank.

2.2.2 Filter bank implementation

The filter bank is derived from shifted and dilated versions of the basic filters. The
operation of data decimation reduces the data size at each scale in order to remove

redundancy and keeps the total data size constant. On the other hand, this operation,

11
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introducing aliasing, produces shift-variance' which is the cause of some visual artefacts.
The problem of the shift-variance can be solved using redundant transforms. One solution
is to use circular shifting of the decimated transform [65-68]. Pyramidal decomposition
representing the Fourier domain in terms of polar coordinates instead of Cartesian
coordinates can be used to obtain shift-invariant transform of video images [69] and
sequences of images [70]. Dual tree filters generating complex coefficients can also be
utilised to obtain approximately shift-invariant transforms [71]. These redundant
transforms are able to avoid artefacts introduced by shift-variance but the price paid is an

increase in the size of the data to be stored.

In this work a shift-invariant undecimated redundant transform is employed. The
redundancy cost can in part be offset against the complexity saved by the simplification of
the filter bank implementation. The absence of decimation also serves to simplify the
condition for perfect reconstruction, which is in general composed of two conditions, one
for non-distortion and one for absence of aliasing. The implementation of an undecimated
filter bank must only take into account the non-distortion condition. Further, in absence of
decimation, the linearity of the system allows the decomposition and reconstruction
filtering to be combined before thresholding. The convolution of decomposition and
reconstruction filters results in new decomposition filters and the reconstruction is
achieved by simply summing the components. The filter frequency response at each scale is
implemented using the 'a trous' [71-75] by inserting zeros between the filter coefficients.
These filters are applied to each component, each component being the size of the original

image. The decomposition-reconstruction method applied here is depicted in figure 2-4.

! The demonstration of this is in [63].

12
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Figure 2-4. Simplified decomposition and reconstruction scheme.
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2.3 Noise reduction of the components

The components obtained from the decomposition represent the image in different
frequency bands, or equivalently on different detail scales. The original image is in general
not uniformly distributed in frequency. Normally there are some bands where the noise is

dominant and some where the signal dominates.

Different approaches have been proposed to discern the noise from the original image. The
noise identification can be based on the correlation between components at different scales
[76-77] making the hypothesis that the noise has a much weaker correlation than the
original image. Another method to identify the noise is based on the examination of the
local Lipschitz regularity of the components [78-79]. The assumption is that the regularity
of the local extrema of the original image is large compared with that of the noise. A
method for spatially adaptive restoration of noisy and blurred images is to apply a
multiscale Kalman smoothing filter to the components [43-44]. The regularisation
parameters of the least squares filters change depending on scale, local SNR, and

orientation allowing the spatially adaptive restoration.

Noise identification can also be performed on the basis of an estimation of the probability
that the components are affected or unaffected by noise [80]. A priori information and
components are combined in a Bayesian probabilistic formulation and are implemented as
a Markov random field image model.

Finally the most commonly used approach is based on the analysis of the pixel values [65,
81-87]. Thresholding functions are applied to the components and normally attenuate small

values, assumed to be related to the noise, whilst retaining large values. In this case, the

procedure of noise reduction of the components is dependent on two elements: the generic
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shape of the thresholding functions applied, and the parameters specifying the exact values

of the thresholding function.

In this work a new thresholding scheme and a new criterion for parameter selection are

utilised. These are summarised in next two subsections.

2.3.1 Shape of the thresholding functions

Two of the most common thresholding schemes are termed soft-thresholding and hard-
thresholding. Figure 2-5 shows a plot of the output pixel values against input pixel values
for these schemes. In the presence of white noise, hard-thresholding yields a smaller mean
squared error than soft thresholding but produces visual artefacts. Soft-thresholding
provides almost minimax mean square error subject to the condition of similar smoothness
between the original image and its estimate [68, 88]. These schemes have also been applied

in the presence of speckle [85] and correlated noises [77, 88-89].

The method presented in this thesis uses a new thresholding scheme that is derived using a
Least Mean Square Error (LMSE) approach based on a Bayesian procedure. The noise is
assumed to have Gaussian distribution and the components are modelled as having either a
Laplacian or a generalised Gaussian distribution. The two families of optimal thresholding
functions have respectively been obtained analytically and numerically. These families are
approximated by the thresholding function scheme shown in figure 2-6. This will be
demonstrated in more detail in chapter 4. In the new scheme each function is characterised
by three parameters instead of one, like in the hard and soft thresholding. Nevertheless, this

scheme includes both hard and soft thresholding schemes.
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Outpul pixel values Output pixel values

Inpul pixel values Input pixel values

Oulpul pixel values

+K1y

K1y Input pixel values 4

L )
-K2 -Kix (4] +K1x +K2

Figure 2-6. New thresholding scheme.
2.3.2 Parameters of the thresholding functions

The hard and soft-thresholding schemes are families where each function is characterised
by a single parameter: the thresholding level. Different techniques have been utilised to
select this parameter for each image component [90-91]. In general these parameters
depend on the level of the noise contaminating the component; therefore the first step is the
estimation of the noise level on each components. In the presence of spatially white noise,
the level is constant on all the components and the majority of the techniques use the

highest frequency component to estimate it. This assumes that the highest frequency is the
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one with the lowest signal to noise ratio. The mean absolute deviation (MAD) of the pixel
values [75, 83, 85, 88, 92] is the parameter commonly evaluated. In the presence of

coloured noise this method is not satisfactory and noise level estimation is required on each

component.

The techniques to estimate the thresholding level®, assuming the noise level on each
component to be known, can be classified into two categories. The first category includes
techniques where the parameter only depends on the noise level and is constant on all the
decomposition scales. In this case only one parameter is selected and the same 'universal
thresholding function' has to be applied on all the components. The selection criterion can
be based on image size [65-66], or on Minimax optimisation for the visual perception [82-
83]. The second category includes techniques where distinct parameters are selected and
the thresholding functions are applied to each component. These techniques are adaptive
with respect to the noise level and image spectral content. Examples of techniques that fall
into this second category are the criteria based on the Stein's unbiased risk estimate
(SURE) [82], on the calculation of the median absolute deviation (MAD) of the pixel
values for each level [75, 88], and on the interpretation of the thresholding level selection
as a multiple hypothesis testing problem [86]. Another method to select the thresholding
functions parameters is based on a generalised cross validation (GCV) algorithm [77].

This method is asymptotically optimal and does not require estimation of the noise level.

The criterion used in our approach is based on training the parameters to minimise a
weighted version of the mean square error (WMSE) between the de-noised and original
images. This index represents a measure of mean square error (MSE) in the frequency

bands where the noise is more important. The use of the WMSE as a cost function

? Detail concerning these techniques are in section 7.4.2.
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produces visual superior image quality compared with the MSE. A modified version of the
Nelder algorithm [93-94] has been utilised to minimise the WMSE. This algorithm is based
on the use of a Simplex and does not need gradient computation. The dependence between
parameters and noise level turns out to be almost linear. The noise level estimation is
performed using an estimator combined from three algorithms. In the presence of coloured

noise the method is generalised using an estimation of the spectral noise density.

The training has been performed initially on one image and successively on a set of images.

The dependence of the parameters on the training image has been studied.
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3.1 Introduction

This chapter aims to introduce the reader to the use of wavelet analysis and filter banks on
digital images and to describe their use in this application. The properties of wavelet
analysis are initially described for mono-dimensional signals, e.g. time series. Subsequently
it is explained how the implementation of filter banks relates to wavelet analysis theory.
Particular attention is then given to the case of filter banks for image processing. Finally,

the filter bank central to this thesis is presented and its properties are outlined.
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3.2 Fourier and wavelet transforms

In signal and image processing, transforms are useful tools to explore signal characteristics.
In both cases the use of an alternative domain to the time and space domains allows
features to be readily discerned that otherwise might be difficult to identify. Fourier
transforms use sinusoidal waves as orthonormal basis functions. For a mono-dimensional
time dependent signal, these bases are inappropriate to represent signals having non-zero
values only over a short time interval. Transient signals are problematic for Fourier
representations because they are based on infinite duration sine waves, and require
cancellation over most of the interval in order to create a function non-zero only over a
small section. Extending the discussion to the two-dimensional case, natural images can be
considered as containing many transient elements since many of their features are highly
localised in space. For this reason, the Fourier transform is inappropriate for representing
images having a large number of discontinuities. Mathematicians and engineers have
explored various transforms having basis functions of limited duration; one of these is

known as the wavelet transform.
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3.3 Wavelet transform

There are three different but related wavelet transformations:
a) continuous wavelet transform (CWT),
b) wavelet series expansion,

c) discrete wavelet transform (DWT).

It i1s the DWT that is used for digital image processing. Nevertheless, to describe the
DWT's characteristics the basic theory regarding CWT and wavelet series expansion is
required. In this section the continuous series expansion and discrete cases are examined,
then the filter bank implementation deriving from the wavelet analysis is described.

3.3.1 Continuous Wavelet Transform (CWT)

For a one-dimensional continuous case, wavelet analysis deals with the class of functions
f(x) that are square integrable on the real line (also indicated by f{x)e L%R) ). This can be

expressed as

[lfeffax<e 31

This class can be represented by using a set of basis functions obtained by shifting and
translating a single prototype function y(x), called the basic wavelet, also integrable on the

real line (y(x) € L*(R)). A basic wavelet must be a real valued function, whose spectrum

Y(f) satisfies the properties
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.[I (f)l

¥(0)=0= jw(x)dx =0 (3.2)

P(e0) = 0

Translating and scaling the basic wavelet generates a set of basis functions { ¥, ,(x)}

1 x—b
Wa,b(x)—‘J-;W( p ) (33)

The coefficients a (>0) and b respectively indicate scaling and the shifting of the basic
function. These two operations are the core of the technique. The basic wavelet y(x) is
shifted as w(x-b). This operation partitions the time axis into bands permitting to be
analysed separately. The basic wavelet y(x) is scaled as y(x/a). This operation partitions
the frequency axis non-uniformly allowing a multiresolution analysis. Section 3.4 shows

how these two operations are implemented in a filter bank.

The continuous wavelet transform (CWT) of the function f{x) with respect to the basic

wavelet y(x) is defined as

W, (a,b) = (£ (), (0) = [ FOW,, (x)dx (3.4)

<e o> represents the inner product. The inverse transform is

oot

1 d
f@ == [ [W, @by, db— (33)

Y 0 e
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The CWT is said to be overcomplete, it represents an increase in the dimension of the

signal and consequently in complexity of elaboration.

3.3.2 Wavelet series expansion

Now consider the case when:

1. the scaling are factors of 2 (2% a integer, binary scaling), and
2. the shifts are defined 5/2° (b integer, dyadic translation).

A basic wavelet y(x) is said to be orthogonal if using

W, (0) = 2"y (2"x - b) (3.6)

generates a set which is an orthonormal basis of LZ(R), this means

<wﬂ’b ’wk,j> = aa,kab,j 3.7)

and

foo oo

V F@eLXR)= f(x)= Y, Y e, W, (3.8)

Q=—o0 h=—oo

The coefficients a, k£ and b, j are integers and determine respectively scaling and

translation; 9, is the Kroneker delta function. The coefficients ¢, in the expansion (3.8)

are given by

o = (D, () =27 [ W @ x-B)dx (3.9)
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Equations (3.8) and (3.9) describe a redundant’ wavelet series expansion of f(x) with

respect to the basic wavelet y(x).

To understand the multiscale nature of the wavelet transform, one must introduce the
concept of scaling function ¢x). The recursive use of this function permits one to
represent a continuous function f{x) at finer and finer scales, where at each scale the

coefficients of its representation consist of a weighted sum of shifted and dilated versions

of ¢(x) [63, 89].

+oo A +o0
f=Y4d,, 22" x-b)+ Y, Ye,, 2" w(2'x-b)

b=—cc (A=—oc h=—occ
with

Cop =27 ff (Ow(2°x—b)dx  wavelet coefficients (3.10)

d,, =2"" ff(x)q)(Z“x —b)dx  scaling coefficients

The first equation in (3.10) is the sum of two terms: the approximation of the function at

scale A and the refinements at scales a < A. Wavelet and scaling coefficients can be
recovered recursively

Ca+1,b = Zh?.b—ndn,n
= (3.11)

+ e
da+1,b = EZZb—nd(z,n
H=—oc

' The continuous function f(x) is represented by a doubly infinite sequence, and the transform is
overcomplete. Since the basis function extends to infinity in both directions, a complete reconstruction must
include all the terms.
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As will be seen in subsequent sections, the functions I, and %, represent discrete time low-
pass and high-pass filters respectively, and a tree filter bank including low-pass, high-pass

filters and decimators derives from (3.11).

Now one restricts f{x) and w(x) to have compact support. Without loss of generality they

may be assumed to be zero outside the interval [0 1] in which case a single index n defines

the set.
v, (x) =2y (2" x — b) (3.12)
where
V n ais the maximum integer such that 2 <n (3.13)
and b = n-2°

In this case the wavelet series expansion is described by the equations

F0 =S e,
n=0

(FO., () =272 [ £ (e (2 x —b)dx (3.14)

Cfl

d, = (f(x).6,(x)) =2 [ f(x)p(2" x ~ b)dx

Equation (3.14) describes a non-redundant wavelet series expansion. The transform is no
longer overcomplete and the redundancy has been eliminated”. The single index 7 is used
to indicate the case of a non-redundant transform. When a finite number of elements of this

series is able to approximate the function, the series can be truncated without introducing

an appreciable approximation error.
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A problem using orthonormal basis with compact support is the lack of symmetry of the
basic wavelet function. This can be solved using two biorthogonal sets of basic wavelets

{v., (x)}and {7, ;(x)}, to decompose and reconstruct the signal, derived from two dual

wavelet basic functions y(x)and ¥ (x) .
<l//a,b’l/7k,j> = 5a,k6b,j (3.15)

This can be used to produce two symmetric sets of wavelet basic functions with compact

supportt. In this case equations (3.14) becomes

¢, = (W, () =22 [ f (0w (2 x—bdx
- (3.16)

d, = (f(0.0,(x) = 24" [ FOF (2 x —b)dx

for decomposition, and

F0=Sei, =S dy,@ (3.17)

n=0

for reconstruction.

3.3.3 Discrete Wavelet Transform (DWT)

The DWT is used to represent a uniformly sampled discrete function with N points f{i) (i =

0...(NV - 1)). When the set of basic wavelets is orthonormal the expression for DWT can be

directly derived from equation (3.10)

% The function f{x) is approximated by a single sum between 0 and .
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Fi) = Sd,, 2% -b)+ 3 Se,, 27w -b)

b=—oo (1=—os h=—co

with

(3.18)

N-1
Cop =27 fFW(2%i-b) wavelet coefficients

i=0

N-1
d,, =27"Y f()(2"i—b) scaling coefficients
i=0

If f{i) and w(i) are zero outside the interval [0 1], then the single index »n can define the set

as in (3.12), and the coefficients a and b are constrained by (3.13). In this case the

transform will be non-redundant.

When the set of basis functions is biorthogonal the expression for the DWT is derived from

(3.16) and (3.17)

c, :2”’2§1f(i)u/(2”i—b)

4, =2"" 3 fOFQ"i-D)

for decomposition, and

£G) = thﬁ (i) = 2 dy, ()

(3.19)

(3.20)

for reconstruction. This section has shown how wavelet analysis theory allows the

definition of a discrete, non-redundant, invertible transforms based on orthonormal and

biorthogonal sets of basis functions. These, under specific hypothesis, can exactly recover

the original signal.

28



Chapter 3. Wavelet analysis

3.3.4 Undecimated wavelet transform

The most relevant problem when applying the DWT is the absence of shift invariance.
Equations (3.11) show that the coefficients are calculated for each scale of decomposition
using a low-passed and scaled version of the coefficients at the previous level of
decomposition’. The scaling operation is implemented in the filter bank by means of a sub-
sampling (decimation) operator, which introduces shift-variance. A solution is to define an
undecimated version of the discrete wavelet transform. It has been demonstrated [74] that
one can define the undecimated version of the wavelet transform from the decimated
version. An alternative form for (3.11) to express the decimated wavelet transform is

d,.,=A(l*d,)

(3.21)
Cont =A(h*d,)

where A is the decimation operator, * is the discrete convolution, d, is the input of the filter
at the level a, ¢, is the wavelet coefficient at the level a, & is the high-pass filter, and [ is the

low-pass filter used in (3.11). It is convenient to use the notation

[c']; = ¢y e (3.22)

to indicate the wavelet coefficients of the signal f{i), with time dilatation 2% and time

translation b2°. Let T,, be the operation of translation by m, so that

7,d),=d,, (3.23)

It is possible to demonstrate [74] that the translation of the input signal (d) by 2'm affects

the wavelet coefficients according to

* Observe the presence of the factor 2 in the index of low and high pass digital filters

29



Chapter 3. Wavelet analysis

'y, =@, (3.24)

In this equality &’ is considered as the argument of ¢’ in order to include the dependency of

the wavelet coefficient at level i on the input of the filter at level O (that is the original

signal). The undecimated discrete wavelet transform is defined as

~

g, =le'@") =l'a,a| (3.25)

Using (3.24) and (3.25) results in

O

=G, (3.26)

Sampling the undecimated discrete wavelet transform every 2 samples produces the
decimated discrete wavelet transform. The shift-invariance of the transform is
demonstrated by

leiT,a%)], = e T,0°)

=ler,_,a®)) (3.27)
=), =1,[@)),

Defining the operator D such that, for every discrete filter i, D'h is h with 2™-1 zeros

inserted between every pair of filter coefficients, one can rewrite (3.21) in terms of the

undecimated form as

(3.28)
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In this case the transform will be redundant and every d, has the same size as dy (f{i)). This

equation will be used in implementing the undecimated tree filter bank.
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3.4 Filter banks

To understand the relation between wavelet theory and filter banks, one must consider how
the three main concepts related to wavelet analysis (shifting, scaling and multiresolution)
are accomplished using filter banks [10]. Consider a signal, f{x), having the same properties

as the signal considered in the case of non-redundant DWT. This signal is further

constrained so that it is:

a) band-limited,

F(f)=0 if |f|> fr (3.29)

b) sampled in a uniform way to form the discrete signal

f@ i=0,.,(N-1)

. (3.30)
e < fn (Nyquist frequency)

3.4.1 Shifting

The frequency axis can be partitioned into disjoint M intervals using a set of M discrete
band-pass filters {Hj(z)} (j = 1...M). If the signal f{i) is presented to each of the filters in

parallel (figure 3-1), this effectively decomposes it and allows better identification of its

spectral components.

The set of band-pass filters {##(z)}should be constructed so that its elements sum to 1 so

that the signal components g;(k) will sum to form the original signal.

iﬂj(z) PN 2gj(k) - fi) (3.31)
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The filter outputs can be written as:

g, (k)= glf(i)hj (k1) (3.32)

Where A;(i) are the filter impulse response functions. Assuming the Hy(z) are real and even,

this convolution can be regarded as the inner product between the f and a shifted version of
h;.

The filter bank decomposition of a discrete signal f{i) can be considered as the DWT of this
signal using, as basis functions, the set made up of shifted versions of the impulse response
function. Therefore, the sets of functions {gj(k)} and {A;(i)} can be respectively regarded as

coefficients ¢, and functions y, (i) of a wavelet transformation.
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Hz) | —— &(k)

H)|—— &(k)

H(z) gk

) —

HZ)}—— gk

Figure 3-1. Filter bank decomposition.

3.4.2 Scaling

Consider now the case when M = 2. It is possible to decompose a signal into two band
limited components and represent them without redundancy, in such a way that it is
possible to reconstruct the original signal without error. Filtering the signal with half band

high-pass and low-pass filters having discrete impulse responses hy(i) and h;(i), yields the

discrete signals go(k) and g;(k). Then

JD)= 8o (k) + g, (k)= ho (D) * fii) + 1y (i) * fi7) (3.33)

assuming

Hy(2)+H,(2)=1 (3.34)
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The signals go(k) and g;(k) can be sampled with sample spacing as large as 2Ax without
introducing aliasing in the gg(k) case, and introducing a non-destructive (the original
information can be fully recovered in reconstruction) aliasing in the g;(k) case [63]. This
operation is called decimation or sub-sampling. Therefore, it is possible to recover the
signal f{i) from the sub-sampled version gg(k) and g;(k). There is an analogy between this
filter bank and the wavelet transform expression in (3.11). Low-pass filters, having discrete
frequency response H;(z), are used to obtain averages and their coefficients are related with
the coefficients of /,. High-pass filters, having discrete frequency response Hy(z), are used

to obtain detail and their coefficients are related with the coefficients 4,,.

3.4.3 Perfect reconstruction

There are limitations on the choice of the low and high-pass filters. The condition of
reconstruction without error has a fundamental importance in wavelet based filter bank
design. There are four conditions describing the different levels of reconstruction
reliability, only the most restrictive of which produces the complete recovery of the original
signal (perfect reconstruction) and is considered here. In discrete frequency, the effect of

sub-sampling and up-sampling is described in figure 3-2 and by the expression (3.35) [63].

X, (2) = A(2) X (2)
Y (z) = %[Xl 2"+ X, (=z"")]= %[A(ZUZ)X(Z”Z) +A(-z"")X (=2""")] (3.35)

Y(2)=Y,(z%) = %[A(Z)X(z) FACD)X(~2)]
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X(z) Xz _ Yz Y(z)
|00

Figure 3-2. Effect of sub-sampling and up sampling.

For this the conditions for perfect reconstruction in the presence and absence of sub/up-

sampling and for orthonormal and biorthogonal filter banks can be deduced.

a) In the discrete frequency domain in the absence of sub-sampling and up-sampling for an

orthonormal filter bank (figure 3-3-a) the condition for perfect reconstruction is given by

F(2) =G, (2)H,(2) + G, (2)H, (z) = %{F@)HO (2)H,(2)+ F()H (2)H,(2)}=
= —;{F(z)[H *0(z)+ H" (z)]} (3.30)

= H(z)+H(z) =2z (nodistortion)

{ﬁ(z) = F(2)z™"

Perfect reconstruction with a delay of p

b) In the presence of sub-sampling and up-sampling for an orthonormal filter bank (figure

3-3-b) the condition for perfect reconstruction is given by

F(2) =G, (2)H,(2) + G, (2)H,(z) =

= %H()(z)[HO(z)nz) +H, <-z>F<——z>]+%H&z)[HAz)F(z)+Hl (~2)F(-2)]=

= %{F(z)[Hzo (2)+ HA ()] + F(=2)[Hy (2)H, (~2) + H,(2)H, (~2)]}

F(2)=F(2)z™ _ [H @+ B @) =227 (No distortion)
Perfect reconstruction with a delay of p H,(2)H,(—2)+ H,(2)H,(-z) = 0( No aliasing)
(3.37)

In the case of biorthogonal filter bank, the corresponding filters in the analysis and

synthesis banks are not anymore equal.
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c¢) In the absence of sub-sampling and up-sampling for biorthogonal filter bank (figure 3-4-

a) the condition for perfect reconstruction is given by

F(2) =G, (2)H,y(2) + G, (2)H,(2) = %{F(z)Ho (DHy(2)+ F()H, (D, (2)}=

_ % FH, (), () + H, (), (2)]}

Perfect reconstruction with a delay of p
(3.38)

{F(z) =F(2)z™” = H,(2)H,(2) + H,(2)H,(z) = 22" (no distortion)

If we choose

H,(2)=H,(-z)

~ (3.39)
H1 (2) = _Ho (-2)
and defining the product filter
Py(2)=H,()H,(2) (3.40)
the condition described in (3.38) becomes
50N = )y~
F@)=Faz = P,(z) - P,(~z) = 27" (no distortion) (3.41)
Perfect reconstruction with a delay of p

d) In the presence of sub-sampling and up-sampling for biorthogonal filter bank (figure 3-

4-b) the condition for perfect reconstruction is given by
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F(2) =G, (2)H,(2) + G, (2)H,(z) =
- %H @IH, (DF () + H, (—z)F(—z)]%Hl @H,(DF @)+ H,(~2)F(-2)]=

= %{F(z)[H %0(2) + HA (D] + F(-2)[Hy (2)H, (~2) + H, (D H, (-2)]}

F(z)=F(2)z™" . H:(2)+H(z)=27" (No distortion)
Perfect reconstruction with a delay of p H,(2)H,(=z)+ H,(z)H,(-z) =0 (No aliasing)
(3.42)

Because conditions (3.39) are removing the aliasing the perfect reconstruction condition

can be expressed also in this case as (3.41).

G(2)
o |—  — B o
F2) F)
D |—>  — HE
G.(z)
@
G'\(z)
BE) [—Q—(D)— B
Fz) F)
G'(z)
86 [—Q—@— #6
®

Figure 3-3. Two-band coding and reconstruction with orthonormal filter bank.
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G,
Hyz) Hyz) (D
F2) )
Hz) Hz)
G2
(@)
G'\(z)
H(e) —Q—@)—|
F(z) 1?(2)
B —QO—@®)— £6
G'\(2)
(®)

Figure 3-4. Two-band coding and reconstruction with biorthogonal filter bank.
3.4.4 Multiresolution

Figures 3.3 and 3.4 show single level filter banks in the presence and absence of sub-
sampling. Consider the problem of implementing a recursive tree filter bank decomposing
the signal f{i) in different levels of resolution. This type of filter bank represents the
implementation of the recursive expressions seen for wavelet analysis. When the signal is
sub-sampled, its size is halved at each level to keep unchanged the total amount of data
allowing the absence of redundancy. The filters applied on the different levels are always

the same. Figure 3-5 represents the tree filter biorthogonal bank in the presence of sub-

sampling.
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To implement a tree filter bank in the absence of sub-sampling the definition of
undecimated wavelet transform (equation (3.28)) is used. This is implemented by inserting
2% -1 zeros between the filter coefficients at every decomposition level a. This tree filter
bank is redundant because at each level of decomposition the size of the signal is
unchanged. On the other hand, the absence of decimation makes easier the design of the
basic filters. Figure 3-6 represents a tree filter biorthogonal bank in the absence of sub-

sampling. In this case the filters change on each level of decomposition and the discrete

frequency responses are related by

[H ,(2)= [hl,l’w’ R, ’Q_;;;Q’ """ ’hN/—l,l’w’ hzvf,1]

2% -1 281 241
H o(2)=[hyy, (l,—Q’ hys QV_Q’ ----- ) hzvf _1,0° u, th o]
Vdecomposition level a { - N .
H (z)= [h‘ll »&;_(,)’hz,lﬁg;;_q’ ----- ’th—l,l ’Q_;-,-_Q’ th,l]
281 281 281
H (2)=[14,0..0,/1,,0..0,cs By 19,0..0,F1 4]
P TR T 343)

with
Hy\(z) =y hy e ’th—l,l’hN/,l]
Hy(z) =[h g, hy g ’hN[—l,O’th,O]

~ ~

H01(Z) = [hl,l » h2,1 peeeney th 1,10 th,l]

-~ ~

Hy(z)=1[hy, 2,000 00e Nj-l,O’th,O]
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Figure 3-5. Tree filter bank with sub-sampling.

4]



Chapter 3. Wavelet analysis

@m

&y

& H

2"

(F'u

&ru

@°H

@'H

@'H

&u

@"'"H

2)'H

2)'H

(24

Figure 3-6. Tree filter bank without sub-sampling.

42



Chapter 3. Wavelet analysis

3.5 Wavelet analysis for image noise reduction

There has been a significant trend in recent research towards the use of multiscale
approaches, such as wavelet analysis, for image processing. In particular, the use of the
Discrete Wavelet Transform (DWT) has been shown to be useful for noise reduction. Most
of the image energy is concentrated in a limited number of spectral components, whereas
the noise energy is generally spread over the entire spectrum. Applying noise reduction
techniques only on particular components can significantly reduce the noise energy whilst
the signal energy remains relatively unaffected. Here only the case when the noise
reduction is performed on the individual pixel values of the decomposed signal will be

considered. The general procedure to reduce the noise using DWT approach consists of
three steps:

a) the image is transformed into the wavelet domain by filtering and subsampling at each
level (analysis),

b) a non-linear function is applied to the transformed coefficients in order to reduce the

noise on each component, and

¢) the inverse transform is applied to recover the image by filtering and upsampling at each

level (synthesis).

The filter banks described for a one-dimensional signal in the previous section can be
generalised for two-dimensional signals. Two-dimensional filter banks derived from
separable two-dimensional wavelet bases are implemented by alternating the application of
the Hy(z) and H/(z) filters on rows (using Hon(z) and Hj;(z)) and columns (using Hy,(z) and
H;(z)) of the image. The analysis and synthesis filter banks must satisfy the perfect

reconstruction condition. Figure 3-7 describes the undecimated biorthogonal filter bank for
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three levels of decomposition. The filter bank is characterised by 24 filters, but the design

is based only on one filter.

Hy,, (2),H,,(2),Hy,, (2),Hy,, (2), Hys, (2), H 5, (2),
Hy,(2),1,,,(2), Hy,, (2), H,, (2), Hy, (2), H 5, (2),

are the transposed versions* of

H,(2), H,,,(2), H ), (2), H 1, (2), H 3, (2), H 13, (2),
j:]mh (2), ﬁllh (2), ﬁoz;l (2), I:jm (2), ﬁOSh (2),H,3,(2),

b)  Hey, (2),Hp, (2, Hoo, (2), 3, (2), Hog, (2, H o, (2), Hig, (2),H 5, (2)
are obtained by inserting zeros in
Hy,, (2).H,,,(2), Hy,, (2). H,, (2)
¢) Hy,(2)=H,, (~z)and H,, (z)=~H,, (~z) anti-aliasing condition
d) H,(H, (-z)— Hy(-2)H, (z2)=2z"" anti distortion condition

Finally the only filter to design is Hp;(z) (or Hyi(z), or even better the half-band product

filter Hy,(z) H;1(-2)).

Figure 3-8 describes the frequency decomposition obtained from this filter bank. At every
level of decomposition, frequency bands are halved in the horizontal and in the vertical
direction but the total size of the image components is unchanged. To understand the
numbering system used for components in this figure, one should realise that the
component 4 (LL) is decomposed in the components 5 (LLHH), 6 (LLHL), 7 (LLLH), and
8 (LLLL). The component 8 (LLLL) is decomposed again in the components 9 (LLLLHH),

10 (LLLLHL), 11 (LLLLLH), and 12 (LLLLLL).

* This means that they are the same filters applied on the image rotated by 90 degrees.
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3.6 The specifics of the wavelet transform

The filter bank used here is derived from the undecimated biorthogonal tree filter bank
seen in figure 3.8. For a single level tree filter bank, the decomposition is defined by the

biorthogonal set of filters’

b = [L 2, g, 2, -1] H, = I, ; 1]
(3.44)
i - 1, 2,1] i - 1.2 -6 2 1]
4 4

The absence of decimation allows the combination of the filter Hy and H; respectively with

H, and H, before the noise reduction procedure. The combined filters are:

LFl :HO Ed ﬁ(): [_1’ O’ 9, :]3-2, 9, O, —1]

(3.45)
[L, 0, -9,16,-9,0,1]
32

HF1=H, + H, =

The image reconstruction procedure simply consists of a summation of the components.

The filter in (3.45) can be approximated by

spo L2 1]
4
(3.46)
ap o FL 21
4

Figures 3-9 compare the frequency responses of the filters in (3.45) and (3.46).

3 This set is demonstrated in [63] to satisfy the perfect reconstruction condition.
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The pair of filters, (3.46), allow perfect reconstruction, since they satisfy (3.36), and are an
attractive solution in practice because of their simplicity. The use of the filters in (3.46) for
the decomposition described in this thesis follows. The first level of decomposition is
performed by applying HF and LF in the horizontal and vertical directions. The
decomposition filters for the successive levels of decomposition are obtained, from the
definition of undecimated wavelet transform, inserting 2“ - 1 (where a is the decomposition
level) zeros between each filter coefficient. Reconstruction only requires the addition of
individual components. The absence of decimation in this filter bank ensures the shift-
invariance and that each component is overcomplete and has same size as that of the

original image. Figure 3-10 describes the filter bank used. The applied filters are described

by
Py = &%ﬂ P T R A T .
Py = E’—(%Q’—” hoy = —['—1’—0—’—?‘4’—0—’ﬂ oy =My By, =hy
p, = 10,00 j, 0,000 , _ [10.0,0 i, L

(3.47)

The filters used are non-orthogonal, therefore the components are correlated and this will
influence the training procedure. The filters applied in the lowest decomposition level
(LLLLHH, LLLLHL, and LLLLLH) have some non-zero areas outside the lowest
frequency band. This means that the components produced by filtering the original image
with these filters have a small influence on the higher frequency components of the image.
A method to visualise this is to decompose an image where the spatial position is related to

the frequency (a zone plate). A circular zone plate is shown in figure 3-11, and figure 3-12
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shows the two-dimensional frequency decomposition produced by the filter bank. Figure 3-
12 emphasises the presence of non-zero areas on each component outside the related

frequency band.

H

0 fs/2

Frequency

Figure 3-9. Filter approximation. Continuous lines are the frequency responses of the
filters described by (3.45) and dotted lines are the frequency responses of the filters
described by (3.46).
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3.7 Conclusions

Wavelet analysis provides a method to define a transform in a suitable domain for image noise
reduction. Wavelet analysis theory naturally leads to the implementation of filter banks. This
chapter has described an implementation of a tree filter bank derived from a biorthogonal set of
basis functions. This filter bank has the appearance of a scheme for sub-band coding and it does
produce perfect reconstruction. The components obtained from the decomposition are
undecimated and consequently have the same size as the original image. From the point of view
of the transmission, the disadvantage of the increase of data is partially compensated by the
constant size of the components because this permits the use of uniform transmission bandwidth.
Another drawback of this solution is the increase of required computations due to the redundant
scheme. This is partially compensated by the absence of filtering in reconstruction and by
simplicity of the filters used in decomposition. Because of the absence of aliasing, these filters

are constrained only by the non-distortion condition.
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4.1 Introduction

The previous chapter described the tree filter bank used in order to decompose an image
into components. This and subsequent chapters examine the procedure of noise reduction
on the components derived from the decomposition. The noise reduction approach adopted
is based on the analysis of the pixel values of the components and on the application of
thresholding functions to them. Two elements characterise the thresholding functions:
shape and parameters. This chapter explores the origin of the family of functions used,
describing the shape of the family of thresholding functions to be applied. The next chapter
will estimate the parameters defining a member of the family for every component. In this
chapter initially optimal schemes are derived using Bayesian estimation in the Maximum a
Posteriori (MAP), Maximum Likelihood (ML), and Least Mean Square Error (LMSE)
senses. The components of the original (noise free) image are assumed to have either a
Laplacian or a generalised Gaussian homogeneous probability distribution. The noise is
assumed to be additive and its components are assumed to have Gaussian probability
distribution. Finally a parameterised family of piecewise linear functions is defined that

approximates the optimal families.
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4.2 Families of thresholding functions

The components derived from the noisy image decomposition represent the energetic
partition on frequency bands of the image contaminated by noise. These components, in
every band, are dependent on both the components of the original image and on the noise.
In general the energy of the original images is very unevenly distributed over the entire
frequency range. Conversely the noise energy normally covers the entire range (although
not necessarily uniformly). There generally exist frequency bands which predominantly
contain noise. Eliminating or reducing the components related to these bands produces
reduction of the noise energy with only a small reduction of the energy of the original
image energy. The noise reduction procedure consists of applying non-linearities, called
thresholding functions, to the components. It is convenient to define a parameterised
family of functions (sometime called a thresholding scheme) including all the possible
functions that can be applied to the components. The identification of the precise

thresholding function to be applied on each component consists of the selection of one or

more parameters.
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4.3 Thresholding functions on the components

To understand the advantage of applying different thresholding functions on different
components, consider initially the case when a thresholding function is directly applied on
the complete image without decomposition. In this case, a given image grey level u € [-L

L] is mapped into another grey level v € [-L L] according to a function

v=f(u) 4.1

Applying the thresholding directly to the image results in little noise reduction and
introduces significant image distortion. The cause of this can be seen from observing figure
4.1. Applying a thresholding function to an image results in the reduction of the small
values of its histogram. In figure 4-1 the normalised histograms (probability density
functions (PDFs)) of original and noisy images are compared for 13 images'. To discern
noise from original image using the complete non decomposed images is complicated.
Reducing the small values in the PDFs will remove a small amount of noise and will also

reduce the energy of the original image.

Conversely, when the image is decomposed, these methods have been productively applied
on components. Using the same set of 13 images, figures 4-2 compares the PDFs of the
original and noisy components related to the high frequency band. For this component the
noise contamination is clearly discernible for most of the images and thresholding can be

an effective method to reduce noise without unduly distorting the original image.

' The set of 13 images has been provided by BBC and describes the class of video images. The images
belonging to this set are shown in appendix C.
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4.4 Thresholding schemes

The shape of the thresholding function critically affects the efficiency of the noise
reduction algorithm. Initially consider the case of a signal contaminated by additive
Gaussian noise. Given an original signal u#(x), and an observation of this v(x), after it has

been contaminated by the noise n(x), one seeks to find the optimal estimate u#(x) of the

original signal. This can be formulated as follows

v(x) =u(x)+n(x) 4.2)

The thresholding scheme will have the form

w(x) = flv(x)] (4.3)

n(x)
u(x) v(x) i1(x)
AL A

Figure 4-3. Signal estimation in presence of additive noise.

The objective is to force the estimate #(x) to approximate u(x) in some optimal fashion.

4.4.1 Soft and hard thresholding

The two predominant thresholding schemes used in the literature [65, 81-87] are the soft-

thresholding and the hard-thresholding. They are described by
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. (v if |v]pK )

U= . Hard - thresholding
0 if [vEK

4.4

v—K if v>K

n=40 if -K<v<K Soft-thresholding
v+ K if v<—-K

These thresholding functions are depicted in figure 4-4

Input pixel values

Figure 4-4. Hard and soft thresholding schemes.

The parameter K is called threshold level, and it strongly influences the performance of the
thresholding scheme. To select an appropriate value for K one requires knowledge of the
noise level (noise standard deviation). The selection of threshold levels, or more generally
set of parameters defining the thresholding functions, is the subject of the next chapter.

This chapter concentrates on defining the shape of the thresholding functions.

4.4.2 Optimal Bayesian thresholding schemes

Assuming the original signal has a specific distribution and using Bayesian theory it is
possible to develop expressions for the optimal scheme (4.3) to apply in order to reduce

noise having Gaussian distribution.

If p(u), p(v), and p(n) are respectively the probability distributions of original signal ,

observed signal v, and noise n, the Bayes rule states that
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pOlOpW

/ =
p(ulv) o)

® p(u/v)1is the posterior probability density function of u given v
e p(v/u)is the likelihood function

® p(u)is the prior, and

* p(v)is the evidence.

Bayesian [107] estimation aims to obtain an estimate # of u from the observation v by

minimising a risk function with respect to i .

R(i2) = E[C(i,u)] = [ [C@,u)p@uiv)p(ydvdn  (4.6)

Given that the evidence, p(v), is constant for a given observation, then the general

expression of the Bayesian estimate is

parss = Arg Min([ C@Lwpulvdu) — (47)

C(@i,u) is the cost function characterising the estimator. Examples are:

1. Maximum a Posteriori Estimation (MAP). In this case

C@,u)=1-56(,u)
Uyup = Arg Max(p(ﬁ/v))

u

(4.8)

which is equivalent to finding the maximum of p(ii/v), i.e. solving

61



Chapter 4. Thresholding function shape

op(i/v) _0
o
or 4.9)
dlog{p(i/v)} ~0
ou

2. Maximum Likelihood (ML). In this case

C(i,u) =1-56(4,u) and p(u) = const.

Uy = ArgﬁMin(p(v/ﬁ)) (4.10)

which is equivalent to maximising p(v/i), i.e. solving

8p(vA/ﬁ) _0
o
or (4.11)

dlog{p(v/i)} 0
ou

3. Least Mean Squares Error (LMSE). In this case

C(i,u) = [(@ —u)d —u)"]

R (4.12)
sy = fup(u/v)du

This is the conditional mean of the posterior probability. The quality index used in noise

reduction is the mean square error or its weighted version. Consequently this estimator has

a particular relevance in this analysis.

4.4.3 Bayesian estimator for particular distributions

Assume that n(x) is Additive White Gaussian Noise (AWGN), with zero mean, having a

distribution
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20, (4.13)

where o7, is the standard deviation of the noise or the noise level. The following details the

solution to these optimisations for various assumed distributions for the image.
4.4.3.a Laplacian distribution

The image distribution is given by

V2
V2 5 (4.14)

where o, is the spectral content of the original signalQ. Since the noise is Gaussian, p(v/u)

can be expressed as

_(V*M)z

! 20, (4.15)
o2

n

p(v/u)=

The optimal MAP estimator can be obtained by solving (4.9). In Appendix B it is shown

that the optimal scheme is given by

T
y——— if v>0
O-u
A, =10 if v=0 (4.16)
Laplacian 2
o2
v+ if v<0
O-u

When the original signal has a Laplacian distribution the MAP optimal scheme has the

shape of the soft thresholding scheme with threshold level

? In compression wavelet coefficients are often assumed Laplacian
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(4.17)

This demonstrates that when the original signal has Laplacian distribution the soft-
thresholding scheme is the optimal scheme in the MAP sense. Figure 4-5 describes this

scheme and the effect on the PDFs of the scheme on a synthetic Laplacian image with

0,=25 and 0,=15.
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Figures 4-5. MAP optimal scheme with original signal having Laplacian distribution, and
effect on the PDF’s of using this thresholding (black is the original, red is the noisy, and
blue is the thresholded).
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The optimal ML estimator can be obtained by solving (4.11). In appendix B it is

demonstrated that the optimal scheme is given by

iy, =v (4.18)

Since such a scheme leaves the image unaltered it is of no use for a noise reduction.

The optimal LMSE estimator can be found by solving (4.12). The posterior distribution is

computed using (4.5). The evidence is computed as

p(v)= [ p(u—v)p(w)du (4.19)

p(u)is given by (4.13). Appendix B shows that the resulting scheme is

El+ i egv erfd| In s L e_gv er T Y
O-u 0-77\/_2_ Gu (o] 17’\/—2—' O-u 0-77"/_2" Gu o-n'\/5
frnd O'n'\/a

i
LMSE
Laplacian ﬁv o - ﬁv o
[ 1 v o, n v
e’ erfd + +e 7 erfq ——
o, G,,«/f o, Gnﬁ

(4.20)

The LMSE optimal scheme depends on two parameters:
a) signal level o,, and

b) noise level oy,

Figure 4-6 describes the LMSE optimal scheme under these conditions. Figure 4-7

describes the effect on the PDFs of applying the LMSE optimal scheme on synthetic

Laplacian image with 6,=25 and o,=15.
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Figure 4-6. LMSE optimal thresholding scheme for a Laplacian signal in Gaussian noise;
a)ony, fixed (25), o, varies; b) o, fixed (25), oy varies.
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4.4.3.b Generalised Gaussian distribution

Consider now the case when the signal u(x) is assumed to have generalised Gaussian

distribution, with a PDF of the form [107]:

2
u |18,

oB,)

u

{F[g(l-kﬁu )}}2 I‘[%(IJF :Bu):f 1B (4.21)
w(B,)= 7 Bl={F—= -1<p, <1

3 1
1+p, ){FB (1+8, )}}2 F[E(l + Bu)}

oo Y <o

pu,o,.p,)=

In this expression f3, controls the form of the statistical distribution, in which f,6=0

u

corresponds to a Gaussian distribution. The noise is assumed to be described by (4.12).
The optimal MAP estimator can be obtained by solving (4.9). Appendix B shows that the

optimal scheme is given by the solution of the equation

—a 2 A
voi 2eB) sign(ﬁ)lﬁj(nﬂ,,] =0 (422)
0-1

"1+ B,)ol

Figure 4-8 describes the MAP optimal scheme when the original signal has generalised

Gaussian distribution for various choices of f,.

The equation (4.22) when f,=0 (Gaussian distribution) becomes

. o} 1
Mg(ﬁﬁ:ian B 0'3 +G§ Ye 1+Lv
SNR
where (4.23)
2
SNR = 2
o

=3
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Figure 4-9 describes the MAP optimal scheme with the original image having a Gaussian
distribution for various SNRs. Figure 4-10 describes the effect on the PDFs of applying the

MAP optimal scheme for a synthetic Gaussian image with SNR=2.7.

The optimal estimator in ML sense is the same than in the Laplacian case because the prior
distribution has no influence.

Appendix B shows that the LMSE optimal scheme when the original signal has a
generalised Gaussian distribution is given by the solution of (4.12) and can be expressed in

integral form as:

~(v-u)® e
= T (b, >|-; '
jue Toe ‘ du
U(B.) puse == 5 (4.24)
Gener.Gaussian —(v—u)* u |1+ B,
- ooz —c(B.) o
fe e ‘ du

This scheme does not have a closed form solution but it can be solved numerically to

estimate the LMSE optimal scheme. This scheme depends on three parameters, f3, , 0, and
oy. Figure 4-11 describes this scheme when the two parameters o, and o, are fixed and the

model index B, varies.

It can be seen that equation (4.24) when f,=0 (Gaussian distribution) produces (4.23)
again, so that, when the input signal has a Gaussian distribution, the optimal LMSE and

MAP estimators are coincident.
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Figure 4-7. Effect on the PDFs of LMSE optimal thresholding scheme for a Laplacian
signal in Gaussian noise (black is the original, red is the noisy, and blue is the
thresholded).
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Figure 4-8. MAP optimal thresholding scheme when the image has a generalised Gaussian
distribution (noise level fixed 0,=20 and signal level c,=25 are fixed).
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Figure 4-9. MAP (and LMSE) optimal thresholding scheme when the original components
have a Gaussian distribution.
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Figure 4-10. Effect on PDF's of MAP (and LMSE) optimal thresholding when the original
image has a Gaussian distribution (black is the original, red is the noisy, and blue is the
thresholded).
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Figure 4-11. LMSE optimal thresholding scheme when the original image has generalised
Gaussian distribution (noise level o,=15 and signal level c,=15 are fixed).
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4.5 Scheme in our approach

The previous section has presented several schemes that could be applied to the

components obtained from the decomposition of the noisy image in order to reduce noise.

These were

a) Soft-thresholding and hard thresholding schemes (equations (4.4) and figures 4-4),

b) MAP optimal scheme assuming a Laplacian original signal distribution (equation (4.16)
and figure 4-5),

c) LMSE optimal scheme assuming a Laplacian original image distribution (equation

(4.20) and figure 4-6),

d) MAP or LMSE scheme assuming a Gaussian original image distribution (equation
(4.23) and figure 4-9),

e) MAP optimal scheme assuming a generalised Gaussian original image distribution,
(equation (4.22) and figure 4-8),

f) LMSE optimal scheme assuming a generalised Gaussian original image distribution,

(equation (4.24) and figure 4-11).

To analyse the efficiency on the noisy components of these schemes is useful to identify
which statistical distribution is suitable to model the image components. Considering the
set of 13 training images, for every image the statistical distribution of one of the

components obtained from the decomposition depends on:
1) Image frequency distribution,

2) Range of frequency corresponding to that component.
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Figure 4-12-a shows the distributions of three components for three images. Figure 4-12-b

shows the distribution of the same components for three images.
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Figure 4-12-a. PDFs variability in the frequency range for 3 images (red is HH, green is
HL, and blue is LH).
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Figure 4-12-b. PDF's variability in the images for 3 frequency ranges (magenta is image 1,
blue is image 6, and black is image 13).

From this one can deduce that the components obtained from the decomposition could not

be modelled using only a single distribution. A compromise solution seems to be to define
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a scheme including (or approximating) the described schemes. One such scheme is shown

in figure 4-13.

Output pixel values 4 }

+K1y |-

T

-K1y Input pixel values

-K2 -K1x 0 +K1x +K2

Figure 4-13. A general thresholding scheme.

The analytical expression of this scheme is

v if [v]>K2
ﬁ=<%zv if Klx<|v|< K2 (4.25)
%

. K2-Kly
v—sign(v)K1lx) —————
L( gn(v) )K2—K1x

+sign(v)Kly if |v|<Klx

By suitable choice of the three parameters it is possible to approximate the optimal

schemes previously derived.

e Scheme a) is approximated when lim KIy — 0, KIy — Klx.
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Scheme b) is approximated when KIx #Kly, Kly = 0, K2 — oo,
Scheme d) is approximated when KI1x — oo K1y #0.

Selecting appropriate KIx, K1y, and K2, it is possible to have a piece-wise linear

approximation of schemes in c), €), and f).
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4.6 Conclusions

This chapter has analysed the problem of the identification of the shape of the thresholding
functions to apply on the components obtained from the decomposition. Each component
is treated as a stationary (homogeneous) process and the thresholds are applied globally
and not locally in the spatial domain. To identify the shape of these functions in a general
form it is useful to define a scheme or a parameterised family of functions. Two classical
schemes used in the literature were considered and other optimal schemes were derived
from Bayesian estimation theory. Two main criteria for optimal estimation have been
considered: MAP and LMSE. The noise has been assumed to be AWGN. The optimal
schemes have been described when the original component is assumed to have either a
Laplacian or a generalised Gaussian distribution. In particular the case of Gaussian
distribution has been considered. Nevertheless it is difficult to model the totality of the
component using a single statistical distribution. For this reason a new scheme which
approximates (or even includes) both classical and optimal schemes was derived. The

selection of suitable parameters for the scheme is the subject of the next chapter.
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5.1 Introduction

The shape of a set of near optimal thresholding functions has been described in the
previous chapter. This shape defines a parameterised family of thresholding functions. This
chapter considers the problem of selecting the parameters of the thresholding functions to
achieve the best results. This selection can be seen as an optimisation of some cost function
related to the image quality and depending on a finite number of variables (the thresholding
function's parameters). A training procedure to perform this optimisation is used. MSE and
WMSE are assumed as cost functions. The training is performed initially on a test image
and then extended to a set of images. The parameters resulting from the training define the
set of thresholding functions for the components and depend on the level of noise
contaminating the image. Consequently a noise estimation procedure is required. The

techniques to estimate the noise level will be examined in next chapter.

The performances of the algorithms tested for the cost function minimisation are compared
in the next section. The detailed description of the algorithms is given in Appendix A. The
parameters utilised in the cost function are presented in section 5.3. The cost function

values used in the training are described in section 5.4. The results of the training are listed

and commented on in section 5.5.
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5.2 Comparison of the training algorithms performances

Two significant categories of optimisation methods are: gradient based and direct search

methods. Three algorithms belonging to these categories have been considered in this

thesis.

The cost function to be minimised is non-linear and the hypothesis of differentiability
cannot always be justified. Direct search methods are characterised by a strategy that
generates variation of the parameter vector and decision criteria to determine whether or
not the newly derived parameters should be accepted. Consequently the hypothesis of
differentiability is not required and this makes the methods in this category seem more
suitable than gradient based approaches for this application. In the presence of multimodal
cost functions, the main problem with direct search methods is ensuring the algorithm
converges to the global, rather than to a local, minimum. In this section a quasi-Newton
gradient based algorithm [94] and two direct search algorithms, Simplex [93] and

differential evolution [95], are compared.

In order to compare the performance of the minimisation algorithms a noise free test image
has been contaminated by additive white Gaussian noise and, after the decomposition, the
parameters of the thresholding functions applied on the components have been optimised to
minimise the noise. In table 5.1 the sets of parameters derived using the three algorithms
are listed. The MSE has been used as a cost function (unweighted optimisation) and the
image is contaminated by white noise having a standard deviation level of 15. The size of
the parameter sets depends on the number of decomposition levels used. Considering 3, 2
and 1 levels, sets composed respectively of 11, 8 and 5 parameters are utilised. The

assumption related to these sizes and the notation of the parameters will be explained in
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detail in section 5.3. Table 5.2 shows the number of iterations and time required by the

three algorithms to converge. The training has been performed using a PC Pentium 133

MHz.

The differences between the MSE reductions using the three algorithms are not significant
(of the order of 0.1 %). Table 5.1 shows a strong similarity between the sets of parameters
obtained for the different minimisation techniques. Nevertheless table 5.2 shows that the
convergence speed of the Simplex algorithm is superior compared with the other two
algorithms. The Simplex algorithm needs a smaller number of iterations compared with the
differential evolution algorithm and a smaller time for single iteration compared with the
quasi-Newton algorithm. For this reason the Simplex algorithm has been preferred to the

other algorithms and the results in the remainder of the chapter are obtained using this

technique.
Kiy | K2 [ Kix | Kix | Kix | Kix | Kix | KIx |{ Kilx | KIx | KlIx
HH HL LH LL | LL LL LL | LL | LL
HH | HL | LH | LL | LL | LL
HH | HL | LH
5 parameters
Simplex 0.05 | 6.89 | 20.51 | 9.90 | 7.23
Quasi-Newton 0.05 | 6.89 | 20.61 | 9.90 | 7.23
Differ-Evolution | 0.04 | 6.89 | 20.67 | 9.97 | 7.23
8 parameters
Simplex 0 3.89 | 37.60 | 1021 | 7.51 | 1.96 | 2.15 | 2.38
Quasi-Newton 0 3.89 | 20.67 | 1021 | 7.51 | 1.96 | 2.15 | 2.38
Differ-Evolution | 0.01 | 3.76 | 2545 | 10.19 | 7.49 | 1.97 | 2.15 | 2.37
11 parameters
Simplex 0.01 | 3.67 | 51.87 {1039 | 7.83 | 1.99 | 2.04 | 2.39 | 0.92 ] 0.98 | 0.97
Quasi-Newton | 0.01 | 3.90 | 20.70 | 10.19 ] 7.51 | 1.94 | 1.99 | 2.17 | 0.87 | 0.90 | 1.04
Differ-Evolution | 0.01 | 3.81 | 32.45 ] 1024 | 7.79 | 1.95 | 2.01 | 223 | 09 | 0.89 | 1.10

Table 5.1. Unweighted optimisation of an image contaminated by white noise with std=15.

5 parameters § parameters 11 parameters
No. Iterat. | Cnv, Time | No. Iterat. | Cnv. Time | No. Iterat. | Cnv. Time
Simplex 540 2hrs 15min 800 3hrs 20min 1100 4hrs 35min
Quasi-Newton 475 2hrs 15min 795 3hrs 45min 1130 Shrs 20min
Differ-Evolution 775 2hrs 35min 1050 3hrs 30min 1575 Shrs 15min

Table 5.2. Number of iterations and convergence time required by unweighted optimisation
of an image contaminated by white noise with std=15
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5.3 Cost function parameters

The filters used in the decomposition are non-orthogonal resulting in an overcomplete
representation. As a consequence the minimisation of the noise on each component is not
equivalent to minimising the noise on the full image. To minimise the noise on one
component requires minimisation of a function of / parameters. Consequently to minimise
the overall noise by minimising the noise on the K components individually requires the
minimisation of K separate functions each of / variables. On the other hand, to minimise
the noise on the K components concurrently requires the minimisation of one function of
(K x [) variables. The non-orthogonal nature of the decomposition forces one to optimise
over all the parameters simultaneously leading to an optimisation task over a relatively
large number of parameters. Table 5.3 details the 27 parameters resulting from
minimisation of the noise in a concurrent scheme. There are 27 parameters since 3 levels of
decomposition result in 9 components to be processed and each component is thresholded
using a function described by 3 parameters (see (4.25)). Results are presented for two cost

functions and three levels of noise.

This procedure is expensive in terms of computational time and the optimisation results are
sensitive to the initial conditions. From table 5.3 it can be seen that some of the parameters
are negative which leads to counter-intuitive thresholding functions. This may be an
indication that the minimisation routine has not converged to the global minimum. To
avoid this, it is prudent to consider simplifying the threshold functions in order to reduce

the number of parameters involved in the optimisation.

Each thresholding function is characterised by [ parameters and is applied to one of the K

image components. The number of thresholding function parameters depends on the
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thresholding scheme and the number of components depends on the number of
decomposition levels used. The total number of parameters of the cost function is due to

these two factors. In the next sub-sections these are analysed separately.

Unweighted optimisation Weighted optimisation
Noise Noise Noise Noise Noise Noise
level4 | level 5 | level 6 | leveld | level 5 | level 6
Kl1x (HH) 2.82 3.75 4.69 5.56 4.15 5.20
Kly (HH) 0.15 0.11 -0.26 0.02 -0.08 -0.18
K2 (HH) 24.72 28.44 33.75 14.95 16.21 19.99
Ki1x (HL) 2.01 2.64 3.00 3.71 2.85 3.34
Kly (HL) 0 0 0 0 0.03 -0.01
K2 (HL) 7.37 8.98 11.25 11.09 9.57 11.80
Kix (LH) 1.38 1.66 2.29 03.19 2.37 3.99
Kly (LH) 0.17 0.04 0.23 0.71 0.56 1.51
K2 (LH) 8.05 10.15 11.13 12.76 9.28 10.00
Kix (LLHH) 0.63 0.92 1.05 0.98 0.86 1.07
Kly (LLHH) 0 0.01 0 0 -0.07 0
K2 (LLHH) 1.62 1.85 2.27 2.32 1.97 2.29
Kix (LLHL) 0.43 0.69 0.95 0.95 0.59 0.86
Kly (LLHL) 0.01 0 0 0 -0.04 0
K2 (LLHL) 2.84 2.68 2.90 2.88 3.64 2.93
Kix (LLLH) 0.71 0.87 1.10 1.06 1.15 1.12
Kly (LLLH) 0.03 0.02 0 0 0.31 0
K2 (LLLH) 2.50 3.01 341 2.99 2.85 3.24
Kl1x (LLLLHH) 0.26 0.33 0.33 0.65 0.16 0.39
Kly (LLLLHH) 0.02 0.038 0 -0.05 -0.18 0
K2 (LLLLHH) 0.66 1.20 1.70 0 1.36 1.60
Kly (LLLLHL) 0.19 0.37 0.36 0.30 0.24 0.35
Ki1x (LLLLHL) 0.01 0.01 0.05 -0.01 0.07 -0.01
K2 (LLLLHL) 1.21 1.24 1.60 1.96 2.18 1.57
Kix (LLLLLH) 0.16 0.26 0.03 0.07 0.45 0.01
K1y (LLLLLH) 0.01 0.02 -0.15 0.03 0 -0.18
K2 (LLLLLH) 0.91 1.61 6.01 1.49 0.85 2.43

Table 5.3. Parameters of the thresholding functions for complete scheme.

The notation used to name the parameters is composed of two parts: the first part (Klx,
K1y or K2) indicates the parameter of the thresholding function, the second (HH, HL, LH,

etc.) refers to the component where the thresholding function has been applied (see figure
3-8).
5.3.1 Use of the Hessian matrix to reduce the number of parameters

Simplifying the thresholding schemes it is important to identify which parameters of the

thresholding scheme are the most important. This section considers the use of the local
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characteristics of the cost function surface to assess the importance of each parameter. The

method employed here examines the Hessian matrix of the cost function evaluated at the
optimum [109].

Consider the Taylor series expansion of f(h,,h,,....,h,) about its minimum point

* * *

(1 b))

PO i)

on,
6.1

Fhsestty) = FO BB+ D (= 1))

1 . D OC (B Ly, h)
= h —h))h. —h LSRR
+2Z;( —h)(h; —h) ook +

If this is truncated to only include terms up to second order terms and it is noted that since

k. is the minimum then

f(hl,hz,-..,h,gzf<h:‘,h;“,.-.,h:>+%<@.—E>TH<_@—_@*> (52)

where h = (h,h,,...,h,) and the matrix H is the Hessian matrix defined as

(9% f(h.h) O f(h..h) O f(h..h)]
o’ oh,d b, Jnd h
2% f(h..h) I*(h.h)
H=|" onoh, o’ ‘ ' (5.3)
A% f(h..h) % f(h..h)
| hah, ' ' on’ |

Defining Ah=h—h, then the change in the cost function resulting from a change in

parameters of Al is approximated by
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(5.4)

To see the significance of the i arameter, one can consider the following optimisation.
g p g op

flhihg,. . by (5.5)

Minimise
subject to
u' h=0
where
0 k=i
u, = _
1 k=i

(5.6)

(5.7)

The change in value of f{ ) for this constrained optimisation is a measure of the importance

of the i” parameter. Using the quadratic approximation for f{ ) then the solution to the

constrained approximation is given by using method of Lagrange multipliers, as follows.

Consider

Y=
—QE:H_@-H_@*MZ:O
oh
a—LpzuTh =0
oL ~ -
this implies
h=h"—AH 'u

é—(@—@”‘)TH@—@*w@T@

(5.8)

(5.9)
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Pre-multiplying by u’ gives

W h=0=u"h —Au"H 'u (5.10)
and then
T *
A=tk (5.11)
u Hu
Equation (5.9) can be rewritten
-1 T 4%
h=h _E_}iﬂ_ﬁ_ (5.12)
u H'u

Substituting into the cost function (5.8)

CHwd B HH 'R
' H'u)

P

h*Tu(uTH_lu)uTh*

L R e (5.13)
(u H'w)

R wdh 0w

S @WHw @ Hw

Using the definition of u one obtains

(h,)?
YW= 5.14
(H™),, G149

This is the change in the cost function, f{ ), if the i parameter is set to zero based on a
local quadratic approximation. Thus the parameter for which (5.14) is smallest is the

parameter which is of least significance. The influence of each parameter on the results, i.e.
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the influence of each variable in minimising a multidimensional function, is investigated by

examination of the Hessian matrix. The Hessian matrix has been computed using finite

differences:
SO X =y Xy )= 2 0% X Xy o o A A, xy )
: — : fi=]
Az
(5.15)
2 4.
M = f Xy — X — Aoy )+ X R s, Ao Xy )= fe X F A X =gy )+
ox,0x ;
j L,
= flx, % —dbex; +xg,.x, .
f( 1. X J Yj N) lfl + j
Axdx;

where x; =1% of x,

Table 5.4 shows the results of the procedure to identify the significance of the parameters.
The results show that assuming quadratic behaviour of the cost function the parameters
related to the first level of decomposition are the least significant and the parameters
constant for all the components (K1y and K2) cannot be neglected. This justifies the choice

of thresholding scheme done in section 5.3.2.

Noise level Noise level Noise level
5 10 15
Least significant KI1xLH K1xLH K1xHL
2™ K1xHL K1xHL K1xLH
31 K1xHH K1xHH K1xHH
4™ KIxLLLLLH | KIxLLLLHL | KIxLLLLHL
s KIxLLLLHL | KIXxLLLLLH | KIxLLLLHH
6™ KIxLLLLHH | KIxLLLLHH | KIxLLHH
7% Kly KIxLLHH Kly
g™ K1xLLHH Kly KI1xLLLH
9t K1xLLLH KIxLLLH | KIxLLLLLH
10" K1xLLHL K1xLLHL K1xLLHL
Most significant K2 K2 K2

Table 5.4. Analysis of the significance of the parameters in the training procedure using
the Hessian matrix.

5.3.2 Reduction of the number of parameters of the thresholding functions

The task of this sub-section is to discuss several options for reducing the number of

parameters involved in defining each thresholding function. According to the scheme
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described in the previous chapter each function depends on 3 parameters K/x, KIy, and K2.

The initial function to be minimised is of the form

f(Klx,,Kly,,K2,,...Klx,,K1y,,K2,,......

: : , (5.16)
i =1....K isthe componentsindex

The first simplification is to assume K/y and K2 are linearly dependent on K/x with

coefficients of proportionality that are constant for all the components of the same image

i.e. assuming
Kly, = K1y *Klx,

K2, = K2*Klx, (5.17)

i =1....K isthe component index

The function to be minimised has the form

f(Kly,K2,Klx,,...K1x;,......)

. . . (5.18)
i =1....K isthe component index
The analytical form of this thresholding scheme is,
u if |u| >K2*Klx
v=<Kly*u if Klx < |u] < K2*Klx

-K
(u-—Sign(u)le)%+sign(u)K1y*le if |u| <Klx

The family of thresholding functions is showed in figure 5-1.

39
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Figure 5-1. Thresholding scheme after first simplification.

The assumption related to the first simplification seems reasonable when this scheme is
compared with the optimal thresholding schemes derived in the previous chapter (figure 4-
13). If [ is the number of components resulting from the decomposition, the first

simplification reduces the number of parameters from 3/ to [+2.

Further simplifications could be made assuming

= Kly=0

» Kly=0and K2 =3".

These simplifications reduce the number of variables from 3/ respectively to /[+1 and /.

These assumptions have not been considered in this chapter because they reduce slightly

the number of parameters but also produce a grosser approximation of the family described
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in figure 4-13 and consequently of the families derived theoretically in the previous
chapter. In the remainder of the chapter the scheme related to the first simplification (/42
variables of the cost function) has been used because it represents an acceptable

compromise between number of cost function variables and similarity with the optimal

schemes.

5.3.3 Number of decomposition levels

In the previous sub-section several options for reducing the number of variables defining
the thresholding functions have been proposed. In all cases the complexity of the training
procedure is roughly proportional to the number of levels of decomposition. Hence one
way of reducing the number of parameters is to reduce the number of decomposition levels
but this reduces the ability of the method to analyse limited frequency bands. The best
choice is based on a compromise between the amount of frequency decomposition needed
to reduce the noise on the image, and computational load. In this work 3, 2, and 1 levels of
decomposition are considered, corresponding to 10, 7, and 4 components. Furthermore, no
manipulations are performed on the component in the lowest frequency band because it is
hard to distinguish noise and image in this component. Hence the number of components to
be thresholded is 9, 6, and 3 and the number of variables of the cost function is 11, 8, and
5. Table 5.5-a lists the parameters for 3, 2, and 1 decomposition levels for weighted® and

unweighted MSE and for 3 levels of noise. Table 5.5-b presents the MSE and WMSE

(weighted MSE) levels applying these sets of parameters.

! The choice of this value facilitates the hardware implementation of the technique.
? Details of the weighting are given in section 5.4.2.

91



Chapter 5: Thresholding function parameters

Unweighted Kly K2 [Klx | Kix | Kix |{Kix | Klx | Klx | Klix | Klx | Klx

optimisation HH HL LH LL LL LL LL LL LL
HH HL LH LL LL LL

HH HL LH

5 parameters

Noise level 5 005 | 3.67 | 417 | 2.89 | 2.33

Noise level 10 0.02 | 399 {1094 | 596 | 4.79

Noise level 15 0.05 | 6.89 ] 20511 990 | 7.23

8 parameters

Noise level 5 0.08 | 3.74 | 427 | 272 | 2.14 | 0.68 | 0.78 | 0.90

Noise level 10 0 373 [ 1191 5.62 | 449 | 129 | 155 | 1.72

Noise level 15 0 3.89 [ 37.60 | 1021 | 7.51 | 1.96 | 2.15 | 2.38

11 parameters

Noise level 5 0.09 | 362 | 431 | 268 | 222 | 073 | 073 | 0.87 | 032 | 035 | 0.28

Noise level 10 0.01 | 3.60 | 1099 | 574 | 459 | 1.39 | 143 | 1.59 | 0.61 | 059 | 0.78

Noise level 15 0.01 | 3.67 | 51.87 11039 | 7.83 | 1.99 | 2.04 | 2.39 | 092 | 0.98 | 0.97

Weighted K1y K2 | Kilx | Klx | Klx |[Klx | Kilx | Klx | Klx | Klx |Klx

optimisation HH HL LH LL LL LL LL LL LL
HH HL LH LL LL LL

HH HL LH

5 parameters

Noise level 5 036 | 2.57 | 882 | 295 | 2.97

Noise level 10 0.09 | 630 | 13.02 | 401 | 4.08

Noise level 15 0.05 | 1498 | 21.00 | 7.96 | 6.79

8 parameters

Noise level 5 024 | 282 | 1276 | 1.81 | 2.06 | 094 | 1.15 | 1.18

Noise level 10 054 | 219 11647 0.14 | 488 | 1.81 | 2.08 | 2.13

Noise level 15 0.68 | 2.52 | 547.21209.6 | 54.82 | 279 | 2.89 | 2.79

11 parameters

Noise level 5 0.08 | 430 | 460 | 1.08 | 1.11 | 1.13 | 1.24 | 1.26 | 040 | 0.44 | 0.46

Noise level 10 0.34 | 3.32 | 1025 | 3.85 | 4.21 1.82 | 196 | 1.89 | 0.65 | 0.63 | 0.72

Noise level 15 047 | 2.67 | 72.66 | 7.29 | 809 | 2.81 | 271 | 272 | 0.88 | 0.89 | 1.00

Table 5.5-a. Unweighted and weighted optimisations for 3 decomposition levels and 3

noise levels.
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MSE

Unweighted 0 parameters 5 parameters. 8 parameters 11 parameters
optimisation

Noise level 5 25 14.1 13.5 13.4
Noise level 10 99.2. 43.2 40.1 39.7
Noise level 15 226.7 80.1 73.0 72.2

Weighted

optimisation

Noise level 5 25 15.1 14.7 14.7
Noise level 10 99.2 55.8 51.2 51.4
Noise level 15 226.7 123 102.1 101.2

WMSE
Weighted

optimisation

Noise level 5 2.5 2.3 2.1 2
Noise level 10 10.1 8.8 7.2 7.1
Noise level 15 23.1 19.1 15.3 14.7
Unweighted

optimisation

Noise level 5 2.5 2.3 2.2 2.1
Noise level 10 10.1 9 8 7.8
Noise level 15 23.1 19.3 17.1 16.4

Table 5.5-b. Noise reduction using weighted and unweighted optimisations for 3
decomposition levels and 3 noise levels.

In this case the notation used to name the parameters is composed of two parts only for K1x
while K1y and K2 are constant for all the components (see equations (5.17) and (5.18)).
Table 5.5-a shows that the parameters related to a level of decomposition depend on the
number of decomposition levels applied. This confirms the need of the concurrent
optimisation of all the components across the different decomposition levels. The table also
emphasises that the larger differences between the parameters are obtained using the two
cost functions especially at the first level of decomposition (columns 4, 5 and 6). The
reason for this will be explained in section 5.4 where the cost functions are described in
detail. Table 5.5-b demonstrated a significant part of the noise reduction is performed on
the second and third level of decomposition. The selection of the number of decomposition
levels applied depends on the spectral characteristics of the image considered. In the rest of

this chapter, 3 levels of decomposition are utilised.
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5.4 Cost function values

The primary goal of this work is to reduce the noise contaminating an image, but meantime
it is important that the visual quality of the image should not be significantly degraded.
Thus the cost function used in the training procedure should be a measure of noise

reduction and of the visual quality of the image. Two indices have been considered as cost

functions in this work.

The first index is the mean square error (MSE), defined as:

Y. (u(m,n)~i(m,n))?
N

MSE = (5.20)

where N is the number of pixels in the original image u(m, n), and #(m,n) is the estimated
image after the noise reduction technique has been applied to a version of u(m, n)

contaminated by additive noise.

v(m,n) = u(m,n) + n(m,n)

N (5.21)
u(m,n) = flv(m,n)]

where f[ ] is the thresholding operation. This is the simplest of all measures of image
quality but is not always sufficient to judge the performance of a technique. Assuming

independence between image and noise and N large the MSE can be rewritten as

Zm’n (v(m,n) —H(m,n))* .\ Zm’n (n(m,n) —i(m,n))*

MSE = (5.22)
N N
Distortion Noise
reduction
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The percentage of reduction of this index measures the difference between the percentage
of noise reduced and the percentage of distortion introduced by processing. Consequently
the percentage of noise reduced by minimising the MSE may be large but may introduce

unacceptable distortions.

The second measure of image quality is a modified form of MSE, adjusted to partially
reflect the human sensitivity to high frequency distortions. To evaluate the significance of
any distortion, a model of the human visual system is necessary. The determination of a
model of the human visual system is made difficult by its inaccessible and distributed
nature. Experiments demonstrate that the human eye is particularly sensitive to distortion in
high frequency bands. So that if a small amount of high frequency distortion is introduced
then the perceived image quality may be reduced, even in the presence of noise reduction.

The relationship between the WMSE used herein and visual models presented in literature

is explored later.

5.4.1 Visual model

To describe the human visual system is a very complex problem. Experiments have been
performed to investigate some of the eye properties. This sub-section describes two
concepts emphasised by these experiments in order to justify the procedure utilised in the

approach used herein.

The first concept is that the first perceptible distortion produced by filtering occurs at the
major edges of the image. From this, one can assume that the threshold perception of
distortion could be studied by analysing edge perception in the filtered images. A model
describing this perception has been used to design filters for noise reduction [96, 97, 98].

The visibility of lines as a function of the distance to an edge can be expressed by:
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vix)=1-a" (5.23)

In this expression x is the distance to an edge, and « is a parameter related to the ratio of

luminance on high and low levels sides (figure 5.2).

0.9+ a=05

0.8

0.7

0.6

205

o] 1 2 3 4 5 6 7 8 9 10

Figure 5-2. Visibility function dependence on the distance of a line to an edge.

The second concept is that there is an upper limit to the spatial frequency that the eye can
perceive at a given viewing distance. Therefore the eye behaves as a low-pass filter.
Moreover the visual system weights the middle range frequencies more heavily than either
the low or the high frequencies. An approximation of the response of the visual system [99]

as a spatial frequency filter can be described by the function

cycles

—_— (5.24)
Unit distance

H.(f)*=0+50fe®"  for0< f<1 [
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which is shown in figure 5-3 where the frequency axis is normalised so that 1 cycle per unit

distance corresponds to the frequency cutoff of the visual system.

IHif)[2

0 1/2 1
£ [Cycle/Unit distance]

Figure 5-3. Model for the frequency response of the visual system.
5.4.2 Weighted Mean Square Error (WMSE)

A method to evaluate the image visual quality based on MSE is to weight differently the
error components in different frequency bands. The human eye is particularly sensitive to
edges and discontinuities. To preserve the discontinuities less noise reduction should be
performed in the high frequency bands. In order to better determine the visual quality of an
image, the error is weighted using a low-pass filter retaining the low frequency content and
attenuating the high frequency elements. The limit of this procedure is the assumption of

the eye perception as linear whereas in fact it is non-linear. Figure 5-4 describes the block
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diagram of the method to measure the WMSE, and figure 5-5 shows the frequency

response of the low-pass weighting filter used”.

Noisy Image

Error
¥ LPF msg | MBE

Original Image

Figure 5-4. Block diagram describing the WMSE evaluation.

08} 4

0.7 -

05F .
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0 152 1
fiCycles)

Figure 5-5. The frequency response of the weighting filter.
The weighting filter serves to limit the highest frequency influencing the measured image
quality. The de-noising scheme used here imposes a low frequency limit by the fact that the
very lowest frequency component is never subjected to the thresholding function. The

visibility function extracted from these two filters has the characteristics of a band pass

? This FIR filter with impulse response W=[ 0.0347 0.2406 0.4495 0.2406 0.0347 ], has been suggested in a
private communication with M. Weston.

98



Chapter 5: Thresholding function parameters

filter. The frequency response of this filter is shown in figure 5-6. One can observe the
similarity with the frequency response obtained from the visual model, see figure 5-3. It is
left until later chapters to illustrate that minimising WMSE does indeed result in improving

visual quality of the final image.

05F -

D 1
1] 172 1
f{Cycles)

Figure 5-6. Frequency response describing the visual model assumed in the method
presented in this thesis.
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5.5 Training results

Section 5.2 compares the performances of the algorithms used to minimise the cost
function, section 5.3 describes the parameters of the cost function and section 5.4 describes
the form of the cost function. In this section the results of the training procedure in these
conditions are compared. Additive White Gaussian Noise (AWGN) is assumed and further

that the standard deviation of the noise is known (procedures for noise estimation are

described in next chapter).

The influence of the noise level (standard deviation) on the threshold parameters is
explored via a series of simulations. Six different levels of noise standard deviation in the
range [5, 15] were added to an image. The range of noise levels was chosen to cover the
range expected in real applications. Table 5.6 shows the parameters obtained for six of the
noise levels utilising MSE and WMSE as the cost functions. Figure 5-7 plots the
dependence of these parameters® on the noise level emphasising the approximately linear

dependence between the threshold parameters and the noise level.

* The 9 parameters respectively related to the 9 frequency bands are considered. The other 2 parameters
related to all the band have an almost constant shape.
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Unweighted Kly K2 | Kilx [Klx | Klx | Kix [ Klx | Klx | Klx [ Klx | Kilx
optimisation HH HL LH LL LL LL LL LL LL
HH HL LH LL LL LL
HH HL LH

Noise level 5 0.09 362 | 431 | 268 | 222 | 073 | 073 | 0.87 | 032 | 035 | 0.28

Noise level 7 0.07 347 | 599 [ 340 | 325 | 094 | 099 | 1.11 | 043 | 049 | 051

Noise level 9 0 3.65 | 7.09 | 446 | 425 | 1.17 | 1.31 1.23 [ 057 | 0.58 [ 0.76

Noise level 11 | 0.01 361 | 1542 ] 698 | 506 | 129 [ 1.52 | 1.54 | 0.65 | 0.69 | 0.81

Noise level 13 | 0.02 354 12564 | 870 | 647 | 1.57 | 1.79 | 1.97 [ 078 | 0.79 | 0.92

Noise level 15 | 0.01 3.67 | 518711039 7.83 | 1.99 | 2.04 | 239 | 092 | 098 | 0.97

Weighted
optimisation

Noise level 5 0.08 430 | 460 | 1.08 | 1.11 1.13 | 1.24 | 126 | 040 | 044 | 046

Noise level 7 0.24 230 [ 12.18 ] 201 | 259 | 1.19 | 145 | 148 | 048 | 049 | 0.54

Noise level 9 0.33 233 11405) 313 | 374 | 129 | 1.80 | 1.82 | 0.62 | 0.60 | 0.67

Noise level 11 | 0.41 2.51 [ 33.67 ] 491 | 487 146 | 2.07 | 2.11 | 0.69 | 0.68 | 0.78

Noise level 13 | 0.46 254 | 5201 | 523 | 662 | 1.79 | 240 | 244 | 079 | 0.79 | 0.99

Noise level 15 | 0.47 2.67 [ 72.66 ] 7.29 | 8.09 | 2.81 | 271 | 2.72 | 0.88 | 0.89 | 1.00

Table 5.6. Parameter dependence on the noise levels for unweighted and weighted
optimisations.

101




Chapter 5: Thresholding function parameters
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Figure 5-7-a. Relation between parameters and noise levels (unweighted optimisation, 11
parameters, and Nelder algorithm).
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Figure 5-7-b. Relation between parameters and noise levels (weighted optimisation, 11
parameters, and Nelder algorithm).
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To assess the robustness of these results with regard to the realisation of the noise,
threshold parameters were computed for five different noise realisations (for each of the six
noise levels) minimising the WMSE. The means and standard deviations of the parameters
are computed. Table 5.7 lists these for each parameter and uses the ratio (normalised

standard deviation)

var% = standard deviation (5.25)
mean

as an index of significance of the noise realisation on each parameter. This table

demonstrates that the parameters related to the first level of decomposition are least robust.

Kly K2 | Kix | Kix |[Kix [Kix |[Kilx | Kix | Klx | Klx | Kilx
HH HL LH LL LL LL LL LL LL
HH HL LH LL LL LL
HH HL LH

Noise | Mean 0.01 1.87 [ 12941 0.10 | 0.09 | 1.16 | 1.28 | 1.26 | 041 | 047 | 043

level | Std 003 | 012 | 481 | 0.06 | 0.06 | 0.05 | 0.08 | 0.04 | 002 | 0.02 | 0.02

S |Var% |27.63 | 6.67 |37.18 | 59.58 | 70.30 | 4.88 | 6.52 | 3.64 | 594 | 5.60 | 6.77

Noise | Mean 024 | 2.11 11384 | 011 | 0.10 | 1.39 | 1.56 | 1.50 | 049 | 051 | 0.55
level | Std 003 | 013 | 557 | 008 | 0.11 | 0.07 | 009 | 0.04 | 003 | 0.05 | 0.05

7 | Var % | 1327 | 644 | 4028 | 72.24 | 1185 | 5.32 | 596 | 2.92 | 7.09 | 11.70 | 10.16

Noise | Mean 037 | 241 {1778 | 0.12 | 0.11 176 | 1.78 | 1.75 | 0.55 | 0.63 | 0.60

level | Std 0.02 | 007 | 7.15 | 0.07 | 0.031 ] 003 | 0.04 [ 0.07 | 0.01 | 0.02 | 0.03
9 Var % | 6.54 | 292 | 4026 | 55.64 1 27.73 | 1.85 | 231 | 452 | 2.66 | 412 | 5.65

Noise | Mean 043 | 259 | 46881 0.13 [ 0.11 | 2.04 | 2.06 | 2.05 | 0.66 | 0.69 | 0.72
level | Std 002 | 008 | 940 | 0.04 | 0.05 | 0.04 | 0.03 | 0.05 | 0.04 0 0.03

11 | Var % | 5.06 | 3.40 | 2005|3449 | 4849 | 232 | 1.77 | 2.85 | 688 | 1.28 | 5.22

Noise | Mean 049 | 260 | 5253 0.13 [ 0.12 | 242 | 244 | 235 | 075 | 0.83 | 0.85
level | Std 0.03 [ 015 | 1191 | 0.07 | 0.08 | 0.08 | 0.12 | 0.08 | 0.03 [ 0.05 | 0.03

13 | Var % | 7.85 | 5.94 |22.67 | 5493 | 67.16 | 3.61 | 5.11 | 3.79 | 520 | 6.09 | 3.75

Noise | Mean 053 | 2.68 | 80.67 | 0.14 | 0.13 | 2.82 | 2.65 | 2.57 | 0.86 | 0.90 | 1.00
level | Std 0.02 | 0.13 | 1397 0.09 [ 0.11 | 0.02 | 0.06 [ 0.05 | 0.06 | 0.06 | 0.07
15 | var % | 3.84 | 4.88 | 17.32 | 66.48 | 84.07 | 1.01 | 2.26 | 228 | 7.94 | 7.34 | 7.02

Table 5.7. Analysis of the noise realisation on the parameters.

This work concerns video images and this is a category that can include images having
disparate spectral distributions. Therefore the generalisation of the parameters for such a
large class is not a trivial task. A set of seven images having various spectral distributions

was chosen as example images. The optimal thresholding parameters for those images were
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computed for six noise levels. This subset was used because it represents a diverse image
set. The relation between the size of each parameter and the energetic content of the related
frequency component was investigated. The relation between confidence intervals for the
parameters and the corresponding variance of the performance was explored. The
customised Nelder method was used to minimise the WMSE, six noise levels were
considered, and three levels of decomposition were used. Tables 5.8 show the parameters
obtained by training on seven different images, demonstrating, unsurprisingly, that the
parameters differ depending on the training image used, i.e. the spectral content of the
image influences the results. However in chapter 7 it will be shown that the performance of

the algorithm is not critically dependent upon using the parameters obtained by training on

that image.
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Noise level 5 | Kly K2 [Kix [Klx | Kilx |[Klx | Klx | Klx | Klx | Klx | Kilx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 0.08 | 430 | 460 | 1.08 | 1.11 1.13 | 1.24 | 1.26 | 040 | 044 | 046
Graph 058 | 2.76 | 114 | 3.21 1.17 | 0.69 | 042 | 0.83 | 021 | 026 | 0.24
Girl 020 | 2.13 | 953 | 0.02 | 0.04 | 0.85 | 0.81 | 0.69 | 025 | 0.28 | 024
Interview 0.04 | 2.14 | 23.42 | 0.01 0 1.17 | 1.24 | 1.09 | 043 | 051 | 0.37
Tree 0.01 1.89 | 11.39 0 040 | 1.12 | 125 | 1.27 | 041 | 044 | 0.45
Text 0.01 1.88 | 11.39 0 038 | 1.14 | 1.26 | 1.26 | 040 | 043 | 045
Synthetic 0.05 | 1.86 | 11.39 0 039 | 1.15 | 1.25 | 1.27 | 040 | 043 | 047

Table 5.8-a. Parameter comparison for noise level 5.

Noise level 7 | Kly K2 [Kix | Kilx |Kix | Klx | Klx |Klx | Klx | Klx | Klx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 024 | 230 | 12.18 | 2.01 | 2.59 | 1.19 | 145 | 1.48 | 048 | 0.49 | 0.54
Graph 049 | 3.05 (11.84| 665 | 2.61 | 1.59 | 086 | 225 | 041 | 053 | 0.37
Girl 028 | 2.15 11082 | 494 | 003 | 138 | 1.19 | 1.61 | 0.52 | 0.63 | 0.52
Interview 0.09 | 2.40 | 24.04 | 3.57 0 149 | 146 | 1.70 | 0.60 | 0.75 | 0.55
Tree 025 | 2.29 | 12.19 0 059 | 131 | 144 | 147 [ 047 | 0.50 | 0.53
Text 025 ] 229 [ 12.18] 001 | 059 | 132 | 145 | 148 | 050 | 049 | 0.53
Synthetic 0.25 | 2.31 | 12.18 0 058 | 132 | 144 | 148 | 049 | 049 | 054

Table 5.8-b. Parameter comparison for noise level 7.

Noise level 9 | Kly K2 | Kix | Klilx | Kix [ Klix | Klix | Klx | Kix | Kix | Klx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 033 | 233 [ 1405 3.13 | 374 | 129 | 1.80 | 1.82 | 0.62 | 0.60 | 0.67
Graph 0.53 | 3.34 | 13.62 | 796 | 6.71 1.98 | 1.91 1.83 | 0.57 | 0.66 | 0.86
Girl 035 | 1.84 | 13391 7.62 | 7.67 | 1.71 | 2.02 | 1.67 | 0.78 0 0.86
Interview 021 | 2.04 | 2614 | 621 | 6.06 | 1.88 | 239 | 2.08 | 0.85 | 098 | 0.85
Tree 034 | 233 [ 1406 ] 001 | 074 | 1.64 | 1.79 | 1.83 | 0.63 | 0.60 | 0.68
Text 0.30 | 2.33 | 1406 | 001 | 075 | 1.66 | 1.81 | 1.84 | 0.62 | 0.62 | 0.67
Synthetic 0.33 | 2.35 | 14.07 0 074 | 1.66 | 1.81 1.82 | 0.62 | 0.60 | 0.67

Table 5.8-c. Parameter comparison for noise level 9.
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Noise level 11 | Kly K2 | Kix [Kix [Kix | Kix |[Klx [Klx | Klx | Kix | Kilx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 041 | 251 |33.67| 491 | 487 | 146 | 2.07 | 2.11 | 0.69 | 0.68 | 0.78
Graph 045 | 251 1 17.86 | 987 | 881 | 251 | 245 | 2.81 | 0.82 | 0.74 | 0.95
Girl 030 | 1.81 | 11.56 ] 9.69 | 1037 | 2.17 | 233 | 2.15 | 090 | 1.14 | 0.94
Interview 0.19 | 196 13456 | 859 | 793 | 238 | 2.74 | 253 | 099 | 1.34 | 1.05
Tree 041 | 252 |33.66| 001 | 0.88 | 2.01 | 2.06 | 2.12 | 0.69 | 0.70 | 0.77
Text 041 | 252 | 3368 | 001 | 0.88 | 198 | 2.06 [ 2.12 | 0.69 | 0.67 | 0.79
Synthetic 042 | 250 13367 001 | 085 | 199 | 2.05 | 2.11 | 070 | 0.70 | 0.78

Table 5.8-d. Parameter comparison for noise level 11.

Noise level 13 | Kly K2 [Klx |Klx [Kix [Klx | Klx | Kix | Kix | Klx | Klx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 046 | 254 | 5201 | 523 | 662 | 1.79 | 240 | 244 | 079 | 0.79 | 0.99
Graph 039 | 265 | 21.67 [ 11.23 [ 10.84 | 3.11 | 3.08 | 290 | 0.87 | 0.86 | 1.46
Girl 023 | 192 119.87 | 11.54 | 12.07 | 241 | 2.63 | 238 | 1.00 | 1.23 | 1.10
Interview 0.16 | 1.91 | 5393 [1045] 95 2.80 | 3.19 | 308 | 1.14 | 1.58 | 1.24
Tree 044 | 254 15209 002 | 091 | 241 | 240 | 245 | 0.78 | 0.80 | 0.90
Text 045 | 254 | 5211 | 001 | 0.89 | 240 | 241 | 246 | 0.81 | 0.78 | 091
Synthetic 047 | 253 | 52,1 | 001 | 092 | 241 | 240 | 2.44 | 0.78 | 0.78 | 0.89

Table 5.8-¢. Parameter comparison for noise level 13.

Noise level 15 | Kly K2 [ Kilx [Kix | Kilx | Kix | Klx |Kilx | Klx | Klx | Kilx
HH HL LH LL LL LL LL LL LL

HH HL LH LL LL LL

HH HL LH

Test 047 | 267 | 72.66 | 729 | 809 | 2.81 | 271 | 272 | 0.88 | 0.89 | 1.00
Graph 0.35 | 2.08 | 2546 | 13.33 [ 13.07 | 3.80 | 425 | 347 | 1.09 | 097 | 1.77
Girl 0.19 | 1.95 [ 2727 | 13.11 {1447 | 297 | 301 | 274 | 1.10 | 1.44 | 1.18
Interview 0.13 | 1.77 | 59.37 | 13.23 | 11.62 | 332 | 3.65 | 3.60 | 135 | 1.89 | 1.52
Tree 0.51 | 2.61 | 71.85 0 1.09 | 2.82 | 2.69 2.7 0.88 | 0.89 | 1.00
Text 0.50 | 2.59 | 71.85 0 1.10 | 280 | 2.71 | 2.72 | 0.88 | 0.88 | 0.99
Synthetic 049 | 259 | 71.84 | 0.01 | 1.11 | 2.82 y 271 | 271 | 0.87 | 0.88 | 1.00

Table 5.8-f. Parameter comparison for noise level 15.
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6.1 Introduction

Noise level estimation, i.e. estimation of the noise standard deviation level, is needed on
each component to select the appropriate set of thresholding function parameters. Images
are non-stationary, two-dimensional processes, and may in general be corrupted by

additive, impulse, or signal dependent noise. This work assumes that the noise is additive,

Gaussian and either white or coloured.

This chapter initially describes noise contaminated image models and specifies the
assumptions made herein. Subsequently in section 6.3, three methods for noise level

estimation are presented, and the results of these estimation procedures are listed and

commented on in the last section.
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6.2 Noise contaminated image models

The general model of a noise contaminated image system can be described by [7, 13, 100,

101, 102]:

v(m,n) = [u(m,n) + n,(m,n)In,(m,n) (6.1)

n(mn) m(mn)

u(m,n) g S vimm

Figure 6-1.General model of the image system.

where v(m,n) is the observed image, u(m,n) is the original image, ny(m,n) is an additive
noise, and 7,(m,n) is a multiplicative noise. This study initially considers zero mean
Additive White Gaussian Noise (AWGN). The less restrictive hypothesis of coloured

Gaussian noise is considered later.

In the AWGN case the image model is:

v(m,n) =u(m,n)+n, (m,n) (6.2)

Ny (M,1)
u(m,n) /J\Lb v(m,n)

Figure 6-2. Model of the image system for additive noise.
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Where 7,(m,n) is AWGN and it is characterised by a single parameter: its standard
deviation (the mean is zero by assumption). In the following section three methods for
estimating the standard deviation of the noise contaminating the high frequency band are
described. The high frequency band' is used because the image is in general smallest in this
band and therefore one can better discern the noise. Under the AWGN assumption

knowledge of the noise standard deviation in one frequency band allows the computation

of the overall noise variance.

When the less restrictive hypothesis of coloured Gaussian noise is assumed then the image

model is:

v(m,n) =u(m,n)+n, (m,n) (6.3)
n,(mn)
F
n (mn)
u(m,n) X v(m,n)
[V

Figure 6-3. Model of the image system for coloured noise.

Where n,(m,n) is AWGN and n.(m,n) is the filtered (coloured) noise and it is characterised
by its spectral distribution. In tests, three spectral distributions for the noise have been
used; the frequency responses of the three filters used to generate the coloration are shown
in figures 6-4. These filters have been designed in order to generate a range of spectral

distributions for the noise.

! This corresponds to the coarsest scale in the wavelet decomposition
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Frosuscy Runpose of Ftor 3
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Ernquoncy Rivpores of s |

Figures 6-4. Filters used to simulate coloured noise: a) band-pass, b) low and c) high-
pass.

The methods described in the following section are not specifically designed for coloured
noise scenarios where the noise standard deviation should at least be estimated in each
band individually. The spectral distribution of the noise may be known a priori or may be
deduced using two consecutive video frames (see figure 6-5). In this figure Nwl and Nw2
are two white noise realisations; Imnl and Imn2 are the two frames contaminated with
coloured noises derived by filtering Nw1 and Nw2; ImAv is the image obtained averaging
Imnl and Imn2. This latter procedure allows one to compute the ratios of the standard

deviation of the noise in any frequency band.

—
A
v
Frame 1 () ¢
Nwi Imnt) 2 sart(2)
%eb— FFT >
Frame 2 Nw2 " g ImAv 11‘{0‘11se L Noise
AT educe Spectral
Tmn2 distribution
I—

Figure 6-5. Noise spectral distribution estimation.
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6.3 Noise level estimation in the high frequency band

In this section, three methods for noise level estimation are considered. These methods can
be applied directly assuming AWGN or as part of the procedure for coloured noise
estimation. Where convenient it shall be assumed that the component under consideration

represents the highest frequency band as this is the one which is used when the noise is

assumed to be white.
6.3.2 Noise level estimation using cumulative distribution functions (cdfs)

One method to estimate the noise levels is based on the Cumulative Distribution Functions
(cdfs) [110, 111]. The cdf is computed for the squared, low passed pixel values (see figure
6-6). This operation computes local estimates of the local energy. The cdf value for a value

h is defined as the proportion of pixels for which the local energy is less than 4.

Image HH HH HHE, cdf[HH' ,h,] figfle
Low .
HH 2 Compute Estimate
| Filter O g?liir cdf value noise level [~

|

Grey level b,

Figure 6-6. Noise estimation using the cdfs evaluation.

For a given point 4 the cdf value depends on the noise level. The cdfs of one image for six
different noise levels are shown in figure 6-7. However the form of this relationship

depends on the image and on the value of 4. The cdfs of 13 different images for the same

noise level are shown in figure 6-8.
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! 1 [ l
60 80 100 120
Grey level

Figure 6-7. Cdfs of an image for different noise levels.

0.8

0.7
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Figure 6-8. Cdfs of 13 images contaminated with noise std level 15.
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Consider the problem of determining the grey level A for which the image cdf permits the
best estimate of the noise level over all the training set.

Initially the optimal grey level for discrimination between pairs of noise levels, #, (11, L), is
determined using the function
[, (B)—m,, (B)

Jo,(m+o, (h)  (6.4)
hy (,1,) = arg max(f, , (h))
! :

fr, (W)=

where [; and [, are the two noise levels, m, (k) and o,(h), are the mean and the standard

deviation of the cdf at a grey level 4 computed across the set of images.

The optimal grey level, iy over the set of noise levels is determined using the function:

S M) = X0 fi, () i<j

hy = arg;nax(fmt (h)) (6.5)

where the summation is taken across all the noise levels considered. To determine Ay, 13
images at 6 noise levels were used. The noise level is estimated by evaluating the cdf at Ay

and comparing this with the range of cdf values obtained by training over the sets of
images and noise levels.

This method assumes that the set of 13 images is representative and that the noise level is
in the range considered. The main advantage of this method is that it uses information from

grey levels where the image has least influence, i.e. planar areas in the image. Moreover,

the image components are not assumed to have any particular statistical distribution.
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6.3.2 Noise level estimation using moment matching

A second method for estimating the noise level is to assume a statistical distribution for the
noise free image component [110, 111]. For example one may assume that the component

has a zero mean Laplacian distribution® with standard deviation o, :

V2
puy=——e "™
O-U

The noise component is assumed to have a zero mean Gaussian distribution with standard

deviationo

n® _(v—u)2

20,° 6.7)

pln) = —e " = p(y=u) = ——e
o,V2n o,N2m

Assuming independence between the original image and noise, it is possible to obtain an

expression for the distribution of the noisy image component as:

pO) = [ p(v—u)p(u)du (6.8)

Substituting (6.6) and (6.7) in (6.8) and considering the symmetry of both the distributions,

it is possible to solve the integral®, with the result:

o

q!q

= =

IS
TN
S

O g 1% v T q v
Ony Ve efd T Y Il (69
O u 0‘17\/2] (O- u 0',,\/2}

? This assumption is realistic in particular for the HH component
? The solution is detailed in appendix B.
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One can use the method of matching moments [10, 12] to fit the model to the data. One can
estimate the variance E{vz}, and the absolute moment E{}y|} from a component of the
noisy image. It is possible to compare these with the corresponding theoretical expressions
evaluated from the distribution p(v). Thus the noise levels can be estimated by solving the

resulting system of two equations, for ¢, ando, :

E{vz}: Tvzp(v)dv
N (6.10)

Eﬁv‘}: Tlvlp(v)dv

The approach can be generalised when the component of the original image has a statistical

distribution which is a member of the standardised normal distribution family. In this case

the equivalent of (6.6) has the form:

.0, f,)= “’(ﬁ) TR <o
]
2

o(B,)= - 0,>0 (6.11)
(1+&>{FB<1+&)J}Z
FF(H,BM)J o

c(B,) = f——— 1<, <1
F&mﬁn]

see (4.21) for detail. In this case the evaluation of the integral (6.8) in closed form is not

trivial. Nevertheless it is possible to use numerical techniques to evaluate the noise level
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for each value of f,, and then for each model assumed. This system defines the link

between the statistical model assumed and the estimated noise level. Nevertheless this is a
system of two equations and three unknowns and cannot be used to estimate the noise level

when the statistical distribution of the original component is unknown, i.e. when f is
unknown. In subsection 6.3.3 the use of other moments is considered to overcome this

problem.
6.3.3 Noise level estimation using linear regression

The final method of noise level estimation is once again based on estimating the image
moments [110, 111]. In this case one avoids making explicit assumptions about statistical
distribution of the noise free image. In this scheme it is assumed that there exists a linear
relationship between normalised moments and the noise level. Linear regression is then
used to compute the coefficients of the unknown linear relationship based on a set of

images at various noise levels. Three normalised moments are used in this regression

M1= E{]v|}

o= B (6.12)
_EWY)
C(M2)(M1)?

Note that the three regressors M1, M2 and M3 have the same dimensions as the standard

deviation of v. The assumed model is

o, M1+0,M2+0,M3=0 (6.13)
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where ¢, are the regression coefficients and o 1is the true noise level (standard deviation).

Given a set of training examples from the K images at H noise levels, one solves the

system of equations

Ax=G (6.14)

where

ML, M2, M3, 0,

: . : c,
M1, M2, M3,

ML, M2,, M3, Oy

: : ‘ o,

M1, M2,, M2,, o, o,

A= . . . ox=lo, | G=| . |(6.15)

a, o

: : : o,

Mle, M2, M3y, 0,

My, M2, M3y, On

in which M1,;, M2;; and M3;; are the normalised moments computed from the i image at

the /™ noise level. Assuming K H>3 then the least squares regression is given by

x=(A'A)"'A'G (6.15)

Clearly one could extend this method to use other regressions and/or non linear regression

schemes.
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6.4 Results of the noise level estimation

Three methods for the estimation of the noise level have been compared along with a
combined algorithm. In order to judge the performances of these methods, a set of 13

images has been considered; the images have been contaminated with 6 different levels of

AWGN creating a training set of 78 images.
6.4.1 Results of noise level estimation using the cdfs

The first method for noise level estimation is based on the evaluation of the cumulative
density function at a particular grey level. A method for computing the optimal level for
discriminating between two noise levels is described in section 6.3.1. This level is where
the cdf can best discern noise levels. The grey level is selected to optimise the results. The
first column of table 6.1 lists the grey levels which are the best discriminators for pairs of

noise levels. The remaining columns list the means and the standard deviations of the 13

cdfs for the two noise levels.

Noise levels Noise Value of the Value of the Value of the Value of the
k-k+1 discriminating cdfs mean for cdfs mean for cdfs std for cdfs std for
grey level noise level k noise level k +1 | noise level k | noise level k+1
Noise levels 5 0.5720 0.3105 0.2004 0.1107
5-7
Noise levels 6 0.3974 0.1995 0.1349 0.0683
7-9
Noise levels 10 0.4345 0.2585 0.1240 0.0750
9-11
Noise levels 14 0.4242 0.2715 0.1051 0.0677
11-13
Noise levels 21 0.4801 0.3418 0.0935 0.0690
13-15

Table 6.1. Best grey level discriminators for different noise level ranges.

A single overall grey level has been selected to discriminate over the whole range of noise
levels using equation (6.5). The best grey level computed for the whole image set is 8.

Table 6.2 shows the means and the standard deviations for the 13 images at grey level 8.
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Noise levels Mean of the cdfs value in the best Std of the cdfs value in the best
discriminating grey level discriminating grey level
Noise level 5 0.7443 0.2167
Noise level 7 0.5394 0.1650
Noise level 9 0.3230 0.1011
Noise level 11 0.1699 0.0532
Noise level 13 0.0830 0.0256
Noise level 15 0.0392 0.0121

Table 6.2. Confidence interval using overall best grey level discriminator.

Table 6.4 shows the results of this complete noise level estimation over all the 78 images.
In figure 6-9 the results of the estimation are depicted for the 13 images. Figure 6-10 shows

the confidence intervals for the method, based on the means and the standard deviations

listed in table 6.3.

Noise level | Noise level | Noise level | Noise level | Noise level | Noise level
5 7 9 11 13 15
Image 1 2.2440 6.0440 8.5229 10.6444 12.7071 14.7620
Image 2 5.4190 7.3563 0.3522 11.3144 13.2737 14.4396
Image 3 3.3043 6.3517 8.6347 10.7784 12.7698 14.7509
Image 4 1.9722 5.8165 8.2757 10.4455 12.5387 14.6345
Image 5 3.0292 6.2144 8.5470 10.6408 12.7632 14.6935
Image 6 1.9293 5.7728 8.2833 10.4469 12.5308 14.5648
Image 7 5.0228 6.9942 3.9700 10.9785 12.9917 14.9677
Image 8 2.4850 6.0254 8.4108 10.5867 12.6308 14.6765
Image 9 9.8879 11.0017 12.6051 13.9580 14.4048 15.9362
Image 10 2.2378 5.9622 8.3711 10.5457 12.5848 14.5871
Image 11 4.7093 6.9263 8.9547 10.9380 12.9750 14.9468
Image 12 8.7155 10.0722 11.7562 13.4849 13.2620 15.3065
Image 13 3.9211 6.4078 8.5904 10.6658 12.7506 14.7737
Average 4.2213 6.9958 9.1749 11.2211 12.9028 14.8492
Std 2.5519 1.6538 1.3795 1.2464 0.4018 0.3931

Table 6.3. Results of noise estimation using the cdfs.
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Figure 6-9. Noise estimation on 13 images for 6 noise levels with the cdfs.

The continuous

line is the standard deviation of the noise introduced and the dotted line is the estimate of

the noise level.
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Figure 6-10. Mean (dotted line) + one standard deviation (+ marks) of the overall
estimation, theoretical noise level (continuous line). Cdfs method.

6.4.2 Results of noise level estimation using moment matching

The second method to estimate the noise level, based on the method of matching moments,
does not need a priori information but is based on the hypothesis that the highest frequency
component in the image has a prescribed distribution; here a Laplacian distribution is
assumed. The moments chosen for matching are the first absolute moment and the
variance. The method was then applied to the 78 images to estimate the noise level. Table
6.4 shows the results of these trials. The last two lines of the table indicate the average and
standard deviation of the estimates computed over each image. The precision of the
estimate for each image is depicted in figure 6-11, the confidence intervals of the estimates

are illustrated in figure 6-12.
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Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

5 7 9 11 13 15

Image 1 5.2013 7.2694 9.1013 10.9674 12.9027 14.7023
Image 2 2.8428 5.5582 7.9521 10.1012 12.3460 14.4396
Image 3 3.4872 5.9613 8.2249 10.4253 12.5388 14.3896
Image 4 4.1473 6.5895 3.5812 10.5792 12.8318 15.0879
Image 5 1.6135 5.0445 7.6744 9.8699 12.0782 14.2641
Image 6 4.2636 6.4677 8.5440 10.4837 12.9867 14.9589
Image 7 4.6973 1.3955 5.8718 8.6760 11.0853 13.3639
Image 8 1.8106 5.3398 7.7521 10.0738 12.1033 14.4289
Image 9 7.3575 8.8441 10.4749 12.2460 13.9580 15.9362
Image 10 3.3116 5.8921 8.1085 10.4486 12.4147 14.4152
Image 11 2.0230 5.2571 7.7222 9.9718 12.2276 14.2323
Image 12 5.5926 7.4604 9.3333 11.3060 13.2620 15.3065
Image 13 10.0984 12.7865 14.4631 16.0786 18.3421 20.0096
Average 4.3421 6.4512 8.7541 10.8636 13.0059 15.0412

Std 2.3800 2.5677 2.0200 1.7719 1.7431 1.6152

Table 6.4. Results of noise estimation using moment matching.
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Figure 6-11. Noise estimation on 13 images for 6 noise levels with the moment matching.
The continuous line is the standard deviation of the noise introduced and the dotted line is
the estimate of the noise level.
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Figure 6-12. Mean (dotted line) + one standard deviation (+ marks) of the overall
estimation, theoretical noise level (continuous line). Moment matching method.
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6.4.3 Results of noise level estimation using linear regression

This method is based on a linear regression applied onto a set of normalised moments. The
full training set is used to generate an overdetermined system of 78 equations. Table 6.5
shows the results applying this method to the complete training data. The last two rows of
the table show the mean and standard deviation of the estimates describing the overall
performance of the method. Figure 6-13 shows the results of the estimates for the 13

images. Figure 6-14 shows the corresponding confidence interval.

Noise level | Noise level | Noise level | Noise level | Noise level | Noise level
5 7 9 11 13 15

Image 1 49610 6.5661 8.2703 9.9522 11.7014 13.3561
Image 2 5.8633 7.3789 8.9898 10.6231 12.2932 13.9885
Image 3 5.0657 6.7194 8.4147 10.1510 11.8612 13.4815
Image 4 4.6870 6.4360 8.1266 9.8500 11.6165 13.3596
Image 5 4.9309 6.6318 8.3761 10.0574 11.8348 13.5300
Image 6 4.7159 6.4042 8.1332 9.8557 11.5837 13.3395
Image 7 5.7453 7.4559 9.1359 10.8505 12.5704 14.1921
Image 8 4.7760 6.5315 8.2532 10.0185 11.7470 13.4619
Image 9 9.7065 10.7464 11.9210 13.2750 14.6526 16.1291
Image 10 4.7857 6.5021 8.1950 9.9839 11.6797 13.3952
Image 11 5.3995 7.0515 8.7151 10.3712 12.0687 13.7574
Image 12 8.8637 10.0721 11.4235 12.8251 14.2949 15.8255
Image 13 4.5612 6.5403 8.4841 10.4101 12.4488 14.3321
Average 5.6970 7.3105 8.9568 10.6326 12.3348 14.0114

Std 1.6508 1.4239 1.2494 1.1178 1.0036 0.9344

Table 6.5. Results of noise estimation using linear regression.
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Figure 6-13. Noise estimation on 13 images for 6 noise levels with the linear regression.
The continuous line is the standard deviation of the noise introduced and the dotted line is
the estimate of the noise level.
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Figure 6-14. Mean (dotted line) + one standard deviation (+ marks) of the overall
estimation, theoretical noise level (continuous line). Linear regression method.

6.4.4 Performance comparison and noise level estimation using a combined estimator

To compare the performances of the three methods with respect to the noise level the
following function has been used

Q1 :,:ui _li|+01i
H (6.16)

Q1 =Y[o1,]

i=1

where u; and ol; are the averages and the standard deviation of the estimates over the 13
images and for each noise level /;, and H is the number of noise levels. Table 6.6 compares

the performances over the complete set and with respect to each noise level.
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QI Noise level | Noise level | Noise level | Noise level | Noise level | Noise level Qi

5 7 9 11 13 15
Method 1 3.33 1.66 1.55 1.47 0.50 0.55 9.07
Method 2 3.04 3.12 2.27 1.97 1.74 1.66 13.80
Method 3 2.32 1.73 1.30 1.49 1.67 1.92 10.44

Table 6.6. Performances of the three methods with respect to the noise levels and over the
complete set of images.

This table shows that in general the first method produces the best estimation. For low
levels of noise the third method performs better than the other methods while at high noise

levels the first method has a superior performance.

To compare the performances of the three methods with respect to the individual images
the following function has been used

Q2, :i e;; —L|+02,
= (6.16)

K

Q2,, =Y02,]

J=1

where ¢;;is the noise level estimated over the image j with noise level /;, 62; is the standard
deviation of the estimates over the H noise levels, and K is the number of images included

in the set. Table 6.7 compares the performances over the complete set and with respect to

each individual image.
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Q2; |Method 1| Method 2| Method 3
Image 1 6.05 1.11 5.78
Image 2 2.38 7.35 3.72
Image 3 3.99 5.36 4.98
Image 4 7.33 2.63 6.43
Image 5 4.77 10.44 5.16
Image 6 7.49 2.59 6.48
Image 7 0.13 16.70 3.01
Image 8 6.03 9.44 5.70
Image 9 19.33 9.37 17.77

Image 10| 6.63 5.85 5.97
Image 11 0.65 9.41 3.98
Image 12| 14.06 2.39 14.44
Image 13 3.21 32.07 3.31
Q2,, 82.05 114.71 86.73

Table 6.7. Performances of the three methods with respect to the individual images and
over the complete set of images.

This table shows again that, in general, the first method produces the best estimates,
producing the best performances on six images (2, 3, 5, 7, 11 and 13). The second method
is superior on the remaining images (1, 4, 6, 9, 10 and 12), and the third method achieves

the best performance on only one image (8).

The results in tables 6.6 and 6.7 demonstrate that the best single algorithm is method 1 but

both methods 2 and 3 should not be discarded because there are conditions when their

performances are superior.

A final approach to noise level estimation is to use a weighted average of all three methods
discussed. The estimation is based on the average between results from the first and third
methods, but the first method is substituted by the second when the image contains low
levels of noise and consequently the cdf evaluation is not efficient to discern the noise.
Table 6.8 and figures 6-15 and 6-16 describe the result formed by averaging the results of

the previous methods. Tables 6.9 and 6.10 show that the combined estimator produces

performances superior in terms of Q1,,, and Q2.
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Noise level

Noise level

Noise level

Noise level

Noise level

Noise level

5 7 9 11 13 15

Image 1 3.6025 6.3050 8.3966 10.2983 12.2042 14.0590
Image 2 5.6412 7.3676 9.1710 10.9688 12.7834 14.2140
Image 3 4.1850 6.5355 8.5247 10.4647 12.3155 14.1162
Image 4 3.3296 6.1263 8.2012 10.1478 12.0776 13.9970
Image 5 3.9800 6.4231 8.4616 10.3491 12.2990 14.1117
Image 6 3.3226 6.0885 8.2083 10.1513 12.0572 13.9521
Image 7 5.3840 7.2250 9.0530 10.9145 12.7810 14.5799
Image 8 3.6305 6.2784 8.3320 10.3026 12.1889 14.0692
Image 9 9.7972 10.8740 12.2630 13.8399 14.3053 16.0326
Image 10 3.5117 6.2322 8.2831 10.2648 12.1322 13.9912
Image 11 5.0544 6.9889 8.8349 10.6546 12.5219 14.3521
Image 12 8.7896 10.0722 11.5899 13.1550 13.7785 15.5660
Image 13 4.2411 6.4740 8.5372 10.5380 12.5997 14.5529
Average 4.9592 7.1531 9.0659 10.9269 12.6188 14.4303

Std 2.0785 1.5368 1.3127 1.1782 0.6861 0.6471

132

Table 6.8. Results of noise estimation using the combined estimator.




trwge 1. ax maiod

image 2, cu mubiod

Chapter 6: Noise estimation

Image 3, o mothod

iwgn 7; ax motiod.

Image 9; o motiod

Wrnge 13, ax oo

O 7 O o 10
Nolon ackded

]

w

)

Figure 6-15. Noise estimation on 13 images for 6 noise levels with the combined estimator.
The continuous line is the standard deviation of the noise introduced and the dotted line is

the estimate of the noise level.
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Figure 6-16. Mean (dotted line) * one standard deviation (+ marks) of the overall
estimation, theoretical noise level (continuous line). Combined estimator method.

Q1; Noise level | Noise level | Noise level | Noise level | Noise level | Noise level Q1
5 7 9 11 13 15
Combined 2.12 1.69 1.38 1.25 1.07 1.22 8.72
estimator

Table 6.9. Performances using the combined estimator with respect to the noise levels and
over the complete set of images.
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Q2 Combined estimator
Image 1 542
Image 2 2.50
Image 3 4.04
Image 4 6.45
Image 5 4.56
Image 6 6.55
Image 7 1.54
Image 8§ 546
Image 9 18.57

Image 10 5.88
Image 11 1.95
Image 12 14.23
Image 13 3.19

Q20 80.34

Chapter 6: Noise estimation

Table 6.10. Performances using the combined estimator with respect to the individual

images and over the complete set of images.

The results described relate to the same set of images as used in the training procedures.

For a more rigorous evaluation of the performance, it is convenient to test the algorithms

on images outside this set. The noise level has been estimated on the other three images

(see appendix C): ‘Lenna’, ‘plate’, and ‘s ine’*. Table 6.11 compares the performances of
pp P p p p

the four methods. It is possible to see that for ‘Lenna’, the first method produces the best

estimates and for low levels of noise the third method has the best performance.

Nevertheless the combined estimator continues to produce the best overall performance in

terms of Q1,,, and Q2,,.

* This is a videofluoroscopic image already contaminated by noise whose distribution is unknown.
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Noise | Noise | Noise | Noise | Noise | Noise Q1,, Qz
level 5 | level 7 | level 9 |level 11 | level 13 | level 15

Method 1| 'Plate’ 3.06 6.33 8.67 10.80 12.83 14.97 4.04
'Lenna’ 5.40 7.21 9.23 10.91 13.12 14.84 1.32
‘Spine’ 7.90 9.00 10.60 12.18 14.00 12.59 11.83

Ql; 2.87 1.87 1.50 1.06 0.93 2.21 10.44
Q2. 17.19
Method 2| 'Plate’ 2.13 5.34 7.90 9.76 12.32 14.54 8.87
'Lenna’ 5.62 7.50 9.41 11.35 13.35 15.44 2.77
'‘Spine’ 10.11 12.12 13.02 15.21 17.12 18.12 26.46

Ql; 4.96 4.78 3.74 391 3.79 2.90 24.08
Q2,,, 38.10
Method 3| 'Plate’ 4.98 6.75 8.44 10.12 11.82 13.63 4,79
'Lenna’ 5.71 7.38 9.17 10.85 12.60 14.31 2.74
'Spine’ 7.63 8.89 10.31 11.66 13.21 14.81 7.85

Ql; 2.47 1.77 1.25 0.89 1.16 1.34 8.88
Q2,, 15.38
Combined| 'Plate’ 4.02 6.54 8.56 10.46 12.33 14.30 3.99
estimator | 'Lenna 5.55 7.29 9.20 10.88 12.86 14.57 1.90
'‘Spine’ 7.46 8.95 10.45 11.92 13.61 13.70 9.46

Q1; 2.36 1.82 1.37 0.84 0.71 1.26 8.36
Q2. 15.36

Table 6.11. Comparison of the noise estimation methods on images not included in the
training set.
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7.1 Introduction

This chapter presents the results of the reduction algorithm described in this thesis and
compares these results with similar noise reduction techniques based on the wavelet

decompositions and applying thresholding functions to the components.

The degree of decomposition, the procedure for noise reduction on the components, the
choice of the image and the contaminating noise have an influence on the efficiency of
each technique. The procedure for noise reduction on the components depends on the
characteristics of the applied thresholding functions. These are characterised by their shape
and by the values of the controlling parameters. The shape is described by the selected
thresholding scheme; the parameters are optimised using a training procedure characterised
by a minimisation algorithm, number of variables of the cost function, value of the cost
function to be minimised and images used in the training. To evaluate and generalise the
results, the procedure has been tested for different images contaminated by different noise
spectra, noise levels and noise realisations. The factors that should be considered

examining the results can be summarised as:
1) Number of decomposition levels used (3, 2 and 1 levels).
2) Shape of the applied thresholding functions (complete and with Ky=0).

3) Minimisation algorithm used for training the thresholding parameters values: (Simplex

and Quasi Newton)
4) Form of the cost function (MSE and WMSE)

5) Images used in the training (test image and set of 6 images)
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6) Original image to which the technique is applied (set of 13 images and 3 external
images).

7) Level of contaminating noise (6 standard deviation levels between 5 and 15).

8) Noise realisation (5 different generations).

9) Spectrum of the noise (white, LF, BF, and HF).

The next section considers the dependence of the results on the parameters of the training
procedure. In section 7.3 the results are then extended to consider the dependence on the
original image and noise characteristics.

Other noise reduction methods based on wavelet decompositions can use decimated [64,
65, 69, 71, 82, 83] or undecimated [66, 67, 68, 75] components, and the thresholding

functions can be selected using fixed or decomposition level adaptive criteria [77]. In

section 7.4 the results using conventional wavelet methods and those described herein are
compared.

Finally, in section 7.5, images are presented to allow one to compare the visual quality of
results. A limited number of the significant images are shown in this section. A more

complete set of images is included in the CD-ROM provided with this thesis.
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7.2 Influence of the training parameters on the algorithm performance

This section examines how the performance of the algorithm depends on the training
procedure. The standard deviation level of the noise is assumed known. The indices of
quality considered are the MSE and WMSE. Training and performance evaluation is
initially conducted only on the test image (figure 7-1) with AWGN contaminating noise.
Later in this section training is performed on a set of 6 images (figures 7-2) and the
performance evaluated over these images. The generalisation of these results is the object

of the next section where a set of 13 images and different noise types are considered.

.‘;i' ’A Kp

Figure 7-1. Test image.
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Figure 7-2-b. Second image of the set composed of six images ('girl’).
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Figure 7-2-d. Fourth image of the set composed of six images ('tree’).
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Figure 7-2-e. Fifth image of the set composed of six images ('text’).

Figure 7-2-f. Sixth image of the set composed of six images ('synthetic).
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Tables 7.1 compare the MSE (7.1-a) and WMSE (7.1-b) reductions on the test image
contaminated by 3 levels of AWGN using the parameters obtained by training the test

image using different settings. Results are compared using:
a) Nelder and Quasi-Newton minimisation algorithms;
b) Unweighted and weighted training;

c) 3 degrees of frequency decomposition: 1 level (4 or 5 cost function parameters), 2

levels (7 or 8 parameters), and 3 levels (10 or 11 parameters);

d) 2 shapes for the thresholding function: complete (11, 8, or 5 parameters) and assuming

Ky=0 (10, 7 and 4 parameters).

In tables 7.1 and in figures 7-3 the case when no thresholding functions are applied is

indicated with O cost function parameters.
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[ MSE l
Unweighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param. | param. | param.
Nelder Method
Noise level 5 25 14.1 14.1 13.6 13.5 13.5 13.4
Noise level 10 99.2. 432 43.2 40.1 40.1 39.7 39.7
Noise level 15 226.7 80.5 80.1 73.0 73.0 72.2 72.2
Unweighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | paran. | param. | param.
Q-Newton. method
Noise level 5 25 14.1 14.1 13.6 13.5 13.5 13.4
Noise level 10 99.2 43.2 43.2 40.1 40.0 39.7 39.6
Noise level 15 226.7 80.5 80.1 73 73.0 71.8 71.8
Weighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param. | param. | param.
Nelder Method
Noise level 5 25 14.8 15.1 14.6 14.7 14.6 14.7
Noise level 10 99.2 44.5 45.8 56 51.2 56.3 514
Noise level 15 226.7 130.5 123 119.7 102.1 119.2 101.2
Weighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param. | param. | param.
Q-Newton. Method
Noise level 5 25 14.3 15.1 14.1 14.5 14.1 14.6
Noise level 10 99.2 44.2 45.9 55.9 51 55.1 50.5
Noise level 15 226.7 130.7 123.2 119.8 102.2 117.9 100.8

Table 7.1-a. MSE dependence on the training settings.

l WMSE l
Weighted 0 4 5 7 8 10 11

optimisation, param. | param. | param. | param. | param. | param. | param.
Nelder method

Noise level § 2.5 2.3 2.3 2.1 2.1 2.1 2
Noise level 10 10.1 8.8 8.8 7.6 7.2 7.2 7.1
Noise level 15 23.1 19.1 19.1 16.7 15.3 15.3 14.7

Weighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param. | param. | param.
(Q-Newton. Method

Noise level § 2.5 2.3 2.3 2.1 2.1 2.1 2
Noise level 10 10.1 8.8 8.8 7.6 7.3 7.3 7
Noise level 15 23.1 19.1 19.1 16.7 15.3 15.3 14.7

Unweighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param. | param. | param.
Nelder method

Noise level 5 2.5 2.3 2.3 2.2 2.2 2.2 2.1
Noise level 10 10.1 9.9 9 8 8 7.8 7.8
Noise level 15 23.1 19.2 19.3 17.1 17.1 16.5 16.4

Unweighted 0 4 5 7 8 10 11
optimisation, param. | param. | param. | param. | param, | param. | param,

Q-Newton. Method

Noise level 5 2.5 2.3 2.3 2.2 2.2 2.2 2.1
Noise level 10 10.1 9.9 9.0 8.0 8.0 7.7 7.7
Noise level 15 23.1 19.2 19.3 17.1 17.1 16.2 16.2

Table 7.1-b. WMSE dependence on the training settings.
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The results in tables 7.1 are obtained using the same image for testing and training. As
expected, one obtains the best MSE reduction in the presence of unweighted minimisation
and the best WMSE reduction in the presence of weighted minimisation. The two
minimisation algorithms produce similar performances but in the following the Nelder
algorithm has been preferred for reasons of computational efficiency (see section 5.2).
Figures 7-3 show the MSE (7-3-a) and WMSE (7-3-b) reductions dependence on number

of cost function parameters respectively for unweighted and weighted training.
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Figure 7-3-a. Relationship between MSE and number of threshold parameters.
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Figure 7-3-b. Relationship between WMSE and number of threshold parameters
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These figures demonstrate that the number of degrees of decomposition required by the
method depends on the amount of contaminating noise. When the standard deviation of the
noise is 15 the largest part of the reduction is achieved with the first 4-5 parameters,
whereas when the noise level is 5, more degrees of decomposition (and more parameters)

are required in order to have similar MSE and WMSE reductions.

The results showed in tables 7.1 and in figures 7-3 refer to the case when the training and
testing are performed on the same single image (figure 7-1). Table 7.2 and figure 7-4 report
the results achieved performing training and testing on a set of 6 images (figures 7-2). Each
of the six images was processed 7 times. The thresholding parameters obtained by training
on each image individually were applied to every image. A final set of parameters was
obtained by averaging the six parameter sets. The noise standard deviation is 15 and the
reduction in WMSE is measured. This provides information about the dependence of the
performance on the spectral content of the image. Comparing these results one can see that
using the parameters related to that image produce an WMSE reduction only slightly
superior to that obtained when the parameters related to other images are used. The average

set of parameters yields results which are reasonably consistent across the image set.

The results also show that the method seems less effective on particular images.

Nevertheless even on these images the method dramatically increases the visual quality.

WMSE % TRAINED Average

REDUCTION Im1 Im 6 Im7 Im9 Im 12 Im 13 Parameters
T Im1 46.6 45.8 4277 414 40.5 25.1 40

E Imé6 50.2 51.3 48.9 44.1 44 32.3 46.5

S Im7 57.3 59.2 61.2 50.2 50.6 55.7 54.5

T Im9 23.3 19.3 16.4 29.3 27.4 13.5 26.3

E Im 12 21.2 16.9 17.8 27.2 28.6 20.1 27.4

D Im 13 63.7 67.6 73.5 57.5 59.7 81.2 65.7

Table 7.2. WMSE dependence on image used in the training.
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Figure 7-4. WMSE dependence on image used in the training.
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7.3 Performance evaluation for more general noise conditions

This section explores the performance of the method for a wider range of conditions. The
algorithm uses parameters obtained by training on the test image (figure 7-1), 3 levels of
decomposition and the complete scheme for the thresholding function (11 parameters). The
performance on the full set of 13 images is considered, with a variety of noise spectra at a

range of noise levels.

In table 7.3, WMSE and MSE reduction are shown as percentages for 13 images
contaminated by AWGN with a standard deviation of 15. The last column shows the
average percentage of noise reduction on the 13 images. The parameters obtained by

training on the test image are utilised.

100
90 - WMSE and MSE Red %
80
70 A
60 -
50 -
40 -
30 A
20 A
10 -

0

Iml1|Im2|Im3|Im4 |ImS5|Im6 |Im7 | Im9 |Im 10{Im 11|{Im 12|Im 13|Aver.

EWMSE optim. | 28.3 | 24.5 | 45.9 | 38.2 | 41.7 | 32.4 | 485 | 3.8 | 53.6 | 39.5 | 2.2 | 62.1 | 36.3
B MSE optim. 73.8 582 |68.1]721)]66.6|77.2|655 (299823634 |389)292]614

Table 7.3. WMSE and MSE reductions (in percentage) for 13 images with AWGN having
standard deviation of 15.

It is important to note that the set of images includes two images (9 and 12) which have

very different characteristics from the other images. The noise reducing technique is less
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effective on these images because of their large high frequency content. If these images are
omitted the average reductions rise to 66.3 % and 42.3 % for the MSE and WMSE

respectively.

In table 7.4, the average MSE and WMSE reductions computed over 13 images are shown
for six levels of AWGN. The percentage reduction increases with the standard deviation of
the contaminating AWGN. This is to be expected because these are percentages of
reduction. The percentage of MSE and WMSE reduction needed to obtain the same visual

quality increases with the standard deviation of the AWGN.

100
#F Average WMSE and MSE Red %
80 -
70 -
60 -
50 -
40 A
30 A
20
10 -

Noise level 5 | Noise level 7 | Noise level 9 [Noise level 11|Noise level 13|Noise level 15

WMSE optim. 16.3 22.9 271 30.5 33.6 36.3
B MSE optim. 30.4 37.9 46.8 53.1 59.1 61.4

Table 7.4. Average WMSE and MSE reduction for 6 AWGN levels.

The results presented so far have used computer generated AWGN. The following
simulation explores the robustness of the results to the realisation of the noise sequence.
Table 5.7' describes the dependence of the parameters on the noise realisation in terms of

confidence intervals for the parameters. Using these intervals, the dependence of MSE and
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WMSE reductions on the noise realisation are shown in tables 7.5. MSE and WMSE are
evaluated using the sets of parameters obtained by training for each noise realisation. The

results demonstrate that the numerical realisation of the noise has a very small influence on

the performance.

Original | MSE confidence | Original | WMSE confidence
MSE interval WMSE interval
Noise level 5 25.1 [14.5, 14.7] 2.5 [2.06, 2,08]
Noise level 7 49 [28.1,28.3] 5 [3.82, 3.83]
Noise level 9 81 [42.4 42.5] 8.4 [5.99, 6.01]
Noise level 11 121.8 [59.6,59.9] 124 [8.59, 8.60]
Noise level 13 168.7 [78.2,79.1] 17.1 [11.36, 11.40]
Noise level 15 223.8 [99.3, 99.9] 233 [14.85, 14.91]

Table 7.5. Confidence intervals for MSE and WMSE.

So far only results considering AWGN have been presented. The performance of the
algorithm will now be assessed when coloured noise is added. Three types of coloured
additive Gaussian noise are considered. These are obtained filtering white noise with three
filters having low-pass, band-pass and high-pass frequency characteristics. In this case the
procedure for spectral estimation (see section 6.2) allows the estimation of the standard
deviation of the noise in each band. The four types of noise have been normalised so as to
produce the same total noise power. Tables 7.6 compare the MSE and WMSE reductions
for white and coloured noises contaminating the 13 images. The standard deviation of the

AWGN is 15.
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100

MSE Red %

Im 12(Im 13
White | 73.8 | 58.2 | 68.1 | 72.1 | 66.6 | 77.2 | 65.5 | 73.7 | 29.9 | 82.3 | 63.4 | 38.9 | 29.2 | 61.4
ELPF [67.1 591|685 68 |71.5(70.7 | 67.6 | 75.4 | 27.8 | 78.8 | 62.6 | 25.8 | 35.8 | 59.9
OBPF | 64.8 | 558|659 |64.7 | 69.1 | 68.3 | 65.6 | 73.3 | 23.4 | 77.2 [ 59.3 | 20.2 | 47.6 | 58
OHPF | 64.8 | 558|659 | 64.7 [ 69.1 | 68.3 | 65.6 | 73.3 | 23.4 | 77.2 | 59.3 | 20.2 | 47.6 | 58

Table 7.6-a. MSE reductions (in percentage) for 13 images for different types of noise,
with standard deviation 15.

100

80 -

WMSE Red %

Im 12

[(Eam s Rgm )

Im 11
White | 28.3 | 24.5 | 45.9 | 38.2 | 41.7 | 32.4 | 48.5 | 50.6 | 3.8 | 53.6 | 39.5 | 2.2 | 62.1 | 36.3
HLPF |44.4|39.2 | 51.1 | 46.6 | 53.8 | 47.8 | 58.9 | 62.2 | 15.6 | 66.8 | 44.4 | 8.6 | 69.6 | 46.8
OBPF 46 | 395509 | 46 |53.5|48.6 | 58.8|61.3 | 16.7 | 66.3 | 43.8 | 8.2 | 68.9 | 46.8
OHPF 46 395|509 | 46 |53.5|48.6 | 58.8 | 61.3 | 16.7 | 66.3 | 43.8 | 8.2 | 68.9 | 46.8

Table 7.6-b. WMSE (in percentage) reductions for 13 images for different types of noise,
with standard deviation 15.

The percentage of MSE reduction is broadly comparable for all types of noise. Examining

the images individually, in the majority of the cases the reduction for coloured noises is
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superior to that in the white noise case. Nevertheless the average MSE reduction for the
white noise case is superior to that in the case of coloured noise.

In the case of coloured noise the average and individual reductions of WMSE are always

superior to the white noise case.

Tables 7.7 compare the average MSE and WMSE reduction for a range of noise levels and

follow the trends seen in tables 7.6.

100
90 -
80
70 Average MSE Red %
60
50
40 -
30
20 A
10 A

0 -

Noise level 5 | Noise level 7 | Noise level 9 | Noise level 11 | Noise level 13 | Noise level 15
White 30.4 37.9 46.8 53.1 59.1 61.4

B LPF 25.8 39.1 45.8 50.3 55.5 59.9
OBPF 26.5 38.8 44.2 49 54.4 58
OHPF 26.6 38.7 44.5 49.2 54.6 58

Table 7.7-a. Average over 13 images of MSE reduction for various noise types.
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100
90
80 A
70 -
60 -
50
40 A
30 1
20 A
10 A

0 =

Average WMSE Red %

Noise level 5

Noise level 7

Noise level 9

Noise level 11

Noise level 13

Noise level 15

White

16.3

22.9

27.1

30.5

33.6

36.3

HLPF

26.6

33.5

38

41.5

44.4

46.8

OBPF

28

34.3

38.5

41.7

44.4

46.8

OHPF

28

34.3

38.5

41.7

44.4

46.8

Table 7.7-b. Average over 13 images of WMSE reduction for various noise types.
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7.4 Comparison with other wavelet based approaches

This section compares the performance of the method presented in this thesis with the
performance of other wavelet based approaches. The MATLAB toolbox WAVELAB has
been used to measure the performance using various decompositions and thresholding
criteria. Initially in this section the characteristics of the decompositions and the
thresholding functions of existing algorithms are summarised. The performance is

compared using the same set of images and identical noises.

7.4.1 Decimated and undecimated components

The frequency decomposition is characterised by the digital filters used in the filter banks
and by the presence (or absence) of down and up sampling operations (also called
decimation and interpolation). The decomposition employed thus far produces
undecimated components, so no sub and up sampling operations are used, allowing one to
select very simple digital filters. The algorithm used for comparative purposes employs the
same decomposition in which the components are decimated. This decomposition is based
on a periodized and orthogonal wavelet 2-D transform utilising QMF filters (Coiflet 2)
[63].

7.4.2 Thresholding techniques

The thresholding functions are characterised by the scheme applied and by the parameters
used in the thresholding functions. The algorithms used in the comparison assume that the

image is preliminarily normalised with respect to the standard deviation of the noise.

Thresholding algorithms are:
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a) VISUAL. Soft-thresholding is applied and the parameters are the same for all the

components and depend on the image size [65, 66].

b) SURE. Hard-thresholding is applied and the parameters are level dependent and selected

using principle of Stein's Unbiased Risk Estimate [82].

¢) HYBRID. Soft threshold is applied and the parameters are level dependent and selected

according to the methods used in a) or in b).

d) MINIMAX. Hard thresholding is applied, the parameters are the same for all the

components and are selected from a fixed vector on the basis of the image size [82, 83].

e) MAD. Soft-thresholding is applied, the parameters are level dependent and selected

using the median absolute deviation (MAD) of the pixel values for each level [75, 88].

7.4.3 Performance comparison

The performances of these algorithms are summarised for the 13 images in terms of MSE
and WMSE reductions; 6 levels of AWGN are considered.

Tables 7.8 and 7.9 compare the methods discussed in this thesis (undecimated
decomposition and thresholding criterion based on MSE and WMSE optimisations on a
single image) with wavelet based methods using the decimated decomposition described in

section 7.4.1 and the 5 thresholding criteria described in section 7.4.2.

Tables 7.8 compare MSE (7.8-a) and WMSE (7.8-b) reductions for 13 images and for noise

level 15.
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MSE Red %

70

60 -

50 1

40 -

30 4|

20 A

10 -

0 -
Iml|{Im2|Im3|(Im4|(Im5|Im6|Im7 |Im8|Im9 [Im 10{Im 11|Im 12{Im 13[{Aver.
E Visual 505 | 424|524 | 49.8 | 52.3 539 |53.9|54.4]28.7|56.8)48.9|24.6 | 54.2]|47.9
H SURE 56 | 11.3 494 | 435|519 |66.7 | 425 | 58.7 | 24.6 | 67.3 | 29 | 12.3|45.1|42.9
O Hybrid 57.8 | 18.6 | 48.8 | 38.7 | 51.8 | 62.7 | 40.7 | 55.5 | 22.1 | 61.6 | 31.9 | 11.4 | 44.3 | 41.9
O Minimax 343 1222]40.2 356401 | 41.7 | 42 | 44.1 (2171479349 | 2.6 | 48.6 | 35
B MAD 58.7 | 19.3 [ 49.6 | 39.9 | 52.8 | 64.1 [ 41.6 [ 56.4 [ 202 | 62.5 [ 32.9 [ 19.7 [ 429 [ 43.1

E WMSE optim. | 52.4 | 46.1 | 57.7 | 55.9 | 56.4 | 54.8 | 56.6 | 59.5 | 26.4 | 60.8 | 54.4 | 26.9 | 58.7 | 52.2
B MSE optim. 73.8|58.2|68.1]721)66.6|77.2|655]|73.7]29.9 (82.3]|63.4|389]292]614

Table 7.8-a. MSE reduction (in percentage) for 13 images (decimated decomposition).

WMSE Red %

Visual 23.7 1145315258 (29.1 | 27.8 | 35.1|33.9| 1.1 |[40.7 | 254 | 1.1 | 42.1 | 25.5
B SURE 39 192 (922298 (118159 (152 19 |288( 51| 03 | 1.3 | 88
OHybrid 203 | 1.2 | 225 74 (229265274 26 | 2.6 [39.6| 7.5 | 0.8 | 12.3 | 16.7
O Minimax 56 | 43 | 18 | 106 |13.7 | 88 (212|234 | 0.7 |294 | 13 | 1.2 | 354 | 14.3
B MAD 206 | 1.1 {226 | 74 | 23 | 267|274 259 09 |38.2| 7.7 1 |105]16.3

E WMSE optim. | 28.3 | 24.5 | 459 | 38.2 | 41.7 | 32.4 | 48.5 | 50.6 | 3.8 | 53.6 | 39.5 [ 2.2 | 62.1 | 36.3
B MSE optim. 34.7 | 16.6 | 29.8 | 24.2 | 26.7 | 34.7 | 35.7 | 39.6 | 0.1 | 522|219 ] 0.5 | 551 ]28.6

Table 7.8-b. WMSE reduction (in percentage) for 13 igges (decimated decomposition).
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These tables demonstrate that both unweighted and weighted optimisation produce superior
averaged MSE and WMSE reductions (see last columns) compared with the decimated
frequency decomposition with all 5 thresholding criteria. Note that MSE optimisation
produces the largest MSE reduction for 12 out of the 13 images®, while the WMSE

optimisation produces the best WMSE reduction 11 out of the 13 images”.

Tables 7.9 show the average MSE and WMSE reductions for six noise levels.

100
90 -
80 -
70
60

Average MSE Red %

]

—

REESERUN ST

VEITEER

R

i
5B S e

—

-

Noise level 5 | Noise level 7 9 Noise level 13 [ Noise level 15

Visual 271 34.3 38.9 42.9 459 47.9
HSURE 21 5.3 10.3 19.6 29 42.9
OHybrid 2.1 38 12.2 20.6 29.3 41.9
O Minimax 10.2 18.7 244 28.2 31 35

H MAD 1.5 3.7 12.3 21 30 43.1
WMSE optim. 294 37 42 46.5 49.6 52.2
H MSE optim. 304 37.9 46.8 53.1 59.1 61.4

Table 7.9-a. MSE reduction (in percentage) for 6 noise levels (decimated decomposition).

From table 7.9-a one can see that the best alternative algorithm for reducing MSE at all
noise levels is the visual scheme. The performance advantage offered by the algorithm

discussed in this thesis reduces at lower noise levels.

% The remaining image is the synthetic image (figure 7-2-f) which is a very atypical image. It can be
observed that for this image the weighted (WMSE) optimisation produces MSE reduction clearly superior
than the unweighted (MSE) optimisation.

? For the remaining two images (figures 7-2-a and 7-2-b) the unweighted (MSE) optimisation performs
best.
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Average WMSE Red %
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Noise level 7 Noise level 11 | Noise level 13 | Noise level 15
Visual 2.9 13.7 17.2 20.5 23.1 25.5
ESURE 0.9 1.8 2.1 34 4.2 8.8
O Hybrid 0.5 1.1 1.9 6.9 11.1 16.7
O Minimax 24 5.1 7.8 92.9 11.7 14.3
EMAD 0.6 1.2 1.8 6.9 11.1 16.3
WMSE optim. 16.3 22.9 271 30.5 33.6 36.3
H MSE optim. 16 21.7 25.6 26.9 27.3 28.6

Table 7.9-b. WMSE reduction (in percentage) for 6 noise levels (decimated
decomposition).

From table 7.9-b one can see that in terms of WMSE the visual algorithm once again
exhibits the best performance of all the alternative schemes at all noise levels. The difference
in performance between visual and WMSE optimisation algorithm remains around 10% for

all noise levels considered.

Tables 7.10 and 7.11 detail the performance of all the wavelet based methods using the
undecimated decomposition described in this thesis and the 5 different thresholding criteria
described in section 7.4.2. Tables 7.10 compare MSE and WMSE reduction for 13 images

at a noise level of 15.
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MSE Red %

Iml1|Im2|{Im3({Im4 (ImS|Im6|Im7|Im8|Im9 |Im 10/Im 11{Im 12|Im 13|Aver.
Visual 47.7 13951503 | 47.4 | 49.8 | 51.1 | 51.3 | 52.1 | 27.5 | 53.2 | 46.1 | 23.8 | 38.6 | 44.5
HSURE 63.1| 32 [67.9| 67 [656]|75870.1]|734 147782558 8 |49.9]555
O Hybrid 63.2 | 50.1 | 65.6 | 62.1 | 65.4 | 67.3 | 66.5 | 68.6 | 34.3 | 71.2 | 60.3 | 32.4 | 53.9 | 58.5
O Minimax 42.3 | 28.3 | 49.3 | 46.8 1 48.4 | 51.3 [51.6 | 53 | 9.5 | 54.6 | 42.2 | 10.7 | 40.6 | 40.7
EMAD 64.6 | 50.5 | 67.4 | 64.6 | 67.2 |1 70.1 | 68.6 | 70.8 | 33 | 73.9 | 61.4 | 32.6 | 52.9 | 59.8
WMSE optim. | 52.4 | 46.1 | 57.7 | 55.9 | 56.4 | 54.8 | 56.6 | 59.5 | 26.4 | 60.8 | 54.4 | 26.9 | 58.7 | 52.2
H MSE optim. 73.8|58.268.1 721666 |77.2|655|73.7]29.9|82.3]|634]|389]29.2]614

Table 7.10-a. MSE reduction (in percentage) for 13 images (undecimated decomposition).
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Im1|Im2|{Im3|Im4|ImS|Im6|Im7|Im8|Im9 |{Im 10{Im 11|Im 12
Visual 26.1 179|344 (252 |31.7(278]36.7|368| 1.6 | 406 |28.1| 1.2 | 43.2| 27
HSURE 2241 1.6 | 3452751309 (31.2| 43 |418]| 0.6 (499|197 15 | 52 | 274
O Hybrid 29.118.7(37.6 (283 (356|308 |428|418| 4 |49329.7| 3.7 539 31.2
O Minimax 143 | 3.6 | 30.7 | 20.7 | 26.1 | 22.7 | 345|352 | 1.1 | 39.1]|20.6 | 0.9 | 45.7 | 22.7
B MAD 289 | 18 [37.7(285(356| 30 |43.2] 42 | 1.2 | 498 | 30 | 2.6 | 54.1 | 30.9
WMSE optim. | 28.3 | 24.5|45.9 [ 38.2 | 41.7 | 32.4 | 485 | 50.6 | 3.8 [53.6 | 39.5| 2.2 | 62.1 | 36.3
B MSE optim. | 34.7 | 16.6 | 29.8 | 24.2 | 26.7 [ 34.7 [ 35.7 [ 39.6 | 0.1 | 52.2|21.9| 0.5 | 55.1|28.6

Table 7.10-b. WMSE reduction (in percentage) for 13 images (undecimated
decomposition).
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Tables 7.10 show that, for noise standard deviation 15, using the undecimated
decomposition the MSE and WMSE reductions are much closer for all the thresholding
criteria. Nevertheless the thresholding criteria based on the MSE optimisation produces the
largest average MSE reduction and is the best performing algorithm for 11 out of the 13
images. As far as the WMSE is concerned, the WMSE optimisation produces the best
average performance and is the best algorithm for 9 out of the 13 images. The average
results are extended for 6 standard deviation levels of the noise in tables 7.11. The results
in table 7.11-a illustrate that the MSE optimisation algorithm produces the best
performance at all the noise levels with the MAD or Hybrid algorithms achieving the
second best performances. The results in table 7.11-b illustrate that the WMSE
optimisation algorithm achieves the best performance at all the noise levels. The

performance gain being more significant than in the MSE case.
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Average MSE Red %

Noise level 7 | Noise level 9 | Noise level 11 | Noise level 13 | Noise level 15
E Visual 12.7 25.8 33.1 38.6 42.1 44.5
HSURE 0.9 17.4 31.6 42.5 49.6 55.5
O Hybrid 12.4 34.1 44.8 51.3 55.4 58.5
O Minimax 2.3 16.7 254 31.9 36.8 40.7
EMAD 15.1 34.6 44.7 51.6 56.4 59.8
WMSE optim. 29.5 37 42 46.5 49.6 52.2
B MSE optim. 30.4 37.9 46.8 53.1 59.1 61.4

Table 7.11-a. MSE reduction (in percentage) for 6 noise levels (undecimated
decomposition).
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Average WMSE Red %

Noise level 5 | Noise level 7 | Noise level 9 | Noise level 11 | Noise level 13 | Noise level 15

Visual 2.6 119 17.8 21.8 24.6 27

HSURE 14 2.6 11 17.7 23.2 27.4
O Hybrid 1.8 14.5 204 24.6 28.1 31.2
O Minimax 2.1 4.7 11.1 15.8 19.5 22.7
HMAD 2.6 14.3 20.1 24.3 27.7 30.9
WMSE optim. 16.3 22.9 27.1 30.5 33.6 36.3
B MSE optim. 16 21.7 25.6 26.9 27.3 28.6

Table 7.11-b. WMSE reduction (in percentage) for 6 noise levels (undecimated

decomposition).
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7.5 Visual quality analysis

The evaluation of the visual quality of an image is not a trivial task. This problem is
compounded when the results are represented on the printed page via a printer. In this
section some example images are presented and in Appendix C there is list of images

included in the CD-ROM accompanying the thesis.

The image selected for the presentation is number 3 of the set. Figure 7-5-a shows the
image contaminated by AWGN having standard deviation of 15, whilst figure 7-5-b shows
the de-noised image using the algorithm based on WMSE optimisation. Figures 7-6, 7-7

and 7-8 show corresponding results for images contaminated by LF, BF and HF noises.

To illustrate the ability of the method to generalise, the method was tested on two other
images not included in the training set. Image Lenna' is contaminated by AWGN with
standard deviation of 15, and image 'vertebra' is contaminated by a combination of AWGN
and non-additive noise due to the videofluoroscopic instrumentation employed to acquire
the image®. Figures 7-9 and 7-10 spow these results. In this case the noise standard

deviation level is unknown and it is estimated using the combined estimat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>