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An aeroelastic solution for a mast sail system has been achieved and has been 

shown to predict realistic behaviour of the system. A nonlinear finite element 

analysis computer program has been developed, incorporating membrane 

and solid elements. This has been coupled with a potential flow panel code, 

PALISUPAN, developed in the University of Southampton, to acheive the 

aeroelastic solution using a velocity stepping procedure. 

A mast sail rig has been analysed in an upwind configuration. The results 

of the analysis demonstrate the influence of the coupled nature of the mast 

and sail on the calculated sail forces and deformed shape. Mast compression 

predicted by the aeroelastic solution of the mast sail system was compared to 

compression calculated by distributing the sail forces on a nonlinear model 

of the mast. Results indicate that previous loading assumptions for finite 

element analysis of a mast significantly underestimate mast compression due 

to sail loading. 
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1 Introduction 

A rig of a yacht acts as an engine, producing a driving force from airflow 

over the sails, and transmitting the forces to the hull. In a conventional rig 

(as opposed to a rig using a wing mast where the mast generates significant 

portions of the overall driving and side forces), the sails are supported by the 

mast and rigging, and produce the majority of the driving and side forces. 

Modern racing yachts commonly use composite materials in rig construc-

tion, and this frees designers from the constraint of extruded aluminium 

sections to enable strength to be built in the required areas, to allow rig 

weight to be reduced without compromising the safety of the rig. Any re-

duction of weight in a yacht gives an increased stability, as reducing the 

weight of a rig enables more ballast to be carried for a given displacement. 

Reducing rig weight will also reduce the pitching moment of a yacht, and 

the smaller rig section sizes will also reduce the aerodynamic drag of the rig. 

Winning margins in yacht racing can be very small, as shown in the 1999-

2000 Americas Cup, where over five races Team New Zealand had an average 

winning margin of 100 seconds during races of two and a half hours. This 

represents an elapsed time margin of just 1%, and this series was considered 

an easy victory for Team New Zealand. Any small performance gains that 

can be obtained from better understanding of the loading in a rig can make 

a significant difference to the results in a yacht race. 

The limiting factor in mast structural design is avoiding buckling of the 

mast under the compressive loading generated from the sails and rigging. In 

the past, calculations of rig loading and the structural requirements of the of 

the rig have relied on empirical formulae such as Skenes method, as described 

in Boote [9], to calculate a design mast compression. These are based on a 

static consideration of the global forces on a yacht using large safety factors. 

1 



Finite element analysis of a yacht rig is now regularly used as a design tool 

for analysis of rig configurations. Yacht masts are subjected to a variety of 

point and distributed loads, including: 

® Loading from the mainsail 

® Loading from the boom 

# Halyard loads 

# Forestay loads 

# Rigging pretension 

® Inertia loading due to yacht motion 

Applying the correct loads to a finite element model is a fundamental re-

quirement for accurate results to be obtained. Point loads on a mast such 

as rigging and halyard loads can be estimated with a good degree of confi-

dence, but the distribution of the loading from the mainsail has previously 

been generated from the total sail forces, and applied in a user defined man-

ner along the mast. Constant [3] and parabolic [12] distributions have been 

considered, but these may not accurately represent the distributed loading 

from the sail lufi'. The coupled nature of the mast sail system will also affect 

the compression developed in the mast, particularly the compression induced 

from tension in the leech of the sail, and this is not taken into account by 

the finite element analysis of the mast uncoupled from the mainsail. 

Model testing is used extensively for yacht design, and towing tank testing 

is a well established tool to attempt a hull optimisation. Wind tunnel tests 

can be used to give a comparison of the overall forces generated by different 

rig configurations, and to optimise the sail flown shapes. Wind tunnel testing 



of model rigs is carried out at a similar Reynolds numbers to the full scale 

rig, to allow similar flow regimes in the model and full scale cases. Structural 

similitude for membranes under loading from fluid flow is obtained by match-

ing the aeroelastic number Hi, first suggested by Jackson and Christie [27]. 

This was altered by the introduction of a cube root by Smith and Shyy [56] 

in accordance with a theoretical analysis of large deflections of membranes 

by Seide [53] to the definition shown in equation 1, which is used in this text. 

To obtain a structural similitude of the model and full scale cases for a 

typical model scale of 1:10 assuming that the Reynolds number is similar 

for the two cases, the Young's modulus of the model sail would have to be 

1% of that of the real life case. Dacron sail material has a Youngs modulus 

of about 25 GPa, so a model with scaled material properties would require 

a Young's modulus of about 250 MPa. An example of a material with a 

Youngs modulus of this order is polythene, and since even model sails are 

created from a number of panels in order to give them a flown shape, it would 

be extremely difficult to create a model sail from this material. A computer 

model will allow investigation of a yacht rig with realistic structural and fluid 

aspects. 

Analysis of a yacht rig is complicated by the fact that structural and 

fluid aspects of the rig are linked, in that rig deformations under the fluid 

loading will result in a change of the flow over the sails, leading to a change 

in the loading on the rig, and a change in the rig deformations. Sail forces 

obtained from a fluid flow analysis of an as designed sail shape are calculated 

without considering the effect of sail deformations on the generated forces. 

Aeroelastic analysis of a sail [27] [56], which takes into account the coupled 

nature of the structural and aerodynamic solutions, can give some insight 



into the flown shape of a sail and forces it generates. These forces can be 

used to give a more accurate estimation of the loading for a finite element 

model of the mast and rigging. 

The mast, rigging and sails also act as a coupled system, as deformation 

of the mast will affect the shape of the sails it supports. The response of the 

mast sail system is known to have a significant effect on the sail shape and the 

forces it generates in real life. This is used in some sailing craft to produce 

a self adjusting rig, where a gust of wind results in bending of the top of the 

mast, opening the leech of the sail, reducing the forces generated by the sails 

and thus preventing the craft becoming overpowered [8]. Previous attempts 

to analyse a yacht rig have uncoupled the mast and sail which fails to model 

this important interaction of the mast and sail. 

The aim of this thesis is to develop an aeroelastic solution for a mast 

sail system, which will model the interaction of the mast and sail and also 

inherently apply the correct distribution of loading from the sail to the mast. 

This will allow a more realistic analysis of yacht rigs, which could improve 

performance prediction and give a better understanding of mast loading and 

the response of a yacht rig. 

Detailed analysis of a rig using this method would be of interest to high 

level racing yacht design, such as for the Volvo Ocean race or the Americas 

Cup, and the results from the analysis of a rig could be used to improve the 

loading models used for general yacht designs. 



2 Literature review 

2.1 Mast design methods 

Traditional mast design methods calculate the compressive load in a mast due 

to the external loading applied to it, and this compression is used to calculate 

section areas sufficient to prevent the mast buckling. Skenes method uses the 

righting moment of the yacht at a 30° heel, RM^Q and the half beam at the 

chainplates, Be to calculate a compressive loading in the mast, equation 2. 

A/r 4. • 
Mast compression = —-— (2) 

The application of Skenes method is discussed by Boote [9]. Safety factors 

are used to take account of the loading due to stays, sheeting and halyards. 

Classification society rules use formulae based on this approach for calcula-

tion of required mast sections. Larsson [34] uses the Nordic Boat Standard 

rules to calculate the section requirements for a 40 foot yacht mast, and the 

spars and standard rigging scantling calculations of the Bureau Veritas rules 

for yacht design are summarised by Boote [9]. Mitchell [39] studied data 

obtained during sailing trials of the 130 foot yacht New Zealand, and used 

these to suggest refinements to Skene's equation for the mast compression, 

with separate calculation for the loading imposed by the halyards and rig-

ging. These are based on the loading figures for one yacht, and application 

of these formulae to other yacht rig arrangements was not considered. 

2.2 Finite element analysis of masts 

A finite element analysis of a yacht mast and rigging allows a more detailed 

picture of the stresses developed in the mast to be obtained. In order to carry 

out a finite element analysis, the loading on the mast have to be specified. 



The point loads from rigging and halyards are well defined in their point 

of application, and data from sailing trials or design calculations can provide 

the magnitude of these loads. Loading from the mainsail luff will apply a 

distributed load along the mast, and this is not evaluated as easily as the 

point loads. The total mainsail luff loading on the mast can be calculated 

by using the righting moment of the boat or from lift and drag coefficients 

of the sail. This total load can then be distributed along the mast, and con-

stant, linear, parabolic and other distributions have been employed. Enlund 

et al [12] use the righting moment of the boat to derive the total sail loading 

on the mast, and apply this using an elliptical distribution. HoSmeister [22] 

also uses the righting moment of the boat to calculate the mainsail forces, 

and these are applied as a distributed loading along the mast in proportion 

to the sail area. Cant [10] calculated the total mainsail forces from a po-

tential flow analysis of the sails, and then applied this loading as a linear 

distributed load in conjunction with point loading from the halyards and rig-

ging obtained from experimental measurement on the yacht being modelled. 

Sail coefficients from the lOR measurement rule were used by Selness [54] 

to derive the sail loading for a rig, although no details of how this was dis-

tributed onto the finite element model are provided. Kenning and Van der 

Werff [48] compared a linear and constant load distribution along the mast 

for masthead and fractional rigs. Differences of up to 40% in bending mo-

ment at the deck for both rigs, around 70% variation in bending moment for 

the top section of the fractional rig and a 10-30% difference in stay tensions 

occurred for the two loading distributions. This highlights the importance of 

having the correct loading applied to the mast in order to obtain an accurate 

finite element solution. 

Selness [54] and Cant [10] carry out a linear analysis of the mast and 



rigging, using loading data from a potential flow analysis of the as designed 

sail shape. Both Keuning and Van der Werff [48] and HofTmeister [22] divide 

the mast loading into a number of load steps, and use a linear finite element 

analysis on each step, with the stiffness of the structure recalculated after 

each load step. This takes into account the change in stiffness of the rig due 

to rig deformations. 

Mitchell [38] notes that the conditions applied to the mainsail luff loading 

are fairly arbitrary, and to find a more realistic distribution of the loading 

requires a model of the sail to be combined with the mast model. The sail is 

modelled using a membrane strip of high stress running from the mast head 

to the end of the boom (along the sail leech) to represent the sail, based on 

the reinforcing and structural design used by sailmakers. The mast is mod-

eled by beam elements, and a modified Newton-Raphson solution to a direct 

stiffness finite element method which allows large displacements is employed, 

an equivalent method to the stepwise linear finite element calculations car-

ried out by Keuning and Van der Werff [48] and Hoffmeister [22]. Sail loads 

are applied as discrete forces to the mast in the direction of the sail cloth 

at the mast, such that the net moment is equal to the righting moment of 

the yacht. This method is an improvement over simply applying the sail 

loads as distributed forces along the mast, but in order to model the coupled 

nature of the mast and sail and to apply the correct loading to the mast, it 

is necessary to develop a finite element model of the sail and mast together. 

2.3 Membrane analysis 

The analysis of membranes under the infiuence of fluid flow is complicated 

by the coupling between structural and aerodynamic responses. Under the 

action of an incident flow, the membrane will become pressure loaded which 



will result in a deflection of the membrane resulting in a change in the air-

flow over the surface. This prevents a closed form solution of the flow over 

a flexible membrane. Membranes are also unable to support compressive 

stresses, which can introduce more difliculties in a three dimensional case. 

The problem can be simplified by assuming that the membrane is inextensi-

ble with a constant tension, or looking at a two dimensional case, and several 

solutions to a fluid flow loaded membrane have been presented using these 

approximations. 

2.4 Inextenslble membranes 

Initial analyses of membranes under the action of incident flow looked at the 

case of inextensible membranes. Two dimensional cases with membranes un-

der a constant tension were analysed by Thwaites [61] and Neilsen [42]. For 

the structure to be in equilibrium, the curvature of the membrane must be 

such that the tension in the membrane balances the pressure loading on it. A 

two dimensional sail equation is developed, using linearised airfoil theory and 

static equilibrium of the sail under pressure force and tension (constant over 

the sail). The resulting equation has no theoretical solution, but Thwaites 

develops an iterative numerical solution, dividing the membrane into ele-

ments. Neilsen [42] studies the same problem using fourier analysis, with a 

fourier series to describe the membrane shape. Analysis with a leading edge 

singularity is undertaken approximately, truncating the solution to the first 

18 and 30 coefiicients of the fourier series. 

Greenhaulgh [17] measures experimental shapes of rectangular inextensi-

ble membranes with a variety of excess lengths, and compares experimental 

and calculated airfoil shapes, lift coefiicients and membrane tensions. Pres-

sure distribution is calculated using a vortex lattice method, with each ele-
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ment of the membrane having a line vortex at 1 /4 chord and a control point 

at 3/4 chord. Membrane tension is assumed to be constant, and the tension 

and local curvature of each element balance the pressure difference. Results 

from the calculations were found to be in good agreement with experimen-

tation for lift, shape and membrane tension. 

Newman [43] presents a review of the work performed on flexible inelastic 

membranes. Geometry and local tension of the membrane are related to 

the pressure difference across the membrane, and pressure distributions are 

calculated using potential flow. It was noted that the effect in change in 

tension and shear across the membrane thickness are third order, and so are 

neglected. Since membranes are unable to support compressive stresses, it is 

noted here that the smaller principle stress is significant, as the membrane 

will approach a wrinkled state as this reached zero. 

Jackson [26] calculates the shape of a two dimensional sail in inviscid flow, 

extending the analysis to two interacting sails. The membrane is divided into 

segments, and a vortex lattice method is used to calculate the pressure dis-

tribution for a given membrane shape. To ensure that the surface streamline 

leaves the trailing edge smoothly, and additional point is used beyond the 

trailing edge. The structural method relates curvature and tension in the 

element to the pressure difference. Solution of the membrane problem re-

quires two levels of iteration. A shape of the membrane is assumed, then 

the pressure distribution calculated. The membrane tension is guessed, and 

the shape calculated for this tension. After a deflected shape is found, the 

chord length of the membrane is calculated. If this is too long, the tension is 

increased and the shape is calculated again. When the shape has converged, 

the pressure distribution is recalculated and the procedure continued until 

the change in tension is below a convergence criteria. The convergence cri-



teria for the entire problem and the structural calculation are calculated to 

give the same level of accuracy. Jackson and Fiddes [28] extended this work 

to account for viscous flow past two dimensional flexible sail sections. The 

structural model used is the same as the previous paper, and a Navier Stokes 

solution with a flexible boundary layer was employed for the fluid model. A 

cosine distribution of the panel edges and collocation points is used, and the 

flow field takes into account a boundary layer on each side of the membrane 

and a separation bubble at the leading edge. Constant strength doublets are 

used to represent the vortex sheet, and integral methods are used to represent 

the boundary layer flow. Results show good agreement with experimenta-

tion, but the difficulty in obtaining experimental results with rigid spars that 

do not affect the airflow are highlighted. The inclusion of viscid effects were 

found to make a diff'erence of only one percent in the membrane tensions. 

2.4.1 Elastic membranes 

Ormiston [47] studied an initially flat rectangular membrane with fixed lead-

ing edge and ribs. The trailing edge of the membrane is held by a cable 

under tension. Membrane tension is taken to be constant in the chordwise 

and spanwise directions, and ty. The membrane deflection equation, equa-

tion 3, relates curvature and tension to the pressure difference across the 

membrane, and is an extension from the two dimensional cases mentioned 

previously. Due to the elastic nature of the membrane, this equation is now 

non-linear with respect to deflections, as the partial derivatives of the deflec-

tions, d'^zjd{x)1 are multiplied by the membrane tensions, ty, which are 

functions of the membrane deflections . 
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Non-linear chordwise and spanwise strains are calculated from the deflections, 

and this is used to calculate the membrane tensions. Equations for the 

sailwing surface are developed to include the deflections of a pretensioned 

elastic trailing edge wire, leading to a non-linear system approximating the 

structural response of the sailwing. The aero-elastic problem is uncoupled, 

and the wing loading is approximated by the first term in a fourier series 

expansion of a uniform loading. Tensions are found by solving the non-linear 

equilibrium equation by iteration. The resulting membrane slackness due 

to the elongation of the membrane and the trailing edge wire deflection is 

used to calculate the shape of the membrane. Use of the structural results 

allows calculation of the lift of the sailwing using thin airfoil and Prandtl 

lifting line theory. Values of deflection and tensions for arbitrary values of 

the lift coefficient can then be calculated, and the sailwing aerodynamics can 

be related to the structural properties of the membrane. The non-linearity 

of the sailwing lift curve is found to be due to the elastic effects of the 

membrane. 

A computer orientated continuum approach to the sailwing problem is de-

scribed by Holla et al [24]. They note that for a full structural analysis of the 

membrane, it is necessary to take into account the spar flexibility and varia-

tion of tension across the membrane. For this case, the tip ribs are assumed 

rigid, and a state of pure membrane stress exists with uniform chordwise and 

spanwise tensions. It is noted that these approximations are restrictive, but 

allow the solution of the problem with much less computation than a full 

finite element analysis. Average strains are calculated from the change in 

length in the chord and spanwise directions, and assuming linear elasticity, 

the instantaneous membrane tensions can be calculated. The aerodynamic 

problem is solved using a doublet lattice method. The deflected membrane 
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shape must satisfy both the aerodynamic and structural equations. To solve 

the problem, the deflected shape is assumed to be defined by a double fourier 

series, which results in equations for the constants of the series in terms of 

the instantaneous tensions in the membrane. An iterative solution method 

is used to calculate the equilibrium deflections of the membrane, as detailed 

below: 

® Choose value for instantaneous tension 

® Solve for fourier series coefficients 

• Compute change in instantaneous tensions 

® Check for convergence, otherwise start with updated instantaneous ten-

sions. 

Double skinned membranes are analyzed by Murai and Muruyama [41]. 

The three dimensional sailwing with trailing edge wire is idealized as a two 

dimensional case with the wire represented by a spring on the trailing edge of 

the membrane. The structural equation is given by a balance of the tension 

and curvature with the pressure difi'erence for the top and bottom mem-

branes separately. Pressure loading is obtained using a panel method over 

the membrane, and solution of the problem is obtained by iterating between 

the structural and aerodynamic problems. Iteration is also used to solve 

the non-linear structural equations and results are presented for a circular 

leading edge spar. 

Smith and Shyy analyze two dimensional membrane wings under un-

steady laminar flow [55]. The membrane is subject to pressure force and 

shear force, and is linearly elastic with prestress. The membrane is divided 

into elements with the structural equation solved using finite difference and 
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the aerodynamic problem solved using a pressure based numerical procedure. 

An iterative solution method is used to account for the coupling between the 

aerodynamic and structural aspects of the problem, using a body fitted lan-

grangian formulation for the grid. The elastic and aerodynamic problems 

are solved cyclically until convergence. A steady state solution is obtained, 

and this is used as the starting configuration for an oscillating flow. In a 

second paper [56], the model is extended to account for turbulent flow, using 

Reynolds Averaged Navier Stokes equations with k-w eddy viscosity models 

for the aerodynamic problem, and the same structural model as before. 

The assumptions of constant tension in membranes that have been used in 

obtaining numerical solutions to membrane problems have given good results 

for rectangular membranes in these studies. However, these restrictions are 

unrealistic for the triangular shapes encountered in yacht sails as the problem 

lacks the symmetry of the rectangular problems. In order to analyse these 

membrane shapes, it will be necessary to carry out a finite element analysis of 

the membranes. Due to the non linear relationship between the membrane 

displacements and the pressure they support, a non linear finite element 

analysis will be necessary to model the sails. This will also allow analysis of 

the rig as a whole, as the non linear nature of this system has been noted by, 

for example, Keuning and Van der Werff [48] and Hoffmeister [22]. 

Newman [44] presents a review of work on elastic membranes up to 1987, 

including much of the details from an earlier paper on inextensible mem-

branes [43]. Additional cases of three dimensional sails including vortex and 

doublet lattice methods for solution of the aerodynamic problem and inelastic 

and isotropic finite element analysis of the structural problem are discussed. 
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2.5 Non linear finite element analysis 

Analysis of structures undergoing large displacements during deformation 

require the use of a non linear formulation for the finite element govern-

ing equations. This results in a series of non-linear equations for the finite 

element problem. These are solved using incremental formulations, and a 

description of the incremental loading methods are given in Ross [51]. 

Mallett et al [36] develop finite element matrices that take into account 

large deformations of the model. Governing equations are developed using 

virtual work, and these are shown to be identical to those derived from vari-

ations in the models potential energy. A truncated Taylor series expansion 

around a known equilibrium position is used to obtain a linear incremental 

formulation to allow solution of the non-linear governing equations. For cases 

with non linear strain displacement relationships, a non linear incremental 

formulation, which uses the first two terms of a Taylor series expansion is 

developed. Finite element matrices for a truss element are developed using 

the direct, potential energy and linear incremental formulations. The linear 

finite element stiffness matrix is replaced by a summation of three matrices: 

® Linear finite element stiffness matrix 

• Stiffness matrix which is a linear function of displacement, which cou-

ples membrane and flexure action 

• Stiffness matrix which is a quadratic function of displacement, which 

affects flexure action only. 

Further development of this work is presented by Rajasekran and Murray [50] 

Working from the strain energy for a linear elastic material and noting that 

the strain can be split into components linearly and quadratically dependent 
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on displacement, the potential energy of the model can be found. From this, 

the stiffness matrix for an element is developed in the same form as in [36]. 

It is noted that the forms of the stiffness matrices are important to enable 

them to repeat in both the equilibrium and incremental equations, which was 

not shown in Mallett's work. These formulations are shown by Wood and 

Schxefier [67] to be identical to the methods developed by Zienkiewicz [68] 

taking into account difference in notation and arrangement of the stiffness 

matrices. 

Bathe et al [7] develop non linear finite element formulations from con-

tinuum mechanics. The loading path is divided into a number of steps, and 

equilibrium is obtained at each step before continuing. Two formulations are 

presented, the Total Langrangian and Updated Langrangian, which refer the 

current displacement derivatives to the initial and current state of the body 

respectively. These different formulations give the same numerical results, 

and choice of scheme is dependent only on the relative numerical efiiciency 

for the problem being considered. Virtual work is used to formulate the gov-

erning equations, and the non-linear term in the equation is linearised using 

a Taylor series expansion, truncated to the first term. Due to this linearisa-

tion, the internal and external forces will not be in equihbrium at the end of 

the load step. It may be necessary to iterate within the load step to reduce 

the out of balance force in order to ensure that a stable solution is obtained 

for the full loading path. 

2.6 Membrane finite element analysis 

Timoshenko and Woinowsky-Kreiger [63] concluded that if the ratio of thick-

ness to other dimensions for a membrane is less than 0.1, the bending stresses 

are small in comparison to other stresses and can be neglected, as noted in 
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Newman [44]. Yacht sails will typically have a ratio of thickness to chord 

of less than 1.0 x 10"^, and this restriction can be incorporated into a finite 

element model by using elements that are planar and assuming a state of 

locally plane stress in each element. 

Oden and Sato [46] employ elements with displacement coefficients that 

are independent of deformation, and calculated using the geometry of the 

undeformed elements, which corresponds to the Total Langrangian method 

described by Bathe [7]. A stiffness relationship is determined by equating 

external virtual work done by nodal forces to internal work, expressed in 

terms of an elastic potential function, IV. The eleistic potential function is 

itself a function of the membrane strains, and it's exact form depends on 

the membrane material. Examples are given for isotropic, perfectly elastic 

materials, where IF is a function of the strain invariants. In the case of small 

strains, the relationship for a neo-Hookean membrane is obtained, and the 

familiar linear stiffness matrix is obtained. The element stiffness matrices are 

calculated in the element local coordinate system, and then transformed into 

the global coordinate system for assembly into the global stiffness matrix, 

using the connectivity of the elements. Boundary conditions are applied by 

prescribing forces or displacements on the nodes, and a system of non-linear 

equations in the node displacements is obtained. 

To solve resulting the non-linear equations, a Newton-Raphson method 

is used. The non-linear stiffness term is expanded using a Taylor series 

and truncated to the first two terms - the linear stiffness relation and a 

correction due to increments in the node displacements. These equations 

are solved for displacement increments due to an increment in the nodal 

forces. Corrected values for the nodal forces are then calculated using the 

full non linear relationship. These are then used to calculate a correction 
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to the nodal displacements using an updated stiffness matrix. The solution 

is initialized with an assumed displacement field, and this is corrected until 

convergence of the displacements. At some stages in the solution, compressive 

stresses can develop in the membrane, which leads to the stiffness matrix 

becoming no longer positive definite and a failure of the iterative solution. 

When this occurred, the solution process was restarted with a new prescribed 

displacement field. Solution were obtained for the deformation of an initially 

square membrane under a prescribed in plane edge displacement, and for the 

infiation of a flat membrane. 

2.7 Stein Hedgepath wrinkle model 

Membranes do not support compressive stresses, and as compressive stresses 

develop in a membrane, wrinkling will occur. This behaviour is avoided by 

Oden and Sato [46] by altering the initial displacement field to find a starting 

point where no compressive stresses develop during the analysis. In reality, 

wrinkling due to development of compressive stresses often occurs in mem-

brane structures, and it is possible to model this behaviour within the finite 

element solution using an algorithm developed by Millar and Hedgepath [37], 

which is a numerical implementation of a continuum theory developed by 

Stein and Hedgepath [58]. The development of a compressive principle stress 

will result in a state of uniaxial tension occurring at that location within the 

membrane, and this will result in the membrane wrinkling. When wrinkles 

occur, the contraction in the direction normal to the wrinkles exceeds what 

is predicted by the materials Poisson's ratio. This is incorporated into the 

wrinkle model by increasing the effective value of the Poisson's ratio in the 

wrinkled region. The algorithm to implement this compares the principle 

values of local strain, and determined if the element is in either the slack, 
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wrinkled or taut state, and a different constitutive matrix is given for each 

of the states. To ensure that a steady state is reached, it is necessary to 

iterate within each load step, changing the constitutive matrices of each el-

ement according to the last calculated value of local principle strains until 

the element state converges. 

2.8 Fluid flow analysis of sails 

As noted in [28], viscid effects change membrane tensions by only about 1% 

in a two dimensional analysis. Thus for the aeroelastic analysis of sails, the 

potential flow method of calculating fluid flow is sufficient to determine the 

pressure distribution on the sail providing that the sail configuration is such 

that the flow is not widely separated. The case of a yacht sailing upwind 

has flow that does not contain a large amount of separation, and is suited 

to analysis using potential flow methods. Potential flow methods have the 

advantage of short run times in comparison with viscous codes. Caponetto 

and Bonjour [11] obtained a flown shape of a mainsail and jib, using an 

aeroelastic solution which incorporating a potential flow vortex lattice code 

to calculate the pressure loading on the sails, and then carried out a Navier-

Stokes analysis on the flown shape. Analysis of a yacht rig in an upwind 

configuration using a potential flow panel code, PALIS UPAN [64] will take 

around two minutes on a single processor workstation, compared to a run 

time of about five hours on a 64 processor workstation for a viscous Navier 

Stokes analysis of a similar problem [11]. For an aeroelastic solution, which 

may require over two hundred separate aerodynamic calculations during the 

solution, this time penalty becomes prohibitive. 

Vortex lattice codes have been used in previous aeroelastic analyses of 

sails by Jackson [27] and Smith [57]. The vortex lattice method is suited 
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to sail analysis as it effectively models thin structures. PALISUPAN is a 

potential flow source/doublet code that was developed at Southampton to 

study the effect of propeller rudder interactions [64], and has been success-

fully used to analyse upwind sail configurations [10] [45], and shown to give 

good agreement with experimental global force values and pressure distri-

butions [49]. Due to the nature of the code, it is necessary to introduce an 

artificially large thickness to the sails, but this does not detract from the 

accuracy of the pressure calculations [49]. The source doublet method will 

allow the analysis of the sails and mast together, which is not possible with 

a vortex lattice code. 

2.9 Aeroelastic analysis 

Bathe [5] notes the importance of selecting the correct mathematical model 

for fluid structural interaction, and uses a finite element method for solu-

tion of both the aerodynamic and structural elements of the problem. He 

also notes that solution of the finite element equations by direct methods 

can become computationally expensive, as computing time and hardware re-

quirements increase with the number of nodes, N, in proportion to iV^ and 

jy3/2 respectively. 

Han and Olsen use an iterative coupled fluid structural model to study 

wind loaded pneumatic structures [18]. The aerodynamic problem is solved 

using a boundary element analysis, and this provides pressure loading for 

the finite element analysis. A Langrangian formulation is used for the struc-

tural problem with an incremental decomposition of the stresses and strains. 

The non linear stiffness term is linearised using a Taylor expansion, and a 

warped four noded quadrilateral shell element is used for the analysis. The 

deformation dependence of the pressure loading is accounted for in the el-
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ement stiffness matrix calculations, and results in a non symmetric matrix. 

Iteration is used to solve the structural problem, with the linear stiffness re-

lationship used to calculate increments to the displacement due to the load 

increments calculated using the non-linear equations from the previous dis-

placement increments. A line search scheme is used to assist convergence of 

the node displacements. The starting point is an assumed or given profile of 

the structure, then the aerodynamic problem is solved to give the pressure 

loading for calculation of the new profile until convergence. 

Jackson and Christie [27] use the membrane assumptions of Oden and 

Sato [46] applied to a Snite element formulation to solve the structural prob-

lem for a three dimensional sail. The sail is divided into triangular elements 

which are used for both the fluid and structural solutions. A vortex lattice 

method is used to calculate the pressure loading on the sail, using triangu-

lar elements with control points at the element centroids. A wake sheet is 

extended in the direction of flow at the trailing edge of the sail. It is noted 

that a force free wake sheet would be required for accurate calculations for 

two sail interaction. Since both the elastic and pressure forces are non-linear 

with respect to the nodal displacements, it is necessary to employ an iterative 

solution to the structural problem, using a Newton-Raphson method. As in 

Han and Olsen [18], a linearised stiffness relationship is used to calculate 

approximate node displacements for an increment in force calculated from 

the full non-linear equations using the previous displacements. The wrinkling 

of the membrane is modeled by changing the constitutive relationship to an 

axial stress state in wrinkled regions. The aeroelastic solution is obtained by 

solving the aerodynamic problem, applying these pressures to the membrane 

and iterating until the structural equilibrium is found, then recalculating 

the pressures using the deformed shape, and continuing until the solution 
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converges. 

Atkinson [2] went some way towards the analysis of a mast sail system, 

using curved membrane elements developed by Zienkiewicz [68]. An 'as de-

signed' sail shape is used to calculate pressure loads using an unsteady lift-

ing surface marine propeller method developed by Szantyr [59]. The mast 

is considered as a rigid boundary for calculation of stress in the sail with 

a non-linear finite element analysis. Stress resultants from the sail luff are 

then applied to an approximation to a non-linear beam analysis of the mast 

where the loading is applied in a number of increments, and a linear solution 

obtained using an updated stiffness matrix for each increment. The resulting 

mast bend is calculated and applied to the sail to gain a new shape which 

is analyzed to calculate the effect of the response on the sail driving coeffi-

cient, although no further coupling of the fluid and structural problems was 

undertaken. This approach was developed in a further paper by Atkinson 

and Szantyr [3]. The aerodynamic problem is solved using a vortex lattice 

method, with line vortices around the quadrilateral elements and a control 

point at the center of the element. This loading is applied to a membrane 

model of the sail as in [2], and the luff forces applied to a large deformation 

finite element analysis of a rig comprising beam elements for the mast and 

tension only rod elements for the rigging under pretension. The method is 

used for the solution of a two sail jib/main combination. Initial attempts 

modeled the jib stress resultants as a single force at the point of attachment 

to the mast, but this was extended to include a forestay made of discrete el-

ements loaded by the stress resultants from the jib luff to model the forestay 

sag. As previously, the distorted geometry was run through the CFD calcu-

lations to determine the change in sail driving force, but no coupling between 

the structural and fluid problems was investigated. 
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Smith and Shyy [57] have produced the most complete analysis of a sail. 

The elastic membrane problem is solved using load stepping by incremen-

tally increasing the freestream velocity. The non-linear structural problem is 

solved using the finite element formulation of Bathe [4] [7], with the strain 

displacement relationship altered to that used by Oden and Sato [46] for 

the membrane case, and use is made of the Stein-Hedgepath algorithm for 

wrinkled membranes [37]. A modified Newton-Raphson approach is used to 

iteratively solve the structural problem for each pressure distribution, and 

the fluid and structural problems are solved cyclically until convergence at 

each load step. A vortex lattice method is used for the calculation of the 

pressure distribution over the sail, according to the methods of James [30], 

using the same quadrilateral elements used for the structural calculations. 

Results are presented for a membrane under uniform pressure, a rectangular 

membrane wing with free trailing edge and an initially flat triangular mem-

brane representing a mainsail. In all cases, prestrain is used to allow solution 

of the first load step (as otherwise the matrices are singular), but this is 

removed for following load steps. 

Pukasawa has studied the dynamic response of a two dimensional mem-

brane in water [14] and a three dimensional sail in air [15]. The strain 

displacement matrix is split into linear and non-linear parts. An incremental 

formulation is used, splitting the loading into a number of equilibrium states, 

the incremental stress strain relationship is assumed to be fully elastic, and 

higher order terms are neglected in calculation of the stiffness matrix. The 

final stiffness matrix contains the linear stiffness matrix, initial displacement 

stiffness matrix and initial stress stiffness matrix, and corresponds closely 

with the Total Langrangian formulation described by Bathe [7]. 

The two dimensional membrane in water is modeled for static equilibrium 
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using hydrostatic pressure. The pressure force is calculated using the previous 

load step displacements. As the load steps used are small, the deformation 

dependence of the loading is adequately described by this approximation. A 

dynamic case is then calculated using strip theory and Bernouilli's equation 

to obtain loads at each time step, with the static case used as a starting 

point. The three dimensional sail is modeled using triangular elements for 

both aerodynamic and structural analysis, as a triangle determines only one 

plane and is the natural shape to use for dividing up a triangular sail. The 

pressure loading is calculated using a vortex lattice method with a control 

point at the element centroid. The combined aerodynamic and structural 

case is solved using increments in the freestream velocity from zero to the 

required value. At each step the pressure distribution is calculated to provide 

the nodal loads for the finite element analysis, and updated shape is used 

for the next velocity step. A dynamic analysis of the sail under pitching and 

yawing is then carried out using Newmark-/? time integration. 

2.10 Experimental analysis of yacht rigs 

There has been a large amount of testing done on various yacht rigs, but 

almost all of this work is commercially sensitive, and so is rarely published. 

Ladesic [31] carried out studies of rigid cylindrical surfaces in the form 

of a single sail and a model with hull and a variety of main and headsail 

combinations. The wind tunnel was empirically adjusted to develop a scale 

velocity profile appropriate to yacht sails using a vertical distribution of flow 

impedance upstream from the model. Experimental results are compared to 

a vortex lattice model, and found to be in good agreement up to the point 

of stall. 

Locke et al [35] develop a method of measuring the distribution of lift and 
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drag along the span of a sail. Lift and drag are inferred by measurements 

of velocity components and pressures in the sail wake, as this measurement 

method does not interfere with the flow over the sails. This allows details 

of the structure of the flow around the sails to be shown, and provides a 

better model for calibration of numerical methods. A strong vortex is found 

originating at the foot of the sail, due to the gap between the boom and deck, 

but no vortex was found originating from the head of the sail. 

The requirements for simlitude for testing model sails in wind tunnels is 

discussed by Flay [13]. He notes the difficulty in assessing the dependence 

on forces due to Reynolds number as increasing wind speed in the tunnel 

results in deformation of the sail. It is also difficult to obtain similar aeroe-

lastic numbers (defined by Jackson and Christie [27]), as a model sail would 

have to be made out of extremely elastic materials. He notes that this af-

fects only the deformed shape of the sail, which can be altered by the crew 

using the sail controls. The effect of velocity profile and induced turbulence 

is discussed, in particular pointing out the difference between yachts and 

stationary buildings. 

2.11 Summary 

Aeroelastic solutions have been obtained for membrane structures which rep-

resent yacht sails, and this allows the coupled nature of the fluid and struc-

tural aspects of the sail to be modelled. The forces generated by a mainsail 

have been applied as distributed loads to finite element analysis of masts, but 

the distributions of the loading have been chosen arbitrarily. Considering the 

mast and sail as distinct bodies in this manner neglects the interaction of the 

rig elements. An aeroelastic model of a mast and mainsail body will apply 

the forces generated by the sail onto the mast in the correct manner, and 
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also model the interaction of the mast and sail deformations. 

Potential flow allows the solution of the fluid aspect of the mast sail 

model in a timescale appropriate for the aeroelastic analysis of a rig. Vortex 

lattice potential flow codes have been used successfully in both fluid and 

aeroelastic analysis of sails. A non linear finite element program is required 

for the analysis of the structural aspect of sail deformation, due to the large 

deformations that can occur in the rig and the non linear nature of the 

membrane strain energy - displacement relationship. A Total Langrangian 

formulation developed by Bathe [7], including the membrane assumptions 

of Oden and Sato [46] and the membrane wrinkle algorithm of Millar and 

Hedegepath [37] has been employed by Smith and Shyy in the aeroelastic 

analysis of sails [57]. 

The aeroelastic analysis of a mast sail system will use a similar formu-

lation to that employed by Smith and Shyy [57]. A Total Langrangian fi-

nite element formulation [7] will be developed, including membrane assump-

tions [46] and wrinkle model [37] for the sail elements and suitable elements 

for the mast analysis. A potential flow panel code, PALISUPAN will be used 

to model the mast and sail to calculate the pressure loads on the system. 

Programs to generate the required PALISUPAN model geometry from the 

finite element model and calculate the finite element model loads from the 

panel code pressures will be required to carry out the aeroelastic analysis. 
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3 Aeroelastic solution method 

3.1 Analysis model assumptions 

A yacht rig operates in a constantly changing environment. Wind speed and 

direction varies continuously, and the yacht on which the rig is supported will 

be in constant motion under the influence of the environment and the input 

of the crew sailing her, and is itself a flexible structure. In order to simplify 

the problem to a level which is soluble with modern techniques, it is necessary 

to apply restrictions to the real life case. The rig is simplified in this analysis, 

and a system of a single sail on a mast is considered. The methods used are 

capable of dealing with multiple sails and rigging elements, but this would 

result in a complex system with a large increase in computational time and 

the increased number of variables would make conclusions difficult to draw. 

The rig is assumed to be in a steady state and no heel is applied, which is 

close to the real life situation of a yacht sailing on flat water in a low, steady 

wind. The case of a yacht sailing close hauled into the wind is considered, 

as it is possible to obtain a reasonable prediction of fluid flow around the 

rig using potential flow analysis for this sailing heading. Although viscous 

effects, such as separation in the region of the mast can be appreciable, the 

extra computational time required for a viscous analysis would result in a 

prohibitively large solution time for the aeroelastic analysis. 

3.2 Solution structure 

The aeroelastic solution method which is used is illustrated in figure 1. The 

coupled nature of the fluid and structural aspects of the system requires an 

iterative solution to the aeroelastic problem. The rig is analysed using a fluid 

flow model to calculate the pressure distribution over it. This is used to gen-
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erate the loading for the structural analysis of the rig. The deformed rig can 

then be analysed using the fluid flow model to obtain an updated pressure 

distribution. This cycle is continued until the solution has reached conver-

gence. This solution structure has been employed in aero elastic analysis of 

sails by Jackson and Christie [27] and Smith and Shyy [57], and in analysis 

of wind loaded pneumatic membrane structures by Han and Olsen [18]. 

Aeroelastic analysis of a sail carried out by Smith and Shyy [57] required 

over 200 loops of the fluid structural solution cycle to produce a solution. 

In order to allow solution within a reasonable time scale, taken to be 24 

hours on a UNIX workstation for this thesis, the solution time for the fluid 

and structural aspects of the solution must be kept to a minimum. Use of 

a commercial finite element code will result in large time overheads to start 

up the program, and an in house program will also result in a faster solution 

as it will only contain the elements and solution techniques required for the 

aeroelastic analysis. The analysis of a sail using a commercial finite element 

code, ANSYS, was attempted by the author [21], and was unable to easily 

produce a solution for a membrane sail structure. To obtain a solution to the 

structural aspect of the problem in a reasonable time scale and to ensure that 

the desired structural models were implemented, it was decided to develop 

a nonlinear finite element analysis program, incorporating membrane sail 

elements and mast elements. Membrane elements were formulated in the 

manner of Smith and Shyy [57] which applies the membrane assumptions 

of Oden and Sato [46] to the finite element formulation and includes the 

membrane wrinkle algorithm of Millar and Hedgepath [37]. 

A potential fiow analysis will be employed for the fluid analysis which al-

lows solution of the fluid aspect of the problem in an appropriate timescale. 

Use of a viscous CFD program, such as an Euler code, would require at least 
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several hours to solve on a UNIX workstation at each loop and result in a 

prohibitively high solution time. Aeroelastic analysis of sails by Jackson and 

Christie [27] and Smith and Shyy [57] employed vortex lattice potential flow 

codes to calculate the fluid flow over the sails. These are well suited to anal-

ysis of sails, as they can be used to model thin structures, but are not suited 

to the analysis of a mast sail system due to the thickness of the mast. A 

potential flow panel code allows the solution of the mast and sail in a single 

model with an artiflcial thickness introduced to the sail. The timescale of the 

project precluded the development of a potential flow code for the analysis, 

and a panel code developed within the University of Southampton, PALISU-

PAN [64] will be used to model the fluid aspect of the problem. This has been 

shown to give good agreement with experimental pressure measurements on 

a mast mainsail model [49] when using an artiflcial thickness applied to the 

sail in the PALISUPAN model, and has been used to analyse yacht sails 

in an upwind conflguration in several previous studies, including Prior [49], 

Cant [10] and Noury [45]. As the code was developed within the depart-

ment, a command line version without any graphical interface was available, 

and this was used to reduce the time overhead required when starting the 

program. 

Previous aeroelastic analysis of a yacht sail have employed an aeroelastic 

element, with the same discretisation being employed for the flnite element 

and potential flow analysis. Jackson and Christie [27] employed triangular 

elements, and Smith and Shyy [57] used quadrilateral elements. The use of 

quadrilateral elements restricts the flnite element analysis to initially plane 

membranes in order to be able to apply membrane restrictions to the sail 

elements, and also means that the sail must be truncated in the finite element 

mesh as the tip of the mainsail cannot be meshed with quadrilaterals. An 
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aeroelastic element is not suitable for the analysis of a rig, as it will not 

allow modeling of both the mast and sail in the aerodynamic and structural 

analysis. Distinct grids will be used for the finite element and potential 

flow analysis to enable the mast sail model to be analysed by the fluid and 

structural models. These distinct grids can be used to satisfy the different 

grid requirements for increased accuracy of the two aspects of the aeroelastic 

problem. 

The potential flow program used in the aeroelastic analysis, PALISUPAN, 

generates a potential flow panel distribution for a body defined by a series of 

sections. To generate the PALIS UPAN input file, a series of sections defining 

the rig in its deformed configuration is obtained from the finite element model 

of the rig, and these are used to generate the sections defining the body to 

be analysed by PALISUPAN. Pressures obtained from PALIS UPAN are then 

used to calculate the pressure loading on the sail elements. Accuracy of the 

numerical solutions could be increased by using adaptive meshing for the 

finite element and potential flow analysis, which is possible due to the use of 

distinct grids. This is beyond the scope of this project due to the timescale 

which would be required, and a fixed finite element mesh and potential flow 

panel density is used through the solution path of the aeroelastic analysis. 

3.3 Validation data 

A search of literature did not find any validation data for yacht rigs in the 

public domain that would have been useful for validating the aeroelastic 

analysis. An attempt was made to gain some validation data by taking 

photographs of a yacht rig during wind tunnel tests that were carried out 

during a project at the University of Southampton [33]. Camber lines were 

placed on the sails to attempt to gain section profiles at three positions up 
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the rig. However these photographs proved to be of too small a scale and 

too poor quality for any quantitative data to be obtained from them. An 

example of the photographs is given in figure 2. 

The assumptions necessary to allow solution of the aeroelastic problem, 

and the limitation of the analysis to a single sail and mast system prevents 

the use of real scale data for the validation of the program. Wind tunnel 

tests of rigs at a scale large enough to produce useful validation data for this 

problem are very expensive, and outside of the scope of this project. Almost 

all data from both scale model and full scale trials are obtained during the 

course of yacht development for events such zis the Volvo Ocean Race and 

Americas Cup, and this data is commercially sensitive and therefore not in 

the public domain. There is also the problem of obtaining similitude of both 

the structural and aerodynamic aspect of yacht rigs for model testing, as 

discussed in the previous chapter. 

In order to have confidence in the methods used in the analysis procedure, 

each stage of the structural analysis was validated against theoretical solu-

tions. Mast elements were validated against a large deflection beam problem 

whose solution is presented by Holden [23]. This was also used as a valida-

tion case for the two dimensional nonlinear analysis programs. The nonlinear 

membrane formulation was validated against a solution for the large deforma-

tions of uniformly loaded membranes presented by Seide [53]. PALISUPAN 

has been shown to give good agreement with experimental pressure distri-

butions by Prior [49], although the global force coefficients predicted do not 

have good agreement with experimental results due to the inviscid nature of 

the potential flow assumptions. 
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3.4 Development path 

3.4.1 Linear Finite element development 

In order to develop a finite element program that satisfies the requirements 

discussed previously, a series of programs were written to enable validation 

throughout the development of the finite element analysis, which enables 

confidence in the programs to be developed. A variety of elements which 

could be used to model the mast and sail structures were investigated initially 

in linear then in nonlinear programs to determine the most suitable elements 

for the structural aspect of the aeroelastic analysis. The use of a direct 

stiff'ness method results in a symmetric, banded stiffness matrix, so reduced 

matrix storage routines and an efficient matrix solution method were used 

to take advantage of this. 

Initial development of the finite element program involved linear finite el-

ement analysis in two dimensions using triangle and quadrilateral elements. 

This allowed the program structure and data structures to be developed, and 

allowed debugging of the isoparametric formulation, reduced matrix storage 

and solution methods and numerical integration routines. The linear pro-

gram was extended to three dimensions for investigation of solid elements for 

modeling the mast. A brief investigation of beam elements in a linear finite 

element program was carried out. Beam elements would reduce the problem 

size as fewer nodes would be required to model the masts compared to solid 

elements but introducing rotational degrees of freedom for only the mast 

nodes would require re-development of the stiffness matrix assembly and so-

lution routines. The nonlinear formulation for beam elements [6] would also 

require separate development to the formulation which will be used for the 

sail elements. Using solid elements increases the number of nodes required 
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to model the rig, but they use only translational degrees of freedom, and 

thus do not require a distinct finite element formulation. The solid elements 

also define the mast cross section explicitly, making the PALISUPAN body 

section definition easier. 

3.4.2 Nonlinear finite element development 

A Total Langrangian method, presented by Bathe [7] is used as this allows 

the application of the deformation dependent pressure loading and applica-

tion of the membrane restrictions for the membrane finite element analysis. 

Initial development took place in two dimensions to simplify the problem 

and enable confidence in the solution method to be developed. Eight node 

quadrilateral elements were used in the initial nonlinear program, as these 

had been found to give good agreement with theoretical deflections of a can-

tilever beam by Bathe [7]. Development continued to three node triangles, 

and then to a membrane formulation using element local coordinates which 

enable the membrane restrictions (which are similar to assuming a state 

of plane stress in the membrane) to be applied. Pressure loading on the 

membrane elements was implemented, and the membrane formulation was 

validated against the constant pressure case presented by Seide [53]. The 

solid elements were incorporated into a three dimensional nonlinear finite el-

ement formulation which was developed from the two dimensional case, and 

were validated for against the large deflection analysis of a distributed loaded 

cantilever beam by Holden [23]. 

3.4.3 Aeroelastic development 

To enable solution of the aeroelastic problem, programs were developed to 

generate PALISUPAN input sections from the deformed finite element model. 
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and to calculate the finite element loading from the PALISUPAN results. 

Rectangular membranes were analysed using the aeroelastic program. An 

initial model was restrained around all edges of the membrane, and produced 

a stable solution using an iterative solution procedure without using veloc-

ity stepping. Velocity stepping was introduced to the aeroelastic solution 

method for the analysis of a free trailing edge rectangular membrane. The 

wrinkle model was introduced to the finite element analysis and the updated 

finite element formulation employed to analyse the free trailing edge case and 

an initially flat triangular membrane, as analysed by Smith and Shyy [57]. 

The aeroelastic solution method was then extended to include the analysis 

of a mast, which required alteration of the PALIS UPAN model generation 

routines and the finite element program. Dynamic relaxation was introduced 

to enable stable solutions of the aeroelastic analysis of the mast sail system. 

The rig model was analysed with a restrained and unrestrained mast 

to show the effect of including the mast deformations on the sail analysis 

results. An initially curved membrane sail model was then analysed with 

both a restrained and free mast to prove the ability of the solution method 

to deal with 'as designed' sail profiles. Sail loads obtained from the aeroelastic 

analysis were applied as a distributed loading on a nonlinear finite element 

model of the mast alone, and the mast compression predicted were compared 

to those obtained from the aeroelastic analysis. 
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4 Linear Hnite element analysis 

The theory of linear finite element analysis is well established, and a complete 

description of the formulation of the finite element method can be found 

in many texts, including Bathe [4] or Zienkiewicz [68]. A summary of the 

derivation is presented in appendix A. The body to be analysed is discretised 

into a number of elements, which are connected at a discreet number of node 

points on the boundaries. Displacements of these nodes are taken as the 

system unknowns, and the principle of virtual work is used to equate the 

internal work done in the model to the external work done by the applied 

loads. A set of simultaneous equations is obtained which can be solved to 

give the nodal displacements. 

4.1 Program structure 

The structure of the linear finite element programs is shown in figure 4. Model 

data is read in from a data file chosen during the program execution. Element 

stiffness matrices are evaluated and assembled into a model stiffness matrix. 

Boundary conditions and loading are applied to the model as defined in the 

data file, and the resulting finite element equations are solved to obtain node 

displacements. Element stress solutions are obtained from the calculated 

node displacements, and the results are output into a file. 

During the development of the linear finite element analysis, a fixed array 

size was used to store the stiffness matrix and loading vector. The full stiff-

ness matrix was stored, and solution of the finite element equations was car-

ried out using Gaussian elimination of the full stiffness matrix. This requires 

the number of degrees of freedom to be set in the program before compilation. 

Although this is inconvenient when analysing a range of models, it simplifies 
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debugging of the program as the full stiffness matrix is easily output. Dy-

namically allocated stiffness matrix and force vector arrays were developed 

after validation of the two dimensional finite element analysis which allows 

models of arbitrary size to be analysed and reduced the solution time. 

4.2 Data structure 

The data structure used to store the finite element model is represented in 

figure 5. The top level structure contains model data including the number 

of components (nodes, elements, point loads and boundary conditions) and 

material properties. Pointers to arrays containing the component data which 

define the model are included in the top level of the structure. The component 

data is stored in arrays that are dynamically allocated in the input function 

according to the number of each component in the model. Component data 

structures contained in the model are listed below. 

• Node data : contains node identification number and node coordinates. 

• Element data ; contains element identification number and pointers to 

each of the element nodes. 

• Boundary condition data : contains the identification number of the 

node the constraint is applied to and a flag indicating which degree of 

freedom is restrained. 

® Point load data : contains the identification number of the node the 

load is applied to, the load magnitude and a flag indicating the direction 

of the load. 
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4.3 Boundary conditions 

The method used for application of the boundary conditions allows any dis-

placement to be specified on a degree of freedom. The transformation used is 

shown in equation 4, where displacement U2 is given an applied displacement, 

Z. 

kii kl2 1̂3 A:i4 Ui Ri 

2̂1 2̂2 2̂3 2̂4 
< 

Z 
> = < 

Az 

3̂1 3̂2 3̂3 3̂4 Uz Rz 

4̂1 4̂2 4̂3 4̂4 i?4 

(4) 

kii 0 1̂3 kii Ui — ki2Z 

0 1 0 0 Z Z 
< > = < 

3̂1 0 3̂3 =̂34 % Rs — kz2Z 

4̂1 0 4̂3 4̂4 U4 R4 — k42Z 

In the aeroelastic analysis, only boundary conditions with a zero applied 

displacement are required. This restriction reduces the storage requirements 

for the boundary conditions and simplifies their application to the finite 

element equations, and so is applied to all the finite element programs. 

4.4 Loading 

Loading is applied to the model as point loads on element nodes for the linear 

finite element analysis. Distributed loading is lumped to the element nodes 

during the model generation by evaluation of equation 5, where is the 

equivalent load on node i due to a distributed load of intensity q over the 

element. 

" = / /i, 
J A" 

qdA (5) 
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4.5 Solution of banded stiShess matrix 

Use of the banded nature of the stiffness matrix is made to reduce the storage 

requirements for the stiffness matrix. As the matrix is also symmetric, it is 

necessary to only store the upper half of the non zero band of the stiffness 

matrix (including the main diagonal terms). In order to allow solution of 

the finite element equations to calculate the node displacements using only 

the stored matrix elements, the bottom half of the stiffness matrix terms 

are eliminated for each column by addition of multiples of the corresponding 

row. As the matrix is banded, this only has to be carried out over the 

semibandwidth of the matrix, unlike in a full Gaussian elimination where 

the full column is eliminated with the exception of the main diagonal terms. 

The values of the elements below the main diagonal (which are not stored 

in this scheme) can be found from the symmetric elements above the main 

diagonal. After this elimination, back substitution can be used to calculate 

the node displacements from the remaining elements in the top half of the 

non zero band of the stiffness matrix. Solution of the finite element equations 

using this method reduces the calculations required for solution by a factor 

of about 30 for the rig models considered in the aeroelastic analysis when 

compared to a Gaussian elimination of the full matrix (thus will depend on 

the bandwidth of the stiffness matrix). 

4.6 Isoparametric formulation 

The iso-parametric element uses a element based natural coordinate system, 

shown for a linear triangle in figure 6. Calculation of the element stiffness 

matrix is carried out in the model coordinate system using the isoparametric 

formulation described in appendix A. Boundary conditions and point loads 
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are applied to the model in the global coordinate system, and the equations 

solved to obtain the node displacements. Element stresses are calculated 

from the node displacements in the global coordinate system. 

4.6.1 Evaluation of the strain displacement matrix 

In order to calculate the Jacobian matrix entries and the derivatives of the 

interpolation functions with respect to the global coordinates, a matrix con-

taining the derivatives of the interpolation functions with respect to the nat-

ural coordinates, is calculated, equation 6. 

^l ,r ^2,r 

hl,s h2,s 

(6) 

The Jacobian matrix can be calculated by multiplying the 5h matrix by a 

matrix containing the element node coordinates, equation 7. 

T 

(7) 
2^r 

J = = 5h 
-

The (̂ h matrix is then multiplied by the inverse of the Jacobian to obtain the 

derivatives of the displacement functions with respect to the global coordinate 

system. These are assembled into the strain displacement matrix, B as shown 

in equation 9. 

9/L 
" dx^ 

(8) 

B = 

^1,1 0 ^2,1 0 • • h N , l 0 

0 h i , 2 0 ^2,2 • • 0 

h i , i ^2,2 ^2,1 • ' h-N,! 

(9) 
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4.6.2 Constitutive relationship 

The constitutive matrix used for the two dimensional finite element programs 

is the plane stress matrix for an isotropic soUd, defined in equation 10. 

C = 
E 

I f / 0 

z/ 1 0 

0 0 ( Y ) 

(10) 

4.6.3 Calculation of stiffness matrix 

The element stiffness matrix for a two dimensional element is calculated 

according to equation 11. 

K. = / 
J A e 

(11) 

Evaluation of the stiffness matrix is carried out using numerical integration 

where required. Gaussian quadrature is employed for numerical integration, 

and details of the schemes used for all the finite element analyses are given 

in appendix B. 

4.7 Three node triangular element 

Interpolation functions for the three node triangle in terms of the element 

natural coordinate system are given in equation 12. 

(12) 

Due to the linear interpolation of the displacements in the element, the ele-

ment strain displacement matrix is constant, and it is not necessary to employ 

numerical integration in the calculation of the element characteristics. The 

hi 1 — r — s 

/l2 = r 

s 
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stiffness matrix can be calculated according to equation 13, where the area 

of the triangle is obtained from the determinant of the Jacobian matrix. 

K = B^CB((0.5 X detJ) (13) 

The model shown in figure 7 was analysed using the isoparametric finite 

element program. Displacements and stresses obtained were compared to 

results calculated from finite element theory in Grandin [16] and were found 

to be identical. 

(14) 

4.8 Four node quadrilateral element 

The four noded quadrilateral element assumes a linear variation of displace-

ment, and is shown with the element natural coordinate system in figure 8. 

Interpolation functions for the element are given in equation 14. 

i ( l + r)(l + g) 

l ( l - r ) ( l + a) 

l ( l - r ) ( l - g ) 

l ( l + r ) ( l - g ) 

Evaluation of the stiffness matrix for the four node quadrilateral elements is 

carried out using 2x2 Gaussian quadrature. The stress in the element is not 

constant, but can be evaluated at any point in the element by calculating the 

strain displacement matrix at that point as it is only a function of r,s, and is 

not a function of rs (as in the eight noded quadrilateral element). This can 

be multiplied by the element node displacements to give the strain vector 

at the point, which is multiplied by the constitutive matrix to evaluate the 

stress vector, equation 15. 

h i 

h2 

ha 

CBU (15) 
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4.8.1 Validation 

To validate the stress calculation method, the model shown in figure 9 was 

analysed, and corner stresses were calculated and compared to those obtained 

by Bathe [4]. The model has sides of 4m, thickness 0.1m, = 1.2 x 10®, 

jj, = 0.3, P = 1007V. The calculated stresses are given in table 2, and are 

identical to those obtained by Bathe. 

4.9 Eight node quadrilateral element 

The eight noded quadrilateral element assumes quadratic variation in dis-

placement along the element sides, and is shown in figure 10. Interpolation 

functions for the element are given in equation 16. 

hi 1 ( 1 - r)(l - s){—r — s - 1 ) 

3(1 r ) ( l - s){r — s — 1) 

1(1 -f-r)(l + a)(r -1- a — 1) 

/I4 1 ( 1 - r)(H- a)(—r 4- g - 1 ) 

2 ( 1 - r2)(l-

Ag 1(1 r)(l -

hj 1 ( 1 - r^KlH ̂ 5) 

1(1 - r)(l -

(16) 

Evaluation of the stiffness matrix is carried out using 2x2 Gaussian quadra-

ture. 

4.9.1 Stress calculation 

The stresses calculated in the element is often more accurate at the inte-

gration points [4], To obtain accurate stress values at other location in the 
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element, it is advisable to interpolate the stress obtained at the integration 

points to other locations in the element. The eight node element has a linear 

variation of stress over the element as shown in equation 17, where a,b,c,d 

are constants for each stress component in each element. 

gj) = a + (17) 

The linear coefficients are obtained by Gaussian elimination of the matri-

ces presented in equation 18, where are coordinates of the integration 

points, and afj are the stress components at these points. This results in 

a set of coeScients for each of the stress components which can be used in 

equation 18 to calculate the stress components at any point in the element. 
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4.10 Analysis of a tip loaded cantilever b e a m 

Timonshenko [62] presents an analytical solution to the tip loaded cantilever 

shown in figure 11. The deflections predicted by theory for the centreline 

of the beam are given by equation 19 and the stress distribution within the 

element by equation 20, where R is the tip load applied to the cantilever. 

(19) u«=0 = 6^7 2E/ 

Rxy 

+ 
3^7 

0-11 = I 

<722 = 0 
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<̂12 — - y^) (20) 

A 1 metre cantilever with a breadth and depth of 0.1 metres, material prop-

erties E = 1.20 X 10® and u = 0.2, and a load of 100 N applied at the tip 

was chosen as a validation case for the linear finite element programs. Tip 

deflection for this cantilever predicted from equation 19 is 0.333 metres. The 

tip deflections obtained using the finite element analyses detailed below are 

given in table 3 

4.10.1 ANSYS analysis 

The end loaded cantilever were analyzed using a commercial finite element 

program, ANSYS, using four and eight noded quadrilateral elements. The 

models are shown in figures 12 and 13. Nodal displacements for the two cases 

were obtained to allow verification of the quadrilateral elements, and stress 

values at the corner nodes were obtained for the eight node model to allow 

comparison with the finite element program. 

The four noded element model did not produce stress distributions as 

predicted by the theoretical solution, due to the coarse mesh used and the 

low order of the element. Tip defiection predicted is 0.230 metres, an error 

of 30%. 

The eight noded quadrilateral model predicted a tip deflection of 0.334m, 

less than 0.5% error compared to the theoretical solution. As the eight 

node element has a quadratic variation in displacement assumed across the 

element, the stress in the element will have a linear variation across the 

element. The an values obtained were exactly as predicted by the theoretical 

solution, and are plotted against theory in figure 14. As the theoretical an 

varies linearly along the cantilever, it can be represented by the eight node 

elements. The shear stresses are predicted to be distributed parabolically 
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across the cantilever depth. The finite element analysis predicts a linear 

variation in shear stress through the cantilever depth due to the restrictions 

of the element formulation. As a result of this, the shear stresses predicted 

by the finite element analysis are in equilibrium with the applied forces, but 

the distribution is not as predicted by theory. 

4.10.2 Three noded triangle element analysis 

A symmetrical triangular finite element mesh was used to analyse the can-

tilever problem. An example of the mesh used is given in figure 15. A 

number of meshes with increasing numbers of elements were used to analyse 

the problem, and tip deflections obtained are listed in table 4, and the tip 

displacement in the Zg direction is plotted against the number of elements 

in figure 16. The tip deflection calculated by the triangular finite elements 

gave an error of about 30% compared to theory for the densest mesh con-

sidered. The three node elements assume a linear variation in displacement, 

and so can not model the deformed shape of the cantilever accurately. The 

dense finite element mesh used also has high element aspect ratios, which 

may reduce the accuracy of the solution. 

4.10.3 Four node quadrilateral elements 

The cantilever was analysed using the quadrilateral finite element program 

with two meshes, containing 10 and 40 elements. The ten element model is 

identical to the one used for the ANSYS analysis, figure 12. The deflections 

of the centreline of the beam obtained with each mesh are plotted with the 

theoretical predictions in figure 17. Deflections for the 10 element model are 

exactly the same as those obtained from the ten four node element model 

ANSYS analysis. Increasing the number of elements to 40 resulted in the 
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tip deflection calculation of 0.300 metres, an error of 9% compared to the 

theoretical prediction. 

4.10.4 Eight node quadrilateral elements 

A model consisting of ten eight node elements wag used to analyse the can-

tilever using the isoparametric finite element program. Deflections calculated 

were the same as those obtained from the ANSYS analysis using eight node 

elements, with a tip deflection of 0.334 metres. Stress at the element cor-

ners was initially calculated directly at the corner points. This was found 

to produce poor results compared to the theoretical model, with errors of 

up to 10% for the direct stresses in the x direction. The stresses were then 

calculated by using linear interpolation from the integration points according 

to the method described in section 4.12.1. The stress components obtained 

using this method were exactly the same as those obtained from the ANSYS 

analysis using eight node elements. 

4.11 Three dimensional solid elements 

In order to model the mast of a yacht using three dimensional brick elements, 

it is desirable to have a quadratic interpolation functions for the plane rep-

resenting the mast cross section. This will enable the cross section of a 

circular or oval mast to be modeled using a single element. An isoparametric 

formulation is employed for the three dimensional analysis. 

An eight node solid element was initially developed, as this is easier to 

debug. A 16 and 20 node element were also investigated. The 20 node model 

is shown in figure 18. The 8 and 16 node elements are obtained from this by 

using only the first 8 and 16 nodes respectively. The program structure is 

the same as used by the two dimensional finite element analysis programs. 
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Boundary conditions and point loads are applied to the model in the same 

manner as the two dimensional analysis, and full stiffness matrix storage is 

employed to simplify debugging. 

4.11.1 Constitutive matrix 

The constitutive matrix for a three dimensional isotropic solid is used for the 

solid elements, equation 21 

0 

0 

0 

0 

0 

E(1 — z/) 
(1 + i/)(l - 2z/) 

1 !/ 
1—1/ 

2/ 
l - u 

0 0 

%/ 

1—1/ 1 
1-1/ 

0 0 

1/ 
l - u 

%/ 

1 — 1/ 1 0 0 

0 0 0 
1—u 0 0 0 0 

2 ( 1 - ^ ) 
0 

0 0 0 0 1—1/ 
2 ( 1 - : / 

0 0 0 0 0 

(21) 

1 — 1/ 

4.11.2 Calculation of the stiffness matrix 

The element stiffness matrix is calculated according to equation 22. As the 

three dimensional program uses an isoparametric formulation, the integra-

tion occurs over the natural coordinate volume. Numerical integration is 

employed to evaluate the stiffness matrix. 

"+1 n+l r+1 

Ke = |J| B^CBf dr ds dt (22) 

4.11.3 Interpolation functions 

The interpolation functions for a 8 to 20 node element are given in Bathe [4], 

and the formulation is repeated here. 

h i h 20 
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gi — (99 + 912 + 9i7)/2 

P2 — (g9 + gio + Pl8)/2 

93 — ( P i o + 9 u + ^ i 9 ) / 2 

P4 — Wll + 1̂2 + g2o)/2 

= g s — { § 1 3 + g i 6 + g n ) / 2 (23) 

96 — {913 + 9 u + P i 8 ) / 2 

97 - (Pl4 + gl5 + gl9)/2 

^8 — (gl5 + PI6 + 92o)/2 

hi = gi for i = 9, — ,20 

Where pi = 0 if node i is not included, otherwise it is calculated according 

to equation 24. 

Pi = G(r, n)G(a, (<) (24) 

(;(/),A) = 2 ( l + A / ) ) for A = ± l 

G(;9, A) = ( ! - / ) " ) for A = 0 

Where (3 r ,g,( 

The derivatives of the interpolation functions are calculated using the chain 

rule of differentiation to calculate derivatives of gi. Equation 25 gives an 

example of this for derivatives of p, with respect to r. The derivatives of 

the interpolation functions can then be calculated according to equation 23 

from the derivatives of gi. The derivatives of the interpolation functions 

with respect to the element natural coordinates are stored in the dh matrix 

as shown in equation 26. 

% ^G(r, n 
dv dr 

-G(s, Si)G{t, ti) (25) 
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hi,T ^2,r • • hN,r 

dh. — hi,8 • (26) 

^i,t h2,t • 

4.11.4 Calculation of the strain displacement matrix 

The Jacobian matrix is calculated from the 3h matrix and a matrix contain-

ing the node positions in global coordinates, U, equation 28. 

< 
%2 " (27) 

Zg " 

J = ahX (28) 

The differentials of the interpolation functions with respect to the global 

coordinates, hij are calculated by multiplying the dh. matrix by the inverse of 

the Jacobian matrix. These are then assembled into the strain displacement 

matrix as shown by equation 29. 

B = 

^1,1 0 0 ^2,1 •' 0 

0 hi,2 0 0 •• 0 

0 0 0 • Âr,3 

hi,2 ^2,1 0 ^2,2 • • • 0 

0 hl,3 hi,2 0 •• 

hi,3 0 hi,i hi,3 ' • 

(29) 

4.11.5 Stress calculation 

The calculation of element stresses occurs in the same manner as for the 

two dimensional isoparametric elements. The strain displacement matrix is 
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used to calculate the element strain vector, defined in equation 30, from the 

element node displacements. This is multiplied by the constitutive matrix to 

give the element stress vector, defined in equation 31. 

G — (̂ 11, (22, 3̂3, 1̂2, (23, ^13)̂  (30) 

T — {'Till 722, 733, 1̂2, 723, (31) 

4.11.6 Single element validation 

In order to check the interpolation function calculations, a single element 

cube with one face fully restrained under the action of a point load on the 

opposite face was analysed using the 8, 16 and 20 node elements, and the 

results compared to an analysis of the same model by ANSYS. Two cubes 

were analysed, with each cube having an opposite face restrained in order to 

check all the interpolation functions. The numerical integration scheme used 

for the 8 node element was 2x2x2 Gaussian integration, the 16 and 20 node 

element was analysed using both 3x3x3 and 14 point Gaussian integration. 

Details of the integration schemes are given in appendix B. 

In all cases, the displacements obtained from the finite element programs 

matched the ANSYS displacements to the accuracy of the ANSYS output (6 

significant figures). The 14 and 27 point integration schemes gave the same 

displacements for the single element validation. 

4.11.7 Cantilever analysis 

A 1 metre cantilever with breadth and depth of 0.1 metres with material 

properties of E = 1.2 x 10®, fx — 0.3 under a tip point load of 0.3N was anal-

ysed using the solid element finite element programs. A theoretical solution 

using Timoshenko beam theory gives a predicted tip deflection of 0.1 metres. 
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The finite element mesh consists of a single element defining the cantilever 

cross section, with a range of number of elements used in the models anal-

ysed. The 16 node elements were arranged such that the linear interpolation 

ran along the cantilever length with the quadratic interpolation through the 

cantilever cross section, as would be used to define the mast. 

Eight node element models with from 1 to 30 elements were analysed, 

with the finite element program employing 2x2x2 Gaussian quadrature for 

the stiffness matrix calculations. Tip deflections are listed in table 5 for 

each model. The cantilever was then analysed using the 16 node elements, 

with models containing between 1 and 30 elements. Results were obtained 

for programs using both 14 point and 3x3x3 Gaussian quadrature, and tip 

deflections are listed in table 5. Twenty node element models were then 

analysed using between 1 and 10 elements, using the two integration schemes 

from the 16 node elements. Tip deflections for the and twenty node elements 

are listed in table 5. The results are plotted in figure 19 for 8, 16 and 20 

node elements. 

Increasing the order of integration in both the 20 and 16 node elements 

resulted in less than 0.5% difference in tip deflection, and this suggests that 

the increase in computational time (calculation of the stiffness matrix using 

14 point integration takes only just over 50% of the time required for 27 

point integration) is not justified by the increase in solution accuracy for 

the linear finite element analysis. The twenty node elements gave the most 

accurate solution, with a 10 element model within 1.5% of the theoretical 

solution. This is expected, as the 20 node element has a quadratic variation 

in displacement along the beam which will enable the finite element model to 

more accurately represent the deformed shape of the cantilever with a small 

number of elements. The 16 node element gave more accurate solution than 
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the 8 node case, with a 10 element model having a calculated tip deflection 

within 29% of the theoretical prediction, compared to 35% error for the 8 

node case. Increasing the number of elements to 30 resulted in a far more 

accurate solution for both the 16 and 8 node elements, with the error in tip 

deflection of 4.5% and 16.5% respectively. 

The sixteen node element gives a more accurate solution than the 8 node 

element for the same mesh density as it can model the stress distribution 

through the beam more accurately, due to the quadratic variation in assumed 

displacement through the beam. The twenty node element gives the most 

accurate solution, as it has a quadratic variation in displacement along the 

beam, so can model the beam deflections more accurately. 

4.12 Summary 

Linear finite element programs have been developed and validated for two 

dimensional plane stress elements and three dimensional solid elements, in 

order to gain experience with finite element analysis and the elements to be 

used in the nonlinear analysis. 
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5 Non-linear finite element theory 

The solution of the non-linear finite element problem employs an incremental 

formulation, applying the loading in a series of steps, and the equilibrium of 

the body is calculated at each load step. Time is used to describe the loading 

state of the body, following the notation of Bathe [7] [4]. This does not imply 

a time dependent analysis, and it is merely a convenient means to describe 

the loading of the body. 

For the solution of the problem, a solution for a typical equilibrium posi-

tion, ^ + At is found, assuming that the solution for variables for all steps 0 

to t have been calculated. This is repeated until the complete solution path 

has been solved. Using a Langrangian formulation, the principle of virtual 

work is used to formulate equation 32. 

(32) 
J t + A t y 

J t + A t y J t+Atg^ 

In equation 32, the left hand side is the internal virtual, and the right 

hand side external virtual work. It should be noted that the configuration 

of the body at time t +St is unknown, and in equation 32 integration occurs 

over the new configuration, with all stresses and strain are referred to this 

configuration. This has to be taken into account when deciding on the stress 

and strain measures to use for the analysis. 
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^"^0 ( '̂̂ ) 

5.1 Stress and strain measures 

Cauchy stresses are not suitable for the analysis, as they are dependent on 

the coordinate system they are measured in. It is not possible to obtain 

the Cauchy stresses at time t + At by simply adding a stress increment due 

to the straining of the material to the Cauchy stresses at time t. The 2nd 

Piola-Kirchoff stresses Sij, defined by equation 34 are invariant under rigid 

body rotation and translation, and so are suitable for use in the formulation 

of non-linear FE analysis. 

0 

t p 

The stresses have no direct physical meaning, so have to be converted into 

Cauchy stresses when investigating the results of the analysis. Conversion of 

the 2nd Piola-Kirchoff stresses is carried out using the inverse of equation 34, 

as shown in equation 35. 

Strain energy can be calculated from the product of the 2nd Piola-Kirchoff 

stresses and the Green-Lagrange strain tensor, defined in 36, which is also 

invarient under rigid body rotation and translation, as these stress and strain 

measures are work conjugate. 

5.2 Total Langrangian formulation 

The Total Langrangian formulation of the finite element problem has all 

static and kinematic variables referred to the initial configuration at time 0. 

An alternative formulation, the Updated Langrangian refers all variables to 
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the last calculated configuration at time t. The two schemes produce for-

mulations that are identical if the appropriate transformations on the terms 

are carried out, and the choice of scheme is dependent on it's relative nu-

merical efficiency for the problem being solved. Use of a Total Langrangian 

formulation allows the application of the membrane restrictions to elements 

that warp out of plane during the deformation, and so is more suited to the 

analysis of yacht sails. 

5.3 Continuum mechanics formulation 

The virtual work equation 32 using the stress and strain measures described 

above transforms to equation 37, where 3? is defined as in equation 33. 

/ y = (37) 
oy 

5.3.1 Incremental decomposition 

The stresses and strains can be incrementally decomposed as they are all 

(including the increments) referred to the original configuration. The stresses 

are decomposed as shown in equation 38. 

(38) 

Strains are decomposed according to equation 39, with the incremental 

Green Lagrange strains defined in equation 43. Note that the underlined 

components of QCij are initial displacement effects (from the displacements 

of the nodes at time t). 

== of'j (2K)) 

- oCij (40) 
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Q^ij - 0 
i + A t , , f + A f , 

O t̂,: O ^ k j ) 

(41) 

ÔV " 9 ( O îJ + O Ĵ,: + O^t,: Ô &J + O^kJ O^kj + O^kj) (^2) 

O^ij Q^ij + Q^lij 

/ \ 

0 ^ ' j O^ij + 0%i + O k̂.i O^̂ kj + O^kJ Q^kJ 

V initial displacement e f fec ts j 

o V i j — 2 O ^ k . i O^kJ 

(43) 

(44) 

(45) 

The variation in strain is taken about the configuration at time t + At, 

and hence S Q € i j = 0. This means that the variation in strain in equation 3 7 , 

o^ij + o^ij) — ^ o îj- Using this and the incremental decomposi-

tions in equation 39, we have; 

/ y Oy 

f (55.) + oSii) s "dV = '+'"% (46) 
J oy 

oe,, "cfF (47) 
y oy 

5.3.2 Linearisation 

The left hand side of equation 47 is non-linear with respect to displacement 

increments, it,, so cannot be solved directly. The non-linear effects are due 

to the first term, and this is linearised using a Taylor series expansion, equa-

tion 48. 

/ 
J ov 

a S i j S — (48) 

Li oy \ 
(oGr, + o^r,) + higher order termsj 4- o%) (f V 

55 



Neglecting higher order terms, including Q%', equation 47 becomes equa-

tion 49, which is linear in the incremental displacements as is indepen-

dent of and forms the basis for iso-parametric finite element analysis. 

/ oC.y„ „e,. d V + / S5., i d V 
joy J 

= (49) 
J oy 

5.3.3 Solution of the approximation to the virtual work equation 

The linearised virtual work equation 49 can be used to calculate an increment 

in displacements from t to t + At which leads to an approximation to the 

displacements, strains and stresses at time t -f At. The solution is not exact, 

due to the approximations in formulating equation 49. 

With the approximate solution calculated, the difference between external 

virtual work and the internal virtual work evaluated with the variables for 

time t + At can be found. This is an 'out of balance' virtual work after the 

solution as a result of the linearisations performed 50, where the approximate 

values are denoted using the superscript (1). 

Error = ^ (50) 

To reduce the error due to linearisation, iterations can be performed for 

each load step until the out of balance virtual work is within a convergence 

measure. This involves solving equation 51 repeatedly for k = 1 ,2 ,3 . . . , 

where the case for A: = 1 is the relationship given in 49. 

J oy J oy 

Joy 
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5.4 Matrix equations of continuum elements 

Derivation of the finite element matrices for the non-linear analysis occurs 

in the same manner as for linear analysis. Element coordinates and dis-

placements are expressed in terms of the nodal values using interpolation 

functions, with the same interpolation functions used for both the displace-

ments and coordinates (iso-parametric formulation). By invoking the lin-

earised principle of virtual displacements for each nodal point in turn, the 

governing finite element equations are obtained. The equilibrium equations 

of the model is assembled from individual elements using the direct stiffness 

method. For the Total Langrangian method, the governing equation is given 

by equation 52. 

( ) u = '+^'R - 'F (52) 

The matrices in equation 52 are evaluated according to equations 53 to 56. 

0 % . SKi u = U jBf ,C u (53) 

IS.J S d V 'OKL is d V ) u (54) 

f d ' V ^ I F = f X i S d V (65) 
JOV J°V 

t+At R = / j O y (56) 
Jos^ Joy 

The matrices used in these evaluations are given in the finite element 

program descriptions for two and three dimensional elements and membrane 

elements in terms of the displacement interpolation functions and node dis-

placements at time t. Since the Total Langrangian formulation is employed, 

all differentials are referred to the body state at time t = 0. 
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5.4.1 Loading 

Loading of the finite element models is achieved by lumping the distributed 

forces on the model to the element nodes, in the manner described in equa-

tion 56. As a total Langrangian formulation is employed, these loads will be 

constant through the deformation of the body. As the loads are lumped at 

the nodes in the model generation, the evaluation of equation 56 does not 

need to be carried out during the solution of the problem, and the point 

loads can simply be added to the model external load vector as defined in 

the model definition. The exception to this is pressure loading on the mem-

brane elements, as this will change during the aeroelastic analysis as the fluid 

flow around the sail alters. The pressure loading of the membrane elements 

is described in more detail in the membrane element formulation in section 

6.4.7. 
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6 Non-linear finite element analysis 

The non-linear formulation described in section 5 is employed to develop a 

non-linear finite element analysis program. Membrane finite elements incor-

porating the membrane assumptions of Oden and Sato [46] are developed, 

and solid elements are developed in the non-linear formulation. 

6.1 Two dimensional non-linear finite e lement analysis 

Isoparametric formulation was employed throughout the non-linear finite el-

ement series of programs. In order to simplify the programming and solution 

of the initial non-linear finite element analysis, no iteration is used within the 

load steps. As the non-linear equations of equilibrium are linearised to al-

low solution, the displacement increments calculated are approximations (as 

discussed in section 5.3.3). These approximations can be reduced to insignif-

icant levels by increasing the number of load step, as demonstrated in section 

6.2.1. The 2D elements have a constant thickness, and the volume integrals 

used to calculate the stiffness matrices and internal loading contributions, 

equation 49, become integrals over the area of the element multiplied by the 

element thickness. As with the linear finite element development, full stifi'ness 

matrix storage was used in the development of the non-linear finite element 

programs. The reduced matrix storage was introduced to the membrane and 

solid finite element programs after validation of the programs. 

6.1.1 Program structure 

The structure of the two dimensional finite element analysis is shown in fig-

ure 20. Model data is read in from a user defined file. The number of each of 

the model components is read in and used to allocate the required memory 
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for storage of the model data. Material properties and the model compo-

nents are then input from the file. Node displacements qU are initialised to 

zero. The program then runs through a loop for the user defined number 

of load steps. Element stiffness matrices are calculated for each element in 

turn using the methods described below. The element stiffness matrix en-

tries are then added to the model stiffness matrix before calculation of the 

next element contribution. External loading is added into the model force 

vector, then internal loading is calculated, with each element contribution 

assembled into the global force vector before calculation of the next element 

contribution. Boundary conditions are applied in the same manner as for 

the linear finite element case, and the resulting finite element equations are 

solved by Gaussian elimination to calculate a vector of nodal displacement 

increments. These are used to update the node displacement values, qU. At 

the end of the load path, element Cauchy stresses are calculated and output 

with the node displacements. 

6.1.2 Data structures 

The data structure used for the two dimensional non-linear analysis has the 

same structure as the one used for the linear finite element analysis, shown in 

figure 5. The top level of the data structure is the model structure which con-

tains pointers to the arrays of node, element, boundary condition and point 

load data which are dynamically allocated during the program execution. 

Contents of the data structures are: 

• Model data structure : numbers of each of the components of the model 

(nodes, elements, boundary conditions, point loads), material proper-

ties, element thickness and number of load steps. 

• Node data structure : node identification number, initial position and 
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displacements at time t, QU. 

® Element data structure : element identification number and pointers 

to the nodes which define the element. 

• Point load data structure : The identification number of the node that 

the load is applied to, flag indicating the direction of the load and load 

magnitude. 

® Boundary condition data structure : node identification number and 

flag indicating the degree of freedom restrained. 

The use of pointers to the element nodes in the element data structure allows 

easy access to the data required for element stiffness matrix calculations, and 

also defines the element connectivity through the node identification number. 

6.1.3 Evaluation of the strain displacement matrices 

In order to calculate the strain displacement matrices used in the non-linear 

finite element analysis, the difl'erentials of the interpolation functions, 

and the lij components, defined in equation 57, must be evaluated. 

N 

(57) 
A;=:l 

The evaluation of proceeds as for the linear isoparametric formulation 

described earlier, and these are stored in a matrix, dh, defined in equa-

tion 58. The element Jacobian matrix is calculated using the element node 

local coordinates at ( = 0. 

dhij = hj^i where i = 1 • • • iV"; j = 1,2 (58) 

Values for the entries are calculated by multiplying the dh matrix by a the 

*u matrix as shown in equation 59, and stored in a matrix L. The matrix 
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*u contains the element node displacements at the end of the previous load 

step. 

til '12 

h i I22 

[5h]['u 
^1,1 ^2,1 

h N , 2 

'ujv '«K 

(59) 

Strain displacement matrices, can be assembled from the entries 

in the 5h and L matrices according to equations 60, 61, 62 and 63. 

— 0®L0 + O^il (60) 

0 0/̂ 2,1 0 Ô Ar,l 0 
t R — 
0-"L0 — 0 0/̂ 1,2 0 0̂ 2,2 • • 0 0̂ iV,2 (61) 

0/̂ 1,1 0/̂ 2,2 O îV.l 

0®L1 

^11 0^1,1 h i 0^1,1 

h 2 0^1,2 h 2 0^1,2 

(̂ 110^1,2 + ^120^1,1) (̂ 210^1,2 + ^220^1,1) ••• 

^11 o^Ar,i hi oW,i 

1̂2 o h N , 2 h 2 0̂ Ar,2 

(Zll ô Ar,2 + Z12 0^iv,l) (̂ 21 0̂ iV,2 + I22 0 îV,l) 

(62) 

0 ^2,1 0 • îV,l 0 

h i , 2 0 & 2̂ 0 • hn,2 0 

0 0 ^2,1 • • 0 

0 ^1,2 0 &%2 - 0 h N , 2 

(63) 
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6.1.4 Stress calculation 

The 2nd Piola-Kirchoff stress vector, qS is calculated from the element 

Green-Lagrange strains. To calculate the strains in the element, displace-

ment derivatives are evaluated using the shape function derivative matrix 

and the nodal displacements, as shown in equation 64. 
N 

O ^ i j 

t=l 

(64) 

The components of the Green-Lagrange strain tensor, ^Sij can be calculated 

according to equation 65, and the Green-Lagrange strain vector e is assem-

bled from these. 

1 
(65) 

Cll 

£22 

2̂ 12 

The 2nd Piola-KirchofiF stress vector can then be calculated directly from the 

Green-Lagrange strain using the two dimensional plane stress constitutive 

matrix, gC, as shown in equation 66. 

%S = oC%; (66) 

6.1.5 Calculation of stiffness matrix 

The element stress matrix, gS is assembled from the 2nd Piola-Kirchoff stress 

according to equation 67. 

0 0 

(c _ 
qO — 

^̂ 22 0 0 
(c _ 
qO — 0 0 

0 0 ^̂ 21 o'S'22 

(67) 
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Linear and non-linear contributions to the element stiffness matrix, 

and oKjvl can then be calculated according to equations 68 and 69. 

= Z' SBI j O j (68) 
/"A 

= / (69) 
J OA 

As the strain displacement and stress matrices are functions of the natu-

ral coordinates of the elements, the integrations to calculate the stiffness 

matrices are evaluated over the natural coordinate area of the element, in 

the same manner as for the linear finite element isoparametric elements (see 

equations 170 and 171). Element linear and non-linear stiffness matrices are 

added to give the element stiffness matrix, and these are assembled into the 

model stiffness matrix using the element connectivity. 

6.1.6 Loading calculations 

A model loading vector, is calculated from the external loads, 

and internal loads qF, as shown in equation 70. 

^ iH-zu-p, _ ( p (70) 

Internal loads contributions for each element, qF^""', are calculated ac-

cording to equation 71. 

(m) 

°A 

In order to calculate the strain displacement matrix and stress vector 

are calculated as described for the stiffness matrix calculations. Contribu-

tions to the internal loading vector from each element are assembled into the 

model internal loading vector using the element connectivity. 
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External loading applied to the model is in the form of point loads. Due 

to the Total Langrangian formulation, distributed loading can be lumped to 

the nodes in the model definition, as since they are referred to the body con-

figuration at time ( = 0, they do not alter as the body deforms, equation 56. 

The external load vector, is generated by applying the point loads 

to the body global degree of freedom defined by the finite element model. 

Magnitude of the load is calculated according to equation 72, where P is the 

magnitude of the force, n is the load step number and the subscripts t + At 

and T refer to the current and final load steps. 

(72) 
TIt 

6.1.7 Calculation of displacement increments 

The governing finite element equations for load step t + At, equation 73, are 

solved to obtain nodal displacement increments, 

^Ku = (73) 

Solution of the finite element equations is achieved using the same methods 

as for the linear finite element analysis. Gaussian elimination is used for 

programs using fixed array sizes and full stiffness matrix storage, and de-

composition and back substitution for programs using dynamic arrays and 

reduced matrix storage. Node displacement increments are added to the dis-

placements at the start of the load step to give the model solution for this 

time step. 

6.1.8 Validation model 

The programs were validated using an analytical solution for the large scale 

deflections of a cantilever beam under uniform distributed load, obtained by 

65 



Holden [23]. A non dimensional load coefficient, k, is defined in equation 74, 

where w is the magnitude of the distributed load, L the length of the beam 

and D the flexural rigidity of the cantilever [D — EI). 

& = (74) 

The deflection coefficient, (S/L), of the cantilever tip is given by the solid 

line in figure 21 for load coefficients from 0 to 10, and the dotted line in this 

figure shows the results of experimental observations of this problem. This 

case was used by Bathe [7] as a validation case for the non-linear finite ele-

ment formulation using eight noded quadrilateral elements and he noted that 

'excellent agreement has been obtained with an analytical solution reported by 

Holden [23]' for both the total and updated langrangian formulations. 

Values for the analytic solution from Holden [23] have been obtained from 

the graph presented in the paper, which is shown in figure 21. A cantilever 

of length 1.0 metres, breadth and height 0.1 metres and Youngs modulus of 

1.2 X 10® was analysed. This corresponds to a distributed loading magnitude 

of w = 10 N/m^ for a load factor, k of 1. 

6.2 Eight noded quadrilateral element 

A non-linear finite element program, FENLAl was written employing the 

eight noded quadrilateral element, shown in figure 10, and the formulation 

described above. Integrations over the element area to determine the stiff-

ness matrix and internal loading were initially evaluated using four by four 

Gaussian quadrature. 

A simple single element model, shown in figure 22 was analysed with 

FENLAl. Stress in the non-linear program elements was initially evaluated 

using the strain displacement matrix, QBL to evaluate the element strains. 
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Results for a case with one load step (linear analysis) were compared to a 

solution obtained from the linear eight noded finite element program, and 

the displacements obtained were identical. A tip loaded cantilever model was 

then analysed with the non-linear program, using a range of load steps. The 

case with one load step corresponds to a linear analysis, and the displace-

ments calculated were identical to those calculated using the linear finite 

element program. Increasing the number of load steps resulted in an unsta-

ble solution. The stress calculation method used was incorrect, as only the 

linear component of the strain is calculated from e = ouf, and hence the 

stress calculated from this is not the total stress required for the stiffness ma-

trix and internal load evaluation. For the cases with only one load step, the 

element stresses do not make any contribution to the stiffness matrix or load 

calculations, and so the calculation of the displacements was not affected. 

When a non-linear analysis was carried out the incorrect stress calculations 

resulted in the wrong equilibrium equations being formulated, and hence the 

solution was incorrect. The stress calculation method was changed to that 

described in section 6.1.4, calculating the Green-Lagrange strain components 

from the values. 

6.2.1 Point loaded cantilever 

The tip loaded cantilever was analysed using a range of load steps, to ascer-

tain if the solution would converge with increasing number of load steps. Tip 

deflections obtained are given in table 6, and plotted against number of load 

steps in figure 23. The case with one load step gives the same displacements 

as the linear finite element analysis, -0.334 m. As the number of load steps 

are increased, the displacement of the cantilever tip converges to a value 

of -0.299043 m to six significant figures. About 50 load steps are required 
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to obtain a value within 1% of this, and 100 load steps gives a deflection 

within 0.002% of the converged value. As there is no iteration within the 

load steps, the approximations used to formulate the equilibrium equations 

results in poor solutions and a large variation in displacements for the cases 

with small numbers of load steps. As an example, 5 load steps gives a tip 

displacement of -0.288559 m (4% error) and 6 load steps gives a tip displace-

ment of -0.255825 m (14% error). Increasing number of load steps results 

in an increase in CPU time for solution, as the stiffness matrix has to be re 

calculated at each stage. Using a modified Newton Raphson method to solve 

the loading path, where iterations within a load step are calculated using the 

stiffness matrix at time t to iterate until the internal and external virtual 

work are within a convergence limit, may reduce the total solution time, as 

the stiffness matrix would be calculated fewer times. Further investigation of 

this was carried out during the development of the membrane finite element 

programs. 

6.2.2 Distributed loaded cantilever analysis 

An evenly distributed loading along the edge of a quadrilateral element can 

be lumped at the nodes as shown in figure 24. These values are obtained by 

evaluating equation 75 for each of the three nodes along the edge. As the 

loading is applied to the top of the elements, evaluations occur by integrating 

between —1 < r > 1 at s = 1. 

p+i 
(75) 

J-I 

Cantilevers with load coefficients, k, of 1 and 10 were analysed using a range 

of number of load steps using 10 elements to determine the number of load 

steps required to obtain a converged solution. Tip deflections for these runs 
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are given in table 7 and the deflections for up to 50 load steps are plotted 

against the number of load steps in figure 25. A series of models with load 

coefficients of 1 to 10 were analysed using 5, 10, 25 and 50 load steps, and the 

tip deflections are given in table 8. Tip deflections for the 50 load step case are 

plotted against load coefficient with the analytical solution from Holden [23] 

in figure 26. Finally the effect of order of integration was examined by altering 

the program to use 9 and 25 point Gaussian quadrature in the evaluation of 

the stiffness matrix and internal loading. Changing the order of integration 

had no effect on the tip deflections calculated by FENLAl. 

The sensitivity study showed that an analysis using 50 load steps gave a 

deflection within 0.01% of the converged solution. Analysis of a distributed 

loaded cantilever gave results that were within 3% of the theoretical solu-

tion obtained by Holden [23]. The values from the analytical solution were 

obtained from the graph of results, figure 21, and the error is within the 

accuracy that can be obtained from this method. Changing the order of 

integration within the program had no effect on the results obtained for the 

distributed cantilever, and nine point integration is sufficiently accurate for 

the eight noded element in the non-linear formulation. Using fewer load steps 

gave good agreement for lower load coefficients, but the solutions for higher 

load coefficients did not give good agreement, as can be seen by the results 

for the analysis with 5 load steps. In these cases, the increased error in so-

lution is due to the linearisation error from the finite element formulation 

becoming significant due to the large size of the load steps. 

6.3 Membrane elements 

The formulation of membrane elements was first considered by Oden and 

Sato [46]. To apply the membrane restriction in the non-linear finite element 
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analysis, the Green-Lagrange strain tensor is altered to take account of the 

nature of membrane behaviour. Assuming that the membrane has a small 

thickness compared to it's other dimensions, the strain can be assumed uni-

form over the thickness (Timoshenko [63]). Hence 7^3 — 0, there is no shear 

through the element thickness and 733 is a measure of change in thickness of 

the membrane. This is equivalent to applying a state of plane stress to the 

element. The membrane restriction is incorporated into the finite element 

analysis of membranes by alteration of the strain displacement matrices as 

shown by Smith and Shyy [57]. Element characteristics are calculated in a 

local coordinate system which is defined such that the element in it's ini-

tial configuration lies in the local yi plane, and the strain components 

in the local 1/3 direction are assumed to be zero. The element must be pla-

nar at the start of the analysis so that the local 1/3 direction corresponds to 

the normal to the elements surface over the entire element. As the Total 

Langrangian formulation used in the non-linear analysis refers back to the 

undeformed configuration of the element, the element can warp out of plane 

during the analysis without compromising the membrane restrictions. Use 

of a three node triangular element will allow initially curved structures to 

be analysed, as this element will always define a plane (although there will 

be some discretisation error as the model will be an approximation of the 

curved surface). This element also has a constant strain, and so does not 

require numerical integration to calculate the stiffness matrix. 

6.3.1 Program structure 

The program structure for the membrane analysis program is depicted in 

figure 27, and is similar to the structure employed in the previous FENLA 

programs. After the model data is read from the data file, the node local 
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coordinates and global to local transformation matrix is calculated for each 

element in turn and stored in the element data structure. Calculation of the 

stiffness matrix contribution from each element occurs in the element local 

coordinate system, and this matrix is transformed to the global coordinate 

system before assembly into the model stiffness matrix. Point loads are de-

fined in the global coordinate system, and can be added directly to the global 

force vector. Internal stresses in the elements are calculated in the element 

local system using the node displacement components in the local coordinate 

system. The element internal loading contribution which is evaluated from 

the strain displacement and stress matrices in the local coordinate system is 

transformed to the global coordinate system before assembly into the global 

force vector. Boundary condition application and solution is carried out as for 

the previous FENLA series. After solution, the global displacements stored 

in the node data structure are updated, and then the node displacements for 

each element's nodes are calculated in the element coordinate system, and 

stored in the element data structure, 

6,3.2 Data structure 

A revised data structure is employed, with the element data additionally 

storing: 

• A matrix of the element node initial local coordinates. 

® The local to global transformation matrix, tap. 

• A matrix of the element node displacements in the local coordinate 

system, 

As the Total Langrangian formulation was employed, the node local coordi-

nate and the global to local transformation matrix only need to be calculated 
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at the start of the analysis, and are not updated as the body deforms, as all 

calculations are referred to the initial body configuration. These are calcu-

lated before the load step loop is commenced, and stored in the element data 

structure. 

6.3.3 Local coordinate calculations 

Calculation of the unit vectors defining the element local coordinate system 

in terms of the global coordinate system are described here for a three node 

triangle element, but the method is suitable for any element which is initially 

in a plane. 

The element based local cartesian coordinate system is shown in figure 77. 

Two vectors are created, from node a to 6, ab, and from node a to c, db. The 

local yi vector is set as a unit vector in the direction of a6. The local yg vector 

is perpendicular to the plane of the element, and is calculated by taking a 

unit vector in the direction of the cross product of ab and dc. Finally the 

local y2 vector is found by taking the cross product of the local yi and yg 

vectors. 

A local to global transformation matrix can be assembled from the com-

ponents of the vectors defining the local coordinate system, equation 76, 

which is stored in the element data structure and used in the transformation 

of the element stiffness and internal load contributions. The global coordi-

nate system components of the local coordinate unit vectors are represented 

as [xi, X2, for the vector y;. 

= 3:2,3:3]' (76) 

To calculate the node local coordinates, the transformation matrix, t is in-

verted and this global to local transformation matrix is used to transform the 
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node coordinates to a coordinate system parallel to the element local system. 

Finally the node local coordinate system is translated such that the origin is 

at node a by subtracting the calculated local coordinates of this node from 

the element node local coordinates. The resulting node local coordinates are 

stored in the element data structure. As the element is in the local yi, 1/2 

plane, the nodes local 2/3 coordinate is zero, and hence is not stored. 

6.3.4 Strain displacement matrices 

Calculation of the components of the strain displacement matrices proceeds 

as described for FENLAl, but takes place in the element local coordinate 

system. Jacobian matrix entries and lij components are calculated using the 

node coordinates and displacements referred to the element local coordinate 

system. The 5h components are evaluated using the Jacobian matrix, and 

hence the are calculated with respect to the element local coordinate 

system. Strain displacement matrices, QBL and are assembled from 

the and L entries according to in equations 77 to 80. 

— Ô LO + 0®L1 (77) 

0 0 - 0 0 

oB^ = 0 0/̂ 1,2 0 •• 0 0 (78) 

0̂ 1̂,1 0 •• - 0 
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oBz;i 

1̂1 0/̂ 1,1 2̂1 0/̂ 1,1 3̂1 0^1,1 

1̂2 0/̂ 1,2 2̂2 o/Z'1,2 Z32 0^1,2 

(^110^1,2+^120^1,1) (^210^1,2+^220/^1,1) (^310^1,2 + 3̂20/̂ 1,1) 

1̂1 0/̂ ,̂1 2̂1 o/̂ /f,l 3̂1 o/^//,l 

1̂2 0/̂ :̂ ,2 2̂2 o/̂ ;v,2 3̂2 o/̂ ;y,2 

((11 o/̂ ;\f,2 + (12 o/'-̂ V,!) (̂ 21 o/'';V,2 + (22 o/'-JV,!) (̂ 31 + 3̂2 o/^^,l) 

(79) 

oB^ri = 

hi,i 0 0 • ' /Z'7V,1 0 0 

/̂ l,2 0 0 • 0 0 

0 /)'1,1 0 • 0 /Z'jV.l 0 

0 /ll,2 0 • 0 /iAr,2 0 

0 0 /ẑ l.l ' 0 0 /lN,l 

0 0 /ll,2 - 0 0 

6.3.5 Calculation of element stress 

(80) 

Element strains are calculated using the node displacements in the local 

coordinate system to evaluate the displacement derivatives used to define the 

Green-Lagrange strains, equation 81. This differs from the two dimensional 

case in that the derivatives of the zg component of displacement are now 

required for the strain calculation. 

N 

(2 = 1 , 2 , 3 ; ; = 1,2) (81) 
8 

o^j.i 

The components of the Green-Lagrange strain tensor, ^Sij are calculated ac-

cording to equation 82, and the Green-Lagrange strain vector i is assembled 

from these. 

1 
( 0^:,; + o";,: + O t̂.i o^tj) (82) 
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£ = < 

1̂1 

622 

2ei2 

The 2nd Piola-Kirchoff stress vector can then be calculated directly from the 

Green-Lagrange strain using the two dimensional plane stress constitutive 

matrix, gC, as for previous FENLA programs, equation 66. At the start of 

the loading path, the elements have zero node displacements and zero stress. 

In order to prevent the stiffness matrix becoming singular, an initial stress 

is applied to the elements for the ffrst load step by setting the stress vector 

to a value deEned in the model data ffle. This is removed for subsequent 

load steps, and the stress vector is evaluated from the Green-Lagrange strain 

vector and constitutive matrix. 

The stress matrix, gS is assembled &om the stress vector components as 

shown in equation 83. 

oS = 

0 0 0 0 

O'S'22 0 0 0 0 

0 0 0 0 

0 0 ^ ^ 2 1 O'S'22 0 0 

0 0 0 0 

0 0 0 0 ^ ^ 2 1 ! , ^22 

(83) 

6.3.6 Calculation of stiffness matrix 

Calculation of the element linear and non-hnear stiffness matrices is car-

ried out in the same way as in the previous FENLA programs, equations 68 

and 69. Linear and non-linear components of the stiffness matrix can be 

summed to obtain the element stiffness matrix in the element local coordi-
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nates, as in equation 84. 

oK oK^ + (84) 

6.3.7 Calculation of loading 

External point loads are applied to the model vector as in the previ-

ous FENLA programs. Point load contributions are placed directly into the 

model % loading vector to reduce the memory requirements. The membrane 

elements can be loaded by a pressure acting on the membrane surface. This 

is assumed to be constant over the element, and a positive pressure acts in 

the direction of the local 2/3 vector. Pressure contribution to the element 

external load vector in the element local coordinate system, can be 

calculated according to equation 85, where difference in pressure on the 

element upper and lower surfaces. 

t+At H qdA (85) 
A' 

0 0 A2 0 0 • 0 0 

H = 0 hi 0 0 /12 0 •• • 0 0 

0 0 0 0 /i2 • 0 0 hpf 

0 

0 

9e 

The element internal loading contribution, qF ,̂ is calculated from the 

element stress vector and strain displacement matrix as for previous for-

mulations, equation 71. Element pressure and internal loading vectors are 
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combined to give an element loading vector, equation 86. 

^ _ (pe (86) 

The element load vector is calculated in the element local coordinate system, 

and is transformed to the model coordinate system before assembly into the 

model loading vector. 

6.3.8 Transformation of element matrices 

As the element stiffness matrices and load vectors are calculated in the el-

ement local coordinate system, they must be transformed to the global co-

ordinate system before assembly into the global sti&iess matrix and loading 

vector. The element local to global transformation matrix, t, is stored in the 

element data structure, and is used to eEect this transformation. Transfor-

mation of the three noded triangular element stiffness matrix is carried out 

according to equation 88, and transformation of the load vector is achieved 

as shown in equation 89. 

t 0 0 

T = 0 t 0 (87) 

0 0 t 

0 0 0 

0 = 0 0 0 

0 0 0 

(88) 

(89) 
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The full transformation matrix, T is assembled from the element local to 

global transformation matrix, t, and the transformation carried out in sep-

arate functions for the stiffness matrix and force vector. Assembly of the 

transformed matrix and vector occurs using the element connectivity in the 

same manner as for the previous finite element analyses. 

6.3.9 Calculation of element node local displacements 

After solution of the finite element equations, the calculated global displace-

ment increments are added to the node global displacements stored in the 

node data structure. The element local to global transformation matrix is 

inverted to obtain the global to local transformation matrix, and the element 

node displacements in the element local coordinate system are calculated for 

each of the element nodes in turn, and then stored in the element data struc-

ture for use in the calculation of the strain displacement matrices and stress 

evaluation in the following load step. 

6.3.10 Iterative solution 

The iterative solution method involves the use of a modified Newton-Raphson 

method for solution of the finite element equations. This involves solving 

equation 90 until the displacement increments are within some tolerance. 

The nonlinear finite element programs developed use an iterative solution on 

the final load step, as suggested by Smith and Shyy [57] for the aeroelastic 

analysis of a membrane. 

At/W R 2 = 1, 2 , 3 . . . (90) 

JVo 
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During the iterative solution, a copy of the sti&iess matrix is made and 

passed to the solution function for the solution of the Snite element equations. 

This allows continuation of the iterative process without having to recalcu-

late the stiffness matrix for each iteration. Internal and pressure loading are 

calculated for each element and assembled into the model and 

vectors, and external point loads are applied to the model 

vector. The solution of equation 90 allows the calculation of node displace-

ment increments, which are checked for convergence as the displacements are 

updated. 

Convergence is tested in the membrane analysis programs by checking 

each increment in displacement against the displacement at the start of the 

iteration before updating it. The percentage change in displacement is cal-

culated and the maximum change is compared with the convergence limit 

stored in the model data structure, which is defined in the model data file. 

When the convergence limit is passed for all unrestrained degrees of keedom, 

the iterative loop is stopped. If the convergence limit is not achieved within 

the maximum number of iterations stored in the model data structure, a 

warning is printed and the iterative loop exited. The change in displacement 

is only calculated for degrees of freedom with non zero displacements, to 

avoid division by zero when considering restrained degrees of freedom. 

6.4 Three noded triangle element membrane analysis 

A membrane finite element analysis program using three noded triangle ele-

ments, FENLA3, was developed, using the non-linear formulation described 
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previously. A local element coordinate system was employed to calculation 

the element characteristics to enable the membrane agsumptions to be ap-

plied to the element. 

6.4.1 Evaluation of integrals 

As the three noded triangle has a linear variation of displacement and hence 

constant strain through the element, the terms within integrals evaluated for 

the element stiffness matrix, internal force vector and pressure loading are 

constant, and the integrations can be evaluated without numerical integra-

tion by multiplying the value of the terma by the element area and thickness. 

The element area, A is equal to half the determinant of the element Jaco-

bian, |J|, and this is calculated during the evaluation of the components. 

Linear and non-linear element stiffness matrices can be evaluated according 

to equations 92 and 93. 

j K i = „C SBi (92) 

S K i = j B j i (93) 

The element internal force vector and pressure load vector are evaluated 

according to equations 94 and 95. 

= '„B[ '„StA, (94) 

'+^'R = H ' ' ( 9 5 ) 

6.4.2 Distributed loaded cantilever 

A model of the distributed loaded cantilever used to validate FENLAl and 

2, was generated for analysis by FENLA3. The cantilever was modelled in 
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the global Zi, a;2 plane, and all the model nodes were restrained in the global 

$3 direction, reducing the analysis to the equivalent of a 2D plane stress 

analysis, allowing comparison with the analytical solution of Holden and the 

previous non-linear analysis. All the models used a symmetrical mesh, and 

no iteration was used in the solution. 

The distributed loaded cantilever series was modelled initially using 40 

elements, as shown in figure 15. A convergence test was carried out on the 

beam with the highest load coefficient, and the results of this are given in 

table 9. For this model about 20 load steps are required to get a solution 

within 0.5% of the converged solution. The cantilever was analysed for a 

range of load coefficients, and resulted in deflection coefficients of about 50% 

of the values obtained from theory and the higher order elements. 

The assumption used for the three node triangle elements is a linear 

variation of displacement across the element. Due to this, they cannot model 

the deformed shape of the distributed loaded cantilever exactly, as this is at 

least a parabolic curve. Higher order elements, such aa the eight noded 

quadrilateral and six noded triangle are able to do this, and so would be 

expected to give a more accurate solution for a small number of elements. In 

an attempt to improve the 3 noded triangular element solution, the cantilever 

series was analysed using models with 80 then 320 elements. Convergence 

data for these models is given in table 9. Due to the long time taken to solve 

the 320 element beam case, only 30 load steps were used for the calculation 

of the tip displacements for the series of load coefficients, compared to 50 

load steps for the other two models. The results of the cantilever analysis 

for the 3 noded triangle models are plotted against the theoretical solution 

in figure 29. The accuracy of the results improves with the mesh is refined, 

aa would be expected. However, the 320 element model taJces approximately 

81 



20 times as much CPU time to solve as the 10 element 8 node quadrilateral 

element, mainly due to the larger number of nodes, and hence much greater 

computation required to solve the finite element equations using Gaussian 

elimination on the full stiffness matrix. 

6.4.3 Point loaded membrane 

An initially fiat, square membrane under the action of a central point load 

was investigated to determine if a converging solution could be obtained. No 

analytical solution was found for this problem, but it provided a simple to 

generate problem for checking the membrane formulation and convergence. 

A 1 m by 1 m membrane was modelled in the global Xi, Zg plane with a 

load of -100 N applied in the global zg direction at the membrane center. 

Due to the symmetry of the problem, it is possible to model one quarter of 

the membrane with suitable boundary conditions along the free edges, and 

hence the model was 0.25 m square. Material properties of the membrane 

were E = 120000, = 0.2, with a membrane thickness of 1mm. No iteration 

was used within the load stepping procedure. 

The displacement of the central point of a 16 element model, shown in 

figure 30, with varying number of load steps is plotted against the number 

of load steps in figure 31, and converged to within 1% after 20 load steps. A 

series of models with increasing number of elements was analysed, and the 

central deflection of the membrane is plotted against the number of elements 

in figure 32 for 100 load steps. This shows the central deflection converging 

to a steady value as the finite element mesh density increases. Initial stress 

values of 100 and 1000 N/m? were applied to a 16 element model using 20 

load steps, and the calculated central deflection was found to be identical. 

The initial stress magnitude has no effect on the solution providing that suf-
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ficient load steps to obtain a converged solution are used. These results give 

confidence in the analysis method, but since there is no theoretical validation 

data for this problem, the analysis cannot be validated using this problem. 

6.5 Four node triangular elements 

The 20 node solid element has a quadrilateral variation of displacement in all 

three axes of the element. In order to have the option of using this element 

to model the mast with three noded linear elements used to model the sail in 

the rig analysis, a membrane transition element with quadratic variation in 

displacement along one side and linear along the remaining two sides is re-

quires. The four node triangle, shown in figure 33 fulfills these requirements. 

Interpolation functions for the element are given in equation 96. 

hi 1 — r -t- 2rg -36-1-

A,2 r 
= (96) 

2rg — a + 2ĝ  

/i4 4g — 4rg — 4â  

A finite element program using this element, FBNLA3-4, waa developed from 

FENLA3, using 3 point integration for evaluation of area integrals. 

6.6 Four node quadrilateral element 

A membrane finite element program using the four noded quadrilateral el-

ements described in section 4.11, FENLA4, was written. The numerical 

integration scheme employed was 2x2 Gaussian quadrature. 
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6.7 Analysis of an initially Hat membrane under con-

stant pressure 

6.7.1 Analytical solution 

Seide [53] presents an analytical solution to the large deflections of an initially 

flat membrane under constant pressure. Solutions for central deflections for 

a variety of aspect ratio membranes are presented, and the central deflection 

for a square membrane with Poisson's ratio of 0.3 is defined in equation 97, 

where ?7 is a constant which depends on the aspect ratio of the membrane. 

For a square membrane, y; = 0.2866. 

4 " 

— - 7/ 
goo / b 

1/3 

(97) 

This result indicates that the central deflection of the membrane non dimen-

sionalised with respect to the membrane span, Wcjh is inversely proportional 

to the aeroelastic number, Hi presented by Smith and Shyy [57], defined in 

equation 1. 

6.7.2 Analysis using the finite element programs 

An initially flat, square membrane of size 1 m and thickness 1 mm with ma-

terial constants of = 1.2 x 10 ,̂ fi = 0.3 under a constant pressure loading 

of l5N/m'^ was analysed by the membrane finite element analysis programs. 

Aeroelastic number of the membrane is Hj = 2.0, and the central deflec-

tion predicted by Seide is 0.1433 meters. Due to the symmetrical nature of 

the problem, one quarter of the membrane was modelled using appropriate 

boundary conditions along the free sides to reduce the problem size. Conver-

gence limit waa set at 0.01%, and 10 load steps were used, with a maximum 

number of iterations set at 100. In practice, all the cases analysed converged 
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within 6 iterations. 

Both FENLA3 and FENLA4 were used to analyse the membrane. Two 

mesh arrangements were investigated for the triangular elements, the sym-

metrical mesh shown in Egure 34, and an asymmetric arrangements, shown 

in figure 35. A regular mesh of quadrilateral element was used by FENLA4, 

figure 36 . In all cases, the membrane was analysed using a series of mesh 

densities, Erom 2 elements per side up to around 15 elements per side. The 

mesh density was limited by the memory available for the program, which 

limits the size of the stiffness matrix that can be stored and hence limits the 

number of nodes the model can contain. Majdmum model size was increased 

in later versions of the programs by the use of dynamic arrays and storage 

of only the top half of the non zero band of the stiSness matrix. 

Mid point deflections for the three mesh arrangements are plotted against 

the number of elements in figure 37. As the number of elements is increased, 

the solution tends towards the value obtained by Seide. For the most dense 

meshes considered, the error in central deflection with respect to the analyt-

ical solution was less than 0.5%. 

A series of membranes with IIi varying between 1 and 20 were analysed 

using each of the three meshes for models with around 150 elements. The 

variation in the aeroelastic number was obtained by changing the membrane 

Youngs modulus. Central deflections and the error compared to Siede for 

the analyses are given in table 10, and the central deflections are plotted 

against in figure 38. Excellent agreement was obtained for all the mesh 

arrangements for the range of aeroelastic numbers considered. The error 

increased as the aeroelastic number was reduced, but even then deflections 

were calculated to within 1% of the theoretical predictions. For a typical sail 

the aeroelastic number would be in the region of 15, and the accuracy of the 
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Anite element analysis in this region is better than 0.5% for the case analysed 

here. 

FENLA3 was altered to use dynamic arrays and storage of the top half 

of the non zero band of the stiGhess matrix. The revised program was used 

to analyse the initially square membrane using a symmetrical mesh arrange-

ment. The alterations to the program resulted in a solution time that was 

about 20 times faster than the previous version, and the maximum model 

size (limited by memory available on the UNIX workstation) was increased 

from 250 to over 3700 nodes. This enabled the membrane to be analysed 

with meshes of up to 7200 elements. Results for the coarse meshes were 

equal to the results obtained with the previous version of FENLA3, and the 

6ne mesh results are given in table 11. 

FENLA3-4 was used to analyse a membrane with Hi = 2 using the mesh 

arrangement shown in figure 39. A series of models with varying number of 

elements was analysed using 10 load steps and maximum number of iterations 

set to 50. Central deflections are given in table 12. The first six models 

were then analysed using 13 point integration, and the results of this are 

given in table 13. These results were within 0.01% of those obtained with 3 

point integration, and indicate that the increase in computation required for 

the increased order of integration is not necessary, although a solution was 

obtained for the 2 element model within the maximum number of iterations 

for the 13 point integration. Four noded triangular elements gave an increase 

in accuracy compared to the three node element case for an equal number of 

elements, although the improvement becomes less significant as the number 

of elements is increased. 
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6.8 Three dimensional solid elements 

A non-linear solid element program was developed using the solid elements 

described in section 4.15. Calculation of the element characteristics is carried 

out in the global coordinate system using an isoparametric formulation, and 

em iterative solution was employed on the 6nai load step using the conver-

gence criteria introduced for the membrane elements . A 20 node element 

was initially investigated, and although the element gave accurate solutions 

to the distributed loaded cantilever beam problem, the program was not sta-

ble for a range of load steps. A range of solution methods and convergence 

criteria were investigated, but these did not result in an improvement in the 

convergence of the element. A 16 node element with linear interpolation 

in one dimension was then implemented in the three dimensional non-linear 

program. This does not require the four node triangle element to allow join-

ing of the mast and sail, hence simplifying the rig model, and will also allow 

a rig with an initially curved mast to be discretised. The 16 node element 

was found to give stable solutions for all loading cases examined. 

6.8.1 Strain displacement matrices 

The three dimensional Jacobian matrix is calculated in the same manner as 

for the linear three dimensional elements, section 4.15. Components of the 

f h matrix are evaluated with respect to the global coordinate system using 

the derivatives of interpolation functions with respect to the element natural 

coordinates and the Jacobian matrix, in the same manner as for the linear 

three dimensional elements. The L matrix is calculated as for the previous 

non-linear cases, and the strain displacement matrices can then be assembled 
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from these components according to equations 98 to 102. 

0^2 — 0^10 + o-Bil (98) 

^1,1 0 0 &^i 0 

0 hi,2 0 0 0 

0 0 hi,3 0 

/ẑ l,2 /*2,1 0 &;̂ 2 0 

0 /Ẑ l,3 hi,2 0 

Â l,3 0 hi,i &^3 

(11 0^1,1 (21 0^1,1 

(12 0/̂ 1,2 2̂2 0̂ 1̂,2 

((110^1,2 + ^120^1,1) ((210^1,2+^220^1,1) ((310^1,2+^0^1,1) 

((12 0̂ 1̂,3 + (13 0^1,2) ((22 0^1,3 + (23 0^1,2) ((32 0^1,3 + (33 0/̂ 1,2) 

(/ll 0/^1,3+(13 0/̂ 1,1) ((21 0̂ 1̂,3 +(23 0^1,1) ((31 0^^1,3+ (33 0^1,1) 

(23 0̂ 1̂,3 

(99) 

(31 0/̂ 1,1 

(32 0/̂ 1,2 

(33 0^1,3 

(11 0^2,1 

(12 0/̂ 2,2 

(13 0/̂ 2,3 

((11 0^2,2 + (12 0^2,1) 

(Z12 0^2,3 + (13 0/^2,2) 

((11 0̂ 2̂,3 + (13 0^2,1) 

0"1,3 

(31 o/̂ ;v,i 

(32 o/*̂W,2 

(33 o^^,3 

((310/̂ ,̂2 + (32 o/^;v,i) 

((32 o/'̂ ;\r,3 + (33 o/Z'W,2) 

((31 o/̂ ;\r,3 + (33 0/^^,1) 

(100) 

0 6 

O^NL — 6 oB7\̂ Z, 6 (101) 

6 6 O^NL 
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0^1,1 0 0 ' o/Z'N,l 0 

= 0/̂ 1,2 0 0 •• 0 = 0 

0/̂ 1,3 0 0 0 

(102) 

6.8.2 Calculation of element stress 

Element node displacements in the global coordinate system are used to 

evaluate displacement derivatives used to define the Green-Lagrange strains, 

equation 103. 

- -Err- o"!' = 1,2,3;) (103) ^ 

Components of the strain tensor are calculated from the displacement 

derivatives according to equation 104, and the strain vector is assembled 

from these, equation 105. 

( + 0%,i + O^kj) (104) 
' 2 

2̂2 E33 612 6̂23 1̂3 } (105) 

The 2nd Piola-Kirchoff stress vector, gS defined in equation 106, can then be 

calculated from the Green-Lagrange strain vector using the three dimensional 

constitutive matrix, °C in the same manner as in the two dimensional non-

linear finite element analysis. 

t C to to to to irilT 
O")!! 0'̂ 22 0-̂ 33 o'J12 (106) 

6.8.3 Calculation of Cauchy stress vector 

The deformation gradient of an element is defined as shown in equation 107. 

^ (107) 
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Calculation of the Cauchy stresses from the 2nd Piola-KirchoS stresses can 

then be calculated according to equation 108. The ratio of the mass den-

sities can be calculated from the determinant of the deformation gradient, 

equation 109. 

P ' V « C t y r 

p 

(108) 

(109) 
'P det(^X) 

Components of the deformation gradient can be calculated as shown in equa 

tion 110. 
N 

(110) 

The element node deformed positions, are calculated from the node 

starting coordinate and displacements, and put in a matrix, *x. The defor-

mation gradient is then calculated by multiplying the 5h and *x matrices, 

and this is used to calculate the Cauchy stress components from the 2nd 

Piola-KirchoS stress components. 

6.8.4 Calculation of the stress matrix 

The stress matrix for the three dimensional elements can then be assembled 

from the stress components according to equation 111. 

6 0 

tc — 
qO — 6 6 (111) 

6 6 

0 0 0 

0 0 0 

0 0 0 
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^^12 
tc __ 
qO — 0'5'22 O'S'23 

O'S'32 ^^33 

Linear and non-linear stiffness matrices for the element can then be cal-

culated according to equations 56. Integration over the element volume is 

carried out using 13 point Gaussian quadrature, defined in appendix B. The 

element stiffness matrices are assembled into the model stiffness matrix after 

calculation. 

6.8.5 Loading calculations 

Internal loading contributions for the elements are calculated in the same 

manner as for the two dimensional non-linear case, with the integration taken 

over the element volume, and the loads are calculated in the model coordinate 

system. Element internal load contributions are added to the model loading 

vector for each element in turn. External loading is applied as point loads 

at the model nodes. The external loading includes distributed loads on the 

element which are lumped at the model nodes in the model definition. The 

magnitude of the external loads at each load step are calculated in the same 

manner as for the two dimensional case, equation 72. 

6.9 Twenty node solid element 

A three dimensional non-linear finite element analysis program, FENLA5 was 

generated using the twenty node element described in section 4.15. Thirteen 

point Gaussian quadrature was employed in calculation of the element stiff-

ness matrices and internal loading vectors. In order to simplify debugging, 

the program uses full stiffness matrix storage and Gaussian elimination for 
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solution of the finite element equations, and an iterative solution was used 

for the final load step. 

6.9.1 Cantilever analysis 

A tip loaded cantilever with material properties = 1.2 x 10̂  and // — 0.3, 

with a length of 1.0 metre and depth and width of 0.1 metres was analysed 

using FENLA5. Ten elements were used in the finite element model with 

a convergence limit of 1.0 x 10" .̂ Defections obtained using one load step 

were equal to the results obtained from the three dimensional linear 20 node 

element analysis. A non-linear analysis using 20 load steps using an iter-

ative solution on the final load step did not converge after 100 iterations. 

Displacements of the cantilever were within the convergence limit for the xi 

and 13 (along the length and through the depth of the cantilever) directions 

after about 10 iterations, but the displacement increments in the $2 direction 

were up to 200% of the displacements after 100 iterations. Magnitude of the 

displacements in this direction were of the order of 10^^^ over the model, 

compared to displacements of up to 10"^ for other directions, and were oscil-

lating about zero. This suggests that the changes in displacement are due to 

rounding errors in the program. As the displacements in the other directions 

had converged, these non converging displacements are not significant for the 

solution of the problem. 

6.9.2 Convergence check 

The convergence check was altered to only examine significant degrees of 

freedom for convergence. Convergence checking is carried out for each global 

axis in turn. The maximum displacement over this degree of freedom is 

obtained, and each nodal displacement increments in this degree of freedom 
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is only checked for convergence if the node displacement at the start of the 

iteration satis6es equation 112, where Q is a convergence check parameter 

de&ned in the finite element data file. 

Uu])' > ( u f Y c . (112) 

6.9.3 Non-linear analysis results 

The tip loaded cantilever was analysed using Cc = 10" ,̂ and a convergence 

limit of 0.01% . The tip loading was 0.3N, which corresponds to a deflection 

of 0.1m using linear beam theory. A series of models was used with between 

1 and 10 elements for a varying number of load steps, and tip defiections 

are given in table 14. The number of load steps used had no eSect on the 

converged solution, and tip defiection is plotted against number of elements 

in figure 40. The convergence of the results and the trend to a solution with 

increasing number of elements gave confidence in the convergence checking 

method used for a tip loaded analysis case. 

6.10 Distributed loaded cantilever 

FENLA5 was used to analyse the distributed loaded cantilever used for pre-

vious non-linear finite element program validation. Equivalent nodal loads 

for a face of the element under a uniformly distributed loading are shown in 

figure 41. This loading is calculated by evaluating equation 113 for each of 

the face nodes, where the integration occurs over the element face area. 

(113) 
J Af 

The cantilever was modelled using ten 20 node elements, initially with load 

coefficients of 1 and 2. Solutions were obtained for these load coefficients 
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which were within 5% of the theoretical predictions. The solution of the 

model with load factor 2 took over 50 iterations with 20 load steps, and 27 

iterations with 30 load steps, and consequently the solution was taking up 

to an hour to converge. 

Analysis of the displacement increments showed that the displacements 

in the global zg direction were taking about 5 times as many iterations to 

converge than those in the Xi and Zg directions, and were about 10"^ times 

smaller in magnitude. These displacements had negligible effect on the final 

solution, and to improve the solution times the convergence check criteria 

was changed. Displacement increments were only checked for convergence if 

the node displacement at the start of the iteration passed the check shown 

in equation 114, where is the maximum displacement at the start of 

iteration i over all model degrees if freedom. 

(114) 

6.10.1 Effect of convergence check parameter 

A cantilever beam with distributed loading factor 2 was analysed for a range 

of convergence check and convergence limit parameters. Deflections of the 

tip of the cantilever and the mid point of the bottom of the end face are 

given in tables 15 and 16 for convergence limits of 0.01% and 0.05% with 

the convergence check ranging from 1.0 x 10"^ to 1.0 x 10"^. Reducing 

the convergence check from 1.0 x 10"'̂  to 1.0 x 10~® results in a change in 

tip deflection of 0.01%, within the accuracy sought by a convergence limit of 

0.01%. As reducing the convergence check further would result in an increase 

in solution time, this was taken as a suitable value for the convergence check 

criteria. 

A reduction in q results in a greater number of iterations to convergence, 
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and hence a higher solution time. It is important to set at a value where 

only sufficient iterations for all significant displacements to be within the 

convergence limit are performed. 

6.10.2 Order of integration and relaxation 

A cantilever model with load factor of 10 was analysed using q = 10"^ and 

Cc = 10"^, varying the number of load steps. An average tip deflection of 

0.6616 was obtained for 20 and 30 load steps, but using 10, 15 or 25 load 

steps resulted in a solution that diverged, with displacements tending towards 

infinity. The case with 10 or 15 load steps could be unstable due to insu@cient 

number of load steps before the iterative solution began, but this would not 

be the case for the 25 load step analysis as a convergent solution was obtained 

using 20 load steps. Thirteen point integration, which has the same order 

of accuracy as 3x3x3 Gaussian quadrature is employed in the calculation of 

element characteristics. In order to confirm that this is sufficiently accurate 

for the element, the order of integration was increased to 4x4x4 Gaussian 

quadrature. There was no change in the deflections obtained or the stability 

of the solution for the distributed loaded cantilever with increased order of 

integration. 

The failure of the model could be due to a growing instability in the it-

erative solution, which could be improved by using relaxation and FENLA5 

wag altered to incorporate a relaxation factor, /)i, defined in the model data 

file. Calculated node displacement increments at the end of each iteration 

are multiplied by the relaxation factor before being added to the node dis-

placements, equation 115. Setting (3i to 1.0 results in a solution without 

relaxation. 

95 



Analysis of the distributed loaded cantilever with load coefficient of 10 using 

a relaxation factor of 0.5 or 0.75 did not give a convergent solution for 15 or 

25 load steps. 

6.10.3 Effect of number of load steps 

The full series of cantilever loading cases was run with c/ = = 0.005, using 

19, 20 and 21 steps. The results are tabulated in table 17. Cantilevers with 

load factors over 4 gave divergent solutions when using either 19 or 21 load 

steps. Convergent solutions were obtained using 20 load steps for aU the 

load coeScients, and the tip defections are plotted against load coeGicient 

in figure 42. The displacements are within 5% of the analytical results of 

Holden giving accuracy comparable to the two dimensional non-linear Enite 

element analysis. 

6.10.4 Effect of solution method 

The current solution method only iterates to a converged solution on the Enal 

load step. Two different methods of solution were investigated to attempt to 

improve the stability of the 20 node element: 

# Iterate at all load steps 

® Iterate at all load steps except the first 

# No iteration 

Solutions were attempted for the three element cantilever model under a load 

factor of 10 using 20 load steps using the first two solution methods. In both 

cases the solution diverged after the third load step. 

A non iterative solution was then used to analyse a 10 element model with 

a load factor of 10. The results for a range of load steps, from 10 to 175 are 

96 



given in table 18. The magnitude of the tip defection oscillates with number 

of load steps, as shown in figure 43. This may be linked to the instability of 

the iterative solution at certain number of load steps. The displacement of 

the non iterative solution is more accurate when compared to the analytical 

solution for high numbers of load steps than the iterative solution, but the 

solution time is much longer. 

The reason for the instability of the twenty node three dimensional ele-

ments for the distributed loaded cantilever case using an iterative solution 

has not been determined, although it seems to be related to the magnitude of 

the deflections at the start of the iterative solution. Stability could probably 

be Improved by using the dynamic relaxation and alternative convergence 

criteria developed for the 16 node element, but lack of time prevented inves-

tigation of this. 

6.11 Sixteen node element 

A three dimensional non-linear finite element analysis program, FENLA5-1, 

was written using 16 node solid elements. An iterative solution was em-

ployed on the 6nal load step. Convergence criteria used for this program was 

changed to the criteria which is used in the aeroelastic analysis of a rig. A 

displacement residual is calculated according to equation 116, where I is a 

characteristic length of the model, taken to be the length of the cantilever 

beam for the validation models. 

all dof ^ 

residual = (116) 

The residual is calculated as the node displacements are updated at the end 

of each iteration, and compared against the convergence limit, q , input from 

the model data file, to determine if the solution has converged. Convergence 
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limit was set to 1.0 x 10 ^ for the cantilever analysis, based on experience 

that had been gained during initial aeroelastic analysis. 

6.11.1 Dynamic relaxation 

A distributed loaded cantilever with load coefficient 10 was analysed using 

a ten element model using a range of load steps from 20 to 25. Some of the 

load steps gave a diverging solution. Further investigation of the displace-

ment history during the iterative solution for the converging and diverging 

solutions showed that diverging solutions had a tip deflection larger than the 

converged solution after one iteration, compared to the solutions which con-

verged that had a tip defection of less than the converged solution. Diverging 

solution deflections then grew to infinity as the iterations continued. 

Dynamic relaxation was introduced to the iterative solution. The value 

of the residual for iteration i is compared to the value from iteration i — 1. 

If the residual has increased. Pi is set to the value defined in the model data 

file, and if the residual is decreasing, it is set to 1.0. This solution method 

gave converging solutions for all the numbers of load steps considered. An 

analysis using 20 load steps gave a tip deflection of 0.606920 metres for the 

original solution method and 0.60915 metres using Pi — 0.5. Therefore the 

use of dynamic relaxation does not significantly affect the results obtained 

when using 20 load steps 

6.11.2 Distributed loaded cantilever 

Results for the tip deflection of the distributed loaded cantilever for load 

factors from 1 to 10 using 20 load steps and Pi = 0.5 for a 10 element 

model is given in table 19, and plotted against theory along with the 20 node 

element results in figure 44. The arrangement of the elements in the model 
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is with the linear variation in displacement along the length of the beam. 

This is as they would be used in the mast, with a quadratic variation over 

the cross section which allows a rounded mast cross section to be modelled. 

This arrangement gives less accurate results compared to the twenty node 

element as the linear variation along the cantilever length cannot model the 

deformed shape of the beam as well as the quadratic variation of the twenty 

node model. The sixteen node element has an error in tip deflection of 13% 

for a cantilever of load coeGcient 10 compared to Holden. 

The cantilever beam with load coefficient of 10 was analysed using a series 

of models with from 10 to 100 elements along the beam length, and 20 load 

steps. Tip defections are listed in table 20, and plotted against the number 

of elements in figure 45, and the accuracy of the solution improves as the 

number of elements in increased, with a model using 30 elements giving an 

error of 5% compared to Holden. 

6.12 Summary 

A nonlinear finite element program has been developed, using an iterative 

solution on the final load step. Three node triangle elements were chosen 

to represent the sail, as the elements allow an initially curved surface to 

be discretised. As the elements are constant strain elements, no numerical 

integration is needed to calculate the element internal loading or stiEness 

matrix, resulting in a rapid formulation of the finite element equations. Three 

node triangle membrane elements have been implemented and the program 

has been validated against a theoretical solution for large deformations of an 

elastic membrane under constant pressure. 

Twenty node solid elements were implemented in the nonlinear finite ele-

ment analysis, and gave good agreement with a theoretical solution for large 
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deformation analysis of a cantilever beam. These elements require a transi-

tion element to ensure compatibility with the three node membrane elements, 

and a four node triangle membrane element was developed to satisfy these 

criteria. The twenty node solid elements produced unstable solutions for 

certain numbers of load steps. Relaxation methods, variations in solution 

methods and alteration of convergence check methods were employed to try 

and improve the stability, but this was not successful. A 16 node solid ele-

ment was implemented in the nonlinear Suite element program, as this does 

not require transition elements and also would allow the modeling of an ini-

tially curved mast. The 16 node element was validated against a theoretical 

large deformation analysis of a cantilever beam, and proved to be stable for 

all caaes attempted. This element waa chosen to model the mast in the rig 

cinalysis as it resulted in a simpler rig model and waa more stable than the 

20 node element. 
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7 Potential flow 

Potential flow theory assumes inviscid incompressible flow, and expresses the 

flow fleld in terms of a scalar velocity-potential function, The continuity 

equation for motion of the flow reduces to Laplace's equation, equation 117. 

(117) 

The potential functions for elementary solutions of Laplace's equation for 

sources, sinks and vortices can be added as Laplace's equation is linear. 

These solutions can be combined to describe the flow over an arbitrary body. 

A complete description of the potential flow method is found in many texts, 

such as White [66]. 

Development of a CFD program for the analysis of the rig was considered 

to be outside the scope of this project because of the time available. An 

potential flow panel code, PALISUPAN, which was developed at The Uni-

versity of Southampton by Turnock [64], was used to calculate the pressure 

loading for the aeroelastic analysis. PALISUPAN has been used in several 

previous studies to analyse yacht rigs in an upwind configuration, including 

investigations by Prior [49], Cant [10] and Noury [45]. 

7.1 PALISUPAN 

Panel codes such as PALISUPAN [64] represent a body by panels placed on 

the surface of the body containing source and dipoles. Lamb [32] showed 

that a quantity satisfying Laplace's equation can be written as an integral 

over the bounding surface, S, of a source distribution per unit area, s and 

a normal dipole distribution per unit area m distributed over the bounding 

surface. If the disturbance velocity fleld due to the bounding surface or body 
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is deSned as t;, this is related to the disturbajice potential, by equation 118 

i; = V(̂  (118) 

The disturbance potential can be expressed in terms of a surface integral as 

shown in equation 119, where 6'g is the surface of the body, 5"%/̂  is a traihng 

wake sheet, r the distance from the point for which the potential is being 

determined and d/dn a partial derivative in the direction normal to the wake 

sheet. 

\ / u V #/ \ / 

The boundary conditions imposed on the disturbance potential are, from 

Hess [20]: 

1. the velocity potential satisGes Laplace's equation everywhere outside 

of the body and wake, 

2. disturbance potential due to the body is zero at infinity, 

3. normal components of the velocity is zero on the body surface, 

4. the Kutta-Joukowski condition of Enite velocity at the body traihng 

edge is satished, 

5. the trailing wake sheet is a stream surface with equal pressure either 

side. 

The first two conditions are satisfied as functions of n and cr, conditions (3) 

and (4) are used to determine /i and a on the body, and the Kutta condition 

applies only at the leading edge. The distribution of the sources and doublets 

over the body have to be determined by some other method. A pertubation 
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potential method taken &om the work of Morino and Kuo [40] was chosen 

for PALISUPAN. 

The numerical procedure of Morino is based on representing the body 

surface by a series of N quadrilateral panels with each containing an un-

known constant dipole strength. The wake sheet is represented by M panels 

placed on the stream surface from the trailing edge of the body, and the 

dipole strength per unit area of the wake, fiw is related to the difference in 

potential between the upper and lower surface of the trailing edge, and 

equation 120 

/-'w — (pi (120) 

The source strength per unit area of the body is prescribed by satisfying the 

condition for zero normal velocity at the panel centroid, equation 121 

( 7 . ( 1 2 1 ) 

The numerical discretisation of equation 119 gives the potential at the cen-

tre of panel i as shown in equation 122, where for panel j, Sij is the source 

influence coefficient of a unit strength panel, Dij is the dipole influence coef-

ficient and Wik is the influence of the constant strength wake strip extending 

to infinity. 

i=l k=l 

As there are N independant equations corresponding to the N body surface 

panels, equation 122 can be evaluated, and expressed in matrix form this 

becomes equation 123. 

- S.X /̂oo) - n) (123) 
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Ag Morino's original trailing edge Kutta condition directly relates to 

the difference in trailing edge panel potential, equation 123 can be directly 

solved to give the vector of dipole potentials, (f). Numerical differentiation of 

the dipole potential along the body surface allows the surface velocity and 

hence pressure to be calculated. 

As PALIS UPAN is a panel code, it is necessary to introduce an artificial 

thickness in the sails to enable solution, unlike the vortex lattice codes that 

have been used in past aeroelastic analysis of sails. The sail has to have an 

artificial thickness to prevent the panels on one side of the sail influencing 

the flow on the other side. However, the panel code allows solution of the 

mast and sail as a single body. Prior [49] studied the effect of the thickness 

introduced to the sail, and concludes that a thickness to chord ratio of 2.5% 

gives the most accurate solutions when compared to experimental results. 

Both Prior [49] and Cant [10] found that the global force predictions ob-

tained from PALIS UPAN were not very accurate compared to experimental 

results. However, the error in global force components can be attributed to 

the viscous effects which occur in the experimental cases, and the difficulty 

in accurately replicating the experimental conditions. Prior [49] found good 

agreement between experimental measurements of pressure distribution on 

a mast /sail model and values predicted by PALIS UPAN using an artificially 

thick sail for areas away from the leading edge area where separation can 

occur at the mast. As the aeroelastic analysis is concerned with the pressure 

values obtained by the CFD code, the results of Prior [49] give confidence in 

the ability of PALIS UPAN to model the problem adequately. An example of 

the pressure distribution obtained from a PALIS UPAN analysis of a yacht rig 

sailing upwind is given in figure 46. This shows the pressure distribution on 

the windward side of a mast mainsail model calculated during an aeroelastic 

104 



analysis of the model. 

7.2 Model definition for PALISUPAN 

PALISUPAN takes a dednition of the bodies to be analysed and generates 

panels required for the analysis according to the number of panels in the 

chord and spanwise directions defined in a control file. The body is defined 

in the geometry input file as a series of sections, and for a closed body such 

as a rudder or the combined mast sail model, the definition of the section 

starts and finishes at the trailing edge. PALISUPAN evaluates cubic spline 

curves to fit the input data points and generate a mathematical description 

of the body which is used for the discretisation into panels. It is important 

to ensure that the body definition points will result in a smooth surface when 

this procedure is carried out, as a rapid change in slope between points can 

cause errors in the cubic spline definition. 

7.3 PALISUPAN grid generation 

During the aeroelastic analysis, the defected node positions obtained from 

the finite element analysis wiU be used to generate the updated body def-

inition for PALISUPAN analysis. A series of points defining cross sections 

through the rig will be extracted &om the finite element model, and these 

will be used to generate the sections for the PALISUPAN input file. The rig 

will be oriented in the global coordinate system in the same manner for all 

the aeroelastic analysis cases, as shown in figure 47. This orientation results 

in the pressure side of the artificially thick sail having an ^2 coordinate that 

is lower than the suction side. All the PALISUPAN models are generated 

with the chord of the sections lying along the global ajcis. This means 
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that the input velocity vector is defined as shown in equation 124. 

V = (y cos a, y sin a, 0) (124) 

In all cases, the PALISUPAN analysis was carried out without a rejection 

plane. 

For the case of a sail modeled without a mast, the sail section can be 

divided into three main parts, the leading edge, trailing edge and the sail sur-

faces. Previous experience with PALISUPAN analysis of sails (Turnock [65]) 

has shown that optimum results are obtained using a section where the lead-

ing edge is an ellipse covering 5% of the chord length, followed by a constant 

thickness main section, where the artificial thickness is in a direction normal 

to the sail surface and placed symmetrically about the surface, and a linear 

taper to the traihng edge over the final 5% of the chord length. To avoid 

errors that could occur in the cubic splines used by PALISUPAN to generate 

the mathematical model of the body where the section slope changes at the 

leading and trailing edges, three points are placed along the sail upper and 

lower surfaces either side of the leading and trailing edge definition points. 

These points are placed at a spacing of 1% of the local chord length before 

and after the 5% of the chord covered by the leading and trailing edge sec-

tions and ensure that the PALISUPAN splines form a smooth curve over the 

output section. Surface points are then evenly spaced over the remaining 

length of the section, from 5.3% to 94.7% of the chord length. The wake 

sheet should leave the trailing edge smoothly with the slope between the 

sail and wake sheet being continuous, then curve back to the free stream 

direction over a length roughly equal to the sail chord, with the semi infinite 

wake sheet then extending in the free stream direction. As the model will 

experience the highest velocity gradients around the leading edge of the sail, 

a panel distribution which clusters in the center of the section (around the 
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leading edge) is employed in the chordwise direction. It is important to de-

fine the PALISUPAN sections so that the sections are defined running up the 

mast (increasing zg), with the section definitions containing points which are 

ordered from the trailing edge, along the surface of the sail with higher Z2 

values (suction surface), around the leading edge and back along the surface 

of the sail with lower Zg values (pressure surface) to the trailing edge. This 

ensures that the orientation of the panel normals are in the correct direction, 

as otherwise PALISUPAN could calculate the flow inside the body. 

To model a rig consisting of a mast and sail, a constant artificial thickness 

is added over the sail eis for the case discussed above. A linear taper is used 

from the trailing edge over 5% of the chord length, and three points are 

placed on the sail surface where the taper ends to force the PALISUPAN 

splines to model this area correctly. The mast cross section is joined to the 

sail section where the artificially thick sail intersects the mast. As there is 

an abrupt change of slope at this point, three points are placed on the sail 

surface and mast section either side of the join to ensure that the splines 

produce an accurate definition of this area. PALISUPAN provides a special 

panel distribution which is suitable for the rig model, where the section is 

split into three parts with the chordwise number of panels in the model split 

between the three sections with a different distribution possible for each of 

the three sections. For the analysis of the rig, a panel distribution was used 

where the panel density increases along the suction surface from the trailing 

edge to the mast, remains constant around the mast and then decreases 

from the mast to the trailing edge on the pressure surface of the sail. This 

ensures that there is an increased panel density in the area of highest velocity 

gradients. 

The membrane, sail and rig models considered will form closed sections in 
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the chordwise direction, and the body will be open in the span wise direction. 

This allows the possibility that the flow could wrap around inside of the body 

at the tip and foot of the model. It is possible to define separate bodies to 

close the model at the tip and foot, although this would introduce added 

complexity into the model definition, and increase the time taken for the 

CFD runs. Since the section is thin, the flow is unlikely to wrap around 

into the body, and as previous models of sails have not found this to be a 

significant problem, the section has been left open in the spanwise direction 

to simplify the input file generation program. 

7.4 CFD grid generation program development 

A computer program was developed to output sail section and wake data 

in a PALISUPAN input format from a network of points in 3D space which 

are read in from a file. These points represent the displaced node positions 

which will be obtained from the FENLA program in the aeroelastic analysis. 

The network of points is arranged into a series of sections of the body in the 

Zi, i2 plane, at increasing za values. Thickness of the section, is calculated 

according to equation 125, where Ic is the local chord length and tm is a 

constant usually set to 0.025 to give a thickness to chord ratio of 2.5%. 

(125) 

The grid generation computer program was developed to process an arbi-

trary number of sections, with arbitrary numbers of points in each section. 

Program development was carried out as follows: 

• Program to generate a PALISUPAN input body with a sail cross section 

from a 3D model of flat membrane. 
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e Program to generate a single 2D sail section from a set of input points 

that de&ne a curve in the 2;i,Z2 plane. 

# Program to develop 3D model from points which represent a series of 

curved sections. 

7.5 Flat membrane 

Initial development of the PALISUPAN input file generation program consid-

ered the case of a plane membrane. The problem is simplified as the normal 

to the membrane is constant over the model, and thus the artificial thickness 

will be applied in a constant direction over the surface. As the membrane is 

defined in the zi zg plane, the thickness is applied in the zg direction. 

7.5.1 Program structure 

Program structure of the computer program to generate PALISUPAN input 

files from a grid of points, F-2-P, is shown in figure 48. The surface defini-

tion file contains the number of sections, followed by the definition of each 

section which contains the number of points in that section followed by the 

coordinates of each point. Input data is stored in a data structure containing 

dynamically allocated arrays of section data and point data to allow the pro-

cessing of arbitrarily sized models. Input sections are defined with the chord 

along the zi direction. The number of points used to define the leading edge, 

Nie and each of the sail surfaces, Nsur is input during the program execution. 

This enables the calculation of the number of points which will define each 

section output to the PALISUPAN input file. 

Coordinates of the points defining each PALISUPAN section are calcu-

lated for each section in turn, and stored in the output data structure. After 
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calculation of the body de6mtion, the wake section deSnition points are cal-

culated, and these are also stored in the model deEnition. The number of 

panels to be used in the PALISUPAN discretisation in the chordwise and 

spanwise, directions, and respectively, is input during the program 

execution, and the PALISUPAN model definition is output to a file in the 

required format. 

7.5.2 Calculation of flat membrane model 

The number of points used to define the PALISUPAN section, Np is calcu-

lated according to equation 126. 

TVp = TV,, + + 14 (126) 

This is made up of the trailing edge point at the start and end of the section 

definition, the 12 points used in groups of three to ensure a smooth transition 

&om trailing edge taper and leading edge elhpse to the sail surface, points 

around the leading edge and Ns^r points on each of the sail surfaces. Initial 

runs of the grid generation program used = 10 aiid = 7, and 5 points 

were employed to define the wake. These values were found to produce fair 

sections in all the grid generations undertaken. 

An array of coordinate points of size Np is allocated for the output section 

definition, and points at the trailing edge location are placed into the first 

and last location to define the start and end of the section. Section length 

is calculated from the distance between the first and last points in the in-

put section, and the section thickness calculated according to equation 125. 

Points are then defined at the required locations along the chord length, with 

the section thickness applied symmetrically about the mid chord line of the 

section defined by the input points. 
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The leading edge eUipse is created by an even distribution of the JV); 

points across the thickness of the section, covering 5% of the chord length, 

as illustrated in figure 49. 

Walce de&nition is calculated using cubic Bezier curves. Control points for 

the Bezier curves are calculated from the local chord length and the angle of 

incident flow, input by the user during program execution, and the location 

of the control points is illustrated in figure 50. The wake definition points 

are then calculated at locations equally spaced along the Bezier curve. 

A section of the PALISUPAN input data generated using the F-2-P pro-

gram is shown in figure 51, for a case with W)e = 7 and = 10. 

7.6 Curved section 

To generate a curved sail section, the input points for the section is used to 

define a series of cubic spline curves that represent the input section line. The 

local chord, calculated as the distance between the first and last input section 

points is used to calculate the section thickness according to equation 125, 

and this is apphed symmetrically about the input line in the direction of the 

curves principle normal. This stage in the program development was used 

to develop sail section generation and spline routines for a single section, 

to simphfy debugging of these routines, before moving on to the full three 

dimensional case. No wake definition was investigated for this case, as only 

a single section was defined, which is unsuitable for PALISUPAN analysis. 

7.6.1 Parametric spline curves 

The input section line is defined as a parametric curve in p, running from 0 

at the leading edge to 1 at the trailing edge. The parametric coordinate, of 

point i along the line is approximated by taking the straight line length be-



tween the curve definition points as a distance along the curve, equation 127, 

where J, is the sum of the straight line lengths. 

Cubic spline equations [29] are used to calculate the curvatures, at each 

point for each of the global coordinates j — 1,2,3. These caji be used to 

calculate the coordinates of a point at parametric coordinate as shown in 

equation 128, where < g > pi+i, and A, is the parametric length of curve 

2, which lies between points z and z + 1. 

\ 3 \ 3 
- p) + (p - gi) 

6 w - pj + (/T — 

7.6.2 Principal normal calculations 

The principle normal direction is defined in equation 129 from Taylor [60]. 

N = ^2^ 83Z (129) 

The curvature values at a point with parametric coordinate g are calculated 

by linear interpolation between the input points defining the curve that the 

point lies on, equation 130. 

= - ^ ( g i + i - p ) + - ^ ( p - ^ y J (130) 

The vector resulting from these calculations is normalized, then multiplied 

by the section thickness. The resulting vector can then be added and taken 

away from a point on the cubic spline curve to give the required points on 

the upper and lower surface of the section. 

112 



7.6.3 Leading edge calculations 

The points defining the leading edge profile are calculated using the method 

described for the plane section in a local yi,y2 coordinate system. These 

coordinates are then rotated to the global system using a cosine matrix cal-

culated from the locations of the leading edge point and the input point 

closest to 5% of the arc length. Finally the points are translated so that the 

central point in the leading edge ellipse coincides with the point defining the 

model leading edge. 

7.6.4 Section point calculation 

The three points at the boundary of the trailing edge taper and leading edge 

ellipse are placed at 1% of arc length separation from g = 0.95 and g = 0.05. 

Surface points are then equally spaced between g = 0.052 and g = 0.948 along 

the section, with pressure and suction surface points calculated using the 

principle normal. The order of the surface definition follows that described 

in the flat membrane case. 

7.7 Three dimensional general membrane 

A computer program which generates PALISUPAN input files from a series 

of input sections defining an arbitrary surface, F-2-P-II, was developed. The 

program uses the same structure as the F-2-P program, and the single section 

generation method described above is used for each section. 

The definition of the principle normal used in the 2D section fails for 

a straight line (zero curvature), as a straight hne does not have a single 

principle normal. In order to ensure that F-2-P-II could deal with arbitrary 

models, an alternative method for calculating surface normal is used at points 
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where the curvature is found to be zero. The wake definition used in the fiat 

plate model is extended to a general three dimensional case. The program 

allows variation of: 

e Input and output Hies 

® Number of panels in the t and s direction for the PALISUPAN meshing 

• Number of points used to define the output sections leading edge ellipse, 

surfaces and wake sheet 

# Thickness multiplier 

A file containing the model definition in the PALISUPAN original geometry 

input file format is output from the program. 

7.7.1 Normal calculation 

After calculation of the principle normal for any point, t, equation 129, the 

magnitude of the vector obtained is calculated. If this is zero, the input 

section is a straight line, and an alternative method of calculating the surface 

normal is used. Two vectors on the input surface are calculated, as shown 

in figure 52. The normalised cross product of these vectors is calculated 

and used as the surface normal at this point. The two in plane vectors are 

calculated using point i and point i + 1 on the current section, and point i on 

the current section and point i on the next section. If the point i is the last 

point on the current section, the first vector is taken in the direction of point 

i to point 2 — 1, and if the section being considered is the last input section, 

the second vector is taken from point i on the current section to point i 

on the previous section. The change in orientation of the normal calculated 

using the alternative points is taken into account when calculating the surface 

normal used for application of the artificial thickness. 

114 



7.7.2 Wake definition 

During calculation of the output section, the slope of the curve at the trailing 

edge is calculated using equation 131. 

< (131) 

Components of the slope, dxj/dg can be used to define a unit vector tangent 

to the input curve at the trailing edge, which is stored in the output section 

data structure. During calculation of the wake section, the incident flow is 

used to define a unit vector in the direction of the free stream flow. These 

two vectors are then used to define the Bezier control points, ag shown in 

figure 53, for the Bezier curve defining the wake section. Wake definition 

points Eire then generated at equal spacing over the wake section curve. An 

example of a curved membrane PALISUPAN section generated by F-2-P-II 

is shown in figure 54 

7.8 Generation of PALISUPAN rig model 

The structure of the grid generation program used to generate the rig model 

for analysis by PALISUPAN is shown in Agure 55. This generation program is 

employed within the aeroelastic analysis, and the parameters used to generate 

the output file are obtained from the analysis control file, and consist of: 

# Number of point to de6ne the sail surface, Wgup, 

# Number of points to deEne the mast surface, 

# Number of panels to define the model in the PALISUPAN discretisa-

tion, in chordwise, Nt, and spanwise, W,, directions, 

# Number of panels used to deGne the mast in the PALISUPAN discreti-

sation, 
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# Thickness multiplier, (m-

Input sections include points defining the sail shape and the mast cross sec-

tion. Cubic splines are generated which define the sail section as in the 

program F-2-P-II, and the mast cross section is also defined by a set of 

parametric cubic splines, with t running from 0 to 1 around the mast in a 

clockwise direction when viewed from the top of the rig. The mast splines 

form a closed section, with the first and last points of the curve taken as the 

joining point between the mast and sail (which also defines the end point of 

the sail curve). Figure 56 shows the orientation of the spline curves used to 

define the mast and sail. 

7.8.1 Output section generation 

The number of points used to define an output section is calculated accord-

ing to equation 132, and the array of points defining the output section is 

allocated accordingly. 

Np = Nm + 2Nsur + 18 (132) 

The thickness of the sail section is calculated as for the previous program 

Eiccording to equation 125. The point defining the trailing edge is placed into 

the start and end point of the output section, and the order in which the 

points are placed into the output section are indicated in figure 57. Three 

points are placed at the end of the trailing edge taper at ^ = 0.93, 0.94, 0.95 

on the pressure and suction surfaces of the sail, and three points are placed 

at ^ = 0, 0.01, 0.02 on the pressure and suction surfaces of the sail to define 

the start of the sail section. The peirametric coordinates along the mast curve 

which defines the mast sail intersection at the start of the mast section, gs 

(pressure surface of the sail) and the end of the mast section, pg (suction 

116 



surface of the sail) are calculated using the method described below. Two 

points are placed at —0.01 and —0.02, then the number of points defining 

the mast are equally spaced along the mast parametric curve between 0.02 

and gg +0.02. The mast deSnition is completed by placing two points at 

Qs + 0.02 and p, + 0.01. 

7.8.2 Calculation of the mast sail intersection 

To obtain a smooth join of the mast and sail surfaces in the output section, 

the parametric coordinates of the end point of the mast curve used for the 

rig section is calculated by obtaining the parametric coordinates on the mast 

definition curve which are within 1% of the location where the Zg coordinates 

of the mast curve are equal to the zg coordinates of the suction and pressure 

surfaces of the sail. 

The X2 coordinate of the start of the suction surface of the sail, Zg is used 

to find the coordinate of the assumed intersection point at the end of the 

mast curve. Starting at the end of the mast, each spline curve for the mast 

is checked until the correct interval, i is found, such that Zg > Zg > 

Starting at the parametric coordinate of point i, gi, g is increased in steps 

of 0.01 until Zg < Zg. The end intersection point coordinate, ĝ  on the mast 

curve is then taken to be p — 0.01, so that < Zg < Zg'. The starting 

intersection point of the mast curve is calculated in a similar way, with ĝ  

taken as the point such that Zg' < Zg < where is the zg coordinate 

of the start of the pressure surface of the sail. 

7.9 Analysis of a rectangular membrane 

The program F-2-P-II was used to generate a sail cross section from a grid 

of points representing a rectangular membrane with a chord of 1 metre and 
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a span of 5 metres. A Sat membrane and a membrane with a curved cross 

section were used to generate models which were analysed by PALISUPAN 

to gain some experience in using the program and to verify that the model 

generation programs were working correctly. In addition to the panel density 

and distribution on the model, PALISUPAN allows alteration of the Kutta 

convergence criteria and block matrix convergence criteria (BMCC). Kutta 

convergence criteria sets the convergence limit of the maximum trailing edge 

pressure diSerence. Reducing this value will result in a more accurate pre-

diction of pressure forces, but will increase the number of iterations required 

for a solution, and hence increase the solution time. The BMCC sets the 

limit to which the block iterative matrix solver is forced to converge, and is 

usually set to 0.0001 according to Turnock [64]. 

7.9.1 Calculation of lift and drag coefficients 

Force components in the global coordinate system are output from PAL-

ISUPAN in non dimensional form, with the force non dimensionalised with 

respect to an area of 0.6667m^ as in equation 133. This area is Sxed in 

the program, and takes no account of the geometry of the input body. The 

PALISUPAN forces must therefore be multiplied by (0.6667/5.0) to give the 

global forces non dimensionahsed with respect to the area of the 5 metre by 

1 metre membrane. 

" \pV^ X 0.6667 

Lift and drag coefficients can be calculated from global forces (non dimen-

sionalised with respect to the membrane area) as shown in equations 134 

and 135. 

C^ = C/;,cosa —C/zSina (134) 
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CD = C'yySina: + CyzCosa (135) 

7.9.2 Three dimensional thin wing theory 

Abbott and Von Doenhoff [1] provide a method of calculating lift and drag 

for a three dimensional thin wing, which is obtained using lifting line theory 

and is related to the two dimensional data for the wing section. The method 

is applicable to wings with aspect ratios of 2 and above. Lift curve slope per 

degree, a, for the wing can be calculated using equation 136. The factor / , 

depends on the aspect ratio of the wing and the ratio of the root and tip 

chords (wing taper), and is obtained from a chart [1]. For a wing of aspect 

ratio 5, with the tip and root chords of equal length, / = 0.991. 

" = ' I + (SILJ.A) 

The elective lift curve slope, Og, is deSned as in equation 137, where oo is 

the average two dimensional lift curve slope of the wing. Jones edge velocity 

factor, E is the ratio of the (span + chord) of the wing to the span of the 

wing. 

^ (137) 

Using these relationships, the theoretical lift curve slope for a rectangular 

Sat section of aspect ratio 5 is 3.891 

Induced drag for a three dimensional wing with no twist can be calculated 

from equation 138. The term u is found from a chart presented in Abbott 

and Von DoenhoE [1], depending on the aspect ratio and taper of the wing. 

(138) 

For a case with aspect ratio of 5, and zero taper u = 0.983, and from equa-

~i2 
'L-
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7.9.3 Theoretical calculations for a curved surface 

A quadratic curve is used to define the curved membrane shape, with a 

maximum camber ^ located at the mid chord point, xi = c/2. The equation 

of the curved surface is given in equation 139. 

X2 = — 4 (139) 
(T C 

The two dimensional section lift coefficient at angle of incidence a, calculated 

using thin wing theory, is given by equation 140. 

Cf, = 2?: (140) 

When corrected for three dimensional effects as described in the previous 

section, the lift curve slope of the surface is 3.892 and the zero lift 

angle of attack, ao is —2̂ 7r/c. 

7.10 PALISUPAN analysis of rigid rectangular flat mem-

brane 

The fiat rectangular membrane wag analysed using two panel densities for a 

range of incidence from —10° to 10°. The panel densities used were: 

e Coarse grid, = 10, Â^ = 25 

# Fine grid, Â ( = 20, N, = 50. 

PALISUPAN [64] allows the use of a variety of panel distributions in the 

chord and spanwise directions. A sinusoidally distribution of panels was 

used in the spanwise direction with the maximum density at the mid point 

of the section (around the leading edge of the membrane), and a constant 

distribution was used in the spanwise direction. Average panel aspect ratio 
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for the two grids was 1.0, although the panel aspect ratio will vary due to the 

clustering of the panels at the leading edge. The Kutta convergence criteria 

was set at 0.001 and the BMCC was set at 0.0001 for these PALISUPAN 

runs. 

Results for the two grids are given in table 21, and the lift coefficient 

is plotted against incidence in figure 58. Lift curve slope, bC^jha obtained 

from the coarse and fine grids was 3.9371 and 3.9311, errors of 1.2% and 

1.0% respectively compared to theory. The gradient of against graph 

was 0.131 and 0.0433 for the coarse and fine grids, giving errors of 100% and 

33% compared to lifting line theory. The inaccuracy of the drag predictions 

is due to the low number of panels used in the chordwise direction, even in 

the fine grid case. 

7.10.1 Block matrix solver convergence limit 

A fiat plate of aspect ratio 5 was einalysed using a fine grid, = 50, = 50, 

with a range of block matrix iterative solver convergence limits, from 0.1 to 

1 X 10~®, and the results are shown in table 22 . The effect of this on 

the calculated lift coefficient is shown in figure 59. The block matrix solver 

convergence limit has little efiect on the solution obtained with global force 

values using a BMCC of 0.1 within 3% of the value obtained using a BMCC 

of 1.0 X 10" .̂ Computation times increase as the value is reduced, and this 

is particularly noticeable below 1.0 x 10"'̂ . The number of iterations does 

not increase significantly (this is affected by the Kutta condition convergence 

limit), but each iteration takes more time. The global force and lift coeffi-

cients using a BMCC of 1.0 x 10"̂ ^ are predicted to within 0.5% of the values 

obtained with a BMCC of 1.0 x 10~®, and to reduce the computational time 

required for further analysis 1.0 x 10"^ will be used in future for the PAL-
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ISUPAN analysis, as this gives a sufficiently accurate level of solution for the 

influence matrix. 

7.10.2 Effect of panel average aspect ratio 

The eSect of the panel average aspect ratio was then investigated for the 

case of a 5 degree incident flow. Average panel aspect ratios of 0.5 to 1.5 

were considered, with number of panels up to about 1800 panels. The results 

for these cases are presented in tables 23 and 24. For a constant average 

panel aspect ratio, the error in lift coefficient compared to theory reduces 

as the number of panels is increased. However, the accuracy of the result 

is dependent on whether there is an odd or even number of panels in the 

chordwise direction. Figure 60 shows this for a series of models with average 

panel aspect ratio of 0.5, where an model with an even number of chordwise 

panels predicts a more accurate lift coefficient for a given number of panels. 

A model with an even number of panels will have a symmetric distribution 

of panels around the leading edge, which will result in a better deflnition of 

the model than in case with an odd number of chordwise panels. Using an 

odd number of panels can also result in a slight error in the spline genera-

tion routines used within PALISUPAN. However, as the number of panels 

increases the difference between the odd and even number of panels in the 

chordwise direction becomes less significant. 

The lift coefficient against number of panels for the range of panel aspect 

ratio cases with even numbers of chordwise panels is shown in figure 61. Al-

tering the panel average aspect ratio does not significantly affect the value 

of the lift coefficient calculated for fine meshes. For a 1000 panel model, 

the calculated lift coefficient differs by less than 0.1% for models with aver-

age panel aspect ratios of 0.5 and 1.5. For models with coarse meshes, the 

122 



extreme panel ratios (0.5 and 1.5) give slightly less accurate results. 

7.11 PALIS U P A N analysis of a curved membrane 

A set of points representing a curved membrane, chord 1 metre, span 5 me-

tres, with a camber of 5% of chord length was created, and a PALISUPAN 

input file was generated using the program F-2-P-II. The model was analysed 

using two grids: 

# Coarse grid, = 10, TV, = 25 

# Fine grid, = 50, TV, = 50. 

PALISUPAN was used to analyse the models at angles of incidence from —10° 

to 10°, and the results are listed in tables 25 and 26. The lift coefiicient is 

plotted against angle of attack in Sgure 62. Thin airfoil theory predicts a lift 

curve slope of 3.892rad"^ and zero lift angle of —5.7° for the membrane. The 

lift curve slope obtained by the coarse grid is 3.97, and by the 6ne grid is 3.87, 

errors of 2.0% and 0.5%. Zero hft angle calculated from the PALISUPAN 

analysis was 2.0° for the coarse grid and —4.8° for the fine grid. 

Both the coarse and fine grids gave good prediction of the lift curve slope, 

and the fine grid gave a good prediction of the zero lift angle. 

7,11.1 Effect of panel density 

The effect of panel density on the calculated hft coefficient was investigated 

for a plate with initial curvature of 5% and aspect ratio of 5 at a = 0°. In all 

cases, the block matrix convergence criteria was set to 1.0 x 10"'̂ , 10 points 

were used to define the leading edge and surfaces and 8 points were used to 

define the wake sheet. 
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Runs were carried out with or TV. held constant at 20, 36 and 50, and 

varying the number of panels in the other direction from 20 to 52 in steps of 4 

(this ensures that there is always an even number of panels in the chordwise 

direction, and removes the oscillation in results that odd/even Nt produces 

as discussed in section 7.9.2). A series of runs with for 20 to 56 

panels in each direction was also carried out. 

The lift coefficient is plotted against total number of panels for these runs 

in figure 63. The lift coefficient is only very weakly dependent on Ns, with a 

difference in lift coefficient of only 1.5% for total number of panels between 

720 and 1800 with TV, = 36. Lift coefficient values are highly dependent on 

and for the case with TV, — 36, the lift coefficient changes by 60% for 

total number of panels between 720 and 1800. This eSEect can be seen more 

readily in figure 64, where the lift coefficient is plotted against 7V( for TV, of 

20, 36 and 50. The lift coefficient is tending towards a converged solution as 

the number of panels is increased. 

Since the results seem almost independent of jV,, the case with Ng — 20 

was investigated for up to 100, and a series of models with Â ( = 60 

and varying Ns was investigated, to ensure that the weak dependence of Cz, 

upon Ns occurs with higher Nt. These results are shown in figure 65, and 

confirm that there is little dependence of C l upon Ng with high A .̂ The 

lift coefficient seems to be converging for values of Ns over 100. A series of 

models with Nt of over 50 was run for Ns = 36, to observe whether a similar 

convergence occurs in this case at high Nt values. The lift coefficient results 

for Ns of 20 and 36 are plotted against N in figure 66, and a similar trend 

to the Ns = 20 case can be seen. A model was attempted with AA, = 36 and 

Nt = 100, but this was extremely slow to run the analysis was terminated 

after 30 hours. 
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7.12 PALISUPAN analysis of a deformed sail model 

The deformed shape of one of the initial runs of the aeroelastic program 

on a sail model restrained along the leading edge was used to provide a 

deformed membrane definition for analysis using PALISUPAN to study the 

effect of variation of the PALISUPAN model and convergence parameters 

on the calculated forces on the sail. Kutta condition, BMCC limits, panel 

density and distribution were varied to enable the input model parameters 

to be set to give a good relative accuracy without the analysis being too 

time consuming. Figure 67 shows three sections of the PALISUPAN input 

model used in the sensitivity study at heights of 0.5, 1.0 and 1.5 metres up 

the mast. 

During the development of the aeroelastic program, it was noticed that 

the wake definition method being used in F-2-P-II did not always result in 

the wake sheet returning to the direction of the incident flow, as the cubic 

splines used to define the wake were not forced into having the correct slope 

at the end of the wake definition. To ensure that this occurred, three points 

were placed at distances of 10%, 11% and 12% of the local chord from the 

previous final point in the wake definition in the direction of the incident 

flow. 

The sail model used is triangular, with a 1 metre chord at the bottom of 

the sail, and a 2 metre span. To enable PALISUPAN to mesh the body, the 

triangle is truncated at a height of 1.75 metres to form a quadrilateral body. 
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7.13 Convergence criteria 

7.13.1 Block matrix convergence criteria 

A model with panel density of Nf = 40, TV, = 20 with an even distribu-

tion along the span and clustered distribution at the leading edge along the 

chord (as used for the previous model) was used to observe the effect of the 

convergence criteria (BMCC and Kutta condition). 

A series of runs with BMCC ranging from 1.0 x 10"^ to 1.0 x 10"^ were 

carried out. Results are tabulated in table 27, and a graph of the lift coeffi-

cient values is given in figure 68. The drag coefficient for all cases was within 

0.001% of the value obtained with BMCC of 1.0 x 10" ,̂ where = 0.1097. 

Lift coefficient values showed no clear trend as BMCC was reduced, and 

there was a change of only 0.005% over the range of BMCC used. Solution 

time increased as BMCC was reduced, and it was decided to use a value of 

1.0 X 10"^ in further investigations, as this gave an acceptable solution time 

of around 2 minutes on an UNIX workstation. 

7.13.2 Kutta condition 

Using a value for BMCC of 1.0 x 10"^, the Kutta condition limit was varied 

from 1.0 X 10~^ to 1.0 x 10"®. The case with Kutta limit of 1.0 x 10"® was 

stopped when no solution had been obtained after 7 hours. Lift coefficient 

values varied by 2% over the range of Kutta condition limits examined. The 

results are tabulated in table 28, and a graph of the lift coefficient values 

is given in figure 69. The number of iterations to solution increased with 

decreasing Kutta limit, and this is shown graphically in figure 70. There was 

no significant change in the lift or drag coefficient results (less than 0.1%) 

when the Kutta condition was reduced below 1.0 x 10"^, and this value was 
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chosen for future PALISUPAN runs to keep solution time to a minimum. 

7.14 Panel density 

The deformed triangle mode was run using a Kutta limit of 1.0 x 10"^ and 

BMCC of 1.0 X l O r * . The effect of changing the panel density was analysed 

by keeping Nt or constant and varying the number of elements in the other 

direction. In all cases, an even number of panels was chosen in the chordwise 

direction, as this was found to give more accurate results than odd numbers 

of panels as discussed in the analysis of the rectangular membrane, was used 

for all the cases. 

7.14.1 Effect of changing 

Models were run with = 40 and varying from 10 to 45. The results are 

tabulated in table 29, and graphs of the lift and drag coefficient are plotted 

against W, in figures 71 and 72. The lift coeScient values converge rapidly 

with Ng, and with 20 panels along the span the lift coefficient is within 0.5% 

of the value obtained with 45 panels. Drag coefficient does not converge as 

quickly, and the model with TV, = 20 has an error of 20% in Cf) compared to 

the case with 45 spanwise panels. Increasing the number of spanwise panels 

to 30 gives a 0.25% difference in lift and 7% difference in drag compared to 

the case with 45 spanwise panels. 

7.14.2 Effect of changing Nt 

The number of spanwise panels was kept constant at Ng = 2 0 , and number 

of chordwise panels was varied from 20 to 90. The results are tabulated in 

table 30, and the lift coefficient is plotted against the number of chordwise 

elements in figure 73. The convergence is not as rapid as for the case with 
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varying Ng, the case with Nf = 30 has an error of 10% compared with Nt = 90 

whilst Nt = 60 has an error of 4%. Number of chordwise panels has a more 

significant effect on the accuracy of the lift and drag coefficient calculations 

than the number of spanwise panels. 

7.14.3 Effect of panel aspect ratio 

In order to determine the eEect of the panel aspect ratio, a series of runs 

with fixed average panel aspect ratios (ratio of Nt to W,)of 0.5 and 1.0 with 

increasing number of panels were carried out. Since a clustered distribution 

of panels is used in the chordwise direction, the panel aspect ratio referred 

to is an average panel aspect ratio over the model. Results are tabulated in 

tables 31 to 33, and the lift coeSicient is plotted against number of panels in 

Egure 74. 

Both the series with APAR of 0.5 and 1.0 converge to a solution of Ci = 

1.06 as the number of panels increases. An accuracy of 5% in is obtained 

with approximately 1400 and 1000 panels for the cases with APAR of 0.5 

and 1.0 respectively. Solution time increases dramatically with the number 

of panels used in the model, and to minimise the error for a given solution 

time, models with APAR of 1.0 give the best results. 

Solution time for a PALISUPAN analysis depends on the Kutta conver-

gence limit, the BMCC and the number of panels used to de6ne the surface. 

Due to the iterative nature of the aeroelaatic solution, 200 PALISUPAN 

analyses will be carried out during a typical aeroelastic solution, and it is 

important to limit the panel density in order to keep the solution time at a 

reasonable level. A solution time of three minutes was chosen which results 

in a run time of the aeroelastic analysis in the region of 12 hours on a UNIX 

workstation. Using the BMCC and Kutta limits set according to the results 
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of sections 7.12.1 and 7.12.2, a mesh of around 1000 panels gives a run time 

of three minutes, which is acceptable for the aeroelastic analysis to keep total 

solution time to around 12 hours. A panel distribution of Nt = 64, = 16 

was chosen to provide an average panel aspect ratio of 1.0, with around 1000 

panels. 

7.15 Panel distribution 

Panel distribution for the chordwise direction is set to give a higher con-

centration of panels around the leading edge, as this is the area of highest 

pressure gradient. Two distributions were examined for the spanwise panels, 

an even distribution and one with sinusoidal distribution with higher panel 

density at the head of the sail. The resulting force output from the two cases 

are given in table 34, and altering the distribution of the spanwise panels 

made a 5% difference in the lift coefficient. As there is no theoretical case 

to compare this against, it is diSicult to say which of the cases is more accu-

rate. A constant spanwise distribution was used by Cant [10] in the analysis 

of a mainsail, and this distribution was chosen for the analysis of the sail 

geometries. 

7.16 PALISUPAN in aeroelastic analysis 

Grid generation programs to generate PALISUPAN input model definitions 

from grids of points have been developed and shown to give smooth PAL-

ISUPAN model definitions. The number of panels for the aeroelastic analysis 

of a rig will be set at Nt — 64, = 16, to give a total number of panels of 

1024, which will allow solution of the aerodynamic aspect of the aeroelastic 

solution in a suitable time. BMCC will be set at 1.0 x 10"^, and the Kutta 

condition criteria will be set at 1.0 x 10'^, as these values have shown to give 
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a low solution time whilst maintaining as accurate solution of the potential 

flow analysis for a given panel distribution. 
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8 Aeroelastic analysis 

The generic structure of the aeroelastic solution method is shown in figure 75. 

The body to be analysed is defined by the finite element model of the body in 

its initial configuration.. The points defining sail sections are extracted from 

the finite element model, and used as an input to the F-2-P-II program, which 

is used to generate a PALISUPAN model of the body, and then PALISUPAN 

is employed to calculate the pressure distribution over the body. The panel 

pressures calculated by PALISUPAN are used to calculate the loading on the 

finite element model, which is solved to obtain an updated configuration of 

the body. The updated configuration is then used to generate an updated 

PALISUPAN model, and this loop is continued to obtain a solution. 

The solution strategy for the aerodynamic analysis will depend on the 

stability of the model being considered. A well restrained model, such as 

a rectangular membrane restrained along all sides gives a stable solution 

without employing velocity stepping, and looping between the potential fiow 

and structural analysis gives a rapidly converging solution. As the models 

become less restrained, as in the free trailing edge rectangular membrane, 

the membrane is less stable under this aeroelastic solution method, and an 

alternative velocity stepping solution method used by Smith and Shyy [57] 

was implemented to ensure that membrane remains in a stable configura-

tion throughout the solution path. The Stein-Hedgepath wrinkle model was 

implemented for the analysis of membranes by the aeroelastic method as 

described in section 8.5.1. 
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8.1 Development of the aeroelastic solution method 

The first case to be analysed using an aeroelastic solution method was an 

initially flat rectangular membrane of aspect ratio 5 and chord of 1 metre 

fully restrained around the perimeter, as this model had been used in the 

PALIS UPAN investigations described in the previous chapter. Analysis of 

this model allowed development of the solution method and program struc-

ture to be employed for the subsequent aeroelastic analysis of a mast sail 

structure. The membrane was analysed in a flow with free stream velocity 

of 5m/s with a = 10°. The membrane was analysed with a Youngs modulus 

of 3.0125 X 10 ,̂ giving an aeroelastic number of 3.4. The Poissons ratio was 

set at [/ = 0.5. 

8.2 Calculation of finite element pressure loading 

PALIS UPAN can be set to output a file containing the pressure and centroid 

for each of the panels used in the analysis. The data from this file is used to 

calculate the pressure loading on the finite elements representing the body. 

A program to obtain the pressure loading for an arbitrary finite element 

mesh, P-2-F was developed using the structure shown in figure 76. The 

PALIS UPAN panel output is ordered as a series of strips of panels, running 

from the trailing edge along the suction surface, then back along the pressure 

surface in the chordwise direction, at increasing Zg values along the span. 

The number of panels in each chordwise strip can be obtained from the 

Nt parameter used to generate the PALIS UPAN input model. As an even 

number of panels is employed in the discretisation of the PALIS UPAN input 

model, the strip can be split into the suction and pressure surfaces of the 

strip with half the panels on each surface. The strips are assumed to be 
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at a constant zg value, and the pressure data is used to generate a set of 

cubic splines of the pressure for each of the suction and pressure surfaces 

with respect to the xi coordinate of the panel centroid. 

In order to calculate the pressure loading on a finite element, the centroid 

of the finite element is calculated from the deformed node positions defining 

the element. The PALISUPAN panel strip with the closest zg value to the 

element centroid is used to calculate the pressure on the element. As the 

PALISUPAN model is truncated at the tip of a triangular sail model, the top 

most panel strip is used for the calculation of the pressures of all elements 

above this level in this case. The pressure coeScient for the suction and 

pressure surfaces, and are calculated from the appropriate spline curve 

at the zi location of the finite element centroid. Pressure loading for the 

element is then calculated according to equation 141, where is the area 

of the finite element. 

q. = \pVlA,(Cl ~ c;) (141) 

8.2.1 FENLA3-3 analysis of a rectangular membrane 

FENLA3-3 was used to analyse a rectangular membrane of aspect ratio 5 

under a constant pressure loading, to ensure that the finite element analysis 

mesh is appropriate for the high aspect ratio membranes. The material 

properties used were = 1.2 x lO^A /̂m ,̂ = 0.5. The membrane was 1 

metre by 5 metres, under a load of l^N/rn?. This gives an aeroelastic number 

of n = 2, and a theoretical prediction from Seide [53] of central defection 

of 0.1729 metres. A symmetrical finite element mesh, of the same format as 

shown in figure 78, with 500 elements was used to analyse the membrane. 

The deflection predicted by FENLA3-3 was 0.1750, a 1.2% error compared 

to theory, and this gives confidence in the format of the finite element mesh 
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being employed for the aeroelastic analysis. 

8.2.2 Aeroelastic solution structure 

The aeroelastic program, MONSTAl contains the P-2-F load calculation pro-

gram, a non linear finite element analysis program based on the FENLA3-3 

membrane program and the F-2-P-II model generation program. Commu-

nication between PALISUPAN and the aeroelastic program, MONSTAl is 

carried out using data files, and the loops of the aeroelastic solution are con-

trolled by a batch file. The data files used by the program are listed below: 

• command file - contains data used for generation of the PALISUPAN 

model and load calculations from the PALISUPAN log file 

® FE data file - contains the finite element model data 

® FE displacement file - contains the displacements of the finite element 

inodel nodes 

• PALISUPAN input file - PALISUPAN model data 

• PALISUPAN log file - PALISUPAN output pressure data used to cal-

culate the finite element model loading 

For the first loop of the program, the pressure calculation and finite element 

analysis sections of MONSTAl are skipped, and the initial PALISUPAN in-

put file is generated using the finite element model and data contained in 

the control file by the P-2-F-II model generation program. A PALISUPAN 

analysis is then carried out on the initial membrane shape. The pressure 

data from this is used to apply loads to the finite element program. The 

finite element program uses a number of load steps defined within the finite 

element data file, iterating at the last load step to the defined convergence 
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tolerance. The deflected membrane shape is used to generate a new PALISU-

PAN model and the node displacements are output to a file. In subsequent 

loops of the program, the node displacements are read in from the file and 

define the node initial displacements at the start of the finite element load 

steps. The finite element program has a Total Langrangian formulation, and 

so all quantities are referred to the initial coordinates of the model at the 

start of the aeroelastic analysis, which remain in the finite element model 

data file. Iteration between the finite element and fluid models continues 

up to a pre-set number defined in the batch file used to run the analysis. 

The convergence checking method used in the finite element analysis section 

of MONSTAl was the checking of individual degree of freedom percentage 

change in displacement against a defined convergence limit as described in 

section 6.4.10. 

8.2.3 FENLA modifications 

The finite element analysis program, FENLA, was modified for use in the 

iterative loop with PALISUPAN. The node displacements, are stored in 

a file at the end of the finite element analysis for each iterative loop before 

the MONSTA program exits. This allows the initial model definition to be 

maintained in the finite element data file, so allowing the Total Langrangian 

formulation to be employed throughout the loops of the aeroelastic analysis. 

Displacements of the nodes are zero at the start of the first loop, and so for 

this case the 'u" are not read in from the file and instead are initialised to 

zero. Initial stress is used for the first load step for the first loop only, as 

the finite elements will have initial stress due to the node displacements for 

subsequent loops. Element pressures are calculated from the PALISUPAN 

output data, and so it is no longer necessary to read in the element pressures 

135 



from the finite element model data file. 

8.2.4 Output 

The data visualisation program, AVS was used to check the solutions ob-

tained from the aeroelastic analysis. A data file in the AVS format was 

output by MONSTAl at the end of each iterative loop, containing the de-

formed shape of the model, along with the node displacements and element 

stresses. 

8.2.5 Problems encountered during development 

During the analysis of the rectangular membrane, a number of problems 

were identified with the MONSTAl program. It was noticed that the wake 

sheets did not always finish with the end slope in the direction of the free 

stream. Three points were added to the wake curve definition, as described in 

section 7.11 to overcome this problem. During some of the solution attempts 

of the rectangular membrane, a saddle point appeared in the deformed shape 

of the sections used for the PALISUPAN model generation. This results in 

an error in the application of the artificial thickness, as the principle normal 

direction switches to the opposite direction over these points, resulting in a 

incorrect definition of the PALIS UPAN input section of the form shown in 

figure 79. To ensue that the F-2-P-II program can deal with arbitrary shaped 

sections, the normal calculation for all points on the surface was altered to 

the one previously used for straight lines using the cross product of vectors 

on the sail surface, as described in section 7.6.1. 

To enable the solution history to be examined during the aeroelastic anal-

ysis, a routine was inserted into the MONSTAl program which outputs the 

PALISUPAN global forces and the deflection of a salient point of the model 
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(for the restrained membrane the mid point deflection was output) to a re-

sults file at the end of each of the MONSTAl runs. 

8.2.6 Results of MONSTAl analysis of initially flat rectangular 

membrane 

A rectangular membrane was analysed using a PALISUPAN grid of Nt = 

Ns = 50, with 10 points used to define both the surfaces and leading edge 

of the PALISUPAN input model sections. A symmetric triangular finite 

element grid of the form shown in figure 78 with 500 elements was used for 

the structural analysis, using 20 load steps and a convergence limit of 0.001, 

and 10 loops of the aeroelastic solution were used. A solution was obtained 

for the model with a rapid convergence. The deflection of the mid-point of 

the membrane obtained after each iterative loop is shown in figure 80. The 

deflection obtained after 3 loops is within 3% of the value obtained after 10 

loops, and it can be seen that the analysis rapidly reaches convergence. 

8.2.7 Effect of PALISUPAN model panel density 

A series of membranes were analysed using PALISUPAN mesh densities from 

600 to 2500 panels, using 500 finite elements for the structural model. The 

grid used all had equal numbers of panels in the chord and spanwise direc-

tions. The results are presented in table 35, and the central deflection is 

plotted against number of panels in figure 81. 

The panel density has a small effect on the central deflection. Increasing 

the panel density from 600 to 2500 changes the central deflection by only 

7%, and a grid with 1225 panels gives central deflections to within 3% of the 

value obtained using 2500 panels. 
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8.2.8 Effect of finite element mesh density 

The PALISUPAN mesh using 1225 panels was used to examine the effect 

of the finite element mesh density. A number of meshes with 320 to 3920 

elements were analysed. These were all of the same format as shown in 

figure 78. The results are given in table 36, the lift coefficient is plotted 

against the number of panels in figure 82, and the central defiections are 

plotted in figure 83. The oscillation of the central deflection graph is due to 

the fact that for models with an even number of elements along the short 

side, there is no node in the center of the membrane, and in these cases, the 

central deflection of the membrane was taken as the defection of the nearest 

node. 

The results of the aeroelastic analysis are only very weakly dependent on 

the number of finite elements used. The lift coefficient results vary by only 

1.7% across the range of meshes used, and central deflections vary by only 

1.2%. Neither of these quantities have any strong trend with the number of 

elements. If meshes with 500 elements or more are considered, the central 

defiections vary by only 0.6%. 

8.3 Analysis of membrane with free trailing edge 

As a step towards a triangular sail model, a membrane with a free trailing 

edge was analysed. A 2500 panel PALISUPAN grid and 500 element finite 

element model were used to model a membrane with 11 = 10 as in the pre-

vious, fully restrained cases. The finite element analysis would not produce 

an iterated solution in the first iterative loop. The deflections seemed to 

have converged after the 20 load steps (to less than 1% change per load step 

for a central strip of nodes over any degree of &eedom), but during the it-
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eration within the finite element analysis the solution became unstable and 

eventually exploded. The number of load steps was increased to 40, but no 

improvement was found. To attempt to obtain a solution, the finite element 

analysis was altered to just use the 40 load steps without iteration on the 

final load step. This produced a solution for the first loop with a realistic 

deflected shape and deflections of up to 0.35 metres in the $2 direction at 

the center of the trailing edge. However, during the second loop, the finite 

element solution was extremely distorted and the analysis was halted. The 

PALISUPAN results for the second loop resulted in primarily negative pres-

sures on the elements. Since the elements had deformed to support a positive 

pressure, obtained from the first loop, this caused the model to become un-

stable. This indicates that the application of the full free stream velocity on 

the undeformed model is not a suitable solution method for the membrane 

with a free trailing edge. 

The finite element analysis of the membrane will produce a model that is 

in equilibrium with the applied loading. However, for the free trailing edge 

membrane case the model deforms enough to significantly change the fluid 

flow over the membrane in the first iterative loop and hence the membrane is 

too far from the equilibrium position with the updated pressures to allow a 

stable solution to be obtained. As the finite element formulation is based on 

the use of load steps, it is logical to extend this to using a velocity stepping 

procedure for the aeroelastic analysis as used by Smith and Shyy [57]. 

8.4 MONSTA2 analysis of rectangular membrane with 

free trailing edge 

The velocity increment solution strategy was implemented in the M0NSTA2 

aeroelastic program. Freestream velocity is increased in a number of velocity 
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steps, and the initial shape of the membrane is analysed using PALISUPAN 

for the first velocity increment. The resulting pressures are used to calculate 

a deformed membrane shape, which is then analysed by PALISUPAN using 

the incremented free stream velocity. This analysis provides the loading for 

the next finite element load step. In this manner, the calculated membrane 

shape will be close enough to equilibrium at the end of each velocity step to 

give a stable solution path. At the 6nal velocity step, the aeroelastic solution 

loop is carried out until convergence of the node displacements is obtained. 

The model used for the aeroelastic analysis of an initially flat membrane 

with free trailing edge is a rectangular membrane with aspect ratio of 2 and 

1 metre chord. This was chosen as the case had been analysed by Smith and 

Shyy [57], which enables a comparison could be made with the mid point 

deflection obtained from a plot of the deformed shape of the membrane. 

Using this model also allows a higher number of elements along the chordwise 

direction of the model for a similar number of nodes (and hence solution 

time) as the membrane with aspect ratio of 5, without having higher aspect 

ratio elements. This will improve the section deflnition used to generate 

the PALISUPAN model. The membrane has an aeroelastic number, Hi of 

15 with a = 15° and // — 0.5. A free stream velocity of 577i/g^ was used, 

giving a Youngs modulus of 1.0167 x 10®. The finite element mesh used a 

symmetrical distribution of triangular elements, shown in figure 84. 

8.4.1 MONSTA2 convergence criteria 

The convergence criteria for the model was altered to the criteria used by 

Smith and Shyy [57]. The displacement increments calculated by the FE 

method were non-dimensionalised with respect to the model span, and summed 
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over all degrees of freedom in the model to give a residual, R, equation 142. 

3 
\ L 

&=1*=1 

The value of the residual is compared to the convergence value obtained 

from the finite element data file. If the residual is less than this value, the 

M0NSTA2 program causes the batch file to stop the iteration between the 

PALIS UPAN and MONSTA programs. 

8.4.2 Analysis results 

The aeroelastic analysis program was run with a convergence criteria of 

0.0001, using 200 velocity steps. A PALISUPAN panel density of Ni = 40, 

iVs = 20 was chosen for the aeroelastic analysis, from the experience gained 

with the PALISUPAN sensitivity studies on a curved membrane to give a 

good compromise between computational time and accuracy. An initial stress 

value of 100 resulted in a failure after 4 velocity steps. The displace-

ment history of the node at the center of the trailing edge suggested that 

this was due to the initial stress being too high, as the displacement of the 

node became negative after the second velocity step. High initial stress in the 

elements lead to a small displacement and hence small stress in the element 

for the first velocity step. This was confirmed by examining the AVS out-

put file from the MONSTA program, which shows that the element stresses 

are less than 10 Njrv? after the first velocity step. When the initial stress 

is removed on the second velocity step, the element stress is too small for 

the pressure loading applied, and the membrane becomes unstable. Initial 

stress was reduced to 10 N/m^, and the solution failed after 11 steps. When 

the initial stress was reduced to 5 N/m^, a successful solution was obtained, 

with only two iterations required to obtain convergence. The convergence 
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criteria was reduced to 1 x 10"^°, and the analysis continued. The residual 

remained between 5 x 10̂ ® and 5 x 10"^ for 550 iterations, at which point 

the analysis was stopped. It was noted that the PALISUPAN results were 

oscillating slightly, and the analysis was restarted using the same PALISU-

PAN result file for subsequent FEA analyses. The residual then reduced to 

1.45"^^ within 2 iterations, and remained at exactly the same value (to the 

output accuracy of 8 significant figures) for the next 10 iterations, at which 

point the analysis was finally stopped. 

Results obtained from the aeroelastic analysis of the free trailing edge 

membrane gave a solution, that converged and had the shape that would be 

expected from this problem. The central point of the trailing edge defected 

by 0.0326 metres. This shows good agreement with the value obtained from 

the deformed plot of the membrane analysed by Smith and Shyy [57] of 0.033 

metres. 

8.5 Initially Hat triangular membrane 

The next stage in the development of an aeroelastic model of a yacht rig 

was analysis of an initially flat triangular membrane. The triangle has an 

aspect ratio of 4, IIi = 17, a — 20° and i/ = 0.5. In this case a triangle 

of 2 metres height and a 1 metre base chord was chosen. The incident flow 

was chosen as which gives E = 153.53 x 10^ for IIi = 17. A 

grid generation program was written, which generates models defining the 

initial model geometry with the required finite element mesh density. General 

element layout is illustrated in figure 85, and the model has the same number 

of elements along the foot and the luff of the membrane, resulting in an 

element aspect ratio of up to 4. This aspect ratio is quite high, and future 

models were altered to avoid this. PALISUPAN models the sail without the 
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tip, as the quadrilateral elements used within it cannot mesh this area. The 

PALISUPAN model generation program was altered to only use a set number 

of finite element sections (obtained from the command file) to generate the 

PALISUPAN model, which truncates the triangle to form a quadrilateral 

body for the potential How analysis. Usually this will be set to 2 less than 

the number of finite element sections defining the model, but this may vary 

according to the mesh density. 

A model using 20 elements per side for the finite element mesh and a 

PALISUPAN grid of Nt = 40, — 20 was used to analyse the membrane. 

Convergence was set to 0.0001, and 200 velocity steps were used. Attempts to 

obtain a solution of the initially flat triangular membrane resulted in failure 

of the model. A range of initial stresses was used, and with it set to lOA /̂m ,̂ 

the solution failed after 3 steps. Decreasing initial stress to 5W/m^ resulted 

in failure after 4 steps, and 2.57V/m^ failed after 2 steps. In most cases, a 

large deflection occurred within the sail, and this then resulted in the model 

generation for PALISUPAN producing an diverging model for the next load 

step. 

The failure of the sail model could be due to compressive stresses devel-

oping in the sail during the solution, which would lead to an ill conditioned 

stiffness matrix. Widespread compressive stresses will result in the stiffness 

matrix becoming singular [46] [57] and the solution will fail. The Stein-

Hedgepath wrinkle model was incorporated in the finite element program to 

allow solution of models which could exhibit wrinkling behaviour. 

8.5.1 Membrane element wrinkle model 

The Stein-Hedgepath wrinkle model [37] is a numerical implementation of the 

Stein Hedgepath continuum theory [58]. The theory is based on the experi-
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mental observations that when in a wrinkled state, a membrane will contract 

more in the direction normal to a wrinkle than predicted by the Poissons 

ratio effect. In order to incorporate these geometric features of wrinkling, 

the local effective Poissons ratio is increased in the wrinkled regions. This 

effective value of the Poissons ratio is determined by imposing a locally uni-

axial stress state in the wrinkled region in the direction of the first principle 

stress, and this results in the effective Hookean material properties becoming 

dependent on the local state of strain. 

The numerical algorithm assigns an element one of three constitutive ma-

trices depending on whether the element is in a slack, wrinkled or taut state. 

The element state is calculated using the principle strains in the element as 

shown in equation 143, where ei,2 are the ordered principle strains, and the 

relevant matrices for slack C^, wrinkled and taut Ct elements are given 

in equations 144 to 146. 

Cs Ci < 0 
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8.5.2 Calculation of principle strain 

The element strain state is two dimensional in the element plane, and a 

geometric transformation using Mohr's circle can be used to calculate the 

principle strains from the element strain components in the element local 

coordinate system according to equation 147. 

Gil + €22 , 
Gprin — % ± 

2 
(11 — 2̂2 \ , / \2 

+ (̂ 12) 

1/2 

(147) 

8.5.3 Implementation of the Stein-Hedgepath wrinkle model 

The Stein-Hedgepath wrinkle model was incorporated into the M0NSTA2 

aeroelastic analysis solution. Element strain state is calculated during the 

evaluation of the stiEness matrix. For the Erst velocity step, the element is 

taken as being in a taut state, C = Ct, and the element stress is set at the 

initial stress value. For subsequent velocity steps, the element strain state at 

the start of the step is used to calculate the element principle strains, and the 

constitutive matrix is chosen based on these strains according to algorithm 

developed by Millar and Hedgepath [37], described in section 8.5.1. Element 

stresses are then calculated and used in the evaluation of the stiffness matri-

ces. The element state for each element is output to the node displacement 

file at the end of the velocity step, which allows these values to be input at 

the start of the next velocity step. The updated element state is compared 

to the element state at the start of the velocity step, and a Sag in the ele-

ment data structure is set to 1 if the element has changed state, and 0 if the 

element stress state has remained constant. 

The wrinkle model normally requires iteration to obtain the correct stress 

state throughout the model, as a change in element state will result in the 

stiffness matrix for the model changing. Since the program uses a large 
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auinber of explicit steps to full velocity, no further loops within the Suite 

element scheme were used for the initial implementation of the wrinkle model 

in the aeroelastic solution. This was found to give a stable solution for 

the rectangular membrane analysis, where the number of elements changing 

stress state is employed to provide an additional convergence check during 

the solution of the final velocity step. Further development of the aeroelastic 

solution method for the initially flat triangular sail required iteration within 

the velocity stepping procedure to provide a stable solution when using the 

wrinkle model. 

8.6 Wrinkle model analysis of the rectangular mem-

branes 

The fixed and free trailing edge rectangular membranes were analysed for in-

cident flow of Q = 15° and Hi = 15, using the wrinkle model described above. 

Deflections for the center of the membrane (fixed trailing edge) and central 

point of the trailing edge (free trailing edge) are given in table 37 for 100 and 

200 velocity steps, and compared to the values obtained without the wrinkle 

model. The finite element analysis with no wrinkle model predicted higher 

deflections in both the free and fixed trailing edge cases. About half the 

elements in the free trailing edge case were in a wrinkled state, with the re-

maining elements taut. The fixed trailing edge case converged to i? < 0.0001 

within 4 iterations. The free trailing edge case had 4 elements changing from 

taut to wrinkled state during the iterative stage of the analysis, and due to 

this the residual was of the order 10"^ to 100 iterations, where the analysis 

was stopped. Deflections of the mid point of the trailing edge for these cases 

had converged to 0.001% (the accuracy of the deflection output in the batch 

file) within 5 iterations, and the solution had converged with the exception 
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of two small areas at mid chord towards the tips of the membrane, which 

were changing state from taut to wrinkled. 

8.7 Wrinkle model analysis of initially Hat triangular 

membranes 

The finite element mesh used for the analysis of the triangular membrane 

was altered to reduce the aspect ratio of the finite elements. An example of 

the grid used is shown in figure 86. Initial attempts to analyse the triangular 

models resulted in failure. 

The wrinkle model used in the M0NSTA2 program calculated the ele-

ment state according to the strain in the element after the previous velocity 

step. If elements are changing state, this could result in a model that is 

not in equilibrium at the end of the velocity step. Millar [37] notes that an 

iterative solution is required within each loading step for the model to reach 

an equilibrium state (both in terms of element states and global equilibrium) 

before advancing to the next load step. The M0NSTA2 program did not im-

plement this, as it was thought that the large number of velocity steps used 

would not result in many state changes at each velocity step. This was not 

the case for the triangular membrane, in particular for the first few velocity 

steps where most of the elements were changing shape, and this proved to be 

the reason for the failure of the triangular membranes when analysed using 

M0NSTA2. 

An iterative solution was implemented within MONSTA. The finite el-

ement calculations were repeated at each velocity step, using a constant 

loading obtained from the PALIS UPAN analysis at the start of the velocity 

step. The number of elements changing state for each iteration was calcu-

lated, and the model reached a converged state when there were no elements 
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changing state. At this point the aeroelastic analysis moves on to the next 

velocity step. Since the pressure loading is obtained from the initial shape of 

the model at the start of the velocity step, the aerodynamic and structural 

loads may not be in equilibrium at the end of the velocity step, but dis-

crepancies should be insigniGcant due to the large number of velocity steps. 

Re-calculation of the pressures at each finite element iteration during the 

velocity stepping would result in a prohibitive increase in solution time. The 

potential flow solution takes more computational time than the finite ele-

ment analysis, around 180 seconds compared with 10-60 seconds for a model 

with similar numbers of finite element and PALISUPAN panels. The anal-

ysis using this solution method takes around 12 hours for a typical model, 

and re-calculation of pressures using PALISUPAN at each iteration would 

increase this to the region of 48 hours. The solution method used here gave 

stable converging solutions without a prohibitive increase in computational 

time. 

A series of triangular models with increasing finite element mesh density 

were analysed using the revised aeroelastic solution method. The PALISU-

PAN grid used had a panel density of = 64 and TV, = 16, which was 

found to give a good compromise between solution time and accuracy in 

the PALISUPAN sensitivity study on a deformed triangular membrane. The 

analysis used 100 velocity steps, with an finite element iterative residual limit 

of 1.0 X 10" .̂ Results of the analysis are given in table 38, and lift coeAicient 

of the body and deflection of the center of the sail are plotted against the 

number of finite elements in figures 87 and 88. The solution converges as the 

number of elements is increased. 
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8.8 Rig analysis 

The 16 node solid elements were incorporated into the aeroelastic model in 

the program M0NSTA3. The model data structure was altered to store ar-

rays of three node triangular membrane elements and 16 node solid elements. 

A data structure for material properties was created, and the model material 

properties were stored in an array of these, with each element containing a 

pointer to the element material property entry appropriate to it as defined 

in the finite element data file. Stiffness matrix contributions were calculated 

for the membrane elements and then the solid elements and assembled into 

the model stiffness matrix as described in chapter 6. Internal loading con-

tribution from each element was calculated according to the element type 

and assembled into the loading vector. The pressure loading on the mast 

was assumed to be zero for the rig analysis carried out here. Sail pressure 

loading was calculated using a modified version of the P-2-F program, where 

the PALISUPAN section panels defining the mast were not considered in the 

generation of the pressure spline curves for the sail element pressure loading 

calculations. 

8.8.1 Program execution 

The data files used by M0NSTA3 are listed below. A description of the file 

structure for the data and control files are listed in appendix C. 

• FE data file. This contains the finite element model definition at the 

start of the analysis. 

• Control file. Contains parameters used in the creation of the PALISU-

PAN model and calculation of the element pressures. 
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# Displacement 61e. At the end of each M0NSTA3 run, the node dis-

placements, followed by the current element states are written to this 

me. 

# Residual file. The current residual value is output to this file at the end 

of each M0NSTA3 run, so that it can be input for the M0NSTA3 run 

of the next iterative loop. This is to enable dynamic relaxation where 

required. 

A velocity stepping procedure is used for the solution of the rig analy-

sis, with a batch file used to run M0NSTA3 and PALISUPAN through the 

solution path. M0NSTA3 is run with two arguments, the velocity step and 

iteration number. For the start of the analysis, M0NSTA3 is run with both 

the velocity step and iteration number set to 0. The finite element model data 

is input, and the program skips the pressure calculation and finite element 

analysis and generates a PALISUPAN input file for the first velocity step 

according to the settings in the control file. This model is analysed by PAL-

ISUPAN, and the results file containing the global force coefficients, panel 

centroids and pressures is used to calculating the element pressure loading. 

An iterative solution to the finite element analysis using a constant pressure 

loading is used to calculate a deformed shape with the element stress states 

converged (no elements change state). At this point the deformed shape is 

used to generate the PALISUPAN model for the next velocity step. This 

procedure continues until the final velocity step. 

For the final velocity step, an iterative solution is carried out, looping 

between the finite element and PALISUPAN analysis. M0NSTA3 solves 

the finite element analysis of the model, again iterating using a constant 

pressure loading until the element stress state has converged. The deformed 

shape is then analysed by PALISUPAN to obtain updated pressure loading. 
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During the iterative solution, the residual is calculated at each finite element 

iteration, and when this reduces below the convergence criteria the aeroelastic 

analysis is complete. 

During the solution path, the PALISUPAN global force coefiicients, de-

flections of salient points (mast tip and mid point of the trailing edge), num-

ber of elements changing state and residual magnitude are output to a results 

file after each iteration of the finite element program. The deformed model 

shape, node displacements, element stresses, stress state and whether the 

element stress state has changed can be output in the AVS visualisation pro-

gram format at user defined intervals (usually at the end of each iteration at 

the final velocity step) is output to file to enable graphical representation of 

the solution. 

The aeroelastic program has the capability of using dynamic relaxation 

to improve the stability of the solution. Two relaxation factors, /3i and 

(32 are defined in the finite element data file. After solution of the finite 

element equations and calculation of the model residual, node displacement 

increments are multiplied by j3i if the residual has reduced from the last finite 

element analysis, and P2 if the residual has increased. A solution with no 

relaxation can be obtained by setting /3i = = 1 0-

8.8.2 Calculation of mast compression 

Stress components are calculated at the integration points and converted to 

Cachy stress components following the methods of section 6.9.3. The Cachy 

0-33 components are then integrated over the element and divided by the 

element volume to give a compressive stress in the mast element. 
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8.8.3 Rig models 

The rig analysed using the M0NSTA3 program has a mast height of 2 metres, 

and a sail foot length of 1 metre. In order to represent a typical yacht 

rig configuration, the mast should be restrained at the base, and the sail 

restrained at the clew. The first series of models, rigl, were fully restrained 

along the foot of the sail as well as at the base of the mast. Increasing 

the restraint on the model in this manner results in a more stable solution, 

which is suitable for initial development of the solution methods for the 

rig analysis. The sail is meshed using the same arrangement as in the sail 

analyses described in section 8.7, and an example of the rig geometry is 

shown in the side view of a deformed rig model in figure 93. The mainsail 

on a yacht has a bolt rope sewn into the luff of the sail, and this is held 

inside a track on the mast. It is possible for the sail to slide up and down the 

mast track, but in the upwind sailing condition, the forces generated by the 

mainsail combined with the friction between the bolt rope and mast track 

mean that there is very little movement. To simplify the rig model and to 

allow the mast and sail to be modelled as a single entity, the sail is assumed 

to be attached to the mast at the luff" in this analysis. 

The Youngs modulus used for the sail of 153 MPa, chosen to give an 

appropriate aeroelastic number, is about 0.6% of the value of a realistic sail 

material modulus [52] of 25 GPa. To obtain realistic structural interaction 

between the sail and mast in the aeroelastic model, a Youngs modulus of 

1.0 GPa was chosen for the mast material, which is 0.5% of the Youngs 

modulus of aluminium. The resulting mast will be stiffer than a real case, as 

the mast section is solid as opposed to a hollow section, but in a yacht rig the 

mast is supported by rigging which reduces the deflections of the rig, and this 

value was taken to be appropriate for the analysis conducted here. The mast 

152 



material Poissons ratio was set as = 0.3. A further series of rig models 

analysed, rigS, have a free foot with the clew and mast base restrained using 

the same mesh arrangement as the rigl models. The model mesh density is 

defined by the number of elements along the sail foot, so the rigl-10 model 

has 10 elements along the foot and 20 elements defining the mast. 

In order to simplify the model, the mast is assumed to be restrained at 

the level of the foot of the sail. A typical rig will have the clew of the sail 

supported by a boom which is attached to the mast at the level where the 

mast is restrained in the rig model. Including the boom in the analysis of a 

rig would increase the number of nodes required for the solution, and hence 

increase the solution time and the complexity of the model. As the analysis 

is aimed towards an understanding of the compression loads induced in the 

mast due to the support of the sail the boom was not considered in the 

rig analysis. The rig configuration used here approaches that used on some 

modern Open 60 class monohulls, where the boom is deck stepped, and the 

sail luff runs almost to the base of the mast. 

The attachment of the sail to the mast on a yacht is normally achieved 

by the use of a mast track, allowing the sail to slide up and down the mast. 

In practice there is httle movement of the sail once the sail is hoisted, as 

the friction in the track and forces generated by the sail on the luff restrict 

any movement, particularly in the upwind saihng condition being analysed. 

The sail is assumed to be fixed to the mast in the aeroelastic analysis, which 

allows the use of a single finite element model to define the mast and sail. 

8.9 Aeroelastic analysis of the rigl models 

A series of rigl models with increasing finite element mesh density were anal-

ysed using M0SNTA3 and PALIS UPAN. The PALIS UPAN panel density 
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was fixed at Nt = 64, Ns = 16 with 14 panels used around the mast. 

Rig models with between 8 and 44 mast elements (which correspond to 

between 60 and 2280 sail elements) were analysed using 100 velocity steps, 

and a residual convergence criteria of 1.0 x 10""®, with a maximum number 

of iterations set to 50. In practice, the residual of the mode only reduced 

to below the convergence criteria when changing sail element states resulted 

in the finite element analysis carrying out more than four or five internal 

loops. Recalculating the element pressures using PALISUPAN resulted in a 

residual of the order of 1.0 x 10"^ over the iterative solution path for the 

range of models tested. Analysis of the displacement history of the model 

showed that the displacement increments were of the order of 0.1% either 

side of a mean position after about 10 iterations. It was decided to leave 

the residual set at 1.0 x 10'^ to ensure that sufficient number of iterations 

would occur to ensure a converged solution. The rigl analyses were carried 

out using Pi = 1.0 and = 0.5. 

The lift coefficient and mast tip displacements obtained from the aeroe-

lastic analysis of the rigl models are given in table 39. Lift coefficient and 

magnitude of the mast tip displacement are plotted against the number of fi-

nite elements in figures 89 and 90. The aeroelastic solution of the rigl model 

converges as the finite element mesh density is increased. Solution time for 

the aeroelastic analysis ranged from 9 to 26 hours on a UNIX workstation. 

8.9.1 Effect of the relaxation factors 

The rig 1-10 model was analysed using a range of relaxation factors as listed 

below: 

® (3i ~ 1.0, = 1.0 

# A = 0.75, = 0.5 
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® /3i = 0.5, P2 = 0.5 and P2 = 0.25. 

After completing 50 iterative loops the PALISUPAN force coefficients, mast 

tip displacements and displacement of the mid point of the trailing edge and 

centre of the membrane varied by less than 0.1% for all the cases. PALISU-

PAN force coefficients and mast deflections are given in table 40. Reducing 

the relaxation factors resulted in a longer solution time, but this technique 

can be used to obtain a stable solution without compromising the accuracy 

of the solution providing that sufficient iterative loops are carried out at the 

final velocity step. 

8.9.2 Analysis of rigS models 

Loose foot sail models, rig3-14, rig3-16 and rig3-18 were analysed, and the 

results are given in table 41. The magnitude of the mast tip deflection is 

plotted against number of sail elements in figure 91, and the solution can 

be seen to be converging with increasing finite element mesh density as in 

the rigl case. The rig3-18 meshes required relaxation factors of ri = 0.5, 

rg = 0.25 in order to obtain a converging solution, and consequently the 

solution time increased to over 20 hours. 

8.10 Comparison of free and restrained mast cases 

A finite element mesh density of 14 elements along the boom was chosen 

for comparative analysis of the aeroelastic solution methods, as this gave 

reasonable accuracy with a solution time of around 14 hours. A rigS model 

with fully restrained mast, designated rigSR was generated and analysed 

using the aeroelastic solution method. A view of the deformed rig shapes 

obtained by the analysis are shown in figures 94 and 95 for the restrained 
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and unrestrained mast cases. The sail sections obtained for the restrained 

mast case, shown in figure 92 show a realistic deformed sail shape, as obtained 

by Smith and Shyy [57]. The bending of the mast in the unrestrained case 

has resulted in a reduction in the leech tension in the sail, and the top 

sections have twisted off. In this case, the sail has inverted over the top 

sections of the mast, resulting in an unrealistic flown shape. This indicates 

the importance of taking into account the coupled nature of the mast sail 

system, as the deformations of the mast significantly affect the sail shape. 

Previous aeroelastic analysis of a sail by Smith and Shyy [57] looked at 

an initally flat sail restrained along the mast track and obtained realistic 

deformed shapes as predicted by the restrained mast case here. Extension of 

the analysis to include mast deformations results in an unrealistic deformed 

shape. 

8.11 Analysis of curved sail 

Sails are designed to assume a flown shape with curvature even in the absence 

of loading. A curved sail model was generated with quadratic curves defining 

the sail cross section in the ZiiZg plane, using the same method as for the 

generation of the curved rectangular plates for PALISUPAN analysis, equa-

tion 139 for each section. The section camber, is calculated according 

to equation 148 where is the section coordinate, and s is the span of 

the sail (equal to the height of the mast). 

^sec 

^ (148) 

Two models with 14 elements along the boom, having restrained and free 

masts, rigSCR and rig 3C, were analysed with the same material properties 

and flow fields as the rig3 and rig3R models. The deformed shape of the rigs is 
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shown in figures 97 and 96 for the free and restrained mast cases respectively. 

In the free mast case, the bending of the mast results in the twisting off of the 

upper part of the sail, and this effect can be seen by comparison of the leech 

shapes in figures 99 and 98. This effect can also be seen in by comparing 

the photographs of a mast sail model in a wind tunnel in figures 2 and 3, 

obtained during testing [33]. In figure 3, the tension in the mainsheet has 

been reduced. This results in a lower leech tension in the sail, and the top 

section of the sail has twisted off more than in figure 2. In these cases the 

change in leech tension is introduced through control of the mainsheet rather 

than as a result of mast bend, but the effect on the sail trim is the same. 

The twisting off of the sail reduces the aerodynamic force coeScients pre-

dicted by the analysis, ag shown by the comparison of the force components 

in table 42. This is as expected by experience in real life, and again shows 

the importance of modeling the coupled nature of the mast sail system. In 

the converged state of the rig model, the majority of the sail elements were 

in a wrinkled state, with some taut elements in the central area of the sail. 

This is due to the high levels of tension predicted from the clew to the head 

of the sail, with a much smaller tension predicted along the chord of the sail, 

which ties in with the reinforcement patterns placed in real life sails. 

8.11.1 Comparison of mast stress calculations 

In previous finite element analyses of masts (for example Cant [10], En-

lund [12] and Hoffmeister [22]) the sail loading has been obtained from either 

potential flow or force balance on the yacht and applied to the mast using 

various distributions. In order to gauge the effectiveness of this method in 

calculating the mast compression, a series of non linear finite element anal-

ysis were made of a point loaded mast consisting of 28 elements. The mast 
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loading was obtained from the PALISUPAN global force coefficients from the 

aeroelastic solution of the rig3C-14 model, which allows a comparison with 

the compression calculated by the aeroelastic solution of the rig, and was 

applied to the mast using the following distributions; 

1. Constant distribution; 

2. Linear distribution : maximum at bottom of the mast, zero at the top; 

3. Sinusoidal distribution : maximum at centre of mast, zero at top and 

bottom. 

The mast compressive stresses obtained from these analyses and from the 

aeroelastic analysis of rig3C-14 are given in table 43. The compressive stress 

along the mast is plotted for the three load distributions in figure 100, and 

for the aeroelastic solution of the rig3C-14 model in figure 101. 

The linear distribution of sail loads on the mast predicts 20% less mast 

compression at the foot of the mast compared to the constant or parabolic 

distributions. The loading in this case is concentrated at the foot of the 

mast, and as a result the mast does not deflect as much as in the other 

distributions. All three assumed distributions predict a similar variation in 

stress along the mast height. The stress predicted by the analysis of the mast 

under the aeroelastic analysis forces is only 5% of the values obtained from 

the aeroelastic analysis. In the aeroelastic analysis case, the deflections of 

the mast tip result in tension in the sail leech. This tension will introduce a 

compressive stress in the mast in order to satisfy equilibrium at the head of 

the sail, and as this is not modelled in the point loaded analysis of the mast, 

the compression is underestimated by a significant amount. Tip deflections 

obtained from the point loaded case are also significantly different to the 

aeroelastic analysis results. This shows the importance of the interaction 
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of the mast and sail in the rig analysis, and these interactions cannot be 

modelled by separate analysis of the mast and sail. 

The finite element analysis of a mast by Cant [10] loaded the mast with 

sail forces obtained from a PALISUPAN analysis of the rig, applied using a 

linear distribution on the mast, and point loads obtained from sailing trials 

data. Although the mast deflections obtained from the analysis were within 

10% of data obtained from trials, the compressive mast stress obtained from 

the analysis was found to be only 45% of the measured value. The results 

of the stress comparisons suggest that this discrepancy is partially due to 

the loading assumptions used in the finite element analysis, as the eff'ect of 

the leach tension on mast compression is not accounted for. Cant [10] in-

cluded forest ay, rigging and halyard loads on the mast which also induce 

compression. As these values were obtained from sailing trials they were 

easily quantified, and the discrepancy in the predicted and measured com-

pression is smaller than the difference obtained in the comparison of mast 

compression for the rig3C-14 case, due to the compression induced by the 

point loads. 
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9 Conclusions 

An aeroelastic solution method for a mast sail system has been developed. It 

has been shown to predict realistic behaviour of the system when an initially 

curved sail is analysed. 

A potential flow model is used to calculate the pressure loading on a mast 

sail system, which allows solution of the aerodynamic problem in an accept-

able time scale. A panel code was chosen for the analysis, which enables the 

mast and sail to be analysed as a single body. A computer program has been 

developed to generate the input model for the potential flow analysis from 

a deformed finite element model. The distribution of panels for the models 

analysed was investigated in order to determine a suitable panel distribution 

which gives a good compromise between solution accuracy and run time of 

the analysis. 

The Total Langrangian formulation for non-linear finite element analy-

sis was found to be suitable for the analysis of a mast sail system. Three 

node triangular membrane elements, incorporating a wrinkle model algo-

rithm have been implemented in the non-linear analysis, and the elements 

have been validated against a theoretical solution of large displacements of 

a rectangular membrane under uniform pressure loading. The three node 

triangular elements are capable of modeling an arbitrary initial shape of the 

membrane, allowing analysis of initially curved sail models. A sixteen node 

solid finite element was implemented in the non-linear analysis program to 

model the mast. These elements can represent a mast with circular or el-

liptical sections, and have been validated against the theoretical solution of 

large deformations of a thin beam. 

A computer program to calculate the sail membrane element pressure 

loading from the results of the potential flow analysis was been developed. 
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This was incorporated with the non-linear finite element analysis and the 

potential flow model generation program to form an aeroelastic analysis pro-

gram using the potential flow code to obtain the aerodynamic loading of the 

mast sail system. A velocity stepping solution method incorporating an iter-

ative solution for the wrinkle model algorithm in the non-linear finite element 

analysis was used to obtain a solution to the aeroelastic problem. Dynamic 

relaxation was introduced to the aeroelastic solution method which has been 

shown to increase the stability of the solution, and have insignificant effect 

on the predicted sail forces and deflections. 

An aeroelastic solution of a mast sail system was obtained, and compared 

to a solution obtained with a restrained mast. An unrealistic solution was 

obtained for a free mast case using an initially flat membrane. Analysis 

of an initially curved membrane, which more closely models a real life sail, 

predicted the twisting of the upper sail sections due to bending of the mast, 

a phenomena observed in mast sail systems in real life. Aerodynamic forces 

predicted by the model with a free mast were less than for a restrained mast 

case, due to the twisting off of the upper sections of the sail. This indicates 

the necessity of modeling the mast and sail together in the consideration of 

an aeroelastic solution of a yacht rig. The aeroelastic analysis of an initially 

curved sail shape results in a significant difference in calculated force and 

sail deformations compared to the initially flat case, and this indicates the 

importance of using membrane finite elements which can model the initially 

curved surfaces of yacht sails. 

Comparison of the mast compression obtained from the aeroelastic anal-

ysis of a mast sail system with a previous method which distributes the sail 

loads along the mast shows that the uncoupled mast sail analysis predicts 

compression in the mast 95% lower than the aeroelastic analysis. This is 
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due to the interaction of the mast and sail, and in particular the effect of the 

leech tension on the mast compression. Failure to model this in an uncoupled 

system results in mast compression being underestimated. 

The aeroeleistic solution method developed inherently models the interac-

tion of the mast and sail, which has been shown to affect both the predicted 

sail forces generated, the flown sail shape and the predicted mast compres-

sion. The use of distinct discretisations for the finite element and potential 

flow analyses enables the solution of the mast sail system. No qualitative 

validation data for the aeroelastic solution of a mast sail system is available, 

but validation of the individual aspects of the solution method give confi-

dence in the comparisons of aeroelastic analysis, and the solution method 

has been shown to model physical phenomena found in real life studies. 

9.1 Future work 

Generation of suitable validation data for the aeroelastic analysis of a mast 

sail system was beyond the scope of this project, and obtaining appropriate 

data would enable the quantitative results of the aeroelastic analysis to be 

validated. The method could be extended to account for the pressure loading 

on the mast, which although small in area compared to the sail, is located 

around the region of the rig where the highest pressure peaks are found. The 

inclusion of this loading could effect the mast deformations, and hence the 

deformations of the rig 

The structure of the program has been developed to enable improved 

aerodynamic models to be incorporated into the aeroelastic analysis. Modern 

reinforced sails consist of reinforcing fibres which are sandwiched between 

membrane films. These structures could be analysed with the finite element 

method developed here, using rod elements for the reinforcement fibres and 
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membrane elements to represent the membrane Elms. 
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Displacement Grandin FE program 
7.74 X 10-5 7.74 X 10-5 

(m) 1.58 X 10-^ 1.58 X lO-'̂  
1(4 (m) -1.62 X 10-5 -1.62 X 10-5 
t;4 (m) 1.35 X 10-'̂  1.35 X 10-"* 

result Grandin FE program 
el 1 el 2 el 1 el 2 

cTg -65.0 264.0 -65.0 264.0 
-32.0 65.0 -32.0 65.0 
135.0 65.0 135.0 65.0 

Table 1; Results of triangle element finite element validation 

Node ^ x x C x y 

Element 0 
4 -55.2 107.1 -113.6 
1 -95.9 -28.8 -420.3 
0 -972.1 -291.6 -467.8 
3 -931.4 -155.8 -161.2 

Element 1 
5 1123.2 319.7 1.7 
2 1128.9 338.7 -426.9 
1 -95.9 -28.8 -420.3 
4 -101.6 -47.8 8.4 

Element 2 
7 -79.8 -286.7 -237.5 
4 47.6 137.9 -331.1 
3 -219.9 57.6 -182.6 
6 -347.3 -366.9 -88.9 

Element 3 
8 298.3 -914.9 -370.8 
5 624.0 169.9 -588.8 
4 1.15 -16.96 -209.1 
7 -324.3 -1101.8 8.9 

Table 2: Nodal stress values for four noded quadrilateral test 
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Model Tip deflection (m) 
Theoretical 0.333 

10 of 8 node quad 0.334 
10 of 4 node quad 0.230 
40 of 4 node quad 0.300 

Table 3: Results of Aaite element analysis of tip loaded cantilever 

Model ^elem ^tip 
(metres) 

beam-5 20 0.09496 
beam-10 40 0.18825 
beam-15 60 0.21769 
beam-20 80 0.22380 
beam-25 100 0.22395 

Table 4: Tip deflections of tip loaded cantilever modelled with three node 
triangular finite elements 

Tip deflection (m) 
8 node 16 node 20 node 

14 point 27 point 14 point 27 point 
1 0.00254 0.00255 0.00255 0.07344 0.07335 
2 0.00929 0.00937 0.00937 0.08949 0.08942 
3 0.01840 0.01878 0.01878 0.09419 0.09417 
4 0.02802 0.02900 0.02900 0.09600 0.09605 
5 0.03700 0.03882 0.03882 0.09702 0.09705 
6 0.04481 0.04762 0.04762 0.09761 0.09765 
7 0.05136 0.05518 0.05518 0.09801 0.09806 
8 0.05676 0.06155 0.06155 0.09830 0.09835 
9 0.06117 0.06686 0.06686 0.09851 0.09857 
10 0.06478 0.07126 0.07126 0.09867 0.09873 
20 0.07993 0.09053 0.09054 
30 0.08359 0.09542 0.09541 

Table 5: Tip deflections of tip loaded cantilever modelled by solid elements 
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^tip/ L 
(metres) 

1 0.333958 
2 0.173504 
3 0.274570 
4 0.226282 
5 0.288559 
6 0.255825 
7 0.295533 
8 0.271605 
9 0.296375 
10 0.280584 
25 0.288221 
50 0.298958 
75 0.299024 

100 (1299038 
125 0.299043 

Table 6: Non linear analysis of tip loaded cantilever using FENLAl 
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A; = 1 A; = 10 
1 0.12545 1.25450 
2 0.07920 0.53552 
3 0.11339 0.44097 
4 0.10427 0.50023 
5 0.11713 0.59473 
7 0.12105 0.64322 
10 0.12394 0.67345 
15 0.12517 0.71807 
20 0.12546 0.71352 
25 0.12557 0.71707 
30 0.12561 0.71658 
40 0.12565 0.71697 
50 0.12566 0.71707 

500 0.12568 0.71717 
750 0.12568 0.71717 
1000 0.12568 0.71717 

Table 7: Sensitivity study on distributed loaded cantilever using FENLAl 

k 
Analytical = 5 = 10 AT;, = 25 N i s = 50 

1 0.124 0.117132 0.123937 0.125568 0.125664 
2 0.234 0.234993 0.231570 0.244895 0.245526 
3 0.336 0.331953 0.326908 0.350787 0.352293 
4 0.424 0.390574 0.411714 0.440326 0.442575 
5 0.490 0.438691 0.481489 0.514225 0.516443 
6 0.552 0.496267 0.537868 0.574172 0.575867 
7 0.600 0.561469 0.581387 0.622061 0.623400 
8 0.640 0.598972 0.616179 0.660425 0.661500 
9 0.676 0.637538 0.646644 0.691331 0.692100 

10 0.704 0.594728 0.673451 0.716432 0.717070 

Table 8: FENLAl ajialysis of distributed loaded cantilever 
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Tip deflection (m) 
40 elem 80 elem 320 elem 

5 -0.421055 41514481 41653853 
10 -0.430197 41555558 -0.643351 
15 41451524 41586130 41685377 
20 -0.452870 41582416 41683080 
25 -0.454233 41585455 41683680 
30 -0.454233 41586147 41683933 
35 41455012 -0.586481 -0.684250 
40 41455145 41586654 41684392 
45 -0.455222 41586752 -0.684470 
50 -0.455269 41586811 -0.684516 
100 41455364 41586927 41684600 

Table 9: Results of convergence tests for distributed loaded cantilever, load 
coefficient 10, analysed using FENLA3-3 with increasing number of elements 

Hi Central deflection Hi 
Analytical F4 Error(%) F3-3(l) Error(%) F3-3(2) Error(%) 

1 0.28660 0.28795 0.470 0.28784 0.432 0.28445 0.752 
2 0.14330 0.14323 0.050 0.14315 0.104 0.14162 L170 
3 0.09553 0.09545 0.087 0.09539 0.146 0.09440 L182 
4 0.07165 0.07159 0.087 0.07154 &149 0.07081 L175 
5 0.05732 0.05727 0.087 0.05723 &149 0.05665 1.169 
6 0.04777 0.04773 0.085 0.04770 &148 0.04721 1.165 
7 0.04094 0.04091 0.084 0.04088 0J.47 0.04047 L162 
8 0.03582 0.03580 0.083 0.03577 &146 0.03541 1.161 
9 0.03184 0.03182 0.082 0.03180 &146 0.03148 L159 
10 0.02866 0.02864 0.082 0.02862 &145 0.02833 L158 

2L5 0.01330 0.01329 &080 0.01328 0J44 0.01315 L155 

Table 10: Central deflection of pressure loaded square membrane predicted by 
FENLA3-3 and FENLA4 for varying Hi. FENLA3-3 grids: (1) symmetrical, 
(2) asymmetrical. 
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^ e l e m Characteristic ^centre 

element length (m) (m) 
2 0.5000 0.167977 
8 0.2500 0.153930 
18 &1667 0.149137 
32 &1250 0.146902 
50 (11000 0.145678 
72 0.0833 0.144935 
98 0.0714 0.144449 
128 0.0625 0.144112 
162 0.0556 0.143869 
200 0.0100 0.143687 
242 0.0455 0.142547 
288 0.0417 0.143436 
338 0.0385 0.143347 
392 0.0357 0.143274 
450 0.0333 0.143214 
512 0.0313 0.143163 
578 0.0294 0.143120 
648 0.0278 (1143083 
722 0.0263 (1143050 
800 0.0250 (1143022 
1250 0.0200 (1142924 
1800 0.0167 &142865 
2450 0.0143 (1142827 
3200 0.0125 (1142800 
4050 0.0111 0.142781 
5000 0.0100 0.142765 
7200 0.0083 0.142743 

Table 11: Dynamic array FENLA3-3 membrane analysis 
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^ e l e m Characteristic ^centre 

element length (m) (m) 
2 0.500 > 50 n/c 
8 0.250 4 0.154329 
18 0.167 4 0.149375 
32 0.125 4 0.147064 
50 0.100 4 0.145784 
72 0.083 4 0.145007 
98 0.071 4 0.144500 
128 0.063 4 0.144149 
182 0.056 4 0.143896 
200 0.050 4 0.143707 

Table 12: FENLA3-4 membrane analysis with varying number of elements 
using 3 point integration 

^ e l e m Characteristic AT,, ^centre 

element length (m) (m) 
2 0.500 7 0.164099 
8 0.250 4 0.154325 
18 0.167 4 0.149381 
32 0.125 4 0.147067 
50 0.100 4 0.145787 
72 0.083 4 0.145009 

Table 13: FENLA3-4 membrane analysis using 13 point integration 
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^elem ^node (m) 
1 20 10 20 -0.0685571 

20 13 -0.0685571 
30 12 -0.0685571 

2 32 10 31 -0.0876148 
20 13 -0.0876148 
30 11 -0.0876148 

3 44 10 40 -0.0926471 
20 15 -0.0926471 
30 13 -0.0926471 

4 56 10 44 -0.0945578 
20 16 -0.0945578 

5 68 10 45 -0.0955442 
20 15 -0.0955442 

6 80 10 47 -0.0961342 
20 16 -0.0961342 

7 92 10 48 -0.0965261 
20 16 -0.0965261 

8 104 10 48 -0.0968044 
20 16 -0.0968044 

9 116 10 49 -0.0970121 
20 16 -0.0970121 

10 128 10 49 -0.0971728 
20 16 -0.0971728 
30 13 -0.0971728 

Table 14: FENLA5 analysis of tip loaded cantilever 
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20 Load steps. Q = 0.05 

Cc AT,, ^tip 
1 X 10-'̂  1 0.225569 0.223289 
5 X 10-^ 1 0.227315 0.225030 
1 X 10-^ 4 0.227398 0.225115 
1 X lO-'̂  11 0.227289 0.225005 
1 X 10-^ 18 0.227315 0.225033 
1 X 10-^ 26 0.227315 0.225030 
1 X 10-'̂  33 0.227315 0.225030 

Table 15: Tip loaded cantilever, 20 load steps, q 
in metres 

0.05, all displacements 

20 Load steps, C; = 0.01 
Cc ^tip 1̂27 

1 X 10-^ 1 0.225569 0.223289 
1 X 10-^ 4 0.227398 0.223289 
1 X lO-'* 11 0.227289 0.225005 
1 X 10-^ 18 0.227317 0.225033 
1 X 10-G 26 0.227315 0.225030 
1 X 10-^ 33 0.227315 0.225030 

Table 16: Tip loaded cantilever, 20 load steps, c/ = 0.01, all displacements 
in metres 
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Load factor Wf, = 19 = 20 - 21 Load factor 
N^t Stip (ni) (m) 

1 2 0.119391 2 0.119389 2 0.119386 
2 3 0.227003 3 0.226904 3 0.226772 
3 > 50 n/c 3 0.319420 > 50 n/c 
4 2 0.397640 2 0.397640 2 0.397518 
5 - diverged 2 0.462728 - diverged 
6 - diverged 2 0.516970 - diverged 
7 - diverged 2 0.562290 - diverged 
8 - diverged 2 0.600352 - diverged 
9 - diverged 2 0.632533 - diverged 
10 - diverged 2 0.659944 - diverged 

Table 17: FENLA5 analysis of distributed loaded cantilever with 19, 20 and 
211oadE^eps 
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Load steps (m) 
10 0.622565 
15 0.663835 
16 0.653134 
17 0.663189 
18 0.654961 
19 0.663344 
20 0.656148 
21 0.663492 
25 0.663827 
30 0.658139 
35 0.664261 
40 0.658529 
45 0.664364 
50 0.658698 
55 0.664422 
100 0.664548 
150 0.664548 
151 0.664548 
175 &664558 

Table 18: FENLA5 non iterative solution of distributed loaded cantilever, 
load factor=10, for varying number of load steps 

k (m) 
1 0.098548 
2 0.190338 
3 0.272029 
4 0.343496 
5 0.405961 
6 0.459085 
7 0.503725 
8 0.543189 
9 0.577297 
10 0.60692 

Table 19: Tip deflections for distributed loaded cantilever, analysed by 
FENLA5-16 using 10 elements. 
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^elem (m) 
10 0.608958 
15 0.64477 
20 0.657703 
25 0.663505 
30 0.666467 
50 0.669998 
100 0.670318 

Table 20; Tip deflections for distributed loaded cantilever, A; = 10 analysed 
by FENLA5 using 16 node elements. 
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a Force coeScients 
(degrees) 
Coarse grid, TVt = 10 , - 25 

0 0.00143 0.00000 0.00000 0.00143 
5 -0.01339 0.35300 0.35282 0.01743 
10 -0.05670 0.68777 0.68717 0.06360 

Fine grid, = 20, = 50 
0 0.00334 0.00000 0.00000 0.00334 
5 -0.02187 0.34814 0.34873 0.00856 
10 -0.09576 0.67982 0.68612 0.02375 

Table 21: PALISUPAN analysis of Bat rectangular membrane, aspect ratio 
5. Force coefficients are non dimensionalised with respect to the membrane 
area 

PALISUPAN o/p Non dim. forces 
BMCC Nu CL Cc 

1.0 X 10-^ -0.6344 5.1048 -0.0846 0.6810 34 0.6853 0.0349 
1.0 X 10-^ -0.6504 5.1770 -0.0868 0.6906 31 0.6952 0.0345 
1.0 X 10-3 -0.6532 5.1903 -0.0871 0.6924 31 0.6970 0.0344 
1.0 X lO-"* -0.6546 5.1976 -0.0873 0.6934 32 0.6980 0.0344 
1.0 X 10-s -0.6548 5.1991 -0.0874 0.6936 32 0.6982 0.0344 
1.0 X 10-G -0.6549 5.1993 -0.0874 0.6936 32 0.6982 0.0344 

Table 22: Results of PALISUPAN block matrix convergence limit investiga-
tion for flat membrane, aspect ratio 5 
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PALISUPAN o/p Non dim. forces 
Nt Ns Npanel Cpy CL C'z) 
AR = 0.50 
5 25 125 SOLUTION DIVERGES 
6 30 180 -0.0439 -2.8456 -0.0059 -0.3796 0.3787 0.0272 
7 35 245 &1050 -2.9244 0.0140 -0.3901 0.3874 0.0480 
8 40 320 -0.0666 -2.6665 -0.0089 -0.3557 0.3551 0.0221 
9 45 405 0.0485 -2.7698 0.0065 -0.3695 0.3675 0.0387 
10 50 500 -0.0992 -2.6281 -0.0132 -0.3506 0.3504 0.0174 
11 55 605 -0.0016 -2.7260 -0.0002 -0.3636 0.3623 0.0315 
12 60 720 -&1248 -2.6130 -0.0167 -0.3486 0.3487 0.0138 
13 65 845 -0.0425 -2.6979 -0.0057 -0.3599 0.3590 0.0257 
14 70 980 -&1432 -2.6169 -0.0191 -0.3491 0.3494 0.0114 
15 75 1125 -0.0740 -2.6862 -0.0099 -0.3583 0.3578 0.0214 
16 80 1280 -&1547 -2.6125 -0.0206 -0.3485 0.3490 0.0098 
17 85 1445 -0.0944 -2.6653 -0.0126 -0.3555 0.3553 0.0184 
18 90 1620 -&1612 -2.6088 -0.0215 -0.3480 0.3486 0.0089 
19 95 1805 -&1069 -2.6242 -0.0143 -0.3501 0.3500 0.0163 
AR = 0.75 
9 30 270 0.0483 -2.7748 0.0064 -0.3702 0.3682 0.0387 
12 40 480 -0.1253 -2.6240 -0.0167 -0.3500 0.3502 0.0139 
15 50 750 -0.0737 -2.6793 -0.0098 -0.3574 0.3569 0.0214 
18 60 1080 -0.1610 -2.6088 -0.0215 -0.3480 0.3486 0.0089 
21 70 1470 -0.1179 -2.6442 -0.0157 -0.3527 0.3528 0.0151 
24 80 1920 -0.1596 -2.5889 -0.0213 -0.3454 0.3459 0.0089 

Table 23: Results of investigation into average panel aspect ratio I 
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PALISUPAN o/p Non dim. forces 
Nt Ns Npanel Cpx CL Cd 
AR = 1.00 
8 20 160 -0.0679 -2.7028 -0.0091 -0.3606 0.3600 0.0224 
10 25 250 -0.1001 -2.6460 -0.0134 -0.3530 0.3528 0.0175 
12 30 360 -0.1258 -2.6317 -0.0168 -0.3511 0.3512 0.0139 
14 35 490 -0.1433 -2.6177 -0.0191 -0.3492 0.3495 0.0114 
16 40 640 -0.1548 -2.6157 -0.0207 -0.3489 0.3494 0.0098 
18 45 810 -0.1610 -2.6079 -0.0215 -0.3479 0.3484 0.0089 
20 50 1000 -0.1638 -2.6099 -0.0219 -0.3482 0.3487 0.0086 
22 55 1210 -0.1635 -2.6130 -0.0218 -0.3486 0.3491 0.0087 
24 60 1440 -0.1610 -2.6103 -0.0215 -0.3482 0.3488 0.0090 
26 65 1690 -0.1573 -2.6035 -0.0210 -0.3473 0.3478 0.0094 
AR = 1.25 
10 20 200 -0.1010 -2.6646 -0.0135 -0.3555 0.3553 0.0176 
12 24 288 -0.1263 -2.6377 -0.0168 -0.3519 0.3520 0.0139 
14 28 392 -0.1440 -2.6287 -0.0192 -0.3507 0.3510 0.0114 
16 32 512 -0.1550 -2.6167 -0.0207 -0.3491 0.3495 0.0098 
18 36 648 -&1615 -2.6149 -0.0215 -0.3488 0.3494 0.0089 
20 40 800 -&1643 -2.6164 -0.0219 -0.3490 0.3496 0.0086 
22 44 968 -0J636 -2.6130 -0.0218 -0.3486 0.3492 0.0086 
24 48 1152 -&1614 -2.6137 -0.0215 -0.3487 0.3492 0.0089 
26 52 1352 -&1582 -2.6149 -0.0211 -0.3488 0.3493 0.0094 
27 54 1458 -&1323 -2.6231 -0.0176 -0.3499 0.3501 0.0129 
28 56 1568 -&1542 -2.6111 -0.0206 -0.3483 0.3488 0.0099 
29 58 1682 -&1334 -2.6100 -0.0178 -0.3482 0.3484 0.0126 
30 60 1800 -&1497 -2.5989 -0.0200 413467 0.3471 0.0103 
AR = L50 
9 15 135 0.0470 -2.8229 0.0063 -0.3766 (13746 0.0391 
12 20 240 -0.1271 -2.6502 -0.0170 -0.3535 0.3537 0.0139 
15 25 375 -0.0750 -2.7033 -0.0100 -0.3606 0.3601 0.0215 
18 30 540 -0.1622 -2.6222 -0.0216 -0.3498 0.3504 0.0089 
21 35 735 -0.1185 -2.6509 -0.0158 -0.3536 0.3537 (10151 
24 40 960 -0.1617 -2.6165 -0.0216 -0.3490 0.3496 0.0089 
27 45 1215 -0.1327 -2.6266 -0.0177 -0.3504 0.3506 (10129 
30 50 1500 -0.1506 -2.6110 -0.0201 -0.3483 0.3487 (10103 
33 55 1815 -0.1343 -2.5991 -0.0179 -0.3467 0.3470 (10124 

Table 24: Results of investigation into average panel aspect ratio II 
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a 
PALISUPAN o/p Non dim. forces 

C L a C L 

-10 -0.3226 -2.8315 -0.0430 -0.3777 30 -0.3795 
-5 0.0698 -0.1372 0.0093 -0.0183 25 -0.0174 
0 0.1190 2.5369 0.0159 0.3384 24 0.3384 
5 -0.1743 5.1289 -0.0233 0.6842 23 0.6836 
10 -0.7995 7.5487 -0.1067 1.0070 35 1.0102 

Table 25: Results of PALISUPAN analysis of a curved plate using a coarse 
mesh, = 10, = 25 

a 
PALISUPAN o/p Non dim. forces 

Cl a Cl 

-10 -0.3346 -5.9122 -0.0446 -0.7887 66 -0.3795 
-5 -0.0011 -3.5479 -0.0001 -0.4733 70 -0.0174 
0 0.0855 -1.0378 0.0114 -0.1384 71 0.3384 
5 -0.0781 1.5457 -0.0104 0.2062 71 0.6836 
10 -0.4876 4.1284 -0.0650 0.5507 70 1.0102 

Table 26; Results of PALISUPAN analysis of a curved plate using a coarse 
mesh, Nt = 10, TV, = 25 
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PALISUPAN o/p Non dimensionalised 
BMCC Kutta 

1.0 X 10' -2 0.01 -0.30431 1.31705 -0.01677 -0.20297 0.87847 -0.01119 
5.0 X 10- 3 0.01 -0.30431 1.31706 -0.01677 -0.20297 0.87848 -0.01119 
1.0 X 10- 3 0.01 -0.30431 1.31707 -0.01677 -0.20298 0.87848 -0.01119 
5.0 X 10--4 0.01 -0.30431 1.31707 -0.01677 -0.20298 0.87849 -0.01119 
1.0 X 10- 4 &01 -0.30431 1.31708 -0.01677 -0.20298 0.87849 4101119 
5.0 X 10- 5 0.01 -0.30431 1.31707 -0.01677 -0.20297 0.87848 -0.01119 
311x10- 5 0.01 -0.30430 1.31704 -0.01677 -0.20297 0.87847 -0.01119 
1.0 X 10- 5 0.01 -0.30429 1.31701 -0.01677 -0.20296 0.87845 -0.01119 
1.0 X 10- 6 0.01 -0.30429 1.31700 -0.01677 -0.20296 0.87844 -0.01119 
1.0 X 10- 7 0.01 -0.30429 1.31699 -0.01677 -0.20296 0.87843 -0.01119 

BMCC CL Cd Nu 
1.0 X 10--2 0.89492 0.10972 57 
5.0 X 10-̂ 3 0.89492 0.10972 57 
1.0 X 10--3 0.89493 0.10972 57 
5.0 X 10--4 0.89493 0.10972 57 
1.0 X 10--4 0.89493 0.10972 57 
5.0 X 10- 5 0.89493 0.10972 57 
3.0 X 10- 5 0.89491 0.10972 57 
1.0 X 10- 5 0.89489 &10972 57 
1.0 X 10- 6 0.89488 &10972 57 
1.0 X 10- 7 0.89487 0.10972 57 

Table 27: Results of investigation into BMCC condition variation for de-
formed triangular membrane 
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PALISUPAN o/p Non dimensionaiised 
Kutta CF, 

1.0 X 10--1 -0.31051 1.35596 -0.01693 -0.20711 0.90443 -0.01129 
5.0 X 10--2 -0.30639 1.32612 -0.01681 -0.20436 0.88452 -0.01121 
1.0 X 10--2 -0.30431 1.31707 -0.01677 -0.20298 0.87848 -0.01119 
5.0 X 10--3 -0.30426 1.31685 -0.01677 -0.20294 0.87834 -0.01119 
1.0 X 10--3 -0.30423 1.31674 -0.01677 -0.20292 0.87827 -0.01119 
1.0 X 10- 4̂ -0.30422 1.31672 -0.01677 -0.20292 0.87825 -0.01119 
1.0 X 10--5 -0.30422 1.31672 -0.01677 -0.20291 0.87825 -0.01119 

Kutta CL Cd Nit 
1.0 X 10--1 0.92072 0.11471 10 
5.0 X 10" -2 0.90108 0.11049 21 
1.0 X 10' -2 0.89493 0.10972 57 
5.0 X 10--3 0.89478 0.10971 73 
1.0 X 10--3 0.89470 0.10970 110 
1.0 X 10- 4̂ 0.89469 0.10970 164 
1.0 X 10--5 0.89469 0.10970 222 

Table 28; Results of investigation into Kutta condition variation for deformed 
triangular membrane 
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PALISUPAN o/p Non dimensionalised 
N, CFZ 

10 -0.21256 1.27508 -0.01802 -&141^ 0.85048 -0.01202 
15 -0.27518 1.31036 -0.01723 -0.18355 0.87401 -0.01149 
20 -0.30431 1.31707 -0.01677 -0.20298 0.87848 -0.01119 
25 -0.31844 1.31716 -0.01646 -0.21240 0.87855 -0.01098 
30 -0.32586 1.31576 -0.01623 -0.21735 0.87761 -0.01083 
35 -0.33007 1.31419 -0.01605 -0.22016 0.87656 -0.01071 
40 -0.33236 1.31208 -0.01591 -0.22168 &87516 -0.01061 
45 -0.33392 1.31085 -0.01580 -0.22273 &87434 -0.01054 

Ns CL Cd 
10 0.84768 0.15765 31 
15 0.88408 0.12645 53 
20 0.89493 0.10972 57 
25 0.89821 0.10089 57 
30 0.89902 0.09592 56 
35 0.89900 0.09292 54 
40 0.89820 0.09101 81 
45 0.89779 0.08975 130 

Table 29: Results for deformed triangular membrane model with constant 
= 40, varying N, 
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PALISUPAN o/p Non dimensionalised 
Nt CFZ Cfz 
20 -0.30414 1.17735 -0.01612 -0.20286 0.78529 -0.01075 
30 -0.28782 1.20611 -0.01600 -0.19197 0.80447 -0.01067 
40 -0.30431 1.31707 -0.01677 -0.20298 0.87848 -0.01119 
50 -0.30670 1.41809 -0.01735 -0.20457 0.94586 -0.01157 
60 -0.30119 1.48724 -0.01747 -0.20089 0.99199 -0.01165 
70 -0.29620 1.52840 -0.01797 -0.19757 1.01944 -0.01199 
80 -0.29122 1.55103 4).01884 -0.19424 1.03453 -0.01257 
90 -0.28555 1.56159 -0.01980 -0.19046 1.04158 -0.01321 

N, CL Nit 
20 0.80732 0.07796 80 
30 0.82162 0.09475 71 
40 0.89493 0.10972 57 
50 0.95879 0.13127 34 
60 1.00087 0.15050 30 
70 1.02554 0.16302 45 
80 1.03858 0.17130 49 
90 1.04391 (117726 51 

Table 30: Results for deformed triangular membrane model with constant 
Wg = 20, varying 7V( 
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PALISUPAN o/p Non dimensionalised 
Nt Ns ^pan 
20 10 200 -0.25484 1.16003 -0.01722 -0.16998 0.77374 -0.01149 
30 15 450 -0.27140 1.20475 -0.01643 -0.18102 0.80357 -0.01096 
40 20 800 -0.30431 1.31708 -0.01677 -0.20298 0.87849 -0.01119 
50 25 1250 -0.32582 1.42291 -0.01700 -0.21732 0.94908 -0.01134 
60 30 1800 -0.33536 1.49845 -0.01679 -0.22368 0.99946 -0.01120 
70 35 21450 -0.34462 1.54529 -0.01700 -0.22986 1.03071 -0.01134 
74 37 2738 -0.34777 1.55856 -0.01722 -0.23196 1.03956 -0.01149 

N p a n C L CD 
200 0.78521 0.10491 81 
450 0.81702 0.10473 70 
800 0.89493 0.10972 57 
1250 0.96617 0.12039 38 
1800 1.01569 0.13164 32 
2450 1.04717 &13652 48 
2738 1.05620 &13758 50 

Table 31: PALISUPAN results for deformed triangle with APAR of 0.25 
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PALISUPAN o/p Non dimensionalised 
Nt Ns A/' Cpy 
16 16 256 -0.30739 1.21199 -0.01688 -0.20503 0.80839 -0.01126 
20 20 400 -0.30415 1.17737 -0.01612 -0.20287 0.78531 -0.01075 
26 26 676 -0.29464 1.17533 -0.01549 -0.19652 0.78395 -0.01033 
30 30 900 -0.29870 1.20242 -0.01550 -0.19924 0.80202 -0.01034 
36 36 1296 -0.31803 1.26472 -0.01569 -0.21213 0.84357 -0.01047 
40 40 1600 -0.33236 1.31207 -0.01591 -0.22168 0.87515 -0.01061 
46 46 2116 -0.34662 1.37991 -0.01608 -0.23120 0.92040 -0.01073 
50 50 2500 -0.35067 1.41939 -0.01613 -0.23390 0.94673 -0.01076 
52 52 2704 -0.35192 1.43733 -0.01611 -0.23473 0.95870 -0.01074 

Npan CL AT,, 
256 0.82977 0.08382 86 
400 0.80733 0.07796 80 
676 0.80388 0.08345 74 
900 0.82179 0.08709 70 
1296 0.86525 0.08918 61 
1600 0.89819 0.09101 81 
2116 0.94396 0.09754 105 
2500 0.96963 0.10401 117 
2704 0.98116 (110732 122 

Table 32: PALISUPAN results for deformed triangle with APAR of 0.50 
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PALISUPAN o/p Non dimensionalised 
Nt Ns Cpx Cpz 
32 8 256 -0.18803 1.16836 -0.01775 -0.12541 0.77930 -0.01184 
40 10 400 -0.21254 1.27498 -0.01801 -0.14176 0.85041 -0.01201 
48 12 576 -0.23504 1.36279 -0.01819 -0.15677 0.90898 -0.01213 
56 14 784 -0.25389 1.43530 -0.01809 -0.16934 0.95734 -0.01206 
64 16 1024 -0.26755 1.48834 -0.01803 -0.17846 0.99272 -0.01203 
72 18 1296 -0.28017 1.52540 -0.01833 -0.18687 1.01744 -0.01223 
80 20 1600 -0.29122 1.55103 -0.01884 -0.19424 1.03454 -0.01257 
88 22 1936 -0.30027 1.56894 -0.01942 -0.20028 1.04648 -0.01295 
96 24 2304 -0.30792 1.58068 -0.02002 -0.20538 1.05431 -0.01335 
104 26 2704 -0.31465 1.58818 -0.02061 -0.20987 1.05932 -0.01375 

N p a n Cl C D 

256 0.77519 0.14869 61 
400 0.84761 0.15765 31 
576 0.90778 0.16357 23 
784 0.95753 0.16830 33 
1024 0.99389 0.17183 45 
1296 1.02000 0.17238 48 
1600 1.03858 0.17131 49 
1936 1.05187 0.16972 49 
2304 1.06097 0.16760 48 
2704 1.06721 &16509 47 

Table 33: PALIS UPAN results for deformed triangle with A PAR of 1.0 

Distribution 
Even 

Clustered 
-0.267553 
-(1223288 

1.488335 
1.495455 

-0xn8033 
-0Xn8537 

Table 34: PALIS UPAN force output for deformed triangular membrane using 
different panel clustering in the spanwise direction 
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Central deflection (m) 
Grid Panels X y z CL Cd 

25x25 625 -0.00047 0.05081 -1.2E-09 0.5658 0.0256 
30x30 900 -0.00045 0.05167 -1.5E^09 0.5916 0.0254 
35x35 1225 -0.00043 0.05252 -2.4E.09 0.6154 0.0281 
40x40 1600 -0.00041 0.05324 -3.2E-09 0.6402 0.0320 
45x45 2025 -0.00039 0.05382 7.45E-11 0.6611 0.0326 
50x50 2500 -0.00038 0.05428 -1.6E-10 0.6763 0.0355 

Table 35: Central deflections of initially flat membrane analysed by MON-
STAl with varying number of PALISUPAN panels 

Run 
Number 

of elements 
Central deflection (m) 

C L C D Run 
Number 

of elements X y z C L C D 

4 320 -0.00038 0.05321 -2.18E-9 0.6186 0.0284 
5 500 -0.00043 0.05252 -2.35E-9 0.6154 0.0281 
6 720 -0.00044 0.05282 -6.55E^10 0.6210 0.0283 
7 980 -0.00045 0.05269 -1.18E-9 0.6232 0.0284 
8 1280 -0.00045 0.05281 -2.47E-9 0.6241 0.0284 
9 1620 -0.00045 0.05273 -1.92E-9 0.6252 0.0285 
10 2000 -0.00045 0.05282 -2.18E-9 0.6267 0.0285 
11 2420 -0.00046 0.05261 9.82E-10 0.6201 0.0282 
12 2880 -0.00045 0.05285 -1.98E-9 0.6290 0.0286 
13 3380 -0.00045 0.05264 1.14E-09 0.6211 0.0282 
14 3920 -0.00045 0.05268 -2.94E-10 0.6214 0.0282 

Table 36: Central deflections of initially flat membrane analysed by MON-
STAl with varying number of FEA elements 

Analysis Velocity steps 
Deflection (m) 

Analysis Velocity steps Fixed t.e. Free t.e. 
No wrinkle model 200 0.01699 0.03215 

Wrinkle model 200 0.01389 0.02986 
Wrinkle model 100 0.01389 0.02986 

Table 37: Comparison of deflections for fixed and free trailing edge rectan-
gular models, = 2, a = 15°, Hi = 15 

195 



boom Ne model Displacement of mid point of TE CL boom Ne model 

Ui 112 ^̂3 
CL 

8 248 -0.00325 0.04399 -0.00050 0.87729 
10 390 -0.00336 0.04331 -0.00059 0.90871 
12 564 -0.00337 0.04295 -0.00058 0.92403 
15 865 -0.00350 0.04273 -0.00064 0.92937 
20 1580 -0.00360 0.04246 -0.00071 0.93476 

Table 38: Results of M0NSTA3 analysis of initially flat triangular membrane 

We boom Wg sail Mast tip deflection (m) CL 

Ui %3 
rigl-4 60 0.005392 0.00127 -0.000024 0.815075152 
rigl-6 138 0.009537 0.002558 -0.000041 0.858976795 
rigl-8 248 0.012997 0.003667 41000062 0.848767743 

rigl-10 390 0.016179 0.004782 -0.00009 0.830132757 
rig 1-12 564 0.018698 0.00569 41000116 0.810866329 
rigl-14 770 0.020829 0.006481 -0.000142 0.792650109 
rigl-16 1008 0.022502 0.007116 41000164 0.775178714 
rigl-18 1278 0.023883 0.007606 -0.000184 0.764614126 
rigl-20 1580 0.024876 0.007958 -0.000198 0.752963096 
rigl-22 1914 0.025611 0.008119 41000209 0.732082906 
rigl-24 2280 0.02469 0.00856 41000224 0.736701827 

Table 39: Results of aeroelastic analysis of rigl model 

A A Cfz itfip (m) 'Ufip (m) lUfip (m) 
1.00 1.00 41306560 1.212562 41029677 0.016181 0.004782 -0.00009 
0.75 0.50 41306567 1.212301 -0.029675 0.016178 0.004781 -0.00009 
0.50 0.50 41306604 1.212841 -0.029671 0.016179 0.004782 -0.00009 
0.50 &25 41306560 1.212562 41029677 0.016181 0.004782 -0.00009 

Table 40: PALISUPAN force coefficients obtained from analysis of rigl-lO 
model using a range of relaxation factors 
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TVg boom Ne sail Mast tip deflection (m) CL 
Ui U2 Us 

rig3-12 564 0.062645 0.011958 -0.001152 1.228202411 
rig3-14 770 0.068384 0.01516 -0.001381 1.155455033 
rig 3-16 1008 0.073027 0.018496 -0.00159 1.147850387 
rig3-18 1278 0.076431 0.020853 -0.001753 1.14433377 
rig3-20 1580 0.079625 0.023423 -0.00192 1.143309138 

Table 41: Results of aeroelastic analysis of rigS model 

Model 
rig3C-14 

rig3CR-14 
-1.197660 
-0.297817 

2.531566 
1.208530 

-0.028207 
-0.034654 

Table 42: Aerodynamic force coefficients calculated by aeroelastic analysis 
of rig3C-14 and rigC3R-14 models 
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Element 
centroid Z3 (m) 

Compression 0 Element 
centroid Z3 (m) AEA Constant Linear Sinusoidal 

0.036 -7513.54 -226.16 -186.48 -231.95 
&107 -7442.75 -196.51 -161.97 -206.08 
&179 -7336.32 -174A0 -142.14 -185.80 
0.250 -7180.40 -153.41 -124.61 -166.03 
0.321 -6994.12 -135.06 -109.34 -147.71 
0.393 -6781.64 -118.64 -95.93 -130.71 
0.464 -6548.56 -104.03 -84.17 -115.14 
0.536 -6294.33 -91.08 -73.81 -101.00 
0.607 -6019.13 -79.63 -64.67 -88.26 
0.679 -5725.27 -69.54 -56.57 -7&86 
(1750 -5409.27 -60.68 -49.38 -6&72 
0.821 -5075.82 -52.92 -42.96 
0.893 -4727.28 -46.13 -37.23 -4&78 
0.964 -4351.34 -40.21 -32.08 -42J5 
1.036 -3960.52 -3&05 -27.46 -36.53 
1J^7 -3555.63 -3&55 -23.30 -3L01 
L179 -3144.30 -2&63 -19.56 -2&11 
1.250 -2728.33 -2&19 -16.19 -2L73 
1.321 -2313.18 -2&15 -13.19 -17.81 
1393 -1902.08 -17^5 -10.51 -14.32 
1.464 -1508.03 -15.03 -&16 -1L21 
1.536 -1127.65 -12^2 -&11 -&47 
1.607 -767.63 -10.78 -4.36 -&10 
1.679 -467.21 -8.85 -2.90 -4J^ 
1.750 -271.09 -7.01 -1.74 -2^8 
1.821 -181.64 -5.23 -0.87 -L25 
1.893 -133.30 -3.48 -0.29 -&42 
1.964 -50.36 -1.74 0.00 0.00 

Table 43: Mast compression results from rig3C-14 analysis 
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^int 
1 0.00000 00000 00000 2.00000 00000 00000 
2 ±0.57735 02691 89626 1.00000 00000 00000 
3 ±0.77459 66692 41483 0.55555 55555 55556 

0.00000 00000 00000 0.88888 88888 88889 
4 ±0.86113 63115 94053 0.34785 48451 37454 

±0.33998 10435 84856 0.65214 51548 62546 
5 ±0.90617 98459 38664 0.23692 68850 56189 

0.53846 93101 05683 0.47862 86704 99366 
0.00000 00000 00000 0.56888 88888 88889 

Table 44: Sampling points and weighting for Gaussian numerical integration 
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Order r coordinates 5 coordinates Weighting 
3 ri = 0.16666 66666 667 = ri wi - 0.33333 33333 333 

rg = 0.66666 66666 667 S2 = Ti W2 — Wi 
rs = ri 53 = n W3 = 

7 n = 0.10128 65073 235 61 = ri wi - 0.12593 91805 448 
rg = 0.79742 69853 531 52 = n W2 — Wi 
7-3 = ri 3̂ = rg W3 = Wi 
n = 0.47013 20641 051 4̂ — 6̂ W4 = 0.13239 41527 885 

rs = r4 55 = 4̂ W5 = lUj 
re = 0.05971 58717 898 gg = 4̂ wg — 'u;4 
r? = 0.33333 33333 333 5? = r? w? ^ 0.22500 00000 000 

13 n = 0.06513 01029 022 Si = ri u;i = 0.05334 72356 088 
rz = 0.86973 97941 956 52 = n W2 = Wi 
rg = ri 53 = 2̂ W3 = tui 
r4 = 0.31286 54960 049 S4 = Tg W4 - 0.07711 37608 903 
7-5 = 0.63844 41885 698 55 = 4̂ lUS = W4 
re = 0.04869 03154 253 56 = 5̂ wg = 'u;4 
r? = rg 5? = 6̂ w^ = W4 
rg = r4 58 = rg W% — Wi 

= 7̂6 59 = 7-4 Wg = W4 

no = 0.26034 59660 790 510 = 7̂10 Wio = 0.17561 52574 332 
rn = 0.47930 80678 419 5ll = no Wli = Wio 
ri2 = no 5l2 = 7̂11 W12 = Wio 

ri3 = 0.33333 33333 333 5l3 = )"l3 wi3 = -0.14957 00444 677 

Table 45: Numerical integration points for integration in the triangular ele-
ment natural coordinate system over the element areas 
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pressures 
FEA CFD 

Model deEnition 

Figure 1: Aeroelastic solution structure 
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f 

Figure 2: Mainsail under test with a tight leech 
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Figure 3: Mainsail under test with reduced leech tension 
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Loop through elements 

Input model data 

Calculate K' 

Assemble K® into model K 

Apply loading to 3? 

Apply boundary conditions 

Solve Ku = % 

Output node displacements, u 
and element stresses 

Figure 4: Program structure for linear finite element program 
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Model data 

Point load data 

Boundary condition data 

Element data 

Node data 

Figure 5: Arrangement of the data structure used in the linear Enite element 
program 

Figure 6: Linear triangular element natural coordinates 
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Figure 7; Two dimensional local coodinate validation model 

Figure 8: Four noded quadrilateral finite element 
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Figure 9: Four noded quadrilateral stress test model 
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Figure 11: Timenshenko end loaded cantilever 
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Figure 12: Four node quadrilateral cantilever analysis mesh 

Figure 13: Eight node quadrilateral cantilever analysis mesh 
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Figure 14: a n values for a tip loaded cantilever from Timenshenko theory 
and ANSYS analysis using 8 node quadrilateral elements 
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Figure 15: Three node triangle symmetrical mesh for cantilever analysis 
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Figure 16. Tip deflection of point loaded cantilever modelled using symmetric 
mesh of three node triangular flnite elements 
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Figure 17: Deformed shape of tip loaded cantilever modelled using four node 
quadrilateral finite elements 

210 



+17 

Figure 18: Twenty noded solid element 
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Figure 19: Tip deflections obtained from solid element analysis of a tip loaded 
cantilever 
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Loop through load steps 

Loop through elements 

Calculate nK' 

Assemble into model 

Input model data 

Calculate % = - ' f ' 

Apply boundary conditions 

Solve *Ku = % 

Output node displacements, u 
and element stresses 

Figure 20: Program structure for aon linear finite element program 
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Figure 21: Theoretical deflections of uniformly loaxied cantilever 

Figure 22: Single element model analysed by FENLAl 
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Figure 23: Tip defection plotted against number of load steps for FENLAl 
analysis of tip loaded cantilever 

Figure 24: Lumped nodal loading for a uniformly distributed load of IN on 
a side of an eight noded quadrilateral element 
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Figure 25: Tip defection plotted against number of load steps for FENLAl 
analysis of distributed loaded cantilever 
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Figure 26: Defection coeScient coe@cient plotted against load factor for 
FENLAl analysis of distributed loaded cantilever 
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Figure 27; Program structure for non linear membrane finite element pro-
gram 
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Figure 28: 40 element mesh used for analysis of cantilever using FENLA3-3 

0.8 

0.7 

5 0.6 

I 
i 0.5 

| o . 

io .3 

5 0.2 

0.1 

0.0 

Theoretical 

^ — FENLA3-3 40 elements 

•&— FENLA3-3 80 elements 

— FENLA3-3 320 elements 

4 5 6 

Load coefficient 

10 

Figure 29: Tip deflection coefficient plotted against load coefficient for 
FENLA3-3 analysis of distributed loaded cantilever 

218 



Figure 30: FENLA3-3 four element square membrane model 
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Figure 31; Central deflection of point loaded square membrane analysed by 
FENLA3-3 plotted against number of load steps 
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Figure 32: Central defection of point loaded square membrane, analysed by 
FENLA3-3 using 100 load steps, plotted against number of elements 

Figure 33: Four node triangular membrane element 
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Figure 34: FENLA3-3 64 symmetric element model 
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Figure 35: FENLA3-3 32 asymmetric element model 
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Figure 36: FENLA4 16 element model 
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Figure 37: Central defection of pressure loaded square membrane, analysed 
by FENLA3-3 and FENLA4, plotted against number of elements 
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Figure 38: Central deflection of pressure loaded square membrane, analysed 
by FENLA3-3 and FENLA4, plotted against aeroelastic number 
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Figure 39: FENLA3-4 32 element square membrane model 
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Figure 40: Tip deflection of tip loaded cantilever analysed by FENLA5 with 
20 node elements plotted against number of elements 

Figure 41: Equivalent nodal loads for pressure loaded face of a 20 node solid 
element 
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Figure 42; Tip deflection of distributed loaded cantilever, modelled using 20 
node elements, analysed by FENLA5 using 20 load steps, plotted against 
load coefficient 
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Figure 43: Tip defection of distributed loaded cantilever with load coeScient 
10, analysed by non iterative FENLA5-20, plotted against number of load 
steps 
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Figure 44: Tip deflection coefficient of distributed loaded cantilever, analysed 
by FENLA5-16 and FENLA5-20, plotted against load coefficient 
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Figure 45: Tip deflection of distributed loaded cantilever with load factor 10, 
analysed by FENLA5-16 plotted against number of elements 
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Figure 46: Pressure distribution on the windward side of a mast sail model 
calculated during aeroelastic analysis (including wake sheet). Pressure coef-
ficient ranging from 1.0 to -2.0 in this figure 

Figure 47; Model orientation for aeroelastic analysis 
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Figure 48: F-2-P program structure 
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Figure 49: Leading edge ellipse de^nition for Eat membrane 
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Figure 50: Bezier control points used for flat membrane wake generation 
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Figure 51: Cross section of flat membrane PALIS UPAN geometry 
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Figure 52: Normal calculations used for straight line sections in F-2-P-II 
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Figure 53: Bezier control points for three dimensional curves 

Figure 54: Cross section of curved membrane PALISUPAN section 
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Figure 55: Rig model generation program structure 
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Figure 56: Direction of mast and sail splines. Mast and sail shown separated 
for clarity 
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Figure 57: Order of points deHning the PALISUPAN output section 

" - 1 0 10 

Potential flow theory 

O Coarse grid 

X Fine grid 

- 0 . 8 -I 

Incidence (degrees) 

Figure 58: Lift coefEcient against a, obtained by PALISUPAN analysis of 
flat membrane 
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Figure 59: E&ct of BMCC on lift coeScient calculated by PALISUPAN for 
a rectangular flat membrane 
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Figure 60: Effect of odd/even number of chordwise panels on lift coefficient 
for a rectangular Eat membrane 
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Figure 61: Effect of panel aspect ratio on lift coefficient for a rectangular flat 
membrane 
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Figure 62: Plot of lift coefficient calculated by PALISUPAN for curved mem-
brane against a 
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Figure 63: Lift coeBcient for a curved membrane, aspect ratio 5, for various 
PALIS UPAN panel densities 
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Figure 64: Lift coeScient for a curved membrane, aspect ratio 5, for various 
PALIS UPAN panel densities with constant N. 
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Figure 65: Lift coefficient for a curved membrane using Nt = 60 and for 
Ng = 20 with high Nt 
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Figure 66: Lift coefficient for a curved membrane with large numbers of 
chordwise panels 
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Figure 67: Deformed triangular membrane PALISUPAN input sections 
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Figure 68: Effect of BMCC value on lift coefficient for deformed triangular 
membrane 
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Figure 69: Effect of Kutta convergence limit on lift coefficient for deformed 
triangular membrane 
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Figure 70: Number of iterations required to solve deformed membrane with 
varying Kutta condition limits 
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Figure 71: Effect of Ng on calculated lift coefficient of deformed triangular 
membrane for constant Nt = 40 
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Figure 72: Effect of Ng on calculated drag coefficient of deformed triangular 
membrane for constant Nt = 40 
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Figure 73; Effect of Nt on calculated lift coefficient of deformed triangular 
membrane for constant N. = 20 
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Figure 74: Lift coefficient for deformed triangular membrane for models with 
constant APAR 
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Figure 75; Aeroelastic program structure 
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Figure 76: P-2-F program structure 
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Figure 77: Triangular element local coordinates 

Figure 78: Symmetric triangular finite element mesh used for analysis of 
rectangular membranes 
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Figure 79; Failure of PALIS UPAN model generation for membrane section 
with saddle point 
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Figure 80: Convergence history of aeroelastic analysis of restrained mem-
brane 
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Figure 81; Effect of number of panels on central deflection of restrained 
rectangular membrane aeroelastic solution 
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Figure 82; Effect of number of elements on lift coefficient of restrained rect-
angular membrane aeroelastic solution 
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Figure 83: Effect of number of elements on central displacement of restrained 
rectangular membrane aeroelastic solution 
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Figure 84: Symmetric triangular finite element mesh used for analysis of 
rectangular membranes with aspect ratio 2. Example shown consists of 128 
elements 
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Figure 85: Triangular membrane mesh 
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Figure 86: Revised triangular membrane mesh 
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Figure 87: Lift coefficient against number of finite elements for M0NSTA3 
analysis of triangular membrane 
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Figure 88; tig of mid point of trailing edge against number of finite elements 
for M0NSTA3 analysis of triangular membrane 
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Figure 89: Lift coefficient against number of finite elements for aeroelastic 
analysis of rigl model 
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Figure 90: Magnitude of the mast tip deflection against number of finite 
elements for aeroelastic analysis of rigl model 
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Figure 91: Magnitude of the mast tip deflection against number of finite 
elements for aeroelastic analysis of rigS model 
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Figure 92: Deformed sail sections predicted by aeroelaatic analysis of rigSR-
14 model 
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Figure 93: Deformed rig predicted by aeroelastic analysis of rig3C-14 model, 
view from side 
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Figure 94: Deformed rig predicted by aeroelastic analysis of rig3R-14 model, 
view from downstream to windward 
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Figure 95: Deformed rig predicted by aeroelastic analysis of rig3-14 model, 
view from downstream to windward 
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Figure 96; Deformed rig predicted by aeroelastic analysis of rig3CR-14 
model, view from downstream to windward 
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Figure 97: Deformed rig predicted by aeroelastic analysis of rig3C-14 model, 
view from downstream to windward 

264 



Figure 98: Deformed leech of the rig3CR-14 model, view from downstream 
to windward 
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Figure 99: Deformed leech of the rig3C-14 model, view from downstream to 
windward 
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Figure 100: Mast compression predicted by distributed loading of rig3C-14 
rig forces on a mast model 
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Figure 101: Mast compression predicted by aeroelastic analysis of rig3C-14 
model 
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A Linear finite element theory 

The finite element method represents a continuum with a series of discrete 

approximations. The particular area of interest examined here is the finite 

element method applied to structural mechanics, although the method can 

be used for any field problem. 

A . l The virtual work equation 

The principle of virtual work equates the internal and external virtual work 

resulting from any compatible small virtual displacements imposed on the 

body in it's state of equilibrium. The virtual displacements are zero at pre-

scribed displacements (boundary conditions) on the model, and are restricted 

to small displacements to validate the assumption of linear strain used in this 

formulation. Equating the internal and external work, where U and e are 

the virtual displacements and strains, results in equation 149. 

/ f r c z y = / + V (149) 
/ y Vy Vg/ ^ 

A.2 Discretization 

Steps in the discretization of the continuum are as follows: 

® The continuum is separated into finite elements. 

• The elements are assumed to be interconnected at a discreet number 

of nodal points on the boundaries. 

® A set of functions is chosen to uniquely determine the displacements 

within each element in terms of nodal displacements, which become the 

system unknowns. 

268 



e The state of strain in the elements is defined by the displacement func-

tions in terms of the nodal displacements. 

# A system of forces, concentrated at the nodes and balancing the bound-

ary stresses and applied loads on the continuum is determined. 

This results in a series of approximations: 

# Displacement functions may not satisfy the requirements of displace-

ment continuity between elements. 

# Concentration of forces at nodes means that equilibrium is satisfied in 

an overall sense, not locally. 

A.3 Displacement functions 

The displacement field within an element, u, is assumed to be a function of 

the displacements at the N element node points, as indicated in 150. This 

is the basis of the direct stiffness method, which allows an effective assembly 

of the finite element matrices into the model matrices. 

N 

4̂ % 14 - (150) 
A:—1 

(151) 

Element shape functions, hk are functions of the coordinate system used 

in the formulation of the strain displacement matrix, chosen such that hk = 1 

at node k and hk — 0 at all other nodes in the element. 

269 



A.3.1 Element s train and stress calculation 

With the assumption detailed in equation 150, the element strains can be 

evaluated from the node displacements using the strain displacement matrix, 

B, equation 152. This matrix is obtained by differentiation and combination 

of the interpolation functions. 

gWu(m) (152) 

As an example of the derivation of B the strain displacement relationship for 

a two dimensional plane stress case is considered below. Equation 153 shows 

the relationship between the strain vector and displacements for this strain 

case. Introducing the displacement assumptions of equation 150 leads to the 

definition of the strain displacement matrix shown in equation 154. 

(153) 

0 

e = = zz: 0 

^1,1 0 hN,i 0 

g(m) ^ g(m)y(m) ^ 0 hi,2 • 0 u™ (154) 

hi,i hN,i 

The stresses in the finite element can be calculated from the element 

strains and initial stress, rj" according to equation 155, where C"* is the 

element constitutive matrix. 

(m) (155) 
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A.4 Formulation of the finite element equations 

The virtual work equation 149 can be re-written as a sum of integrations 

over the volume and areas of all finite elements, equation 156. 

(156) 

c(m) 

Since the integrations in equation 156 are performed over element volumes 

and surfaces, different coordinate systems can be used for each element in 

the calculations. In order to sum the element contributions, they must be 

transformed into a common coordinate system before summation. 

If the interpolations defined in the previous section are applied to the vir-

tual displacements and strains, the virtual work equation 149 can be written 

in terms of the strain displacement matrix, interpolation functions and nodal 

displacements. Using the same interpolations for the virtual displacements 

results in symmetric stiffness matrices. Nodal point displacement vectors, 

U and U are independent of the element, (m) and can be taken out of the 

summation signs, resulting in equation 157. 

u 

u = 

/ ci'"; c('") 

I m -/yi".) j 
(157) 

By applying virtual displacements of unit displacement on each degree of 

freedom in turn, with all other displacements set to zero, equation 157 reduces 
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to a set of linear equations, shown in equation 158. The stiffness matrix, K 

is defined in equation 159 and the load vector, R is defined in equation 160. 

KU = R (158) 

K = (159) 

R — R^ + Rg — Ry + Rc (160) 

The load vector consists of components due to element body forces, surface 

forces, initial stresses and concentrated nodal loads which correspond to the 

right hand side terms in equation 157. The non zero rows and columns of the 

matrices and vectors, corresponding to the degrees of freedom of the element 

nodes, are calculated for each element. If a local coordinate system is used in 

calculation of the element characteristics, the element matrices and vectors 

are transformed into the model global coordinate system. Assembly of the 

model stiffness matrix and load vectors is carried out using the connectivity 

of the elements. 

A.5 Application of boundary conditions 

A.6 Boundary conditions 

The method used for application of the boundary conditions allows any dis-

placement to be specified on a degree of freedom. The transformation used 

is shown in equation 161, where displacement ug is given an applied displace-
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ment, Z. 

/ \ f 
kii ki2 kl3 A;i4 Ul Pi 

2̂1 2̂2 2̂3 2̂4 Z P2 
< > = < 

3̂2 3̂3 =̂34 1̂3 Ps 

kii 4̂2 A;43 4̂4 P4 

(161) 

kii 0 kiz A;i4 
/ " 

Ul ' Pi — ki2Z 

0 1 0 0 Z Z 
< > = < 

3̂1 0 A33 =̂34 M3 P3 ~ kz-iZ 

ki\ 0 &43 4̂4 «4 — k42Z 

A.7 Stress calculation 

Calculation of the element stresses in a linear finite element model in two 

dimensions is carried out according to equation 162. 

(162) 

The strain in the element can be calculated according to equation 163, where 

u° is a vector of the node displacements. 

/ \ 

^ XX 

^yy > = c < ^yy ? 
1^% 

^xx 
^yy 

Ifxy 

= Bu= (163) 

A.8 Isoparametric formulation 

The iso-parametric element uses a element based natural coordinate system. 

The natural coordinate system employed in the two dimensional linear trian-

gle element is shown in figure 6. Interpolation functions are defined in terms 
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of the element natural coordinates and the same functions are used inter-

polate both coordinates and displacements within the element, as shown in 

equations 164 and 165. 

(164) 
j=l 

Xi 

Ui (165) 

To calculate the stiffness matrix of the element, it is necessary to evaluate 

the strain displacement matrix, B, which contains derivatives of the ele-

ment displacements with respect to the element local coordinates. Element 

displacements are defined in terms of element natural coordinates, and the 

Jacobian operator, J , defined in three dimensions in equation 166, is used to 

relate the derivatives in normal coordinates to the local coordinate deriva-

tives, equation 168. 

dx 
dr dr 

ds 
= dx 

ds 

dx 
. dt . . at 

ds ds 

8x dy 8z 

_8_ 
dx 

_8_ 
dy 

. dz . 

(166) 

a x ' 

' A 

- i f 
dv 

(167) 

(168) 

The elements of the Jacobian matrix can be found from differentiation of 

the coordinate interpolations, equation 164. Derivatives of the interpolation 

functions with respect to the element local coordinate system can then be 
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found from the inverse of the Jacobian matrix and the derivatives of the in-

terpolation functions with respect to the element natural coordinates. These 

can then be used to assemble the strain displacement matrix, B. The element 

stiffness matrix, equation 159 will now contain strain displacement matrices 

which are functions of the element natural coordinates. The volume inte-

gral extends over the natural coordinate volume, and the volume differential 

needs to be written in terms of the natural coordinates, equation 169, where 

det J id the determinant of the Jacobian operator. 

dV = det J dr ds dt (169) 

Since the integration over the volume integral is generally not effective in 

the case of higher order elements, numerical integration is employed to cal-

culate the stiffness matrix, equation 171. Here Fijfc is F evaluated at the 

numerical integration point, {ri,Sj,tk), and is a constant dependent on 

the integration point. 

P = B^CB det J (170) 

== (171) 
hj,k 

A similar process is used to calculate the force vectors defined in equation 160. 
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B Numerical integration schemes 

Gaussian integration schemes are used for the two dimensional elements. The 

sampling point coordinates, r,, and weighting, for the numerical integra-

tion are given in table 44 for integration over the interval -1 to +1 using riint 

points, and these are used to evaluate an integral according to equation 172. 

Gaussian integration of order n will exactly evaluate an expression of order 

(2n-l). 

/ F(r)dr = (172) 
i=l 

The one dimensional formulae can be used to integrate over two and three 

dimensions in quadrilateral and solid elements respectively by applying the 

one dimensional formulae in each direction, as shown in equation 173 for the 

three dimensional case. 

/
+! y-kl ^ ^ ^ 

/ / f'(r, a, <)dr (fa ^ n ^ n ^ (&) 
1 y _ i y _ i 

(173) 

Integration over three dimensions can be carried out with the same order of 

accuracy as a twenty seven point (3x3x3) integration by using only 14 points, 

as described by Irons [25]. The sampling point coordinates and weighting are 

obtained from equation 174, using the following values: 

. B=0.886426593, 6=0.795822426; 

# (7=0.335180055, c=0.758786911. 
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The accuracy of this scheme was demonstrated by Hellen [19] for cantilever 

analysis. 

/
+! ^+1 ^+1 

/ / jFtng,Z)== (174) 
1 «/ — 1 J — 1 

J5{F(—&, 0,0) + F(6,0,0) + F(0, —b, 0) + • • • 6 terms} 

C{F{—c, —c, —c) + F{c, —c, —c) + • • • 8 terms} 

B . l Triangular elements 

The integration over the area of triangular elements is carried out using the 

coordinates and weighting of figure 45 (obtained from Bathe [4]) as shown in 

equation 175. 

/ / F(r,g)c(r(fa = ^^WiF(r^ ,S{) (175) 
Vo /o ^ 
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C Aeroelastic program data and control files 

C. l Control 61e 

The format of the control file for the aeroelastic program is as listed below: 

® Nt - Number of chordwise panels for PALIS UPAN model 

@ Ns - NUmber of spanwise panels for PALIS UPAN model 

® Nss - Number of sail panels for PALIS UPAN model 

• - Preestream velocity 

• Nfvee - Number of free wake panels (as the wake is fixed this has no 

effect on the solution) 

» a - Angle of Sow incidence 

• Neb - Number of elements along the boom in the finite element model 

• Naec - Number of sections used to generate the PALISPAN model 

• Nie - Number of points used to define the leading edge/mast in the 

PALISUPAN input model 

• Nsur - Number of points used to define the sail surface in the PALISU-

PAN input model 

® tm - Thickness m u l t i p l i e r to calculate sail thickness for PALISUPAN 

input model 
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C.2 Finite element data file 

The finite element data file uses the following format: 

® Number of nodes 

® Number of sail elements 

® Number of mast elements 

® Number of boundary conditions 

® Number of point loads 

# Number of material properties 

® Number of load steps 

• Element thickness 

• Initial stress 

® Convergence criteria 

® Realxation factor /?i 

® Relaxation factor 

# List of material properties: 

— Reference number 

— Youngs modulus 

— Poissons ratio 

® List of node data 

— Reference number 
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— Global coordintes 

® List of sail element data 

— Reference number 

— Material property 

— List of nodes defining element 

® List of mast elements (format as for sail elements) 

® List of boundary conditions 

— Node number 

— Flag to indicate degree of freedom restrained 

® List of point load data 

— Node number 

— Flag to indicate direction of load 

— Load magnitude 
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