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AEROELASTIC ANALYSIS OF A YACHT RIG

by Mark Andrew Hobbs

An aeroelastic solution for a mast sail system has been achieved and has been
shown to predict realistic behaviour of the system. A nonlinear finite element
analysis computer program has been developed, incorporating membrane
and solid elements. This has been coupled with a potential flow panel code,
PALISUPAN, developed in the University of Southampton, to acheive the
aeroelastic solution using a velocity stepping procedure.

A mast sail rig has been analysed in an upwind configuration. The results
of the analysis demonstrate the influence of the coupled nature of the mast
and sail on the calculated sail forces and deformed shape. Mast compression
predicted by the aeroelastic solution of the mast sail system was compared to
compression calculated by distributing the sail forces on a nonlinear model
of the mast. Results indicate that previous loading assumptions for finite
element analysis of a mast significantly underestimate mast compression due

to sail loading.
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1 Introduction

A rig of a yacht acts as an engine, producing a driving force from airflow
over the sails, and transmitting the forces to the hull. In a conventional rig
(as opposed to a rig using a wing mast where the mast generates significant
portions of the overall driving and side forces), the sails are supported by the
mast and rigging, and produce the majority of the driving and side forces.

Modern racing yachts commonly use composite materials in rig construc-
tion, and this frees designers from the constraint of extruded aluminium
sections to enable strength to be built in the required areas, to allow rig
weight to be reduced without compromising the safety of the rig. Any re-
duction of weight in a yacht gives an increased stability, as reducing the
weight of a rig enables more ballast to be carried for a given displacement.
Reducing rig weight will also reduce the pitching moment of a yacht, and
the smaller rig section sizes will also reduce the aerodynamic drag of the rig.
Winning margins in yacht racing can be very small, as shown in the 1999-
2000 Americas Cup, where over five races Team New Zealand had an average
winning margin of 100 seconds during races of two and a half hours. This
represents an elapsed time margin of just 1%, and this series was considered
an easy victory for Team New Zealand. Any small performance gains that
can be obtained from better understanding of the loading in a rig can make
a significant difference to the results in a yacht race.

The limiting factor in mast structural design is avoiding buckling of the
mast under the compressive loading generated from the sails and rigging. In
the past, calculations of rig loading and the structural requirements of the of
the rig have relied on empirical formulae such as Skenes method, as described
in Boote [9], to calculate a design mast compression. These are based on a

static consideration of the global forces on a yacht using large safety factors.



Finite element analysis of a yacht rig is now regularly used as a design tool
for analysis of rig configurations. Yacht masts are subjected to a variety of

point and distributed loads, including:
e Loading from the mainsail
e Loading from the boom
e Halyard loads

e Forestay loads

Rigging pretension

Inertia loading due to yacht motion

Applying the correct loads to a finite element model is a fundamental re-
quirement for accurate results to be obtained. Point loads on a mast such
as rigging and halyard loads can be estimated with a good degree of confi-
dence, but the distribution of the loading from the mainsail has previously
been generated from the total sail forces, and applied in a user defined man-
ner along the mast. Constant [3] and parabolic [12] distributions have been
considered, but these may not accurately represent the distributed loading
from the sail luff. The coupled nature of the mast sail system will also affect
the compression developed in the mast, particularly the compression induced
from tension in the leech of the sail, and this is not taken into account by
the finite element analysis of the mast uncoupled from the mainsail.

Model testing is used extensively for yacht design, and towing tank testing
is a well established tool to attempt a hull optimisation. Wind tunnel tests
can be used to give a comparison of the overall forces generated by different

rig configurations, and to optimise the sail flown shapes. Wind tunnel testing



of model rigs is carried out at a similar Reynolds numbers to the full scale
rig, to allow similar flow regimes in the model and full scale cases. Structural
similitude for membranes under loading from fluid flow is obtained by match-
ing the aeroelastic number II;, first suggested by Jackson and Christie [27].
This was altered by the introduction of a cube root by Smith and Shyy [56]
in accordance with a theoretical analysis of large deflections of membranes
by Seide [53] to the definition shown in equation 1, which is used in this text.

To obtain a structural similitude of the model and full scale cases for a
typical model scale of 1:10 assuming that the Reynolds number is similar
for the two cases, the Young’s modulus of the model sail would have to be
1% of that of the real life case. Dacron sail material has a Youngs modulus
of about 25 GPa, so a model with scaled material properties would require
a Young’s modulus of about 250 MPa. An example of a material with a
Youngs modulus of this order is polythene, and since even model sails are
created from a number of panels in order to give them a flown shape, it would
be extremely difficult to create a model sail from this material. A computer
model will allow investigation of a yacht rig with realistic structural and fluid
aspects.

Analysis of a yacht rig is complicated by the fact that structural and
fluid aspects of the rig are linked, in that rig deformations under the fluid
loading will result in a change of the flow over the sails, leading to a change
in the loading on the rig, and a change in the rig deformations. Sail forces
obtained from a fluid flow analysis of an as designed sail shape are calculated
without considering the effect of sail deformations on the generated forces.
Aeroelastic analysis of a sail [27] [56], which takes into account the coupled

nature of the structural and aerodynamic solutions, can give some insight

3



into the flown shape of a sail and forces it generates. These forces can be
used to give a more accurate estimation of the loading for a finite element
model of the mast and rigging.

The mast, rigging and sails also act as a coupled system, as deformation
of the mast will affect the shape of the sails it supports. The response of the
mast sail system is known to have a significant effect on the sail shape and the
forces it generates in real life. This is used in some sailing craft to produce
a self adjusting rig, where a gust of wind results in bending of the top of the
mast, opening the leech of the sail, reducing the forces generated by the sails
and thus preventing the craft becoming overpowered [8]. Previous attempts
to analyse a yacht rig have uncoupled the mast and sail which fails to model
this important interaction of the mast and sail.

The aim of this thesis is to develop an aeroelastic solution for a mast
sail system, which will model the interaction of the mast and sail and also
inherently apply the correct distribution of loading from the sail to the mast.
This will allow a more realistic analysis of yacht rigs, which could improve
performance prediction and give a better understanding of mast loading and
the response of a yacht rig.

Detailed analysis of a rig using this method would be of interest to high
level racing yacht design, such as for the Volvo Ocean race or the Americas
Cup, and the results from the analysis of a rig could be used to improve the

loading models used for general yacht designs.



2 Literature review

2.1 Mast design methods

Traditional mast design methods calculate the compressive load in a mast due
to the external loading applied to it, and this compression is used to calculate
section areas sufficient to prevent the mast buckling. Skenes method uses the
righting moment of the yacht at a 30° heel, RM3, and the half beam at the

chainplates, B, to calculate a compressive loading in the mast, equation 2.

B.

(2)

Mast compression =

The application of Skenes method is discussed by Boote [9]. Safety factors
are used to take account of the loading due to stays, sheeting and halyards.
Classification society rules use formulae based on this approach for calcula-
tion of required mast sections. Larsson [34] uses the Nordic Boat Standard
rules to calculate the section requirements for a 40 foot yacht mast, and the
spars and standard rigging scantling calculations of the Bureau Veritas rules
for yacht design are summarised by Boote [9]. Mitchell [39] studied data
obtained during sailing trials of the 130 foot yacht New Zealand, and used
these to suggest refinements to Skene’s equation for the mast compression,
with separate calculation for the loading imposed by the halyards and rig-
ging. These are based on the loading figures for one yacht, and application

of these formulae to other yacht rig arrangements was not considered.

2.2 Finite element analysis of masts

A finite element analysis of a yacht mast and rigging allows a more detailed
picture of the stresses developed in the mast to be obtained. In order to carry

out a finite element analysis, the loading on the mast have to be specified.



The point loads from rigging and halyards are well defined in their point
of application, and data from sailing trials or design calculations can provide
the magnitude of these loads. Loading from the mainsail luff will apply a
distributed load along the mast, and this is not evaluated as easily as the
point loads. The total mainsail luff loading on the mast can be calculated
by using the righting moment of the boat or from lift and drag coefficients
of the sail. This total load can then be distributed along the mast, and con-
stant, linear, parabolic and other distributions have been employed. Enlund
et al [12] use the righting moment of the boat to derive the total sail loading
on the mast, and apply this using an elliptical distribution. Hoffmeister [22]
also uses the righting moment of the boat to calculate the mainsail forces,
and these are applied as a distributed loading along the mast in proportion
to the sail area. Cant [10] calculated the total mainsail forces from a po-
tential flow analysis of the sails, and then applied this loading as a linear
distributed load in conjunction with point loading from the halyards and rig-
ging obtained from experimental measurement on the yacht being modelled.
Sail coeflicients from the IOR measurement rule were used by Selness [54]
to derive the sail loading for a rig, although no details of how this was dis-
tributed onto the finite element model are provided. Keuning and Van der
Werff [48] compared a linear and constant load distribution along the mast
for masthead and fractional rigs. Differences of up to 40% in bending mo-
ment at the deck for both rigs, around 70% variation in bending moment for
the top section of the fractional rig and a 10-30% difference in stay tensions
occurred for the two loading distributions. This highlights the importance of
having the correct loading applied to the mast in order to obtain an accurate
finite element solution.

Selness [54] and Cant [10] carry out a linear analysis of the mast and



rigging, using loading data from a potential flow analysis of the as designed
sail shape. Both Keuning and Van der Werff [48] and Hoffmeister [22] divide
the mast loading into a number of load steps, and use a linear finite element
analysis on each step, with the stiffness of the structure recalculated after
each load step. This takes into account the change in stiffness of the rig due
to rig deformations.

Mitchell [38] notes that the conditions applied to the mainsail luff loading
are fairly arbitrary, and to find a more realistic distribution of the loading
requires a model of the sail to be combined with the mast model. The sail is
modelled using a membrane strip of high stress running from the mast head
to the end of the boom (along the sail leech) to represent the sail, based on
the reinforcing and structural design used by sailmakers. The mast is mod-
eled by beam elements, and a modified Newton-Raphson solution to a direct
stiffness finite element method which allows large displacements is employed,
an equivalent method to the stepwise linear finite element calculations car-
ried out by Keuning and Van der Werff [48] and Hoffmeister [22]. Sail loads
are applied as discrete forces to the mast in the direction of the sail cloth
at the mast, such that the net moment is equal to the righting moment of
the yacht. This method is an improvement over simply applying the sail
loads as distributed forces along the mast, but in order to model the coupled
nature of the mast and sail and to apply the correct loading to the mast, it

is necessary to develop a finite element model of the sail and mast together.

2.3 Membrane analysis

The analysis of membranes under the infiuence of fluid flow is complicated
by the coupling between structural and aerodynamic responses. Under the

action of an incident flow, the membrane will become pressure loaded which



will result in a deflection of the membrane resulting in a change in the air-
flow over the surface. This prevents a closed form solution of the flow over
a flexible membrane. Membranes are also unable to support compressive
stresses, which can introduce more difficulties in a three dimensional case.
The problem can be simplified by assuming that the membrane is inextensi-
ble with a constant tension, or looking at a two dimensional case, and several

solutions to a fluid flow loaded membrane have been presented using these

approximations.

2.4 Inextensible membranes

Initial analyses of membranes under the action of incident flow looked at the
case of inextensible membranes. Two dimensional cases with membranes un-
der a constant tension were analysed by Thwaites [61] and Neilsen [42]. For
the structure to be in equilibrium, the curvature of the membrane must be
such that the tension in the membrane balances the pressure loading on it. A
two dimensional sail equation is developed, using linearised airfoil theory and
static equilibrium of the sail under pressure force and tension (constant over
the sail). The resulting equation has no theoretical solution, but Thwaites
develops an iterative numerical solution, dividing the membrane into ele-
ments. Neilsen [42] studies the same problem using fourier analysis, with a
fourier series to describe the membrane shape. Analysis with a leading edge
singularity is undertaken approximately, truncating the solution to the first
18 and 30 coefficients of the fourier series.

Greenhaulgh [17] measures experimental shapes of rectangular inextensi-
ble membranes with a variety of excess lengths, and compares experimental
and calculated airfoil shapes, lift coefficients and membrane tensions. Pres-

sure distribution is calculated using a vortex lattice method, with each ele-



ment of the membrane having a line vortex at 1/4 chord and a control point
at 3/4 chord. Membrane tension is assumed to be constant, and the tension
and local curvature of each element balance the pressure difference. Results
from the calculations were found to be in good agreement with experimen-
tation for lift, shape and membrane tension.

Newman [43] presents a review of the work performed on flexible inelastic
membranes. Geometry and local tension of the membrane are related to
the pressure difference across the membrane, and pressure distributions are
calculated using potential flow. It was noted that the effect in change in
tension and shear across the membrane thickness are third order, and so are
neglected. Since membranes are unable to support compressive stresses, it is
noted here that the smaller principle stress is significant, as the membrane
will approach a wrinkled state as this reached zero.

Jackson [26] calculates the shape of a two dimensional sail in inviscid flow,
extending the analysis to two interacting sails. The membrane is divided into
segments, and a vortex lattice method is used to calculate the pressure dis-
tribution for a given membrane shape. To ensure that the surface streamline
leaves the trailing edge smoothly, and additional point is used beyond the
trailing edge. The structural method relates curvature and tension in the
element to the pressure difference. Solution of the membrane problem re-
quires two levels of iteration. A shape of the membrane is assumed, then
the pressure distribution calculated. The membrane tension is guessed, and
the shape calculated for this tension. After a deflected shape is found, the
chord length of the membrane is calculated. If this is too long, the tension is
increased and the shape is calculated again. When the shape has converged,
the pressure distribution is recalculated and the procedure continued until

the change in tension is below a convergence criteria. The convergence cri-



teria for the entire problem and the structural calculation are calculated to
give the same level of accuracy. Jackson and Fiddes [28] extended this work
to account for viscous flow past two dimensional flexible sail sections. The
structural model used is the same as the previous paper, and a Navier Stokes
solution with a flexible boundary layer was employed for the fluid model. A
cosine distribution of the panel edges and collocation points is used, and the
flow field takes into account a boundary layer on each side of the membrane
and a separation bubble at the leading edge. Constant strength doublets are
used to represent the vortex sheet, and integral methods are used to represent
the boundary layer flow. Results show good agreement with experimenta-
tion, but the difficulty in obtaining experimental results with rigid spars that
do not affect the airflow are highlighted. The inclusion of viscid effects were

found to make a difference of only one percent in the membrane tensions.

2.4.1 Elastic membranes

Ormiston [47] studied an initially flat rectangular membrane with fixed lead-
ing edge and ribs. The trailing edge of the membrane is held by a cable
under tension. Membrane tension is taken to be constant in the chordwise
and spanwise directions, ¢, and t,. The membrane deflection equation, equa-
tion 3, relates curvature and tension to the pressure difference across the
membrane, and is an extension from the two dimensional cases mentioned
previously. Due to the elastic nature of the membrane, this equation is now
non-linear with respect to deflections, as the partial derivatives of the deflec-
tions, 8%2/8(z)? are multiplied by the membrane tensions, t,,t,, which are

functions of the membrane deflections .
62.’133 823)3
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Non-linear chordwise and spanwise strains are calculated from the deflections,
and this is used to calculate the membrane tensions. Equations for the
sailwing surface are developed to include the deflections of a pretensioned
elastic trailing edge wire, leading to a non-linear system approximating the
structural response of the sailwing. The aero-elastic problem is uncoupled,
and the wing loading is approximated by the first term in a fourier series
expansion of a uniform loading. Tensions are found by solving the non-linear
equilibrium equation by iteration. The resulting membrane slackness due
to the elongation of the membrane and the trailing edge wire deflection is
used to calculate the shape of the membrane. Use of the structural results
allows calculation of the lift of the sailwing using thin airfoil and Prandtl
lifting line theory. Values of deflection and tensions for arbitrary values of
the lift coefficient can then be calculated, and the sailwing aerodynamics can
be related to the structural properties of the membrane. The non-linearity
of the sailwing lift curve is found to be due to the elastic effects of the
membrane.

A computer orientated continuum approach to the sailwing problem is de-
scribed by Holla et al [24]. They note that for a full structural analysis of the
membrane, it is necessary to take into account the spar flexibility and varia-
tion of tension across the membrane. For this case, the tip ribs are assumed
rigid, and a state of pure membrane stress exists with uniform chordwise and
spanwise tensions. It is noted that these approximations are restrictive, but
allow the solution of the problem with much less computation than a full
finite element analysis. Average strains are calculated from the change in
length in the chord and spanwise directions, and assuming linear elasticity,
the instantaneous membrane tensions can be calculated. The aerodynamic

problem is solved using a doublet lattice method. The deflected membrane
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shape must satisfy both the aerodynamic and structural equations. To solve
the problem, the deflected shape is assumed to be defined by a double fourier
series, which results in equations for the constants of the series in terms of
the instantaneous tensions in the membrane. An iterative solution method

is used to calculate the equilibrium deflections of the membrane, as detailed

below:
e Choose value for instantaneous tension
e Solve for fourier series coefficients
e Compute change in instantaneous tensions

e Check for convergence, otherwise start with updated instantaneous ten-

sions.

Double skinned membranes are analyzed by Murai and Muruyama [41].
The three dimensional sailwing with trailing edge wire is idealized as a two
dimensional case with the wire represented by a spring on the trailing edge of
the membrane. The structural equation is given by a balance of the tension
and curvature with the pressure difference for the top and bottom mem-
branes separately. Pressure loading is obtained using a panel method over
the membrane, and solution of the problem is obtained by iterating between
the structural and aerodynamic problems. Iteration is also used to solve
the non-linear structural equations and results are presented for a circular
leading edge spar.

Smith and Shyy analyze two dimensional membrane wings under un-
steady laminar flow [55]. The membrane is subject to pressure force and
shear force, and is linearly elastic with prestress. The membrane is divided

into elements with the structural equation solved using finite difference and
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the aerodynamic problem solved using a pressure based numerical procedure.
An iterative solution method is used to account for the coupling between the
aerodynamic and structural aspects of the problem, using a body fitted lan-
grangian formulation for the grid. The elastic and aerodynamic problems
are solved cyclically until convergence. A steady state solution is obtained,
and this is used as the starting configuration for an oscillating flow. In a
second paper [56], the model is extended to account for turbulent flow, using
Reynolds Averaged Navier Stokes equations with k-w eddy viscosity models
for the aerodynamic problem, and the same structural model as before.
The assumptions of constant tension in membranes that have been used in
obtaining numerical solutions to membrane problems have given good results
for rectangular membranes in these studies. However, these restrictions are
unrealistic for the triangular shapes encountered in yacht sails as the problem
lacks the symmetry of the rectangular problems. In order to analyse these
membrane shapes, it will be necessary to carry out a finite element analysis of
the membranes. Due to the non linear relationship between the membrane
displacements and the pressure they support, a non linear finite element
analysis will be necessary to model the sails. This will also allow analysis of
the rig as a whole, as the non linear nature of this system has been noted by,
for example, Keuning and Van der Werff [48] and Hoffmeister [22].
Newman [44] presents a review of work on elastic membranes up to 1987,
including much of the details from an earlier paper on inextensible mem-
branes [43]. Additional cases of three dimensional sails including vortex and
doublet lattice methods for solution of the aerodynamic problem and inelastic

and isotropic finite element analysis of the structural problem are discussed.
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2.5 Non linear finite element analysis

Analysis of structures undergoing large displacements during deformation
require the use of a non linear formulation for the finite element govern-
ing equations. This results in a series of non-linear equations for the finite
element problem. These are solved using incremental formulations, and a
description of the incremental loading methods are given in Ross [51].
Mallett et al [36] develop finite element matrices that take into account
large deformations of the model. Governing equations are developed using
virtual work, and these are shown to be identical to those derived from vari-
ations in the models potential energy. A truncated Taylor series expansion
around a known equilibrium position is used to obtain a linear incremental
formulation to allow solution of the non-linear governing equations. For cases
with non linear strain displacement relationships, a non linear incremental
formulation, which uses the first two terms of a Taylor series expansion is
developed. Finite element matrices for a truss element are developed using
the direct, potential energy and linear incremental formulations. The linear

finite element stiffness matrix is replaced by a summation of three matrices:
e Linear finite element stiffness matrix

e Stiffness matrix which is a linear function of displacement, which cou-

ples membrane and flexure action

o Stiffness matrix which is a quadratic function of displacement, which

affects flexure action only.

Further development of this work is presented by Rajasekran and Murray[50].
Working from the strain energy for a linear elastic material and noting that

the strain can be split into components linearly and quadratically dependent
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on displacement, the potential energy of the model can be found. From this,
the stiffness matrix for an element is developed in the same form as in [36].
It is noted that the forms of the stiffness matrices are important to enable
them to repeat in both the equilibrium and incremental equations, which was
not shown in Mallett’s work. These formulations are shown by Wood and
Schrefler [67] to be identical to the methods developed by Zienkiewicz [68]
taking into account difference in notation and arrangement of the stiffness
matrices.

Bathe et al [7] develop non linear finite element formulations from con-
tinuum mechanics. The loading path is divided into a number of steps, and
equilibrium is obtained at each step before continuing. Two formulations are
presented, the Total Langrangian and Updated Langrangian, which refer the
current displacement derivatives to the initial and current state of the body
respectively. These different formulations give the same numerical results,
and choice of scheme is dependent only on the relative numerical efficiency
for the problem being considered. Virtual work is used to formulate the gov-
erning equations, and the non-linear term in the equation is linearised using
a Taylor series expansion, truncated to the first term. Due to this linearisa-
tion, the internal and external forces will not be in equilibrium at the end of
the load step. It may be necessary to iterate within the load step to reduce
the out of balance force in order to ensure that a stable solution is obtained

for the full loading path.

2.6 Membrane finite element analysis

Timoshenko and Woinowsky-Kreiger [63] concluded that if the ratio of thick-
ness to other dimensions for a membrane is less than 0.1, the bending stresses

are small in comparison to other stresses and can be neglected, as noted in
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Newman [44]. Yacht sails will typically have a ratio of thickness to chord
of less than 1.0 x 1073, and this restriction can be incorporated into a finite
element model by using elements that are planar and assuming a state of
locally plane stress in each element.

Oden and Sato [46] employ elements with displacement coefficients that
are independent of deformation, and calculated using the geometry of the
undeformed elements, which corresponds to the Total Langrangian method
described by Bathe [7]. A stiffness relationship is determined by equating
external virtual work done by nodal forces to internal work, expressed in
terms of an elastic potential function, W. The elastic potential function is
itself a function of the membrane strains, and it’s exact form depends on
the membrane material. Examples are given for isotropic, perfectly elastic
materials, where W is a function of the strain invarients. In the case of small
strains, the relationship for a neo-Hookean membrane is obtained, and the
familiar linear stiffness matrix is obtained. The element stiffness matrices are
calculated in the element local coordinate system, and then transformed into
the global coordinate system for assembly into the global stiffness matrix,
using the connectivity of the elements. Boundary conditions are applied by
prescribing forces or displacements on the nodes, and a system of non-linear
equations in the node displacements is obtained.

To solve resulting the non-linear equations, a Newton-Raphson method
is used. The non-linear stiffness term is expanded using a Taylor series
and truncated to the first two terms - the linear stiffness relation and a
correction due to increments in the node displacements. These equations
are solved for displacement increments due to an increment in the nodal
forces. Corrected values for the nodal forces are then calculated using the

full non linear relationship. These are then used to calculate a correction
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to the nodal displacements using an updated stiffness matrix. The solution
is initialized with an assumed displacement field, and this is corrected until
convergence of the displacements. At some stages in the solution, compressive
stresses can develop in the membrane, which leads to the stiffness matrix
becoming no longer positive definite and a failure of the iterative solution.
When this occurred, the solution process was restarted with a new prescribed
displacement field. Solution were obtained for the deformation of an initially
square membrane under a prescribed in plane edge displacement, and for the

inflation of a flat membrane.

2.7 Stein Hedgepath wrinkle model

Membranes do not support compressive stresses, and as compressive stresses
develop in a membrane, wrinkling will occur. This behaviour is avoided by
Oden and Sato [46] by altering the initial displacement field to find a starting
point where no compressive stresses develop during the analysis. In reality,
wrinkling due to development of compressive stresses often occurs in mem-
brane structures, and it is possible to model this behaviour within the finite
element solution using an algorithm developed by Millar and Hedgepath [37],
which is a numerical implementation of a continuum theory developed by
Stein and Hedgepath [58]. The development of a compressive principle stress
will result in a state of uniaxial tension occurring at that location within the
membrane, and this will result in the membrane wrinkling. When wrinkles
occur, the contraction in the direction normal to the wrinkles exceeds what
is predicted by the materials Poisson’s ratio. This is incorporated into the
wrinkle model by increasing the effective value of the Poisson’s ratio in the
wrinkled region. The algorithm to implement this compares the principle

values of local strain, and determined if the element is in either the slack,
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wrinkled or taut state, and a different constitutive matrix is given for each
of the states. To ensure that a steady state is reached, it is necessary to
iterate within each load step, changing the constitutive matrices of each el-
ement according to the last calculated value of local principle strains until

the element state converges.

2.8 Fluid flow analysis of sails

As noted in [28], viscid effects change membrane tensions by only about 1%
in a two dimensional analysis. Thus for the aeroelastic analysis of sails, the
potential flow method of calculating fluid flow is sufficient to determine the
pressure distribution on the sail providing that the sail configuration is such
that the flow is not widely separated. The case of a yacht sailing upwind
has flow that does not contain a large amount of separation, and is suited
to analysis using potential flow methods. Potential low methods have the
advantage of short run times in comparison with viscous codes. Caponetto
and Bonjour [11] obtained a flown shape of a mainsail and jib, using an
aeroelastic solution which incorporating a potential flow vortex lattice code
to calculate the pressure loading on the sails, and then carried out a Navier-
Stokes analysis on the flown shape. Analysis of a yacht rig in an upwind
configuration using a potential flow panel code, PALISUPAN [64] will take
around two minutes on a single processor workstation, compared to a run
time of about five hours on a 64 processor workstation for a viscous Navier
Stokes analysis of a similar problem [11]. For an aeroelastic solution, which
may require over two hundred separate aerodynamic calculations during the
solution, this time penalty becomes prohibitive.

Vortex lattice codes have been used in previous aeroelastic analyses of

sails by Jackson [27] and Smith [57]. The vortex lattice method is suited
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to sail analysis as it effectively models thin structures. PALISUPAN is a
potential flow source/doublet code that was developed at Southampton to
study the effect of propeller rudder interactions [64], and has been success-
fully used to analyse upwind sail configurations [10] [45], and shown to give
good agreement with experimental global force values and pressure distri-
butions [49]. Due to the nature of the code, it is necessary to introduce an
artificially large thickness to the sails, but this does not detract from the
accuracy of the pressure calculations [49]. The source doublet method will
allow the analysis of the sails and mast together, which is not possible with

a vortex lattice code.

2.9 Aeroelastic analysis

Bathe [5] notes the importance of selecting the correct mathematical model
for fluid structural interaction, and uses a finite element method for solu-
tion of both the aerodynamic and structural elements of the problem. He
also notes that solution of the finite element equations by direct methods
can become computationally expensive, as computing time and hardware re-
quirements increase with the number of nodes, N, in proportion to N? and
N3/2 respectively.

Han and Olsen use an iterative coupled fluid structural model to study
wind loaded pneumatic structures [18]. The aerodynamic problem is solved
using a boundary element analysis, and this provides pressure loading for
the finite element analysis. A Langrangian formulation is used for the struc-
tural problem with an incremental decomposition of the stresses and strains.
The non linear stiffness term is linearised using a Taylor expansion, and a
warped four noded quadrilateral shell element is used for the analysis. The

deformation dependence of the pressure loading is accounted for in the el-
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ement stiffness matrix calculations, and results in a non symmetric matrix.
Iteration is used to solve the structural problem, with the linear stiffness re-
lationship used to calculate increments to the displacement due to the load
increments calculated using the non-linear equations from the previous dis-
placement increments. A line search scheme is used to assist convergence of
the node displacements. The starting point is an assumed or given profile of
the structure, then the aerodynamic problem is solved to give the pressure
loading for calculation of the new profile until convergence.

Jackson and Christie [27] use the membrane assumptions of Oden and
Sato [46] applied to a finite element formulation to solve the structural prob-
lem for a three dimensional sail. The sail is divided into triangular elements
which are used for both the fluid and structural solutions. A vortex lattice
method is used to calculate the pressure loading on the sail, using triangu-
lar elements with control points at the element centroids. A wake sheet is
extended in the direction of flow at the trailing edge of the sail. It is noted
that a force free wake sheet would be required for accurate calculations for
two sail interaction. Since both the elastic and pressure forces are non-linear
with respect to the nodal displacements, it is necessary to employ an iterative
solution to the structural problem, using a Newton-Raphson method. As in
Han and Olsen [18], a linearised stiffness relationship is used to calculate
approximate node displacements for an increment in force calculated from
the full non-linear equations using the previous displacements. The wrinkling
of the membrane is modeled by changing the constitutive relationship to an
axial stress state in wrinkled regions. The aeroelastic solution is obtained by
solving the aerodynamic problem, applying these pressures to the membrane
and iterating until the structural equilibrium is found, then recalculating

the pressures using the deformed shape, and continuing until the solution
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converges.

Atkinson [2] went some way towards the analysis of a mast sail system,
using curved membrane elements developed by Zienkiewicz [68]. An ’as de-
signed’ sail shape is used to calculate pressure loads using an unsteady lift-
ing surface marine propeller method developed by Szantyr [59]. The mast
is considered as a rigid boundary for calculation of stress in the sail with
a non-linear finite element analysis. Stress resultants from the sail luff are
then applied to an approximation to a non-linear beam analysis of the mast
where the loading is applied in a number of increments, and a linear solution
obtained using an updated stiffness matrix for each increment. The resulting
mast bend is calculated and applied to the sail to gain a new shape which
is analyzed to calculate the effect of the response on the sail driving coeffi-
cient, although no further coupling of the fluid and structural problems was
undertaken. This approach was developed in a further paper by Atkinson
and Szantyr [3]. The aerodynamic problem is solved using a vortex lattice
method, with line vortices around the quadrilateral elements and a control
point at the center of the element. This loading is applied to a membrane
model of the sail as in [2], and the luff forces applied to a large deformation
finite element analysis of a rig comprising beam elements for the mast and
tension only rod elements for the rigging under pretension. The method is
used for the solution of a two sail jib/main combination. Initial attempts
modeled the jib stress resultants as a single force at the point of attachment
to the mast, but this was extended to include a forestay made of discrete el-
ements loaded by the stress resultants from the jib luff to model the forestay
sag. As previously, the distorted geometry was run through the CFD calcu-
lations to determine the change in sail driving force, but no coupling between

the structural and fluid problems was investigated.
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Smith and Shyy [57] have produced the most complete analysis of a sail.
The elastic membrane problem is solved using load stepping by incremen-
tally increasing the freestream velocity. The non-linear structural problem is
solved using the finite element formulation of Bathe [4] [7], with the strain
displacement relationship altered to that used by Oden and Sato [46] for
the membrane case, and use is made of the Stein-Hedgepath algorithm for
wrinkled membranes [37]. A modified Newton-Raphson approach is used to
iteratively solve the structural problem for each pressure distribution, and
the fluid and structural problems are solved cyclically until convergence at
each load step. A vortex lattice method is used for the calculation of the
pressure distribution over the sail, according to the methods of James [30],
using the same quadrilateral elements used for the structural calculations.
Results are presented for a membrane under uniform pressure, a rectangular
membrane wing with free trailing edge and an initially flat triangular mem-
brane representing a mainsail. In all cases, prestrain is used to allow solution
of the first load step (as otherwise the matrices are singular), but this is
removed for following load steps.

Fukasawa has studied the dynamic response of a two dimensional mem-
brane in water [14] and a three dimensional sail in air [15]. The strain
displacement matrix is split into linear and non-linear parts. An incremental
formulation is used, splitting the loading into a number of equilibrium states.
the incremental stress strain relationship is assumed to be fully elastic, and
higher order terms are neglected in calculation of the stiffness matrix. The
final stiffness matrix contains the linear stiffness matrix, initial displacement
stiffness matrix and initial stress stiffness matrix, and corresponds closely
with the Total Langrangian formulation described by Bathe [7].

The two dimensional membrane in water is modeled for static equilibrium
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using hydrostatic pressure. The pressure force is calculated using the previous
load step displacements. As the load steps used are small, the deformation
dependence of the loading is adequately described by this approximation. A
dynamic case is then calculated using strip theory and Bernouilli’s equation
to obtain loads at each time step, with the static case used as a starting
point. The three dimensional sail is modeled using triangular elements for
both aerodynamic and structural analysis, as a triangle determines only one
plane and is the natural shape to use for dividing up a triangular sail. The
pressure loading is calculated using a vortex lattice method with a control
point at the element centroid. The combined aerodynamic and structural
case is solved using increments in the freestream velocity from zero to the
required value. At each step the pressure distribution is calculated to provide
the nodal loads for the finite element analysis, and updated shape is used
for the next velocity step. A dynamic analysis of the sail under pitching and

yawing is then carried out using Newmark-3 time integration.

2.10 Experimental analysis of yacht rigs

There has been a large amount of testing done on various yacht rigs, but
almost all of this work is commercially sensitive, and so is rarely published.

Ladesic [31] carried out studies of rigid cylindrical surfaces in the form
of a single sail and a model with hull and a variety of main and headsail
combinations. The wind tunnel was empirically adjusted to develop a scale
velocity profile appropriate to yacht sails using a vertical distribution of flow
impedance upstream from the model. Experimental results are compared to
a vortex lattice model, and found to be in good agreement up to the point

of stall.
Locke et al [35] develop a method of measuring the distribution of lift and
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drag along the span of a sail. Lift and drag are inferred by measurements
of velocity components and pressures in the sail wake, as this measurement
method does not interfere with the flow over the saﬂs.’ This allows details
of the structure of the flow around the sails to be shown, and provides a
better model for calibration of numerical methods. A strong vortex is found
originating at the foot of the sail, due to the gap between the boom and deck,
but no vortex was found originating from the head of the sail.

The requirements for simlitude for testing model sails in wind tunnels is
discussed by Flay [13]. He notes the difficulty in assessing the dependence
on forces due to Reynolds number as increasing wind speed in the tunnel
results in deformation of the sail. It is also difficult to obtain similar aeroe-
lastic numbers (defined by Jackson and Christie [27]), as a model sail would
have to be made out of extremely elastic materials. He notes that this af-
fects only the deformed shape of the sail, which can be altered by the crew
using the sail controls. The effect of velocity profile and induced turbulence
is discussed, in particular pointing out the difference between yachts and

stationary buildings.

2.11 Summary

Aeroelastic solutions have been obtained for membrane structures which rep-
resent yacht sails, and this allows the coupled nature of the fluid and struc-
tural aspects of the sail to be modelled. The forces generated by a mainsail
have been applied as distributed loads to finite element analysis of masts, but
the distributions of the loading have been chosen arbitrarily. Considering the
mast and sail as distinct bodies in this manner neglects the interaction of the
rig elements. An aeroelastic model of a mast and mainsail body will apply

the forces generated by the sail onto the mast in the correct manner, and
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also model the interaction of the mast and sail deformations.

Potential flow allows the solution of the fluid aspect of the mast sail
model in a timescale appropriate for the aeroelastic analysis of a rig. Vortex
lattice potential flow codes have been used successfully in both fluid and
aeroelastic analysis of sails. A non linear finite element program is required
for the analysis of the structural aspect of sail deformation, due to the large
deformations that can occur in the rig and the non linear nature of the
membrane strain energy - displacement relationship. A Total Langrangian
formulation developed by Bathe [7], including the membrane assumptions
of Oden and Sato [46] and the membrane wrinkle algorithm of Millar and
Hedegepath [37] has been employed by Smith and Shyy in the aeroelastic
analysis of sails [57].

The aeroelastic analysis of a mast sail system will use a similar formu-
lation to that employed by Smith and Shyy [57]. A Total Langrangian fi-
nite element formulation [7] will be developed, including membrane assump-
tions [46] and wrinkle model [37] for the sail elements and suitable elements
for the mast analysis. A potential flow panel code, PALISUPAN will be used
to model the mast and sail to calculate the pressure loads on the system.
Programs to generate the required PALISUPAN model geometry from the
finite element model and calculate the finite element model loads from the

panel code pressures will be required to carry out the aeroelastic analysis.
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3 Aeroelastic solution method

3.1 Analysis model assumptions

A yacht rig operates in a constantly changing environment. Wind speed and
direction varies continuously, and the yacht on which the rig is supported will
be in constant motion under the influence of the environment and the input
of the crew sailing her, and is itself a flexible structure. In order to simplify
the problem to a level which is soluble with modern techniques, it is necessary
to apply restrictions to the real life case. The rig is simplified in this analysis,
and a system of a single sail on a mast is considered. The methods used are
capable of dealing with multiple sails and rigging elements, but this would
result in a complex system with a large increase in computational time and
the increased number of variables would make conclusions difficult to draw.
The rig is assumed to be in a steady state and no heel is applied, which is
close to the real life situation of a yacht sailing on flat water in a low, steady
wind. The case of a yacht sailing close hauled into the wind is considered,
as it is possible to obtain a reasonable prediction of fluid flow around the
rig using potential flow analysis for this sailing heading. Although viscous
effects, such as separation in the region of the mast can be appreciable, the
extra computational time required for a viscous analysis would result in a

prohibitively large solution time for the aeroelastic analysis.

3.2 Solution structure

The aeroelastic solution method which is used is illustrated in figure 1. The
coupled nature of the fluid and structural aspects of the system requires an
iterative solution to the aeroelastic problem. The rig is analysed using a fluid

flow model to calculate the pressure distribution over it. This is used to gen-
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erate the loading for the structural analysis of the rig. The deformed rig can
then be analysed using the fluid flow model to obtain an updated pressure
distribution. This cycle is continued until the solution has reached conver-
gence. This solution structure has been employed in aeroelastic analysis of
sails by Jackson and Christie [27] and Smith and Shyy [57], and in analysis
of wind loaded preumatic membrane structures by Han and Olsen [18].

Aeroelastic analysis of a sail carried out by Smith and Shyy [57] required
over 200 loops of the fluid structural solution cycle to produce a solution.
In order to allow solution within a reasonable time scale, taken to be 24
hours on a UNIX workstation for this thesis, the solution time for the fluid
and structural aspects of the solution must be kept to a minimum. Use of
a commercial finite element code will result in large time overheads to start
up the program, and an in house program will also result in a faster solution
as it will only contain the elements and solution techniques required for the
aeroelastic analysis. The analysis of a sail using a commercial finite element
code, ANSYS, was attempted by the author [21], and was unable to easily
produce a solution for a membrane sail structure. To obtain a solution to the
structural aspect of the problem in a reasonable time scale and to ensure that
the desired structural models were implemented, it was decided to develop
a nonlinear finite element analysis program, incorp’orating membrane sail
elements and mast elements. Membrane elements were formulated in the
manner of Smith and Shyy [57] which applies the membrane assumptions
of Oden and Sato [46] to the finite element formulation and includes the
membrane wrinkle algorithm of Millar and Hedgepath [37].

A potential fiow analysis will be employed for the fluid analysis which al-
lows solution of the fluid aspect of the problem in an appropriate timescale.

Use of a viscous CFD program, such as an Euler code, would require at least

27



several hours to solve on a UNIX workstation at each loop and result in a
prohibitively high solution time. Aeroelastic analysis of sails by Jackson and
Christie [27] and Smith and Shyy [57] employed vortex lattice potential flow
codes to calculate the fluid flow over the sails. These are well suited to anal-
ysis of sails, as they can be used to model thin structures, but are not suited
to the analysis of a mast sail system due to the thickness of the mast. A
potential flow panel code allows the solution of the mast and sail in a single
model with an artificial thickness introduced to the sail. The timescale of the
project precluded the development of a potential flow code for the analysis,
and a panel code developed within the University of Southampton, PALISU-
PAN [64] will be used to model the fluid aspect of the problem. This has been
shown to give good agreement with experimental pressure measurements on
a mast mainsail model [49] when using an artificial thickness applied to the
sail in the PALISUPAN model, and has been used to analyse yacht sails
in an upwind configuration in several previous studies, including Prior [49],
Cant [10] and Noury [45]. As the code was developed within the depart-
ment, a command line version without any graphical interface was available,
and this was used to reduce the time overhead required when starting the
program.

Previous aeroelastic analysis of a yacht sail have employed an aeroelastic
element, with the same discretisation being employed for the finite element
and potential flow analysis. Jackson and Christie [27] employed triangular
elements, and Smith and Shyy [57] used quadrilateral elements. The use of
quadrilateral elements restricts the finite element analysis to initially plane
membranes in order to be able to apply membrane restrictions to the sail
elements, and also means that the sail must be truncated in the finite element

mesh as the tip of the mainsail cannot be meshed with quadrilaterals. An
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aeroelastic element is not suitable for the analysis of a rig, as it will not
allow modeling of both the mast and sail in the aerodynamic and structural
analysis. Distinct grids will be used for the finite element and potential
flow analysis to enable the mast sail model to be analysed by the fluid and
structural models. These distinct grids can be used to satisfy the different
grid requirements for increased accuracy of the two aspects of the aeroelastic
problem.

The potential flow program used in the aeroelastic analysis, PALISUPAN,
generates a potential flow panel distribution for a body defined by a series of
sections. To generate the PALISUPAN input file, a series of sections defining
the rig in its deformed configuration is obtained from the finite element model
of the rig, and these are used to generate the sections defining the body to
be analysed by PALISUPAN. Pressures obtained from PALISUPAN are then
used to calculate the pressure loading on the sail elements. Accuracy of the
numerical solutions could be increased by using adaptive meshing for the
finite element and potential flow analysis, which is possible due to the use of
distinct grids. This is beyond the scope of this project due to the timescale
which would be required, and a fixed finite element mesh and potential flow

panel density is used through the solution path of the aeroelastic analysis.

3.3 Validation data

A search of literature did not find any validation data for yacht rigs in the
public domain that would have been useful for validating the aeroelastic
analysis. An attempt was made to gain some validation data by taking
photographs of a yacht rig during wind tunnel tests that were carried out
during a project at the University of Southampton [33]. Camber lines were

placed on the sails to attempt to gain section profiles at three positions up
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the rig. However these photographs proved to be of too small a scale and
too poor quality for any quantitative data to be obtained from them. An
example of the photographs is given in figure 2.

The assumptions necessary to allow solution of the aeroelastic problem,
and the limitation of the analysis to a single sail and mast system prevents
the use of real scale data for the validation of the program. Wind tunnel
tests of rigs at a scale large enough to produce useful validation data for this
problem are very expensive, and outside of the scope of this project. Almost
all data from both scale model and full scale trials are obtained during the
course of yacht development for events such as the Volvo Ocean Race and
Americas Cup, and this data is commercially sensitive and therefore not in
the public domain. There is also the problem of obtaining similitude of both
the structural and aerodynamic aspect of yacht rigs for model testing, as
discussed in the previous chapter.

In order to have confidence in the methods used in the analysis procedure,
each stage of the structural analysis was validated against theoretical solu-
tions. Mast elements were validated against a large deflection beam problem
whose solution is presented by Holden [23]. This was also used as a valida-
tion case for the two dimensional nonlinear analysis programs. The nonlinear
membrane formulation was validated against a solution for the large deforma-
tions of uniformly loaded membranes presented by Seide [53]. PALISUPAN
has been shown to give good agreement with experimental pressure distri-
butions by Prior [49], although the global force coefficients predicted do not
have good agreement with experimental results due to the inviscid nature of

the potential low assumptions.
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3.4 Development path
3.4.1 Linear Finite element development

In order to develop a finite element program that satisfies the requirements
discussed previously, a series of programs were written to enable validation
throughout the development of the finite element analysis, which enables
confidence in the programs to be developed. A variety of elements which
could be used to model the mast and sail structures were investigated initially
in linear then in nonlinear programs to determine the most suitable elements
for the structural aspect of the aeroelastic analysis. The use of a direct
stiffness method results in a symmetric, banded stiffness matrix, so reduced
matrix storage routines and an efficient matrix solution method were used
to take advantage of this.

Initial development of the finite element program involved linear finite el-
ement analysis in two dimensions using triangle and quadrilateral elements.
This allowed the program structure and data structures to be developed, and
allowed debugging of the isoparametric formulation, reduced matrix storage
and solution methods and numerical integration routines. The linear pro-
gram was extended to three dimensions for investigation of solid elements for
modeling the mast. A brief investigation of beam elements in a linear finite
element program was carried out. Beam elements would reduce the problem
size as fewer nodes would be required to model the masts compared to solid
elements but introducing rotational degrees of freedom for only the mast
nodes would require re-development of the stiffness matrix assembly and so-
lution routines. The nonlinear formulation for beam elements [6] would also
require separate development to the formulation which will be used for the

sail elements. Using solid elements increases the number of nodes required
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to model the rig, but they use only translational degrees of freedom, and
thus do not require a distinct finite element formulation. The solid elements
also define the mast cross section explicitly, making the PALISUPAN body

section definition easier.

3.4.2 Nonlinear finite element development

A Total Langrangian method, presented by Bathe [7] is used as this allows
the application of the deformation dependent pressure loading and applica-
tion of the membrane restrictions for the membrane finite element analysis.
Initial development took place in two dimensions to simplify the problem
and enable confidence in the solution method to be developed. Eight node
quadrilateral elements were used in the initial nonlinear program, as these
had been found to give good agreement with theoretical deflections of a can-
tilever beam by Bathe [7]. Development continued to three node triangles,
and then to a membrane formulation using element local coordinates which
enable the membrane restrictions (which are similar to assuming a state
of plane stress in the membrane) to be applied. Pressure loading on the
membrane elements was implemented, and the membrane formulation was
validated against the constant pressure case presented by Seide [53]. The
solid elements were incorporated into a three dimensional nonlinear finite el-
ement formulation which was developed from the two dimensional case, and
were validated for against the large deflection analysis of a distributed loaded

cantilever beam by Holden [23].

3.4.3 Aeroelastic development

To enable solution of the aeroelastic problem, programs were developed to

generate PALISUPAN input sections from the deformed finite element model,
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and to calculate the finite element loading from the PALISUPAN results.
Rectangular membranes were analysed using the aeroelastic program. An
initial model was restrained around all edges of the membrane, and produced
a stable solution using an iterative solution procedure without using veloc-
ity stepping. Velocity stepping was introduced to the aeroelastic solution
method for the analysis of a free trailing edge rectangular membrane. The
wrinkle model was introduced to the finite element analysis and the updated
finite element formulation employed to analyse the free trailing edge case and
an initially flat triangular membrane, as analysed by Smith and Shyy [57].
The aeroelastic solution method was then extended to include the analysis
of a mast, which required alteration of the PALISUPAN model generation
routines and the finite element program. Dynamic relaxation was introduced
to enable stable solutions of the aeroelastic analysis of the mast sail system.
The rig model was analysed with a restrained and unrestrained mast
to show the effect of including the mast deformations on the sail analysis
results. An initially curved membrane sail model was then analysed with
both a restrained and free mast to prove the ability of the solution method
to deal with 'as designed’ sail profiles. Sail loads obtained from the aeroelastic
analysis were applied as a distributed loading on a nonlinear finite element
model of the mast alone, and the mast compression predicted were compared

to those obtained from the aeroelastic analysis.

33



4 Linear finite element analysis

The theory of linear finite element analysis is well established, and a complete
description of the formulation of the finite element method can be found
in many texts, including Bathe [4] or Zienkiewicz [68]. A summary of the
derivation is presented in appendix A. The body to be analysed is discretised
into a number of elements, which are connected at a discreet number of node
points on the boundaries. Displacements of these nodes are taken as the
system unknowns, and the principle of virtual work is used to equate the
internal work done in the model to the external work done by the applied
loads. A set of simultaneous equations is obtained which can be solved to

give the nodal displacements.

4.1 Program structure

The structure of the linear finite element programs is shown in figure 4. Model
data is read in from a data file chosen during the program execution. Element
stiffness matrices are evaluated and assembled into a model stiffness matrix.
Boundary conditions and loading are applied to the model as defined in the
data file, and the resulting finite element equations are solved to obtain node
displacements. Element stress solutions are obtained from the calculated
node displacements, and the results are output into a file.

During the development of the linear finite element analysis, a fixed array
size was used to store the stiffness matrix and loading vector. The full stiff-
ness matrix was stored, and solution of the finite element equations was car-
ried out using Gaussian elimination of the full stiffness matrix. This requires
the number of degrees of freedom to be set in the program before compilation.

Although this is inconvenient when analysing a range of models, it simplifies
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debugging of the program as the full stiffness matrix is easily output. Dy-
namically allocated stiffness matrix and force vector arrays were developed
after validation of the two dimensional finite element analysis which allows

models of arbitrary size to be analysed and reduced the solution time.

4.2 Data structure

The data structure used to store the finite element model is represented in
figure 5. The top level structure contains model data including the number
of components (nodes, elements, point loads and boundary conditions) and
material properties. Pointers to arrays containing the component data which
define the model are included in the top level of the structure. The component
data is stored in arrays that are dynamically allocated in the input function
according to the number of each component in the model. Component data

structures contained in the model are listed below.
e Node data : contains node identification number and node coordinates.

e Element data : contains element identification number and pointers to

each of the element nodes.

e Boundary condition data : contains the identification number of the
node the constraint is applied to and a flag indicating which degree of

freedom is restrained.

e Point load data : contains the identification number of the node the
load is applied to, the load magnitude and a flag indicating the direction

of the load.
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4.3 Boundary conditions

The method used for application of the boundary conditions allows any dis-
placement to be specified on a degree of freedom. The transformation used is

shown in equation 4, where displacement u, is given an applied displacement,
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In the aeroelastic analysis, only boundary conditions with a zero applied
displacement are required. This restriction reduces the storage requirements
for the boundary conditions and simplifies their application to the finite

element equations, and so is applied to all the finite element programs.

4.4 Loading

Loading is applied to the model as point loads on element nodes for the linear
finite element analysis. Distributed loading is lumped to the element nodes
during the model generation by evaluation of equation 5, where F* is the
equivalent load on node i due to a distributed load of intensity ¢ over the

element.

Fi= / higdA (5)
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4.5 Solution of banded stiffness matrix

Use of the banded nature of the stiffness matrix is made to reduce the storage
requirements for the stiffness matrix. As the matrix is also symmetric, it is
necessary to only store the upper half of the non zero band of the stiffness
matrix (including the main diagonal terms). In order to allow solution of
the finite element equations to calculate the node displacements using only
the stored matrix elements, the bottom half of the stiffness matrix terms
are eliminated for each column by addition of multiples of the corresponding
row. As the matrix is banded, this only has to be carried out over the
semibandwidth of the matrix, unlike in a full Gaussian elimination where
the full column is eliminated with the exception of the main diagonal terms.
The values of the elements below the main diagonal (which are not stored
in this scheme) can be found from the symmetric elements above the main
diagonal. After this elimination, back substitution can be used to calculate
the node displacements from the remaining elements in the top half of the
non zero band of the stiffness matrix. Solution of the finite element equations
using this method reduces the calculations required for solution by a factor
of about 30 for the rig models considered in the aeroelastic analysis when
compared to a Gaussian elimination of the full matrix (thus will depend on

the bandwidth of the stiffness matrix).

4.6 Isoparametric formulation

The iso-parametric element uses a element based natural coordinate system,
shown for a linear triangle in figure 6. Calculation of the element stiffness
matrix is carried out in the model coordinate system using the isoparametric

formulation described in appendix A. Boundary conditions and point loads
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are applied to the model in the global coordinate system, and the equations
solved to obtain the node displacements. Element stresses are calculated

from the node displacements in the global coordinate system.

4.6.1 Evaluation of the strain displacement matrix

In order to calculate the Jacobian matrix entries and the derivatives of the
interpolation functions with respect to the global coordinates, a matrix con-
taining the derivatives of the interpolation functions with respect to the nat-

ural coordinates, Oh is calculated, equation 6.

hi, hy, -+ hx,
fh=| " m (6)
hl,s h2s hN,s

’

The Jacobian matrix can be calculated by multiplying the éh matrix by a

matrix containing the element node coordinates, equation 7.
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The dh matrix is then multiplied by the inverse of the Jacobian to obtain the
derivatives of the displacement functions with respect to the global coordinate

system. These are assembled into the strain displacement matrix, B as shown

in equation 9.

Oh;
hej = o4 8
hig 0 hyy O -+ hy; O
B = 0 hig O hyo .-+ 0  hypo (9)
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4.6.2 Constitutive relationship

The constitutive matrix used for the two dimensional finite element programs

is the plane stress matrix for an isotropic solid, defined in equation 10.

1 v O
E
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4.6.83 Calculation of stiffness matrix

The element stiffness matrix for a two dimensional element is calculated

according to equation 11.

K.= | BTCBtdA (11)
Ae

Evaluation of the stiffness matrix is carried out using numerical integration
where required. Gaussian quadrature is employed for numerical integration,

and details of the schemes used for all the finite element analyses are given

in appendix B.

4.7 Three node triangular element

Interpolation functions for the three node triangle in terms of the element

natural coordinate system are given in equation 12.

- - - -

hl 1—r—s
hy | = r (12)
h3 S

Due to the linear interpolation of the displacements in the element, the ele-
ment strain displacement matrix is constant, and it is not necessary to employ

numerical integration in the calculation of the element characteristics. The
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stiffness matrix can be calculated according to equation 13, where the area

of the triangle is obtained from the determinant of the Jacobian matrix.
K = BTCBt(0.5 x det J) (13)

The model shown in figure 7 was analysed using the isoparametric finite
element program. Displacements and stresses obtained were compared to

results calculated from finite element theory in Grandin [16] and were found

to be identical.

4.8 Four node quadrilateral element

The four noded quadrilateral element assumes a linear variation of displace-
ment, and is shown with the element natural coordinate system in figure 8.

Interpolation functions for the element are given in equation 14.

ho

Lo e N

Py

(I+7)(1+s)

(I=r)(1+s) (14)
hs %(1—‘7*)(1—5)

(L+r)(1—s)

[ hs | |3
Evaluation of the stiffness matrix for the four node quadrilateral elements is
carried out using 2x2 Gaussian quadrature. The stress in the element is not
constant, but can be evaluated at any point in the element by calculating the
strain displacement matrix at that point as it is only a function of r,s, and is
not a function of rs (as in the eight noded quadrilateral element). This can
be multiplied by the element node displacements to give the strain vector

at the point, which is multiplied by the constitutive matrix to evaluate the

stress vector, equation 15.

T = CBU (15)
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4.8.1 Validation

To validate the stress calculation method, the model shown in figure 9 was
analysed, and corner stresses were calculated and compared to those obtained
by Bathe [4]. The model has sides of 4m, thickness 0.1m, F = 1.2 x 109,
@ = 0.3, P = 100N. The calculated stresses are given in table 2, and are
identical to those obtained by Bathe.

4.9 Eight node quadrilateral element

The eight noded quadrilateral element assumes quadratic variation in dis-
placement along the element sides, and is shown in figure 10. Interpolation

functions for the element are given in equation 16.

hy Y1-r)1—s)(-r—s—1)
ha L14r)(1=s)(r—s—1)

hs 1+ +s)(r+s—1)

ha | | 30-n)(+8)(-r+s-1) (1)
hs (1=r)(1-5)

he s(1+7)(1 =%

hr 11 -1 +5)

| hs || 3(1-7)(1-57) |

Evaluation of the stiffness matrix is carried out using 2x2 Gaussian quadra-

ture.

4.9.1 Stress calculation

The stresses calculated in the element is often more accurate at the inte-

gration points [4]. To obtain accurate stress values at other location in the
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element, it is advisable to interpolate the stress obtained at the integration
points to other locations in the element. The eight node element has a linear
variation of stress over the element as shown in equation 17, where a,b,¢,d

are constants for each stress component in each element.
o(ri, 85) = a+br; + cs; + dr;s; (17)

The linear coefficients are obtained by Gaussian elimination of the matri-

k

ces presented in equation 18, where 7%, s* are coordinates of the integration

points, and crl’.“j are the stress components at these points. This results in
a set of coefficients for each of the stress components which can be used in

equation 18 to calculate the stress components at any point in the element.

- - - — -

1 st b gipl Ay Gy Ogy [ ol 0'; ij
1 s2 r? g%r2 by by bay o? 03 Tfy (1)
1 s rd3 §8p3 Cz Cy Cay ol 0'3 Tfy
4 4 4.4 4 4 _4
|1 8%t st | de dy dy | | 0z Oy Ty |

4.10 Analysis of a tip loaded cantilever beam

Timonshenko [62] presents an analytical solution to the tip loaded cantilever
shown in figure 11. The deflections predicted by theory for the centreline
of the beam are given by equation 19 and the stress distribution within the

element by equation 20, where R is the tip load applied to the cantilever.

Rz? B Rzl* R

= 19
YW=0=GET 2Bl ' 3E] (19)
—Rzy
011 = T
099 — 0



—R
o7

A 1 metre cantilever with a breadth and depth of 0.1 metres, material prop-

o1z = —(d* — ) (20)

erties £ = 1.20 x 10° and v = 0.2, and a load of 100 N applied at the tip
was chosen as a validation case for the linear finite element programs. Tip
deflection for this cantilever predicted from equation 19 is 0.333 metres. The

tip deflections obtained using the finite element analyses detailed below are

given in table 3

4.10.1 ANSYS analysis

The end loaded cantilever were analyzed using a commercial finite element
program, ANSYS, using four and eight noded quadrilateral elements. The
models are shown in figures 12 and 13. Nodal displacements for the two cases
were obtained to allow verification of the quadrilateral elements, and stress
values at the corner nodes were obtained for the eight node model to allow
comparison with the finite element program.

The four noded element model did not produce stress distributions as
predicted by the theoretical solution, due to the coarse mesh used and the
low order of the element. Tip deflection predicted is 0.230 metres, an error
of 30%.

The eight noded quadrilateral model predicted a tip deflection of 0.334m,
less than 0.5% error compared to the theoretical solution. As the eight
node element has a quadratic variation in displacement assumed across the
element, the stress in the element will have a linear variation across the
element. The o;; values obtained were exactly as predicted by the theoretical
solution, and are plotted against theory in figure 14. As the theoretical 013
varies linearly along the cantilever, it can be represented by the eight node

elements. The shear stresses are predicted to be distributed parabolically
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across the cantilever depth. The finite element analysis predicts a linear
variation in shear stress through the cantilever depth due to the restrictions
of the element formulation. As a result of this, the shear stresses predicted
by the finite element analysis are in equilibrium with the applied forces, but

the distribution is not as predicted by theory.

4.10.2 Three noded triangle element analysis

A symmetrical triangular finite element mesh was used to analyse the can-
tilever problem. An example of the mesh used is given in figure 15. A
number of meshes with increasing numbers of elements were used to analyse
the problem, and tip deflections obtained are listed in table 4, and the tip
displacement in the z direction is plotted against the number of elements
in figure 16. The tip deflection calculated by the triangular finite elements
gave an error of about 30% compared to theory for the densest mesh con-
sidered. The three node elements assume a linear variation in displacement,
and so can not model the deformed shape of the cantilever accurately. The
dense finite element mesh used also has high element aspect ratios, which

may reduce the accuracy of the solution.

4.10.3 Four node quadrilateral elements

The cantilever was analysed using the quadrilateral finite element program
with two meshes, containing 10 and 40 elements. The ten element model is
identical to the one used for the ANSYS analysis, figure 12. The deflections
of the centreline of the beam obtained with each mesh are plotted with the
theoretical predictions in figure 17. Deflections for the 10 element model are
exactly the same as those obtained from the ten four node element model

ANSYS analysis. Increasing the number of elements to 40 resulted in the
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tip deflection calculation of 0.300 metres, an error of 9% compared to the

theoretical prediction.

4.10.4 Eight node quadrilateral elements

A model consisting of ten eight node elements was used to analyse the can-
tilever using the isoparametric finite element program. Deflections calculated
were the same as those obtained from the ANSYS analysis using eight node
elements, with a tip deflection of 0.334 metres. Stress at the element cor-
ners was initially calculated directly at the corner points. This was found
to produce poor results compared to the theoretical model, with errors of
up to 10% for the direct stresses in the x direction. The stresses were then
calculated by using linear interpolation from the integration points according
to the method described in section 4.12.1. The stress components obtained
using this method were exactly the same as those obtained from the ANSYS

analysis using eight node elements.

4.11 Three dimensional solid elements

In order to model the mast of a yacht using three dimensional brick elements,
it is desirable to have a quadratic interpolation functions for the plane rep-
resenting the mast cross section. This will enable the cross section of a
circular or oval mast to be modeled using a single element. An isoparametric
formulation is employed for the three dimensional analysis.

An eight node solid element was initially developed, as this is easier to
debug. A 16 and 20 node element were also investigated. The 20 node model
is shown in figure 18. The 8 and 16 node elements are obtained from this by
using only the first 8 and 16 nodes respectively. The program structure is

the same as used by the two dimensional finite element analysis programs.
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Boundary conditions and point loads are applied to the model in the same

manner as the two dimensional analysis, and full stiffness matrix storage is

employed to simplify debugging.

4,.11.1 Constitutive matrix

The constitutive matrix for a three dimensional isotropic solid is used for the

solid elements, equation 21

poo

1 &£ £ 0 0 0
i 1o 0 0 0
— £ 1 0 0 0
C = E(l-v) I-v 1-v (21)
0 0 0 0 g% O
1—v
00 0 0 0 ) |

4.11.2 Calculation of the stiffness matrix

The element stiffness matrix is calculated according to equation 22. As the
three dimensional program uses an isoparametric formulation, the integra-
tion occurs over the natural coordinate volume. Numerical integration is

employed to evaluate the stiffness matrix.
+1 pt+1 ptl
K. = / / / |J| BTCBt dr ds dt (22)
-1 J-1 J1

4.11.3 Interpolation functions

The interpolation functions for a 8 to 20 node element are given in Bathe [4],

and the formulation is repeated here.

H‘,:[h1 hy - hzoJ
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91 — (99 + g12 + g17)/2

92 — (9o + 10 + 918) /2

g3 — (910 + 911 + 910)/2

94 — (911 + g12 + g20)/2

H; = | g5 (913 + 916 + 17)/2 (23)
96 — (913 + g14 + g18)/2

g7 — (914 + 915 + 910)/2

gs — (915 + 916 + g20)/2
hi=gfori=9,---,20

Where g; = 0 if node i is not included, otherwise it is calculated according

to equation 24.

g; = G(r,r;)G(s, 8;)G(t,t;) (24)

SR

G(B,6:) = z(1+B:8) for Bi==+1
GB,6;)=(1—-pF%) for fi=0
Where 8 =1, s,

The derivatives of the interpolation functions are calculated using the chain
rule of differentiation to calculate derivatives of g;. Equation 25 gives an
example of this for derivatives of g; with respect to . The derivatives of
the interpolation functions can then be calculated according to equation 23
from the derivatives of g;. The derivatives of the interpolation functions
with respect to the element natural coordinates are stored in the Jh matrix

as shown in equation 26.

0g; BG(T, ri)
2B TN e ) . 9
B 5 G(s, 8:)G(t,t;) (25)
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Oh= | hy, hyy --- hn, (26)

4.11.4 Calculation of the strain displacement matrix

The Jacobian matrix is calculated from the dh matrix and a matrix contain-

ing the node positions in global coordinates, U, equation 28.

T

o ol o
X=1|z 22 ... ¥ (27)
J = 9hX (28)

The differentials of the interpolation functions with respect to the global
coordinates, h; ; are calculated by multiplying the h matrix by the inverse of
the Jacobian matrix. These are then assembled into the strain displacement

matrix as shown by equation 29.

hii 0 0 By e 0
0 hig 0 0 - 0
B 0 0 hys 0 -+ hyg (29)
hia hey 0 hye -+ 0
0 hig hig 0 -+ hye
| his 0 hig hag - hag |

4.11.5 Stress calculation

The calculation of element stresses occurs in the same manner as for the

two dimensional isoparametric elements. The strain displacement matrix is
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used to calculate the element strain vector, defined in equation 30, from the
element node displacements. This is multiplied by the constitutive matrix to

give the element stress vector, defined in equation 31.

€= (611, €22, €33, €12, €23, 613)T (30)

T = (7'11, T22, T33, Ti2, T23, 7'13)T (31)

4.11.6 Single element validation

In order to check the interpolation function calculations, a single element
cube with one face fully restrained under the action of a point load on the
opposite face was analysed using the 8, 16 and 20 node elements, and the
results compared to an analysis of the same model by ANSYS. Two cubes
were analysed, with each cube having an opposite face restrained in order to
check all the interpolation functions. The numerical integration scheme used
for the 8 node element was 2x2x2 Gaussian integration, the 16 and 20 node
element was analysed using both 3x3x3 and 14 point Gaussian integration.
Details of the integration schemes are given in appendix B.

In all cases, the displacements obtained from the finite element programs
matched the ANSYS displacements to the accuracy of the ANSYS output (6
significant figures). The 14 and 27 point integration schemes gave the same

displacements for the single element validation.

4.11.7 Cantilever analysis

A 1 metre cantilever with breadth and depth of 0.1 metres with material
properties of E = 1.2 x 105, u = 0.3 under a tip point load of 0.3N was anal-
ysed using the solid element finite element programs. A theoretical solution

using Timoshenko beam theory gives a predicted tip deflection of 0.1 metres.

49



The finite element mesh consists of a single element defining the cantilever
cross section, with a range of number of elements used in the models anal-
ysed. The 16 node elements were arranged such that the linear interpolation
ran along the cantilever length with the quadratic interpolation through the
cantilever cross section, as would be used to define the mast.

Eight node element models with from 1 to 30 elements were analysed,
with the finite element program employing 2x2x2 Gaussian quadrature for
the stiffness matrix calculations. Tip deflections are listed in table 5 for
each model. The cantilever was then analysed using the 16 node elements,
with models containing between 1 and 30 elements. Results were obtained
for programs using both 14 point and 3x3x3 Gaussian quadrature, and tip
deflections are listed in table 5. Twenty node element models were then
analysed using between 1 and 10 elements, using the two integration schemes
from the 16 node elements. Tip deflections for the and twenty node elements
are listed in table 5. The results are plotted in figure 19 for 8, 16 and 20
node elements.

Increasing the order of integration in both the 20 and 16 node elements
resulted in less than 0.5% difference in tip deflection, and this suggests that
the increase in computational time (calculation of the stiffness matrix using
14 point integration takes only just over 50% of the time required for 27
point integration) is not justified by the increase in solution accuracy for
the linear finite element analysis. The twenty node elements gave the most
accurate solution, with a 10 element model within 1.5% of the theoretical
solution. This is expected, as the 20 node element has a quadratic variation
in displacement along the beam which will enable the finite element model to
more accurately represent the deformed shape of the cantilever with a small

number of elements. The 16 node element gave more accurate solution than
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the 8 node case, with a 10 element model having a calculated tip deflection
within 29% of the theoretical prediction, compared to 35% error for the 8
node case. Increasing the number of elements to 30 resulted in a far more
accurate solution for both the 16 and 8 node elements, with the error in tip
deflection of 4.5% and 16.5% respectively.

The sixteen node element gives a more accurate solution than the 8 node
element for the same mesh density as it can model the stress distribution
through the beam more accurately, due to the quadratic variation in assumed
displacement through the beam. The twenty node element gives the most
accurate solution, as it has a quadratic variation in displacement along the

beam, so can model the beam deflections more accurately.

4.12 Summary

Linear finite element programs have been developed and validated for two
dimensional plane stress elements and three dimensional solid elements, in

order to gain experience with finite element analysis and the elements to be

used in the nonlinear analysis.
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5 Non-linear finite element theory

The solution of the non-linear finite element problem employs an incremental
formulation, applying the loading in a series of steps, and the equilibrium of
the body is calculated at each load step. Time is used to describe the loading
state of the body, following the notation of Bathe [7] [4]. This does not imply
a time dependent analysis, and it is merely a convenient means to describe
the loading of the body.

For the solution of the problem, a solution for a typical equilibrium posi-
tion, t + At is found, assuming that the solution for variables for all steps 0
to ¢t have been calculated. This is repeated until the complete solution path
has been solved. Using a Langrangian formulation, the principle of virtual

work is used to formulate equation 32.

/ t+AtT’ij 5t+At €ij dt+AtV — t+At§R (32)

t+aty

t+At§R — t—f-AtfiB (S’U,,' d't+AtV+/ t+Atfz'5 (57.1,;9 dt+AtV (33)
t+AtYy t+A:5f

In equation 32, the left hand side is the internal virtual, and the right
hand side external virtual work. It should be noted that the configuration
of the body at time ¢ 4 d¢ is unknown, and in equation 32 integration occurs
over the new configuration, with all stresses and strain are referred to this
configuration. This has to be taken into account when deciding on the stress

and strain measures to use for the analysis.
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5.1 Stress and strain measures

Cauchy stresses are not suitable for the analysis, as they are dependent on
the coordinate system they are measured in. It is not possible to obtain
the Cauchy stresses at time ¢t + At by simply adding a stress increment due
to the straining of the material to the Cauchy stresses at time ¢t. The 2nd
Piola-Kirchoff stresses S;;, defined by equation 34 are invariant under rigid
body rotation and translation, and so are suitable for use in the formulation

of non-linear FE analysis.

0

<

O, . . 'r (34)

wm t¥in mn

4
S, =
0 tp

The stresses have no direct physical meaning, so have to be converted into
Cauchy stresses when investigating the results of the analysis. Conversion of
the 2nd Piola-Kirchoff stresses is carried out using the inverse of equation 34,

as shown in equation 35.
T . =—Lr . 0T p LS., (35)

Strain energy can be calculated from the product of the 2nd Piola-Kirchoff
stresses and the Green-Lagrange strain tensor, defined in 36, which is also
invarient under rigid body rotation and translation, as these stress and strain

measures are work conjugate.

i —
0€ii =

i (f)ui,j + guj,i + U guk,j) (36)

N

5.2 Total Langrangian formulation

The Total Langrangian formulation of the finite element problem has all
static and kinematic variables referred to the initial configuration at time 0.

An alternative formulation, the Updated Langrangian refers all variables to
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the last calculated configuration at time ¢. The two schemes produce for-
mulations that are identical if the appropriate transformations on the terms
are carried out, and the choice of scheme is dependent on it’s relative nu-
merical efficiency for the problem being solved. Use of a Total Langrangian
formulation allows the application of the membrane restrictions to elements

that warp out of plane during the deformation, and so is more suited to the

analysis of yacht sails.

5.3 Continuum mechanics formulation

The virtual work equation 32 using the stress and strain measures described

above transforms to equation 37, where R is defined as in equation 33.

/(;V (t)+AtS,ij 56+At6ij dOV = t+At§R (37)

5.3.1 Incremental decomposition

The stresses and strains can be incrementally decomposed as they are all
(including the increments) referred to the original configuration. The stresses

are decomposed as shown in equation 38.

A0Sy = 85y + oSy (38)

Strains are decomposed according to equation 39, with the incremental
Green Lagrange strains defined in equation 43. Note that the underlined
components of ,e;; are initial displacement effects (from the displacements

of the nodes at time t).

t+At _
0 €5 = o€+ ofij (39)

_ t+At0 i
0€ij = €55 = 0Eij (40)
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0€ij = o€ij t o (43)
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initial displacement effects
1
0" = 5 0Uki 0Uk,s (45)

The variation in strain is taken about the configuration at time ¢ + At,
and hence 4 je;; = 0. This means that the variation in strain in equation 37,

65 = 6(bes; + o€ij) = 0 peij. Using this and the incremental decomposi-

tions in equation 39, we have:

/ ((t)Sij -+ OSij) (5 OE,']' OdV = t+At§R (46)
oy

ﬂv 05,'_,’5 0€ij OdV + /;V 65@'5 o'hij OdV = t+Atﬂ% - 651'_7'5 0€ij OdV (47)

5.3.2 Linearisation

The left hand side of equation 47 is non-linear with respect to displacement
increments, u;, so cannot be solved directly. The non-linear effects are due
to the first term, and this is linearised using a Taylor series expansion, equa-

tion 48.

/ ()Sij6 OeideV = (48)
oy

/ 06S:5
oy 6€rs

(o€rs + o7rs) + higher order terms) 0 (g5 + ohj) &LV

t
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Neglecting higher order terms, including ;7;;, equation 47 becomes equa-
tion 49, which is linear in the incremental displacements as § ye;; is indepen-

dent of u;, and forms the basis for iso-parametric finite element analysis.

/ 0Cijrs 0€rs 00€s; d’v +/ 05 0omy; d°V
oy oy

== t+At8% - / (t)S,"J 5061'_1' d OV (49)
oy

5.3.3 Solution of the approximation to the virtual work equation

The linearised virtual work equation 49 can be used to calculate an increment
in displacements from t to ¢t + At which leads to an approximation to the
displacements, strains and stresses at time ¢ + At. The solution is not exact,
due to the approximations in formulating equation 49.

With the approximate solution calculated, the difference between external
virtual work and the internal virtual work evaluated with the variables for
time t + At can be found. This is an ’out of balance’ virtual work after the
solution as a result of the linearisations performed 50, where the approximate

values are denoted using the superscript (1).
e tom - [ gl ary )
oy

To reduce the error due to linearisation, iterations can be performed for
each load step until the out of balance virtual work is within a convergence
measure. This involves solving equation 51 repeatedly for £ = 1,2,3...,

where the case for £ = 1 is the relationship given in 49.

/ 0l A gk, 64eid°V + / 5y T 68 gty d°V
oy

ijrs TS
oy

1

k-1 k-1
t+Atgy [)V (t)—i—AtSi(j )56+Ate( )dOV (51)
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5.4 Matrix equations of continuum elements

Derivation of the finite element matrices for the non-linear analysis occurs
in the same manner as for linear analysis. Element coordinates and dis-
placements are expressed in terms of the nodal values using interpolation
functions, with the same interpolation functions used for both the displace-
ments and coordinates (iso-parametric formulation). By invoking the lin-
earised principle of virtual displacements for each nodal point in turn, the
governing finite element equations are obtained. The equilibrium equations
of the model is assembled from individual elements using the direct stiffness
method. For the Total Langrangian method, the governing equation is given

by equation 52.
(SKL + (t)KNL ) u = t+AtR - tF (52)
The matrices in equation 52 are evaluated according to equations 53 to 56.

/}V OCz'jrs 0€rs 50%’ dvV — (t)KL u= ([)V BBE oC (t)BL dov) u (53)
/]V f)Sz'j 8 oTi; d°V — (Ky,u= ([)v sBhL (S iBny doV) u (54)
/ 6S;; 606, A°V — {F =/ tBT tSd vV (55)

OV OV

t+AtR — / HsT (t)—i—Ath d OS + / HT B+Ath d OV (56)
osf oy

The matrices used in these evaluations are given in the finite element
program descriptions for two and three dimensional elements and membrane
elements in terms of the displacement interpolation functions and node dis-
placements at time ¢. Since the Total Langrangian formulation is employed,

all differentials are referred to the body state at time ¢ = 0.
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5.4.1 Loading

Loading of the finite element models is achieved by lumping the distributed
forces on the model to the element nodes, in the manner described in equa-
tion 56. As a total Langrangian formulation is employed, these loads will be
constant through the deformation of the body. As the loads are lumped at
the nodes in the model generation, the evaluation of equation 56 does not
need to be carried out during the solution of the problem, and the point
loads can simply be added to the model external load vector as defined in
the model definition. The exception to this is pressure loading on the mem-
brane elements, as this will change during the aeroelastic analysis as the fluid
flow around the sail alters. The pressure loading of the membrane elements

is described in more detail in the membrane element formulation in section

6.4.7.
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6 Non-linear finite element analysis

The non-linear formulation described in section 5 is employed to develop a
non-linear finite element analysis program. Membrane finite elements incor-
porating the membrane assumptions of Oden and Sato [46] are developed,

and solid elements are developed in the non-linear formulation.

6.1 Two dimensional non-linear finite element analysis

Isoparametric formulation was employed throughout the non-linear finite el-
ement series of programs. In order to simplify the programming and solution
of the initial non-linear finite element analysis, no iteration is used within the
load steps. As the non-linear equations of equilibrium are linearised to al-
low solution, the displacement increments calculated are approximations (as
discussed in section 5.3.3). These approximations can be reduced to insignif-
icant levels by increasing the number of load step, as demonstrated in section
6.2.1. The 2D elements have a constant thickness, and the volume integrals
used to calculate the stiffness matrices and internal loading contributions,
equation 49, become integrals over the area of the element multiplied by the
element thickness. As with the linear finite element development, full stiffness
matrix storage was used in the development of the non-linear finite element
programs. The reduced matrix storage was introduced to the membrane and

solid finite element programs after validation of the programs.

6.1.1 Program structure

The structure of the two dimensional finite element analysis is shown in fig-
ure 20. Model data is read in from a user defined file. The number of each of

the model components is read in and used to allocate the required memory
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for storage of the model data. Material properties and the model compo-
nents are then input from the file. Node displacements ju are initialised to
zero. The program then runs through a loop for the user defined number
of load steps. Element stiffness matrices are calculated for each element in
turn using the methods described below. The element stiffness matrix en-
tries are then added to the model stiffness matrix before calculation of the
next element contribution. External loading is added into the model force
vector, then internal loading is calculated, with each element contribution
assembled into the global force vector before calculation of the next element
contribution. Boundary conditions are applied in the same manner as for
the linear finite element case, and the resulting finite element equations are
solved by Gaussian elimination to calculate a vector of nodal displacement
increments. These are used to update the node displacement values, fu. At
the end of the load path, element Cauchy stresses are calculated and output

with the node displacements.

6.1.2 Data structures

The data structure used for the two dimensional non-linear analysis has the
same structure as the one used for the linear finite element analysis, shown in
figure 5. The top level of the data structure is the model structure which con-
tains pointers to the arrays of node, element, boundary condition and point
load data which are dynamically allocated during the program execution.

Contents of the data structures are:

e Model data structure : numbers of each of the components of the model
(nodes, elements, boundary conditions, point loads), material proper-

ties, element thickness and number of load steps.
e Node data structure : node identification number, initial position and
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displacements at time ¢, ju.

e Element data structure : element identification number and pointers

to the nodes which define the element.

e Point load data structure : The identification number of the node that
the load is applied to, flag indicating the direction of the load and load

magnitude.

e Boundary condition data structure : node identification number and

flag indicating the degree of freedom restrained.

The use of pointers to the element nodes in the element data structure allows
easy access to the data required for element stiffness matrix calculations, and

also defines the element connectivity through the node identification number.

6.1.3 Evaluation of the strain displacement matrices

In order to calculate the strain displacement matrices used in the non-linear
finite element analysis, the differentials of the interpolation functions, yh;;

and the [;; components, defined in equation 57, must be evaluated.

N
li =) ohw; 'uf (57)
k=1

The evaluation of h;; proceeds as for the linear isoparametric formulation
described earlier, and these are stored in a matrix, dh, defined in equa-
tion 58. The element Jacobian matrix is calculated using the element node

local coordinates at ¢ = 0.
Ohij = h;; where i=1.--N; j=1,2 (58)

Values for the [;; entries are calculated by multiplying the 0h matrix by a the

*u matrix as shown in equation 59, and stored in a matrix L. The matrix
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*u contains the element node displacements at the end of the previous load

step.
- -
tyl  ty?
hi b hii hap -+ hwna buy  tud
L= = [Oh)] [tu] = 2 2
log log hia hap -+ hnpg
tuk,  tud

(59)

Strain displacement matrices, {B; , {B, can be assembled from the entries

in the 6h and L matrices according to equations 60, 61, 62 and 63.

0Br = By + 4B, (60)
Oh’l,l 0 th,l 0 e OhN11 O
0By = 0 ghiz 0 ghgo - 0 ohn,2 (61)
0h1,2 ohl,l 0h2,2 ohz,l e ohN,Z oth,l
i1 oh1,1 I oh1,1
6BL1 = l12 0h1,2 l22 0h1,2

(li1 gh1,2 + liz gh1,1)  (lo1 gha2 + la2 gha,1)
i ghna la1 ohn1
hiz ohn2 l22 ohin 2 (62)
(li ohwvz +lia ghng)  (lar ghwg + Lo ghva)

hip 0 hyp O hnyi 0O
h 0 h 0 B, 0
;I 1,2 2,2 2 (63)
0 hl 1 0 h2,1 0 hN,l
] 0 h1,2 0 h2,2 0 hN,2 i




6.1.4 Stress calculation

The 2nd Piola-Kirchoff stress vector, &S is calculated from the element
Green-Lagrange strains. To calculate the strains in the element, displace-
ment derivatives are evaluated using the shape function derivative matrix

and the nodal displacements, as shown in equation 64.

Ou; " 8N,
by = — =S Rk (4,5 =1,2) (64)
[ Rt 2%) (9033]‘ — 637_7' 0

The components of the Green-Lagrange strain tensor, ‘e;; can be calculated
according to equation 65, and the Green-Lagrange strain vector £ is assem-

bled from these.

1
t. T VT P PP
Eij = 5 (OUi,J T oUji T Uk, ouk,J) (65)
€11
€= €22
2812

The 2nd Piola-Kirchoff stress vector can then be calculated directly from the
Green-Lagrange strain using the two dimensional plane stress constitutive

matrix, ,C, as shown in equation 66.

tS = ,Cé (66)

6.1.5 Calculation of stiffness matrix

The element stress matrix, ;S is assembled from the 2nd Piola-Kirchoff stress

components according to equation 67.

65, S, 0 0

¢Sa1 S22 O 0
0 0 (S §Su
0 0 5SS |
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Linear and non-linear contributions to the element stiffness matrix, (K|

and }K,; can then be calculated according to equations 68 and 69.

K, = [ iBY oCiBytda (68)

Koy = [ Bhs 1SiBu td%A (69

As the strain displacement and stress matrices are functions of the natu-
ral coordinates of the elements, the integrations to calculate the stiffness
matrices are evaluated over the natural coordinate area of the element, in
the same manner as for the linear finite element isoparametric elements (see
equations 170 and 171). Element linear and non-linear stiffness matrices are
added to give the element stiffness matrix, and these are assembled into the

model stiffness matrix using the element connectivity.

6.1.6 Loading calculations

A model loading vector, **2tR is calculated from the external loads, ‘*2'R

and internal loads ;F, as shown in equation 70.
t+At§R = t-l-AtR _ (t)F (70)

Internal loads contributions for each element, {F(™) are calculated ac-
cording to equation 71.

(m) .
LRl / 4BE {StdoAm (71)

In order to calculate {F(™), the strain displacement matrix and stress vector
are calculated as described for the stiffness matrix calculations. Contribu-
tions to the internal loading vector from each element are assembled into the

model internal loading vector using the element connectivity.
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External loading applied to the model is in the form of point loads. Due
to the Total Langrangian formulation, distributed loading can be lumped to
the nodes in the model definition, as since they are referred to the body con-
figuration at time ¢ = 0, they do not alter as the body deforms, equation 56.
The external load vector, **4'R is generated by applying the point loads
to the body global degree of freedom defined by the finite element model.
Magnitude of the load is calculated according to equation 72, where P is the
magnitude of the force, n is the load step number and the subscripts ¢ + At

and T refer to the current and final load steps.

T A¢
Pt+At = n+TA Pr (72)

6.1.7 Calculation of displacement increments

The governing finite element equations for load step ¢t + At, equation 73, are

solved to obtain nodal displacement increments, u-}c
[Ku = 4R (73)

Solution of the finite element equations is achieved using the same methods
as for the linear finite element analysis. Gaussian elimination is used for
programs using fixed array sizes and full stiffness matrix storage, and de-
composition and back substitution for programs using dynamic arrays and
reduced matrix storage. Node displacement increments are added to the dis-
placements at the start of the load step to give the model solution for this

time step.

6.1.8 Validation model

The programs were validated using an analytical solution for the large scale

deflections of a cantilever beam under uniform distributed load, obtained by
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Holden [23]. A non dimensional load coefficient, &, is defined in equation 74,
where w is the magnitude of the distributed load, L the length of the beam
and D the flexural rigidity of the cantilever (D = EI).

L3

The deflection coefficient, (6/L), of the cantilever tip is given by the solid
line in figure 21 for load coefficients from 0 to 10, and the dotted line in this
figure shows the results of experimental observations of this problem. This
case was used by Bathe [7] as a validation case for the non-linear finite ele-
ment formulation using eight noded quadrilateral elements and he noted that
‘excellent agreement has been obtained with an analytical solution reported by
Holden [28] for both the total and updated langrangian formulations.
Values for the analytic solution from Holden [23] have been obtained from
the graph presented in the paper, which is shown in figure 21. A cantilever
of length 1.0 metres, breadth and height 0.1 metres and Youngs modulus of
1.2 x 10% was analysed. This corresponds to a distributed loading magnitude

of w = 10 N/m? for a load factor, k of 1.

6.2 Eight noded quadrilateral element

A non-linear finite element program, FENLA1 was written employing the
eight noded quadrilateral element, shown in figure 10, and the formulation
described above. Integrations over the element area to determine the stiff-
ness matrix and internal loading were initially evaluated using four by four
Gaussian quadrature.

A simple single element model, shown in figure 22 was analysed with
FENLAL. Stress in the non-linear program elements was initially evaluated

using the strain displacement matrix, {Bj to evaluate the element strains.
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Results for a case with one load step (linear analysis) were compared to a
solution obtained from the linear eight noded finite element program, and
the displacements obtained were identical. A tip loaded cantilever model was
then analysed with the non-linear program, using a range of load steps. The
case with one load step corresponds to a linear analysis, and the displace-
ments calculated were identical to those calculated using the linear finite
element program. Increasing the number of load steps resulted in an unsta-
ble solution. The stress calculation method used was incorrect, as only the
linear component of the strain is calculated from £ = {By fuF, and hence the
stress calculated from this is not the total stress required for the stiffness ma-
trix and internal load evaluation. For the cases with only one load step, the
element stresses do not make any contribution to the stiffness matrix or load
calculations, and so the calculation of the displacements was not affected.
When a non-linear analysis was carried out the incorrect stress calculations
resulted in the wrong equilibrium equations being formulated, and hence the
solution was incorrect. The stress calculation method was changed to that
described in section 6.1.4, calculating the Green-Lagrange strain components

from the §u,; values.

6.2.1 Point loaded cantilever

The tip loaded cantilever was analysed using a range of load steps, to ascer-
tain if the solution would converge with increasing number of load steps. Tip
deflections obtained are given in table 6, and plotted against number of load
steps in figure 23. The case with one load step gives the same displacements
as the linear finite element analysis, -0.334 m. As the number of load steps
are increased, the displacement of the cantilever tip converges to a value

of -0.299043 m to six significant figures. About 50 load steps are required
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to obtain a value within 1% of this, and 100 load steps gives a deflection
within 0.002% of the converged value. As there is no iteration within the
load steps, the approximations used to formulate the equilibrium equations
results in poor solutions and a large variation in displacements for the cases
with small numbers of load steps. As an example, 5 load steps gives a tip
displacement of -0.288559 m (4% error) and 6 load steps gives a tip displace-
ment of -0.255825 m (14% error). Increasing number of load steps results
in an increase in CPU time for solution, as the stiffness matrix has to be re
calculated at each stage. Using a modified Newton Raphson method to solve
the loading path, where iterations within a load step are calculated using the
stiffness matrix at time ¢ to iterate until the internal and external virtual
work are within a convergence limit, may reduce the total solution time, as
the stiffness matrix would be calculated fewer times. Further investigation of

this was carried out during the development of the membrane finite element

programs.

6.2.2 Distributed loaded cantilever analysis

An evenly distributed loading along the edge of a quadrilateral element can
be lumped at the nodes as shown in figure 24. These values are obtained by
evaluating equation 75 for each of the three nodes along the edge. As the
loading is applied to the top of the elements, evaluations occur by integrating
between —1 <r >1ats=1.

+1
Ty = Pl/ |, dr (75)

1

Cantilevers with load coefficients, k, of 1 and 10 were analysed using a range
of number of load steps using 10 elements to determine the number of load

steps required to obtain a converged solution. Tip deflections for these runs
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are given in table 7 and the deflections for up to 50 load steps are plotted
against the number of load steps in figure 25. A series of models with load
coefficients of 1 to 10 were analysed using 5, 10, 25 and 50 load steps, and the
tip deflections are given in table 8. Tip deflections for the 50 load step case are
plotted against load coefficient with the analytical solution from Holden [23]
in figure 26. Finally the effect of order of integration was examined by altering
the program to use 9 and 25 point Gaussian quadrature in the evaluation of
the stiffness matrix and internal loading. Changing the order of integration
had no effect on the tip deflections calculated by FENLAT1.

The sensitivity study showed that an analysis using 50 load steps gave a
deflection within 0.01% of the converged solution. Analysis of a distributed
loaded cantilever gave results that were within 3% of the theoretical solu-
tion obtained by Holden [23]. The values from the analytical solution were
obtained from the graph of results, figure 21, and the error is within the
accuracy that can be obtained from this method. Changing the order of
integration within the program had no effect on the results obtained for the
distributed cantilever, and nine point integration is sufficiently accurate for
the eight noded element in the non-linear formulation. Using fewer load steps
gave good agreement for lower load coefficients, but the solutions for higher
load coefficients did not give good agreement, as can be seen by the results
for the analysis with 5 load steps. In these cases, the increased error in so-
lution is due to the linearisation error from the finite element formulation

becoming significant due to the large size of the load steps.

6.3 Membrane elements

The formulation of membrane elements was first considered by Oden and

Sato [46]. To apply the membrane restriction in the non-linear finite element
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analysis, the Green-Lagrange strain tensor is altered to take account of the
nature of membrane behaviour. Assuming that the membrane has a small
thickness compared to it’s other dimensions, the strain can be assumed uni-
form over the thickness (Timoshenko [63]). Hence ~y,3 = 0, there is no shear
through the element thickness and 733 is a measure of change in thickness of
the membrane. This is equivalent to applying a state of plane stress to the
element. The membrane restriction is incorporated into the finite element
analysis of membranes by alteration of the strain displacement matrices as
shown by Smith and Shyy [57]. Element characteristics are calculated in a
local coordinate system which is defined such that the element in it’s ini-
tial configuration lies in the local y; y» plane, and the strain components
in the local y; direction are assumed to be zero. The element must be pla-
nar at the start of the analysis so that the local y3 direction corresponds to
the normal to the elements surface over the entire element. As the Total
Langrangian formulation used in the non-linear analysis refers back to the
undeformed configuration of the element, the element can warp out of plane
during the analysis without compromising the membrane restrictions. Use
of a three node triangular element will allow initially curved structures to
be analysed, as this element will always define a plane (although there will
be some discretisation error as the model will be an approximation of the
curved surface). This element also has a constant strain, and so does not

require numerical integration to calculate the stiffness matrix.

6.3.1 Program structure

The program structure for the membrane analysis program is depicted in
figure 27, and is similar to the structure employed in the previous FENLA

programs. After the model data is read from the data file, the node local
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coordinates and global to local transformation matrix is calculated for each
element in turn and stored in the element data structure. Calculation of the
stiffness matrix contribution from each element occurs in the element local
coordinate system, and this matrix is transformed to the global coordinate
system before assembly into the model stiffness matrix. Point loads are de-
fined in the global coordinate system, and can be added directly to the global
force vector. Internal stresses in the elements are calculated in the element
local system using the node displacement components in the local coordinate
system. The element internal loading contribution which is evaluated from
the strain displacement and stress matrices in the local coordinate system is
transformed to the global coordinate system before assembly into the global
force vector. Boundary condition application and solution is carried out as for
the previous FENLA series. After solution, the global displacements stored
in the node data structure are updated, and then the node displacements for
each element’s nodes are calculated in the element coordinate system, and

stored in the element data structure.

6.3.2 Data structure

A revised data structure is employed, with the element data additionally

storing:
e A matrix of the element node initial local coordinates.
e The local to global transformation matrix, t3p.

e A matrix of the element node displacements in the local coordinate

system, [{u]®.

As the Total Langrangian formulation was employed, the node local coordi-

nate and the global to local transformation matrix only need to be calculated
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at the start of the analysis, and are not updated as the body deforms, as all
calculations are referred to the initial body configuration. These are calcu-

lated before the load step loop is commenced, and stored in the element data

structure.

6.3.3 Local coordinate calculations

Calculation of the unit vectors defining the element local coordinate system
in terms of the global coordinate system are described here for a three node
triangle element, but the method is suitable for any element which is initially
in a plane.

The element based local cartesian coordinate system is shown in figure 77.
Two vectors are created, from node a to b, a—f), and from node a to ¢, d¢. The
local y; vector is set as a unit vector in the direction of ab. The local y3 vector
is perpendicular to the plane of the element, and is calculated by taking a
unit vector in the direction of the cross product of ab and de. Finally the
local y, vector is found by taking the cross product of the local y; and yg
vectors.

A local to global transformation matrix can be assembled from the com-
ponents of the vectors defining the local coordinate system, equation 76,
which is stored in the element data structure and used in the transformation
of the element stiffness and internal load contributions. The global coordi-
nate system components of the local coordinate unit vectors are represented

as [z1, T2, T3]* for the vector y;.
t; = [z1, 32, T3)" (76)

To calculate the node local coordinates, the transformation matrix, t is in-

verted and this global to local transformation matrix is used to transform the
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node coordinates to a coordinate system parallel to the element local system.
Finally the node local coordinate system is translated such that the origin is
at node a by subtracting the calculated local coordinates of this node from
the element node local coordinates. The resulting node local coordinates are
stored in the element data structure. As the element is in the local 4y, yo

plane, the nodes local y; coordinate is zero, and hence is not stored.

6.3.4 Strain displacement matrices

Calculation of the components of the strain displacement matrices proceeds
as described for FENLA1, but takes place in the element local coordinate
system. Jacobian matrix entries and l;; components are calculated using the
node coordinates and displacements referred to the element local coordinate
system. The O0h components are evaluated using the Jacobian matrix, and
hence the 4h;; are calculated with respect to the element local coordinate
system. Strain displacement matrices, ;B and By are assembled from

the 0h and L entries according to in equations 77 to 80.

0B, = By + iB1; (77)
oh11 0 0 -+ ohyi O O

Bro =| 0 ohiz 0 -~ 0 ohya O (78)
oh12 ohig 0 -+ hna ANy O
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l11 gh1 lo1 ghi1 l31 gh1,1
f)BLl = l12 oh1,2 l32 0h1,2 l3g oh1,2
(li1 oh12 + li2 gh11)  (la1 gh12 + la2 gh11)  (ls1 gha2 + ls2 gha)
i1 ohw la1 oA l31 ghN 1
lig ol 2 la2 ohv2 l32 g2

(I11 ghng + ha ghwa) (Io1 ohne + 122 ghna) (Is1 ghnz + la2 ohN,l)

(b 00 hyi O 0 |
hiz 0 0 - hys 0 0
B | O Tt 0 0 hyi O 50
0 hiy O 0 hys O
0 0 hgp -+ O 0 Ang
] 0 0 Ay 0 0  hwng ]

6.3.5 Calculation of element stress

Element strains are calculated using the node displacements in the local
coordinate system to evaluate the displacement derivatives used to define the
Green-Lagrange strains, equation 81. This differs from the two dimensional
case in that the derivatives of the z3 component of displacement are now

required for the strain calculation.

N
8tui 8/’Lk
tU' = e = tuk
4, - ;
07 8033]' 0%

—* (:1=1,2,3 j=1,2) (81)
1 (90(11_7

The components of the Green-Lagrange strain tensor, ‘e;; are calculated ac-

cording to equation 82, and the Green-Lagrange strain vector £ is assembled

from these.

t

€i; = = (0Uig + 0Usi + Uk oUk,;) (82)

[N
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The 2nd Piola-Kirchoff stress vector can then be calculated directly from the
Green-Lagrange strain using the two dimensional plane stress constitutive
matrix, ,C, as for previous FENLA programs, equation 66. At the start of
the loading path, the elements have zero node displacements and zero stress.
In order to prevent the stiffness matrix becoming singular, an initial stress
is applied to the elements for the first load step by setting the stress vector
to a value defined in the model data file. This is removed for subsequent
load steps, and the stress vector is evaluated from the Green-Lagrange strain
vector and constitutive matrix.

The stress matrix, ;S is assembled from the stress vector components as

shown in equation 83.

-

o
in
)
[
[ )
%z
ne
o
(o]
[em] [} o

(83)

0511 5512
0 0 §Sa §S2

6.3.6 Calculation of stiffness matrix

Calculation of the element linear and non-linear stiffness matrices is car-
ried out in the same way as in the previous FENLA programs, equations 68
and 69. Linear and non-linear components of the stiffness matrix can be

summed to obtain the element stiffness matrix in the element local coordi-
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nates, as in equation 84.

oK = oK+ Knz (84)

6.3.7 Calculation of loading

External point loads are applied to the model **2!R. vector as in the previ-
ous FENLA programs. Point load contributions are placed directly into the
model R loading vector to reduce the memory requirements. The membrane
elements can be loaded by a pressure acting on the membrane surface. This
is assumed to be constant over the element, and a positive pressure acts in
the direction of the local y3 vector. Pressure contribution to the element
external load vector in the element local coordinate system, !T2!R¢ can be
calculated according to equation 85, where ¢. difference in pressure on the

element upper and lower surfaces.

t+AtRe — / HT t+Atqu (85)
hi 0 0 hy O 0 --- hy O 0
0 0 AL 0 O hy --- 0 0 Ay
0
a=1 0
de

The element internal loading contribution, :F¢, is calculated from the
element stress vector and strain displacement matrix as for previous for-

mulations, equation 71. Element pressure and internal loading vectors are
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combined to give an element loading vector, ¢, equation 86.

t+At§Re _ t+AtRe _ 6Fe (86)

The element load vector is calculated in the element local coordinate system,

and is transformed to the model coordinate system before assembly into the

model loading vector.

6.3.8 Transformation of element matrices

As the element stiffness matrices and load vectors are calculated in the el-
ement local coordinate system, they must be transformed to the global co-
ordinate system before assembly into the global stiffness matrix and loading
vector. The element local to global transformation matrix, t, is stored in the
element data structure, and is used to effect this transformation. Transfor-
mation of the three noded triangular element stiffness matrix is carried out

according to equation 88, and transformation of the load vector is achieved

as shown in equation 89.

t 00
T=|01t 0 (87)
0 0 t
[0 0 0
0=1000
000
tK = TT{K*T (88)
é+At§R —T 6+At§Re (89)
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The full transformation matrix, T is assembled from the element local to
global transformation matrix, t, and the transformation carried out in sep-
arate functions for the stiffness matrix and force vector. Assembly of the
transformed matrix and vector occurs using the element connectivity in the

same manner as for the previous finite element analyses.

6.3.9 Calculation of element node local displacements

After solution of the finite element equations, the calculated global displace-
ment increments are added to the node global displacements stored in the
node data structure. The element local to global transformation matrix is
inverted to obtain the global to local transformation matrix, and the element
node displacements in the element local coordinate system are calculated for
each of the element nodes in turn, and then stored in the element data struc-
ture for use in the calculation of the strain displacement matrices and stress

evaluation in the following load step.

6.3.10 Iterative solution

The iterative solution method involves the use of a modified Newton-Raphson
method for solution of the finite element equations. This involves solving
equation 90 until the displacement increments are within some tolerance.
The nonlinear finite element programs developed use an iterative solution on
the final load step, as suggested by Smith and Shyy [57] for the aeroelastic

analysis of a membrane.

(K 4+ Kyz) Ay =8 R ARG — 7 9 3., (90)

. t-+ At i t+At i
6+AtF(z—l) _ /V 0 Bé)T 0 S@ogy (91)
0
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t+Atu(i) _t+At u(z’—l) + Au(z’)

During the iterative solution, a copy of the stiffness matrix is made and
passed to the solution function for the solution of the finite element equations.
This allows continuation of the iterative process without having to recalcu-
late the stiffness matrix for each iteration. Internal and pressure loading are
calculated for each element and assembled into the model {"2*F(-1 and
t+A'R vectors, and external point loads are applied to the model 2R
vector. The solution of equation 90 allows the calculation of node displace-
ment increments, which are checked for convergence as the displacements are
updated.

Convergence is tested in the membrane analysis programs by checking
each increment in displacement against the displacement at the start of the
iteration before updating it. The percentage change in displacement is cal-
culated and the maximum change is compared with the convergence limit
stored in the model data structure, which is defined in the model data file.
When the convergence limit is passed for all unrestrained degrees of freedom,
the iterative loop is stopped. If the convergence limit is not achieved within
the maximum number of iterations stored in the model data structure, a
warning is printed and the iterative loop exited. The change in displacement
is only calculated for degrees of freedom with non zero displacements, to

avoid division by zero when considering restrained degrees of freedom.

6.4 Three noded triangle element membrane analysis

A membrane finite element analysis program using three noded triangle ele-

ments, FENLA3, was developed, using the non-linear formulation described
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previously. A local element coordinate system was employed to calculation
the element characteristics to enable the membrane assumptions to be ap-

plied to the element.

6.4.1 Evaluation of integrals

As the three noded triangle has a linear variation of displacement and hence
constant strain through the element, the terms within integrals evaluated for
the element stiffness matrix, internal force vector and pressure loading are
constant, and the integrations can be evaluated without numerical integra-
tion by multiplying the value of the terms by the element area and thickness.
The element area, A is equal to half the determinant of the element Jaco-
bian, |J|, and this is calculated during the evaluation of the dh components.

Linear and non-linear element stiffness matrices can be evaluated according

to equations 92 and 93.

'Ky = {BT ,CIiB; At (92)

8KL = f)Bj];fL (t)S BBNL Act (93)

The element internal force vector and pressure load vector are evaluated

according to equations 94 and 95.

'F = BT 1StA, (94)
t+AtR — HT t+Athe (95)

6.4.2 Distributed loaded cantilever

A model of the distributed loaded cantilever used to validate FENLA1 and
2, was generated for analysis by FENLA3. The cantilever was modelled in
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the global z;, z; plane, and all the model nodes were restrained in the global
z3 direction, reducing the analysis to the equivalent of a 2D plane stress
analysis, allowing comparison with the analytical solution of Holden and the
previous non-linear analysis. All the models used a symmetrical mesh, and
no iteration was used in the solution.

The distributed loaded cantilever series was modelled initially using 40
elements, as shown in figure 15. A convergence test was carried out on the
beam with the highest load coefficient, and the results of this are given in
table 9. For this model about 20 load steps are required to get a solution
within 0.5% of the converged solution. The cantilever was analysed for a
range of load coefficients, and resulted in deflection coefficients of about 50%
of the values obtained from theory and the higher order elements.

The assumption used for the three node triangle elements is a linear
variation of displacement across the element. Due to this, they cannot model
the deformed shape of the distributed loaded cantilever exactly, as this is at
least a parabolic curve. Higher order elements, such as the eight noded
quadrilateral and six noded triangle are able to do this, and so would be
expected to give a more accurate solution for a small number of elements. In
an attempt to improve the 3 noded triangular element solution, the cantilever
series was analysed using models with 80 then 320 elements. Convergence
data for these models is given in table 9. Due to the long time taken to solve
the 320 element beam case, only 30 load steps were used for the calculation
of the tip displacements for the series of load coeflicients, compared to 50
load steps for the other two models. The results of the cantilever analysis
for the 3 noded triangle models are plotted against the theoretical solution
in figure 29. The accuracy of the results improves with the mesh is refined,

as would be expected. However, the 320 element model takes approximately
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20 times as much CPU time to solve as the 10 element 8 node quadrilateral
element, mainly due to the larger number of nodes, and hence much greater
computation required to solve the finite element equations using Gaussian

elimination on the full stiffness matrix.

6.4.3 Point loaded membrane

An initially flat, square membrane under the action of a central point load
was investigated to determine if a converging solution could be obtained. No
analytical solution was found for this problem, but it provided a simple to
generate problem for checking the membrane formulation and convergence.
A 1 m by 1 m membrane was modelled in the global z;, z, plane with a
load of -100 N applied in the global z; direction at the membrane center.
Due to the symmetry of the problem, it is possible to model one quarter of
the membrane with suitable boundary conditions along the free edges, and
hence the model was 0.25 m square. Material properties of the membrane
were F/ = 120000, v = 0.2, with a membrane thickness of Imm. No iteration
was used within the load stepping procedure.

The displacement of the central point of a 16 element model, shown in
figure 30, with varying number of load steps is plotted against the number
of load steps in figure 31, and converged to within 1% after 20 load steps. A
series of models with increasing number of elements was analysed, and the
central deflection of the membrane is plotted against the number of elements
in figure 32 for 100 load steps. This shows the central deflection converging
to a steady value as the finite element mesh density increases. Initial stress
values of 100 and 1000 N/m? were applied to a 16 element model using 20
load steps, and the calculated central deflection was found to be identical.

The initial stress magnitude has no effect on the solution providing that suf-
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ficient load steps to obtain a converged solution are used. These results give
confidence in the analysis method, but since there is no theoretical validation

data for this problem, the analysis cannot be validated using this problem.

6.5 Four node triangular elements

The 20 node solid element has a quadrilateral variation of displacement in all
three axes of the element. In order to have the option of using this element
to model the mast with three noded linear elements used to model the sail in
the rig analysis, a membrane transition element with quadratic variation in
displacement along one side and linear along the remaining two sides is re-
quires. The four node triangle, shown in figure 33 fulfills these requirements.

Interpolation functions for the element are given in equation 96.

Fhl 1—7+2rs—3s+ 2s?
h T
Y= (96)
hs 2rs — 5 + 25*
hy ] 4s — 4rs — 452

A finite element program using this element, FENLA3-4, was developed from

FENLAS3, using 3 point integration for evaluation of area integrals.

6.6 Four node quadrilateral element

A membrane finite element program using the four noded quadrilateral el-
ements described in section 4.11, FENLA4, was written. The numerical

integration scheme employed was 2x2 Gaussian quadrature.
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6.7 Analysis of an initially flat membrane under con-
stant pressure
6.7.1 Analytical solution

Seide [53] presents an analytical solution to the large deflections of an initially
flat membrane under constant pressure. Solutions for central deflections for
a variety of aspect ratio membranes are presented, and the central deflection
for a square membrane with Poisson’s ratio of 0.3 is defined in equation 97,
where 7 is a constant which depends on the aspect ratio of the membrane.

For a square membrane, n = 0.2866.

=] g

This result indicates that the central deflection of the membrane non dimen-

sionalised with respect to the membrane span, w,./b is inversely proportional

to the aeroelastic number, II; presented by Smith and Shyy [57], defined in

equation 1.

6.7.2 Analysis using the finite element programs

An initially flat, square membrane of size 1 m and thickness 1 mm with ma-
terial constants of E = 1.2 x 10, = 0.3 under a constant pressure loading
of 15N/m? was analysed by the membrane finite element analysis programs.
Aeroelastic number of the membrane is II; = 2.0, and the central deflec-
tion predicted by Seide is 0.1433 meters. Due to the symmetrical nature of
the problem, one quarter of the membrane was modelled using appropriate
boundary conditions along the free sides to reduce the problem size. Conver-
gence limit was set at 0.01%, and 10 load steps were used, with a maximum

number of iterations set at 100. In practice, all the cases analysed converged
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within 6 iterations.

Both FENLA3 and FENLA4 were used to analyse the membrane. Two
mesh arrangements were investigated for the triangular elements, the sym-
metrical mesh shown in figure 34, and an asymmetric arrangements, shown
in figure 35. A regular mesh of quadrilateral element was used by FENLA4,
figure 36 . In all cases, the membrane was analysed using a series of mesh
densities, from 2 elements per side up to around 15 elements per side. The
mesh density was limited by the memory available for the program, which
limits the size of the stiffness matrix that can be stored and hence limits the
number of nodes the model can contain. Maximum model size was increased
in later versions of the programs by the use of dynamic arrays and storage
of only the top half of the non zero band of the stiffness matrix.

Mid point deflections for the three mesh arrangements are plotted against
the number of elements in figure 37. As the number of elements is increased,
the solution tends towards the value obtained by Seide. For the most dense
meshes considered, the error in central deflection with respect to the analyt-
ical solution was less than 0.5%.

A series of membranes with II; varying between 1 and 20 were analysed
using each of the three meshes for models with around 150 elements. The
variation in the aeroelastic number was obtained by changing the membrane
Youngs modulus. Central deflections and the error compared to Siede for
the analyses are given in table 10, and the central deflections are plotted
against (IT;) ™! in figure 38. Excellent agreement was obtained for all the mesh
arrangements for the range of aeroelastic numbers considered. The error
increased as the aeroelastic number was reduced, but even then deflections
were calculated to within 1% of the theoretical predictions. For a typical sail

the aeroelastic number would be in the region of 15, and the accuracy of the
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finite element analysis in this region is better than 0.5% for the case analysed
here.

FENLAS3 was altered to use dynamic arrays and storage of the top half
of the non zero band of the stiffness matrix. The revised program was used
to analyse the initially square membrane using a symmetrical mesh arrange-
ment. The alterations to the program resulted in a solution time that was
about 20 times faster than the previous version, and the maximum model
size (limited by memory available on the UNIX workstation) was increased
from 250 to over 3700 nodes. This enabled the membrane to be analysed
with meshes of up to 7200 elements. Results for the coarse meshes were
equal to the results obtained with the previous version of FENLA3, and the
fine mesh results are given in table 11.

FENLAZ3-4 was used to analyse a membrane with II; = 2 using the mesh
arrangement shown in figure 39. A series of models with varying number of
elements was analysed using 10 load steps and maximum number of iterations
set to 50. Central deflections are given in table 12. The first six models
were then analysed using 13 point integration, and the results of this are
given in table 13. These results were within 0.01% of those obtained with 3
point integration, and indicate that the increase in computation required for
the increased order of integration is not necessary, although a solution was
obtained for the 2 element model within the maximum number of iterations
for the 13 point integration. Four noded triangular elements gave an increase
in accuracy compared to the three node element case for an equal number of
elements, although the improvement becomes less significant as the number

of elements is increased.
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6.8 Three dimensional solid elements

A non-linear solid element program was developed using the solid elements
described in section 4.15. Calculation of the element characteristics is carried
out in the global coordinate system using an isoparametric formulation, and
an iterative solution was employed on the final load step using the conver-
gence criteria introduced for the membrane elements . A 20 node element
was initially investigated, and although the element gave accurate solutions
to the distributed loaded cantilever beam problem, the program was not sta-
ble for a range of load steps. A range of solution methods and convergence
criteria were investigated, but these did not result in an improvement in the
convergence of the element. A 16 node element with linear interpolation
in one dimension was then implemented in the three dimensional non-linear
program. This does not require the four node triangle element to allow join-
ing of the mast and sail, hence simplifying the rig model, and will also allow
a rig with an initially curved mast to be discretised. The 16 node element

was found to give stable solutions for all loading cases examined.

6.8.1 Strain displacement matrices

The three dimensional Jacobian matrix is calculated in the same manner as
for the linear three dimensional elements, section 4.15. Components of the
Jh matrix are evaluated with respect to the global coordinate system using
the derivatives of interpolation functions with respect to the element natural
coordinates and the Jacobian matrix, in the same manner as for the linear
three dimensional elements. The L matrix is calculated as for the previous

non-linear cases, and the strain displacement matrices can then be assembled
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from these components according to equations 98 to 102.

tBr, = §Bro+ {Bri (98)
h1,1 0 0 h2,1 0
0 hiz O O 0
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0Bro = ’ ’ (99)
hia her 0 hop 0
0 his hig O hn,2
| s O hig hag - g ]
-
li1 gh11 I ol I31 oh1,1
lia gh1,2 la2 ohi2 l32 ghi,2
g lis gh13 las gh13 I33 oh13
oLl —

(Io1 gha2 + 22 gh11) (31 P12 + ls2 oP11)
(loa gh1,s + laz gha2)  (ls2 gh1,3 + ls3 oh1,2)
(la1 gh1,s + a3 gh1,1) (31 oP1,3 + l3s oP1,1)

(I12 gh12 + hia gh1,1)
(li2 gh1,3 + liz gh1,2)
(111 oh1,3 + l13 gP1,1)

u_

l11 gho1 l31 ohn 1

112 oh2,2 132 ohN,z

i3 gho,3 I33 s (100)
(l11 gh2,2 + iz gha1) (Is1 ohnz + ls2 ghv1)
(l12 ghe,3 + l13 gha2) (Is2 ohns + lss gl 2)
(l11 oho,s + liz gh2,1) (I31 ohva + las ohn) |

By, O 0
BBNL = 6 BBNL 6 (101)
6 6 (B

88



oh11 0 0 -+ Ghna 0
BENL - 0h1,2 o0 .- ()hN,2
o1z 0 0 -+ ohng 0

o
I
o

(102)

6.8.2 Calculation of element stress

Element node displacements in the global coordinate system are used to

evaluate displacement derivatives used to define the Green-Lagrange strains,

equation 103.

t, N A
0w 5O uk (5,5=1,2,3) (103)

¢ _
olUij =

Components of the strain tensor are calculated from the displacement
derivatives according to equation 104, and the strain vector is assembled

from these, equation 105.

t

e = = (Guis + GUji + Uk pln;) (104)

N =

5:{511 €22 £33 €12 £23 513} (105)

The 2nd Piola-Kirchoff stress vector, ég defined in equation 106, can then be
calculated from the Green-Lagrange strain vector using the three dimensional
constitutive matrix, °C in the same manner as in the two dimensional non-

linear finite element analysis.

LS = [451 5Sas 553 5S1a bSas 6Sus] (106)

6.8.3 Calculation of Cauchy stress vector

The deformation gradient of an element is defined as shown in equation 107.

0 ta:z'

10
5or (107)

t
0 Xy =
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Calculation of the Cauchy stresses from the 2nd Piola-Kirchoff stresses can
then be calculated according to equation 108. The ratio of the mass den-
sities can be calculated from the determinant of the deformation gradient,

equation 109.

t
tr = -;;’;- LX S X7 (108)

i

P 1

_—= 109
= det( 1) (109)
Components of the deformation gradient can be calculated as shown in equa-

tion 110.

Otx; N X
90z, Z ofk; T (110)
J k=1

The element node deformed positions, 'z¥, are calculated from the node
starting coordinate and displacements, and put in a matrix, *x. The defor-
mation gradient is then calculated by multiplying the 8h and !x matrices,

and this is used to calculate the Cauchy stress components from the 2nd

Piola-Kirchoff stress components.

6.8.4 Calculation of the stress matrix

The stress matrix for the three dimensional elements can then be assembled

from the stress components according to equation 111.

S=| 0 5 0 (111)
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Linear and non-linear stiffness matrices for the element can then be cal-
culated according to equations 56. Integration over the element volume is
carried out using 13 point Gaussian quadrature, defined in appendix B. The

element stiffness matrices are assembled into the model stiffness matrix after

calculation.

6.8.5 Loading calculations

Internal loading contributions for the elements are calculated in the same
manner as for the two dimensional non-linear case, with the integration taken
over the element volume, and the loads are calculated in the model coordinate
system. Element internal load contributions are added to the model loading
vector for each element in turn. External loading is applied as point loads
at the model nodes. The external loading includes distributed loads on the
element which are lumped at the model nodes in the model definition. The
magnitude of the external loads at each load step are calculated in the same

manner as for the two dimensional case, equation 72.

6.9 Twenty node solid element

A three dimensional non-linear finite element analysis program, FENLAS was
generated using the twenty node element described in section 4.15. Thirteen
point Gaussian quadrature was employed in calculation of the element stiff-
ness matrices and internal loading vectors. In order to simplify debugging,

the program uses full stiffness matrix storage and Gaussian elimination for
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solution of the finite element equations, and an iterative solution was used

for the final load step.

6.9.1 Cantilever analysis

A tip loaded cantilever with material properties F = 1.2 x 10% and p = 0.3,
with a length of 1.0 metre and depth and width of 0.1 metres was analysed
using FENLAS5. Ten elements were used in the finite element model with
a convergence limit of 1.0 x 107°. Deflections obtained using one load step
were equal to the results obtained from the three dimensional linear 20 node
element analysis. A non-linear analysis using 20 load steps using an iter-
ative solution on the final load step did not converge after 100 iterations.
Displacements of the cantilever were within the convergence limit for the z;
and 3 (along the length and through the depth of the cantilever) directions
after about 10 iterations, but the displacement increments in the z, direction
were up to 200% of the displacements after 100 iterations. Magnitude of the
displacements in this direction were of the order of 10717 over the model,
compared to displacements of up to 1072 for other directions, and were oscil-
lating about zero. This suggests that the changes in displacement are due to
rounding errors in the program. As the displacements in the other directions
had converged, these non converging displacements are not significant for the

solution of the problem.

6.9.2 Convergence check

The convergence check was altered to only examine significant degrees of
freedom for convergence. Convergence checking is carried out for each global
axis in turn. The maximum displacement over this degree of freedom is

obtained, and each nodal displacement increments in this degree of freedom
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is only checked for convergence if the node displacement at the start of the
iteration satisfies equation 112, where c. is a convergence check parameter

defined in the finite element data file.

L) > (u)e, (112)

6.9.3 Non-linear analysis results

The tip loaded cantilever was analysed using c. = 1077, and a convergence
limit of 0.01% . The tip loading was 0.3V, which corresponds to a deflection
of 0.1m using linear beam theory. A series of models was used with between
1 and 10 elements for a varying number of load steps, and tip deflections
are given in table 14. The number of load steps used had no effect on the
converged solution, and tip defiection is plotted against number of elements
in figure 40. The convergence of the results and the trend to a solution with
increasing number of elements gave confidence in the convergence checking

method used for a tip loaded analysis case.

6.10 Distributed loaded cantilever

FENLAS5 was used to analyse the distributed loaded cantilever used for pre-
vious non-linear finite element program validation. Equivalent nodal loads
for a face of the element under a uniformly distributed loading are shown in
figure 41. This loading is calculated by evaluating equation 113 for each of

the face nodes, where the integration occurs over the element face area.

Af

The cantilever was modelled using ten 20 node elements, initially with load

coefficients of 1 and 2. Solutions were obtained for these load coefficients
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which were within 5% of the theoretical predictions. The solution of the
model with load factor 2 took over 50 iterations with 20 load steps, and 27
iterations with 30 load steps, and consequently the solution was taking up
to an hour to converge.

Analysis of the displacement increments showed that the displacements
in the global z, direction were taking about 5 times as many iterations to
converge than those in the z; and z, directions, and were about 10> times
smaller in magnitude. These displacements had negligible effect on the final
solution, and to improve the solution times the convergence check criteria
was changed. Displacement increments were only checked for convergence if
the node displacement at the start of the iteration passed the check shown
in equation 114, where (u™**)" is the maximum displacement at the start of

iteration ¢ over all model degrees if freedom.
B(u?)i > (um“)icc (114)

6.10.1 Effect of convergence check parameter

A cantilever beam with distributed loading factor 2 was analysed for a range
of convergence check and convergence limit parameters. Deflections of the
tip of the cantilever and the mid point of the bottom of the end face are
given in tables 15 and 16 for convergence limits of 0.01% and 0.05% with
the convergence check ranging from 1.0 x 1072 to 1.0 x 1077. Reducing
the convergence check from 1.0 x 107 to 1.0 x 1075 results in a change in
tip deflection of 0.01%, within the accuracy sought by a convergence limit of
0.01%. As reducing the convergence check further would result in an increase
in solution time, this was taken as a suitable value for the convergence check

criteria.

A reduction in ¢, results in a greater number of iterations to convergence,
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and hence a higher solution time. It is important to set c. at a value where
only sufficient iterations for all significant displacements to be within the

convergence limit are performed.

6.10.2 Order of integration and relaxation

A cantilever model with load factor of 10 was analysed using ¢; = 10~% and
c. = 107%, varying the number of load steps. An average tip deflection of
0.6616 was obtained for 20 and 30 load steps, but using 10, 15 or 25 load
steps resulted in a solution that diverged, with displacements tending towards
infinity. The case with 10 or 15 load steps could be unstable due to insufficient
number of load steps before the iterative solution began, but this would not
be the case for the 25 load step analysis as a convergent solution was obtained
using 20 load steps. Thirteen point integration, which has the same order
of accuracy as 3x3x3 Gaussian quadrature is employed in the calculation of
element characteristics. In order to confirm that this is sufficiently accurate
for the element, the order of integration was increased to 4x4x4 Gaussian
quadrature. There was no change in the deflections obtained or the stability
of the solution for the distributed loaded cantilever with increased order of
integration.

The failure of the model could be due to a growing instability in the it-
erative solution, which could be improved by using relaxation and FENLAS5
was altered to incorporate a relaxation factor, 3, defined in the model data
file. Calculated node displacement increments at the end of each iteration
are multiplied by the relaxation factor before being added to the node dis-
placements, equation 115. Setting §; to 1.0 results in a solution without

relaxation.

HAYH) = tratgE-) g AU (115)
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Analysis of the distributed loaded cantilever with load coefficient of 10 using

a relaxation factor of 0.5 or 0.75 did not give a convergent solution for 15 or

25 load steps.

6.10.3 Effect of number of load steps

The full series of cantilever loading cases was run with ¢; = ¢, = 0.005, using
19, 20 and 21 steps. The results are tabulated in table 17. Cantilevers with
load factors over 4 gave divergent solutions when using either 19 or 21 load
steps. Convergent solutions were obtained using 20 load steps for all the
load coefficients, and the tip deflections are plotted against load coefficient
in figure 42. The displacements are within 5% of the analytical results of

Holden giving accuracy comparable to the two dimensional non-linear finite

element analysis.

6.10.4 Effect of solution method

The current solution method only iterates to a converged solution on the final
load step. Two different methods of solution were investigated to attempt to

improve the stability of the 20 node element:

e Iterate at all load steps
e Iterate at all load steps except the first

e No iteration

Solutions were attempted for the three element cantilever model under a load
factor of 10 using 20 load steps using the first two solution methods. In both
cases the solution diverged after the third load step.

A non iterative solution was then used to analyse a 10 element model with

a load factor of 10. The results for a range of load steps, from 10 to 175 are
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given in table 18. The magnitude of the tip deflection oscillates with number
of load steps, as shown in figure 43. This may be linked to the instability of
the iterative solution at certain number of load steps. The displacement of
the non iterative solution is more accurate when compared to the analytical
solution for high numbers of load steps than the iterative solution, but the
solution time is much longer.

The reason for the instability of the twenty node three dimensional ele-
ments for the distributed loaded cantilever case using an iterative solution
has not been determined, although it seems to be related to the magnitude of
the deflections at the start of the iterative solution. Stability could probably
be improved by using the dynamic relaxation and alternative convergence
criteria developed for the 16 node element, but lack of time prevented inves-

tigation of this.

6.11 Sixteen node element

A three dimensional non-linear finite element analysis program, FENLA5-1,
was written using 16 node solid elements. An iterative solution was em-
ployed on the final load step. Convergence criteria used for this program was
changed to the criteria which is used in the aeroelastic analysis of a rig. A
displacement residual is calculated according to equation 116, where [ is a
characteristic length of the model, taken to be the length of the cantilever

beam for the validation models.

all dof
A

residual = Z ——ZE (116)

The residual is calculated as the node displacements are updated at the end
of each iteration, and compared against the convergence limit, ¢;, input from

the model data file, to determine if the solution has converged. Convergence
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limit was set to 1.0 x 1075 for the cantilever analysis, based on experience

that had been gained during initial aeroelastic analysis.

6.11.1 Dynamic relaxation

A distributed loaded cantilever with load coefficient 10 was analysed using
a ten element model using a range of load steps from 20 to 25. Some of the
load steps gave a diverging solution. Further investigation of the displace-
ment history during the iterative solution for the converging and diverging
solutions showed that diverging solutions had a tip deflection larger than the
converged solution after one iteration, compared to the solutions which con-
verged that had a tip deflection of less than the converged solutioﬁ. Diverging
solution deflections then grew to infinity as the iterations continued.
Dynamic relaxation was introduced to the iterative solution. The value
of the residual for iteration ¢ is compared to the value from iteration ¢ — 1.
If the residual has increased, J; is set to the value defined in the model data
file, and if the residual is decreasing, it is set to 1.0. This solution method
gave converging solutions for all the numbers of load steps considered. An
analysis using 20 load steps gave a tip deflection of 0.606920 metres for the
original solution method and 0.60915 metres using ; = 0.5. Therefore the
use of dynamic relaxation does not significantly affect the results obtained

when using 20 load steps

6.11.2 Distributed loaded cantilever

Results for the tip deflection of the distributed loaded cantilever for load
factors from 1 to 10 using 20 load steps and (; = 0.5 for a 10 element
model is given in table 19, and plotted against theory along with the 20 node

element results in figure 44. The arrangement of the elements in the model
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is with the linear variation in displacement along the length of the beam.
This is as they would be used in the mast, with a quadratic variation over
the cross section which allows a rounded mast cross section to be modelled.
This arrangement gives less accurate results compared to the twenty node
element as the linear variation along the cantilever length cannot model the
deformed shape of the beam as well as the quadratic variation of the twenty
node model. The sixteen node element has an error in tip deflection of 13%
for a cantilever of load coefficient 10 compared to Holden.

The cantilever beam with load coefficient of 10 was analysed using a series
of models with from 10 to 100 elements along the beam length, and 20 load
steps. Tip deflections are listed in table 20, and plotted against the number
of elements in figure 45, and the accuracy of the solution improves as the
number of elements in increased, with a model using 30 elements giving an

error of 5% compared to Holden.

6.12 Summary

A nonlinear finite element program has been developed, using an iterative
solution on the final load step. Three node triangle elements were chosen
to represent the sail, as the elements allow an initially curved surface to
be discretised. As the elements are constant strain elements, no numerical
integration is needed to calculate the element internal loading or stiffness
matrix, resulting in a rapid formulation of the finite element equations. Three
node triangle membrane elements have been implemented and the program
has been validated against a theoretical solution for large deformations of an
elastic membrane under constant pressure.

Twenty node solid elements were implemented in the nonlinear finite ele-

ment analysis, and gave good agreement with a theoretical solution for large
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deformation analysis of a cantilever beam. These elements require a transi-
tion element to ensure compatibility with the three node membrane elements,
and a four node triangle membrane element was developed to satisfy these
criteria. The twenty node solid elements produced unstable solutions for
certain numbers of load steps. Relaxation methods, variations in solution
methods and alteration of convergence check methods were employed to try
and improve the stability, but this was not successful. A 16 node solid ele-
ment was implemented in the nonlinear finite element program, as this does
not require transition elements and also would allow the modeling of an ini-
tially curved mast. The 16 node element was validated against a theoretical
large deformation analysis of a cantilever beam, and proved to be stable for
all cases attempted. This element was chosen to model the mast in the rig
analysis as it resulted in a simpler rig model and was more stable than the

20 node element.
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7 Potential flow

Potential flow theory assumes inviscid incompressible flow, and expresses the
flow field in terms of a scalar velocity-potential function, ¢. The continuity

equation for motion of the flow reduces to Laplace’s equation, equation 117.
Vi =0 (117)

The potential functions for elementary solutions of Laplace’s equation for
sources, sinks and vortices can be added as Laplace’s equation is linear.
These solutions can be combined to describe the flow over an arbitrary body.
A complete description of the potential flow method is found in many texts,
such as White [66].

Development of a CFD program for the analysis of the rig was considered
to be outside the scope of this project because of the time available. An
potential flow panel code, PALISUPAN, which was developed at The Uni-
versity of Southampton by Turnock [64], was used to calculate the pressure
loading for the aeroelastic analysis. PALISUPAN has been used in several
previous studies to analyse yacht rigs in an upwind configuration, including

investigations by Prior [49], Cant [10] and Noury [45].

7.1 PALISUPAN

Panel codes such as PALISUPAN [64] represent a body by panels placed on
the surface of the body containing source and dipoles. Lamb [32] showed
that a quantity satisfying Laplace’s equation can be written as an integral
over the bounding surface, S, of a source distribution per unit area, s and
a normal dipole distribution per unit area m distributed over the bounding

surface. If the disturbance velocity field due to the bounding surface or body
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is defined as ¥, this is related to the disturbance potential, ¢ by equation 118
1=V¢ (118)

The disturbance potential can be expressed in terms of a surface integral as
shown in equation 119, where Sp is the surface of the body, Sy is a trailing
wake sheet, r the distance from the point for which the potential is being

determined and 8/0n a partial derivative in the direction normal to the wake

[ L p (e [ [ 2 () om
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sheet.

The boundary conditions imposed on the disturbance potential are, from

Hess [20]:

1. the velocity potential satisfies Laplace’s equation everywhere outside

of the body and wake,
2. disturbance potential due to the body is zero at infinity,
3. normal components of the velocity is zero on the body surface,

4. the Kutta-Joukowski condition of finite velocity at the body trailing

edge is satisfied,

5. the trailing wake sheet is a stream surface with equal pressure either

side.

The first two conditions are satisfied as functions of y and o, conditions (3)
and (4) are used to determine p and ¢ on the body, and the Kutta condition
applies only at the leading edge. The distribution of the sources and doublets

over the body have to be determined by some other method. A pertubation
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potential method taken from the work of Morino and Kuo [40] was chosen

for PALISUPAN.

The numerical procedure of Morino is based on representing the body
surface by a series of N quadrilateral panels with each containing an un-
known constant dipole strength. The wake sheet is represented by M panels
placed on the stream surface from the trailing edge of the body, and the
dipole strength per unit area of the wake, uw is related to the difference in
potential between the upper and lower surface of the trailing edge, ¢, and

¢, equation 120
Hw = ¢u - ¢l (120)

The source strength per unit area of the body is prescribed by satisfying the

condition for zero normal velocity at the panel centroid, equation 121
=U-n (121)

The numerical discretisation of equation 119 gives the potential at the cen-
tre of panel 7 as shown in equation 122, where for panel j, S5;; is the source
influence coefficient of a unit strength panel, D;; is the dipole influence coef-
ficient and Wy, is the influence of the constant strength wake strip extending
to infinity.
TR
i:_ﬁz oo " M) Sij — $; D5 "*‘ZA(% ik (122)
= k=1

As there are N independant equations corresponding to the N body surface
panels, equation 122 can be evaluated, and expressed in matrix form this

becomes equation 123.

D;;¢ + W40 = 8;;(Uss) - 1) (123)
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As Morino’s original trailing edge Kutta condition directly relates A¢ to
the difference in trailing edge panel potential, equation 123 can be directly
solved to give the vector of dipole potentials, ¢. Numerical differentiation of
the dipole potential along the body surface allows the surface velocity and
hence pressure to be calculated.

As PALISUPAN is a panel code, it is necessary to introduce an artificial
thickness in the sails to enable solution, unlike the vortex lattice codes that
have been used in past aeroelastic analysis of sails. The sail has to have an
artificial thickness to prevent the panels on one side of the sail influencing
the flow on the other side. However, the panel code allows solution of the
mast and sail as a single body. Prior [49] studied the effect of the thickness
introduced to the sail, and concludes that a thickness to chord ratio of 2.5%
gives the most accurate solutions when compared to experimental results.
Both Prior [49] and Cant [10] found that the global force predictions ob-
tained from PALISUPAN were not very accurate compared to experimental
results. However, the error in global force components can be attributed to
the viscous effects which occur in the experimental cases, and the difficulty
in accurately replicating the experimental conditions. Prior [49] found good
agreement between experimental measurements of pressure distribution on
a mast /sail model and values predicted by PALISUPAN using an artificially
thick sail for areas away from the leading edge area where separation can
occur at the mast. As the aeroelastic analysis is concerned with the pressure
values obtained by the CFD code, the results of Prior [49] give confidence in
the ability of PALISUPAN to model the problem adequately. An example of
the pressure distribution obtained from a PALISUPAN analysis of a yacht rig
sailing upwind is given in figure 46. This shows the pressure distribution on

the windward side of a mast mainsail model calculated during an aeroelastic
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analysis of the model.

7.2 Model definition for PALISUPAN

PALISUPAN takes a definition of the bodies to be analysed and generates
panels required for the analysis according to the number of panels in the
chord and spanwise directions defined in a control file. The body is defined
in the geometry input file as a series of sections, and for a closed body such
as a rudder or the combined mast sail model, the definition of the section
starts and finishes at the trailing edge. PALISUPAN evaluates cubic spline
curves to fit the input data points and generate a mathematical description
of the body which is used for the discretisation into panels. It is important
to ensure that the body definition points will result in a smooth surface when
this procedure is carried out, as a rapid change in slope between points can

cause errors in the cubic spline definition.

7.3 PALISUPAN grid generation

During the aeroelastic analysis, the deflected node positions obtained from
the finite element analysis will be used to generate the updated body def-
inition for PALISUPAN analysis. A series of points defining cross sections
through the rig will be extracted from the finite element model, and these
will be used to generate the sections for the PALISUPAN input file. The rig
will be oriented in the global coordinate system in the same manner for all
the aeroelastic analysis cases, as shown in figure 47. This orientation results
in the pressure side of the artificially thick sail having an z, coordinate that
is lower than the suction side. All the PALISUPAN models are generated

with the chord of the sections lying along the global z; axis. This means
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that the input velocity vector is defined as shown in equation 124.
V = (Vcosa,Vsina,0) (124)

In all cases, the PALISUPAN analysis was carried out without a reflection
plane.

For the case of a sail modeled without a mast, the sail section can be
divided into three main parts, the leading edge, trailing edge and the sail sur-
faces. Previous experience with PALISUPAN analysis of sails (Turnock [65])
has shown that optimum results are obtained using a section where the lead-
ing edge is an ellipse covering 5% of the chord length, followed by a constant
thickness main section, where the artificial thickness is in a direction normal
to the sail surface and placed symmetrically about the surface, and a linear
taper to the trailing edge over the final 5% of the chord length. To avoid
errors that could occur in the cubic splines used by PALISUPAN to generate
the mathematical model of the body where the section slope changes at the
leading and trailing edges, three points are placed along the sail upper and
lower surfaces either side of the leading and trailing edge definition points.
These points are placed at a spacing of 1% of the local chord length before
and after the 5% of the chord covered by the leading and trailing edge sec-
tions and ensure that the PALISUPAN splines form a smooth curve over the
output section. Surface points are then evenly spaced over the remaining
length of the section, from 5.3% to 94.7% of the chord length. The wake
sheet should leave the trailing edge smoothly with the slope between the
sail and wake sheet being continuous, then curve back to the free stream
direction over a length roughly equal to the sail chord, with the semi infinite
wake sheet then extending in the free stream direction. As the model will
experience the highest velocity gradients around the leading edge of the sail,

a panel distribution which clusters in the center of the section (around the
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leading edge) is employed in the chordwise direction. It is important to de-
fine the PALISUPAN sections so that the sections are defined running up the
mast (increasing z3), with the section definitions containing points which are
ordered from the trailing edge, along the surface of the sail with higher z,
values (suction surface), around the leading edge and back along the surface
of the sail with lower z, values (pressure surface) to the trailing edge. This
ensures that the orientation of the panel normals are in the correct direction,
as otherwise PALISUPAN could calculate the flow inside the body.

To model a rig consisting of a mast and sail, a constant artificial thickness
is added over the sail as for the case discussed above. A linear taper is used
from the trailing edge over 5% of the chord length, and three points are
placed on the sail surface where the taper ends to force the PALISUPAN
splines to model this area correctly. The mast cross section is joined to the
sail section where the artificially thick sail intersects the mast. As there is
an abrupt change of slope at this point, three points are placed on the sail
surface and mast section either side of the join to ensure that the splines
produce an accurate definition of this area. PALISUPAN provides a special
panel distribution which is suitable for the rig model, where the section is
split into three parts with the chordwise number of panels in the model split
between the three sections with a different distribution possible for each of
the three sections. For the analysis of the rig, a panel distribution was used
where the panel density increases along the suction surface from the trailing
edge to the mast, remains constant around the mast and then decreases
from the mast to the trailing edge on the pressure surface of the sail. This
ensures that there is an increased panel density in the area of highest velocity

gradients.

The membrane, sail and rig models considered will form closed sections in
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the chordwise direction, and the body will be open in the spanwise direction.
This allows the possibility that the flow could wrap around inside of the body
at the tip and foot of the model. It is possible to define separate bodies to
close the model at the tip and foot, although this would introduce added
complexity into the model definition, and increase the time taken for the
CFD runs. Since the section is thin, the flow is unlikely to wrap around
into the body, and as previous models of sails have not found this to be a
significant problem, the section has been left open in the spanwise direction

to simplify the input file generation program.

7.4 CFD grid generation program development

A computer program was developed to output sail section and wake data
in a PALISUPAN input format from a network of points in 3D space which
are read in from a file. These points represent the displaced node positions
which will be obtained from the FENLA program in the aeroelastic analysis.
The network of points is arranged into a series of sections of the body in the
x1, To plane, at increasing x3 values. Thickness of the section, ¢, is calculated
according to equation 125, where [. is the local chord length and ¢, is a

constant usually set to 0.025 to give a thickness to chord ratio of 2.5%.
te = Lyt (125)

The grid generation computer program was developed to process an arbi-
trary number of sections, with arbitrary numbers of points in each section.

Program development was carried out as follows:

e Program to generate a PALISUPAN input body with a sail cross section

from a 3D model of flat membrane.
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e Program to generate a single 2D sail section from a set of input points

that define a curve in the z;, 5 plane.

e Program to develop 3D model from points which represent a series of

curved sections.

7.5 Flat membrane

Initial development of the PALISUPAN input file generation program consid-
ered the case of a plane membrane. The problem is simplified as the normal
to the membrane is constant over the model, and thus the artificial thickness
will be applied in a constant direction over the surface. As the membrane is

defined in the z; z3 plane, the thickness is applied in the x5 direction.

7.5.1 Program structure

Program structure of the computer program to generate PALISUPAN input
files from a grid of points, F-2-P, is shown in figure 48. The surface defini-
tion file contains the number of sections, followed by the definition of each
section which contains the number of points in that section followed by the
coordinates of each point. Input data is stored in a data structure containing
dynamically allocated arrays of section data and point data to allow the pro-
cessing of arbitrarily sized models. Input sections are defined with the chord
along the z; direction. The number of points used to define the leading edge,
N and each of the sail surfaces, Ny, is input during the program execution.
This enables the calculation of the number of points which will define each
section output to the PALISUPAN input file.

Coordinates of the points defining each PALISUPAN section are calcu-

lated for each section in turn, and stored in the output data structure. After
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calculation of the body definition, the wake section definition points are cal-
culated, and these are also stored in the model definition. The number of
panels to be used in the PALISUPAN discretisation in the chordwise and
spanwise, directions, N; and N, respectively, is input during the program
execution, and the PALISUPAN model definition is output to a file in the

required format.

7.5.2 Calculation of flat membrane model

The number of points used to define the PALISUPAN section, NN, is calcu-

lated according to equation 126.
N, = Nie + 2Ny, + 14 (126)

This is made up of the trailing edge point at the start and end of the section
definition, the 12 points used in groups of three to ensure a smooth transition
from trailing edge taper and leading edge ellipse to the sail surface, N;, points
around the leading edge and N,,, points on each of the sail surfaces. Initial
runs of the grid generation program used Ny, = 10 and NV,, = 7, and 5 points
were employed to define the wake. These values were found to produce fair
sections in all the grid generations undertaken.

An array of coordinate points of size IV, is allocated for the output section
definition, and points at the trailing edge location are placed into the first
and last location to define the start and end of the section. Section length
is calculated from the distance between the first and last points in the in-
put section, and the section thickness calculated according to equation 125.
Points are then defined at the required locations along the chord length, with
the section thickness applied symmetrically about the mid chord line of the

section defined by the input points.
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The leading edge ellipse is created by an even distribution of the N
points across the thickness of the section, covering 5% of the chord length,
as illustrated in figure 49.

Wake definition is calculated using cubic Bezier curves. Control points for
the Bezier curves are calculated from the local chord length and the angle of
incident flow, input by the user during program execution, and the location
of the control points is illustrated in figure 50. The wake definition points
are then calculated at locations equally spaced along the Bezier curve.

A section of the PALISUPAN input data generated using the F-2-P pro-

gram is shown in figure 51, for a case with N, = 7 and N,,, = 10.

7.6 Curved section

To generate a curved sail section, the input points for the section is used to
define a series of cubic spline curves that represent the input section line. The
local chord, calculated as the distance between the first and last input section
points is used to calculate the section thickness according to equation 125,
and this is applied symmetrically about the input line in the direction of the
curves principle normal. This stage in the program development was used
to develop sail section generation and spline routines for a single section,
to simplify debugging of these routines, before moving on to the full three
dimensional case. No wake definition was investigated for this case, as only

a single section was defined, which is unsuitable for PALISUPAN analysis.

7.6.1 Parametric spline curves

The input section line is defined as a parametric curve in g, running from 0
at the leading edge to 1 at the trailing edge. The parametric coordinate, g; of

point ¢ along the line is approximated by taking the straight line length be-
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tween the curve definition points as a distance along the curve, equation 127,

where [, is the sum of the straight line lengths.

gils = (Z(% - w?)?) (127)

j=1
Cubic spline equations [29] are used to calculate the curvatures, M ; at each
point for each of the global coordinates 7 = 1,2,3. These can be used to
calculate the coordinates of a point at parametric coordinate g, as shown in
equation 128, where g; < ¢ > g;41, and h; is the parametric length of curve

i, which lies between points ¢ and 7 + 1.

M M
e 3 )3 M Y PSP ¢
% = G (Gir1—9)° + o (9 —9:)

$;+1 M;+1hi .CL’_Z7 M;hz
Tl )t ) (g —g) (128)

7.6.2 Principal normal calculations

The principle normal direction is defined in equation 129 from Taylor [60].

2. 82, A2
Oiz Ojr O3z

- [392’ 892’592J

The curvature values at a point with parametric coordinate g are calculated

(129)

by linear interpolation between the input points defining the curve that the

point lies on, equation 130.

2
Bjm

ds?
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(9 —9:) (130)

9

The vector resulting from these calculations is normalized, then multiplied
by the section thickness. The resulting vector can then be added and taken
away from a point on the cubic spline curve to give the required points on

the upper and lower surface of the section.
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7.6.3 Leading edge calculations

The points defining the leading edge profile are calculated using the method
described for the plane section in a local y;,y2 coordinate system. These
coordinates are then rotated to the global system using a cosine matrix cal-
culated from the locations of the leading edge point and the input point
closest to 5% of the arc length. Finally the points are translated so that the

central point in the leading edge ellipse coincides with the point defining the

model leading edge.

7.6.4 Section point calculation

The three points at the boundary of the trailing edge taper and leading edge
ellipse are placed at 1% of arc length separation from g = 0.95 and g = 0.05.
Surface points are then equally spaced between g = 0.052 and g = 0.948 along
the section, with pressure and suction surface points calculated using the

principle normal. The order of the surface definition follows that described

in the flat membrane case.

7.7 Three dimensional general membrane

A computer program which generates PALISUPAN input files from a series
of input sections defining an arbitrary surface, F-2-P-I1, was developed. The
program uses the same structure as the F-2-P program, and the single section
generation method described above is used for each section.

The definition of the principle normal used in the 2D section fails for
a straight line (zero curvature), as a straight line does not have a single
principle normal. In order to ensure that F-2-P-II could deal with arbitrary

models, an alternative method for calculating surface normal is used at points
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where the curvature is found to be zero. The wake definition used in the flat
plate model is extended to a general three dimensional case. The program

allows variation of:

e Input and output files

e Number of panels in the t and s direction for the PALISUPAN meshing

e Number of points used to define the output sections leading edge ellipse,

surfaces and wake sheet

e Thickness multiplier

A file containing the model definition in the PALISUPAN original geometry

input file format is output from the program.

7.7.1 Normal calculation

After calculation of the principle normal for any point, ¢, equation 129, the
magnitude of the vector obtained is calculated. If this is zero, the input
section is a straight line, and an alternative method of calculating the surface
normal is used. Two vectors on the input surface are calculated, as shown
in figure 52. The normalised cross product of these vectors is calculated
and used as the surface normal at this point. The two in plane vectors are
calculated using point ¢ and point ¢+ 1 on the current section, and point 7 on
the current section and point ¢ on the next section. If the point 7 is the last
point on the current section, the first vector is taken in the direction of point
7 to point ¢ — 1, and if the section being considered is the last input section,
the second vector is taken from point i on the current section to point ¢
on the previous section. The change in orientation of the normal calculated
using the alternative points is taken into account when calculating the surface

normal used for application of the artificial thickness.
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7.7.2 Wake definition

During calculation of the output section, the slope of the curve at the trailing

edge is calculated using equation 131.
le n—1 n n-1 n
ag 6 6 hn—l h’n—l

Components of the slope, 0z;/0g can be used to define a unit vector tangent

(131)

to the input curve at the trailing edge, which is stored in the output section
data structure. During calculation of the wake section, the incident flow is
used to define a unit vector in the direction of the free stream flow. These
two vectors are then used to define the Bezier control points, as shown in
figure 53, for the Bezier curve defining the wake section. Wake definition
points are then generated at equal spacing over the wake section curve. An

example of a curved membrane PALISUPAN section generated by F-2-P-II

is shown in figure 54

7.8 Generation of PALISUPAN rig model

The structure of the grid generation program used to generate the rig model
for analysis by PALISUPAN is shown in figure 55. This generation program is
employed within the aeroelastic analysis, and the parameters used to generate

the output file are obtained from the analysis control file, and consist of:
e Number of point to define the sail surface, N,
e Number of points to define the mast surface, N,,,

e Number of panels to define the model in the PALISUPAN discretisa-

tion, in chordwise, V;, and spanwise, IV,, directions,

e Number of panels used to define the mast in the PALISUPAN discreti-

sation, Nnast,
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e Thickness multiplier, ¢,,.

Input sections include points defining the sail shape and the mast cross sec-
tion. Cubic splines are generated which define the sail section as in the
program F-2-P-II, and the mast cross section is also defined by a set of
parametric cubic splines, with t running from 0 to 1 around the mast in a
clockwise direction when viewed from the top of the rig. The mast splines
form a closed section, with the first and last points of the curve taken as the
joining point between the mast and sail (which also defines the end point of

the sail curve). Figure 56 shows the orientation of the spline curves used to

define the mast and sail.

7.8.1 Output section generation

The number of points used to define an output section is calculated accord-
ing to equation 132, and the array of points defining the output section is

allocated accordingly.
Ny = Np + 2Ny, + 18 (132)

The thickness of the sail section is calculated as for the previous program
according to equation 125. The point defining the trailing edge is placed into
the start and end point of the output section, and the order in which the
points are placed into the output section are indicated in figure 57. Three
points are placed at the end of the trailing edge taper at g = 0.93,0.94,0.95
on the pressure and suction surfaces of the sail, and three points are placed
at g = 0,0.01,0.02 on the pressure and suction surfaces of the sail to define
the start of the sail section. The parametric coordinates along the mast curve
which defines the mast sail intersection at the start of the mast section, g

(pressure surface of the sail) and the end of the mast section, g. (suction
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surface of the sail) are calculated using the method described below. Two
points are placed at g.—0.01 and g.—0.02, then the number of points defining
the mast are equally spaced along the mast parametric curve between g.—0.02
and g, + 0.02. The mast definition is completed by placing two points at
gs + 0.02 and ¢, + 0.01.

7.8.2 Calculation of the mast sail intersection

To obtain a smooth join of the mast and sail surfaces in the output section,
the parametric coordinates of the end point of the mast curve used for the
rig section is calculated by obtaining the parametric coordinates on the mast
definition curve which are within 1% of the location where the z, coordinates
of the mast curve are equal to the z2 coordinates of the suction and pressure
surfaces of the sail.

The z, coordinate of the start of the suction surface of the sail, z5 is used
to find the coordinate of the assumed intersection point at the end of the
mast curve. Starting at the end of the mast, each spline curve for the mast
is checked until the correct interval, i is found, such that zi > z§ > z5™.
Starting at the parametric coordinate of point 7, g;, g is increased in steps
of 0.01 until z§ < z§. The end intersection point coordinate, g. on the mast
curve is then taken to be g — 0.01, so that z5°7*"" < 2z} < z°. The starting
intersection point of the mast curve is calculated in a similar way, with g,

taken as the point such that 2§ < z§ < z3°7*%, where 7} is the z coordinate

of the start of the pressure surface of the sail.

7.9 Analysis of a rectangular membrane

The program F-2-P-II was used to generate a sail cross section from a grid

of points representing a rectangular membrane with a chord of 1 metre and
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a span of 5 metres. A flat membrane and a membrane with a curved cross
section were used to generate models which were analysed by PALISUPAN
to gain some experience in using the program and to verify that the model
generation programs were working correctly. In addition to the panel density
and distribution on the model, PALISUPAN allows alteration of the Kutta
convergence criteria and block matrix convergence criteria (BMCC). Kutta
convergence criteria sets the convergence limit of the maximum trailing edge
pressure difference. Reducing this value will result in a more accurate pre-
diction of pressure forces, but will increase the number of iterations required
for a solution, and hence increase the solution time. The BMCC sets the
limit to which the block iterative matrix solver is forced to converge, and is

usually set to 0.0001 according to Turnock [64].

7.9.1 Calculation of lift and drag coefficients

Force components in the global coordinate system are output from PAL-
ISUPAN in non dimensional form, with the force non dimensionalised with
respect to an area of 0.6667m? as in equation 133. This area is fixed in
the program, and takes no account of the geometry of the input body. The
PALISUPAN forces must therefore be multiplied by (0.6667/5.0) to give the
global forces non dimensionalised with respect to the area of the 5 metre by

1 metre membrane.

F

133
1oV2 % 0.6667 (133)

(Cf)pal =

Lift and drag coefficients can be calculated from global forces (non dimen-

sionalised with respect to the membrane area) as shown in equations 134

and 135.

Cp=Cpcosa—Cysina (134)
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Cp = Cpysina + C, cosa (135)

7.9.2 Three dimensional thin wing theory

Abbott and Von Doenhoff [1] provide a method of calculating lift and drag
for a three dimensional thin wing, which is obtained using lifting line theory
and is related to the two dimensional data for the wing section. The method
is applicable to wings with aspect ratios of 2 and above. Lift curve slope per
degree, a, for the wing can be calculated using equation 136. The factor f,
depends on the aspect ratio of the wing and the ratio of the root and tip
chords (wing taper), and is obtained from a chart [1]. For a wing of aspect

ratio 5, with the tip and root chords of equal length, f = 0.991.

Qe
“= T 57 30,7 A) (136)

The effective lift curve slope, a., is defined as in equation 137, where qq is
the average two dimensional lift curve slope of the wing. Jones edge velocity
factor, E is the ratio of the (span + chord) of the wing to the span of the

wing.

Qg
e = == 137
0. = 3 (137)

Using these relationships, the theoretical lift curve slope for a rectangular
flat section of aspect ratio 5 is 3.891 rad™!.

Induced drag for a three dimensional wing with no twist can be calculated
from equation 138. The term u is found from a chart presented in Abbott
and Von Doenhoff [1], depending on the aspect ratio and taper of the wing.

Cpi = 7—5412; (138)

For a case with aspect ratio of 5, and zero taper u = 0.983, and from equa-

tion 138 Cp; = 0.065C2.
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7.9.3 Theoretical calculations for a curved surface

A quadratic curve is used to define the curved membrane shape, with a
maximum camber £ located at the mid chord point, z; = ¢/2. The equation

of the curved surface is given in equation 139.

—4 4
Ty = —céél'% + '?5331 (139)

The two dimensional section lift coefficient at angle of incidence «, calculated

using thin wing theory, is given by equation 140.

2
CL =27 (ag + -%) (140)

When corrected for three dimensional effects as described in the previous

section, the lift curve slope of the surface is 3.892 rad ™!, and the zero lift

angle of attack, g is —2€7/c.

7.10 PALISUPAN analysis of rigid rectangular flat mem-
brane

The flat rectangular membrane was analysed using two panel densities for a

range of incidence from —10° to 10°. The panel densities used were:
e Coarse grid, N, = 10, N, = 25
e Fine grid, N, = 20, N, = 50.

PALISUPAN [64] allows the use of a variety of panel distributions in the
chord and spanwise directions. A sinusoidally distribution of panels was
used in the spanwise direction with the maximum density at the mid point
of the section (around the leading edge of the membrane), and a constant

distribution was used in the spanwise direction. Average panel aspect ratio
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for the two grids was 1.0, although the panel aspect ratio will vary due to the
clustering of the panels at the leading edge. The Kutta convergence criteria
was set at 0.001 and the BMCC was set at 0.0001 for these PALISUPAN
runs.

Results for the two grids are given in table 21, and the lift coefficient
is plotted against incidence in figure 58. Lift curve slope, dC} /da obtained
from the coarse and fine grids was 3.9371 and 3.9311, errors of 1.2% and
1.0% respectively compared to theory. The gradient of Cp against CZ graph
was 0.131 and 0.0433 for the coarse and fine grids, giving errors of 100% and
33% compared to lifting line theory. The inaccuracy of the drag predictions

is due to the low number of panels used in the chordwise direction, even in

the fine grid case.

7.10.1 Block matrix solver convergence limit

A flat plate of aspect ratio 5 was analysed using a fine grid, N, = 50, N, = 50,
with a range of block matrix iterative solver convergence limits, from 0.1 to
1 x 1075, and the results are shown in table 22 . The effect of this on
the calculated lift coefficient is shown in figure 59. The block matrix solver
convergence limit has little effect on the solution obtained with global force
values using a BMCC of 0.1 within 3% of the value obtained using a BMCC
of 1.0 x 107%. Computation times increase as the value is reduced, and this
is particularly noticeable below 1.0 x 107%. The number of iterations does
not increase significantly (this is affected by the Kutta condition convergence
limit), but each iteration takes more time. The global force and lift coefli-
cients using a BMCC of 1.0 x 10™* are predicted to within 0.5% of the values
obtained with a BMCC of 1.0 x 1076, and to reduce the computational time

required for further analysis 1.0 x 10™* will be used in future for the PAL-
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ISUPAN analysis, as this gives a sufficiently accurate level of solution for the

influence matrix.

7.10.2 Effect of panel average aspect ratio

The effect of the panel average aspect ratio was then investigated for the
case of a 5 degree incident flow. Average panel aspect ratios of 0.5 to 1.5
were considered, with number of panels up to about 1800 panels. The results
for these cases are presented in tables 23 and 24. For a constant average
panel aspect ratio, the error in lift coefficient compared to theory reduces
as the number of panels is increased. However, the accuracy of the result
is dependent on whether there is an odd or even number of panels in the
chordwise direction. Figure 60 shows this for a series of models with average
panel aspect ratio of 0.5, where an model with an even number of chordwise
panels predicts a more accurate lift coeflicient for a given number of panels.
A model with an even number of panels will have a symmetric distribution
of panels around the leading edge, which will result in a better deflnition of
the model than in case with an odd number of chordwise panels. Using an
odd number of panels can also result in a slight error in the spline genera-
tion routines used within PALISUPAN. However, as the number of panels
increases the difference between the odd and even number of panels in the
chordwise direction becomes less significant.

The lift coefficient against number of panels for the range of panel aspect
ratio cases with even numbers of chordwise panels is shown in figure 61. Al-
tering the panel average aspect ratio does not significantly affect the value
of the lift coefficient calculated for fine meshes. For a 1000 panel model,
the calculated lift coefficient differs by less than 0.1% for models with aver-

age panel aspect ratios of 0.5 and 1.5. For models with coarse meshes, the
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extreme panel ratios (0.5 and 1.5) give slightly less accurate results.

7.11 PALISUPAN analysis of a curved membrane

A set of points representing a curved membrane, chord 1 metre, span 5 me-
tres, with a camber of 5% of chord length was created, and a PALISUPAN

input file was generated using the program F-2-P-II. The model was analysed

using two grids:
e Coarse grid, N, = 10, Ny, = 25
e Fine grid, V; = 50, N, = 50.

PALISUPAN was used to analyse the models at angles of incidence from —10°
to 10°, and the results are listed in tables 25 and 26. The lift coeflicient is
plotted against angle of attack in figure 62. Thin airfoil theory predicts a lift
curve slope of 3.892rad ™! and zero lift angle of —5.7° for the membrane. The
lift curve slope obtained by the coarse grid is 3.97, and by the fine grid is 3.87,
errors of 2.0% and 0.5%. Zero lift angle calculated from the PALISUPAN
analysis was 2.0° for the coarse grid and —4.8° for the fine grid.

Both the coarse and fine grids gave good prediction of the lift curve slope,

and the fine grid gave a good prediction of the zero lift angle.

7.11.1 Effect of panel density

The effect of panel density on the calculated lift coefficient was investigated
for a plate with initial curvature of 5% and aspect ratio of 5 at a = 0°. In all
cases, the block matrix convergence criteria was set to 1.0 x 1074, 10 points
were used to define the leading edge and surfaces and 8 points were used to

define the wake sheet.
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Runs were carried out with N; or N, held constant at 20, 36 and 50, and
varying the number of panels in the other direction from 20 to 52 in steps of 4
(this ensures that there is always an even number of panels in the chordwise
direction, and removes the oscillation in results that odd/even N, produces
as discussed in section 7.9.2). A series of runs with N; = N, for 20 to 56
panels in each direction was also carried out.

The lift coefficient is plotted against total number of panels for these runs
in figure 63. The lift coeflicient is only very weakly dependent on N, with a
difference in lift coefficient of only 1.5% for total number of panels between
720 and 1800 with N, = 36. Lift coefficient values are highly dependent on
N, and for the case with N, = 36, the lift coefficient changes by 60% for
total number of panels between 720 and 1800. This effect can be seen more
readily in figure 64, where the lift coefficient is plotted against N, for N, of
20, 36 and 50. The lift coefficient is tending towards a converged solution as
the number of panels is increased.

Since the results seem almost independent of N;, the case with N, = 20
was investigated for N; up to 100, and a series of models with N; = 60
and varying N, was investigated, to ensure that the weak dependence of C},
upon N, occurs with higher ;. These results are shown in figure 65, and
confirm that there is little dependence of C upon N, with high N,. The
lift coeflicient seems to be converging for values of N, over 100. A series of
models with /V; of over 50 was run for N, = 36, to observe whether a similar
convergence occurs in this case at high N, values. The lift coefficient results
for N, of 20 and 36 are plotted against N, in figure 66, and a similar trend
to the N, = 20 case can be seen. A model was attempted with N, = 36 and
N, = 100, but this was extremely slow to run the analysis was terminated

after 30 hours.
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7.12 PALISUPAN analysis of a deformed sail model

The deformed shape of one of the initial runs of the aeroelastic program
on a sail model restrained along the leading edge was used to provide a
deformed membrane definition for analysis using PALISUPAN to study the
effect of variation of the PALISUPAN model and convergence parameters
on the calculated forces on the sail. Kutta condition, BMCC limits, panel
density and distribution were varied to enable the input model parameters
to be set to give a good relative accuracy without the analysis being too
time consuming. Figure 67 shows three sections of the PALISUPAN input
model used in the sensitivity study at heights of 0.5, 1.0 and 1.5 metres up
the mast.

During the development of the aeroelastic program, it was noticed that
the wake definition method being used in F-2-P-II did not always result in
the wake sheet returning to the direction of the incident flow, as the cubic
splines used to define the wake were not forced into having the correct slope
at the end of the wake definition. To ensure that this occurred, three points
were placed at distances of 10%, 11% and 12% of the local chord from the
previous final point in the wake definition in the direction of the incident
flow.

The sail model used is triangular, with a 1 metre chord at the bottom of
the sail, and a 2 metre span. To enable PALISUPAN to mesh the body, the

triangle is truncated at a height of 1.75 metres to form a quadrilateral body.
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7.13 Convergence criteria
7.13.1 Block matrix convergence criteria

A model with panel density of N; = 40, N, = 20 with an even distribu-
tion along the span and clustered distribution at the leading edge along the
chord (as used for the previous model) was used to observe the effect of the
convergence criteria (BMCC and Kutta condition).

A series of runs with BMCC ranging from 1.0 x 107! to 1.0 x 1077 were
carried out. Results are tabulated in table 27, and a graph of the lift coefhi-
cient values is given in figure 68. The drag coefficient for all cases was within
0.001% of the value obtained with BMCC of 1.0 x 107}, where Cp = 0.1097.
Lift coefficient values showed no clear trend as BMCC was reduced, and
there was a change of only 0.005% over the range of BMCC used. Solution
time increased as BMCC was reduced, and it was decided to use a value of
1.0 x 107* in further investigations, as this gave an acceptable solution time

of around 2 minutes on an UNIX workstation.

7.13.2 Kutta condition

Using a value for BMCC of 1.0 x 1078, the Kutta condition limit was varied
from 1.0 x 107! to 1.0 x 1078, The case with Kutta limit of 1.0 x 107¢ was
stopped when no solution had been obtained after 7 hours. Lift coefficient
values varied by 2% over the range of Kutta condition limits examined. The
results are tabulated in table 28, and a graph of the lift coefficient values
is given in figure 69. The number of iterations to solution increased with
decreasing Kutta limit, and this is shown graphically in figure 70. There was
no significant change in the lift or drag coefficient results (less than 0.1%)

when the Kutta condition was reduced below 1.0 x 1072, and this value was

126



chosen for future PALISUPAN runs to keep solution time to a minimum.

7.14 Panel density

The deformed triangle mode was run using a Kutta limit of 1.0 x 1072 and
BMCC of 1.0 x 107%. The effect of changing the panel density was analysed
by keeping N; or N, constant and varying the number of elements in the other
direction. In all cases, an even number of panels was chosen in the chordwise
direction, as this was found to give more accurate results than odd numbers

of panels as discussed in the analysis of the rectangular membrane. was used

for all the cases.

7.14.1 Effect of changing N,

Models were run with N, = 40 and N, varying from 10 to 45. The results are
tabulated in table 29, and graphs of the lift and drag coefficient are plotted
against NV, in figures 71 and 72. The lift coefficient values converge rapidly
with N,, and with 20 panels along the span the lift coefficient is within 0.5%
of the value obtained with 45 panels. Drag coefficient does not converge as
quickly, and the model with N, = 20 has an error of 20% in Cp compared to
the case with 45 spanwise panels. Increasing the number of spanwise panels
to 30 gives a 0.25% difference in lift and 7% difference in drag compared to

the case with 45 spanwise panels.

7.14.2 Effect of changing N,

The number of spanwise panels was kept constant at N, = 20, and number
of chordwise panels was varied from 20 to 90. The results are tabulated in
table 30, and the lift coefficient is plotted against the number of chordwise

elements in figure 73. The convergence is not as rapid as for the case with
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varying NV, the case with V; = 30 has an error of 10% compared with N, = 90
whilst V; = 60 has an error of 4%. Number of chordwise panels has a more
significant effect on the accuracy of the lift and drag coefficient calculations

than the number of spanwise panels.

7.14.3 Effect of panel aspect ratio

In order to determine the effect of the panel aspect ratio, a series of runs
with fixed average panel aspect ratios (ratio of N; to N;)of 0.5 and 1.0 with

increasing number of panels were carried out. Since a clustered distribution

L nd

of panels is used in the chordwise direction, the panel aspect ratio referred
to is an average panel aspect ratio over the model. Results are tabulated in
tables 31 to 33, and the ﬁft coefficient is plotted against number of panels in
figure 74.

Both the series with APAR of 0.5 and 1.0 converge to a solution of Cf, =
1.06 as the number of panels increases. An accuracy of 5% in CJ, is obtained
with approximately 1400 and 1000 panels for the cases with APAR of 0.5
and 1.0 respectively. Solution time increases dramatically with the number
of panels used in the model, and to minimise the error for a given solution
time, models with APAR of 1.0 give the best results.

Solution time for a PALISUPAN analysis depends on the Kutta conver-
gence limit, the BMCC and the number of panels used to define the surface.
Due to the iterative nature of the aeroelastic solution, 200 PALISUPAN
analyses will be carried out during a typical aeroelastic solution, and it is
important to limit the panel density in order to keep the solution time at a
reasonable level. A solution time of three minutes was chosen which results
in a run time of the aeroelastic analysis in the region of 12 hours on a UNIX

workstation. Using the BMCC and Kutta limits set according to the results
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of sections 7.12.1 and 7.12.2, a mesh of around 1000 panels gives a run time
of three minutes, which is acceptable for the aeroelastic analysis to keep total
solution time to around 12 hours. A panel distribution of N, = 64, N, = 16

was chosen to provide an average panel aspect ratio of 1.0, with around 1000

panels.

7.15 Panel distribution

Panel distribution for the chordwise direction is set to give a higher con-
centration of panels around the leading edge, as this is the area of highest
pressure gradient. Two distributions were examined for the spanwise panels,
an even distribution and one with sinusoidal distribution with higher panel
density at the head of the sail. The resulting force output from the two cases
are given in table 34, and altering the distribution of the spanwise panels
made a 5% difference in the lift coefficient. As there is no theoretical case
to compare this against, it is difficult to say which of the cases is more accu-
rate. A constant spanwise distribution was used by Cant [10] in the analysis
of a mainsail, and this distribution was chosen for the analysis of the sail

geometries.

7.16 PALISUPAN in aeroelastic analysis

Grid generation programs to generate PALISUPAN input model definitions
from grids of points have been developed and shown to give smooth PAL-
ISUPAN model definitions. The number of panels for the aeroelastic analysis
of a rig will be set at N; = 64, N, = 16, to give a total number of panels of
1024, which will allow solution of the aerodynamic aspect of the aeroelastic
solution in a suitable time. BMCC will be set at 1.0 x 107%, and the Kutta

condition criteria will be set at 1.0 x 1072, as these values have shown to give
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a low solution time whilst maintaining as accurate solution of the potential

flow analysis for a given panel distribution.
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8 Aeroelastic analysis

The generic structure of the aeroelastic solution method is shown in figure 75.
The body to be analysed is defined by the finite element model of the body in
its initial configuration. The points defining sail sections are extracted from
the finite element model, and used as an input to the F-2-P-II program, which
is used to generate a PALISUPAN model of the body, and then PALISUPAN
is employed to calculate the pressure distribution over the body. The panel
pressures calculated by PALISUPAN are used to calculate the loading on the
finite element model, which is solved to obtain an updated configuration of
the body. The updated configuration is then used to generate an updated
PALISUPAN model, and this loop is continued to obtain a solution.

The solution strategy for the aerodynamic analysis will depend on the
stability of the model being considered. A well restrained model, such as
a rectangular membrane restrained along all sides gives a stable solution
without employing velocity stepping, and looping between the potential flow
and structural analysis gives a rapidly converging solution. As the models
become less restrained, as in the free trailing edge rectangular membrane,
the membrane is less stable under this aeroelastic solution method, and an
alternative velocity stepping solution method used by Smith and Shyy [57]
was implemented to ensure that membrane remains in a stable configura-
tion throughout the solution path. The Stein-Hedgepath wrinkle model was
implemented for the analysis of membranes by the aeroelastic method as

described in section 8.5.1.
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8.1 Development of the aeroelastic solution method

The first case to be analysed using an aeroelastic solution method was an
initially flat rectangular membrane of aspect ratio 5 and chord of 1 metre
fully restrained around the perimeter, as this model had been used in the
PALISUPAN investigations described in the previous chapter. Analysis of
this model allowed development of the solution method and program struc-
ture to be employed for the subsequent aeroelastic analysis of a mast sail
structure. The membrane was analysed in a flow with free stream velocity
of 5m/s with o = 10°. The membrane was analysed with a Youngs modulus

of 3.0125 x 108, giving an aeroelastic number of 3.4. The Poissons ratio was

set at v = 0.5.

8.2 Calculation of finite element pressure loading

PALISUPAN can be set to output a file containing the pressure and centroid
for each of the panels used in the analysis. The data from this file is used to
calculate the pressure loading on the finite elements representing the body.
A program to obtain the pressure loading for an arbitrary finite element
mesh, P-2-F was developed using the structure shown in figure 76. The
PALISUPAN panel output is ordered as a series of strips of panels, running
from the trailing edge along the suction surface, then back along the pressure
surface in the chordwise direction, at increasing z; values along the span.
The number of panels in each chordwise strip can be obtained from the
N; parameter used to generate the PALISUPAN input model. As an even
number of panels is employed in the discretisation of the PALISUPAN input
model, the strip can be split into the suction and pressure surfaces of the

strip with half the panels on each surface. The strips are assumed to be
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at a constant z3 value, and the pressure data is used to generate a set of
cubic splines of the pressure for each of the suction and pressure surfaces
with respect to the z; coordinate of the panel centroid.

In order to calculate the pressure loading on a finite element, the centroid
of the finite element is calculated from the deformed node positions defining
the element. The PALISUPAN panel strip with the closest z3 value to the
element centroid is used to calculate the pressure on the element. As the
PALISUPAN model is truncated at the tip of a triangular sail model, the top
most panel strip is used for the calculation of the pressures of all elements
above this level in this case. The pressure coefficient for the suction and
pressure surfaces, C; and C? are calculated from the appropriate spline curve
at the z; location of the finite element centroid. Pressure loading for the
element is then calculated according to equation 141, where A, is the area

of the finite element.

1
Qe = §pV020Ae(C§ -C}) (141)

8.2.1 FENLAS3-3 analysis of a rectangular membrane

FENLAS3-3 was used to analyse a rectangular membrane of aspect ratio 5
under a constant pressure loading, to ensure that the finite element analysis
mesh is appropriate for the high aspect ratio membranes. The material
properties used were F = 1.2 x 10°N/m? v = 0.5. The membrane was 1
metre by 5 metres, under a load of 15N/m?. This gives an aeroelastic number
of II = 2, and a theoretical prediction from Seide [53] of central deflection
of 0.1729 metres. A symmetrical finite element mesh, of the same format as
shown in figure 78, with 500 elements was used to analyse the membrane.
The deflection predicted by FENLA3-3 was 0.1750, a 1.2% error compared

to theory, and this gives confidence in the format of the finite element mesh

133



being employed for the aeroelastic analysis.

8.2.2 Aeroelastic solution structure

The aeroelastic program, MONSTA1 contains the P-2-F load calculation pro-
gram, a non linear finite element analysis program based on the FENLA3-3
membrane program and the F-2-P-II model generation program. Commu-
nication between PALISUPAN and the aeroelastic program, MONSTA1 is
carried out using data files, and the loops of the aeroelastic solution are con-

trolled by a batch file. The data files used by the program are listed below:

e command file - contains data used for generation of the PALISUPAN
model and load calculations from the PALISUPAN log file

e FE data file - contains the finite element model data

e FE displacement file - contains the displacements of the finite element

model nodes
e PALISUPAN input file - PALISUPAN model data

e PALISUPAN log file - PALISUPAN output pressure data used to cal-

culate the finite element model loading

For the first loop of the program, the pressure calculation and finite element
analysis sections of MONSTAL1 are skipped, and the initial PALISUPAN in-
put file is generated using the finite element model and data contained in
the control file by the P-2-F-II model generation program. A PALISUPAN
analysis is then carried out on the initial membrane shape. The pressure
data from this is used to apply loads to the finite element program. The
finite element program uses a number of load steps defined within the finite

element data file, iterating at the last load step to the defined convergence
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tolerance. The deflected membrane shape is used to generate a new PALISU-
PAN model and the node displacements are output to a file. In subsequent
loops of the program, the node displacements are read in from the file and
define the node initial displacements at the start of the finite element load
steps. The finite element program has a Total Langrangian formulation, and
so all quantities are referred to the initial coordinates of the model at the
start of the aeroelastic analysis, which remain in the finite element model
data file. Iteration between the finite element and fluid models continues
up to a pre-set number defined in the batch file used to run the analysis.
The convergence checking method used in the finite element analysis section
of MONSTA1 was the checking of individual degree of freedom percentage
change in displacement against a defined convergence limit as described in

section 6.4.10.

8.2.3 FENLA modifications

The finite element analysis program, FENLA, was modified for use in the
iterative loop with PALISUPAN. The node displacements, *u} are stored in
a file at the end of the finite element analysis for each iterative loop before
the MONSTA program exits. This allows the initial model definition to be
maintained in the finite element data file, so allowing the Total Langrangian
formulation to be employed throughout the loops of the aeroelastic analysis.
Displacements of the nodes are zero at the start of the first loop, and so for
this case the ‘ul are not read in from the file and instead are initialised to
zero. Initial stress is used for the first load step for the first loop only, as
the finite elements will have initial stress due to the node displacements for
subsequent loops. Element pressures are calculated from the PALISUPAN

output data, and so it is no longer necessary to read in the element pressures
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from the finite element model data file.

8.2.4 Output

The data visualisation program, AVS was used to check the solutions ob-
tained from the aeroelastic analysis. A data file in the AVS format was
output by MONSTAL1 at the end of each iterative loop, containing the de-

formed shape of the model, along with the node displacements and element

stresses.

8.2.5 Problems encountered during development

During the analysis of the rectangular membrane, a number of problems
were identified with the MONSTA1 program. It was noticed that the wake
sheets did not always finish with the end slope in the direction of the free
stream. Three points were added to the wake curve definition, as described in
section 7.11 to overcome this problem. During some of the solution attempts
of the rectangular membrane, a saddle point appeared in the deformed shape
of the sections used for the PALISUPAN model generation. This results in
an error in the application of the artificial thickness, as the principle normal
direction switches to the opposite direction over these points, resulting in a
incorrect definition of the PALISUPAN input section of the form shown in
figure 79. To ensue that the F-2-P-II program can deal with arbitrary shaped
sections, the normal calculation for all points on the surface was altered to
the one previously used for straight lines using the cross product of vectors
on the sail surface, as described in section 7.6.1.

To enable the solution history to be examined during the aeroelastic anal-
ysis, a routine was inserted into the MONSTA1 program which outputs the
PALISUPAN global forces and the deflection of a salient point of the model
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(for the restrained membrane the mid point deflection was output) to a re-

sults file at the end of each of the MONSTA1 runs.

8.2.6 Results of MONSTA1 analysis of initially flat rectangular
membrane

A rectangular membrane was analysed using a PALISUPAN grid of N; =
N, = 50, with 10 points used to define both the surfaces and leading edge
of the PALISUPAN input model sections. A symmetric triangular finite
element grid of the form shown in figure 78 with 500 elements was used for
the structural analysis, using 20 load steps and a convergence limit of 0.001,
and 10 loops of the aeroelastic solution were used. A solution was obtained
for the model with a rapid convergence. The deflection of the mid-point of
the zpembrane obtained after each iterative loop is shown in figure 80. The
deflection obtained after 3 loops is within 3% of the value obtained after 10

loops, and it can be seen that the analysis rapidly reaches convergence.

8.2.7 Effect of PALISUPAN model panel density

A series of membranes were analysed using PALISUPAN mesh densities from
600 to 2500 panels, using 500 finite elements for the structural model. The
grid used all had equal numbers of panels in the chord and spanwise direc-
tions. The results are presented in table 35, and the central deflection is
plotted against number of panels in figure 81.

The panel density has a small effect on the central deflection. Increasing
the panel density from 600 to 2500 changes the central deflection by only
7%, and a grid with 1225 panels gives central deflections to within 3% of the

value obtained using 2500 panels.
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8.2.8 Effect of finite element mesh density

The PALISUPAN mesh using 1225 panels was used to examine the effect
of the finite element mesh density. A number of meshes with 320 to 3920
elements were analysed. These were all of the same format as shown in
figure 78. The results are given in table 36, the lift coefficient is plotted
against the number of panels in figure 82, and the central deflections are
plotted in figure 83. The oscillation of the central deflection graph is due to
the fact that for models with an even number of elements along the short
side, there is no node in the center of the membrane, and in these cases, the
central deflection of the membrane was taken as the deflection of the nearest
node.

The results of the aeroelastic analysis are only very weakly dependent on
the number of finite elements used. The lift coefficient results vary by only
1.7% across the range of meshes used, and central deflections vary by only
1.2%. Neither of these quantities have any strong trend with the number of
elements. If meshes with 500 elements or more are considered, the central

deflections vary by only 0.6%.

8.3 Analysis of membrane with free trailing edge

As a step towards a triangular sail model, a membrane with a free trailing
edge was analysed. A 2500 panel PALISUPAN grid and 500 element finite
element model were used to model a membrane with II = 10 as in the pre-
vious, fully restrained cases. The finite element analysis would not produce
an iterated solution in the first iterative loop. The deflections seemed to
have converged after the 20 load steps (to less than 1% change per load step

for a central strip of nodes over any degree of freedom), but during the it-
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eration within the finite element analysis the solution became unstable and
eventually exploded. The number of load steps was increased to 40, but no
improvement was found. To attempt to obtain a solution, the finite element
analysis was altered to just use the 40 load steps without iteration on the
final load step. This produced a solution for the first loop with a realistic
deflected shape and deflections of up to 0.35 metres in the z, direction at
the center of the trailing edge. However, during the second loop, the finite
element solution was extremely distorted and the analysis was halted. The
PALISUPAN results for the second loop resulted in primarily negative pres-
sures on the elements. Since the elements had deformed to support a positive
pressure, obtained from the first loop, this caused the model to become un-
stable. This indicates that the application of the full free stream velocity on
the undeformed model is not a suitable solution method for the membrane
with a free trailing edge.

The finite element analysis of the membrane will produce a model that is
in equilibrium with the applied loading. However, for the free trailing edge
membrane case the model deforms enough to significantly change the fluid
flow over the membrane in the first iterative loop and hence the membrane is
too far from the equilibrium position with the updated pressures to allow a
stable solution to be obtained. As the finite element formulation is based on
the use of load steps, it is logical to extend this to using a velocity stepping

procedure for the aeroelastic analysis as used by Smith and Shyy [57].

8.4 MONSTAZ2 analysis of rectangular membrane with
free trailing edge

The velocity increment solution strategy was implemented in the MONSTA2

aeroelastic program. Freestream velocity is increased in a number of velocity
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steps, and the initial shape of the membrane is analysed using PALISUPAN
for the first velocity increment. The resulting pressures are used to calculate
a deformed membrane shape, which is then analysed by PALISUPAN using
the incremented free stream velocity. This analysis provides the loading for
the next finite element load step. In this manner, the calculated membrane
shape will be close enough to equilibrium at the end of each velocity step to
give a stable solution path. At the final velocity step, the aeroelastic solution
loop is carried out until convergence of the node displacements is obtained.
The model used for the aeroelastic analysis of an initially flat membrane
with free trailing edge is a rectangular membrane with aspect ratio of 2 and
1 metre chord. This was chosen as the case had been analysed by Smith and
Shyy [57], which enables a comparison could be made with the mid point
deflection obtained from a plot of the deformed shape of the membrane.
Using this model also allows a higher number of elements along the chordwise
direction of the model for a similar number of nodes (and hence solution
time) as the membrane with aspect ratio of 5, without having higher aspect
ratio elements. This will improve the section definition used to generate
the PALISUPAN model. The membrane has an aeroelastic number, II; of
15 with @ = 15° and pu = 0.5. A free stream velocity of 5m/s? was used,
giving a Youngs modulus of 1.0167 x 10%. The finite element mesh used a

symmetrical distribution of triangular elements, shown in figure 84.

8.4.1 MONSTA2 convergence criteria

The convergence criteria for the model was altered to the criteria used by
Smith and Shyy [567]. The displacement increments calculated by the FE

method were non-dimensionalised with respect to the model span, and summed
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over all degrees of freedom in the model to give a residual, R, equation 142.

uF
> éb—’ (142)

1 i=1

N
R=
k=
The value of the residual is compared to the convergence value obtained
from the finite element data file. If the residual is less than this value, the

MONSTA2 program causes the batch file to stop the iteration between the
PALISUPAN and MONSTA programs.

8.4.2 Analysis results

The aeroelastic analysis program was run with a convergence criteria of
0.0001, using 200 velocity steps. A PALISUPAN panel density of N; = 40,
N, = 20 was chosen for the aeroelastic analysis, from the experience gained
with the PALISUPAN sensitivity studies on a curved membrane to give a
good compromise between computational time and accuracy. An initial stress
value of 100 N/m? resulted in a failure after 4 velocity steps. The displace-
ment history of the node at the center of the trailing edge suggested that
this was due to the initial stress being too high, as the displacement of the
node became negative after the second velocity step. High initial stress in the
elements lead to a small displacement and hence small stress in the element
for the first velocity step. This was confirmed by examining the AVS out-
put file from the MONSTA program, which shows that the element stresses
are less than 10 N/m? after the first velocity step. When the initial stress
is removed on the second velocity step, the element stress is too small for
the pressure loading applied, and the membrane becomes unstable. Initial
stress was reduced to 10 N/m?, and the solution failed after 11 steps. When
the initial stress was reduced to 5 N/m?, a successful solution was obtained,

with only two iterations required to obtain convergence. The convergence
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criteria was reduced to 1 x 107'° and the analysis continued. The residual
remained between 5 x 1078 and 5 x 107° for 550 iterations, at which point
the analysis was stopped. It was noted that the PALISUPAN results were
oscillating slightly, and the analysis was restarted using the same PALISU-
PAN result file for subsequent FEA analyses. The residual then reduced to
1.45712 within 2 iterations, and remained at exactly the same value (to the
output accuracy of 8 significant figures) for the next 10 iterations, at which
point the analysis was finally stopped.

Results obtained from the aeroelastic analysis of the free trailing edge
membrane gave a solution that converged and had the shape that would be
expected from this problem. The central point of the trailing edge deflected
by 0.0326 metres. This shows good agreement with the value obtained from

the deformed plot of the membrane analysed by Smith and Shyy [57] of 0.033

metres.

8.5 Initially flat triangular membrane

The next stage in the development of an aeroelastic model of a yacht rig
was analysis of an initially flat triangular membrane. The triangle has an
aspect ratio of 4, I1; = 17, a = 20° and v = 0.5. In this case a triangle
of 2 metres height and a 1 metre base chord was chosen. The incident flow
was chosen as v, = 5m/s?, which gives £ = 153.53 x 106 for IT[; = 17. A
grid generation program was written, which generates models defining the
initial model geometry with the required finite element mesh density. General
element layout is illustrated in figure 85, and the model has the same number
of elements along the foot and the luff of the membrane, resulting in an
element aspect ratio of up to 4. This aspect ratio is quite high, and future

models were altered to avoid this. PALISUPAN models the sail without the
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tip, as the quadrilateral elements used within it cannot mesh this area. The
PALISUPAN model generation program was altered to only use a set number
of finite element sections (obtained from the command file) to generate the
PALISUPAN model, which truncates the triangle to form a quadrilateral
body for the potential flow analysis. Usually this will be set to 2 less than
the number of finite element sections defining the model, but this may vary
according to the mesh density.

A model using 20 elements per side for the finite element mesh and a
PALISUPAN grid of N; = 40, N, = 20 was used to analyse the membrane.
Convergence was set to 0.0001, and 200 velocity steps were used. Attempts to
obtain a solution of the initially flat triangular membrane resulted in failure
of the model. A range of initial stresses was used, and with it set to 10N /m?,
the solution failed after 3 steps. Decreasing initial stress to 5N/m? resulted
in failure after 4 steps, and 2.5N/m? failed after 2 steps. In most cases, a
large deflection occurred within the sail, and this then resulted in the model
generation for PALISUPAN producing an diverging model for the next load
step.

The failure of the sail model could be due to compressive stresses devel-
oping in the sail during the solution, which would lead to an ill conditioned
stiffness matrix. Widespread compressive stresses will result in the stiffness
matrix becoming singular [46] [57] and the solution will fail. The Stein-
Hedgepath wrinkle model was incorporated in the finite element program to

allow solution of models which could exhibit wrinkling behaviour.

8.5.1 Membrane element wrinkle model

The Stein-Hedgepath wrinkle model [37] is a numerical implementation of the

Stein Hedgepath continuum theory [58]. The theory is based on the experi-
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mental observations that when in a wrinkled state, a membrane will contract
more in the direction normal to a wrinkle than predicted by the Poissons
ratio effect. In order to incorporate these geometric features of wrinkling,
the local effective Poissons ratio is increased in the wrinkled regions. This
effective value of the Poissons ratio is determined by imposing a locally uni-
axial stress state in the wrinkled region in the direction of the first principle
stress, and this results in the effective Hookean material properties becoming
dependent on the local state of strain.

The numerical algorithm assigns an element one of three constitutive ma-
trices depending on whether the element is in a slack, wrinkled or taut state.
The element state is calculated using the principle strains in the element as
shown in equation 143, where €;» are the ordered principle strains, and the
relevant matrices for slack C,, wrinkled C, and taut C; elements are given
in equations 144 to 146.

C, <0
C=<¢ C, ¢ >0 and ve < —€ (143)

C; otherwise

C, = [0] (144)

E
C, = T 0 2(1-P) Q (145)
Q Q 1
P = €11 — €22 _ 2€12
€1 — €3 €1 — €2
1 v 0
FE
C, = | v 1 0 (146)
0 0 (1-v)/2



8.5.2 Calculation of principle strain

The element strain state is two dimensional in the element plane, and a
geometric transformation using Mohr’s circle can be used to calculate the
principle strains from the element strain components in the element local
coordinate system according to equation 147.

9 1/2
€11 + € €11 — €
€prin = o= 5 2+ [(————11 5 22) + (612)2} (147)

8.5.3 Implementation of the Stein-Hedgepath wrinkle model

The Stein-Hedgepath wrinkle model was incorporated into the MONSTA2
aeroelastic analysis solution. Element strain state is calculated during the
evaluation of the stiffness matrix. For the first velocity step, the element is
taken as being in a taut state, C = C,, and the element stress is set at the
initial stress value. For subsequent velocity steps, the element strain state at
the start of the step is used to calculate the element principle strains, and the
constitutive matrix is chosen based on these strains according to algorithm
developed by Millar and Hedgepath [37], described in section 8.5.1. Element
stresses are then calculated and used in the evaluation of the stiffness matri-
ces. The element state for each element is output to the node displacement
file at the end of the velocity step, which allows these values to be input at
the start of the next velocity step. The updated element state is compared
to the element state at the start of the velocity step, and a flag in the ele-
ment data structure is set to 1 if the element has changed state, and 0 if the
element stress state has remained constant.

The wrinkle model normally requires iteration to obtain the correct stress
state throughout the model, as a change in element state will result in the

stiffness matrix for the model changing. Since the program uses a large
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number of explicit steps to full velocity, no further loops within the finite
element scheme were used for the initial implementation of the wrinkle model
in the aeroelastic solution. This was found to give a stable solution for
the rectangular membrane analysis, where the number of elements changing
stress state is employed to provide an additional convergence check during
the solution of the final velocity step. Further development of the aeroelastic
solution method for the initially flat triangular sail required iteration within

the velocity stepping procedure to provide a stable solution when using the

wrinkle model.

8.6 Wrinkle model analysis of the rectangular mem-
branes

The fixed and free trailing edge rectangular membranes were analysed for in-
cident flow of a = 15° and II; = 15, using the wrinkle model described above.
Deflections for the center of the membrane (fixed trailing edge) and central
point of the trailing edge (free trailing edge) are given in table 37 for 100 and
200 velocity steps, and compared to the values obtained without the wrinkle
model. The finite element analysis with no wrinkle model predicted higher
deflections in both the free and fixed trailing edge cases. About half the
elements in the free trailing edge case were in a wrinkled state, with the re-
maining elements taut. The fixed trailing edge case converged to R < 0.0001
within 4 iterations. The free trailing edge case had 4 elements changing from
taut to wrinkled state during the iterative stage of the analysis, and due to
this the residual was of the order 1072 to 100 iterations, where the analysis
was stopped. Deflections of the mid point of the trailing edge for these cases
had converged to 0.001% (the accuracy of the deflection output in the batch

file) within 5 iterations, and the solution had converged with the exception
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of two small areas at mid chord towards the tips of the membrane, which

were changing state from taut to wrinkled.

8.7 Wrinkle model analysis of initially flat triangular
membranes

The finite element mesh used for the analysis of the triangular membrane
was altered to reduce the aspect ratio of the finite elements. An example of
the grid used is shown in figure 86. Initial attempts to analyse the triangular
models resulted in failure.

The wrinkle model used in the MONSTA2 program calculated the ele-
ment state according to the strain in the element after the previous velocity
step. If elements are changing state, this could result in a model that is
not in equilibrium at the end of the velocity step. Millar [37] notes that an
iterative solution is required within each loading step for the model to reach
an equilibrium state (both in terms of element states and global equilibrium)
before advancing to the next load step. The MONSTA2 program did not im-
plement this, as it was thought that the large number of velocity steps used
would not result in many state changes at each velocity step. This was not
the case for the triangular membrane, in particular for the first few velocity
steps where most of the elements were changing shape, and this proved to be
the reason for the failure of the triangular membranes when analysed using
MONSTA2.

An iterative solution was implemented within MONSTA. The finite el-
ement calculations were repeated at each velocity step, using a constant
loading obtained from the PALISUPAN analysis at the start of the velocity
step. The number of elements changing state for each iteration was calcu-

lated, and the model reached a converged state when there were no elements
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changing state. At this point the aeroelastic analysis moves on to the next
velocity step. Since the pressure loading is obtained from the initial shape of
the model at the start of the velocity step, the aerodynamic and structural
loads may not be in equilibrium at the end of the velocity step, but dis-
crepancies should be insignificant due to the large number of velocity steps.
Re-calculation of the pressures at each finite element iteration during the
velocity stepping would result in a prohibitive increase in solution time. The
potential flow solution takes more computational time than the finite ele-
ment analysis, around 180 seconds compared with 10-60 seconds for a model
with similar numbers of finite element and PALISUPAN panels. The anal-
ysis using this solution method takes around 12 hours for a typical model,
and re-calculation of pressures using PALISUPAN at each iteration would
increase this to the region of 48 hours. The solution method used here gave
stable converging solutions without a prohibitive increase in computational
time.

A series of triangular models with increasing finite element mesh density
were analysed using the revised aeroelastic solution method. The PALISU-
PAN grid used had a panel density of N, = 64 and N, = 16, which was
found to give a good compromise between solution time and accuracy in
the PALISUPAN sensitivity study on a deformed triangular membrane. The
analysis used 100 velocity steps, with an finite element iterative residual limit
of 1.0 x 1075, Results of the analysis are given in table 38, and lift coefficient
of the body and deflection of the center of the sail are plotted against the
number of finite elements in figures 87 and 88. The solution converges as the

number of elements is increased.

148



8.8 Rig analysis

The 16 node solid elements were incorporated into the aeroelastic model in
the program MONSTAS3. The model data structure was altered to store ar-
rays of three node triangular membrane elements and 16 node solid elements.
A data structure for material properties was created, and the model material
properties were stored in an array of these, with each element containing a
pointer to the element material property entry appropriate to it as defined
in the finite element data file. Stiffness matrix contributions were calculated
for the membrane elements and then the solid elements and assembled into
the model stiffness matrix as described in chapter 6. Internal loading con-
tribution from each element was calculated according to the element type
and assembled into the loading vector. The pressure loading on the mast
was assumed to be zero for the rig analysis carried out here. Sail pressure
loading was calculated using a modified version of the P-2-F program, where
the PALISUPAN section panels defining the mast were not considered in the
generation of the pressure spline curves for the sail element pressure loading

calculations.

8.8.1 Program execution

The data files used by MONSTAS are listed below. A description of the file

structure for the data and control files are listed in appendix C.

e F'E data file. This contains the finite element model definition at the

start of the analysis.

e Control file. Contains parameters used in the creation of the PALISU-

PAN model and calculation of the element pressures.
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e Displacement file. At the end of each MONSTA3 run, the node dis-

placements, followed by the current element states are written to this

file.

e Residual file. The current residual value is output to this file at the end
of each MONSTA3 run, so that it can be input for the MONSTA3 run

of the next iterative loop. This is to enable dynamic relaxation where

required.

A velocity stepping procedure is used for the solution of the rig analy-
sis, with a batch file used to run MONSTA3 and PALISUPAN through the
solution path. MONSTAS is run with two arguments, the velocity step and
iteration number. For the start of the analysis, MONSTAS3 is run with both
the velocity step and iteration number set to 0. The finite element model data
is input, and the program skips the pressure calculation and finite element
analysis and generates a PALISUPAN input file for the first velocity step
according to the settings in the control file. This model is analysed by PAL-
ISUPAN, and the results file containing the global force coefficients, panel
centroids and pressures is used to calculating the element pressure loading.
An iterative solution to the finite element analysis using a constant pressure
loading is used to calculate a deformed shape with the element stress states
converged (no elements change state). At this point the deformed shape is
used to generate the PALISUPAN model for the next velocity step. This
procedure continues until the final velocity step.

For the final velocity step, an iterative solution is carried out, looping
between the finite element and PALISUPAN analysis. MONSTAS3 solves
the finite element analysis of the model, again iterating using a constant
pressure loading until the element stress state has converged. The deformed

shape is then analysed by PALISUPAN to obtain updated pressure loading.
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During the iterative solution, the residual is calculated at each finite element
iteration, and when this reduces below the convergence criteria the aeroelastic
analysis is complete.

During the solution path, the PALISUPAN global force coefficients, de-
flections of salient points (mast tip and mid point of the trailing edge), num-
ber of elements changing state and residual magnitude are output to a results
file after each iteration of the finite element program. The deformed model
shape, node displacements, element stresses, stress state and whether the
element stress state has changed can be output in the AVS visualisation pro-
gram format at user defined intervals (usually at the end of each iteration at
the final velocity step) is output to file to enable graphical representation of
the solution.

The aeroelastic program has the capability of using dynamic relaxation
to improve the stability of the solution. Two relaxation factors, §; and
(B2 are defined in the finite element data file. After solution of the finite
element equations and calculation of the model residual, node displacement
increments are multiplied by 3, if the residual has reduced from the last finite
element analysis, and (3, if the residual has increased. A solution with no

relaxation can be obtained by setting §; = G, = 1.0.

8.8.2 Calculation of mast compression

Stress components are calculated at the integration points and converted to
Cachy stress components following the methods of section 6.9.3. The Cachy
o33 components are then integrated over the element and divided by the

element volume to give a compressive stress in the mast element.
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8.8.3 Rig models

The rig analysed using the MONSTAZ program has a mast height of 2 metres,
and a sail foot length of 1 metre. In order to represent a typical yacht
rig configuration, the mast should be restrained at the base, and the sail
restrained at the clew. The first series of models, rigl, were fully restrained
along the foot of the sail as well as at the base of the mast. Increasing
the restraint on the model in this manner results in a more stable solution,
which is suitable for initial development of the solution methods for the
rig analysis. The sail is meshed using the same arrangement as in the sail
analyses described in section 8.7, and an example of the rig geometry is
shown in the side view of a deformed rig model in figure 93. The mainsail
on a yacht has a bolt rope sewn into the luff of the sail, and this is held
inside a track on the mast. It is possible for the sail to slide up and down the
mast track, but in the upwind sailing condition, the forces generated by the
mainsail combined with the friction between the bolt rope and mast track
mean that there is very little movement. To simplify the rig model and to
allow the mast and sail to be modelled as a single entity, the sail is assumed
to be attached to the mast at the luff in this analysis.

The Youngs modulus used for the sail of 153 MPa, chosen to give an
appropriate aeroelastic number, is about 0.6% of the value of a realistic sail
material modulus [52] of 25 GPa. To obtain realistic structural interaction
between the sail and mast in the aeroelastic model, a Youngs modulus of
1.0 GPa was chosen for the mast material, which is 0.5% of the Youngs
modulus of aluminium. The resulting mast will be stiffer than a real case, as
the mast section is solid as opposed to a hollow section, but in a yacht rig the
mast is supported by rigging which reduces the deflections of the rig, and this

value was taken to be appropriate for the analysis conducted here. The mast
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material Poissons ratio was set as p = 0.3. A further series of rig models
analysed, rig3, have a free foot with the clew and mast base restrained using
the same mesh arrangement as the rigl models. The model mesh density is
defined by the number of elements along the sail foot, so the rigl-10 model
has 10 elements along the foot and 20 elements defining the mast.

In order to simplify the model, the mast is assumed to be restrained at
the level of the foot of the sail. A typical rig will have the clew of the sail
supported by a boom which is attached to the mast at the level where the
mast is restrained in the rig model. Including the boom in the analysis of a
rig would increase the number of nodes required for the solution, and hence
increase the solution time and the complexity of the model. As the analysis
is aimed towards an understanding of the compression loads induced in the
mast due to the support of the sail the boom was not considered in the
rig analysis. The rig configuration used here approaches that used on some
modern Open 60 class monohulls, where the boom is deck stepped, and the
sail luff runs almost to the base of the mast.

The attachment of the sail to the mast on a yacht is normally achieved
by the use of a mast track, allowing the sail to slide up and down the mast.
In practice there is little movement of the sail once the sail is hoisted, as
the friction in the track and forces generated by the sail on the luff restrict
any movement, particularly in the upwind sailing condition being analysed.
The sail is assumed to be fixed to the mast in the aeroelastic analysis, which

allows the use of a single finite element model to define the mast and sail.

8.9 Aeroelastic analysis of the rigl models

A series of rigl models with increasing finite element mesh density were anal-

ysed using MOSNTA3 and PALISUPAN. The PALISUPAN panel density
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was fixed at N; = 64, N, = 16 with 14 panels used around the mast.

Rig models with between 8 and 44 mast elements (which correspond to
between 60 and 2280 sail elements) were analysed using 100 velocity steps,
and a residual convergence criteria of 1.0 x 107°, with a maximum number
of iterations set to 50. In practice, the residual of the mode only reduced
to below the convergence criteria when changing sail element states resulted
in the finite element analysis carrying out more than four or five internal
loops. Recalculating the element pressures using PALISUPAN resulted in a
residual of the order of 1.0 x 1072 over the iterative solution path for the
range of models tested. Analysis of the displacement history of the model
showed that the displacement increments were of the order of 0.1% either
side of a mean position after about 10 iterations. It was decided to leave
the residual set at 1.0 x 10™° to ensure that sufficient number of iterations
would occur to ensure a converged solution. The rigl analyses were carried
out using f; = 1.0 and 3, = 0.5.

The lift coefficient and mast tip displacements obtained from the aeroe-
lastic analysis of the rigl models are given in table 39. Lift coeflicient and
magnitude of the mast tip displacement are plotted against the number of fi-
nite elements in figures 89 and 90. The aeroelastic solution of the rigl model
converges as the finite element mesh density is increased. Solution time for

the aeroelastic analysis ranged from 9 to 26 hours on a UNIX workstation.

8.9.1 Effect of the relaxation factors

The rigl-10 model was analysed using a range of relaxation factors as listed

below:

@ ,81 = 10, ,62 =1.0
e 3, =0.75, B, = 0.5
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e 5, =05, 0, =05and By = 0.25.

After completing 50 iterative loops the PALISUPAN force coefficients, mast
tip displacements and displacement of the mid point of the trailing edge and
centre of the membrane varied by less than 0.1% for all the cases. PALISU-
PAN force coefficients and mast deflections are given in table 40. Reducing
the relaxation factors resulted in a longer solution time, but this technique
can be used to obtain a stable solution without compromising the accuracy
of the solution providing that sufficient iterative loops are carried out at the

final velocity step.

8.9.2 Analysis of rig3 models

Loose foot sail models, rig3-14, rig3-16 and rig3-18 were analysed, and the
results are given in table 41. The magnitude of the mast tip deflection is
plotted against number of sail elements in figure 91, and the solution can
be seen to be converging with increasing finite element mesh density as in
the rigl case. The rig3-18 meshes required relaxation factors of r; = 0.5,
ro = 0.25 in order to obtain a converging solution, and consequently the

solution time increased to over 20 hours.

8.10 Comparison of free and restrained mast cases

A finite element mesh density of 14 elements along the boom was chosen
for comparative analysis of the aeroelastic solution methods, as this gave
reasonable accuracy with a solution time of around 14 hours. A rig3 model
with fully restrained mast, designated rig3R was generated and analysed
using the aeroelastic solution method. A view of the deformed rig shapes

obtained by the analysis are shown in figures 94 and 95 for the restrained

155



and unrestrained mast cases. The sail sections obtained for the restrained
mast case, shown in figure 92 show a realistic deformed sail shape, as obtained
by Smith and Shyy [57]. The bending of the mast in the unrestrained case
has resulted in a reduction in the leech tension in the sail, and the top
sections have twisted off. In this case, the sail has inverted over the top
sections of the mast, resulting in an unrealistic flown shape. This indicates
the importance of taking into account the coupled nature of the mast sail
system, as the deformations of the mast significantly affect the sail shape.
Previous aeroelastic analysis of a sail by Smith and Shyy [57] looked at
an initally flat sail restrained along the mast track and obtained realistic
deformed shapes as predicted by the restrained mast case here. Extension of

the analysis to include mast deformations results in an unrealistic deformed

shape.

8.11 Analysis of curved sail

Sails are designed to assume a flown shape with curvature even in the absence
of loading. A curved sail model was generated with quadratic curves defining
the sail cross section in the z;,z, plane, using the same method as for the
generation of the curved rectangular plates for PALISUPAN analysis, equa-
tion 139 for each section. The section camber, £5** is calculated according
to equation 148 where z5% is the section z3 coordinate, and s is the span of

the sail (equal to the height of the mast).

sec
max __ kw?)

x5 (148)

8

Two models with 14 elements along the boom, having restrained and free
masts, rig3CR and rig 3C, were analysed with the same material properties

and flow fields as the rig3 and rig3R models. The deformed shape of the rigs is
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shown in figures 97 and 96 for the free and restrained mast cases respectively.
In the free mast case, the bending of the mast results in the twisting off of the
upper part of the sail, and this effect can be seen by comparison of the leech
shapes in figures 99 and 98. This effect can also be seen in by comparing
the photographs of a mast sail model in a wind tunnel in figures 2 and 3,
obtained during testing [33]. In figure 3, the tension in the mainsheet has
been reduced. This results in a lower leech tension in the sail, and the top
section of the sail has twisted off more than in figure 2. In these cases the
change in leech tension is introduced through control of the mainsheet rather
than as a result of mast bend, but the effect on the sail trim is the same.
The twisting off of the sail reduces the aerodynamic force coefficients pre-
dicted by the analysis, as shown by the comparison of the force components
in table 42. This is as expected by experience in real life, and again shows
the importance of modeling the coupled nature of the mast sail system. In
the converged state of the rig model, the majority of the sail elements were
in a wrinkled state, with some taut elements in the central area of the sail.
This is due to the high levels of tension predicted from the clew to the head
of the sail, with a much smaller tension predicted along the chord of the sail,

which ties in with the reinforcement patterns placed in real life sails.

8.11.1 Comparison of mast stress calculations

In previous finite element analyses of masts (for example Cant [10], En-
lund [12] and Hoffmeister [22]) the sail loading has been obtained from either
potential flow or force balance on the yacht and applied to the mast using
various distributions. In order to gauge the effectiveness of this method in
calculating the mast compression, a series of non linear finite element anal-

ysis were made of a point loaded mast consisting of 28 elements. The mast
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loading was obtained from the PALISUPAN global force coefficients from the
aeroelastic solution of the rig3C-14 model, which allows a comparison with
the compression calculated by the aeroelastic solution of the rig, and was

applied to the mast using the following distributions:
1. Constant distribution;
2. Linear distribution : maximum at bottom of the mast, zero at the top;

3. Sinusoidal distribution : maximum at centre of mast, zero at top and

bottom.

The mast compressive stresses obtained from these analyses and from the
aeroelastic analysis of rig3C-14 are given in table 43. The compressive stress
along the mast is plotted for the three load distributions in figure 100, and
for the aeroelastic solution of the rig3dC-14 model in figure 101.

The linear distribution of sail loads on the mast predicts 20% less mast
compression at the foot of the mast compared to the constant or parabolic
distributions. The loading in this case is concentrated at the foot of the
mast, and as a result the mast does not deflect as much as in the other
distributions. All three assumed distributions predict a similar variation in
stress along the mast height. The stress predicted by the analysis of the mast
under the aeroelastic analysis forces is only 5% of the values obtained from
the aeroelastic analysis. In the aeroelastic analysis case, the deflections of
the mast tip result in tension in the sail leech. This tension will introduce a
compressive stress in the mast in order to satisfy equilibrium at the head of
the sail, and as this is not modelled in the point loaded analysis of the mast,
the compression is underestimated by a significant amount. Tip deflections
obtained from the point loaded case are also significantly different to the

aeroelastic analysis results. This shows the importance of the interaction
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of the mast and sail in the rig analysis, and these interactions cannot be
modelled by separate analysis of the mast and sail.

The finite element analysis of a mast by Cant [10] loaded the mast with
sail forces obtained from a PALISUPAN analysis of the rig, applied using a
linear distribution on the mast, and point loads obtained from sailing trials
data. Although the mast deflections obtained from the analysis were within
10% of data obtained from trials, the compressive mast stress obtained from
the analysis was found to be only 45% of the measured value. The results
of the stress comparisons suggest that this discrepancy is partially due to
the loading assumptions used in the finite element analysis, as the effect of
the leach tension on mast compression is not accounted for. Cant [10] in-
cluded forestay, rigging and halyard loads on the mast which also induce
compression. As these values were obtained from sailing trials they were
easily quantified, and the discrepancy in the predicted and measured com-
pression is smaller than the difference obtained in the comparison of mast
compression for the rigdC-14 case, due to the compression induced by the

point loads.

159



9 Conclusions

An aeroelastic solution method for a mast sail system has been developed. It
has been shown to predict realistic behaviour of the system when an initially
curved sail is analysed.

A potential flow model is used to calculate the pressure loading on a mast
sail system, which allows solution of the aerodynamic problem in an accept-
able time scale. A panel code was chosen for the analysis, which enables the
mast and sail to be analysed as a single body. A computer program has been
developed to generate the input model for the potential flow analysis from
a deformed finite element model. The distribution of panels for the models
analysed was investigated in order to determine a suitable panel distribution
which gives a good compromise between solution accuracy and run time of
the analysis.

The Total Langrangian formulation for non-linear finite element analy-
sis was found to be suitable for the analysis of a mast sail system. Three
node triangular membrane elements, incorporating a wrinkle model algo-
rithm have been implemented in the non-linear analysis, and the elements
have been validated against a theoretical solution of large displacements of
a rectangular membrane under uniform pressure loading. The three node
triangular elements are capable of modeling an arbitrary initial shape of the
membrane, allowing analysis of initially curved sail models. A sixteen node
solid finite element was implemented in the non-linear analysis program to
model the mast. These elements can represent a mast with circular or el-
liptical sections, and have been validated against the theoretical solution of
large deformations of a thin beam.

A computer program to calculate the sail membrane element pressure

loading from the results of the potential flow analysis was been developed.
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This was incorporated with the non-linear finite element analysis and the
potential low model generation program to form an aeroelastic analysis pro-
gram using the potential flow code to obtain the aerodynamic loading of the
mast sail system. A velocity stepping solution method incorporating an iter-
ative solution for the wrinkle model algorithm in the non-linear finite element
analysis was used to obtain a solution to the aeroelastic problem. Dynamic
relaxation was introduced to the aeroelastic solution method which has been
shown to increase the stability of the solution, and have insignificant effect
on the predicted sail forces and deflections.

An aeroelastic solution of a mast sail system was obtained, and compared
to a solution obtained with a restrained mast. An unrealistic solution was
obtained for a free mast case using an initially flat membrane. Analysis
of an initially curved membrane, which more closely models a real life sail,
predicted the twisting of the upper sail sections due to bending of the mast,
a phenomena observed in mast sail systems in real life. Aerodynamic forces
predicted by the model with a free mast were less than for a restrained mast
case, due to the twisting off of the upper sections of the sail. This indicates
the necessity of modeling the mast and sail together in the consideration of
an aeroelastic solution of a yacht rig. The aeroelastic analysis of an initially
curved sail shape results in a significant difference in calculated force and
sail deformations compared to the initially flat case, and this indicates the
importance of using membrane finite elements which can model the initially
curved surfaces of yacht sails.

Comparison of the mast compression obtained from the aeroelastic anal-
ysis of a mast sail system with a previous method which distributes the sail
loads along the mast shows that the uncoupled mast sail analysis predicts

compression in the mast 95% lower than the aeroelastic analysis. This is
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due to the interaction of the mast and sail, and in particular the effect of the
leech tension on the mast compression. Failure to model this in an uncoupled
system results in mast compression being underestimated.

The aeroelastic solution method developed inherently models the interac-
tion of the mast and sail, which has been shown to affect both the predicted
sail forces generated, the flown sail shape and the predicted mast compres-
sion. The use of distinct discretisations for the finite element and potential
flow analyses enables the solution of the mast sail system. No quantative
validation data for the aeroelastic solution of a mast sail system is available,
but validation of the individual aspects of the solution method give confi-
dence in the comparisons of aeroelastic analysis, and the solution method

has been shown to model physical phenomena found in real life studies.

9.1 Future work

Generation of suitable validation data for the aeroelastic analysis of a mast
sail system was beyond the scope of this project, and obtaining appropriate
data would enable the quantitative results of the aeroelastic analysis to be
validated. The method could be extended to account for the pressure loading
on the mast, which although small in area compared to the sail, is located
around the region of the rig where the highest pressure peaks are found. The
inclusion of this loading could effect the mast deformations, and hence the
deformations of the rig

The structure of the program has been developed to enable improved
aerodynamic models to be incorporated into the aeroelastic analysis. Modern
reinforced sails consist of reinforcing fibres which are sandwiched between
membrane films. These structures could be analysed with the finite element

method developed here, using rod elements for the reinforcement fibres and
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membrane elements to represent the membrane films.
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Displacement Grandin FE program
ug (m) 7.74 x 107° 7.74 x 1072
vs (m) 1.58 x 1074 1.58 x 1074
ug (m) ~1.62 x 1075 | —1.62 x 105
vs (m 1.35 x 104 | 1.35 x 104
result Grandin FE program

el l el 2 el 1 el 2
o, (N/m?) | —65.0 | 264.0 | —65.0 | 264.0
o, (N/m?) | —=32.0 | 65.0 | —32.0 | 65.0
Toy (N/m?) | 135.0 | 65.0 | 135.0 | 65.0

Table 1: Results of triangle element finite element validation

Node | 0.e |0y |04y

Element 0

4 -55.2 107.1 -113.6

1 -95.9 | -28.8 -420.3

0 -972.1 | -291.6 | -467.8

3 -931.4 | -155.8 | -161.2
Element 1

5 1123.2 | 319.7 1.7

2 1128.9 | 338.7 -426.9

1 -95.9 | -28.8 -420.3

4 -101.6 | -47.8 8.4
Element 2

7 -79.8 | -286.7 | -237.5

4 47.6 137.9 -331.1

3 -219.9 | 57.6 -182.6

6 -347.3 | -366.9 | -88.9
Element 3

8 298.3 | -914.9 | -370.8

5 624.0 | 169.9 -588.8

4 1.15 -16.96 | -209.1

7 -324.3 | -1101.8 | 8.9

Table 2: Nodal stress values for four noded quadrilateral test
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Model Tip deflection (m)
Theoretical 0.333
10 of 8 node quad 0.334
10 of 4 node quad 0.230
40 of 4 node quad 0.300

Table 3: Results of finite element analysis of tip loaded cantilever

Model | Neje Otip
(metres)
beam-5 20 0.09496
beam-10 | 40 0.18825
beam-15 60 0.21769
beam-20 80 0.22380
beam-25 | 100 | 0.22395

Table 4: Tip deflections of tip loaded cantilever modelled with three node

triangular finite elements

Netem Tip deflection (m)
8 node 16 node 20 node

14 point | 27 point | 14 point | 27 point
1 0.00254 | 0.00255 | 0.00255 | 0.07344 | 0.07335
2 0.00929 | 0.00937 | 0.00937 | 0.08949 | 0.08942
3 0.01840 | 0.01878 | 0.01878 | 0.09419 | 0.09417
4 0.02802 | 0.02900 | 0.02900 | 0.09600 | 0.09605
5 0.03700 | 0.03882 | 0.03882 | 0.09702 | 0.09705
6 0.04481 | 0.04762 | 0.04762 | 0.09761 | 0.09765
7 0.05136 | 0.05518 | 0.05518 | 0.09801 | 0.09806
8 0.05676 | 0.06155 | 0.06155 | 0.09830 | 0.09835
9 0.06117 | 0.06686 | 0.06686 | 0.09851 | 0.09857
10 0.06478 | 0.07126 | 0.07126 | 0.09867 | 0.09873
20 0.07993 | 0.09053 | 0.09054
30 0.08359 | 0.09542 | 0.09541

Table 5: Tip deflections of tip loaded cantilever modelled by solid elements
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=

btip/ L
(metres)
0.333958
0.173504
0.274570
0.226282
0.288559
0.255825
0.295533
0.271605
0.296375
0.280584
0.288221
0.298958
75 | 0.299024
100 | 0.299038
125 | 0.299043

O 00 ~1 O Ut s LW N =

gt BN =
O ot O

Table 6: Non linear analysis of tip loaded cantilever using FENLA1
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le 5tip/L
=1 k=10
1 0.12545 | 1.25450
2 0.07920 | 0.53552
3 10.11339 | 0.44097
4 10.10427 | 0.50023
5 | 0.11713 | 0.59473
7 1 0.12105 | 0.64322
10 | 0.12394 | 0.67345
15 | 0.12517 | 0.71807
20 | 0.12546 | 0.71352
25 | 0.12557 | 0.71707
30 | 0.12561 | 0.71658
40 | 0.12565 | 0.71697
50 | 0.12566 | 0.71707
500 | 0.12568 | 0.71717
750 | 0.12568 | 0.71717
1000 | 0.12568 | 0.71717

Table 7: Sensitivity study on distributed loaded cantilever using FENLA1

k 5o/ L
Analytical | Ny =5 | Ny =10] Ny =25 | N,y =50
1 0.124 0.117132 | 0.123937 | 0.125568 | 0.125664
2 0.234 0.234993 | 0.231570 | 0.244895 | 0.245526
3 0.336 0.331953 | 0.326908 | 0.350787 | 0.352293
4 0.424 0.390574 | 0.411714 | 0.440326 | 0.442575
5 0.490 0.438691 | 0.481489 | 0.514225 | 0.516443
6 0.552 0.496267 | 0.537868 | 0.574172 | 0.575867
7 0.600 0.561469 | 0.581387 | 0.622061 | 0.623400
8 0.640 0.598972 | 0.616179 | 0.660425 | 0.661500
9 0.676 0.637538 | 0.646644 | 0.691331 | 0.692100
10 0.704 0.594728 | 0.673451 | 0.716432 | 0.717070

Table 8: FENLA1 analysis of distributed loaded cantilever
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Ny, Tip deflection (m)
40 elem 80 elem | 320 elem
5 | -0.421055 | -0.514481 | -0.653853
10 | -0.430197 | -0.555558 | -0.643351
15 | -0.451524 | -0.586130 | -0.685377
20 | -0.452870 | -0.582416 | -0.683080
25 | -0.454233 | -0.585455 | -0.683680
30 | -0.454233 | -0.586147 | -0.683933
35 | -0.455012 | -0.586481 | -0.684250
40 | -0.455145 | -0.586654 | -0.684392
45 | -0.455222 | -0.586752 | -0.684470
50 | -0.455269 | -0.586811 | -0.684516
100 | -0.455364 | -0.586927 | -0.684600

Table 9: Results of convergence tests for distributed loaded cantilever, load
coefficient 10, analysed using FENLA3-3 with increasing number of elements

II; Central deflection
Analytical | F4 | Error(%) | F3-3(1) | Error(%) | F3-3(2) | Error(%)

1 0.28660 | 0.28795 0.470 0.28784 0.432 0.28445 0.752
2 0.14330 | 0.14323 0.050 0.14315 0.104 0.14162 1.170
3 0.09553 | 0.09545 0.087 0.09539 0.146 0.09440 1.182
4 0.07165 | 0.07159 0.087 0.07154 0.149 0.07081 1.175
) 0.056732 | 0.05727 0.087 0.05723 0.149 0.05665 1.169
6 0.04777 | 0.04773 0.085 0.04770 0.148 0.04721 1.165
7 0.04094 | 0.04091 0.084 0.04088 0.147 0.04047 1.162
8 0.03582 | 0.03580 0.083 0.03577 0.146 0.03541 1.161
9 0.03184 | 0.03182 0.082 0.03180 0.146 0.03148 1.159
10 0.02866 | 0.02864 0.082 0.02862 0.145 0.02833 1.158

21.5 | 0.01330 | 0.01329 0.080 0.01328 0.144 0.01315 1.155

Table 10: Central deflection of pressure loaded square membrane predicted by
FENLA3-3 and FENLA4 for varying II;. FENLA3-3 grids: (1) symmetrical,
(2) asymmetrical.
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Netem Characteristic Ocentre
element length (m) (m)

2 0.5000 0.167977
8 0.2500 0.153930
18 0.1667 0.149137
32 0.1250 0.146902
50 0.1000 0.145678
72 0.0833 0.144935
98 0.0714 0.144449
128 0.0625 0.144112
162 0.0556 0.143869
200 0.0100 0.143687
242 0.0455 0.142547
288 0.0417 0.143436
338 0.0385 0.143347
392 0.0357 0.143274
450 0.0333 0.143214
512 0.0313 0.143163
578 0.0294 0.143120
648 0.0278 0.143083
722 0.0263 0.143050
800 0.0250 0.143022
1250 0.0200 0.142924
1800 0.0167 0.142865
2450 0.0143 0.142827
3200 0.0125 0.142800
4050 0.0111 0.142781
5000 0.0100 0.142765
7200 0.0083 0.142743

Table 11: Dynamic array FENLA3-3 membrane analysis
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Neiem Characteristic Ni Ocentre

element length (m) (m)

2 0.500 >50| n/c
8 0.250 4 0.154329
18 0.167 4 0.149375
32 0.125 4 0.147064
a0 0.100 4 0.145784
72 0.083 4 0.145007
98 0.071 4 0.144500
128 0.063 4 0.144149
182 0.056 4 0.143896
200 0.050 4 0.143707

Table 12: FENLA3-4 membrane analysis with varying number of elements
using 3 point integration

Neoem Characteristic Nyt | Ocentre
element length (m) (m)
2 0.500 7 10.164099
8 0.250 4 | 0.154325
18 0.167 4 | 0.149381
32 0.125 4 | 0.147067
50 0.100 4 | 0.145787
72 0.083 4 | 0.145009

Table 13: FENLA3-4 membrane analysis using 13 point integration
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Nelem Nnode le M 5tip (m)

1 20 10 | 20 | -0.0685571
20 | 13 | -0.0685571
30 | 12 | -0.0685571
2 32 10 | 31 | -0.0876148
20 | 13 | -0.0876148
30 | 11 | -0.0876148
3 44 10 | 40 | -0.0926471
20 | 15 | -0.0926471
30 | 13 | -0.0926471
4 56 10 | 44 | -0.0945578
20 | 16 | -0.0945578
5 68 10 | 45 | -0.0955442
20 | 15 | -0.0955442
6 80 10 | 47 | -0.0961342
20 | 16 | -0.0961342
7 92 10 | 48 | -0.0965261
20 | 16 | -0.0965261
8 104 | 10 | 48 | -0.0968044
20 | 16 | -0.0968044
9 116 | 10 | 49 | -0.0970121
20 | 16 | -0.0970121
10 128 | 10 | 49 | -0.0971728
20 | 16 | -0.0971728
30 | 13 | -0.0971728

Table 14: FENLAS analysis of tip loaded cantilever
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Table 15: Tip loaded cantilever, 20 load steps, ¢; = 0.05, all displacements

1n metres

Table 16: Tip loaded cantilever, 20 load steps, ¢; = 0.01, all displacements

in metres

20 Load steps, ¢; = 0.05

Cc

N;

5tz’p

3
Uigy

1x 1072
5x 1072
1x1073
1x107*
1x1075
1x10°°
1x 1077

1

1

4
11
18
26
33

0.225569
0.227315
0.227398
0.227289
0.227315
0.227315
0.227315

0.223289
0.225030
0.225115
0.225005
0.225033
0.225030
0.225030

20 Load steps, ¢; = 0.01

Ce

Ny |

6tz’p

3
Uo7

1x 1072
1x1073
1x 107
1x107%
1x 1078
1x 1077

1
4
11
18
26
33

0.225569
0.227398
0.227289
0.227317
0.227315
0.227315

0.223289
0.223289
0.225005
0.225033
0.225030
0.225030
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Load factor N, =19 Ny, =20 N, =21
Ni; 5tip (m) Ny 5tip (m) Nt 5tz‘p (m)
1 2 0.119391 | 2 | 0.119389 2 0.119386
2 3 10.227003 | 3 10.226904 |, 3 0.226772
3 > 50 n/c 3 10.319420 | > 50 n/c
4 2 10397640 | 2 | 0.397640 | 2 0.397518
5 - diverged | 2 | 0.462728 - diverged
6 - diverged | 2 | 0.516970 - diverged
7 - diverged | 2 | 0.562290 - diverged
8 - diverged | 2 | 0.600352 - diverged
9 - diverged | 2 | 0.632533 - diverged
10 - diverged | 2 | 0.659944 | - diverged

Table 17: FENLAS5 analysis of distributed loaded cantilever with 19, 20 and

21 load steps
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Load steps | 44, (m)
10 0.622565
15 0.663835
16 0.653134
17 0.663189
18 0.654961
19 0.663344
20 0.656148
21 0.663492
25 0.663827
30 0.658139
35 0.664261
40 0.658529
45 0.664364
50 0.658698
55 0.664422
100 0.664548
150 0.664548
151 0.664548
175 0.664558

Table 18: FENLAS non iterative solution of distributed loaded cantilever,
load factor=10, for varying number of load steps

Siip (m)
0.098548
0.190338
0.272029
0.343496
0.405961
0.459085
0.503725
0.543189
0.577297
10 | 0.60692 |

© 00~ O UL B W N A

Table 19: Tip deflections for distributed loaded cantilever, analysed by
FENLAS5-16 using 10 elements.
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Nelem (5tip (m)
10 | 0.608958
15 0.64477
20 ] 0.657703
25 0.663505
30 | 0.666467
50 | 0.669998
100 | 0.670318

Table 20: Tip deflections for distributed loaded cantilever, £ = 10 analysed
by FENLAS using 16 node elements.

183



a Force coefficients CL Cp
(degrees) Crs { Cry
Coarse grid, N; = 10, N, = 25
0 0.00143 | 0.00000 | 0.00000 | 0.00143
5 -0.01339 | 0.35300 | 0.35282 | 0.01743
10 -0.05670 | 0.68777 | 0.68717 | 0.06360
Fine grid, V; = 20, N, = 50
0 0.00334 | 0.00000 | 0.00000 | 0.00334
5 -0.02187 | 0.34814 | 0.34873 | 0.00856
10 -0.09576 | 0.67982 | 0.68612 | 0.02375

Table 21: PALISUPAN analysis of flat rectangular membrane, aspect ratio
5. Force coefficients are non dimensionalised with respect to the membrane

area

PALISUPAN o/p | Non dim. forces
BMCC Cre Cry Crez Cpy | N CL Cp
1.0 x 1071 | -0.6344 | 5.1048 | -0.0846 | 0.6810 | 34 | 0.6853 | 0.0349
1.0 x 1072 | -0.6504 | 5.1770 |-0.0868 | 0.6906 | 31 | 0.6952 | 0.0345
1.0 x 107% | -0.6532 | 5.1903 | -0.0871 | 0.6924 | 31 | 0.6970 | 0.0344
1.0 x 107* | -0.6546 | 5.1976 | -0.0873 | 0.6934 | 32 | 0.6980 | 0.0344
1.0 x 107% | -0.6548 | 5.1991 |-0.0874 | 0.6936 | 32 | 0.6982 | 0.0344
1.0 x 107% | -0.6549 | 5.1993 | -0.0874 | 0.6936 | 32 | 0.6982 | 0.0344 |

Table 22: Results of PALISUPAN block matrix convergence limit investiga-
tion for flat membrane, aspect ratio 5
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PALISUPAN o/p | Non dim. forces
Ny | Ny | Npanet | Cra | Chry Cro | Cry C. | Cp
AR = 0.50
5 25| 125 SOLUTION DIVERGES
6 | 30 180 | -0.0439 | -2.8456 | -0.0059 | -0.3796 | 0.3787 | 0.0272
7 |35 245 0.1050 | -2.9244 | 0.0140 | -0.3901 | 0.3874 | 0.0480
8 | 40 | 320 |-0.0666 | -2.6665 | -0.0089 | -0.3557 | 0.3551 | 0.0221
9 | 45 | 405 0.0485 | -2.7698 | 0.0065 | -0.3695 | 0.3675 | 0.0387
10 | 50 | 500 |-0.0992 | -2.6281 | -0.0132 | -0.3506 | 0.3504 | 0.0174
11| 55 | 605 |-0.0016 | -2.7260 | -0.0002 | -0.3636 | 0.3623 | 0.0315
12 | 60 720 | -0.1248 | -2.6130 | -0.0167 | -0.3486 | 0.3487 | 0.0138
13 | 65 | 845 |-0.0425 | -2.6979 | -0.0057 | -0.3599 | 0.3590 | 0.0257
14| 70 | 980 |-0.1432 | -2.6169 | -0.0191 | -0.3491 | 0.3494 | 0.0114
151 75 | 1125 | -0.0740 | -2.6862 | -0.0099 | -0.3583 | 0.3578 | 0.0214
16 | 80 | 1280 | -0.1547 | -2.6125 | -0.0206 | -0.3485 | 0.3490 | 0.0098
17 | 85 | 1445 | -0.0944 | -2.6653 | -0.0126 | -0.3555 | 0.3553 | 0.0184
18 | 90 | 1620 | -0.1612 | -2.6088 | -0.0215 | -0.3480 | 0.3486 | 0.0089
19 1 95 | 1805 | -0.1069 | -2.6242 | -0.0143 | -0.3501 | 0.3500 | 0.0163
AR = 0.75
9 |30 270 0.0483 | -2.7748 | 0.0064 | -0.3702 | 0.3682 | 0.0387
12 1 40 | 480 | -0.1253 | -2.6240 | -0.0167 | -0.3500 | 0.3502 | 0.0139
15 | 50 750 | -0.0737 | -2.6793 | -0.0098 | -0.3574 | 0.3569 | 0.0214
18 | 60 | 1080 | -0.1610 | -2.6088 | -0.0215 | -0.3480 | 0.3486 | 0.0089
21| 70 | 1470 | -0.1179 | -2.6442 | -0.0157 | -0.3527 | 0.3528 | 0.0151
24 1 80 | 1920 | -0.1596 | -2.5889 | -0.0213 | -0.3454 | 0.3459 | 0.0089 |

Table 23: Results of investigation into average panel aspect ratio I
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PALISUPAN o/p

Non dim. forces

Nt I Ns } Npanel CF:c ) CFy CF:t ' CFy CL } CD
AR = 1.00

8 | 20| 160 |-0.0679 | -2.7028 | -0.0091 | -0.3606 | 0.3600 | 0.0224
10 | 25 | 250 |-0.1001 | -2.6460 | -0.0134 | -0.3530 | 0.3528 | 0.0175
12 | 30 | 360 |-0.1258 | -2.6317 | -0.0168 | -0.3511 | 0.3512 | 0.0139
14 | 35 | 490 |-0.1433 | -2.6177 | -0.0191 | -0.3492 | 0.3495 | 0.0114
16 | 40 | 640 |-0.1548 | -2.6157 | -0.0207 | -0.3489 | 0.3494 | 0.0098
18 1 45 | 810 |-0.1610 | -2.6079 | -0.0215 | -0.3479 | 0.3484 | 0.0089
20 | 50 | 1000 |-0.1638 | -2.6099 | -0.0219 | -0.3482 | 0.3487 | 0.0086
22 | 55 | 1210 |-0.1635 | -2.6130 | -0.0218 | -0.3486 | 0.3491 | 0.0087
24 | 60 | 1440 | -0.1610 | -2.6103 | -0.0215 | -0.3482 | 0.3488 | 0.0090
26 | 65 | 1690 | -0.1573 | -2.6035 | -0.0210 | -0.3473 | 0.3478 | 0.0094
AR =1.25

10 | 20 | 200 |-0.1010 | -2.6646 | -0.0135 | -0.3555 | 0.3553 | 0.0176
12 124 | 288 | -0.1263 | -2.6377 | -0.0168 | -0.3519 | 0.3520 | 0.0139
14 | 28 | 392 | -0.1440 | -2.6287 | -0.0192 | -0.3507 | 0.3510 | 0.0114
16 | 32 | 512 | -0.1550 | -2.6167 | -0.0207 | -0.3491 | 0.3495 | 0.0098
18 1 36 | 648 | -0.1615 | -2.6149 | -0.0215 | -0.3488 | 0.3494 | 0.0089
20 | 40 | 800 |-0.1643 | -2.6164 | -0.0219 | -0.3490 | 0.3496 | 0.0086
22 1 44 | 968 |-0.1636 | -2.6130 | -0.0218 | -0.3486 | 0.3492 | 0.0086
24 | 48 | 1152 | -0.1614 | -2.6137 | -0.0215 | -0.3487 | 0.3492 | 0.0089
26 | 52 | 1352 | -0.1582 | -2.6149 | -0.0211 | -0.3488 | 0.3493 | 0.0094
27 | 54 | 1458 | -0.1323 | -2.6231 | -0.0176 | -0.3499 | 0.3501 | 0.0129
28 | 56 | 1568 | -0.1542 | -2.6111 | -0.0206 | -0.3483 | 0.3488 | 0.0099
29 | 58 | 1682 | -0.1334 | -2.6100 | -0.0178 | -0.3482 | 0.3484 | 0.0126
30 | 60 | 1800 | -0.1497 | -2.5989 | -0.0200 | -0.3467 | 0.3471 | 0.0103
AR = 1.50

9 | 15 135 0.0470 | -2.8229 | 0.0063 | -0.3766 | 0.3746 | 0.0391
12 | 20 | 240 |-0.1271 | -2.6502 | -0.0170 | -0.3535 | 0.3537 | 0.0139
15| 25| 375 |-0.0750 | -2.7033 | -0.0100 | -0.3606 | 0.3601 | 0.0215
18 1 30 | 540 |-0.1622 | -2.6222 | -0.0216 | -0.3498 | 0.3504 | 0.0089
21 | 35| 735 |-0.1185| -2.6509 | -0.0158 | -0.3536 | 0.3537 | 0.0151
24 | 40 | 960 |-0.1617 | -2.6165 | -0.0216 | -0.3490 | 0.3496 | 0.0089
27 | 45 | 1215 | -0.1327 | -2.6266 | -0.0177 | -0.3504 | 0.3506 | 0.0129
30 | 50 | 1500 | -0.1506 | -2.6110 | -0.0201 | -0.3483 | 0.3487 | 0.0103
33 | 55 | 1815 |-0.1343 | -2.5991 | -0.0179 | -0.3467 | 0.3470 | 0.0124

Table 24: Results of investigation into average panel aspect ratio II
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PALISUPAN o/p | Non dim. forces
a Cre Cry Cre Cry | N; CL
-10 | -0.3226 | -2.8315 | -0.0430 | -0.3777 | 30 | -0.3795
-5 | 0.0698 | -0.1372 | 0.0093 | -0.0183 | 25 | -0.0174
0 | 0.1190 | 2.5369 | 0.0159 | 0.3384 | 24 | 0.3384
5 |-0.1743 | 5.1289 |-0.0233 | 0.6842 | 23 | 0.6836
10 | -0.7995 | 7.5487 | -0.1067 | 1.0070 | 35 | 1.0102

Table 25: Results of PALISUPAN analysis of a curved plate using a coarse
mesh, N; =10, N, = 25

PALISUPAN o/p | Non dim. forces
164 Cre CFy CF:c CFy N; Cr
-10 | -0.3346 | -5.9122 | -0.0446 | -0.7887 | 66 | -0.3795
-5 | -0.0011 | -3.5479 | -0.0001 | -0.4733 | 70 | -0.0174
0 | 0.0855 | -1.0378 | 0.0114 | -0.1384 | 71 | 0.3384
5 |-0.0781 | 1.5457 |-0.0104 | 0.2062 | 71 | 0.6836
10 | -0.4876 | 4.1284 |-0.0650 | 0.5507 | 70 | 1.0102

Table 26: Results of PALISUPAN analysis of a curved plate using a coarse
mesh, NV; = 10, N, = 25
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PALISUPAN o/p Non dimensionalised
BMCC Kutta CFm Opy CFz C’Fz CFy CFz

1.0 x 1072 | 0.01 |-0.30431 | 1.31705 | -0.01677 | -0.20297 | 0.87847 | -0.01119
5.0x 1073 | 0.01 |-0.30431 | 1.31706 | -0.01677 | -0.20297 | 0.87848 | -0.01119
1.0 x 1073 | 0.01 | -0.30431 | 1.31707 | -0.01677 | -0.20298 | 0.87848 | -0.01119
5.0x 107% | 0.01 |-0.30431 | 1.31707 | -0.01677 | -0.20298 | 0.87849 | -0.01119
1.0x 107% | 0.01 |-0.30431 | 1.31708 | -0.01677 | -0.20298 | 0.87849 | -0.01119
5.0 x 1075 | 0.01 |-0.30431 | 1.31707 | -0.01677 | -0.20297 | 0.87848 | -0.01119
3.0x 107% | 0.01 |-0.30430 | 1.31704 | -0.01677 | -0.20297 | 0.87847 | -0.01119
1.0 x 1073 | 0.01 |-0.30429 | 1.31701 | -0.01677 | -0.20296 | 0.87845 | -0.01119
1.0 x 107% | 0.01 | -0.30429 | 1.31700 | -0.01677 | -0.20296 | 0.87844 | -0.01119
1.0 x 1077 | 0.01 |-0.30429 | 1.31699 | -0.01677 | -0.20296 | 0.87843 | -0.01119

BMCC Cr Cp N;

1.0 x 1072 | 0.89492 | 0.10972 | 57

5.0 x 1073 | 0.89492 | 0.10972 | 57

1.0 x 1073 | 0.89493 | 0.10972 | 57

5.0 x 107% | 0.89493 | 0.10972 | 57

1.0 x 107* | 0.89493 | 0.10972 | 57

5.0 x 107° | 0.89493 | 0.10972 | 57

3.0 x 1075 | 0.89491 | 0.10972 | 57

1.0 x 1073 | 0.89489 | 0.10972 | 57

1.0 x 107 | 0.89488 | 0.10972 | 57

1.0 x 1077 | 0.89487 | 0.10972 [ o7

Table 27: Results of investigation into BMCC condition variation for de-
formed triangular membrane
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PALISUPAN o/p Non dimensionalised
Kutta Cpm CFy CFz CF;,; pr CFz

1.0 x 1071 | -0.31051 | 1.35596 | -0.01693 | -0.20711 | 0.90443 | -0.01129
5.0 x 1072 | -0.30639 | 1.32612 | -0.01681 | -0.20436 | 0.88452 | -0.01121
1.0 x 1072 | -0.30431 | 1.31707 | -0.01677 | -0.20298 | 0.87848 | -0.01119
5.0 x 1073 | -0.30426 | 1.31685 | -0.01677 | -0.20294 | 0.87834 | -0.01119
1.0 x 1073 | -0.30423 | 1.31674 | -0.01677 | -0.20292 | 0.87827 | -0.01119
1.0 x 1074 | -0.30422 | 1.31672 | -0.01677 | -0.20292 | 0.87825 | -0.01119
1.0 x 1075 | -0.30422 | 1.31672 | -0.01677 | -0.20291 | 0.87825 | -0.01119

Kutta Ct Co N;
1.0 x 1071 | 0.92072 | 0.11471 | 10
5.0 x 1072 | 0.90108 | 0.11049 | 21
1.0 x 1072 | 0.89493 | 0.10972 | 57
5.0 x 1073 | 0.89478 | 0.10971 | 73
1.0 x 1073 | 0.89470 | 0.10970 | 110
1.0 x 107% | 0.89469 | 0.10970 | 164
1.0 x 107% | 0.89469 | 0.10970 | 222

Table 28: Results of investigation into Kutta condition variation for deformed
triangular membrane
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PALISUPAN o/p Non dimensionalised

N, Cre Cry Cr: Cre Cry Cr.
10 | -0.21256 | 1.27508 | -0.01802 | -0.14178 | 0.85048 | -0.01202
15 | -0.27518 | 1.31036 | -0.01723 | -0.18355 | 0.87401 | -0.01149
20 | -0.30431 | 1.31707 | -0.01677 | -0.20298 | 0.87848 | -0.01119
25 | -0.31844 | 1.31716 | -0.01646 | -0.21240 | 0.87855 | -0.01098
30 | -0.32586 | 1.31576 | -0.01623 | -0.21735 | 0.87761 | -0.01083
35 | -0.33007 | 1.31419 | -0.01605 | -0.22016 | 0.87656 | -0.01071
40 | -0.33236 | 1.31208 | -0.01591 | -0.22168 | 0.87516 | -0.01061
45 1 -0.33392 | 1.31085 | -0.01580 | -0.22273 | 0.87434 | -0.01054

N, CrL Cp N;

10 | 0.84768 | 0.15765 | 31

15 | 0.88408 | 0.12645 | 53

20 | 0.89493 | 0.10972 | 57

25 | 0.89821 | 0.10089 | 57

30 | 0.89902 | 0.09592 | 56

35 | 0.89900 | 0.09292 | 54

40 | 0.89820 | 0.09101 | 81

45 | 0.89779 | 0.08975 | 130

Table 29: Results for deformed triangular membrane model with constant
N; = 40, varying N,
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Table 30: Results for deformed triangular membrane model with constant
N, = 20, varying V;
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PALISUPAN o/p Non dimensionalised

N; Cre Cry Cr. Cre Cry Cr.
20 | -0.30414 | 1.17735 | -0.01612 | -0.20286 | 0.78529 | -0.01075
30 | -0.28782 | 1.20611 | -0.01600 | -0.19197 | 0.80447 | -0.01067
40 | -0.30431 | 1.31707 | -0.01677 | -0.20298 | 0.87848 | -0.01119
50 | -0.30670 | 1.41809 | -0.01735 | -0.20457 | 0.94586 | -0.01157
60 | -0.30119 | 1.48724 | -0.01747 | -0.20089 | 0.99199 | -0.01165
70 | -0.29620 | 1.52840 | -0.01797 | -0.19757 | 1.01944 | -0.01199
80 | -0.29122 | 1.55103 | -0.01884 | -0.19424 | 1.03453 | -0.01257
90 | -0.28555 | 1.56159 | -0.01980 | -0.19046 | 1.04158 | -0.01321

N; CL Cp | N

20 | 0.80732 | 0.07796 | 80

30 | 0.82162 | 0.09475 | 71

40 | 0.89493 | 0.10972 | &7

50 | 0.95879 | 0.13127 | 34

60 | 1.00087 | 0.15050 | 30

70 | 1.02554 | 0.16302 | 45

80 | 1.03858 | 0.17130 | 49

90 | 1.04391 | 0.17726 | 51




PALISUPAN o/p Non dimensionalised

N, t N, K] N, pan CFm CFy CFz CFm CFy CF z
20 | 10 | 200 | -0.25484 | 1.16003 | -0.01722 | -0.16998 | 0.77374 | -0.01149
30 | 15 | 450 | -0.27140 | 1.20475 | -0.01643 | -0.18102 | 0.80357 | -0.01096
40 | 20 | 800 | -0.30431 | 1.31708 | -0.01677 | -0.20298 | 0.87849 | -0.01119
50 | 25 | 1250 | -0.32582 | 1.42291 | -0.01700 | -0.21732 | 0.94908 | -0.01134
60 | 30 | 1800 | -0.33536 | 1.49845 | -0.01679 | -0.22368 | 0.99946 | -0.01120
70 | 35 | 2450 | -0.34462 | 1.54529 | -0.01700 | -0.22986 | 1.03071 | -0.01134
74 | 37 | 2738 | -0.34777 | 1.55856 | -0.01722 | -0.23196 | 1.03956 | -0.01149

Npan CL Cp N;

200 | 0.78521 | 0.10491 | 81

450 | 0.81702 | 0.10473 | 70

800 | 0.89493 | 0.10972 | 57

1250 | 0.96617 | 0.12039 | 38

1800 | 1.01569 | 0.13164 | 32

2450 | 1.04717 | 0.13652 | 48

2738 | 1.05620 | 0.13758 | 50

Table 31: PALISUPAN results for deformed triangle with APAR of 0.25
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PALISUPAN o/p

Non dimensionalised

Nt Ns Npan CFz C’Fy CFz CFm CFy CFz
16 | 16 | 256 | -0.30739 | 1.21199 | -0.01688 | -0.20503 | 0.80839 | -0.01126
20 | 20 | 400 | -0.30415 | 1.17737 | -0.01612 | -0.20287 | 0.78531 | -0.01075
26 | 26 | 676 | -0.29464 | 1.17533 | -0.01549 | -0.19652 | 0.78395 | -0.01033
30 | 30 | 900 |-0.29870 | 1.20242 | -0.01550 | -0.19924 | 0.80202 | -0.01034
36 | 36 | 1296 | -0.31803 | 1.26472 | -0.01569 | -0.21213 | 0.84357 | -0.01047
40 | 40 | 1600 | -0.33236 | 1.31207 | -0.01591 | -0.22168 | 0.87515 | -0.01061
46 | 46 | 2116 | -0.34662 | 1.37991 | -0.01608 | -0.23120 | 0.92040 | -0.01073
50 | 50 | 2500 | -0.35067 | 1.41939 | -0.01613 | -0.23390 | 0.94673 | -0.01076
52 | 52 | 2704 | -0.35192 | 1.43733 | -0.01611 | -0.23473 | 0.95870 | -0.01074

Nowm ] C1 Cp | Na

256 | 0.82977 | 0.08382 | 86

400 | 0.80733 | 0.07796 | 80

676 | 0.80388 | 0.08345 | 74

900 | 0.82179 | 0.08709 | 70

1296 | 0.86525 | 0.08918 | 61

1600 | 0.89819 | 0.09101 | 81

2116 | 0.94396 | 0.09754 | 105

2500 | 0.96963 | 0.10401 | 117

2704 | 0.98116 | 0.10732 | 122

Table 32: PALISUPAN results for deformed triangle with APAR of 0.50
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PALISUPAN o/p Non dimensionalised

Nt Ns Npan CF:c CFy CFz CFI: CFy CFz
32 | 8 | 256 |-0.18803 | 1.16836 | -0.01775 | -0.12541 | 0.77930 | -0.01184
40 | 10 | 400 | -0.21254 | 1.27498 | -0.01801 | -0.14176 | 0.85041 | -0.01201
48 | 12 | 576 | -0.23504 | 1.36279 | -0.01819 | -0.15677 | 0.90898 | -0.01213
56 | 14 | 784 | -0.25389 | 1.43530 | -0.01809 | -0.16934 | 0.95734 | -0.01206
64 | 16 | 1024 | -0.26755 | 1.48834 | -0.01803 | -0.17846 | 0.99272 | -0.01203
72 | 18 | 1296 | -0.28017 | 1.52540 | -0.01833 | -0.18687 | 1.01744 | -0.01223
80 | 20 | 1600 | -0.29122 | 1.55103 | -0.01884 | -0.19424 | 1.03454 | -0.01257
88 | 22 | 1936 | -0.30027 | 1.56894 | -0.01942 | -0.20028 | 1.04648 | -0.01295
96 | 24 | 2304 | -0.30792 | 1.58068 | -0.02002 | -0.20538 | 1.05431 | -0.01335
104 | 26 | 2704 | -0.31465 | 1.58818 | -0.02061 | -0.20987 | 1.05932 | -0.01375

Npan CL CD Nit

256 | 0.77519 | 0.14869 | 61

400 | 0.84761 | 0.15765 | 31

576 | 0.90778 | 0.16357 | 23

784 | 0.95753 | 0.16830 | 33

1024 | 0.99389 | 0.17183 | 45

1296 | 1.02000 | 0.17238 | 48

1600 | 1.03858 | 0.17131 | 49

1936 | 1.05187 | 0.16972 | 49

2304 | 1.06097 | 0.16760 | 48

2704 | 1.06721 | 0.16509 | 47

Table 33: PALISUPAN results for deformed triangle with APAR of 1.0

Distribution Cre Cry Cr,
Even -0.267553 | 1.488335 | -0.018033
Clustered | -0.223288 | 1.495455 | -0.018537

Table 34: PALISUPAN force output for deformed triangular membrane using
different panel clustering in the spanwise direction
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I Central deflection (m)

Grid | Panels X v z CL Cp
25x25 | 625 | -0.00047 | 0.05081 | -1.2E-09 | 0.5658 | 0.0256
30x30 | 900 | -0.00045 | 0.05167 | -1.5E-09 | 0.5916 | 0.0254
35x35 | 1225 | -0.00043 | 0.05252 | -2.4E-09 | 0.6154 | 0.0281
40x40 | 1600 | -0.00041 | 0.05324 | -3.2E-09 | 0.6402 | 0.0320
45x45 | 2025 | -0.00039 | 0.05382 | 7.45E-11 | 0.6611 | 0.0326
50x50 | 2500 | -0.00038 | 0.05428 | -1.6E-10 | 0.6763 | 0.0355

Table 35: Central deflections of initially flat membrane analysed by MON-

STA1 with varying number of PALISUPAN panels

Number Central deflection (m)

Run | of elements X y zZ Cr Cp
4 320 -0.00038 | 0.05321 | -2.18E-9 | 0.6186 | 0.0284
5 500 -0.00043 | 0.05252 | -2.35E-9 | 0.6154 | 0.0281
6 720 -0.00044 | 0.05282 | -6.55E-10 | 0.6210 | 0.0283
7 980 -0.00045 | 0.05269 | -1.18E-9 | 0.6232 | 0.0284
8 1280 -0.00045 | 0.05281 | -2.47E-9 | 0.6241 | 0.0284
9 1620 -0.00045 | 0.05273 | -1.92E-9 | 0.6252 | 0.0285
10 2000 -0.00045 | 0.05282 | -2.18E-9 | 0.6267 | 0.0285
11 2420 -0.00046 | 0.05261 | 9.82E-10 | 0.6201 | 0.0282
12 2880 -0.00045 | 0.05285 | -1.98E-9 | 0.6290 | 0.0286
13 3380 -0.00045 | 0.05264 | 1.14E-09 | 0.6211 | 0.0282
14 3920 -0.00045 | 0.05268 | -2.94E-10 | 0.6214 | 0.0282 |

Table 36: Central deflections of initially flat membrane analysed by MON-

STA1 with varying number of FEA elements

Deflection (m)
Analysis Velocity steps | Fixed t.e. | Free t.e.
No wrinkle model 200 0.01699 | 0.03215
Wrinkle model 200 0.01389 | 0.02986
Wrinkle model 100 0.01389 | 0.02986

Table 37: Comparison of deflections for fixed and free trailing edge rectan-

gular models, A, = 2, o = 15°, II; = 15
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N, boom | N, model | Displacement of mid point of TE Cr
U Uy Us
8 248 -0.00325 | 0.04399 -0.00050 0.87729
10 390 -0.00336 | 0.04331 -0.00059 0.90871
12 564 -0.00337 | 0.04295 -0.00058 0.92403
15 865 -0.00350 | 0.04273 -0.00064 0.92937
20 1580 -0.00360 | 0.04246 -0.00071 0.93476

Table 38: Results of MONSTAZ analysis of initially flat triangular membrane

N, boom | N, sail Mast tip deflection (m) Cr
Uy Ug Us

rigl-4 60 0.005392 | 0.00127 | -0.000024 | 0.815075152

rigl-6 138 | 0.009537 | 0.002558 | -0.000041 | 0.858976795

rigl-8 248 | 0.012997 | 0.003667 | -0.000062 | 0.848767743
rigl-10 390 | 0.016179 | 0.004782 | -0.00009 | 0.830132757
rigl-12 564 | 0.018698 | 0.00569 | -0.000116 | 0.810866329
rigl-14 770 | 0.020829 | 0.006481 | -0.000142 | 0.792650109
rigl-16 1008 | 0.022502 | 0.007116 | -0.000164 | 0.775178714
rigl-18 1278 | 0.023883 | 0.007606 | -0.000184 | 0.764614126
rigl-20 1580 | 0.024876 | 0.007958 | -0.000198 | 0.752963096
rigl-22 1914 | 0.025611 | 0.008119 | -0.000209 | 0.732082906
rigl-24 2280 | 0.02469 | 0.00856 | -0.000224 | 0.736701827

Table 39: Results of aeroelastic analysis of rigl model

G | B Crq Cry Cp, Usip (M) | Vip (M) | Wyp (M)
1.00 | 1.00 | -0.306560 | 1.212562 | -0.029677 | 0.016181 | 0.004782 | -0.00009
0.75 1 0.50 | -0.306567 | 1.212301 | -0.029675 | 0.016178 | 0.004781 | -0.00009
0.50 | 0.50 | -0.306604 | 1.212841 | -0.029671 | 0.016179 | 0.004782 | -0.00009
0.50 | 0.25 | -0.306560 | 1.212562 | -0.029677 | 0.016181 | 0.004782 | -0.00009

Table 40: PALISUPAN force coeflicients obtained from analysis of rigl-10
model using a range of relaxation factors
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N, boom | N, sail Mast tip deflection (m) Cr

Uy U2 (&]
rig3-12 564 0.062645 | 0.011958 | -0.001152 | 1.228202411
rig3-14 770 0.068384 | 0.01516 | -0.001381 | 1.155455033
rig3-16 1008 | 0.073027 | 0.018496 | -0.00159 | 1.147850387
rig3-18 1278 | 0.076431 | 0.020853 | -0.001753 | 1.14433377
rig3-20 1580 | 0.079625 | 0.023423 | -0.00192 | 1.143309138

Table 41: Results of aeroelastic analysis of rig3 model

Model Cra Cry Cr
rigdC-14 | -1.197660 | 2.531566 | -0.028207
rigdCR-14 | -0.297817 | 1.208530 | -0.034654

Table 42: Aerodynamic force coefficients calculated by aeroelastic analysis
of rig3C-14 and rigC3R-14 models
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Element Compression (N/m?)
centroid z3 (m) | AEA | Constant | Linear | Sinusoidal

0.036 -7513.54 | -226.16 | -186.48 -231.95
0.107 -7442.75 | -196.51 | -161.97 -206.08
0.179 -7336.32 | -174.10 | -142.14 -185.80
0.250 -7180.40 | -153.41 | -124.61 -166.03
0.321 -6994.12 | -135.06 | -109.34 -147.71
0.393 -6781.64 | -118.64 | -95.93 -130.71
0.464 -6548.56 | -104.03 | -84.17 -115.14
0.536 -6294.33 | -91.08 -73.81 -101.00
0.607 -6019.13 | -79.63 -64.67 -88.26
0.679 -5725.27 | -69.54 -56.57 -76.86
0.750 -5409.27 | -60.68 -49.38 -66.72
0.821 -5075.82 | -52.92 -42.96 -57.73
0.893 -4727.28 | -46.13 -37.23 -49.78
0.964 -4351.34 | -40.21 -32.08 -42.75
1.036 -3960.52 | -35.05 -27.46 -36.53
1.107 -3555.63 | -30.55 -23.30 -31.01
1.179 -3144.30 | -26.63 -19.56 -26.11
1.250 -2728.33 | -23.19 -16.19 -21.73
1.321 -2313.18 | -20.15 -13.19 -17.81
1.393 -1902.08 | -17.45 -10.51 -14.32
1.464 -1508.03 | -15.03 -8.16 -11.21
1.536 -1127.65 | -12.82 -6.11 -8.47

1.607 -767.63 -10.78 -4.36 -6.10

1.679 -467.21 -8.85 -2.90 -4.10

1.750 -271.09 -7.01 -1.74 -2.48

1.821 -181.64 -5.23 -0.87 -1.25

1.893 -133.30 -3.48 -0.29 -0.42

1.964 -50.36 -1.74 0.00 0.00

Table 43: Mast compression results from rig3C-14 analysis
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Nint

Ti

Q;

0.00000 00000 00000
+0.57735 02691 89626
+0.77459 66692 41483

0.00000 00000 00000
+0.86113 63115 94053
£0.33998 10435 84856
+0.90617 98459 38664

0.53846 93101 05683

0.00000 00000 00000

2.00000 00000 00000
1.00000 00000 00000
0.55555 55555 55556
0.88888 88888 88889
0.34785 48451 37454
0.65214 51548 62546
0.23692 68850 56189
0.47862 86704 99366
0.56888 88888 88889

Table 44: Sampling points and weighting for Gaussian numerical integration
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Order | r coordinates s coordinates | Weighting
3 ry = 0.16666 66666 667 | s; = w; = 0.33333 33333 333
Ty = 0.66666 66666 667 | sy = r; Wy = W,
T3 =T1 83 = T W3 = Wy
7 ry = 0.10128 65073 235 | s1 = 7 wy = 0.12593 91805 448
ro = 0.79742 69853 531 | 55 = 14 Wy = Wy
T3 =T1 83 = T2 w3 = Wi
ry = 0.47013 20641 051 | 84 = 714 wy = 0.13239 41527 885
T = T4 85 = T4 Wy — W4
re = 0.05971 58717 898 | s¢ = 7y Wg = Wy
rr = 0.33333 33333 333 | s7 =17 wry = 0.22500 00000 000
13 ry = 0.06513 01029 022 | 51 = 1y wy; = 0.05334 72356 088
ro = 0.86973 97941 956 | s, = 7y Wy = W1
Ty =7 83 = To Wy = Un
rq = 0.31286 54960 049 | s4 = 7¢ we = 0.07711 37608 903
rs = 0.63844 41885 698 | 55 = 7y Ws = Wy
reg = 0.04869 03154 253 | s = 75 Wg = Wy
e = Ts 87 = T Wy = Wy
Tg = T4 88 = Tg wg = Wy
Tg = Tg 89 = T4 Wy = W4
r1p = 0.26034 59660 790 | s10 = 710 wig = 0.17561 52574 332
ry1 = 0.47930 80678 419 | s1; = 71 w11 = Wio
T12 = T S12 = T11 Wi = Wio
r13 = 0.33333 33333 333 | 513 = 713 wyg = -0.14957 00444 677

Table 45: Numerical integration points for integration in the triangular ele-
ment natural coordinate system over the element areas
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Model definition
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Figure 1: Aeroelastic solution structure
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Figure 2: Mainsail under test with a tight leech
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Figure 3: Mainsail under test with reduced leech tension
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Input model data

Calculate K¢

}

—  Assemble K¢ into model K

I
Apply loading to R
!

Apply boundary conditions

!

Solve Ku =

l

Output node displacements, u
and element stresses

Figure 4: Program structure for linear finite element program
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Model data

Node data

Element data

Boundary condition data

Point load data

Figure 5: Arrangement of the data structure used in the linear finite element
program

Figure 6: Linear triangular element natural coordinates
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Figure 7: Two dimensional local coodinate validation model
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Figure 8: Four noded quadrilateral finite element
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Figure 10: Eight noded quadrilateral finite element
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Figure 11: Timenshenko end loaded cantilever
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Figure 12: Four node quadrilateral cantilever analysis mesh
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Figure 14: o1 values for a tip loaded cantilever from Timenshenko theory
and ANSYS analysis using 8 node quadrilateral elements
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Figure 15: Three node triangle symmetrical mesh for cantilever analysis
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Figure 16: Tip deflection of point loaded cantilever modelled using symmetric
mesh of three node triangular finite elements
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Figure 17: Deformed shape of tip loaded cantilever modelled using four node
quadrilateral finite elements
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Figure 18: Twenty noded solid element
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Figure 19: Tip deflections obtained from solid element analysis of a tip loaded

cantilever
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Input model data

Calculate {K®

!

— Assemble {K° into model §K

!

Calculate ® = *2'R — L F

!

Apply boundary conditions

!

Solve {Ku =%
i

u= tu+u

l

Output node displacements, u
and element stresses

t+At

Figure 20: Program structure for non linear finite element program
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Figure 21: Theoretical deflections of uniformly loaded cantilever

Figure 22: Single element model analysed by FENLA1
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Figure 23: Tip deflection plotted against number of load steps for FENLA1
analysis of tip loaded cantilever
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Figure 24: Lumped nodal loading for a uniformly distributed load of 1N on
a side of an eight noded quadrilateral element
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Figure 25: Tip deflection plotted against number of load steps for FENLA1
analysis of distributed loaded cantilever
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Figure 26: Deflection coefficient coefficient plotted against load factor for
FENLA1 analysis of distributed loaded cantilever
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Input model data

J

Calculate element node y

Calculate (K¢
|
Calc. 8+At8%e — 6+AtRe . E‘.)Fe
|

Transform to global coordinates

!

— Assemble into ;K and AR

!

Apply point loads to *TAtR
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Apply boundary conditions

!

Solve Ku = 'TAtR
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u= ‘tu+u
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—— Calculate element node

|

Output node displacements, u
and element stresses
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Figure 27: Program structure for non linear membrane finite element pro-
gram
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Figure 28: 40 element mesh used for analysis of cantilever using FENLA3-3
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Figure 29: Tip deflection coefficient plotted against load coefficient for
FENLA3-3 analysis of distributed loaded cantilever
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Figure 30: FENLA3-3 four element square membrane model
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Figure 31: Central deflection of point loaded square membrane analysed by
FENLA3-3 plotted against number of load steps
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Figure 32: Central deflection of point loaded square membrane, analysed by
FENLA3-3 using 100 load steps, plotted against number of elements
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Figure 33: Four node triangular membrane element
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Figure 34: FENLA3-3 64 symmetric element model

221



Figure 35: FENLA3-3 32 asymmetric element model
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Figure 36: FENLA4 16 element model

223




0.18 4|

0.17 4 —o— FENLA4 ;
i —— FENLA3-3 symmetric !

0.17 1 o —aA— FENLA3-3 asymmetric |
1 R Theoretical :

Central deflection (metres)

0 50 100 150 200

Number of elements

Figure 37: Central deflection of pressure loaded square membrane, analysed
by FENLA3-3 and FENLA4, plotted against number of elements
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Figure 38: Central deflection of pressure loaded square membrane, analysed
by FENLA3-3 and FENLA4, plotted against aeroelastic number
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Figure 39: FENLA3-4 32 element square membrane model
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Figure 40: Tip deflection of tip loaded cantilever analysed by FENLAS5 with
20 node elements plotted against number of elements

Figure 41: Equivalent nodal loads for pressure loaded face of a 20 node solid
element
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Figure 42: Tip deflection of distributed loaded cantilever, modelled using 20

node elements, analysed by FENLAS5 using 20 load steps, plotted against
load coefficient
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Figure 43: Tip deflection of distributed loaded cantilever with load coeflicient
10, analysed by non iterative FENLA5-20, plotted against number of load

steps

0.8 -
071
0.6 - gaoes

0.5 -

0.4

------ Theoretical i
—6~— 20 node elements |
| —&— 16 node elements %

03 |
|

0.2 4

Tip deflection coefficient

©
—
i

0 1 2 3 4 5 6 7 8 9 10

Load factor

Figure 44: Tip deflection coefficient of distributed loaded cantilever, analysed
by FENLA5-16 and FENLAB-20, plotted against load coefficient
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Figure 45: Tip deflection of distributed loaded cantilever with load factor 10,
analysed by FENLAS5-16 plotted against number of elements
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Figure 46: Pressure distribution on the windward side of a mast sail model
calculated during aeroelastic analysis (including wake sheet). Pressure coef-
ficient ranging from 1.0 to -2.0 in this figure
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Figure 47: Model orientation for aeroelastic analysis
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Input data

____________________________________

Calculate section thickness

1

Allocate memory for output section

I

Calculate surface points

I

L Calculate leading edge points

!

Output PALISUPAN header data

}

Output section data

Figure 48: F-2-P program structure
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Figure 49: Leading edge ellipse definition for flat membrane
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Figure 50: Bezier control points used for flat membrane wake generation
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Figure 51: Cross section of flat membrane PALISUPAN geometry

section n + 1
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Figure 52: Normal calculations used for straight line sections in F-2-P-II
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incident flow

Figure 53: Bezier control points for three dimensional curves
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Figure 54: Cross section of curved membrane PALISUPAN section
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Input data

_________________

Generate spline for sail surface

l

Generate spline for mast section
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Calculate section thickness
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Allocate memory for output section
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Calculate surface points
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Calculate mast sail intersection points
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— Calculate mast points
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Output PALISUPAN header data

|

Output section data

Figure 55: Rig model generation program structure
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Figure 56: Direction of mast and sail splines. Mast and sail shown separated
for clarity

Q//————\ Point 0
Point n

Figure 57: Order of points defining the PALISUPAN output section
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Figure 58: Lift coefficient against «, obtained by PALISUPAN analysis of
flat membrane
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Figure 59: Effect of BMCC on lift coefficient calculated by PALISUPAN for
a rectangular flat membrane
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Figure 60: Effect of odd/even number of chordwise panels on lift coefficient
for a rectangular flat membrane
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Figure 61: Effect of panel aspect ratio on lift coefficient for a rectangular flat

membrane
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Figure 62: Plot of lift coeflicient calculated by PALISUPAN for curved mem-

brane against «
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Figure 63: Lift coefficient for a curved membrane, aspect ratio 5, for various
PALISUPAN panel densities
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Figure 64: Lift coefficient for a curved membrane, aspect ratio 5, for various
PALISUPAN panel densities with constant N,
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Figure 65: Lift coefficient for a curved membrane using N, = 60 and for
N, = 20 with high N,
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Figure 66: Lift coefficient for a curved membrane with large numbers of
chordwise panels
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Figure 67: Deformed triangular membrane PALISUPAN input sections
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Figure 68: Effect of BMCC value on lift coefficient for deformed triangular

membrane
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Figure 69: Effect of Kutta convergence limit on lift coefficient for deformed
triangular membrane
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Figure 70: Number of iterations required to solve deformed membrane with
varying Kutta condition limits
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Figure 71: Effect of N, on calculated lift coefficient of deformed triangular
membrane for constant N, = 40
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Figure 72: Effect of N, on calculated drag coefficient of deformed triangular
membrane for constant NV; = 40
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Figure 73: Effect of IV; on calculated lift coefficient of deformed triangular
membrane for constant N, = 20
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Figure 75: Aeroelastic program structure
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Input PALISUPAN panel pressures as
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.................. R

E Loop through number of panel strips E

____________________________________

Calculate pressure splines for pressure
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Figure 76: P-2-F program structure
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N\ NONNNSNN
\ |
\ l
l

|

N DN NN '

Figure 78: Symmetric triangular finite element mesh used for analysis of
rectangular membranes
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Figure 79: Failure of PALISUPAN model generation for membrane section
with saddle point
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Figure 80: Convergence history of aeroelastic analysis of restrained mem-
brane
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Figure 81: Effect of number of panels on central deflection of restrained
rectangular membrane aeroelastic solution
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Figure 82: Effect of number of elements on lift coefficient of restrained rect-
angular membrane aeroelastic solution
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Figure 83: Effect of number of elements on central displacement of restrained
rectangular membrane aeroelastic solution
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Figure 84: Symmetric triangular finite element mesh used for analysis of
rectangular membranes with aspect ratio 2. Example shown consists of 128
elements
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Figure 85: Triangular membrane mesh
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Figure 86: Revised triangular membrane mesh
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Figure 87: Lift coefficient against number of finite elements for MONSTA3
analysis of triangular membrane
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Figure 88: uy of mid point of trailing edge against number of finite elements
for MONSTAS3 analysis of triangular membrane
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Figure 89: Lift coefficient against number of finite elements for aeroelastic
analysis of rigl model

0.085 -
0.080 -
0.075 -
0.070 -
0.065 -

0.060 -

0.055

Mast tip deflection magnitude (m)

0.050 T - 7 ; !
500 700 900 1100 1300 1500 1700

Number of sail elements

Figure 90: Magnitude of the mast tip deflection against number of finite
elements for aeroelastic analysis of rigl model
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Figure 91: Magnitude of the mast tip deflection against number of finite
elements for aeroelastic analysis of rig3 model
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Figure 92: Deformed sail sections predicted by aeroelastic analysis of rig3R-
14 model
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Figure 93: Deformed rig predicted by aeroelastic analysis of rig3C-14 model,
view from side
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Figure 94: Deformed rig predicted by aeroelastic analysis of rigdR-14 model,
view from downstream to windward
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Figure 95: Deformed rig predicted by aeroelastic analysis of rig3-14 model,
view from downstream to windward
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Figure 96: Deformed rig predicted by aeroelastic analysis of rig3CR-14
model, view from downstream to windward
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Figure 97: Deformed rig predicted by aeroelastic analysis of rig3C-14 model,

view from downstream to windward
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Figure 98: Deformed leech of the rig3CR-14 model, view from downstream
to windward
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Figure 100: Mast compression predicted by distributed loading of rig3C-14
rig forces on a mast model
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Figure 101: Mast compression predicted by aeroelastic analysis of rig3C-14

model
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A Linear finite element theory

The finite element method represents a continuum with a series of discrete
approximations. The particular area of interest examined here is the finite
element method applied to structural mechanics, although the method can

be used for any field problem.

A.1 The virtual work equation

The principle of virtual work equates the internal and external virtual work
resulting from any compatible small virtual displacements imposed on the
body in it’s state of equilibrium. The virtual displacements are zero at pre-
scribed displacements (boundary conditions) on the model, and are restricted
to small displacements to validate the assumption of linear strain used in this
formulation. Equating the internal and external work, where U and € are

the virtual displacements and strains, results in equation 149.

/ &rdV = / T £84V + / fJ“??Tfod5+Z'ﬁ7TR"C (149)
14 14 Sy i

A.2 Discretization
Steps in the discretization of the continuum are as follows:
e The continuum is separated into finite elements.

e The elements are assumed to be interconnected at a discreet number

of nodal points on the boundaries.

o A set of functions is chosen to uniquely determine the displacements
within each element in terms of nodal displacements, which become the

system unknowns.
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e The state of strain in the elements is defined by the displacement func-

tions in terms of the nodal displacements.

e A system of forces, concentrated at the nodes and balancing the bound-

ary stresses and applied loads on the continuum is determined.

This results in a series of approximations:

e Displacement functions may not satisfy the requirements of displace-

ment continuity between elements.

e Concentration of forces at nodes means that equilibrium is satisfied in

an overall sense, not locally.

A.3 Displacement functions

The displacement field within an element, u, is assumed to be a function of
the displacements at the N element node points, as indicated in 150. This
is the basis of the direct stiffness method, which allows an effective assembly

of the finite element matrices into the model matrices.

N

wind = huf (150)
k=1

a™ = gmym (151)

Element shape functions, h; are functions of the coordinate system used
in the formulation of the strain displacement matrix, chosen such that Ay =1

at node k and h; = 0 at all other nodes in the element.
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A.3.1 Element strain and stress calculation

With the assumption detailed in equation 150, the element strains can be
evaluated from the node displacements using the strain displacement matrix,
B, equation 152. This matrix is obtained by differentiation and combination

of the interpolation functions.

™ = gmym) (152)

As an example of the derivation of B the strain displacement relationship for
a two dimensional plane stress case is considered below. Equation 153 shows
the relationship between the strain vector and displacements for this strain
case. Introducing the displacement assumptions of equation 150 leads to the

definition of the strain displacement matrix shown in equation 154.

€ du/dz §/éz O
e=| ¢ | = 56y =l o sy || (153)
Yey 5u/Sy + bv/bz 5/5y 56z | N
hii 0 v 0
M =BMUM™ = | 0 Ry -0 0 hyy |UT (154)
hiz hi hwa hwa

’

The stresses in the finite element can be calculated from the element
strains and initial stress, 7J* according to equation 155, where C™ is the

element constitutive matrix.

) — glmglm) 4 7 (m) (155)
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A.4 Formulation of the finite element equations

The virtual work equation 149 can be re-written as a sum of integrations

over the volume and areas of all finite elements, equation 156.

> / Mgy = (156)
™ y(m)
==(m —=5(m)T ==t ;
S [ T™eEmay / T £5mgstm + ST RE
— Jym sm . sim) p

Since the integrations in equation 156 are performed over element volumes
and surfaces, different coordinate systems can be used for each element in
the calculations. In order to sum the element contributions, they must be
transformed into a common coordinate system before summation.

If the interpolations defined in the previous section are applied to the vir-
tual displacements and strains, the virtual work equation 149 can be written
in terms of the strain displacement matrix, interpolation functions and nodal
displacements. Using the same interpolations for the virtual displacements
results in symmetric stiffness matrices. Nodal point displacement vectors,
U and U are independent of the element, (m) and can be taken out of the

summation signs, resulting in equation 157.

o7 {Z / BT Cm) B (m) gy (m)
m Y Vim)
i HZ / H(m)TFB<m>dV(m>}
m Y Vim)
S(m)T pS(m) g g(m)
+{2m: /5 §m>,,..,sgm>H F5mds }

— { > / B<m>TTI<m>dv<m>} + RC] (157)
m ¥ Vim)

By applying virtual displacements of unit displacement on each degree of

U=

freedom in turn, with all other displacements set to zero, equation 157 reduces
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to a set of linear equations, shown in equation 158. The stiffness matrix, K

is defined in equation 159 and the load vector, R is defined in equation 160.

KU=R (158)

K= / BT migm) gy (m) 159
; o (159)
R=Rp+Rs—R;+R¢ (160)

The load vector consists of components due to element body forces, surface
forces, initial stresses and concentrated nodal loads which correspond to the
right hand side terms in equation 157. The non zero rows and columns of the
matrices and vectors, corresponding to the degrees of freedom of the element
nodes, are calculated for each element. If a local coordinate system is used in
calculation of the element characteristics, the element matrices and vectors
are transformed into the model global coordinate system. Assembly of the

model stiffness matrix and load vectors is carried out using the connectivity

of the elements.

A.5 Application of boundary conditions

A.6 Boundary conditions

The method used for application of the boundary conditions allows any dis-
placement to be specified on a degree of freedom. The transformation used

is shown in equation 161, where displacement u; is given an applied displace-
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ment, Z.

[~ “ 4 N r ™
ki1 ko kis ks Uy P,
ko1 ko Koz kos ) Z - < P, - (161)
k31 ks ksz kas us Py
i kg ke kaz kas 1 { Uyg J L Py )
r 1 ( 3 ( 3
kin 0 kis Fkus Uz P — k2 Z
0 1 0 0 Z Z
< > = < ’
k31 0 ksz kas us P; — k327
i ki 0 kaz Fkus IR { Py — ke Z )

A.7 Stress calculation

Calculation of the element stresses in a linear finite element model in two

dimensions is carried out according to equation 162.

01:1: 6223
oy (=CQ ey (162)
Tey Yey

The strain in the element can be calculated according to equation 163, where

u”® is a vector of the node displacements.

633
= Bu”® (163)

Eyy

7:cy

A.8 Isoparametric formulation

The iso-parametric element uses a element based natural coordinate system.
The natural coordinate system employed in the two dimensional linear trian-

gle element is shown in figure 6. Interpolation functions are defined in terms
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of the element natural coordinates and the same functions are used inter-
polate both coordinates and displacements within the element, as shown in

equations 164 and 165.

N
T; = Z h;z] (164)
j=1
N .
7=1

To calculate the stiffness matrix of the element, it is necessary to evaluate
the strain displacement matrix, B, which contains derivatives of the ele-
ment displacements with respect to the element local coordinates. Element
displacements are defined in terms of element natural coordinates, and the
Jacobian operator, J, defined in three dimensions in equation 166, is used to
relate the derivatives in normal coordinates to the local coordinate deriva-

tives, equation 168.

8 oz Oy oz 8
or ar O8r Or Oz
8 | — | 8z 8y oz 8
|~ |5 & & || 5% (166)
il 8z 8y 8z 8
L 5 L 5t & ot d L3z
3] 0
_=J= 1
or ox (167)
0 0
—=J'= 1
Ox or (168)

The elements of the Jacobian matrix can be found from differentiation of
the coordinate interpolations, equation 164. Derivatives of the interpolation

functions with respect to the element local coordinate system can then be

274



found from the inverse of the Jacobian matrix and the derivatives of the in-
terpolation functions with respect to the element natural coordinates. These
can then be used to assemble the strain displacement matrix, B. The element
stiffness matrix, equation 159 will now contain strain displacement matrices
which are functions of the element natural coordinates. The volume inte-
gral extends over the natural coordinate volume, and the volume differential
needs to be written in terms of the natural coordinates, equation 169, where

det J id the determinant of the Jacobian operator.
dV =detJ dr ds dt (169)

Since the integration over the volume integral is generally not effective in
the case of higher order elements, numerical integration is employed to cal-
culate the stiffness matrix, equation 171. Here F;j;; is F evaluated at the
numerical integration point, (r;, s;,t), and o is a constant dependent on

the integration point.

F =B'CBdetJ (170)
K= Za,-ijijk (171)
1,7,k

A similar process is used to calculate the force vectors defined in equation 160.
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B Numerical integration schemes

Gaussian integration schemes are used for the two dimensional elements. The
sampling point coordinates, r;, and weighting, a; for the numerical integra-
tion are given in table 44 for integration over the interval -1 to +1 using n;n;
points, and these are used to evaluate an integral according to equation 172.
Gaussian integration of order n will exactly evaluate an expression of order
(2n-1).
+1 n
/ F(r)dr = w;F(r;) (172)
- i=1

1
The one dimensional formulae can be used to integrate over two and three
dimensions in quadrilateral and solid elements respectively by applying the
one dimensional formulae in each direction, as shown in equation 173 for the
three dimensional case.

+1 p41 pHl
/ / / F(r,s,t)dr ds dt = Z n Z n Z nw;w;wg F(r;, 85, tx)
-1 J-1 J-1

1 i=1  j=1 k=1

(173)

Integration over three dimensions can be carried out with the same order of
accuracy as a twenty seven point (3x3x3) integration by using only 14 points,
as described by Irons [25]. The sampling point coordinates and weighting are

obtained from equation 174, using the following values:
e B=0.886426593, b=0.795822426;

e ('=0.335180055, c=0.758786911.
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The accuracy of this scheme was demonstrated by Hellen [19] for cantilever

analysis.

/+1/+1/+1 (rys,t) (174)

B{F(-b,0,0) + F(b,0,0) + F(0,—b,0) + - - - 6 terms}
C{F(—-¢,—c,—c)+ F(¢c,—¢c,—c) + -~ 8 terms}

B.1 Triangular elements

The integration over the area of triangular elements is carried out using the

coordinates and weighting of figure 45 (obtained from Bathe [4]) as shown in

equation 175.

1 1 1 n
/0 /0 F(r,s)dr ds = E;wiF(ri,si) (175)
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C Aeroelastic program data and control files

C.1 Control file

The format of the control file for the aeroelastic program is as listed below:
e N; - Number of chordwise panels for PALISUPAN model
e N, - NUmber of spanwise panels for PALISUPAN model
e N,, - Number of sail panels for PALISUPAN model
e Vinsiy - Freestream velocity

e N;ree - Number of free wake panels (as the wake is fixed this has no

effect on the solution)
e o - Angle of flow incidence
e N - Number of elements along the boom in the finite element model
e N, - Number of sections used to generate the PALISPAN model

® N, - Number of points used to define the leading edge/mast in the
PALISUPAN input model

e N, - Number of points used to define the sail surface in the PALISU-
PAN input model

® t,, - Thickness multiplier to calculate sail thickness for PALISUPAN

input model
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C.2 Finite element data file

The finite element data file uses the following format:
e Number of nodes
e Number of sail elements
e Number of mast elements
e Number of boundary conditions
e Number of point loads
e Number of material properties
e Number of load steps
e Element thickness
e Initial stress
e Convergence criteria
e Realxation factor 5,
e Relaxation factor [,
® List of material properties:

— Reference number
— Youngs modulus
— Poissons ratio

e List of node data

— Reference number
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— Global coordintes
e List of sail element data

— Reference number
— Material property

— List of nodes defining element

List of mast elements (format as for sail elements)

List of boundary conditions

— Node number

— Flag to indicate degree of freedom restrained

List of point load data

— Node number
— Flag to indicate direction of load

— Load magnitude
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